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Abstract. Using PVS (Prototype Verification System), we prove that
an industry designed scheduler for a smartcard personalization machine
is safe and optimal. This scheduler has previously been the subject of
research in model checked scheduling synthesis and verification. These
verification and synthesis efforts had only been done for a limited num-
ber of personalization stations. We have created an executable model
and have proven the scheduling algorithm to be optimal and safe for
any number of personalization stations. This result shows that theorem
provers can be successfully used for industrial problems in cases where
model checkers suffer from state explosion.
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1 Introduction

Formal methods provide the kind of rigor in software engineering that is needed
to move the software development process to a level comparably to other engi-
neering professions.

There are many kinds of formal methods that can be employed at different
stages of the development process. In the specification phase, a model can be
constructed using some kind of formal language. This model can be used as a
starting point for model based testing. Model checking, which proves properties
for the entire state space of a finite part of the formal model by means of an ex-
haustive test, can eliminate a lot of errors. Both model based testing and model
checking can be performed automatically. Theorem proving can be used for full
verification of models that can have an infinite number of states. However, em-
ploying theorem proving is considerably more costly than the earlier mentioned
methods.

Formal verification of models is gaining ground within the industrial world.
For instance, Cybernétix participated in the AMETIST project, in order to im-
prove the quality of their systems. This project’s aim was to develop modeling
methodology supported by efficient computerized problem-solving tools for the
modeling and analysis of complex, distributed, real-time systems. A personaliza-
tion machine was one of the case studies supplied by Cybernétix. This machine
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consists of a conveyor belt with stations that personalize blank smartcards. The
number of stations is variable.

The AMETIST participants modeled the machine in several model check-
ing environments: Spin, Uppaal and SMV. However, within these systems, the
models were checked and proven optimal and safe with respect to an ordering
criterion for only a limited number of personalization stations. The most impor-
tant reasons why it is interesting to look at the case study using other formal
methods besides model checking are:

– In some production configurations the number of stations exceeds the amount
of stations the model has been checked for. So there is not yet complete as-
surance that the scheduling algorithm is indeed safe and optimal for actually
used configurations.

– Model checking is limited to a finite state space. Although there are methods
allowing model checking to abstract away from the data or even to employ
inductive reasoning on the model, so far no one has generalized to N stations.
A stronger result would be to prove that for any number of stations, the
scheduling algorithm is safe and optimal.

– Using a theorem prover to prove that a suitable invariant is correct usually
gives more insight into why the machine satisfies its safety and optimality
properties, instead of just checking them automatically.

In this paper we will present a formalized model of the machine in PVS
(Prototype Verification System) [ORS92]. This is an environment for precise
specification and verification of models. The specification language is based on
simply typed higher order logic, but the type system has been extended with
subtypes and dependent types. PVS also employs decision procedures to assist
the user in a verification effort. These procedures take care of the bureaucracy
associated with a formal proof and are usually able to discharge obvious proof
obligations automatically. The specification language also allows for simulations
and other means of animating the model if the model is composed out of an
executable subset of the specification language.

We will come up with an invariant and use PVS to prove that this invariant
holds for the model. This invariant is strong enough to prove all safety criteria
and to prove that the algorithm guarantees optimal throughput for any num-
ber of personalization stations. We will also provide a simulation package. This
makes it possible to verify that the model behaves as one would expect from a
regular machine and which could form the basis of software that actually runs
the machine.

In this article we present the smartcard personalization machine in section 2.
The model of the machine is decribed in section 3 and we show by means of a
simulation that this model is valid in section 4. Then, in section 5, the invariant
is presented, followed by its proof in section 6. Safety and optimality are deduced
from that invariant in section 6.1. A summary of related work by other people
is given in section 7. An overview of future work can be found in section 8. All
code and proofs referred to in this paper are available.1

1 http://www.cs.ru.nl/∼leonard/papers/cybernetix/cybernetix.tar.gz
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2 Personalization Machine

A smart card personalization machine takes blank smart cards as input and
programs them with personalized data. Subsequently, the cards are printed and
tested. Typically, a machine has a throughput of several thousands of cards
per hour. The machine has a conveyor belt transporting the cards. There is
an uploader station putting cards onto the belt and an unloader station taking
them off again. Directly above the belt are posts that can manipulate the cards,
either by lifting them off the belt, like personalization stations, or by processing
the cards while they remain on the belt, like graphical treatment stations. An
example configuration is given in figure 1.

Fig. 1. Example of a standard configuration

There are different kinds of operations possible on the cards:

– Personalization stations program the chip on the card. These stations are
able to detect if a card is defective. Cards need to be lifted into a personal-
ization station by a lifting device.

– Graphical treatment stations are either laser engravers or inkjet stations.
They can graphically personalize the cards. Graphical treatments happen
while the card remains on the belt.

– Flipover stations can turn cards over to allow a graphical treatment of both
sides of a card.

– Test stations determine whether the chip that is on the card functions
properly.

– Rejection stations are used to extract cards that have been judged to be
defective.

Due to the high number of cards that need to be personalized and the way
the machine is structured, there are several requirements that need to be met
by the smartcard personalization system:
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– The output of the cards should happen in a predefined order, since further
graphical treatment of the card may depend on the kind of personalization
that has been received by the card. In the remainder of the paper we shall
refer to this requirement as safety.

– The throughput of the machine should be optimal.
– The machine should allow for defective cards to be replaced.
– The system should be configurable and modular. The number of personal-

ization and graphical treatment stations can vary according to the needs of
the customers. Neither is the placement of the stations fixed. This means
that the personalization stations can be spaced or appear interleaved with
graphical treatment stations.

Cybernétix has developed and patented a scheduling protocol called “Super
Single Mode”. This particular scheduling protocol puts each time unit a new
blank card on first position of the belt for N consecutive time units, where N
is the number of personalization stations. After N time units, it leaves the first
position of the belt empty for one time unit and then repeats itself by putting
N new cards on the belt followed by leaving one slot empty.

3 PVS Model of the Personalization Machine

In the previous section, we have given a general description of the personalization
machine. In this section we will discuss the model we have developed.

The personalization machine is modeled as a conveyor belt that transports
cards underneath a set of M personalization stations. Each of these stations can
pick up and drop cards onto the conveyor belt. The belt is synchronized with the
personalization stations in order to enable picking up and dropping the cards.

Fig. 2. A simplified machine with 4 stations

Since we are interested in the scheduling mechanism, the model that has been
constructed can ignore several aspects of the machine, similarly to other studies
[GV04, Ruy03, HKW05].
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– For the scheduling algorithm it is not relevant how the cards end up on the
belt or how they are taken off. This means that the loader and unloader can
be safely omitted from the model.

– We assume that no cards are defective. This means that there is no need to
model neither the testing stations nor the stations that take rejected cards off
the belt. Although this reduces the interest of the example, only the study
by Gebremichael [GV04] addressed the failed cards by creating a special
“faulty” card mode. This can be added to the generalized model without
too much effort in a later stage.

– The graphical treatment and flipover stations have also been omitted. These
stations do not take cards off the belt, so they can not interfere with the
ordering on the belt. Also, the processing time is magnitudes smaller than
the processing time of the personalization stations. They have a negligible
impact on the throughput of the system.

– The loading and offloading time of the personalization stations is also much
smaller than the personalization time and not included into the model.

When the machine is started, the belt and all the personalization stations
are empty. In figure 3 we show the transition of a four station personaliza-
tion machine through time. At each transition, the belt is moved one slot and

Fig. 3. Personalization run in super single mode
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subsequently the cards are dropped or lifted from the slots when needed. The
arrows indicate the move a card is about to make. The numbers above the sta-
tions indicate the kind of personalization produced by that station and can also
be found on the card after a station has finished personalizing and has dropped
the card back onto the conveyor belt.

At first, when the time that has passed is smaller than 9, the system is in an
initial state where all the stations fill up with cards being processed. At t=9, the
system starts a cycle that lasts for five transitions. As one can see in figure 3,
the state at t=14 is the same as at t=9. The state of the machine as depicted in
figure 2 can be found in the table at t=12.

Our aim in constructing a PVS model is to verify that the scheduling algorithm
satisfies the following criteria:

– The personalized cards should leave the machine in the order of the occur-
rence of the personalization stations. Cards personalized by station 0 should
appear at the last slot on the belt before the card personalized by station 1.
No other sorting mechanism may exist in the system.

– The throughput of the machine should be optimal.

3.1 The Belt

The model encodes the conveyor belt using an algebraic data type. A slot on the
belt can either contain no card: empty, contain a smartcard that has yet to be
personalized: new card, or contain a personalized card: personalization. The
personalization is modeled as a natural number that corresponds to the relative
position of the personalization station with respect to the conveyor belt. This
means that cards leaving the left most station get 0, and the rightmost M.

In PVS, algebraic data types are specified by providing the constructors
as well as recognizers and accessors. The constructors empty, new card and
personalization are used to build the objects of that data type. The recogniz-
ers (empty?,new card? and personalization?) are used to determine of which
kind an expression of the slot type is and the accessor number can be used to
extract the personalization nr, in case of a personalization.

slot : DATATYPE

BEGIN

empty : empty?
new_card : new_card?
personalization (number : personalization_nr) : personalization?
END slot

The conveyor belt is modeled as an array of 1 + M of these slots. Each slot
is indexed by a natural number from 0 up to M. In PVS, these restrictions on
values which can be held by an object can be expressed elegantly using dependent
types: types dependent on values. For example, the (finite) subset {0, . . . , M} of
the natural numbers can be described as below(n:nat) : TYPE = { m : nat
| m < n }. In this case, the predicate on the natural numbers is below(1+M).

beltposition : TYPE = below(1+M)
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3.2 The Stations

The relevant information to model a personalization station is whether a station
is programming a card and if so, how far the personalization process has pro-
gressed. A timer is used to model this. The value 0 is assigned to a station to
indicate that a station is empty and not working on a card. Once a station starts
personalizing, the value is increased to 1 and incremented each time slot until it
reaches the time needed to complete the personalization process. At that time,
the machine will start looking whether it can drop the card or not. Theoretically,
the machine can keep incrementing the timer as long as the card has not been
dropped. Therefore, we model the timer by a natural number.

timer : TYPE = nat

Since we have one less personalization station than there are slots on the belt,
the stations are modeled as an array of M of these timers.

stationposition : TYPE = below(M)

3.3 The Machine

The entire machine is rather straightforward. The machine is viewed as an array
of M stations combined with an array of 1+M belt-slots. A global timer is used
to synchronize actions on the belt and in the stations. In PVS this is modeled
using a record type:

machine_state : TYPE =
[# stations : [stationposition → timer] ,

belt : [beltposition → slot ] ,
global_timer : global_timer

# ]

In figure 4 the machine as earlier depicted in figure 2 is shown as a represen-
tation of the PVS model.

Fig. 4. Model of the simplified machine from figure 2

The behavior of the machine is described by a function f next. This function
transforms a machine state into the next machine state by operating the belt
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slots and stations for each position and by increasing the global timer. The next
state of a station and belt at a certain position is determined by the content of
the previous belt slot or the previous station.

– In the case of a station, the next state can only be determined by the content
of the belt that is situated to the left and below the station. In the model
they are indexed by the same position number.

– In the case of the belt, the next state at a certain position is determined by
the content of either the station directly above the belt or the previous belt
position. Both are indexed by the position minus one.

The f next function constructs the next state out of the current state by
creating a new record of type machine state:

f_next(ps:machine_state) : machine_state =
(# stations := f_operate_station(ps)
, belt := f_operate_belt(ps)
, global_timer := global_timer(ps)+1
#)

The behavior of the machine is best described by discerning three different
situations:

1. We have an empty station and a new card is available on the previous slot
on the belt. In this case, we move the card from the belt into the station and
start personalizing. As a consequence, the belt position becomes empty and
the station’s timer is started.

2. The timer in the station indicates that the card has been personalized and
there is an empty spot on the belt. This means the personalized card, which
is designated by its position, can be dropped onto the belt, leaving an empty
station. At the same time the timer is reset.

3. If none of the above applies the contents of the belt are just shifted one
position. If the station at the position is personalizing we adjust the timer
by one tick to denote the progress of time.

The function operating on each station checks whether the timer of the sta-
tion needs to be started, reset or increased, depending on whether it is done
personalizing cards or ready to take in a new card:

f_operate_station(ps:machine_state)(spos:stationposition) : timer =
LET station = station(ps)(spos) , belt = belt(ps)(spos) IN

IF empty?(station) ∧ new_card?(belt)
THEN start_timer
ELSIF done?(station) ∧ empty?(belt)
THEN reset_timer
ELSIF ¬empty?(station)
THEN increase_timer(station)
ELSE wait(station)
ENDIF
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The function that operates the belt reacts to basically the same conditions as
the previous function with exception of the first belt position. There the cards
must be scheduled according to the scheduling algorithm:

f_operate_belt(ps:machine_state)(bpos:beltposition) : slot =
IF bpos=0
THEN schedule(global_timer(ps))
ELSE

LET station = station(ps)(bpos-1) , belt = belt(ps)(bpos-1) IN

IF empty?(station) ∧ new_card?(belt)
THEN lift
ELSIF done?(station) ∧ empty?(belt)
THEN drop(bpos)
ELSE move_belt(belt)
ENDIF

ENDIF

The behavior of the system strongly depends on the time a personalization
station needs to finish. If the personalization time exceeds the number of per-
sonalization stations, the safety property will not be satisfied, because it will
mean that a blank card will reach the end of the conveyor belt before one of the
stations will be able to pick it up. If the personalization time is smaller than M,
there will not be an empty spot available to drop the card. This spot will only
arrive after M time units, so it makes sense to have the personalization end at
that time.

done?(t:timer) : bool = t=M

3.4 The Scheduler

The scheduler is a process that puts the cards onto the first spot of the conveyor
belt in a cyclic fashion. It places M new cards on the belt followed by an empty
spot. In order to keep track of when an empty space should be left on the belt,
the global timer is used:

schedule(global_timer:global_timer) : slot =
IF mod(global_timer,1+M) = 0
THEN empty
ELSE new_card
ENDIF

4 Validating the Model

In section 3, we developed a model of the personalization machine. When mod-
eling a system, the key question is whether it faithfully represents the original
machine. In order to show this is indeed the case we need to be able to execute
our model and make a visual representation that mimics the behavior expected
from a personalization machine. This approach provides us with several benefits:
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– To prove the safety property of the machine an invariant is needed. Visual-
izing the behavior makes is easier to determine this invariant.

– Secondly, if we have an appropriate API to drive the belt and sensors, the
executable model means that we can generate code to run the machine.
No manual translation from model to code is necessary. This eliminates a
possible source of errors.

– Finally, visualizing the behavior of the model allows us to verify that the
model behaves as expected.

PVS allows for animation of its specifications by means of a ground evaluator
[vHPPR98]. The evaluator extracts executable Common Lisp code from the
PVS functional specifications. Semantic attachments enable a safe connection
of user defined Lisp functions to uninterpreted PVS functions. A library, PVSio
[Muñ03], extends the ground evaluator with a library of predefined functions to
handle all kinds of imperative languages features.

Since we have written the model in PVS, using only functional specifications, it
is directly executable by PVS’ ground evaluator. On top of the executable model
it is possible to add IO as a side-effect of the original statements. Functions that
produce side-effects must be modeled as Boolean functions that always return
true. By conjoining those functions with the original model they will be executed
alongside the executable model. We define a simulation function that takes as
arguments how many times the transition should take place and the starting
state. As a side effect, the state of the machine is printed to the standard output
so we can observe the machine as time progresses.

f_step(ps:machine_state)(p:nat) : RECURSIVE void =
print_state(ps) ∧
(
IF (p=0)
THEN println(”End of simulation”)
ELSE f_step(f_next(ps))(p-1)
ENDIF

)
MEASURE pn

The function print state(ps0) prints the state variables to the standard
output.

Although no machine experts were involved in validating this particular model,
the models from the original AMETIST project were. The PVS model is close
enough to these models to validate it against its expected behavior. We have
simulated behavior for machines of several sizes and as an example show the
validation of a conveyor belt with four personalization stations. What should be
expected is earlier depicted in figure 3. A # denotes a new card, a * denotes a
station that is personalizing,ˆan empty station, ! shows a station that is done
personalizing, while the natural numbers stand for personalized cards. In figure 5
we show the output generated by a simulation run of the model for a four station
machine.
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Fig. 5. A simulation run in PVSio

A comparison of figure 5 with figure 3 shows that the simulation behaves as
expected.

5 The Complete State Invariant

In section 4 we have shown by means of a simulation that the model behaves as
expected for four stations. The next step is to prove that the model satisfies the
safety and optimality requirements:

– Concerning the safety property: The machine must maintain the order of
the personalization stations in its generated output order. This can be split
up in two requirements.
• First, only personalized cards or empty spaces should be present at the

last slot of the belt.
• Secondly, once a personalized card n, where 0 ≤ n < M , is present at the

final position on the belt, the next card has to be personalization mod(n+
1, M) or a sequence of empty slots until the next card is personalization
mod(n + 1, M).

– Concerning the optimality property: The machine must personalize as many
cards as possible per time unit. The optimum is reached if all personalization
stations are occupied and personalizing all of the time. This means that once
the cyclic phase of the machine is entered, two properties should hold:
• If a station is empty, then it must immediately be able to load a new

card and start personalizing.
• If a station is done personalizing, an empty space should immediately be

available to drop the card.

We can formulate the safety property slightly more specific, because we know
that only one empty spot is scheduled each cycle. This means that there can be
only one empty spot in the output position once the cyclic phase of the machine
has been reached. As a consequence, we can conclude that the order in which the
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personalized cards leave the machine must be linearly related to the value of the
global timer. We have established that the relation between the value of the
global timer and the value of the personalized card, number(belt(ps)(M)),
however, we do not know yet at what time exactly mod(global timer(ps),1+M)
will be equal to personalized card 0. There might be a phase transposition. We
call this c.

Assuming we have M personalization stations the first property can be spec-
ified formally as:

empty?(belt(ps)(M))
∨ (personalization?(belt(ps)(M)) ∧

∃ c: mod(global_timer(ps)+c,1+M) = number(belt(ps)(M)))

The second property can be formally specified as:

∀ pos: ∃ ps’: global_timer(ps’) = global_timer(ps)+1∧
(empty?(station(ps)(pos)) ⇒ start?(station(ps’)(pos))) ∧
(done?(station(ps)(pos)) ⇒ empty?(station(ps’)(pos)))

Trying to prove these two properties directly turns out to be futile. In order
to prove them we need to come up with an invariant that is stronger than the
safety and optimality properties. More particularly, in this invariant must be
expressed that whenever a station has finished personalizing, an empty spot will
be available to deposit the personalized card.

We assume the machine starts with an empty belt and all stations empty.
After an initialization phase, the machine will end up in a cyclic state until the
machine is shut down. In the initialization phase, the stations and belt positions
remain empty, until an empty card reaches them.

The graphical representation of the state of the personalization machine, de-
vised to validate the working of the system can also be put to good use in deriving
the invariant needed to prove the relevant properties.

In figure 6, the first observation we make is that the cyclic phase propagates
through the positions at the rate of one position every two time units. After two
time units the first position satisfies the stable (cyclic) invariant, while the rest
of the belt still is in its initial state. After four time units, the first two positions
satisfy the invariant, while the remaining part of the belt and stations are still
in their initial state, and so on:

p_invariant(ps:machine_state) : bool =
∀ bpos : IF 2*bpos+1 ≥ global_timer(ps)

THEN p_init(ps)(bpos)
ELSE p_stable(ps)(bpos)
ENDIF

The initial invariant is simply that the timer of the station at position pos
is 0 and consequently the station is empty, as well as the corresponding belt
position.

p_init(ps:machine_state)(bpos:beltposition) : bool =
(bpos ≤ M-1 ⇒ station(ps)(bpos) = 0) ∧ empty?(belt(ps)(bpos))
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Fig. 6. Cyclic invariant propagation Fig. 7. State of the stations

Observations on the stations of the personalization machine allow us to con-
clude that the timer of a station is related to the value of the global timer.
As seen in figure 7, the value of a station neatly increases in time with a
phase difference according to its position: station(bpos) = mod(global timer
- 2*(bpos+1),1+M)

The relationship between the global timer and the contents of the belt at a
certain position are slightly more complex. In order to clarify that relationship,
the state of the stations is removed from the representation in figure 8.

We replace some of the symbols we have used with a numerical representation.
From this representation as in figure 9 we can derive the following property for
the content of the belt:

belt = mod(global_timer(ps)-bpos-1,1+M) ∧
IF belt = bpos THEN empty
ELSIF belt > bpos THEN new_card
ELSE personalization(number(belt))
ENDIF

Combining and rewriting the above results we obtain an invariant for the
entire system:
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Fig. 8. State of the belt Fig. 9. State of the belt with selected nu-
merical representations

p_stable(ps:machine_state)(pos:beltposition) : bool =
(pos ≤ M-1 ⇒ mod(global_timer(ps)-2*(pos+1) ,1+M) = station(ps)(pos))
∧
LET timer = mod(global_timer(ps)-2*pos-1,1+M) , belt = belt(ps)(pos) IN

IF timer = 0
THEN empty?(belt)
ELSIF timer < 1+M-pos
THEN new_card?(belt)
ELSE personalization?(belt) ∧ number(belt) = timer-1-M+pos
ENDIF

Since it contains complete information of the state of the machine at any given
time, it should be possible to prove that this invariant (if it is correct) holds. We
call this the complete state invariant. From this invariant, we can then directly
deduce the properties we want to prove.

6 Proof of the Complete State Invariant

After specifying the invariant in PVS, we will now prove that the invariant holds
in the initial state and does not change with each consecutive state change. We
define the following theorem within PVS:

invariant: THEOREM

p_invariant(ps_init) ∧ (p_invariant(ps) ⇒ p_invariant(f_next(ps)))

Proving the invariant to hold is done by case distinctions on the invariant, aswell
as case distinctions on the functions f operate belt and f operate station.
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These distinctions then invariably lead to some equation that can be proven
correct using modulo arithmetic or to a contradiction within the assumptions.
In the standard library of PVS, there are a number of lemmas that are sufficient
to discharge all of the modular proof obligations. To provide better understand-
ing, we describe a part of the proof in detail: We want to prove that the transition
in the first part of the f operate station function does not invalidate the in-
variant. The relevant part of the function is:

[.. ]
IF empty?(station(ps)(pos)) ∧ new_card?(belt(ps)(pos))
THEN start_timer

[.. ]

Where start timer returns the timer value of 1.
It has to be shown that the invariant still holds if empty?(station(ps)(pos))

and new card?(belt(ps)(pos)) then station(f next(ps))(pos) = 1 is
added to the assumptions. This simplifies the invariant to two items that have
to be proven:

– First, 2*pos+1 < 1+global timer(ps). This can be derived from the fact
that the p init(ps) part of the invariant has to be false. The value of
station(ps)(pos) is one, while the invariant states that it is zero when
2*pos+1 >= 1+global timer(ps).

– Secondly, filling out the invariant further with the knowledge that the timer
of the station at position pos is one and assuming that we can prove the
first of our proof obligations the part of the invariant that remains is:

mod(1+global_timer(ps)-2*pos,1+M) = 1

Because we know that at time global timer(ps) we had a new card at the
previous position, the invariant adds to the assumptions:

mod(global_timer(ps)-2*pos,1+M) < 1+M-pos

From this assumption, using modulo arithmetic it is deducible that:

global_timer(ps) ≥ 2*pos

There are two possible cases left:

– Either global timer = 2*pos. Then, again using modulo arithmetic, it is
easy to prove that mod(1+global timer(ps)-2*pos,1+M) = 1.

– Otherwise, 2*pos > global timer(ps). Then we know that the stable part
of the invariant holds at global timer(ps).

This means: mod(global timer-2*pos,1+M) = 0. This can be proven
using modulo arithmetic.

The other situations where personalized cards are dropped in empty slots or
the card on the belt is just moved to the right and the timer in the station is
optionally increased are slightly more complicated, but revolve around a number
of case distinctions as well. The total proof, which is surely not optimized, needs
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about 250 proof commands in PVS to be performed completely. Creating the
model, deriving the invariant and proving the invariant to hold, took about a
month for a PhD student, relatively inexperienced with PVS.

6.1 Safety and Optimality

Now that we have established that the invariant holds at all times, we will prove
that the safety and optimality properties follow directly from the invariant:

– The safety property meant that the personalized cards leave the personal-
ization part of the machine in order of the kind of personalization they have
received. Once the invariant has been proven to hold, it follows directly that
at the end of the conveyor belt (at position M), the following holds:

empty?(belt(ps)(M))
∨ (personalization?(belt(ps)(M)) ∧

mod(global_timer(ps) ,1+M) = number(belt(ps)(M)))

Since global timer(ps) is ordered, mod(global timer(ps)),1+M) is or-
dered as well.

– The optimality property implied that the scheduling protocol needs to have
the highest throughput per cycle. This derives immediately from the fact that
if we have 1+M consecutive cards, the machine will not be able to personalize
all the cards. This will violate the safety requirements. Therefore, the highest
throughput per cycle is reached by leaving only one empty slot after M
consecutive cards.

7 Related Work

The Cybernétix case study has been the subject of several research papers. Ku-
gler and Weiss wrote an article about how to interactively derive scheduling
algorithms for production lines using Live Sequence Charts [HKW05]. In it,
they use a graphical representation to analyze a production line systematically.
However, no properties for that production line are proved. In [Mad04] Mader
compares two different scheduling algorithms using model checking, for four and
eight personalization stations, but the model checking was limited to a maximum
of respectively 16 and 40 personalized cards. In contrast to the other studies,
Mader does include the graphical treatment in her model. Ruys uses new fea-
tures of SPIN 4.0 to derive an optimal schedule for four stations and at most
five cards [Ruy03]. Nieberg proves in [Nie04] with a mathematical argument that
the Super Single Mode is optimal, but does not provide a formal proof that the
protocol is safe with respect to the ordering of the cards. Also using model check-
ing, Gebremichael [GV04] is able to derive the Super Single Mode as an optimal
schedule for five personalization stations and any number of cards. Gebremichael
also extends his model to deal with a possible defective card. None of the studies
concerning the smartcard personalization machine combine the rigor of machine
checked proof and simulation with a general proof of optimality and safety. In
PVS work has been done to integrate model checking and theorem proving for
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models that have a finite number of states as described in [RSS95]. However,
these models must conform to some syntactic restrictions that complicate ac-
tually using the model checking part of PVS in practice. Work on verifying
algorithms and code generation from PVS has been done by Jacobs, Wichers
Schreur and Smetsers in [JSS07], where executable parts PVS specifications are
translated into the functional programming language Clean.

8 Future Work

The ad hoc nature of the derivation of the invariant needed for the proof of the
properties, suggests a natural direction for future work. More case studies can
hopefully give us ideas how to derive invariants more methodically. We have only
focused on the scheduling mechanism on a rather abstract level until now. If code
that drives the machine is to be generated, more detail will have to be added to
the specification. An open question is whether the proof will have to be substan-
tially altered when this is attempted. Another subject of research concerns devis-
ing methods to incorporate the context in which the generated code has to be run
into the theorem prover itself in a methodical and easy to use fashion.

9 Conclusion

We addressed the Cybernétix smartcard personalization machine as an example
of an industry supplied case study for the application of formal methods. We
constructed an executable model in the specification language PVS. Since the
model is executable it was straightforward to visualize the behavior of the model
and construct a simulator that was used to establish that the model that had
been created adequately represented the machine. In future work it is possible
to use the verified scheduling algorithm to control the machine itself, eliminating
any errors that might arise from manually translating the model into code.

Model checking techniques already proved optimality and safety of this machine
for a limitednumber of stations. In typical applications of thismachine, the number
of stations will be much larger than the amount for which was model checked. This
means that no guarantee can be given that the properties will hold generally. By
using a theorem prover we have established that the safety and optimality of the
scheduling algorithm is guaranteed for any number of personalization stations.
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