

Lecture Notes in Computer Science 4916
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefan Leue Pedro Merino (Eds.)

Formal Methods
for Industrial
Critical Systems

12th International Workshop, FMICS 2007
Berlin, Germany, July 1-2, 2007
Revised Selected Papers

13

Volume Editors

Stefan Leue
University of Konstanz
Department of Computer and Information Science
78457 Konstanz, Germany
E-mail: stefan.leue@uni-konstanz.de

Pedro Merino
University of Málaga
Department of Computer Science
Campus de Teatinos, 29071, Málaga, Spain
E-mail: pedro@lcc.uma.es

Library of Congress Control Number: 2008926951

CR Subject Classification (1998): D.2.4, D.2, D.3, C.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-79706-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79706-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12266005 06/3180 5 4 3 2 1 0

Preface

The FMICS 2007 workshop was affiliated with the Computer-Aided Verification
(CAV) conference and held at the Park-Inn Hotel Alexanderplatz in Berlin,
Germany, July 1–2, 2007.

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, these workshops are intended to bring together scientists
and practitioners who are active in the area of formal methods and interested
in exchanging their experience in the industrial usage of these methods. These
workshops also strive to promote research and development for the improvement
of formal methods and tools for industrial applications.

The topics for which contributions to FMICS 2007 were solicited included,
but were not restricted to, the following:

– Design, specification, code generation and testing with formal methods
– Verification and validation of complex, distributed, real-time systems and

embedded systems
– Verification and validation methods that aim at circumventing shortcomings

of existing methods with respect to their industrial applicability
– Tools for the design and development of formal descriptions
– Case studies and project reports on formal methods-related projects with

industrial participation (e.g., safety critical systems, mobile systems, object-
based distributed systems)

– Application of formal methods in standardization and industrial forums

The workshop included five sessions of regular contributions and three invited
presentations, given by Charles Pecheur, Thomas Henzinger and Gérard Berry.
At the workshop, a participants’ proceedings volume was made available to all
participants. This LNCS volume reports on the presentations given at FMICS
2007 in archival form. The papers included in this volume were selected after a
second round of peer reviewing by the FMICS 2007 Program Committee from
those papers accepted for presentation at FMICS 2007. Out of the 31 submissions
to FMICS 2007, 15 papers were accepted for presentation at the workshop, and
revised versions of all accepted papers are included in this volume.

FMICS 2007 attracted 33 participants, some of which are members of the
FMICS working group, from 14 different countries.

Following a tradition established over the past few years, the European Asso-
ciation of Software Science and Technology (EASST) has offered an award to the
best FMICS paper. The Program Committee decided to confer the FMICS 2007
best paper award to the paper “An Approach to Formalization and Analysis of
Message Passing Libraries,” written by Robert Palmer, Michael DeLisi, Ganesh
Gopalakrishnan and Robert M. Kirby.

VI Preface

Further information about the FMICS working group and the next FMICS
workshop can be found at: http://www.inrialpes.fr/vasy/fmics.

We wish to thank the members of the Program Committee and the addi-
tional reviewers for their careful evaluation of the submitted papers during both
rounds of reviewing. We also appreciate the effort of all members of the Program
Committee in making judicious choices and engaging in constructive discussions
during the electronic program selection meeting. We are very grateful to the lo-
cal organizers of the CAV conference for their organizational support, and to the
University of Dortmund for allowing us to use their Online Conference Service.

February 2008 Stefan Leue
Pedro Merino

Organization

Program Committee

Per Bjesse (Synopsys, USA)
Lubos Brim (Masaryk University, Czech Republic)
Marsha Chechik (University of Toronto, Canada)
Darren Cofer (Rockwell Collins, USA)
Stefania Gnesi (ISTI-CNR, Italy)
Patrice Godefroid (Microsoft Research, USA)
Michael Goldsmith (Formal Systems, UK)
David Harel (Weizmann Institute of Science, Israel)
Connie Heitmeyer (Naval Research Laboratory, USA)
Leszek Holenderski (Philips, The Netherlands)
Joost-Pieter Katoen (RWTH Aachen, Germany)
Roope Kaivola (Intel, USA)
Stefan Kowalewski (RWTH Aachen, Germany)
Salvatore La Torre (Universita’ degli Studi di Salerno, Italy)
Martin Leucker (TU München, Germany)
Stefan Leue (University of Konstanz, Germany), Co-chair
Radu Mateescu (INRIA Rhone-Alpes, France)
Pedro Merino (University of Malaga, Spain), Co-chair
David Parker (University of Oxford, UK)
Charles Pecheur (Université Catholique de Louvain, Belgium)
Francois Pilarski (Airbus, France)
Andreas Podelski (University of Freiburg, Germany)
Jakob Rehof (University of Dortmund, Germany)
John Rushby (SRI International, USA)
Don Sannella (University of Edinburgh, UK)
Ina Schieferdecker (Fraunhofer FOKUS, Germany)
Anna Slobodova (Intel, USA)
Jaco van de Pol (CWI, The Netherlands)
Farn Wang (National Taiwan University, Taiwan)
Willem Visser (SEVEN Networks, USA)

Additional Reviewers

David Aspinall (University of Edinburgh, UK)
Dave Berry (University of Edinburgh, UK)
Jesse Bingham (Intel, USA)
Iavor S. Diatchki (Galois Connections Inc., USA)
Alessandro Fantechi (DSI-UNIFI, Italy)

VIII Organization

Daniel Kluender (RWTH Aachen, Germany)
Sascha Klueppelholz (TU Dresden, Germany)
Frédéric Lang (INRIA Rhone-Alpes, France)
Patrick Maier (University of Edinburgh, UK)
Stefan Maus (University of Freiburg, Germany)
Franco Mazzanti (ISTI-CNR, Italy)
Thomas Noll (RWTH Aachen, Germany)
Laurence Pierre (Université de Nice Sophia-Antipolis, France)
Bastian Schlich (RWTH Aachen University, Germany)
Nassim Seghir (Max Planck Institute, Germany)
Wendelin Serwe (INRIA Rhone-Alpes, France)
Maurice ter Beek (ISTI-CNR, Italy)
Carsten Weise (RWTH Aachen, Germany)
Anton Wijs (CWI, Amsterdam, The Netherlands)
Sebastian Winter (TU München, Germany)
Ivan S. Zapreev (University of Twente, The Netherlands)

Table of Contents

Invited Presentations

Verification of Embedded Software: From Mars to Actions 1
Charles Pecheur

Synchronous Design and Verification of Critical Embedded Systems
Using SCADE and Esterel . 2

Gérard Berry

Research Papers

Static Analysis of the Accuracy in Control Systems: Principles and
Experiments . 3

Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean Gassino

Application of Static Analyses for State Space Reduction to
Microcontroller Assembly Code . 21

Bastian Schlich, Jann Löll, and Stefan Kowalewski

Checking the TWIN Elevator System by Translating Object-Z to
SMV . 38

Sören Preibusch and Florian Kammüller

Introducing Time in an Industrial Application of Model-Checking 56
Lionel van den Berg, Paul Strooper, and Kirsten Winter

Integration of Formal Analysis into a Model-Based Software
Development Process . 68

Michael Whalen, Darren Cofer, Steven Miller, Bruce H. Krogh, and
Walter Storm

Formal Verification with Isabelle/HOL in Practice: Finding a Bug in
the GCC Scheduler . 85

Lars Gesellensetter, Sabine Glesner, and Elke Salecker

Computing Worst-Case Response Times in Real-Time Avionics
Applications . 101

Murali Rangarajan and Darren Cofer

Machine Checked Formal Proof of a Scheduling Protocol for Smartcard
Personalization . 115

Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

X Table of Contents

An Action/State-Based Model-Checking Approach for the Analysis of
Communication Protocols for Service-Oriented Applications 133

Maurice H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti

Model Classifications and Automated Verification . 149
Radek Pelánek

An Approach to Formalization and Analysis of Message Passing
Libraries . 164

Robert Palmer, Michael DeLisi, Ganesh Gopalakrishnan, and
Robert M. Kirby

Analysis of a Session-Layer Protocol in mCRL2: Verification of a
Real-Life Industrial Implementation . 182

Marko van Eekelen, Stefan ten Hoedt, René Schreurs, and
Yaroslav S. Usenko

Automatic Certification of Java Source Code in Rewriting Logic 200
Mauricio Alba-Castro, Maŕıa Alpuente, and Santiago Escobar

Reverse Engineered Formal Models for GUI Testing 218
Ana C.R. Paiva, João C.P. Faria, and Pedro M.C. Mendes

Automatic Interoperability Test Case Generation Based on Formal
Definitions . 234

Alexandra Desmoulin and César Viho

Author Index . 251

Verification of Embedded Software:

From Mars to Actions

Charles Pecheur

Catholic University of Louvain, Belgium
charles.pecheur@uclouvain.be

http://www.info.ucl.ac.be/∼pecheur

Embedded controllers are more and more pervasive and feature more and more
advanced capabilities. For space applications in particular, the development of
autonomous controllers is seen as a critical technology to enable new mission
objectives and scale down operating costs. On the flip side, the validation of
intelligent control software poses a huge challenge, both due to the increased
complexity of the system itself and the broad spectrum of normal and abnormal
conditions in which it has to be able to operate. This talk will follow our journey
in applying some modern, analytical verification technologies and tools to the
validation of autonomy software, in the context of space applications, at NASA
Ames Research Center in California. This route will take us from the concrete,
practical dependability requirements for space-bound software that motivated
the work down to the deeper, broader issues in formal methods that emerged as
part of that work.

Our work has focused on analysing model-based approaches to fault diag-
nosis, as exemplified by NASA Ames’ Livingstone system. We developed two
lines of verification tools for model-based diagnosis applications, and experi-
mented with those tools on real-size problems taken from NASA applications.
Under different angles, both approaches stem from model checking principles.
Verifying diagnosis systems and models has led to considering the issue of diag-
nosability: given a partially observable dynamic system, and a diagnosis system
observing its evolution over time, how to verify (at design time) whether the
system provides sufficient observations to determine and track (at run-time) its
internal state with sufficient accuracy. This kind of question can be reduced to a
state reachability problem, which can be solved using (symbolic) model checking.
In turn, diagnosability can be phrased as a particular temporal and epistemic
property (“the diagnoser always knows the faults”), and we have carried exper-
iments in applying a generic temporal-epistemic model checker to our diagnosis
applications. Finally, epistemic models and logics themselves can, under some
assumptions, be reduced to labelled transition systems and action-based tempo-
ral logics. We implemented this reduction and added support for this logics in
NuSMV, thereby leveraging NuSMV’s language, features and ecosystem to the
analysis of epistemic (and, more broadly, action-based) properties.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synchronous Design and Verification of Critical

Embedded Systems Using SCADE and Esterel

Gérard Berry

Esterel Technologies, France
Gerard.Berry@esterel-technologies.com

http://www.esterel-technologies.com

SCADE (Safety Critical Application Design Environment) is a design environ-
ment dedicated to safety-critical embedded software applications. It is widely
used for avionics, railways, heavy industry, and automotive applications. For
instance, most critical systems of the Airbus A380 have been developed with
SCADE. The core element is the Scade synchronous formalism, which can be
viewed as a graphical version of Lustre coupled with synchronous hierarchical
state machines. The Scade to C compiler is certifiable at level A of DO-178B
avionics norm, which removes the need for unit-testing the embedded C code and
brings big savings in the certification process. The SCADE tools encompasses
a simulator, a model coverage analyzer, a formal verifier, a display generator,
and gateways to numerous other prototyping or software engineering tools. Es-
terel Studio is a similar hardware modeling, design, and verification environment
based on the Esterel v7 formal synchronous language. Esterel Studio is used
by major semiconductor companies to specify, verify, and synthesize complex
hardware designs. It can generate both an optimized circuit and a behaviorally
equivalent software model from a single formal specification. It also supports
simulation and formal verification, which is widely used in production applica-
tions. We discuss the advantages and limitations of the underlying synchronous
concurrency model. We explain why the same core science and technology can
be applied to such different domains, however with quite different integration in
global system-level design flows according used in the different industries.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Static Analysis of the Accuracy in Control

Systems: Principles and Experiments

Eric Goubault1, Sylvie Putot1, Philippe Baufreton2, and Jean Gassino3

1 CEA, LIST, Bôıte courrier 65, GIF-SUR-YVETTE CEDEX, F-91191 France
{eric.goubault,sylvie.putot}@cea.fr

2 Hispano-Suiza
philippe.baufreton@hispano-suiza-sa.com

3 IRSN
jean.gassino@irsn.fr

Abstract. Finite precision computations can severely affect the accuracy
of computed solutions. We present a complete survey of a static analysis
based on abstract interpretation, and a prototype implementing this anal-
ysis for C code, for studying the propagation of rounding errors occurring
at every intermediary step in floating-point computations. In the first part
of this paper, we briefly present the domains and techniques used in the im-
plemented analyzer, called FLUCTUAT. We describe in the second part,
the experiments made on real industrial codes, at Institut de Radiopro-
tection et de Sûreté Nucléaire and at Hispano-Suiza, respectively coming
from the nuclear industry and from aeronautics industry. This paper aims
at filling in the gaps between some theoretical aspects of the static analysis
of floating-point computations that have been described in [13,14,21], and
the necessary choices of algorithms and implementation, in accordance
with practical motivations drawn from real industrial cases.

Keywords: Static analysis, floating-point computations, control
systems.

1 Introduction

The use of floating-point arithmetic as a computable approximation of real arith-
metic may introduce rounding errors at each arithmetic operation in a compu-
tation. Even though each of these errors is very small, their propagation in
further computations, for example in loops, can produce a dramatic imprecision
on a critical output. We propose an analysis that computes for each variable an
over-approximation of the difference between a same computation in real and
in floating-point arithmetic. Moreover, we decompose this difference over the
operations that introduced errors, thus pointing out the operations responsible
for the main losses.

Principal contributions. This paper essentially surveys the different abstract
interpretation domains and techniques used in the static analyzer FLUCTUAT.
The emphasis is not put on the theoretical details of the main domain used for

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 3–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 E. Goubault et al.

abstracting floating-point values, which can be found in [14]. But it describes
the main techniques and answers to the difficulties we had to address in the
practical use of these domains in an analyzer. Also, a large part is dedicated to
some examples of the analysis which was led on industrial examples.

Related work. Few complete static analyzers of C programs are fully described
in the literature. This paper tries to match some of the available descriptions of
the ASTREE analyzer [1,2] which is probably the most complete analyzer today,
with respect to the number of techniques and domains implemented, in particular.
Also, some commercial abstract interpreters like CodeSonar [24] and PolySpace
[25] are now available. All these tools analyze run-time errors mostly, whereas we
analyze a subtle numerical property, namely the discrepancy introduced by the
use of floating-point numbers instead of real numbers, in C programs. This re-
quires very fine and specific abstract domains, and the difficulty lies mostly in the
numerical subtleties of small parts of a code, and not in the size of the program.

Overview. This paper is divided in two parts. In Section 2, we present the
abstract domains and main techniques used in the FLUCTUAT analyzer. In
subsection 2.1, we briefly introduce the abstract domain for representing floating
point variables, which is described in more details in [14]. Then in subsection 2.2,
we detail how this domain is extended to integer variables, and the specificities
and difficulties of handling integers. We then describe in subsection 2.3, the
simple aliasing model we are using, when it comes to abstract pointers, structures
and arrays. The iteration strategy which is used to solve the semantic equations
(and in particular specific widening operators), is described in subsection 2.4.
Finally, some assertions in a language specific to the analyzer, allow us to specify
properties of variables, such as set of possible input values, but also more subtle
properties such as bounds on the gradient of an input over iterations in a loop.
These are presented in subsection 2.5.

We then discuss in Section 3 some experiments conducted with FLUCTUAT
on industrial codes. We first describe the analysis of some programs developed
at Hispano-Suiza in the aeronautics industry. We first concentrate on some in-
teresting specific sub-functions, and then come to a full control application. In
a second part, we describe the analysis of a code from the nuclear industry that
IRSN has to expertise.

2 Abstract Domains and Techniques Used in FLUCTUAT

2.1 Floating-Point Variables

General principles. The analysis bounds at each operation the error commit-
ted between the floating-point and the real result. It relies for this on a model
of the difference between the result x of a computation in real numbers, and the
result fx of the same computation using floating-point numbers, expressed as a
sum of error terms

x = fx +
⊕

�∈L∪{hi}
ωx

� . (1)

Static Analysis of the Accuracy in Control Systems 5

We assume that a control point of a program is annotated by a unique label
� ∈ L. In this relation, a term ωx

� , � ∈ L, denotes the contribution to the global
error of the first-order error introduced by the operation labeled �. It expresses
both the rounding error committed at label �, and its propagation due to further
computations on variable x. Errors of order higher than one, coming from non-
affine operations, are grouped in one term associated to special label hi. We let
L be the union of L and hi.

Let F be either the set of single or double precision floating-point numbers.
Let ↑◦: R → F be the function that returns the rounded value of a real number
r, with respect to the rounding mode ◦. The function ↓◦: R → F that returns
the roundoff error is then defined for all f ∈ R, by ↓◦ (f) = f− ↑◦ (f). The
result of an arithmetic operation ♦�i contains the combination of existing errors
on the operands, plus a new roundoff error term ↓◦ (fx♦fy)ε�i . For addition and
subtraction, the existing errors are added or subtracted componentwise, and a
new error ↓◦ (fx + fy) is associated to control point �i:

x +�i y =↑◦ (fx + fy) +
⊕

�∈L
(ωx

� + ωy
�)+ ↓◦ (fx + fy) .

The multiplication introduces higher order errors, we write:

x ×�i y =↑◦ (fxfy) +
⊕

�∈L
(fxωy

� + fyωx
�) +

∑

(�1,�2)∈L2

ωx
�1ω

y
�2

+ ↓◦ (fxfy) .

We refer the reader to [10,19] for more details on this domain.

Unstable tests. Our approach is that of abstract interpretation [7], and all
control flows due to sets of possible inputs are considered. But there is one
specific difficulty due to floating-point computations. Indeed, in tests, the branch
followed by the floating-point and the corresponding real value of a variable can
be different, we then call them unstable tests (as in [26]). Consider for example
the following portion of code, supposing input x is in interval [1,3] with an error
equal to 1.0e-5:

if (x <= 2) x = x+2;

Then, for x equal to 2 for example, the floating-point result after this test is
4, whereas the result of this program if it were executed on the real semantics
would be 2.00001. But handling this divergence in control flow in the general
case would be complicated and costly, and quickly very imprecise. For example
here, if we consider the different control flows, we find the floating-point value of
x in [2, 4], with an error in interval [1.0e−5, 2]. Without any additional relation
between values and errors, this result is highly imprecise.

We thus made the choice in the Fluctuat analyzer to make the assumption
that the real and floating-point flows take the same branches. The result given
here at the end of the program would thus be x = [2, 4] with an error equal to
1.0e−5 (if we neglect the additional rounding error due to the addition).

However, when the analyzer detects, as is the case here, that the control flows
may be different, it issues a warning.

6 E. Goubault et al.

Relational domain. A natural abstraction of the coefficients in expression (1),
is obtained using intervals. The machine number fx is abstracted by an interval
of floating-point numbers, each bound rounded to the nearest value in the type of
variable x. The error terms ωx

i ∈ R are abstracted by intervals of higher-precision
numbers, with outward rounding. However, results with this abstraction suffer
from the over-estimation problem of interval methods. If the arguments of an
operation are correlated, the interval computed with interval arithmetic may be
significantly wider than the actual range of the result.

We thus proposed and implemented a relational domain, relying on affine
arithmetic [5,22] for the computation of the floating-point value fx. Affine arith-
metic uses affine correlation between real variables, and allows us to get much
tighter results than classical interval arithmetic (the concretisation forms zono-
topes: center-symmetric bounded convex polytopes). It relies on a representation
of a quantity x by an affine form, which is a polynomial of degree one in a set
of noise terms εi:

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with εi ∈ [−1, 1] and αx

i ∈ R. (2)

Each noise symbol εi stands for an independent component of the total uncer-
tainty on the quantity x, its value is unknown but bounded in [-1,1]; the corre-
sponding coefficient αx

i is a known real value, which gives the magnitude of that
component. The sharing of noise symbols between variables expresses implicit
dependencies. The full semantics is described in [14], and linearizes floating-
point expressions dynamically (and not statically as in [20]). The semantics is
memory-efficient: it needs only a small factor of the size that an (economic) in-
terval analysis would take. No a priori decided packing of variables [2] is needed
since the representation of relations is implicit [14]. Nevertheless, we use a sparse
representation of the global environment, akin to the one described in Section 5
of [1].

The coefficients αx
i have no meaning relevant to our analysis, the decomposi-

tion is a mean for a more accurate computation. This is different from expression
(1), where coefficient ωx

� represent the contribution of control point � to the total
rounding error. However, they can be used for an analysis of the sensibility of a
program to an input: when an input is taken in a small interval, a new noise sym-
bol εi is created. The evolution of the corresponding αx

i in further computations
indicates how this initial uncertainty is amplified or reduced [23].

These affine forms allow us to represent results of real arithmetic. The anal-
ysis must be adapted to the case of floating-point arithmetic, where symbolic
relations true in real arithmetic do no longer hold exactly. We thus decompose
the floating-point value fx of a variable x resulting from a trace of operations,
in the real value of this trace of operations rx, plus the sum of errors δx accu-
mulated along the computation, fx = rx + δx. The real part is computed using
affine arithmetic, and the error is computed using three intervals that respec-
tively bound the error on the lower and upper bounds of the set of real values
rx, and the maximum error on all this set. Without going into too much detail,

Static Analysis of the Accuracy in Control Systems 7

we can say that these errors on bounds allow us to improve the estimates for the
floating-point bounds, compared to using the maximum error. But the maximum
error is still needed at each step to estimate the results of further computations.

This domain for the values of variables, is of course more expensive than
interval arithmetic, but comparable to the domain used for the errors. And it
allows us to accurately analyze non trivial numerical computations, as we will
show in Section 3. We also plan to introduce a relational computation for errors,
along the lines of [16]. First ideas on these relational semantics were proposed
in [13], [21]. The relational semantics for the value fx is described in detail in
[14], with in particular the lattice operations such as join and meet.

2.2 Integer Variables

We implemented modular integer arithmetic semantics, and a domain consisting
of value (coded by affine forms) plus sum of errors is used as for floating-point
variables. For example, when adding one to the greatest integer that can be
represented in the int type, say INT MAX, the value of the result is the smallest
integer represented by an int, say INT MIN, and an error of INT MAX-INT MIN+1
is associated to this variable. Conversions between integers and floating-points
are supported, and the errors are propagated.

Bitwise operations. Some attention must be paid to the propagation of errors
on operands in order to avoid losing too much precision. Indeed, the behavior of
the and, or and xor operators is non affine with respect to the operands. In the
general case, the errors on the operands x and y are propagated as follows:

– we compute the result of � on the sets of floating-point values, fz = fx � fy,
– we compute the result of the same operation on the interval bounds for the

real values, rz = rx � ry, with rx = fx +
∑

l ω
x
l and ry = fy +

∑
l ω

y
l ,

– then the propagated error on z is rz − fz, and it is associated to the label
of the current operation.

There are two consequences. First, we lose the decomposition of errors on opera-
tions executed before bitwise operations. Second, the larger the intervals fx and
fy, the more over-approximated the propagated errors are. We thus propose an
option of the analyzer to locally subdivide one of these intervals in the propaga-
tion of errors: the cost of a bitwise operation is approximately multiplied by the
number of subdivisions, but this cost is in general negligible compared to the
full analysis, and the results can be greatly improved.

Error terms are agglomerated for the same reason for the division and modulo
operators on integers. The error is also computed as the difference between the
floating-point interval result and the real interval result: local subdivisions can
again greatly improve the estimation of errors.

Conversions. The semantics for the conversion between floating-point num-
bers, and with integers differ by the meaning we give to each:

8 E. Goubault et al.

– in the conversion from double precision to single precision floating-point
numbers, we consider the difference between the initial double precision value
and the result of the conversion, as an error on the result.

– in the conversion from a floating-point number to an integer, we consider
that the truncation is wanted by the user, and is thus not an error. A new
error can be introduced by such a conversion only when the floating-point
number exceeds the capacity of the integer type. However, all errors are
grouped in one integer term corresponding to the label of the conversion.

– in the conversion from an integer to a floating-point number, most of the
time no precision is lost, and the sum value plus errors is transmitted as is.
However, this is not always the case, and an error still has to be added in some
cases: for example a 32 bits integer with all bits equal to 1 cannot exactly
represented by a single precision floating-point number, which mantissa is
represented on 23 bits.

We encountered some other cast operations that we included in the set of
instructions understood by the analyzer, such as the ones used to decode and
encode IEEE 754 format, directly by bitwise operations. Take for instance the
following piece of code (assuming 64 bits little endian encoding for double):

double Var = ...; signed int *PtrVar = (signed int *) (&Var);
int Exp = (signed int) ((PtrVar[0] & 0x7FF00000) >> 20) - 1023;

We cast variable Var into an array of 32 bits types. Then we extract the first
32 bits of the 64 bits word. The rest of the manipulation of the program above,
masks the bits of the mantissa, and shifts the value, to get in Exp the binary
exponent in IEEE754 format of the value stored in Var.

In the interpretation of this case by FLUCTUAT, all error terms are agglom-
erated in one corresponding to the label of the cast, and local subdivisions of
the values can be applied to improve the bounds for the errors, as for bitwise
operations.

2.3 Aliases and Arrays

Our alias and array analysis is based on a simple points-to analysis, like the
ones of [18], or location-based alias analyses. An abstract element is a graph of
locations, where arcs represent the points-to relations, with a label (which we
call a selector) indicating which dereferencing operation can be used. Arrays are
interpreted in two different ways, as already suggested by some of the authors
in [9]: all entries are considered to be separate variables (called “expanded” in
[1]) or the same one (for which the union of all possible values is taken - called
“smash” in [1]). These abstractions have proven sufficient typically for SCADE
generated C programs.

2.4 Iteration Strategy

Loops. The difficulty in loops is to get a good over-approximation of the least
fixpoint without too many iterations of the analyzer. For that, we had to design
adapted iteration strategies:

Static Analysis of the Accuracy in Control Systems 9

– in the case of nested loops, a depth first strategy was chosen: at each iteration
of the outer loop, the fixpoint of the inner loop is computed,

– a loop is unfolded a number of times (similar to the “semantic loop unrolling”
of [1]), before starting Kleene iterations (unions over iterations),

– some particularities of our domain require special care in loops: for example,
noise symbols are potentially introduced at most operations, and there are
new noise symbols for each iteration of a loop. But we can choose to reduce
the level of correlation we want to keep, and for example keep correlations
only between the last n iterations of a loop, where n is a parameter of the
analyzer. Also, we can choose to agglomerate or not some noise symbols
introduced in a loop when getting out of it. This allows us to reduce the cost
of the analysis while keeping accurate results.

– acceleration techniques (widenings) adapted to our domain had to be de-
signed. In particular, widenings are not always performed at the same time
on integer or floating-point variables, and on values or error terms. Also, we
have designed a widening specially adapted to floating-point numbers, by
gradually reducing the precision of the numbers used to bound the terms:
this accelerates the convergence of Kleene iteration compared to iteration
with fixed precision, and allows us to get very accurate results. This should
be thought of as an improved method than the “staged widening with thresh-
olds” of [1], in the sense that thresholds are dynamically chosen along the
iterations, depending on the current values of the iterates. After a number
of these iterations, a standard widening is used.

To illustrate this last point (progressive widening by reduction of the precision),
let us consider the fixpoint computation of

while () x = 0.1*x;

with no unrolling of the loop, starting from x0 ∈ [0, 1]. With our simple (non
relational) semantics, we have, with ulp(1) denoting the machine rounding error
around 1,

x1 = [0, 1] + δε2, δ = 0.1[−ulp(1), ulp(1)]
x2 = [0, 1] + (0.1δ + δ)ε2

xn = [0, 1] + (
n∑

k=0

0.1k)δε2.

If real numbers are used to compute the error term, without any widening the
computation does not terminate even though the error term remains finite. Now
if floating point numbers are used to bound the error term, the convergence
depends on the number of bits used to represent the mantissa. For simplicity’s
sake, let us consider δ = [−1, 1], and radix 10 numbers. With 3 significant digits,
a fixpoint is got in 4 iterations:

ω1 = δ = [−1, 1]
ω2 = ↑∞ ([−0.1, 0.1] + [−1, 1]) = [−1.1, 1.1]

10 E. Goubault et al.

ω3 = ↑∞ ([−0.11, 0.11] + [−1, 1]) = [−1.11, 1.11]
ω4 = ↑∞ ([−0.111, 0.111] + [−1, 1]) = ↑∞ [−1.111, 1.111] = [−1.12, 1.12]
ω5 = ↑∞ ([−0.112, 0.112] + [−1, 1]) = ↑∞ [−1.112, 1.112] = [−1.12, 1.12]

More generally, we can show that with N significant digits, a fixpoint is got in
N+1 iterates. Thus reducing the precision of numbers accelerates the convergence
towards a (larger) fixpoint.

Of course, this is a toy example, in practice the fixpoint is computed by
unrolling the loop a certain number of times before beginning the unions, which
here solves the problem. But we are confronted with this kind of computations in
the general case. And in more complicated examples, when the optimal unrolling
was not chosen, this widening allows us to still compute an interesting fixpoint.

Interprocedural analysis. In critical embedded systems, recursion is in gen-
eral prohibited. Hence we chose to use a very simple interprocedural domain,
with static partitioning, based on [17].

2.5 Assertions

A number of assertions can be added to the analyzed C source code, to specify
the behavior of some variables of the program. For a single precision floating-
point variable x, the assertion:

x = __BUILTIN_DAED_FBETWEEN(a,b);

indicates that x can take any floating-point value in the interval [a, b]. The same
assertions exist to define the range of double precision or integer variables.

One can also specify an initial error together with the range of values for a
variable. For example,

x = __BUILTIN_DAED_FLOAT_WITH_ERROR(a,b,c,d);

specifies that variable x of type float takes its value in the interval [a, b], and
that is has an initial error in the interval [c, d].

In some cases, bounds on the values are not sufficient to describe accurately
the behavior of a system: we thus added an assertion that allows us to bound,
in a loop indexed by an integer variable i, the variation between two successive
values of an input variable x:

for (i=i0 ; i<N ; i++)

x = __BUILTIN_DAED_FGRADIENT(x0min,x0max,gmin(i),gmax(i),xmin,xmax,i,i0);

In this assertion, i0 is the value of variable i at first iteration. The value of x
at first iteration is in the interval [x0min,x0max], the difference between two
successive iterates is in the interval [gmin(i),gmax(i)], which bounds may de-
pend on the iterate, and the value of x is always bounded by [xmin,xmax].
Thus x(i0) =[x0min,x0max], and for all i ∈ {i0, . . . , N}, we have x(i) = (x(i −
1)+[gmin(i),gmax(i)])

⋂
[xmin,xmax]. Our relational domain (subsection 2.1) is

specially well adapted to dealing with these relations between iterates in a loop.
An example of the use of this assertion is given in the worst-case scenario part
of example presented in subsection 3.2.

Static Analysis of the Accuracy in Control Systems 11

Subdivisions of inputs. In the example SqrtR of subsection 3.1, even with
the relational domain, non-linearities of the studied iterative scheme produce too
much imprecision, and the solver of the abstract equations does not prove the
termination of the analyzed algorithm. A solution to this is to restrict the range
of values of the inputs, for which we want to analyze the program, so that we are
close enough to linear behaviors. This is done in FLUCTUAT by subdividing the
domain of some inputs whose ranges are already bounded by assertions of the
type BUILTIN DAED FBETWEEN. The user can select one or two such variables
to be subdivided by pointing in the program the corresponding assertions.

FLUCTUAT analyzes independently the program as many times as we sub-
divide some of the inputs. Suppose we subdivide n times an input variable x
which has range, defined by an assertion, in [a, b]: the analyzer will analyze the
program with x in [a, a+ b−a

n], then in [a+ b−a
n , a+2 b−a

n], . . ., [a+(n−1) b−a
n , b].

Hence it does not need more memory than needed for one analysis, but takes
about n times the duration of one analysis, where n is the number of subdivi-
sions. In the case when we subdivide two such assertions, the subdivisions are
completely independent, hence leading to a quadratic factor time increase of the
analysis. We chose not to offer the user the possibility to subdivide the values of
more than two input variables because it would lead to too slow analyses. This
would become reasonable only for parallel versions of FLUCTUAT.

This kind of subdivision cannot be used for an assertion in a loop, because it
would be equivalent to choosing at all iterates of the loop the values of x to be
in the same sub-interval. Indeed, subdividing independently all iterates would
be far too costly, and maybe not either what is really intended by the user. We
thus proposed the special assertion BUILTIN DAED FGRADIENT for these cases
of reactive programs, where inputs are acquired cyclically over time.

3 Experiments on Control Systems

3.1 Hispano-Suiza

The Full Authority Digital Engine Control, better known as a FADEC, is one of
the largest electronic control units on an aircraft. It continuously processes and
analyzes key engine parameters, to make sure the engine operates at maximum
potential. The following test cases for FLUCTUAT are extracted from pieces
of code which have been written during the development of reusable libraries,
designed for the FADEC. They are representative of the code of the FADEC,
and some of them present some hard numerical difficulties for static analyzers.

Experiments on elementary symbols. We examined several elementary
symbols used in applications at Hispano-Suiza. Elementary symbols are manu-
ally developed and coded independently from SCADE which is used as a design
tool. Among these symbols was the following code (slightly changed for conve-
nience), which is intended to return Output equal to the square root of Input
by a Householder method.

12 E. Goubault et al.

void SqrtR (double Input)
{ double xn, xnp1, residu, _EPS, Output;

int i, cond;
_EPS = 0.000001;
Input = __BUILTIN_DAED_DOUBLE_WITH_ERROR(0.1,20.0,0,0);
if (Input <= 1.0)
xn = 1.0;

else
xn = 1.0/Input;

xnp1 = xn; residu = 2.0*_EPS*(xn+xnp1);
i = 0;
while (fabs(residu) > _EPS * (xn+xnp1))
{
xnp1 = xn * (1.875 + Input*xn*xn*(-1.25+0.375*Input*xn*xn));
residu = 2.0*(xnp1-xn);
xn = xnp1;
i++;

}
Output = 1.0 / xnp1;
should_be_zero = Output*Output - Input;

}

This involves the iteration, until some residue is less than a small value
EPS=e−6, of a fifth-order polynomial. The number of iterates for the algorithm

to converge is thus not given by the syntax of the program and must be the result
of an accurate analysis. Also, to this short program was added a last compu-
tation should be zero = Output*Output - Input; that enables a functional
proof of the algorithm. Indeed, if variable should be zero is proved (both as
a real and as a floating-point number) to be close to zero, this proves that the
algorithm really computes something that is close to the square root of Input,
for all values of Input in the given range [0.1,20].

When Input is in [0.1, 20] as above, FLUCTUAT with 100000 subdivisions
converges to a finite and precise estimate of the floating-point value of Output
and of the number of iterates of the studied algorithm. Indeed, it finds Output to
be in [3.16e−1, 4.48] with global error in [−2.56e−13, 2.56e−13]. And the number
of iterates in the main loop i is found to be within 1 and 6 for the floating-
point version of the Householder algorithm. This number of iterates is an exact
result, as can be confirmed by using FLUCTUAT in the symbolic execution
mode for Input equal to 1 and to 20 respectively (or alternatively, by checking
the execution of the real binary file). Also, the analyzer reports an unstable test
for the stopping condition of the loop. Indeed, the number of iterations of the
Householder algorithm before convergence may be different with the floating-
point semantics and with the real semantics! And if we took constant EPS too
small, the algorithm in real numbers would still terminate, while the analyzer
would prove that the floating-point algorithm does not always terminate (see

Static Analysis of the Accuracy in Control Systems 13

[12] for more details). Note that no other static analyzer we know of is able to
find even a good approximation of the floating-point enclosure of Output.

When perturbing the input by an error, for example in the range [−e−8, e−8]
and still subdividing 100000 times, we find in 603 seconds and 4Mb of memory
on a 1 Ghz laptop PC, the same floating-point enclosure, and a global error in
[−3.06e−6, 3.06e−6] which is mainly due to the initial error of the order of e−8.
This shows the good behavior of the algorithm. Even though the results on the
global error seem satisfying, we hope to be able to improve them a lot with a
new relational domain on the error terms, as sketched in [13].

In fact, FLUCTUAT does not need to subdivide equally for all ranges of the
input. For instance, with Input restricted to [16,20], it needs only 133 subdivi-
sions to converge. Whereas, with Input restricted to [0.1,1], it needs about 4500
subdivisions. Hence a dynamic subdivision mode is planned for a future version.

Finally, let us consider the fonctional proof of the algorithm: that is, we no
longer consider only the relevance of the floating-point implementation compared
to the scheme in real number, but also measure the quality of the approximation
of the square root by this algorithm. In order to get good results here, we need the
fully relational version of Fluctuat which is only partially implemented. We thus
considered only a reduced range [16, 20] for Input, so that a fixed number of 6
iterations for the Householder algorithm corresponds to the number of iterations
needed to reach the stopping criterion of the loop for this range of Input. We
then prove (with subdivisions of Input), that the real value of should be zero is
in the range [−4.e−15, 4.e−15]. This allows us to conclude that the algorithm, for
this range of Input, computes in real number a result which is not further from
the actual square root than 6.5e−8. The analyzer also bounds the error between
the real and the floating-point value of should be zero in [−5.e−14, 5.e−14].
Then the approximation of the square root actually computed is not further
from the result of the algorithm in real number than 2.5e−07. In fact, with
more subdivisions, we could prove that the real value is even smaller, but the
computation time becomes unreasonable for such a small program. However,
the computation of the error remains stable when we subdivide the input, which
leads us to think that it may be a tight over-approximation of the error.

These results all indicate a good behavior of the algorithm for Input in the
range [0.1, 20]. However, this function was designed to be used for Input in
[1e−50, 1e50]. Symbolic execution shows that the algorithm is much less satisfying
for this extended range, and may need up to 95 iterations, which is too large for
practical use, because of timing constraints. Since then, the algorithm for the
square root has been changed.

Representative code. The following test case for FLUCTUAT is extracted
from pieces of SCADE code which have been generated during the development
of a military engine controller. The control law named asservxn2 is aimed to
control the speed of the Low-Pressure Compressor. Therefore, the control loop
should be stable inside the whole flight domain, including the fuel flow wf32cb
and the motor regime xn2. The code is 2358 lines long in C (44 functions,
among which filters, interpolators, integrators), uses complex nested compound

14 E. Goubault et al.

Value (float) Global error

Fig. 1. Evolution of the fuel flow wf32cb for a given target motor regime

structures containing arrays and pointers, and has 167 integer variables and 269
floating-point variables known at the end of the main function (and many more
local variables).

We have first used the static analyzer as an abstract interpreter (hence de-
livering information about precision loss) on the test scenarios that have been
used to certify the program. As an example, the first test scenario consists in
showing that the rotation regime xn2 is well controlled by the command on
the flow wf32cb. FLUCTUAT has been run in symbolic execution mode (i.e.
with the semantics described in Section 2.1, but on one control flow only) on
the sequence of 2500 consecutive inputs, on a 50 seconds duration. The sce-
nario corresponds to a target low pressure regime shown in Figure 2 for the first
650 inputs. The control program computes the fuel flow necessary to reach this
regime, see Figure 1. As shown in the excerpt of the test scenario, the motor
regime is well controlled by wf32cb: when wf32cb increases, xn2 increases as
well until it reaches its target value xn2cs, in which case wf32cb stabilizes. At
iteration 500, the target regime is increased and the control begins. The error in
the command wf32cb is shown to be always bounded by 10−3 in absolute value,
which indicates a good (relative) precision of the control algorithm.

Other similar tests have been carried out. We are in the process of studying
the code for more general inputs (i.e. for ranges of target motor regimes), in a
similar manner as done in next section (using gradient constraints on the inputs).
It is to be noted though that the control mechanism uses an integrator, which
is known to be hard to analyze, see for instance [12].

3.2 Institut de Radioprotection et Sûreté Nucléaire (IRSN)

Computer systems are increasingly used for safety purposes in nuclear reac-
tors. For example, on the latest French power reactor series, software is used to
perform safety functions including critical ones like protection. The Protection
System does not control the process but monitors it, by continuously acquiring
parameters like water pressure, temperatures in different pipes, neutron flux,
and so on. From these inputs, the system computes tens of values using classical

Static Analysis of the Accuracy in Control Systems 15

xn2 xn2cs

Fig. 2. Evolution of the motor regime xn2, and of its target xn2cs

data processing techniques: filters, arithmetic and logic operations, non-linear
functions, thresholds. The system then checks that these computed values re-
main within the authorized domain. If not, it has to automatically shutdown the
reactor within half a second, and to trigger safety systems like water injection
or spraying, depending on the nature of the incident.

The following test case (mean-square filter), was taken from a representative
piece of code that IRSN has to give expertise on, for the French nuclear certifica-
tion body. Several key process parameters are sampled every 50 milliseconds by
the protection system, which stops the reactor if a given threshold is exceeded.
Unfortunately, the readings are affected by noise, which could delay a necessary
stop or, on the contrary, cause a spurious one. Simply reducing the actual power
of the plant below the threshold to provide a noise margin is not adequate for
obvious economic reasons. On the other hand a spurious stop is also undesirable
because it induces strong promptings to the mechanical structures and prevents
the plant to produce electricity for several hours. Thus, a least-square linear re-
gression filter is applied to improve the estimate of the most sensitive parameter.
It is important however to make sure that this filtering step does not add too
much numerical error due to rounding, we thus used FLUCTUAT to bound the
error committed in it, and study the propagation of existing errors.

The filter is adaptative, that means its depth Dk can vary at each cycle k,
according to a formula depending on the signal value. The input sample (ik)k is
in an interval [1e2, 1.5e8], and is transformed to give the input of the filter, by
Yk = log(aik + b). In this transformation, only ranges are known for parameters
a and b, with nominal values.

Worst-case scenario. We first consider a reduced version of the filter, using the
fact that the filter can be written in such a way that outputs are independent,
except that the depth of the filter depends on the previous values. It can be
shown that, with the parameters used, the depth of the filter is always bounded
and the inputs are in the maximum possible range Yk ∈ [8.42, 22.4]. We thus
study a worst-case scenario, that allows us to get bounds for the values and
errors on the output that hold true for any step of the filter.

16 E. Goubault et al.

- We first suppose all inputs are independent and can take any value in this range
at any step, using assertion Yk = BUILTIN DAED FBETWEEN(8.42,22.4);Then
we get with the relational domain, the following enclosures of the filtered value
O, and of a value S related to the variation speed:

O = [3.912, 26.907] + [−1.91e−4, 1.91e−4]ε
S = [−0.350, 0.350] + [−5.37e−6, 5.37e−6]ε

In these two expressions, the first interval bounds the floating-point value, the
second one bounds the rounding error, the filter being implemented using single
precision floating-point numbers.
- In order to have a more representative model of the inputs, we then used the
assertion on the gradient to limit the variation between two successive inputs: we
still take the range of inputs equal to [8.42, 22.4], but also bound the difference
between two successive inputs by [0, 0.01], by

for (int k=1 ; k<=N ; k++)
Yk = __BUILTIN_DAED_FGRADIENT(8.42,22.4,0,0.01,8.42,22.4,k,1);

Then we get, with the relational domain, much tighter enclosures:

O = [8.33, 22.5] + [−1.91e−4, 1.91e−4]ε
S = [−1.18e−5, 0.01] + [−5.34e−6, 5.34e−6]ε

The error is of the same order as previously, but now the bounds for the value of
the output are very close to the input bounds, and we get back the information
on the variation speed.

Complete filter. We now want to study more closely the behavior of the
output. We choose here a plausible scenario for the inputs, that is a sampling of
function i(x) defined by

x ≤ 0 : i(x) = 1.e2,

x > 0 and i(x) ≤ 1.5e8 : i(x) = i(0) ∗ 250∗x/60.

Interval ranges are given for the coefficients of the transformation, and we add
a perturbation to the input of the filter thus obtained. We present in Figures 3
and 4, the results got with FLUCTUAT, for the evolution over time of the
bounds on the values and errors on the input Yk of the filter, and of its output.
The error on the input is due partly to the logarithm computation, partly to the
addition of a perturbation depending on previous inputs. For the time being, we
have parameterized the error due to the logarithm computation, which is not
yet specified in the IEEE 754 norm.

The output is approximately in the same range as the input. We represent in
Figure 4 right, the evolution of the depth of the filter: the depth at a given time
depends on the values of the parameters and does not have one fixed value. The
error on the output is overestimated (no relational analysis for errors here), but

Static Analysis of the Accuracy in Control Systems 17

we can still observe that the error is not too much amplified. We can also note
that its variation is related to the variation of the filter depth.

Finally, we can note that the magnitude of the maximum error on the output,
is of the same order as the magnitude on the output obtained with the worst-case
scenario. This confirms the relevance of the worst-case analysis.

Yk ≤ 23.55 error on Yk ≤ 2.55e−05

Fig. 3. Evolution of the filter input over time

filter output ≤ 23.02 error on output ≤ 1.8e−04 depth of the filter

Fig. 4. Evolution of the filter output over time

3.3 Linear Filters

Linear filters are a key element of all control systems. We study in this paragraph
the outputs Si of a second order linear filter:

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2,

where S0 = S1 = 0 and Ei are independent inputs in the range [0, 1]. These
inputs are thus modelled in our relational domain (see section 2.1 or [14]) by

Ěi = Êi =
1
2

+
1
2
εi,

with independent noise symbols εi ∈ [−1, 1]. We first consider the output Si of
this filter for a fixed number of unfoldings, e.g. i = 99. Fluctuat gives an affine
form for the real value of the output Si

Ŝ99 = Š99 =0.83 + 7.81e−9ε1 − 2.1e−8ε2 − 1.58e−8ε3 + . . . − 0.16ε99 + 0.35ε100;

18 E. Goubault et al.

Real value of Si Error on Si

Fig. 5. Concretization of Si for i between 1 and 100

i = 100 i = 50

Fig. 6. Input sequence that maximizes Si, and Output sequence, for i = 100 and i = 50

whose concretization gives an exact (under the assumption that the coefficients
are computed exactly) enclosure S99 ∈ [−1.0907188500, 2.7573854753]. The en-
closures of the value of successive Si for i lower or equal to 100 are represented
figure 5 (left graph). We also represent on the same figure (right graph) the
error on the outputs computed with our new relational domain for the errors,
also relying on affine arithmetic.

The coefficients of the affine form allow us to deduce the sequence of inputs
Ei leading to the max (or min) of the enclosure of the value of S99: take Ei = 1 if
the corresponding coefficient multiplying εi+1 is positive, Ei = −1 otherwise. For
example, the input sequence Ei that maximizes S100 is represented figure 6 (left
graph), together with the outputs Si, for i between 1 and 100. These sequences,
even for such a simple filter, would not be easy to find manually. The input
sequence that maximizes S50 is represented figure 6 (right graph). This input
sequence is fairly different from the first 50 inputs of the input sequence max-
imizing S100: indeed, the successive maximum values of the Si are not reached
for the same sequence of inputs.

Static Analysis of the Accuracy in Control Systems 19

Note that the exact enclosure of the filter actually converges towards S∞ =
[−1.09071884989..., 2.75738551656...], and therefore the signal leading to the
maximal value of S99 is a very good estimate of the signal leading to the maximal
value of Si, for any i ≥ 99.

All this generalizes to linear recursive filters of any order, and can be partly
extended to the case of non linear filters (see [15]). The next question to be
considered is to find input sequences that maximize the error on the output
instead of the value. This is left for future work.

4 Conclusion and Future Work

We have shown in this paper how we designed a static analyzer for bounding the
imprecision error in numerical programs. This design relied on a careful study
of the semantics of the IEEE754 standard, of numerical convergence of the kind
of iterative schemes we encountered in control systems, and of specificities of
the programming of these systems (SCADE generated code in general). Some
real industrial examples were given, which were simple enough to explain in a
few pages. The analyzer has already been used (on a low-end PC with 512Mb
of memory) for code of the order of 10 thousand lines of C code, and seems to
scale up well.

In the future, we plan to invest more on domains dealing precisely with inte-
grators, which make precision analysis hard to carry out, see [12] for example.
We also plan to experiment with relational domains for error computations as
briefly sketched in [13,16]. We also would like to improve the precision of the
least fixed point computation of the abstract equations in our tool, using policy
iteration mechanisms, see [6,8]. Last but not least, our abstract domain can be
adapted to under-approximations as well, see [15]. A combination of under- and
over-approximations will indeed allow us to assess the quality of the results, and
give some indications in some cases that the control system under analysis is
definitely not implemented in a sufficiently accurate way.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: Design and Implementation of a Special-Purpose Static Pro-
gram Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen,
T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS,
vol. 2566. Springer, Heidelberg (2002)

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Proc. PLDI
2003 (2003)

3. Bourdoncle, F.: Abstract Interpretation by dynamic partitioning. Journal of Func-
tional Programming 2(4), 407–435 (1992)

4. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735. Springer, Hei-
delberg (1993)

20 E. Goubault et al.

5. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graph-
ics. In: SIBGRAPI 1993 (1993)

6. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576. Springer, Heidelberg (2005)

7. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Symbolic Computation 2(4), 511–547 (1992)

8. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static Analysis by Policy Interation
on Relational Domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421.
Springer, Heidelberg (2007)

9. Goubault, E., Guilbaud, D., Pacalet, A., Starynkévitch, B., Védrine, F.: A Simple
Abstract Interpreter for Threat Detection and Test Case Generation. In: WAPATV
2001 (2001)

10. Goubault, E.: Static analyses of the precision of floating-point operations. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126. Springer, Heidelberg (2001)

11. Goubault, E., Martel, M., Putot, S.: Asserting the precision of floating-point com-
putations: a simple abstract interpreter. In: Le Métayer, D. (ed.) ESOP 2002 and
ETAPS 2002. LNCS, vol. 2305. Springer, Heidelberg (2002)

12. Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of
control systems. In: Proceedings of ERTS 2006 (2006)

13. Goubault, E., Putot, S.: Weakly Relational Domains for Floating-Point Computa-
tion Analysis. In: NSAD 2005 (2005)

14. Goubault, E., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134. Springer, Heidelberg (2006)

15. Goubault, E., Putot, S.: Under-approximations of computations in real numbers
based on generalized affine arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634. Springer, Heidelberg (2007)

16. Goubault, E., Putot, S.: Automatic analysis of imprecision errors in software
(2007), http://www.di.ens.fr/∼goubault/papers/abstract.pdf

17. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural flow analysis
and programs with recursive data structures. In: POPL 1982 (1982)

18. Landi, W., Ryder, B.: A safe approximate algorithm for inter-procedural pointer
aliasing. In: Proceedings of PLDI. ACM, New York (1992)

19. Martel, M.: Propagation of roundoff errors in finite precision computations: a se-
mantics approach. In: Le Métayer, D. (ed.) ESOP 2002 and ETAPS 2002. LNCS,
vol. 2305. Springer, Heidelberg (2002)

20. Miné, A.: Relational Abstract Domains for the Detection of Floating-Point Run-
Time Errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986. Springer, Heidel-
berg (2004)

21. Putot, S., Goubault, E., Martel, M.: Static Analysis-Based Validation of Floating-
Point Computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.)
Numerical Software with Result Verification. LNCS, vol. 2991. Springer, Heidelberg
(2004)

22. Stolfi, J., de Figueiredo, L.H.: An introduction to affine arithmetic. TEMA Tend.
Mat. Apl. Comput. 4(3), 297–312 (2003)

23. Goubault, E., Putot, S.: Fluctuat user manual (2007) (available upon request)
24. Grammatech Inc. CodeSonar, overview,

http://www.grammatech.com/products/codesonar/overview.html
25. PolySpace Technologies. PolySpace for hand-written code,

http://www.polyspace.fr/products.htm
26. LIP6. The CADNA Library, http://www-anp.lip6.fr/cadna/Accueil.php

http://www.di.ens.fr/~goubault/papers/abstract.pdf
http://www.grammatech.com/products/codesonar/overview.html
http://www.polyspace.fr/products.htm
http://www-anp.lip6.fr/cadna/Accueil.php

Application of Static Analyses for State Space

Reduction to Microcontroller Assembly Code

Bastian Schlich, Jann Löll, and Stefan Kowalewski

Embedded Software Laboratory, RWTH Aachen University,
Ahornstr. 55, 52074 Aachen, Germany

{schlich,loell,kowalewski}@cs.rwth-aachen.de
http://www-i11.informatik.rwth-aachen.de/

Abstract. This paper describes how static analyses can be applied to
microcontroller assembly code to tackle the state explosion problem aris-
ing from explicit state model checking. It presents difficulties, which oc-
cur when trying to apply static analyses to microcontroller assembly
code, caused by, for example, interrupts, hardware dependency, recur-
sions, and indirect control. Enhancements of two reduction techniques
(namely Dead Variable Reduction and Path Reduction) and their un-
derlying static analyses are detailed, which make these techniques appli-
cable to microcontroller assembly code. A short case study is presented in
which five programs are used to demonstrate the state space reductions
that can be achieved using these two techniques.

1 Introduction

Microcontrollers are often used in safety-critical systems. Extensive testing of
such applications is not always possible due to fast time to market, uncertain
environments, etc. Model checking has been recognized by industry as a promis-
ing tool for the analysis of such systems. First, proprietary models were created
by hand for model checking. Then, model checking of source code (C, C++,
Java, etc.) became more and more popular. Currently, model checking of assem-
bly code (machine code) [1, 2, 3, 4, 5] is getting into focus of research.

Model checking assembly code has quite some advantages. Assembly code is
the code that is later on deployed to the hardware. It is no longer an intermedi-
ate representation as, for example, C code. Hence, all errors can be found which
are introduced during the complete development process, including errors in the
compiler, errors that are not visible in the intermediate representation (e.g.,
reentrance problems), and errors in the usage of hardware features. The model
checker does not have to account the behavior of the compiler used. Further-
more, all assembly constructs have a clean and well documented semantics and
are easier to handle than, for instance, some C constructs (dynamic memory allo-
cation and pointer arithmetic). Moreover, the source code of the program is not
needed, and complete applications including external libraries can be checked.

Nevertheless, model checking of assembly code has two disadvantages that
have to be handled. First, it adds hardware dependency to the analysis, that

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 21–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 B. Schlich, J. Löll, and S. Kowalewski

means, the analysis has to be adapted for every new microcontroller. Second,
the state spaces tend to be bigger than when model checking intermediate repre-
sentations as more details are involved. To use model checking of assembly code
effectively, these two disadvantages have to be tackled.

We developed an explicit state, on-the-fly, Computation Tree Logic (CTL) [6]
model checker called [mc]square1, which is able to model check assembly code for
certain microcontrollers (ATMEL ATmega16, 32, etc. and Infineon XC 167). To
ease the disadvantage of hardware dependency, an architecture was implemented
in [mc]square that could easily be extended to other microcontrollers [7].

In this paper, it is described how the problem of bigger state spaces is con-
cerned. Two reduction techniques are used to address the state explosion problem
(Dead Variable Reduction and Path Reduction). Both were used in other model
checkers before (see Sect. 7), but they could not be transferred one-to-one to
[mc]square as the assembly language contains constructs making the use of an
intraprocedural static analysis approach infeasible (e.g., indirect data accesses,
indirect control, recursions, communication via global variables). Dead Variable
Reduction applied in [mc]square uses an Interprocedural Live Variable Analysis,
which is combined with a stack analysis and an analysis determining the status of
the global interrupt flag, both using the method of abstract interpretation. With-
out these, Dead Variable Reduction would not work for the assembly code used.
Path Reduction is not conducted completely statically because some constructs
found in assembly code need to be handled dynamically during state-space cre-
ation (e.g., indirect jumps and nondeterminism). Hence, some analyses are done
statically before model checking, and others are done dynamically during model
checking.

This paper is structured as follows. First, a short introduction to [mc]square is
given and some basics are explained. Next, the problems at hand are described in
detail. Then, the two reduction techniques are introduced in depth. Subsequently,
a small case study demonstrating the reduction effect of Dead Variable Reduction
and Path Reduction is presented. In the end, a conclusion is drawn, and future
work is presented.

2 Introduction to [mc]square

[mc]square is a discrete, explicit state, CTL model checker used to verify as-
sembly programs for specific microcontrollers. It takes as input a file in Exe-
cutable and Linking Format (ELF) (the program) and a formula given in CTL
(the specification). Beside model checking, the tool also checks hardware specific
properties as maximum stack size, occurrence of stack collisions, and undesired
use of hardware features (e.g., write to reserved registers). Counterexamples and
witnesses are shown in the assembly code, in the C code (if the C file was pro-
vided), as a state space graph, and in the Control Flow Graph (CFG) of the
assembly code. In this section only a short introduction to [mc]square is given

1 http://www-i11.informatik.rwth-aachen.de/mc square.html

http://www-i11.informatik.rwth-aachen.de/mc_square.html

Application of Static Analyses for State Space Reduction 23

[mc]square

C file

assembly
program

preprocessor

model
checker

formula
parser

resultgraph

counterexample
generator

state space

simulator

cfg static analyzer

formula

elf file

C file

Fig. 1. Process used in [mc]square

as this paper concentrates on static analyses used in this tool. More details can
be found in [3, 7, 8].

The process used in [mc]square is shown in Fig. 1. First, the user has to pro-
vide the property he wants to check encoded as a CTL formula. This formula
is translated into a formula object, which is used by the static analyzer and the
model checker component. Furthermore, the user has to provide the program as
an ELF file. ELF is a hardware independent standard for binary files used by
most compilers. If the C code file of the program is available, the user can option-
ally provide this file as it can be used by [mc]square to present counterexamples
and witnesses.

Next, the elf file is transformed into human-readable assembly code, and the
static analyzer starts working on this assembly code. During the analysis, in-
formation from the formula object are used (atomic propositions) to preserve
the validity of the annotations applied to the assembly code. These annotations
are used during state space creation to minimize the state space. Furthermore,
the CFG of the assembly code, used to show counterexamples and witnesses,
is created by the static analyzer. Details of the static analyzer are described in
Sect. 3, 4 and 5.

The state space is built on-the-fly during model checking. States are only
created when they are needed by the model checker component. Building of
the state space (encoded as a Kripke structure) is done by the simulator com-
ponent. The simulator is not an ordinary simulator. It natively supports non-
determinism (caused by timers and input from the environment) and builds an

24 B. Schlich, J. Löll, and S. Kowalewski

over-approximation of the real state space to limit the problem of state explosion
and to preserve the validity of the model-checking result.

Whenever the state space requires successors of a state, it uses the simulator
to create these successors. To do so, it gives the state to the simulator, and then
the simulator creates all possible successors of this state (over-approximation)
and returns them. A state may have several successors due to possible occur-
rences of interrupts, input from the environment, or expiration of timers. For
example, executing an add instruction usually creates just one successor. If in a
state in which an add instruction is executed one interrupt is active, this state
already has two successors. In one successor the interrupt handler is entered
(interrupt occurred), and in the other successor the add instruction is executed
(interrupt did not occur). Another example is an instruction reading input from
the environment by means of an Input/Output (I/O) port. If the complete port
is used for input (controlled by other registers), this state has 256 successors be-
cause an I/O port used in an ATmega16 is 8 bit wide, and hence, 256 different
values can be read from the environment through this port.

A state in [mc]square consists of the complete SRAM including all registers,
I/O registers, variables, etc. and some additional fields required by the model
checker (e.g., fields for formula values, list of successors, and fields needed for
state-space creation which are not part of the SRAM). In case of the ATmega16
a state has up to 2 KB of data. Therefore, it is important to create as few
states as possible (still preserving a safe over-approximation) and to use every
technique available that helps to save memory (e.g., lossless compressions, hard
disk model checking).

To minimize the problem of state explosion, the simulator uses different
abstraction techniques during the creation of the state space(e.g., lazy stack
evaluation, lazy interrupt evaluation, path reduction, dead variable reduction).
All these options lead to the creation of fewer states. Some create an over-
approximation, while others omit the creation of states which are not possi-
ble or irrelevant (still preserving a safe over-approximation). In case the over-
approximation is too coarse to show the given property, the user can deactivate
some options to create a finer over-approximation of the state space. This causes
the state space to grow, but it also makes the state space more accurate and
therefore, rules out paths which are infeasible in the real system. In case all
options are deactivated, the simulator behaves as the real hardware except that
the simulator abstracts from real-time as considering time would lead to real-
time model checking (see [9]), which would significantly increase the size of the
state spaces. Certain options are activated and deactivated automatically by
[mc]square depending on the properties checked and the algorithm used.

Another feature that helps to minimize the number of states is the hardware
dependency of the simulator. For instance, the simulator can exclude occurrences
of interrupts and expiration of timers whenever interrupts and accordingly timers
are deactivated. A general purpose model checker could not do this because it
does not know the underlying hardware.

Application of Static Analyses for State Space Reduction 25

Model checking works as follows. The model checker gets the initial state from
the state-space component and begins to check particular parts of the provided
formula in this state. Depending on the structure of the formula and the result
of this check, it requests successors of the current state from the state space.
If these states were not yet created, the state space uses the simulator to build
the successors as described above. Then, model checking continues using the
successor states. This process continues until a goal state (proving or disproving
the truth of the formula) is reached or the complete state space is build, and
hence, the formula can be evaluated completely. The on-the-fly, CTL model
checking algorithm implemented in [mc]square is taken from [10]. A first version
of this algorithm was presented in [11].

After model checking is finished, the counterexample generator takes the re-
sult and builds a counterexample or a witness depending on the formula and
the outcome of the model-checking process. Then, it presents the counterexam-
ple/witness in the assembly code, in the C code (if it was provided), as a state
space graph, or in the CFG of the assembly code. In all these representations
the user can step forward and backward through the traces and follow the eval-
uation of the different values of, for example, registers and variables. Thereby,
it is easier for the user to understand the result of the model checking process
and to locate possible errors.

3 Challenges Applying Static Analysis to Assembly Code

This section describes the challenges that arise when applying Dead variable
Reduction (DVR) and Path Reduction (PR) to assembly programs checked by
[mc]square. Both reduction techniques were already implemented in other model
checkers (see Sect. 7) using intraprocedural static analyses. The techniques used
could not be transferred one-to-one to [mc]square because the assembly code
checked with [mc]square contains features that cannot be handled using in-
traprocedural static analyses. Other model checkers obtained the information
for both reduction techniques entirely statically. Again, this is not possible in
[mc]square because of some constructs present in the assembly code. During all
analyses hardware specific details (interrupts, condition of special registers as
the status register and the stack pointer, etc.) have to be taken into account.

In the assembly language used, functions are not explicitly declared in header
files. Every location of an assembly program can be reached via a call statement.
All program fragments reachable by a call are defined to be functions. As
recursions are used in the assembly programs at hand, functions could not be
handled by inlining or bounded call-strings. Handling functions by assuming
that they change all variables is also not appropriate as this over-approximation
would be too coarse to obtain usable results. Additionally, all memory locations
(e.g., registers, I/O registers, and variables) in the assembly language are globally
accessible at every program location. Hence, interprocedural analyses have to be
used to preserve soundness of the results obtained.

26 B. Schlich, J. Löll, and S. Kowalewski

The assembly language does not contain parallel processes, but it contains in-
terrupts. Interrupts can intercept the main process at any point whenever they
are activated. The main process can only be continued when control is returned
from the interrupt handler. Thereby, interrupts can communicate at every pro-
gram location with the main process and can change all memory locations. This
makes data flow analysis even more difficult (see Sect. 4). Interrupts are handled
the same way as functions are handled, but special analyses are applied in DVR
to obtain a more accurate set of locations where occurrences of interrupts are
possible.

Furthermore, the assembly code contains indirect loads and stores. Currently,
these are addressed by an over-approximation assuming that at the correspond-
ing location all variables are accessed. In the future, this should be improved by
an abstract interpretation collecting all possible values of pointers. Presence of
indirect control halts the analyses used for DVR as the Live Variable Analysis
cannot deliver reliable results using an incomplete CFG. In the future, an ab-
stract interpretation should be used to gather all possible targets of the indirect
control statements. The analyses utilized for PR can handle indirect control.
However, indirect control is not often present in the assembly code used as only
some library functions add indirect control to the assembly code. In the following
two sections, DVR and PR are detailed.

4 Dead Variable Reduction

Dead Variable Reduction copes with the state-explosion problem by reducing
the number of states generated during state-space construction. If two states
differ only in the value of a dead variable, i.e. the variable is not in the set of live
variables, then both can be seen as equivalent and can be joined into one state. In
[mc]square 0 is assigned to a variable when it becomes dead. Hence, states that
differ only in the value of a dead variable will be merged. To preserve the validity
of the model-checking results, variables used within the formula (specification)
are not reset.

For the Dead Variable Reduction a Live Variable Analysis (LVA), which is
a static data flow analysis, is needed to compute the set of live variables. As
defined in [12], a variable v is alive at the exit of a program location l if there
exists a path π from l to a location l′ where v is used, and if π does not contain
a location l′′ where v is re-defined. The LVA determines via a worklist algorithm
for each program location the set of variables that may be alive at the exit of that
location [12]. The worklist algorithm presented in [12] computes the Maximal
Fix Point Solution of the data-flow equation.

After the sets of live variables are determined, for each location the set D
of dying variables has to be identified. This is done by successively comparing
the sets of live variables of two consecutive program locations l and l′. The
variables that are alive at l and are no longer alive at l′, die at l. After that,
the variables contained within the formula have to be removed from each set

Application of Static Analyses for State Space Reduction 27

0x23: PUSH R1

0x24: in R1 PORTA

0x25: out PORTB R1

0x26: POP R1

Fig. 2. Use of a working register

0x23: in R1 SREG

0x24: PUSH R1

...

0x3c: POP R1

0x3d: out SREG R1

Fig. 3. Restoring the value of SREG

D. Then, every program location is annotated with its corresponding set D
indicating the variables which can be reset by the simulator.

The application of LVA to microcontroller assembly code programs involves
some problems, which are not captured by the standard approaches. In the
following subsections, three distinct problems arising when analyzing microcon-
troller assembly-code and their solutions are described in detail.

4.1 Stack Analysis

In assembly code the stack is used to temporary save the contents of working
registers used within a function. In the beginning, the contents of these registers
are put onto the stack, and in the end of the function, the contents of these
registers are taken back from stack and written into the corresponding registers.
Hence, for the data-flow analysis it looks as if this function reads and writes
these registers, although this function does not use the values of these registers.

The stack analysis is used to check two things. First, it is used to check which
registers are really read within a function. This check supports the data-flow
analysis to, for example, identify working registers. Second, it checks whether
the respective values are written into their corresponding registers at the end
of the function (e.g., the value of R1 is written back to R1). This second check
is, for instance, used during the analysis of the global interrupt flag to find out,
whether the global interrupt flag is changed by a function or not, that is, the
corresponding function does or does not activate interrupts (see Sect. 4.2).

Due to the dynamic nature of stacks, the size and contents of the stack at a
specific program location can only be determined during run-time. In Fig. 2 an
example is shown which demonstrates the use of working registers. Register R1
is only used as a temporary variable, and in the end of this function it contains
the same value as in the beginning of this function. A standard, static data flow
analysis cannot recognize this.

To solve this problem, and hence, to get a more accurate data-flow analysis, an
abstract interpretation is used to determine for each program location the set of
possible stack configurations. The abstract interpretation observes all accesses to
the stack (push, pop, change of stack pointer, and write accesses into the memory
area of the stack) and determines if at the end of the function the original values
of the working registers are restored. If the stack analysis fails due to an infinite
number of possible stack configurations (e.g., caused by loops), manual change
of the stack pointer, etc., it has to be assumed that this function changes the
contents of all working registers used within this function.

28 B. Schlich, J. Löll, and S. Kowalewski

In the example shown in Fig 2 the stack analysis correctly recognizes that at
location 0x26: POP R1 the original value of R1 is restored.

4.2 Global Interrupt Flag

The global interrupt flag (bit within the SREG register) defines whether all
interrupts are activated or not. Without an analysis that determines the value
of the global interrupt flag, it has to be assumed that interrupts are active at
every program location. If an interrupt handler reads a certain register and is
active at any program location, this register can never be reset by the DVR. To
get more precise results, an abstract interpretation is applied that determines
the status of the global interrupt flag for each program location. This abstract
interpretation observes all accesses to the SREG register done via calls to cli()
and sei() and direct/indirect write accesses. Whenever the analysis fails to
show that interrupts are deactivated, it is assumed that they are activated (safe
over-approximation).

Without the stack analysis described in Sect. 4.1, this analysis would not be as
accurate as it is because the current status of the SREG is saved onto the stack
in the beginning and restored at the end of every interrupt handler and some
functions. Hence, these functions would activate interrupts because a standard,
static data-flow analysis would not know the value that is written into the SREG
at the end of the function.

The example shown in Fig. 3 demonstrates how this analysis benefits from the
stack analysis. Here, the stack analysis can assure that 0x3c: POP R1 restores
the value of R1 saved at 0x24: PUSH R1, and hence, that the original value
of the SREG is restored. If the stack analysis would fail, 0x3d: out SREG R1
would activate interrupts.

4.3 Interprocedural Live Variable Analysis

The data-flow equation for LVA can be solved intraprocedural by the worklist
algorithm described in [12]. Due to the presence of function calls (and inter-
rupts) in the assembly code, this intraprocedural approach has to be enhanced
to deal with function calls. As explained before, the standard approaches to do
this (inlining, call-strings, and assuming that all variables are manipulated by a
function) are not appropriate.

As described before, functions are all program fragments which can be reached
via call statements. Additionally, interrupts are also handled like functions. In
the assembly language used, functions do not have formal parameter values.
Communication with functions is done via global variables, registers (globally
accessible), the stack, or indirect loads and stores from and to a memory area
indicated by a pointer. The latter case is seldom used and leads to an over-
approximation in this approach as indirect loads/stores access all memory loca-
tions. Most common case is the usage of global variables and registers.

To handle functions (including interrupt handlers), a static behavior is defined
for them (context insensitive). The behavior of a function regarding the LVA is

Application of Static Analyses for State Space Reduction 29

a set containing all memory locations (e.g., global variables and registers) that
the function reads. The behavior of a function regarding a Reaching Definitions
Analysis is a set of memory locations that are written by the function. In the
worst case, this approach leads to an over-approximation of the behavior of a
function assuming that all memory locations are accessed, but in most cases, just
a few memory locations are accessed. This analysis benefits from both analyses
described before because without theses analyses the results obtained during the
LVA would be too inaccurate to be used for DVR.

The LVA algorithm works as follows. In the first step every function (including
main and interrupt handlers) is analyzed alone and call instructions (including
occurrence of interrupts) within a function are ignored. The result of this step is
for every function the set of memory locations read by the function. This set is
called the initial behavior of a function. In this step, the results obtained from
the stack analysis are used to accurately determine the memory locations read
by the function.

In the next step, calls are analyzed. If a function f calls a function p, the
behavior of function p is added to the behavior of the call site within function
f . This may change the behavior of function f . If the behavior of f is changed,
all functions which call f are analyzed again (propagate behavior). This is done
until a fixed point is reached. During this step, results obtained from the global
interrupt flag analysis are used to properly identify program locations where
interrupts can occur. At all these locations, interrupts are handled as calls to
the corresponding interrupt handler (behavior is added at these locations).

In the last step, the set of variables alive at the call location of a function p
are given to p to set them alive for complete p. This is needed as these variables
have to be alive after p is handled. The behavior of the function is not changed
as the variables added are not read by the function. The result of this analysis
is for each program location a set of variables alive at that location.

5 Path Reduction

Path Reduction (PR) was described by Yorav and Grumberg in [13]. Is is used
to compress single successor paths (computational paths which consist of states
having only single successors) into a single step (only the first and the last state
of this path are stored) to reduce memory consumption. The disadvantage of
this method is that it only preserves CTL*-X, i.e. validity of the neXt operator
(X) is not preserved.

First, program locations which satisfy certain conditions are determined by
means of a static analysis. These program locations are called Breaking Points
(BP) in [13]. Then, during state-space creation, only states that are generated
from breaking locations are stored. In [13] all breaking points could be identi-
fied statically. In [mc]square some of these breaking points have to be deter-
mined dynamically during state space creation due to, for example, indirect
control, indirect data accesses, and nondeterminism. Details are given in the
following.

30 B. Schlich, J. Löll, and S. Kowalewski

Yorav and Grumberg defined the following locations l to be breaking:

1. l is the initial or terminating program location,
2. l is associated with the program location of an assignment that changes a

variable used within the formula,
3. l i associated with the program location of a non-deterministic assignment,
4. l is the head of a “while” statement,
5. l is labeled by a procedure call, or is the statement immediately following a

procedure call,
6. l is labeled by a communication statement (send or receive), or is the

statement following a communication.

The first and the second condition can be check statically in [mc]square, too.
The third condition cannot be checked statically in [mc]square because non-
determinism is not indicated by certain statements in the assembly language.
Different memory location can introduce nondeterminism and are accessed via
diverse statements. A memory location can change back and forth between non-
deterministic and deterministic behavior (e.g., input port is switched to output
or a timer is deactivated). Hence, a static analysis would over-approximate too
much. Therefore, the third condition is checked dynamically during state space
creation in [mc]square (every state having more than one successor is stored).

The fourth condition needs some special treatment because in the assembly
language used there exists no while statement. This condition is needed to guar-
antee termination during state-space building. If there is a loop consisting only
of single successors, it would not be possible without this condition to detect
revisits, and hence, the state-space creation would not terminate. To avoid this,
one location of each loop has to be breaking. In [mc]square all locations are
defined to be breaking that have more than one predecessor in the CFG. A lo-
cation has more than one successor in the CFG if it is the target of a jump
or branch instruction. Most of these targets can be found by a static analysis.
Only the targets of indirect jumps cannot be found during static analysis, and
thus, [mc]square identifies them dynamically during state-space creation. Thus,
in every loop there is at least one location that is breaking. As not every of
these target locations is part of a loop, some locations are unnecessarily break-
ing (over-approximation), but the runtime overhead needed to detect only real
loops would be considerably higher.

The fifth condition is checked completely statically in [mc]square. All locations
containing a call or indirect call statement and the succeeding locations are
marked to be breaking.

The last condition is not directly applicable to the assembly language used.
The assembly language does not contain parallel processes, but it contains in-
terrupts which show a similar behavior (described in Sect. 3). There are no
communication statements which control the communication between the main
process and the interrupt handlers. Whenever an interrupt is active, it can com-
municate with the main process. To represent this behavior in this analysis,
each location where interrupts may occur has to be breaking. There are two

Application of Static Analyses for State Space Reduction 31

differences to the handling of call statements: The succeeding location is not
made blocking because interrupts return to the location where they occurred,
and locations where interrupts may occur are marked during run-time. This
sounds as PR would not bring too much benefit, but interrupts are only active
within parts of the program and inactive during most interrupt handlers. That
is, interrupt handlers are long, single successor paths which are particularly
addressed by PR. This is shown in the next section.

6 Case Study

In this section, a case study is described, which uses five different programs to
show the effect Dead Variable Reduction and Path Reduction have on the size
of state spaces. It was conducted on a Server equipped with an AMD Opteron
processor with 1.8 GHz, 16 GB main memory, and a hard disk with a capacity
of 120 GB. As [mc]square is completely written in Java, it can be used with any
operating system.

During this case study, all other options/optimizations were turned off in
order to interpret the results without any side-effects between different options.

The five programs chosen for this case study were all written by students in
lab courses, during diploma theses, or in exercises. None of these programs was
written to be model checked afterwards. These programs were really used on the
ATMEL ATmega16 microcontroller. The results of the case study are shown in
Tab. 1. The first line shows the results for every program without applying static
analysis. The second and the third line show the results using Dead Variable
Reduction and Path Reduction respectively. The last line demonstrates the result
when applying both analyses. The column states stored reflects the number of
states that are stored in the state space. The column states created presents the
number of states that are created during model checking including revisits. The
column size of state space shows the size of the hash table representing the state
space in memory. The last column shows the complete time needed for applying
static analysis, building state space, and doing model checking.

The first program called light switch is a simple program utilized to demon-
strate basic microcontroller functions. It consists of 72 lines of C code (162 lines
of assembly code), uses two timers, but does not use interrupts. In this pro-
gram DVR lowers the number of states stored by 11.57%. PR lowers the number
of states stored by 70.65%, but it increases the number of states created by
101.28%. This happens because of long single successor chains of which only the
last state is stored. To recognize revisits, the complete chain has to be visited
again. For this small example this has no effect on runtime. Using both analyses
together, leads to 77.29% less states stored than when using no analysis. The
savings of both analyses do not add up completely, but the combination has a
noticeable effect. The savings in number of states stored directly carry over to
savings in size of the state space in main memory.

32 B. Schlich, J. Löll, and S. Kowalewski

Table 1. Comparing effect of DVR and PR using five different programs

Program Analysis # states # states State space Time
used stored created size[MB] needed[s]

light switch

none 7,367 10,608 2.27 0.531
DVR 6,515 9,635 2.01 0.422
PR 2,162 21,352 0.70 0.438
both 1,673 19,764 0.56 0.688

plant

none 801,616 854,203 184.55 49
DVR 801,616 854,203 184.55 49
PR 54,788 1,297,080 12.85 49
both 54,788 1,297,080 12.85 49

reentrance
problem

none 107,649 110,961 23.45 7.25
DVR 107,649 110,961 23.45 7.90
PR 6,631 122,999 1.43 4.86
both 6,631 122,999 1.43 5.00

traffic light

none 35,522 38,110 8.52 2.21
DVR 35,522 38,110 8.52 2.56
PR 2,873 55,083 0.72 2.33
both 2,873 55,083 0.72 2.53

window lift

none 10,100,400 11,196,174 2,049 379
DVR 2,341,728 2,754,314 725.89 74
PR 520,331 18,444,220 161.88 332
both 119,331 5,123,942 44.49 93

The next program called plant controls a fictive chemical plant. It consists
of 73 lines of C code (225 lines of assembly code), uses one timer and two
interrupts. DVR has no effect in this program because the same variables are used
throughout the hole program including the interrupt handlers. Therefore, this
program has no location where a variable becomes dead, and hence, DVR cannot
save anything. PR lowers the number of states stored by 93.17% and increases
the number of states created by 51.85%. It means that either the number of
revisits is smaller compared to the light switch program or the length of single
successor chains is shorter. As the savings in number of states created directly
carry over to savings in size of the state space in memory, a significant decrease
in memory usage can be observed. It drops from 185 MB to 13 MB.

The program called reentrance problem is used to demonstrate the reentrance
problem. A variable i is accesses both in the main process and in the interrupt
leading to invalid values of i. It is a very small program consisting of only 37
lines of C code (148 lines of assembly code) and it uses one interrupt. As in
the previous described program, DVR has no influence due to the same causes.
Again, PR has a significant influence and stints 93.84% of the states stored. The
number of states created is only increased by 10.85% due to fewer revisits and
shorter single successor chains as in the other programs.

Traffic light is a program written by students in a lab course. As the name
says, it is used to control the operation of a traffic light. It comprises of 85 lines
of C code (155 lines of assembly code) and uses two interrupts and one timer.

Application of Static Analyses for State Space Reduction 33

Once again, DVR has no effect. PR shows the same performance as before with
a slightly lower increase in number of states created than observed in the plant
program.

The last program called window lift was inspired by a real automotive task. A
controller for a power window lift used in a car was implemented. The program
we chose for this case study contains 115 lines of C code (289 lines of assembly
code) and uses three interrupts and two timers. DVR already has a noticeable
effect in this program as 76.82% states less have to be stored. Also, the time
used drops from 379 seconds to just 74 seconds. In the combination of both
analyses only 119,331 states have to be stored but 5,123,942 states have to be
created. This is due to many revisits and long single successors chains. Time
needed does not drop significantly due to the high number of revists. Comparing
the case PR only and the case where both reduction techniques are used shows
that DVR does not significantly reduce the number of states stored, but it lowers
the number of states created, and hence, helps to lower the time needed.

Summarizing, it can be seen that PR reduces the number of states stored
drastically in every case. In some cases (e.g., window lift and plant) time needed
does not drop due to repeated revisits. It is a trade-off between time and space.
As space is our main difficulty, from our point of view this analysis should be
used whenever possible. Since we do not use the X operator in our specifications,
the loss of validity of the X operator (see [13]) is not a problem for us.

The result of DVR is not that clear. In some examples it helped to save space
and to decrease time (due to less states created), but whenever there is a tight
coupling between data variables across functions and/or interrupt handlers, this
option does not have an effect. Another problem is that variables which are part
of the formula cannot be reduced. If there is a formula involving many variables,
the effect of DVR is decreased even more. This analysis should always be used
because it can only have a positive effect or no effect. A negative effect is not
possible.

Both reduction techniques can be always used in combination because the
combination yields the same or even better results than the application of one
of the techniques alone.

The other options/optimizations applied in [mc]square often help to, for ex-
ample, ease the effect that was observed in window lift or plant (increase in
number of states created) applying PR. Nevertheless, they were not used in this
case study because the combination of all methods makes it difficult to examine
the effect of a new analysis.

7 Related Work

As this paper concentrates on the static analysis that is implemented in [mc]-
square, only related work regarding the static analysis is presented. Details of
related work regarding model checking can be found in [3, 7, 8].

In [13] DVR and PR were described for a parallel version of the while language
and implemented for the model-checking tool Murphi . The language used in

34 B. Schlich, J. Löll, and S. Kowalewski

Murphi is comparable to the parallel while language. In the language used, every
process has its own local variables, global variables do not exist. Communication
is done at fixed program locations by means of send and receive statements.
For DVR, function calls are handled by inlining the body of the method at each
call location. Hence, the static analysis used can be done intraprocedural. The
so-called breaking points (see Sect. 5) used for PR can be determined completely
statically. The language used does not contain indirect control.

In his master’s thesis [14] Mr. Quiros adapted the approach described in [13]
to a bytecode language used in a specific virtual machine. This bytecode lan-
guage is similar to the parallel while language as it has no indirect control and
the communication between processes is conducted at fixed program locations.
The only important difference for static analysis is that the bytecode language
has local and global variables, but they are easily distinguishable as different
instructions are used to access global and local variables respectively. The DVR
is only applied to local variables because the static analysis in this approach is
done intraprocedural as in [13]. The breaking points used in the PR analysis are
determined completely statically, too.

Spin [15] uses both, DVR and PR. It works on a language called Promela
which is similar to the two languages described before regarding these two re-
duction techniques. That means, method calls are handled by inlining, commu-
nication is conducted at certain program locations, and indirect control is not
present. Both analyses are done statically via an intraprocedural approach before
model checking.

In contrast, [mc]square works on assembly code including indirect control, in-
direct data accesses, recursions, interrupts, and globally accessible memory. This
makes intraprocedural approaches and inlining infeasible. Restricting DVR to lo-
cal variables is not possible as all variables are globally accessible. In [mc]square,
breaking points cannot be determined completely statically as some constructs
can only be handled dynamically during runtime (e.g., nondeterminism, indirect
control and interrupts).

A different approach for DVR used in the model checking tool Estes is de-
scribed in [16]. PR is not used in the Estes model checker. DVR is done dy-
namically during state-space creation to exploit run-time information. Due to
the dynamic nature of the approach, the results are in certain situations more
accurate, but increase the run-time. The user has to provide some information
to use the DVR (e.g., description of the behavior of the environment, addresses
of main function, interrupt handler starting points and interrupt handler ending
points). This is not needed in [mc]square.

8 Conclusion and Future Work

This paper describes two static analyses used in [mc]square to tackle the state-
explosion problem. Both analyses are already used in some other model check-
ers (e.g., Spin, Estes and Murphi), but could not be transferred one-to-one to

Application of Static Analyses for State Space Reduction 35

[mc]square because the underlying analyses are done completely statically using
intraprocedural approaches. Due to the peculiarities of the assembly language
used (e.g., only global variables, indirect control, interrupts, and recursions),
interprocedural analyses have to be used in [mc]square. The preparation of the
program for PR could not be done completely statically due to interrupts and
indirect control. Some of the so-called breaking points have to be determined
during model checking because a static determination of these points would lead
to a too coarse over-approximation (having no effect at all).

The results of the DVR are comparable to the results achieved in other model
checking tools, although the analysis has to be performed interprocedural (in-
cluding pointers, etc.). However, PR has a bigger influence on the size of the
state spaces than in other model checkers. This is due to the nature of the as-
sembly language (similar results observed in [14]). Programs written in assembly
language tend to have many long, single successor chains, which need not to be
stored completely (e.g., single C instruction is compiled into six assembly in-
structions). Another source for long, single successor chains are interrupts. In
most cases an interrupt handler cannot be intercepted by another interrupt, and
hence, it is a long, single successor chain, which can be reduced very efficiently.

Both reduction techniques can be used to lower the size of state spaces. DVR
can be used in any case as it does not have any negative effect. PR can only be
used whenever the X operator (CTL*-X preserving) is not needed. The negative
effects of using PR (increase in number of created states due to revisits) can be
eased by some other abstraction techniques implemented in [mc]square. From our
point of view, it is better to trade time in for space, since memory requirements
are a bigger problem.

At present, [mc]square is able to handle up to 68,000,000 states in memory
(16 GB main memory) and up to 670,000,000 using hard disk model checking.
Hence, there is still some performance reserve for programs more complex than
used in the case study. The biggest program checked had about 4,500 lines.

To further improve the static analyses used to support model checking, the
interrupt analysis has to be improved. To do this, two things have to be done
before. First, the analyses have to be implemented using more details of the
underlying hardware. At present, the over-approximation is in some cases too
coarse (e.g., whenever an I/O register is written, all I/O registers are written). To
improve this approximation the different I/O registers can be clustered. Within
such a cluster the I/O registers influence each other, but clusters do not influ-
ence other clusters. Hence, whenever an I/O register is written, only the I/O
registers of the same cluster are written. Second, the pointer analysis has to be
improved. The idea is to use abstract interpretation during the Reaching Defini-
tions Analysis to collect all possible values of pointers. Currently, whenever an
indirect load occurs, all variables are read.

Another analysis that should be added is pruning of interrupts. This is an
analysis similar to the Partial Order Reduction used in Spin. This analysis lowers
the number of possible interleavings between the main process and interrupt
handlers.

36 B. Schlich, J. Löll, and S. Kowalewski

Summarizing, it can be said that reduction techniques using static analyses
(in particular DVR and PR) can be used to tackle the state-explosion problem
in explicit state model-checking. Significant improvements can be observed when
using DVR and PR for model checking of assembly code. As described above,
the impact, PR has in this specific domain, is even bigger than in model checkers
working on intermediate languages.

References

1. Mehler, T.: Challenges and Applications of Assembly-Level Software Model Check-
ing. PhD thesis, Universität Dortmund (2005)

2. Mercer, E.G., Jones, M.D.: Model checking machine code with the gnu debugger.
In: SPIN Workshop on Model Checking of Software, San Francisco, USA (August
2005)

3. Schlich, B., Kowalewski, S.: [mc]square: A model checker for microcontroller code.
In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proc. 2nd Int’l Symp. Leveraging
Applications of Formal Methods, Verification and Validation (IEEE-ISoLA 2006)
(2006); To appear in: IEEE proceedings

4. Schlich, B., Rohrbach, M., Weber, M., Kowalewski, S.: Model checking software for
microcontrollers. Technical Report AIB-2006-11, RWTH Aachen University (Au-
gust 2006)

5. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: Wysinwyx: What you
see is not what you execute. In: Verified Software: Theories, Tools, Experiments.
Springer, Heidelberg (to appear, 2007)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

7. Schlich, B., Kowalewski, S.: An extendable architecture for model checking
hardware-specific automotive microcontroller code. In: Schnieder, E., Tarnai, G.
(eds.) Proc. 6th Symp. Formal Methods for Automation and Safety in Railway and
Automotive Systems (FORMS/FORMAT 2007), Braunschweig, Germany, GZVB,
pp. 202–212 (2007)

8. Schlich, B., Kowalewski, S.: Model checking c source code for embedded systems.
In: Margaria, T., Steffen, B., Hinchey, M.G. (eds.) Proc. IEEE/NASA Work-
shop on Leveraging Applications of Formal Methods, Verification, and Validation
(IEEE/NASA ISoLA 2005), Maryland, USA, NASA, September 2005, pp. 65–77
(2005); NASA/CP-2005-212788

9. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: Compact data structure and state-space reduction. In: Proc. 18th IEEE
Real-Time Systems Symposium (RTSS 1997), pp. 14–24. IEEE Computer Society,
Washington, DC, USA (1997)

10. Heljanko, K.: Model checking the branching time temporal logic ctl. Research Re-
port A45, Helsinki University of Technology (May 1997)

11. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for ctl. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg (1993)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

13. Yorav, K., Grumberg, O.: Static analysis for state-space reductions preserving tem-
poral logics. Form. Methods Syst. Des. 25(1), 67–96 (2004)

Application of Static Analyses for State Space Reduction 37

14. Quirós, G.: Static byte-code analysis for state space reduction. Master’s thesis,
RWTH Aachen University (March 2006)

15. Holzmann, G.J.: The engineering of a model checker: The gnu i-protocol case study
revisited. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999.
LNCS, vol. 1680, pp. 232–244. Springer, Heidelberg (1999)

16. Lewis, M., Jones, M.: A dead variable analysis for explicit model checking. In:
Proc. 2006 ACM SIGPLAN Symp. Partial evaluation and semantics-based program
manipulation (PEPM 2006), pp. 48–57. ACM Press, New York (2006)

Checking the TWIN Elevator System

by Translating Object-Z to SMV

Sören Preibusch1 and Florian Kammüller2

1 German Institute for Economic Research
Mohrenstraße 58, 10117 Berlin

spreibusch@diw.de
2 Technische Universität Berlin

Fakultät IV: Elektrotechnik und Informatik
Franklinstraße 28-29, 10587 Berlin

flokam@cs.tu-berlin.de

Abstract. In the context of large scale industrial installations, model
checking often fails to tap its full potential because of a missing link
between a system’s specification and its functional and non-functional
requirements, like safety. Our work bridges this gap by providing a trans-
lation from the formal specification language Object-Z to the SMV model
checker input language to combine their advantages.

This paper focuses on the translation of the object-oriented features
of Object-Z: operation promotion and communication between objects.
We demonstrate the feasibility of our approach using the example of
the TWIN Elevator system and embed the translation process in the
industrial software production workflow.

1 Introduction and Related Work

Software development for industrial purposes differs from application develop-
ment by the nature of the constructed software products and by the nature of
the production process. Industrial software enables the effective and efficient us-
age of large installations and equipment in aviation, power generation, logistics,
medical treatment, and production lines. These systems are typically safety-
critical; disturbance of their well-functioning may cause personal or physical
damage.

Model checking techniques are used to check properties of these systems; they
provide reliable results by including a system’s whole state space in mathematical
proofs of correctness.

A variety of model checking tools has emerged along with different input
languages. As a standardized input format does not exist yet, interoperability
between users and re-use of specification is hampered. The lack of established au-
thoring tools and intuitive means to structure large specifications are additional
drawbacks. The ability to use Object-Z as a common input language would allow
to overcome these difficulties. Object-Z [4] is an object-oriented extension of the

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 38–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Checking the TWIN Elevator System by Translating Object-Z to SMV 39

standardized specification language Z [5]. It has well understood semantics [13]
and benefits from tool support [2], Section 5.

Advantages of Combining Object-Z and SMV. Coupling Object-Z as a
system specification language with model checking support manifests advan-
tages when compared to purely verifying Z specifications [19]. These advantages
originate the specification phase and the checking phase in the workflow.

Whereas a Z specification defines a single state space, Object-Z’s classes with
their separate namespaces are especially handy for specifying medium- to large-
scale software systems [12]. The object-oriented specification paradigm is well
adapted to distributed and embedded systems; communicating objects reflect the
spatial separation of different components. Unlike Z, Object-Z supports specify-
ing concurrent systems. Multiple instantiation of the same class provides for easy
scalability where Z would have required a manual enumeration of each instance.

Moreover, translating Object-Z to SMV enables the use of general-purpose
model checking tools. Those profit from a larger community and ongoing research
resulting in performance enhancements.

Finally, there is a difference between Z and SMV in the nature of the prop-
erties that may be expressed (and thus checked). Z and Object-Z specifications
are limited to first order predicate logic whereas SMV is designed for temporal
logic expressed in CTL or LTL formulas. Those temporal formulas are naturally
checked against the specification; in contrast, Z checkers usually only perform
type checks or well-formedness checks.

Previous Work has provided model checking support for the base language Z
[14]. However, its authors have seen the extension to Object-Z as future work.
Especially the object-oriented features make this a non-trivial task. [18] describes
a translation procedure from Object-Z to SMV using ASM as an intermediate
language. Then again, this works lacks considering the semantics of an Object-Z
specification as a description of a system embedded in an environment. Hence,
the translation of operations is problematic. Inter-object communication is hard
to follow and distributed operations operators are not covered. Moreover, that
work does not preserve the structure of an Object-Z specification but instead
flattens the top-level structure provided by classes and modules.

Our contribution is twofold. First, on a concrete level, we present a specifica-
tion of the TWIN elevator system in the formal specification language Object-Z.
We provide a step-by-step translation to an equivalent (Cadence) SMV program
[9]. Second, on an abstract level, we elaborate general rules for the translation
process, focusing on the object-oriented features of Object-Z: operation pro-
motion and communication between objects. In addition, we sketch how the
translation can be integrated rewardingly in the workflow of industrial software
production processes.

The remainder of this paper is organized as follows. The following Section por-
trays the TWIN elevator system by ThyssenKrupp. Section 3 is the core of the

40 S. Preibusch and F. Kammüller

paper. It presents the commented TWIN’s specification in Object-Z along with
the SMV equivalents and general translation rules. The resulting SMV program
is enriched by temporal formula stating fairness and safety requirements that are
successfully checked. Section 5 embeds the translation process in the industrial
software development process prior to concluding in Section 6 with a summary
and outlook.

2 TWIN Elevator System Case Study

The idea of having an elevator with two independent cabins operating in the
same shaft dates back to the 1930s. However, first attempts to build this efficient
transportation system failed and the engineering of a control system has been
an unsolved problem for almost a century. Only in 2002 ThyssenKrupp installed
the first TWIN elevator system at Stuttgart University.

Fig. 1. Minimal TWIN
installation (schematic
view): a TWIN shaft
with two cabins on the
left and conventional
shaft on the right

In a TWIN elevator system, two cabins are arranged
one above the other; they run independently in the
same TWIN shaft – also at different speeds. A safety
distance is kept, depending on the speeds involved. The
cabins can move in different directions, which means
that they can also move toward each other [17]. Be-
cause the TWIN cabins cannot sidestep, each TWIN
installation comprises at least one conventional shaft
to serve routes that would result in a crossing of the
TWIN cabins (Fig. 1).

A prospective passenger communicates his destina-
tion level no longer within the elevator cabin, but in-
stead by Destination Selection Control (DSC) termi-
nals mounted on each floor. The control system then
selects one of the cabins capable to serve the call.

The informal specification of safety requirements of
ThyssenKrupp has been the basis for their formal ex-
pression by means of formal specification and model
checking [7]. In [7], we developed a detailed SMV pro-
gram to check the TWIN’s well-functioning and provide
evidence for the scalability of model checking proce-
dures. However, the crafting of an SMV program that
large is unrealistic to be carried out in an industrial
context. In contrast, it is more likely that Object-Z specifications are used and
developed already in an early project stage.

The earlier results also act as a benchmark for our translation process in
that applying model checking on an SMV program resulting from an automated
translation should not perform worse than on the hand-made SMV program.

In addition, the duo of this paper and the first TWIN case study is an example
for abstraction. The TWIN specification developed in the next section is just
detailed enough to examine fairness and safety requirements.

Checking the TWIN Elevator System by Translating Object-Z to SMV 41

3 Translating Object-Z Specifications to SMV Programs

3.1 Fundamental Object-Z Concepts

In Object-Z, graphical schema notation enables the concise structuring of state
and operation specifications and modularizes them into classes. Any schema con-
sists of a declaration part and a predicate part enabling abstract specification
of invariants, pre-conditions and post-conditions. Classes in Object-Z encapsu-
late a state and an initial schema, as well as operation schemas specifying the
methods of an object oriented class. In addition, Object-Z features specific class
constructs for visibility, constant declarations, polymorphism, and inheritance.

The idea of instantiation of an object o of a class C is naturally represented
by the declaration of a variable o : C where o then denotes the identity of an
object. Object-Z has a reference semantics [13] and the common object-oriented
dot notation, e.g. o.m to annotate the invocation of an object’s feature.

The so-called schema calculus comprises operators enabling composition of
operations to create new operations, especially in the context of modular sys-
tems. In Object-Z operations are composed by conjunction ∧, non-deterministic
choice [] , sequential composition o

9, and parallel composition ‖.
In Section 3.3, we will piecewise present the TWIN’s specification in Object-Z

along with explanations of the newly introduced Object-Z features. We outline
the corresponding translation rule and present the (one or more) resulting SMV
code fragments. We have partitioned large classes; the splits are clearly signed
(. . . / [cont’d]). Where appropriate, we skip over specification parts that would
not contribute to introduce new translation rules. In addition to this paper, the
unsplit and unabridged versions are available online [10],[11].

3.2 Directness and Structure Preservation

Our translation from Object Z to SMV is direct in that it identifies concepts of
Object-Z, like propositional logic, basic types, and the class concept, with almost
directly corresponding features of SMV. Where appropriate, the missing seman-
tics is added in the translation process using additional definitions, constraints,
or other constructions as we will see. The striking advantage of this direct trans-
lation is that it is quite obviously structure preserving, i.e. the structure of the
Object-Z classes and SMV modules correspond one to one and the initial and
state schemas of Object-Z have distinct representations in SMV code chunks.
Although the granularity of the operations cannot be preserved, one can show
that the translation distributes over the constructs of SMV used for operation
representation.

3.3 Translation Rules

Type Definitions and Constants. Types and constants used within the
Object-Z specification are defined at its beginning. Types can be defined by
enumerating their values or as an integer sub-range. We define a type for the
cabin status and for the storeys.

42 S. Preibusch and F. Kammüller

Expressions in the constant definition are evaluated once during the transla-
tion process; static evaluation is correct as – by definition – Object-Z constants
do not change their values. Definitions for the boolean constants are added. In
SMV, truth values are represented by integers.

CabinStatus ::= vacant | busy
Level ::= (1 . . 12)

LevelGround = min Level
LevelTop = max Level

typedef CabinStatus {vacant, busy};

typedef Level 1..12;

#define LevelGround 1

#define LevelTop 12

#define true 1

#define false 0

Classes. Following the object-oriented paradigm, classes are the top-level struc-
turing mechanism in Object-Z. They provide a scope for variables and may
contain operations that change the variables’ values by state transition. Our
specification comprises four classes: A Call class, acting as a datatype for calls
with the attributes from and to coding the route’s endpoints, a Cabin class for
cabins in a conventional shaft or in a TWIN elevator shaft, a class for the DSC,
and a class for the TWIN System itself.

A class’ state variables are noted inside an Object-Z box. Variables are typed
and can instantiate classes. In SMV, modules provide a similar scoping
mechanism.

Call

from : Level
to : Level

module Call() {

from : Level;

to : Level; }

Initial schema. An Object-Z class can include an INIT schema, assembling
predicates that must hold in the initial state. Initially, a cabin is vacant and
its target level is the current level so that there is no induced call. The current
level is initialized upon instantiation in the TWIN System class. Cabins in a
TWIN shaft have has other cabin set to true and the variables other curr level
and other target level referring to the other cabin in the same shaft. Therefore,
a TWIN cabin is aware of the other cabin’s position – an information needed
when deciding whether the cabin may accept a call or not.

Checking the TWIN Elevator System by Translating Object-Z to SMV 43

The predicates over the initial state are translated to an active initialisation
in SMV.

Cabin

curr level : Level
target level : Level
status : CabinStatus
other curr level : Level
other target level : Level
has other cabin : B

INIT

target level = curr level
status = vacant

. . .

module Cabin() {

curr level : Level;

target level : Level;

status : CabinStatus;

other curr level : Level;

other target level : Level;

has other cabin : boolean;

init(target level) := curr level;

init(status) := vacant;

State Transitions: Precondition and Stimulus. In Object-Z, state tran-
sitions are realized by named operations that change the values of the state
variables enumerated in their Δ-lists. Below a horizontal line, predicates over
the variables’ values before the state transition are noted (precondition of the
operation). The primed variable names refer to the variables’ values after the
operation’s execution (postcondition).

The operations MoveUp and MoveDown realize the state transition of the cabin
with regard to its current level. The operations’ preconditions assure that the
cabin moves in the direction of its target level and does not run out of the shaft.

For each operation, we introduce two defined boolean variables in the SMV
program. These variables do not add to the state vector and thus do not impact
on the performance of verification. The SMV variable operationname pre has
the truth value of the precondition. It is hereby also a translation of the Object-Z
expression “pre operationname” that represents the truth value of the operation’s
precondition.

The variable operationname stimulus indicates whether there is a call of
the operation from the environment. According to the semantics of Object-Z
[12], the specified system is embedded in an environment that may evoke an
operation. Unless this evokation occurs, the state transition specified by the
operation does not take place. This is in contrast to SMV, where each possible
state transition is executed. Hence, the variable operationname stimulus acts
as an additional guard.

44 S. Preibusch and F. Kammüller

Cabin [cont’d]
. . .
MoveUp
Δ(curr level)

curr level < LevelTop
curr level < target level
curr level ′ = curr level + 1

MoveDown
Δ(curr level)

curr level > LevelGround
curr level > target level
curr level ′ = curr level − 1

. . .

/* operation MoveUp */

MoveUp pre : boolean;

MoveUp pre := (curr level < LevelTop) & (curr level < target level);

MoveUp stimulus : boolean;

/* operation MoveDown */

MoveDown pre : boolean;

MoveDown pre := (curr level > LevelGround) & (curr level > target level);

MoveDown stimulus : boolean;

All operations possibly changing a state variable can be identified by examin-
ing their Δ-lists. For each state variable, the influencing operations are collected;
their respective precondition and stimulus variables guard the state transition
in SMV.

The general schema has the form:

next(variable) := case{

op1 pre & op1 stimulus : op1 postpredicate;

op2 pre & op2 stimulus : op2 postpredicate;

...

default : variable; }

The last alternative (default) results in the variable to remain unchanged if
none of the operations is executed.

next(curr level) := case{

MoveUp pre & MoveUp stimulus : curr level + 1;

MoveDown pre & MoveDown stimulus : curr level - 1;

default : curr level; };

Communication variables. Communication variables can be defined in the
local scope of an operation. Output variables are decorated with an exclama-
tion mark, input variables with a question mark. Communication variables in
opposite directions with the same basename are identified when operations are
combined (see below on page 46).

Checking the TWIN Elevator System by Translating Object-Z to SMV 45

The cabin’s operation AcceptCall may record a new call? for the cabin if the
cabin is currently vacant (first precondition). In addition, if the cabin is a TWIN
cabin (has other cabin is true), it can only accept the call in case call processing
would not result in a crash with the other cabin (second precondition).

If the cabin has accepted the call, its status is set to busy and the call’s
attribute to is taken as the cabin’s new target level. If the cabin has finished a
call, its status is set to vacant.

In the translation to SMV, the communication variable new call? is prefixed
with in (out for output communication variables) and with the operation name,
to provide for a local scope.

Cabin [cont’d]
. . .
AcceptCall
Δ(status, target level)
new call? : Call

has other cabin = false∨
(new call?.to − other target level)×
(curr level − other curr level) > 0
status = vacant
status′ = busy
target level ′ = new call?.to

FinishCall
Δ(status)

curr level = target level
status = busy
status′ = vacant

. . .

/* operation AcceptCall */

AcceptCall pre : boolean;

AcceptCall pre := (has other cabin = false) |

((AcceptCall in new call.to - other target level) *

(curr level - other curr level) > 0) & (status = vacant) ;

AcceptCall stimulus : boolean;

AcceptCall in new call : Call;

/* operation FinishCall */

FinishCall pre : boolean;

FinishCall pre := (curr level = target level) & (status = busy);

FinishCall stimulus : boolean;

next(target level) := case{

AcceptCall pre & AcceptCall stimulus : AcceptCall in new call.to;

default : target level; };

next(status) := case{

AcceptCall pre & AcceptCall stimulus : busy;

FinishCall pre & FinishCall stimulus : vacant;

default : status; };

46 S. Preibusch and F. Kammüller

Operation Promotion and Communication. Operations defined by oper-
ation schemas may be used to define new operations by composition. These
“operation promotions” are placed inside a class. A new operation op can be
defined by:

– conjunction: op =̂ op1 ∧ op2
both op1 and op2 are executed

– (non-deterministic) choice: op =̂ op1 [] op2
one of op1 and op2 is arbitrarily chosen and executed. If the precondition of
one of the compounding operations is not fulfilled, the operation is removed
from the choice.

– parallel composition: op =̂ op1 ‖ op2
both op1 and op2 are executed with bi-directional communication

– sequential composition: op =̂ op1 o
9 op2

both op1 and op2 are executed with forward communication only

The operators for operation composition can be combined and several operations
can be combined at once.

Communication between operations is realized by matching the communica-
tion variables. Bi-directional communication means that the values of communi-
cation variables with the same basename are identified. Forward communication
means that only the output variables of the first operation are matched with
the input variables of the second operation. An operation lacking communica-
tion variables does not participate in communication. In general, communication
variables need not match; the unmatched communication variables of the com-
posed operations are then simply unified in the signature of the combined oper-
ation. In the case of the choice operator, the unified signatures of the involved
constituent operations must be identical.

Operation Promotion: Choice. We define a new operation Move as the
choice between the operations MoveUp, MoveDown, and FinishCall depending
on whether the cabin’s current level is below, above, or equal its target level. In
case the current level equals the target level, the call has been processed.

Analogously to operations defined by operation schemas, two boolean vari-
ables for stimulus and precondition are introduced in the translation. The pre-
condition of the promoted operation is calculated by combining the preconditions
of the compounding operations (see Table 1).

Table 1. Operation operators overview

Operator Precondition escalation (SMV) Stimulus propagation Communication

∧ conjunction (&) conjunction none
[] disjunction (|) exclusive disjunction none
‖ conjunction (&) conjunction bi-directional
o
9 conjunction (&) conjunction forward

Checking the TWIN Elevator System by Translating Object-Z to SMV 47

Cabin [cont’d]
. . .
Move =̂ MoveUp [] MoveDown [] FinishCall

Move pre : boolean;

Move pre := MoveUp pre | MoveDown pre | FinishCall pre;

Move stimulus : boolean;

The non-deterministic choice between two operations susceptible to be chosen
(i.e. whose preconditions evaluate to true) is realized in SMV by assigning a set
of values to a variable. This assignment is understood as that one value of the
set is arbitrarily chosen each time and assigned to the variable.

We use SMV’s construct of guarded set membership when enumerating the set
elements: cond ? elem means that elem is included in the set if cond evaluates
to true.

Move choice : {1,2,3};

Move choice := {

(MoveUp pre) ? 1,

(MoveDown pre) ? 2,

(FinishCall pre) ? 3 };

The stimulus from the promoted operation propagates to the compounding
operations as defined in Table 1. The arbitrary choice between the set values
assures that the stimulus propagates to only one of the compounding operations:

MoveUp stimulus :=

(Move stimulus & Move choice = 1);

MoveDown stimulus :=

(Move stimulus & Move choice = 2);

FinishCall stimulus :=

(Move stimulus & Move choice = 3);

Recapitulative Example: the DSC class. So far we know how to translate
Object-Z classes, state variables, operations, and communication variables to
SMV. We now apply these rules to translate the small DSC class.

The Destination Selection Control (DSC) terminal registers the passenger’s
ride request. The calls are communicated to the cabins; the storey where the
DSC is mounted (location) is the call’s from attribute. The translation to SMV
follows the principles established above.

DSC

location : Level
PlaceCall
Δ()
new call ! : Call

new call !.from = location

48 S. Preibusch and F. Kammüller

module DSC() {

/* state variables */ /* operation PlaceCall */

location : Level; PlaceCall pre : boolean;

PlaceCall pre := true;

PlaceCall stimulus : boolean;

PlaceCall out new call : Call ;

PlaceCall out new call.from := location; }

Multiple Instantiation. The class TWIN System models the TWIN elevator
system. It instantiates the previously defined class Cabin thrice – once for a
conventional cabin and twice for the TWIN cabins. In each storey, a DSC is
mounted, resulting in a functional mapping from a Level to a DSC object.

TWIN System

dscs : Level → DSC
twin lower , twin upper , conventional : Cabin

∀ l ∈ dom dscs • dscs(l).location = l
. . .

. . .

module TWIN System() {

/* state variables */

dscs : array Level of DSC ;

forall(l in Level)

dscs[l].location := l;

twin lower, twin upper, conventional : Cabin;

Operation Promotion: Conjunction. We combine the Move operations of all
cabins in the TWIN System to a single operation MoveCabins. Since all cabins
move independently, we use an operation operator without communication but
with conjunctive stimulus propagation: the ‘and’ operator ∧.

TWIN System [cont’d]
. . .

MoveCabins =̂ twin lower .Move ∧ twin upper .Move ∧ conventional .Move
. . .

/* operation promotion MoveCabins */

MoveCabins pre : boolean;

MoveCabins pre := twin lower.Move pre | twin upper.Move pre |

conventional.Move pre;

Checking the TWIN Elevator System by Translating Object-Z to SMV 49

MoveCabins stimulus : boolean;

twin lower.Move stimulus := MoveCabins stimulus;

twin upper.Move stimulus := MoveCabins stimulus;

conventional.Move stimulus := MoveCabins stimulus;

A priori, a call may be processed by any of the available cabins. Any of the
cabins capable of processing the call may accept it (see the operation AcceptCall
in the Cabin class). Therefore, we use a non-determistic choice [] . The call
accepting by the cabins occurs in parallel (‖) with the call placing by the DSCs.
We use a ‘distributed’ choice ([]) between the PlaceCall operations of all DSC
objects.

Distributed Operation Promotion. The distributed choice operator in
Object-Z provides a non-deterministic choice over a range of objects whose
methods are enabled. In SMV, the distributed precondition escalation is re-
alized by applying the boolean precondition combination operator over an array
constructed of all individual operations’ preconditions: f[expr(var) : var in
Type] applies the operator f (| or & according to Table 1) distributively over
all expressions expr(var).

The set of choice alternatives is constructed analogously by using SMV’s iter-
ative construction capabilities: the expression expr(var) is included in the set
{expr(var) : var in Type, cond(var)} if cond(var) evaluates to true.

Finally, the stimulus propagation iterates over all DSC object’s PlaceCall
operations indexed by l in Level. We observe another structure preservation
property in that the distributivity is preserved and an explicit enumeration of
all DSC instances is not necessary during the translation process.

TWIN System [cont’d]
. . .

DistributeCalls =̂ []l : Level • dscs(l).PlaceCall ‖
(twin lower .AcceptCall [] twin upper .AcceptCall [] conventional .AcceptCall)

. . .

/* operation promotion DistributeCalls */

DistributeCalls pre : boolean;

DistributeCalls pre := |[dscs[l].PlaceCall pre : l in Level] &

(twin lower.AcceptCall pre | twin upper.AcceptCall pre |

conventional.AcceptCall pre);

DistributeCalls stimulus : boolean;

DistributeCalls choice : {1,2,3};

DistributeCalls choice := {

(twin lower.AcceptCall pre) ? 1,

(twin upper.AcceptCall pre) ? 2,

(conventional.AcceptCall pre) ? 3 };

50 S. Preibusch and F. Kammüller

DistributeCalls choice 2 : Level;

DistributeCalls choice 2 := { l : l in Level, dscs[l].PlaceCall pre};

twin lower.AcceptCall stimulus :=

(DistributeCalls stimulus & DistributeCalls choice = 1);

twin upper.AcceptCall stimulus :=

(DistributeCalls stimulus & DistributeCalls choice = 2);

conventional.AcceptCall stimulus :=

(DistributeCalls stimulus & DistributeCalls choice = 3);

forall(l in Level)

dscs[l].PlaceCall stimulus :=

(DistributeCalls stimulus & DistributeCalls choice 2 = l);

Matching Communication Variables. The parallel operator ‖ results in a
communication between the chosen PlaceCall operation and the chosen Accept-
Call operation as described on page 46: AcceptCall in new call is assigned
the value of PlaceCall out new call in case the DistributeCall operation is
stimulated. The communication is conditioned over the choice ([]) only with
regard to the outputting operation (realized by DistributeCalls choice 2 in
the translation to SMV). It must not be conditioned with regard to the choice
of the receiving operation: because choosability depends on an operation’s pre-
condition, which in turn may depend on an input variable, a circular definition
would occur.

/* operation promotion DistributeCalls - communication */

twin lower.AcceptCall in new call := case {

DistributeCalls stimulus :

dscs[DistributeCalls choice 2].PlaceCall out new call; };

twin upper.AcceptCall in new call := case {

DistributeCalls stimulus :

dscs[DistributeCalls choice 2].PlaceCall out new call; };

conventional.AcceptCall in new call := case {

DistributeCalls stimulus :

dscs[DistributeCalls choice 2].PlaceCall out new call; };

Finally, we combine the TWIN system’s two tasks (cabin movement and call
management) in a single Operate operation.

TWIN System [cont’d]
. . .

Operate =̂ MoveCabins ∧ DistributeCalls

Checking the TWIN Elevator System by Translating Object-Z to SMV 51

/* operation promotion Operate */

Operate pre : boolean;

Operate pre := true;

Operate stimulus : boolean;

MoveCabins stimulus := Operate stimulus;

DistributeCalls stimulus := Operate stimulus;

Adding the main module. SMV requires one main module in each program.
All top-level modules are instantiated once in this module. Also, the stimulus
for all operations not used to construct any other operation inside the Object-Z
specification is set to true to assure that a ‘running’ system is checked. As we
aim at an automated mechanical translation procedure, it is noteworthy that
these operations are easy to enumerate.

module main() {

system : TWIN_System();

system.Operate stimulus := true; }

4 Model Checking the Translation with SMV

After the Object-Z specification has been translated in SMV, one can enrich the
program by (temporal) formulas expressing crucial system requirements. As an
illustration, we express requirements regarding fairness, correct call processing,
and safety in SMV:

For each cabin, the Fairness properties state that a call will be finished:
always, if the cabin is busy, it will be vacant in the future:

Fairness 1 : assert

G (system.twin lower.status = busy) ->

F (system.twin lower.status = vacant);

Fairness 2 : assert

G (system.twin upper.status = busy) ->

F (system.twin upper.status = vacant);

Fairness 3 :

assert

G (system.conventional.status = busy) ->

F (system.conventional.status = vacant);

The Processing properties assure that the call termination is only achieved
if the cabin really reaches its target level.

Processing 1 : assert G (system.twin lower.status = busy)

U (system.twin lower.curr level = system.twin lower.target level);

Processing 2 : assert G (system.twin upper.status = busy)

U (system.twin upper.curr level = system.twin upper.target level);

Processing 3 : assert G (system.conventional.status = busy)

U (system.conventional.curr level = system.conventional.target level);

52 S. Preibusch and F. Kammüller

For the TWIN shaft, the Safety property would be violated in case of a
crash. It requires the upper TWIN cabin to always stay above the lower TWIN
cabin.

Safety : assert

G (system.twin upper.curr level > system.twin lower.curr level);

The assertions are noted in the SMV main module, thence prefixed with
system. to reference the objects. One can place assertions in any module; we
opted for the main module to emphasize on the separation between the specified
system and the requirements towards it.

All properties together were successfully checked within seconds on standard
desktop hardware. SMV allocated 34881 BDD nodes. Experiments showed that
the time necessary to check the properties is only marginally influenced by the
number of storeys.

To leverage this verification potential during the software development pro-
cess, we have automated the translation process in a web-based prototype (called
ZOË) and sketch its workflow embedding in the next section.

5 Workflow Embedding

The industrial software development process exhibits specifities that require
fitted management and tools. The engineering of complex software systems on
a large scale usually involves many developers, possibly from different back-
grounds. Tightly coupled heterogenous components in an installation are devel-
oped by cross-functional teams. Each of the team members is an expert in one
domain of the software’s functionality. Documentation along the process is cru-
cial and the documents regularly are one of the manufacturer’s deliverables. For
this reason, the documents need to be well presented, with appropriate languages
and notations, so that they can be understood accurately and used effectively [8].

However, domain-specific language dialects across departments often hamper
a holistic documentation and complicate the cooperation inside the development
team. Requirements are typically expressed in a different language than the
system description (e.g. CTL formula for safety requirements vs. Object-Z as a
common language for the functional specification) and inspectors may also be
an external party not involved in the software development process.

A unifying formal methods approach can conciliate between these different
formalisms and promises advances in product and process quality: the software
will better fulfill its requirements and adherence to delivery dates and budget
will be improved. Similar endeavors have been undertaken in the Alloy project
[16]. The Alloy Analyzer is a tool that checks properties on a model, visualizes,
and simulates it. However, the Alloy Analyzer is a ‘model finder’ that finds
any model satisfying a logical formula, rather than checking a formula on an
operationally specified model.

Checking the TWIN Elevator System by Translating Object-Z to SMV 53

Fig. 2. The ZOË Workspace

Our portrayed translation from an Object-Z specification to a checkable
software model bridges the described gap and brings together domain-experts
from functionality specification and requirements checking. Functional and non-
functional requirements can be checked as demonstrated exemplarily in the pre-
vious section. In case an error is found, a counterexample is generated and the
detected discrepancy between the required and the actual behaviour can be
traced back to the original specification because of the structure-preservation.
If, for instance, a property is breached subsequent to a state transition, the op-
erations causing the state transition are enumerated. The manual workload is
reduced and applicability of formal methods is thereby extended.

To support the workflow, we have developed a web-based authoring envi-
ronment for Object-Z specifications, ZOË, see Fig.2. The translation process
described in this paper is implemented as a prototype fully integrated with our
front end tool ZOË.

A domain-expert can develop the specification inside his browser, and the web-
based infrastructure supports collaborative engineering. In contrast to previous
tool support, no special software installations or plugins are needed. The editor
and the translator are implemented using HTML, CSS and JavaScript – available
with any current browser. The editor alleviates the expert’s tasks as it allows
an interactive specification development. The formulated Object-Z specification
can be exported by means of output/formatter plugins.

54 S. Preibusch and F. Kammüller

The checked model can be refined to an executable program, so that end-
to-end quality assurance can be achieved [1]. The refinement may be carried
out based on the generated SMV program as the translation produces an easily
readable output: variable names are maintained and so is the specification’s
inherent structure.

The on the fly checking of the fairness and safety properties of our TWIN
case study provides evidence for applicability also for larger systems.

6 Conclusion and Discussion

We have established and explained rules for translating an Object-Z specification
to a corresponding SMV program. These rules make full use of the close corre-
spondence between many important features of Object-Z and SMV whilst being
careful not to identify syntactical similarities whose semantics do not match.
Besides propositional logic and basic datatypes, one major correspondence we
identified is that of prestate and poststate. We cover the object-oriented con-
cepts of Object-Z and non-deterministic choice, and we successfully cope with
object communication and operation promotion.

Object-Z is a powerful specification formalism and it is generally not possible
to represent it in its entirety in the input language of SMV. However, using
simple restrictions of infinite base types and limiting the predicate language to
equations and simple quantified expressions, we arrive at a useful subset of the
original specification language that can be verified automatically with standard
model checking techniques.

The resulting translation enables the further application of model checking
techniques to verify the specified system’s correct behaviour. We therefore embed
the translation procedure in the industrial software production process and have
developed appropriate web-based tool support.

Our method’s suitability is attested by its application to the cutting-edge
TWIN elevator case-study. Starting from a concise system specification in Object-
Z, we employ the translation algorithm to optain a checkable TWIN model.
Fairness and safety requirements are verified on this model within seconds.

The approach we take in this work is pragmatic but sound. Although sound-
ness is not formally verified, it is fairly evident as we exploit natural similarities
between state based specification in Object-Z and the state model of SMV. The
integration of temporal logics and Object-Z semantics is furthermore based on
well-established results [3], [15].

A very important point in favour of our approach to translating Object-Z into
SMV directly, that makes it stand out in comparison to other similar endevours,
is its shallowness [6]: the concepts of the application are identified in a one-to-
one fashion with concepts of the formal target language. Here the application
is Object-Z and the formal target language is SMV. The striking advantage of
shallowness is that we inherit the full expressiveness of the target language and
hence the full power of any available support.

Checking the TWIN Elevator System by Translating Object-Z to SMV 55

References

1. Amnell, T.: Code Synthesis for Timed Automata. Thesis, Uppsala University
(2003)

2. The Community Z Tools project (2006), http://czt.sourceforge.net/
3. Derrick, J., Smith, G.: Linear temporal logic and Z refinement. In: Rattray, C.,

Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116. Springer, Hei-
delberg (2004)

4. Duke, R., Rose, G.: Formal Object-Oriented Specification Using Object-Z. Corner-
stones of Computing. MacMillan (2000)

5. International Organization for Standardization: ISO/IEC 13568:2002: Information
technology – Z formal specification notation – Syntax, type system and semantics,
http://www.iso.ch/iso/en/

CatalogueDetailPage.CatalogueDetail?CSNUMBER=21573

6. Kammüller, F.: Interactive Theorem Proving in Software Engineering. In:
Habilitationsschrift, Technische Universität Berlin (2006)

7. Kammüller, F., Preibusch, S.: An Industrial Application of Symbolic Model Check-
ing – The TWIN-Elevator Case Study. In: Informatik Forschung und Entwicklung.
Springer, Heidelberg (accepted for publication, 2007)

8. Liu, S.: Formal Engineering for Industrial Software Development. Springer, Hei-
delberg (2004)

9. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht
(1995)

10. Preibusch, S.: TWIN Elevator System, Concise Object-Z Specification (2007),
http://preibusch.de/projects/TWIN/Concise OZ

11. Preibusch, S.: TWIN Elevator System, Concise Object-Z Specification (Translation
to SMV) (2007),
http://preibusch.de/projects/TWIN/Concise OZ Translation SMV

12. Smith, G.: The Object-Z Specification Language. In: Advances in Formal Methods.
Kluwer Academic Publishers, Dordrecht (2000)

13. Smith, G., Kammüller, F., Santen, T.: Encoding Object-Z in Isabelle/HOL. In:
Bert, D., P. Bowen, J., C. Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002.
LNCS, vol. 2272. Springer, Heidelberg (2002)

14. Smith, G., Wildman, L.: Model Checking Z Specifications Using SAL. In: Tre-
harne, H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455.
Springer, Heidelberg (2005)

15. Smith, G., Winter, K.: Proving temporal properties of Z specifications using ab-
straction. In: Bert, D., P. Bowen, J., King, S. (eds.) ZB 2003. LNCS, vol. 2651.
Springer, Heidelberg (2003)

16. Software Design Group, MIT Computer Science and Artificial Intelligence Labo-
ratory. The Alloy Analyzer (2007), http://alloy.mit.edu/

17. ThyssenKrupp Elevator. TWIN Report (2005),
http://www.twin.thyssenkrupp-elevator.de/?&L=1

18. Winter, K., Duke, R.: Model Checking Object-Z using ASM. In: Butler, M., Petre,
L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335. Springer, Heidelberg (2002)

19. The World Wide Web Virtual Library: The Z notation. Tool support (2005),
http://vl.zuser.org/#tools

http://czt.sourceforge.net/
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=21573
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=21573
http://preibusch.de/projects/TWIN/Concise_OZ
http://preibusch.de/projects/TWIN/Concise_OZ_Translation_SMV
http://alloy.mit.edu/
http://www.twin.thyssenkrupp-elevator.de/?&L=1
http://vl.zuser.org/#tools

Introducing Time in an Industrial Application of

Model-Checking

Lionel van den Berg, Paul Strooper, and Kirsten Winter

University Queensland, Queensland, Australia
{pstroop,kirsten}@itee.uq.edu.au

Abstract. The safety of many industrial systems is directly related to
time. Model checking has been used to verify that safety requirements
are met by a model of the system. In many cases, however, time is ex-
cluded to limit the state space explosion. Two approaches to include time
constraints are either to use model checking for timed systems, or to in-
tegrate an explicit model of time using standard model checking. This
paper presents a case study using the latter approach. We have worked
closely with one of Australia’s largest railway companies, Queensland
Rail, on a real industrial environment to produce models to verify the
safety of railway interlockings. Our models are written and optimised for
the symbolic model checker NuSMV. In this paper we introduce time into
our existing models and examine time in the context of level crossings.
We also present quantitative data to show the feasibility of the approach.

Keywords: model checking, real-time system, railway interlockings.

1 Introduction

Model checking is a useful technique for verifying industrial systems. One prob-
lem faced when modelling systems is time. A variety of model checkers are avail-
able, of which some, such as NuSMV [3], do not explicitly support time, while
others, such as UPPAAL [1] and KRONOS [5], do. In this paper we refer to
a model checker that does not support time as a standard model checker. The
choice of which tool to use when modelling a real-time system may appear ob-
vious, but there can be good reasons for choosing a tool that does not support
time. Often significant resources have been devoted to developing models for a
tool that does not support time. Rather than re-modelling the entire system, it
can be preferable to extend the given untimed model to integrate time explicitly.

Queensland Rail (QR) is one of Australia’s largest railway companies. QR’s
railway interlocking systems provide numerous non-trivial verification challenges.
We use the symbolic model checker NuSMV to tackle some of these, namely a
subset of the safety requirements for control tables. A control table specifies
how the components of a railway interlocking are supposed to behave. Incorrect
or missing entries in the control table can cause safety violations. Initially our
models could only be used to verify small interlockings. However, after significant
optimisations and fine-tuning of both the model and the model checker [11], we
are now able to check a subset of the safety requirements of all QR’s interlockings.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 56–67, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Introducing Time in an Industrial Application of Model-Checking 57

Our original models do not include time and consequently only a subset of
the requirements for control tables could be verified. Some of the operational
functionality of a railway interlocking, however, relies on time. Incorrect time
specifications can lead to safety violations. For this reason we have integrated
time into our models. Our investigations were based on the fact that the ex-
isting approach uses NuSMV. The interlocking models have been designed and
optimised for the NuSMV model checker, and a significant investment has been
made to build accurate representations of QR’s railway interlockings. NuSMV
does not support time at the model-checking level, but does support real-time
temporal logics such as RTCTL [9]. It was therefore necessary for us to integrate
time into our models explicitly.

This paper describes our approach and uses level crossings as an example of
functionality in which time is a significant factor. Section 2 lays out the back-
ground on the operation of railway interlockings. In particular, level crossings
and control table specifications are required to understand the remainder of the
paper. Our models without time are also described. Section 3 introduces an ex-
plicit model of time and Section 4 describes a model of level crossings with its
timing aspects. In Section 5 we evaluate runtime statistics comparing untimed
models with timed models and examine the statistics in terms of the size of the
interlocking. Section 6 discusses related work and we conclude in Section 7.

2 Background

Railway interlockings are safety-critical systems. Queensland Rail uses control
tables to specify the behaviour of railway interlockings. Specifically, control ta-
bles define the control and operation of all signalling equipment including sig-
nals, points, level-crossing lights and gates. A correct control table ensures the
safety of an interlocking. However, incorrect or missing entries can cause safety
violations, such as collisions and derailments.

Figure 1 shows a sample track layout. It is split horizontally such that the
top two dotted lines on the right match up with bottom two dotted lines on the
left. Points, for example 799, are movable components that can be set normal
allowing the train to proceed in the same direction at high speed, or set reverse
allowing the train to change tracks at lower speed. The current state of a point
is referred to as the lie of the point. Tracks, for example 41C, are indicated
between the small lines that are perpendicular across the large lines. Each track
has a maximum permitted speed, determined by track geometry and operational
requirements, and a length. Signals, for example 61 (representing a signal for
a main route) and 21 (representing a signal for a shunt route), are similar to
traffic lights and can be set to stop (red), proceed (green) or some other aspect
warning the driver that a signal ahead may be at stop. The current state of a
signal is referred to as the aspect of the signal. A route, not shown on the track
layout, is defined as a path traversing tracks between two signals. The details of
shunt routes, which are used to join and separate trains, are not relevant for this
paper. Track segments, for example 72Ca, give a track and a direction. Track

58 L. van den Berg, P. Strooper, and K. Winter

Half Boom Control

62C

41B79311D

62D

24A

784776 41A 798

11C

23

72C41C

799

63A62B

62AA 72BA

Half Boom Control

62ABB

62ABA

Half Boom Gate

72Ca

72Cb

61A

22 41

43

52

63

61
52

54

24 54

21

Fig. 1. An example track layout

segments are not part of actual QR railway interlocking design. We have added
them to our models to express both the location and direction of trains and to
model train movement.

Our original models considered two control tables: points control and signal
control. The points control table specifies the requirements for moving the points.
For a train to be permitted to travel along a route, the route must be locked for
this train. The signal control table specifies the requirements for locking routes.
That is, if a request is made for using a particular route, the table will specify the
requirements to be satisfied for granting the request. These requirements include
a set of tracks required clear (i.e., not currently occupied by a train), a set of
points required normal or reverse, and routes that have to be locked normal or
reverse. The conditions under which signalling equipment is held by the route
are also included, such as the tracks that must be occupied and cleared before
the route is available for use by another train.

Level crossings throughout Queensland are provided with protection ranging
from signs only (passive) to those crossings that are protected with flashing lights
and/or boom gates which may also be co-ordinated with the roads traffic light
system. This paper considers crossings that use flashing lights and boom gates
to protect road traffic, pedestrians and trains against collisions. There are two
primary requirements in the implementation of level-crossing protection [14]:

1. Motorists and pedestrians must be provided a minimum warning time of 28
seconds.

2. Gates must be open for a minimum time of 20 seconds between consecutive
operations of level-crossing protection.

The operational sequence for activating the level-crossing control and pro-
viding the necessary warning times is displayed in Figure 2. Pedestrians and
motorists must be provided with 28 seconds of warning. Once the operational

Introducing Time in an Industrial Application of Model-Checking 59

Crossing
Level

10s

20s

28s

Booms Down Booms Falling Lights Flashing

Fig. 2. Level crossing operation sequence

sequence is initiated, lights flash for eight seconds before the booms begin to
fall. Half-boom gates take 10 seconds to fall and should be detected down for
at least 10 seconds before the train reaches the crossing. Figure 2 describes this
behaviour and illustrates when each of the events occur as a function of time.

A level crossing is labelled in Figure 1. A level-crossing control table is the
specification of the behaviour of level crossings. It includes the conditions under
which the warning sequence should be initiated and the half boom gates lowered
and held down. In Figure 1 the half boom gates close the tracks 62ABA and
62ABB and the half boom control sequence (i.e., the sequence of control tracks)
starts at the right and left end of the track-layout as indicated in the figure. The
lowering sequence is initiated when a control track becomes occupied. The low-
ering sequence is also subject to the lie of points and aspects of signals between
the train and level crossing as specified in the level-crossing control table. For
example, the boom-gates should lower if track 41A is occupied unless point 793
is set reverse. These conditions are described in the level-crossing control tables.

An expression from the level-crossing control table corresponding to the track
layout in Figure 1 might have the following form:

[{(11C or 776R or 784R) 11D or 41+}(41A or 798R) or 793R]
(62C or 798N) 41B 41C

It shows the tracks required clear which are subject to the lie of points and
aspects of signals. A signal identifier followed by a + indicates the signal should
be red. A point identifier followed by either R or N describes whether the point
should be reverse or normal respectively. Identifiers or brackets/braces not sep-
arated by a symbol or keyword are conjoined.

When checking control tables without considering time, we use a generic model
which is to be instantiated for a specific verification area, which represents a sub-
set of the track layout [18]. At a minimum, a verification area must contain one
route and all of its opposing routes that affect the use of the route. Our models
comprise a model of the interlocking design and one or two trains. Trains have
a location and a direction indicated by the track segment they are occupying.
They are well-behaved, meaning that they move through a track layout accord-
ing to the lie of points and aspects of signals. We include a model of points (set
normal or reverse), and routes and their locking (locked normal or reverse).
A boolean input variable, move, is used to indicate whether or not a train is

60 L. van den Berg, P. Strooper, and K. Winter

allowed to move or not (even though it will only move if move is true and the
surrounding signalling equipment permits this). Each train is associated with a
variable, currentRoute, of enumerated type, indicating the route that the train is
using. The railway control centre places requests to set routes, points and cancel
signals. The behaviour of the control centre is modelled using an input variable,
request, of enumerated type.

To model trains and their behaviour causes a major increase in the model’s
complexity. Therefore, it is beneficial to restrict the number of trains in the model
as much as possible. Extensive testing showed that it is sufficient to consider a
one-train model and a two-train model. A one-train model assumes that only one
train is in the system whereas a two-train model considers two trains running
in the system. We were able to show that the one-train model is sufficient to
detect all errors that cause derailment and some errors in which a route is set
that opposes the currentRoute of the train. The two-train model has proved to
be sufficient to detect front and rear collisions, and possible side swipes.

3 Introducing Time

When introducing explicit time into our interlocking model we use a discrete
time model similar to the work described by Lamport [13]. Each transition in our
model represents the passing of one second. Each track segment in the verification
area is assigned a duration, which is the minimum time it takes for a train to
occupy and clear the segment when travelling at the maximum permitted speed
(duration = segment length / maximum permitted speed). Using the notation of
[13] we have a count-up timer for each train in the model. Timers are ordinary
integer variables. They are used to record how long a train has been occupying its
current track segment. Each timer can be assigned values from zero to the time
it takes to cross the track segment with the greatest duration. When a train first
occupies a track segment, its count-up timer is set to zero and is incremented
by one each iteration. It continues to increment until it reaches the value of the
duration for its current track segment.

Although the count-up timer stops when it reaches the track segments du-
ration, the train does not have to move onto the next track immediately. The
move variable also determines if a train can move. It is therefore possible for
the model checker to explore paths in which the train occupies a track segment
for any time greater than or equal to the corresponding duration thus modelling
trains travelling at lower than the maximum speed.

4 Modeling the Level-Crossing

The operation of level-crossing protection is modelled using two integer variables,
sequenceStatus and gateStatus, and a boolean variable, gateOpening. We also
introduce a guard, lower gates, which is a boolean that is true when the level-
crossing control table requires the half boom gates to be lowered, and false at
all other times.

Introducing Time in an Industrial Application of Model-Checking 61

The variable sequenceStatus is a count-up timer. It is initialised to zero before
any transitions occur and has a range of zero to the maximum warning time that
is to be provided to motorists and pedestrians (28 seconds). When the conditions
in the control table indicate that the warning sequence should be started, the
sequenceStatus variable begins to increment until it reaches its maximum value
or lower gates becomes false. When gateOpening is true or lower gates is false,
sequenceStatus is returned to zero. This behaviour is defined in Algorithm 1.

Algorithm 1. Transition conditions for the sequenceStatus variable
if gateOpening ∨ ¬lower gates

sequenceStatus = 0
else if sequenceStatus < 28 ∧ lower gates

sequenceStatus = sequenceStatus + 1
else

sequenceStatus = sequenceStatus

The value of sequenceStatus has the following interpretation (see Figure 2):

– Values 1-8 indicate that motorists and pedestrians are being warned.
– Values 9-18 indicate that the boom gates are being lowered.
– Values 19-28 indicate that the gates are being held down for the minimum

time of 10 seconds.

The variable gateStatus is a counter, that counts both up and down. The value
of gateStatus indicates the current stage of the boom gates. It ranges from 0 to
10; if the gates are fully open then gateStatus is 0, if the gates are fully closed
the counter is 10. Initially, gateStatus is 0, the gate is open.

If gateOpening is true, then gateStatus will decrement until it reaches 0 (and
the gate is fully open). The variable gateStatus will increment when sequenceSta-
tus is greater than or equal to 8, provided it is less than its maximum value and
gateOpening is false (the gate is closing). If gateOpening is false and gateStatus
is greater than 0 but lower gates is false, gateStatus will also decrement (the
gate is half closed and since the condition for lowering the gate are not satisfied
it will be opened again). This is required as there is a one transition delay when
gateOpening changes from false to true. The default case is for gateStatus to
remain unchanged. This behaviour is defined in Algorithm 2.

Algorithm 2. Transition conditions for the gateStatus variable
if gateStatus > 0 ∧ gateOpening

gateStatus = gateStatus - 1
else if gateStatus < 10 ∧ ¬gateOpening ∧ sequenceStatus ≥ 8

gateStatus = gateStatus + 1
else if ¬gateOpening ∧ gateStatus > 0 ∧ ¬lower gates

gateStatus = gateStatus - 1
else

gateStatus = gateStatus

62 L. van den Berg, P. Strooper, and K. Winter

The variable gateOpening is initialised to false. If gateOpening is true, it will
transition to false only if gateStatus is 0, that is, the gates are fully open. If it is
false, it will transition to true if gateStatus is greater than zero and the conditions
in the level-crossing control table indicate that the boom gates are not required
closed. The default case is for gateOpening to be false. This behaviour is defined
in Algorithm 3.

Algorithm 3. Transition conditions for the gateOpening variable
if gateOpening

if gateStatus = 0
gateOpening = false

else
gateOpening = true

else
if gateStatus > 0 ∧ ¬lower gates

gateOpening = true
else

gateOpening = false

Safety properties can be expressed as simple invariants. Figure 1 includes
crossing tracks 62ABA and 62ABB. Our model creates track segments 62ABAa,
62ABAb, 62ABBa, 62ABBb and includes the train position variable trainPo-
sition. The resulting invariant for the NuSMV model-checker is formalised as
follows

¬((trainPosition = 62ABAa ∨ trainPosition = 62ABAb ∨
trainPosition = 62ABBa ∨ trainPosition = 62ABBb) ∧

sequenceStatus < 28)

The invariant states that the train should not be occupying the level-crossing
track segments if the operational sequence has not been activated for 28 seconds.

5 Evaluation

One-train and two-train untimed and timed models were tested on an interlock-
ing in the Queensland Rail network. The verification area generated is of medium
size. It consists of 25 tracks, 9 points, 15 signals and 28 routes. NuSMV 2.4.1
RC2 was used to run the models using a Dell PowerEdge 2850 server with 2 Intel
Xeon 3192 MHz dual core processors and 4 Gb memory running CentOS. The
version of NuSMV used allows the user to provide a variable ordering, transition
ordering and a threshold.

The chosen orderings and threshold are based on previous work [11], where we
have spent considerable time and effort to define a domain-specific variable and
transition ordering that is very good (if not optimal) for the QR models when
using the NuSMV model checker. When using NuSMV’s implemented heuristics
for finding a good transition ordering, large QR models could not be verified.

Introducing Time in an Industrial Application of Model-Checking 63

To make use of our customised transition ordering the NuSMV code had been
changed in order to allow for user input to determine the transition order. Our
optimised transition order has the effect that now the model checking process
terminates in a reasonable time for every QR model, even the large models.
These efforts are one of the main reasons for why we have introduced an explicit
notion of time in the NuSMV models, rather than starting from scratch with a
model checker that supports the notion of time.

To ensure our previous optimisations were still relevant for the timed models,
all the experiments reported in this paper were run with three configuration
options (c.f. Tables 1 and 2):

– Option 1: Using NuSMV with a user-defined variable ordering and NuSMV
defaults for transition ordering and clustering.

– Option 2: Using NuSMV with a user-defined variable ordering and transition
ordering and NuSMV default threshold.

– Option 3: Using NuSMV with a user-defined variable ordering, transition
ordering and a threshold of 10000.

Table 1 includes a comparison of results running the untimed and timed one-
train models using various parameters in NuSMV. A model of the level crossing
was not included in these models. The results show that the memory use for
the timed model is only slightly higher than the untimed model. The run-time,
however, is significantly greater in the timed model. The difference when using
parameters of Options 1, 2, and 3 (see Tables 1 and 2) is insignificant for memory
use but more significant in terms of run-time. For our requirements, a long run-
time is less important than memory use. It is acceptable to have a longer run-time
as long as the model will terminate.

Table 1. One-train untimed and timed models without level crossings

Option 1 Option 2 Option 3

Time Memory Time Memory Time Memory
(seconds) (Mb) (seconds) (Mb) (seconds) (Mb)

Untimed 5 12.98 5 12.94 4 12.74

Timed 28 13.96 20 13.72 18 13.83

Table 2 includes a comparison of results running the untimed and timed two-
train models using various parameters in NuSMV. The untimed model uses an
invariant stating that two trains can not occupy the same track at the same
time while traveling in different directions, that is, the same track but different
track segments. The timed model uses the invariant as formalised in Section 4.
The results show that the memory use and run-time for the timed model with
level crossings is significantly worse than the untimed model. Option 2 and 3
helped significantly reduce the run-time and memory use of both models. The
run-time and memory use of the timed model using Option 3 is very good for
this medium-sized interlocking.

64 L. van den Berg, P. Strooper, and K. Winter

Table 2. Two-train untimed model without level crossings and timed model with level
crossings

Option 1 Option 2 Option 3

Time Memory Time Memory Time Memory
(seconds) (Mb) (seconds) (Mb) (seconds) (Mb)

Untimed 507 115 558 107 396 62

Timed 8928 576 4484 409 2821 383

To test the value and effectiveness of adding time and level crossings to our
model we injected errors manually by removing tracks in the level-crossing con-
trol table. Models were built and run on the faulty control tables. Counter-
examples were produced for missing tracks that are closer than 28 seconds from
the level crossing. Tracks that are further than 28 seconds provided sufficient
time for the gates to close and no error was detected. For example, a missing
entry for track 41C can be detected but not a missing entry for track 11C.

These results are not surprising, but they do show that it is difficult to detect
a missing entry if the error does not violate a safety condition, such as 11C
missing. At this stage we do not have a model of the approach section of the
level crossing, the conditions specifying when the half boom gates should be held
down due to a second train approaching. Our work has, however, proved that
time can be used in an industrial setting and it can successfully detect errors.

6 Related Work

Many authors have investigated supporting time at the model-checking level. The
tools KRONOS [5] and UPPAAL [1] use Büchi automata extended with real-
timed variables to model clocks as an input notation. They support a number
of timed logics, like timed CTL (TCTL) and metric temporal logic (MTL) [12],
which allow quantitative temporal reasoning over dense time. Others have also
proposed including time at the model-checking level [17][16][15].

Our reason for not using a model checker for timed systems is that we extend
an existing model, given in SMV input notation, which in our case provides a
simpler solution than re-modelling everything in a new notation. For our pur-
poses, the expressiveness of invariants, CTL and integer-valued time variables
are sufficient. Our work shows the results and feasibility of using an explicit time
model in a real industrial system.

Our work is similar to that of Lamport [13], who showed that real-time systems
can be modelled using discrete time models and verified using standard model
checking. In Lamport’s work, time is represented using a variable now that is
incremented by a Tick action. Timing bounds on actions are specified using the
concept of timers: count-up and countdown timers are integer variables that are
incremented and decremented, respectively, by the Tick action, and expiration
timers which are left unchanged by the Tick action but are used as a boundary
when set in relation to now. Lamport describes a discrete time model of the

Introducing Time in an Industrial Application of Model-Checking 65

leader algorithm using a TLA+ specification to show that time can be modelled
effectively in this way.

In our work, it is sufficient to use timer variables only, to measure the time a
train occupies a particular track. We do not need to include an explicit represen-
tation of overall time, like now in [13]. We use count-up and countdown timers
as well as a timer that functions as both, a count-up and countdown timer.

Clarke et al. [4] discuss discrete time with a high-level description of an aircraft
control system, but do not include a detailed analysis of how to model such a
system. They also introduce clocks for continuous real-time systems and support
these at the model-checking level. While our timers are similar to clocks, they
are specific to our models and are defined explicitly in the model.

Brinksma and Mader [2] introduced an approach for checking process con-
trol programs and the derivation of optimal control schedules using the model
checker SPIN [10]. This work utilises variable time advance as a time-abstraction
technique. This allows to abstract from intermediate states in which only time
advances and “jump” to a state in which the next relevant event occurs. In our
model, however, such an abstraction would not be sound since during the time
steps that it takes for a train to move to the end of a track, other relevant
changes can occur in the system. Those would be lost.

The Symbolic Analysis Laboratory (SAL) [6] tool suite has also been utilised
to verify timed systems, which combine real-valued and discrete state variables.
In Dutertre and Sorea [8] different specification approaches are presented, which
range from a direct encoding of timed automata and a novel modelling approach
based on event calendars [7]. The verification techniques rely on induction and
abstraction to support the SAL symbolic model-checking tools. For our models
so far abstraction and induction has not been necessary since the NuSMV model
checker terminates in reasonable time.

7 Conclusion

Although time is a critical component of many safety-critical systems, we have
found limited discussion of model checking timed systems in an industrial setting.
In particular, the explicit representation of time has not been targeted. Tools
such as UPPAAL and KRONOS support time at the model-checking level using
clocks. They support timed logics such as TCTL and MTL. However, when
considerable initial effort has been spent on an untimed model using a standard
model checker, it seems preferable to keep the setting and to extend the given
models using an explicit model of time.

Our results show that time can be successfully modelled explicitly using stan-
dard model checking. This is achieved by representing time as integer variables
for timers and counters. We presented an approach that models time explicitly
using the NuSMV model checker. We compared models of Queensland Rail’s
railway interlockings that did not include time with their timed extensions. We
also built timed models which included a model of level crossings, for which time
is a critical factor. Our results show that for a medium-sized railway interlocking

66 L. van den Berg, P. Strooper, and K. Winter

we can achieve reasonable run-times and memory usage. Adding the model of
the level crossing was the most significant factor that increased run-time and
memory use, however this was to be expected as it required additional variables.

A lesson to be learned for us is that “model checking real-time systems is (or
can be) really simple” [13] if the focus on time is limited to short periods and
only discrete time steps are considered. In our example, we only need to count
the time steps that it takes for a train to run over a particular track and the
time it takes to lower the gates, etc. At the end of these periods the counters can
be reset and, thus, are not assigned high values. This way, introducing time is
just introducing another state variable of limited range. Due to our optimisation
effort on the variable and transition orderings for QR interlocking models (as
reported in [11]) the NuSMV model checker can still handle the timed version
of those models.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

2. Brinksma, E., Mader, A.: Verification and optimization of a PLC control schedule.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
73–92. Springer, Heidelberg (2000)

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1996)

5. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R.,
Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219.
Springer, Heidelberg (1996)

6. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

7. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time
startup protocol using calendar automata. In: Lakhnech, Y., Yovine, S. (eds.)
FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 119–214. Springer,
Heidelberg (2004)

8. Dutertre, B., Sorea, M.: Timed systems in sal. Technical Report SRI-SDL-04-03,
SRI Intenational (2004)

9. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Systems 4(4), 331–352 (1992)

10. Holzmann, G.J.: The SPIN Model Checker. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

11. Johnston, W., Winter, K., van den Berg, L., Strooper, P., Robinson, P.: Model-
based variable and transition orderings for efficient symbolic model checking. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 524–540.
Springer, Heidelberg (2006)

Introducing Time in an Industrial Application of Model-Checking 67

12. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

13. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

14. Queensland Rail Signal and Operational Systems. Signalling Principles - Bris-
bane Suburban Area. Technical Report S0414, Queensland Rail Technical Services
Group (1998)

15. Sathawornwichit, C., Katayama, T.: A parametric model checking approach for
real-time systems design. In: APSEC 2005: Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC 2005), pp. 584–594. IEEE Computer
Society Press, Los Alamitos (2005)

16. Campos, S.V., Clarke, E.: Real-Time Symbolic Model Checking for Discrete Time
Models. In: Rus, T., Rattray, C. (eds.) Theories and Experiences for Real-Time
System Develpment. AMAST Series in Computing. World Scientific Press, Singa-
pore (1994)

17. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking
for Real-Time Systems. In: 7th. Symposium of Logics in Computer Science, pp.
394–406. IEEE Computer Society Press, Los Alamitos (1992)

18. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool
support for checking railway interlocking designs. In: Cant, T. (ed.) Proc. of the
10th Australian Workshop on Safety Related Programmable Systems (SCS 2005),
vol. 55, pp. 101–107. Australian Computer Society, Inc (2005)

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 68–84, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integration of Formal Analysis into a Model-Based
Software Development Process

Michael Whalen1, Darren Cofer1, Steven Miller1, Bruce H. Krogh2,
and Walter Storm3

1 Rockwell Collins Inc., Advanced Technology Center
400 Collins Rd, Cedar Rapids, IA 52498

2 Carnegie Mellon University, Dept. of Electical & Computer Engineering
5000 Forbes Ave., Pittsburgh, PA 15123

3 Lockheed Martin Aeronautics Company, Flight Control Advanced Development
P.O. Box 748, Ft. Worth, TX 76101

{mwwhalen, ddcofer, spmiller}@rockwellcollins.com,
krogh@ece.cmu.edu, walter.a.storm@lmco.com

Abstract. The next generation of military aerospace systems will include
advanced control systems whose size and complexity will challenge current
verification and validation approaches. The recent adoption by the aerospace
industry of model-based development tools such as Simulink® and SCADE
Suite™ is removing barriers to the use of formal methods for the verification of
critical avionics software. Formal methods use mathematics to prove that soft-
ware design models meet their requirements, and so can greatly increase confi-
dence in the safety and correctness of software. Recent advances in formal
analysis tools have made it practical to formally verify important properties of
these models to ensure that design defects are identified and corrected early in
the lifecycle. This paper describes how formal analysis tools can be inserted
into a model-based development process to decrease costs and increase quality
of critical avionics software.

Keywords: Model checking, Model-based development, Flight control,
software verification.

1 Introduction

Emerging military aerospace system operational goals will require advanced safety-
critical control systems with more demanding requirements and novel system archi-
tectures, software algorithms, and hardware implementations. These emerging control
systems will significantly challenge current verification tools, methods, and proc-
esses. Ultimately, transition of advanced control systems to operational military sys-
tems will be possible only when there are affordable V&V strategies that reduce costs
and compress schedules. The AFRL VVIACS program documented these challenges
in detail [1].

Current software validation and verification for critical systems centers on testing
of English-language requirements. While testing is currently the only way to examine

 Integration of Formal Analysis into a Model-Based Software Development Process 69

the behavior of a system in its final operational environment, it is incomplete and
resource intensive. The incompleteness of testing is due to the extremely large state
space of even small control systems.

To illustrate, the number of possible states of a program with ten 32-bit integers is
1096, which exceeds the number of atoms in the universe (around 1080). To exhaus-
tively test such systems is clearly impractical. Extremely large numbers of tests must
be run to gain confidence in the correctness of programs, and these test suites are still
insufficient to determine whether or not a system meets its requirements.

Further complicating the issue is that the requirements for the system are usually
specified in English. It is often the case that these requirements are ambiguous, in-
complete, and inconsistent, meaning that developers may legitimately disagree as to
whether the system meets its requirements, or even that it is not possible to implement
a program that meets all of the requirements.

While the benefits of formal methods have been understood for over twenty years,
their use has been hampered by the lack of specification languages acceptable to prac-
ticing engineers and the level of expertise required to effectively use formal verifica-
tion tools such as theorem provers. Over the last few years these hurdles have been
greatly reduced by two trends: 1) the growing adoption of model-based development
for safety-critical systems; and 2) the development of powerful verification tools that
are easier for practicing engineers to use. The result will be a revolution in how
safety-critical software is developed.

Lockheed Martin, Rockwell Collins, and Carnegie Mellon University are working
together under AFRL’s Certification Technologies for Advanced Flight Critical Sys-
tems (CerTA FCS) program. Our team is tasked with determining the applicability of
formal methods to avionics verification concerns for next-generation control systems.
Rockwell Collins has built a set of tools that translate Simulink models into the lan-
guages of several formal analysis tools, allowing “push button” analysis of Simulink
models using model checkers and theorem provers. The project is split into two
phases which analyze finite and infinite state models, respectively.

This paper describes the process used and the results obtained in the first phase of
the project, in which we successfully and cost-effectively analyzed large finite-state
subsystems within a prototype UAV controller modeled in Simulink. During the
analysis, over 60 formal properties were verified and 10 model errors and 2 require-
ments errors were found in relatively mature models. These results are similar to
previous applications of this technology on large avionics models at Rockwell Collins
[2][3][10].

To use formal methods most effectively, some changes must be made to the tradi-
tional development cycle, and formal analysis should be considered when creating
requirements and designing models. This paper focuses on processes and techniques
for using formal methods effectively within the design cycle for critical avionics
applications.

2 Formal Methods in a Model-Based Development Process

Model-Based Development (MBD) refers to the use of domain-specific modeling
notations such as Simulink or SCADE that can be analyzed for desired behavior

70 M. Whalen et al.

before a digital system is built. The use of such modeling languages allows a system
engineer to create a model of the desired system early in the lifecycle that can be
executed on the desktop, analyzed for desired behaviors, and then used to automati-
cally generate code and test cases. Also known as correct-by-construction develop-
ment, the emphasis in model-based development is to focus the engineering effort on
the early lifecycle activities of modeling, simulation, and analysis, and to automate
the late life-cycle activities of coding and testing. This reduces development costs by
finding defects early in the lifecycle, avoiding rework that is necessary when errors
are discovered during integration testing, and by automating coding and the creation
of test cases. In this way, model-based development significantly reduces costs while
also improving quality.

Formal methods may be applied in a MBD process to prevent and eliminate re-
quirements, design and code errors, and should be viewed as complementary to test-
ing. While testing shows that functional requirements are satisfied for specific input
sequences and detects some errors, formal methods can be used to increase confi-
dence that a system will always comply with particular requirements when specific
conditions hold. Informally we can say that testing shows that the software does work
for certain test cases and formal, analytical methods show that it should work for all
cases. It follows that some verification objectives may be better met by formal, ana-
lytical means and others might be better met by testing.

Although formal methods have significant technical advantages over testing for
software verification, their use has been limited in industry. The additional cost and
effort of creating and reasoning about formal models in a traditional development
process has been a significant barrier. Manually creating models solely for the pur-
pose of formal analysis is labor intensive, requires significant knowledge of formal
methods notations, and requires that models and code be kept tightly synchronized to
justify the results of the analysis.

The value proposition for formal methods changes dramatically with the introduc-
tion of MBD and the use of completely automated analysis tools. Many of the nota-
tions in MBD have straightforward formal semantics. This means that it is possible to
use models written in these languages as the basis for formal analysis, removing the
incremental cost for constructing verification models. Also, model checkers are now
sufficiently powerful to allow “push-button” analysis of interesting properties over
large models, removing the manual analysis cost. If a property is violated, the model
checker generates a counterexample, which is simply a test case that shows a scenario
that violates the property. The counterexamples generated by model checkers are
often better for localizing and correcting failures than discovering failures from test-
ing and simulation because they tend to be very short (under 10 input steps) and tai-
lored towards the specific requirement in question.

The Rockwell Collins translation framework is illustrated in Figure 1. Under a five
year project sponsored in part by the NASA Langley Research Center, Rockwell
Collins developed highly optimizing translators from MATLAB Simulink and
SCADE Suite™ models to a variety of implicit state model checkers and theorem
provers. These automated tools allow us to quickly and easily generate models for
verification directly from the design models produced by the MBD process. The

 Integration of Formal Analysis into a Model-Based Software Development Process 71

counterexamples generated by model checking tools can be translated back to the
MBD environment for simulation. This tool infrastructure provides the means for
integration of formal methods directly and efficiently into the MBD process.

Design
Verifier

SCADE

Lustre

NuSMV

PVS

Safe State
Machines

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker

Infinite
Model Checker

Simulink

StateFlow

Reactis

ACL2

Prover

Rockwell Collins
translation framework

Translation paths
provided by others

Fig. 1. Rockwell Collins model translation framework

There are at least two different ways that model checking can be integrated into a
MBD process. First, it can be performed as part of the traditional verification process
in a traditional waterfall model in addition to testing. This was the approach used in
the first phase of the CerTA FCS project. In this approach, the model checker simply
provides a significantly more rigorous verification step to ensure that the model works
as intended. However, if this step is performed late in the development cycle, much of
the benefit of early detection and quick removal of defects is lost.

A better approach for integrating model checking technology is to include formal
analysis as an extension of a spiral development process. In an MBD process, it is
common during the model design phase to use simulation as a “sanity check” to make
sure that the model is performing as intended with respect to some system require-
ments of interest. When performed at the subsystem level, model checking allows a
much more rigorous analysis based directly on the requirements of the system. If the
subsystem requirements have been captured as “shall” statements, it is usually the
case that these statements can be easily re-written as formal properties. Although
model checking is a rigorous application of formal methods, for many kinds of mod-
els it does not require a significant amount of manual effort.

The spiral approach was used in a previous effort during the model development
process for a complex cockpit displays application [2]. After each modification of the
design, Simulink models were re-analyzed against a large set of requirements in a
matter of minutes. By the end of the project, the model had been proven correct
against all of their requirements (573 formal properties) and 98 errors had been
corrected.

The guidance in this paper focuses on the use of implicit state model checkers, be-
cause this is the most mature of the “push-button” analysis tools, and these tools were
the focus of Phase I of the CerTA FCS project. In order to reap the maximum benefit
of formal analysis, models must be designed for analysis, much as they are designed

72 M. Whalen et al.

for autocode or test case generation in current processes. The rest of this section pro-
vides guidelines for determining whether implicit state model checking is an appro-
priate technique for the model being constructed, and for using model checking
successfully within the development process.

Implicit state model checkers are designed to analyze models with discrete vari-
ables that have relatively small domains: Boolean and enumerated types, or relatively
small subranges of integers. The performance of the tools is primarily determined by
four things: 1) the number of inputs to the model, 2) the number of latches (delays) in
the model, 3) the size of each variable (number of bits), and 4) the complexity of the
assignment equations for the variables. Implicit state model checkers do not have the
ability to analyze models with real or floating point variables.

There are four primary questions in determining the applicability of implicit state
model checkers in an MBD process.

• Does tool support exist (or can it be created) to automatically translate the MBD

notation to the notation of the analysis tool? A handful of tools have model check-
ing support built into the tool (e.g., Esterel Technologies SCADE, i-Logix State-
Mate), and several more academic and commercial projects support translation into
analysis tools from Simulink and Stateflow.

• If the model contains large-domain integers or floating point numbers, can these be
abstracted or restructured away from the “core” of the model? Implicit state model
checkers cannot reason about floating point numbers, and do not scale well with
large-domain integers. However, it is often the case that there is a complex mode
logic “core” that can be analyzed separately via model checking, while the sur-
rounding code that manages the floating point or large-domain integers can be ana-
lyzed using other means.

• Can the model be partitioned into subsystems that have intrinsically interesting
properties and that are of reasonable size? Model checking has been shown to be
very effective at verification and validation of large software models in a model-
development process. However, there are scalability limits for implicit state tools
that limit the size of models that can be analyzed effectively. In Section 5, we de-
scribe strategies for structuring requirements such that requirements over the entire
model are entailed by simpler obligations over subsystems within the model.

• Can the requirements be formalized? Traditional English requirements documents
are often well-suited to formalization [3], so this may not be a significant a barrier
to use. Also, designers tend to have an intuitive notion of the expected behavior of
a subsystem, and when formalized, these properties can form excellent documenta-
tion about the behavior of a model.

If the answers to each of these questions is ‘yes’, then implicit state model checking is
an efficient and low-cost approach for analyzing the behavior of models.

3 Changes to the Verification Process

In our experience, the introduction of model checking changes the nature of the veri-
fication process. Instead of focusing on the creation of test vectors, the focus is on the

 Integration of Formal Analysis into a Model-Based Software Development Process 73

creation of properties and environmental assumptions. The properties are translations
of natural language requirements into a formal notation, and the environmental as-
sumptions are constraints on the inputs of the model that describe the intended operat-
ing environment for the model.

Figure 2 illustrates the difference between a test-based process and analysis-based
verfication. In a test-based verification process, test cases must be developed for each
requirement. Each test case defines a combination of input values (a test vector) or a
sequence of inputs (a test sequence) that specifies the operating condition(s) under
which the requirement must hold. The test case must also define the output to be pro-
duced by the system under test in response to the input test sequence.

Requirement

Test
Sequence

Required
Output

Environmental
Assumptions

Or Constraints

Properties
over all

Reachable
States

Requirements

Fig. 2. Test-based verification (left) vs. Analysis-based verification (right)

An analysis-based verification process may be thought of in the same way. We
normally consider a group of requirements, with related functionality for a particular
subsystem. The environmental assumptions or constraints specify the operating condi-
tions under which the requirements must hold. The properties define subsystem be-
haviors (values of outputs or state variables) that must hold for all system states
reachable under the specified environmental assumptions.

The essential difference is one of precision: model checking requires the specifica-
tion of exactly what is meant by specific requirements and determines all possible
violations of those requirements at the subsystem level. This precision can be chal-
lenging, because an engineer is no longer allowed to rely on an intuitive understand-
ing to create test vectors. Also, in some cases, the notation used for properties (such
as CTL and LTL [4]) can be confusing, though there are a variety of notations
(including the MBD languages themselves!) that can be used to mitigate this diffi-
culty. Also, precise is not the same as correct. If a property is incorrectly written, then
obviously a formal analysis tool may be unable to uncover incorrect behavior within a
model. Therefore, it is very important that properties are carefully written and re-
viewed to ensure that they match the intuitive understanding of the requirement.

The fact that a model checker generates a counterexample from the set of all possi-
ble violations of a property often leads to ‘nonsensical’ counterexamples in which the
model inputs change in ways that would be impossible in the real environment. In
order to remove these counterexamples that will not occur in the real system, it is
sometimes necessary to describe environmental constraints that describe how the

74 M. Whalen et al.

inputs to the model are allowed to evolve. On the bright side, these constraints serve
as a precise description of the environmental assumptions required by the component
to meet its requirements.

We next describe specific changes to the verification process to facilitate the use of
model checking tools.

Creating Formalizable Requirements

There are many different notations and tools used for capturing requirements in the
avionics domain. These notations include traditional structured English “shall” state-
ments, use cases, SCR specifications [5], CoRE documents [6], and others. Most
avionics systems still use “shall” statements as the basis of their requirements. In our
experience, shall statements are actually a good starting place for creating formalized
requirements. Their prevalence indicates they are a natural and intuitive way for de-
signers to put their first thoughts on paper.

The problem with shall statements has been that inconsistencies, incompleteness,
and ambiguities are not found until the later phases of the project. The process of
formalizing the requirements into properties helps remove the problem of ambiguity.
When formalizing a property, by necessity, one must write an unambiguous state-
ment. The issue then becomes whether the formalization matches the intention of the
original English requirement.

Inconsistencies can be detected in several ways. First, if all requirements are for-
malized, then it is not possible to simultaneously prove all properties over a model if
the set of properties are inconsistent. With additional translation support, it is also
possible to query a model checker to determine whether any model can satisfy all of
the properties simultaneously. There are also current research projects to define met-
rics for requirements completeness over a given formal model using model checking
tools [7], but this research is not yet usable on an industrial scale.

Testable requirements are also analyzable, so this is a good starting point for de-
termining whether requirements are suitable for analysis. On the other hand, there are
classes of requirements that are not testable but are, in fact, analyzable. For example,
requirements such as:

• the system shall never allow behavior x,
• given y, the system shall always eventually do z

can be analyzed formally, but are not suitable for testing as they require an unbounded
number of test cases.

Other system requirement techniques such as use cases are also possible sources of
properties. While more structured than shall statements, as practiced today use cases
normally lack a precise formal semantics and suffer from the same problems of incon-
sistency, incompleteness, and ambiguity as shall statements. While not part of this
experiment, it seems reasonable that it should be possible to express use cases as a
sequence of properties describing how the system responds to its stimuli, and to verify
these sequences through simulation and formal analysis. In this way, the consistency
and completeness of use cases could be improved in the same manner as was done for
shall statements.

 Integration of Formal Analysis into a Model-Based Software Development Process 75

Creating Environmental Assumptions

One significant change when moving from a testing-based verification process to a
formal process is that much more attention must be focused on environmental as-
sumptions for the system being analyzed. Often, there are a significant number of
environmental assumptions that are built into the design of the control software that
cause it to fail when those assumptions are violated, and these assumptions are
often not well documented. In testing, it is usually the case that the tester has an
intuitive understanding of the system under test and is unlikely to create test scenar-
ios where the plane is “flying upside-down and backwards”. The model checker, on
the other hand, will often find requirements violations that occur under such scenar-
ios if environmental constraints that rule out impossible conditions are not stated
explicitly.

It is often not possible to verify interesting safety properties on a large model in a
completely unconstrained environment. As part of the analysis process, we examine
the environmental assumptions in the requirements document to create constraints on
the possible values of inputs into the system. Each of the model checking tools that
we have examined supports invariants that allow engineers to specify constraints on
the behavior of the environment. Here, “environment” means any inputs or parame-
ters that can affect the behavior of the model being verified, and invariants are restric-
tions on these environmental variables. These invariants should be as simple as
possible so as to not impact unduly the efficiency of the verification algorithm, but
they must be sufficiently complex to assure that the specification is being evaluated
for the relevant conditions. For example, for specifications for a controller model that
are related to the closed-loop behavior of the system, the appropriate invariant may
require the creation of a “plant model” representing a reactive environment that re-
sponds dynamically to the controller outputs.

Although invariants are necessary to prove “interesting” properties over subsys-
tems, they are also dangerous to the soundness and applicability of the analysis. If
conflicting invariants are specified, then there are no states that satisfy the invariants,
so all properties are trivially true. Similarly, if invariants restrict the set of allowed
inputs so that it is a subset of the possible inputs to the real system, then our analysis
will be incomplete. Finally, just because constraints are specified in the requirements
document does not mean that the environment, which can include other subsystems,
will actually obey these constraints.

Therefore, although we formalize the invariants in this step we do not use them in
our initial model checking analysis. If the initial subsystem analyses return counter-
examples, we analyze the counterexamples to see whether they are due to violations
of our invariants or due to incorrect behavior within the model. Even if counterexam-
ples are due to invariant violations, we prefer to strengthen the model behavior, when
possible, to deal with abnormal environments rather than use system invariants. If it is
determined that there is no good way to handle abnormal environments within the
model, then we finally begin to use the invariants derived from the environmental
assumptions.

It is worth noting that such environmental assumptions were precisely the cause of
the Arianne V disaster [8], when an assumption about the lateral velocity of the rocket

76 M. Whalen et al.

shortly after liftoff was violated when the control software was reused from the
Arianne IV, causing it to fail catastrophically. By requiring developers to make their
assumptions about the operating environment explicit and precise, a formal analysis
process can help to eliminate this type of error.

Interpreting Counterexamples

One of the benefits of using a model checker in the verification process is the gen-
eration of counterexamples that illustrate how a property has been violated. How-
ever, for large systems it can be difficult and time consuming to determine the root
cause of the violation by examining only the model checker output. Instead, the
simulation capabilities of the MBD tools should be utilized to allow playback of a
counterexample.

Both Simulink and SCADE have sophisticated simulation capabilities that allow
single-step playback of tests and easy “drill down/drill up” through the structure of
the model. These capabilities can be used to quickly localize the cause of failure for a
counterexample. Third-party tools such as Reactis [11] for Simulink also allow a
“step back” function so that it is possible to rewind and step through a sequence of
steps within a counterexample, adding to the explanatory power of the tool.

When a counterexample is discovered, it is classified by its underlying cause and
appropriate corrective action taken. The cause may be one or more of the following:

• Modeling error
• Property formalization error
• Incorrect/missing invariants for the subsystem
• High-Level requirements error

4 Changes to the Modeling Process

Flight control models, such as the Lockheed Martin operational flight program (OFP)
model analyzed in our CerTA FCS project, are too large to be efficiently analyzed by
current model checkers. There are several development practices that should be
adopted within a MBD process to create models that are suitable for analysis. These
practices will yield models that will be simpler to analyze.

Partitioning the System

The first step in analyzing the model is to divide the requirements and model into
subsystems that can be automatically analyzed. Analysis partitions are created by
splitting the original model into different subsystems and assigning a set of system
requirements that will be analyzed on the subsystem (Figure 3). After the subsystems
have been created, each subsystem is separately analyzed. The result of the analysis
process may require changes to the subsystem under analysis, to another subsystem,
or to the system-level requirements or environmental assumptions.

 Integration of Formal Analysis into a Model-Based Software Development Process 77

Subsystem LevelSystem Level

System
Requirements

System
Requirements

System
Simulink

Model

System
Simulink

Model

Group
Related

Requirements

System
Environmental
Assumptions

System
Environmental
Assumptions

Create
Analysis
Models

Related
System
Reqs

Related
System
Reqs

Subsystem
Simulink
Models

Subsystem
Simulink
Models

Formalize
Reqs

Subsystem
Properties

Subsystem
Properties

Determine
Subsystem

Environmental
Assumptions

Subsystem
Assumptions
(Invariants)

Subsystem
Assumptions
(Invariants)

Fig. 3. Process for creating analysis partitions

There are several steps necessary to create the analysis partitions.

Group Related Requirements. To create analysis partitions, we first try to group
system requirements into sets that can be checked against a portion of the system
Simulink model. In our experience with the WM and the FCS 5000 [3], it is usually
the case that the properties naturally partition into sets that are functionally related to
one another, and that the truth or falsehood of these property sets can be determined
by examining a relatively small portion of the entire Simulink model.

Create Analysis Models. After grouping the properties, we split the system model
into reasonably-sized analysis models that are sufficient to check one or more of the
requirements groups. We would like to make each subsystem small enough that it is
quick to analyze using our BDD-based model checking tools.

Formalizing Requirements. The next step in analyzing the model involves formaliz-
ing the functional and safety requirements as properties. For a synchronous system
where the requirements are specified as “shall” statements over system inputs and
outputs, this process is often straightforward. In [2], [3], and [10], we described the
process of translating these informal statements into safety properties in more detail.

The system requirements document is not the only source of properties to be
analyzed. Properties also emerge from discussions with developers about the func-
tionality of different subsystems, or even from a careful review of a particular imple-
mentation detail of the Simulink model. In some cases, these properties can be
thought of as validity checks for particular implementation choices, but on occasion
they lead to additions to the system requirements document.

Using Libraries

The construction of analysis partitions can be simplified by splitting the original model
into libraries. Both Simulink and SCADE support packaging of subsystems into librar-
ies, which are really just additional “source” files for the model. Just as it makes sense

78 M. Whalen et al.

to construct a large C program using several source files (for various reasons, including
version control), it makes sense to construct models using library files.

If a Simulink or SCADE model is created from a set of libraries, it is possible to
generate the analysis models with very little effort. A benefit of this approach is that
the subsystems within the libraries can evolve without requiring changes to the analy-
sis models, as long as the subsystem interfaces remain stable. Therefore, once the
analysis models are created, they can be used for regression testing without any addi-
tional effort.

Using Supported Blocks

Most MBD environments were originally constructed for the purpose of modeling and
simulation, or for autogeneration of source code, and not for design analysis. It is usu-
ally necessary to restrict the use of certain constructs within a MBD language that
complicate the semantics of the language, or that have potentially undefined behavior
outside of the simulation environment. Some languages, such as SCADE, were built
for formal analysis, and so almost all features of the SCADE environment (i.e., all
aspects that do not involve use of a ‘host’ language, such as C, to implement function-
ality) can be formally analyzed. Simulink contains an extremely wide range of block
sets with varying levels of formality. None of the current model checking tools for
Simulink/StateFlow support all of the block sets that can be used within the language.

The Rockwell Collins translation tools support a wide range of Simulink/StateFlow
constructs. This toolset is tailored for critical avionics software, and is able to analyze
all of the blocks used in the OFP model.

Structuring for Analysis

Design choices that lead to code-bloat or poorly cohesive systems also affect the
performance of the model checker. A rule of thumb is that the larger the number of
blocks within a model, the longer it will require to analyze. Therefore, model re-
factoring is not only a useful design activity, but often necessary to successfully ana-
lyze large subsystem models.

In our experience, we have re-factored models in which some piece of functionality
(e.g., display application placement) is replicated (e.g., left-side and right-side display
application placement) by “copy and paste reuse”. By properly packaging the func-
tionality into subsystems, we can split the analysis task into independent parts, lead-
ing to much faster analysis.

Similarly, when creating the analysis models, it is possible to indirectly analyze
subsystem coupling by examining the complexity of invariants between the outputs of
one subsystem and the inputs of another subsystem. If complex invariants are required
to prove properties about a subsystem, then it is likely that the subsystem is tightly
coupled to the subsystem that generates the outputs. These cases should be examined
to determine if it is possible to re-factor the design to simplify the analysis invariants.

Structuring for Predicate Abstraction

If models contain several large-domain integers and/or real numbers, they will not be
analyzable by current tools. However, it is often the case that these variables can be

 Integration of Formal Analysis into a Model-Based Software Development Process 79

factored out of modules that contain the complex behavior that would benefit most
from formal analysis. The idea is to either abstract the conditions that involve numeric
constraints or the ranges of the constants and variables involved in the conditions.

Subsystems that compute system modes often contain a handful of large-domain
integers that are used for comparisons in conditions within the mode computation,
e.g., Altitude > PreSelectAlt + AltCapBias. If the ranges of these integers are
large, e.g., zero to 50000 feet, analysis may become intractable, even though
they only influence a few conditions within the logic. In this case, it is much
simpler for formal analysis if the original comparisons in the mode logic are
replaced with Boolean inputs representing the result of the comparison (e.g., Alti-
tude_Gt_PreSelect_Plus_AltCapBias). This input is then computed by an external
subsystem which can be separately (and usually trivially) checked for correctness.
This kind of model factoring is called predicate abstraction [9], and can reduce the
analysis time required from hours to seconds in the original subsystem.

If the model contains a significant number of variables and the constraints involv-
ing those variables are related, or if it uses the variables to compute numeric outputs,
predicate abstraction is less useful. In these cases, it is often possible to perform do-
main reductions in order to scale the ranges so as to be able to analyze the models
successfully.

Reducing State through Type Replacement

A primary limiting factor when using the model checker is the size of the state space.
In this section, we describe strategies to reduce the size of the model state space in
order to apply implicit state model checking technology.

Using Generic Types. The implicit state model-checking tools that we use are unable
to reason about real numbers. Fortunately, it is often the case that the interesting
safety-related behavior is preserved by replacing real-valued variables by integers for
the purpose of analysis [9]. We have used a simplified version of predicate abstrac-
tion, which attempts to reduce the domain of a variable while preserving the interest-
ing traces of the system behavior, i.e., the ones that can lead to a counterexample. The
idea is to preserve enough values such that all conditions involving real numbers will
be completely exercised.

From a design-for-analysis perspective, both Simulink and SCADE support a no-
tion of generic types that allow models to be constructed that can use either integers
or reals. The only place where the types must be specified is at the “top-level” inputs.
If models are constructed using library blocks, then very little effort is required to
derive analysis models from the original models.

Limiting Integer Ranges. To efficiently model-check a specification, we would like
to determine the minimal range necessary to represent the behavior of each variable in
the model. This is because the performance of BDD-based model checkers is directly
correlated to the ranges of the variables in the model. The Rockwell Collins transla-
tion tools currently allow a high degree of control over the integer range of each vari-
able within the model. It is possible for the user to specify both the default range of all
integer variables within the model, and also to set the ranges for individual variables
within the model. This allows us to trim unreachable values of variables and reduce

80 M. Whalen et al.

the system state space. If we inadvertently eliminate a reachable value, the model
checker will detect this and the variable range can be corrected.

5 Analysis Results

In this section, we discuss the application of the process described here to the analysis
of finite-state models from the Lockheed Martin OFP Simulink model. In this analysis
we focused on the Redundancy Manager (RM) component of the OFP.

4

input_sel

3

total izer_cnt

2

persistence_cnt

1

fai lure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence l imit

[DST i]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DST i][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

failure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

failure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC

Text

double

DST

Data Store
Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

failreport

triplex
monitor

failure isolation

sensor fusion failure
processing
(logging)

Fig. 4. Simulink model for triplex voter subsystem of the Redundancy Manager

Redundancy Manager Verification Results

The redundancy manager model originally consisted of two main subsystems: tri-
plex_voter, which implements sensor fusion and failure detection for a triply redun-
dant sensor, and reset_manager, which implements the pilot and global failure reset
functionality for the sensors and control surfaces for the aircraft. The triplex_voter
(see Figure 4) contains a fault monitor that detects failed sensors, failure isolation
logic to prevent failed sensors from influencing the output, and a sensor fusion func-
tion to synthesize the correct sensor output. It also contains a fault logging function
called the fault history table (FHT) that introduces a significant amount of state but is
functionally isolated from the rest of the voter. Therefore, we factored this FHT func-
tionality into a third subsystem, failure processing.

These models contained a mix of Simulink and StateFlow subsystems, and initially
the triplex voter model contained floating-point inputs and outputs. Some of the more
complex model features used were data stores with multiple reads/writes within a
step, triggered and enabled subsystems with merge blocks, boundary-crossing and
directed acyclic transitions through junctions, variables that were used both as
integers and as bit flags, bit-level operations (shifts, masks, and bit-level ANDs and
ORs), and StateFlow truth tables and functions. As shown in Table 1, during the
course of our analysis we derived three analysis models from the RM model, checked
62 properties and found 12 errors. The complete analysis of all the properties using
the NuSMV model checker takes approximately 7 minutes.

 Integration of Formal Analysis into a Model-Based Software Development Process 81

Table 1. Model size and analysis results for Redundancy Manager

Subsystem Number of Simulink
subsystems / blocks

Reachable
State Space Properties Confirmed

Errors

Triplex voter without FHT 10 / 96 6.0 * 1013 48 5

Failure processing 7 / 42 2.1 * 104 6 3

Reset manager 6 / 31 1.32 * 1011 8 4

Totals 23 / 169 N/A 62 12

As an illustration of the properties analyzed for the Redundancy Manager, one re-
quirement states that:

A single frame miscompare shall not cause a sensor to be declared failed.

A miscompare occurs when one of the three sensors disagrees with the other two

sensors by more than a predefined tolerance level. This requirement states that a
transient error on one of the sensors will not cause the sensor to be declared failed.

In the RM model, failures are recorded in the device status table (DST), and the
sensor values are input to the model as input_a, input_b, input_c. From
the requirements, we create variables representing when a sensor value miscompares
with the other sensor values:

DEFINE

a_miscompare :=
 (abs(input_a – input_b) > trip_level) &
 (abs(input_a – input_c) > trip_level) &
 (abs(input_b – input_c) <= trip_level);

 b_miscompare := ...
 c_miscompare := ...

These variables state that a sensor miscompares if it is outside of tolerance

(trip_level) with the other two sensors and the other two sensors are within tol-
erance of each other. In a single frame miscompare, the sensor does not miscompare
in the current frame but does miscompare in the next frame. In this case, the sensor
must not be marked failed in the next frame.

Given these definitions, we can encode the property in CTL as follows:

AG((!a_miscompare) ->
 AX(failure_report != a_failed));
AG((!b_miscompare) ->
 AX(failure_report != b_failed));
AG((!c_miscompare) ->
 AX(failure_report != c_failed));

This property was violated in the original triplex voter model. The root cause of

this error is that the model used a single counter to record the number of consecutive
miscompares to determine whether to fail a sensor. If one sensor miscompares for

82 M. Whalen et al.

several frames and then another sensor miscompares for a single frame at the failure
threshold, then the second sensor will be declared failed.

This error was corrected by creating separate persistence counters for each input so
that miscompares for one sensor will not cause another sensor to be declared failed.

Effort Required

The total effort required to perform the formal analysis was 399.8 hours. As shown in
Figure 5, we broke down the analysis time along two axes: the phases of the analysis
process and the type of effort. The three main phases of the analysis process are:

• Preparation: This task described the effort necessary to extend the analysis tools

and condition the models for analysis.
• Initial Verification: This task described the effort necessary to perform the initial

formal analysis of the models.
• Rework: This task described the effort necessary to fix the models and complete

the analysis.

Preparation
Initial

Verif ication Rew ork

0

50

100

150

200

250

H
ou

rs

Recurring cost

Tool extension

Fig. 5. Categorization of verification effort

We identified two types of effort: tool modification (one-time tasks extending the
capabilities of the tools for this project) and verification activites (tasks that would be
carried out for each application). The largest effort for this project was tool modifica-
tion, extending the Rockwell Collins translators to handle the subset of Simulink /
StateFlow used by Lockheed Martin in the CerTA FCS models. This is a non-
recurring cost that can be amortized in future analysis projects. This tool modification
effort occurred both during the preparation phase (the initial tool up) and in the initial
verification phase (where additional tool optimizations were discovered to speed the
analysis).

The majority of the one-time tool modification costs occurred during preparation,
when we were extending the translation tools to handle the additional blocks used in

 Integration of Formal Analysis into a Model-Based Software Development Process 83

the CerTA FCS models. The remaining tool modifications costs were due to a handful
of bugs in the tool extensions that were found during the verification effort.

The verification activities, which represent recurring costs, were fairly evenly dis-
tributed between the preparation, initial analysis, and rework. A significant fraction of
the verification time went towards model preparation because the models were not
initially constructed for analysis, so several of the “design for analysis” steps detailed
in Section 4 had to be performed. Had the formal analysis been integrated into the
design cycle, much of this work would have been unnecessary.

After the initial verification and rework effort on the original model, Lockheed
Martin provided a modified version of the triplex voter with 10 additional require-
ments. Since the model had already been structured for automatic translation and
analysis, only minor changes were needed. There included addition of input and out-
put ports, definition of appropriate type replacements, and specification of the new
properties. In this case, six of the new properties failed due to a single logic error in
the new design. The modifications, verification, and results analysis were accom-
plished in approximately eight hours. This further illustrates the potential for cost
savings.

6 Conclusion

This paper describes how formal methods (model checking) can be successfully in-
jected into an avionics software development cycle and how this can lead to early
detection and removal of errors in software designs. As a demonstration, we applied
this technology to one of the major subsystems of an existing Lockheed Martin
Aeronautics Company operational flight plan model, analyzing 62 properties and
discovering 12 errors. These results are similar to previous applications of this tech-
nology on large avionics models at Rockwell Collins.

In this effort, we performed model checking as an augmentation of the traditional
verification process after the models had been developed. In this approach, the model
checker provides a verification step that is significantly more rigorous than simulation
to ensure that the model works as intended. The total (recurring) time required for
analysis was approximately 130 hours, of which about 70 hours were required to
prepare the models and perform the initial verification.

Although we were successful, we believe that formal verification can have an even
greater impact if its use is anticipated from the outset in the design process. In this
paper, we described how model checking can be integrated into the design cycle for
models to yield additional benefits. The changes to the development process focused
on designing models for analysis and regular use of the model checker during design.
The former change significantly reduces the time required to prepare models for
analysis, and the latter allows bugs to be found very early in the development cycle,
when they are cheapest to fix.

In the next phase of the CerTA FCS project, we will attempt to analyze models that
contain large-domain integers and reals. This will be a significant challenge, and will
involve investigating new model checking algorithms and theorem provers. On the
model checking side, we will be investigating tools that use two recent checking algo-
rithms: k-induction and interpolation, which can be used to analyze the behavior of

84 M. Whalen et al.

models containing large-domain integers and reals. Unfortunately, these model check-
ing algorithms have a significant restriction in that they only analyze models contain-
ing linear arithmetic. Therefore, we will also be investigating the use of theorem
provers that can analyze arbitrarily complex non-linear models, but require greater
expertise on the part of users.

Acknowledgments. This work was supported in part by AFRL and Lockheed Martin
Aeronautics Company under prime contract FA8650-05-C-3564.

References

1. Buffington, J.M., Crum, V., Krogh, B.H., Plaisted, C., Prasanth, R., Bose, P., Johnson, T.:
Validation & verification of intelligent and adaptive control systems (VVIACS)*. In:
AIAA Guidance, Navigation and Control Conference (August 2004)

2. Whalen, M.W., Innis, J.D., Miller, S.P., Wagner, L.G.: ADGS-2100 Adaptive Display &
Guidance System Window Manager Analysis, NASA Contractor Report CR-2006-213952
(February 2006)

3. Miller, S., Heimdahl, M.P.E., Tribble, A.C.: Proving the Shalls. In: Proceedings of FM
2003: the 12th International FME Symposium, Pisa, Italy, September 8-14 (2003)

4. Clarke, E., Grumberg, O., Peled, P.: Model Checking. The MIT Press, Cambridge (2001)
5. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of Requirements

Specification. ACM Transactions on Software Engineering and Methodology (TOSEM)
5(3), 231–261 (1996)

6. Faulk, S., Brackett, J., Ward, P., Kirby Jr, J.: The CoRE Method for Real-Time Require-
ments. IEEE Software 9(5), 22–33 (1992)

7. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for formal verification. In:
Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 111–125. Springer,
Heidelberg (2003)

8. Lions, J.L.: Arianne 5 Flight 501 Failure Report by the Inquiry Board, ESA Technical Re-
port No. 33-1996 (July 1996)

9. Choi, Y., Heimdahl, M.P.E., Rayadurgam, S.: Domain reduction abstraction. Technical
Report 02-013. University of Minnesota (April 2002)

10. Tribble, A.C., Lempia, D.D., Miller, S.P.: Software Safety Analysis of a Flight Guidance
System. In: Proceedings of the 21st Digital Avionics Systems Conference (DASC 2002),
Irvine, California, October 27-31 (2002)

11. Reactive Systems, Inc, Reactis Home Page, http://www.reactive-systems.com

Formal Verification with Isabelle/HOL in

Practice: Finding a Bug in the GCC Scheduler

Lars Gesellensetter, Sabine Glesner, and Elke Salecker

Institute for Software Engineering and Theoretical Computer Science,
Technical University of Berlin, FR 5-6, Franklinstr. 28/29, 10587 Berlin, Germany

{lgeselle, glesner, salecker}@cs.tu-berlin.de

http://pes.cs.tu-berlin.de/

Abstract. Software bugs can cause tremendous financial loss and are a
serious threat to life or physical condition in safety-critical areas. Formal
software verification with theorem provers aims at ensuring that no errors
are present but is too expensive to be employed for full-scale systems.
We show that these costs can be reduced significantly by reusing proofs
and by the checker approach. We demonstrate the applicability of our
approach by a case study checking the correctness of the scheduler of the
popular GCC compiler for a VLIW processor where we indeed found an
error.

1 Introduction

Software systems are becoming increasingly important in our daily lifes, espe-
cially in safety-critical areas. This raises the question whether these systems
work as they are supposed to. Formal verification is a way of guaranteeing cor-
rect behavior. In this paper, we investigate how program transformations, e.g. as
performed in compilers, can be formally verified by using theorem provers, in
particular Isabelle/HOL. Formal software verification with theorem provers com-
pletely ensures that no special cases have been overlooked and that the system
behaves according to its specification. However, formal verification is very expen-
sive because most proofs of software correctness are conducted in higher-order
logic and require user interaction. To overcome this serious limitation, we seek
to reduce these costs, e.g. by reusing formalizations and proofs (which is by
far not state of the art in formal software verification). Moreover, we work on
methods to automatically compose correctness proofs for larger systems from
the correctness proofs of their subsystems. Finally, we also work on the clever
combination of verification and checking methods, which, in combination, still
guarantee formally correct results while at the same time significantly reducing
the overall verification costs.

In this paper, we focus on the problem of verifying scheduling, in particular
the scheduling process for VLIW1 processors in compilers, a transformation that

1 VLIW = very long instruction word.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 85–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

86 L. Gesellensetter, S. Glesner, and E. Salecker

analyzes data dependencies and puts data-independent instructions in instruc-
tion groups that can be executed in parallel. Our formalization relies on the
observation that only essential data dependencies exist in suitable intermediate
program representations of compilers. These data dependencies define a partial
order on the instructions. We have directly adapted this point of view by formal-
izing a semantics for compiler intermediate languages based on partial orders.
We regard scheduling as a process of inserting further dependencies into this
order. As long as the order relation remains acyclic and contains the original
relation, scheduling is correct. A particular advantage of our proof formalization
is that it is naturally divided into two parts: the more general part formalizing
partial orders and the insertion of new dependencies, and the specific part about
the concrete VLIW scheduling. This separation enables us to reuse the more
general part of our formalization and the corresponding correctness proofs for
other scheduling problems as well.

Our correctness proof formalized in Isabelle/HOL provides us with a formally
verified criterion that every correct schedule must fulfill and that can be used
to verify the results of a given scheduler implementation. Moreover, by using
Isabelle’s code generation facilities, we generate a checker from our proof formal-
ization that checks this formally verified criterion for each run of the scheduler,
cf. Figure 1. If the checker states that the criterion is fulfilled, then the schedule

formalization of
unscheduled

assembler code

formalization of
scheduled

assembler code

Equivalence
Proof by
Theorem
Prover

transformation correct

transformation incorrect
Scheduler

unscheduled
assembler code

scheduled
assembler code

Checker

Sufficient Correctness Criterion

General Proof

Compile-Time Check

C
om

pi
le

r
B

ac
ke

nd

Fig. 1. Our Checker Approach

has been verified. This checker can be attached to any compiler implementation.
If connected appropriately to the compiler (i.e. if it receives the program before
and after scheduling), it tells for each run of the compiler whether the input pro-
gram was scheduled correctly. Thus we do not know that the scheduler is correct

Formal Verification with Isabelle/HOL in Practice 87

for all cases. But for all translated programs, we can tell if they were correctly
transformed. In the positive case, we then have a formal proof for their correct-
ness, provided by an instantiation of our general correctness proof, formulated
in Isabelle/HOL.

From a program analysis point of view, VLIW processors are particularly
interesting because they allow the compiler to exploit its global view on programs
– in contrast to the only limited overview that, say, a superscalar processor has
on the directly succeeding instructions. However, these optimizations are error-
prone, a fact also demonstrated by a bug in the VLIW scheduler of the GCC
that we found with our checker during the case study.

This paper is organized as follows: In Section 2, we summarize foundations of
our work concerning static single assignment (SSA) intermediate representations
in compilers as well as scheduling in VLIW processors. Section 3 presents our
Isabelle/HOL formalization and proof for the correctness criterion of scheduling
results. In Section 4, we show how this criterion can be used to generate a
checker, which has been used in our case study summarized in Section 5. We
discuss related work in Section 6 and give our conclusions in Section 7.

2 Background

2.1 Static Single Assignment (SSA) Representations

Static single assignment (SSA) form has become the preferred intermediate rep-
resentation for handling all kinds of program analyses and optimizing trans-
formations prior to code generation [CFR+91]. Its main merits comprise the
explicit representation of def-use-chains and, based on them, the ease by which
further data-flow information can be derived. In SSA form, every variable is as-
signed statically only once. SSA form can be obtained by suitable duplication
and renaming of variables and is very well-suited for optimizations. As most
intermediate representations, SSA form is based on basic blocks. Basic blocks
are maximal sequences of operations that do not contain branches or jumps.
Within basic blocks, computations are purely data-flow driven because an oper-
ation can be executed as soon as its operands are available. The control-flow of
the program connects the individual basic blocks.

While SSA form is usually used for high-level intermediate representations
within a compiler, its concept is general and can also be applied to the assem-
bler level. Here SSA form means that each register is assigned only once in a
basic block. The identification of basic blocks is trivial for assembler code, basic
block borders are given by jump labels or jump instructions. In this paper, we
concentrate on the verification of the data-flow driven parts of SSA computations
and their scheduling into VLIW code.

2.2 Scheduling for VLIW Processors

Scheduling is a compiler optimization that (re-)arranges the instructions to im-
prove runtime performance. The improvement is achieved mainly by:

88 L. Gesellensetter, S. Glesner, and E. Salecker

(i) (ii)

Fig. 2. Scheduling for VLIW Processors: (i) Instruction Sequence (ii) Schedule

– hiding instruction latencies: instead of waiting for a result, the processor
executes other instructions that do not depend on it

– exploiting resources: on a parallel processor, several instructions can be ex-
ecuted at the same time

The scheduler takes the instructions of the program and defines at which proces-
sor cycle each instruction should be executed. It is important that the scheduler
transforms the program correctly, i.e. that the program behavior is not changed.
To this end, the scheduler has to ensure that no instruction is executed before
the values it needs are available.

In case of VLIW processors, multiple instructions can be assigned to one cycle.
Thus, the scheduler plays a key role in achieving efficient code since the amount
of parallelism exploited depends heavily on the schedule. As opposed to super-
scalar processors, which are also parallel but reorder instructions dynamically at
program run-time, VLIW processors leave the code unchanged. So the scheduler
has to take care that dependent instructions are not put in the same cycle since
this cannot be detected by the processor and will lead to incorrect behavior.

Most schedulers perform scheduling not at program but at basic block level.
Because of the SSA form, only data dependencies have to be considered within
a basic block. Thus instructions can be rearranged arbitrarily by the scheduler
as long as no data dependencies are violated.

As an example of scheduling, consider Fig. 2. On the left hand side, the assem-
bler code for an integer multiplication on the Intel Itanium is shown (Fig. 2(i)).
The operands are put in registers r4 and r5, respectively. The considered proces-
sor is only able to multiply floating point registers (xmpy), so the integer values
have to be transferred from integer registers to floating point registers (setf)
and back again (getf). The result of the multiplication is available in r8. Note
the data dependencies between the instructions, indicated by arrows. From this
information, the scheduler can find an optimal order of the instructions, as shown
in Fig. 2(ii). We refer to the set of instructions that are executed in the same
cycle (i.e. the lines in Fig. 2(ii)) as instruction group. This program will serve as
running example throughout this paper.

Formal Verification with Isabelle/HOL in Practice 89

3 Formalization in Isabelle/HOL

A formal semantics of the involved programming languages is a basic requirement
for each formal verification of transformations performed by compilers. Different
formalizations are possible, as long as all properties are reflected that are required
to prove semantic equivalence between a program and its transformed version.
We have developed an Isabelle/HOL formalization for SSA form that is based
on very abstract principles and has only few SSA specific parts [BGLM05]. With
this formalization we could prove the correctness of code generation from SSA
form. In this paper we present an extension of this formalization for scheduled
code and a correctness proof for scheduling algorithms. Formalization and proof
are based on a reuse of the SSA-independent parts and on proofs of our previous
formalization. With this work we demonstrate the reusability of our previous
formalization and its corresponding proofs.

In Section 3.1 we summarize the most important parts of the formal semantics
for SSA form (see [BGLM05] for the detailed description). In Section 3.2, we
present our new formalization of VLIW schedules. Finally, in Section 3.3 we
describe in detail the correctness criterion that relates our formalization with
realistic schedulers and will be used by our checker. We conclude by addressing
the issue of reusing our formalization.

3.1 Partial Orders

Evaluation of SSA basic blocks only needs to consider data dependencies. Such
data-flow driven computations induce partial orders. Constant functions and in-
put values of a basic block correspond to elements of the partial order without
predecessors. Elements with predecessors denote operations that directly or in-
directly need results of other operations for their computation. Based on this
observation we have formalized partial orders as a self-contained part and devel-
oped our semantics for SSA starting from it.

To formalize partial orders, we introduce the notion relational set by defining
the type RelSet. A relational set is a pair with a carrier set of an arbitrary but
fixed type, denoted ′a in Isabelle/HOL, as its first and a relation over the type ′a
as its second component. A relational set fulfills the predicate sane if all elements
occurring in the field of the relation are elements of the carrier set.

types ′a RelSet = ′a set× (′a × ′a) set
constdefs sane :: ′a RelSet ⇒ bool
sane RS ≡ ∀ a b . (a, b) ∈ sndRS −→ a ∈ fst RS ∧ b ∈ fst RS

A strict finite partial order (sfpo) is a relational set that is sane, has a finite
carrier set and a transitive and irreflexive relation. Antisymmetry of the relation
follows from transitivity and irreflexivity. The function sfpo union takes a rela-
tional set rs = (c, rel) and a set of pairs r as parameters and returns a “larger”
relational set rs′ = (c, rel′) with rel′ = (rel ∪ r)+.

90 L. Gesellensetter, S. Glesner, and E. Salecker

constdefs sfpo :: ′a RelSet ⇒ bool
sfpo RS ≡ finite (fst RS) ∧ sane RS ∧ trans (sndRS) ∧ irrefl (sndRS)
constdefs sfpo union :: ′a RelSet ⇒ (′a × ′a) set ⇒ bool
sfpo union rs r ≡ (fst rs, (snd rs ∪ r)+)

A concrete SSA representation is formalized by the data structure ssa graph.
It is defined as a record that specifies the nodes of the SSA graph (base), what
kind of instruction a node represents (function) and all its predecessors (plist).
This formalization abstracts from concrete details and can be instantiated with
formalizations of concrete instruction sets or intermediate representations.

record ′a ssa graph = base :: nodeId set
plist :: nodeId ⇒ nodeId list
function :: nodeId ⇒ (′a valueType list ⇒′ a valueType)

To relate our model for SSA graphs to strict finite partial orders we have
defined the function rel. It computes all dependencies between the nodes of a
given SSA graph (i.e. the partial order on the instructions).

constdefs rel :: ′a ssa graph ⇒ (nodeID × nodeID) set
rel G ≡ { (y, x) | y ∈ set (plist Gx)}

Evaluation of a basic block is defined by an inductive set evalssa. This set
is defined by two parameters, ssa graph and additional dependencies between
instructions in the SSA graph, given as pairs of node IDs. evalssa contains pairs
(instruction, value), where value represents the value to which instruction is
evaluated. A pair is in the result set if three conditions are fulfilled:

– instruction is an element of the carrier set (i.e. the instruction belongs to
the basic block)

– all predecessors of instruction are already in the result set (i.e. all operands
on which the instruction is based are calculated)

– the additional dependencies (resulting from the transformation to machine
code) must be respected if present.

consts evalssa ::
[′a ssa graph , (nodeId × nodeId) set] ⇒ (nodeId × ′a valueType) set
theorem evaluation correctness :
[[sfpo(base (ssaG), rel ssaG); sfpo(sfpo union(base (ssaG), rel ssaG) eval order)]]
=⇒ evalssa ssaGeval order = evalssa ssaG {}

The inductive set evalssa together with the evaluation order specified by it is
the basic definition for our main theorem evaluation correctness. With this the-
orem, we show that additional dependencies eval order do not change the result
set of the evaluation function eval ssa as long as they do not destroy the partial

Formal Verification with Isabelle/HOL in Practice 91

order property of a basic block ssaG. Hence, a linear sequence of instructions
can be considered a correct transformation of a basic block to machine code if
all data-flow dependencies are respected.

3.2 Schedule and Instruction Groups

We consider scheduling algorithms operating on basic block level. Assuming basic
blocks in SSA form, we use the definitions from the previous section to represent
the input of the scheduler.

We represent the result that we get from the scheduler as a list of disjoint
sets denoting instruction groups (disjointSetList). The cycle associated to an
instruction group corresponds to the position in the list. Thus information about
the chronology of execution of instruction groups is preserved. The fact that
each instruction is assigned to exactly one cycle is formalized as the predicate
isDisjointT oAllListelements. Furthermore, we specify that each instruction
group is a finite set of instructions with at least one element.

consts disjointSetList :: (a′ set) list =⇒ bool
primrec disjointSetList [] = True

disjointSetList (X#xs) = isDisjointT oAllListelements X xs∧
finite X ∧ X 	= {} ∧ disjointSetList xs

We establish a relationship between our specifications for schedules and partial
orders by a function which transforms the former into the latter model. This
corresponds directly to our way of mapping ssa graphs to partial orders. The
function setList2RelSet takes as its argument a list with sets as list elements
and calculates a relational set. The first component of the result tuple is the
union of all list elements calculated by the function getSetElements. The function
setList2Rel generates a relation for a list of sets ls, such that a pair (a, b) is in
the result set iff ∃ i, j < length ls . i < j ∧ a ∈ ls!i ∧ b ∈ ls!j (i.e. an instruction
a is scheduled before another instruction b) using the function makeTupel. This
function computes for a set A and a list ls all pairs (c, d) with c ∈ A and d ∈ ls!i
with 0 ≤ i < length ls2.

consts makeTupel :: ′a set ⇒ (′a set list) ⇒ (′a ×′ a) set
primrec makeTupelA [] = {}

makeTupelA (x#xs) = A <∗> x ∪ makeTupelAxs
consts setList2Rel :: ′a set list ⇒ (′a ×′ a) set
primrec setList2Rel [] = {}

setList2Rel (x#xs) = case xs of [] ⇒ {}
| (y#ys) ⇒ makeTupel x xs ∪ setList2Rel xs

constdefs setList2RelSet :: (′a set) list ⇒ ′a RelSet
setList2RelSet ls ≡ ((getSetElements ls), (setList2Rel ls))

2 A note on Isabelle/HOL notation: ls!i returns the list element at index i. X <∗> Y
computes the Cartesian product of sets X and Y.

92 L. Gesellensetter, S. Glesner, and E. Salecker

In this section, we have introduced the specifications on which our correctness
proof is based. Strict finite partial orders and disjointSetLists represent input and
output of a scheduling algorithm, namely SSA basic blocks and VLIW instruction
groups. In the next section, we show how these definitions are used in the proof
for verifying results from scheduling algorithms.

3.3 Proof

Our formalization for SSA form as well as our formalization for schedules can
be mapped onto the more abstract formalization of strict finite partial orders

setList2RelSet l
rel g

Fig. 3. Formalizations and correspond-
ing Relations

(cf. Fig. 3). The intuition behind this ap-
proach is that a schedule just as an SSA
graph implies a partial order on the set of
the instructions that it contains. Elements
without predecessors in the partial order
correspond to the instructions that are ex-
ecuted in the first cycle. Instructions that
are associated to a later cycle have all in-
structions of the previous cycles as direct
or transitive predecessors. Scheduling, as
well as machine code generation, is con-
sidered as the introduction of additional

dependencies between the instructions. Its result can only be correct if a similar
criterion as for machine code generation is fullfilled.

To reuse the correctness proof for machine code generation we prove that the
dependency relation of a list of instructions is a strict finite partial order if the
list fulfills the disjointSetList predicate. This proof is done by separate lemmas
for each property of a strict finite partial order (i.e. irreflexivity, transitivity,
finiteness, saneness).

lemma is irrefl : disjointSetList ls =⇒ irrefl(setList2Rel ls)
lemma is trans : disjointSetList ls =⇒ trans(setList2Rel ls)
lemma is finite : disjointSetList ls =⇒ finite fst((setList2RelSet ls))
lemma is sane : disjointSetList ls =⇒ sane(setList2RelSet ls)
lemma is sfpo : disjointSetList ls =⇒ sfpo(setList2RelSet ls)

Based on these lemmas we define the notion of a well-formed schedule. To
represent instructions in a schedule, we use the type nodeId = nat, and for a
schedule the type schedule = (nodeId set) list. We call a schedule well-formed
if it fulfills the predicate disjointSetList.

constdefs well formed schedule :: schedule ⇒ bool
well formed schedule sched ≡ (disjointSetList sched)

The assumptions of the main theorem correct scheduling formalize the crite-
rion that must be met by a correct result obtained from a scheduling algorithm
and that can be checked by an independent checker. These assumptions are:

Formal Verification with Isabelle/HOL in Practice 93

– the set of instructions in the schedule must be the same as in the input
program

– all data dependencies must be respected
– additional dependencies induced by the scheduling must not destroy the

existing partial order

These conditions ensure that all values are computed. They also ensure that
instructions are not executed before their operands are available (i.e. additional
dependencies introduced by the scheduler must be respected too). If this criterion
is satisfied, we can evaluate the set of instructions and consider the additional
dependencies inserted by the scheduler. The results we get are the same as we
would get by evaluating without them. Our dependency checker implementation
verifies this criterion for each performed transformation.

Our correctness criterion is also necessary. If it does not hold, then at least
one of the assumptions of theorem correct scheduling is not valid. If the set of
instructions is not the same in the original and scheduled version, then the pred-
icate base ssaG = instructions does not hold. If some instructions are repeated
in the scheduled code, then the predicate well formed schedule is violated. If the
instructions are the same but not all of their data dependencies are respected,
then rel ssaG ⊆ datadependencies is not valid. In this case, some data depen-
dencies are not respected in the scheduled program which will lead to wrong
results.

theorem correct scheduling :
[[sfpo(base ssaG, rel ssaG); (∗ good basic block ∗)
well formed schedule sched; (∗ instructions not repeated ∗)
instructions = getSetElements sched;
base ssaG = instructions; (∗ same instructions in basic block and schedule ∗)
datadependencies = setList2Rel sched;
rel ssaG ⊆ datadependencies; (∗ schedule respects datadependencies ∗)
eval order = datadependencies− (rel ssaG) (∗ deps introduced by scheduler ∗)
]] =⇒ evalssa ssaGeval order = evalssa ssaG {}

The main proof was done almost automatically by built-in tactics of the theo-
rem prover. We only had to transform the assumptions with the above-presented
lemma is sfpo. In [BGLM05], we claimed that the general principle of our SSA
formalization would allow us to reuse the proof and consequently reduce costs.
Our new results are evidence of this reusability.

Our previous formalization consisted of 110 lemmas (200 lines of proof code
(lopc)). Half of the lemmas consider properties of the abstract part of partial
orders and only 25 lemmas the SSA specific properties. In the presented formal-
ization (30 lemmas/220 lopc) we only had to prove properties that connect the
added data structures for VLIW scheduling to the abstract part of our previous
work. Because of the relation between the new specific formalization and the
abstract one, the main correctness proof is also valid for the new formalization.
The statistics demonstrate the reduced efforts for verification.

94 L. Gesellensetter, S. Glesner, and E. Salecker

4 Dependency Checker

With the results of the previous section, we have proved that a schedule is valid
if all instructions are retained and if the data dependencies of the unscheduled
code are contained in the partial order induced by the scheduling. In this section,
we show how this result can be brought into practice, in order to verify that a
given scheduler generates a correct schedule.

Since the verification of an entire program (in our case, the scheduler) is very
hard to achieve, we follow the checker approach [BK95] (cf. lower part of Fig. 1).
We add an independent program, the checker, which takes after each run of
the scheduler its input and output, and checks whether the criterion yielded
by our formal correctness proof is fulfilled. We have used Isabelle’s feature of
automatic generation of ML code [BN00] and extracted such a checker from our
formalization. With this verified checker we establish the formal correctness for
each actual positive program run. Thus we sacrifice general correctness of the
scheduler implementation, but in return we get a simpler subproblem which is
efficiently solvable.

Figure 1 pictures our approach: We have designed a formalization of both
unscheduled and scheduled assembler code, as described in the previous chapter.
Then, we have proved both representions as semantically equal w.r.t. the evalu-
ation order. This yielded a criterion, which is sufficient for the correctness of the
scheduling. Having established this result, we extract a checker from the formal-
ization, which checks whether the criterion holds for a given pair of unscheduled
and scheduled assembler code. This checker is supposed to augment an existing
assembler and watch its input and output. With this extended assembler, we can
tell for each invocation of the assembler whether the generated machine code is
a valid translation of the input assembler program. The checker approach has to
be distinguished from testing approaches. If a program passes all tests, we still
do not know whether the test conditions were sufficient. On the contrary, with
the checker approach, the result is known to be correct by a formal proof.

In the following we describe how we realised the checker approach presented
above. We consider schedulers working on basic block level (remember that basic
blocks can be directly identified in the input program, cp. Sect. 2.1), i.e., they
must not change the block structure of the program or move instructions from
one block to another. Thus, the blocks appear in the same order in input and
output of the scheduler. In addition, the machine code must be in SSA form,
i.e., in each block at most one assignment is allowed for each register. This can
easily be achieved for arbitrary machine code by register renaming (remember
that the SSA property must only hold locally for each basic block).

The main function of the checker is checkProgram. It receives the unscheduled
and the scheduled program as a list of basic blocks. An unscheduled block is
a set of instructions, while the scheduled variant consists of a list of instruc-
tion groups. We process the lists in conjunction block by block (remember that
the order of the blocks is the same in both programs). First we generate the
partial order for both the unscheduled and scheduled block by generateDDG
and generateScheduleOrder respectively. Each pair of unscheduled block and the

Formal Verification with Isabelle/HOL in Practice 95

func checkProgram(prog: Block list, schedule: ScheduledBlock list) : bool
(∗ checks whether a program was scheduled correctly ∗)

for each bb ∈ prog, s ∈ sched do
ddg = generateDDG(bb)
scheduleOrder = generateScheduleOrder(s)
if not checkBlock((bb,ddg),(s,scheduleOrder)) then return invalid

return valid

Fig. 4. Algorithm for the checker

corresponding scheduled block is then checked by checkBlock w.r.t. the criterion
yielded by our proof. If one check fails, we return invalid, otherwise valid.

The function checkBlock checks the correctness of the schedule at basic block
level. It has been extracted from the corresponding function in our Isabelle
formalization.

constdefs checkBlock :: ′a RelSet ⇒ ′a RelSet ⇒ bool
checkBlock bb sbb ≡ spoC bb∧ (* check partial order properties *)

spoC sbb∧
fst bb = fst sbb ∧ (*check equality of instruction sets*)
snd bb ⊆ snd sbb (*check subsetrelation of dependencies*)

This function checks whether our criterion is fulfilled: we must first check,
that both unscheduled and scheduled block fulfill the partial order predicate.
We must then check that each instruction is scheduled exactly once, i.e. that
no instruction is duplicated or omitted. This means that both unscheduled and
scheduled block have to contain the same instructions. In the final step we must
check whether the partial order of the unscheduled block is a subset of the partial
order of the scheduled one. If all conditions hold, the block has been correctly
scheduled. Otherwise an error occurred.

To use Isabelle’s code extraction feature we had to add same supplementary
definitions. First we had to instruct the code generator to compile sets into lists.
This can be done with a specific Isabelle theory. Further on the predicates which
define the partial order (sane, irrefl, trans, sfpo) had to be redefined. All of them
except the sfpo predicate use quantifiers in such a way, that the code generator
cannot compile the definitions into executable code and must for this reason be
redefined. We give an example for the sane predicate.3

constdefs sane :: ′a RelSet ⇒ bool
sane RS ≡ ∀ a b . (a, b) ∈ sndRS −→ a ∈ fst RS ∧ b ∈ fst RS
constdefs saneC :: ′a RelSet ⇒ bool
saneC RS ≡ ∀ (a, b) ∈ sndRS . a ∈ fst RS ∧ b ∈ fst RS

3 saneC refers to the redefined definition.

96 L. Gesellensetter, S. Glesner, and E. Salecker

(i) (ii) (iii)

Fig. 5. Case study for the GNU assembler gas: (i) Our running example (ii) The
resulting data dependency graph (DDG) (iii) The incorrect schedule produced by gas

(thick edges subsume dependencies between all instructions of the related groups)

The sfpo predicate claims finiteness for the considered sets. The code generator
compiles sets into lists which fulfill finiteness by definition. For this reason we can
omit this condition. We have proved equivalence between modified an unmodified
definitions hence using them for code generation is correct.

We have also extracted ML code for the generateScheduleOrder function,
which corresponds directly to the setList2RelSet function in our formalization.
The generateDDG is currently manually written. Since we did not yet formalize
the concrete assembly language, it cannot be extracted from our formalization.
At the moment we are extending our formalization accordingly. Afterwards the
checker will be completely extracted from the formalization (despite low-level
functionality like file I/O and parsing).

In this section we have described our checker approach. The essential parts of
the checker are automatically generated from our formalization, using the code
generation facilities of Isabelle. This gives us a verified checker. We have used
our generated checker in a case study examining results of the GCC scheduler
for the Intel Itanium, a processor with VLIW architecture.

5 Case Study: Checker for GCC

In a case study, we have used our generated checker for the Intel Itanium pro-
cessor, a VLIW processor that can execute up to six instructions per cycle. The
checker is invoked as a stand-alone program on an unscheduled and a scheduled
assembler file. This enables it to be easily integrated in a tool chain to ensure
the correctness of an arbitrary scheduler.

We have taken a collection of simple programs, which were designed as a test
suite for compiler development. Each program, in assembler form, has been fed
into the gcc assembler to generate the binary program. For all the assembler files
we considered, the basic blocks were already in SSA form (i.e. all registers were
assigned only once). Hence no additional preprocessing of the code was needed.

We have used our checker to check the correctness of the scheduler contained in
the GCC assembler gas. We have used the gas provided with the current binu-
tils version 2.17 (May 2006) [GNU06]. In our experiments, we have discovered

Formal Verification with Isabelle/HOL in Practice 97

that the assembler creates invalid schedules for certain floating point operations.
Consider Fig. 5, showing the results for our running example. Figure 5(ii) shows
the DDG of the input program, and Fig. 5(iii) shows the incorrect schedule pro-
duced by the GNU assembler. Clearly, the dependencies of the setf, xmpy and
getf instructions have been ignored. This leads to undefined results. With our
checker, the violated dependencies were reported correctly. The output of the
checker could be used to correct the scheduled program manually.

Note: Further investigation of the error has yielded this explanation: The GCC
assembler utilizes a definition of instruction classes for identifying the data de-
pendencies of the instructions. From the class, it is known which resources are
read or written. This definition table seems to have been directly taken from the
official Itanium Specification ([Int06, p. 3:371, Table 5-5]). The error appears
because the xmpy instruction is simply not in the class floating point instruction,
hence the official Intel Itanium specification is incomplete. We have a possible
explanation why this instruction may have been overlooked. xmpy is a so-called
pseudo-op and will be mapped onto the xma (multiply-add) instruction at exe-
cution time (f2, f3, f4 denote arbitrary floating point registers, f0 is a constant
register with the value 0.0):

xmpy f2 = f3, f4 ⇒ xma f2 = f3, f4, f0

For xma, the dependencies are reported correctly. So if assembler programs were
rewritten by replacing xmpy with xma appropriately, this error would not occur.
We found no reports on the error. After posting the bug to the GNU developer’s
newsgroup, the bug was acknowledged, and both the GNU assembler as well as
the Itanium specification were assured to be corrected.

6 Related Work

Formal verification is part of several related research projects. Especially the
programming language Java has been under consideration. For example, the
formal verification of the translation from a subset of Java to Java byte code
and formal byte code verification was investigated in [Str02, KN03] using the
theorem prover Isabelle/HOL [NPW02]. Furthermore, the type safety of a subset
of Java [NvO98] and also of a subset of C++ [WNST06] has been proved in
Isabelle/HOL. Another interesting work is the formal verification of the protocol
controlling the traffic through the Elb tunnel in Hamburg [OST+02], also by
using a theorem prover.

Early work on formal correctness proofs for compilers [Moo89] was carried out
in the Boyer-Moore theorem prover considering the translation of the program-
ming language Piton. Recent work has concentrated on transformations taking
place in compiler frontends. [Nip98] describes the verification of lexical analysis
in Isabelle/HOL. Further related work on formal compiler verification was done
in the german Verifix project [GDG+96, GGZ04] focusing on correct compiler
construction. [DvHG03] considers the verification of a compiler for a Lisp subset
in the theorem prover PVS. [Ler06] proved the correctness of a compiler from a

98 L. Gesellensetter, S. Glesner, and E. Salecker

C like language to PowerPC assembly code with the Coq proof assistant. From
the formalization he could extract the verified compiler.

The checker approach was initially proposed for algebraic problems by [BK95]
and applies generally to the verification of program results. In [MN98], this
approach was used to augment the popular LEDA library (for combinatorial
computation) with checkers, and as a result the reliability of the library was sig-
nificantly enhanced. The approach of proof-carrying code (PCC) [Nec97] serves
a different purpose than ours as it shows the safety of separately delivered exe-
cutable code. Hence, PCC concentrates on the verification of necessary but not
sufficient correctness criteria. The approach of program checking has been pro-
posed by the Verifix project [GDG+96] and has also become known as translation
validation [PSS98, Nec00], recently also for loop transformations [GZB04]. For
an overview and for results on program checking in optimizing backend trans-
formations cf. [Gle03].

[FH02] also investigate the verification of scheduling VLIW code. In contrast
to our work, two programs are checked for equivalence by simulating their dy-
namic behavior by symbolic execution. This requires a detailed model of the
considered processor. While their approach can be applied to more general code
transformations, its correctness has not been shown by a formal proof.

Verification of scheduling in hardware synthesis has been investigated in
[KMS+06]. In this approach, specifications of the systems are given as finite
state machines. An algorithm is presented that can check two finite state ma-
chines for equivalence. In contrast to our work, parallelization is not an issue.

7 Conclusions

In this paper, we have shown that software verification with theorem provers
can be used for full-scale applications as the GCC scheduler. This is impor-
tant not only in safety-critical applications because software users are more and
more interested in an increase in the reliability and not only in the efficiency
of software. Based on a formal proof for the correctness of scheduling results
and Isabelle/HOL’s code generation facilities, we have generated a checker that
ensures the correctness of scheduling results. By applying this checker to results
of the GCC Itanium scheduler, we have found a bug resulting in incorrectly
compiled programs.

Moreover, we have shown that formal verification costs can be reduced signif-
icantly if we manage to reuse proofs. We achieved this goal by splitting a proof
into a more general part and a specific application-dependent part. By reusing
the general part, we could save verification cost considerably, as we have shown
in our proof statistics (lines of proof code in general and reused specific parts).
In general, we are also aiming at methods to automatically compose correctness
proofs for larger systems from the correctness proofs of their subsystems, a task
to be accomplished in further work.

Acknowledgements. We would like to thank the anonymous reviewers for their
constructive comments and suggestions, and Stefan Berghofer for his help on

Formal Verification with Isabelle/HOL in Practice 99

Isabelle’s code generation facilities. This work was supported by the German
Science Foundation (DFG) and by the ARTIST2 NoE.

References

[BGLM05] Blech, J.O., Glesner, S., Leitner, J., Mülling, S.: Optimizing Code Gener-
ation from SSA Form: A Comparison Between Two Formal Correctness
Proofs in Isabelle/HOL. In: Compiler Optimization meets Compiler Ver-
ification (COCV 2005). Elsevier ENTCS, pp. 1–18. Elsevier, Amsterdam
(2005)

[BK95] Blum, M., Kannan, S.: Designing programs that check their work. J.
ACM 42(1), 269–291 (1995)

[BN00] Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P.,
Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277,
pp. 24–40. Springer, Heidelberg (2002)

[CFR+91] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Ef-
ficiently Computing Static Single Assignment Form and the Control De-
pendence Graph. ACM Trans. on Prog. Lang. and Systems 13(4) (1991)

[DvHG03] Dold, A., von Henke, F.W., Goerigk, W.: A Completely Verified Real-
istic Bootstrap Compiler. Int. Journal of Foundations of Computer Sci-
ence 14(4), 659–680 (2003)

[FH02] Feng, X., Hu, A.J.: Automatic formal verification for scheduled VLIW
code. In: Languages, Compilers and Tools for Embedded Systems
(LCTES/SCOPES 2002), pp. 85–92. ACM Press, New York (2002)

[GDG+96] Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von Henke, F.W.,
Hoffmann, U., Langmaack, H., Pfeifer, H., Ruess, H., Zimmermann, W.:
Compiler Correctness and Implementation Verification: The Verifix Ap-
proach. In: Gyimóthy, T. (ed.) CC 1996. LNCS, vol. 1060, Springer, Hei-
delberg (1996)

[GGZ04] Glesner, S., Goos, G., Zimmermann, W.: Verifix: Konstruktion und Ar-
chitektur verifizierender Übersetzer (Verifix: Construction and Architec-
ture of Verifying Compilers). it - Information Technology 46, 265–276
(2004)

[Gle03] Glesner, S.: Using Program Checking to Ensure the Correctness of Com-
piler Implementations. Journal of Universal Comp. Science 9(3), 191–222
(2003)

[GNU06] The GNU Project. GNU binutils version 2.17 (2006),
http://www.gnu.org/software/binutils/

[GZB04] Goldberg, B., Zuck, L., Barrett, C.: Into the Loops: Practical Issues in
Translation Validation for Optimizing Compilers. In: Compiler Optimiza-
tion meets Compiler Verification (COCV 2004). Elsevier ENTCS. Else-
vier, Amsterdam (2004)

[Int06] Intel Corporation. Intel Itanium architecture software developer’s man-
ual: Volume 3: Instruction set reference. Revision 2.2 (January 2006)

[KMS+06] Karfa, C., Mandal, C., Sarkar, D., Pentakota, S.R., Reade, C.: A formal
verification method of scheduling in high-level synthesis. In: 7th Int. Sym-
posium on Quality Electronic Design (ISQED 2006), pp. 71–78. IEEE,
Los Alamitos (2006)

http://www.gnu.org/software/binutils/

100 L. Gesellensetter, S. Glesner, and E. Salecker

[KN03] Klein, G., Nipkow, T.: Verified Bytecode Verifiers. Theoretical Computer
Science 298, 583–626 (2003)

[Ler06] Leroy, X.: Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In: POPL 2006: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pp. 42–54. ACM Press, New York (2006)

[MN98] Mehlhorn, K., Näher, S.: From algorithms to working programs: On the
use of program checking in leda. In: MFCS, pp. 84–93 (1998)

[Moo89] Moore, J.S.: A Mechanically Verified Language Implementation. Journal
of Automated Reasoning 5(4), 461–492 (1989)

[Nec97] Necula, G.C.: Proof-Carrying Code. In: 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1997)
(1997)

[Nec00] Necula, G.C.: Translation Validation for an Optimizing Compiler. In:
Programming Language Design and Implementation (PLDI 2000) (2000)

[Nip98] Nipkow, T.: Verified Lexical Analysis. In: Grundy, J., Newey, M. (eds.)
TPHOLs 1998. LNCS, vol. 1479, pp. 1–15. Springer, Heidelberg (1998)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS,
vol. 2283. Springer, Heidelberg (2002)

[NvO98] Nipkow, T., von Oheimb, D.: Javalight is Type-Safe – Definitely. In: 25th
ACM Symposium on the Principles of Programming Languages. ACM
Press, New York (1998)

[OST+02] Ortmeier, F., Schellhorn, G., Thums, A., Reif, W., Hering, B., Trapp-
schuh, H.: Safety Analysis of the Height Control System of the Elbtun-
nel. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002.
LNCS, vol. 2434, pp. 296–308. Springer, Heidelberg (2002)

[PSS98] Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen,
B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 151–166.
Springer, Heidelberg (1998)

[Str02] Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 63–77.
Springer, Heidelberg (2002)

[WNST06] Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational seman-
tics and type safety proof for multiple inheritance in C++. In: OOPSLA,
pp. 345–362 (2006)

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 101–114, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Computing Worst-Case Response Times in Real-Time
Avionics Applications

Murali Rangarajan1 and Darren Cofer2

1 Honeywell Aerospace Advanced Technology
3660 Technology Dr., Minneapolis MN 55418
murali.rangarajan@honeywell.com

2 Rockwell Collins Inc., Advanced Technology Center
400 Collins Rd. NE, Cedar Rapids IA, 52498
ddcofer@rockwellcollins.com

Abstract. The work in this paper builds upon our prior work to analyze proper-
ties of applications running on top of the Deos real-time operating system. We
describe how a control application’s worst-case response time to an event can be
“computed” using the model checker SPIN. We lay out the steps involved in re-
using our existing models for this analysis, and our solution to reducing the
memory required to perform the analysis. This work highlights the benefit of ex-
panding the use of formal models, and the necessity of changing existing abstrac-
tions (such as the timer model in this work) to reflect changed verification goals.

Keywords: Model checking, software verification, real-time, flight control.

1 Introduction

Researchers in the avionics industry have been applying formal methods for the verifica-
tion of safety-critical software for several years. Our past work has applied model check-
ing and theorem proving tools to verification of time partitioning and other key properties
of the Deos real-time operating system. Deos is the foundation for the Primus Epic avion-
ics suite [1]. Previous publications have described many aspects of this work [4,9], most
of which have been based on use of the SPIN model checker [6].

The work in this paper builds upon our prior work and focuses now on properties of
applications running on top of the Deos RTOS. We describe how the worst-case response
time to an event can be “computed” using SPIN. We lay out the steps involved in reusing
our existing models for this analysis, and our solution to reducing memory consumption
as part of this process. This work highlights the benefit of expanding the use of existing
formal models, and the necessity of changing existing abstractions (such as the timer
model in this work) to reflect changed verification goals.

The key property described in this paper is the worst-case response time for a pro-
ducer-consumer type of application. Techniques such as Static Timing Analysis [7] are
commonly used to determine worst-case response times. These techniques are ineffective
when attempting to compute the worst-case response time across multiple threads, pre-
emptions, OS scheduling, interrupt processing, etc. Our goal was to achieve similar

102 M. Rangarajan and D. Cofer

worst-case paths for a specific configuration of applications running on Deos. The results
from our analysis can be combined with Worst Case Execution Time analysis [8,5] of
applications to obtain end-to-end real-time performance characteristics. This paper fo-
cuses on the identification of the critical path in the worst-case response time. The work
has not been validated on real avionics software due to a lack of funds for that work at
this time. This work has similar goals to that described by Colin and Puaut [3] on the
RTEMS RTOS. An alternative approach to our timer design is to use Discrete-Time Spin
[2]. Our decision not to use DT-Spin was due to our need for maximum flexibility in
modeling time and in specifying properties using time.

Our model checking work has been based on the Deos model shown in Figure 1. This
model includes separate processes for user (application) threads, the Deos kernel, and a
platform timer. This model provides only a simplistic model of application behaviors.
Application threads may nondeterministically:

 Be created
 Complete for period
 Delete themselves
 Wait for next interrupt, if enabled to do so.

In addition, the scheduler can stop threads (when they run out of time or are pre-
empted) and resume threads, possibly giving them slack time. The time at which any of
these events occurs is determined by the platform process.

thread processes

Thread
Thread
Thread PlatformKernel

Kernel
classes and

methods

API calls

context
switch

interrupt
events

read/write
timer

trap to kernel functions–
inline to kernel

DEOS Kernel process platform process

Fig. 1. Structure of Deos model in SPIN

The model was intended to follow the source code implementation as faithfully as
possible. This fine-grained model was too large to be verified exhaustively with any of
the advanced scheduling features enabled. The only configuration that can be exhaus-
tively checked with this model is one with three basic application threads: one Main
thread that dynamically creates two slower User threads, none of which are interrupt ser-
vice routines (ISR) or slack consumers, and no mutex locking is enabled. Consequently,
we have relied on estimation techniques (SPIN’s supertrace) for most of the configura-
tions analyzed. The size of the model has also motivated our work on distributed model
checking for large systems.

 Computing Worst-Case Response Times in Real-Time Avionics Applications 103

Our goal in the current task has been to augment this model to include richer applica-
tion behaviors so that timing properties of Deos applications interacting with the sched-
uler could be verified. A necessary first step must therefore be to reduce the size of the
Deos model.

After discussions with Deos users, we have decided to model a representative ap-
plication that should be very useful to application programmers. Currently, there is no
way for application programmers to compute the worst case response times to events.
For example, if sensor data is made available by a thread, there is no way to deter-
mine the upper bound for the time in which a consumer thread will read and process
that data (Figure 2). Determination of response time is complicated by the presence of
interrupt threads and by priority inheritance when using mutexes. Furthermore, the se-
lection of the tick rate for the system (the fastest thread period) impacts the response
time. A higher tick rate can reduce response time to interrupts at the cost of higher
overhead, which can delay other tasks.

ISR: data
producer

Thread: data
consumer

Hi priority
thread

Response time is variable

Fig. 2. Producer to consumer response time

Developers now bypass this problem by strictly scheduling all the threads in a specific
order (producers followed by consumers) ahead of time using Deos’s schedule-before re-
lationship. However, this rigid approach defeats the flexibility provided by the dynamic
scheduling capability of Deos. By being able to predict the worst case response time
ahead of time, the developers will have the flexibility to consider other scheduling rela-
tionships or to not specify any specific schedule. Therefore, we will be demonstrating
how we can use our Deos model to predict the worst case response time for a hand-
constructed application running on top of Deos.

We organized the application verification task into the following steps, which will be
described next:

 Simplify the Deos model to reduce its size (section 2).
 Implement a discrete-time platform/timer model (section 3).
 Create the producer-consumer application model (section 4).
 Verify the worst case response time (section 5).

The final section of the paper (section 6) presents future directions for this work.

104 M. Rangarajan and D. Cofer

2 Simplified Deos Model

To enable the application to be modeled with more detail we had to reduce the memory
requirements of the basic Deos model. The main limitation now is memory consumption
by the SPIN verifier. SPIN is written and optimized for 32-bit machines so its addressable
memory is limited to 4GB. Therefore, we have worked to reduce the size of our model
without sacrificing any behaviors that would impact application functionality.

Some of the main factors that impact memory usage in SPIN are:

 Size of the state vector. This is a fixed size collection of bits that encodes the
model state at any instant. Each unique state must be stored in a structure of
this size.

 Number of states stored. As SPIN searches the state space of the model it
stores new states for comparison and identification of cycles.

 Depth of traces explored. SPIN conducts a depth-first search (DFS) of the
state space and maintains the current trace on a DFS stack.

We have made a number of changes to the Deos verification model to reduce each of
these factors. We have done this by retaining all the relevant scheduler functionality, but
eliminating as much of the implementation-specific data as possible.

Our starting point was a Deos model in which the code for handling mutexes
was present, but was not exercised. Similarly, code for utilizing slack time and code
for interrupt threads were present, but none of the threads in the model were slack-
enabled or interrupt threads. This model also included the scheduler overhead time
computations.

The same exhaustively verifiable configuration was retained for all the tests so as to
enable easier comparisons of performance improvements. This configuration consists of
a main thread that dynamically creates two non-slack-enabled user threads (actually the
threads create themselves) as shown in Figure 3. All the tests were conducted with partial
order reduction and state compression enabled. The verification parameters for the last
test were optimized to obtain the best memory performance that can be obtained from
this model.

Main

User1

User2
created

created preempted resumed

Fig. 3. System configuration used for model size comparison

The changes made to the Deos model were accomplished in five main steps. The first
step was to remove the mutex code, since it does not have a significant impact on our ap-
plication. This also includes all the data variables required for implementing mutexes re-
sulting in a smaller state vector. In addition, this step also included the merging of the
platform (the timer) with the scheduler. This allowed us to eliminate two communication

 Computing Worst-Case Response Times in Real-Time Avionics Applications 105

channels used for synchronization, thus simplifying the model and speeding up verifica-
tion. The modified model structure is shown in Figure 4.

The second step was to remove data structures and variables that are purely imple-
mentation dependent. For example, the priority lists that are used to efficiently handle the
threads in their various states were replaced by a collection of flags. The priority lists
served two purposes. The first was to identify the next highest priority thread to be
scheduled in constant time. The second was to provide some measure of fairness by
scheduling interrupted threads prior to scheduling threads that were not interrupted
within the current period. Replacing the priority lists with flags had two consequences.
The first was that, in order to identify the next eligible thread for scheduling, the model
had to loop over all the threads in the system. This O(n) approach in the model is accept-
able because we are not measuring real time, but rather the model time, which is not im-
pacted by this change. However, this did result in a small increase in the number of states
in the model, and a resulting increase in the memory usage. The second consequence was
that the model no longer provided the fairness as provided by Deos. Again, this did not
impact our analysis because, the fairness was never guaranteed by the OS, and the model
we were using (see section 4) had only one user thread that could be interrupted, render-
ing any notion of fairness superfluous.

The third step was to include as much of the model within atomic blocks that can be
executed without interleaving. Elimination of some of the communication channels in the
first step allowed us to include more model code with atomic blocks. The code to be
placed within atomic blocks was identified by hand, based upon our knowledge of the
working of the model. The key to this step was the knowledge that only one thread can
be executing at any one time, irrespective of whether that thread was within a kernel call
or within user code.

The fourth step was to reuse as many of the temporary variables as possible to re-
duce the size of the state vector. The required analysis and model changes were done
by hand.

The final step was to tune the verification parameters (such as the expected size of
the state space) to minimize the memory required to complete the verification. Results
from analysis of the model after each of these steps are summarized in Figure 5.

thread processes

Thread
Thread
Thread API calls

context
switch

read/write
timer

trap to kernel functions–
inline to kernel

Timer modelKernel
& timer
events

Kernel
classes and

methods

read/write
timer Automata to

drive kernel

Kernel code

DEOS Kernel + time model

Fig. 4. Structural changes to model

106 M. Rangarajan and D. Cofer

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

In
itia

l m
od

el

Stru
ctu

re
 si

m
pli

fie
d

Data
 st

ru
ctu

re
s

Ato
mic

bloc
ks

Tem
po

ra
ry

 va
ria

ble
s

Tun
e p

ar
am

et
er

s

M
em

or
y

(M
B

)

0.00

5.00

10.00

15.00

20.00

25.00

T
im

e
(h

ou
rs

)

Total actual memory usage

Verification time

Fig. 5. Results of changes to reduce size of Deos model

Memory required for the basic model configuration was reduced by an order of
magnitude as a result of these simplifications. Furthermore, it is now possible to ex-
haustively verify configurations that include both slack enabled threads and at least
one interrupt thread.

3 Discrete-Time Model

With the simplified scheduler model we now have some margin to include additional ap-
plication behavior. We want to be able to determine the worst case response time for a
producer-consumer type of application. Accurate measurement of response time in the
application requires some changes in our model of time.

Formerly, we have used a discrete-event model of time. In this model there are a small
number of events involving the elapsing of time which may occur. Some of those events
may be eligible to occur next, depending on the value of the tick timer and the time re-
maining on the thread timer. One of the eligible events is selected, the timers are adjusted
to elapse time to correspond to the occurrence of the selected event, and the actions asso-
ciated with the event are executed.

In the discrete-event model, time is advanced in jumps of varying size (Figure 6,
top). To reduce the number of options for computing the size of the jumps, the dis-
crete-event model limited the time elapsed when a thread completes voluntarily to be
either zero, half, or all of the maximum possible time available before the next event.

To achieve better resolution we have switched to a discrete-time model. In the dis-
crete-time model, time is always advanced by one unit (corresponding to one tick).
Depending on the resulting state of the timers an event (a tick or timer interrupt, for ex-
ample) may be enabled, the currently running thread may complete voluntarily, or noth-
ing may happen (Figure 6, bottom). Pseudo-Promela code for each of these models of
time is shown in Figure 7.

 Computing Worst-Case Response Times in Real-Time Avionics Applications 107

tick ticktimer int

CFP

tick ticktimer int

CFP

Fig. 6. Discrete-event (top) vs. discrete-time (bottom) model

To better understand the behavior of the different scheduler models and obtain some
insight into their structures, we ran a series of verifications comparing search depth to the
number of states discovered. SPIN’s search depth limit was gradually increased and the
number of states reachable within that depth was recorded. For the simplified discrete-
event model, the results are shown in Figure 8. This model was found to have 175,853
states with a maximum search depth of 31,569 steps.

Several observations can be drawn from Figure 8. First of all, note that the number of
transitions in the model is not much greater than the number of states (“states stored” in
Spin’s vocabulary). This indicates that most of the states occur in long non-branching
paths. Second, note that the number of states discovered increases rapidly with depth and
then levels out. However, it is interesting that the number of states is not monotonically
increasing. There are many intervals in with the search depth increases but fewer states
are reached.

If

:: [tick_time ≤ remaining_time] ->
 advance time to next tick;;

 tick interrupt;

:: [tick_time > remaining_time] ->

 advance time to next timer interrupt;

 timer interrupt;

:: get_remaining_time ->

 advance time arbitrary amount
(0/half/all);

 read timer;

:: true ->

 platform interrupt;

fi

decrement timers;

if

:: [tick_time = 0] ->

 tick interrupt;

:: [remaining_time = 0] ->

 timer interrupt;

:: get_remaining_time ->

 read timer;

:: true ->

 platform interrupt;

fi

Fig. 7. Simplified comparison of discrete-event (left) vs. discrete-time (right) model

108 M. Rangarajan and D. Cofer

Simple Deos model: no slack, no ISR

0

50,000

100,000

150,000

200,000

250,000

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

search depth

st

at
es

 o
r

tr
an

si
ti

o
n

s

transitions

states stored

states matched

Fig. 8. States vs. depth for the discrete-event Deos model

 1

2

3

4 5 6

789

10

1

2

3

4 5 6

785

6

7

8

depth = 10
states = 10

depth = 8
states = 12

Fig. 9. For non-exhaustive depth-first searches, a greater depth limit may yield fewer reachable
states

Figure 9 illustrates how this may happen. Spin performs a depth-first search of the
state space. If there are multiple paths between two states, it may be that the model
checker chooses the longer path and, consequently, may not be able to search much
beyond the second state. However, if the search depth is limited then the second state
may only be reachable by the shorter path and the model checker will be able to reach

 Computing Worst-Case Response Times in Real-Time Avionics Applications 109

more states that lie beyond it. Note that if the verification is exhaustive then this situa-
tion cannot occur.

Considering the Deos scheduler model, it is not surprising that we should find this be-
havior. For example, between two start-of-period events there are a number of different
sequences of intermediate events that may occur. Some paths are shorter and others are
longer, depending on the number of threads that have been created at that time.

Figure 10 shows the states vs. depth plot for the discrete-time version of the model in-
cluding a slack-enabled thread. This model has 1,084,643 states, reachable at a depth of
55,268. This time note that there are nearly twice as many transitions as states, indicating
a more connected state space graph. The same characteristic leveling off of states reached
with increasing depth is evident.

Discrete-time Deos model: slack, no ISR

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 10,000 20,000 30,000 40,000 50,000 60,000

search depth

st

at
es

 o
r

tr
an

si
tio

ns

transitions

states stored

states matched

Fig. 10. States vs. depth for the discrete-time Deos model

ready

thread created

int

data

Producer thread

on interrupt
if consumer ready

make data available
wait for next interrupt

Consumer thread

set ready flag when created
if data available
read data
clear int flag

wait for next period

Interrupt

if interrupt event
&& consumer rdy
set int flag

Timer

if int flag
timer++

clear

start/stop

un
m

as
k

tri
gg

er

Fig. 11. Producer-consumer application model (additional verification instrumentation is the
bottom half of the figure, also shown in blue)

110 M. Rangarajan and D. Cofer

4 Producer-Consumer Application Model

With the simplified discrete-time version of the scheduler model now in place, we are
ready to add the producer-consumer application model. The application consists of two
separate threads: an interrupt-triggered producer thread and a periodic consumer thread.
The producer is triggered to run by the occurrence of an interrupt event corresponding to
I/O activity in the system. If the consumer has been created and is ready to start receiving
data, the producer fetches the data, formatting and buffering it for the consumer thread.
The consumer runs periodically to compute some control action making use of the data
provided by the producer. The model is illustrated in Figure 11.

In addition to the basic application behavior, we also need some additional instrumen-
tation to gather the information needed for the response time verification (the bottom half
of Figure 11). A timer has been added to measure the time between the occurrence of the
interrupt event and the time that the data is consumed.

Configuration data (the Deos registry entries) for the producer-consumer application
are as follows:

 Period P0: 15 ms
 Period P1: 45 ms
 Main thread (M): P0, 2 ms
 Consumer (U1): P1, 3 ms
 Producer (U2): P0, 4 ms, slack enabled, ISR
 Reserved system slack (not given to Main): 3 ms

Normalized to the fastest period, this means that there is a total of 7 ms of scheduled
time out of 15 ms, with 3 ms of reserved slack and 5 ms necessary for various overhead
operations. When the main thread starts, it is automatically given all of the available
(non-reserved) time, so it starts with a budget of 7 ms. When the consumer thread (U1) is
created, its normalized budget of 1 ms is deducted from Main’s budget, and when the
producer (U2) is created, its budget of 4 is deducted.

Main and Consumer execute periodically at their respective periods of 15 ms and 45
ms. Interrupts may occur at any time, triggering the scheduling and execution of ISR
thread Producer. Producer may run multiple times in every period P0, up to a total run-
ning time of 4 ms, after which it may request slack time. Any thread may complete early
in its period and yield its remaining time as slack.

5 Verification of Response Time

The final step is the actual verification of the worst case response time. We used the fol-
lowing procedure. For the configuration constructed, the timer will count up between the
occurrence of the interrupt event and the time the consumer reads the data. We have
added an assertion in the consumer claiming that after the data is read the value on the
timer will be less than some target value. If there is a sequence of events resulting in a
greater response time than the target, then Spin will find it. We then increase the target
response time value and try again until a successful verification is achieved.

Before we started our analyses, we estimated the worst case response time to be used
as an initial guess and came up with a value of 54. The consumer thread executes in

 Computing Worst-Case Response Times in Real-Time Avionics Applications 111

every period, and the data for the consumer is made available (and the timer started) only
after the consumer is created. Therefore, the delay would be maximized if the following
scenario were to occur. The consumer is created at the beginning of its period (the slower
period, duration = 3×15 = 45). Soon thereafter, an interrupt occurs and the timer is
started. The consumer can run only in the period following the period in which it is cre-
ated. Therefore, in the next period, the Main thread (budget of 2) and the interrupt thread
(budget of 4 plus slack time of 3) consume their full budgets before the consumer gets to
run. This brings the total delay to 45 + 2 + 4 + 3 = 54.

Using supertrace verification mode, the assertion int_timer ≤ max_int_delay in the
consumer produced errors for values of 55, 56, 57, and 58 at depths between 5000 and
8000. However, no error was found for max_int_delay of 59 up to a search depth of
50,000. The worst case response time must therefore be 59 ms.

checkForRunnable with lowestPriority = 2

Scheduler_checkForRunnable returned 4 in Scheduler_scheduleOtherThread

Thread_startChargingCPUTime 1

Budget_setRemainingBudgetInUsec 3 (2) Timer_write 3

RE-SET tmp_short1

Thread 0 stops executing

4741 4742
1!stop,0

Thread 1 starts executing

47444745
1!resume,1

elapsing kernel time by 1: tick_time = 15, remaining_time = 3

TICK: tick_time=15 remaining_time=3

tick_time = 14, remaining_time = 2, time_in_cs = 0

UserThread:2

4760

4761
2!create,3,0

Create thread with template 3

Thread 3 created

47644765
1!getId,3

tick_time = 13, remaining_time = 1, time_in_cs = 0

Thread 3 Ready

Mask interrupt 0

Scheduler_scheduleAnyThread

Thread_currentPriority of 1 Thread_currentPriority of 2 Scheduler_scheduleOtherThread, giveUpBudget =

Thread_stopChargingCPUTime 1, bonus = 2

Timer_timeRemaining: return = 1

Budget_setRemainingBudgetInUsec 4 (2)

RE-SET tmp_short2

Head of Ptlist 2

Fig. 12. Consumer created 1 ms after start of period P1; interrupt event occurs immediately
after

Main

Producer

Consumer
created

P0
P1

Interrupt

produced

consumed

Fig. 13. Worst case response time from first interrupt to consumer

112 M. Rangarajan and D. Cofer

_

Budget_setRemainingBudgetInUsec 3 (4) Timer_write 3

RE-SET tmp_short1

Thread 1 stops executing

68916892
1!stop,1

Thread 2 starts executing

68946895
1!resume,2

elapsing kernel time by 1: tick_time = 11, remaining_time = 3

tick_time = 10, remaining_time = 2, time_in_cs = 0

tick_time = 9, remaining_time = 1, time_in_cs = 0

tick_time = 8, remaining_time = 0, time_in_cs = 0

DEOS_elapseKernelTime: elapsing FULL CSPD

TIMER: tick_time=8 remaining_time=0

tick_time = 7, remaining_time = -1, time_in_cs = 0

Thread_cpuAllowanceExceeded 2

Scheduler_availableSlack: return = 1

Thread_waitForSlack 2; slackRequired = 2

Scheduler_scheduleOtherThread, giveUpBudget = 0

Thread_stopChargingCPUTime 2, bonus = 0

Timer_timeRemaining: return = -1

Budget_setRemainingBudgetInUsec 0 (4)

RE-SET tmp_short2

Head of Ptlist 1

Thread_currentPriority of 1

checkForRunnable with lowestPriority = 2

Scheduler_checkForRunnable returned 4 in Scheduler_scheduleOtherThread

Thread_startChargingCPUTime 1

Budget_setRemainingBudgetInUsec 4 (2) Timer_write 4

RE-SET tmp_short1

Thread 2 stops executing

69856986
1!stop,2

Thread 1 starts executing

69886989
1!resume,1

elapsing kernel time by 1: tick_time = 7, remaining_time = 4

tick_time = 6, remaining_time = 3, time_in_cs = 0

tick_time = 5, remaining_time = 2, time_in_cs = 0

tick_time = 4, remaining_time = 1, time_in_cs = 0

tick_time = 3, remaining_time = 0, time_in_cs = 0

DEOS_elapseKernelTime: elapsing FULL CSPD

TIMER: tick_time=3 remaining_time=0

tick_time = 2, remaining_time = -1, time_in_cs = 0

Thread_cpuAllowanceExceeded 1

Thread_waitForNextPeriod 1

Scheduler_scheduleOtherThread, giveUpBudget = 0

Thread_stopChargingCPUTime 1, bonus = 0

Timer_timeRemaining: return = -1

Budget_setRemainingBudgetInUsec 0 (2)

RE-SET tmp_short2

Head of Ptlist 3

Thread_currentPriority of 3

checkForRunnable with lowestPriority = 1

Scheduler_checkForRunnable returned 4 in Scheduler_scheduleOtherThread

Thread_startChargingCPUTime 3

Budget_setRemainingBudgetInUsec 2 (3) Timer_write 2

RE-SET tmp_short1

Thread 1 stops executing

70807081
1!stop,1

Thread 3 starts executing

70837084
1!resume,3

elapsing kernel time by 1: tick_time = 2, remaining_time = 2

tick_time = 1, remaining_time = 1, time_in_cs = 0

tick_time = 0, remaining_time = 0, time_in_cs = 0

tick_time = 0, remaining_time = 0

DEOS_elapseKernelTime: elapsing FULL CSPD

TICK: tick_time=15 remaining_time=0

tick time = 14, remaining time = -1, time in cs = 0

Fig. 14. Consumer reads data after executing for 3 ms just before end of P0

 Computing Worst-Case Response Times in Real-Time Avionics Applications 113

Message sequence charts in Figure 12 and Figure 13 show a worst case response sce-
nario. As expected, the consumer thread (UserThread 2) is created 1 ms after the start of
its period P1. The masking of the interrupt that occurs immediately afterward indicates
that the interrupt has occurred, starting the timer.

Jumping ahead to the next start of P1, we see in Figure 13 that the main thread runs
and is pre-empted twice by the producer ISR thread. After both thread runs, exhausting
both their base budgets (6 ms) and the available slack (5 ms), the consumer finally gets to
run. In this case the consumer doesn’t get to read the data and stop the timer until 2 ms
after it is run, just before the end of the current P0. The total elapsed time is then 44 ms
(an entire P1, less 1 ms) + 15 (the entire next P0) = 59 ms. The complete scenario is illus-
trated in Figure 14.

6 Conclusions and Future Work

We have described in this paper the steps taken to formally verify a timing property for a
sample Deos application. To accomplish this several steps were taken to reduce the size
of the Deos scheduler model. While the simplifications result in some loss of faithful-
ness to the source code implementation, we have been careful to preserve the functional-
ity of the model. The resulting savings in both memory consumption and verification
time have allowed us to include in the model richer application behaviors. The producer-
consumer application analyzed was found to have a worst case response time somewhat
greater than that predicted before the analysis. The approach presented in this paper
applies to multiple consumers too, so long as the last consumer determines the actual re-
sponse time.

Another advantage of having a more compact model is the ability to exhaustively ver-
ify advanced scheduling features in Deos. For example, configurations with slack-
enabled threads and interrupt threads could not previously be exhaustively verified and
we had to resort to approximation techniques, such as Spin’s supertrace. With our mem-
ory-optimized model, we were able to successfully re-verify models (that were previ-
ously verified using supertrace verification) exhaustively with both slack and ISR
threads.

Other possibilities for future exploration include:

 Further reduction in the size of the state vector by using the embedded C
code features of SPIN.

 Comparison of deterministic and nondeterministic ordering of threads within
a priority level to assess the impact on response time and other performance
measures.

 Incorporation of more complex application behaviors.

Acknowledgement

This work was funded in part by NASA Langley Research Center under cooperative
agreement NCC-1-399.

114 M. Rangarajan and D. Cofer

References

1. Binns, P.: A robust high-performance time partitioning algorithm: The Digital Engine Oper-
ating System (DEOS) approach. In: 20th Digital Avionics System Conference Proceedings
(October 2001)

2. Bosnacki, D., Dams, D.: Discrete Time Promela and Spin. In: Ravn, A.P., Rischel, H. (eds.)
FTRTFT 1998. LNCS, vol. 1486, p. 307. Springer, Heidelberg (1998)

3. Colin, A., Puaut, I.: Worst-Case Execution Time Analysis of the RTEMS Real-Time Oper-
ating System. In: Proc. of the 13th Euromicro Conference on Real-Time Systems, Delft,
The Netherlands, pp. 191–198 (June 2001)

4. Cofer, D., Rangarajan, M.: Formal Modeling and Analysis of Advanced Scheduling Fea-
tures in an Avionics RTOS. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, Springer, Heidelberg (2002)

5. Eisinger, J., Polian, I., Becker, B., Metzner, A., Thesing, S., Wilhelm, R.: Automatic Identi-
fication of Timing Anomalies for Cycle-Accurate Worst-Case Execution Time Analysis. In:
DDECS 2006, pp. 15–20 (2006)

6. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

7. Lavagno, Martin, Scheffer: Electronic Design Automation For Integrated Circuits Hand-
book, ISBN 0-8493-3096-3

8. Puschner, P., Burns, A.: A Review of Worst Case Execution Time Analysis. Guest Edito-
rial, Real Time Systems 18(2/3), 115–127 (2000)

9. Ha, V., Rangarajan, M., Cofer, D., Rueß, H., Dutertre, B.: Feature-based decomposition of
inductive proofs applied to real-time avionics software. In: International Conference on
Software Engineering (ICSE 2004), pp. 304–313 (May 2004)

Machine Checked Formal Proof of a Scheduling

Protocol for Smartcard Personalization

Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

Institute for Computing and Information Sciences
Radboud University Nijmegen

The Netherlands
{L.Lensink, S.Smetsers, M.vanEekelen}@cs.ru.nl

Abstract. Using PVS (Prototype Verification System), we prove that
an industry designed scheduler for a smartcard personalization machine
is safe and optimal. This scheduler has previously been the subject of
research in model checked scheduling synthesis and verification. These
verification and synthesis efforts had only been done for a limited num-
ber of personalization stations. We have created an executable model
and have proven the scheduling algorithm to be optimal and safe for
any number of personalization stations. This result shows that theorem
provers can be successfully used for industrial problems in cases where
model checkers suffer from state explosion.

Keywords: verification, theorem proving, cyclic scheduling, simulation,
PVS.

1 Introduction

Formal methods provide the kind of rigor in software engineering that is needed
to move the software development process to a level comparably to other engi-
neering professions.

There are many kinds of formal methods that can be employed at different
stages of the development process. In the specification phase, a model can be
constructed using some kind of formal language. This model can be used as a
starting point for model based testing. Model checking, which proves properties
for the entire state space of a finite part of the formal model by means of an ex-
haustive test, can eliminate a lot of errors. Both model based testing and model
checking can be performed automatically. Theorem proving can be used for full
verification of models that can have an infinite number of states. However, em-
ploying theorem proving is considerably more costly than the earlier mentioned
methods.

Formal verification of models is gaining ground within the industrial world.
For instance, Cybernétix participated in the AMETIST project, in order to im-
prove the quality of their systems. This project’s aim was to develop modeling
methodology supported by efficient computerized problem-solving tools for the
modeling and analysis of complex, distributed, real-time systems. A personaliza-
tion machine was one of the case studies supplied by Cybernétix. This machine

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 115–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

116 L. Lensink, S. Smetsers, and M. van Eekelen

consists of a conveyor belt with stations that personalize blank smartcards. The
number of stations is variable.

The AMETIST participants modeled the machine in several model check-
ing environments: Spin, Uppaal and SMV. However, within these systems, the
models were checked and proven optimal and safe with respect to an ordering
criterion for only a limited number of personalization stations. The most impor-
tant reasons why it is interesting to look at the case study using other formal
methods besides model checking are:

– In some production configurations the number of stations exceeds the amount
of stations the model has been checked for. So there is not yet complete as-
surance that the scheduling algorithm is indeed safe and optimal for actually
used configurations.

– Model checking is limited to a finite state space. Although there are methods
allowing model checking to abstract away from the data or even to employ
inductive reasoning on the model, so far no one has generalized to N stations.
A stronger result would be to prove that for any number of stations, the
scheduling algorithm is safe and optimal.

– Using a theorem prover to prove that a suitable invariant is correct usually
gives more insight into why the machine satisfies its safety and optimality
properties, instead of just checking them automatically.

In this paper we will present a formalized model of the machine in PVS
(Prototype Verification System) [ORS92]. This is an environment for precise
specification and verification of models. The specification language is based on
simply typed higher order logic, but the type system has been extended with
subtypes and dependent types. PVS also employs decision procedures to assist
the user in a verification effort. These procedures take care of the bureaucracy
associated with a formal proof and are usually able to discharge obvious proof
obligations automatically. The specification language also allows for simulations
and other means of animating the model if the model is composed out of an
executable subset of the specification language.

We will come up with an invariant and use PVS to prove that this invariant
holds for the model. This invariant is strong enough to prove all safety criteria
and to prove that the algorithm guarantees optimal throughput for any num-
ber of personalization stations. We will also provide a simulation package. This
makes it possible to verify that the model behaves as one would expect from a
regular machine and which could form the basis of software that actually runs
the machine.

In this article we present the smartcard personalization machine in section 2.
The model of the machine is decribed in section 3 and we show by means of a
simulation that this model is valid in section 4. Then, in section 5, the invariant
is presented, followed by its proof in section 6. Safety and optimality are deduced
from that invariant in section 6.1. A summary of related work by other people
is given in section 7. An overview of future work can be found in section 8. All
code and proofs referred to in this paper are available.1

1 http://www.cs.ru.nl/∼leonard/papers/cybernetix/cybernetix.tar.gz

Machine Checked Formal Proof of a Scheduling Protocol 117

2 Personalization Machine

A smart card personalization machine takes blank smart cards as input and
programs them with personalized data. Subsequently, the cards are printed and
tested. Typically, a machine has a throughput of several thousands of cards
per hour. The machine has a conveyor belt transporting the cards. There is
an uploader station putting cards onto the belt and an unloader station taking
them off again. Directly above the belt are posts that can manipulate the cards,
either by lifting them off the belt, like personalization stations, or by processing
the cards while they remain on the belt, like graphical treatment stations. An
example configuration is given in figure 1.

Fig. 1. Example of a standard configuration

There are different kinds of operations possible on the cards:

– Personalization stations program the chip on the card. These stations are
able to detect if a card is defective. Cards need to be lifted into a personal-
ization station by a lifting device.

– Graphical treatment stations are either laser engravers or inkjet stations.
They can graphically personalize the cards. Graphical treatments happen
while the card remains on the belt.

– Flipover stations can turn cards over to allow a graphical treatment of both
sides of a card.

– Test stations determine whether the chip that is on the card functions
properly.

– Rejection stations are used to extract cards that have been judged to be
defective.

Due to the high number of cards that need to be personalized and the way
the machine is structured, there are several requirements that need to be met
by the smartcard personalization system:

118 L. Lensink, S. Smetsers, and M. van Eekelen

– The output of the cards should happen in a predefined order, since further
graphical treatment of the card may depend on the kind of personalization
that has been received by the card. In the remainder of the paper we shall
refer to this requirement as safety.

– The throughput of the machine should be optimal.
– The machine should allow for defective cards to be replaced.
– The system should be configurable and modular. The number of personal-

ization and graphical treatment stations can vary according to the needs of
the customers. Neither is the placement of the stations fixed. This means
that the personalization stations can be spaced or appear interleaved with
graphical treatment stations.

Cybernétix has developed and patented a scheduling protocol called “Super
Single Mode”. This particular scheduling protocol puts each time unit a new
blank card on first position of the belt for N consecutive time units, where N
is the number of personalization stations. After N time units, it leaves the first
position of the belt empty for one time unit and then repeats itself by putting
N new cards on the belt followed by leaving one slot empty.

3 PVS Model of the Personalization Machine

In the previous section, we have given a general description of the personalization
machine. In this section we will discuss the model we have developed.

The personalization machine is modeled as a conveyor belt that transports
cards underneath a set of M personalization stations. Each of these stations can
pick up and drop cards onto the conveyor belt. The belt is synchronized with the
personalization stations in order to enable picking up and dropping the cards.

Fig. 2. A simplified machine with 4 stations

Since we are interested in the scheduling mechanism, the model that has been
constructed can ignore several aspects of the machine, similarly to other studies
[GV04, Ruy03, HKW05].

Machine Checked Formal Proof of a Scheduling Protocol 119

– For the scheduling algorithm it is not relevant how the cards end up on the
belt or how they are taken off. This means that the loader and unloader can
be safely omitted from the model.

– We assume that no cards are defective. This means that there is no need to
model neither the testing stations nor the stations that take rejected cards off
the belt. Although this reduces the interest of the example, only the study
by Gebremichael [GV04] addressed the failed cards by creating a special
“faulty” card mode. This can be added to the generalized model without
too much effort in a later stage.

– The graphical treatment and flipover stations have also been omitted. These
stations do not take cards off the belt, so they can not interfere with the
ordering on the belt. Also, the processing time is magnitudes smaller than
the processing time of the personalization stations. They have a negligible
impact on the throughput of the system.

– The loading and offloading time of the personalization stations is also much
smaller than the personalization time and not included into the model.

When the machine is started, the belt and all the personalization stations
are empty. In figure 3 we show the transition of a four station personaliza-
tion machine through time. At each transition, the belt is moved one slot and

Fig. 3. Personalization run in super single mode

120 L. Lensink, S. Smetsers, and M. van Eekelen

subsequently the cards are dropped or lifted from the slots when needed. The
arrows indicate the move a card is about to make. The numbers above the sta-
tions indicate the kind of personalization produced by that station and can also
be found on the card after a station has finished personalizing and has dropped
the card back onto the conveyor belt.

At first, when the time that has passed is smaller than 9, the system is in an
initial state where all the stations fill up with cards being processed. At t=9, the
system starts a cycle that lasts for five transitions. As one can see in figure 3,
the state at t=14 is the same as at t=9. The state of the machine as depicted in
figure 2 can be found in the table at t=12.

Our aim in constructing a PVS model is to verify that the scheduling algorithm
satisfies the following criteria:

– The personalized cards should leave the machine in the order of the occur-
rence of the personalization stations. Cards personalized by station 0 should
appear at the last slot on the belt before the card personalized by station 1.
No other sorting mechanism may exist in the system.

– The throughput of the machine should be optimal.

3.1 The Belt

The model encodes the conveyor belt using an algebraic data type. A slot on the
belt can either contain no card: empty, contain a smartcard that has yet to be
personalized: new card, or contain a personalized card: personalization. The
personalization is modeled as a natural number that corresponds to the relative
position of the personalization station with respect to the conveyor belt. This
means that cards leaving the left most station get 0, and the rightmost M.

In PVS, algebraic data types are specified by providing the constructors
as well as recognizers and accessors. The constructors empty, new card and
personalization are used to build the objects of that data type. The recogniz-
ers (empty?,new card? and personalization?) are used to determine of which
kind an expression of the slot type is and the accessor number can be used to
extract the personalization nr, in case of a personalization.

slot : DATATYPE

BEGIN

empty : empty?
new_card : new_card?
personalization (number : personalization_nr) : personalization?
END slot

The conveyor belt is modeled as an array of 1 + M of these slots. Each slot
is indexed by a natural number from 0 up to M. In PVS, these restrictions on
values which can be held by an object can be expressed elegantly using dependent
types: types dependent on values. For example, the (finite) subset {0, . . . , M} of
the natural numbers can be described as below(n:nat) : TYPE = { m : nat
| m < n }. In this case, the predicate on the natural numbers is below(1+M).

beltposition : TYPE = below(1+M)

Machine Checked Formal Proof of a Scheduling Protocol 121

3.2 The Stations

The relevant information to model a personalization station is whether a station
is programming a card and if so, how far the personalization process has pro-
gressed. A timer is used to model this. The value 0 is assigned to a station to
indicate that a station is empty and not working on a card. Once a station starts
personalizing, the value is increased to 1 and incremented each time slot until it
reaches the time needed to complete the personalization process. At that time,
the machine will start looking whether it can drop the card or not. Theoretically,
the machine can keep incrementing the timer as long as the card has not been
dropped. Therefore, we model the timer by a natural number.

timer : TYPE = nat

Since we have one less personalization station than there are slots on the belt,
the stations are modeled as an array of M of these timers.

stationposition : TYPE = below(M)

3.3 The Machine

The entire machine is rather straightforward. The machine is viewed as an array
of M stations combined with an array of 1+M belt-slots. A global timer is used
to synchronize actions on the belt and in the stations. In PVS this is modeled
using a record type:

machine_state : TYPE =
[# stations : [stationposition → timer] ,

belt : [beltposition → slot] ,
global_timer : global_timer

]

In figure 4 the machine as earlier depicted in figure 2 is shown as a represen-
tation of the PVS model.

Fig. 4. Model of the simplified machine from figure 2

The behavior of the machine is described by a function f next. This function
transforms a machine state into the next machine state by operating the belt

122 L. Lensink, S. Smetsers, and M. van Eekelen

slots and stations for each position and by increasing the global timer. The next
state of a station and belt at a certain position is determined by the content of
the previous belt slot or the previous station.

– In the case of a station, the next state can only be determined by the content
of the belt that is situated to the left and below the station. In the model
they are indexed by the same position number.

– In the case of the belt, the next state at a certain position is determined by
the content of either the station directly above the belt or the previous belt
position. Both are indexed by the position minus one.

The f next function constructs the next state out of the current state by
creating a new record of type machine state:

f_next(ps:machine_state) : machine_state =
(# stations := f_operate_station(ps)
, belt := f_operate_belt(ps)
, global_timer := global_timer(ps)+1
#)

The behavior of the machine is best described by discerning three different
situations:

1. We have an empty station and a new card is available on the previous slot
on the belt. In this case, we move the card from the belt into the station and
start personalizing. As a consequence, the belt position becomes empty and
the station’s timer is started.

2. The timer in the station indicates that the card has been personalized and
there is an empty spot on the belt. This means the personalized card, which
is designated by its position, can be dropped onto the belt, leaving an empty
station. At the same time the timer is reset.

3. If none of the above applies the contents of the belt are just shifted one
position. If the station at the position is personalizing we adjust the timer
by one tick to denote the progress of time.

The function operating on each station checks whether the timer of the sta-
tion needs to be started, reset or increased, depending on whether it is done
personalizing cards or ready to take in a new card:

f_operate_station(ps:machine_state)(spos:stationposition) : timer =
LET station = station(ps)(spos) , belt = belt(ps)(spos) IN

IF empty?(station) ∧ new_card?(belt)
THEN start_timer
ELSIF done?(station) ∧ empty?(belt)
THEN reset_timer
ELSIF ¬empty?(station)
THEN increase_timer(station)
ELSE wait(station)
ENDIF

Machine Checked Formal Proof of a Scheduling Protocol 123

The function that operates the belt reacts to basically the same conditions as
the previous function with exception of the first belt position. There the cards
must be scheduled according to the scheduling algorithm:

f_operate_belt(ps:machine_state)(bpos:beltposition) : slot =
IF bpos=0
THEN schedule(global_timer(ps))
ELSE

LET station = station(ps)(bpos-1) , belt = belt(ps)(bpos-1) IN

IF empty?(station) ∧ new_card?(belt)
THEN lift
ELSIF done?(station) ∧ empty?(belt)
THEN drop(bpos)
ELSE move_belt(belt)
ENDIF

ENDIF

The behavior of the system strongly depends on the time a personalization
station needs to finish. If the personalization time exceeds the number of per-
sonalization stations, the safety property will not be satisfied, because it will
mean that a blank card will reach the end of the conveyor belt before one of the
stations will be able to pick it up. If the personalization time is smaller than M,
there will not be an empty spot available to drop the card. This spot will only
arrive after M time units, so it makes sense to have the personalization end at
that time.

done?(t:timer) : bool = t=M

3.4 The Scheduler

The scheduler is a process that puts the cards onto the first spot of the conveyor
belt in a cyclic fashion. It places M new cards on the belt followed by an empty
spot. In order to keep track of when an empty space should be left on the belt,
the global timer is used:

schedule(global_timer:global_timer) : slot =
IF mod(global_timer,1+M) = 0
THEN empty
ELSE new_card
ENDIF

4 Validating the Model

In section 3, we developed a model of the personalization machine. When mod-
eling a system, the key question is whether it faithfully represents the original
machine. In order to show this is indeed the case we need to be able to execute
our model and make a visual representation that mimics the behavior expected
from a personalization machine. This approach provides us with several benefits:

124 L. Lensink, S. Smetsers, and M. van Eekelen

– To prove the safety property of the machine an invariant is needed. Visual-
izing the behavior makes is easier to determine this invariant.

– Secondly, if we have an appropriate API to drive the belt and sensors, the
executable model means that we can generate code to run the machine.
No manual translation from model to code is necessary. This eliminates a
possible source of errors.

– Finally, visualizing the behavior of the model allows us to verify that the
model behaves as expected.

PVS allows for animation of its specifications by means of a ground evaluator
[vHPPR98]. The evaluator extracts executable Common Lisp code from the
PVS functional specifications. Semantic attachments enable a safe connection
of user defined Lisp functions to uninterpreted PVS functions. A library, PVSio
[Muñ03], extends the ground evaluator with a library of predefined functions to
handle all kinds of imperative languages features.

Since we have written the model in PVS, using only functional specifications, it
is directly executable by PVS’ ground evaluator. On top of the executable model
it is possible to add IO as a side-effect of the original statements. Functions that
produce side-effects must be modeled as Boolean functions that always return
true. By conjoining those functions with the original model they will be executed
alongside the executable model. We define a simulation function that takes as
arguments how many times the transition should take place and the starting
state. As a side effect, the state of the machine is printed to the standard output
so we can observe the machine as time progresses.

f_step(ps:machine_state)(p:nat) : RECURSIVE void =
print_state(ps) ∧
(
IF (p=0)
THEN println(”End of simulation”)
ELSE f_step(f_next(ps))(p-1)
ENDIF

)
MEASURE pn

The function print state(ps0) prints the state variables to the standard
output.

Although no machine experts were involved in validating this particular model,
the models from the original AMETIST project were. The PVS model is close
enough to these models to validate it against its expected behavior. We have
simulated behavior for machines of several sizes and as an example show the
validation of a conveyor belt with four personalization stations. What should be
expected is earlier depicted in figure 3. A # denotes a new card, a * denotes a
station that is personalizing,ˆan empty station, ! shows a station that is done
personalizing, while the natural numbers stand for personalized cards. In figure 5
we show the output generated by a simulation run of the model for a four station
machine.

Machine Checked Formal Proof of a Scheduling Protocol 125

Fig. 5. A simulation run in PVSio

A comparison of figure 5 with figure 3 shows that the simulation behaves as
expected.

5 The Complete State Invariant

In section 4 we have shown by means of a simulation that the model behaves as
expected for four stations. The next step is to prove that the model satisfies the
safety and optimality requirements:

– Concerning the safety property: The machine must maintain the order of
the personalization stations in its generated output order. This can be split
up in two requirements.
• First, only personalized cards or empty spaces should be present at the

last slot of the belt.
• Secondly, once a personalized card n, where 0 ≤ n < M , is present at the

final position on the belt, the next card has to be personalization mod(n+
1, M) or a sequence of empty slots until the next card is personalization
mod(n + 1, M).

– Concerning the optimality property: The machine must personalize as many
cards as possible per time unit. The optimum is reached if all personalization
stations are occupied and personalizing all of the time. This means that once
the cyclic phase of the machine is entered, two properties should hold:
• If a station is empty, then it must immediately be able to load a new

card and start personalizing.
• If a station is done personalizing, an empty space should immediately be

available to drop the card.

We can formulate the safety property slightly more specific, because we know
that only one empty spot is scheduled each cycle. This means that there can be
only one empty spot in the output position once the cyclic phase of the machine
has been reached. As a consequence, we can conclude that the order in which the

126 L. Lensink, S. Smetsers, and M. van Eekelen

personalized cards leave the machine must be linearly related to the value of the
global timer. We have established that the relation between the value of the
global timer and the value of the personalized card, number(belt(ps)(M)),
however, we do not know yet at what time exactly mod(global timer(ps),1+M)
will be equal to personalized card 0. There might be a phase transposition. We
call this c.

Assuming we have M personalization stations the first property can be spec-
ified formally as:

empty?(belt(ps)(M))
∨ (personalization?(belt(ps)(M)) ∧

∃ c: mod(global_timer(ps)+c,1+M) = number(belt(ps)(M)))

The second property can be formally specified as:

∀ pos: ∃ ps’: global_timer(ps’) = global_timer(ps)+1∧
(empty?(station(ps)(pos)) ⇒ start?(station(ps’)(pos))) ∧
(done?(station(ps)(pos)) ⇒ empty?(station(ps’)(pos)))

Trying to prove these two properties directly turns out to be futile. In order
to prove them we need to come up with an invariant that is stronger than the
safety and optimality properties. More particularly, in this invariant must be
expressed that whenever a station has finished personalizing, an empty spot will
be available to deposit the personalized card.

We assume the machine starts with an empty belt and all stations empty.
After an initialization phase, the machine will end up in a cyclic state until the
machine is shut down. In the initialization phase, the stations and belt positions
remain empty, until an empty card reaches them.

The graphical representation of the state of the personalization machine, de-
vised to validate the working of the system can also be put to good use in deriving
the invariant needed to prove the relevant properties.

In figure 6, the first observation we make is that the cyclic phase propagates
through the positions at the rate of one position every two time units. After two
time units the first position satisfies the stable (cyclic) invariant, while the rest
of the belt still is in its initial state. After four time units, the first two positions
satisfy the invariant, while the remaining part of the belt and stations are still
in their initial state, and so on:

p_invariant(ps:machine_state) : bool =
∀ bpos : IF 2*bpos+1 ≥ global_timer(ps)

THEN p_init(ps)(bpos)
ELSE p_stable(ps)(bpos)
ENDIF

The initial invariant is simply that the timer of the station at position pos
is 0 and consequently the station is empty, as well as the corresponding belt
position.

p_init(ps:machine_state)(bpos:beltposition) : bool =
(bpos ≤ M-1 ⇒ station(ps)(bpos) = 0) ∧ empty?(belt(ps)(bpos))

Machine Checked Formal Proof of a Scheduling Protocol 127

Fig. 6. Cyclic invariant propagation Fig. 7. State of the stations

Observations on the stations of the personalization machine allow us to con-
clude that the timer of a station is related to the value of the global timer.
As seen in figure 7, the value of a station neatly increases in time with a
phase difference according to its position: station(bpos) = mod(global timer
- 2*(bpos+1),1+M)

The relationship between the global timer and the contents of the belt at a
certain position are slightly more complex. In order to clarify that relationship,
the state of the stations is removed from the representation in figure 8.

We replace some of the symbols we have used with a numerical representation.
From this representation as in figure 9 we can derive the following property for
the content of the belt:

belt = mod(global_timer(ps)-bpos-1,1+M) ∧
IF belt = bpos THEN empty
ELSIF belt > bpos THEN new_card
ELSE personalization(number(belt))
ENDIF

Combining and rewriting the above results we obtain an invariant for the
entire system:

128 L. Lensink, S. Smetsers, and M. van Eekelen

Fig. 8. State of the belt Fig. 9. State of the belt with selected nu-
merical representations

p_stable(ps:machine_state)(pos:beltposition) : bool =
(pos ≤ M-1 ⇒ mod(global_timer(ps)-2*(pos+1) ,1+M) = station(ps)(pos))
∧
LET timer = mod(global_timer(ps)-2*pos-1,1+M) , belt = belt(ps)(pos) IN

IF timer = 0
THEN empty?(belt)
ELSIF timer < 1+M-pos
THEN new_card?(belt)
ELSE personalization?(belt) ∧ number(belt) = timer-1-M+pos
ENDIF

Since it contains complete information of the state of the machine at any given
time, it should be possible to prove that this invariant (if it is correct) holds. We
call this the complete state invariant. From this invariant, we can then directly
deduce the properties we want to prove.

6 Proof of the Complete State Invariant

After specifying the invariant in PVS, we will now prove that the invariant holds
in the initial state and does not change with each consecutive state change. We
define the following theorem within PVS:

invariant: THEOREM

p_invariant(ps_init) ∧ (p_invariant(ps) ⇒ p_invariant(f_next(ps)))

Proving the invariant to hold is done by case distinctions on the invariant, aswell
as case distinctions on the functions f operate belt and f operate station.

Machine Checked Formal Proof of a Scheduling Protocol 129

These distinctions then invariably lead to some equation that can be proven
correct using modulo arithmetic or to a contradiction within the assumptions.
In the standard library of PVS, there are a number of lemmas that are sufficient
to discharge all of the modular proof obligations. To provide better understand-
ing, we describe a part of the proof in detail: We want to prove that the transition
in the first part of the f operate station function does not invalidate the in-
variant. The relevant part of the function is:

[..]
IF empty?(station(ps)(pos)) ∧ new_card?(belt(ps)(pos))
THEN start_timer

[..]

Where start timer returns the timer value of 1.
It has to be shown that the invariant still holds if empty?(station(ps)(pos))

and new card?(belt(ps)(pos)) then station(f next(ps))(pos) = 1 is
added to the assumptions. This simplifies the invariant to two items that have
to be proven:

– First, 2*pos+1 < 1+global timer(ps). This can be derived from the fact
that the p init(ps) part of the invariant has to be false. The value of
station(ps)(pos) is one, while the invariant states that it is zero when
2*pos+1 >= 1+global timer(ps).

– Secondly, filling out the invariant further with the knowledge that the timer
of the station at position pos is one and assuming that we can prove the
first of our proof obligations the part of the invariant that remains is:

mod(1+global_timer(ps)-2*pos,1+M) = 1

Because we know that at time global timer(ps) we had a new card at the
previous position, the invariant adds to the assumptions:

mod(global_timer(ps)-2*pos,1+M) < 1+M-pos

From this assumption, using modulo arithmetic it is deducible that:

global_timer(ps) ≥ 2*pos

There are two possible cases left:

– Either global timer = 2*pos. Then, again using modulo arithmetic, it is
easy to prove that mod(1+global timer(ps)-2*pos,1+M) = 1.

– Otherwise, 2*pos > global timer(ps). Then we know that the stable part
of the invariant holds at global timer(ps).

This means: mod(global timer-2*pos,1+M) = 0. This can be proven
using modulo arithmetic.

The other situations where personalized cards are dropped in empty slots or
the card on the belt is just moved to the right and the timer in the station is
optionally increased are slightly more complicated, but revolve around a number
of case distinctions as well. The total proof, which is surely not optimized, needs

130 L. Lensink, S. Smetsers, and M. van Eekelen

about 250 proof commands in PVS to be performed completely. Creating the
model, deriving the invariant and proving the invariant to hold, took about a
month for a PhD student, relatively inexperienced with PVS.

6.1 Safety and Optimality

Now that we have established that the invariant holds at all times, we will prove
that the safety and optimality properties follow directly from the invariant:

– The safety property meant that the personalized cards leave the personal-
ization part of the machine in order of the kind of personalization they have
received. Once the invariant has been proven to hold, it follows directly that
at the end of the conveyor belt (at position M), the following holds:

empty?(belt(ps)(M))
∨ (personalization?(belt(ps)(M)) ∧

mod(global_timer(ps) ,1+M) = number(belt(ps)(M)))

Since global timer(ps) is ordered, mod(global timer(ps)),1+M) is or-
dered as well.

– The optimality property implied that the scheduling protocol needs to have
the highest throughput per cycle. This derives immediately from the fact that
if we have 1+M consecutive cards, the machine will not be able to personalize
all the cards. This will violate the safety requirements. Therefore, the highest
throughput per cycle is reached by leaving only one empty slot after M
consecutive cards.

7 Related Work

The Cybernétix case study has been the subject of several research papers. Ku-
gler and Weiss wrote an article about how to interactively derive scheduling
algorithms for production lines using Live Sequence Charts [HKW05]. In it,
they use a graphical representation to analyze a production line systematically.
However, no properties for that production line are proved. In [Mad04] Mader
compares two different scheduling algorithms using model checking, for four and
eight personalization stations, but the model checking was limited to a maximum
of respectively 16 and 40 personalized cards. In contrast to the other studies,
Mader does include the graphical treatment in her model. Ruys uses new fea-
tures of SPIN 4.0 to derive an optimal schedule for four stations and at most
five cards [Ruy03]. Nieberg proves in [Nie04] with a mathematical argument that
the Super Single Mode is optimal, but does not provide a formal proof that the
protocol is safe with respect to the ordering of the cards. Also using model check-
ing, Gebremichael [GV04] is able to derive the Super Single Mode as an optimal
schedule for five personalization stations and any number of cards. Gebremichael
also extends his model to deal with a possible defective card. None of the studies
concerning the smartcard personalization machine combine the rigor of machine
checked proof and simulation with a general proof of optimality and safety. In
PVS work has been done to integrate model checking and theorem proving for

Machine Checked Formal Proof of a Scheduling Protocol 131

models that have a finite number of states as described in [RSS95]. However,
these models must conform to some syntactic restrictions that complicate ac-
tually using the model checking part of PVS in practice. Work on verifying
algorithms and code generation from PVS has been done by Jacobs, Wichers
Schreur and Smetsers in [JSS07], where executable parts PVS specifications are
translated into the functional programming language Clean.

8 Future Work

The ad hoc nature of the derivation of the invariant needed for the proof of the
properties, suggests a natural direction for future work. More case studies can
hopefully give us ideas how to derive invariants more methodically. We have only
focused on the scheduling mechanism on a rather abstract level until now. If code
that drives the machine is to be generated, more detail will have to be added to
the specification. An open question is whether the proof will have to be substan-
tially altered when this is attempted. Another subject of research concerns devis-
ing methods to incorporate the context in which the generated code has to be run
into the theorem prover itself in a methodical and easy to use fashion.

9 Conclusion

We addressed the Cybernétix smartcard personalization machine as an example
of an industry supplied case study for the application of formal methods. We
constructed an executable model in the specification language PVS. Since the
model is executable it was straightforward to visualize the behavior of the model
and construct a simulator that was used to establish that the model that had
been created adequately represented the machine. In future work it is possible
to use the verified scheduling algorithm to control the machine itself, eliminating
any errors that might arise from manually translating the model into code.

Model checking techniques already proved optimality and safety of this machine
for a limitednumber of stations. In typical applications of thismachine, the number
of stations will be much larger than the amount for which was model checked. This
means that no guarantee can be given that the properties will hold generally. By
using a theorem prover we have established that the safety and optimality of the
scheduling algorithm is guaranteed for any number of personalization stations.

References

[GV04] Gebremichael, B., Vaandrager, F.W.: Control synthesis for a smart
card personalization system using symbolic model checking. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 189–203.
Springer, Heidelberg (2004)

[HKW05] Harel, D., Kugler, H., Weiss, G.: Some methodological observations re-
sulting from experience using lscs and the play-in/play-out approach.
In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and
Tools. LNCS, vol. 3466, pp. 26–42. Springer, Heidelberg (2005)

132 L. Lensink, S. Smetsers, and M. van Eekelen

[JSS07] Jacobs, B., Smetsers, S., Schreur, R.W.: Code-carrying theories. Formal
Aspects of Computing 19(2), 191–203 (2007)

[Mad04] Mader, A.H.: Deriving schedules for a smart card personalisation sys-
tem. Technical Report TR-CTIT-04-05, University of Twente, Enschede
(January 2004)

[Muñ03] Muñoz, C.: Rapid prototyping in PVS. Report NIA Report No. 2003-
03, NASA/CR-2003-212418, NIA-NASA Langley, National Institute of
Aerospace, Hampton, VA (May 2003)

[Nie04] Nieberg, T.: On cyclic plans for scheduling a smart card personalisation
system. Technical Report TR-CTIT-04-01, Centre for Telematics and
Information Technology, University of Twente, Enschede (January 2004)

[ORS92] Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification
system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752.
Springer, Heidelberg (1992)

[RSS95] Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking
with automated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS,
vol. 939, pp. 84–97. Springer, Heidelberg (1995)

[Ruy03] Ruys, T.C.: Optimal scheduling using branch and bound with spin 4.0.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
1–17. Springer, Heidelberg (2003)

[vHPPR98] von Henke, F., Pfab, S., Pfeifer, H., Rueß, H.: Case studies in meta-
level theorem proving. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998.
LNCS, vol. 1479, pp. 461–478. Springer, Heidelberg (1998)

An Action/State-Based Model-Checking

Approach for the Analysis of Communication
Protocols for Service-Oriented Applications�

Maurice H. ter Beek1, A. Fantechi1,2, S. Gnesi1, and F. Mazzanti1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
{maurice.terbeek,stefania.gnesi,franco.mazzanti}@isti.cnr.it

2 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy
fantechi@dsi.unifi.it

Abstract. In this paper we present an action/state-based logical frame-
work for the analysis and verification of complex systems, which relies on
the definition of doubly labelled transition systems. The defined tempo-
ral logic, called UCTL, combines the action paradigm—classically used
to describe systems using labelled transition systems—with predicates
that are true over states—as captured when using Kripke structures as
semantic model. An efficient model checker for UCTL has been realized,
exploiting an on-the-fly algorithm. We then show how to use UCTL, and
its model checker, in the design phase of an asynchronous extension of the
communication protocol SOAP, called aSOAP. For this purpose, we de-
scribe aSOAP as a set of communicating UML state machines, for which
a semantics over doubly labelled transition systems has been provided.

1 Introduction

Complex systems are often modelled according to either a state-based or an
event-based paradigm. While in the former case the system is characterized by
states and state changes, in the latter case it is characterized by the events
(actions) that can be performed to move from one state to another. Both are
important paradigms for the specification of complex systems and, as a result,
formal methods ideally should cover both. Indeed, this trend is witnessed by
the recent widespread use of modelling frameworks that allow both events and
state changes to be specified. An example are UML state diagrams, which are
used more and more in industry to specify the behaviour of (software) systems,
though often without caring much for their formal aspects. Also the specifica-
tion of Service-Oriented Applications has seen several applications of UML state
diagrams [25]. What is missing in order to use in full specification techniques
that allow one to specify both events and state changes, is the availability of a
formal framework in which desired properties can subsequently be proved over
the specification, with the support of specific verification tools.
� This work has been partially funded by the EU project Sensoria (IST-2005-016004)

and by the Italian project tocai.it.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 133–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 M.H. ter Beek et al.

In this paper, we aim to fill this gap by presenting the action/state-based
temporal logic UCTL, which allows one to both specify the basic properties
that a state should satisfy and to combine these basic predicates with advanced
temporal operators dealing with the events performed. As was done for CTL
and ACTL in the past, we consider a fragment of a doubly labelled tempo-
ral logic, interpreted over doubly labelled structures: This fragment is UCTL,
which preserves the property shared by CTL and ACTL of having an explicit
local model-checking algorithm in linear time. The semantic domain of UCTL is
doubly labelled transition systems [11]. A prototypical on-the-fly model checker,
called UMC, has been developed for UCTL: The tool allows the efficient verifi-
cation of UCTL formulae that define action- and state-based properties.

In recent years, several logics that allow one to express both action-based
and state-based properties have been introduced, for many different purposes.
An event- and state-based temporal logic for Petri nets is given in [17]. In [16],
a modal temporal logic without a fixed-point operator and interpreted over so-
called Kripke modal transition systems (a modal version of doubly labelled tran-
sition systems) is defined. In [4,6], a state/event extension of LTL is presented,
together with a model-checking framework whose formulae are interpreted over
so-called labelled Kripke structures (essentially doubly labelled transition sys-
tems). Finally, in [5], this linear-time temporal logic is extended to a universal
branching-time temporal logic. The latter logics are used extensively to verify
software systems. The advantage of all such logics lies in the ease of expres-
siveness of properties that in pure action-based or pure state-based logics can be
quite cumbersome to write down. Moreover, their use often results in a reduction
of the state space, the memory use and the time spent for verification. Obviously,
the real gain depends—as always—on the specific system under scrutiny.

To conclude, we present a case study that shows the use of UCTL and its
model checker UMC in the design phase of aSOAP, which is an asynchronous
extension of the web service communication protocol SOAP. Mobile communi-
cation networks typically are unstable, since terminal devices can dynamically
change reachability status during their lifetime. In Service-Oriented Architec-
tures, asynchronous service invocation is often the more suitable paradigm for
the choreography and orchestration of their mobile components. Hence, there is
a need for communication protocols that can manage asynchronous communi-
cation also in the presence of unstable network connections. Formal modelling
and analysis of such protocols is a first step towards the successful implementa-
tion and evaluation of reliable Service-Oriented Applications. For this purpose,
we describe aSOAP as a set of communicating UML state machines, for which
a semantics over doubly labelled transition systems has been provided, express
several behavioural properties on this UML model of aSOAP in UCTL and verify
them with UMC.

The paper is organized as follows. Some preliminary definitions are given in
Section 2. In Section 3, we present the syntax and semantics of UCTL, while in
Section 4 we describe its model checker UMC. The case study illustrating their
use is presented in Section 4. Finally, Section 5 concludes the paper.

An Action/State-Based Model-Checking Approach 135

2 Preliminaries

In this section, we define the basic notations and terminology used in the sequel.

Definition 1 (Labelled Transition System). A Labelled Transition System
(LTS for short) is a quadruple (Q, q0, Act, R), where:

– Q is a set of states;
– q0 ∈ Q is the initial state;
– Act is a finite set of observable events (actions) with e ranging over Act, α

ranging over 2Act and ε denoting the empty set;
– R ⊆ Q× 2Act ×Q is the transition relation; instead of (q, α, q′) ∈ R we may

also write q
α→ q′.

Note that the main difference between this definition of LTSs and the classical
one is the labelling of the transitions: we label transitions by sets of events rather
than by single (un)observable events. This extension allows the transitions from
one state to another to represent sets of actions without the need of intermediate
states, which has proved to be useful when modelling, e.g., UML state diagrams.

Another extension is to label states with atomic propositions, like the concept
of doubly labelled transition systems [11], again extended as in Definition 1.

Definition 2 (Doubly Labelled Transition System). A Doubly Labelled
Transition System (L2TS for short) is a quintuple (Q, q0, Act, R, AP, L), where:

– (Q, q0, Act, R) is an LTS;
– AP is a set of atomic propositions with p ranging over AP; p will typically

have the form of an expression like VAR = value;
– L : Q −→ 2AP is a labelling function that associates a subset of AP to each

state of the LTS.

The L2TSs thus obtained are very similar to so-called Kripke transition sys-
tems [19]. The latter are defined as an extension of Kripke structures by a la-
belling over transitions.

The usual notion of bisimulation equivalence can be straightforwardly ex-
tended to L2TSs by taking into account equality of labelling of states, and con-
sidering the transitions labelled by sets of events.

Definition 3 (Bisimulation). Let A1 = (Q1, q01 , Act,→1, AP1, L1) and A2 =
(Q2, q02 , Act,→2, AP2, L2) be two L2TSs and let q1 ∈ Q1 and q2 ∈ Q2. We
say that the two states q1 and q2 are strongly equivalent (or simply equivalent),
denoted by q1 ∼ q2, if there exists a strong bisimulation B that relates q1 and q2.
B ⊆ Q1 × Q2 is a strong bisimulation if for all (q1, q2) ∈ B and α ∈ 2Act:

1. L1(q1) = L2(q2),
2. q1

α→1 q′1 implies ∃ q′2 ∈ Q2 : q2
α→2 q′2 and (q′1, q

′
2) ∈ B, and

3. q2
α→2 q′2 implies ∃ q′1 ∈ Q1 : q1

α→1 q′1 and (q′1, q
′
2) ∈ B.

136 M.H. ter Beek et al.

We say that the two L2TSs A1 and A2 are equivalent, denoted by A1 ∼ A2, if
there exists a strong bisimulation B such that (q01 , q02) ∈ B.

The usual notions of simulation preorder or weak (observational) equivalence
can be defined analogously.

LTSs and Kripke structures can be lifted to L2TSs in a straightforward man-
ner. An LTS T = (Q, q0, Act, R) can be lifted to an L2TS AT , on the same
set of states and maintaining the same transition relation, in the following way:
AT = (Q, q0, Act, R, ∅, L), where for all q ∈ Q: L(q) = ∅.

A Kripke structure K = (Q, q0, R, AP , L) can be lifted to an L2TS AK , on the
same set of states and maintaining the same labelling function, in the following
way: AK = (Q, q0, {ε}, R′, AP , L), where for all (q, q′) ∈ R: (q, ε, q′) ∈ R′.

3 The Action/State-Based Temporal Logic UCTL

In this section, we present the syntax and semantics of UCTL. This temporal
logic, action and state based, allows one to reason on state properties as well as
to describe the behaviour of systems that perform actions during their lifetime.
UCTL includes both the branching-time action-based logic ACTL [10,11] and
the branching-time state-based logic CTL [7].1

Before defining the syntax of UCTL, we introduce an auxiliary logic of events.

Definition 4 (Event formulae). Let Act be a set of observable events. Then
the language of event formulae on Act ∪ {τ} is defined as follows:

χ ::= tt | e | τ | ¬χ | χ ∧ χ

Definition 5 (Event formulae semantics). The satisfaction relation |= for
event formulae of the form α |= χ is defined over sets of events as follows:

α |= tt holds always;
α |= e iff α = {e1, . . . , en} and there exists an i ∈ {1, . . . , n} such that ei = e;
α |= τ iff α = ∅;
α |= ¬χ iff not α |= χ;
α |= χ ∧ χ′ iff α |= χ and α |= χ′.

As usual, ff abbreviates ¬tt and χ ∨ χ′ abbreviates ¬(¬χ ∧ ¬χ′).

Definition 6 (Syntax of UCTL)

φ ::= true | p | ¬φ | φ ∧ φ′ | Aπ | Eπ

π ::= Xχφ | φ χU φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ′

1 Note that ACTL is also used to denote the universal fragment of CTL, originally
called ∀CTL in [8]. For easy of writing, ∀CTL was changed to ACTL, thus generating
a conflict with the previously introduced acronym ACTL for Action-based CTL.

An Action/State-Based Model-Checking Approach 137

State formulae are ranged over by φ, path formulae are ranged over by π, A and
E are path quantifiers, and X, U and W are the indexed next, until and weak
until operators.2

In linear-time temporal logic (LTL), the formula φ W ψ can be obtained by
deriving it from the until (U) and the always (G) operators, as follows: φ U ψ ∨
Gφ. This way to derive the weak until operator from the until operator is not
applicable in UCTL since disjunction or conjunction of path formulae is not
expressible according to the UCTL syntax, and the same holds for any pure
branching-time temporal logic.

To define the semantics of UCTL, we need the notion of a path in an L2TS.

Definition 7 (Path). Let A = (Q, q0, Act, R, AP , L) be an L2TS and let q ∈ Q.

– σ is a path from q if σ = q (the empty path from q) or σ is a (possibly in-
finite) sequence (q0, α1, q1)(q1, α2, q2) · · · with (qi−1, αi, qi) ∈ R for all i > 0.

– The concatenation of paths σ1 and σ2, denoted by σ1σ2, is a partial operation,
defined only if σ1 is finite and its final state coincides with the first state of
σ2. Concatenation is associative and has identities: σ1(σ2σ3) = (σ1σ2)σ3

and if q0 is the first state of σ and qn is its final state, then q0σ = σqn = σ.
– A path σ is said to be maximal if it is either an infinite sequence or it is a

finite sequence whose final state has no successor states.
– The length of a path σ is denoted by |σ|. If σ is an infinite path, then |σ| = ω.

If σ = q, then |σ| = 0. If σ = (q0, α1, q1)(q1, α2, q2) · · · (qn, αn+1, qn+1), for
some n ≥ 0, then |σ| = n + 1. Moreover, the ith state in such a path, i.e. qi,
is denoted by σ(i).

Definition 8 (Semantics of UCTL). The satisfaction relation for UCTL for-
mulae is defined as follows:

q |= true holds always;
q |= p iff p ∈ L(q);
q |= ¬φ iff not q |= φ;
q |= φ ∧ φ′ iff q |= φ and q |= φ′;
q |= Aπ iff σ |= π for all paths σ such that σ(0) = q;
q |= Eπ iff there exists a path σ with σ(0) = q such that σ |= π;
σ |= Xχφ iff σ = (σ(0), α1, σ(1))σ′, and α1 |= χ, and σ(1) |= φ;
σ |= [φ χUφ′] iff there exists a j ≥ 0 such that σ(j) |= φ′ and for all 0 ≤ i < j:

σ = σ′(σ(i), αi+1, σ(i+1))σ′′ implies σ(i) |= φ and αi+1 = ε or αi+1 |= χ;
σ |= [φ χUχ′φ′] iff there exists a j ≥ 1 such that σ = σ′(σ(j − 1), αj , σ(j))σ′′

and σ(j) |= φ′ and σ(j − 1) |= φ and αj |= χ′, and for all 0 < i < j:
σ = σ′

i(σ(i − 1), αi, σ(i))σ′′
i implies σ(i − 1) |= φ and αi = ε or αi |= χ;

σ |=[φ χWφ′] iff either there exists a j≥0 such that σ(j) |=φ′ and for all 0≤ i<j:
σ = σ′(σ(i), αi+1, σ(i+1))σ′′ implies σ(i) |= φ and αi+1 = ε or αi+1 |= χ;
or for all i ≥ 0: σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ implies σ(i) |= φ and
αi+1 = ε or αi+1 |= χ;

2 Note that, differently from the original ACTL logic, in UCTL the operator Xχφ can
be derived as false falseUχ φ.

138 M.H. ter Beek et al.

σ |=[φ χWχ′ φ′] iff either there exists a j≥1 such that σ=σ′(σ(j−1), αj , σ(j))σ′′

and σ(j) |= φ′ and σ(j − 1) |= φ and αj |= χ′, and for all 0 < i < j:
σ = σ′

i(σ(i − 1), αi, σ(i))σ′′
i implies σ(i − 1) |= φ and αi = ε or αi |= χ;

or for all i > 0: σ = σ′
i(σ(i − 1), αi, σ(i))σ′′

i implies σ(i − 1) |= φ and
αi = ε or αi |= χ.

It is now straightforward to obtain a set of derived operators for UCTL, such as:

< χ > φ stands for E[true τUχ φ];
[χ]φ stands for ¬ < χ > ¬φ;
EFφ stands for E[true trueUφ];
AGφ stands for ¬EF¬φ;

Operators < χ > φ and [χ]φ are the diamond and box modalities, respectively,
of the Hennessy-Milner logic [15]. The meaning of EFφ is that φ must be true
sometimes in a possible future; that of AGφ is that φ must be true always.

The logic UCTL is adequate with respect to strong bisimulation equivalence
on L2TSs. Adequacy [21] means that two L2TSs A1 and A2 are strongly bisimilar
if and only if F1 = F2, where Fi = {ψ ∈ UCTL : Ai |= ψ } for i = 1, 2. In other
words, adequacy implies that if there is a formula that is not satisfied by one
of the L2TSs but satisfied by the other L2TS, then the L2TSs are not bisimilar,
and—on the other hand—if two L2TSs are not bisimilar, then there must exist
a distinguishing formula.

Proof (sketch). Let A1 and A2 be two L2TSs. Note that neither the existential
nor the universal next operator of a UCTL formula can distinguish the transi-
tion q1

a→ q′1 in A1 from the two transitions q2
a→ q′2 and q2

a→ q′′2 , with {q′2, q′′2}
bisimilar to q′1, which makes q1 and q2 bisimilar as well. The same can be said for
the atomic predicates, since the labelling of bisimilar states is the same, as well
as for the until operators, which just follow recursively the transition relation.
Hence, if two L2TSs are bisimilar, then no distinguishing formula can be found.

On the other hand, if two L2TSs are not bisimilar, then applying recursively
the definition of bisimulation to the pair of initial states {q01 , q02} of the two
L2TSs implies that we eventually end up in at least one pair of states {q1, q2}
with the following characteristics: A sequence a1, a2, . . . , an of actions leads from
q01 and q02 to q1 and q2, respectively, and q1 and q2 can be differentiated either
(but not necessarily exclusively) by their labelling or by an outgoing transition.

In the former case, there exists at least one predicate p such that p ∈ L(q1) but
p /∈ L(q2) (or vice versa), which means that Xa1Xa2 · · ·Xanp is a distinguishing
formula for the two L2TSs.

In the latter case, there exists at least one transition q1
a→ q′1, for some action a

and state q′1, while there exists no transition labelled with a from q2 to some state
q′2 (or vice versa), which means that Xa1Xa2 · · ·XanXa true is a distinguishing
formula for the two L2TSs. �

An Action/State-Based Model-Checking Approach 139

Starting from the syntax of UCTL, it is possible to derive both CTL [7] and
ACTL [10,11] by simply removing the action or the state component, respec-
tively: Given a Kripke structure K = (Q, q0, R, AP , L) that has been lifted to
an L2TS AK = (Q, q0, Act, R′, AP , L), a CTL formula φ and a state q ∈ Q, it
follows that

q |=K φ iff q |=AK φ′,

where φ′ is a UCTL formula which is syntactically identical to φ, apart from
the fact that all occurrences of Xψ′ have been replaced by Xtrueψ

′ and all
occurrences of ψUψ′ have been replaced by ψ trueUψ′.

Given an LTS T = (Q, q0, Act ∪ τ, R) that has been lifted to an L2TS AT =
(Q, q0, Act, R, AP , L), an ACTL formula φ and a state q ∈ Q, it follows that

q |=T φ iff q |=AT φ′,

where φ′ is a UCTL formula which is syntactically identical to φ, apart from the
fact that all occurrences of Xtrueψ are replaced by X¬τψ.3

4 The UCTL Model Checker UMC

We have developed an on-the-fly model checking tool for UCTL, called UMC [18].
The big advantage of the on-the-fly approach to model checking is that, de-

pending on the formula, only a fragment of the overall state space might need
to be generated and analyzed in order to produce the correct result [2,12,24].
This type of model checking is also called local [9], in contrast to global model
checking [7], in which the whole state space is explored to check the validity of
a formula.

The basic idea behind UMC is that, given a state of an L2TS, the validity
of a UCTL formula on that state can be evaluated by analyzing the transitions
allowed in that state, and by analyzing the validity of some subformula in only
some of the next reachable states, all this in a recursive way. The following simpli-
fied schema gives an idea of the algorithmic structure of the evaluation process:
F denotes the UCTL formula (or subformula) to be evaluated, Start denotes the
state in which the (recursive) evaluation of F was started and Current denotes
the current state in which the evaluation of F is being continued.4

3 The original definition of ACTL [10] is based on a definition of LTSs in which a tran-
sition label can be a single (un)observable action. Hence, to be precise, we actually
need to use here a different definition of lifting an LTS to an L2TS, namely one in
which τ -transitions are replaced by ε-transitions.

4 The given schema can be extended to handle also max and min fixpoint operators,
by replacing the single Start state with a vector of states according to the fix-
point nesting depth of the formula. UMC actually supports this extension, but with
drawbacks in the level of optimizations performed.

140 M.H. ter Beek et al.

Evaluate (F : Formula, Start : State, Current : State) is
if we have already done this computation and its result is available,
i.e. (〈F, Start, Current〉 → Result) has already been established then

return the already known result;
else if we were already computing the value of exactly this computation,
i.e. (〈F,Start,Current〉→inprogress) has already been established then

return trueor false depending onmax ormin fixed point semantics;
else

keep track thatwe started to compute the value of this computation,
i.e. set (〈F, Start, Current〉 → inprogress);
foreach subformula F′ and next state S′ to be computed do loop

if F �= F (i.e. this is a syntactically nested subformula) then
call Evaluate(F′, S, S′);

else if F = F (i.e. this is just a recursive evaluation of F) then
call Evaluate(F, Start, S′);

end
if the result of the call suffices to establish the final result then

exit from the loop;
end

end loop
At this point we have in any case a final result. We keep track of the
result of this compuation (e.g. set (〈F, Start, Current〉 → Result)).
return the final result;

end
end Evaluate;

This simplified schema can be extended with appropriate data-collection ac-
tivities in order to be able to produce, in the end, also a clear and detailed
explanation of the returned result.

In case of infinite state spaces, the above schema may fail to produce a result
even when a result could actually be deduced in a finite number of steps. This
is a consequence of the “depth-first” recursive structure of the algorithm. The
solution taken to solve this problem consists of adopting a bounded model-
checking approach [3], i.e. the evaluation is started assuming a certain value as
limit of the maximum depth of the evaluation. In this case, if a formula is given
as result of the evaluation within the requested depth, then the result holds for
the whole system; otherwise the maximum depth is increased and the evaluation
is subsequently retried (preserving all useful subresults that were already found).
This approach, initially introduced in UMC to overcome the problem of infinite
state machines, happens to be quite useful also for another reason. By setting a
small initial maximum depth and a small automatic increment of this limit at
each re-evaluation failure, once we finally find a result then we have a reasonable
(almost minimal) explanation for it, and this is very useful also in the case of
finite states machines.

Given a formula F, the upper bound on the number of necessary computa-
tions steps, identifiable by the triple 〈subformula, startstate,currentstate〉
apparently tends to grow quadratically with respect to the number of system

An Action/State-Based Model-Checking Approach 141

states. A linear complexity of the above model-checking algorithm can be
achieved by performing several optimizations in the management of the “archive”
of performed computations.5 In particular, we consider the property that if
(〈F, State, State〉 → Result) is true, then for any other State′, (〈F, State′,
State〉 → Result) is also true. Moreover, when (〈F, State, State〉 → Result)
is established, for all the recursive subcomputations of F that have the form
(〈F, State, State′〉 → Result) it is also true that (〈F, State′, State′〉 → Result)
can be considered to hold.

The development of UMC is still in progress and a prototypical version is be-
ing used internally at ISTI–CNR for academic and experimental purposes. Until
now, the focus of the development has been on the design of the kind of qualita-
tive features one would desire for such a tool, experimenting with various logics,
system modelling languages and user interfaces. So far there has been no official
public release of the tool, even if the current prototype can be experimented via
a web interface at the address http://fmt.isti.cnr.it/umc/.

UMC verifies properties defined over a set of communicating UML state ma-
chines [22,20]. We used UML as particular formal method since it has become
the de facto industrial standard for modelling and documenting software sys-
tems. The UML semantics associates a state machine to each object in a system
design, while the system’s behaviour is defined by the possible evolutions of the
resulting set of state machines that may communicate by exchanging signals.
All these possible system evolutions are formally represented as an L2TS, in
which the states represent the various system configurations and the transitions
represent the possible evolutions of a system configuration. In this L2TS, states
are labelled with the observed structural properties of the system configurations
(e.g. active substates of objects, values of object attributes, etc.), while tran-
sitions are labelled with the observed properties of the system evolutions (e.g.
which is the evolving object, which are the executed acions, etc.).

5 aSOAP: A Case Study

The particular case study we describe here has as main objective to define a
variant of SOAP [26] supporting asynchronous communications, driven step-by-
step by the results of a formal analysis. This approach thus contrasts with the
usual approach of performing analysis on an already specified protocol to verify
its correctness. The development of aSOAP is ongoing joint work with Telecom
Italia. Some initial modelling and verification results have been presented in [1].

The domain of the case study is the definition of a SOAP-based protocol
supporting asynchronous interactions, i.e. interactions different from the usual

5 In [1,13,14], a less restricted logic (μ-UCTL) was defined and used in previous ver-
sions of UMC. Essentially based on the full μ-calculus, μ-UCTL was still defined
over doubly labelled structures, but in that case the system transitions were labelled
with sequences of events rather than with sets. Moreover, since the model-checking
algorithm lacked the necessary optimizations, the complexity of the evaluation of
alternation-free formulae still had a quadratic complexity.

142 M.H. ter Beek et al.

synchronous “request-response” interactions supported by the available SOAP
implementations based on HTTP. For the following reasons, asynchronous inter-
actions are highly relevant in the delivery of telecommunication services:

– a service logic is triggered/activated by events produced, in an asynchronous
way, by the network/special resources, or must react to such events during
the execution of a service instance;

– requests produced by a service logic to a network/special resource may result
in long computations (e.g. the set-up of a call), which might also require the
involvement of end users;

– some service logic components may not be reachable (e.g. the ones deployed
on mobile terminals), e.g. due to the temporary absence of communication.

The final objective is thus to formally define aSOAP as a protocol that is able
to address most of these situations. We consider the following requirements.

Backward compatibility
– aSOAP must be compatible with SOAP v1.2 on HTTP;
– aSOAP must have limited impact on clients, i.e. clients that need no sup-

port for asynchronous interactions must be usual SOAP clients, working
in request-response mode, while clients that do need such support should
introduce only very limited variations w.r.t. normal SOAP requests.

Reachability
– aSOAP must be able to deal with the unreachability of the servers (e.g.

due to the lack of connectivity);
– aSOAP must be able to deal with the case in which a server cannot

return a (provisional or final) response due to the lack of connectivity;
– aSOAP must be able to deal with the case in which a (provisional or final)

response cannot be returned to a client due to the lack of connectivity.
Message Exchange Patterns

– aSOAP must be able to deal with requests that require the servers to per-
form some long-running computation (longer than the HTTP timeout)
before producing any results;

– aSOAP must be able to deal with requests with multiple responses.

We envision aSOAP to operate in a Client-Server architecture with an addi-
tional web service Proxy placed in between the Client and Server side. This Proxy
must guarantee that various attempts to contact either side are made in case
of temporary unavailability of the respective side. Moreover, aSOAP requires
that a Client, whenever it is willing to accept the possibility of an asynchronous
response to its request, sends to the Proxy not only its request but also the URL
at which it would like to receive the response. We consider this URL to be the
address of a generic “SOAP listener” and we assume the application level to be
equipped with a mechanism capable of receiving SOAP messages at this URL.

Before discussing some aspects of our formal specification of aSOAP, we first
list the assumptions that are part of the design of aSOAP.

An Action/State-Based Model-Checking Approach 143

– The Proxy is always reachable by both the Client and the Server, whenever
they have an active connection;

– If the Client is willing to accept an asynchronous response to its SOAP
invocation, then it inserts in the SOAP header the URL of the SOAP listener
where it wants to receive the response;

– The URL in the header of an asynchronous SOAP invocation is the address
of a generic SOAP listener and the application level is equipped with a
mechanism for receiving SOAP messages at this URL;

– Upon receiving an asynchronous SOAP invocation from the Client, the Proxy
generates a request identifier ReqId that uniquely identifies the Client’s
SOAP invocation in further communications.

During several sessions between ISTI–CNR and Telecom Italia we discussed
our design and developed our formalisation of aSOAP in detail. In order to
facilitate the discussions about the behaviour of the various use case scenarios
of aSOAP, we decided upon a separate message sequence chart for each such a
scenario. Finally, all these scenarios were translated into an operational model,
in which the following concrete modelling choices were adopted:

– All SOAP invocations are asynchronous, i.e. we abstract from the syn-
chronous SOAP invocations that only serve to guarantee backward com-
patibility with SOAP v1.2;

– The URL in the header of a SOAP message is identified with the Client, i.e.
each Client is seen as just a listener of asynchronous SOAP invocations;

– A system model is constituted by a Server (and its subthreads), a Proxy
(and its subthreads) and a fixed (configurable) number of Clients;

– The Proxy and the Server may activate at most a fixed (configurable) number
of parallel subthreads;

– With the Client or the Server unreachable, the Proxy attempts to contact
them up to a configurable number of times;

– The Client issues a single SOAP invocation and then terminates.6

For a complete discussion on these modelling choices, we refer the reader to [1].
Specifying the formal model of aSOAP as a set of communicating UML state

machines has allowed us to express behavioural properties of our aSOAP model
in UCTL and to verify them with UMC. The reader can consult the full speci-
fication online [23]. In Figure 1, the activity of a Client, a Server thread and a
Proxy thread are depicted.

The full specification contains also the definition of the statecharts for the
classes Server and Proxy. Objects of these classes are very simple (they have
just one state) and their role is simply to forward any incoming request to
some available subthread, which will then perform all the relevant activities.
The actual complexity of the systems which can be built with these components
clearly depends on the number of Clients, Servers and Proxies that one wants

6 In the future we do intend to consider Clients that perform a loop of SOAP invoca-
tions or issue several SOAP invocations before awaiting the deferred SOAP results.

144 M.H. ter Beek et al.

to deploy, on the number of subthreads one assigns to each Server or Proxy and
on the maximum number of times a Proxy thread may retry to contact a Server
or a Client before it must give up.

send
 Client

Request

accept
Network
Failure

accept
 Client

Response

accept
 Deferred

Notification

accept
 Client

Response

Client Activity

send
Server Response

accept
Server Request /

send
Deferred Notification

accept
Server Request /

send
Server Response

Server Thread Activity handling service requests

Fig. 1. Activity of a Client, a Server thread and a Proxy thread

An Action/State-Based Model-Checking Approach 145

The minimal system composed of 1 Client, 1 Proxy and 1 Server (the latter
two both with only 1 subthread) and 1 as maximum number of retries, clearly is
an example of a small system with only 118 states and 245 transitions. A more
complex system can be deployed by using 2 Clients, 1 Server and 1 Proxy (the
latter two with 2 subthreads each), and with up to 2 communication attempts.
Such a system contains 96, 481 states and 367, 172 transitions. Finally, a system
composed of 3 Clients, 1 Server and 1 Proxy (the latter two with 3 subthreads
each) instead is too complex to be able to explicitly measure its size (far more
than 600, 000 states and well over 1, 000, 000 transitions).

5.1 Verification of UCTL Formulae with UMC

In this section, we show the verification with UMC of several behavioural proper-
ties expressed in UCTL over our model of the aSOAP protocol. These properties
demonstrate the logic’s flexibility in dealing with both action- and state-based
properties. A different set of behavioural properties is verified in [1]. Property 1:

From every system state a Proxy thread can reach its initial state ‘Ready’

can be shown to hold by using UMC to verify the state-based UCTL formula

AG EF PT1.state = Ready,

in which PT1 is a Proxy Thread. This is different for Clients, since Property 2:

A Client C1 may reach a deadlock, i.e.
there exists a system state from which C1 cannot evolve

can be shown to hold by using UMC to verify the action-based UCTL formula

EF (¬EF < C1 : > true),

in which C1 : is satisfied by any system evolution in which object C1 is the one
that evolves. This outcome is not so bad as it might seem, because Property 3:

Whenever a Client C1 reaches a deadlock,
then C1 is either in state ‘Wait’ or in state ‘Deferred’

can be shown to hold by using UMC to verify the action/state-based UCTL
formula

AG ((¬EF < C1 : > true) ⇒ (C1.state = Wait ∨ C1.state = Deferred)).

The time needed to verify any of the above formulae in the minimal system
mentioned above (with 118 states and 245 transitions) is negligible. The situation
is different for the system with 2 Clients specified above (with 96, 481 states and
367, 172 transitions). In spite of its higher complexity, the evaluation of the

146 M.H. ter Beek et al.

formula EF (¬EF < C1 : > true) (corresponding to Property 2) is still almost
immediate, since it requires the analysis of only 1998 states, while the remaining
formulae require the analysis of all system states and therefore their evaluation
requires about one minute (using a state of the art portable computer).

Finally, none of the above formulae can be verified over more complex systems.
However, formulae whose evaluation require the analysis of just a small fraction
of all the system states can be evaluated also for such complex systems. Consider,
e.g., the formula

EF EG ((PT1.state = ClientLoop2) ∧ < PT1 : > (PT1.state = Ready)),

which states that there exists an infinite path along which object PT1 always
remains in the ClientLoop2 state, although the object itself always has the possi-
bility of immediately returning to the state Ready in just one step. This formula
can be proved to hold also in case of a complex system composed of 3 Clients,
1 Server and 1 Proxy (but each with 3 subthreads), which has more than 600, 000
states and over 1, 000, 000 transitions. It takes just a few seconds, during which
only 92, 536 system states are analysed. Clearly it is simply a form of unfairness
in the scheduling that prevents the Proxy thread to complete its execution cycle.

6 Conclusions

In this paper, we have presented the action/state-based temporal logic UCTL
and its on-the-fly model checker UMC. The need to define an action/state-based
logic stems from the fact that in order to verify concurrent (software) systems,
it is quite often necessary to specify both state information and the evolution in
time by actions (events). As a result, semantic models should take both views
into account. The L2TSs that are at the basis of UCTL are one such semantic
model. Given a state of an L2TS, UMC evaluates the validity of a UCTL formula
on that state on the fly by analyzing the transitions allowed in that state, and
by analyzing the validity of some subformula in only some of the next reach-
able states, all this in a recursive way. Some clever “archiving” of performed
computations allows UMC to evaluate UCTL formulae in linear time.

UML is a graphical modelling language for object-oriented software (sys-
tems). UML models can be used to visualize, specify, build and document several
aspects—or views—of such systems. The UML semantics associates to each ac-
tive object a state machine, and the system’s behaviour is defined by the possible
evolutions of these communicating state machines. All possible system evolutions
can be formally represented as an L2TS in which the states represent the system
configurations and the transitions represent the possible evolutions of a system
configuration. As a result, UCTL can be used to express properties of the dy-
namic behaviour of complex systems described as UML state diagrams. The
ability to state structural properties of system configurations (state attributes
and predicates) and not just actions (events), opens the door to the modelling
and verification of structural properties of parallel systems. Examples include
topological issues, state invariants and mobility issues.

An Action/State-Based Model-Checking Approach 147

Acknowledgements. We thank Corrado Moiso of Telecom Italia for having pro-
vided us with the case study mentioned in this paper and for his work on aSOAP.

References

1. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal Modelling and Verifi-
cation of an Asynchronous Extension of SOAP. In: Bernstein, A., Gschwind, T.,
Zimmermann, W. (eds.) Proceedings of the 4th IEEE European Conference on
Web Services (ECOWS 2006), Zurich, Switzerland, pp. 287–296. IEEE Computer
Society, Los Alamitos, CA (2006)

2. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient On-the-Fly Model Checking
for CTL*. In: Proceedings of the 10th IEEE Symposium on Logics in Computer
Science (LICS 1995), San Diego, CA, USA, pp. 388–397. IEEE Computer Society,
Los Alamitos, CA (1995)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
pp. 193–207. Springer, Heidelberg (1999)

4. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based
Software Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)

5. Chaki, S., Clarke, E.M., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T.,
Veith, H.: State/Event Software Verification for Branching-Time Specifications.
In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771,
pp. 53–69. Springer, Heidelberg (2005)

6. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent soft-
ware verification with states, events, and deadlocks. Formal Aspects of Comput-
ing 17(4), 461–483 (2005)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems 8(2), 244–263 (1986)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transaction on Programming Languages and Systems 16(5), 1512–1542 (1994)

9. Cleaveland, R.: Tableau-Based Model Checking in the Propositional μ-Calculus.
Acta Informatica 27(8), 725–747 (1989)

10. De Nicola, R., Vaandrager, F.W.: Actions versus State based Logics for Transition
Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

11. De Nicola, R., Vaandrager, F.W.: Three Logics for Branching Bisimulation. Journal
of the ACM 42(2), 458–487 (1995)

12. Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: Using On-The-Fly Verification
Techniques for the Generation of test Suites. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 348–359. Springer, Heidelberg (1996)

13. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML State
Machines. In: Dosch, W., Lee, R.Y., Wu, C. (eds.) SERA 2004. LNCS, vol. 3647,
pp. 331–338. Springer, Heidelberg (2006)

14. Gnesi, S., Mazzanti, F.: A Model Checking Verification Environment for UML
Statecharts. In: XLIII Annual Italian Conference AICA, Udine (2005)

15. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM 32(1), 137–161 (1985)

148 M.H. ter Beek et al.

16. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal Transition Systems: A Founda-
tion for Three-Valued Program Analysis. In: Sands, D. (ed.) ESOP 2001. LNCS,
vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

17. Kindler, E., Vesper, T.: ESTL: A Temporal Logic for Events and States. In: De-
sel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer,
Heidelberg (1998)

18. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2006)

19. Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-Checking—A Tutorial Intro-
duction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354.
Springer, Heidelberg (1999)

20. OMG (Object Management Group), UML (Unified Modeling Language),
http://www.uml.org/

21. Pnueli, A.: Linear and Branching Structures in the Semantics and Logics of Re-
active Systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32.
Springer, Heidelberg (1985)

22. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading, MA (1998)

23. Specification of aSOAP, http://fmt.isti.cnr.it/umc/examples/aSOAP.umc
24. Stirling, C., Walker, D.: Local Model Checking in the Modal μ-Calculus. In: Dı́az,

J., Orejas, F. (eds.) Proceedings of the International Joint Conference on The-
ory and Practice of Software Development (TAPSOFT 1989), Barcelona, Spain,
vol. 354, pp. 369–383. Springer, Berlin (1989)

25. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–
45. Springer, Heidelberg (2006)

26. W3C (WWW Consortium), Latest SOAP versions, http://www.w3.org/TR/soap/

http://www.uml.org/
http://fmt.isti.cnr.it/umc/examples/aSOAP.umc
http://www.w3.org/TR/soap/

Model Classifications and Automated

Verification

Radek Pelánek�

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic

xpelanek@fi.muni.cz

Abstract. Due to the significant progress in automated verification,
there are often several techniques for a particular verification problem.
In many circumstances different techniques are complementary — each
technique works well for different type of input instances. Unfortunately,
it is not clear how to choose an appropriate technique for a specific in-
stance of a problem. In this work we argue that this problem, selection of
a technique and tuning its parameter values, should be considered as a
standalone problem (a verification meta-search). We propose several clas-
sifications of models of asynchronous system and discuss applications of
these classifications in the context of explicit finite state model checking.

1 Introduction

One of the main goals of computer aided formal methods is automated verifica-
tion of computer systems. In recent years, very good progress has been achieved
in automating specific verification problems. However, even automated verifica-
tion techniques like model checking are far from being a push-button technology.
With current verification techniques many realistic systems can be automatically
verified, but only if applied to the right level of abstraction of a system and if
suitable verification techniques are used and right parameter values are selected.

The first problem is addressed by automated abstraction refinement tech-
niques and received lot of attention recently (e.g., [1,9]). The second problem,
however, did not receive much attention so far and there are only few works in
this direction. Ruys and Brinksma [38] describe methodology for model checking
‘in the large’. Sahoo et al. [39] use sampling of the state space to decide which
BDD based reachability technique is the best for a given model. Mony et al. [29]
use expert system for automating proof strategies. Eytani et al. [11] give a high-
level proposal to use an ‘observation database’ for sharing relevant information
among different verification techniques.

Automation of the verification process is necessary for practical applicability
of formal verification. Any self-respecting verification tool has a large number
of options and parameters, which can significantly influence the complexity of
verification. In order to verify any reasonable system, it is necessary to set these

� Partially supported by GA ČR grant no. 201/07/P035.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 149–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 R. Pelánek

parameters properly. This can be done only by an expert user and it requires lot
of time. We believe that the research focus should not be only on the development
of new automated techniques, but also on an automated selection of an existing
technique.

1.1 Verification Meta-search

So far most of the research in automated verification has been focused on ques-
tions of the verification problem: given a system S and a property (or speci-
fication) ϕ, determine whether S satisfies ϕ. This is a search problem — an
algorithm searches for an incorrect behaviour or for a proof. Research has been
focused on solving the problem for different formalisms and optimizing it for the
most useful ones.

We believe that it is worthwhile to consider the following problem as well: given
a system and a property, find a technique T and parameter values p such that T (p)
can provide answer to the verification problem. This can be viewed as a verification
meta-search problem. Let an entity responsible for the verification meta-search be
called a verification manager. The manager has the following tasks:

1. Decide which approach to the verification should be used, e.g., symbolic
versus explicit approach, whether to use on-the-fly verification or whether
to generate the full state space and then perform verification, etc.

2. Combine relevant information obtained from different techniques, see e.g.,
Synergy approach [18] for combination of over-approximation and testing.

3. Choose among different techniques (implementations) for a particular veri-
fication task and set parameters of a chosen technique.

In this work we focus mainly on the third task of the manager. To give a
practical example of this task, we provide two specific cases. Firstly, consider on-
the-fly memory reduction techniques — the goal of these techniques is to reduce
memory requirements of exhaustive finite state verification. Examples of such
techniques are partial order reduction, symmetry reduction, state compression,
and caching. Each of these techniques has its merits and disadvantages, none of
them is universal (see [32] for an evaluation). Moreover, most of these techniques
have parameters which can tune a time/memory trade-off. Secondly, consider
algorithms for accepting cycle detection on networks of workstations, which are
used for LTL verification of large finite state models. Currently there are at least
five different algorithms, each with specific disadvantages and parameters [2].

At the moment the verification manager is usually a human expert. Expert can
perform this role rather well, however such ‘implementation’ of the verification
manager is far from automated. There has been attempts to facilitate the human
involvement, e.g., by using special purpose scripting languages [25], but such
an approach automatizes only stereotypical steps during the verification, not
decisions.

The problem can be addressed by an expert system, which perform the meta-
search with the use of a set of rules provided by experts. Example of such rules
may be:

Model Classifications and Automated Verification 151

– If the model is a mutual exclusion protocol then use explicit model checking
with partial order reduction.

– If state vector is longer then 30 bytes, then use state compression.
– If the state space is expected to contain a large strongly connected com-

ponent, then use cycle detection algorithm X else use cycle detection algo-
rithm Y.

Another option is to employ an adaptive learning system which remembers
characteristics of verification tasks and their results and learns from its own
experiences.

1.2 The Need for Classifications

At this moment, it is not clear what rules should the verification manager use.
But more fundamentally, it is not even clear what criteria should be used in
rules. Whatever is the realization of the manager, the manager needs to make
decision based on some information about an input model. The information used
for this decision should be carefully chosen:

– If the information was too coarse, the manager would not be able to choose
among potentially suitable techniques.

– If the information was too detailed, it would be very hard for the manager
to apply its expertise and experiences.

We believe that an appropriate approach is to develop several categorical clas-
sifications of models and then use these classification for manager’s decisions. To
be applicable, it must be possible to determine suitable techniques for individual
classes of the classification. Moreover, it must be possible to determine a class of
a given model without much effort — either automatically by a fast algorithm
or easily by user judgement.

In this work we focus on asynchronous concurrent systems, for the evaluation
we use models from the BEEM set [35]. For asynchronous concurrent systems
one of the most suitable verification techniques is explicit state space explo-
ration. Therefore, we focus not only on analysis of a model structure, but also
on the analysis of state spaces. In this work we propose classifications based on a
model structure (communication mode, process similarity, application domain)
and also classifications based on properties of state spaces (structure of strongly
connected components, shape and local structure of a state space). We study re-
lation of these classifications and discuss how they can be useful for the selection
of suitable techniques and parameters (i.e., for guiding the meta-search).

The restriction to explicit model checking techniques limits the applicability
of our contribution. Note, however, that even for this restricted area, there is a
very large number of techniques and optimizations (there are at least 80 research
papers dealing with explicit model checking techniques, see [34] for a list). More-
over, the goal of this work is not to present the ultimate model classification,
but rather to pinpoint a direction, which can be fruitful.

152 R. Pelánek

2 Background

Used models. For the evaluation of properties of practically used models we
employ models from the benchmark set BEEM [35]. This set contains large num-
ber of models of asynchronous systems. The set contains classical models studied
in academic literature as well as realistic case studies. Models are provided in
a low-level specification language (communicating finite state machines) and in
Promela [20]. For our study we have used 115 instances obtained by instantiation
of 57 principally different models.

State spaces. For each instance we have generated its state space. We view a
state space as a simple directed graph G = (V, E, v0) with a set of vertices V , a
set of directed edges E ⊆ V × V , and a distinguished initial vertex v0. Vertices
are states of the model, edges represent valid transitions between states. For our
purposes we ignore any labeling of states or edges. We are concerned only with
the reachable part of the state space.

Let us define several parameters of state spaces. We use these parameters
for classifications. We have also studied other parameters (particularly those
reported in [31]), but these parameters do not lead to interesting classification.

An average degree of G is the ratio |E|/|V |. A strongly connected component
(SCC) of G is a maximal set of states C ⊆ V such that for each u, v ∈ C, the
vertex v is reachable from u and vice versa. Let us consider the breadth-first
search (BFS) from the initial vertex v0. A level of the BFS with an index k is
a set of states with distance from v0 equal to k. The BFS height is the largest
index of a non-empty level, BFS width is the maximal size of a BFS level. An
edge (u, v) is a back level edge if v belongs to a level with a lower or the same
index as u. The length of a back level edge is the difference between the indices
of the two levels.

Reduction techniques. In the following, we often mention two semantics based
reduction techniques. Under the notion partial order reduction (POR) we con-
sider all techniques which aim at reducing the number of explored states by
reducing the amount of interleaving in the model, i.e., we denote by this notion
not just the classic partial order reduction technique [16], but also other related
techniques, e.g., confluence reduction [5], simultaneous reachability analysis [30],
transition compression [24]. Symmetry reduction techniques aim at reducing the
number of explored states by considering symmetric states as equivalent, see
e.g. [22].

3 State Space Classifications

We consider three classifications based on properties of state spaces. Two of them
are based on “global” properties (structure of SCC and shape), one is based on
“local” features of state spaces.

Model Classifications and Automated Verification 153

3.1 Structure of SCC Components

There is an interesting dichotomy with respect to structure of strongly connected
components, particularly concerning the size of the largest SCC (see Fig. 1). A
state space either contains one large SCC, which includes nearly all states, or
there are only small SCCs. Based on this observation, we propose the following
classification:

A type (acyclic): a state space is acyclic, i.e., it contains only trivial components
with one state,

S type (small components): a state space is not acyclic, but contains only small
components; more precisely we consider a state space to be of this type if
the size of the largest component is smaller then 50% states.

B type (big component): a state space contain one large component, most
states are in this component.

In order to apply the classification for automated verification, we need to be
able to detect the class of a model without searching its full state space. This can
be done by random walk exploration [36], for example by the following simple
method based on detection of cycles by random walk. We run 100 independent
random walks through the state space. Each random walk starts at the initial
state and is limited to at most 500 steps. During the walk we store visited states,
i.e., path through the state space. If a state is revisited then a cycle is detected
and its length can be easily computed. At the end, we return the length of the
longest detected cycle. Fig. 1 shows results of this method. For the class A the
longest detected cycle is, of course, always 0. For the class S the longest detected
cycle is usually between 10 and 35, for the class B it is usually above 30. This
illustrates that even such a simple method can be used to quickly classify state
spaces with a reasonable precision.

What are possible applications of this classification? For the A type it is
possible to use specialized algorithms, e.g., dynamic partial order reduction [12]
or bisimulation based reduction [33, p. 43-47]. The sweep line method [8] deletes
from memory states, which will never be visited again. This method is useful
only for models with state spaces of the type A or S.

The performance of cycle detection algorithms1, which are used for LTL ver-
ification, is often dependent on the SCC structure. For example a distributed
algorithm based on localization of cycles is suitable only for S type state spaces;
depth-first search based algorithm [21] can also be reasonably applied only for S
type state spaces, because for B type state spaces it tends to produce very long
counterexamples, which are not practical. On the other hand, (explicit) one-way-
catch-them-young algorithm [6] has complexity O(nh), where h is height of the

1 Note that cycle detection algorithm are usually executed on the product graph with
a formula [42] and not on the state space itself. However, our measurements indicate
that the structure of product graphs is very similar to structure of plain state spaces.
The measurements were performed on product graphs included in the BEEM [35]
set.

154 R. Pelánek

Size of the largest component (%)

F
re

qu
en

cy

0 20 40 60 80 100

0
10

20
30

40

A B S

0
10

0
20

0
30

0
40

0

Fig. 1. The first graph shows the histogram of sizes of the largest SCC component
in a state space. The second graph shows the longest detected cycle using random
walk; results are grouped according to class and presented using a boxplot method
(lines denote minimum, 25th quartile, median, 75th quartile and maximum, circles are
outliers).

SCC quotient graph, i.e., this algorithm is more suitable for B type state spaces.
Similarly, the classification can be employed for verification of branching time
logics (e.g., the algorithm in [7] does not work well for state spaces consisting of
one SCC).

3.2 Shape of the State Space

We have found that several global state space parameters are to certain extent
related: average degree, BFS height and width, number and length of back level
edges. In this case the division into classes is not so clear as in the previous case.
Nevertheless, it is possible to identify two main classes with respect to these
parameters2:

H type (high): small average degree, large BFS height, small BFS width, few
long back level edges.

W type (wide): large average degree, small BFS height, large BFS width, many
short back level edges.

This classification can be approximated using an initial sample of the BFS
search. The classification can be used in similar way as the previous one. Sweep
line [8] and caching based on transition locality [37] work well only for state
spaces with short back level edges, i.e., these techniques are suitable only for W
type state spaces. On the other hand, the complexity of BFS-based distributed
cycle detection algorithm [3] is proportional to number of back level edges, i.e.,
this algorithm works well only on H type state spaces.

For many techniques the H/W classification can be used to set parameters
appropriately: algorithms which exploit magnetic disk often work with individ-
ual BFS levels [41]; random walk search [36] and bounded search [23] need to
2 Note that this classification is not complete partition of all possible state spaces. The

remaining classes, however, do not occur in practice. The same holds for as several
other classifications which we introduce later.

Model Classifications and Automated Verification 155

Diamond 3-mond Diamond 3x3 FFL

1

2 3

4

1

2 3 4

5 6 7

8

0

1 2

3 4 5

6 7

8

1

2

3

Fig. 2. Illustrations of motifs

estimate the height of the state space; techniques using stratified caching [15]
and selective storing of states [4] could also take the shape of the state space
into account.

3.3 Local Structure

Now we turn to a local structure of state spaces, particularly to typical sub-
graphs. Recently, so called ‘network motifs’ [28,27] were intensively studied in
complex networks. Motifs are studied mainly in biological networks and are used
to explain functions of network’s components (e.g., function of individual pro-
teins) and to study evolution of networks.

We have systematically studied motifs in state spaces. We have found the
following motifs to be of specific interest either for abundant presence or for total
absence in many state spaces: diamonds (we have studied several variations of
diamond-like structures, see Fig. 2), which are well known to be present in state
spaces of asynchronous concurrent systems due to the interleaving semantics;
chains of states with just one successor, we have measured occurrences of chains
of length 3, 4, 5; short cycles of lengths 2, 3, 4, 5, which are not very common in
most state spaces; and feed forward loop (see Fig. 2), which is a typical motif for
networks derived from biological systems [28], in state spaces it is rather rare.

We have measured number of occurrences of these motifs and studied cor-
relations of their occurrences. With respect to motifs we propose the following
classes:

D type (diamond): a state space contains many diamonds, usually no short
cycles and only few chains of feed forward loops,

C type (chain): a state space contains many chains, very few diamonds or short
cycles,

O type (other): a state space either contains short cycles and/or feed forward
loops, chains are nearly absent, diamonds may be present, but they are not
dominant.

Identification of these classes can be performed by exploration of a small sam-
ple of the state space. This classification can be used to choose among memory
reduction techniques. For D type state spaces it is reasonable to try to employ
POR, whereas for C type state spaces this reduction is unlikely to yield signif-
icant improvement. On the other hand, for C type state spaces good memory

156 R. Pelánek

Fig. 3. Correlation matrix displaying correlation of 116 state spaces. Light color means
positive correlation, dark color means negative correlation. The first matrix shows
correlation with respect to average degree, BFS height and width, number and length of
back level edges (all parameters are normalized). The second matrix shows correlations
with respect to presence of studied motifs.

reduction can be obtained by selective storing of states [4]. The classification
can be also used for tuning parameter values, particularly for technique which
employ local search, e.g., random walk enhancements [36,40], sibling caching and
children lookahead in distributed computation [26], heuristic search.

3.4 Relation Among State Space Classifications

Table 1. presents number of models in different combinations of classes. Specific
numbers presented in the table are influenced by the selection of used models.
Nevertheless, it is clear that presented classifications are rather orthogonal, there
is just slight relation between the shape and the local structure.

4 Model Classifications

Now we turn to classifications based directly on a model. At first, we study
classifications according to model structure, which are relevant particularly with
respect to reduction techniques based on semantics (e.g., partial order reduction,
symmetry reduction). Secondly, we study models from different application do-
mains and show that each application domain has its characteristics with respect
to presented classifications.

4.1 Model Structure

Classifications based on structure of a model are to some extent dependent on a
specific syntax of the specification language. There are many specification lan-
guages and individual specification languages significantly differ on syntactical
level. However, if we restrict our attention to models of asynchronous systems,
we find that most specification languages share the following features:

Model Classifications and Automated Verification 157

– a model is comprised of a set of processes,
– a process can be viewed as a finite state machine extended with variables,
– processes communicate either via channels or via globally shared variables.

We discuss several possible classifications based on these basic features. Cate-
gorization of a model according to these classifications can be determined auto-
matically by static analysis of a model. This issue is dependent on a particular
specification language and it is rather straightforward, therefore, we do not dis-
cuss it in detail.

Communication Mode. With respect to communication we can study the
predominant mean of communication (shared variables or channels) and the
communication structure (ring, line, clique, star). It turns out that these two
features are coupled, i.e., with respect to communication we can consider the
following main classes:

DV type (dense, variable): processes communicate via shared variables, the
communication structure is dense, i.e., every process can communicate with
(nearly) every other process,

SC type (sparse, channel): processes communicate via (buffered) channels, the
communication structure is rather sparse, e.g., ring, star, or tree.

N type (none): no communication, i.e., the model is comprised of just one
process.

This classification is related particularly to partial order reduction techniques.
The classification is completely orthogonal to state space classifications (see
Table 1.).

Process Similarity. A common feature in models of asynchronous systems is
the occurrence of several similar processes (e.g., several participants in a mu-
tual exclusion protocol, several users of an elevator, several identical nodes in a
communication protocol). By ‘similarity’ we mean that processes are generated
from one template by different instantiations of some parameters, i.e., we do not
consider symmetry in any formal sense (cf. [22]). With respect to similarity, a
reasonable classification is the following:

S2 type. All processes are similar.
S1 type. There exists some similar processes, but not all of them.
S0 type. There is no similarity among processes.

This classification is clearly related to symmetry reduction. It can also be
employed for state compression [19]. This classification is again orthogonal to
state space classifications and only slightly correlated with the communication
mode classification (S1 is related to SC, S2 is related to DV), for details see
Table 1.

158 R. Pelánek

Table 1. Relations among classifications. For each combination of classes we state
the number of models in the combination. In total there are 115 classified models, all
models are from the BEEM set [35]. Reported state space classifications are based on
traversal of the full state space.

State space classifications

all H W D O C

all 115 58 57 75 23 17

A 24 10 14 19 3 2
S 37 18 19 21 9 7
B 54 30 24 35 11 8

H 58 43 3 12
W 57 32 20 5

Model classifications

all S2 S1 S0

all 115 41 39 35

DV 44 31 9 4
SC 61 10 30 21
N 10 0 0 10

State space versus model classifications

all A S B H W D O C

all 115 24 37 54 58 57 75 23 17

S2 41 10 9 22 20 21 37 3 1
S1 39 8 17 14 20 19 20 10 9
S0 35 6 11 18 18 17 18 10 7

DV 44 8 12 24 20 24 33 6 5
SC 61 12 22 27 36 25 40 10 11
N 10 4 3 3 2 8 2 7 1

Other. We briefly mention several other possible classifications and their
applications:

– Data/Control intensity of a model (Is a model concerned with data manip-
ulation and arithmetic?); related to abstraction techniques [17,1,9], which
focus on reducing the data part of the model.

– Tightly/Loosely coupledprocesses (What is the proportionof interprocess and
intraprocess computation?); important for thread-modular techniques [13].

– Length of a state vector; relevant particularly for state compression tech-
niques [19].

4.2 Application Domain

Finally, we discuss application domains of asynchronous concurrent systems.
Table 2. presents relations among application domains and previously discussed
classifications. The table demonstrates that models from each application do-
main have specific characteristics. Knowledge of these characteristics can be
helpful for the development of (commercial) verification tools specialized for
a particular application domain. Beside that, characteristics of models can be
used to develop templates and design patterns [14,10], which can facilitate the
modeling process.

Mutual exclusion algorithms. The goal of a mutual exclusion algorithm is to
ensure an exclusive access to a shared resource. Models of these algorithms usu-
ally consist of several nearly identical processes which communicate via shared

Model Classifications and Automated Verification 159

Table 2. Relation of state space classification and model type

SCC struct. shape local struct comm. proc. sim.
all A S B H W C D O SC DV N S2 S1 S0

all 115 24 37 57 58 57 17 75 23 61 44 10 41 39 35

com. protocol 24 0 10 14 15 9 5 18 1 24 0 0 0 7 17
controller 17 1 7 9 15 2 3 12 2 12 5 0 0 13 4
leader el. 12 12 0 0 6 6 0 12 0 8 4 0 9 3 0
mutex 28 0 8 20 13 15 0 25 3 2 26 0 28 0 0
sched. 18 9 3 6 4 14 2 5 11 2 6 10 1 5 12
other 16 2 9 5 5 11 7 3 6 13 3 0 3 11 2

variables; communication structure is either clique or ring; individual processes
are usually rather simple. State vectors are relatively short; state space usually
contains one big strongly connected component, with many diamonds. POR and
symmetry reduction may be useful, but careful modeling may be necessary in
order to make them applicable.

Communication protocols. The goal of communication protocols is to ensure
communication over an unreliable medium. The core of a model is a sender
process, a receiver process, and a bus/medium; the communication structure is
therefore usually linear (or simple tree). Processes communicate by handshake;
shared variables are not used. Processes are not similar, sender/receiver processes
can be rather complicated. State vectors are rather long; state space is not
acyclic, it is rather high, often with many diamonds. POR is usually applicable.

Leader election algorithms. The goal of leader election algorithms is to choose
a unique leader from a set of nodes. Models consist of a set of (nearly) identi-
cal processes, which are rather simple. Processes are connected in a ring, tree,
or arbitrary graph; communication is via (buffered) channels. State spaces are
acyclic with diamonds. POR, symmetry reduction, and specialized techniques
for acyclic state spaces [12] may be applicable.

Controllers. Models of controllers usually have centralized architecture: a con-
troller process communicates with processes representing individual parts of the
system. The controller process is rather complex, other processes may be sim-
ple. The communication can be both by shared variables and handshake. State
vectors are rather long; state spaces are high, usually with diamonds. Due to the
centralized architecture semantics-based reduction techniques are hard to apply.

Scheduling, planning, puzzles. Planning and scheduling problems and puz-
zles are not the main application domain of explicit model checkers. Neverthe-
less, there are good reasons to consider them together with asynchronous sys-
tems (similar modeling formalism, research in combinations of model checking
and artificial intelligence techniques). Models often consist of just one process.

160 R. Pelánek

Planning, scheduling problems have wide state space without prevalence of dia-
monds or chains. State spaces are often acyclic.

Other application domains. Similar characterizations can be provided for
many other application domains. Examples of other often studied application
domains are cache coherence protocols, device drivers or data containers.

5 Conclusions and Future Work

We argue that it is important not just to develop (narrowly focused) techniques
for automated verification, but also to automatize the verification process, which
is currently usually performed by an expert user. To this end, it is desirable to
have classifications of models. We propose such classifications for asynchronous
systems; these classifications are based on properties of state spaces and on struc-
ture of models. We also discuss examples of applications of these classifications;
particularly the following two types of application:

– indication of suitable techniques to use for verification of the given model,
– setting suitable parameter values for the verification.

In the paper we provide several specific examples of such application; we note
that these are just examples, not a full list of possible applications. The presented
classifications are also not meant to be the final classifications of asynchronous
systems. We suppose that further research will expose the need for other classifi-
cation or for the refinement of presented classification. Moreover, for other appli-
cation domains and verification techniques (e.g., synchronous systems, symbolic
techniques, bounded model checking) it will be probably necessary to develop
completely new classifications. Nevertheless, we believe that our approach can
provide valuable inspiration even for this direction.

This work is a part of a long term endeavour. We are continuously developing
the benchmark set BEEM [35]. Using the presented classification, we are working
on experimental evaluation of the relation of classes and performance of differ-
ent techniques. We are also developing techniques for estimation of state space
parameters from samples of a state spaces, such estimations (e.g., the size of a
state space), can be useful for guiding the verification meta-search. Finally, the
long term goal is to develop an automated ‘verification manager’, which would
be able to learn from experience.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of c programs. In: Proc. of Programming Language Design and Imple-
mentation (PLDI 2001), pp. 203–213. ACM Press, New York (2001)

2. Barnat, J., Brim, L., Cerná, I.: Cluster-based ltl model checking of large systems.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 259–279. Springer, Heidelberg (2006)

Model Classifications and Automated Verification 161

3. Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search LTL model-
checking. In: Proc. Automated Software Engineering (ASE 2003), pp. 106–115.
IEEE Computer Society, Los Alamitos (2003)

4. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725. Springer, Heidelberg (2003)

5. Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Hei-
delberg (2002)

6. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection. In: Ball, T., Ra-
jamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg
(2003)

7. Cheng, A., Christensen, S., Mortensen, K.: Model checking coloured petri nets
exploiting strongly connected components. Technical Report DAIMI PB – 519,
Computer Science Department, University of Aarhus (1997)

8. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001.
LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proc. Workshop on Formal Methods in Software Prac-
tice, pp. 7–15. ACM Press, New York (1998)

11. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Toward a Framework and Bench-
mark for Testing Tools for Multi-Threaded Programs. Concurrency and Computa-
tion: Practice and Experience 19(3), 267–279 (2007)

12. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proc. of Principles of programming languages (POPL 2005), pp. 110–
121. ACM Press, New York (2005)

13. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

15. Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN
2004. LNCS, vol. 2989, pp. 23–39. Springer, Heidelberg (2004)

16. Godefroid, P.: Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem. LNCS, vol. 1032. Springer, Heidelberg
(1996)

17. Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

18. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: A new algorithm for property checking. In: Proc. of Foundations of software
engineering, pp. 117–127. ACM Press, New York (2006)

19. Holzmann, G.J.: State compression in SPIN: Recursive indexing and compression
training runs. In: Proc. of SPIN Workshop (1997)

20. Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts (2003)

21. Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first search. In: Proc.
SPIN Workshop, pp. 23–32. American Mathematical Society, Providence, RI (1996)

162 R. Pelánek

22. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1–2), 41–75 (1996)

23. Krčál, P.: Distributed explicit bounded ltl model checking. In: Proc. of Parallel
and Distributed Methods in verifiCation (PDMC 2003). ENTCS, vol. 89. Elsevier,
Amsterdam (2003)

24. Kurshan, R.P., Levin, V., Yenigün, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569–581.
Springer, Heidelberg (2002)

25. Lang, F.: Compositional verification using svl scripts. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 465–469. Springer, Heidelberg (2002)

26. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80–102. Springer, Heidelberg
(2001)

27. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer,
M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663),
1538–1542 (2004)

28. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: Simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

29. Mony, H., Baumgartner, J., Paruthi, V., Kanzelman, R., Kuehlmann, A.: Scalable
automated verification via expert-system guided transformations. In: Hu, A.J.,
Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 159–173. Springer, Hei-
delberg (2004)

30. Ozdemir, K., Ural, H.: Protocol validation by simultaneous reachability analysis.
Computer Communications 20, 772–788 (1997)

31. Pelánek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 5–22. Springer, Heidelberg (2004)

32. Pelánek, R.: Evaluation of on-the-fly state space reductions. In: Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS 2005), pp. 121–127
(2005)

33. Pelánek, R.: Reduction and Abstraction Techniques for Model Checking. PhD the-
sis, Faculty of Informatics, Masaryk University, Brno (2006)

34. Pelánek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006),
http://anna.fi.muni.cz/models/

35. Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

36. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), pp. 98–105. ACM Press, New York (2005)

37. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite state concurrent systems. Software Tools
for Technology Transfer (STTT) 6(4), 320–341 (2004)

38. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Jour-
nal on Software Tools for Technology Transfer (STTT) 4(2), 246–259 (2003)

39. Sahoo, D., Jain, J., Iyer, S.K., Dill, D., Emerson, E.A.: Predictive reachability
using a sample-based approach. In: Borrione, D., Paul, W. (eds.) CHARME 2005.
LNCS, vol. 3725, pp. 388–392. Springer, Heidelberg (2005)

http://anna.fi.muni.cz/models/

Model Classifications and Automated Verification 163

40. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. In: Proc. of Parallel and Distributed Model
Checking (PDMC 2003). ENTCS, vol. 89 (2003)

41. Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the Murphi
verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

42. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Kozen, D. (ed.) Proc. of Logic in Computer Science (LICS 1986),
pp. 332–344. IEEE Computer Society Press, Los Alamitos (1986)

An Approach to Formalization and Analysis

of Message Passing Libraries�

Robert Palmer, Michael DeLisi,
Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah
{rpalmer,delisi,ganesh,kirby}@cs.utah.edu

Abstract. Message passing using libraries implementing the Message
Passing Interface (MPI) standard is the dominant communication mech-
anism in high performance computing (HPC) applications. Yet, the lack
of an implementation independent formal semantics for MPI is a huge
void that must be filled, especially given the fact that MPI will be imple-
mented on novel hardware platforms in the near future. To help reason
about programs that use MPI for communication, we have developed a
formal TLA+ semantic definition of the point to point communication
operations to augment the existing standard. The proposed semantics in-
cludes 42 MPI functions, including all 35 point to point operations, many
of which have not been formally modeled previously. We also present a
framework to extract models from SPMD-style C programs, so that de-
signers may understand the semantics of MPI by exercising short, yet
pithy, communication scenarios written in C/MPI. In this paper, we
describe (i) the TLA+ MPI model features, such as handling the ex-
plicit memory for each process to facilitate the modeling of C pointers,
and some of the widely used MPI operations, (ii) the model extraction
framework and the simplifications made to the model that help facilitate
explicit-state model checking of formal semantic definitions, (iii) a cus-
tomized model checker for MPI that performs much faster model check-
ing, and features a dynamic partial-order reduction algorithm whose cor-
rectness is directly based on the formal semantics, and (iv) an error trail
replay facility in the Visual Studio environment. Our effort has helped
identify a few omissions in the MPI reference standard document. These
benefits suggest that a formal semantic definition and exploration ap-
proach as described here must accompany every future effort in creating
parallel and distributed programming libraries.

1 Introduction

Progress in high-performance scientific computing (HPC) is fundamental to sci-
entific discovery in virtually all walks of life. The Message Passing Interface
(MPI, [1]) library has become a de facto standard in HPC, and is being actively
developed and supported through several implementations [2,3,4,5] designed to
� Supported in part by NSF award CNS-00509379, Microsoft HPC Institutes Program,

and SRC Contract 2005-TJ-1318.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 164–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Approach to Formalization and Analysis of Message Passing Libraries 165

run on a plethora of architectural platforms. MPI is, however, a portable stan-
dard for overall behavior, and not performance. Therefore, MPI programs are
often manually or automatically (e.g., [6]) re-tuned when ported to another hard-
ware platform, for example by changing its basic primitives (e.g., MPI_Send) to
specialized versions (e.g., MPI_Isend). The fact that MPI-1 supports over 128
primitives and MPI-2 supports over 300 is largely to facilitate such transforma-
tions.1 In this context, it is crucial that the designers performing code tuning are
aware of the very fine details of the MPI semantics. Unfortunately, such details
are far from obvious. For illustration, consider the following MPI pseudo-code
involving two processes:

P0: if(rank==0){MPI_Irecv(rcvbuf1, from 1); MPI_Irecv(rcvbuf2,from 1);..}

P1: if(rank==1){sendbuf1=6; sendbuf2=7;

MPI_Issend(sendbuf1, to 0); MPI_Isend(sendbuf2, to 0);..}

Process 1 is designed to issue two immediate mode sends (the first being a
synchronous-mode send) to process 0, while Process 0 is designed to post two
immediate-mode receives. Consider some simple questions pertaining to the ex-
ecution of this program:

1. Is it guaranteed that rcvbuf1 will eventually contain the message sent out
of sendbuf1? The answer is ‘yes,’ since MPI guarantees in-order message
delivery.

2. When can the buffers be accessed? Since all sends and receives use the im-
mediate mode, the handles that these calls return have to be tested for
completion using an explicit MPI_Test or MPI_Wait (suppressed for brevity
in our pseudo-code) before the associated buffers are allowed to be accessed
(written to or even read from).

3. Will the first receive always complete before the second? No such guarantee
exists (the second may complete first), as these are immediate mode receives
which are guaranteed only to be initiated in program order.

4. What is guaranteed about the matching receive when the first send com-
pletes? It is guaranteed that this receive has been posted. This is because the
first send is a synchronous send, which forces a rendezvous with the posting
of the first receive.

The MPI reference standard [1] is an informal, non machine-readable docu-
ment that offers English descriptions of the individual behaviors of MPI primi-
tives. It does not support answering the above kinds of simple questions in any
tractable and reliable way. Running test programs, using actual MPI libraries, to
reveal answers to the above kinds of questions is also futile, given that various
MPI implementations exploit the liberties of the standard by specializing the
semantics in various ways.

In this paper, we present a formal, high-level, and executable standard specifi-
cation for a non-trivial subset of MPI 1.1. In particular, our specification consists
1 It is widely known that MPI programs use only about a dozen or so of the 300

MPI library calls - but the precise dozen chosen depends on the applications being
programmed, as well as the hardware platform on which the program runs.

166 R. Palmer et al.

of 42 MPI 1.1 functions. We write this specification in TLA+ [7], a formal speci-
fication notation widely used in industry. Our specification is integrated with the
verification framework described in this paper. The features of this framework
are as follows:

1. It permits designers to explore the MPI semantics in the setting of MPI pro-
grams written in C by extracting a TLA+ model of the program, embedding
the MPI calls, and linking it to our TLA+ models of MPI functions. The
exploration happens through model checking [8], and not through concrete
executions. Error traces produced by the model checker are, however, dis-
played in a user-friendly way by driving the Microsoft Visual Studio debugger
to walk the original program code following the error trace.

2. The framework includes two model checkers: MPI-TLC, a model checker that
works directly off the formal semantic definitions using the TLA+ model
checker, TLC [9]; and MPIC [10], a model checker that embodies the com-
munication semantics of MPI directly as C# program code.

3. The communication semantics of a small representative subset of MPI were
incorporated into MPIC by faithfully following our TLA+ definitions. In
addition, MPIC implements a dynamic partial-order reduction algorithm
(DPOR) (adapted from [11]) for efficient state-space traversal. The DPOR
algorithm avoids commuting independent actions, where the notion of inde-
pendence was stated and manually proved using a simplified version of our
MPI formal semantics.

Experimental results from MPIC are provided in Figure 11. A more detailed
coverage of MPIC or our DPOR algorithm are outside the scope of this paper,
but may be found in [10].2

The questions raised on Page 165 can be answered by writing an MPI program
such as the one in Figure 1 and analyzing this program using our framework.
The four questions can be answered, in order, as follows:

1. Assert that the data read by process 0 is: rcvbuf1 == 6&&rcvbuf2 == 7.
If it is possible under the semantics for other values to be assigned to these
two variables, then the TLC model checker will find the violation.

2. Move the assertions mentioned in the response to the previous question to
any other point before the corresponding waits. The model checker then
finds violations—meaning that the data cannot be accessed on the receiver
until after the wait. If one adds an assignment to the variable being transmit-
ted, i.e., after the MPI_Issend yet before the MPI_Wait, the model checker
discovers the violation as the wrong value will be passed to the receiver.

3. We can reverse the order of the MPI_Wait commands. If the model checker
does not find a deadlock then it is possible for the operations to complete in
either order.

4. To answer this question, we employ the program in Figure 1. The MPI se-
mantics for immediate mode ready send requires the corresponding receive to

2 The entire modeling framework described in this paper may be downloaded from
http://www.cs.utah.edu/formal verification/verification environment

An Approach to Formalization and Analysis of Message Passing Libraries 167

1 #include "mpi.h" 22 data2 = 6;
2 23 MPI_Issend(&data1, 1, MPI_INT, 0,
3 int main(int argc, char** argv) 24 1, MPI_COMM_WORLD, &req1);
4 { 25 }
5 int rank, size, data1, data2, data3, flag; 26 if(rank == 1){
6 MPI_Request req1, req2, req3; 27 MPI_Wait(&req1, &stat);
7 MPI_Status stat; 28 MPI_Irsend(&data2, 1, MPI_INT, 0,
8 MPI_Init(&argc, &argv); 29 0, MPI_COMM_WORLD, &req2);
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank); 30 MPI_Irsend(&data3, 1, MPI_INT, 0,

10 MPI_Comm_size(MPI_COMM_WORLD, &size); 31 2, MPI_COMM_WORLD, &req3);
11 if(rank == 0){ 32 } else {
12 data1 = 0; 33 MPI_Wait(&req2, &stat);
13 data2 = 0; 34 }
14 MPI_Irecv(&data1, 1, MPI_INT, 1, 35 if(rank == 0){
15 0, MPI_COMM_WORLD, &req1); 36 MPI_Wait(&req1, &stat);
16 MPI_Irecv(&data2, 1, MPI_INT, 1, 37 } else {
17 1, MPI_COMM_WORLD, &req2); 38 MPI_Wait(&req2, &stat);
18 MPI_Irecv(&data3, 1, MPI_INT, 1, 39 }
19 2, MPI_COMM_WORLD, &req3); 40 MPI_Finalize();
20 } else { 41 return 0;
21 data1 = 7; 42 }

Fig. 1. The C program used to answer Question 4 on Page 165

be posted before the MPI_Irsend. We cause the tag of the messages to force
the second MPI_Irecv to match the MPI_Issend. We execute the MPI_Wait
corresponding to the MPI_Issend and then post two MPI_Irsend operations.
Now we observe that the model checker (in performing a breadth first search)
finds the first MPI_Irsend posts without error, but the second MPI_Irsend
violates the semantics. Thus we conclude that when the MPI_Wait of process
1 returns, process 0 is guaranteed to have executed the second MPI_Irecv,
but is not guaranteed to have executed any further.

1.1 Related Work

The idea of writing formal specifications of standards and building executable
environments is a vast area. The IEEE Floating Point standard [12] was initially
conceived as a standard that helped minimize the danger of non-portable float-
ing point implementations, and now has incarnations in various higher order
logic specifications (e.g., [13]), finding routine applications in formal proofs of
modern microprocessor floating point hardware circuits. Formal specifications
using TLA+ include Lamport’s Win32 Threads API specification [14] and the
RPC Memory Problem specified in TLA+ and formally verified in the Isabelle
theorem prover by Lamport, Abadi, and Merz [15]. In [16], Jackson presents a
lightweight object modeling notation called Alloy, which has tool support [17,18]
in terms of formal analysis and testing based on Boolean satisfiability methods.

Each formal specification framework solves modeling and analysis issues spe-
cific to the object being described. In our case, we were initially not sure how to
handle the daunting complexity of MPI nor how to handle its modeling, given
that there has only been very limited effort in terms of formal characterization of
MPI. The architecture of our framework that incorporates solutions that finally
worked are described in Section 2.

168 R. Palmer et al.

In [19], Georgelin and Pierre specify some of the MPI functions in LOTOS
[20]. In [21], Siegel and Avrunin describe a finite state model of a limited number
of MPI point-to-point operations. This finite state model is embedded in [22].
In [23], the authors support a limited partial-order reduction method – one that
handles wild-card communications in a restricted manner, as detailed in [10].
In [24], additional ‘non-blocking’ MPI primitives are modeled in Promela. Our
own past efforts in this area are described in [25,26,27,28]. None of these efforts:
(i) approach the number of MPI functions we handle, (ii) have the same style
of high level specifications (TLA+ is much closer to mathematical logic than
finite-state Promela or LOTOS models), (iii) have a model extraction frame-
work starting from C/MPI programs, (iv) incorporate a dynamic partial-order
reduction algorithm that handles the difficulties of wildcard communications
more generally, and (v) have a practical way of displaying error traces in the
user’s C code. Section 3 describes the architecture of our implementation.

In the act of writing our formal specification, we noticed serious omissions in
the English standard (confirmed by experts [29]). While these omissions were
found largely by luck, the opposite problem – namely, that of our specification
itself not correctly implementing the intent of the MPI English standard writers
– needs much more care to avoid. We have taken some precautions to avoid such
errors. First, our specification is organized for easy traceability: many clauses
in our specification are cross-linked with [1] to particular page/line numbers of
[1]. Second, the “formal semantic calculator” provided by our approach using
familiar programming and debugging environments (e.g., TLC, Phoenix, and
Visual Studio) may help engage expert MPI users (who may not be formal
methods experts) into experimenting with our semantic definitions.

More work is needed to exploit the full potential of formal semantic definitions,
as well as a framework such as ours. One can state and prove theorems that link
concepts spread across multiple pages, as is the case with the current reference
document [1]. These, and other concluding remarks are provided in Section 4.

2 Communication Semantics Model of MPI

We have tried to make this section intuitive even for those not familiar with
MPI: they may focus on the higher level points that we have expressed, as these
issues are bound to arise in any such endeavor as this.

The TLA+ model of MPI is intended to capture the semantic details that are
both explicitly and tacitly referenced in the natural language standard, while
abstracting away the implementation specific issues that are not specified. Our
model broadly implements the architecture shown in Figure 2. We preserve the
MPI API such that application of an MPI operation has the same external
interface as an MPI procedure call in C. The main pieces of the model are
point-to-point operations, collective operations, and constants.

Point-to-point and collective operations are coupled using a communicator.
We model the communicator as a context and a group (MPI additionally has
topologies and attributes, which we consider to be future work). The context

An Approach to Formalization and Analysis of Message Passing Libraries 169

Requests Collective

Context Group

CommunicatorCommunicator

Point to Point
Operations

Collective
Operations

Constants
Operations Operations

MPI 1.1 API

Fig. 2. TLA+ MPI model architecture

MPI Get count MPI Request free MPI Test canceled
MPI Buffer attach MPI Waitany MPI Send init
MPI Buffer detach MPI Testany MPI Bsend init
MPI Isend MPI Waitall MPI Ssend init
MPI Ibsend MPI Testall MPI Rsend init
MPI Issend MPI Waitsome MPI Recv init
MPI Irsend MPI Testsome MPI Start
MPI Irecv MPI Iprobe MPI Startall
MPI Wait MPI Probe
MPI Test MPI Cancel

Fig. 3. Point-to-point operations included in the TLA+ specification

houses all information about messages that are currently available for commu-
nication. Groups define the set of processes allowed to access a communicator
and their respective ranks (used for message addressing).

2.1 Modeling Approach

The MPI standard [1] contains some 128 operations that provide a rich collec-
tion of communication options. A full 35 of these operations are dedicated to
pair-wise exchanges of messages between processes. Our model contains those
operations that we could represent using exactly one TLA+ atomic transition
(primed variables equated to unprimed variables, as in Figures 6 and 7). The
operations included are shown in Figure 3. We model the remaining seven opera-
tions as sequential compositions of those shown in Figure 3. Thus MPI Send be-
comes MPI Isend and MPI Wait issued in that order. Similarly, MPI Sendrecv
becomes MPI Isend, MPI Irecv, and two MPI Wait operations issued sequen-
tially, and so on. The reason for this decision is that the additional overhead
involved in modeling these operations directly would significantly complicate
our model. For example, consider the additional information needed to model
MPI Ssend directly. For doing this, we would require, for each process, a map
from the program counter (pc) to the next operation to be performed when
MPI Ssend is enabled. In this manner, we can determine when a corresponding

170 R. Palmer et al.

MPI Barrier MPI Group size MPI Group rank
MPI Comm size MPI Comm rank MPI Comm compare
MPI Init MPI Finalize MPI Initialized
MPI Abort

Fig. 4. Additional MPI operations modeled to enable tool-based reasoning on MPI
based parallel programs

MPI Recv could be executed by the receiving process, and then cause both pro-
cesses to jointly execute their state transition steps. However, since there is no
restriction on what type of receive could be matched with MPI Ssend (it could
be MPI Recv, MPI Irecv, MPI Sendrecv, etc.), nor are there restrictions on the
blocking nature of the receives (some block the receiving process while others
do not), supporting each of the variants becomes quite laborious, in addition to
resulting in unreadable model descriptions.

Additional supporting operations included in the model are shown in Figure 4.
Each of the operations has the same parameters in the same order as the MPI
standard, with two additions. First, there is no way for TLA+ operations to
query the system to discover which process is executing, short of having a globally
visible state element. Therefore, the PID of the process executing an MPI call
is passed as a parameter, which appears after the parameters specified in the
standard. We also have not determined a graceful way to provide return values of
MPI function calls. The return address is, therefore, also provided as a parameter
(although handling return values other than MPI SUCCESS remains as future
work).

2.2 What Is Not Modeled

It is important to point out that we have not modeled all of the semantics of
MPI in our work. In addition to the restrictions stated in the previous section,
we have not modeled the following items.

Data: Most data. Data, such as arrays of floating point values, objects, etc., could
be modeled using TLA+. It is, however, not necessary in most cases to retain the
actual data values of a distributed computation to verify reactive properties of
the participating nodes. Therefore we allow a placeholder for data in our formal
model in such a way that it can be included when necessary. We currently do
allow for the preservation of data values, if they are used in assert statements.
Similarly, there are many data manipulation operations, and also operations to
pack data. These are not currently modeled.

Operations on communicators and topologies: Operations on communicators and
topologies are modeled to a limited extent to enable point-to-point communi-
cations on intracommunicators. We currently model the operations shown in
Figure 4 in addition to the point-to-point operations of Chapter 3 of MPI 1.1
shown in Figure 3. Operations on communicators and topologies are planned to
be modeled in the next version of our semantics.

An Approach to Formalization and Analysis of Message Passing Libraries 171

Implementation details: To the greatest extent possible we have avoided assert-
ing implementation-specific details in our formal semantics. One obvious ram-
ification of this omission is that modeling return codes of MPI operations is
completely eliminated (cf. [1, Page 11]).

Handling Implementation-dependent Buffer Availability: As far as the standard
mode sends (e.g., MPI Send, MPI Isend, MPI Send init) go, we require the sys-
tem to either eventually buffer these requests or to not buffer them at all. The
standard allows for an implementation to switch between these policies in a
time-varying manner; we do not know how to attain such generality without
complicating our semantics drastically.

2.3 Modeling Granularity to Preserve the Corner Cases

A formal model for a communications library must model at the right level of
granularity in order to not mask corner cases. In order to achieve this objective,
we introduced three additional rules that are allowed to interleave with the
actions of an individual processes. These rules facilitate message pairing, message
buffering, and message transmission.

Figure 5 shows the interleaved rule that transmits messages from one process to
another. This rule is enabled when there exists process i, and request j on process
i such that the request is started, is globally active, has not been canceled, has not
been transmitted, and has already been paired with another request on some other
process. It is necessary to pair and transmit messages separately because there is

1 Transmit ==
2 /\ \E i \in 0..(N-1) :
3 \E j \in 1..Len(requests[i]) :
4 LET m == requests[i][j] IN
5 /\ m.started
6 /\ m.globalactive
7 /\ \lnot m.canceled
8 /\ \lnot m.transmitted
9 /\ m.match /= <<>>

10 /\ requests’ = [requests EXCEPT ![i] =
11 [@ EXCEPT ![j] =
12 [@ EXCEPT !.transmitted = TRUE]]]
13 /\ IF \lnot requests[m.match[1]][m.match[2]].transmitted
14 THEN
15 IF m.message.state = "recv"
16 THEN Memory’ = [Memory EXCEPT ![i] = [@ EXCEPT ![m.message.addr] =
17 Memory[m.match[1]][requests[m.match[1]][m.match[2]].message.addr]]]
18 ELSE Memory’ = [Memory EXCEPT ![m.match[1]] =
19 [@ EXCEPT ![requests[m.match[1]][m.match[2]].message.addr] =
20 Memory[i][m.message.addr]]]
21 ELSE
22 UNCHANGED <<Memory>>
23
24 /\ IF m.ctype = "bsend"
25 THEN
26 message_buffer’ = [message_buffer EXCEPT ![i] = @ - 1]
27 ELSE
28 UNCHANGED << message_buffer >>
29 /\ UNCHANGED << group, communicator, bufsize, initialized, collective >>

Fig. 5. Message transmission

172 R. Palmer et al.

no requirement for ordering of message completion in the MPI standard [1]. Con-
sider the case where two messages are sent from process 1 to process 2 where the
first message is very large and the second message is very small. The MPI stan-
dard requires that the first message sent be matched with the first receive posted
in program order on both processes. However this makes no statement about when
the messages will complete. In our example, it should be possible for the smaller
message to complete first. The use of a separate transmit rule allows us to facili-
tate the modeling of MPI Cancel which is used to cancel pending MPI messages.
Further discussions are provided in Section 2.5.

Continuing with Figure 5, the final three conjuncts in the model of MPI_Wait
define the values of Memory, requests, and the message buffer in the next
state. In MPI, the event marking the completion of the transmission on the
sender side may become visible before the event on the receiver side, or vice
versa. Therefore, in our model, only one request is updated to show that the
transmitting step has completed. We do move some data between processes. We
currently have abstracted the programs modeled such that the value in only one
memory location can be transmitted between processes. We also have abstracted
the notion of buffering such that a counting semaphore tracks the number of
messages that can be buffered using the explicit space provided by the user —
rather than modeling the number of bytes being sent per message.

2.4 A Complete Definition: MPI Wait

Figures 6 and 7 contain the TLA+ model definition of MPI Wait, commonly
used to complete communications. As with all MPI operations (except for MPI
Initialized), MPI Init must have been called prior to the application of this op-
eration. The model checks this as an assertion on line 3 of the operation. The
comments are of two types: regular and cross references into the natural lan-
guage version of the standard. The cross references are numbered as “page.line”
following the TLA+ comments (*), and allow our assertions to be traced. We
now examine a few aspects of the specification of MPI Wait. The main conjunct
in the specification causes the group, communicator, bufsize, message buffer,
initialized, and finalized to remain unchanged in the next state. It then con-
siders two cases: when the request is the special MPI REQUEST NULL value,
or when it is a non-null request handle. For the non-null case, the operation
becomes enabled when (i) the request is locally active — meaning it has not
been previously completed by some wait or test, and (ii) the request indicates
that the message has been transmitted, canceled, or buffered. In this case, if
the source and destination referenced in the request are non-null, the memory
of the executing process is updated to indicate that the message has completed
by filling the fields of the status object (lines 16–22). Otherwise, the status
fields are set to reflect that the completion has occurred on a request referencing
MPI PROC NULL. In either case the request handle is appropriately set, and
we also mark the status fields in memory.

The request sequence for the executing process must also be updated (lines
34–58. When a communication between processes i and j is initiated by i using

An Approach to Formalization and Analysis of Message Passing Libraries 173

1 MPI_Wait(request, status, return, proc) ==
2 LET r == requests[proc][Memory[proc][request]] IN
3 /\ Assert(initialized[proc] = "initialized", * 200.10-200.12
4 "Error: MPI_Wait called with proc not in initialized state.")
5 * 41.32-41.39 The request handle is not the null handle.
6 /\ \/ /\ Memory[proc][request] /= MPI_REQUEST_NULL
7 /\ r.localactive * The request is active locally.
8 /\ \/ /\ r.message.src /= MPI_PROC_NULL * The message src is not null
9 /\ r.message.dest /= MPI_PROC_NULL * The message dest is not null

10 * 41.32 - Blocks until complete
11 /\ \/ r.transmitted * The message was transmitted or
12 \/ r.canceled * canceled by the user program or
13 \/ r.buffered * buffered by the system
14 /\ Memory’ =
15 [Memory EXCEPT ![proc] = * 41.36
16 [@ EXCEPT ![Status_Canceled(status)] =
17 /\ r.canceled
18 /\ \lnot r.transmitted, * 54.46
19 ![Status_Count(status)] = r.message.numelements,
20 ![Status_Source(status)] = r.message.src,
21 ![Status_Tag(status)] = r.message.msgtag,
22 ![Status_Err(status)] = r.error,
23 ![request] = * 41.32-41.35, 58.34-58.35
24 IF r.persist
25 THEN @
26 ELSE MPI_REQUEST_NULL]]
27 \/ /\ \/ r.message.src = MPI_PROC_NULL
28 \/ r.message.dest = MPI_PROC_NULL
29 /\ Memory’ = [Memory EXCEPT ![proc] = * 41.36
30 [@ EXCEPT ![Status_Canceled(status)] = r.canceled,
31 ![Status_Count(status)] = 0,
32 ![Status_Source(status)] = MPI_PROC_NULL,
33 ![Status_Tag(status)] = MPI_ANY_TAG,
34 ![Status_Err(status)] = 0,
35 ![request] = * 41.32-41.35, 58.34-58.35
36 IF r.persist
37 THEN @
38 ELSE MPI_REQUEST_NULL]]

Fig. 6. The first half of the TLA+ model of MPI Wait. The rest of MPI Wait is shown
in Figure 7.

a buffered send (such as MPI Send) or when using MPI Cancel, it is possible for
the Wait to become enabled before the matching request is posted on process
j. This is apparent when r.match =<<>> on line 34. In the true case, the
previously paired request is marked globally inactive, in addition to the local
request being marked locally inactive and globally inactive. In the false case,
only the local request is marked locally inactive. Again, the status fields are
marked as required by the standard.

2.5 Issues Raised by Modeling

While creating the model we became aware of some specific issues that had not
been discussed in the MPI natural language version of the standard. The following
descriptions are helpful in understanding the issues identified. MPI Probe takes a
process rank j and some additional message envelope information, and becomes
enabled when there is a matching request posted on process j. MPI Cancel takes
a request handle as an argument and attempts to cancel the corresponding

174 R. Palmer et al.

39 /\ requests’ =
40 IF r.match /= << >>
41 THEN
42 [requests EXCEPT ![proc] = * 58.34
43 [@ EXCEPT
44 ![Memory[proc][request]] =
45 IF r.persist
46 THEN
47 IF requests[r.match[1]][r.match[2]].localactive
48 THEN [@ EXCEPT !.localactive = FALSE,
49 !.globalactive = FALSE]
50 ELSE [@ EXCEPT !.localactive = FALSE]
51 ELSE
52 IF requests[r.match[1]][r.match[2]].localactive
53 THEN [@ EXCEPT !.localactive = FALSE,
54 !.globalactive = FALSE,
55 !.deallocated = TRUE]
56 ELSE [@ EXCEPT !.localactive = FALSE,
57 !.deallocated = TRUE]],
58 ![r.match[1]] =
59 [@ EXCEPT ![r.match[2]] =
60 IF requests[r.match[1]][r.match[2]].localactive
61 THEN requests[r.match[1]][r.match[2]]
62 ELSE [@ EXCEPT !.globalactive = FALSE]]]
63 ELSE
64 [requests EXCEPT ![proc] = * 58.34
65 [@ EXCEPT ![Memory[proc][request]] =
66 IF r.persist
67 THEN [@ EXCEPT !.localactive = FALSE]
68 ELSE [@ EXCEPT !.localactive = FALSE,
69 !.deallocated = TRUE]]]
70 \/ /\ \/ Memory[proc][request] = MPI_REQUEST_NULL * 41.40-41.41 The
71 \/ /\ Memory[proc][request] /= MPI_REQUEST_NULL * request handle is
72 /\ \lnot r.localactive * null or the request is not active
73 /\ Memory’ = [Memory EXCEPT ![proc] = * 41.36
74 [@ EXCEPT ![Status_Canceled(status)] = FALSE,
75 ![Status_Count(status)] = 0,
76 ![Status_Source(status)] = MPI_ANY_SOURCE,
77 ![Status_Tag(status)] = MPI_ANY_TAG,
78 ![Status_Err(status)] = 0]]
79 /\ UNCHANGED << requests >>
80 /\ UNCHANGED << group, communicator, bufsize, message_buffer,
81 initialized, collective >>

Fig. 7. The second half of the TLA+ model of MPI Wait

communication. The standard says the message may still complete, and it is up to
the user to program appropriately. A third operation MPI Rsend, and variants,
requires the matching receive operation to have been previously posted, barring
which the operation is in error. In this context, here are some specific issues we
identified:

– There are numerous ways that MPI Probe and MPI Cancel can interact,
resulting in an undefined system state. In particular, any time a message
is probed successfully, it is not specified whether it is still possible for the
message to be canceled or if the message must at that point be delivered.

– MPI Cancel also creates an undefined system state when used with ready
mode send (MPI Irsend). Consider the following execution trace: “MPI Irecv;
MPI Irsend; MPI Cancel; ...” If the ready send is successful, can the receive
still be canceled?

An Approach to Formalization and Analysis of Message Passing Libraries 175

– Continuing with Cancel, what happens if the null request is canceled?
– The MPI system allows the user to specify a buffer for outgoing messages.

To ensure that all buffered messages have been sent, the user must call
MPI Buffer detach. What is the state of the system when no buffer has been
specified and MPI Buffer detach is called?

It is encouraging to note that even a few weeks invested in the process of writing
a formal semantics forced us to conduct a thorough walk-through of the MPI
standard, spotting the above omissions.

3 Modeling Framework

We have developed a modeling framework based on the Microsoft Phoenix [30]
compiler which allows developers to insert a compilation phase between existing
compiler phases in the process of lowering a program from language independent
MSIL to device specific assembly. We place our phase at the point where the in-
put program has been simplified into a single static assignment form, with a
homogenized pointer referencing style, where the instructions are still device in-
dependent. Our phase reads the Phoenix intermediate representation and builds
from it a state-transition system (the MPIC IR) for each function, similar in
spirit to a control flow graph. Control locations in the program are represented
by states, and program statements are represented using transitions.

The architecture of the verification framework is shown in Figure 8. From
the MPIC IR, we can output different formats, including TLA+, Dot[31], and
MPIC. The framework integrates both TLC and a new model checker MPIC to
perform the verification tasks. If an error is found, the error trail is then made
available to the verification environment, and can be used by our tool to drive
the Visual Studio debugger to replay the trace to the error. The remainder of
this section describes the simplification and replay capabilities of our framework.
We report the MPIC tool primarily in [10].

Visual Studio
2005

Verification
Environment2005 Environment

Phoenix Compiler

MPIC IRMPIC IR

TLA+ MPI
Library Model

TLA+ Program
Model

MPIC Program
ModelLibrary Model Model Model

MPIC Model
TLC Model Checker

MPIC Model
Checker

Fig. 8. System architecture

176 R. Palmer et al.

3.1 Simplification

From the extracted state-transition format, it would be possible to emit a TLA+
model directly. However, the TLA+ model would have to have sufficient mech-
anisms to handle function calls and returns. Although this is possible with
TLA+ [32]–the scientific computing applications we have considered would not
benefit from the additional functionality. As such we propose the following se-
quence of transformations, intended to reduce the complexity of model checking
while preserving the properties of interest, before applying model checking based
analysis. The simplifications are as follows:

– Inline all user defined functions: We assume (i) that all parameters are pass
by value, (ii) that there are no function pointers, and (iii) there is no recur-
sion.

– Remove operations foreign to the model checking framework: Examples in-
clude printf.

– Slice the model with respect to communications and user assertions: The
cone of influence of variables is computed using a chaotic iteration over the
program graph, similar to what is described in [33].

– Eliminate redundant counting loops: This is a heuristic to handle loops that
occur frequently in MPI programs.

3.2 Program Modeling

Our model of MPI is intended to capture the semantics while abstracting away
the possible implementation details. However there are some implementation
details retained that are common to all present-day computer systems, and that
are implied by the standard. The first of these is the notion of memory: it
is assumed that each process operates in a disjoint memory space. As such, we
allocate an array of TLA+ variables that represent the local store of each process.
More formally, memory is modeled as a function memory : IN → IN where
allocated addresses are mapped onto values. Variable names are represented by
an array of address that use symbols, (i.e., strings) for indices. These are again
functions that map strings onto addresses. The mention of memory brings to
the fore the first of several abstractions that are imposed on the model. Only
values in IN are considered valid memory contents. With an explicit notion of
memory and addresses, it is possible to have explicit pointers in the model. This
we support, allowing for arbitrary dereferences. We also never allocate address
0, allowing for null pointer dereference violations to be discovered.

It is possible to allocate memory using the operator in Figure 9. This operator
updates the function representing process memory by changing the function for
process i such that there are size new memory locations at the end, each having
uninitialized memory contents. The operator also writes the address of the first
uninitialized location into the memory location of the pointer.

Many constants are used by MPI and consequently in our model. Since the
model is automatically extracted from the program while it is being compiled,
it is necessary that the constants used in our model match those used by the

An Approach to Formalization and Analysis of Message Passing Libraries 177

1 AllocateMemory(ptr, pid, size) ==
2 /\ Memory’ = [i \in 0..(N-1) |->
3 IF i = pid
4 THEN [j \in 1..(Len(Memory[i]) + size) |->
5 IF j <= Len(Memory[i])
6 THEN
7 IF ptr = j
8 THEN Len(Memory[pid]) + 1
9 ELSE Memory[i][j]

10 ELSE "uninitialized memory space"]
11 ELSE Memory[i]]

Fig. 9. Memory allocation in TLA+

\/ /\ pc[pid] = state_pc

/\ pc’ = [pc EXCEPT ![pid] = next_pc]

/\ guard

/\ action

/\ UNCHANGED << variables not mentioned in the action >>

Fig. 10. Transition template for TLA+ program model

implementation of MPI used with the program being analyzed. Constants are
provided in a separate TLC configuration file. These constant definitions gen-
erally match the values used in the corresponding C header files (mpi.h). Since
not all values can be used (e.g., no floating point values, etc.) we make manual
changes to the configuration and corresponding header files when necessary.

The individual transitions are formatted as shown in Figure 10, combined
with the initial values of the memory array and the map from variable names
to their addresses and written to disk. The constants, program model, and MPI
model are then given to the TLC model checker.

Error Trail Generation. In the event that the model contains an error, an
error trail is produced by the model checker and returned to the verification
environment. To map the error trail back onto the actual program we observe
the changes in the error trail to variable values that appear in the program text.
For each such change, we step the Visual Studio debugger until the corresponding
value of the variable in the debugger matches. We also observe which process
moves at every step in the error trail and context switch between processes in
the debugger at corresponding points. When the error trail ends, the debugger is
within a few steps of the error with the process that causes the error scheduled.

4 Examples

We have applied our semantic evaluation framework to a small number of ex-
amples and show the results of a few verification tasks in this section. The
two tables shown in Figure 11 shows the number of states generated / execu-
tion time for the following examples: (i) an example code from [34], (ii) the 2D

178 R. Palmer et al.

MPI-TLC MPIC without DPOR MPIC with DPOR

Trap 724/2 331/0 66/0

Diffusion 2D timeout timeout 19,807,253/623

Scenario 4 310/2 N/A N/A

Fig. 11. Number of states generated / execution time (seconds)

diffusion example from [35], and (iii) the last scenario described in Section 1,
namely “What is guaranteed about the matching receive when the first send
completes?” Each of the experiments was run on a dual core 2GHz processor
with 2GB of memory. When TLC was applied, two worker threads were used.

The Trap example from [34] computes the integral under a curve by applica-
tion of the trapezoidal integration rule. The program is written in the SPMD
style and is typical of “textbook examples” in this area. We verify the example
as written for the absence of deadlocks and the default assertions provided by
the respective model checkers for two model processes.

The Diffusion 2D example computes the diffusion of a substance through a
two dimensional grid of cells. We could not verify the pseudo-code given in [35]
because we require actual C program code. To facilitate this requirement, we im-
plemented the program as described. We then optimized the code to overlap the
preparation for communication with the actual communication operations. This
is accomplished by changing the program to communicate via immediate mode
synchronous sends and immediate mode receives (MPI Issend and MPI Irecv)
coupled with MPI Wait and then moving the message initiations as far from the
completions as possible. We then were able to verify this code using MPIC using
dynamic partial-order reduction, for the absence of deadlocks and the default
set of assertions for 4 model processes.

The final example requires an additional MPI procedure, namely MPI Irsend,
which requires that the matching receive be posted before the “ready” mode
send can be posted. We cause the first send to match the second receive using
the tag field of the message. We then post the ready mode send immediately
after the MPI Wait corresponding to the MPI Issend. We post a second ready
mode send that can match only the third receive. Successful posting of the first
MPI Irsend implies that the receiver is guaranteed to be beyond that program
point. Failed posting of the second MPI Irsend implies that no guarantee can
be made about further progress: thus the receiver is guaranteed to have posted
the corresponding receive and no more (Figure 1). This verification task requires
only two model processes.

5 Concluding Remarks

To help reason about programs that use MPI for communication, we have devel-
oped a formal TLA+ semantic definition of the point-to-point communication
operations to augment the existing standard. We described this formal specifica-
tion, as well as our framework to extract models from SPMD-style C programs.

An Approach to Formalization and Analysis of Message Passing Libraries 179

We discuss how the framework incorporates high level formal specifications,
and yet allows designers to experiment with these specifications, using model
checking, in a familiar debugging environment. Our effort has helped identify a
few omissions in the original MPI reference standard document. The experience
gained so far suggests that a formal semantic definition and exploration approach
as described here must accompany every future effort in creating parallel and
distributed programming libraries.

Our future plans include overcoming the limitations of our current framework
in terms of handling communication topologies. Another area where formal se-
mantic definitions can help is in extensions of MPI to support different levels
of threading. As pointed out in [36], even short MPI programs which employ
threading can have nasty corner cases. Formal specifications, as well as direct
execution methods for these specifications can have maximal impact in these
areas, in that we will not be capacity limited in terms of model checking, and
yet be able to shed light on the semantic intricacies, and pitfalls to avoid.

References

1. The Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
(1995), http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

2. Gropp, W., Lusk, E.L., Doss, N.E., Skjellum, A.: A high-performance, portable
implementation of the mpi message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

3. Microsoft: Microsoft windows compute cluster 2003 (2006),
www.microsoft.com/windowsserver2003/ccs/faq.mspx

4. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Don-
garra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840,
pp. 379–387. Springer, Heidelberg (2003)

5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

6. Danalis, A., Kim, K.Y., Pollock, L., Swany, M.: Transformations to parallel codes
for communication-computation overlap. In: SC 2005: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 58. IEEE
Computer Society, Los Alamitos (2005)

7. Lamport, L.: Specifying concurrent systems with TLA (1999)
8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge

(1999)
9. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,

L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999)

10. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics Driven Dynamic Partial-
order Reduction of MPI-based Parallel Programs. In: PADTAD 2007 (2007),
http://www.cs.utah.edu/formal verification/verification environment

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
www.microsoft.com/windowsserver2003/ccs/faq.mspx
http://www.cs.utah.edu/formal_verification/verification_environment

180 R. Palmer et al.

11. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL 2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 110–121. ACM Press, New
York (2005)

12. IEEE: IEEE Standard for Radix-independent Floating-point Arithmetic,
ANSI/IEEE Std 854–1987 (1987)

13. Harrison, J.: Formal verification of square root algorithms. Formal Methods in
System Design 22(2), 143–154 (2003); Guest Editors: Gopalakrishnan, G., Hunt,
W., Jr.

14. Lamport, L.: The Win32 Threads API Specification (1996),
http://research.microsoft.com/users/lamport/tla/threads/threads.html

15. Abadi, M., Lamport, L., Merz, S.: A tla solution to the rpc-memory specification
problem. In: Formal Systems Specification, pp. 21–66 (1994)

16. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering Methodologies 11(2), 256–290 (2002)

17. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: The alloy constraint analyzer. In:
ICSE 2000: Proceedings of the 22nd international conference on Software engineer-
ing, pp. 730–733. ACM Press, New York (2000)

18. Jackson, D.: Alloy: A new technology for software modeling. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280. Springer, Heidelberg (2002)

19. Georgelin, P., Pierre, L., Nguyen, T.: A formal specification of the MPI primitives
and communication mechanisms. Technical report, LIM (1999)

20. Eijk, P.V., Diaz, M. (eds.): Formal Description Technique Lotos: Results of the
Esprit Sedos Project. Elsevier Science Inc., New York, NY, USA (1989)

21. Siegel, S.F., Avrunin, G.: Analysis of mpi programs. Technical Report UM-CS-
2003-036, Department of Computer Science, University of Massachusetts Amherst
(2003)

22. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

23. Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: SIGPLAN Symposium, A.C.M. (ed.) ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, Chicago, pp. 95–106 (2005)

24. Siegel, S.F.: Model Checking Nonblocking MPI Programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

25. Barrus, S., Gopalakrishnan, G., Kirby, R.M., Palmer, R.: Verification of MPI pro-
grams using SPIN. Technical Report UUCS-04-008, The University of Utah (2004)

26. Palmer, R., Barrus, S., Yang, Y., Gopalakrishnan, G., Kirby, R.M.: Gauss: A frame-
work for verifying scientific computing software. In: SoftMC: Workshop on Software
Model Checking. ENTCS, vol. 953 (2005)

27. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp, W.: Formal ver-
ification of programs that use MPI one-sided communication. In: Mohr, B., Träff,
J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp.
30–39. Springer, Berlin, Heidelberg (2006)

28. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: The communication semantics of
the message passing interface. Technical Report UUCS-06-012, The University of
Utah (2006)

29. Gropp, W.D.: Personal communication (2006)

30. Microsoft: Phoenix academic program (2007),
http://research.microsoft.com/phoenix

http://research.microsoft.com/users/lamport/tla/threads/threads.html
http://research.microsoft.com/phoenix

An Approach to Formalization and Analysis of Message Passing Libraries 181

31. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz – open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

32. Lamport, L.: A +CAL user’s manual (2006),
http://research.microsoft.com/users/lamport/tla/p-manual.pdf

33. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1999)

34. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1996)

35. Siegel, S.F., Avrunin, G.S.: Verification of mpi-based software for scientific compu-
tation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 286–303.
Springer, Heidelberg (2004)

36. Gropp, W., Thakur, R.: Issues in developing a thread-safe MPI implementation. In:
Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS,
vol. 4192, pp. 12–21. Springer, Heidelberg (2006)

http://research.microsoft.com/users/lamport/tla/p-manual.pdf

Analysis of a Session-Layer Protocol in mCRL2�

Verification of a Real-Life Industrial Implementation

Marko van Eekelen1, Stefan ten Hoedt2,
René Schreurs2, and Yaroslav S. Usenko3,4

1 Institute for Computing and Information Sciences, Radboud Universiteit Nijmegen,
P.O. Box 9102, 6500 HC Nijmegen, The Netherlands

2 Aia Software B.V.
P.O. Box 38025, 6503 AA Nijmegen, The Netherlands

3 Laboratory for Quality Software (LaQuSo), Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

4 Centrum voor Wiskunde Informatica,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. This paper reports the analysis of an industrial implementa-
tion of the session-layer of a load-balancing software system. This soft-
ware comprises 7.5 thousand lines of C code. It is used for distribution
of the print jobs among several document processors (workers). A large
part of this commercially used software system has been modeled closely
and analyzed using process-algebraic techniques. Several critical issues
were discovered. Since the model was close to the code, all problems that
were found in the model, could be traced back to the actual code result-
ing in concrete suggestions for improvement of the code. All in all, the
analysis significantly improved the quality of this real-life system.

1 Introduction

In this paper we consider the following real-life industrial case study. The ITP
Document Platform (developed and marketed by Aia Software BV) enables or-
ganizations to produce critical business documents in a scalable and personalized
environment. This application has a load-balancer, a process kernel that makes
diverse document processors and clients communicate with each other, distribute
and execute tasks. This system has been used satisfactorily for several years (in
2007 in over 25 countries by more than 800 customers). However, it comes every
now and then in an undesirable state. The goal of the project was to inves-
tigate to what extent the inter-process communication and synchronization of
this load-balancer could be modeled and analyzed. The desired results had to be
detailed enough to give an advice on how to avoid these undesirable situations,
and to suggest concrete code changes.

The project has been performed in the following phases: In a discussion with
two employees of Aia Software (Stefan ten Hoedt and René Schreurs) we obtained
� This research was supported by SenterNovem Innovation Voucher Inv053967. The

fourth author has also been supported by NWO Hefboom project 641.000.407.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 182–199, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analysis of a Session-Layer Protocol in mCRL2 183

the overall idea of the structure and the behavior of the software in general
and the parts to be modeled in particular. The relevant parts were modeled in
mCRL2 [1]. The session layer of the load-balancer protocol was modeled quite
closely to the C code. Both the higher-level application layer and the underlying
TCP-socket layer were modeled in an abstract manner. The code and the model
were reviewed by the LaQuSo-modeler and the Aia-developer in order to achieve
the maximal matching. This led to a number of changes in the model, as well
as to a number of questions about the code and a number of concrete desired
properties that could be analyzed. The model was analyzed with the help of the
model-checking techniques of the mCRL2 toolset w.r.t. deadlock-freedom and
a number of other starvation and consistency properties that were formulated
together with the client. This revealed 6 problems in the C code. These problems
were accepted by Aia Software and incorporated to the production release of the
software system.

The type of analysis presented in this paper is as such not new. It was per-
formed before using different kinds of model checkers (e.g. imperative [2] and
declarative [1]: see also the related work paragraph below). Noteworthy char-
acteristics of our work are that the model is very close to the code, the code
is relatively large (7500 lines), the code has been running within a commer-
cial product for years and it has been improved several times while problems
still kept occurring, errors have been found that led to code improvements and
finally, problems regarding the code have not occurred since the code was cor-
rected. This project was done with a model checker based on Process Algebra [3].
It is the first time that a project with such characteristics was achieved with a
model checker based on Process Algebra.

Related Work. Many projects study the verification of the design of a software
system. Karl Palmskog in his Master Thesis [4] studied using the SPIN model
checker the design of a Session Management Protocol developed at Ericsson
Research. He has discovered a design flaw. This study was done on the level of
the design without looking carefully at the implemented code. Also on the design
level, in [5] Janicki and He present the verification of a Wireless Transaction
Protocol design in SPIN. Another verification project concerning model checking
of the design of a software system in mCRL2 is the parking garage project done
by Mathijssen and Pretorius [6]. In [7] Brock and Jackson prove correctness of
an industrial implementation of a ‘fault tolerant computer’ by creating a small
abstract model in CSP.

A real-life code example was recently studied by Hessel and Pettersson [8]
with nice results. In contrast to our project, they do not model the code but use
a black-box testing approach.

In [9] an application of the Verisoft model checking approach to a software
system from Lucent is presented. The model checking was applied as a part of
the testing procedure during the software development. The paper reports about
a large number of revealed errors, most of which indicated incorrect variable
initializations.

184 M. van Eekelen et al.

A framework for C code analysis with CADP [10] is presented in [11], where
the methods of process graph extraction and generation of an LTS for a C
program are described. In [12] the model checker MOPS was used to model-
check safety properties of single-threaded C programs. This paper reports on
automatic analysis of a million lines of code.

The Java Pathfinder tool is described in [13] as a tool that is used to find
deadlocks and other behavioral properties in java programs. The tool has been
used to analyse software systems at NASA. It is also used as the back-end model
checker of the Bandera project [14]. The Bandera project uses abstraction tech-
niques based on abstraction-based program specialization: a combination of ab-
stract interpretation and partial evaluation.

Research at Microsoft Corporation led by Thomas Ball has shown significant
results for a restricted subset of programs: device drivers. Using an automatic
analysis engine - called SLAM - that combines model checking with symbolic
execution for the language C, they have successfully found many errors in many
real-life industrial device drivers [15]. They do not support analysis of multi-
threaded systems.

Probably, the most related work is performed by Holzmann and Smith in [16].
Using SPIN they followed the development of a piece of telephone call processing
software of about 1600 lines of C code. They verified successfully so-called feature
requirements. They found many errors in different stages of the development.

Organization of the paper. The paper is organized as follows. Section 2 presents
the case study and the problems that were to be investigated. Section 3 presents
the mCRL2 language and the toolset and the way they were used in the modeling
of the case study. Section 4 presents details on the analysis with the mCRL2
toolset and the issues that were detected. Section 5 contains conclusions and
possibilities for future work. In the Appendix a part of the C code and the
corresponding part of the mCRL2 model are presented. The whole mCRL2 model
can be found in the Appendix of [17].

2 Intelligent Text Processing (ITP) and Its Load-Balancer

The Intelligent Text Processing system is used to prepare large quantities of
documents to be printed. Sometimes it is done in an interactive way, where
additional information is being asked from the client during the processing. In
the early versions of the ITP software the clients could directly communicate
to the document processors, but with the increased complexity of the process-
ing jobs a coordinating mechanism was needed. The task of the load-balancer is
to distribute the jobs of the clients to the available document processors, with-
out actually changing the application layer of the client-server communication
protocol too much (see Figure 1).

Due to the evolutionary way the ITP software was developed in the late
nineties, the load-balancer has been implemented in C on the Windows platform
making use of the Windows Socket Library. The possibility of using a standard

Analysis of a Session-Layer Protocol in mCRL2 185

Internet (TCP)

Client 3

Client 2

Client 1

Load

Balancer
Intranet (TCP)

Document

Processor

1

Document

2

Processor

Document

Processor

3

Fig. 1. ITP and a Load-Balancer in it

solution for load-balancing, like the Linux virtual server, has not been used for
a number of reasons.

A typical use-case scenario of the load-balancer deployment is presented as
a Message Sequence Chart on Figure 2. There, a client of the load-balancer
communicates with the client object and a document processor communicates
with the document processor object. The client sends a request to print and the
document processor sends a request for work. After that the document processor
object asks the client object for work and gets the answer. At this point the
client and the document processor objects are linked together by a partnership
link. Further, the document processor asks for additional data and goes to a
sleeping state. The client object gets the data from the client and wakes up the
document processor object. The document processor object transfers the data
to the document processor.

2.1 Issues and Artifacts

The load-balancer software was developed in the late nineties and has been tested
both at AIA and at clients’ environments since that time. The system has been
in use in production for quite some time now. During testing and maintenance
a number of issues with the software have been fixed, but some items remained
unsolved till the beginning of our project.

Most of these ‘difficult’ issues could be classified as follows:

– the load-balancer would get to a state where it did not respond at all to the
requests of neither clients nor document processors;

– the load-balancer would ignore the document processors that were free and
willing to accept jobs;

186 M. van Eekelen et al.

Client
request to print

Client object

work?

work?

yes! (partners)

wake−up : get data

get data

data

wake−up : data ready

process data

Document processor object Document processor

Fig. 2. A typical use-case scenario of the load-balancer

– a client would not get any response from the load-balancer about the status
of its jobs.

These issues occurred in rare situations, mostly on particular hardware configu-
rations. Reproducing such errors was very difficult or impossible. Restarting the
system solved the issue but it could occur again somewhere in the future.

The company provided the source code in C for Windows (7681 lines) and
the application layer protocol documentation. Further information was commu-
nicated during meetings, via phone calls and e-mail. Analysis of the artifacts re-
vealed that the system was a multi-threaded Windows application using mutual
exclusion primitives (mutexes, semaphores) and multiple event synchronization
(WaitForMultipleObjects). For the asynchronous I/O and the network commu-
nication the Windows Socket Administration and call-back functions were used.
The reverse engineering of the design revealed the structure of the load-balancer
(see Figure 3). Here each client and each document processor object has a request
queue and a partnership link to a possible partner. Each such object implements
a finite state machine that first waits for one of the two events, either a network
socket event or a wake-up event from a partner. After that, a certain action is
performed and the object proceeds to a new state.

Based on the source code and the revealed architecture of the load-balancer
the following properties were considered to be important for the further analysis.

Analysis of a Session-Layer Protocol in mCRL2 187

C1

request

partner

event

C2

C3

socket

Administration
(OS)

Socket Socket
Administration

(OS)

socket
event

socket
event

socket
event

socket

event

partner

partner

wake−up event

wake−up event

wake−up event

DP1

DP2

Fig. 3. Architecture of the load-balancer

– The software should be free from deadlocks.
– Certain log messages are considered to be of critical importance. These

should never occur as they indicate that there is something fundamentally
wrong with the system.

– The partnership links should be consistent, e.g., if the partner of A is B > 0
(0 means no partner), then the partner of B is either A or 0.

– Waiting for a partner should only be done if the partner link is not 0. This
boils down to the fact that a document processor may not be in a sleeping
state if it has no partner (except when a request is pending to it).

– The number of times a thread acquires a lock should be limited. In case a
lock is acquired a multiple number of times it has to be released the same
number of times. If a thread acquires a lock in a loop, a certain bound
induced by the operating system can be reached, resulting in an undesired
behavior. Moreover, a high number of nested lock acquisitions may indicate
a logical error in the program.

– The number of requests that are pending in the system should be limited.

3 Modeling in mCRL2

To check the desired properties part of the system had to be formally modelled in
a language that supports model-checking. For the reasons of available expertise
we decided to use mCRL2 and its toolset.

188 M. van Eekelen et al.

3.1 Description of the mCRL2 Language

mCRL2 [1] is a process algebraic language that includes data and time. It is an
extension of the language µCRL [18] with multi-actions, built-in data types and
local communication functions instead of a single global one. mCRL2 is basically
intended to study description and analysis techniques for (large) distributed
systems. The abbreviation mCRL2 stands for milli Common Representation
Language 2.

An mCRL2 specification consists of two parts. The first part specifies the data
types, the second part defines the processes. Data are represented as terms of
some sort, for example 2, cos(pi), and concat(L1,L2) could be terms of sort
natural number, real number and list, respectively.

The process equations are defined in the following way. Starting from a set
Act of actions that can be parameterized with data, processes are defined by
means of guarded recursive equations and the following operations.

First, there is a constant δ (δ �∈ Act) that cannot perform any action and is
called deadlock or inaction.

Next, there are the sequential composition operation · and the alternative
composition operation +. The process x·y first behaves as x and if x successfully
terminates continues to behave as y. The process x+y can either do an action of
x and continue to behave as x or do an action of y and continue to behave as y.

Interleaving parallelism is modeled by the operation ‖. The process x ‖ y is
the result of interleaving actions of x and y, except that actions from x and y
also synchronize to multiactions. So a‖b = a ·b+b ·a+a |b. The communication
operation Γ allows multiactions to communicate: parameterized actions a(d) and
b(d′) in Γ{a|b→c}(a(d) | b(d′)) communicate to c(d), provided d = d′.

To enforce that actions in processes x and y synchronize, we can prevent ac-
tions from happening on their own, using the encapsulation operator ∂H . The
process ∂H(x) can perform all actions of x except that actions in the set H are
blocked. So, in ∂{a,b}(Γ{a|b→c}(x ‖ y)) the actions a and b are forced to syn-
chronize to c. Another way to restrict process behaviour is the allow operation.
By specifying a list of multiactions one can prohibit all other multiactions by
renaming them to δ. So ∇{a|b}(a ‖ b) = a | b.

We assume the existence of a special action τ (τ �∈ Act) that is internal and
cannot be directly observed. The hiding operator τI renames the actions in the
set I to τ . By hiding all internal communications of a process only the external
actions remain.

The following two operators combine data with processes. The sum opera-
tor

∑
d:D p(d) describes the process that can execute the process p(d) for some

value d selected from the sort D. The conditional operator → � describes
the if -then-else. The process b → x � y (where b is a boolean) has the behavior
of x if b is true and the behavior of y if b is false. The expression b → x is a
syntactic sugar representing the if -then construction. It is an abbreviation to
b → x � δ.

Analysis of a Session-Layer Protocol in mCRL2 189

3.2 The mCRL2 Toolset

The mCRL2 toolset (http://www.mcrl2.org) has been developed at Technical
University of Eindhoven to support formal reasoning about systems specified in
mCRL2. It is based on term rewriting techniques and on formal transformation
of process-algebraic and data terms. At the moment it allows to generate state
spaces, search for deadlocks and particular actions, perform symbolic optimiza-
tions for mCRL2 specifications and simulate them.

The toolset is constructed around a restricted form of mCRL2, namely the
Linear Process Specification (LPS) format. An LPS contains a single process
definition of the linear form:

proc P(x:D) =
∑

i∈I

∑

yi:Ei

ci(x, yi) → αi(x, yi) · P(gi(x, yi))

init P(d0);

where data expressions of the form d(x1, . . . , xn) contain at most free variables
from {x1, . . . , xn}, I is a finite index set, and for i ∈ I the following are:

– ci(x, yi) are boolean expressions representing the conditions,
– αi(x, yi) is a multiaction a1

i (f
1
i (x, yi)) | · · · | ani

i (fni

i (x, yi)), where fk
i (x, yi)

(for 1 ≤ k ≤ ni) are the parameters of action name ak
i ,

– gi(x, yi) is an expression of sort D representing the next state of the process
definition P ;

– d0 is a closed data expression;
–

∑
i∈I pi is a shorthand for p1 + · · · + pn, where I = {1, . . . , n}.

The form of the summand as described above is sometimes presented as the
condition-action-effect rule. In a particular state d and for some data value e
the multiaction αi(d, e) can be done if condition ci(d, e) holds. The effect of the
action on the state is given by the fact that the next state is gi(x, yi).

The tool mcrl22lps checks whether a certain specification is a well formed
mCRL2 and attempts to transform it into a linearized (i.e. LPS) form (See [19]
for the detail of the linearization). All other tools use this linearized format as
their starting point (see Figure 4).

These tools come in four kinds:

1. a tool (xsim) to step through the process specified in the LPS;
2. a tool (lps2lts) to generate the labeled transition system (LTS) underlying

a given LPS;
3. several tools to optimize the LPSs:

(a) lpsrewr, normalizes an LPS by rewriting the data terms in it;
(b) lpsconstelm, removes data parameters that are constant throughout

any run of the LPS;
(c) lpsparelm, reduces the state space of the transition system by removing

the data parameters and sum variables that do not influence the behavior
of the system,

(d) lpsstructelm, expands variables of compound data types;
4. a tool (lpspp) to print the linearized specification.

190 M. van Eekelen et al.

formula checking

optimization

model checking simulation

visualisationmodel checking

ltsmin
ltsupdate

lpsrewr
lpsconstelm

LPS

Specification Text

LTS

lpsparelm

lpssumelm
lpsconfelm

lpsupdate
lpsstructelm

lpsformcheck
lpsconfchecklpsinvelm

lpsdataelm

lps2pbes lps2torx

ltspp
diagraphica

lpspp

ltsview

lps2lts

mcrl22lps

sim
xsim

Fig. 4. The mCRL2 Toolset (www.mcrl2.org)

3.3 The Load-Balancer in mCRL2

For the modeling we concentrated on the session layer of the load-balancer pro-
tocol. This layer is responsible for controlling the connections with the clients
and the document processors, e.g., establishing, breaking the connection, han-
dling non-expected connection breaks and network errors. Sending and receiving
of data goes through this layer as well.

The lower-level interface (back-end) of the session layer protocol goes to the
Windows Socket Administration (WSA) library. This library is a part of the
operating system and is responsible for sending and accepting network socket
events from the application. In our mCRL2 model WSA is modelled as a part
of the environment.

The high-level interface (front-end) of the session layer performs calls to the
application layer of the protocol. This happens when a certain part of data is
received from a client or a document processor in a state when data is expected,
or a connection is broken and this fact has to be noticed by the application
layer (sometimes the session layer can close the session itself and no action from
the application layer is required). The code of the application layer happens to
be a rather large piece of homogeneous code, a large case distinction so to say.
We modelled it by making an over-approximation of all possible behaviors and
choosing them in a non-deterministic way. By doing this we ended up with less
than ten alternatives for the application layer.

The model of the session layer follows the C code in a way to make it as precise
as possible. The model resembles the request handling and the network events
handling in most details, following the state-transition paradigm implemented in

Analysis of a Session-Layer Protocol in mCRL2 191

the code. Appendix B presents a part of the mCRL2 models that corresponds to
the request handling session layer part of the C-implementation in Appendix A.
The model and the code in these appendices follow each other rather closely.
The sizes of the two specifications are more or less the same.

The shared variables and arrays that are used for inter-thread communications
are modelled by separate processes. Parts of the operating system are modelled
by processes as well. Below an mCRL2 process for the mutual exclusion primitive
of Windows (MSDN Mutex objects) is presented. A thread can acquire a mutex
a multiple number of times and has to release it the same number of times.

Lock(owner :Nat , count :Nat) =
∑

tid :Pos

(owner == 0 ∨ owner == tid) → lock(tid) · Lock(tid , count + 1)

+ (owner > 0) → unlock(Nat2Pos(owner))·
Lock(if (count == 1, 0, owner), Int2Nat(count − 1))

+ (count > nMaxLock) → error(MaxLock) · δ;
The process Lock has two natural numbers as parameters. The first one repre-
sents the id of the thread that owns the mutex, or is equal to 0 if the mutex
is free. The second parameter is used to count how many times the mutex has
been acquired.

The actions lock and unlock are parameterized by positive numbers repre-
senting the id of the locking/unlocking thread. Such a thread would perform a
corresponding lock or unlock action parameterized with its id. The two corre-
sponding actions (with and without the underscore) are then forced to synchro-
nize by the process defining the entire system.

The first summand of the process Lock says that it can be acquired (by per-
forming a lock action) by a thread with its id represented by the variable tid .
This is allowed for a thread with any id in case the mutex is free (condition
owner == 0), or for the owner thread (owner == tid). After this acquisition
the lock is owned by the thread identified by tid and the acquisition number
counter is incremented.

The second summand says that a non-free mutex can be unlocked by the
owner. Here we use Nat2Pos to cast the value of the natural variable owner to
the positive number. This function maps 0 to 0 and any number bigger than 1 to
itself. Given the condition owner > 0, this cast is always the identity mapping.
The function Int2Nat is used to cast the integral value of count−1 to the natural
number. It maps the negative integers to 0 and does not change the non-negative
integers. It can be shown that owner > 0 =⇒ count > 0 is an invariant of the
Lock process. Therefore, this cast is also an identity mapping.

The third summand lets the process perform an error action if the value of
count reaches a certain limit nMaxLock . In this way, by checking for absence
of error actions, one can prove that the mutex is acquired in a nested way less
than nMaxLock number of times.

192 M. van Eekelen et al.

3.4 Modeling the Properties

It turned out that all the desired properties (except for the deadlock absence)
could be modeled as safety properties and checked by adding error actions to
the model and check for them. For example, the partner consistency property
from Section 2.1 is modelled as the following summand in the SharedConnection
process:

∑

cid :Nat

∑

n:Nat

(n �= 0 ∧ getpartner(connections .n) �= 0 ∧
getpartner(connections .n) �= cid) →
setConnectionPartner(cid , n) · error(WrongPartners) · δ

Here getpartner(connections .n) gives the current partner link value for the con-
nection n. Once an attempt to change the partner of connection cid to the
value n is performed by one of the threads (by performing the correspond-
ing setConnectionPartner action with the actual parameters), the condition is
checked and if it is true, the error action is enabled. The condition says that
neither n nor the partner of connection n is 0 (meaning ‘no partner’) and the
partner of n is not cid . The latter condition means the actual partnership link
inconsistency between n and cid .

4 Analysis and Issues

The model has been analyzed for the absence of deadlocks and for validity of
certain properties. These properties were incorporated in the model itself so
that an error action would occur if the property is violated. In this way the
verification is performed by the explicit generation of the entire state-space and
by looking for the error actions and the deadlocks. Once one of this is found in
a particular state, a minimal trace to this state gives a counterexample.

Performing the analysis takes only a few steps that can be activated from
the command line. To give the reader an idea how this is done in practice,
we give the actual commands with their actual parameters and options. As
the first step, the linearization of the model takes place: with the command
mcrl22lps ITPpatched.mcrl2 ITPpatched.lps that produces the linearized
version of the model. Next, we apply the optimization steps on the LPS: lpsrewr
ITPpatched.lps | lpsconstelm > ITPpatched_opt.lps. The actual genera-
tion of the transition system and checking for the properties is done with the
command lps2lts -vrDt -a _error -R jittyc ITPpatched_opt.lps where
the -D option enables deadlock checking and -a _error enables checking for
error actions. The -t option enables generation of trace files. In case a deadlock

or an error action is found, a trace file is generated with one of the shortest
traces to that deadlock state or a state where the error action is possible. The
trace files can be printed out with tracepp or simulated in the xsim simulator.

Analysis of a Session-Layer Protocol in mCRL2 193

4.1 Experiments and Results

The analysis has been performed by an exhaustive generation of the underlying
state space using the mCRL2 toolset. The experiments were carried out on a
computer with 2.6GHz 64 bit AMD CPUs and 128Gb RAM running Linux.
The execution times and the resulting numbers of states and transitions are
presented in Table 1. The mCRL2 state space generator uses the depth-first
search algorithm (by default), and the levels are the levels of depth reached by
performing the search. The cases with the total number of clients+document
processors larger than 4 could not be fully analyzed.

4.2 Detected Issues

An early analysis of the model revealed multiple modeling problems. After resolv-
ing these initial modeling problems, the model was compared with the original
C code by both the modeler and the author of the C code working together.
This revealed some essential difference between the code and the model. Once
these differences were resolved, the mCRL2 tools were applied and the following
issues were detected.

– Issue 1. In one case partner links were inconsistent. This was due to the
fact that in one place in the C code the ‘forward’ partner link was set to 0
and the ‘backward’ one was forgotten. This piece of code was found ‘unclear’
during the model-code comparison activity, and later was confirmed to be
erroneous by the mCRL2 toolset finding a shortest trace to the property
violation.

– In two cases a document processor could end-up in a sleeping state without
having a partner.
• Issue 2. In one case this happened because the client’s partner link was

set to 0 before actually waking up the document processor (happened
due to an earlier bug ‘fix’). This problem was found by the model-code
comparison and later confirmed by the mCRL2 toolset.

• Issue 3. In another case it was simply forgotten to wake-up the doc-
ument processor. This problem can be clearly explained by a use-case

Table 1. Execution time (days, hours, minutes and seconds), number of levels, number
of states and number of transitions (thousands, millions and billions) for different
numbers of clients and document processors (DPs)

clients DPs time levels states transitions

1 1 7m 38s 237 368k 796k
1 2 1h 42m 365 9.8m 21m
2 1 4h 52m 442 28m 61m
1 3 36h 480 209m 455.6m
2 2 7d6h 550 1.5b 31.9b
3 1 9d3h 637 1.8b 38.9b

194 M. van Eekelen et al.

Client objectClient
request to print

work?

yes! (partners)

wake−up : get data

get data

work?

wake−up : client went away

disconnect

Document processor object Document processor

Fig. 5. A faulty scenario

scenario in Figure 5. This use-case scenario is similar to the one pre-
sented in Figure 2, with the difference that after sending a request for
data to the client this client disconnects, instead of providing the actual
data. This problem was found using the tools.

– It also happened that critical logs could occur in the program:
• Issue 4. A client could send a request to disconnect to itself in a wrong

state, because changing of a state was forgotten;
• Issue 5. Request to wake up could lead to an inappropriate state change

when a document processor was in the middle of a disconnection (found
to be non-critical).

– Issue 6. The number of requests sent to a client could exceed the preset
limit and could possibly be unbounded. This happened when a document
processor sent a request to disconnect to its partner client and did not break
the partnership afterwards.

These issues were analyzed and accepted by Aia and led to modifications of the
original C code. The corresponding modifications, fixing the problems mentioned
above, were also brought into the model. The subsequent analysis of the model
revealed no more property violations.

Most of the issues were detected in the case of 1 client and 1 document pro-
cessor, while the rest in 1-2 or 2-1 situations. Analysis of the situations with
more clients and document processors did not lead to detection of new issues.

Analysis of a Session-Layer Protocol in mCRL2 195

5 Conclusions and Future Work

We modelled the session layer of the ITP load-balancer in mCRL2 such that the
model is close to the actual C code. A number of properties were verified using
the mCRL2 toolset. This led to the discovery of 6 issues that were easily traced
back to the actual C code. The code was repaired and also the corrections were
brought into the model. The resulting model was verified with respect to the
desired properties by checking the entire state space for several configurations.

mCRL2 could be used successfully in this industrial setting of a load-balancer
for document production. A part of the operating system services (sockets, locks,
events, etc.) could also be modeled. Unfortunately the verification could only be
done on a restricted setting, so an improvement of the toolset is required for
bigger cases. Also an automatic conformance checking of the model w.r.t. the
code could be of interest.

Lessons Learned: The case study gave the researchers more confidence that
real-life examples can actually be dealt with using a close-to-code model. It
increases the motivation to further improve the power of the analysis tool and
to start investigating code generation from the model (the proximity to the code
may simplify code generation).

Aia released the new version with the improved code about half a year ago.
While previously it happened now and then that their systems infrastructure
came to a standstill and had to be restarted again, this situation never occurred
anymore with the new release. The infrastructure (which has the load-balancer
as the most critical part) kept running all the time.

They have now a working reference model in mCRL2 of a crucial part of their
load-balancer software. In principle, they are able to incorporate code changes
into the model and check whether the properties still hold for the new version. In
practice, they probably need assistance of the researchers in the beginning. Aia
has acquired an increased interest in using formal models for analyzing software
quality aspects, in particular for the most critical parts of their system.

Future Work: In the future an improvement of the toolset could lead to model
checking of bigger cases. Analyzing more properties of the session layer (e.g.
verifying client notification of document processor failures) could lead to certi-
fication of the software. If we want to improve the relation between the model
and the code, we can consider code generation directly from the model.

References

1. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The formal specification language mCRL2. In: Proc. Methods for Modelling
Software Systems. Number 06351 in Dagstuhl Seminar Proceedings (2007)

2. Holzmann, G.J.: Software model checking with spin. Advances in Computers 65,
78–109 (2005)

3. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. El-
sevier, Amsterdam (2001)

196 M. van Eekelen et al.

4. Palmskog, K.: Verification of the session management protocol. Master’s thesis,
School of Computer Science and Communication, Royal Institute of Technology,
Stockholm (2006)

5. He, Y.-T., Janicki, R.: Verifying protocols by model checking: A case study of
the wireless application protocol and the model checker spin. In: CASCON 2004:
Proceedings of the 2004 conference of the Centre for Advanced Studies on Collab-
orative research, pp. 174–188. IBM Press (2004)

6. Mathijssen, A., Pretorius, A.J.: Verified design of an automated parking garage. In:
Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006. LNCS,
vol. 4346, pp. 165–180. Springer, Heidelberg (2007)

7. Brock, N.A., Jackson, D.M.: Formal verification of a fault tolerant computer. In:
Proc. 11th Digital Avionics Systems Conference (IEEE/AIAA), pp. 132–137 (1992)

8. Hessel, A., Pettersson, P.: Model-based testing of a wap gateway: An industrial
case-study. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 116–131. Springer, Heidelberg (2007)

9. Chandra, S., Godefroid, P., Palm, C.: Software model checking in practice: an
industrial case study. In: ICSE, pp. 431–441. ACM, New York (2002)

10. Fernandez, J.C., Garavel, H., Kerbrat, R.M.A., Mounier, L., Sighireanu, M.:
CADP: A protocol validation and verification toolbox. In: Proceedings of the 8th
Conference on Computer-Aided Verification, New Brunswick, New Jersey, USA,
pp. 437–440 (August 1996)

11. del Mar Gallardo, M., Merino, P., Sanán, D.: Towards model checking c code with
open/cæsar. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) MSVVEIS, pp.
198–201. INSTICC Press (2006)

12. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of c code. In:
NDSS, The Internet Society (2004)

13. Visser, W., Mehlitz, P.C.: Model checking programs with java pathfinder. In: Gode-
froid, P. (ed.) SPIN 2005. LNCS, vol. 3639, p. 27. Springer, Heidelberg (2005)

14. Iosif, R., Dwyer, M.B., Hatcliff, J.: Translating java for multiple model checkers:
The bandera back-end. Formal Methods in System Design 26(2), 137–180 (2005)

15. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: Berbers, Y., Zwaenepoel, W. (eds.) EuroSys, pp. 73–85. ACM, New York (2006)

16. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Technical Journal 5(2), 72–87 (2000)

17. van Eekelen, M., ten Hoedt, S., Schreurs, R., Usenko, Y.S.: Modeling and verifying a
real-life industrial session-layer protocol in mCRL2. Technical Report ICIS-R07014,
Radboud University Nijmegen (June 2007)

18. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. In: Ponse, A., Ver-
hoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes 1994.
Workshop in Computing, pp. 26–62. Springer, Heidelberg (1995)

19. Usenko, Y.S.: Linearization in µCRL. PhD thesis, Eindhoven University of Tech-
nology (December 2002)

Analysis of a Session-Layer Protocol in mCRL2 197

A Part of C Code of the Request Handling

1 while (Interface ->Request != (REQUEST *) NULL){
REQUEST *Req = Interface ->Request ;
DWORD ID = Req ->Connection - Req ->Connection ->Interface ->Connections;
switch (Req ->Request){
case requestDisconnect:

6 /* Partner requests a disconnect */
if (Req->Connection ->State != STATE_PENDING &&

Req->Connection ->State != STATE_SLEEP){
if (Req ->Connection ->State == STATE_EVENT){

CancelEvent (Req->Connection);
11 } else if (Req ->Connection ->State != STATE_DISCONNECT&&

Req ->Connection ->State != STATE_BREAK){
LogMessage (ClassError ,

L"Disconnect: Forcing illegal state switch %s->%s on socket %d",
ShowConnState(Req ->Connection ->State),

16 ShowConnState(STATE_DISCONNECT),
ID);

}else {
/*Our own connection was already shutting down. Just confirm it.*/

}
21 }

if (Req->Connection ->State != STATE_BREAK){
Req->Connection ->State = STATE_DISCONNECT;

}
break;

26 case requestSend:
case requestReceive:

if (Req->Connection ->State != STATE_PENDING &&
Req->Connection ->State != STATE_SLEEP){

CONNECTION *Partner ;
31 if (Req ->Connection ->State == STATE_BREAK ||

Req ->Connection ->State == STATE_DISCONNECT){
/* Lost connection to client */

LogMessage (ClassError ,
L"Remote host closed connection unexpectedly on socket %d.",

36 ID);
/* Detach our connection */

} else {
LogMessage (ClassError ,

L"Send/Receive : Forcing illegal state switch %s->%s on socket %d",
41 ShowConnState(Req ->Connection ->State),

ShowConnState(STATE_TRANSACTION),
ID);

}
/* Remove our link to the partner */

46 WaitHandle (PartnerLock);
Partner = Req ->Connection ->Partner ;
Req->Connection ->Partner = (CONNECTION *) NULL;

/* Wake the partner */
51 if (Partner != (CONNECTION *) NULL){

if (Partner ->Partner == Req ->Connection){
Partner ->Partner = (CONNECTION *) NULL;

}
WakeConnection (Partner);

56 }
ReleaseMutex (PartnerLock);
/* And close our socket */
if (Req ->Connection ->State != STATE_BREAK){

Req->Connection ->State = STATE_DISCONNECT;
61 }

break;
}
/* Start the requested operation */
Req->Connection ->State = STATE_TRANSACTION;

198 M. van Eekelen et al.

66 Req->Connection ->Protocol = Req ->NewState ;
Req->Connection ->Read = (Req ->Request == requestReceive);
Req->Connection ->Write = (Req ->Request == requestSend);
Req->Connection ->Size = Req->Size;
Req->Connection ->Buffer = Req ->Data;

71 break;
case requestWakeUp:

/* Our partner finished its operations and tries to wake us up. */
if (Req->Connection ->State == STATE_TRANSACTION){

/*
76 * We are already awake and handling transactions.

* Don’t change anything .
*/

} else if (Req ->Connection ->State != STATE_PENDING &&
Req ->Connection ->State != STATE_SLEEP){

81 /* Detach our connection */
LogMessage (ClassError ,

L"Wake up: Forcing illegal state switch %s->%s on socket %d",
ShowConnState(Req ->Connection ->State),
ShowConnState(STATE_TRANSACTION),

86 ID);
} else {

Req->Connection ->State = STATE_TRANSACTION;
Req->Connection ->Read = FALSE;
Req->Connection ->Write = FALSE;

91 }
break;

default :
LogMessage (ClassError , L"INTERNAL ERROR: State %d.", Req ->Request);
break;

96 }
Interface ->Request = Req->Next;
Free (Req);

/* Reset event flag so we won’t delay processing the requests */
101 SetEvent (Interface ->Pending);

}

B Corresponding Part of the mCRL2 Model

TCP_ProcessRequests(tid:Pos, pending :Bool ,nConns:Nat)=
sum reqs:List(REQUEST).

3 _getRequests(tid ,reqs).
(reqs==[])->_unlockPartner(tid).

(pending -> _setPendingEvent(tid).
TCP_WaitEvent(tid ,nConns)

<>TCP_WaitEvent(tid ,nConns)
8)

<>_popRequest(tid).
TCP_ProcessRequest(tid ,head(reqs),nConns);

TCP_ProcessRequest(tid:Pos,req:REQUEST ,nConns:Nat)=
13 % first we need to get the state of the connection in the request :

sum state:STATE. _getConnectionState(tid ,getcid(req),state).(

((getname (req)== requestDisconnect &&
(state ==STATE_BREAK ||

18 state ==STATE_DISCONNECT)
)||
(getname (req)== requestWakeUp &&
(state ==STATE_TRANSACTION ||
state ==STATE_DISCONNECT ||

23 state ==STATE_BREAK)
)

)-> TCP_ProcessRequests(tid,true ,nConns)<> % do nothing in these cases

(getname (req)== requestDisconnect)->(

Analysis of a Session-Layer Protocol in mCRL2 199

28 (state ==STATE_PENDING ||
state ==STATE_SLEEP)
-> _setConnectionState(tid ,getcid(req), STATE_DISCONNECT).

TCP_ProcessRequests(tid ,true ,nConns)<>

33 % otherwise log and force.
(state ==SOCK_FREE ||
state ==SOCK_ACCEPT ||
state ==SOCK_READING ||
state ==SOCK_WRITING ||

38 state ==SOCK_SHUTDOWN ||
state ==STATE_TRANSACTION)
-> _log(tid , LogDisconnectForsingIllegalStateSwitch(getcid(req),

STATE_DISCONNECT)).
error(CriticalLog).

43 _setConnectionState(tid ,getcid(req), STATE_DISCONNECT).
TCP_ProcessRequests(tid ,true ,nConns)

)<>

(getname (req)== requestSend ||
48 getname (req)== requestReceive)->(

(state ==STATE_PENDING ||
state ==STATE_SLEEP)
-> _setConnectionStateProtocolReadWrite(

tid ,
53 getcid(req),

STATE_TRANSACTION,
getnewprotocol(req),
getname (req)==requestReceive ,
getname (req)== requestSend).

58 TCP_ProcessRequests(tid ,true ,nConns)+
(state ==STATE_BREAK ||
state ==STATE_DISCONNECT)
-> _log(tid , LogRemoteHostClosedUnexpectedly(getcid(req))).

TCP_ProcessRequest_Close(tid ,getcid(req),nConns)+
63

(state ==STATE_EVENT ||
state ==SOCK_FREE ||
state ==SOCK_ACCEPT ||
state ==SOCK_READING ||

68 state ==SOCK_WRITING ||
state ==SOCK_SHUTDOWN ||
state ==STATE_TRANSACTION)
-> _log(tid , LogSendReceiveForsingIllegalStateSwitch(getcid(req),

STATE_TRANSACTION)).
73 error(CriticalLog).

TCP_ProcessRequest_Close(tid ,getcid(req),nConns)
)<>

(getname (req)== requestWakeUp)->(
78 (state ==STATE_PENDING ||

state ==STATE_SLEEP)
-> _setConnectionStateReadWrite(tid,getcid(req),

STATE_TRANSACTION,false ,false).
TCP_ProcessRequests(tid ,true ,nConns)<>

83 (state ==STATE_BREAK ||
state ==STATE_EVENT ||
state ==SOCK_FREE ||
state ==SOCK_ACCEPT ||
state ==SOCK_READING ||

88 state ==SOCK_WRITING ||
state ==SOCK_SHUTDOWN)
->_log(tid , LogWakeUpForsingIllegalStateSwitch(getcid(req),state)).

error(CriticalLog).
TCP_ProcessRequests(tid ,true ,nConns)

93)
);

Automatic Certification of Java Source Code

in Rewriting Logic�

Mauricio Alba-Castro1,2, Maŕıa Alpuente1, and Santiago Escobar1

1 Universidad Politécnica de Valencia, Spain
{alpuente,sescobar}@dsic.upv.es

2 Universidad Autónoma de Manizales, Colombia
malba@autonoma.edu.co

Abstract. In this paper we propose an abstract certification technique
for Java which is based on rewriting logic, a very general logical and se-
mantic framework efficiently implemented in the functional programming
language Maude. Starting from a specification of the Java semantics writ-
ten in Maude, we develop an abstract, finite-state operational semantics
also written in Maude which is appropriate for program verification. As
a by-product of the abstract verification, a dependable safety certificate
is delivered which consists of a set of (abstract) rewriting proofs that
can be easily checked by the code consumer using a standard rewriting
logic engine. Our certification methodology extends to other program-
ming languages by simply replacing the concrete semantics of Java by a
semantics for the programming language at hand. The abstract proof-
carrying code technique has been implemented and successfully tested
on several examples, which demonstrate the feasibility of our approach.

1 Introduction

As an emerging research field, code mobility is generating a growing body of sci-
entific literature and industrial development. Proof-carrying code (PCC), orig-
inated by Necula [18,19], is a mechanism for ensuring the safe behavior of
programs that is useful for general software development, and particularly ad-
vantageous for the development of mobile code. In PCC, a program contains
both the code and an encoding of an easy–to–check proof whose validity entails
compliance with a predefined safety policy supplied by the code consumer. The
safety certificate is automatically generated by the software producer, and then
packaged along with the verified code. The crucial issues for a practical realiza-
tion of PCC are: (i) the expresiveness of the language used to specify the policies,
(ii) the size of the transmitted certificate, and (iii) the performance of validation
at the consumer side. The main technologies commonly applied in PCC are type

� This work has been partially supported by the EU (FEDER) and the Spanish MEC,
under grants TIN2004-7943-C04-01 and TIN2007-68093-C02-02, Integrated Action
HA 2006-0007, LERNet AML/19.0902/97/0666/II-0472-FA, and Generalitat Valen-
ciana GV06/285.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 200–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Certification of Java Source Code in Rewriting Logic 201

analysis [2,13], and theorem proving [3,21]. Recently, abstract interpretation has
been also proposed as an enabling technology for PCC [1,3].

Rewriting logic [16] is a flexible and expressive logical framework in which a
wide range of logics and models of computation can be faithfully represented.
It also provides an easy and inexpensive way to develop formal definitions of
programming languages which are directly executable [17] as interpreters in a
rewriting logic language such as Maude [7]. The verification of embedded and
reactive systems in rewriting logic offers a good number of advantages, an impor-
tant one being the maturity, generality and sophistication of the formal analysis
tools available for it (see e.g. [7]).

In this paper, we develop an abstraction-based, PCC technique for the certi-
fication of Java source code which exploits the automation, expressiveness and
genericity of rewriting logic. We focus on safety properties, i.e., properties of a
system that are defined in terms of certain events not happening, which we char-
acterize as unreachability problems in rewriting logic: given a concurrent system
described by a term rewriting system and a safety property that specifies the
system states that should never occur, the unreachability of all these states from
the considered initial state allows us to infer the desired safety property. The
safety policy is expressed in JML [15], a standard property specification lan-
guage for Java modules. In order to provide a decision procedure, we enforce
finite-state models of programs by using abstract interpretation [8]. The code
consumer annotates each variable in the Java code with an abstract domain.

Our methodology is as follows. Starting from a definition of the Java seman-
tics in rewriting logic formalized in [10], we develop an analysis technique for
source code certification which is parametric w.r.t. the abstract domains. The
key idea for the analysis is to test the unreachability of Java states that repre-
sent the counterpart of the safety property fulfilment using the standard Maude
(breadth-first) search command, which explores the entire (finite) state space of
the program. In the case when the test succeeds, the corresponding rewriting
proofs demonstrating that those states are indeed never reachable are delivered
as the expected outcome certificate. In order to lower the computational costs of
validation and avoid specification burdens to the experts, certificates are encoded
as (abstract) rewriting sequences that, together with an encoding in Maude of
the abstraction, can be checked by standard reduction. As far as we know, the use
of rewriting logic for the purpose of Java certification has not been investigated
to date. Moreover, our methodology extends to other mainstream conventional
languages or lower level languages (e.g. Java bytecode) by simply replacing the
concrete semantics by a semantics for the programming language at hand (for
instance, a rewriting logic semantics for Java bytecode can be found in [11]).

Our approach differs from other PCC approaches based on abstract inter-
pretation in several aspects. With regard to the abstraction carrying code ACC
approach of [1] for constraint logic programs, we share the high flexibility due to
the parametericity on different abstract domains, the lightness of the (static
analysis) proof checker on the consumer side, and the fact that both tech-
niques are defined at the source-level (which is Ciao-Prolog in the case of ACC).

202 M. Alba-Castro, M. Alpuente, and S. Escobar

However, their certificate is produced by means of a static analizer, and takes
the form of a particular subset of the (fixpoint) analysis result that the consumer
validates by means of a simpler abstract interpreter. Our certificate is mainly
an encoding of the unreachability (abstract) rewriting proofs, which is closer to
the original PCC [18,19] where the safety certificate was a proof in first-order
logic. [3] also focuses on abstract interpretation without relying on any theorem
prover or type analysis tool, but their certificates take the form of strategies for
reconstructing a fixpoint. Abstract interpretation is used in this case to reduce
the proofs that are generated and checked by the theorem prover Coq for (a
subset of) Java bytecode by a technique for fixpoint compression. It is worth
noting that, in our framework, the abstract Java semantics is directly available
to the code consumer, which can be verified once for all and trusted henceforth.

Let us motivate our work by focusing on some simple Java programs borrowed
from the related literature, that we want to certify. A brief explanation of the
JML notation used in the examples is found in Section 2.

Example 1. Consider a simple Java program, borrowed from [22], with the re-
quirement to produce an even number as a result. We express this requirement
as a safety policy in the assertion language JML by using the ensures clause
and the operator \result. Namely, we require that the Java outcome is not an
odd number when the execution of the method is completed.

static int even16()
{ /*@ Safety Specification:

@ ensures \result % 2 != 1; @*/
int x = 4; int y = x + 8;
return x+y;

}

A dedicated, standard verification tool for Java such as JavaFAN [11] can help
verify the program above since there is only one initial state and its space state is
finite. This can be done either by symbolic simulation or by explicit-state model
checking of the property (specified in linear temporal logic). Unfortunately, no
safety certificate would be delivered that could be inexpensively tested at the
consumer side.
Example 2. Consider a more elaborated Java program together with a similar
“even” safety policy required on both, the input and the output of the function.

static int evenOdd(int j)
{ /*@ Safety Specification:

@ ensures ((j % 2) == 0) ==> (\result % 2 == 0); @*/
int u = 3; int v,z = 4;
z += 30;
v = u*8 + j;
return z - v;

}

Here an infinite number of initial states is considered, although the search space
is finite for each of them. Existing Java verification tools such as JavaFAN do not
support program abstraction. Thus, for the infinite-state program of Example 2
above, JavaFAN can only be used as a semi-decision procedure to look for safety
violations starting from specific initial states.

Our last example is more realistic, involving loops and conditionals, as follows.

Automatic Certification of Java Source Code in Rewriting Logic 203

Example 3. Consider a more realistic Java program, requiring a more involved
condition on the input to ensure the fulfillment of the considered safety property.
The parity of the output is again required to be “even” under a more complex
“modulo 4” safety policy on the input parameter.

static int summation(int n)
{ /*@ Safety Specification:

@ ensures ((n % 4) == 0 | (n % 4) == 3)
@ ==> (\result % 2 == 0); @*/

int sum ; int i = 0;
while (i<=n) { sum += i; i++; }
return sum;

}

Other safety properties that are routinely checked in PCC include data shape/
size, bounds on resource consumption, and procedure level properties such as
termination. In all these cases, PCC has the advantage to replace a (potentially)
costly re-verification process by an easy–to–check proof at the consumer side. In
this paper we do not address these different policies, which we consider as future
work. Nevertheless, some of them are still plausible in the abstract interpretation
framework and clearly not difficult to define in our setting, since all the necessary
Java state elements such as memory, stacks, I/O, etc. are explicitly considered;
see Section 3.

InSection2webriefly introduce theJavaModelingLanguage. InSection3wede-
scribe the rewriting logic semantics of Java considered in this paper and inSection 4
wepresent its abstract version, discussing all the difficulties that wehave found and
their solutions. Finally, in Section 5 we present our certification methodology, in
Section 6 we demonstrate the practicality of our proposal with some experimental
results, and conclude with some related work and future work in Section 7.

2 The Java Modeling Language

The Java Modeling Language [15] is a behavioral interface specification language
that allows Java programmers to write specifications of Java classes, interfaces
and modules without the difficulty of learning a language-independent formal
specification language like OCL [5]. JML has been designed as an easily acces-
sible specification language that combines the design by contract method and
the model-based approach to specification to guarantee that a program satisfies
its specification at execution time. That is, it contributes to the idea of includ-
ing specifications into the code and then pre-compiling them into runtime checks
embedded in the Java code. Java developers can specify with JML the functional
properties of their programs in a generalization of Hoare logic, tailored to Java.
As an interface specification language, JML can describe the names and static
information found in Java declarations of Java modules with preconditions (in
requires clauses), normal postconditions (in ensures clauses), invariants and
exceptional preconditions (with the signals clauses), that express first-order
logic statements. JML notation includes quantifiers \forall and \exists and
specification-only fields and methods that allow more precise and complete spec-
ifications. As a behavior specification language, JML can also describe how the

204 M. Alba-Castro, M. Alpuente, and S. Escobar

module will behave when used with assertions intermixed with the Java code.
JML comes with a library with Java types that can be used for describing behav-
ior mathematically like sets, sequences and relations. In this paper, we consider
the simplest JML clauses: the ensures clause to indicate the result of a func-
tion expected by the code consumer and the requires clause to indicate any
precondition on an input parameter of a function.

The JML specifications of a Java program can either be written as code anno-
tations in Java program files or in separate files. The JML specifications as code
annotations are treated like Java comments that are ignored by the compiler.
The text of an annotation could be either in one line, after the marker //@ or,
in many lines enclosed between the markers /*@ and @*/.

/*@ requires <precondition>;
@ ensures <postcondition if no exception raised>;
@ signals(E) <postcondition when exception E raised>;
@ assignable <modified fields and variables> @*/

3 The Rewriting Logic Semantics of Java

We assume some basic knowledge of term rewriting [20] and rewriting logic [16].
In the following, we briefly describe the rewriting logic semantics of Java given
in [10] and used by the JavaFAN verification tool [11,12]. Its novelty and inter-
est are based on the following four advantages: (i) formal specifications provide
a rigorous semantic definition for a language that can be mathematically scruti-
nized; (ii) such formal specifications can be developed with relatively little effort,
even for large languages like Java [11] and the JVM [12]; (iii) the Maude program-
ming language [7], which implements rewriting logic, provides a formal analysis
infrastructure, so that its formal analysis tools (such as state-space breadth-first
search and LTL model checking) become available for free for each programming
language that is specified in Maude; and (iv) in spite of their generality, those
formal analyses can be performed with competitive performance (see [11]).

The specification of Java operational semantics is a rewrite theory, that is,
a triple RJava = (ΣJava, EJava, RJava), with ΣJava an order-sorted signature,
EJava = ΔJava � BJava a set of ΣJava-equational axioms where BJava are ax-
ioms such as associativity, commutativity and identity and ΔJava are a set of
terminating and confluent (modulo BJava) set of ΣJava-rewrite rules, and RJava

a set of ΣJava-rewrite rules. Intuitively, the sorts and function symbols in ΣJava

describe the static structure of the Java program state space as an algebraic data
type, the equations in ΔJava describe the operational semantics of its determinis-
tic features, and the rules in RJava describe its concurrent features. Following the
rewriting logic framework [20,16], we denote by u →r

Java v the fact that concrete
terms u, v, denoting Java program states, are rewritten (at the top position, see
[10]) by using r, which is either a rule in RJava or an equation in ΔJava both ap-
plied modulo BJava. We simply write u →Java v when no confusion can arise. We
denote by →∗

Java the extension of →Java to multiple rewrite steps, i.e., u →∗
Java v

if there exist u1, . . . , uk such that u →Java u1 →Java u2 · · ·uk →Java v. Asso-
ciativity, commutativity and unity (written ACU) axioms of binary operations

Automatic Certification of Java Source Code in Rewriting Logic 205

in BJava allow us to elegantly and effectively define (and implicitly implement)
the crucial infrastructure of the Java programming language, including environ-
ments, threads, memory, input/output, synchronization information, and stores
as well as the lookup operations on them; all of them implemented as a multiset
union operation that builds up a “soup” of elements; see [10]. The rewrite theory
RJava is defined as terms of a concrete sort State, with the main state attributes
(i.e., constructors of the algebraic type State) such as in, out, mem, or store.
They define an algebraic structure which is parametric on a generic sort Value
that defines all the possible values returned by Java functions, or stored in the
memory, etc. For instance, the int and bool constructors describe Java, inte-
ger and boolean values and are defined in Maude as “op int : Int -> Value .”
and “op bool : Bool -> Value .”, where Int and Bool are the internal built–in
Maude sorts to define integers and booleans. Intuitively, equations in ΔJava and
rules in RJava are used to specify the changes to the program state, i.e., the
changes to the memory, threads, input/output, etc.

In [10], a sufficiently large subset of full Java 1.4 language is specified in
Maude, including multithreading, inheritance, polymorphism, object references,
and dynamic object allocation. However, Java native methods and many of the
Java built-in libraries available are not supported. The semantics of Java is
defined modularly, i.e., different features of the language are defined in sepa-
rate Maude modules so to ease extensions and maintenance. See [10] for further
details.

The semantics of Java is defined in a continuation-based style. Continuations
maintain the control context of each thread, which explicitly specifies the next
steps to be performed by the thread. Continuations are a typical technique to
transform the uncontrollable control context into controllable data context, by
stacking the sequence of actions that still need to be executed. Once the expres-
sion e on the top of a continuation (e -> k) is evaluated, its result will be passed
to the remaining continuation k. Continuations significantly ease the definition
of flow-control instructions, such as break, continue, return, and exceptions. For
instance, the Java addition operation on Java integers is specified1 in Figure 1
using continuations, where k is the constructor symbol used to denote a continua-
tion in a thread, -> is the constructor symbol used to concatenate continuations,
int is the constructor symbol used to denote a Java integer, and + with2 arity
2 and inside the constructor int is the Maude addition symbol, whereas + with
arity 2 but outside the constructor int is the Java addition symbol, and + with
arity 0 is a continuation symbol used to remember that the Java addition action
is being stacked. The Java less-or-equal boolean operation on Java integers is
specified in a similar way in Figure 2.

1 The Maude syntax is almost self-explanatory. The general point is that each item:
a sort, a subsort, an operation, an equation, a rule, etc., is declared with an obvious
keyword: sort, subsort, op, eq, rl, etc., with each declaration ended by a space and
a period. We use uppercase letters to denote Maude variables and lowercase letters
to denote Maude constructor symbols. See [7] for details.

2 The Maude syntax allows overloading of operators, with different arities.

206 M. Alba-Castro, M. Alpuente, and S. Escobar

--- First evaluate arguments
eq k((E + E) -> K) = k((E, E) -> (+ -> K)) .
--- Once arguments are evaluated to integers, compute addition
eq k((int(I), int(I)) -> (+ -> K)) = k(int(I + I) -> K) .

Fig. 1. Continuation-based equations for Java addition operator on integers

--- First evaluate arguments
eq k((E <= E’) -> K) = k((E, E’) -> (<= -> K)) .
--- Once arguments are evaluated to integers, compute boolean
eq k((int(I), int(I’)) -> (<= -> K)) = k(bool(I <= I’) -> K) .

Fig. 2. Continuation-based equations for Java less-or-equal operator on integers

A relevant construction in the Java semantics is the buildEnv continuation
symbol shown in Figure 3, that gives a new location in the memory store to
each new variable. It involves the following four elements of the Java state:
the thread adding new variables (denoted by constructor t), the environment
inside the thread (denoted by constructor env), the store shared by all threads
(denoted by constructor store), and a counter for the last used location in the
store (denoted by constructor nextLoc).

Another important aspect of the semantics is the use of Java variables. In
Figure 4 we show how the content of a Java variable is retrieved from the store
in the Java state. The assignment operator for Java variables is specified in
Figure 5. Note that the relative order among assignment and retrieval operations
is relevant since multiple threads can try to concurrently assign a value to a
variable or read its value from the store; hence a rule, instead of an equation,
is used to represent the physical assignment as well as the physical retrieval
from the store. In other words, the assignment operator and the retrieval of a
variable value are non-deterministic due to the presence of different threads and
are specified with Maude rules instead of Maude equations.

The state space associated to a rewrite theory is determined in Maude only by
the program rules, since equations are deterministic. That is, rules and equations
are applied in the same way but Maude only keeps track of the rules applied
and omits the information about the equations applied. Therefore, the number
of rules and equations is relevant and the smaller the number of rules, the more
efficient the verification analysis, since the search space is smaller. According to
[10], the Java operational semantics contains about 424 equations and only 7
rules, which considerably saves memory and execution time.

The following example illustrates the mechanization of the Java semantics.

--- No new variable, end buildEnv continuation
eq k(buildEnv(noParameters, noValues) -> K) = k(K) .
--- New variable with name Var and value Val assigned to Location I’ + 1
eq t(k(buildEnv(((T d(Var)), Pl), (Val, Vl)) -> K) env(Env) TC)

store(ST) nextLoc(I’)
= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)
store([l(I’ + 1), Val] ST) nextLoc(I’ + 1) .

Fig. 3. Continuation-based equations for building the environment

Automatic Certification of Java Source Code in Rewriting Logic 207

--- First obtain location in store from variable name
eq k(Var -> K) env([Var, Loc] env) = k(#(Loc) -> K) env([X, Loc] env) .
--- Then obtain value stored in such location
rl t(k(#(Loc) -> K) TC) store([Loc, Value] Store)
=> t(k(Value -> K) TC) store([Loc, Value] Store) .

Fig. 4. Continuation-based equations for variable content retrieval

--- First obtain location in store of the variable
--- while keeping expression in the continuation
eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E) -> K)) .
--- Once the location is obtained, evaluate expression
--- while keeping location in the continuation
eq k(Loc -> (=(E) -> K)) = k(E -> (=(Loc) -> K)) .
--- Once the expression is computed, assign to location
eq k(Value -> (=(L) -> K)) = k([Value -> L] -> (V -> K)) .
--- General procedure to update a location in the shared memory
rl t(k([Value -> L] -> K) TC) store([L, Value’] ST)
=> t(k(K) TC) store([L, Value] ST) .

Fig. 5. Continuation-based equations and rules for Java assignment operator

Example 4. Consider the Java program of Example 1 together with the following
Java main function:

void main() { System.out.println(addition()); }

The Maude command search provides us built–in breadth-first search, i.e., it
provides all the sequences of rules (recall that the application of equations is
omitted within the search space) from an initial term (without variables) to
a final term (possibly with variables) [7]. Note that the initial term (without
variables) describes a concrete initial Java state and the final term (possibly
with variables) describes a (possibly infinite) set of final Java states. In the
search command below we ask for all possible values returned by the main Java
function of Example 1 and, therefore, a variable term denotes the goal state to
be reached. Note that the code of the two Java functions addition and main
is embedded within the search command, as well as the initial call to main (see
[10] for details on how to build an initial Java state).

search in PGM-SEMANTICS : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’addition(noPara)throws(noType)
{int d(’x) = i(4) ; int d(’y) = ’x + i(8) ; 12 @ return ’x + ’y ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{5 @ (’System . ’out . ’println < ’addition < noExp > > ;)}

})
t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

Solution 1 (state 0)
X:ValueList --> int(16)

The search command returns that one unique possible Java execution trace is
possible, which leads to the Java value 16 as the outcome of the Java instruction
“System.out.println(addition());”. The whole rewriting sequence leading to
this Java value is also delivered by Maude.

208 M. Alba-Castro, M. Alpuente, and S. Escobar

4 The Abstract Rewriting Logic Semantics of Java

In this section, we develop an abstract version of the rewriting logic seman-
tics of Java, described by the rewrite theory RJava# = (ΣJava# , EJava# , RJava#),
EJava# = ΔJava# � BJava# and its corresponding →Java# rewriting relation. Re-
call that the rewrite theory RJava is defined on a generic sort Value. Our approach
consists in extending RJava (taking advantage of its modularity) by creating ab-
stract domains as subsorts of the sort Value and adding the appropriate versions
of the Java constructions and operators for the abstract domains.

An abstract interpretation (or abstraction) [8] of the program semantics is
given by an upper closure operator α : ℘(State) → ℘(State), that is monotonic
(for all SSt1, SSt2 ∈ ℘(State), SSt1 ⊆ SSt2 implies α(SSt1) ⊆ α(SSt2)), idem-
potent (for all SSt ∈ ℘(State), α(SSt) ⊆ α(α(SSt))), and extensive (for all
SSt ∈ ℘(State), SSt ⊆ α(SSt)). The intuition of this definition is that each
Java program state St ∈ State is abstracted by its closure α({St}). Closure
operators have many interesting properties. For instance, when the considered
domain is a complete lattice, e.g. 〈α(State),⊆〉, each closure operator is uniquely
determined by the set of its fixed points. In the context of abstract interpreta-
tion, closure operators are important because abstract domains can be equiva-
lently defined by using them or by Galois insertions, as introduced in [9]. Let
ι : α(℘(State)) → A be an isomorphism. Then, given an upper closure opera-
tor α : ℘(State) → ℘(State), the structure (℘(State), α ◦ ι, ι−1, A) is a Galois
insertion, where α ◦ ι and ι−1 are the abstraction and concretization functions,
respectively (see [9] for further details).

In our approach, the code consumer can assign a different abstract domain
to each variable in the Java code to obtain a finite-state model of the program.
This is an important point, since a potential user of the tool only has to select
some source variables to be abstracted together with the selected abstraction. A
graphical interface equipped with user–friendly advisory facilities can help her
in this process. Furthermore, the user could simply annotate the source code
with JML assertions encoding the required safety policy so that the critical vari-
ables (together with their appropriate abstract domains) might be automatically
inferred, although in this case the abstraction might be less accurate.

For the process of assigning an abstract domain to a source variable, we have
a twofold situation, considering the theoretical and practical levels. On the the-
oretical level, we define an abstract function for each Java variable name x, e.g.,
αx : ℘(Int) → ℘(Int), and homomorphically extend those abstract functions to
an abstract function α : ℘(State) → ℘(State). Indeed, for each variable x, α
abstracts the values stored in the Java memory for x using αx, which can be the
identity function if no abstract domain is selected. As mentioned before, these
assignments of an abstract domain to a source variable can be inferred from the
JML annotations, e.g. “\result % 2” or “n % 4”, in the Java source code. The
following example shows some abstract domains which are relevant for this work.

Example 5. Let us consider an abstract function that classifies Java integers into
even and odd classes, i.e., mod2 : ℘(int(Int)) → ℘(int(Int)) where int(Int)

Automatic Certification of Java Source Code in Rewriting Logic 209

top

even

�����
odd

�����

#0

�����
#1

�����������
#2

�����������
#3

�����

bot

�����������
������ �����

����������

Fig. 6. Lattice of integers for the mod2 and mod4 abstractions

denotes the Maude terms of sort Value that correspond to the Java integers.
This abstraction is relevant for Examples 1, 2, and 3. We can choose the follow-
ing abstract symbols A = {even, odd, top, bot} to denote the following subsets
top = int(Int), bot = ∅, even = {int(n) | n mod 2 = 0}, and odd = {int(n) |
n mod 2 = 1}. We can even refine such abstract domain by including the ab-
straction for Java integers modulo 4, i.e., mod4 : ℘(int(Int)) → ℘(int(Int)).
This abstraction is relevant for Example 3. We can have the following abstract
symbols A = {top, bot, #0, #1, #2, #3} where #k = {int(n) | n mod 4 = k} for
k ∈ {0, 1, 2, 3}. The lattice induced by the relation ⊆ on sets of Java integers is
shown in Figure 6.

On the practical level, we have to supplement the original Java semantics with
a new Maude function, called inAbsDomain, that records the abstract domain
associated to each variable name and that it will be used in two points: when
the variable is initially created in the Java memory and everytime its value is
updated in the memory. For instance, Figure 7 shows the code of inAbsDomain
for variables x,y of Example 1 according to the JML annotations, together with
the Maude code for the abstract functions mod2 and mod4. We also have to
add a call to the inAbsDomain function in the buildEnv continuation symbol of
Figure 3 and the Java assignment operator of Figure 5; all these modifications
are shown in Figure 8. Obviously, we have to provide abstract versions of all
the Java operators in the Java semantics dealing with such kind of values, e.g.,
we must provide an approximation of integer addition, less-or-equal boolean
operator, etc. dealing with the new abstract domains for integers. For instance,
given the abstract function mod2, the addition operation on integers is specified
in Figure 9.

--- Define abstract domains
sorts Mod2 Mod4 . subsort Mod2 Mod4 < Value .
ops even odd : -> Mod2 .
op #_: Int -> Mod4 .
--- Define abstraction functions
op mod2 : Value -> Mod2 .
eq mod2(int(I)) = if (I rem 2 == 0) then even else odd fi .
op mod4 : Value -> Mod4 .
eq mod4(int(I)) = #(I rem 4) .
--- Equations for abstracting concrete values
op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’x,int(I)) = mod2(int(I)) .
eq inAbsDomain(’y,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,Value) = Value [owise] .

Fig. 7. Abstract domain and association of abstract domain to variable name

210 M. Alba-Castro, M. Alpuente, and S. Escobar

--- BuildEnv modified equation
eq t(k(buildEnv(((T d(Var)), Pl), (Value, Vl)) -> K) env(Env) TC)

store(ST) nextLoc(I’)
= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)
store([l(I’ + 1), inAbsDomain(Var,Value)] ST) nextLoc(I’ + 1) .

--- Assignment modified equations
op = : Exp Qid -> Continuation . --- new definition
op = : Location Qid -> Continuation . --- new definition
eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E,Var) -> K)) .
eq k(Loc -> (=(E,Var) -> K)) = k(E -> (=(Loc,Var) -> K)) .
eq k(Val -> (=(Loc,Var) -> K)) = k([inAbsDomain(Var,Val) -> Loc] -> (Val -> K)) .

Fig. 8. Modified continuation-based equations for building environment and Java as-
signment

--- Execute abstract mod2 values
eq k((even, even) -> (+ -> K)) = k(even -> K) .
eq k((even, odd) -> (+ -> K)) = k(odd -> K) .
eq k((odd, even) -> (+ -> K)) = k(odd -> K) .
eq k((odd, odd) -> (+ -> K)) = k(even -> K) .
--- Combine with standard integer values
eq k((int(I), Val) -> (+ -> K)) = k((mod2(int(I)), Val) -> (+ -> K)) .
eq k((Val, int(I)) -> (+ -> K)) = k((Val, mod2(int(I))) -> (+ -> K)) .

+ even odd

even even odd

odd odd even

Fig. 9. Abstract definition and equations for abstract Java addition operator

In abstract interpretation, it is common to compress several computation
steps into one abstract computation step, to reflect the fact that several distinct
behaviors are mimicked by an abstract state. Consider for instance the Java less-
or-equal operator <= of Figure 2 and the abstract function mod2. For the case of
comparing two even expressions with <=, an (inaccurate) approximation of the
result is the union of true and false, which is denoted by the symbol top. A
näıve implementation of this idea would mean including the following equation
in the abstract Java semantics RJava# (following the definition of operator <= in
Figure 2):

eq k((even, even) -> (<= -> K)) = k(top -> K) .

This instrumentalization of the Java semantics to deal with abstraction implicitly
means too many modifications, since completely different Java states could be
generated that have to be packed together into a unique abstract state. For
instance, consider a Java expression “if eb then et else ef” such that the
expression eb returns top so that we have to represent within a single Java state
both, the case when we reach a Java state continued by executing instruction et
and also the case when we reach a Java state continued with the instruction ef.
This would amount to a deep modification of the whole Java semantics, in order
to cope with sets of Java states. Therefore, we adopt a different approach. When
several →Java rewrite steps are mimicked by an abstract Java state and those
rewrite steps apply different rules or equations, we use concurrency at the Maude
level. That is, we add rules to RJava# to reflect the different possible evolutions
of the system. Following this approach, the Java less-or-equal operator is defined
as follows, describing that the comparison operator <= can return true or false
indifferently:

Automatic Certification of Java Source Code in Rewriting Logic 211

rl k((even, even) -> (<= -> K)) = k(bool(true) -> K) .
rl k((even, even) -> (<= -> K)) = k(bool(false) -> K) .

Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different
alternatives in a non-deterministic way. By abuse, we denote the abstraction of
a rule α({l}) → α({r}) by α({l} → {r}).
Definition 1 (Abstract rewriting). Let α : ℘(State) → ℘(State) be an ab-
straction. We define the approximated version of rewriting →Java#⊆ ℘(State) ×
℘(State) by:

SSt1 →Java# SSt2 using α({l} → {r}) ∈ (RJava# ∪ ΔJava#)
iff ∀u ∈ α(SSt1), ∃v ∈ SSt2 s.t. u →Java v, using l → r ∈ RJava ∪ ΔJava.

We denote by →∗
Java# the extension of →Java# to multiple rewrite steps. The

following result follows straightforwardly by monotonicity, idempotency, and ex-
tensitivity of the upper closure operator α.

Theorem 1 (Correctness & Completeness). Let α : ℘(State) → ℘(State)
be an abstraction. Let SSt1, SSt2 ∈ ℘(State). If SSt1 →∗

Java# SSt2, then for all
u ∈ α(SSt1), there is v ∈ SSt2 such that u →∗

Java v. Let St1, St2 ∈ State. If
St1 →∗

Java St2, then there exists SSt3 ⊆ ℘(State) s.t. α(St1) →∗
Java# SSt3 and

St2 ∈ SSt3.

The breadth-first search for the abstract finite state system (finite due to the
use of finite abstract domains) gives us a useful tool for symbolic execution,
while keeping simple the modifications of the Java semantics in Maude. Actually,
verification simply boils down to the exploration of all the rewriting sequences.

Example 6. Consider the Java functions addition and main of Example 4 and
the abstract Java semantics shown above with the inAbsDomain function of Fig-
ure 7. The call to function main is now as follows. Note that, for the search com-
mand, the only change we need in this case is the replacement of PGM-SEMANTICS
with PGM-SEMANTICS-ABSTR, since the considered Java function addition of Ex-
ample 1 has no input parameters.

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none
{(default static) int ’addition(noPara)throws(noType)

{((int d(’x) = i(4) ;) (int d(’y) = ’x + i(8) ;)) 12 @ return ’x + ’y ;}
(public static) void ’main(t(’String)[] d(’args))throws(noType)

{5 @ (’System . ’out . ’println < ’addition < noExp > > ;)}})
t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

This search command now returns the following result, meaning that exactly
one abstract Java execution trace is proven, which returns the abstract value
even as a result of the Java instruction “System.out.println(addition());”:

Solution 1 (state 0)
X:ValueList --> even

212 M. Alba-Castro, M. Alpuente, and S. Escobar

and therefore every real execution of the Java program of Figure 1 also returns
an even value, according to Theorem 1.

However, the abstraction defined in Example 5 is not accurate enough for the
Java program of Example 3, as shown in the following example.

Example 7. Consider the code of Example 3 with the following function main:

void main() { System.out.println(sum(0)); }

We provide the following assignment of abstract domains for the variables in the
Java program:

op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’n,int(I)) = mod4(int(I)) .
eq inAbsDomain(’i,int(I)) = mod4(int(I)) .
eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,V) = V [owise] .

When we search for all the results of the function main

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’sum(int d(’n))throws(noType)

{(((int d(’sum) ;) (int d(’i) = i(0) ;)) 17 @ (while ’i <= ’n
17 @ {(15 @ (’sum += ’i ;)) 16 @ (’i ++ ;)})) 18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{7 @ (’System . ’out . ’println < ’sum < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

Maude delivers the following two results
Solution 1 (state 2) Solution 2 (state 5)
X:ValueList --> even X:ValueList --> odd

which are useless since both, an even and an odd output value are possible. The
problem is that the boolean condition (i <= n) returns both true and false
(in a non-deterministic way) under the mod2 and mod4 abstraction operators in
too many situations.

In order to improve accuracy, we define a new, more precise abstract domain
leq#

x,y that is parametric w.r.t. two Java variable names x, y (which have different
abstraction domains). For the previous example, this can be used to abstract
variable i w.r.t. n. On the theoretical level, there are two abstract domains
αx, αy : ℘(Int) → ℘(Int) that are used for the values stored in the Java memory
for variables x, y, respectively. The extension leq#

x,y : ℘(State) → ℘(State) takes
those abstract domains αx, αy and captures also whether x ≤ y or x > y. On the
practical level, we use the abstract symbols leq# and gt# defined in Maude as
“leq# : Abst Qid -> AbstLeqN” and “gt# : Abst Qid -> AbstLeqN” where
the first argument denotes the abstract domain for variable x (i.e., αx) and
the second argument is just y (the name of the second variable), e.g. for the
previous example we will have an abstract expression for variable i such as
leq#(#0,’n) denoting that the current value of variable i modulo 4 is 0 and
that variable i is less or equal to variable n, whatever value n has been assigned in
the execution. The appropriate version of the Java operators relevant for this new

Automatic Certification of Java Source Code in Rewriting Logic 213

<= any value
leq#(Val,V) true
gt#(Val,V) false

++

leq#(#(I),V) leq#(mod4(I + 1),y) if y = #(I’) ∧ I < I’
leq#(#(I),V) gt#(mod4(I + 1),y) if y = #(I’) ∧ I ≥ I’

gt#(#(I),V) gt#(mod4(I + 1),y)

--- Two equations for the Java less-or-equal operator on integers
eq k((leq#(Val1,Var),Val2) -> <= -> K) = k(bool(true) -> K) .
eq k((gt#(Val1,Var),Val2) -> <= -> K) = k(bool(false) -> K) .
--- This equation is the core of the new abstract domain
--- The value of Var in memory has to be obtained before incrementing
ceq t(k(leq#(#(I),Var) -> ++’(Loc) -> K) env([Var, Loc’] Env) TC)

store([Loc’,#(I’)] Store)
= t(k([NewVal -> Loc] -> leq#(#(I),Var) -> K) env([Var, Loc’] Env) TC)

store([Loc’,#(I’)] Store)
if NewVal := if (I + 1 <= I’) then leq#(mod4(int(I + 1)),Var)

else gt#(mod4(int(I + 1)),Var) fi .
--- This other equation complements the previous one
eq k(gt#(#(I),Var) -> ++’(Loc) -> K)
= k([gt#(mod4(int(I + 1)),Var) -> Loc] -> gt#(mod4(int(I + 1)),Var) -> K) .

Fig. 10. Continuation-based equations for Java less-or-equal operator on integers

abstract domain are shown in Figure 10. Note that we cannot use the abstract
domain above for the second variable instead of its name, since the value of this
variable can change dynamically. Consider, for instance, the following variant
of Example 3 where the loop therein contains the assignment n -= 1, and thus
variable n changes in each iteration.

Example 8. Let us reconsider now Example 7. The code of function inAbsDomain
for Example 3 is as follows, denoting that variables i and n have domains mod4,
variable sum has domain mod2 and that the relation i ≤ n is also represented in
the abstract domain:

op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’n,int(I)) = mod4(int(I)) .
eq inAbsDomain(’i,int(I)) = leq#(mod4(int(I),’n) .
eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,V) = V [owise] .

When we search for solutions for the Java function main using the following
command

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’sum(int d(’n))throws(noType)

{(((int d(’sum) ;) (int d(’i) = i(0) ;)) 17 @ (while ’i <= ’n
17 @ {(15 @ (’sum += ’i ;)) 16 @ (’i ++ ;)})) 18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{7 @ (’System . ’out . ’println < ’sum < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

we get the following unique output, meaning that exactly one abstract Java
execution trace is proven, which returns the abstract value even as a result of
the Java instruction “System.out.println(sum(0))”:

214 M. Alba-Castro, M. Alpuente, and S. Escobar

Solution 1 (state 2)
X:ValueList --> even

This certifies that every possible Java execution starting with an integer n such
that n mod 4 = 0 does always return an even value. Indeed, we can verify that
initial calls “System.out.println(sum(0))” and “System.out.println(sum(3))”
always return even whereas “System.out.println(sum(1))” and
“System.out.println(sum(2))” return odd.

5 Certifying Java

Examples 4, 6, 7, 8 above illustrate how our methodology generates a safety
certificate which essentially consists of the set of (abstract) rewriting proofs of
the form t1 →r1

Java# t2 · · · →rk−1

Java# tk that describe the program states which
can and cannot be reached from a given (abstract) initial state. Since these
proofs correspond to the execution of the abstract Java semantics specification,
which is made available to the code consumer, the certificate can be unexpen-
sively checked on the consumer side by any standard rewrite engine by means
of a rewriting process that can be very simplified. Actually, it suffices to check
that each abstract rewriting step in the certificate is valid and no other valid
rewritings have been disregarded, which essentially amounts to use the matching
infrastructure within the rewriting engine. Note that, according to the different
treatment of rules and equations in Maude, where only transitions caused by
rules create new states in the space state, an extremely reduced certificate can
be delivered by just recording the rewrite steps given with the rules, while the
rewritings with the equations are omitted.

The certification methodology presented here has been implemented in Maude
and is publicly available at http://www.dsic.upv.es/~sescobar/JavaACC/.
In developing and deploying the system, we fixed the following requirements:
1) define a system architecture as simple as possible, 2) make the certification

Fig. 11. JavaACC Snapshot

Fig. 12. JavaACC Reply

Fig. 13. JavaACC Certificate

Automatic Certification of Java Source Code in Rewriting Logic 215

Table 1. Sizes of source code and certificates, and times ofcertificate generation and
validation times

Source Full Cert. Red Cert. Full Cert. Red Cert. Full Cert. Red Cert.
Code example Size Size Size F/R Gen. Time Gen. Time Val. Time Val. Time

(bytes) (Kbytes) (Kbytes) (ms) (ms) (ms) (ms)
even16 562 117 0.93 126 ∼0 ∼0 ∼0 ∼0
even16∗ 767 401 3.58 112 6 4 4 2
evenOdd 671 312 1.08 288 ∼0 ∼0 ∼0 ∼0

summation 870 1551 39.03 40 2294 146 1628 103

service available to every Internet requestor, and 3) hide the technical details
from the user. The prototype system JavaACC offers a rewriting-based program
certification service, which is able to analyze safety properties of Java code which
are related to the safe use of types. A snapshot of JavaACC is shown in Figures
11, 12, and 13.

6 Experiments

In Table 1, we study two key points for the practicality of our proposal: the
size of the reduced versus full certificates and the relative efficiency of checking
certificates w.r.t. their generation. The experiments have been performed on a
MacBook with 2 Gb RAM. Programs even16, evenOdd, and summation are the
Java programs of Examples 1, 2, and 3, respectively. Program even16∗ performs
more involved arithmetic computations than even16, including subtraction and
multiplication, while returning the same result. The first column contains the size
(in bytes) of the source code for each benchmark program. The three columns
for Full Cert. show the size in Kbytes, the generation time, and the validation
time, respectively, for the full certificates. Similarly for the three columns of
Red. Cert. Running times are given in milliseconds and were averaged over a
sufficient number of iterations. Our figures demonstrate that the reduction in
size of the certificate is very significant in all cases, ranging the quotient F/R
(Full Cert. Size/Red. Cert. Size) from 288 in even16∗ to 40 for summation. When we
compare the time employed to generate the (full and reduced) certificates w.r.t.
the corresponding validation time, we have that the validation time is reduced
by a factor up to 50%. Thus we conclude that, by minimizing the number of
equations in the certificate, we achieve a simpler and indeed superior certificate
that can be verified much more efficiently.

7 Conclusions and Related Work

Correctness of JML specifications can be verified either during runtime or stat-
ically. The most basic static tool support for JML is type checking and parsing
(see [5]). At runtime an exception is raised if a JML condition fails.

There are several tools for static verification of Java programs using JML
as specification language. The main differences between these tools regard its
soundness, its level of automation, its language coverage and whether they are

216 M. Alba-Castro, M. Alpuente, and S. Escobar

proof tools or just validation tools. The ESC/Java tool [14] offers a higher level
of automation without any user interaction and relies on a complete (but un-
sound [4]) automatic prover to check null pointers or array bounds limits which
uses its own specification language. The ESC/Java2 tool [6] extends ESC/Java
to support more of the JML syntax and to add other functionality but it is also
unsound and incomplete. It supports Java 1.4 code with JML annotations but
we can not generate certificates whenever the validation succeds. Another draw-
back is that there is no arithmetic axiomatization that enables reasoning within
ESC/Java2 about programs with integer computation [5].

As a conclusion, as far as we know our approach is the first sound and com-
plete, fully automatic certification tool that applies to the verification of source
Java code. The proposed methodology features quality attributes (notably reli-
ability and security, but also good performance) through rigorous mechanisms
which integrate a wide range of well-established programming language tech-
niques (abstract interpretation, program semantics, meta-programming, etc).
Our approach is based on a rewriting logic semantics specification of the full
Java 1.4 language [10], and thus works with the full Java 1.4 language. Our
certification methodology extends to other programming languages by simply
replacing the concrete semantics by a semantics for the programming language
at hand. Different safety policies can be defined using different (abstract) terms
denoting the states that should not be reached. Such safety policies are certified
by the code producer and easily checked by the code consumer using a rewrit-
ing process that can be very simplified. Certificates are encoded as (abstract)
rewriting sequences which can be checked in the abstract Java semantics writ-
ten in Maude on the consumer side by standard reduction. We are currently
investigating how other formal verification techniques such as (abstract) model
checking can be fruitfully combined with the abstraction methodology presented
here to produce a more powerful methodology.

Acknowledgments. We thank Andrea Schiavinato for developing a useful web
interface for our PCC tool.

References

1. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 380–397.
Springer, Heidelberg (2005)

2. Appel, A.W., Felty, A.P.: A semantic model of types and machine instuctions for
proof-carrying code. In: POPL, pp. 243–253 (2000)

3. Besson, F., Jensen, T.P., Pichardie, D.: Proof-carrying code from certified ab-
stract interpretation and fixpoint compression. Theor. Comput. Sci. 364(3), 273–
291 (2006)

4. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

5. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,
Leino, M., Poll, E.: An overview of JML tools and applications. International Jour-
nal on Software Tools for Technology Transfer 7(3), 212–232 (2005)

Automatic Certification of Java Source Code in Rewriting Logic 217

6. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Proc. of Sixth ACM Symp. on Principles of Programming Languages, pp. 269–282
(1979)

10. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: JavaRL: The rewriting logic semantics
of Java (2007),
http://fsl.cs.uiuc.edu/index.php/Rewriting Logic Semantics of Java

11. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

12. Farzan, A., Meseguer, J., Rosu, G.: Formal JVM code analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 132–147. Springer, Heidelberg (2004)

13. Felty, A.P.: A tutorial example of the semantic approach to foundational proof-
carrying code. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 394–406. Springer,
Heidelberg (2005)

14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI, pp. 234–245 (2002)

15. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes 31(3),
1–38 (2006)

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

17. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput.
Sci. 373(3), 213–237 (2007)

18. Necula, G.C.: Proof carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Languages POPL
1997, Paris, France, pp. 106–119. ACM Press, New York, NY, USA (1997)

19. Necula, G.C., Lee, P.: Safe kernel extensions without run time checking. In: Proc. of
the second USENIX symposium on Operating systems design and implementation
OSDI 1996, pp. 229–243. ACM Press, New York (1996)

20. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

21. Wildmoser, M., Nipkow, T., Klein, G., Nanz, S.: Prototyping proof carrying code.
In: Lévy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) 3rd Int’ll Conf. on Theoretical
Computer Science (TCS 2004), pp. 333–348. Kluwer, Dordrecht (2004)

22. Wu, D., Appel, A., Stump, A.: Foundational proof checkers with small witnesses.
In: Proceedings of the 5th ACM SIGPLAN international conference on Principles
and practice of declarative programming PPDP, pp. 264–274. ACM Press, New
York (2003)

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 218–233, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reverse Engineered Formal Models for GUI Testing*

Ana C.R. Paiva1, João C.P. Faria1,2, and Pedro M.C. Mendes1

1 Engineering Faculty of the University of Porto, 2 INESC Porto
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
{apaiva, jpf, pedro.mendes}@fe.up.pt

http://www.fe.up.pt

Abstract. This paper describes a process to reverse engineer structural and be-
havioural formal models of a GUI application by a dynamic technique, mixing
manual with automatic exploration. The goal is to diminish the effort required
to construct the model and mapping information needed in a model-based GUI
testing process. A skeleton of a state machine model of the GUI, represented in
a formal pre/post specification language, is generated automatically by the ex-
ploration process. Mapping information between the model and the implemen-
tation is also generated along the way. The model extracted automatically is
then completed manually in order to get an executable model which can be used
as a test oracle. Abstract test cases, including expected outputs, can be gener-
ated automatically from the final model and executed over the GUI application,
using the mapping information generated during the exploration process.

Keywords: Reverse engineering; model-based GUI testing.

1 Introduction

GUI testing, with the purpose of finding bugs in the GUI or in the overall application,
is a necessary but very time consuming V&V activity. The application of model-based
testing techniques and tools can be very helpful to systematize and automate GUI test-
ing. An example of a model-based GUI testing approach, based on the Spec# pre/post
specification language [1] and extensions to the Spec Explorer model-based testing
tool [2], is described in [8,9,10].

However, the effort required to construct a detailed and precise enough model for
testing purposes (in order to be able to generate not only test inputs but also expected
outputs), together with mapping information between the model and the implementa-
tion (in order to be able to execute abstract test cases derived from the model on a
concrete GUI), are obstacles to the wide adoption of these techniques. One way to
relief the effort mentioned is to produce a partial "as-is" model, together with map-
ping information, by an automated reverse engineering process. This model will have
to be validated and detailed manually, in order to obtain a complete" should-be"

* Work partially supported by FCT (Portugal) and FEDER (European Union) under contract

POSC/EIA/56646/2004.

 Reverse Engineered Formal Models for GUI Testing 219

model at the level of abstraction desired. Some defects in the application can be dis-
covered in this stage. Overall, the goal is to automate the interactive exploratory proc-
ess that is commonly followed by testers to obtain a model for an existing application.

In this paper we present a dynamic GUI reverse engineering approach to achieve
such goal. The application under test (AUT) is automatically explored through its
GUI to discover as much as possible the GUI structure and behaviour and to generate
a corresponding GUI model in Spec#, together with mapping information between the
model and the implementation. Automatic exploration can be intermixed with manual
exploration to allow accessing functionalities that are protected by a key or are in
some other way difficult to access automatically. During the exploration process, the
intermediate code of the AUT is instrumented with Aspect-Oriented Programming
(AOP) techniques in order to be able to recognize and capture a wider range of GUI
controls and events, beyond native ones. The model generated automatically is subse-
quently validated and completed manually.

An "Address Book" application (Fig. 1) built in Java with the Standard Widget
Toolkit (SWT) provided by the Eclipse/Rich Client Platform (RCP) will be used as an
example to illustrate the approach proposed.

Fig. 1. Address Book main window

This paper is structured as follows: next section gives an overview of the reverse
engineering and model-based GUI testing process; section 3 describes the desired
characteristics of the target GUI model; section 4 describes the GUI reverse engineer-
ing process, while the details of the generation of the GUI model and mapping infor-
mation are presented in section 5; section 6 describes model validation techniques;
section 7 describes related work and the last section presents the conclusions and
future work.

2 Overview of the Reverse Engineering and Model-Based GUI
Testing Process

The goal of model-based testing is to check the conformity between the implementa-
tion and the specification (model) of a software system. The main activities of the
model-based GUI testing process proposed are presented in Fig. 2.

The starting activity proposed is the construction of a preliminary GUI model by a
reverse engineering process supported by the new REGUI2FM tool. This tool pro-
duces a preliminary GUI model in Spec# [1] and mapping information between the
model and the implementation.

220 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Fig. 2. Overview of the model-based GUI testing process with reverse engineering

The model obtained by the reverse engineering process captures structural informa-
tion about the GUI (the hierarchical structure of windows and interactive controls
within windows and their properties) and some behavioural information. The model
describes at a high-level of abstraction the state of each window and window control
(enabled/disabled status, content of text boxes, etc.) and the actions the user can per-
form on the window controls (e.g., press a button, fill in a text box). Besides the sig-
nature of each action, some pre and post-conditions are also generated, describing the
states where each action is available (in the pre-condition) and navigation among
windows caused by user actions (in the post-condition).

The mapping information comprise a XML file (GUI object map), describing
physical properties of the GUI objects, and adaptor C# code with methods that simu-
late the user actions over the GUI, which are automatically bound to model actions.
This information is needed to execute abstract test cases derived from the model on a
concrete GUI.

In order to assure that the model is consistent with the application requirements
and can be effectively used for test case generation and test output evaluation (as a
test oracle), the preliminary model obtained by the reverse engineering process must
be validated and completed manually with additional behaviour specifications.

 Reverse Engineered Formal Models for GUI Testing 221

Typically, executable method bodies must be added manually. Completeness and
correctness of the model can be checked visually by defining views with the help of
the Spec Explorer tool.

The final GUI model is then used to generate a test suite automatically, using the
Spec Explorer tool [2]. Spec Explorer automatically generates test cases from a Spec#
specification in two steps. In the first step, a finite state machine (FSM) is generated
from the given Spec# specification. In the second step, a test suite that fulfils some
coverage criteria is generated from the FSM (e.g., full transition coverage, shortest
path or random walk). A test suite is a set of test segments with sequences of opera-
tions that model user actions (with input parameters) interleaved with operations to
check the outcomes of those actions.

Test execution is also supported by the Spec Explorer tool. Conceptually, during test
case execution, related actions (obtained from the mapping information) run in both the
specification and implementation levels, in a "lock-step" mode, being their results
compared after each step. Whenever an inconsistency is detected, it is reported.

3 Characteristic of the Target GUI Model

In the approach proposed, the main output of the reverse engineering process is a
preliminary GUI model in Spec#, which is subsequently refined and provided as input
to the Spec Explorer model-based testing tool. Hence, before explaining in more de-
tail the reverse engineering process, it is important to describe how GUIs can be ade-
quately modelled in Spec#, for model-based testing purposes.

Spec# is a pre/post specification language that extends the C# programming lan-
guage with pre-conditions (written as requires clauses), post-conditions (written as
ensures clauses), invariants, logical quantifiers, and other high-level constructs. A
specification written in Spec# is executable: besides method pre/post conditions, one
can write executable method bodies (also called model programs). This allows the
specification to be used as a test oracle. Models written in Spec# can be the input for
the Spec Explorer model-based testing tool.

For conformance testing purposes, a model written in Spec# can be seen as a de-
scription of a possibly infinite transition system. The states of the transition system
are given by the values of the state variables. The transitions are executions of meth-
ods annotated as Action. Method pre-conditions indicate which actions are enabled in
each system state. Spec# provides four kinds of actions: controllable, probe, observ-
able and scenario. Controllable actions (the default ones) describe actions that are
controlled by the user (or test driver) of the AUT; these actions may update the sys-
tem state. Probe actions describe actions that only read the system state; they are
invoked by the test harness in every state where their pre-condition holds, to check the
actual AUT state against the model state. Observable actions are asynchronous and
describe the spontaneous execution of an action in the AUT possibly caused by some
internal thread; they are not used in the context of this work. Scenario actions de-
scribe composite actions; they are useful to drive the system into a desired initial state
or to reduce the size of the test suite. When a scenario action is explored for test case
generation, Spec Explorer records the sequence of atomic actions called and the in-
termediate states traversed.

222 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Spec# can be used to model the GUI structure and behaviour at any level of ab-
straction desired. We describe next a choice of level of abstraction that we found
appropriate for most form-based GUIs. Top-level windows of the AUT are modelled
as separate classes or modules (namespaces). The internal state of each top-level win-
dow (content of text fields, etc.) is modelled by state variables. The actions available
to the user inside each top-level window (enter a string into a text field, press a but-
ton, select a menu option, etc.) are modelled as Action methods. Pre-conditions de-
scribe the states in which the actions are available to the user. Post-conditions and
method bodies describe the effect of the user actions on the system state. Probe meth-
ods are used to model the observation of GUI state by the user. Scenario methods are
optionally used to model typical usage scenarios – sequences of steps (execution of
lower level scenarios and atomic actions) the user should follow to achieve a goal.
These scenarios need not represent end-to-end usage sequences, because scenario
actions and atomic actions can be intermixed in the test cases generated.

An example of part of a Spec# model of the "Find" dialog box (Fig. 3) of the Ad-
dress Book application is shown in Fig. 4. The "Find what" text box is modelled by a
state variable (findWhat) and set and get action and probe methods. Check boxes
are modelled by Boolean state variables (matchCase and matchWholeWord) and
associated set and get methods. The "Direction" radio group and the "Column"
combo box (with a closed list of options) are modelled by state variables (direction
and column) of enumerated types and associated set and get methods. The "Find"
button is modelled by an action method. All methods modelling user actions over
GUI objects have a pre-condition that checks if their container window is enabled,
and may have additional pre-conditions. For example, the Find button has an addi-
tional pre-condition to represent the fact that it is enabled only when the "Find what"
text box is filled in. The example also includes calls to a reusable window manage-
ment library that keeps track of the collection of windows open and of their en-
abled/disabled status (when a modal window is opened the other windows of the AUT
are disabled).

Fig. 3. "Find" dialog window of the Address Book application

 Reverse Engineered Formal Models for GUI Testing 223

namespace Find;

enum DirectionEnum { "Up", "Down" };
enum ColumnEnum {"Last Name", "First Name",
 "Business Phone", "Home Phone", "Email", "Fax"};

var string findWhat = "";
var bool matchCase = false;
var bool matchWholeWord = false;
var DirectionEnum direction = "Down";
var ColumnEnum column = "Last Name";

public string FindWhat {
 [Action(kind=Probe)] get
 requires IsEnabled("Find"); { return findWhat; }
 [Action] set
 requires IsEnabled("Find"); { findWhat = value; }
}

// similar properties for Column, MatchCase, MatchWholeWord
// and Direction

[Action] public void Find()
requires IsEnabled("Find") && findWhat != ""; {
 AddressBookWnd.FindNext(findWhat, column, matchCase,
 matchWholeWord, direction);
}

[Action] public void Cancel()
requires IsEnabled("Find");
ensures IsClosed("Find"); {
 RemoveWindow("Find");
}

Fig. 4. Spec# model for the "Find" dialog window of the Address Book application

4 The GUI Reverse Engineering Process

The aim of the GUI reverse engineering tool (REGUI2FM) is to reduce the effort
involved in the construction of the GUI model. As already mentioned in the overview,
the GUI reverse engineering tool extracts structural and behavioural information
about the GUI under test by a dynamic exploration process that mixes automatic and
manual exploration. Its architecture is depicted in Fig. 5. The tool provides a
front-end that gives access to a GUI Spy&Act tool, for automatic exploration (explo-
ration mode), and a GUI Record tool, for manual exploration (record mode).

The GUI Spy&Act tool captures information about the GUI objects that are present
in the AUT, in a way similar to the Spy++ tool that ships with Microsoft Visual Stu-
dio, and, based on that information, acts on the GUI objects simulating a user (e.g.,
click a button, select a menu option, or fill in a textbox), in a way similar to a smart
monkey testing [7] tool. Since the Spy&Act tool interacts with the AUT through the
operating system window manager, it is independent of the development language of
the AUT.

224 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Fig. 5. Architecture of the reverse engineering tool (REGUI2FM)

A preliminary GUI model in Spec# is abstracted from the GUI states and transi-
tions observed (in response to the actions performed), together with mapping infor-
mation between the model and the physical GUI. Each window gives rise to a Spec#
module. Interactive controls give rise to instance variables (e.g., there is a string
variable for each text box) and methods (e.g., methods to read/write the text from/to
a textbox), following the modelling style described in section 3 and illustrated in
Fig. 4.

The Spec# state variables and actions (either controllable or probe) that the GUI
Spy&Act tool should generate for each kind of GUI object can be configured in a
XML file, as illustrated in Fig. 6. In this example, it will be generated a string in-
stance variable and associated set and get methods for each textbox found, and a
method corresponding to the Click action for each button found. This configuration
information is also used by the tool to determine which kind of actions it should exe-
cute over physical GUI objects during the exploration. This file needs to be con-
structed only once and may be reused by other GUI reverse engineering processes.

 Reverse Engineered Formal Models for GUI Testing 225

<InteractiveObjects>
 <obj>
 <ClassName>TextBox</ClassName>
 <statevariable>string</statevariable>
 <controllable>set</controllable>
 <probe>get</probe>
 </obj>
 <obj>
 <ClassName>Button</ClassName>
 <controllable>Click</controllable>
 </obj>
 <obj> ... </obj>
 ...
</InteractiveObjects>

Fig. 6. XML configuration file

The GUI Spy&Act tool might not be able to reach application functionality that is
protected by a key or is in any other way difficult to access without further knowl-
edge. Two solutions are available to overcome this problem:

− the first one is to provide in advance some domain values that can be used dur-
ing the automatic exploration process when interacting with controls;

− the other one is to switch to manual exploration mode, so that the user can inter-
act with the GUI to supply the data or perform the steps required to access the
hidden functionality, and switch back to automatic exploration thereupon.

The GUI Record tool captures the actions performed by the user, together with the
GUI states traversed, in a way conceptually similar to a capture-replay tool. The se-
quence of actions performed by the user is abstracted to a Spec# method annotated as
scenario.

At the end, the following files are generated:

− a XML file (GUI Object Map) gathering information about the windows and
interactive controls detected, including physical identifying properties and
logical names assigned;

− a Spec# file with the reversed GUI model, describing possible user actions
over the GUI (behaviour model);

− a C# file (adaptor code) with methods to simulate concrete user actions over
the GUI under test, corresponding to the abstract actions described in the
Spec# model (needed for conformance checking during test execution).

The main activities and artifacts involved will be explained in next sections.

4.1 Automatic Exploration

The exploration starts from the application main window. In each step, it is captured
information about interactive controls inside windows of the AUT. The information
captured comprises: the hierarchical structure of GUI objects (windows and controls
within windows); the type of each GUI object (window, button, textbox, etc.); values

226 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

of identifying properties (e.g., parent window and id), control state properties (e.g.,
enabled/disabled), and data state properties (e.g., text content) for each GUI object.
The set of properties that should be captured for each type of GUI object can be con-
figured by the user.

After identifying the interactive controls existing in an AUT window, the tool
starts interacting with them simulating a user, e.g., click on buttons and menus, send
text to textboxes, and select combo box options. The actions to explore upon each
type of control and their input values can be configured by the user.

Some of the actions performed may cause navigation among windows (open a new
window, close the current window and return to a previously visited window, etc.). In
each step, the tool acts upon the window that has the input focus.

The tool keeps track of the collection of windows already reached and of the con-
trols detected in those windows, using their identifying properties to avoid duplicates,
as well as of the actions already performed on those controls.

The exploration process stops when all the relevant actions in all the windows
reached have been explored, or when it is unable to make progress for some reason.

4.2 Manual Exploration

When the exploration algorithm stops before capturing information about all the win-
dows of the application (e.g., there is a part of the application which is protected by a
key), the user can switch to record mode.

In record mode it is assumed that the AUT runs on an AO (aspect oriented) en-
abled virtual machine and that it was built using the object-oriented programming
paradigm [4,11]. When running the application in such an environment, the devel-
oped aspects extend the GUI object’s “construction” process, by adding extra event
listeners. These listeners are enabled only when an environment variable indicates
that the current exploration mode is manual mode. The listeners intercept all possi-
ble user actions on standard GUI objects. Interaction with customized GUI objects
extending standard ones requires adding some extra advice code using the chosen
AO programming language for the purpose at hand. The advantage of this AOP
technique is the ability to recognize a wide range of GUI controls, beyond native
ones.

The advice code is responsible for logging user actions while interacting with GUI
controls saving them in a Spec# scenario action such as the one that can be seen in
Fig. 8.

5 Generation of the GUI Model and Mapping Information

5.1 Generation of the GUI Object Map (XML)

The GUI object map (Fig. 7) enumerates the GUI objects (windows and controls) of
the AUT, and relates logical GUI object names with physical identifying properties. It
is stored in a XML file. Logical names are assigned based on some heuristics (cap-
tion, nearest label, etc.).

 Reverse Engineered Formal Models for GUI Testing 227

<window name="Find">
 <caption>Find</caption>
 <class>#32770</class>
 <control name="Cancel">
 <caption>Cancel</caption>
 <class>Button</class>
 <id>2</id>
 <childPos>8</ChildPos>
 </control>
 <control ...>
 ...
 </control>
 ...
</window>

Fig. 7. GUI object map (XML)

5.2 Generation of the GUI Model (Spec#)

A preliminary GUI model in Spec# is generated by the REGUI2FM tool as explained
in the next sub-sections.

5.2.1 Generation of the Overall Model Structure and Pre/Post Conditions
As already mentioned in section 3, the top-level windows of the application are mod-
elled in separate namespaces or classes (for modularity reasons).

Inside each module (namespace or class) corresponding to a top-level window,
state variables are used to model its abstract state and the state of the controls inside
it. Each action that can be performed by the user within each top-level window
(set/get the content of a control, press a button, etc.) is represented in Spec# by an
Action method with a pre-condition that checks if the container window is enabled. In
the case of actions that cause navigation among windows, it is also generated a
post-condition that checks the open/closed and/or enabled/disabled status of the af-
fected windows and a default method body (see the Cancel method in Fig. 4).

Besides keeping track of window navigation effects caused by the actions ex-
plored, the reverse engineering tool also keeps track of enabling/disabling and content
update effects on GUI controls. Some of these dependencies among GUI controls
can also be represented through pre and post-conditions, according to the type of
dependency:

− "Setting the content of an object A to some condition enables an object B" – e.g., in
the Find dialog shown in Fig. 4, the Find button is enabled when the findWhat text
box is filled in. This dependency may be represented in Spec# by adding a
pre-condition that checks the state of A to the methods that describe possible ac-
tions on object B. This avoids the addition of an extra state variable to represent the
enabled/disabled status of B.

[Action] ... BMethods(...)
requires IsEnabled("WindowOfB") && A.State == S

A
;

...

228 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

− "Performing an action on an object A updates the content of an object B" – e.g.,
pressing a Clear button may erase the fields in a form. This dependency may be
represented in Spec# by a post-condition of the method that describes that specific
action on A. A default method body is also generated.

[Action] ... AMethod(...)
ensures B.state == S

B
;

{ B.state = S
B
; ... }

In some cases, these dependencies can be discovered automatically by the explora-

tion process. That would be the case of buttons that are only enabled when some text
box is filled in, and buttons that erase the context of text boxes.

5.2.2 Generation of Default Method Bodies
Default method bodies are generated for set/get methods (see Fig. 4), and methods
that cause navigation (see Cancel method in Fig. 4). Those method bodies must be
checked and completed by the user, to take into account complex behaviours and side
effects. For example, the method body of the Find action in Fig. 4 has to be con-
structed manually. All the other method bodies are generated automatically.

5.2.3 Generation of Scenario Methods
The sequences of actions performed by the tester while in record mode are captured
by the REGUI2FM tool as scenario actions (Fig. 8) supported by Spec Explorer, as
explained before. If desired, the scenarios generated can be subsequently edited by the
modeller/tester. E.g., concrete values can be replaced by parameters to make the sce-
narios more generic and reusable.

Scenarios are useful for testing purposes in different ways: as a technique to drive
the application into a desirable specific state, overcoming the problem of functionality
protected by a key (Fig. 8), as explained before; as a way to describe test conditions
that would be covered by manual tests and that can be seen as the minimum set of
conditions to automatically test; and as a technique to prune the model exploration
and test case generation process [2].

[Action(Kind=
ActionAttributeKind.Scenario)])
void PasswordScenario()
requires IsEnabled("Password");
{
 Password.Text = "mypassword";
 Password.Ok();
}

Fig. 8. Manual exploration sequence of a password dialog box recorded as a scenario action

 Reverse Engineered Formal Models for GUI Testing 229

5.3 Generation of the GUI Adapter Code (C#)

The C# code needed to execute the abstract test suit upon the real GUI, simulating the
user actions, has a method for each (abstract) action described in the Spec# model. As
an example, Fig. 9 illustrates the C# code generated for the portion of the Find name-
space shown in Fig. 4.

The C# code generated is based on calls to a reusable GUI Test Library that pro-
vides methods to simulate the actions of a user interacting with a GUI application and
observe the content of GUI objects. This library was constructed in C# extending a
previous existing library to best fit our needs.

#region automatically generated code
 class GUIAdapter {
 public static void Find_SetFindWhat(string p0){
 UserEvents.SetText("Find.FindWhat, p0);
 }
 public static string Find_GetFindWhat(){
 return UserEvents.GetText("Find.FindWhat");
 }
 public static void Find_matchCase(bool p0) {
 UserEvents.SelectCheckBok("Find.MatchCase", p0);
 }
 public static void Find_matchWholeWord(bool p0) {
 UserEvents.SelectCheckBok("Find.MatchWholeWord", p0);
 }
 public static void Find_Find() {
 UserEvents.Click("Find.Find");
 }
 public static void Find_Cancel() {
 UserEvents.Click("Find.Cancel");
 }
 //...
}
#endregion

Fig. 9. C# code to simulate user actions for test execution

6 Model Validation

After completing the GUI model manually, it is possible to construct a view [10] of
the navigation map using Spec Explorer (Fig. 10). Visual inspection of this map is a
way to validate the model obtained.

Each state in Fig. 10 indicates the windows of the GUI that are enabled. In the
presence of modeless windows, there may be more than one window enabled at
the same time, in which case, a state may have more than one window name. This is
the case of the Find&AddressBook state. While a modal dialog window is opened, as
is the case of Open, Save and Contact windows in Fig. 10, user interaction with all
other currently open windows of the same application is disabled.

230 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

The transitions visible at this level of abstraction are transitions that open/close
windows of the GUI application. All transitions that occur inside a window/dialog are
abstracted as one transition from the state that represents the dialog/window to itself.

This view can be expressed mathematically as the projection of the model states
onto the state variable that holds the set of enabled windows.

Fig. 10. Navigation map graph

7 Related Work

Reverse engineering is the process of analyzing a subject system to create representa-
tions of the system at a higher level of abstraction [3]. It may be performed by static
and dynamic analysis. Static analysis is performed on software code and does
not involve its execution. Dynamic analysis extracts information from software by
executing it.

Reverse engineering can be useful in several contexts like documentation, mainte-
nance and specification-based testing. Another common application of reverse engi-
neering is within a re-engineering process, for instance, to exchange legacy systems to
different newer technologies.

The world is full of legacy systems. The technology is in constant change and
some companies need to update their old systems. Reverse engineering tools can be
used to build the model of existing applications that can be used by UIMSs to gener-
ate new GUIs with the same functionality of the older ones, but implemented in more
recent technologies, or to be accessed from other computer platforms with specific
characteristics.

One common example is the migration of legacy user interfaces to web-accessible
platforms in order to support e-commerce activities. Stroulia et al. describe the CelL-
EST system within which a new process for migrating legacy systems for the Web
was developed [12,13].

 Reverse Engineered Formal Models for GUI Testing 231

Vanderdonckt et al. describe a reverse engineering process of Web user interfaces
[14]. The goal is to extract models of Web applications that were not constructed
using a model-based approach and then use those models to generate UIs for other
computer platforms, like palms, pocket computers, and mobile phones, without losing
the effort deployed in the construction of the initial application.

The use of reverse engineering techniques to extract models to be used in a speci-
fication-based testing process is not so common. However, there is at least one ex-
ample of this approach developed by Memon [5]. Memon claims that constructing a
GUI model that can be used for test case generation is difficult, so he developed an
approach to reverse engineer a model directly from an executable GUI. A so-called
GUI ripping process opens automatically all the windows of the GUI under test and
extracts their widgets, properties, and values. In the end, it is generated a GUI model
that represents the GUI structure as a GUI forest, and its execution behaviour as an
event-flow graph and an integration tree. However, the tool does not allow editing
the model generated. Memon reports experiences where the ripping process is ap-
plied to extract a model from a correct GUI; the model extracted is then used to test
an incorrect GUI. In industrial environments, such approach is helpful for regression
testing.

Our approach distinguishes from the Memon's approach [5] mainly because of the
expressiveness of the behavioural model that can be obtained, which is not limited to
describe dependencies between pairs of user events (by an event-flow graph), but
comprises also an explicit representation of the GUI state and pre/post conditions
expressing dependencies between user events and the GUI state. This allows the same
model to be used for the generation of valid test input sequences and outputs ex-
pected. In the Memon's approach, a separate pre/post model might be used as a test
oracle, i.e., for the generation of the outputs expected [6], and the test sequences gen-
erated in first hand may not be valid because of state dependencies that are not taken
into account.

8 Conclusions and Future Work

It was presented a dynamic GUI reverse engineering process, mixing automatic and
manual exploration, with the goal of diminishing the effort required in constructing a
GUI model for model-based testing purposes. Manual exploration mode is used to
overcome situations when the automatic exploration process cannot progress because
of dependencies that it cannot discover or because of functionalities that are protected
by a password.

The outcome of the reverse engineering process is a preliminary behavioural GUI
model in Spec#, together with mapping information between the model and the im-
plementation (needed for test execution). The Spec# model describes at a high level
of abstraction the actions available to the user and their effect on the GUI state. The
mapping information comprises a XML file that stores information about the physical
properties of the GUI objects, and a C# code file that bridges the gap between the
abstract actions described in the model and simulated user actions upon the physical
GUI objects.

232 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

The model generated automatically by the reverse engineering process has to be
validated and completed manually so that it can be used as a test oracle. Test cases are
generated from this model and then executed to check the conformity between the
model and an implementation with the help of the Spec Explorer tool.

Preliminary results of using the reverse engineering tool (REGUI2FM) in small
GUI applications show that the majority (around 70%) of the model can be built
automatically.

We are currently enhancing the REGUI2FM tool to deal with more complex GUI
applications and to use in the automatic exploration mode the same AOP mechanisms
that are used to record user actions in manual exploration mode. By proceeding with
this evolution, the scope of recognizable objects is expected to broaden, and the effort
required to build the models is expected to be further reduced.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004.
LNCS, vol. 3362. Springer, Heidelberg (2005)

2. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer, Microsoft
Research, MSR-TR-2005-59 (May 2005)

3. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 7(1), 13–17 (1990)

4. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: M. A. a. S. M. (eds.) Proceedings of the European
Conference on Object-Oriented Programming (1997)

5. Memon, A., Banerjee, I., Nagarajan, A.: GUI Ripping: Reverse Engineering of Graphical
User Interfaces for Testing. In: Proceedings of the WCRE 2003 - The 10th Working Con-
ference on Reverse Engineering, Victoria, British Columbia, Canada, November 13–16
(2003)

6. Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated Test Oracles for GUIs. In: Proceed-
ings of the FSE (2000)

7. Nyman, N.: In Defense of Monkey Testing (conferred in May 2006)
8. Paiva, A.C.R.: Automated Specification-Based Testing of Graphical User Interfaces, Ph.D,

Engineering Faculty of Porto University (Ph.D thesis), Department of Electrical and Com-
puter Engineering (2007),
http://www.fe.up.pt/~apaiva/PhD/PhDGUITesting.pdf

9. Paiva, A.C.R., Faria, J.C.P., Tillmann, N., Vidal, R.F.A.M.: A Model-to-implementation
Mapping Tool for Automated Model-based GUI Testing. In: Lau, K.-K., Banach, R. (eds.)
ICFEM 2005. LNCS, vol. 3785. Springer, Heidelberg (2005)

10. Paiva, A.C.R., Tillmann, N., Faria, J.C.P., Vidal, R.F.A.M.: Modeling and Testing Hierar-
chical GUIs. In: Proceedings of the ASM 2005 - 12th International Workshop on Abstract
State Machines, Paris - France, March 8–11 (2005)

11. Sabbah, D.: Aspect-Oriented software development. In: Proceedings of the Third Interna-
tional Conference on Aspect-oriented Software Development, Lancaster, UK (2004)

 Reverse Engineered Formal Models for GUI Testing 233

12. Stroulia, E., El-Ramly, M., Iglinski, P., Sorenson, P.: User Interface Reverse Engineering
in Support of Interface Migration to the Web. Automated Software Engineering 10, 271–
301 (2003)

13. Stroulia, E., El-Ramly, M., Kong, L., Sorenson, P., Matichuk, B.: Reverse Engineering
Legacy Interfaces: An Interaction-Driven Approach. In: Proceedings of the WCRE 1999
(1999)

14. Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible Reverse Engineering of Web Pages
with VAQUISTA. In: Proceedings of the IEEE 8th Working Conf. on Reverse Engineering
(2001)

Automatic Interoperability Test Case

Generation Based on Formal Definitions

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{alexandra.desmoulin,viho}@irisa.fr

Abstract. The objective of this study is to provide methods for deriv-
ing automatically interoperability tests based on formal definitions. First,
we give interoperability formal definitions taking into account both ob-
jectives of interoperability: the implementations must interact correctly
and the expected service must be provided. Based on these definitions,
a method for generating interoperability test cases is described. This
method is equivalent to classical methods in terms of non-interoperability
detection and avoids state-space explosion problem. Classical and pro-
posed methods were implemented using the CADP Toolbox and applied
on a connection protocol to illustrate this contribution.

1 Introduction

In the domain of network protocols, implementations are tested to ensure that
they will correctly work in an operational environment. These implementations
are developed based on specifications, generally standards. Different kinds of
tests exist. Among these tests, conformance and interoperability testing considers
the behaviour of these implementations at their interfaces to verify that they will
work correctly in a real network. The aim of conformance tests [1] is to verify that
a single implementation behaves as described in its specification. Interoperability
testing objectives are to check both if different implementations communicate (or
interact) correctly and if they provide the services described in their respective
specification during this interaction.

Conformance testing has been formalized [1, 2]. A formal framework exist
together with testing architectures, formal definitions and methods for writting
conformance tests. Moreover, this formalization leads to automatic test genera-
tion methods and tools like TGV [3] or TorX [4].

In the interoperability testing situation, there is no precise characterization of
interoperability for the moment. However, some attemps to give formal defini-
tions of interoperability exists [5, 6]. Some studies also give methods for automat-
ically deriving interoperability tests [7, 8]. These methods are generally based
on fault models or on the search of some particular kinds of error. But there is
still no method for the moment describing how to generate interoperability test
cases based on formal definitions.

In a previous study [5], we give some formal definitions of the notion of in-
teroperability together with some clues for test generation. In this study, we

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 234–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Interoperability Test Case Generation 235

complete these formal definitions to take into account all the objectives of in-
teroperability testing. Thus, the so-called ”interoperability criteria” describe the
conditions that two implementations must satisfy to be considered interoperable
and follow the main objectives of interoperability: providing the expected service
while interacting correctly. Based on these definitions and using the clues given
in [5], we develop a complete interoperability test derivation method. Moreover,
we implement this method using the CADP Toolbox. Its application on a con-
nection protocol allows us to verify both that it can generate interoperability
test case equivalent to test cases that would have been obtained manually or
with classical methods, and that it avoids state-space explosion problem that
generally occurs with classical methods [6].

This paper is decomposed as follows. First, Section 2 describes notions used
in the paper including interoperability testing architectures and formal mod-
els. Then, Section 3 is aimed at providing formal definitions of interoperability.
Section 4 describes a method for deriving automatically interoperability tests
based on these definitions. Section 5 describes the results of the application of
the proposed interoperability test generation method on a connection protocol.
Finally, conclusion and future work are in Section 6.

2 Preliminaries

In this Section, we present the different notions that are used in this study.
First, we define interoperability testing and interoperability testing architecture
in Section 2.1. Then, we describe the model of IOLTS used for interoperability
formal definitions in Section 2.2. The proposed method for interoperability test
generation reuses some aspects of conformance testing. Few words are said in
Section 2.3 on the state of the art in automatic test generation.

2.1 Interoperability Testing

We consider here the context of protocol testing. Protocol implementations are
developped based on specifications, generally protocol standards. They must be
tested to ensure that thay will work correctly in an operational environment. We
consider here the context of black-box testing: the implementations are known
by the events executed on their interfaces, generally sending and receiving mes-
sages. Among the different kinds of protocol testing contexts, we consider here
interoperability testing that puts in relation different implementations (generally
from different manufacturers) to verify that they are able to work together.

Interoperability testing has two goals. It verifies that different protocol im-
plementations can communicate correctly, and that they provide the services
described in their respective specification while communicating. In this study,
we consider a context with two implementations under test (IUT for short):
this is the one-to-one context (see Figure 1). In an interoperability testing ar-
chitecture [9, 10], we can differentiate two kinds of interfaces: Lower Interfaces
(used for the interaction) and Upper Interfaces (used for the communication with

236 A. Desmoulin and C. Viho

Tester 2

I1 I2

(a)

I1 I2

(b)

Tester 1Tester

Fig. 1. Interoperability testing architectures

upper layer). Testers are connected to these interfaces but they can control (send
message) only the upper interfaces. The lower interfaces are only observable.

Depending on the access to the interfaces, different architectures can be distin-
guished. For example, the interoperability testing architecture is called unilateral
if only the interfaces of one IUT are accessible during the interaction, bilateral if
the interfaces of both IUTs are accessible but separately (Figure 1(b)), or global
if the interfaces of both IUTs are accessible with a global view (Figure 1(a)).

2.2 IOLTS Model

We use IOLTS (Input-Output Labeled Transition System) to model specifica-
tions. As usual in the black-box testing context, we also need to model IUTs,
even though their behaviors are unknown. They are also modeled by an IOLTS.

Definition 1. An IOLTS is a tuple M=(QM ,ΣM ,ΔM , qM
0). QM is the set of

states and qM
0 ∈ QM the initial state. ΣM denotes the set of observable events on

the interfaces: p?m ∈ ΣM (resp. p!m ∈ ΣM) stands for an input (resp. output)
where p is the interface and m the message. ΔM is the transition relation.

Other Notations. ΣM can be decomposed: ΣM = ΣM
U ∪ΣM

L , where ΣM
U (resp.

ΣM
L) is the set of messages exchanged on the upper (resp. lower) interfaces. ΣM

can also be decomposed to distinguish input (ΣM
I) and output messages (ΣM

O).
Based on this model, Traces(q) is the set of executable traces (successions of
events) from the state q. Γ (q) is the set of executable events (on the interfaces
of M) from the state q and Γ (M, σ) the set of executable events for the system
M after the trace σ. In the same way, Out(M, σ) (resp. In(M, σ)) is the set
of possible outputs (resp. inputs) for M after the trace σ. Considering a link
between lower interfaces li of Mi and lj of Mj , we also define μ̄ as μ̄=li!a if μ =
lj?a and μ̄ = li?a if μ = lj !a.

Quiescence. An implementation can be quiescent in three different situations:
either the IUT can be waiting on an input, either it can be executing a loop of
internal (non-observable) events, or it can be in a state where no event is exe-
cutable. For an IOLTS Mi, a quiescent state q is modeled by (q, δ(i), q) where δ(i)
is treated as an observable output event (practically with timers). The IOLTS
M with quiescence modeled is called suspensive IOLTS and is noted Δ(M).

Automatic Interoperability Test Case Generation 237

Interaction and Projection. To give a formal definition of interoperability,
two operations need to be modeled: asynchronous interaction and projection.

The asynchronous interaction is used to calculate the behavior - modeled by
an IOLTS - of a system composed by two communicating entities. For two IOLTS
M1 and M2, this interaction is noted M1‖AM2. The way to obtain M1‖AM2 is
described in [5]. First, M1 and M2 are transformed into IOLTS representing their
behavior in an asynchronous environment (as in [11, 12]). Then, these two IOLTS
are composed to obtain M1‖AM2 via the rules usually used for synchronous
interaction. These rules (see for example [6, 13]) are ”mapping” events on lower
interfaces and propagating quiescence and events on upper interfaces.

The projection of an IOLTS on a set of events is used to represent the behav-
ior of the system reduced to some events (such as events observable on specific
interfaces). For example, the projection of M on the set of events executable on
its lower interfaces ΣM

L is noted M/ΣM
L . It is obtained by hiding events (replac-

ing by τ -transitions) that do not belong to ΣM
L , followed by determinization.

In the same way, OutX(M, σ) corresponds to a projection of the set of outputs
Out(M, σ) on the set of events X .

2.3 State of the Art in Automatic Test Generation

Some methods for generating automatically interoperability tests exists in [7,
14, 15, 16, 17]. However, these methods are not based on formal definitions. On
the contrary, conformance testing is a kind of test for which a formal framework
was developed. It determines to what extent a single implementation of a stan-
dard conforms to its requirements. Conformance testing architectures and formal
definitions [1, 2] were described. Among these formal definitions, the ioco confor-
mance relation [2] says that an implementation I is ioco-conformant to a speci-
fication S if I can never produce an output which could not be produced by its
specification S after the same trace. Moreover, I may be quiescent only if S can
do so. Formally : I ioco S = ∀σ ∈ Traces(Δ(S)), Out(Δ(I), σ) ⊆ Out(Δ(S), σ).
This relation is the most used in practice for conformance tests. Defining for-
mally conformance also allows automatic conformance test generation: confor-
mance test generation tools like TGV [3] or TorX [4] are based on ioco-theory.
Even though conformance and interoperability are two different kinds of test,
they have in common to be based on traces of the specifications. Thus, part of
the existing concepts of conformance testing can be reused for interoperability
testing. However, the ioco-theory does not fit all objectives of interoperability
testing (verification that the implementations communicate correctly and that
they provide the expected services while interacting: see Section 3.2).

3 Formalizing Interoperability

3.1 Specification Model

As we are concerned with interoperability testing, the considered specifications
must allow interaction. We call this property the interoperability specification

238 A. Desmoulin and C. Viho

compatibility property (iop-compatibility for short). Two specifications are
iop-compatible iff, for each possible output on the interfaces used for the interac-
tion after any trace of the interaction, the corresponding input is foreseen in the
other specification. Formally, ∀σ ∈ Traces(S1‖AS2), ∀σ.a.σ′ ∈ Traces(S1‖AS2),
a ∈ OutΣL(S1‖AS2, σ), σ′ = β1...βl, ⇒ ∃βi such that βi = ā. Practically, this
property can be verified by a parallel search of both specifications -without con-
structing the specification interaction. This means that the traces of one spec-
ification must be compatible with possible execution of the other specification.
Notice that this notion of iop-compatibility is different from the one described
in [18] where authors consider that ”two components are compatible if there
is some environment that make them work together, simultaneously satisfying
both of their environment assumption”.

In some situations (underspecification of input actions particularly), the two
specifications need to be completed to verify this property. It is done by adding
transitions leading to an error trap state and labeled with the inputs correspond-
ing to messages that can be sent by the interacting entity (input m added in
In(Sj , σ/Σj) if m̄ ∈ OutΣL(Si, σ/Σi)). Indeed, this method considers the recep-
tion of an unspecified input as an error. This is the most common definition of
unspecified inputs in network protocols. In the following, we will consider that
specifications are iop-compatible.

3.2 Formalization of Interoperability Principles

The purpose of interoperability testing is to verify that the two interconnected
implementations communicate successfully and that they provide the expected
services during their interaction. Interaction verification corresponds to the ver-
ification that outputs sent by an IUT on its lower interfaces are foreseen in the
specification and that the interacting IUT is able to receive these messages. Ser-
vice verification corresponds to the verification that outputs (and quiescence)
observed on the upper interfaces of the IUTs are described in their respective
specification. Thus, outputs must be verified on both upper and lower interfaces,
while inputs are managed on lower interfaces.

Output verification is done by comparing output observed, after a particular
trace, on the interfaces of the IUTs with the outputs foreseen in the specifications
after the same trace. This part of interoperability testing can reuse ioco-theory.
However, during test execution, there is an important difference between inter-
operability and conformance testing context also for output verification. Indeed,
the lower interfaces are controllable in conformance context but during interop-
erability tests, these interfaces are only observable.

One of interoperability testing purposes is to verify that the two implemen-
tations communicate correctly, that is to say that messages sent by one imple-
mentation must be correct (this is done by the output verification) and actually
received by the other implementation. The verification of this reception corre-
sponds to input management. However only outputs can be observed by testers.
Thus, verifying that an input μ is actually received implies to determine the set
of outputs that can happen only if this reception is actually executed. This set of

Automatic Interoperability Test Case Generation 239

outputs is calculated based on causal dependencies. The set of outputs (without
quiescence) on S that causally depend on the input μ after the trace σ is noted
CDep(S, σ, μ) and defined by CDep(S, σ, μ)= {αi ∈ ΣS

O|∀(q, q′), qS
0

σ⇒ q
μ→

q′, ∃qi, q
′ σi.αi=⇒ qi, σi ∈ (ΣS \ ΣS

O)∗ ∪ {ε}}, where σi ∈ (ΣS \ ΣS
O)∗ ∪ {ε} is the

path associated to the output αi ∈ CDep(S, σ, μ).
Based on causal dependency events, a condition for input verification can be

defined. We give here the condition for the verification of the execution of an
input μ̄ by I2 (the corresponding output is μ sent by I1). This condition considers
each output μ executed by I1 after a trace σ of the interaction. This trace can be
decomposed into σ1 (events of I1) and σ2 (events of I2). The input management
condition says that the reception of μ̄ by I2 implies the observation of an output
that causally depends on μ̄. Some events may be executed between μ and μ̄
(noted by trace σ′ ∈ ((ΣS1 ∪ ΣS2) \ μ̄)∗ ∪ {ε}) and between μ̄ and the output
that causally depends on μ̄ (trace σi ∈ (ΣS2

I)∗ ∪ {ε}). Formally, the condition is
described by:

∀σ ∈ Traces(S1‖AS2), σ1 = σ/ΣS1 ∈ Traces(Δ(S1)), σ2 = σ/ΣS2 ∈ Traces(
Δ(S2)), ∀μ ∈ Out

Σ
I1
L

(Δ(I1), σ1),

∀σ′ ∈ ((ΣS1 ∪ ΣS2) \ μ̄)∗ ∪ {ε}, σ.μ.σ′.μ̄ ∈ Traces(S1‖AS2),
μ̄ ∈ In(I2, σ2.(σ′/ΣI2)) ⇒
Out(I2, σ2.(σ′/ΣI2).μ̄.σi) ⊆ CDep(S2, σ2.(σ′/ΣI2), μ̄) with σi ∈ (ΣS2

I)∗ ∪ {ε}.

3.3 Interoperability Formal Definitions

Even though some formal definitions exist in [5, 8], there is no precise charac-
terization for interoperability (iop for short in the following). Here, we present
some formal definitions, called iop criteria. They consider different possible ar-
chitectures (see Section 2.1) for testing the interoperability of two IUTs.

The unilateral iop criterion iopU (point of view of I1) considers interfaces of
IUT I1 while interacting with I2. It says that, after a trace of S1 observed during
the interaction, all outputs (and quiescence) observed in I1 must be foreseen in
S1, and that I1 must be able to receive outputs sent by I2 via its lower interfaces.

Definition 2 (Unilateral iop criterion iopU). I1iopUI2 =
∀σ1 ∈ Traces(Δ(S1)), ∀σ ∈ Traces(S1‖AS2),
σ/ΣS1 = σ1 ⇒ Out((I1‖AI2)/ΣS1, σ1) ⊆ Out(Δ(S1),σ1)
and ∀σ1 = σ/ΣS1 ∈ Traces(Δ(S1)) such that σ ∈ Traces(S1‖AS2), ∀μ ∈
Out(I2, σ/ΣI2), ∀σ′ ∈ [(ΣS1 ∪ΣS2)\ μ̄]∗∪{ε}, σ.μ.σ′.μ̄ ∈ Traces(S1‖AS2), μ̄ ∈
In(I1, σ1.(σ′/ΣI1)) ⇒ Out(I1, σ1.(σ′/ΣI1).μ̄.σi) ⊆ CDep(S1, σ1.(σ′/ΣI1), μ̄),
σi ∈ (ΣS1

I)∗ ∪ {ε}
The bilateral total iop criterion iopB is verified iff both (on I1 point of view
and I2 point of view) unilateral criteria are verified: I1 iopB I2 (= I2 iopB I1)
= I1 iopU I2 ∧ I2 iopU I1.

The global iop criterion considers both kinds of interfaces and both IUTs
globally. It says that, after a trace of the specification interaction, all outputs

240 A. Desmoulin and C. Viho

(and quiescence) observed during the interaction of the implementations must be
foreseen in the specifications, and that outputs sent by one IUT via its lower in-
terfaces must be effectively received by the interacted IUT. Contrary to iopU and
iopB that are used in specific contexts where some interfaces are not accessible,
this iop criterion iopG corresponds to the most used testing architecture.

Definition 3 (Global iop criterion iopG). I1iopGI2 =
∀σ ∈ Traces(S1‖AS2), Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ)
and ∀{i, j} = {1, 2}, i �= j,
∀σ ∈ Traces(Si‖ASj), σi = σ/ΣSi ∈ Traces(Si), σj = σ/ΣSj ∈ Traces(Sj),
∀μ ∈ Out(Ii, σ/ΣSi), ∀σ′ ∈ [(ΣSi ∪ ΣSj ∪ {δ(i), δ(j)}) \ μ̄]∗ ∪ {ε}, σ.μ.σ′.μ̄ ∈
Traces(Si‖ASj), μ̄ ∈ In(Ij , σj .(σ′/ΣIj)) ⇒ Out(Ij , σj .(σ′/ΣIj).μ̄.σk) ⊆ CDep(
Sj , σj .(σ′/ΣIj), μ̄), σk ∈ (ΣSj

I)∗ ∪ {ε}
In [5], we prove the equivalence of the global criterion with the so-called bilateral
iop criterion iopB in terms of non-interoperability detection. However, the iop
criteria defined in [5] only consider the output verification, that is the first part of
the definition of iopB and iopG of this study. These latter criteria are still equiv-
alent in terms of non-interoperability detection. Indeed, the causal-dependency
based condition is defined with a bilateral point of view in both criteria. In next
Section, we focus in the way to use this equivalence for developing methods to
derive automatically iop test cases.

4 Interoperability Test Generation Methods

In this section, we investigate the way to generate interoperability (iop for short
in the following) tests based on the defined iop criteria. Applications of these
methods are described in Section 5.

4.1 Test Purposes, Test Cases and Verdicts

Iop Test Purpose. In practice, interoperability test case derivation is done
based on test purposes. These test purposes are used by testers to describe the
properties they want to test. An iop test purpose is an informal description of
behaviors to be tested, in general an incomplete sequence of actions. Formally,
a test purpose TP can be represented by a deterministic and complete IOLTS
equipped with trap states used to select targeted behaviors. Complete means
that each state allows all actions. In this study, we consider simplified iop test
purposes with only one possible action after each state (∀ σ, |Γ (TP, σ)| ≤ 1)
and one AcceptTP trap state used to select the targeted behavior.

Iop Test Cases. During interoperability tests, three kinds of events are pos-
sible: sending of stimuli to the upper interfaces of the IUTs, reception of in-
puts from these interfaces, and observation of events (input and output) on
the lower interfaces. Thus, an iop test case TC can be represented by TC
= (QTC , ΣTC , ΔTC , qTC

0), an extended version of IOLTS. {PASS, FAIL, INC}

Automatic Interoperability Test Case Generation 241

⊆ QTC are trap states representing interoperability verdicts. qTC
0 is the initial

state. ΣTC ⊆ {μ|μ̄ ∈ ΣS1
U ∪ ΣS2

U } ∪ {?(μ)|μ ∈ ΣS1
L ∪ ΣS2

L }. ?(μ) denotes the
observation of the message μ on a lower interface. Notice that in interoperability
testing μ can be either an input or an output. ΔTC is the transition function.

Iop Verdicts. The execution of the iop test case TC on the system composed
of the two IUTs gives an iop verdict: PASS, FAIL or INC. The meanings of the
possible iop verdicts are PASS: no interoperability error was detected during
the tests, FAIL: the iop criterion is not verified and INC (for Inconclusive): the
behavior of the SUT seems valid but it is not the purpose of the test case.

4.2 Global Interoperability Test Generation Method

The global interoperability test generation method is based on the first part
of the global iop criterion iopG. This part focuses on the comparison between
outputs (and quiescence) observed during the interaction of the implementations
and outputs (and quiescence) foreseen in the specifications in the same situation.
This method corresponds to what is done practically when writing iop test cases
”by hand”. It also corresponds to most approaches for automatic interoperability
test generation (as in [7, 8, 14, 15, 16, 17]) even if these methods generally do
not compute the complete specification interaction graph. This is why we also
call it classical interoperability test generation method.

The global interoperability test generation method (see Figure 2(a)) begins
with the construction of the asynchronous interaction S1‖AS2 to have a model of
the global system specification. Then S1‖AS2 is composed with the test purpose
TP . During this operation, two main results are calculated. First TP is validated.
If the events composing TP are not found in the specifications (or not in the

S1 ||A S 2 TP

conformance test tool +modifications for iop

global iop test case

Execution on SUT(I1, I2)

verdict

S S TP1 2

conformance test
tool + modifications
for iop

conformance test
tool + modifications

for iop

Unilateral Test Case Unilateral Test Case

Execution on SUT(I1, I2) Execution on SUT(I1, I2)

verdict V1

Unilateral test purpose derivation
Test derivation with

final iop verdict = V1 ^ V2

Test derivation with Test derivation with

S 1 2TP1 STP2

(a) (b)

verdict V2

Fig. 2. Interoperability test generation: global and bilateral approaches

242 A. Desmoulin and C. Viho

order described in TP), TP is not a valid Test Purpose. The composition is also
used to keep only the events concerned by the Test Purpose (in the interaction
of the two specifications). It calculates the different ways to observe/execute TP
on the System Under Test (SUT) composed of the two IUTs.

A conformance test tool takes as entries a test purpose and a specification and
computes the paths of the specification executing the test purpose. Thus, such
a tool can be used for computing the paths executing TP in the specification
interaction. In this case, the tool entries are TP and S1 ‖A S2. However, some
modifications needs to be applied to the test case obtained with this tool to
derive interoperability test cases. Events on lower interfaces are not controllable
in the interoperability context, contrary to the case of conformance testing.

One problem with this method (classical method) is that we can have state
space explosion when calculating the interaction of the specifications [6]. Indeed,
the state number of the specification asynchronous interaction is in the order of
O((n.mf)2) where n is the state number of the specifications, f the size of the
input FIFO queue on lower interfaces and m the number of messages in the
alphabet of possible inputs on lower interfaces. This result can be infinite if
the size of the input FIFO queues is not bound. However, the equivalence -in
terms of non-interoperability detection- between global and bilateral iop criteria
(cf. theorem 1 in [5]) suggests that iop tests derived based on the bilateral iop
criterion will detect the same non-interoperability situations as tests generated
using the global interoperability test generation method.

4.3 Bilateral Interoperability Test Generation Method

The bilateral interoperability test generation method (see Figure 2(b)) is based
on the first part of the iopB criterion. This part focuses on the comparison
between outputs (and quiescence) observed on the interfaces of the interacting
implementations -each test case considering one IUT during the interaction- and
outputs (and quiescence) foreseen in the corresponding specification.

Unilateral iop Test Purpose Derivation. The first step of the bilateral
interoperability test generation method derives automatically two unilateral iop
test purposes TPSi from the global iop test purpose TP . The algorithm of figure 3
shows how to derive these two unilateral iop test purposes. Let us consider an
event μ of the iop test purpose TP and the construction of TPSi . If μ is an
event of the specification Si, μ is added to the unilateral iop test purpose TPSi .
If μ is an event from the specification Sj , there are two possibilities. Either the
event is to be executed on lower interfaces: in this case, the mirror event μ̄ is
added to TPSi; or, the event is to be executed on the upper interfaces: in this
case, the algorithm searches a predecessor of μ, such that this predecessor is an
event to be executed on lower interfaces. The algorithm adds the mirror of this
predecessor to the unilateral iop test purpose TPSi .

Some additional functions are used in the algorithm of figure 3. Let us con-
sider a trace σ and an event a. The function remove last is defined by : re-
move last(σ.a) = σ. The function last event is defined by : last event(σ)= ε

Automatic Interoperability Test Case Generation 243

Input: S1, S2: specification, TP : iop test purpose
Output: {TPSi}i=1,2;
Invariant: Sk = S3−i (* Sk is the other specification *); TP = μ1...μn

Initialization: TPSi := ε ∀i ∈ {1, 2};
for (j = 0;j ≤ n;j++) do

if (μj ∈ ΣSi
L) then TPSi := TPSi .μj ; TPSk := TPSk .μ̄j end(if)

if (μj ∈ Σ
Sk
L) then TPSi := TPSi .μ̄j ; TPSk := TPSk .μj end(if)

if (μj ∈ ΣSi
U) then TPSi := TPSi .μj ; TPSk :=add precursor(μj , Si, TPSk) end(if)

if (μj ∈ Σ
Sk
U) then TPSk := TPSk .μj ; TPSi :=add precursor(μj , Sk, TPSi) end(if)

if (μj /∈ ΣSk ∪ ΣSi) then error(TP not valid: μj /∈ ΣS1 ∪ ΣS2) end(if)
end(for)

function add precursor(μ, S, TP): return TP
σ1 := TP ; aj =last event(σ1)
while aj ∈ ΣS

U do σ1=remove last(σ1); aj =last event(σ1) end(while)
M = {q ∈ QS; ∃ q’|(q, āj , q

′) ∧ σ = āj .ω.μ ∈ Traces(q)}
if (∀q ∈ M , σ /∈ Traces(q)) then error(no path to μ) end(if)
while (e=last event(ω) /∈ ΣS

L ∪ {ε}) do ω=remove last(ω) end(while)
if (e ∈ ΣS

L) then TPS = TPSi .ē end(if)

Fig. 3. Algorithm to derive TPSi from TP

if σ= ε and last event(σ)= a if σ= σ1.a. The error function returns the cause of
the error and exits the algorithm.

Unilateral iop Test Case Generation. The second step of the bilateral inter-
operability test generation method is the generation of two unilateral test cases
from the unilateral test purposes and the specifications. The same test generation
algorithm is executed for TPS1 with S1 and for TPS2 with S2. This algorithm
calculates on-the-fly the interaction between the unilateral iop test purpose and
the corresponding specification to find in the specification the paths executing
the test purpose. This step can be done by using a conformance test generation
tool (for example TGV).

However, as lower interfaces are not controllable in interoperability testing
(contrary to conformance testing), controllable conformance test cases can not
always be reused for interoperability. Indeed, a test case is controllable if the
tester does not need to choose arbitrarily between different events. In confor-
mance, inputs on lower interfaces correspond to outputs of the tester: a control-
lable conformance test case only considers one of the possible inputs on lower
interfaces. In interoperability testing, inputs on lower interfaces are sent by the
other implementation. An interoperability test case must take into account all
possible inputs on lower interfaces. The complete test graph is an IOLTS which
contains all sequences corresponding to a test purpose: all the inputs of the im-
plementation that correspond to the test purpose are considered. Thus, to have
test cases usable in interoperability context, the conformance tool used in this
step for interoperability test generation must compute the complete test graph.

244 A. Desmoulin and C. Viho

Moreover, some modifications are needed on the test cases TC′
1 and TC′

2

generated by the conformance test tool to obtain the unilateral iop test cases
TC1 and TC2 that will be executed unilaterally on the corresponding IUT in the
SUT. These modifications are needed because lower interfaces are only observed
(not controlled) in interoperability context. For example, if an event l!m exists
in the test case obtained from TGV (which means that the tester connected to
interface l must send the message m to the lower interface of the IUT), this
will correspond to ?(l?m) in the interoperability test case. This means that the
interoperability tester observes that a message m is received on the interface l.
No changes are made on the test cases for events on the upper interfaces as these
interfaces are observable and controllable: a message can be sent (and received)
by the tester to the IUT on these interfaces.

The execution of both interoperability test cases return two verdicts. The ”bi-
lateral” verdict is obtained by combining these local verdicts with the following
obvious rules: PASS ∧PASS = PASS, PASS ∧ INC = INC, INC ∧ INC =
INC, and FAIL ∧ (FAIL ∨ INC ∨ PASS) = FAIL.

Complexity. The first step of the bilateral interoperability test generation
method is linear in the maximum size of specifications. Indeed, it is a simple
path search algorithm. The second step is also linear in complexity, at least
when using TGV [19]. Thus, it costs less than the calculation of S1‖AS2 needed
in the global interoperability test generation method. Moreover the bilateral in-
teroperability test generation method can be used to generate iop test cases
in situations where generating test cases with the global interoperability test
generation method is impossible due to state-space explosion problem.

4.4 Causal Dependency Based Algorithm Completing Both
Methods

One objective of interoperability is to verify the communication between the
IUTs. Moreover, iop test purposes may end with an input. This latter situation
occurs, for example, in the unilateral test purposes derived by bilateral method.
For example, if the iop test purpose ends with an output on the lower interface,
its mirror event (an input) is added -as last event- to one of the derived test
purpose. In this case, the conformance test tool (TGV) generates a test case
without postamble: the last event of the test case is the input given as objective
by the test purpose. However, this input is not observable. An algorithm based
on input-output causal dependencies is used to know if this input was actually
executed. It completes iop test cases obtained by bilateral method (or test cases
generated by classical method based on an iop test purpose ending with an input)
by producing outputs that help in verifying that the input is actually executed.
Thus, the algorithm based on causal dependencies completes and refines iop test
cases generated by bilateral (or global) method. It takes as entry the iop test case
to complete: the last event of this test case is the input μ. It returns the outputs
that are causally dependent of this input μ. For computing the set of causal
dependency events (associated with the paths to these events), this algorithm,

Automatic Interoperability Test Case Generation 245

Input: S1: Specification, σ: Trace of event (after projection on S1), μ: input of S1

Output: CDep(S1, σ, μ), {σ′}: set of traces between μ and an output, m: number of
events in CDep
Initialization: Γ := Γ (S1, σ.μ); m :=nb event(Γ)
for (i := 0; i ≤ m; i + +) do

create(find[i]); find[i]=false; create(σ′[i]); σ′[i] := ε end(for)
BEGIN
while ∃x(x < n), find[x]:=false do

for (i := 0; i < m; i + +) do
if (find[i]=false) do Evt := Γ (S1, σ.μ.σ′[i])

if (Evt(0) ∈ ΣS1
O) do find[i]:=true; Add(Evt(0), CDep(S1, σ, μ))

else σ′[i] := σ′[i].Evt(0) end(if)
if (nb event(Evt)> 1) do

for(j := 1; j ≤ nb event(Evt); j + +) do
m++; create(σ′[m]); σ′[m] := σ′[i]
create(find[m]); find[m]:=false
if (Evt(j) ∈ ΣS1

O) do find[m]:=true; Add(Evt(j), CDep(S1, σ, μ))
else σ′[m] := σ′[m].Evt(j) end(if)

end(for)
end(if)

end(if)
end(for)

end(while)
END

Fig. 4. Exploration of S1 to find causally dependent outputs of input μ

see Figure 4, considers each event of the set Γ (S1, σ.μ) to find an output in each
trace following the considered input. The obtained outputs are used to verify
the actual reception of the input μ and thus, to complete test cases based on the
iop test purpose containing this input.

4.5 Implementation of iop Test Generation Methods

In [5], we show the equivalence that allows the definition of the bilateral al-
gorithm. However, the definitions and methods were not complete as inputs
were not verified (there was no condition and no algorithm based on causal-
dependencies) and the algorithms presented were not tested practically.

The methods presented in this Section were implemented using the CADP
toolbox [20]. The conformance test generation tool TGV (Test Generation using
Verification techniques) [3] is integrated in this toolbox which also contains an
API for manipulating IOLTS. These methods were applied to the generation of
iop test cases for a connection protocol. It is described in next Section.

5 Application on a Connection Protocol

Figure 5 describes three specifications for a connection protocol. S1 and S2 are
respectively the specifications of the client and server. U1?CNR is a connection

246 A. Desmoulin and C. Viho

0 0

1

0

5

U1?CNR

l1!cnr

l2!ack

l2?cnr

l2!nack

U1?CNR

l1!cnr

l2?cnr

l2!ack

3 43 4

1

2

U1!ACK U1!NACK

l1?nack

l1?ack

1

2

U1!ACK

U1!NACK

l1?nackl1?ack

l2!nack

SS 2S 1

Fig. 5. Examples of specifications: S1, S2 and S

request from the upper layer, l1!cnr (resp. l2?cnr) the request sent (resp. re-
ceived) to the peer entity, l2!ack/l2!nack the positive or negative response, and
U1!ACK/U1!NACK the response forwarded to the upper layer. The specifica-
tion S represents both client and server parts.

5.1 A Client/Server Example

Let us consider the three iop test purposes of figure 6(a). These iop test pur-
poses are applicable for the System Under Test (SUT) composed of two IUTs
implementing respectively S1 and S2. For example, TP1 means that, after the
reception by I1 (implementing S1) of a connection demand on its upper interface
U1, this IUT must send a connection acknowledgment on its upper interface U1.

In figure 6 (b1), TP 1
1 and TP 2

1 are the unilateral test purposes derived using
the algorithm of figure 3 for TP1 and respectively specifications S1 and S2. In the
same way, TP 1

2 and TP 2
2 of figure 6 (b2) (resp. TP 1

3 and TP 2
3 of figure 6 (b3))

are derived from TP2 (resp. TP3). The same notation will be used for test cases
in the following.

When deriving the unilateral iop test purposes, for events on lower interfaces,
the returned event is either the event itself, or its mirror. For event U1!ACK, as
its predecessor is μ = l1?ack, the returned event is μ̄ = l2!ack (TP 2

1 and TP 2
3) or

U1!ACK (TP 1
1 and TP 1

3). The difficulty is for deriving an event from U1?CNR
for TP 2

1 and TP 2
2 . In S1, this event is the first possible event after the initial

0 0 0 00 0

U1?CNR

1

U1!ACK

2

ACCEPT

l2!nack

1

l2!ack

2

ACCEPT

U1?CNR

1

l1?ack

ACCEPT

l2!nack

1

l2!ack

2

ACCEPT

1

l1!cnr

U1!ACK

2

ACCEPT

l2?cnr

1

l2!ack

2

ACCEPT

Unilateral Iop Test Purposes derived
from TP1 from TP2 from TP3

2

TP1
1 TP1

2 TP2
1 TP2

2 TP3
1 TP2

3

(b1) (b2) (b3)

Iop Test Purposes

(a)

1TP 2TP 3TP

0

1

2

0

1

2

0

1

2

U1?CNR

U1!ACK

ACCEPT ACCEPT

l2?cnr

ACCEPT

U1?CNR

l2!ack U1!ACK

Fig. 6. Iop test purpose TP1, TP2 and TP3, and derived Unilateral Test Purposes

Automatic Interoperability Test Case Generation 247

TC1
3TC1

1

1

2

4

0

3

TC1
2 TC1

2 TC2
2

0

1

2

4

3

5

6

0

3

1

2

4

0

1

2

4

3

5

6

0

1

2

3

UT1!CNR

UT1!CNR

(PASS)
UT1?ACK

?(l1?ack)

?(l1!cnr)

?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

?(l2?cnr)

UT1?NACK
?(l1?nack)

?(l2!nack)

?(l2!ack)

?(l2?cnr)

0

1

3

2

(PASS)
?(l1?ack)

UT1!CNR

4

?(l1?nack)

5

UT1?NACK
?(l1!cnr)

UT1!CNR

?(l2!ack)
(PASS)

?(l2!nack)

?(l2?cnr) UT1!CNR

UT1?ACK
(PASS)

?(l1?ack)

?(l2!nack)

?(l2!ack)

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)
?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

TC3
2

?(l2?cnr)

Fig. 7. Test Cases by bilateral method for specifications S1 and S2

state. Its predecessor must be found in the paths that bring back the entity in its
initial state after some execution. The first predecessor found is U1!NACK. As
this event is not an event of the interaction, the algorithm continues one more
step to find l1?nack as predecessor, and then returns its mirror l2!nack.

The second step of the bilateral iop test generation method corresponds to
the use of TGV conformance test tool on a unilateral test purpose and the
corresponding specification. Figure 7 gives the test cases obtained for the test
purposes of figure 6. The results on Figure 7 gives the test cases modified for
interoperability. UT 1 is the tester connected to upper interface U1.

Now, let us see what happens when using the classical approach for iop test
generation to compare test cases generated by both methods. The first step of
the classical method is the calculation of the specification interaction. Then, we
can use TGV to generate test cases for test purposes of Figure 6. The obtained
global iop test cases are in Figure 8. We can remark that, for the three situations
(comparing traces in Figures 7 and 8), the same execution paths lead to the same
verdicts. Thus, the iop test cases generated with both methods are equivalent in
terms of verdicts.

For TP2, we can remark that TC1
2‖ATC2

2 ends with an input (l1?ack) that is
not in TC2 (excluding this event, TC2 and TC1

2‖ATC2
2 contain the same traces).

This is due to the test purpose derivation (cf. Section 4.4): the unilateral test
purpose generated for S1 ends with an input. To complete this iop test case
(TC1

2), we can either add a postamble returning to the initial state, either use the
causal dependency based algorithm. In this simple example (specification S1),
only the event U1!ACK will be added with causal dependency event method.

To summarize, the application of both method on this connection protocol
confirms the equivalence in terms of verdicts. Even though the generated iop
test cases are not the same, the execution of the same traces leads to the same
verdicts. Thus, the same non-interoperability situation are detected with both
our method and the classical method.

248 A. Desmoulin and C. Viho

4

7

9

10

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)

TC3
UT1!CNR

?(l2?cnr)

?(l2!nack)

?(l1!cnr)

?(l2?cnr)

?(l2!ack)

?(l1?ack)

UT1?ACK (PASS)

0

1

2

3

5

6

8

11

5

6

7

0

1

2

3

4

5

9

7

4

1

0

8

6

2

3

UT1!CNR

UT1!CNR

TC1 2TC

UT1!CNR

UT1?NACK

?(l1?nack)

?(l1!cnr)

?(l2?cnr)

?(l2!ack)
(PASS)

?(l2!nack)

UT1!CNR

UT1?NACK

?(l1!cnr)

?(l2?cnr)

?(l2!ack)

?(l1?ack)

UT1?ACK (PASS)

?(l2!nack)
?(l1?nack)

Fig. 8. Test Cases from TGV for the interaction of S1 and S2

5.2 Specification Describing Both Entities as Client and Server

Both methods were also applied on the specification S (Figure 5) describing both
client and server parts (same test purposes). The interaction S‖AS, calculated
for classical approach, is composed of 454 states and 1026 transitions with input
queues of each system bounded to one message. The following table gives the
number of states s and transitions t (noted s/t in the table) of results derived
considering a queue size of 3. Line 1 and 2 give the state and transition numbers
for unilateral test cases derived by bilateral method considering S as specifica-
tion for both systems (lines 1 and 2: S as specification respectively for systems
1 and 2). The third line gives numbers for the interaction of these unilateral test
cases TC1 and TC2. Finally line 4 gives results for global methods. With a queue
size of 3,the specification interaction has 47546 states and 114158 transitions.

TP1 TP2 TP3

Unilateral iop test case TC1 9/17 8/16 9/17
Unilateral iop test case TC2 13/24 13/24 12/22

TC1‖ATC2 19546/57746 19468/57614 19405/57386
Global test case TC 54435/120400 18014/40793 54456/120443

We observe that we can derive iop test cases considering a queue size of 3
via both classical and bilateral methods. However, due to the difference in state
and transition number between both methods, unilateral test cases obtained
by bilateral method are more usable, for example for controlling the execution
of the interoperability test cases. Moreover, state space explosion problem can
occur when using the global method: results in the previous table are finite only
because we consider bounded FIFO queues. We were not able to compute S‖AS
for a queue size limited to 4 places. But the bilateral method gives iop test
cases with the same state and transition numbers as in the previous table. This

Automatic Interoperability Test Case Generation 249

shows that the bilateral method can be used to generate iop test cases even for
specifications that produce state space explosion problem. Moreover, these test
cases are not dependent of the queue size.

6 Conclusion

In this paper, we present interoperability formal definitions that deal with both
purposes of interoperability: implementations must interact correctly and the ex-
pected service must be provided. A new interoperability test generation method
is proposed based on these formal definitions. This method has been imple-
mented using the CADP toolbox. It avoids the well-known state-space explosion
problem that occurs when using classical methods. This is the important result
of our study and it is confirmed by the application on a connection protocol.
Moreover, we show that the so-called bilateral interoperability test derivation
method allows us to generate interoperability test cases in situations where it
would have been impossible with the traditional method because of state space
explosion problem.

As future work, we will study the generalization of the formal interoperability
definitions and test generation methods to the much more complex context of
more than two implementations. We will also study how to apply the described
method to a distributed testing architecture.

References

[1] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7. International Standard ISO/IEC
9646/1-7 (1992)

[2] Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

[3] Jard, C., Jéron, T.: Tgv: Theory, principles and algorithms. STTT 7(4), 297–315
(2005)

[4] Tretmans, J., Brinksma, E.: Torx: Automated model based testing. In: Hart-
man, A., Dussa-Zieger, K. (eds.) Proceedings of the First European Conference
on Model-Driven Software Engineering, Nurnberg, Germany (December 2003)

[5] Desmoulin, A., Viho, C.: Formalizing interoperability for test case generation pur-
pose. In: IEEE ISoLA Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation, Columbia, MD, USA (September 2005)

[6] Castanet, R., Koné, O.: Deriving coordinated testers for interoperability. In: Rafiq,
O. (ed.) Protocol Test Systems, Pau-France, vol. VI C-19, pp. 331–345. IFIP,
Elsevier Science B.V., Amsterdam (1994)

[7] Seol, S., Kim, M., Kang, S., Ryu, J.: Fully automated interoperability test suite
derivation for communication protocols. Comput. Networks 43(6), 735–759 (2003)

[8] Castanet, R., Kone, O.: Test generation for interworking systems. Computer Com-
munications 23, 642–652 (2000)

250 A. Desmoulin and C. Viho

[9] Walter, T., Schieferdecker, I., Grabowski, J.: Test architectures for distributed
systems: State of the art and beyond. In: Petrenko, Yevtushenko (eds.) Testing of
Communicating Systems, IFIP, Kap, pp. 149–174 (September 1998)

[10] Barbin, S., Tanguy, L., Viho, C.: Towards a formal framework for interoperability
testing. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) 21st IFIP WG 6.1 Interna-
tional Conference on Formal Techniques for Networked and Distributed Systems,
Cheju Island, Korea, Août, pp. 53–68 (2001)

[11] Jard, C., Jéron, T., Tanguy, L., Viho, C.: Remote testing can be as powerful
as local testing. In: Wu, J., Chanson, S., Gao, Q. (eds.) Formal methods for
protocol engineering and distributed systems, FORTE XII/ PSTV XIX 1999,
Beijing, China, pp. 25–40. Kluwer Academic Publishers, Dordrecht (1999)

[12] Verhaard, L., Tretmans, J., Kars, P., Brinksma, E.: On asynchronous testing.
In: Bochman, G.V., Dssouli, R., Das, A. (eds.) Fifth inteernational workshop on
protocol test systems, pp. 55–66. North-Holland, Amsterdam (1993) IFIP Trans-
actions

[13] Desmoulin, A., Viho, C.: Quiescence Management Improves Interoperability Test-
ing. In: 17th IFIP International Conference on Testing of Communicating Systems
(Testcom), Montreal, Canada (May-June 2005)

[14] El-Fakih, K., Trenkaev, V., Spitsyna, N., Yevtushenko, N.: Fsm based interoper-
ability testing methods for multi stimuli model. In: Groz, R., Hierons, R.M. (eds.)
TestCom 2004. LNCS, vol. 2978, pp. 60–75. Springer, Heidelberg (2004)

[15] Griffeth, N.D., Hao, R., Lee, D., Sinha, R.K.: Integrated system interoperability
testing with applications to voip. In: FORTE/PSTV 2000: Proceedings of the IFIP
TC6 WG6.1 Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols and Protocol Specification,
Testing and Verification. Kluwer, B.V., Dordrecht (2000)

[16] Bochmann, G., Dssouli, R., Zhao, J.: Trace analysis for conformance and arbitra-
tion testing. IEEE transaction on software engeneering 15(11), 1347–1356 (1989)

[17] Gadre, J., Rohrer, C., Summers, C., Symington, S.: A COS study of OSI interop-
erability. Computer standards and interfaces 9(3), 217–237 (1990)

[18] de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering. ACM
Press, New York, NY, USA (2001)

[19] Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: Using on-the-fly verification tech-
niques for the generation of test suites. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

[20] Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. Technical Report
0254, INRIA (2001)

Author Index

Alba-Castro, Mauricio 200
Alpuente, Maŕıa 200

Baufreton, Philippe 3
Berry, Gérard 2

Cofer, Darren 68, 101

DeLisi, Michael 164
Desmoulin, Alexandra 234

Escobar, Santiago 200

Fantechi, A. 133
Faria, João C.P. 218

Gassino, Jean 3
Gesellensetter, Lars 85
Glesner, Sabine 85
Gnesi, S. 133
Gopalakrishnan, Ganesh 164
Goubault, Eric 3

Kammüller, Florian 38
Kirby, Robert M. 164
Kowalewski, Stefan 21
Krogh, Bruce H. 68

Lensink, Leonard 115
Löll, Jann 21

Mazzanti, F. 133
Mendes, Pedro M.C. 218
Miller, Steven 68

Paiva, Ana C.R. 218
Palmer, Robert 164
Pecheur, Charles 1
Pelánek, Radek 149
Preibusch, Sören 38
Putot, Sylvie 3

Rangarajan, Murali 101

Salecker, Elke 85
Schlich, Bastian 21
Schreurs, René 182
Smetsers, Sjaak 115
Storm, Walter 68
Strooper, Paul 56

ten Hoedt, Stefan 182
ter Beek, Maurice H. 133

Usenko, Yaroslav S. 182

van den Berg, Lionel 56
van Eekelen, Marko 115, 182
Viho, César 234

Whalen, Michael 68
Winter, Kirsten 56

	Title Page
	Preface
	Organization
	Table of Contents
	Verification of Embedded Software: From Mars to Actions
	Synchronous Design and Verification of Critical Embedded Systems Using SCADE and Esterel
	Static Analysis of the Accuracy in Control Systems: Principles and Experiments
	Introduction
	Abstract Domains and Techniques Used in FLUCTUAT
	Floating-Point Variables
	Integer Variables
	Aliases and Arrays
	Iteration Strategy
	Assertions

	Experiments on Control Systems
	Hispano-Suiza
	Institut de Radioprotection et Sûreté Nucléaire (IRSN)
	Linear Filters

	Conclusion and Future Work

	Application of Static Analyses for State Space Reduction to Microcontroller Assembly Code
	Introduction
	Introduction to $[mc]square}$
	Challenges Applying Static Analysis to Assembly Code
	Dead Variable Reduction
	Stack Analysis
	Global Interrupt Flag
	Interprocedural Live Variable Analysis

	Path Reduction
	Case Study
	Related Work
	Conclusion and Future Work

	Checking the TWIN Elevator System by Translating Object-Z to SMV
	Introduction and Related Work
	TWIN Elevator System Case Study
	Translating Object-Z Specifications to SMV Programs
	Fundamental Object-Z Concepts
	Directness and Structure Preservation
	Translation Rules

	Model Checking the Translation with SMV
	Workflow Embedding
	Conclusion and Discussion

	Introducing Time in an Industrial Application of Model-Checking
	Introduction
	Background
	Introducing Time
	Modeling the Level-Crossing
	Evaluation
	Related Work
	Conclusion

	Integration of Formal Analysis into a Model-Based Software Development Process
	Introduction
	Formal Methods in a Model-Based Development Process
	Changes to the Verification Process
	Changes to the Modeling Process
	Analysis Results
	Conclusion
	References

	Formal Verification with Isabelle/HOL in Practice: Finding a Bug in the GCC Scheduler
	Introduction
	Background
	Static Single Assignment (SSA) Representations
	Scheduling for VLIW Processors

	Formalization in Isabelle/HOL
	Partial Orders
	Schedule and Instruction Groups
	Proof

	Dependency Checker
	Case Study: Checker for GCC
	Related Work
	Conclusions

	Computing Worst-Case Response Times in Real-Time Avionics Applications
	Introduction
	Simplified Deos Model
	Discrete-Time Model
	Producer-Consumer Application Model
	Verification of Response Time
	Conclusions and Future Work
	References

	Machine Checked Formal Proof of a Scheduling Protocol for Smartcard Personalization
	Introduction
	Personalization Machine
	PVS Model of the Personalization Machine
	The Belt
	The Stations
	The Machine
	The Scheduler

	Validating the Model
	The Complete State Invariant
	Proof of the Complete State Invariant
	Safety and Optimality

	Related Work
	Future Work
	Conclusion

	An Action/State-Based Model-Checking Approach for the Analysis of Communication Protocols for Service-Oriented Applications
	Introduction
	Preliminaries
	The Action/State-Based Temporal Logic UCTL
	The UCTL Model Checker UMC
	aSOAP: A Case Study
	Verification of UCTL Formulae with UMC

	Conclusions

	Model Classifications and Automated Verification
	Introduction
	Verification Meta-search
	The Need for Classifications

	Background
	State Space Classifications
	Structure of SCC Components
	Shape of the State Space
	Local Structure
	Relation Among State Space Classifications

	Model Classifications
	Model Structure
	Application Domain

	Conclusions and Future Work

	An Approach to Formalization and Analysis of Message Passing Libraries
	Introduction
	Related Work

	Communication Semantics Model of MPI
	Modeling Approach
	What Is Not Modeled
	Modeling Granularity to Preserve the Corner Cases
	A Complete Definition: MPI_Wait
	Issues Raised by Modeling

	Modeling Framework
	Simplification
	Program Modeling

	Examples
	Concluding Remarks

	Analysis of a Session-Layer Protocol in mCRL2 Verification of a Real-Life Industrial Implementation
	Introduction
	Intelligent Text Processing (ITP) and Its Load-Balancer
	Issues and Artifacts

	Modeling in mCRL2
	Description of the mCRL2 Language
	The mCRL2 Toolset
	The Load-Balancer in mCRL2
	Modeling the Properties

	Analysis and Issues
	Experiments and Results
	Detected Issues

	Conclusions and Future Work
	Part of C Code of the Request Handling
	Corresponding Part of the mCRL2 Model

	Automatic Certification of Java Source Code in Rewriting Logic
	Introduction
	The Java Modeling Language
	The Rewriting Logic Semantics of Java
	The Abstract Rewriting Logic Semantics of Java
	Certifying Java
	Experiments
	Conclusions and Related Work

	Reverse Engineered Formal Models for GUI Testing
	Introduction
	Overview of the Reverse Engineering and Model-Based GUI Testing Process
	Characteristic of the Target GUI Model
	The GUI Reverse Engineering Process
	Automatic Exploration
	Manual Exploration

	Generation of the GUI Model and Mapping Information
	Generation of the GUI Object Map (XML)
	Generation of the GUI Model (Spec#)
	Generation of the GUI Adapter Code (C#)

	Model Validation
	Related Work
	Conclusions and Future Work
	References

	Automatic Interoperability Test Case Generation Based on Formal Definitions
	Introduction
	Preliminaries
	Interoperability Testing
	IOLTS Model
	State of the Art in Automatic Test Generation

	Formalizing Interoperability
	Specification Model
	Formalization of Interoperability Principles
	Interoperability Formal Definitions

	Interoperability Test Generation Methods
	Test Purposes, Test Cases and Verdicts
	Global Interoperability Test Generation Method
	Bilateral Interoperability Test Generation Method
	Causal Dependency Based Algorithm Completing Both Methods
	Implementation of iop Test Generation Methods

	Application on a Connection Protocol
	A Client/Server Example
	Specification Describing Both Entities as Client and Server

	Conclusion

	Author Index

