
Hybrid DHT Design for Mobile Environments

Stefan Zoels1, Simon Schubert1, Wolfgang Kellerer2, and Zoran Despotovic2

1 Institute of Communication Networks, Munich University of Technology, Germany
stefan.zoels@tum.de, corecode@fs.ei.tum.de

2 Future Networking Lab, DoCoMo Communications Laboratories Europe, Germany
{kellerer, despotovic}@docomolab-euro.com

Abstract. In this paper we present a hybrid design concept for Distrib-
uted Hash Tables (DHTs), in order to increase the performance of DHTs
in scenarios with mobile participants. By defining two classes of nodes
(static and temporary) and assigning critical overlay networking tasks
to reliable static nodes, our concept allows the disburdening of resource-
constrained temporary nodes such as PDAs or mobile phones. Further
we present an implementation of our system design, based on the Chord
protocol, in the Network Simulator 2 (NS-2) and in the overlay simulator
L7Sim and show simulation results that prove the significant advantages
of our extension in comparison to conventional DHTs.

1 Introduction

Distributed Hash Tables (DHTs) are currently a major subject of research in the
area of distributed computing and Peer-to-Peer (P2P) networks in particular.
Their two key properties – hash table like lookup interface and extreme scala-
bility – turn out to be sufficient for building large scale distributed applications.
Additionally, in contrast to unstructured P2P networks, they avoid flooding of
query messages, thus reducing the average number of search hops to O(log n) for
a network with n nodes. As a result the signaling traffic in the overlay network
decreases significantly.

However, the current mainstream research on P2P concentrates on fixed IP
networks consisting of functionally equal nodes. As such, it usually neglects
eventual heterogeneity among the participating computing devices. In this paper
we focus on extending current DHTs to mobile environments. In order to do so,
we have to be aware of the challenges resulting from this large heterogeneity of
participating nodes, ranging from hard-wired work stations to GPRS-connected
mobile phones:

– Limited resources of mobile devices (CPU power, RAM size, storage capac-
ity) as well as low access data rates have to be addressed. Moreover, devices
cannot be modeled as one class of nodes but their heterogeneity requires
different consideration of different types of nodes.

– High costs for mobile data transfer lead to short online times of mobile
participants. Resulting we face a highly dynamic environment, characterized
by high churn rates.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 19–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 S. Zoels et al.

– The increased failure probability of mobile devices (due to wireless link
breaks, discharged batteries...) can result in a high number of lost object
references, which in turn may result in the (at least temporary) unavailabil-
ity of shared objects.

In this paper we address these requirements by proposing a hybrid DHT de-
sign. We define two classes of nodes, which we call ‘static’ and ‘temporary’, and
we assume that static nodes both perform routing tasks and maintain references
to the available objects in the system, while temporary nodes only perform
routing. In this way we disburden temporary nodes and avoid shifting object
references when temporary nodes join or leave the system. The result is signif-
icantly decreased overall maintenance traffic.1 Besides, we emphasize that this
approach has another important advantage: It enables the low performance nodes
(e.g. mobile terminals) to participate in a DHT based P2P network.

The work presented in this paper is an extension and a generalization of our
previously proposed Hybrid Chord Protocol [1].

The paper is organized as follows. Section 2 gives an overview of distributed
hash tables. Section 3 presents our hybrid DHT design in detail. In Section 4 we
present an illustrative set of simulations we performed to test the performance of
the proposed design. Section 4.1 illustrates the setup of simulation scenarios with
our traffic generator, while Section 4.2 shows and discusses simulation results.
Section 5 concludes this paper and gives an outlook to future work.

2 Distributed Hash Tables - Overview

The basic problem DHTs address is self-organized distribution of a set of objects
among a set of peers, enabling their subsequent fast lookup. In a DHT peers
collaboratively manage specific subsets of objects, identified by keys from a key
space K, which depend on the set of all peers and the set of all objects available
in the system. This is done by associating each peer with a key taken from K
and also associating with this key a partition of the key space such that the peer
becomes responsible to manage all objects identified by keys from the associated
partition. Typically the key partition consists of all keys closest to the peer key in
a suitable metric. Thus the key space K is equipped with a distance function d.
To forward query requests peers form a routing network by taking into account
the knowledge on the association of peers with key partitions.

In short, any DHT is equipped with a function key : P → K that associates
peers with keys and, given key(P), a function partition : K → 2K associating
peers with partitions of K, and a function neighbors : K → 2P that associates
each peer with a subset of other peers, making thus an overlay graph G [2].

Function key is a hash function mapping a peer’s IP address or a randomly
chosen string into a hash value. Please note that the set of all participating peers
at any time can be considered as parameter of the function partition; the inter-
pretation is that the objects must be assigned to the peers that are currently
1 Throughout the remaining paper we use the term ‘maintenance traffic’ synonymously

for the number of object references shifted to a joining node or from a leaving node.

Hybrid DHT Design for Mobile Environments 21

present in the system. A side goal of using a hash function to map object keys
to peers is balancing the load distribution: each peer should be responsible for
approximately the same number of keys. The function neighbors is responsible
for building the DHT routing graph. Using the metric of the key space, it nor-
mally enables peers to maintain short-range links to all peers with neighboring
keys and in addition a small number of long-range links to some selected peers.
Using thus established routing graph, peers forward query requests in a directed
manner to other peers from their routing tables trying to greedily reduce the
distance to the key that is being looked up. Most of DHTs achieve by virtue of
this construction and routing algorithms lookup with a number of messages log-
arithmic in the size of network by using routing tables which are also logarithmic
in the size of the network [3,4]. However, in recent few years there have been also
some works that achieve constant outdegree graph topologies and consequently
constant sized routing tables while retaining logarithmic routing [5,6]. To sum
up, the specific designs of these structures depend on the choice of key space,
distance function, key partitioning, and linking strategy. They have been subject
of intensive research over the recent years and resulted in numerous designs of
structured overlay networks.

However, the good properties related to the efficiency of routing do not come
for free. For constructing and maintaining a structured P2P network peers have
to deal in particular with the problem of node joins and failures. Since the free-
dom to choose neighbors in a structured P2P network is constrained by the
conditions imposed by the function neighbors, maintenance algorithms are re-
quired to re-establish the consistency of routing tables in the presence of network
dynamics. Depending on the type of guarantees given by the network different de-
terministic and probabilistic maintenance strategies have been developed. Main-
tenance actions can be triggered by various events, such as periodical node joins
and leaves or routing failures due to inconsistent routing tables. The different
maintenance strategies trade-off maintenance cost versus degree of consistency
and thus failure resilience of the network.

3 Hybrid DHT Design

The main goal of our hybrid DHT design is to enable participation of mobile
devices such as PDAs or mobile phones in a DHT based P2P lookup system.
It sets up a hybrid overlay structure by extending a given conventional DHT
protocol as to define two different types of nodes: static nodes and temporary
nodes. Static nodes are reliable nodes in the overlay network that are character-
ized by long online times, low failure probabilities and good hardware resources
(e.g. office computers with hard-wired connections to the Internet). All other,
low-performance nodes in the overlay network (e.g. all mobile participants such
as GSM mobile phones or WLAN PDAs) are temporary nodes.

We require a minor modification to the object mapping rules of the DHT:
In contrast to the conventional DHT protocol, a reference to a shared object is
stored on the closest static node of the object’s key. (The term “closest” refers to

22 S. Zoels et al.

the conventional DHT’s distance metric: in Pastry it is the height of the smallest
tree containing the two considered nodes, in Chord it is the simple difference of
the nodes’ identifiers.) In contrast, temporary nodes maintain only a pointer to
their succeeding static node. Thus whenever a temporary node in the network
receives an INSERT or QUERY request (due to its responsibility for the key given
in the request) it simply forwards this request to its closest static node which
in turn stores the according reference(s). Such hybrid structure can be realized
by calling different JOIN and LEAVE procedures when nodes connect to or quit
the overlay network, depending on the node class that this node belongs to (see
pseudocode in Figure 1).

n.joinStatic() n.leaveStatic()
setupRoutingTable(); n = find_next_static(n.id);
n = find_next_static(n.id); transfer_references(n);
transfer_matching_references(n); inform_neighboring_nodes();
start_timers(); stop_timers();

n.joinTemporary() n.leaveTemporary()
setupRoutingTable(); inform_neighboring_nodes();
n = find_next_static(n.id); stop_timers();
set_next_static(n);
start_timers();

Fig. 1. Pseudocode for hybrid system structure setup

The differentiation between static and temporary nodes has three major ad-
vantages:

– The heterogeneity of the participating nodes that results from extending the
overlay network to mobile environments is addressed.

– The maintenance traffic in the overlay network can be decreased significantly,
as object references have to be shifted only when static nodes (which have
long online times) join or leave the overlay network. Moreover, resource-
constrained temporary nodes are prevented from storing and providing ob-
ject references.

– Only reliable static nodes with low failure probability store references to
shared objects. Resulting, the probability that an object is available in the
system but the node(s) that is (are) responsible for storing a reference to
it has failed is reduced. Consequently, the availability of provided content
increases.

The extension we just presented assumes that there are two classes of nodes,
static and temporary, defined independently of the current state of the system
(i.e. the properties of the nodes available in the system). Thus any node can un-
ambiguously determine to which class it belongs. In principle, it should be pos-
sible to make a step further and remove this constraint as to make a node class
dependent on the system state at any time instant (a joining node might assess
the current state of the system based on the properties of the nodes encountered
in the joining process) and enable the total work division according to the nodes
relative capabilities. We plan to investigate such extension in the future.

Hybrid DHT Design for Mobile Environments 23

4 Simulations

In this section, we present the results from a series of simulations, in which
we compare the conventional Chord protocol [4] and the Hybrid Chord Proto-
col (HCP), obtained by applying the above described modifications to Chord.
The results show the significant advantages of HCP in scenarios with resource-
constrained mobile participants.

4.1 Simulation Setup

To evaluate and compare the performance of conventional Chord and HCP we
implemented both protocols in the Network Simulator 2 (NS-2) [7]. Since NS-2
simulates the complete packet flow through all layers of the ISO/OSI reference
model, it requires a high amount of CPU power and Random Access Memory.
Resulting, the size of the simulated overlay network is limited to only a few hun-
dred nodes. In order to be able to simulate even larger overlay networks (typical
for P2P networks) we modified the NS-2 implementation of both protocols so
that only the overlay network is simulated. With this so-called L7Sim (Layer
7 Simulator), messages are exchanged directly between the P2P applications,
without making use of the underlying layers of the ISO/OSI reference model.
The delay of physical links is thereby represented by an equally distributed de-
lay between 10 ms and 200 ms. The convergence of both approaches is shown in
Section 4.2. To set up simulation scenarios we implemented a traffic generator
that performs the following tasks:

– Definition of different node classes. For the simulated overlay networks,
different classes of participating nodes can be defined. Appropriate parame-
ters for node classes are the mean online time, the failure probability (i.e.,
the probability that a node leaves the overlay network without notifying
other nodes), the number of shared objects, and the average query rate. For
NS-2 simulations, also the data rate and the delay of the physical link to the
core network can be defined.

– Creation of an initial overlay network. The traffic generator creates
an initial Chord/HCP overlay structure with a given number of nodes, in-
cluding the setting of predecessor pointer, successor list, finger table, next
static pointer (for temporary HCP nodes) and provided content. For NS-2
simulations, it also connects the overlay nodes to the core network. The core
network emulates the physical IP connections between the overlay nodes.
It consists of 100 core nodes and is created with the BRITE [8] topology
generator.

– Generation of an eventfile. The eventfile is created according to the
specified parameters and is used as input for both network simulators.

Figure 2 shows the setup of an exemplary simulation scenario with the traffic gen-
erator using three node classes. In detail the simulation process runs as follows:
Firstly, the traffic generator reads the scenario file and generates – according to
the parameters given in the scenario file – an output file containing the initial

24 S. Zoels et al.

nodeclass WLAN_NOTEBOOK
mean_online_time 3600s
failure_probability 10%
shared_objects 50
query_rate 300s
link datarate 1Mb delay 10ms

nodeclass UMTS_PHONE
mean_online_time 1800s
failure_probability 25%
shared_objects 20
query_rate 120s
link datarate 384kb delay 120ms

nodeclass GPRS_PHONE
mean_online_time 900s
failure_probability 50%
shared_objects 5
query_rate 60s
link datarate 100kb delay 400ms

initial
100 WLAN_NOTEBOOK
100 UMTS_PHONE
100 GPRS_PHONE

simulation-duration 1h

Fig. 2. Scenario file for the setup of a simulation scenario

overlay network as well as simulation events. Simulation events are composed
of NODE-JOIN, NODE-LEAVE, NODE-FAILURE and QUERY events. Secondly,
the generated file is taken as input for the used network simulator, which in turn
produces a tracing file that can be analyzed with appropriate evaluation tools.

4.2 Simulation Results

Based on multiple independent simulations, we evaluate HCP in comparison to
the conventional Chord protocol. The focus of the following simulations is put
onto the decreased maintenance traffic and the increased availability of provided
content that can be achieved with HCP.

In a first simulation we set up a network with 100 overlay nodes which are
connected randomly to the core network. The main goal of this simulation is
to evaluate the differences between simulating the overlay network on top of
a physical network using the complete protocol stack (NS-2) and simulating
the overlay network independently, without considering the physical topology
(L7Sim). Thus we want to determine the impact of lower-layer parameters such
as queue length, packet loss or link latency on our simulations. Table 1 shows
all relevant simulation parameters for this simulation scenario.

By varying the mean online time2 of temporary nodes from 600 s to 1800 s,
we create seven different independent eventfiles. We simulate each eventfile with
2 The traffic generator determines the online time of each participating node follow-

ing a negative-exponential distribution, with mean value given in the node class
definition in the scenario file.

Hybrid DHT Design for Mobile Environments 25

Table 1. Simulation parameters for scenario 1

Number of node classes: 2
Node class: STATIC TEMPORARY
Mean online time: 1800 s (neg. exp. dist.) 600 s - 1800 s (neg. exp. dist.)
Number of shared objects: 10 per node 10 per node
Physical link: 1 Mb/s, 10 ms delay 100 kb/s, 100 ms delay
Mean number of nodes: 100

Partitioning: 10 static, 90 temporary
Simulation duration: 4 hours

10000

30000

50000

10000 30000 50000

Number of transfers in L7SIM

N
um

be
r

of
 tr

an
sf

er
s

in
 N

S
-2

Chord

HCP

Ideal value

Fig. 3. Scenario 1: Maintenance traffic in both simulators

both protocols in NS-2 and in L7Sim, and compare the total number of trans-
ferred object references (i.e. the resulting maintenance traffic) in both simulators.

As we see from Figure 3, the measured numbers of transferred object refer-
ences are nearly the same in both simulators. The marginal differences in NS-2
result from a negligible packet loss in the physical layer. Resulting we can state
that simulating only the overlay network, without considering the underlying
physical topology, is sufficient for our analysis.

The basic criterion for comparing maintenance traffic in HCP and in Chord is
the ratio α of the mean online time of static nodes in HCP and the mean online
time of all nodes in Chord:

α =
Mean online time of static nodes
Mean online time of all nodes

As stated in section 3, HCP stores object references only on static nodes. There-
fore, the mean online time of static nodes is crucial for the maintenance traffic
in HCP, as object references have to be shifted whenever a static node joins
or leaves the overlay network. In contrast, Chord stores object references on all
nodes in the overlay network, so the mean online time of all nodes is decisive for
the maintenance traffic in Chord. By theoretical evaluation (see Appendix) we
can show that the maintenance traffic in HCP is lowered by a factor of 1/α in
comparison to Chord.

26 S. Zoels et al.

In the above simulation scenario we obtain different values for the ratio α from
the varying mean online time of temporary nodes. Figure 4 shows a comparison
of the resulting maintenance traffic. It illustrates the percentage of transferred
object references in HCP in comparison to Chord, depending on the ratio of mean
online times α. The simulation results coincide with our theoretical evaluation
that HCP reduces maintenance traffic by a factor of 1/α compared to Chord.

0%

50%

100%

150%

0,0 1,0 2,0 3,0

Ratio of mean online times

N
um

be
r

of
 tr

an
sf

er
s

in
 H

C
P

in
 c

om
pa

ris
on

 to
 C

ho
rd

Simulation

Theory

Fig. 4. Scenario 1: Maintenance traffic in HCP compared to Chord

Our next simulation aims at the verification of this theoretical evaluation in
a large overlay network with a high percentage of mobile participants, and by
a lot of different independent simulation runs. Therefore, we create multiple
simulation scenarios according to the setup parameters given in Table 2. Please
note that we vary the mean online time of static nodes from five to fifty minutes.

Table 2. Simulation parameters for scenario 2

Number of node classes: 2
Node class: STATIC MOBILE
Mean online time: 300 s - 3000 s (neg. exp. dist.) 300 s (neg. exp. dist.)
Number of shared objects: 1 per node 1 per node
Mean number of nodes: 1000

Partitioning: 100 static, 900 mobile
Simulation duration: 2 hours

Due to the high number of overlay nodes, and based on the findings of our
first simulation we confine ourselves to simulate this scenario only in the overlay
simulator L7Sim. We generate 56 different eventfiles with a ratio of mean online
times α ranging from 0.99 to 8.93. The individual values for α result directly
from the varying mean online time of all participating nodes in each scenario
file. In Figure 5, the resulting maintenance traffic of all 56 simulation runs is
depicted for both protocols. As expected, the total number of transferred object

Hybrid DHT Design for Mobile Environments 27

references in Chord nearly stays at a constant level, because the mean online
time of all nodes in the overlay network only changes slightly (please note that
90% of the overlay network is formed by mobile nodes that have a constant mean
online time of about 300 s). On the other hand the mean online time of static
nodes rises from 300 s to 3000 s in average. Along with this increasing ratio α
comes significantly decreased maintenance traffic in HCP. With this simulation
we can prove our theoretical evaluation: As we can see in Figure 5, the amount
of transferred object references in HCP decreases with 1/α, while it remains
constantly high in Chord.

0

25000

50000

0,0 2,0 4,0 6,0 8,0 10,0

Ratio of mean online times

N
um

be
r

of
 tr

an
sf

er
s

Simulation Chord

Simulation HCP

Theory HCP

Fig. 5. Scenario 2: Maintenance traffic

So far, we have considered theoretical simulation scenarios with only two
different node classes. To evaluate HCP in a more realistic scenario, we set up
a heterogeneous overlay network with 2000 nodes, partitioned into five different
node classes: 100 office computers, 700 DSL subscribers, 400 ISDN users, 400
PDAs, and 400 mobile phones. Table 3 illustrates the modeling of these nodes
classes.

Table 3. Simulation parameters for scenario 3

Number of node classes: 5
Node class: OFFICE DSL ISDN PDA PHONE
Mean online time: 24 h 2 h 30 min 10 min 2 min
Failure probability: 0.1% 5% 10% 35% 50%
Number of shared objects: 0-30 0-30 0-15 0-8 0-5
Average query rate: 1 every... 10 min 8 min 5 min 1 min 20 s
Simulation duration: 1 hour

Again, the mean online time and the average query rate of overlay nodes are
negative exponentially distributed and the number of shared objects is distrib-
uted equally between the given minimum and maximum value. The simulated
time is one hour. When simulating HCP, only nodes that belong to the node

28 S. Zoels et al.

classes OFFICE and DSL are allowed to become static nodes, and thus to store
references to shared objects. All following simulation results represent the aver-
age values calculated from 10 independent simulation runs.

Figure 6 shows the maintenance traffic of both protocols over time, simulated
with L7Sim. Since a large part of the network consists of nodes with low mean
online times, we notice a continuously high amount of transferred object ref-
erences in Chord. In contrast, HCP offers significantly decreased maintenance
traffic, as object references are stored only on static nodes (OFFICE and DSL
nodes) which are characterized by long online times.

0

2500

5000

0 5 10 15 20 25 30 35 40 45 50 55

Time [minutes]

N
um

be
r

of
 tr

an
sf

er
s

pe
r

m
in

ut
e

Chord
HCP

Fig. 6. Scenario 3: Maintenance traffic over time

In a second step we evaluate the content availability in both protocols, rep-
resented by the success rate of queries. We define the success rate λ of a query
by dividing the number of providing hosts given in the query result by the real
number of hosts currently providing the searched object. For example, when ob-
ject X is shared by hosts A, B and C, and a query for X returns B and C as
sharing hosts, the success rate of the query is λ = 2/3 = 67%.

In Figure 7 the cumulative distribution of queries is plotted against the query
success rate.3 Chord can resolve 61.2% of all queries with 100% query success
(i.e., the query result contains all providing hosts), but at the same time shows a
sizeable fraction of non- or low-successful queries that return no or only a small
number of currently providing hosts. These non- or low-successful queries result
from failures of nodes that store the references to providing hosts, and from the
fact that the providing hosts have not yet republished their shared objects. In
contrast to Chord, HCP offers excellent query success rates. 95.5% of all queries
in HCP return all currently providing hosts (λ = 100%) and only 1.1% of all
queries have a success rate less than 80%.

Thus, the above simulations prove the increased content availability in HCP
that results from storing object references only on reliable static nodes. From
3 An important parameter for this simulation is the refresh period for shared objects.

It was set to 900 s, i.e. every shared object is republished by its owner every 15
minutes, in order to keep the object references in the system up-to-date.

Hybrid DHT Design for Mobile Environments 29

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Query success

P
er

ce
nt

ag
e

of
 q

ue
rie

s
Chord

HCP

Fig. 7. Scenario 3: CDF of query success rates

our point of view, content availability is an important aspect when developing
DHT-based services, as query success is a major criterion for user acceptance
and hence the number of customers.

5 Conclusion

In this paper we presented a hybrid DHT design, which we applied to Chord to
obtain the Hybrid Chord Protocol (HCP). We then evaluated its advantages in
comparison to the conventional Chord algorithm. The introduced design aims
primarily at the extension of structured DHT based P2P protocols to mobile
environments, where a major part of the overlay network consists of resource-
constrained mobile participants such as PDAs or mobile phones. By defining two
different types of participating nodes, static and temporary nodes, the design
allows disburdening of mobile participants, significantly decreased maintenance
traffic and increased availability of provided content.

We performed multiple simulations of Chord and HCP in different scenarios.
The simulations proved our theoretical analysis that HCP reduces the mainte-
nance traffic by a factor of 1/α in comparison to Chord, with α as the ratio of the
mean online time of static nodes in HCP and the mean online time of all nodes
in Chord. Moreover, our simulations verify the increased availability of provided
content, and they show that it is sufficient for the evaluation of maintenance
traffic to regard only the overlay network, without considering the underlying
physical topology.

References

1. Zoels, S., Schollmeier, R., Kellerer, W., Tarlano, A.: The Hybrid Chord Protocol: A
Peer-to-Peer Lookup Service for Context-Aware Mobile Applications. In: ICN 2005
(2005)

2. Aberer, K., Alima, L., Ghodsi, A., Girdzijauskas, S., Hauswirth, M., Haridi, S.:
The Essence of P2P: A Reference Architecture for Overlay Networks. In: P2P 2005
(2005)

30 S. Zoels et al.

3. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-Scale Peer-to-Peer Systems. In: IFIP/ACM DSP 2001 (2001)

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: SIG-COMM 2001 (2001)

5. Kaashoek, M., Karger, D.: Koorde: A Simple Degree-Optimal Distributed Hash
Table. In: SODA 2004 (2004)

6. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In: PODC 2002 (2002)

7. NS-2, The Network Simulator NS-2 Homepage, http://www.isi.edu/nsnam/ns
8. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Universal Topology Genera-

tion from a User’s Perspective, Technical Report BU-CS-TR-2001-003 (2001)

Appendix: Theoretical Evaluation of Maintenance Traffic

Assume an overlay network with N nodes and a total number of R references
to shared objects. In this case, each node is responsible for storing r = R/N
references in average. Thus r object references have to be shifted when a node
joins or leaves the overlay network. The total number of join and leave events
e in a simulation scenario is determined by the number of nodes, their mean
online time T and the simulation duration D:

e = N · (2/T) · D

Resulting, the total number of object references transferred to a joining or from
a leaving node during a simulation (i.e., the maintenance traffic) is given by

m = e · r = 2 · D · R/T

From this equation we can now evaluate the reduced maintenance traffic in an
HCP system. Since HCP stores object references only on static nodes with mean
online time THCP,static, the total number of transferred references in an HCP
simulation is

mHCP = 2 · D · R/THCP,static

whereas Chord generates a total number of

mChord = 2 · D · R/TChord

transfers. The total number of references R and the simulation duration D re-
main constant in both cases. By definition, the mean online time of static HCP
nodes is significantly higher than the mean online time of all nodes in a Chord
system. Under the assumption that THCP,static = α · TChord the generated main-
tenance traffic in HCP is decreased by a factor of

mHCP/mChord = TChord/THCP,static = 1/α

in comparison to the conventional Chord protocol.

http://www.isi.edu/nsnam/ns

	Hybrid DHT Design for Mobile Environments
	Introduction
	Distributed Hash Tables - Overview
	Hybrid DHT Design
	Simulations
	Simulation Setup
	Simulation Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

