
A Peer to Peer Grid Computing System Based
on Mobile Agents

Joon-Min Gil1 and Sung-Jin Choi2

1 Department of Computer Science Education, Catholic University of Daegu
330 Geumnak, Hayang-eup, Gyeongsan-si, Gyeongbuk 712-701, Korea

jmgil@cu.ac.kr
2 Department of Computer Science and Engineering, Korea University

5-1 Anam-dong, Sungbuk-ku, Seoul 136-701, Korea
lotieye@disys.korea.ac.kr

Abstract. In a peer to peer grid computing system, volunteers (i.e., re-
source provides) with heterogeneous properties can freely join and leave
in the middle of their computation. Thus, the system should be adaptive
to a dynamic changing environment. In particular, scheduling, result cer-
tification, and replication mechanisms must be dynamic and adaptive in
such a system. In this paper, we propose a new peer to peer grid com-
puting system based on mobile agents. The proposed system constructs
volunteer groups according to volunteers’ dynamic properties such as
service time, availability, and credibility. For each volunteer groups, dif-
ferent scheduling, result certification, replication mechanisms are used.
These mechanisms are implemented as mobile agents and are conducted
in a decentralized way.

1 Introduction

A peer to peer grid computing system is a platform that achieves a high through-
put computing by harvesting a number of idle desktop computers owned by indi-
viduals (i.e., volunteers) at the edge of the Internet using peer to peer computing
technologies [1,2]. It usually supports embarrassingly parallel applications that
consist of a lot of instances of the same computation with each own data.

A peer to peer grid computing is complicated by heterogeneous capabilities,
failures, volatility (i.e., intermittent presence), and lack of trust [3,4]. The volun-
teers that are based on desktop computers at the edge of Internet, have various
capabilities (i.e., CPU, memory, network bandwidth, and latency), and are ex-
posed to link and crash failures. Moreover, they are free to join and leave in
the middle of execution without any constraints. Accordingly, they have various
volunteering times, and public execution (i.e., the execution of a task as a volun-
teer) can be stopped arbitrarily on account of unexpected leave. Since volunteers
are not totally dedicated to a peer to peer grid computing system, the public
execution can be temporarily suspended by private execution (i.e., the execution
of a private job as a personal user). These unstable situations lead to the delay
and blocking of the execution of tasks. This paper regards these situations as

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 175–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 J.-M. Gil and S.-J. Choi

volunteer autonomy failures. Volunteers have different occurrence rates for vol-
unteer autonomy failures according to their execution behaviors. Moreover, a
peer to peer grid computing system suffers from the corrupted results executed
by malicious volunteers. This is due to the voluntary participation of volunteers
without any constraints. Consequently, the system must detect and tolerate the
erroneous results to guarantee reliable execution from such an untrustworthy
environment. These distinct features make it difficult for a volunteer server to
schedule tasks and manage volunteers.

In order to improve the reliability of computation and gain better perfor-
mance, the peer to peer grid computing system should adapt to dynamic en-
vironment. However, existing systems do not provide adaptive and dynamic
scheduling, result certification, and replication mechanisms per group basis. In
addition, their mechanisms are performed only by the volunteer server in a cen-
tralized way. As a result, existing systems have high overhead and deteriorate
overall performance. To solve the problems, we propose a new peer to peer grid
computing system based on mobile agents. The proposed system applies differ-
ent scheduling, result certification, replication algorithms to the volunteer groups
that are classified on the basis of their properties such as volunteering service
time, availability, and credibility; the different algorithms are implemented as
mobile agents and are conducted in a decentralized way.

This paper organized as follows. Section 2 presents why mobile agents are
used and describes our execution model. Section 3 presents a peer to peer grid
computing system based on mobile agents in detail. In Section 4, implementation
and evaluation for our mechanism will be presented. Finally, our conclusion is
given in Section 5.

2 System Model

2.1 Why Mobile Agent?

Mobile agent technology [5] is exploited to make the scheduling mechanism adap-
tive to dynamically changing peer to peer grid computing environments. There
are some advantages of making use of mobile agents in the environments.

1) Various scheduling mechanisms can be performed at a time according to the
properties of volunteers. For example, these scheduling mechanisms can be im-
plemented as mobile agents (i.e., scheduling mobile agents). After volunteers are
classified into volunteer groups, the most suitable scheduling mobile agent for
a specific volunteer group is assigned to the volunteer group according to its
property. Existing peer to peer grid computing systems, however, cannot apply
various scheduling mechanisms because only one scheduling mechanism is per-
formed by a volunteer server in a centralized way.
2) A mobile agent can decrease the overhead of volunteer server by performing
scheduling, result certification, and replication algorithms in a decentralized way.
The scheduling mobile agents are distributed to volunteer groups. Then, they
autonomously conduct scheduling, fault tolerance, and replication algorithms in

A Peer to Peer Grid Computing System Based on Mobile Agents 177

each volunteer group without any direct control of a volunteer server. Accord-
ingly, the volunteer server does not further undergo the overhead.
3) A mobile agent can adapt to dynamically changing peer to peer grid computing
environments. In a peer to peer grid computing environment, volunteers can join
and leave at any time. In addition, they are characterized by heterogeneous prop-
erties such as capabilities (i.e., CPU, storage, or network bandwidth), location,
availability, credibility, and so on. These environmental properties are changing
over time. A mobile agent can perform asynchronously and autonomously, while
coping with these changes.

2.2 Execution Model

Fig. 1 illustrates the execution model based on mobile agents in peer to peer
grid computing environments. In the registration phase, volunteers register ba-
sic properties such as CPU, memory, OS type as well as additional properties
including volunteering time, volunteering service time, volunteer availability, vol-
unteer autonomy failures, volunteer credibility, and so on. Since these additional
properties are related to dynamical execution, they are more important than
basic properties. In the job submission phase, the submitted job is divided into
a number of tasks. The tasks are implemented as mobile agents (i.e., task mo-
bile agents: T-MA). In the task allocation phase, the volunteer server does not
perform entire scheduling anymore. Instead, it helps scheduling mobile agents
(S-MA) to perform a scheduling procedure. Initially, the volunteer server classi-
fies and constructs the volunteer groups according to properties such as location,
volunteer autonomy failures, volunteering service time, and volunteer availabil-
ity. Next, scheduling mobile agents are distributed to volunteer groups according
to their properties. Finally, each scheduling mobile agent distributes task mobile
agents to the members of its volunteer group. In the task execution phase, the
task mobile agent is executed in cooperation with its scheduling mobile agent
while migrating to another volunteer or replicating itself in the presence of fail-
ures. In the task result return phase, the task mobile agent returns each result

T-MA

Client

Volunteer

Server

Volunteers

Deputy

V
1 V

1
V
n-1

V
n

…
Job submission phase

Tasks
allocation

phase

Task result
return
phase

Tasks
Execution
phase

Job result return phasetime

…Registration
phase

V
1

V
m-1

V
m

…

Tasks
Execution
phase

Deputy

V
2

Tasks
allocation

phase
Tasks

allocation
phase

Task result
return
phase

Task result
return
phase

S-MA

S-MA

T-MA

T-MA
T-MA

T-MA
T-MA

Volunteer group Volunteer group

Fig. 1. Execution model based on mobile agents

178 J.-M. Gil and S.-J. Choi

to its scheduling mobile agent. When all task mobile agents return their results,
the scheduling mobile agent aggregates the results and then returns the collected
results to the volunteer server. In order to tolerate erroneous results, majority
voting and spot-checking mechanisms are conducted. In the job result return
phase, the volunteer server returns a final result to the client when it receives
all the results from the scheduling mobile agents.

The main differences between our model and existing ones are as follows: 1)
The new kinds of mobile agents are considered as the scheduling and task mo-
bile agents. 2) They use the volunteer groups that are constructed according to
dynamic properties of volunteers such as autonomy failures, service time, avail-
ability, and credibility. 3) Various scheduling, result certification, and replication
algorithms are performed simultaneously in a decentralized way. In fact, there
has been the use of mobile agents in the literature [6]. However, the migration
of mobile agents in master-worker model is mainly considered.

3 Peer to Peer Grid Computing System Using Mobile
Agents

This section describes a peer to peer grid computing system using mobile agents
in detail. First, it provides the construction mechanism of volunteer groups. Then,
adaptive scheduling, result certification, replication mechanisms are presented.

3.1 Volunteer Group Construction Mechanism

To apply different scheduling and result certification algorithm suitable for vol-
unteers in a scheduling phase, volunteers are required to first be formed into
homogeneous groups. Our construction mechanism classifies volunteers into four
volunteer groups on the basis of volunteer availability αv, volunteering service
time Θ, and volunteer credibility Cv.

Definition 1 (Volunteering time). Volunteering time (Υ) is the period when
a volunteer is supposed to donates its resources.

Υ = ΥR + ΥS

Here, the reserved volunteering time (ΥR) is reserved time when a volunteer
provides its computing resources. Volunteers mostly perform public execution
during ΥR, rarely private execution. On the other hand, the selfish volunteer-
ing time (ΥS) is unexpected volunteering time. During ΥS , volunteers usually
perform private execution, sometimes public execution.

Definition 2 (Volunteer availability). Volunteer availability (αv) is the prob-
ability that a volunteer will be operational correctly and be able to deliver the vol-
unteer services during volunteering time Υ

αv =
MTTV AF

MTTV AF + MTTR

A Peer to Peer Grid Computing System Based on Mobile Agents 179

Here, the MTTVAF (Mean Time To Volunteer Autonomy Failures) means the
average time before the volunteer autonomy failures happen, and the MTTR
(Mean Time To Rejoin) means the mean duration of volunteer autonomy failures.
The αv reflects the degree of volunteer autonomy failures, whereas the traditional
availability in distributed systems is mainly related with the crash failure.

Definition 3 (Volunteering service time). Volunteering service time (Θ) is
the expected service time when a volunteer participates in public execution during
Υ

Θ = Υ × αv

In scheduling procedure, Θ is more appropriate than Υ because Θ represents the
time when a volunteer actually executes each task in the presence of volunteer
autonomy failures.

Definition 4 (Volunteer credibility). Volunteer credibility Cv is the proba-
bility that represents correctness of the results which a volunteer will produce.

Cv =
CR

ER + CR + IR

Here, ER, CR, and IR mean the number of erroneous results, the number of
correct results, and the number of incomplete results, respectively. The sum of
ER, CR, and IR means the total number of tasks that a volunteer executes.
The IR occurs when a volunteer does not complete spot-checking or majority
voting on account of crash failure and volunteer autonomy failures.

When both Θ and Cv are considered in grouping volunteers, volunteer groups
are categorized into four kinds of classes (A′, B′, C′, and D′) as shown in Fig. 2.
In this figure, Δ and ϑ represent the expected computation time of a task and
the desired credibility threshold which a task achieves, respectively.

A’
(High quality)

B’
(Low-intermediate

quality)

C’
(High-intermediate-

quality)

D’
(Low quality)

vC

Fig. 2. The classification of volunteer groups

3.2 Group Based Scheduling Mechanism

Differently from existing scheduling mechanisms [7,8,9], our scheduling mecha-
nism is based on volunteer group and mobile agents.

180 J.-M. Gil and S.-J. Choi

Allocating Scheduling Mobile Agents to Scheduling Groups. After con-
structing volunteer groups, a volunteer server allocates the scheduling mobile
agents (S-MA) to volunteer groups. However, it is not practical to allocate S-
MAs directly to the volunteer groups in a scheduling procedure because some
volunteer groups are not perfect for finishing tasks reliably. Therefore, we need
making new scheduling groups by combining the volunteer groups each other:
A′D′ & C′B′, A′B′ & C′D′, and A′C′ & B′D′. In this paper, we consider the
first combination in scheduling because B′ volunteer group compensates for C′

volunteer group with regard to volunteer availability.
The S-MA is executed in the deputy volunteer which is selected among mem-

bers in A′ volunteer group. Accordingly, deputy volunteers have high volunteer
availability and volunteering service time. Also, they have enough hard-disk ca-
pacity and network bandwidth.

Distributing Task Mobile Agents to Group Members. A task mobile
agent (T-MA) consists of a parallel code and data. After S-MAs are allocated
to the scheduling groups, each S-MA distributes T-MAs to the members of the
scheduling group. The S-MAs perform different scheduling, result certification,
and replication algorithms according to the type of volunteer groups.

The S-MA of the A′D′ scheduling group performs the scheduling as follows.

1) Order the A′ volunteer group by αv and then by Θ. 2) Distribute T-MAs to
the arranged members of the A′ volunteer group. 3) If a T-MA fails, replicate
the failed task to a new volunteer selected in the A′ volunteer group by means of
the replication algorithm, or migrate the task to a volunteer selected in the A′ or
B′ volunteer groups if task migration is allowed.

The S-MA of the C′B′ scheduling group performs the scheduling as follows.
1)Order the C′ and B′ volunteer groups by αv and then by Θ. 2) Distribute T-

MAs to the arranged members of the C′ volunteer group. 3) If a T-MA fails, repli-
cate the failed task to a new volunteer selected in the ordered C′ volunteer groups,
or migrate the task to a volunteer selected in the B′ or C′ volunteer groups.

Tasks are firstly distributed to the A′D′ scheduling group and then the C′B′

scheduling group. They are also distributed to the volunteers with high αv and
long Θ. In our scheduling, if checkpointing is not used, tasks are not allocated
to the B′ and D′ volunteer groups, because they have insufficient time to finish
the task reliably. In this case, the B′ and D′ volunteer groups execute tasks for
testing, i.e., to measure their properties. For example, the tasks executed in the
A′ and C′ volunteer groups are redistributed to the D′ and B′ volunteer groups,
respectively. However, the B′ volunteer group can be used to assist the main
volunteer groups (i.e., A′ or C′) if task migration is permitted. The volunteer
group B′ in the scheduling group C′B′ can be used to compensate for the C′

volunteer group with regard to volunteer availability. Suppose that a volunteer
in the C′ volunteer group suffers from volunteer autonomy failures. If the vol-
unteering time of a volunteer in the B′ volunteer group implies the duration
of volunteer autonomy failures at the failed volunteer, the suspended task can
migrate to a new volunteer in the B′ volunteer group.

A Peer to Peer Grid Computing System Based on Mobile Agents 181

3.3 Group Based Replication Mechanism

The group based replication mechanism automatically adjusts the number of
redundancy, and selects an appropriate replica according to the properties of
each volunteer group.

How to calculate the number of redundancy. If replication is used, each
S-MA calculates the number of redundancy for its volunteer group. It exploits
volunteer autonomy failures, volunteer availability, and volunteering service time
simultaneously when calculating the number of redundancy.

In a peer to peer grid computing environment, volunteer autonomy failures
occur much more frequently than crash and link failures. Moreover, the rates
and types of volunteer autonomy failures are various. Accordingly, the number
of redundancy must be calculated on the basis of volunteer groups that have
similar rate and types of volunteer autonomy failures in order to reduce the
replication overhead.

On the assumption that the lifetime of a system is exponentially distributed
[7,10], the number of redundancy r for reliability is calculated by

(1 − e−Δ/τ ′
)r ≤ 1 − γ

τ ′ = (V0 · τ + V1 · τ + · · · + Vn · τ)/n (1)

where, τ and τ ′ represent the MTTVAF of a volunteer and the MTTVAF of
a volunteer group, respectively; n is the total number of volunteers within a
volunteer group; Vn · τ means τ of a volunteer Vn; γ is the reliability threshold.

In (1), the term e−
Δ
τ′ represents the reliability of each volunteer group, which

means the probability to complete the tasks within Δ. It reflects volunteer au-
tonomy failures. The (1 − e−

Δ
τ′)r means the probability that all replicas fail

to complete the replicated tasks. If the required reliability γ is provided, the
value of r is calculated using (1). Each volunteer group has different r; e.g., the
volunteer group A′ and C′ have smaller r than the volunteer group B′.

How to distribute T-MAs to replicas. The methods of distributing tasks to
replicas are categorized into two approaches: parallel distribution and sequential
distribution. In the parallel distribution (Fig. 3(a)), the task Tm is distributed to
all members (V0, V1, and V2), and then executed simultaneously. In the sequential
distribution (Fig. 3(b)), the Tm is distributed and executed sequentially.

In the case of the A′ volunteer group, sequential distribution is more appropri-
ate than parallel distribution because the former can complete more tasks. For
example, in Fig. 3(b), if V0 completes the task Tm, there is no need to execute it
at V1 and V2. If the A′ volunteer group performs parallel distribution, it exhibits
the overhead of replication in the sense that volunteers execute the same tasks
even though they are able to execute other tasks. In contrast to the A′ volun-
teer group, in the case of the C′ volunteer group, sequential distribution is more
appropriate than parallel because the C′ volunteer group frequently suffers from
volunteer autonomy failures owing to a low αv.

182 J.-M. Gil and S.-J. Choi

Fig. 3. Parallel and sequential distribution

3.4 Group Based Result Certification Mechanism

Result certification is dynamically applied to each volunteer group as follows:
the A′ volunteer group has high possibility that produce correct results. If vot-
ing is used for result certification, the sequential voting group approach is more
appropriate than the parallel one because the former can perform more tasks.
For example, in the case of the Tm+2 task in Fig. 3(b), if first two results gen-
erated at V1 and V2 are same, there is no need to execute the Tm+2 task at V0
because majority (i.e., 2 out of 3) is already achieved. As a result, other tasks
can be executed instead of the executions that the solid line in Fig. 3(b) includes.
The B′ volunteer group has high possibility that produce correct results, but it
cannot complete their tasks because of lack of the computation time. Moreover,
volunteer autonomy failures occur frequently in the middle of execution. In the
case of task migration, a previous volunteer affects the result of the volunteer to
which a task is migrated. Accordingly, the migrated volunteer must be chosen
among the B′ or A′ volunteer groups. The sequential voting group is appropriate
like the case of the A′ volunteer group. The C′ volunteer group has enough time
to execute tasks, but its results might be incorrect. To strength the credibility,
the C′ volunteer group requires more spot-checking and redundancy than the
A′ or B′ volunteer group. The parallel voting group is more appropriate than
the sequential voting group. Lastly, the D′ volunteer group has insufficient time
to execute tasks and there is little possibility to produce correct results. More-
over, volunteer autonomy failures occur frequently in the middle of execution.
Accordingly, it is beneficial that tasks are not allocated to this volunteer group.

According to the above strategies, each S-MA has its own scheduling algorithm
for result certification. In general, the tasks are scheduled in the following order:
A′, C′, and B′.

The S-MA performs scheduling for result certification as follows: 1) Order
each volunteer group by αv, Θ, and Cv. 2) Evaluate the number of redundancy
or spot-checking rate. 3) Construct a sequential voting group, or choose some
volunteers for spot-checking on the basis of Θ and Cv . 4) Distribute tasks in
a way of sequential voting group, or allocate special tasks for spot-checking. 5)
Check the collected results.

In second phase, the number of redundancy for majority voting and the num-
ber of spot-checking are differently applied to each volunteer group. The number
of redundancy for majority voting is dynamically regulated by each scheduling
agent. The final error rate of majority voting [7] is evaluated by

A Peer to Peer Grid Computing System Based on Mobile Agents 183

ε(C′
v, r) =

2k+1∑

i=k+1

(
2k + 1

i

)
(1 − C′

v)i(C′
v)(2k+1−i) (2)

which is bounded by [4C′
v(1−C′

v)]k+1

2(2C′
v−1)

√
πk

. Here, the parameter C′
v means the proba-

bility that volunteers within each volunteer group generate correct results.
Consider the desired credibility threshold ϑ. Our mechanism calculates the

number of redundancy for each volunteer group if (1 − ϑ) ≥ ε(C′
v, r). Conse-

quently, the A′ and B′ volunteer groups have a small r, so it can reduce the
overhead of majority voting and execute more tasks. In contrast, the C′ volun-
teer group has a large r. The large r makes the credibility high.

The rate of spot-checking q is also regulated by each scheduling agent. The
final error rate of spot-checking [1] is evaluated by

ε(q, n, C′
v, s) =

sC′
v(1 − qs)n

(1 − C′
v) + C′

v(1 − qs)n
(3)

where, n and s are the saboteur’s share in the total work and the sabotage rate
of a saboteur, respectively.

In a similar way of majority voting, if n and s are given, the spot-checking rate
q of each volunteer group can be calculated using (3). Our mechanism calculates
the rate of spot-checking for each volunteer group when (1 − ϑ) ≥ ε(q, n, C′

v, s).
The rate of spot-checking for the A′ and B′ volunteer groups are smaller than
that of the C′ volunteer group. Accordingly, the A′ and B′ volunteer groups can
reduce the overhead, and thus execute more tasks. The C′ volunteer group can
increase its credibility.

4 Implementation and Evaluation

4.1 Implementation Status

We have developed the ”Korea@Home” [9], which attempts to harness the mas-
sive computing power of the great numbers of PCs distributed over Internet.
Fig. 4 shows an execution screen shot in Korea@Home. Volunteers can take part
in one of four kinds of applications: new drug candidate discovery, rainfall fore-
cast, climate prediction, and optical analysis of TFT-LCD. The CPU types of
volunteers are somewhat various, but the majority demonstrates similar CPU
performance. For example, the Intel Pentium 4 consists of approximately 58% of
the total, the Pentium III represents approximately 13%, the Celeron represents
approximately 4%, and so on.

4.2 Simulations

We compare our group-based adaptive scheduling, result certification, and repli-
cation mechanisms with eager scheduling. For three kinds of cases, we evaluate
200 volunteers during one hour (see Table 1). Case 1 is different from Case 2 with

184 J.-M. Gil and S.-J. Choi

Fig. 4. Screen shot of Korea@Home

Table 1. Simulation Environment

A’ B’ C’ D’ Total
of vol. 84 (42%) 26 (13%) 70 (35%) 20 (10%) 200

Case 1 αv 0.84 0.88 0.81 0.83 0.84
Θ 41 17 39 16 35 min.
Cv 0.98 0.98 0.88 0.86 0.93

of vol. 71 (35.5%) 31 (15.5%) 76 (38%) 22 (11%) 200
Case 2 αv 0.86 0.78 0.80 0.71 0.81

Θ 35 17 33 16 30 min.
Cv 0.98 0.98 0.82 0.85 0.91

of vol. 42 (21%) 59 (29.5%) 30 (15%) 69 (34.5%) 200
Case 3 αv 0.80 0.70 0.78 0.69 0.73

Θ 28 12 25 13 24 min.
Cv 0.98 0.98 0.89 0.89 0.94

of vol.: the number of volunteers

regard to volunteer availability and volunteer availability. On the other hand,
Case 3 is different form Case 1 with respect to volunteer availability and volun-
teering service time. Each simulation are repeated 10 times for each case. For
simulation, the mean volunteering time of volunteers is selected in the range [10,
60] min. We also assume that MTTV AF=1/0.2∼1/0.05 min. and MTTR=3∼10
min. A task in the application exhibits 18 minutes of execution time on a ded-
icated Pentium 1.4GHz. The s and n for spot-checking are assumed to be 0.1
and 10, respectively.

Fig. 5 shows total number of completed tasks for scheduling mechanism with
or without result certification. In this figure, ES and GAS represents eager
scheduling and our mechanism, respectively. From Fig. 5, we observe that our
mechanism completes more tasks than eager scheduling for all cases. In partic-
ular, the A′ volunteer group has an important role in obtaining better perfor-
mance. As the number of members in the A′ volunteer group increases gradually
(i.e., from Case 3 to Case 1), the number of completed tasks becomes higher. In
contrast, as the number of members in D′ volunteer group increases, the num-
ber of completed tasks becomes lower. Also, we see that volunteer availability

A Peer to Peer Grid Computing System Based on Mobile Agents 185

0

50

100

150

200

250

 (a) Not applied
Case3Case1

To
ta

l n
um

be
r o

f t
as

ks

 ES
 GAS

Case2

0

10

20

30

40

50

60

70

80

90

100

110

To
tal

 n
um

be
r o

f t
as

ks

(b) Majority voting

 ES
 GAS

Case3Case1 Case2
0

20

40

60

80

100

120

140

160

180

200

220

To
tal

 n
um

be
r o

f t
as

ks

(c) Spot-checking

 ES
 GAS

Case3Case1 Case2

Fig. 5. The number of completed tasks

Fig. 6. The number of redundancy & spot-checking rate

is tightly related with performance; e.g., Case 1 can complete more tasks than
Cases 2 and 3.

In the case of majority voting, our mechanism obtains more results of tasks
than eager scheduling because it dynamically decides the number of redundancy
according to properties of volunteer groups (see Fig. 6(a)). The A′ and B′ vol-
unteer groups choose less redundancy than the C′ volunteer group. As a result,
the A′ and B′ volunteer groups are able to reduce the replication overhead, and
so they can execute more tasks. The result of spot-checking is similar to that of
majority voting (see Fig. 6(b)). This is because our mechanism can dynamically
decide spot-checking rate according to properties of volunteer groups.

186 J.-M. Gil and S.-J. Choi

5 Conclusion

In this paper, we proposed a new peer to peer grid computing system based on
mobile agents, which adapts to a dynamic environment. The proposed system
applies different scheduling, result certification, and replication mechanisms to
volunteer groups. As a result, it can reduce the overhead of a volunteer server
by using adaptive mobile agents for each volunteer group in a distributed way.
Moreover, the group based scheduling, replication, result certification mecha-
nisms can complete more tasks than existing mechanism.

References

1. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-
tems. Future Generation Computer Systems 18, 561–572 (2002)

2. Neary, M.O., Cappello, P.: Advanced eager scheduling for Java-based adaptive
parallel computing. Concurrency and Computation: Practice and Experience 17,
797–819 (2005)

3. Kondo, D., Chien, A.A., Casanova, H.: Resource management for rapid applica-
tion turnaround on enterprise desktop grids. In: ACM Conf. on High Performance
Computing and Networking, pp. 19–30 (2004)

4. Lo, V., Zhou, D., Zappala, D., Liu, Y., Zhao, S.: Cluster computing on the fly:
P2P scheduling of idle cycles in the Internet. In: Voelker, G.M., Shenker, S. (eds.)
IPTPS 2004. LNCS, vol. 3279, pp. 227–236. Springer, Heidelberg (2005)

5. Lo, V., Zhou, D., Zappala, D., Liu, Y., Zhao, S.: Oddugi mobile agent system
(2004), http://oddugi.korea.ac.kr

6. Ghanea-Hercock, R., Collis, J.C., Ndumu, D.T.: Co-operating mobile agents for
distributed parallel processing. In: Proc. of the Third Int. Conf. on Autonomous
Agents (AA 1999), pp. 398–399 (1999)

7. Zuev, Y.A.: On the estimation of efficiency of voting procedures. Theory of Prob-
ability & Its Applications 42, 78–81 (1998)

8. Li, Y., Mascagni, M.: Improving performance via computational replication on a
large-scale computational grid. In: 3rd IEEE/ACM Int. Symp. on Cluster Com-
puting and the Grid, pp. 442–448 (2003)

9. Li, Y., Mascagni, M.: Korea@home (2003), http://www.koreaathome.org/eng/
10. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer

Science Applications. Wiley, Chichester (2002)

	A Peer to Peer Grid Computing System Based on Mobile Agents
	Introduction
	System Model
	Why Mobile Agent?
	Execution Model

	Peer to Peer Grid Computing System Using Mobile Agents
	Volunteer Group Construction Mechanism
	Group Based Scheduling Mechanism
	Group Based Replication Mechanism
	Group Based Result Certification Mechanism

	Implementation and Evaluation
	Implementation Status
	Simulations

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

