
Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 160 – 172, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Scoping Software Process Models - Initial Concepts
and Experience from Defining Space Standards

Ove Armbrust1, Masafumi Katahira2, Yuko Miyamoto2, Jürgen Münch1,
Haruka Nakao3, and Alexis Ocampo1

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
2 Japanese Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan

3 Japan Manned Space Systems Corporation, 1-1-26, Kawaguchi, Tsuchiura, Ibaraki, 300-0033,
Japan

{armbrust, ocampo, muench}@iese.fraunhofer.de,
katahira@computer.org,
miyamoto.yuko@jaxa.jp,

haruka@jamss.co.jp

Abstract. Defining process standards by integrating, harmonizing, and stan-
dardizing heterogeneous and often implicit processes is an important task, espe-
cially for large development organizations. However, many challenges exist,
such as limiting the scope of process standards, coping with different levels of
process model abstraction, and identifying relevant process variabilities to be
included in the standard. On the one hand, eliminating process variability by
building more abstract models with higher degrees of interpretation has many
disadvantages, such as less control over the process. Integrating all kinds of
variability, on the other hand, leads to high process deployment costs. This arti-
cle describes requirements and concepts for determining the scope of process
standards based on a characterization of the potential productzs to be produced
in the future, the projects expected for the future, and the respective process ca-
pabilities needed. In addition, the article sketches experience from determining
the scope of space process standards for satellite software development. Finally,
related work with respect to process model scoping, conclusions, and an out-
look on future work are presented.

1 Introduction

Many facets of process technology and standards are available in industry and acade-
mia, but in practice, significant problems with processes and process management re-
main. Rombach [1] reports a variety of reasons for this: Some approaches are too ge-
neric, some are too specific and address only a small part of daily life. Many approaches
are hard to tailor to an organization’s needs. In addition, some approaches impose rather
strict rules upon an organization – but since not everything can be foreseen, there must
be room for flexibility. Yet it remains unclear what must be regulated, and what should
be left open. In general, support for process problems is plentiful, but very scattered,
without a systematic concept addressing problems in a comprehensive way. One result
of this unsatisfactory support is an unnecessarily high number of process variants within
an organization. For example, each department of a company may have its own process

 Scoping Software Process Models - Initial Concepts and Experience 161

variant, all of them varying only in details, but existing nevertheless and needing to be
maintained in parallel.

A traditional countermeasure taken to overcome this phenomenon is to define fixed
process reference standards like the German V-Modell® XT [2], which fulfill the
requirements of maturity models such as CMMI or ISO/IEC 15504 [3]. While this
potentially reduces the number of variants, it often also leads to very generic proc-
esses that are no great help in dealing with daily problems, and that do not provide the
necessary variability for coping with changing contexts. Thus, processes and their
variations must be modeled in order to be understood, but at the same time, the mod-
eling extent must be limited, in order to maintain high quality of the modeled proc-
esses and achieve high user acceptance.

Together, these circumstances have gradually turned software process management
into a complex problem – and this process is nowhere near finished. As a conse-
quence, software process management challenges comprise, but are not limited to, the
following key issues:

− How can processes be characterized? Such a characterization is necessary in order
to decide which process parts should become mandatory, variable, or be left out
completely.

− How can stable and anticipated variable process parts be identified?
− In order to account for unanticipated changes, process models must be variable to

some extent – but what is the right degree of variability?
− How can variable processes be adequately described in a process model?
− How can process models be tailored efficiently, based on the particular demand?
− On which level(s) of granularity should process engineers work?

We propose a systematic approach of Software Process Scoping to address these
questions. We define Software Process Scoping as the systematic characterization of
products, projects, and processes and the subsequent selection of processes and proc-
ess elements, so that product development and project execution are supported effi-
ciently and process management effort is minimized.

This paper is structured as follows. Section 2 names a number of requirements that
a Software Process Scoping approach addressing the issues listed above should sat-
isfy. Section 3 explains our initial solution, followed by the description of its applica-
tion at JAXA in Section 4. We give an overview of what process scoping means in the
aerospace domain and describe our experiences. Related work and its relationship to
Software Process Scoping are analyzed in Section 5. Finally, we draw some conclu-
sions and give an outlook in Section 6.

2 Requirements for Software Process Scoping

Based on the problems observed with software process management, we have phrased
a number of requirements for an approach to scoping software processes.

(1) First of all, the approach should support software product development by pro-
viding an appropriate selection of necessary processes. This means that for a collec-
tion of existing, planned, and potential products developed in specific projects, the

162 O. Armbrust et al.

approach should determine the extent and provide a selection of software develop-
ment processes that supports the creation of these products by providing, for each
product and project, the processes needed.
(2) Second, in order to support the selection process, the approach should provide
ways to characterize software products, projects, and processes accordingly. Since
the approach is supposed to provide tailored processes for an organization, it must
also provide ways to select these processes, based on process characteristics and the
specific needs of projects and (future) products to be developed.
(3) Third, in order to minimize process management effort, the approach should pro-
vide ways to distinguish stable process parts from variable ones. Many products
and projects often share large parts of the processes, with none or only minimal varia-
tions. Managing all these variants independently significantly increases process man-
agement effort. Therefore, the approach should identify stable and variable process
parts, and provide a systematic method for classifying process parts accordingly, so
that process management effort can be effectively decreased.
(4) Fourth, in order to cope with the unforeseen, the approach should provide ways to
incorporate unanticipated variability in a controlled manner, such as process
changes during project runtime. This requirement comes from the fact that usually,
not all events can be foreseen, and thus need to be taken care of as they occur. In
some cases, this requires process changes. The approach should support these changes
in such a way that it sensibly constrains and guides process changes after the start of a
project.
As necessary preconditions for Software Process Scoping, the following two require-
ments must also be fulfilled by the process modeling mechanisms used:
(1) The process modeling approach should provide ways to store stable and variable
parts within one process model, in order to facilitate model management. Obvi-
ously, the information about whether a process part is stable or variable, and the vari-
ability’s further circumstances must be stored somehow. We suggest storage within
one combined model in order to facilitate further support, e.g., through tools.
(2) The process modeling approach should provide ways to cost-efficiently instanti-
ate such a combined model into a project-specific process model without variabil-
ity. This means that the combined model is transformed, and during this transforma-
tion, all variabilities are solved, resulting in a single process model without any
remaining variability.

These requirements are by no means complete. They may need to be amended, re-
fined or changed – however, they seem to be a good starting point to venture further.
In the following section, we will present an initial solution that at least partially satis-
fies these requirements.

3 Initial Solution

One possible solution addressing the requirements mentioned is the concept of a soft-
ware process line (see Fig. 1): Scoping determines the members of such a process
line, process domain engineering constructs a process repository containing all stable
and variable process parts as well as a decision model governing when to use which
variant. Process line instantiation extracts from the process repository one specific

 Scoping Software Process Models - Initial Concepts and Experience 163

process instance without variability for each project, which can then be further
adapted during customization. These activities are supported by a number of ap-
proaches, such as software process commonality analysis [4], process model differ-
ence analysis [5], [6] and rationale support for process evolution [7], [8]. In this
software process line environment, scoping and process domain engineering pro-
actively cope with stable and anticipated variable processes, while customization
(often also just called “process tailoring”) re-actively integrates unanticipated vari-
ability into a descriptive process model.

Process
Domain

Engineering

Process
Line

Instantiation

Customi-
zation

Software Process Line Engineering Core

Scoping Process
Line

Project-
specific
Process

Software Process Line Engineering Support

Process Model
Difference Analysis

Rationale Support for
Process Evolution

Process
Line

Instance

Process Commonality
Analysis

Process
Domain

Engineering

Process
Line

Instantiation

Customi-
zation

Software Process Line Engineering Core

Scoping Process
Line

Project-
specific
Process

Software Process Line Engineering Support

Process Model
Difference Analysis

Rationale Support for
Process Evolution

Process
Line

Instance

Process Commonality
Analysis

Fig. 1. Software process line overview

The fundamental difference between this software process line concept and well-
known concepts of software process tailoring is that within a software process line, an
organization’s processes are actively prepared for a number of anticipated needs be-
forehand and then possibly tailored further to incorporate unanticipated changes,
whereas classic process tailoring typically modifies a process individually for a spe-
cific project, e.g., for the creation of product P1 in cooperation with suppliers S1 and
S2, to be delivered to customer C1. Within a process line, scoping would evaluate
how many products of the product P1 type are anticipated to be produced in the fu-
ture, how often cooperation with suppliers S1 and S2 would presumably occur, and
how many projects with customer C1 are likely to happen. Taking this into account,
scoping then defines mandatory and optional process parts as determined by the re-
sults of the evaluation, and process domain engineering provides the appropriate
process model which reflects the scoping results.

The software process line concept is in fact quite similar to software product lines:
In a product line, a software product is systematically prepared to suit future antici-
pated needs by determining a common core and various variants satisfying different
specific needs. The software process line concept transfers this idea to software proc-
esses in such a way that it prepares an organization’s processes to suit future antici-
pated (process) needs by determining a common process core and variable process
parts that satisfy specific needs. Since product creation and processes have a very
close relationship, a combination of both approaches seems only too reasonable, and
was, in fact, already envisioned by Rombach in [1].

164 O. Armbrust et al.

In this article, we focus on the concept of scoping. Scoping determines what to in-
clude in the process line and what not, based on characteristic features described in
product, project, and process maps.

Product characteristics determine which process capabilities are needed to develop
the respective product(s). These characteristics may include, for example, that a prod-
uct is safety-critical, or that its requirements are only vaguely known at the beginning
of development. Product characteristics are determined in a product map for current,
future, and potential products.

Project characteristics also influence which process capabilities are needed in de-
velopment projects. Such characteristics may be, for example, that a project must
follow a certain development standard, or that it is performed in a distributed manner.
Project characteristics are recorded in a project map for existing/historical, future, and
potential projects. Both product and project characteristics may be prioritized, for
example by their likelihood of really becoming necessary, or by the potential damage
that may occur if they become necessary, but are not considered in the company’s
processes.

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t
Charac
teristic
s

…

…

Reqs
vague

Safety
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project
Charac
teristic
s

…

…

SPICE
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s
Charac
teristic
s

…

Risk-
based

ISO
12207
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Fig. 2. Product, project, and process map sketches

Once the product and project characterizations are complete, they form a set of
demands for the company’s processes. For example, product characterization may
lead to the insight that for every product, its certification according to a certain stan-
dard is mandatory. Project characterization may reveal that in all upcoming projects,
SPICE compliance is a must, while support for distributed development is only
needed for some projects. Together, these results demand processes that are SPICE-
compliant and allow for the necessary product certification by default, while explicit
support for distributed development is less important.

Available processes are characterized using the same attributes, describing the ca-
pabilities of a process in a process map for existing, future, and potential processes
and thus providing the counterpart to the demands of products and projects. By
matching the prioritized product and project characteristics to the process characteris-
tics, the scope of the future company processes is determined, with “must have”-
process features being part of the standard process and optional features representing
capabilities needed only in some cases. In our simple example, SPICE-compliant
processes that also support the desired certification would be included as a core for

 Scoping Software Process Models - Initial Concepts and Experience 165

every development project, while explicit support for distributed development would
be an optional feature that can be invoked on demand. Capabilities needed only very
seldom or never are left out; in case they become necessary, the project-specific proc-
ess tailoring will supply them.

Fig. 2 shows sketches of the three tables explained above. The topmost table dis-
plays product characteristics for existing, future, and potential products, with future
products being concretely planned and potential products being a possibility, but not
yet devised in any way. The middle and bottom tables contain project and process
characteristics, featuring the same three-way distinction, where existing processes are
processes in daily use, future processes are processes that have been prepared for
application, but have not been institutionalized yet, and potential processes are proc-
esses that might become used, but have not been adapted or prepared for use within
the organization yet.

4 Case Study

In this section, we are reporting on our experiences from an ongoing effort within the
Japanese Space Exploration Agency (JAXA) to provide a process line for their space
software development. Our focus hereby lies on scoping for satellite software devel-
opment (see Fig. 3). In the next section, we will describe the project context and re-
sults. Following up on that, we will share our experiences.

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

Satellite 1
Process

Launch
Vehicle
Process

Launch Vehicle
Process Line

Ground
Segment
Process 1

Ground Segment
Process Line

Ground
Segment
Process 2

ISO 12207

SPICE FOR SPACE

JAXA PAM

refers
to

Satellite 2
Process

Paper Focus

Fig. 3. JAXA process line overview

4.1 Process Scoping in the Aerospace Domain

The ultimate goal of the ongoing project we are reporting on is to provide a software
process line for JAXA’s space software development. This includes satellite software,
launch vehicle software, and ground segment software (see Fig. 3). So far, the first
version of a satellite software process line has been finished, the scoping portion of
which provided characterizations of two products (satellites) developed in two pro-
jects. In this domain, there is a very strong correlation between product and projects,
since each product is unique. Nevertheless, a meaningful project and product charac-
terization is not trivial. In our case, it became apparent very soon that while attributes
for project characterization often had only two possible values (e.g., “National” and

166 O. Armbrust et al.

“International” for the “Collaboration type” attribute), this was not the case for prod-
uct characterization. For example, complexity, criticality, and size were determined
on a 3-piece scale by experts.

Tables 1 and 2 show an extract of the characterizations of the projects and prod-
ucts, respectively. So far, only satellite products and projects have been characterized:
however, similar work for the launch vehicle and ground segment is currently going
on. Due to confidentiality reasons, subsystems and suppliers are represented by num-
bers. In Table 2, higher numbers mean higher rating of the respective attribute.

Table 1. Excerpt from project characterization

Sat1 Sat2 LV1 LV2 GS1 GS2
Collaboration
type

National International

Mission type Engineering Science
Subsystem 1, 2, 3 3
Supplier 1, 2 1

…

P
ro

ject
C

h
aracteristics

Satellites Launch Vehicle Ground Segment

Table 2. Excerpt from product characterization

Sat2
Subsystem1 Subsystem2 Subsystem3 Subsystem3 LV1 LV2 GS1 GS2

Complexity 3 2 1 1
Criticality 2 3 1 1
Size 3 3 2 2
Stable
Requirements

yes yes yes no

…

Ground Segment
Sat1

P
ro

d
u

ct
C

h
aracteristics

Satellites Launch Vehicle

There are a number of interdependencies between project and product characteriza-
tion data that are not apparent at first sight, but that surfaced during scoping efforts.
For example, the unstable requirements for Sat2, Subsystem3 require an iterative
development approach – this led to the fact that for each potential supplier, it had to
be checked whether such a process could be supported. In our case, Supplier 1 was
chosen and had to adapt (for Sat2) their processes to the international collaboration
type. Other interdependencies led to conflicts, e.g., the collaboration type “interna-
tional” demanded that documentation had to be made available in English upon re-
quest, suggesting one set of potential suppliers, but the mission type suggested a dif-
ferent set – this was solved by prioritizing characteristics.

4.2 Experiences

Translating the project and product characterizations into requirements for the process
proved not to be an easy task. Most “soft” product characteristics such as complexity,
size, or criticality could not be used to directly derive new or changed processes. In
fact, these factors mostly did not lead to qualitative process changes (i.e., new or
changed activities or work products), but influenced project planning in such a way

 Scoping Software Process Models - Initial Concepts and Experience 167

that the number of reviews was increased, or that the amount of independent V&V
was increased. This was not modeled in detail in the software process line: instead,
only high-level directives and quality requirements were given, which have to be
implemented individually by the suppliers.

Project characterization, on the other hand, led to a number of variation points
within the process itself. While some findings did not change the process itself (e.g.,
the requirement that for international projects, documentation was to be produced in
English upon request), others did. For example, for international cooperation projects
with ESA, a new activity was introduced for analyzing hardware/software interaction,
producing the new work product FMECA (Failure Mode, Effects, and Criticality
Analysis). Especially for exploratory science projects, the usual process standard was
perceived as being too heavy. As a consequence, the number of quality assurance
activities was reduced, and the requirements and design rationales were waived. Also,
source code quality assurance measures were decreased for this type of project.

The variations were modeled using the graphical software process modeling tool
[9] SPEARMINT™. Process parts that were optional in some cases were marked
accordingly, with a detailed description of when to consider the respective part. Fig. 4
displays the result: The characterization information was used to derive the satellite-
specific process line from the generic JAXA Space Domain Engineering Process
Line. It contained a number of variable parts, the work products FMECA and Ration-
ale for Design being shown. The rules describing these optional parts are as follows:

(Opt1.1) if (collaboration type == international) then (produce FMECA)
(Opt1.2) resolve (Opt7)
(Opt2.1) if (mission type == engineering) then (produce Rationale for Design)

For Opt1, two rules were defined: one that governs the creation of the FMECA,
and one requiring resolution of variation point Opt7, which is concerned with the
activities creating the FMECA work product (not shown). For Opt2, one rule was
sufficient. Using these rules, the satellite process line could then be instantiated into
two specific satellite processes. From one of these, the formerly optional parts were
erased, whereas in the other one, these parts were now mandatory: The resulting Sat-
ellite 1 Process supports a national science-type project, the Satellite 2 Process an
international engineering-type project.

The resulting process model contains 76 modeled activities, 54 artifacts, 18 graphi-
cal views depicting product flow, and another 18 graphical views depicting control
flow. Transferring the new process model into daily practice, however, has proved to
be no simple task. The modification of standards in the aerospace domain cannot be
done on-the-fly because many stakeholders are involved and the consequences of
software failures (possibly stemming from a faulty standard) are potentially grave. So
far, the software process line we have developed has been published as an appendix to
the official JAXA software standard. It has therefore not yet replaced the current
standard, but JAXA engineers and their suppliers are encouraged to examine the
process line and to provide comments and feedback.

Our experiences with the scoping approach taken were positive. From interviews
with JAXA process engineers, we have feedback that our scoping approach helped
them to focus on the relevant processes and saved a significant amount of effort in

168 O. Armbrust et al.

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

iterative: ++
international: +
…

Characterization
Information

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

Opt1

Opt2

optional

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

Opt1

Opt2

optional

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Opt1

Opt2

optional

Satellite 1
Process

Satellite 2
Process

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Instantiation
Customization

Scoping &
Domain

Engineering

Design
Software

Software Design
Specification

Design
Software

Software Design
Specification

Software Design
Specification

Fig. 4. JAXA satellite process line architecture (excerpt)

later modeling and standardization phases. The classic approach would have devel-
oped two independent processes for satellite development, so with the process line,
the expected maintenance complexity has been decreased as well due to the fact that
only the variable parts have to be considered separately, while for most of the process
line, there is only one process to be maintained instead of two.

Regarding the requirements formulated before, we can state that the first three re-
quirements concerning Software Process Scoping are already well addressed by the
approach. The fourth requirement (incorporate unanticipated variability in a controlled
manner) has not been addressed yet so far, which we accredit to the short lifetime of the
process line: There just were no unanticipated process changes necessary yet. Consider-
ing the first process modeling mechanism requirement (storage of stable and variable
parts within one process model), the JAXA project has shown that it is not feasible for
larger process models to manage variable parts manually. Therefore, the tool used has
been enhanced, so that it supports the definition and display of variable process ele-
ments. The second requirement (cost-efficiently instantiate a combined com-
mon/variable model into a project-specific process model), however, has not been
addressed at all. JAXA did not want to provide a number of process model variants to
its engineers, but instead opted for one combined model highlighting all variable parts,
and describing within the model when to follow which variant. This was feasible for the
relatively low number of variants; however, we expect that for larger process models
with more complex variants, instantiations will become necessary.

 Scoping Software Process Models - Initial Concepts and Experience 169

5 Related Work

In this section, we connect some related work to the issue of Software Process Scop-
ing. As a basis for all scoping activities, descriptive process modeling [10] is neces-
sary for identifying essential process entities. Becker describes an 8-step approach to
descriptive process modeling. During the first step, the objectives and scope of the
modeling effort are determined. This narrows the extent of the model, but the ap-
proach considers only solitary process instances on the project level, not a set of proc-
esses with variabilities. Nevertheless, descriptive process modeling can be used to
determine isolated, real processes that can be used as input for a variant analysis.

Bella et al. [11] describe their approach to defining software processes for a new
domain. Based on a reference process model, they used descriptive process modeling
to document the as-is processes and utilized this model as a basis for deriving suitable
processes for engineering wireless Internet services. Through a number of iterations,
they collected qualitative and quantitative experience and adapted the processes
where necessary. Their focus thus was the past; they evaluated only past events and
processes. Software Process Scoping also considers the future in terms of expected
products and projects.

The idea of systematically combining software product lines with matching proc-
esses was described by Rombach [1]. We consider Software Process Scoping as one
potential building block of such a combined approach.

Characterization and customization approaches exist for a number of software en-
gineering concepts, for example, for inspections [12], [13]. However, they are con-
strained to characterizing a limited number of methods of a class of methods (in the
above case, the class of inspection methods). This comprises only a fraction of a
Software Process Scoping approach, namely, that when scoping determines the need
for certain characteristic features in an inspection approach, the above characteriza-
tion can be used to determine which inspection approach should be used.

Denger [14] broadens the scope to quality assurance activities in general and
provides a framework for customizing generic approaches to the specific needs of a
company. The goal of the framework, however, is to optimize only a single factor
(software quality), whereas Software Process Scoping as proposed in this article aims
at optimizing multiple factors, which can be chosen freely through the product and
project characterization vectors.

Avison and Wood-Harper [15] describe an approach to supply an organization with
a number of methods from which a suitable one can be selected for different purposes.
The authors admit that the necessary method competence for a multitude of methods
is hard to achieve in reality, and therefore suggest that alternatives should be included
within a single method already. Based on our experience, we support this assumption
and consider this for Software Process Scoping by representing variability on differ-
ent levels of abstraction.

Fitzgerald et al. [16] describe an approach taken at Motorola, which involves tai-
loring up-front to encompass expected deviations from the organization standard, and
dynamic tailoring during project runtime, to encompass unanticipated circumstances.
This corresponds to our requirements 1 and 4.

170 O. Armbrust et al.

In the software product line domain, scoping has been considered in a number of
publications. Clements and Northrop [17] describe three essential activities for soft-
ware product line development, with scoping being a part of one of them. The authors
give a detailed description of what scoping is for and what it should accomplish, but
do not provide practical guidance on how to actually do it in a project. This has been
done by Schmid [18]. He developed a product- and benefit-based product line scoping
approach called PuLSE-Eco 2.0, which defines the scope of a software product line
depending on the economical benefit of the products to be produced. The latest ver-
sion of the approach is described in [19], integrating 21 customization factors that can
be used to adapt the generic approach to a company’s specific needs. These works
were used as a basis for the Software Process Scoping approach and terminology;
however, product line scoping focuses on products only and does not consider process
or other context factors. Bayer et al. developed a product line based on scoping a
number of business processes [20]. Their product line reflects business processes, and
by determining the scope of the business processes to be implemented in software,
they determined the scope of the product line. However, no more information on how
scoping was done is disclosed.

Under the name of Quality Function Deployment [21], Cohen published a method
for clearly specifying and ranking customer needs and then evaluating each proposed
product or service capability systematically in terms of its impact on meeting those
needs. This corresponds to the Software Process Scoping concepts of product/project
mapping and process mapping, respectively, but is also strictly limited to products
and services.

There is currently only little research going on that tries to provide a similarly sys-
tematic approach for software processes. So far, adapting processes (also known as
“process tailoring”) is done either generally for an organization, resulting in a single
process standard, or individually for every project, resulting in a large number of
process variants. Most available tailoring instructions are very generic, e.g., in inter-
national standards such as ISO/IEC 12207:1995 [3] or the German V-Modell XT [2].
However, due to their general applicability, they rarely provide more than phrases like
“pick the activities and work products necessary for the purpose”, and thus provide
only little help in actually tailoring a process.

6 Conclusions and Outlook

In this paper, we presented an idea for systematically selecting and adapting software
processes, depending on the project and product structure of an organization. We
formulated four requirements for the approach and two requirements for supporting
process modeling mechanisms, presented an initial solution addressing these require-
ments, and presented an application of our idea in the space software engineering
domain.

Our experiences encourage us to continue on this path, and to expand the process
line from satellite software development both horizontally to other branches (launch
vehicle, ground segment) and vertically (JAXA-wide). The experience we collected
so far supports the requirements we have set up. However, since process scoping
research is yet in its infancy, a number of open questions remain. Until now, it is

 Scoping Software Process Models - Initial Concepts and Experience 171

unclear which decision models can help to determine which process elements should
be part of the process line, and which should not. A meaningful limitation of charac-
terization attribute values (e.g., for attributes such as “complexity” or “criticality”)
and their objective assessment is another open issue. Furthermore, thorough investiga-
tion is needed on the subjects of how to handle different levels of abstraction in proc-
esses and characterizations (especially when talking about variability on these levels
of abstraction, introduced, for example, by a vertically growing process line), how to
describe interdependencies among variable parts and characterization attributes, and
how to sensibly limit the number of characteristics and variation points.

Following up on what we have learned so far, our next steps will be the horizontal
expansion and the inclusion of more satellite projects and products in the base of our
process line, and the concurrent refinement of our approach.

Acknowledgements

We would like to thank Ms. Sonnhild Namingha from Fraunhofer IESE for reviewing
the first version of this article. We also thank the anonymous reviewers for their valu-
able comments on the first version of this article.

References

[1] Rombach, H.D.: Integrated Software Process and Product Lines. In: Li, M., Boehm, B.,
Osterweil, L.J. (eds.) LNCS, Springer, Heidelberg (2006)

[2] V-Modell XT, http://www.vmodellxt.de/
[3] International Organization for Standardization: ISO/IEC 12207:1995, Geneva, Switzer-

land (1995)
[4] Ocampo, A., Bella, F., Münch, J.: Software Process Commonality Analysis. Software

Process - Improvement and Practice 10(3), 273–285 (2005)
[5] Soto, M., Münch, J.: Focused Identification of Process Model Changes. In: Wang, Q.,

Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, Springer, Heidelberg (2007)
[6] Soto, M.: Delta-P: Model Comparison Using Semantic Web Standards. In: Proceedings of

the Workshop Vergleich und Versionierung von UML-Modellen (VVUM 2007), co-
located with the GI-Fachtagung Software Engineering 2007, March 27, 2007, Hamburg
(2007)

[7] Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Proc-
ess. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 160–174.
Springer, Heidelberg (2007)

[8] Ocampo, A., Münch, J.: The REMIS Approach for Rationale-Driven Process Model Evo-
lution. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 12–
24. Springer, Heidelberg (2007)

[9] Spearmint/EPG,
http://www.iese.fhg.de/fhg/iese/research/quality/pam/index.jsp

[10] Becker, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Processes,
Kaiserslautern, Germany (ISERN Report 97-10)

172 O. Armbrust et al.

[11] Bella, F., Münch, J., Ocampo, A.: Observation-based Development of Software Process
Baselines: An Experience Report. In: Proceedings of the Conference on Quality Engineer-
ing in Software Technology (CONQUEST), Nuremberg, Germany, September 22-24
(2004)

[12] Biffl, S., Halling, M.: Managing Software Inspection Knowledge for Decision Support of
Inspection Planning. In: Aurum, A., Jeffery, R., Wohlin, C., Handzic, M. (eds.). Springer,
Berlin (2003)

[13] Schweikhard, T.: Identification of inspection-variation-factors for a decision-support-tool.
Diploma Thesis, Fachbereich Informatik, Technische Universität Kaiserslautern (2006)

[14] Denger, C., Elberzhager, F.: A Comprehensive Framework for Customizing Quality As-
surance Techniques, Kaiserslautern (2006)

[15] Avison, D.E., Wood-Harper, A.T.: Information Systems Development Research: An Ex-
ploration of Ideas in Practice. The Computer Journal 34(2), 98–112 (1991)

[16] Fitzgerald, B., Russo, N.L., O’Kane, T.: Software Development Method Tailoring at Mo-
torola. Communications of the ACM 46(4), 65–70 (2003)

[17] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

[18] Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for Software
Product Lines. PhD Thesis. Fachbereich Informatik, Universität Kaiserslautern (2003)

[19] John, I., Knodel, J., Lehner, T., Muthig, D.: A Practical Guide to Product Line Scoping.
In: Proceedings of the 10th International Software Product Line Conference (SPLC 2006),
Baltimore, Maryland, USA, August 21-24 (2006)

[20] Bayer, J., Kose, M., Ocampo, A.: Improving the Development of e-Business Systems by
Introducing Process-Based Software Product Lines. In: Münch, J., Vierimaa, M. (eds.)
PROFES 2006. LNCS, vol. 4034, pp. 348–361. Springer, Heidelberg (2006)

[21] Cohen, L.: Quality Function Deployment: How to Make QFD Work for You. Addison-
Wesley Longman, Amsterdam (1995)

	Scoping Software Process Models - Initial Concepts and Experience from Defining Space Standards
	Introduction
	Requirements for Software Process Scoping
	Initial Solution
	Case Study
	Process Scoping in the Aerospace Domain
	Experiences

	Related Work
	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

