


Lecture Notes in Computer Science 5007
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Qing Wang
Dietmar Pfahl
David M. Raffo (Eds.)

Making Globally Distributed
Software Development
a Success Story

International Conference on Software Process, ICSP 2008
Leipzig, Germany, May 10-11, 2008
Proceedings

13



Volume Editors

Qing Wang
Chinese Academy of Sciences
Institute of Software
No. 4 South Fourth Street, Zhong Guan Cun
Beijing 100190, China
E-mail: wq@itechs.iscas.ac.cn

Dietmar Pfahl
Simula Research Laboratory
P.O. Box 134
1325 Lysaker, Norway
E-mail: dietmarp@simula.no

David M. Raffo
Portland State University
Maseeh College of Engineering and Computer Science
P.O. Box 751
Portland, OR 97207, USA
E-mail: raffod@pdx.edu

Library of Congress Control Number: 2008926108

CR Subject Classification (1998): D.2, K.6.3, K.6, K.4.3, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-79587-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79587-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12265138 06/3180 5 4 3 2 1 0



 

 

Preface 

This volume contains papers presented at the International Conference on Software 
Process (ICSP 2008) held in Leipzig, Germany, during May 10-11, 2008.  ICSP 2008 
was the second conference of the ICSP series. The theme of ICSP 2008 was “Making 
Globally Distributed Software Development a Success Story.” 

Software developers work in a dynamic context of frequently changing technologies 
and with limited resources. Globally distributed development teams are under ever-
increasing pressure to deliver their products more quickly and with higher levels of qual-
ity. At the same time, global competition is forcing software development organizations 
to cut costs by rationalizing processes, outsourcing part of or all development activities, 
reusing existing software in new or modified applications, and evolving existing systems 
to meet new needs, while still minimizing the risk of projects failing to deliver. To  
address these difficulties, new and modified processes are emerging, including agile 
methods and plan-based product line development. Open Source, COTS, and commu-
nity-developed software are becoming more and more popular. Outsourcing coupled 
with 24/7 development demands well-defined processes to support the coordination of 
organizationally—and geographically—separated teams. 

The accepted papers present completed research or advanced work-in-progress in 
all areas of software and systems development process including: agile software proc-
esses, CMMI, novel techniques for software process representation and analysis; 
process tools and metrics; and the simulation and modeling of software processes. 
Contributions reflecting real-world experience, or derived directly from industrial or 
open-source software development and evolution, were particularly welcome. 

In response to the Call for Papers, 106 submissions were received from 22 different 
countries and regions including: Australia, Argentina, Belgium, Brazil, Canada, 
China, Finland, France, Germany, India, Iran, Italy, Ireland, Japan, Korea, Mexico, 
Sweden, Spain, Thailand, Turkey, UK, and USA. Each paper was rigorously reviewed 
and held to very high quality standards, and finally 33 papers from 14 countries and 
regions were accepted as regular papers for presentations at the conference.  

The papers were clustered around topics and presented in five regular sessions or-
ganized in two parallel threads. Topics included Process Content, Process Tools and 
Metrics, Process Management, Process Representation, Analysis and Modeling, Ex-
perience Report, and Simulation Modeling. 

Highlights of the ICSP2008 program were three keynote speeches, delivered by 
Christian Schmidkonz (SAP, Germany), Kesav Nori (Tata Consultancy Services, 
India), and Colette Roland (University of PARIS-1 Panthéon Sorbonne, France).  
ICSP also had a panel on Global Software Development.  The panelist for this session 
were: Christian Schmidkonz (SAP, Germany), Kesav Nori (Tata Consultancy Ser-
vices, India), and Brian Fitzgerald (University of Limerick). 

A conference such as this can only succeed as a team effort. All of this work would 
not have been possible without the dedication and professional work of many col-
leagues. We wish to express our gratitude to all contributors for submitting papers. 



 Preface 

 

VI 

Their work formed the basis for the success of the conference. We would also like to 
thank the Program Committee members and reviewers because their work is the guar-
antee for the high quality of the workshop. Special thanks go to the keynote speakers 
for giving their excellent presentations at the conference. Finally, we would also like 
to thank the members of the Steering Committee, Barry Boehm, Mingshu Li, Leon 
Osterweil, and Wilhelm Schäfer, for their advice, encouragement, and support.  

We wish to express our thanks to the organizers for their hard work. The confer-
ence was sponsored by the International Software Process Association (ISPA) and the 
Institute of Software, the Chinese Academy of Sciences (ISCAS), and the ISCAS 
Laboratory for Internet Software Technologies (iTechs). We also wish to thank the 
30th International Conference on Software Engineering (ICSE 2008) for sponsoring 
this meeting as an ICSE Co-Located Event. Finally, we acknowledge the editorial 
support from Springer in the publication of these proceedings.  

For further information, please visit our website at http://www.icsp-conferences.org/ 
icsp2008. 

 
 

March 2008 David M. Raffo 
 Qing Wang 

 Dietmar Pfahl 
 



 

International Conference on Software Process 2008 

Leipzig, Germany 
May 10–11, 2008 

 
 

General Chair 

David M. Raffo, Portland State University, USA   

Steering Committee 

Barry Boehm, University of Southern California, USA 
Mingshu Li, Institute of Software, Chinese Academy of Sciences, China 
Leon J. Osterweil, University of Massachusetts, USA 
Wihelm Schäfer, University of Paderborn, Germany 

Program Co-chairs   

Dietmar Pfahl, Simula Research Laboratory, Norway 
Qing Wang, Institute of Software, Chinese Academy of Sciences, China  

Publicity Co-chairs   

Raymond Madachy, University of Southern California, USA  
Jürgen Münch, Fraunhofer Institute for Experimental Software Engineering, Germany 
Liming Zhu, National ICT Australia, Australia 

Program Committee 

Muhammad Ali Babar University of Limerick, Ireland 
Stefan Biffl Technische Universität Wien, Austria 
Thomas Birkhölzer University of Applied Science, Konstanz, Germany 
Keith Chan Hong Kong Polytechnic University, Hong Kong, 

China 
Sorana Cimpan University of Savoie at Annecy, France 
Jacky Estublier French National Research Center in Grenoble, France 
Anthony Finkelstein University College London, UK 
Dennis Goldenson Carnegie Mellon University, USA 
Volker Gruhn University of Leipzig, Germany 
Paul Grünbacher Johannes Kepler University Linz, Austria 
Dan Houston Honeywell Inc., USA 



 Organization VIII 

LiGuo Huang University of Southern California, USA 
Hajimu Iida Nara Institute of Science and Technology, Japan 
Katsuro Inoue Osaka University, Japan 
Ross Jeffery University of New South Wales, Australia 
Natalia Juristo Universidad Politécnica de Madrid, Spain 
Rick Kazman University of Hawaii, USA 
Jyrki Kontio Helsinki University of Technology, Finland 
Barbara Staudt Lerner Mt. Holyoke College, USA 
Jian Lv Nanjing University, China 
Ray Madachy University of Southern California, USA 
Frank Maurer University of Calgary, Canada 
Jürgen Münch Fraunhofer Institute for Experimental Software 

Engineering, Germany 
Flavio Oquendo University of South Brittany, France 
Dewayne E. Perry University of Texas at Austin, USA 
Dietmar Pfahl Simula Research Laboratory, Norway 
Dan Port University of Hawaii, USA 
Antony Powell YorkMetrics Ltd, UK 
David M. Raffo Portland State University, USA 
Juan F. Ramil The Open University, UK 
Andreas Rausch Technische Universität Kaiserslautern, Germany 
Daniel Rodriguez University of Alcalá , Spain 
Günther Ruhe University of Calgary, Canada 
Mercedes Ruiz University of Cádiz, Spain 
Ioana Rus University of Maryland, USA 
Kevin Ryan University of Limerick, Ireland 
Walt Scacchi University of California, Irvine, USA 
Stan Sutton IBM T. J. Watson Research Center, USA 
Guilherme H. Travassos Federal University of Rio de Janeiro/COPPE, Brazil 
Colin Tully Middlesex University, UK 
Qing Wang Institute of Software, Chinese Academy of Sciences, 

China 
Yasha Wang Peking University, China 
Yongji Wang Institute of Software, Chinese Academy of Sciences, 

China 
Brian Warboys University of Manchester, UK 
Paul Wernick University of Hertfordshire, UK 
Laurie Williams  North Carolina State University, USA 
Ye Yang Institute of Software, Chinese Academy of Sciences, 

China 
Yun Yang Swinburne University of Technology, Australia 



                                                     Organization  IX 

External Reviewers 

Silvia Acuña   Universidad Autónoma de Madrid, Spain 
Dante Carrizo Universidad Complutense de Madrid, Spain 
Enrique Fernández Instituto Tecnológico de Buenos Aires, Argentina 
Ramón García Instituto Tecnológico de Buenos Aires, Argentina 
Anna Grimán Universidad Simón Bolivar, Venezuela 
Lishan Hou Institute of Software, Chinese Academy of Sciences, 

China 
Jingzhou Li University of Calgary, Canada 
Juan Li Institute of Software, Chinese Academy of Sciences, 

China 
Fengdi Shu Institute of Software, Chinese Academy of Sciences, 

China 
Martín Solari ORT, Uruguay 
Dietmar Winkler Vienna University of Technology, Austria 
Junchao Xiao Institute of Software, Chinese Academy of Sciences, 

China 
Liming Zhu National ICT Australia, Australia 
 



Table of Contents

Invited Talk

Benefits of Global Software Development: The Known and Unknown . . . 1
Pär J. Ågerfalk, Brian Fitzgerald, Helena Holmström Olsson, and
Eoin Ó Conchúir

Method Engineering: Towards Methods as Services . . . . . . . . . . . . . . . . . . . 10
Colette Rolland

Process Management

Macro-processes Informing Micro-processes: The Case of Software
Project Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Paul L. Bannerman

Improving Software Risk Management Practices in a Medical Device
Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

John Burton, Fergal McCaffery, and Ita Richardson

Framework to Evaluate Software Process Improvement in Small
Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Pedro E. Colla and Jorge Marcelo Montagna

On Deriving Actions for Improving Cost Overrun by Applying
Association Rule Mining to Industrial Project Repository . . . . . . . . . . . . . 51

Junya Debari, Osamu Mizuno, Tohru Kikuno, Nahomi Kikuchi, and
Masayuki Hirayama

Software Multi-project Resource Scheduling: A Comparative
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Fei Dong, Mingshu Li, Yuzhu Zhao, Juan Li, and Ye Yang

Project Assets Ontology (PAO) to Support Gap Analysis for
Organization Process Improvement Based on CMMI v.1.2 . . . . . . . . . . . . . 76

Suwanit Rungratri and Sasiporn Usanavasin

Process Content

Towards Individualized Requirements Specification Evolution for
Networked Software Based on Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Zaiwen Feng, Keqing He, Yutao Ma, Jian Wang, and Ping Gong



XII Table of Contents

Requirement-Centric Traceability for Change Impact Analysis: A Case
Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Yin Li, Juan Li, Ye Yang, and Mingshu Li

Scaling Up Software Architecture Evaluation Processes . . . . . . . . . . . . . . . 112
Liming Zhu, Mark Staples, and Ross Jeffery

Process Tools and Metrics

Software Project Similarity Measurement Based on Fuzzy C-Means . . . . . 123
Mohammad Azzeh, Daniel Neagu, and Peter Cowling

An Empirically–Based Process to Improve the Practice of Requirement
Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Juan Li, Lishan Hou, Zhongsen Qin, Qing Wang, and Guisheng Chen

Capability Assessment of Individual Software Development Processes
Using Software Repositories and DEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Shen Zhang, Yongji Wang, Ye Yang, and Junchao Xiao

Process Representation, Analysis and Modeling

Scoping Software Process Models - Initial Concepts and Experience
from Defining Space Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen Münch,
Haruka Nakao, and Alexis Ocampo

Detection of Consistent Patterns from Process Enactment Data . . . . . . . . 173
Ming Huo, He Zhang, and Ross Jeffery

A Deviation Management System for Handling Software Process
Enactment Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Mohammed Kabbaj, Redouane Lbath, and Bernard Coulette

Assessing Quality Processes with ODC COQUALMO . . . . . . . . . . . . . . . . . 198
Raymond Madachy and Barry Boehm

Accurate Estimates without Calibration? . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Tim Menzies, Oussama Elrawas, Barry Boehm, Raymond Madachy,
Jairus Hihn, Daniel Baker, and Karen Lum

Investigating Factors Affecting the Usability of Software Process
Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Mohd Naz’ri Mahrin, David Carrington, and Paul Strooper

Degree of Agility in Pre-Implementation Process Phases . . . . . . . . . . . . . . 234
Jaana Nyfjord and Mira Kajko-Mattsson



Table of Contents XIII

Support IT Service Management with Process Modeling and
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Beijun Shen

The Secret Life of a Process Description: A Look into the Evolution of
a Large Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Mart́ın Soto, Alexis Ocampo, and Jürgen Münch

Simulation Modeling

Simulating Worst Case Scenarios and Analyzing Their Combined Effect
in Operational Release Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Ahmed Al-Emran, Puneet Kapur, Dietmar Pfahl, and Guenther Ruhe

Using Process Simulation to Assess the Test Design Effort Reduction
of a Model-Based Testing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Eduardo Aranha and Paulo Borba

GENSIM 2.0: A Customizable Process Simulation Model for Software
Process Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Keyvan Khosrovian, Dietmar Pfahl, and Vahid Garousi

RVSim: A Simulation Approach to Predict the Impact of Requirements
Volatility on Software Project Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Dapeng Liu, Qing Wang, Junchao Xiao, Juan Li, and Huaizhang Li

Identifying Key Success Factors for Globally Distributed Software
Development Project Using Simulation: A Case Study . . . . . . . . . . . . . . . . 320

Siri-on Setamanit and David Raffo

Hybrid Modeling of Test-and-Fix Processes in Incremental
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

He Zhang, Ross Jeffery, and Liming Zhu

Reflections on 10 Years of Software Process Simulation Modeling: A
Systematic Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

He Zhang, Barbara Kitchenham, and Dietmar Pfahl

Experience Report

Integrating Joint Reviews with Automotive SPICE Assessments Results 357
Fabrizio Fabbrini, Mario Fusani, Giuseppe Lami, and Edoardo Sivera

Quantitatively Managing Defects for Iterative Projects: An Industrial
Experience Report in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Lang Gou, Qing Wang, Jun Yuan, Ye Yang, Mingshu Li, and
Nan Jiang



XIV Table of Contents

An Investigation of Software Development Productivity in China . . . . . . . 381
Mei He, Mingshu Li, Qing Wang, Ye Yang, and Kai Ye

Optimized Software Process for Fault Handling in Global Software
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Dirk Macke and Tihana Galinac

Measuring and Comparing the Adoption of Software Process Practices
in the Software Product Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Mikko Rönkkö, Antero Järvi, and Markus M. Mäkelä

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 1 – 9, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Benefits of Global Software Development: 
The Known and Unknown 

Pär J. Ågerfalk1,2, Brian Fitzgerald1, Helena Holmström Olsson1,3,  
and Eoin Ó Conchúir1  

1 Lero, The Irish Software Engineering Research Centre, University of Limerick, Ireland 
2 Uppsala University, Sweden 

3 IT University, Gothenburg, Sweden 
par.agerfalk@dis.uu.se, bf@ul.ie, helena.holmstrom@lero.ie, 

eoin.oconchuir@lero.ie  

Abstract. Organizations are increasingly moving to the global software devel-
opment (GSD) model because of significant benefits that can accrue. However, 
GSD is fraught with difficulties arising from geographical, temporal and socio-
cultural distances. The emphasis in the literature to date has typically been on 
how to overcome these significant challenges associated with GSD. While a 
number of GSD benefits have been identified in the literature, there are also a 
number of less obvious, what we term ‘unknown,’ potential benefits that can 
accrue from GSD. Here we synthesize and integrate an overall set of potential 
GSD benefits and categorize them according to the organizational, team and 
process level to which they are most applicable. The ‘unknown’ includes or-
ganization benefits, such as improved resource allocation, team benefits, such 
as reduced coordination cost and improved team autonomy, and process bene-
fits, such as improved documentation and clearly defined processes. 

Keywords: global software development, benefits, challenges, offshoring. 

1   Introduction 

Global software development (GSD) is a phenomenon of increasing importance, 
given the perennial pressures of the need to remain profitable and competitive in the 
global landscape. Companies can now leverage the emergence of large multi-skilled 
labor forces in lower-cost economies thanks to high-speed Internet-based communica-
tion links, through which the product (software code) can be quickly transferred be-
tween development sites. India and China, in particular, offer huge multi-skilled labor 
forces at greatly reduced cost compared with employment markets in the US and 
western Europe. Other countries are also making an impact, such as Brazil, Eastern 
Europe and Russia, Malaysia and Vietnam. 

GSD involves the three major types of distance: geographical, temporal, and socio-
cultural [1]. Single teams can be separated by these distances, essentially becoming 
what is often termed ‘virtual teams’. In other circumstances, a single team may  
have all of its resources co-located, but with heavy reliance on other teams at remote 



2 P.J. Ågerfalk et al. 

locations. Vast geographical distances imply the difficulty of re-locating to another of 
the company’s sites, and not being able to stroll over to a colleague’s desk to chat 
about an implementation issue. Temporal distance across multiple time zones reduces 
the number of overlapping working hours, forcing a heavier reliance on asynchronous 
communication technologies. Socio-cultural distance arises from the different national 
and organizational backgrounds of the people involved and exacerbates communica-
tion breakdown. 

Major benefits have been attributed with GSD despite the challenges arising from 
overcoming these distances. Apart from being a potential side-effect of mergers and 
acquisitions, GSD is purported as enabling major benefits such as lower development 
costs and access to huge multi-skilled labor forces, as already mentioned. However as 
researchers and practitioners have focused on overcoming GSD challenges, an ex-
haustive inventory of potential GSD benefits has not been compiled. While some 
benefits have been widely acknowledged in previous research, other potential benefits 
are evident but, nonetheless, overlooked to a large extent. In this paper, we label these 
two categories of benefits ‘known’ and ‘unknown’ – and explore what each benefit 
might offer companies aiming to leverage GSD. 

1.1   Challenges of GSD 

The geographical, temporal, and socio-cultural distances affect the three major proc-
esses of software development: communication, coordination, and control [1]. In fact, 
communication and control problems are recognized as being the most troublesome 
and pervasive in software development [2]. 

A major challenge for GSD teams is the lack of informal communication which 
has been found to be an essential process in traditionally co-located development  
[3, 4]. Written documentation is often inadequate when resolving misunderstandings, 
such as misunderstandings about requirements or changes in requirement specifica-
tions. Geographical and temporal distances make it more difficult to initiate contact 
with colleagues at other locations. While being indispensible for enabling face-to-face 
contact, the cost of travel can be prohibitive. A lack of overlapping working hours can 
lead to delays in feedback, rendering the development process less effective. Even a 
time zone difference of one hour can have a major effect when combined with differ-
ent typical working hours in different countries. 

Socio-cultural distance can result in a fundamental difference in opinion about the 
nature of the software development process [5]. It can lead to misunderstandings and 
non-native speakers struggling to follow technical discussions, especially over the 
phone. A general lack of familiarity with remotely located colleagues can result in a 
lack of ‘teamness’ and a reduced sense of trust. 

Moreover, the distances involved increase the complexity involved in coordinating 
the software development process. Software development in itself is a complex task 
with substantial non-routine work. The GSD environment calls for increased under-
standing for this complexity and the ability to focus on coordination of resources, 
such as distributed teams and tasks. Clearly, achieving a satisfactory result can be a 
challenge. 



 Benefits of Global Software Development: The Known and Unknown 3 

1.2   Assumptions Made About GSD 

Despite well-known challenges, GSD also presents practitioners with various benefits. 
As pointed out above, some of these are well known, while some are not as obvious. 
Interestingly, the ‘known’ benefits, which are generally considered to be the driving 
forces behind GSD, all seem to apply at the organizational level. That is, they con-
tribute to top-level organizational goals, such as cost savings and increased efficiency. 
Admittedly, some of the ‘unknown’ benefits apply at the organizational level, but in 
addition we see benefits that more directly affect teams and basic software develop-
ment processes and tasks. We would argue that the ‘unknown’ benefits should also be 
taken into consideration and that there is a need to highlight the full spectrum of GSD 
benefits. 

Currently there is a tendency to ‘localize’ GSD by attempting to reduce the geo-
graphical, temporal and socio-cultural distances involved. This approach assumes that 
the benefits of GSD do not fully justify truly global software development. Contrary 
to this, we have found teams shifting their working hours to increase the temporal 
overlap with remote colleagues, thereby aiming towards a ‘virtual 8-hour day’ [6]. 

However, the decision of whether or not to globalize software development activi-
ties – or indeed the inclination to either ‘localize’ or fully leverage GSD – should be 
informed by the potential benefits it offers. We argue that this decision can be better 
informed if both ‘known’ and ‘unknown’ benefits are taken into consideration. In 
what follows, we outline both ‘known’ and ‘unknown’ benefits. In the end, we pro-
vide a categorization of all benefits, using the categories (1) organizational, (2) team 
and (3) process/task.  

2   The ‘Known’ Benefits of GSD 

In this section we outline well-known benefits of GSD. They all seem to apply at 
organizational level and have been previously acknowledged in research. 

2.1   Cost Savings 

Perhaps the original and most sought-after benefit of GSD has been that of reduced 
cost of development [7]. The basis for this benefit is that companies are globalizing 
their software development activities to leverage cheaper employees located in lower-
cost economies. This has been made possible by the deployment of cross-continental 
high-speed communication links enabling the instantaneous transfer of the basic 
product at hand: software. 

The difference in wages across regions can be significant, with a US software en-
gineer’s salary being multiple times greater than that of a person with equivalent skills 
in (at least parts) of Asia or South America. In 2005, the annual base pay of a soft-
ware engineer located in India was $10,300 [8]. However, this seems to be rising and 
there has been hyper-growth in local I.T. employment markets such as in Bangalore. 
It is our experience that companies are now looking at alternative locations which 
offer more acceptable attrition rates with the continued promise of cheaper labor. 



4 P.J. Ågerfalk et al. 

2.2   Access to Large Multi-skilled Workforces 

GSD provides the unprecedented possibility to leverage large pools of skilled labor by 
coordinating across distance [9, 10, 11, 12]. Companies have the opportunity to ex-
pand their software development activities to include the contributions of thousands 
of skilled workers, wherever they may be located, to form virtual global corporations 
[13, 11, 14].  

2.3   Reduced Time to Market 

A controversial benefit of GSD has been that of the ‘follow-the-sun’ approach, de-
scribed in detail by Carmel [4]. Time zone effectiveness is the degree to which an 
organization manages resources in multiple time zones, maximizing productivity by 
increasing the number of hours during a 24-hour day that software is being developed 
by its teams. When time zone effectiveness is maximized to span 24 hours of the day, 
this is referred to as the ‘follow-the-sun’ development model. This is achieved by 
handing off work from one team at the end of their day to another team located in 
another time zone. The approach can aid organizations which are under severe pres-
sure to improve time-to-market [11].  

2.4   Proximity to Market and Customer 

By establishing subsidiaries in countries where the company’s customers are located, 
GSD allows it to develop software close to their customers and to increase knowledge 
of the local market [11]. Creating new jobs can create good will with local customers, 
possibly resulting in more contracts [15]. Indeed, it may be a business necessity to 
locate closer to customers in order to expand to other markets. For example, a com-
pany that develops software for embedded systems may focus on large manufacturing 
companies based in China, or a software automotive company may locate part of the 
development in Germany. Development activities may even be located on the same 
campus as the organization’s large customer. Companies may also look to establish-
ing strategic partnerships to gain access to new markets [16]. 

3   The ‘Unknown’ Benefits of GSD 

Above, we have highlighted the four ‘known’ benefits which have been cited as driv-
ing forces towards the globalization of software development activities. However, 
there have been individual reports of additional benefits that may be realized through 
GSD. Up until now, these benefits have been mostly overlooked. Indeed, and as the 
label reflects, the benefits covered below are not as obvious as the ‘known’ benefits 
mentioned above.  While the benefits which are well-known tend to easily affect 
company policy, we believe that additional and sometimes ‘hidden’ benefits may 
offer great potential and indeed contribute in strategic company decisions. 

While some of the ‘unknown’ benefits we identify are applicable at organization 
level (as is the case with ‘known’ benefits), they also seem to affect coordination and 
collaboration within and between GSD software teams as well as the basic software 
engineering tasks at hand. For the purpose of this paper, we therefore use the categories 



 Benefits of Global Software Development: The Known and Unknown 5 

organization, team and process/task when discussing the identified benefits. By focusing 
on leveraging the full range of benefits, we argue that companies may reap more re-
wards from their GSD activities, and that GSD may not need to be seen as only a chal-
lenge for software development companies.  

3.1   Organizational Benefits 

Two of the unknown benefits apply primarily at the organizational level. We refer to 
these as ‘innovation and shared best practice’ and ‘improved resource allocation’. 

3.1.1   Innovation and Shared Best Practices 
The global business environment demands and expects innovative, high-quality soft-
ware that meets its needs [17]. Organizations can take advantage of increased innova-
tion and shared best practice that arises from the collaboration of team members who 
come from different national and organizational backgrounds [10, 14]. 

In large complex organizations, decentralized, independent individuals interact in 
self-organizing ways to create innovative and emergent results [17]. Such organiza-
tions base their success on innovation and their innovation capabilities come from 
talent – from their most brilliant, intelligent and creative engineers. Companies that 
expand into other countries in order to tap into talent have been termed “knowledge 
seekers” [18]. Such organizations tend to act somewhat differently compared to or-
ganizations that offshore purely for cost reasons [14] and we can see an acknowl-
edgement of this benefit through the action of such companies.  

3.1.2   Improved Resource Allocation 
As an extension to the benefit of access to large multi-skilled labor pools, the organi-
zation can benefit from the influx of new (lower-cost) labor in other countries. It may 
be beneficial for the organization to reassign the newly-redundant higher-cost re-
sources to other, often more strategic, activities while also avoiding the employee 
turmoil and backlash associated with workforce reductions [19]. Changes in alloca-
tion can adhere to the challenge of replacing isolated expertise and instead create 
skill-broadening tasks and effective teamwork [10]. 

3.2   Team Benefits 

At the team level, we find three unknown benefits, namely ‘improved task modulari-
zation’, ‘reduced coordination cost’, and ‘increased team autonomy’. 

3.2.1   Improved Task Modularization 
According to Conway’s Law, the structure of the system mirrors the structure of the 
organization that designed it [20]. In fact, it is the product architecture that should 
determine the team structure, rather than the other way around [4]. In earlier work we 
have seen the importance of a separation of concerns when decomposing work into 
modules [21], and it appears that these principles could be extremely relevant for 
managing coordination complexity. 

The nature of GSD leads teams to splitting their work across feature content into 
well-defined independent modules [10, 22, 23], without “stepping on each other’s 



6 P.J. Ågerfalk et al. 

toes” [4]. This allows decisions to be made about each component in isolation [20]. 
Partitioning work tasks horizontally results in each site having responsibility for the 
whole lifecycle of particular functions/modules, it decreases interdependencies and 
hence, coordination costs [24]. For example, source code branching enables software 
development teams to work on source code in parallel, and merging the sections once 
they have been developed [25]. 

3.2.2   Reduced Coordination Cost 
While we acknowledge that temporal distance can prove to be a challenge for GSD 
teams, it can also be seen as beneficial in terms of coordination: coordination costs are 
reduced when team members are not working at the same time [26]. The producer of 
a unit of work can complete the work during the off-hours of the person who re-
quested that work. In essence, coordination costs are reduced since no direct coordi-
nation takes place when two people are not working at the same time.  

3.2.3   Increased Team Autonomy 
Gumm [27] found that organizational and geographical distribution of ‘software de-
velopment units’ imply a certain degree of autonomy for each unit. The study re-
ported that this autonomy allowed for the necessity to maintain the different working 
cultures of each team. This was viewed as necessary to maintain the quality of the 
work of a single team even if this in turn required careful synchronization of the sin-
gle processes. 

3.3   Process/Task Benefits 

In addition to the organizational and team oriented unknown benefits outlined above, 
there are three further unknown benefits that apply primarily at the process/task level. 
We refer to these as ‘formal record of communication’, ‘improved documentation’, 
and ‘clearly defined processes’. 

3.3.1   Formal Record of Communication 
Since asynchronous communication relies on technologies such as e-mail and fax  
[28, 29], a written communication history is usually left [7, 30]. This provides for 
increased traceability and accountability [31], and allow for input from diverse stake-
holders, irrespective of geographical location [30]. 

3.3.2   Improved Documentation 
DeLone et al. [32] state that distributed teams have an increased focus on documenta-
tion in order to aid their communication. Gumm [27] reported this as an advantage, in 
that documentation is better supported within distributed project settings. Information 
is documented and distributed electronically rather than discussed face-to-face, which 
allows for the passing-on of project specific knowledge in distributed settings. 

3.3.3   Clearly Defined Processes 
Independent of a project’s process maturity, the definition and structuring of proc-
esses is a challenge [27]. While distributed project settings seem to challenge process 
maturity, they also seem to support it. Process definitions are compiled more carefully 



 Benefits of Global Software Development: The Known and Unknown 7 

in distributed settings. It was noted that if team members were co-located, much of 
the processes would probably not be formalized. 

4   Conclusions 

As recognized in this paper, some benefits of GSD have been widely cited and can be 
considered ‘known’ to both researchers and practitioners. However, additional bene-
fits are evident and they have been, to some extent, overlooked. In this paper, we have 
identified these ‘unknown’ benefits in order to provide a synthesis of GSD benefits. 
This will hopefully lead to a more informed debate on the topic as well as more in-
formed decisions on whether or not to pursue GSD. As can be seen, a majority of the 
‘unknown’ benefits that we have identified apply at team and process/task level. This 
is probably part of the reason for them not being widely acknowledged as driving 
factors towards GSD. See Table 1 for a summary of our synthesis of the benefits 
offered by GSD.  

We have also pointed out the on-going struggle between reducing the distances of 
GSD and making the most of the dynamic context of the global situation. For exam-
ple, we see attempts to reduce coordination costs by effective modularizing work, 
while at the same time wishing to leverage GSD by sharing innovation and best prac-
tice between teams. The debate on this matter up until now has not been informed by 
a full synthesis of the benefits. Hopefully, the synthesis of benefits of GSD should 
lead to an even more informed debate on this matter. 

Cost-benefit tradeoffs in GSD are still not fully understood [26]. The GSD com-
munity has yet to come to a consensus on which benefits are realistic, and whether or 
not practitioners should aim for the realization of each of them. For example, it is not 
yet clear to what extent cost savings can and are being realized. Also, follow-the-sun 
has been dismissed by many, but is still being promoted (see e.g. [33]). Most proba-
bly, certain benefits may only be realistic in specific contexts while some benefits 
may be mutually exclusive. Below, we present both ‘known’ and ‘unknown’ benefits 
of GSD, all structured according to the categories of (1) organizational, (2) teams, and 
(3) process/task.  

Table 1. The benefits of global software development 

Organizational benefits Team benefits Process/Task benefits 
• Cost savings 
• Access to large multi-

skilled workforces 
• Reduced time to 

market 
• Proximity to market 

and customer 
• Innovation and shared 

best practice 
• Resource allocation 

• Improved task  
modularization 

• Reduced coordination 
cost 

• Increased team  
autonomy 

• Formal record of 
communication 

• Improved  
documentation 

• Clearly defined  
processes 



8 P.J. Ågerfalk et al. 

References 

1. Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., Conchúir, E.Ó.: A 
framework for considering opportunities and threats in distributed software development. 
In: International Workshop on Distributed Software Development, Paris, France, Austrian 
Computer Society (2005) 

2. Herbsleb, J.D., Klein, H., Olson, G.M., Brunner, H., Olson, J.S., Harding, J.: Object-
Oriented Analysis and Design in Software Project Teams. Human-Computer Interac-
tion 10, 249 (1995) 

3. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large 
systems. Communications of the ACM 31(11), 1268–1287 (1988) 

4. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones, 1st 
edn. Prentice-Hall, Upper Saddle River (1999) 

5. Nicholson, B., Sahay, S.: Some political and cultural issues in the globalisation of software 
development: case experience from Britain and India. Information and Organization 11(1), 
25–43 (2001) 

6. Holmström Olsson, H., Conchúir, E.Ó., Ågerfalk, P.J., Fitzgerald, B.: Two-Stage Offshor-
ing: An Investigation of the Irish Bridge. MIS Quarterly 32(2) (2008) 

7. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software 
Development. IEEE Software 18(2), 22–29 (2001) 

8. Mercer: China and India: Comparative HR Advantages. September 9 (2005) (accessed 
February 27, 2006), http://www.mercer.com/china-indiareport 

9. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The Geography of Coordination: Dealing with 
Distance in R&D Work. In: International Conference on Supporting Group Work 1999, 
pp. 306–315 (1999) 

10. Ebert, C., De Neve, P.: Surviving Global Software Development. IEEE Software 18(2), 
62–69 (2001) 

11. Herbsleb, J.D., Moitra, D.: Guest Editors’ Introduction: Global Software Development. 
IEEE Software 18(2), 16–20 (2001) 

12. Damian, D., Lanubile, F., Oppenheimer, H.L.: Addressing the Challenges of Software In-
dustry Globalization: The Workshop on Global Software Development. In: 25th Interna-
tional Conference on Software Engineering, Portland, Oregon, IEEE Computer Society, 
Los Alamitos (2003) 

13. Suzuki, J., Yamamoto, Y.: Leveraging distributed software development. Computer 32(9), 
59–65 (1999) 

14. Carmel, E., Tija, P.: Offshoring Information Technology: Sourcing and Outsourcing to a 
Global Workforce. Cambridge University Press, Cambridge, United Kingdom (2005) 

15. Ebert, C., Parro, C.H., Suttels, R., Kolarczyk, H.: Improving validation activities in a 
global software development. In: Proceedings of the 23rd International Conference on 
Software Engineering, Toronto, Canada (2001) 

16. Karolak, D.: Global software development: managing virtual teams and environments. 
IEEE Computer Society Press, Los Alamitos, California (1998) 

17. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation. 
Computer 34(9), 120–127 (2001) 

18. Chung, W., Alcacer, J.: Knowledge sources and foreign investment location in the US. In: 
Conference of the Academy of International Business, June 2003, Monterrey, California 
(2003) 



 Benefits of Global Software Development: The Known and Unknown 9 

19. Weakland, T.: 2005 Global IT Outsourcing Study. DiamondCluster International, Inc. (2005) 
(accessed July 5, 2006), http://diamondcluster.com/Ideas/Viewpoint/ 
PDF/DiamondCluster2005OutsourcingStudy.pdf 

20. Herbsleb, J.D., Grinter, R.E.: Splitting the Organization and Integrating the Code: Con-
way’s Law Revisited. In: 21st International Conference on Software Engineering, IEEE 
Computer Society Press, Los Angeles, California, United States (1999) 

21. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM 15(12), 1053–1058 (1972) 

22. Sahay, S.: Global software alliances: the challenge of ’standardization’. Scandinavian 
Journal of Information Systems 15, 3–21 (2003) 

23. Bass, M., Paulish, D.: Global Software Development Process Research at Siemens. In: In-
ternational Workshop on Global Software Development, May 24, 2004, Edinburgh, Scot-
land (2004) 

24. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global 
Software Development. IEEE Software 18(2), 70–77 (2001) 

25. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global Software Development at Siemens: Experi-
ence from Nine Projects. In: 27th International Conference on Software Engineering, St. 
Louis, Missouri, USA, ACM Press, New York (2005) 

26. Espinosa, J.A., Carmel, E.: The Effect of Time Separation on Coordination Costs in 
Global Software Teams: A Dyad Model. In: 37th Hawaiian International Conference on 
System Sciences. Big Island, Hawaii, IEEE, Los Alamitos (2004) 

27. Gumm, D.: Distribution Dimensions in Software Development Projects: A Taxonomy. 
IEEE Software 23(5), 45–51 (2006) 

28. Kiel, L.: Experiences in Distributed Development: A Case Study. In: ICSE International 
Workshop on Global Software Development, Portland, Oregon, USA (2003) 

29. Boland, D., Fitzgerald, B.: Transitioning from a Co-Located to a Globally-Distributed 
Software Development Team: A Case Study and Analog Devices Inc. In: 3rd International 
Workshop on Global Software Development, May 24, 2004, Edinburgh, Scotland (2004) 

30. Damian, D., Zowghi, D.: The impact of stakeholders geographical distribution on manag-
ing requirements in a multi-site organization. In: IEEE Joint International Conference on 
Requirements Engineering, IEEE Computer Society Press, Los Alamitos (2002) 

31. Ågerfalk, P.J.: Investigating actability dimensions: a language/action perspective on crite-
ria for information systems evaluation. Interacting with Computers 16(5), 957–988 (2004) 

32. Delone, W., Espinosa, J.A., Lee, G., Carmel, E.: Bridging Global Boundaries for IS Pro-
ject Success. In: 38th Annual Hawaii International Conference on System Sciences 
(HICSS 2005) - Track 1, vol. 01, IEEE Computer Society, Los Alamitos (2005) 

33. Carmel, E.: Keynote speech. In: International Conference on Global Software Engineering 
(ICGSE), Munich, Germany, August 27-30 (2007) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 10 – 11, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Method Engineering: Towards Methods as Services 

Colette Rolland 

Université Paris1 Panthéon Sorbonne, CRI,  
90 Rue de Tolbiac, 75013 Paris, France 

rolland@univ-paris1.fr 

Abstract. In the 90’s it was becoming apparent that a universal method that 
could be applied to ‘any’ information system development (ISD) project is a 
mirage. Project specificity, differing application engineer skills and experience 
lead to deviations from the prescriptions made by given methods. This was re-
vealed by several survey based studies (e.g. [6], [1], [7], [4]). For example, a 
survey of method use in over 100 organizations’ [4] shows that more than 2/3 
of the companies have developed or adapted their methods in-house. Also 89% 
of respondents believed that methods should be adapted on a project to project 
basis. These observations raised the need for techniques to rapidly build meth-
ods adapted to engineer preferences and project situations. The area of Method 
Engineering (ME) attempts to provide these techniques.  

Method engineering represents the effort to improve the usefulness of sys-
tems development methods by creating an adaptation framework whereby 
methods are created to match specific organisational situations. There are at 
least two objectives that can be associated to this adaptation. The first objective 
is the production of contingency methods, that is, situation-specific methods for 
certain types of organisational settings. This objective represents method engi-
neering as the creation of a multiple choice setting [3]. The second objective is 
one in which method engineering is used to produce method “on-the-fly”. Situ-
ational method engineering [5] is the construction of methods which are tuned 
to specific situations of development projects. Each system development starts 
then, with a method definition phase where the development method is con-
structed on the spot.  

Rapid method construction is predicated on the reuse of existing methods. 
Thus, methods are modularised into components that are stored in a repository. 
ME used the notion of a meta-model for developing method components that 
could be purely product or process components, or integrated product and proc-
ess components. These components are kept in a method repository from where 
they can be retrieved. The retrieved components can be adapted and ‘put to-
gether’ to form a coherent whole method through an assembly process. This 
composition aims to build methods that address project concerns and fit with 
project specificity.  

From the aforementioned, it can be understood that the three key issues of 
method engineering are, (a) defining method components, (b) finding and re-
trieving components and (c) assembling components. 

The talk will survey the results achieved so far along these three issues.  
It can be seen that ME provides engineering capability but, we believe, that 

it needs to be augmented with good usage properties. Specifically it is limited 
as follows: 



 Method Engineering: Towards Methods as Services 11 

Despite a common acceptance of a modular vision of methods, every 
method engineering approach has developed its own notion of a method com-
ponent and its own proprietary repository. Method repository availability is 
therefore, restricted.  

There is no standard component interface and this inhibits component  
retrieval. 

Locating the needed component may require searching several repositories 
rather than having them in one centrally available place. 

As a consequence, ME approaches remain locally used by their providers 
without been largely adopted by other organizations even if a standardization 
effort has been made in [2]. Furthermore, it is nowadays acknowledged that 
contingency factors change continuously during the project life cycle imposing 
a”continuous change management”. This last feature raises the problem of dy-
namic adaptation of methods which has not been considered by current ME  
approaches. 

In order to overcome these problems, the talk will develop the position of 
Method as a Service (MaaS).   

We propose to adopt a service-based paradigm and by analogy to SaaS 
(Software as a Service) to consider a method as a service (MaaS). By adopting 
the SOA for ME, we aim to develop a method engineering approach driven by 
the needs of method clients whereas implementation details of method services 
will remain under the control of method providers.  

Our belief if that the adoption of service technologies for ME will increase 
the accessibility of method services and will facilitate their dynamic composi-
tion. Last (but not least), it will provide a platform permitting an easy execution 
of method services compositions that is missing today. 

The talk will demonstrate the feasibility of the MaaS concept and will out-
line its further development. 

References 

1. Aaen, et al.: A tale of two countries: CASE experience and expectations. The Impact of 
Computer Supported Technology on Information Systems Development, pp. 61–93. North 
Holland Pub., Amsterdam (1992) 

2. International Standards Organization / International Electrotechnical Commission: Meta-
model for Development Methodologies. Software Engineering, ISO/IEC 24744 (2007)  

3. Karlsson, F., Agerfalk, P.J.: Method-user centred method configuration. In: Ralyte, J., Ager-
falk, P.J., Kraiem, N. (eds.) Proceedings of SPRE 2005, Paris, France (2005) 

4. Russo, et al.: The use and adaptation of system development methodologies. In: Proceedings 
of the International Resources Management. Association Conference, Atlanta (1995) 

5. Welke, R.J., Kumar, K.: Method Engineering: a proposal for situation-specific methodology 
construction. In: Cotterman, Senn (eds.) Systems Analysis and Design: A Research Agenda, 
pp. 257–268. Wiley, Chichester (1992) 

6. Wijers, G.M., van Dort, H.E.: Experiences with the use of CASE tools in the Netherlands. 
Advanced Information Systems Engineering, 5–20 (1990) 

7. Yourdon, E.: The decline and fall of the American programmer. Prentice Hall, Englewood 
Cliffs (1992) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 12 – 23, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Macro-processes Informing Micro-processes: The Case of 
Software Project Performance 

Paul L. Bannerman 

NICTA, Australian Technology Park, Sydney, NSW, Australia 
Paul.Bannerman@nicta.com.au 

Abstract. This paper explores the operational context of software processes and 
how it can inform the micro-process level environment. It examines the case of 
software project performance, describing a novel explanation. Drawing on the 
management literature, project performance is modeled as the contested out-
come of learning as a driver of success and certain barrier conditions as drivers 
of failure, through their effects on organizational capabilities. A case study il-
lustrates application of the theory. Implications of this macro-process case for 
micro level software process improvement are discussed. 

Keywords: software process, macro-process, capabilities, project performance. 

1   Introduction 

There is growing interest and recognition in the software community of the need to 
understand the broader context of software processes [23, 33]. For example, the most 
appropriate software processes are often dependent upon the organizational context. 
Furthermore, since most software development is done in projects, factors that affect 
project performance can influence the perceived success of the software artifact pro-
duced. The interaction between the macro and micro environment is bi-directional 
since organizations are dependent on the use of good software processes to produce 
high quality software. Therefore, they are co-dependent. 

As defined in [33], the macro-process environment is concerned with high level 
behaviors while the micro-process environment deals with the internal workings of 
processes. Osterweil proposes that software process research has a role in informing 
macro-process behaviors [33]. This paper takes the complementary view that the 
macro-process environment may also inform the micro-process environment of soft-
ware processes. It does this by examining the case of a novel explanation of the ten-
dency of software projects to perform poorly. It illustrates the explanation with a 
practical example. Implications are drawn from the case for finer-grained processes. 

A distinctive feature of the case is that it draws from the management literature to 
view processes in the higher level construct of organizational capabilities, which are a 
composite of tangible and intangible organizational knowledge, processes, skills and 
other assets that are developed through ‘learning by doing’. 

Projects are an important vehicle in developing software and delivering change to 
organizations. As such, they are critical enablers or inhibitors of business growth and 



 Macro-processes Informing Micro-processes 13 

development, depending on the success of the project. A key sticking point, however, 
is that software projects have a highly variable performance record. 

According to Charette [8], software projects have “a long, dismal history” of going 
awry. In a “Software Hall of Shame”, he lists examples of over 30 major failures or 
losses that occurred in little more than a decade. He argues that billions of dollars are 
lost each year on failed or under-performing software projects. According to Charette, 
such failures can jeopardize organizations, imperil national security, and stunt eco-
nomic growth and quality of life. Indeed, some reports suggest that software projects 
are more likely to perform poorly or fail than succeed [24], while others indicate that 
this problem has existed for decades [7, 51]. 

Extant explanations of the problem focus on factor- and process-based research to 
identify the drivers of project success. Implicitly, the research assumes that more of a 
desirable factor or process, or less of an undesirable ‘risk’ factor or process, improves 
the likelihood of success. Drawing on management theory (specifically, the resource-
based view of the firm and organizational learning theory), this paper extends these 
views with an alternative theoretical explanation of the problem. It presents a capa-
bilities-based view of software project performance that explains the data in a way the 
extant approaches have not. This broader conceptualization of processes has implica-
tions for the development of thinking at the software process level. 

The paper is structured as follows. The following sections review the dominant 
current explanations of project performance and outline an alternative framing of the 
problem. Contributing theory to the proposed explanation from the management lit-
erature is then introduced, before the extended model is described. Application of the 
theoretical model is then illustrated with a case study of an Australian DMV. Finally, 
implications of the case for the micro level software process environment are drawn 
and conclusions reached on the contribution. 

2   Current Explanations 

Extant explanations of IT project performance are dominated by factor and process 
prescriptions in conjunction with assumptions about accumulating improvements 
through learning. 

Factor research focuses on identifying antecedent variables (factors) for which a 
relationship can be hypothesized with a performance outcome. Well-known examples 
include a lack of top management commitment and/or user involvement, poorly de-
fined requirements, gold plating and an absence of project management experience. 
The underlying logic of factor research is that a desirable factor is associated with a 
positive performance outcome while an undesirable factor is associated with a nega-
tive outcome. The limitations of this approach are that it is difficult to establish a 
definitive set of factors as they tend to vary with project type, stage of the project life 
cycle, organizational context, and cultural context [36, 45]. Also, by focusing on in-
puts and outputs, it ignores intervening processes. 

Process research in information systems examines interactions between stake-
holders and events to find more complex causal relationships between factors and 
project outcomes (e.g., [43]). However, it reports limited convergence and empirical 
support [44]. In software engineering, process research is concerned with improving 



14 P.L. Bannerman 

product quality through software processes [16]. Despite many benefits, Jeffery has 
argued that the performance improvement effect of software process improvement in 
practice is often smaller than expected, in isolation of other enabling drivers of 
change [22]. Furthermore, these approaches are only weakly supported by theory. 

The strategy underlying the two research streams is simple and compelling: iden-
tify factors and processes associated with success (or failure) in practice, and then 
develop prescriptions to emulate (or avoid) them [44]. It is assumed that, if these 
factors and processes are properly accounted for, quality will be high, failure will be 
avoided and the project will be a success. The basic argument is that, if you do ‘the 
right things in the right ways’, the outcome will be success. This has led to a prolif-
eration of methodologies on what to do ‘right’. 

Underpinning the factor and process research streams are several assumptions 
about learning: learning is a prerequisite for project success [25]; organizations learn 
from experience [49]; and learning accumulates within and between projects [11]. 
These assumptions reinforce the view that experience accumulates during and across 
successive projects, refines the application of desirable factors and processes, result-
ing in continuous improvement over time and increasing project performance. 

3   Reframing the Problem 

Taken together, current research seeks to explain why software projects fail by focus-
ing on the drivers of success. The logic is that if a project fails, then the project did 
something wrong. The project failed to take sufficient account of all the factors and 
processes that research and prior experience have shown are necessary for success. 
This approach has strong logical and practical appeal. 

The problem with this framing, however, is that it does not fit the empirical data 
that shows there has been limited improvement in software project performance over 
the years [8, 24]. By reframing the problem, new insights can emerge. If we accept 
the industry data and adopt the view that high variability in outcomes and low success 
rates should be expected from such high risk ventures, then what is needed is a causal 
model that includes drivers of success and drivers of failure. 

A capabilities-based explanation provides such a model, supported by two bodies 
of management literature: the resource-based view of the firm and related capability-
based perspective, and; organizational learning theory. According to this literature, 
superior performance is associated with developing and maintaining stocks of firm-
specific resources and capabilities (including processes) that are developed primarily 
through learning from experience. Extant research tends to understate the importance 
of having ‘the right resources’. This literature also argues, however, that learning and 
capability development may be inhibited, blocked or made redundant, creating a ca-
pability deficit and propensity to under-perform or fail. These components provide the 
basis of a capabilities-based explanation of project performance. 

4   Contributing Theory 

In this section, we profile the management theory underlying the proposed model. 



 Macro-processes Informing Micro-processes 15 

4.1   Resource-Based View and Organizational Capabilities 

According to the resource-based view of the firm (RBV), organizational performance 
is a function of internal resources, which are heterogeneously distributed across firms. 
Firm-specific idiosyncrasies in accumulating and using differentiated resources drive 
superior firm performance and sustainable competitive advantage [4]. Resources with 
high performance potential are characterized as valuable, rare, non-tradable, non-
imitable, non-substitutable, causally ambiguous and/or socially complex [5, 12]. 

The capability-based perspective extends this view by emphasizing building and 
accumulating resources better and faster than competitors [38]. Capabilities, a subset 
of firm resources, typically comprise an amalgam of intangible assets, knowledge, 
skills, processes, routines, technologies and values. A firm is modeled as a learning 
organization that builds and deploys advantageous, firm-specific capabilities and 
applies them to achieve superior levels of performance [18]. A firm’s comparative 
effectiveness in developing and deploying capabilities determines its marketplace 
success. Furthermore, its ability to adapt and innovate in identifying, building and 
leveraging new competencies is a capability in itself, called ‘dynamic capability’ [48]. 

The IT literature reports empirical support for a positive relationship between ca-
pability and firm performance [41]. 

4.2   Organizational Learning 

In the management literature, organizational learning is the primary generative mecha-
nism of organizational capabilities. Capabilities are developed through learning from 
experience, or ‘learning by doing’ [27]. Organizational capabilities are developed and 
institutionalized in the operating routines, practices and values of organizations in a way 
that outlives the presence of specific individual members [32]. Routines that lead to 
favorable outcomes become institutionalized in organizations as capabilities, which are 
adapted over time in response to further experiential learning. Organizations can also 
build capabilities through management practices [19, 39]. 

This view of learning is different to that of the experience factory in software engi-
neering [6]. The latter deals with declarative or explicit knowledge that can be codi-
fied in a data repository. In contrast, learning by doing builds tacit knowledge and 
skill-based capabilities that cannot be encapsulated in a database (other than through 
links to sources, as in network knowledge management systems). 

Learning improves the ‘intelligence’ of the organization and, thus, its performance. 
In this sense, the ability to learn from experience is a critical competency, requiring a 
deliberate investment [11]. Learning takes two forms [1]. One is continuous, incre-
mentally improving organizational capabilities (called ‘single-loop learning’). The 
other is discontinuous (called ‘double-loop learning), resulting in fundamentally dif-
ferent organizational rules, values, norms, structures and routines. 

4.3   Learning and Capability Development Barriers 

However, the literature also reports that learning and capability development are nei-
ther certain nor cumulative. Barrier conditions may arise in the organizational and 
technological contexts of projects that can inhibit or block learning and capability 



16 P.L. Bannerman 

development and/or make accumulated capabilities redundant or obsolete in the face 
of new opportunities and challenges [2]. 

Conditions that can inhibit organizational learning and capability development in-
clude learning disincentives; organizational designs that create artificial barriers; time 
compression diseconomies (learning is slow, it cannot be rushed); low aspiration 
levels; absorptive capacity (the ability to absorb new learning); asset mass inefficien-
cies (learning requires some prior knowledge); and transformative capacity (the abil-
ity to share or transfer learning) [10, 12, 17, 28, 50]. 

Conditions that can block organizational learning and capability development  
include causal ambiguity (lack of clarity of causal drivers); complexity; tacitness; 
embeddedness and interconnectedness (capabilities are deeply entrenched in their 
context so they may be difficult to explicate or share); learning myopia, competency 
traps and core rigidities (existing learning is favored); the need to unlearn old ways 
before new learning can occur; organizational inertia; focus diversion (distractions 
from relevant learning); unjustified theories-in-use (defensive routines); and certain 
characteristics of projects (e.g., projects are usually too short and focused on other 
objectives for effective learning to occur within the project) [1, 26, 27, 29, 37, 42, 47]. 

Finally, conditions that can negate the value of existing organizational capabilities 
or make them obsolete include newness; technological discontinuities; radical busi-
ness process reengineering (redesigning from a zero-base); staff loss through turn-
over, downsizing or outsourcing; organizational forgetting; and asset erosion (capa-
bilities can be lost over time) [9, 12, 15, 20, 21, 28, 40, 46]. 

Individually and in combination, these organizational learning and capability  
development barriers can significantly diminish the ability of an organization – or 
project – to perform according to expectation and in a manner assumed by the best 
practices that are applied. They can offset positive learning effects and devalue or 
destroy the accumulated capabilities necessary for project success. 

5   Alternative Explanation 

Based on this literature, poor project performance is not an exception or simply the 
result of managers not taking account of all relevant factors and process prescriptions. 
Also, learning from poor results and improving is not enough to ensure success next 
time. Rather, project performance can be explained by the generative and regressive 
mechanisms underlying organizational capabilities. Specifically, project performance 
is a function of the capabilities applied to the project. Learning drives capability de-
velopment and project success. Barriers to learning and capability development di-
minish or negate existing capabilities, driving poor performance and project failure. 
Project performance, then, is the contested outcome of the two opposing effects on 
capabilities. These relationships are shown in the causal model in Figure 1. 

In this model, learning is the process of developing capabilities through experi-
ence. Barriers are conditions that retard, deplete or make organizational capabilities 
redundant, creating a propensity to fail. Capabilities are the differentiated resources 
that generate operational and strategic value for an organization. Performance is the 
extent to which the outcome of an IT project meets stakeholder expectations. 



 Macro-processes Informing Micro-processes 17 

Learning

Barriers

Capabilities Performance

(+)

(-)

(+)

 
Fig. 1. Model of project performance 

The individual relationships between organizational learning and capabilities, and 
organizational capabilities and performance, are accepted, a priori, as hypothesized in 
the literature and discussed above. The central model-based contributions of this pa-
per are in the negative relationship and the total dynamic of the model. 

One general barrier effect, a negative association with capabilities, is shown in the 
model. In fact, two effects were identified earlier. First, barrier conditions reduce or 
block the learning improvement effect on capabilities; second, and more fundamen-
tally, they can make existing capabilities redundant or obsolete for the needs of new 
or changed conditions. These effects are of different types. The first effect is continu-
ous, interrupting or slowing the incremental accumulation of capabilities. In contrast, 
the second effect is discontinuous, making existing capabilities obsolete for require-
ments under the new condition. 

Based on these relationships, two central propositions arise. 
First, project performance is the contested outcome of the positive effects of learn-

ing and the negative effects of learning and capability development barrier conditions 
on the organizational capabilities available to the project. 

Second, in software projects, especially those involving large-scale developments, 
the initial capability stocks plus the learning that occurs on the project can be less than 
the effect of the barrier conditions experienced during the project. This results in a net 
competence liability that limits performance. The barrier effects offset the learning 
effects so that capabilities for the project are sub-optimal, resulting in a poor perform-
ance outcome. When these effects persist, both within and between projects, limited 
learning accumulates. The organization is in no better position to take on a new pro-
ject than it was at the start of the previous one. 

Software projects are particularly susceptible to the disruptive effects of technol-
ogy and organization changes, which occur both within and between projects. Hard-
ware, software, processes, tools and methods are constantly changing or becoming 
obsolete. This occurs on cycle times that vary from a few months for leading-edge 
technologies, to longer for other technologies. These discontinuities significantly 
impact people, processes and technologies currently in use, destroying the value of 
existing capabilities, and requiring resources to be diverted to manage them, as well 
as affecting the resources needed for future projects. So, if the project cycle time is 
several years, which is typical for a major system development project, technology 
will have cycled a number of times, making some capabilities obsolete, refreshing the 
organization’s competence liability and propensity to fail. 

On this basis, even when capabilities are developed in the current technologies dur-
ing a project, it is likely that they are obsolete by the time the next project starts.  



18 P.L. Bannerman 

Different hardware, software and tools may be needed; the project manager and team 
changes; and the business context of the new project may change. Similarly, changes 
in organizational directions, priorities, processes and management can set back or 
negate the value of accumulated capabilities, reducing the ability to perform well. 

This view of the problem differs markedly from current research approaches. In 
contrast to the assumption that factors and processes can be increasingly applied to 
deliver a successful outcome, it argues that the shift in factors that would be necessary 
for success is unlikely to occur, or does not have the desired result, because of the 
progressive offsetting effects of barriers to learning and capability development. The 
unpredictable nature of these conditions, in both frequency and magnitude of effect, 
can produce substantial variation in outcomes from one project to the next within the 
same organization. 

According to this view, it is not sufficient to ‘do the right things in the right ways’. 
It is also critical to ‘have the right resources (capabilities)’. While an organization has 
followed the appropriate guidelines of factor and process prescriptions, the normal 
ongoing conditions that arise during a software project can damage or destroy the 
capabilities needed to ensure its success, increasing the likelihood that it might fail. 
Furthermore, even if the organization is successful, it cannot assume that it can repli-
cate that success in the next project. 

This model provides an explanation for the persistent variance in empirical data 
(e.g., [24]). It also explains why an organization can have an outstanding success with 
one project and a total failure with the next. This was the experience, for example, of 
Bank of America with its ERMA and MasterNet projects [30], and of American Air-
lines with its SABRE and CONFIRM reservation systems projects [34]. 

6   Illustration 

Application of the theory is illustrated by a longitudinal case study of a major system 
development in an Australian State Government department of motor vehicles 
(DMV). The case is detailed in [2] and summarized here. 

A project was initiated to replace the department’s inefficient batch processing 
mainframe system with a new server-based online system for administration of the 
State’s drivers and motor vehicles. The study examines the initial development and 
subsequent upgrades from 1989 to 2001. 

The initial development was an interesting case of a ‘successful failure’. That is, 
even though the new system was very late, well over budget and significantly de-
scoped in functionality, it ultimately achieved the Department’s major business objec-
tives, including savings of $20m a year. Consequently, the success was acknowledged 
with an industry award for excellence for the system. 

Due to this anomalous outcome, the case presented an opportunity to examine the 
substance of the agency’s excellence and performance in system development. One 
implication of the award is that the initial development ‘failure’ was a ‘glitch’, so 
capabilities would have accumulated and exemplary performance would dominate 
subsequent development. However, this was not evident. To understand why, the case 
was examined for evidence of learning accumulation and barrier effects. 



 Macro-processes Informing Micro-processes 19 

The study period featured many organizational and technology changes that oc-
curred concurrently with or as a direct result of ongoing development of the system. 
The major changes are shown in Figure 2. These occurred in conjunction with a 
stream of ongoing software version upgrades, escalating design complexity and archi-
tecture fragmentation, and other people movements not shown in the figure. To re-
source the project, the DMV relied heavily on contract developers. While they were 
highly skilled and experienced professionals, there was no incentive for them to trans-
fer knowledge and skills to staff. 
 

Department established

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

Project started (using new technology)

Licensing implemented

Registration implemented

Major performance upgrade

Platform Upgrade Project started

New server platform implemented

Desk-/counter-top upgrade announced

Desktop/EFTPOS rollouts completed

EFTPOS rollout started
National database project started
Internet applications development started

POS enhancements implemented

Main server platform upgraded

First IVR application implemented
Integrated driver test PCs implemented

CASE tool upgraded (Online)
CASE tool upgraded (Batch)

New terminal emulator implemented

Major system upgrades for Y 2K

Terminal emulator upgrade implemented
Databade/CASE upgrades

Network Upgrade Project started

Outsourcing Project started

Data centres outsourced

Development team centralised

Founding CEO departs

Project founder departs

New Project GM arrives

Excellence Award won

GM promoted to CIO

Project founder promoted

1st target due date
2nd target due date

Full financial benefits realized

Restructure started

Initial financial benefits realized

Project GM departs

Technology ChangesOrganisation Changes

Vendor governance set up

Corporate restructure

Corporate restructure

System Branch restructure

System deliverable split
Scope reduced

 

Fig. 2. Chronology of change at the DMV 

Changes in the status of eight IT core capabilities adapted from [13] were analyzed 
in four phases across the study period [2]. The capabilities were: leadership, business 
systems thinking, building business relationships, infrastructure management, making 
technology work, building vendor relationships, managing projects, and managing 



20 P.L. Bannerman 

change. Capability strength was measured as low, medium or high for each capability 
in each phase of the study. Barrier conditions associated with each capability were 
also identified in each phase. Measurement was aided by empirical indicators devel-
oped for each capability and barrier condition, described in [2]. 

The analysis found that very little cumulative learning occurred in the capabilities 
during the study period. Furthermore, barrier conditions were found to be high and 
significantly associated with each capability across the study. In particular, newness 
discontinuities were found to negatively impact over 80% of the capabilities over the 
study period. The study concluded that any organizational learning and capability 
development that occurred during the study period was offset by the effects of recur-
rent barrier conditions, resulting in the maintenance of a cumulative net competence 
liability rather than accumulated organizational learning and capability development. 
The level of capability stocks at the end of the period was no greater than at the start 
(rather, it was slightly lower). 

Accordingly, in moving forward to any other large software project in the future, 
such as the next generation administration system, the DMV was in no better position 
to improve its likelihood of success than it had been for the previous system project. 
The earlier result appeared not to be a ‘glitch’ but a reflection of an underinvestment 
in organizational learning and capability development. 

The longitudinal scale of this case highlights the learning and barrier effects, but 
the logic of the theory makes the propositions equally relevant to smaller projects. 

7   Discussion and Conclusion 

Motivated to consider the interrelationship between macro- and micro- processes and 
gain insights that might contribute to the software process environment, this paper 
examines the problematical case of software project performance and presents a novel 
approach to modeling project outcomes. Accepting the empirical data as indicative of 
what might be expected rather than as an exception, drivers of project failure are rec-
ognized as well as drivers of project success. Drawing on management literature, a 
capabilities-based theory is proposed that models learning as the driver of success and 
learning-related barriers as the driver of failure. Project performance is the contested 
outcome of the two effects on organizational capabilities. 

As an independent proposition, there are limitations. First, the model is validated 
only through application to a case study. While illustration of its explanatory and 
predictive power provides a high degree of face validity, empirical testing is required 
to establish the bounds of its relevance. Second, the study is based on a public sector 
organization. The findings may not generalize to private sector projects. However, 
there is nothing inherent in the model that is sensitive to sector. There is also evidence 
to suggest that public sector practices are not radically different [14]. Third, the model 
is not applied to any specific organizational capabilities (apart from in the illustra-
tion). Other research, however, reports progress in identifying capabilities relevant to 
software engineering [3]. Finally, future research could extend the model by consider-
ing, for example, how capabilities are built, their inter-relationships and complemen-
tarities, or how they aggregate. 

 



 Macro-processes Informing Micro-processes 21 

The case has several implications for micro level software process research. 
The most immediate implication is that extant factor- and process-based research 

approaches to macro level problems may not be sufficient on their own to adequately 
explain the phenomenon. They may benefit, for example, from considering drivers of 
failure as well as drivers of success, and the organizational resources needed to make 
them effective. Specifically, the effectiveness of software process best practices may 
be a reflection of the competencies that underlie and enable their impacts. 

Second, software process can be an organizational capability. Software process can 
be an undifferentiated resource for an organization or a distinctive capability. The 
choice is the organization’s, based on its strategic goals and positioning. 

Third, learning does not necessarily accumulate continuously. Software processes, 
as capabilities, are subject to the same contested dynamic that was described in the 
case. Strategies for continuous process improvement are likely to be disrupted by 
discontinuities in learning and capability development. 

In support of [33], another implication is the importance of the interaction between 
macro-processes and micro-processes to the effectiveness of each other. The ultimate 
‘quality’ of software is its fitness for purpose, determined at the macro level, but that 
quality cannot be achieved or sustained without improving the processes employed to 
build it. As Jeffery has argued [22], effective software processes occur within a 
framework of multiple organizational interactions. Also, software project success 
factors, processes and capabilities may only be some of the critical elements that, in 
aggregate, reinforce each other to drive project outcomes. Further research is needed 
to unlock these dimensions and interactions. 

Furthermore, because of the delivery context of software (that is, through projects 
in organizations), the perception of the effectiveness of software processes as re-
flected in the developed software artifact may be influenced by many other external 
factors that have nothing to do with software quality. This reinforces the need to un-
derstand the macro context and minimize impacts on software process performance 
from other contingent domains. 

A final implication arises for experience-based process improvement and process 
modeling. The case illustrates that intangibles contribute to performance outcomes as 
well as explicit process capabilities. Mechanisms are needed to capture and represent 
capabilities in the software process domain. This is partially recognized by [52]. 

This paper has highlighted the importance of contextual awareness. Benefiting 
from the implications will require ongoing interaction between the micro- and macro-
process domains and continued recognition that neither environment is an island. 
 
Acknowledgments. The paper benefits from comments provided by Liming Zhu. 
NICTA is funded by the Australian Government through the ICT Research Centre of 
Excellence program. 

References 

1. Argyris, C., Schön, D.A.: Organizational Learning: A Theory of Action Perspective. Addi-
son-Wesley, Reading (1978) 

2. Bannerman, P.L.: The Liability of Newness. PhD Dissertation, UNSW, AGSM (2004) 



22 P.L. Bannerman 

3. Bannerman, P.L., Staples, M.: A Software Enterprise Capabilities Architecture. NICTA 
Working Paper (2007) 

4. Barney, J.B.: Firm Resources and Sustained Competitive Advantage. J Manage 17(1), 99–
120 (1991) 

5. Barney, J.B.: Gaining and Sustaining Competitive Advantage, 2nd edn. Prentice Hall, Up-
per Saddle River (2002) 

6. Basili, V.R.: The Experience Factory and its Relationship to Other Quality Approaches. 
Advances in Computers 41, 65–82 (1995) 

7. Brooks Jr., F.P.: The Mythical Man Month: Essays on Software Engineering. Addison-
Wesley, Reading (1975) 

8. Charette, R.N.: Why Software Fails. IEEE Spectrum 42(9), 42–49 (2005) 
9. Christensen, C.M.: The Innovator’s Dilemma. HarperBusiness, New York (2000) 

10. Cohen, W.M., Levinthal, D.A.: Absorptive Capacity: A New Perspective on Learning and 
Innovation. Admin. Sci. Quart. 35(1), 128–152 (1990) 

11. Cooper, K.G., Lyneis, J., Bryant, B.J.: Learning to Learn, from Past to Future. Int. J. Pro-
ject Manage 20(3), 213–219 (2002) 

12. Dierickx, I., Cool, K.: Asset Stock Accumulation and Sustainability of Competitive Ad-
vantage. Manage Sci. 35(12), 1504–1511 (1989) 

13. Feeny, D.F., Willcocks, L.P.: Core IS Capabilities for Exploiting Technology. Sloan Man-
age Rev 39(3), 9–21 (1998) 

14. Ferlie, E.: Quasi Strategy: Strategic Management in the Contemporary Public Sector. In: 
Pettigrew, A., Thomas, H., Whittington, R. (eds.) Handbook of Strategy and Management, 
pp. 279–298. Sage Publications, London (2002) 

15. Fisher, S.R., White, M.A.: Downsizing in a Learning Organization. Acad. Manage 
Rev. 25(1), 244–251 (2000) 

16. Fuggetta, A.: Software Process: A Roadmap. In: Proceedings of the Conference on The 
Future of Software Engineering, pp. 25–34. ACM, New York (2000) 

17. Garud, R., Nayyar, P.R.: Transformative Capacity: Continual Structuring by Intertemporal 
Technology Transfer. Strategic Manage J. 15(5), 365–385 (1994) 

18. Hamel, G., Heene, A. (eds.): Competence-Based Competition. John Wiley & Sons, Chich-
ester (1994) 

19. Hamel, G.: The Concept of Core Competence. In: Hamel, G., Heene, A. (eds.) Compe-
tence-Based Competition, pp. 11–33. John Wiley & Sons, Chichester (1994) 

20. Hammer, M.: Reengineering Work: Don’t Automate, Obliterate. Harvard Bus. Rev. 68(4), 
104–112 (1990) 

21. Hannan, M.T., Freeman, J.: Structural Inertia and Organizational Change. Am Sociol 
Rev 49(2), 149–164 (1984) 

22. Jeffery, D.R.: Achieving Software Development Performance Improvement through Proc-
ess Change. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 
43–53. Springer, Heidelberg (2006) 

23. Jeffery, D.R.: Exploring the Business Process-Software Process Relationship. In: Wang, 
Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and ProSim 2006. LNCS, 
vol. 3966, pp. 11–14. Springer, Heidelberg (2006) 

24. Johnson, J.: My Life is Failure. Standish Group International (2006) 
25. Kotnour, T.: A Learning Framework for Project Management. Project Manage J. 30(2), 

32–38 (1999) 
26. Leonard-Barton, D.: Core Capabilities and Core Rigidities: A Paradox in Managing New 

Product Development. Strategic Manage J. 13, 111–125 (1992) 
27. Levitt, B., March, J.G.: Organisational Learning. Annu. Rev. Sociol. 14, 319–340 (1988) 



 Macro-processes Informing Micro-processes 23 

28. Lyytinen, K., Robey, D.: Learning Failure in Information Systems Development. Informa 
Syst. J. 9(2), 85–101 (1999) 

29. March, J.G.: Exploration and Exploitation in Organizational Learning. Organ Sci. 2(1), 
71–87 (1991) 

30. McKenney, J.L., Mason, R.O., Copeland, D.G.: Bank of America: The Crest and Trough 
of Technological Leadership. MIS Quart. 21(3), 321–353 (1997) 

31. McWilliams, A., Siegel, D.: Event Studies in Management Research: Theoretical and Em-
pirical Issues. Acad Manage J 40(3), 626–657 (1997) 

32. Nelson, R.R., Winter, S.G.: An Evolutionary Theory of Economic Change. Harvard Uni-
versity Press, Cambridge (1982) 

33. Osterweil, L.J.: Unifying Microprocess and Macroprocess Research. In: Li, M., Boehm, B., 
Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 68–74. Springer, Heidelberg (2006) 

34. Oz, E.: When Professional Standards are Lax: The CONFIRM Failure and its Lessons. 
Commun ACM 37(10), 29–36 (1994) 

35. Pettigrew, A.M.: Longitudinal Field Research on Change: Theory and Practice. Organ 
Sci. 1(3), 267–292 (1990) 

36. Pinto, J.K., Slevin, D.P.: Critical success factors across the project life cycle. Project Man-
age J. 19(3), 67–74 (1988) 

37. Polanyi, M.: The Tacit Dimension. Peter Smith, Gloucester (1966) 
38. Prahalad, C.K., Hamel, G.: The Core Competence of the Corporation. Harvard Bus. 

Rev. 68(3), 79–91 (1990) 
39. Purcell, K.J., Gregory, M.J.: The Development and Application of a Process to Analyze the 

Strategic Management of Organizational Competences. In: Sanchez, R., Heene, A. (eds.) Im-
plementing Competence-Based Strategies, pp. 161–197. JAI Press, Stamford (2000) 

40. Quinn, J.B., Hilmer, F.G.: Strategic Outsourcing. Sloan Manage Rev. 35(4), 43–55 (1994) 
41. Ravichandran, T., Lertwongsatien, C.: Effect of Information Systems Resources and Ca-

pabilities on Firm Performance. J. Manage Inform Syst. 21(4), 237–276 (2005) 
42. Reed, R., DeFillippi, R.J.: Causal Ambiguity, Barriers to Imitation and Sustainable Com-

petitive Advantage. Acad. Manage Rev. 15(1), 88–102 (1990) 
43. Sambamurthy, V., Kirsch, L.J.: An Integrative Framework of the Information Systems 

Development Process. Decision Sci. 31(2), 391–411 (2000) 
44. Sauer, C.: Deciding the Future for IS Failures. In: Currie, W., Galliers, R. (eds.) Rethinking 

Management Information Systems, pp. 279–309. Oxford University Press, Oxford (1999) 
45. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying Software Project Risks: An In-

ternational Delphi Study. J Manage Inform Syst 17(4), 5–36 (2001) 
46. Stinchcombe, A.L.: Social Structure and Organizations. In: March, J.G. (ed.) Handbook of 

Organizations, pp. 142–193. Rand McNally College Publishing Company (1965) 
47. Szulanski, G.: Exploring Internal Stickiness: Impediments to the Transfer of Best Practice 

within the Firm. Strategic Manage J. 17(S2), 27-43 (1996) 
48. Teece, D.J., Pisano, G., Shuen, A.: Dynamic Capabilities and Strategic Management. Stra-

tegic Manage J. 18(7), 509–533 (1997) 
49. Turner, J.R., Keegan, A., Crawford, L.: Learning by Experience in the Project-Based Or-

ganization. In: P PMI Research Conf., pp. 445–456. PMI, Sylva (2000) 
50. Winter, S.G.: The Satisficing Principle in Capability Learning. Strategic Manag J 21(10-

11), 981–996 (2000) 
51. Yourdon, E.: Death March. Prentice Hall PTR, Upper Saddle River (1997) 
52. Zhu, L., Osterweil, L.J., Staples, M., Kannengiesser, U., Simidschieva, B.I.: Desiderata for 

Languages to be Used in the Definition of Reference Business Processes. J. Softw. Infor-
matics 1(1), 37–65 (2007) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 24 – 35, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Improving Software Risk Management Practices in a 
Medical Device Company 

John Burton1, Fergal McCaffery2, and Ita Richardson1 

1 Lero – the Irish Software Engineering Research Centre, University of Limerick, Ireland 
2 Dundalk Institute of Technology, Dundalk, Ireland 

John.Burton@ul.ie, Fergal.McCaffery@dkit.ie, 
Ita.Richardson@ul.ie   

Abstract. Software is becoming an increasingly important aspect of medical 
devices (MDs) and MD regulation. MDs can only be marketed if compliance 
and approval is achieved from the appropriate regulatory bodies. MD compa-
nies must produce a design history file detailing the processes undertaken in the 
design and development of their MD software. The safety of all MD software 
produced is of primary importance and it is crucial that an effective and effi-
cient risk management (RM) process is in place. The authors have developed a 
software process improvement RM model that integrates regulatory MD RM 
requirements with the goals and practices of the Capability Maturity Model In-
tegration (CMMI). This model is known as the RM Capability Model (RMCM). 
This paper evaluates how introducing the RMCM into a MD company im-
proved their RM process.  

Keywords: Risk Management, Process Assessment, Software Process Im-
provement, Medical Device Standards, Compliance, CMMI, FDA, BSI, Action 
Research, Evaluation, Verification. 

1   Introduction 

The MD industry is currently one of the fastest growing industries in the world.  Ac-
cording to the World Health Organisation, in 2000, it was estimated that there were 
over one and a half million different MDs (incorporating MDs containing software) 
available on the market, representing a total value of over €€ 114 billion [1] and were 
expected to grow to in excess of approximately €€ 205 billion in 2006.   

Software RM within MD companies is a critical area.  MD manufacturers that do 
not devote sufficient attention to the areas of hazard analysis and RM are penalised as 
failure to comply can result in surrendering their legal right to sell their device in a 
specific market. However, with so many different standards, regulatory guidance 
papers and industry guides on RM, the task of collating this information into a usable 
model is a daunting one.  In an attempt to resolve this issue, the RMCM [2] was de-
veloped through extracting concepts from a number of industry accepted standards 
and guides. The RMCM is an extension of the RM process area within the CMMI but 
is specifically tailored to fulfil the RM regulations of the MD software industry.  



 Improving Software Risk Management Practices in a Medical Device Company 25 

1.1   Medical Device Regulation 

Regulatory bodies worldwide are tasked with the job of ensuring that only safe MDs 
that cannot cause serious harm or injury to a patient or end-user are marketed.  Clear-
ance of MDs varies between countries.  In the European Union, MD companies re-
ceive a European Community (EC) certificate and a CE mark (a European conformity 
mark). In the United States, the device manufacturer receives a Marketing Clearance 
(510K) or an Approval Letter for Pre Market Approval (PMA) from the Food and 
Drug Administration (FDA). 

Typically, before a MD company is certified to sell their product in a country, they 
must follow the registration or licensing procedure of that country.  This in turn estab-
lishes a contract between the device manufacturer and that country, whereby the de-
vice manufacturer is obligated to perform both pre-market and post-market duties as 
defined in the quality system requirements.  The quality system is defined as the or-
ganisational structure, responsibilities, procedures, processes and resources required 
to implement quality management. Applicable requirements are typically directly 
related to the regulatory classification of the device.  This in turn defines the potential 
of that device to cause harm.  However, hazard analysis and RM are key components 
that are applicable to all classes of device.  The regulatory or approved body audits 
the conformance to the quality system requirements periodically. 

1.2   Risk Management in Software 

In the US, all MDs containing software are subject to the United States Quality Sys-
tems Regulation (QSR), 21 CFR 820 [3].  The regulations stipulate the requirement 
for risk analysis as part of the design validation process.  In Europe, many companies 
also use relevant US guidance documents [4], therefore the research presented in this 
paper integrates guidance by US regulatory agencies. 

Lack of RM within software projects can lead to failures and loss at several levels.  
Boehm [5] defined the degree to which a software project may be exposed to failure 
i.e. risk exposure, as the probability of an unsatisfactory outcome and the loss to the 
parties affected if the outcome is unsatisfactory. MD industry regulators view “unsat-
isfactory outcome” and “loss” in terms of loss of life, injury or damage to users, by-
standers or the environment, as distinct from schedule and budget over-runs.  Their 
job is to protect the public from MD faulty software and thus reduce the risk of poten-
tial injury [6].   An issue facing MD companies producing software is that it is not 
practical, even in the simplest software programs, to fully test all possible execution 
paths.  Therefore, the quality of software cannot be determined by software testing 
alone and requires solid software engineering practices [7] with RM implemented as a 
core practice.   

2   Overview of RMCM 

The RMCM was developed to assist companies to meet the MD regulations for RM 
through adopting disciplined software engineering practices. The RMCM design 
allows relevant elements of the model to be adopted to provide the most significant 
benefit to the business. The model is based on the CMMI [8] and the regulations used 



26 J. Burton, F. McCaffery, and I. Richardson 

to extend the CMMI framework are those of the FDA [9,10,11,12], ISO 14971 [13], 
ANSI/AAMI/IEC 62304:2006 standard (IEC 62304) (MD software – Software life 
cycle processes) [14] and   EN 60601-1-4 [15].  Reference was made to IEC 60812 
[16], GAMP 4 [17], TIR 32 [18] and guidance from the AAMI (Association for the 
Advancement of Medical Instrumentation) on RM [19]. The RMCM contains an 
assessment method for the software engineering capability of the RM process area in 
relation to MD software (both application and embedded software).  Use of the 
RMCM is expected to improve the effectiveness and efficiency of RM through map-
ping MD regulatory guidelines against the CMMI RM process area (Figure 1).  

 
CMMI RM practices  Medical device regulations for RM 

 
 
 
 
 
 
 

Fig. 1. Composition of the RMCM 

The mappings between the MD regulatory guidelines and the CMMI specific prac-
tices for the RM process result in RMCM goals and practices which may be either 
generic (relating to the entire organisation) or specific (relating directly to the RM 
process).  The RMCM determines what parts of the CMMI RM process area (part A 
of Figure 1) are required to satisfy MD regulations (part B of Figure 1). The RMCM 
also investigates the possibility of extending the CMMI process areas with additional 
practices that are outside the remit of CMMI, but are required in order to satisfy MD 
regulatory guidelines (part C of Figure 1). Additionally, the RMCM provides MD 
companies with the opportunity to incorporate practices from the CMMI that are not 
required in order to achieve regulatory compliance but that would greatly enhance 
their RM process if they were included (part D of Figure 1).  The RMCM will help 
companies to measure their organisational RM capability and to track their progres-
sion against the following software process capability levels (see Table 1): 

 RMCM Level Med – Demonstrate they satisfy the goals and perform practices 
required to meet the requirements of the various MD regulatory guidelines and 
standards associated with RM. Involves performing some practices that the CMMI 
views as generic, although not to the extent of fulfilling any generic goals. 

 RMCM Level 0 – Insufficient practices have been performed to satisfy the re-
quirements of Level Med. 

 RMCM Level 1 – Demonstrate that they satisfy RMCM level Med and the 
CMMI capability level 1 goal of performing the CMMI RM base practices. 

 RMCM Level 2 – Demonstrate that they satisfy RMCM level 1.  Additionally 
perform CMMI RM Advanced Practices and CMMI capability level 2 generic 
goal of institutionalising a Managed Process. 

C 
B 

D 

A



 Improving Software Risk Management Practices in a Medical Device Company 27 

 RMCM Level 3 – Demonstrate that they satisfy RMCM level 2.  Additionally 
perform CMMI Generic Goal to Institutionalise a Defined Process (CMMI Ge-
neric Goal 3) for the RM process area. 

 RMCM Level 4 – Demonstrate that they satisfy RMCM level 3.  Additionally 
perform CMMI Generic Goal to Institutionalise a Quantitatively Managed Process 
(CMMI Generic Goal 4) for the RM process area. 

 RMCM Level 5 – Demonstrate that a process area satisfies RMCM level 4.  
Additionally perform the CMMI Generic Goal to Institutionalise an Optimising 
Process (CMMI Generic Goal 5) for the RM process area. 

Table 1. Summary of the RMCM 

Goal: GG1: Perform the Specific Practices 
GP 1.1 Perform Base Practices 
Specific Goal CMMI®  

based 
Sub- 
Practices (A) 

CMMI®  
sub-practices 
to meet MD 
regulations (B) 

Additional  
Sub-practices 
to meet MD 
regulations (C) 

Level 1 
sub-
practices 

SG 1: Prepare for RM 6 6 10 0 
SG 2: Identify and 
Analyse Risks 

9 4 4 5 

SG 3: Mitigate Risks 8 5 6 3 
Specific Goal Totals   23 15 20 8 
Goal: GG2: Institutionalise a Managed Process Level 2  
   10        6       0   4 
Goal: GG3: Institutionalise a Defined Process  Level 3 
 2         0        0    2 
Goal: GG4: Institutionalise a Quantitatively Managed Process Level 4 
 2         0  0 2 
Goal: GG5: Institutionalise an Optimising Process Level 5 
 2 0  0 2 
Totals 39 21 20  

RMCM Level Med Sub-practices (Total of B + Total of C)                          41 
RMCM Sub-practices (Total of A + Total of C)                                              59 

 
Table 1 summarises the RMCM, illustrating that the RMCM is composed of 5 Ge-
neric Goals (GGs). The first of these GGs requests that three specific goals (SG): 
(SG1: Prepare for RM, SG2: Identify and Analyse Risks & SG3: Mitigate Risks) are 
satisfied.  Each specific goal is composed of a number of practices and sub-practices, 
with each practice consisting of a number of sub-practices. This table specifies the 
RMCM capability levels for sub-practices belonging to a particular practice. For each 
of the goals to be achieved to a particular capability level, it is necessary for the asso-
ciated practices and sub-practices (with an assigned capability level less than or equal 
to the desired capability level) to be performed (detailed in [2]). The generic goals 
GG2-GG5 are not broken down to the sub-practice level. Therefore, the capability 
level is assigned at the practice level within these goals. 

The RMCM contains 59 sub-practices, with level Med containing 41 of these sub-
practices. Only 21 of the 39 CMMI RM sub-practices are included in the RMCM 



28 J. Burton, F. McCaffery, and I. Richardson 

level Med. Therefore, following the MD regulations will only partially meet the goals 
of this CMMI process area, with only specific goal 1 being fully satisfied. The 
RMCM also shows that 35 specific sub-practices have to be performed in order to 
satisfy MD regulations and that only an additional 8 sub-practices are required to 
satisfy all the CMMI level 1 (or RMCM level 1) requirements. Meeting the goals of 
the RM process area by performing the CMMI specific practices would not meet the 
requirements of the MD software regulations as an additional 20 MD specific sub-
practices had to be added to meet the objectives of RMCM. 

3   Research Methodology 

3.1   Action Research  

To evaluate the effectiveness of the RMCM in assisting MD companies to improve 
their software RM procedures and practices, the methodology employed is action 
research using a five phase multi-cyclical approach [20, 21].  This involves diagnos-
ing, action planning, action taking, evaluating and specifying learning.  Action re-
search encompasses aspects of analysis and change, lending itself well to this research 
where changes to the company’s RM procedures and practices are required.  

The research presented here involves one organisation (client).  It discusses cycle 
1 and modifications that have been made to the RMCM which will be included in 
cycle 2.  The client is a privately owned MD company which is bound legally by 
the regulatory bodies British Standards Institution (BSI) and the FDA, and is regu-
larly audited.  The client manufacturers Spirometry devices that are used in the 
diagnosis and monitoring of lung function.  Primary markets include clinical trails, 
primary care, occupational health, sports medicine, asthma management, emergency 
services and hospitals.   

With the client, we, the researchers, agreed that the research environment would 
be their R&D department, focusing specifically on software RM. The collaborative 
effort between ourselves and the client was central to the gathering of system knowl-
edge and other information necessary to understand the anomalies being studied and 
was also central in enabling the planned intervention.  We also had access to the com-
pany’s appropriate project files, logs and resources. 

Diagnosing commenced with discussions with the client on existing process and 
procedure issues within the software development environment.  Given its regulatory 
requirements, they have a base of documented process and procedures encapsulated in 
development handbooks, standard operating procedures (SOPs) and templates.  The 
client believed that their RM procedures and templates could be improved signifi-
cantly to cater for more effective and efficient hazard analysis and RM for their MD 
software. 

In the Action Planning phase, we, with the client, identified the desired future state 
along with planning the actions required to implement improvements to achieve that 
state.  The desired future state for the organisation was to have in place a BSI / FDA 
compliant, more comprehensive and reusable software hazard analysis and RM pro-
cedure with associated templates (documented framework), which could be used in 



 Improving Software Risk Management Practices in a Medical Device Company 29 

the production of MD software.  This should lead to safer and more efficient software 
design and device development.   

In the Action Taking phase, the RMCM was used to establish the capability level 
of the MD company’s existing software RM and to identify gaps or missing practices.  
Consequently, a new software RM procedure and template was developed through a 
controlled and formal process. This was as required by the client’s quality manage-
ment system.  The new framework would be used in all future software projects. 

In the Evaluation Stage, using the RMCM, the new software RM procedure was 
assessed.  A gap analysis was performed between what was required to satisfy regula-
tory requirements, as defined by the RMCM’s sub-practices, and what existed within 
the new procedure.  Evaluation is discussed in detail in section 4.   

Specifying Learning is the final stage of the Action Research cycle. The knowl-
edge gained during this research thus far has been integrated back into the client or-
ganisation.  This has been explicit knowledge in the form of modified software RM 
SOPs and templates for use with new software development projects.   

3.2   Data Collection and Analysis  

Prior to the implementation of the RMCM, we analysed the SOPs and associated 
design templates (DTs).  This allowed us to determine the state of the client’s original 
software RM procedures. Documentation required by regulatory requirements was 
made available to us by the client, in conjunction with training logs and bug tracking 
reports.  These documents were reviewed following the implementation of the 
RMCM. 

Also, at the end of the implementation period, in-depth interviews were used to 
collect data, using open-ended questions to provide “good interviews” [21].   Partici-
pants were chosen to cover a broad range of software related roles including software 
development (desktop and embedded applications), software quality and project man-
agement.  Six pre-arranged interviews were conducted over periods ranging from 
thirty minutes to seventy-five minutes with Management, Software QA and Software 
Development.  Participants ranged from new to experienced employees with over five 
years’ experience.  Interviews were recorded and transcribed verbatim, and to ensure 
the validity of the transcriptions, were sent to the interviewees for review prior to 
analysis. 

Content analysis [22] was used to analyse the qualitative interview data.  Open 
coding where initial categories were applied to the transcripts was undertaken.  This 
was then re-evaluated using axial coding [22], defining the relationships between the 
open-coding categories and refining them into suitable sub-categories.  The data and 
categories obtained during the content analysis were then used with the documenta-
tion described above in a process of triangulation to strengthen findings or eliminate 
false or unsubstantiated claims. 

At the end of the implementation period, the company’s RM procedures were re-
assessed.  Capability was measured and defined in terms of meeting the RMCM’s 
goals and associated practices.  The evaluation involved examining each goal and 



30 J. Burton, F. McCaffery, and I. Richardson 

associated practices within the RMCM, identifying what was required to meet the 
goals of the RMCM and then determining if that goal had been satisfied.   

4   Evaluation of the RMCM 

In the Action Taking phase, the RMCM was implemented by the client with re-
searcher support for two years on two embedded and three desktop software projects. 
Prior to the introduction of the RMCM, 9 out of the 35 required base practices (i.e. 
level Med practices with SG1 to SG3) were adequately addressed by the company’s 
SOPs and DTs.  Twenty-six were found to be missing and one was insufficient in that 
it only partially met the requirement laid out by the RMCM for the practice.  The 
findings are summarised in table 2 below. 

Table 2. RMCM Findings prior to the introduction of the RMCM 

Goal Practices to 
satisfy MD 
regulations 

Practices 
satisfied by 
Company  

SG 1: Prepare for RM 16 3 
SG 2: Identify and Analyse Risks 8 3  
SG 3: Mitigate Risks 11 3 
GG2: Institutionalise a Managed Process 6 6 
GG3: Institutionalise a Defined Process 0 0 
GG4: Institutionalise a Quantitatively Managed Process 0 0 
GG5: Institutionalise an Optimising Process 0 0 
Total 41 15 

The initial analysis confirmed that all 6 practices required to satisfy level Med for 
Generic Goal 2 of the RMCM had been met.  However, establishing the policy, plan-
ning the process, providing resources, assigning responsibility, training people and 
identifying stakeholders were ineffective.  This was because the base practices (i.e. 
SG1 –SG3) themselves are insufficient in terms of the practices they address.  During 
evaluation, after 2 years, we found that all required RMCM level Med practices were 
addressed by the latest revision of the company’s software RM procedure.  This was 
as expected, given that the RMCM was used to identify missing or inadequate  
practices.   

The RMCM has had a positive effect on the MD client company.  It provided them 
with a single reference point for determining their RM practice capability, enabling 
them to quickly identify what practices were missing or inadequate.  They also have a 
source to refer to when addressing missing practices deemed essential by the MD 
regulators in achieving safe and efficient software. 

The following sections further evaluate the impact the RMCM based software RM 
procedure has upon the MD company since its formal release.  The findings have 
been grouped into logical categories arising from the data collection and analysis 
process. 



 Improving Software Risk Management Practices in a Medical Device Company 31 

4.1   Safety Pre-production 

Following implementation of the RMCM, employees recognise that software hazard 
analysis and RM procedure is one method of ensuring safety pre-production.  All 
team members demonstrated an awareness of the new procedure.  However, the pro-
ject manager also discussed user trials, not mentioned in the RMCM, as a method for 
ensuring safer software pre-production.  Sub-practice 16 of the RMCM mentions the 
analysis of post-production queries and issues to safeguard against a risk scenario 
arising post-production that were not originally considered during development.  User 
trials could be used for similar analysis but before the software actually goes into 
production and therefore shall be considered for the next up-issue of the RMCM. 

4.2   Safety Post-production 

In ensuring software safety post-production the team members discussed dealing with 
non-conformance requests (NCRs) through the completion of corrective ac-
tions/preventative actions (CAPAs).  They also discussed fixing and testing any soft-
ware related bugs/issues through unit testing and system testing.  This is in keeping 
with the company’s procedures, which states “all post-production RM activities are 
covered by (the company’s) CAPA system.”  Only one team member, a software QA 
engineer, alluded to updating the software RM report when dealing with post produc-
tion queries and issues.  Sub-practice 16 of the RMCM references how three of the 
major MD related standards point to this as a very important practice. Therefore it is 
of concern that only one team member discussed this in relation to safety post-
production.  The evaluation indicates that both the way in which this practice has been 
integrated into the client’s procedures and the training that individuals have received 
is not sufficient.  On inspection of the company’s procedure, in the life-cycle phases 
section, it states that changes must be analysed “to determine if any changes have 
taken place that adversely affect the risk analysis and mitigation”. This does not ap-
pear under the post-production information section.  Therefore, this practice must be 
revisited for cycle two of the company’s implementation of the RMCM. 

4.3   Requirements Changes 

Adequate change control and proper impact analysis of requirements changes are an 
important element of RM [23]. The RMCM addresses change control in sub-practices 
1 and 2 for determining risk sources and risk categories.  It also states that as per FDA 
requirements “it is important to define risk-related functions when analysing require-
ments” and to “monitor this ongoing source of risk” as requirements change”. 

During RMCM evaluation it is evident that the team recognises the need to per-
form software risk analysis following requirements changes - “for every change to the 
software/module, we should determine if there is any new risk as a result of  
the change”. However, further investigation revealed that it was QA who updated the 
software RM document ‘after the fact’ because “the software hazard analysis docu-
ment was not kept in line with the changes to the software requirements”. Additional 
testing was implemented by QA to ensure there were no adverse side effects.  There 
was no traceability provision from the changes through to verification. The evaluation 



32 J. Burton, F. McCaffery, and I. Richardson 

has highlighted inadequate software risk analysis being performed in the company 
with respect to change control.   

A number of shortcomings were identified in the company’s procedures.  For ex-
ample, the software changes specification contained only a header called “hazard 
analysis”, and the procedure did not state what should be done.  This led to inconsis-
tencies and insufficiencies in terms of software hazard and risk analysis.  The evalua-
tion has resulted in this being addressed for the second action research cycle. 

4.4   Training 

Analysis of the training records alone suggested that those individuals doing the 
analysis, mitigations and verification were trained appropriately.  However, analysis 
of interview transcripts pointed to a deviant case for this finding. 

Following self-training, where individuals read the internal software RM procedure 
individuals were not proficient in performing a risk analysis of the software.  Frustra-
tions in implementing the new RMCM based procedure were attributed to this.  In 
fact when asked about the positive and negative things about the process it was spe-
cific mentions include: “I would introduce better training”.  Given these findings, 
cycle 2 shall commence with a detailed training session using practical examples and 
sample projects.  Individuals will be coached interactively in the process.  Reviews of 
the output shall be performed at the various stage gates of the design process. 

4.5   Lifecycle Phases for Software RM 

There is awareness amongst the team of the safety benefits for performing the soft-
ware risk analysis at every lifecycle phase as per the RMCM.  However the team 
acknowledged that they did not always follow the procedure. 

There was a general consensus that the software risk analysis document was 
drafted at the requirements stage and then re-visited at the very end of the lifecycle 
(prior to product launch) but that “sometimes is not properly looked at in between”.  
This was not sufficient because “if we find out at the end that something is missing 
such as a unit test or code review (mitigations), it can be too late because the devel-
opment is already done”.  One interviewee, discussing what happens in reality stated 
“we might do a draft of the hazard analysis when the specification is being done and 
then it’s closed out and not looked at again until software testing happens”. Project 
files confirmed this was indeed the case.   

The primary reasons that the RM was left until the very end of the lifecycle was due 
to “time constraints” and a cumbersome implementation of the RMCM practices for 
analysing and categorising risks.  The procedure and associated template (based on the 
RMCM) were recognised as being sufficient in terms of the practices but were seen as 
adding more work to the process.  One interviewee put this down to the company mov-
ing from “having no documentation” to “having vast sums of documentation” and in 
relation to the RMCM software risk based procedure that “this is a relatively new 
document which we have only had for the past couple of years”.  Other reasons given 
for not performing analysis at all stages included training, which was discussed earlier.   

This evaluation highlights the need to revisit how the RMCM has been imple-
mented procedurally, to simplify the process without removing compliance in terms 



 Improving Software Risk Management Practices in a Medical Device Company 33 

of implementing the RMCM practices and to train all team members on the new proc-
ess.  There is also a need for management within the company to ensure adequate 
time is allocated to the software RM activities for all software projects.  The term 
“requirements” is used within the company to encompass both user requirements and 
the software/technical requirements.  Software risk analysis should commence as 
early as possible during the user requirements stage.  This may highlight specific 
requirements that require corresponding software requirements or design items to 
mitigate potential risks, and these should be addressed (in the SRS). 

5   Discussion 

The evaluation of the RMCM has demonstrated a significant improvement in the 
company’s software RM procedure and required practices in terms of meeting regula-
tory compliance.  Prior to RMCM implementation, the software risk process satisfied 
15 of the 41 required regulatory practices.  Following its implementation the RM 
procedure satisfies all required practices.  However, we have identified two distinct 
but inter-related set of changes required for the second action research cycle -  (a) 
changes to the RMCM and (b) changes to the company’s procedures. 

5.1   Changes to the RMCM 

The quality of the User Requirements Specification (URS) and Software Require-
ments Specification (SRS) has a direct impact on the quality of the RM report.  Miss-
ing requirements in the URS or SRS may lead to missing analysis on associated risks.  
Documentation reviews should be implemented as core to this process.  The RMCM 
has been amended to include a sub-practice “Formally Review all Software Lifecycle 
Design Documentation”, within specific goal 3 (Mitigate Risks). 

Presently, the term “Requirements” is used within the company to encompass both 
user requirements and the software/technical requirements. The software RM proce-
dure states that risk analysis must be performed at the requirements stage.  However, 
more specifically, software risk analysis should commence early in the user require-
ments stage, when the URS is being drafted.  The URS may highlight specific re-
quirements that require corresponding software requirements or design items to miti-
gate potential risks, and these “should be addressed in the SRS” 

User trials, not originally considered, shall be added to the RMCM as a method for 
detecting user related queries, issues and associated risk scenarios pre-production.  

The description for sub-practice 23 (defining traceability) of the RMCM shall be 
amended to include provision of traceability between the user requirements, the tech-
nical specification, the associated hazard analysis and the software verification. 

5.2   Changes to the Company’s Procedures 

While employees were aware of RM procedures, training provided to date has been 
inadequate. Performing the base practices of the RMCM alone is not sufficient - con-
sideration must also be given to performing the level Med practices in GG2 (Institu-
tionalise a Managed Process).  Without this, the base practices of GG1 may not be 
performed sufficiently or by the correct person, and could have a significant negative 



34 J. Burton, F. McCaffery, and I. Richardson 

impact on software risk-analysis and control.  Training (GP 2.5) is a practice of GG2 
and adequate training must be provided to relevant personnel.   

The post-production section of the software RM procedure will be updated to spec-
ify that changes requested post-production must be analysed for risks due to the 
changes. Procedures will be updated to ensure traceability between the software 
changes specification and the original requirements in the software requirements 
specification, thus allowing QA to determine correct regression tests. 

The software changes specification procedure will be updated to state that software 
hazard and risk analyses must be performed for all changes listed and added to the 
software RM file. Thus, traceability will be provided from the changes specification 
to the corresponding analysis in the software RM file.  This will ensure a consistent 
method of performing risk analysis for software changes.   

6   Conclusion 

If the company’s procedure for implementing the RMCM activities is too cumber-
some or hard to follow, it runs the risk of being ineffective or not being implemented 
in the software projects.  The company’s procedure for software RM shall be re-
viewed with respect to making the process simpler without removing any of the level 
Med required practices.  It will be suggested to management within the company that 
they must ensure adequate time is allocated to the software RM activities for all soft-
ware projects or else they risk the possibility of negating the impact of the process 
itself. 

This paper has illustrated that the RMCM can be successfully implemented within 
one MD company, the next stage of this research project will be to transfer the re-
search to other MD companies and to demonstrate whether that the RMCM may be 
generalised. We also intend extending this research to establish if the RMCM will 
result in a decrease in medical device accidents related to software. 

Acknowledgements 

This research has been funded by Science Foundation Ireland through the Cluster 
project GSD for SMEs (Grant no 03/IN3/1408C) within the University of Limerick, 
Ireland.  This research is supported by the Science Foundation Ireland funded project, 
Global Software Development in Small to Medium Sized Enterprises (GSD for 
SMEs) within Lero - the Irish Software Engineering Research Centre (http://www. 
lero.ie).  

References 

1. World Health Organisation: Medical device regulations: global overview and guiding prin-
ciples (2003), ISBN 92 4 154618 2 

2. Burton, J., McCaffery, F., Richardson, I.: A Risk Management Capability Model for use in 
Medical Device Companies. In: 4th Workshop on Software Quality, ICSE 2006, Shanghai, 
China, May 21, 2006, pp. 3–8 (2006) 



 Improving Software Risk Management Practices in a Medical Device Company 35 

3. FDA: Quality Systems for Medical Device & Equipment/Software Manufacturers (QSR). 
Code of Federal Regulations (April 2005)  

4. Donawa, M.: Useful US Guidance on Device Software. Medical Device Technology (De-
cember 2005), http://www.medicaldevicesonline.com 

5. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1), 
32–41 (1991) 

6. FDA Mission Statement, 
 http://www.fda.gov/opacom/morechoices/mission.html 

7. Eagles, S., Murray, J.: Medical Device Software Standards: Vision and Status (2001), 
http://www.devicelink.com/medicaldevicedi/archive/01/05/002.
html 

8. CMMI Product Team: Capability Maturity Model® Integration for Development, Version 
1.2, Technical Report CMU/SEI-2006-TR-008 (2006), http://www.sei.cmu.edu/ 
publications/documents/06.reports/06tr008.html 

9. FDA/CDRH: Guidance for the Content of Premarket Submissions for Software Contained 
in Medical Devices (May 2005), http://www.fda.gov/cdrh/ode/guidance/ 
337.pdf  

10. FDA/CDRH: Guidance for Off-the-Shelf Software Use in Medical Devices (September 
1999), http://www.fda.gov/cdrh/ode/guidance/585.pdf 

11. FDA/CDRH Guidance Document. General Principles of Software Validation, Final Guid-
ance for Industry and FDA Staff (January 2002)  

12. FDA Regulations: Code of Federal Regulations 21 CFR Part 820 (April 2006), 
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=820&s
howFR=1 

13. ANSI/AAMI/ISO 14971: Medical devices – Application of risk management to medical 
devices (2007)  

14. ANSI/AAMI/IEC 62304:2006: Medical device software - Software life cycle processes 
Association for the Advancement of Medical Instrumentation (July 2006), 
http://www.techstreet.com/cgi-bin/detail?product_id=1277045 
ISBN 1-57020-258-3 

15. BS EN 60601-1-4: Medical Electrical Equipment, Part 1 - General requirements for safety 
(2000)  

16. IEC 60812: Analysis technique for system reliability- procedure for failure modes and ef-
fects analysis (FMEA) (1985)  

17. ISPE: GAMP Guide for Validation of Automated Systems. GAMP 4 (December 2001), 
http://www2.ispe.org/eseries/scriptcontent/orders/ProductDet
ail.cfm?pc=4BOUNDFUS 

18. AAMI TIR32: Medical device software risk management (2005)  
19. AAMI: New Guidance Offered on Software Risk Management 40(2) (2005)  
20. Baskerville, R.L.: Investigating Information Systems with Action Research. Communica-

tions of the Association of Information Systems 2, article 19 (1999)  
21. Susman, G., Evered, R.: An Assessment of The Scientific Merits of Action Research. Ad-

ministrative Science Quarterly 4(23), 582–603 (1978) 
22. Liamputtong, P., Ezzy, D.: Qualitative Research Methods, 2nd edn (2006), ISBN  

9 78019551 7446 
23. FDA/CDRH: Software related recalls for fiscal years 1983-91. US Department of Health 

and Human Services (1992) 
 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 36 – 50, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Framework to Evaluate Software Process Improvement 
in Small Organizations 

Pedro E. Colla1 and Jorge Marcelo Montagna2 

1 EDS ASFO – Av. Voz del Interior 7050 -- EDS Argentina  
pedro.colla@eds.com 

Facultad Regional Santa Fé – Universidad Tecnológica Nacional 
pcolla@frsf.utn.edu.ar 

2 INGAR - Avellaneda 3657 -- CIDISI – FRSF – UTN  
mmontagna@santafe-conicet.gov.ar 

Abstract. Organizations of all sizes understand the benefits to consider Software 
Process Improvements (SPI) investments, still many of them and in particular the 
smaller ones are reluctant to embrace this kind of initiatives. A systemic model is 
presented in this article as a tool aiming aiming to provide an initial understanding 
over the behavior of the different organizational variables involved and their 
complex interactions within a SPI effort, their contribution to the improvement ef-
fort, the resulting value sensitivity to model parameters, the systemic relations at 
large and the limits derived from the holistic interaction of all in order to be used 
as a scenario analysis tool to identify the SPI strategies which best suit a given or-
ganization business context thru the maximization of the value obtained from the 
investment. 

Keywords: Software Process Improvement, SPI, CMMI, Simulation, Dynamic 
Models. Small Organizations, Software Engineering Economics. Net Present 
Value. 

1   Introduction 

For software development organizations, specially small and medium sized, the man-
agement dilemma is how to justify the investments required to improve the software 
processes (Software Process Improvement, SPI) [07] on a business context where 
bigger competitors, quite of a global scale, undertake similar actions leveraging much 
larger structures and therefore able to absorb better the costs impacts produced by the 
SPI initiative [40] . At the same time the consideration of competitors of similar scale 
which not introducing significant improvements on their core processes enjoy a short 
term competitive advantage and less margin erosion is needed. 

Organizations of all sizes understand the benefits to consider SPI initiatives, still 
many of them and in particular the smaller ones are reluctant to embrace this ap-
proach. Scenarios and results captured by the bibliography [08,28,39] reflects the 
experiences of large scale organizations leaving smaller ones wondering whether an 
SPI approach is realistic for them. A perception of larger companies being able to tap 



 Framework to Evaluate Software Process Improvement in Small Organizations 37 

on deeper pockets or leverage corporate financial muscles to fund SPI investments 
leads to the a-priori estimation on smaller companies that formal endeavors to per-
form structural changes in their software development process through an structured 
SPI effort are simply outside their realm of possibilities. 

This aspect turns out to become of particular relevance since on the national or re-
gional context of emerging economies small and medium software companies offer-
ing off-shore services to a globalized landscape are far smaller than the organizational 
sizes typically referred to at the bibliography. 

Even though SPI efforts attempted at small and medium companies has been 
documented previously [10,13,25,31,32,49] the focus is often placed at qualitative or 
methodological factors rather than quantitative ones; it seems the implicit assumption 
is for SPI efforts to be unconditionally a good initiative no matter what the business 
context where the company operates really is. 

This notion has been challenged by several authors [16,23] where the actual af-
fordability and suitability of formal CMMI oriented SPI initiatives for Small and 
Medium Enterprises (SME) is questioned from different perspectives. 

The paper proposes a contribution in three areas at the evaluation of SPI initiatives. 
First a systemic framework aimed to model the main parameters driving an SPI effort 
and their interrelations in a single model for the overall value gained by the organiza-
tion on doing the SPI investment is proposed.  Although many of the relations can be 
found dispersed in the referred sources, the consolidation into a single model and the 
validation of their systemic consistency is a contribution of the research activity per-
formed by the authors. 

Second the Net Present Value (NPV) is proposed as a suitable instrument to meas-
ure that value as part of a decision process as a difference with the economic indica-
tors most often used by the bibliography.  

Finally, the third contribution is to run the model under a combination of ranges 
found in the literature and assumptions made by the authors in order to preliminary 
explore the usefulness of such instrument for a small or medium sized organization to 
validate decisions and explore trade-offs using a rational base. 

Since actual data aren’t fluidly available the analysis is performed through a dy-
namic stochastic simulation model where the behavior of different factors, their con-
tribution to the improvement effort, the sensitivity of the final result to the model 
parameters and the practical limits can be explored. 

The model is built by identifying the main factors involved at the organization 
level, the external context and the intrinsic components of the SPI effort as reflected 
in the available bibliography (see Investment Modeling), because of space constraints 
identified relationships between factors and transfer functions considered in the model 
has been consolidated in the appendix of the paper (see Appendix II). 

In order to handle the dispersion of the parameters as reported by the bibliography 
a Monte Carlo simulation technique is used where the system variables, the uncer-
tainty of the results, the Sensitivity to different investment strategies and the limits for 
a reasonable return can be explored (see Model Execution). 

Finally some limits of the approach and conclusions are explored (see Conclusions). 



38 P.E. Colla and J.M. Montagna 

1.1   Process Improvement Framework 

The SEI CMMI v1.2 reference model guides the deployment of SPI efforts through 
the formulation of a framework to help develop a comprehensive process that unveils 
the organization’s technologic potential at delivering software products; positive cor-
relation between the maturity level and better performance is backed up by many 
industry and academic references [03,12,19,28,34,35,47]. The SEI-CMMI model 
specifies what goals must be achieved at Process Areas through the satisfaction of 
both generic and specific goals on each one through the usage of generic and specific 
practices [12,43], actual details of the implemented process is left to each organiza-
tion to decide. 

Although other reference models can equally be eligible for this purpose, the SEI-
CMMI receives significant industry acceptance at a global scale, a long standing re-
cord of application and some metrics for the results obtained by different organiza-
tions as referred by different authors [02,07,19,34,35,38]. The framework is not going 
without significant criticism. Conradi [16] among others had presented evidences 
against formal CMMI based SPI approaches to obtain sustainable improvement at 
many organizations, but at the same time seems to conclude that organizations faces 
substantial competitive pressure to achieve market required levels of maturity under a 
globally recognized framework as an essential requirement from international cus-
tomers trying to reduce the “buyer risk” of undertaking off-shore projects. 

It’s certainly not a surprise that the SEI records shows [43] a significantly higher 
number of organizations undertaking formal SEI-CMMI evaluations at off-shore 
markets than typical target markets for off-shore activities like the US and Europe. 

2   Investment Modeling 

In order to address a SEI-CMMI based SPI initiative the organization will require 
undertaking a significant effort into developing and implementing policies, plans, 
processes, instruments and metrics associated with the satisfaction of each one of the 
Process Areas of each Maturity Level.  The transfer functions has been established 
starting with the variables and systemic relations relevant to a software process as 
identified originally by the work on dynamic models formulated by Abdel-Hamid [01] 
and later proposed by Carrillo [09] and Ruiz [41] as to be used in the analysis of soft-
ware process improvements efforts; the internal factors of the process improvement 
modeling  has been used as identified by Hayes [27] .  

This paper integrates also functional relations dispersed in the bibliography into a 
consolidated model enabling the study of their systemic behavior as one of the contri-
butions. The model relations are going to be discussed in detail at the next section. 

2.1   Implementation Costs 

Different authors [19,21,28,42,50] supports the need to invest a significant fraction of 
the organizational resources through the implementation of a mature process as a 
Software Process Improvement Effort (Espi) which would require a proportion of the 
Total Organization Staff (N) to be allocated to the SPI activities (Kspi), the Software 
Process Improvement Effort is then given by [[Ec 2]. 



 Framework to Evaluate Software Process Improvement in Small Organizations 39 

The implementation has to be followed by an institutionalization effort aiming to 
ensure the implemented processes are effectively understood and used by the organi-
zation at large through a sustained Training Effort (Et). Walden [50] among others 
provide some data on the magnitude of this effort. 

The training effort is composed by the Training Preparation Effort assumed to be 
related to the number of Process Areas (NPA) to be evaluated on the target maturity 
level and the effort to deliver the training which is made by the Training Effort per 
Person and Process Area (EPA), the total Training Effort will then be as in [[Ec3]: 

The Training Effort would be distributed, assumed evenly in this model, through 
the entire SPI implementation.  

At the same time the formal assessment of the maturity level means to transit a 
number of informal evaluations as defined by the Standard CMMI Appraisal Method 
for Process Improvement (SCAMPI) Class “C” and “B”  or equivalent, followed by a 
maturity level assessment given by a formal Class “A” appraisal (SCAMPI-A); the 
SEI and other authors [28,43,48,50] provides a framework to estimate the Appraisal 
Preparation Effort (Eap) and the Appraisal Delivery Effort (Ead) the organization has 
to incur to get ready and perform the appraisal. Also the organization will need to 
fund during the appraisal the Appraisal Costs (Ca) for consultancy fees and other 
event related expenses; this cost is normalized into effort units for model consistency 
through the Cost per Engineer (CPE) the organization has as in [[Ec 4].  The total 
Appraisal Effort (Ea) is considered to be incurred mostly toward the end of the im-
plementation period and it is given by [[Ec5] 

2.2   On-going Returns 

Assuming the organization achieves the aimed maturity level after the assessment a 
fraction of the resources would still be required to maintain, adapt and evolve the 
implemented process framework deployed in order to ensure a consistent usage as 
well as an on-going alignment with the organizational goals, the effort to perform this 
activity is the Software Engineering Groups Effort (Esepg) which will be  a proportion 
(Ksepg) of the Total Organization Staff (N) as shown by [[Ec 6] 

Although it would be reasonable to expect organizations to realize benefits as they 
move through the implementation of the different practices a conservative approach 
taken in this model is to assume all benefits will realize only after the organization is 
formally evaluated on the target maturity level. 

At the same time, it is likely that even if the organization fails to achieve a given 
target maturity level all major software process areas would be in a better perform-
ance than at the beginning of the project. This model assumes that no benefit will be 
collected out of the investment performed unless the maturity level is formally ob-
tained. The benefits of a given maturity level would came in the form of an improved 
quality as measured by an reduction in the Cost of Poor Quality (CoPQ) [17,18,30] , 
an enhanced capability to meet schedule commitments as well as significant im-
provements in cycle time and in overall productivity among others [04,07,19,35].  

Clark [11], provides the perspective that all benefits could be summarized as a re-
duction of the non-value added effort expended by the organization to achieve a result 
in a way that less effort can be required to achieve the same result or more results 
achieved with the same effort.  This can also be seen as an improvement of the overall 



40 P.E. Colla and J.M. Montagna 

productivity. The modeling approach used the Productivity Income (Iprod) as the return 
of the SPI effort to represent the savings achieved compared with operating in a lower 
level of maturity; this is considered the source of return of the SPI effort and the main 
financial reason to justify it.  The magnitude of this factor is assumed to be an equiva-
lent fraction (Kprod) of the Total Organization Size (N) as reflected by [[Ec 7]: 

The net flow of benefit (Vi) the organization are going to receive as shown by 
[[Ec8] will occur since the appraisal is completed at Implementation Time (ti) and as 
long as the Investment Horizon (tp) allowed by the organization to collect resources 
last. This timeframe is often called the Recovery Time (tr). 

Although the nature of the SEI-CMMI improvement process, with several non-
rating instances of appraisal, allows for a comprehensive evaluation of the organiza-
tion progress at implementing the different Process Areas the factual data [44] still 
suggest the final appraisal success is not guaranteed. 

A surprisingly high number of appraisal failures for organizations trying to achieve 
maturity level 2 and a reduced number for higher maturity levels suggest the need to 
factor this element in the model. 

The Appraisal Success Rate (ξ), even with a risk of being too optimistic, corre-
sponding to each maturity level (see Appendix I) are considered and reduces the ex-
pected flows as seen in [[Ec8] by this rate as shown in [[Ec9]. 

2.3   Investment Analysis 

The Return on Investment (ROI) has been extensively used in the bibliography 
[05,07,19,23,46] as the main indicator to evaluate investments in SPI; it measures the 
investment as the relation between expenditures required and incomes obtained within 
a given timeframe selected by the organization as the Investment Horizon (tp). 

Ideally all investments verifying the condition ROI ≥ 1 are desirable to be made. 
Given different simultaneous investment opportunities the one with the higher ROI 
should capture in preference the organization resources as it would create the higher 
wealth in return. This approach has been criticized [35,48] as not providing uniform-
ity among different initiatives making difficult to compare results between different 
organizations. 

At the same time, the ROI has very limited capability [06] to factor a proper com-
pensation for the time and risk value of money. Given the fact that SPI efforts require 
quite significant investment horizons and are performed by organizations operating at 
moderate to high risk levels it is relevant to introduce both factors in the decision 
analysis. 

Investment analysis based in the Net Present Value (NPV) captures both the time 
and risk through the discount of the flows over time at a rate called the cost of the 
capital or the opportunity cost ( r) and therefore it is often referred to as having a 
better performance at evaluating an investment than other pure economical based 
methodologies  [04,06,22,29]; for this reason it is adopted in this paper as the way to 
compute the value created. 

The NPV discounts the cash flows using the best return the organization could get 
out of an investment of equivalent risk. Cash flows are typically a sequence of dis-
crete individual flows {F1,..,Fn}  whose NPV is given by [Ec 10]. In some cases the 
flows are better modeled by a continuous function rather than discrete events and 



 Framework to Evaluate Software Process Improvement in Small Organizations 41 

therefore it is also possible to represent them as a continuous flow F(t) where the ex-
pression turns into [Ec11] where the instantaneous opportunity cost (δ) is a continu-
ous equivalent capitalization cost. By combining the values of [Ec 2] through [Ec9] 

normalized to their present value the Net Present Value can be expressed by [  

Replacing terms in the [Ec1] a final expression for the NPV used in the model is ob-
tained [Ec1B] 

[Ec1B] 

[Ec1] )()()()( tspiaii EPVEPVEPVVPVNPV −−−=   

Replacing terms in the [Ec1] a final expression for the NPV used in the model is ob-
tained [Ec1B] 

[Ec1B] 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×++

+
−×= ∫∫ −−

i

i

p

i

t
t

tSPIt
a

t

t

t
ii dteEE

r

E
dteVNPV

0

)(
)1(

δδξ  

Although the NPV is intended to reflect cash flows this model uses a normalized 
cost based on the effort in order to concentrate in the relations between factors rather 
than the absolute magnitude in any given currency. In this scenario the organization 
decides at which Total Organization Size (N) the operation is desired, which Maturity 
Level (CMMI) as defined by the SEI CMMI v1.2 model wishes their processes to be 
executed and what is the competitive Investment Horizon (tp) allowed to obtain tangi-
ble results from the investment which is required to yield a reasonable return for the 
time and risk as measured by the opportunity cost (r ). 

The nature of the improvement effort defines which is the likely Implementation 
Time (ti) a given maturity level requires and that defines the remaining time to obtain 
the benefits which make the investment viable. 

At the same time each maturity level will drive which percentage of the organiza-
tion has to be allocated to the SPI Effort (Kspi) as well as the maintenance effort pro-
portion (Ksepg) afterwards and the effort improvement  (Kprod) which is realistic to 
expect as a result. The selected maturity level selected (CMMI) would define the 
number of Process Areas (Npa) which are going to be implemented as well as the 
likely training effort (Epa) associated to each one. 

The model assumes the organization progress from one maturity level to the next 
available level in a discrete and monotonic increasing way. 

2.4   Other Investment Critical Factors 

Some authors [20,33,38,44] highlights other intangible factors obtained from the SPI 
investment such as improvements in organizational image, staff motivation, customer 
satisfaction as well as organizational cultural climate as strong motivations for the 
effort to be performed. Small and medium sized organizations in particular will de-
pend critically for their survival on several other factors [16,23,25,45] such as the 
quality of the human resources, the establishment of agile organizational relations, the 
business model flexibility, the legal context, the organizational model adopted and the 
decision speed as well as interrelation fabric between areas, the debt taking capability, 



42 P.E. Colla and J.M. Montagna 

the critical adaptability speed and the very low capacity to survive on a restricted cash 
flows environment among others. 

Although very important the previously enumerated factors are difficult to incorpo-
rate in a model like the one presented by this paper; however all of them can concep-
tually be considered increasing or decreasing the strengths of the organization and 
therefore changing the certainty of their results.  

As the certainty of the results ultimately drives the risk under which the organiza-
tion operates these factors should largely be represented by the risk premium compo-
nent of the opportunity cost the organization uses to evaluate their investment deci-
sions. Then by incorporating the opportunity cost on the model some of the critical 
factors, even partially, can be captured.  

This represents a clear improvement in the analysis of an SPI investment as com-
pared with the more classic usage of ROI and other economic formulations where 
neither the time nor the risk cost of the money is factored in the investment decision. 

2.5   Opportunity Cost 

As the organization progressively improves the maturity level as measured by the 
SEI-CMMI model the bibliography reflects a consistent improvement in the cost and 
schedule performance. Therefore a reduction in the business risk should drive a reduc-
tion of the opportunity cost as well. 

In order to compute the variation because of this factor the average variation and 
the standard deviation of the Net Present Value in a maturity level (μi,σi) is compared 
with the same factors when a maturity increase has been made (μo,σo); the risk varia-
tion factor (λ)[26] is then defined by [Ec12]. 

The return provided by a secure financial asset provided by the market, often the 
yield of the 30 yr US Treasury bonds is used with this purpose, is considered the time 
compensation for the money ant it is called the risk free discount rate (rf) the modified 
cost of opportunity (r’)  reflecting the reduction in uncertainty would given by [[Ec13] 
and all other factors being equal a reduction in the opportunity cost would improve 
the NPV which can be considered a legitimate additional value created by the in-
creased level of maturity achieved through the SPI effort. Previous effort by the au-
thors provided some insights in the possible range of values this factor could take 
[14,15]. 

3   Model Execution 

In order to compute the model it is implemented using a GoldSim® platform [29] 
where the variables, relations and typical value distributions are defined as per the 
Equations shown in Appendix II. 

When computed in this way the typical NPV evolution of a simulation instance can 
be seen at Figure 1; the expenditures in the deployment of the SPI actions drives the 
NPV to become more and more negative; towards the end of the implementation time 
(ti) the rate of change accelerates as the expenditures reaches a maximum when ap-
praisal related costs are incurred. 



 Framework to Evaluate Software Process Improvement in Small Organizations 43 

 
Fig. 1. NPV evolution with time on a typical 
SPI simulation run 

Fig. 2. NPV Probability distribution for a ty- 
pical SPI simulation run 

Once the new maturity level is obtained at time ti after a successful appraisal the 
organization starts to collect productivity gains net of the process maintenance costs 
which drives an improvement of the NPV until it eventually, if allowed enough time, 
become positive, the moment in time the NPV becomes positive is where the invest-
ment has been fully paid back in financial terms. 

The fact most variables can not be assigned with unique values but for ranges or 
probabilistic distributions of possible values makes the model to be far from being 
deterministic; the bibliography reports ranges of values for each parameters and in 
some cases suggest some possible distributions;  this information is used to run the 
model with an stochastic methodology in order to evaluate the range of possible re-
sults; a sample outcome for a given run would be, as seen in Figure 2, where a typical  
probability distribution of the NPV is shown summarizing the results of the stochastic 
evaluation of the model. 

By computing the area below the curve for values where a positive NPV is ob-
tained the probability of a project success can be assessed; each organization could 
then match their own risk acceptance profile with the investment parameters that yield 
an acceptable outcome.   

The results of a run with variations in all major parameters is shown in Figure 3; 
the model highlights increases in the  NPV as to be sensible to Organizational Size 
(N), the CMMI level at which the organization is willing to achieve and the Invest-
ment Horizon (tp); increases in these factors also increases the NPV outcome. 

As either the Appraisal Cost (Ca) and the Opportunity Cost (r )  increase the NPV 
is reduced. The Cost per Engineer (CPE) improves the NPV as it gets higher likely 
because the fixed SPI costs gets diluted by the higher returns provided by the im-
proved productivity from the operation in a higher maturity level by a more expensive 
group. 

Several scenarios are explored by means of varying the external parameters of the 
model. Just to perform a quick overview of the main trends it’s assumed a typical 
organization are assumed to have a staff of 100 persons, trying to achieve a maturity 
level given by CMMI Level 3, they will allow a total investment horizon of 48 
months, will operate in the offshore environment with a typical cost per engineer of 
 



44 P.E. Colla and J.M. Montagna 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 46 64 82 100 120 140 160 180 200

CMMI L2

CMMI L3

CMMI L4

CMMI L5

 

Fig. 3. NPV Sensitivity to Organizational 
Factors 

Fig. 4. Dependency of Organization Size 

USD 30K per year and will financially take as the opportunity cost an effective an-
nual rate of 15%. All scenarios are ran varying one of the parameters through the 
range of interest while keeping the rest set at the previous values in order to be able to 
evaluate the variation dynamics. 

3.1   Organization Size Sensitivity 

Running the model for different maturity levels and organizational sizes the probabil-
ity to obtain a viable project increases with the size of the organization as seen in 
Figure 4; this can be interpreted as the effect of the critical mass required for the pro-
ductivity gains to offset the investment required. In this implementation of the model 
the apparent difficulty of organizations to achieve CMMI Level 2 is derived from the 
relatively high failure rate this level has as reported by the SEI-CMMI and other 
sources [43], although this result strikes as odd at first glance it results reasonable on 
deeper analysis, specially counting on the fact that the number of failed attempts at 
maturity level increases are likely to be much higher but not captured by any formal 
framework. 

On a higher level of analysis there are no significant differences in the ranges of 
parameters observed during the SPI effort with the organization size other than the 
obvious capability to sustain a larger investment horizon, to perceive the investment 
as less risky for the entire operation and having fewer dependencies on cash flow 
issues associated with the appraisal effort. While the options larger organizations 
might have at their disposal in terms of the key strategies to adopt for their SPI might 
be larger than in smaller organizations the behavior of their outcomes and parameters 
does not necessarily are different. 

3.2   Investment Horizon Sensitivity 

As the Investment Horizon increases the likelihood of a successful project increases 
as well. Considering the time to implement and the time to recover the model suggest 
48 months to realistically be the horizon required to obtain returns at reasonable risk 
as shown in Figure 5. 
 



 Framework to Evaluate Software Process Improvement in Small Organizations 45 

Probability of Positive Net Present Value
CMMI 3 - N=100 - r=15%

0%

10%

20%

30%

40%

50%

60%

70%

80%

36 38 40 43 45 48 49 51 53 54 56

Investment Horizon (tp) in Mo

P
(x

)

 

Probability of Positive Net Present Value
CMMI 3 - N 100 Persons - tp=48 mo - r=15%

0%

10%

20%

30%

40%

50%

60%

70%

80%

20.000 24.000 28.000 32.000 36.000 40.000 52.000 64.000 76.000 88.000 100.000

CMMI Assessment Cost (USD)

P
(x

)

 

Fig. 5. Dependency from Investment Horizon Fig. 6. Dependency from Maturity Appraisal 
Costs 

3.3   Appraisal Cost Sensitivity 

Many small organizations might perceive a formal CMMI appraisal is too upscale for 
them. Then the model is used to validate that perception by a simulation. The result 
shows in Figure 6 the probability of achieving a positive NPV is influenced very little 
by the Appraisal Costs suggesting this shouldn’t be a strong consideration when un-
dergoing an SPI investment.  

3.4   Cost per Engineer Sensitivity 

Through the model formulation a typical off-shore cost per engineer (CPE) has been 
considered, especially to seize the relative impact of the fixed appraisal costs in the 
overall cost of the project. The impact of varying this parameter can be seen in 
Figure. 7. As expected the higher the Cost per Engineer is the better the results of 
the SPI effort are projected to be.  

 
Probability of Positive Net Present Value

CMMI 3 - N=100 - tp=48 mo - r=15%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

25.000 26.000 27.000 28.000 29.000 30.000 44.000 58.000 72.000 86.000 100.000

CPE (USD/Yr)

P
(x

)

Probability of Positive Net Present Value 
CMMI 3 - N=100 - tp=48 Mo

62%

64%

66%

68%

70%

72%

74%

76%

78%

80%

10% 11% 12% 13% 14% 15% 17% 19% 21% 23% 25%

r (%)

P
(x

)

 

Fig. 7. Dependency from Cost per Engineer Fig. 8. Dependency from Opportunity Cost 

It is remarkable that although this should suggest a bigger drive to undertake SPI 
efforts in business contexts where the CPE is higher (typically target for off-shore 
offerings) evidence shows [43] exactly the contrary which requires as a conclusion 
that other factors needs to be considered. Among the factors to make candidate to 



46 P.E. Colla and J.M. Montagna 

capture this behavior is the value of reducing the “buyer risk” for the customer ena-
bling new customers or additional work from existing customers. Off-shore compa-
nies willing to mitigate the perceived risk on the customer for a workload transfer to a 
remote location might present a higher maturity in their processes as the strategy to 
address the issue. 

3.5   Opportunity Cost Sensitivity 

Through the evaluation a typical opportunity cost of 15% was used as assumed to be a 
reasonable value for technology companies. It is natural to evaluate the impact for 
organizations discounting their investment projects at different levels representative 
of the operational risks at different industries and business contexts.  

The results shown in Figure. 8 shows that NPV results deteriorates as the organiza-
tion operates in more volatile segments of the market where the risk is higher and 
therefore the opportunity cost should reflect that. 

This back ups the findings by Conradi [16] who suggested that many small organi-
zations could not afford to step into an investment with a large horizon because of the 
demanding nature and volatility of the markets they choose to operate. 

3.6   Limitations and Further Work 

Many simplifications has been adopted in the formulation of the model, therefore the 
results has opportunity for improvement and should be taken as preliminary; the 
ranges used for the parameters requires further research and confirmation. 

The model is evolving from a research and theoretical construct and further valida-
tion with practical observations needs to be done. 

Additional factors are needed to identify additional benefits explaining organiza-
tions with lower Cost per Engineer to embrace SPI efforts often than these with 
higher costs as it should make sense based on the current set of benefits. 

Data ranges for typical parameters has been integrated from different sources and 
even if the author’s validation shows no obvious conflicts further steps to validate the 
model as a whole needs to be done. 

Finally, the model also requires incorporating additional factors such as the intan-
gible organization impacts obtained from the SPI effort; a better calibration based on 
maturity improvement experiences from organizations at the National or Regional 
level would be an important improvement to perform in order to verify the ranges of 
results obtained in the bibliography holds.  

4   Conclusions 

The model formulation and validation process can be regarded as complex but the actual 
execution to evaluate a given organizational environment and decision options can be 
quite straightforward; the end results is given in standard financial analysis terms and 
therefore should be easily integrated into a conventional investment analysis case. 

The work suggest the usefulness to enable small organizations facing a SPI in-
vestment decision with the ability to use the model as a tool during the decision  



 Framework to Evaluate Software Process Improvement in Small Organizations 47 

process; the match between the outcome of the model and results reflected by the 
bibliography are encouraging. 

For this organizational target to have the possibility to evaluate the trade-offs be-
tween different investment scenarios is one of the benefits of the approach, even con-
sidering further work is required to refine the parameters used and the need to capture 
some additional elements to better explain the empirical evidence.  

The usage of the NPV as the main evaluation of the investment seems to add flexi-
bility and to better capture the realities of the financial pressure small organizations 
have when facing this type of investment. 

The preliminary execution of the model suggest that maturity improvements to up 
to CMMI L3, which is typically considered the gate to participate in larger interna-
tional projects, can be achieved by relatively small organizations with reasonable risk 
and organizational sacrifice.  

The results to achieve higher maturity levels are aligned also with what the authors 
estimate is the reasonable growth of a successful organization in the technology mar-
kets in the implementation time of the higher maturity levels and still are within the 
realm of relatively small companies. 

A realistic investment horizon seems to be 48 months, the probability of a success-
ful investment with smaller horizon although not zero is considerably smaller. 

Organization, especially SMEs, will require help to hedge the difference between 
the payback required by their financial resources and the investment horizon required 
by SPI initiatives. Therefore the model might also bring some aid to formulate indus-
try or government policy to create financial and economic instruments to sponsor SPI 
initiatives. 

The sensitivity of the final result is very much depending on the implementation 
schedule as this factor is having a two fold impact on the NPV because if the time 
gets larger the implementation costs would typically be greater and the returns will be 
farther into the future therefore reducing their financial attractiveness. 

The need of placing emphasis in methodologies, best practices and tools to reduce 
this time as a gate factor for smaller companies to become enabled to operate as high 
maturity organizations is strongly suggested by the results. 

The appraisal cost has a lower impact in the overall investment performance than 
often assumed; although in need of being optimized the results suggest this is not 
necessarily a priority direction to be taken by the industry. 

The organizations operating in highly volatile market segments, and therefore dis-
counting their capital investment at higher opportunity costs would have objective 
issues on implementing formal projects unless there is income or underlying assets 
outside the software development projects that gets impacted in their valuation be-
cause of the higher certainty yield by the operation at higher maturity levels. 

References 

[1] Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics: An Integrated Approach. 
Prentice-Hall, Englewood Cliffs (1991) 

[2] Agrawal, M., Chari, K.: Software Effort, Quality and Cycle Time. IEEE Transactions on 
Software Engineering 33(3) (March 2007) 

[3] Bamberger, J.: Essence of the Capability Maturity Model. Computer (June 1997) 



48 P.E. Colla and J.M. Montagna 

[4] Barbieri, S.: Framework the Mejora de Procesos de Software. MSE Thesis. UNLP, Ar-
gentina 

[5] Boria, J.: A Framework for understanding SPI ROI, Innovation in Technology Manage-
ment. In: PICMET 1997: Portland International Conference on Management and Tech-
nology, July 1997, pp. 847–851 (1997) 

[6] Brealey, R.A., Myers, S.C.: Fundamentos de Financiación Empresarial, 4ta ed. McGraw-
Hill 

[7] Brodman, J., Johnson, D.: ROI from Software Process Improvement as Measured in the 
US Industry. Software Process Improvement and Practice 1(1), 35–47 

[8] Capell, P.: Benefits of Improvement Efforts, Special Report CMU/SEI-2004-SR-010 
(September 2004) 

[9] Carrillo, J.E., Gaimon, C.: The implications of firm size on process improvement strategy. 
In: PICMET apos 1997: Portland International Conference on Management and Technol-
ogy, July 27-31, 1997, pp. 807–810 (1997) 

[10] Cater-Steel, A.P.: Process improvement in four small software companies. In: Software 
Engineering Conference, 2001. Proceedings, Australian, August 27-28, 2001, pp. 262–
272 (2001) 

[11] Clark, B.K.: Quantifying the effects of process improvement on effort. Software, 
IEEE 17(6), 65–70 (2000) 

[12] Clouse, A., Turner, R.: CMMI Distilled. In: Ahern, D.M., Mellon, C. (eds.) Conference, 
COMPSAC 2002. SEI Series in Software Engineering (2002) 

[13] Coleman Dangle, K.C., Larsen, P., Shaw, M., Zelkowitz, M.V.: Software process im-
provement in small organizations: a case study. Software, IEEE 22(16), 68–75 (2005) 

[14] Colla, P.: Marco extendido para la evaluación de iniciativas de mejora en procesos en Ing 
de Software. In: JIISIC 2006, Puebla, México (2006)  

[15] Colla, P.: Montagna M. Modelado de Mejora de Procesos de Software en Pequeñas Or-
ganizaciones. In: JIISIC 2008, Accepted Paper, Guayaquil, Ecuador (2006)  

[16] Conradi, H., Fuggetta, A.: Improving Software Process Improvement. IEEE Soft-
ware 19(I4), 92–99 (2002) 

[17] Demirors, O., Yildiz, O., Selcuk Guceglioglu, A.: Using cost of software quality for a 
process improvement initiative. In: Proceedings of the 26th uromicro Conference, 2000, 
September 5-7, 2000, vol. 2, pp. 286–291 (2000) 

[18] Devnani, S.: Bayesian Análisis of Software Cost and Quality Models. PhD Thesis, USC-
USA (1999)  

[19] Diaz, M., King, J.: How CMM Impacts Quality, Productivity, Rework, and the Bottom 
Line. CrossTalk 15(I3), 9–14 (2002) 

[20] Dyba, T.: An empirical investigation of the key factors for success in software process 
improvement. IEEE Transactions on Software Engineering 31(I5), 410–424 (2005) 

[21] El Emam, K., Briand, L.: Cost and Benefits of SPI. Int’l SE Research Network Technical 
Report ISERN-97-12 (1997) 

[22] Focardi, S.: A primer on probability theory in financial modeling The intertek group, Tu-
torial 2001-01 

[23] Galin, D., Avrahami, M.: Are CMM Program Investment Beneficial? Analysis of Past 
Studies – IEEE Software, 81–87 (November/December 2006) 

[24] GoldSim – Simulation Software (Academic License), http://www.goldsim.com 
[25] Guerrero, F.: Adopting the SW-CMMI in Small IT Organizations. IEEE Software, 29–35 

(January/February 2004) 
[26] Harrison, W., et al.: Making a business case for software process improvement. Software 

Quality Journal 8(2), November 



 Framework to Evaluate Software Process Improvement in Small Organizations 49 

[27] Hayes, W., Zubrow, D.: Moving On Data and Experience Doing CMM Based Process 
Improvement, CMU/SEI-95-TR-008 (1995) 

[28] Herbsleb, J.D., Goldenson, D.R.: A systematic survey of CMM experience and results 
Software Engineering. In: Proceedings of the 18th International Conference, March 25-
30, 1996, pp. 323–330 (1996) 

[29] Hertz, D.: Risk Analysis in Capital Investment. Harvard Business Review Nr 79504 (Sep-
tember 1979) 

[30] Houston, D., Keats, B.: Cost of Software Quality: Justifying Software Process Improve-
ment to Managers. Software Quality Professional 1(2), 8–16 (1999) 

[31] Illyas, F., Malik, R.: Adhering to CMM L2 in medium sized software organizations in 
Pakistan. In: IEEE INMIC 2003, pp. 434–439 (2003) 

[32] Kelly, D.P., Culleton, B.: Process improvement for small organizations. Computer 32(10), 
41–47 (1999) 

[33] Koc, T.: Organizational determinants of innovation capacity in software companies. 
Computers & Industrial Engineering – Elsevier Science Direct 53, 373–385 (2007) 

[34] Krishnan, M.S., Kellner, M.I.: Measuring process consistency: implications for reducing 
software defects. IEEE Transactions on Software Engineering 25(I6), 800–815 (1999) 

[35] Lawlis, P.K., Flowe, R.M., Thordahl, J.B.: A Correlational Study of the CMM and Soft-
ware Development Performance. Crosstalk, 21–25 (September 1995) 

[36] McGarry, F., Decker, B.: Attaining Level 5 in CMM Process Maturity. IEEE Software, 
87–96 (November/December 2002) 

[37] McGibbons: Proceedings of the 7th Software Process Engineering Group Conference 
(SEPG), Boston (1995) 

[38] McLain: Impact of CMM based Software Process Improvement MSIS Thesis, Univ of 
Hawaii (2001)  

[39] Niazi, M., Wilson, et al.: Framework for assisting the design of effective SPI implementa-
tion strategies. Elsevier JSS (accepted, 2004) 

[40] Raffo, D., Harrison, W., Settle, J., et al.: Understanding the Role of Defect Potential in 
Assessing the Economic Value of SPI. In: International Conference on SE, June 2000, 
Limerick, Ireland (2000) 

[41] Ruiz, M., Toro, M., Ramos, I.: Modelo Dinámico Reducido – Informe Técnico LSI-2001-
01, Departamento de Lenguajes y Sistemas Informáticos Universidad de Sevilla (2001) 

[42] Rico, D., Pressman, R.: ROI of Software Process Improvement: Metrics for Project Man-
agers and Software Engineers. J. Ross Publishing, Inc.,(February 2004) ISBN-13:978-
1932159240 

[43] SEI-CMU CMMI site, http://www.sei.cmu.edu 
[44] Siakas, K.V.: What has culture to do with CMMI? In: IEEE Proceedings of the 28th Eu-

romicro Conference (2002) 
[45] Stalhane, T., Wedde, K.: SPI, Why isn’t it more used? In: Euro SPI 1999 (1999) 
[46] Statz, J., Solon, B.: Benchmarking the ROI for SPI, Gartner-Teraquest Report 2002 

(2002) 
[47] Tvedt, J.: A modular model for predicting the Impacts of SPI on Development Cycle 

Time. PhD Thesis dissertation 
[48] Van Solingen, R.: Measuring the ROI of Software Process Improvement. IEEE Software, 

32–38 (May/June 2004) 
[49] Varkoi, T., Lepasaar, M., Jaakkola, H.: Priorities of process improvement outcomes based 

on process capability levels. In: Proceedings Conference on Quality Software, 2001. Sec-
ond Asia-Pacific, December 10-11, pp. 349–353 (2001) 



50 P.E. Colla and J.M. Montagna 

[50] Walden, D.: Overview of a Business Case: CMMI Process Improvement. In: NDIA/SEI 
CMMI Presentation, Proceedings 2nd Annual CMMI Technology Conference and User 
Group (2002)  

[51] Wilson, D., Hyde, K.: Intangible benefits of CMM-based software process improvement. 
Software Process: Improvement and Practice 9(4), 217–228 (2004) 

Appendix I-Model Parameters 

Parm Name UM Min Med Max Reference
Ksepg % Organization to SEPG %Org 0,8% 0,8% 0,8% [15,20,30,35]
Kprod Productivity Gain after SPI %Org 8,0% 22,0% 48,0% [07]
Kspi % Organization to SPI %Org 0,8% 0,8% 2,3% [15,20,35]
Ca Assessment Costs Person/Mo 8,0 12,0 16,0 Based on $20K-$30K-$40K range
Eae Appraisal Execution Effort Person/Mo 2,7 2,7 6,5 [09,20],10Persx2Wks+3Persx2W
Eap Appraisal Preparation Effort Person/Mo 0,6 0,9 1,3 [09,10,20]
ti Time to Implement Months 18,0 20,0 32,0 [ 10,15,18,20,35,37]
Etp Training Preparation Effort Person/Hr 12,0 18,0 24,0 [Authors estimation]
Epa Training Effort per PA-Person Person/Hr 4,0 6,0 8,0 [20,41] 

λ(∗∗) Npa ξ (*)
0,633 21 94%

(*) McGibbon [44] and SEI Assessment Data Base [50] / (**) Colla & Montagna [11,12,13]

CMMI Level
Level 3

 

Appendix II-Modeled Relations and Equations 

[Ec 2] NKE spispi ×=   [Ec3] ( )[ ] PAtpPAt NENEE ×+×= [Ec 4] ⎟
⎠
⎞⎜

⎝
⎛=

PE

a
ca C

CE

[Ec5]   caadapa EEEE ++= [Ec 6] NKE sepgsepg ×= [Ec 7] NKI prodprod ×=

[Ec8]   ( ) NKKV sepgprodi ×−= [Ec9] ( ) NKKV sepgprodi ×−×= ξ
[Ec 10] ∑

= +
=

n

t
t

t

r

F
NPV

0 )1(

[Ec11]

)1(

)(
0

rLn

dtetFNPV t

+=

×= ∫
∞

−

δ

δ
[Ec 12]

o

o

i

i

μ
σ

σ
μλ = [Ec13] )(' ff rrrr −×+= λ

 
 



On Deriving Actions for Improving Cost Overrun by
Applying Association Rule Mining to Industrial Project

Repository

Junya Debari1, Osamu Mizuno1, Tohru Kikuno1,
Nahomi Kikuchi2, and Masayuki Hirayama2

1 Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{j-debari,o-mizuno,kikuno}@ist.osaka-u.ac.jp
2 Software Engineering Center, Information-technology Promotion Agency

2-28-8, Honkomagome, Bunkyo-ku, Tokyo 113-6591, Japan
{n-kiku,m-hiraya}@ipa.go.jp

Abstract. For software project management, it is very important to identify risk
factors which make project into runaway. In this study, we propose a method to
extract improvement action items for a software project by applying association
rule mining to the software project repository for a metric of “cost overrun”. We
first mine a number of association rules affecting cost overrun. We then group
compatible rules, which include several common metrics having different values,
from the mined rules and extract improvement action items of project improve-
ment. In order to evaluate the applicability of our method, we applied our method
to the project data repository collected from plural companies in Japan. The re-
sult of experiment showed that project improvement actions for cost overrun were
semi-automatically extracted from the mined association rules. We can confirm
feasibility of our method by comparing these actions with the results in the pre-
vious research.

Keywords: association rule mining, project improvement actions, cost overrun.

1 Introduction

In recent software development, avoiding runaway projects has become a pressing need
to be resolved. However, the sources of the project success and failure are derived from
a wide range of the factors in the software development. Therefore, identifying or avoid-
ing the sources of the runaway projects is usually realized based on the experience of
the software developers. Utilizing empirical analysis of various project data to control
the software project is required.

In the most of development field in Japan, project data including various software
metrics are collected. However, usually, such data are not utilized for project control. In
many cases, reasons are following two-folds: (1) Since the data include much noises and
omissions, the analysis of the data is difficult, and (2) There are less time to tackle with
such problems for industries. Therefore, ease to use procedure for the project control
using a data-driven or experience-based methodology is required.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



52 J. Debari et al.

We have conducted studies to predict the final status of software projects based on
the data collected in the development field [1]. The results of the studies show only
possibility of project runaway. So it is difficult to know the cause of the result. Further-
more, since these studies aimed to offer global guide for development organization, it
is not sufficient to deal with individual problems in a software project.

Therefore, a method to extract factors that lead projects runaway and to feedback
knowledge from extracted factors to individual development project is required. To do
so, we introduced association rules mining for extracting such factors [2]. However, as-
sociation rule mining have several limitations. For example, according to the parameters
used for mining, too many or too few rules are found. Furthermore, although many sim-
ilar rules (intuitively, similar rules are rules whose antecedents include almost the same
metrics) are usually extracted by the association rule mining, we have to investigate
essential rules to feed back to development field.

This paper focuses on the analysis to extract the project attributes that affects cost
overrun by association rule mining. The experiment is conducted for the year 2006
version of the IPA/SEC repository consisting of 1,419 samples of enterprise software
development projects in Japanese companies. The IPA/SEC repository has been devel-
oped and maintained by Software Engineering Center (SEC), Information-technology
Promotion Agency (IPA), Japan [3].

Briefly speaking, we can feed back the result of analysis to the existing development
process as follows: At first, just after the requirements analysis, a metrics set for pre-
evaluation M0 is collected. Based on the M0 and the pre-constructed model, we predict
whether the project is going to excess the estimated cost or not. When the predicted
result indicates a fear of cost excess, we construct a plan to avoid the excess of the cost,
and then conduct the development.

In this analysis, we used association rule mining to determine the metrics set M0 and
the model to predict the cost excess. We also used association rule mining to extract the
actions (that is a set of association rules) for each project to avoid the fear of cost excess.

The rest of this paper is organized as follows: Section 2 addresses the objective of this
study. The data repository used in this research is described in Section 3. The analysis
using association rule mining for the cross-company data in Japan is described in Sec-
tion 4. A case study of this approach is shown in Section 5. Related works of this study
is described in Section 6. Finally, Section 7 concludes this paper.

2 The Proposed Approach

The objective of this study is to construct an approach to extract improvement plans for
the cost excess in the software development. This approach is an extension of existing
software development process. Figure 1 shows an outline of this approach.

The main procedure of the proposed approach is as follows:

Phase 1. Before the project begins, we extract improvement actions from industrial
project repository. We describe this approach in Section4.

Phase 2. Just after the requirements analysis of a certain software project, we collect a
metrics set for pre-evaluation M0 from the software project.



On Deriving Actions for Improving Cost Overrun 53

Requirements
Analysis

Design

Coding

Debug & Test

Operation / 
Maintainance

Collect Metrics M0

Past project 
data

Association
rules mining

(Step 1)

Association
rules

Analogous
analysis
(Step 2)

Rules related 
to cost overrun

Metrics M0

Predict result 
of project

Predicted to be 
cost overrun?No

Investigate
Improvement

actions
(Step 3)

Yes

Improvement
rules

Candidates for 
improvements

Development process

Phase 2

Phase 3

Phase 1 

Phase 4

Fig. 1. Outline of proposed approach

Phase 3. Based on the M0 and the pre-constructed model, we predict whether the
project is going to excess the estimated cost or not. We use association rule mining
to determine the metrics set M0 and the model to predict the cost excess.

Phase 4. When the predicted result indicates a fear of cost excess, we construct a plan
to avoid the excess of the cost, and then conduct the development. We also use
association rule mining to extract the actions (that is a set of association rules) for
each project to avoid the fear of cost excess.



54 J. Debari et al.

As for phase 3, the association rule mining provides some merits as follows: unex-
pected rules can be obtained from mined data, association rules mining can be applica-
ble to the insufficient data set, and so on. In the association rule mining, the number
of mined rules can be limited by the setting of two parameters support and confidence.
However, these rules usually include much meaningless rules practically. We thus have
to extract effective rules for the software project improvement.

As for phase 4, we refine the rules by using the compatibility of the association rules.
Intuitively speaking, we find analogous rules whose conclusion is inverse. We then call
such rules as “candidates for improvement rules”. By investigating these candidates, we
extract the improvement plans for the project. For example, assume that the following
association rule is found:

– “Less” effort for the review leads “low” quality of final product.

For this rule, candidates for improvement rules are as follows:

– “More” effort for the review leads “high” quality of final product.
– “Less” effort for the review and sufficient unit testing lead “high” quality of final

product.

Concrete definitions of candidates for improvement rules and improvement plans are
provided in Section 4.

3 Industrial Project Repository in Japan

We used the year 2006 version of the IPA/SEC repository as an industrial project repos-
itory. The repository consists of 1,419 software projects held in 19 Japanese companies.
The most of projects are business application software in Japan [3].

The detail of repository is described in the report from IPA/SEC [3]. Table 1 shows
a part of metrics collected in the repository. The metrics are used in this study. These
metrics are selected ones according to the discussions with IPA/SEC researchers. Met-
rics can be classified into three groups: controllable, environmental, and resultant. Con-
trollable denotes that these metrics can be controlled for the improvement during the
execution of the project. Controllable metrics are used for the antecedent of the associ-
ation rules. Environmental metrics denote a metric that is an environmental conditions
of project or system. Environmental metrics are also used for the antecedent of the as-
sociation rules but when these metrics are included in a rule, we need attention for the
interpretation of the rule. Finally, resultant metrics show the results of the project and
they are considered as a conclusion of the association rules. We can find 38 metrics as
controllable, 47 metrics as environmental, and 6 metrics as resultant.

4 Analysis by Association Rule Mining (Phase 1)

4.1 Association Rule Mining

Association rule mining is a data mining method, which extracts a data set called an
association rule. This represents relations of factors. An association rule X ⇒ Y means



On Deriving Actions for Improving Cost Overrun 55

Table 1. Metrics used in this study

Controllable metrics
New customer Category of business New cooperate company
New technology Role and responsibility Manifestation of priority of goal
Room for development site Use of operation tools Evaluation of plan (cost)
Evaluation of plan (quality) Evaluation of plan (duration) Test organization
Use of project management tools Use of configuration management tools Use of design support tools
Use of document management tools Use of debug/test tools Use of CASE tools
Use of code generator Use of development methodology Use of development framework
Environment and noise of development
site

Degree of manifestation of requirements
specification

Involvement of user for requirements
specification

Experience for the system of user Experience for the business of user Acknowledgement of user for design
Acknowledgement of user for require-
ments specification

Degree of understanding of user for the
design

Role and responsibility clarification be-
tween users and developers

Involvement of user in the acceptance
testing

Skill of project managers Skill and experience of developers in
business area

Skill and experience of developers in lan-
guages and tools

Skill and experience of developers in de-
velopment platform

Skill and experience of developers for
analysis and design

Ratio of FP per package Quantitative criteria of quality assessment

Environmental metrics
Domain of business Domain of business (category) Detail of business
Purpose of system Type of development projects Place of development
Configuration of development projects Type of use Number of users of system
Number of sites of system Maximum number of simultaneous users Use of Web technology
Process of on-line transaction Use of DBMS Type of system
Use of COTS Type of operation Architecture
Target of development: Linux Target of development: Windows Development life cycle model
Reference to similar projects Number of stakeholders for requirements Requirements for reliability
Requirements for availability Requirements for performance Requirements for maintainability
Requirements for portability Requirements for running cost Requirements for security
Legal regulation Actual FP (uncalibrated) Duration in months (planned)
Duration in months (actual) Planned effort of development project Quality assurance organization
Maximum number of developers Average number of developers Actual effort (5 phases)
Actual SLOC FP per month SLOC per effort
Actual duration of overall development Does duration match COCOMO model? Effort per actual duration
Actual FP per effort Actual FP per duration

Resultant metrics
Customer satisfaction (subj. evaluation) Success of the project (self evaluation) Cost overrun
Quality evaluation Duration overrun Number of failures

that if an event X happens, an event Y happens at the same time. An event X is called
antecedent, and Y is called conclusion. In this study, events X and Y are described as
a form of “metrics name = value”, for example, “Cost overrun = good”.

“Support” and “confidence” are the parameters evaluating the importance of associa-
tion rules. Support means the frequency of an association rule. Support of an association
rule X ⇒ Y is the probability that the event X and the event Y happen simultaneously
in the data set. Confidence of the association rule is the conditional probability of the
event X given the event Y . Confidence means the relationship between X and Y .

We set the minimum value of support and confidence for mining because combina-
torial explosion occurs without the threshold value of support and confidence.

4.2 Outline of Analysis

The outline of analysis performed for this study is as follows:

Step 0. First, we collect and prepare the data for analysis.
Step 1. We apply association rule mining to the data. The conclusion of association

rules are “Cost overrun = good” or “Cost overrun = bad”.



56 J. Debari et al.

Step 2. We extract Improvement Rules from the rules mined in the previous step.
Step 3. We inspect software project improvement actions from improvement rules.

In the following subsections, we describe the detail of each step.

4.3 Analysis for Cost Overrun

First, we explain steps 0 and 1 in which the analysis to obtain the association rules
related to the cost overrun is performed.

Step 0: Collecting Software Project Data. At first, we collect data from software
development and determine necessary metrics. The data from software development
projects have various metrics, and thus we need to choose metrics. In this step, we
prepare these data.

Step 0.1. We define goals to improve, and pick metrics indicating goals up.
Step 0.2. We choose metrics as parameters, and examine collected data carefully.
Step 0.3. We classify metrics into controllable, environmental, resultant. Metrics of

controllable and environmental are used as antecedent of association rules,
and metrics of resultant are used as conclusions of association rules.

Step 0.4. We decide data sets cut from collected data.

Step 1: Association Rule Mining. In this study, we perform association rule mining
with the following steps:

Step 1.1. We decide the conclusion of association rules. In this study, we chose “Cost
overrun”.

Step 1.2. We decide the minimum of support and the minimum of confidence.
Step 1.3. We apply association rule mining to the data, and store mined rules.

Thus, a lot of association rules are stored. In the next step, we extract important rules
from these rules.

4.4 Analysis for Project Improvement

Before explaining steps 2 and 3, we introduce the notion of analogous rules and project
improvement actions, which are key idea of this study. Then we explain the steps to
obtain the project improvement actions.

Idea of Project Improvement Actions. Here, we explain software improvement ac-
tions. First, we define “analogous rules” as follows:

When we find an association rule r1, we define MA
r1

as the group of metrics in an-
tecedent of the rule r1, and define MC

r1
as the group of metrics in conclusion of the

rule r1.
In a similar way, we define MA

r2
and MC

r2
. MA

r2
is the group of metrics in antecedent

of the rule r2, and MA
r2

is the group of metrics in conclusion of the rule r2.
If MA

r2
⊇ MA

r1
and MC

r2
= MC

r1
, the rule r1 and the rule r2 are “analogous rules”

about the group of metrics.



On Deriving Actions for Improving Cost Overrun 57

Example 1. Assume that the following rule r1 exists.
– Effort of review = low ⇒ Cost overrun = bad

The “analogous rules” of the rule r1 is as follows.
– Effort of review = high ⇒ Cost overrun = good
– Effort of review = high ∧ Effort of test = high ⇒ Cost overrun = good
– Effort of review = high ∧ Effort of test = low ⇒ Cost overrun = bad

However, the next rule is not a analogous rule because the antecedent of the rule is
different.

– Effort of test = high ⇒ Cost overrun = good

Here, we try to derive software project improvement actions in following method.
We focus on the rule r1 and the analogous rules. The conclusion of the rule r1 is “Cost
overrun = bad”. The contrast value of this is “Cost overrun = good”. If the conclusion
of the rule r2 is “Cost overrun = good”, we call this rule “improvement rule”. We define
RI

r as the group of “improvement rules”.

Example 2. Again, assume that the rule r1 exists, which is the same as example 1.
– Effort of review = low ⇒ Cost overrun = bad

Since the improvement rules are the rules whose conclusion is “Cost overrun =
good”, the improvement rules are extracted as follows:

– Effort of review = high ⇒ Cost overrun = good
– Effort of review = low ∧ Effort of test ⇒ Cost overrun = good

In this way, we get RI
r . Then, we define M I

r as the group of metrics indicating the
actions of project improvement. The derivation of M I

r is following. First, we derive
MA

t from each rule t in RI
r . Next, we make M I

r . The next expression represents M I
r .

M I
r =

⋃

t∈RI
r

MA
t

Then, we derive the project improvement actions from M I
r . This process is not auto-

matic. The project improvement actions are derived by experienced manager, developer,
and researcher.

Hence, we explain about the actions of software project improvement. The existence
of analogous rules means that the situations of software development are similar. If
situations are similar and conclusions are different, it is probable that these conclusions
are turned by changes of antecedent of the rules. Because he group M I

r includes these
cases, collecting M I

r means collecting factors changing project situations. Therefore,
we think of M I

r as the project improvement actions in this study.

Step 2: Extracting Improvement Rules. The procedure of this step is as follows:

Step 2.1. We focus the rule r whose conclusion is “Cost overrun = bad”. First, we
search r′, whose metrics in antecedent is comprised in the antecedent of r. The
conclusion of r′ is “Cost overrun”. Because there are a lot of rules such as r′, we
define these rules as R′

r.
Step 2.2. If the conclusion of r′ ∈ R′

r is “Cost overrun = good”, r′ is defined as rI

(improvement rule). We define the group of rI as RI
r .

Step 2.3. We make M I
r from the metrics in the antecedent of RI

r , and make candidates
of project improvement actions from M I

r .



58 J. Debari et al.

Step 3: Inspecting Project Improvement Actions. In this step, we validate project
improvement actions from M I

r .

Step 3.1. As we mentioned before, controllable metrics are considered as risk items
with corrective actions which mitigate the risks during the project. Accordingly,
we accept controllable metrics as project improvement actions by priority.

Step 3.2. Environmental metrics have a high probability of difference in the constrained
condition of the software projects. Therefore, we don’t consider these metrics as
improvement actions.

5 Case Study: Application to Actual Development

5.1 Result of Analysis (Step 0 – Step 3)

In this case study, we prepared the data set as mentioned in Section3, and applied the
method to the data set. We extracted 421 projects which have the target metrics “Cost
overrun”.

First, we set the minimum support and the minimum confidence of association rule
mining. The minimum support is 0.01 and the minimum confidence is 0.9. The conclu-
sions of association rules are “Cost overrun”. The number of the rules whose conclu-
sions are “Cost overrun = good” is 545,836 and the number of rules whose conclusions
are “Cost overrun = bad” is 180. Next, we extract improvement rules from these associ-
ation rules. As a result, we find 35 rules have improvement rules and RI

r . In addition, the
number of improvement rules is 4,116. The total amount of time of mining association
rules and extracting improvement rule is 320 minutes.

Example 3. We extracted an association rule r1. The support of this rule was 0.01, and
the confidence was 1.00.

r1: Evaluation of plan (cost) = partially clear and feasible
∧ Involvement of user for requirements specification = relatively
∧ Requirement for performance = medium
⇒ Cost overrun = bad

The rule r1 indicates that the cost overrun becomes bad if evaluation of plan for cost
is indecisive or the execution feasibility is not examined in planning phase, the user
basically involves for requirements specification, and requirement for performance is
not so strict.

For the rule r1, an improvement rule rI
1 was found as follows. The support of the

rule rI
1 was 0.26, and the confidence was 0.92.

rI
1 : Evaluation of plan (cost) = very clear and feasible

∧ Involvement of user for requirements specification = relatively
∧ Requirement for performance = high
⇒ Cost overrun = good

The rule rI
1 indicates that the cost overrun becomes good if evaluation of plan for cost

is precise and the execution feasibility is examined in planning phase, the user basically
involves for requirements specification, and requirement for performance is high.

From r1 and rI
1 , we obtained a project improvement action as follows: when the user

basically involves for requirements specification,



On Deriving Actions for Improving Cost Overrun 59

1. Evaluate cost plan precisely.
2. Examine the feasibility of plan.
3. Make requirement for performance high.

However, because requirement for performance is an environmental metrics, the item 3
cannot be an improvement action item. Thus, a project improvement action is follows:

Action 1. If the user involvement for requirements specification and requirement for
performance is high, evaluate cost plan precisely and examine the plan’s
feasibility.

In general, evaluation of plan must be done with clear criteria and its feasibility of
execution must be assured. If plan is not constructed precisely, a fear to overrun the
planned cost becomes large.

Example 4. Let us show the other example. We extracted the following rule r2. The
support of the rule was 0.01, and the confidence was 1.00.

r2: Category of business = legacy
∧ New technology = used
∧ Evaluation of plan (cost) = very clear and feasible
∧ Actual FP per effort = low
⇒ Cost overrun = bad

The rule r2 indicates that cost overrun becomes bad if the category of business is
not new, the project uses new technology, evaluation of plan for cost is precise and the
execution feasibility is examined, and actual FP per effort is low.

We then found rI
2 as an improvement rule for r2 as follows. The support of rI

2 was
0.02 and the confidence was 0.92.

rI
2 : Category of business = legacy

∧ New technology = not used
∧ Evaluation of plan (cost) = very clear and feasible
∧ Actual FP per effort = high
⇒ Cost overrun = good

The rule rI
2 indicates that cost overrun becomes good if the category of business is

not new, the project doesn’t use new technology, evaluation of plan for cost is precise
and the execution feasibility is examined, and actual FP per effort is high. Thus, the
following improvement action can be derived from rI

2 : when the category of business
is legacy and the evaluation of cost plan is very clear and feasible,

1. Do not use new technology.
2. Execute project under condition of high Actual FP with less man-hours.

However, since FP per effort is an environmental metric, the item 2 cannot be an im-
provement action. Thus, the improvement action is as follows:

Action 2. If the category of business is legacy, the evaluation of cost plan is very clear
and feasible, and actual FP per effort is high, then do not use new technology if
possible.



60 J. Debari et al.

Obviously, new technology requires much effort to learn or skilled engineers. This
usually results unexpected increase of costs.

Discussion. In this case, these two examples derive somewhat obvious rules from the
project repository. Although one characteristic of association rule mining is to derive
unexpected rules from huge repository, the result of analysis in this study could not
derive such unexpected rules. However, from the other point of view, we can consider
that these rules are formulated knowledge or experience of the skilled engineers. Thus,
our approach can be applicable to the purpose of formalization of experiences.

Furthermore, our approach can contribute to simplify the factors related to the cost
overrun. Since various metrics and rules related to the cost overrun are mined, our
approach can simplify them as improvement actions.

5.2 A Case Study from Result of Analysis (Phase 1 – Phase 4)

Here, we show a case study of applying our approach to actual development data.
According to the result of analysis, we can prepare the following metrics set M0:

New technology, Involvement of user for requirements specification, Requirements for
performance, Evaluation of plan (cost), Evaluation of plan (quality), Degree of manifes-
tation of requirements specification. Furthermore, we have already obtained improve-
ment rules, RI

r .
In our analysis, developers of each project fill out the metrics set M0 at the end of

requirement analysis. Assume that a project answers that “New technology = used”
and “Evaluation of plan (cost) = vague”. From the mined rules, we can see that these
answers tend to result excess of cost in projects. Thus, in this case, the following rules
are extracted from RI

r as actions for improvement:

(1) Category of business = legacy
∧ New technology = not used
∧ Evaluation of plan (quality) = very clear and feasible
∧ Actual FP per effort = high
⇒ Cost overrun = good

(2) Evaluation of plan (cost) = very clear and feasible
∧ Involvement of user for requirements specification = enough
∧ Degree of understanding of user for design = relatively
⇒ Cost overrun = good

(3) Evaluation of plan (cost) = very clear and feasible
∧ Involvement of user for requirements specification = relatively
∧ Requirements for performance = high
⇒ Cost overrun = good

According to these rules, developers can find that use of new technology and vague
evaluation of planned cost have a certain risk for cost excess. Furthermore, looking
into rules in more detail, developers also find other factors to be improved. For exam-
ple, enough involvement of user for requirements specification lead less cost overrun.
From these information obtained from improvement rules, actual improvement plan is
constructed.



On Deriving Actions for Improving Cost Overrun 61

6 Related Works

Estimation of cost overrun is an important problem from a viewpoint of economics of
the software development. Methods and guidelines to prevent cost overrun have been
proposed so far [4, 5].

Association rule mining is applied to various field of research in order to extract
useful information from huge databases [6]. In the software engineering, for example,
Michail et al. mined pattern of reuse of libraries in an application by the association
rules mining [7]. Mined information is used for reconstruction of class library. Besides,
Zimmermann et al. tried to apply association rule mining to change history of revi-
sion management system in order to extract combinations of files and modules which
are usually modified simultaneously [8]. Garcia et al. tried to extract interesting rules
from project management data [9]. They proposed an algorithm for refining association
rules based on incremental knowledge discovery and provided managers with strong
rules for decision making without need of domain knowledge. Their approach, how-
ever, is only validated on the project simulator. Chawla et al. applied association rules
network(ARN) approach to the data of open source software(OSS) projects [10]. Us-
ing ARNs we discover important relationships between the attributes of successful OSS
projects. In general, conditions of successful projects differ between OSS and industrial
projects. Our approach mainly aims to find improvement actions from a viewpoint of
industrial software development.

Analysis of the IPA/SEC repository is now performed from various aspects [11, 12,
13]. Although their objective is to estimate cost or to specify dominant factors on the
success of projects, our objective is to extract improvement actions to improve cost
overrun.

7 Conclusion

In this study, we proposed an approach to extract improvement action items for a soft-
ware project by applying association rule mining to the software project repository for
a metric of “Cost overrun”. By using the association rule mining and notion of analo-
gous rules, our procedure can extract rules for project improvement actions. In order to
evaluate the applicability of our approach, we conducted a case study with the project
data repository collected from plural companies in Japan. The case study showed that
project improvement actions for cost overrun were semi-automatically extracted from
the mined association rules.

As future work, we have to compare our method with methods by using other cost
estimation models in order to confirm the usefulness of our method.

References

1. Takagi, Y., Mizuno, O., Kikuno, T.: An empirical approach to characterizing risky software
projects based on logistic regression analysis. Empirical Software Engineering 10(4), 495–
515 (2005)

2. Amasaki, S., Hamano, Y., Mizuno, O., Kikuno, T.: Characterization of runaway software
projects using association rule mining. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006.
LNCS, vol. 4034, pp. 402–407. Springer, Heidelberg (2006)



62 J. Debari et al.

3. Software Engineering Center, Information-technology Promotion Agency (ed.): The 2006
White Paper on Software Development Projects (in Japanese). Nikkei Business Publications
(2006)

4. Masticola, S.P.: A simple estimate of the cost of software project failures and the breakeven
effectiveness of project risk management. In: Proceedings of the First International Workshop
on The Economics of Software and Computation (ESC 2007), p. 6 (2007)

5. Lederer, A.L., Prasad, J.: Nine management guidelines for better cost estimating. Commun.
ACM 35(2), 51–59 (1992)

6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,
San Francisco (2001)

7. Michail, A.: Data mining library reuse patterns using generalized association rules. In: Pro-
ceedings of the 22nd international conference on Software engineering, pp. 167–176 (2000)

8. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide
software change. IEEE Trans. on Software Engineering 31(6), 429–445 (2005)

9. Garcı́a, M.N.M., Román, I.R., Penalvo, F.J.G., Bonilla, M.T.: An association rule mining
method for estimating the impact of project management policies on software quality, devel-
opment time and effort. Expert Syst. Appl. 34(1), 522–529 (2008)

10. Chawla, S., Arunasalam, B., Davis, J.: Mining open source software (oss) data using associ-
ation rules network. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003.
LNCS (LNAI), vol. 2637, pp. 461–466. Springer, Heidelberg (2003)

11. Mitani, Y., Kikuchi, N., Matsumura, T., Ohsugi, N., Monden, A., Higo, Y., Inoue, K., Barker,
M., Matsumoto, K.: A proposal for analysis and prediction for software projects using col-
laborative filtering, in-process measurements and a benchmarks database. In: Proc. of Inter-
national Conference on Software Process and Product Measurement, pp. 98–107 (2006)

12. Ohsugi, N., Monden, A., Kikuchi, N., Barker, M.D., Tsunoda, M., Kakimoto, T., Matsumoto,
K.: Is this cost estimate reliable? – the relationship between homogeneity of analogues and
estimation reliability. In: Proc. of First International Symposium on Empirical Software En-
gineering and Measurement, pp. 384–392 (2007)

13. Furuyama, T., Kikuchi, N., Yasuda, M., Tsuruho, M.: Analysis of the factors that affect the
performance of software projects (in Japanese). Trans. of Information Processing Society of
Japan 48(8), 2608–2619 (2007)



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 63 – 75, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Software Multi-project Resource Scheduling:  
A Comparative Analysis 

Fei Dong1,2, Mingshu Li1, Yuzhu Zhao1,2, Juan Li1, and Ye Yang1 

1 Institute of Software, Chinese Academy of Sciences 
2 Graduate University of Chinese Academy of Sciences 

{dongsquare, zhaoyuzhu, lijuan, ye}@itechs.iscas.ac.cn,  
mingshu@iscas.ac.cn 

Abstract. Software organizations are always multi-project-oriented, in which 
situation the traditional project management for individual project is not 
enough. Related scientific research on multi-project is yet scarce. This paper re-
ports result from a literature review aiming to organize, analyze and make sense 
out of the dispersed field of multi-project resource scheduling methods. A com-
parative analysis was conducted according to 6 aspects of application situations: 
value orientation, centralization, homogeneity, complexity, uncertainty and ex-
ecutive ability. The findings show that, traditional scheduling methods from 
general project management community have high degree of centralization and 
limited capability to deal with uncertainty, and do not well catered for software 
projects. In regard to these aspects agile methods are better, but most of them 
lack scalability to high complexity. Some methods have balanced competence 
and special attention should be paid to them. In brief, methods should be chosen 
according to different situations in practice.  

Keywords: software multi-project management, agile methods, resource alloca-
tion and scheduling, survey. 

1   Introduction 

Most project life cycles share a common characteristic: cost and staffing levels are 
low at the start, peak during the intermediate phases, and drop rapidly as the project 
draws to a conclusion [37]. As for individual participant, energy input does not re-
main unchanged along the whole life cycle. Sharing human resources across projects 
can decrease idle time and increase utilization of resources, and also facilitate sharing 
common technologies and components so as to reduce development cost. It can serve 
as ways of knowledge transferring and cross-training too. 

Traditional Project Management (PM) focus on individual project, however, up to 
90%, by value, of all projects are carried out in the multi-project environments [46], and 
multi-PM is a new trend in PM community [15]. Software organizations commonly 
work in multi-project environments [25], but little systematic study concentrates on 
managing multiple software projects, and little research about multi-project comes from 
software development community. Just take IEEE database as an example, we searched 
((multiple projects) <or> (project portfolio) <or> (program management)) on Nov 27 



64 F. Dong  et al. 

2007 and obtained 219 papers (unrelated articles included), among which only 45 come 
from software (or computer science, information system) community. In a representa-
tive PM journal, International Journal of Project Management (IJPM), we searched 
("multiple projects" OR "multi-project" OR "project portfolio" OR "program") in latest 
papers after year 2000, and got 78 results. Only three of them have an author from In-
formation System area.  

Table 1. Representative paper statistic 

Source Total  With author(s) from software community % 
IEEE 219 45 20.5 
IJPM 78 3 3.8 

Resource management is one of chief problems in multi-PM [34]. Existing mass 
research in PM community should be learned, however, software development is a 
knowledge intensive activity with high creativity and uncertainty, and experiences in 
other industries can not be borrowed mechanically. Human resource usually repre-
sents the major cost of software projects, and its allocation and scheduling are really 
important as well as difficulty. There are so many methods extracted in section 2, but 
more research should be done in finding which of them are more useful and suitable 
to different application environments and constraints. This paper takes an initial at-
tempt to compare and evaluate the resource scheduling methods from different disci-
plines, especially on software multi-PM. 

The rest of the paper is composed as follows. Section 2 presents a short overview 
of existing multi-project resource scheduling methods. Section 3 summarizes 6 as-
pects of application situations for subsequent analysis. Section 4 analyzes the referred 
methods from the 6 aspects. Section 5 presents a simple discussion, limitation of this 
paper and future work. 

2   An Overview of Multi-projects Resource Scheduling Methods 

Multi-project: Several related terms are frequently used such as Project Portfolio and 
Program. Since some confusion exists regarding these terms [17], we borrow the 
framework defined by PMI standards to differentiate them. A portfolio is a collection 
of projects and/or programs and other work grouped together to facilitate effective 
management of that work to meet strategic objectives [38]. A program is a group of 
related projects managed in a coordinated way to obtain benefits and control not 
available from managing them individually [39]. PM, Program Management and 
Project Portfolio Management have incremental strategic levels [38]. The focus level 
in this paper is the same with program management. But “program” is often used 
interchangeably with portfolio, and has an intuitive meaning in software community, 
i.e. software code. So we choose the term “multi-project” to avoid ambiguity. 

As well, resource management has different abstract levels accordingly. We focus 
on relatively tactical resource scheduling. Resource scheduling is to determine 
schedule dates on which activities can be performed with required resources. The 
term “resource” in this paper usually refers to human resources, unless the context 



 Software Multi-project Resource Scheduling: A Comparative Analysis 65 

indicates otherwise. Aspect in this paper means a way in which something can be 
viewed. And we refer to Method as a kind of procedure or technique. 

For the confusing terms mentioned above, we conducted a survey in many com-
plemented ways as follows: 
1. Key words search. An Internet search via Google Scholar was conducted. To 

obtain practices in software area, IEEE and ACM were searched particularly.  
2. Classical or authoritative materials, e.g. PMI standards[38][39]  
3. Web forum. There is little research paper about agile multi-PM, while indeed 

there are some explorations in industry. We browsed famous forums where ag-
ile practitioners gather [52] and also asked active posters. 

The extracted methods are listed in Table 2.(The abbreviation is for later refer-
ences.) Some of them are self-explained or able to find reference in related literature, 
while some need explanations (no details due to space limitation). 

Table 2. Multi-project resource scheduling methods 

Methods  References  Abbreviation 
One project at a time/ manage as individual project/ 

non-multi-project 
[12] Individual

Networking optimization algorithm/ heuristics 
methods (with uncertainty mechanism) 

[13][19][21] 
[26][43] [48]  

Network

Critical Chain methodology  [3][25][33][45] Critical Chain 
Resource modeling and simulation [1][5][25] 

[32][40][41]  
Resource Modeling 

Multi-agent planning and scheduling [16] [27] Multi-agent  
Scrum of Scrums/ Shared Resources Team/ Virtual 

team member/ Dual responsibility system 
(Differentiated Matrix) 

[9][12][51] [52] Virtual team 

Fixed core team with flexible resource transfer [22] [31] [52] Core team 
Pair Programming across multiple projects [24] [52] Pair programming 
Exchange by turns [52] Exchange 
Multi-product team [12][30] [52]  Multi-product 
Classify resources and schedule with different 

mechanism 
[20] Classification

 

Resource constrained project scheduling problem (RCPSP) has been treated by 
multiple approaches [19]. The problem for multi-project is treated as a generalization 
of RCPSP by adding artificial activity nodes as the start and end of each project as 
well as of multi-project. Thus multi-project is similar to a large project with projects 
as sub-projects, and methods in individual PM context can be borrowed, e.g. exact 
methods, heuristics methods, and meta-heuristics methods. Since they are based on a 
large multi-project network, with activity on node, we classify them into one kind 
called Networking optimization algorithm. PM environment is always with high un-
certainty. Algorithms dealing with uncertainty in individual PM context [21] can 
serve as reference: reactive scheduling, stochastic project scheduling, fuzzy project 
scheduling, robust (proactive) scheduling, and sensitivity analysis. Critical chain 
methodology is a kind of proactive scheduling, but its contribution to multi-project 



66 F. Dong  et al. 

scheduling mainly rests on the use of Theory of Constraint and scheduling basing on 
capacity constraining resource [45]. 

Software development depends on individuals’ knowledge and skills. Different 
tasks ask for different skills. Researches in process enactment/instantiation are en-
gaged in this direction. We classify rigid resource definition [40], policy-based re-
source allocation [41], continuous simulation of resource states by Systems Dynamics 
[1], agent-based resource modeling [53] and so on into one category called Resource 
modeling and simulation. The optimization algorithms used on project networking 
above can also be applied here. We treat Multi-agent planning and scheduling meth-
ods as a special category for it is a distributed algorithm. 

The uniqueness of software development, distinct from mass manufacturing, is 
creativity, uncertainty and dependence on people, leading to agile movement [4] and 
agile PM. Agile methods attach vital importance to adaptation to real situations when 
running project with continuous iterations. Besides, they advocate to plan by features 
rather than activities in traditional methods, to plan and self-organize by the whole 
team rather than plan and assign tasks to developers by managers, and to monitor the 
team collectively rather than individually [10].Agile practices can be enlarged by 
Scrum of Scrums [44] for large project or multi-project. Shared Resources Team, a 
sort of Scrum of Scrums in XBreed[51], composed of team leaders or technique lead-
ers, is responsible for extract reusable component from teams or projects. These or-
ganizations are similar with those of Virtual team member [9], Dual responsibility 
system and Differentiated Matrix [12], and we conclude them into one category. In 
Feature-Driven Development [31] methodology, a feature team consists of stable 
members and transferable ones, and developers can choose relevant feature teams 
flexibly. In multi-PM, such thought, named Fixed core team with flexible resource 
transfer, is also appropriate. Pair Programming [6] (or pair design et al) is also means 
of transferring staff across projects [24]. Agile methods do not advocate staffing pro-
jects of different importance according to people’s competence, e.g., unattractive 
maintenance project should be done by turns rather than by fixed team or staff.  

Some managers simply expand the size of a single project to accommodate multi-
ple distinct products, i.e., Multi-product team. The expanded team contains too many 
people to operate effectively. But it may be a good practice in mini organization, e.g. 
a small IT department with a manager, 3 or 4 programmers, a network manager, a 
database manager and a business analyst in charge of tens of mini projects. It is ap-
propriate to organize all features of projects into one backlog [30] [52].  

Resources could be divided into multiple categories to decrease complexity of their 
scheduling. Project members are divided into 3 categories in [20]: all-around project 
members, experts and service employees. Different scheduling pattern could be used 
for different kind of resources. PMI [39] proposed several common tools, i.e. expert 
judgment, meetings, policies and procedures. They are so common that have been 
diffused in the above methods, and we won’t discuss them separately. 

3   A Comparison Framework 

Different multi-projects require different management approaches and organizational 
structures. We summarize 6 aspects of application situations (see Table 3.) to evaluate 
the various methods systematically and comparably (see next section).  



 Software Multi-project Resource Scheduling: A Comparative Analysis 67 

Value orientation. The preferential goal of multi-PM, and how the resources are 
regarded, ultimately lead to different resource scheduling methods. More emphasis on 
product innovation and quality, or resource utilization and cost? Can the resources be 
scheduled like machines or should they be respected and encouraged? These orienta-
tions depend on the requirement of (multi-)project strategy, innovation and knowl-
edge management in the organization and so on. (Multi-)Project at different stage, e.g. 
development or testing, may have different requirements. 

Table 3.  Aspects of application situations for evaluation of various methods 

Aspect Description Key references 
Value 

orientation
Goal of resource scheduling or management. Attitude to 
the labors involved in the projects.  

[8][12]  

Centralization The degree of centralization or federation of multi-project [2][18][34] [49] 
Homogeneity The degree of similarity or diversity of multiple projects [15][17][18][29] 

[34][35][36][49] 
Complexity The complexity of multi-project, counting up complexity 

of all individual projects and their interdependency.  
[3] [8] [28][29]  
[34][49]  

Uncertainty  Clarity of objective, degree of change, and risk of the 
multi-project and all its projects. 

[8] [28] 

Executive 
ability 

Personality, knowledge, experience, competence and 
cooperation of participants. Supporting process or tool 
and culture to implement multi-PM. 

[8][11] [12] [18] 
[29][34][42][47] 

 
 

Centralization. Are resources scheduled at a central point, or mainly scheduled by 
every autonomous project and adjusted when necessary? This means different multi-
project organization structure and also communication cost across projects or depart-
ments. Sometimes the degree of centralization or federation can be changed for effi-
cient management; sometimes be hindered by existing mechanism or authority.  
 
Homogeneity. Managing heterogeneous projects as a multi-project would be much 
complex [34]. Projects within a multi-project are usually closely related in some way, 
in addition to using common resources [3]. Have most projects in a multi-project used, 
or do they suit for one kind of methodology? What is the similarity of projects? The 
homogeneities facilitate adoption of a common PM approach, and resource or compo-
nent reuse. Similarities among projects may be as such: common goal, similar 
size/duration, sharing resources, interlaced scope, potential reusable component, com-
mon technology, same business sector, common customer/contractor, under surveil-
lance of same regulatory agency, comparative criticality/risk/priority, same location, 
and compatible methodology. Various common attributes among projects possibly 
need different management methods. 
 
Complexity and Uncertainty. The 2 aspects are easy to understand since frequently 
used as indicators when comparing traditional and agile methods in individual PM 
condition (e.g. [8][28]). It is likely that some method can only deal with a certain 
situation with high/low complexity/uncertainty. Besides complexity of every project 
(e.g. team size, mission criticality, team location, domain knowledge gaps, see [28] 



68 F. Dong  et al. 

for extensive explanation) and project quantity, the influential factors to multi-project 
complexity include degree of interdependency among projects. 
 
Executive ability. Different methods ask for diverse executing competence and cost. 
Established supporting processes or tools, ability and cooperation of participants, may 
be prerequisite for methods implementation. Organization culture, maturity, complex-
ity and institutionalization also affect methods selection and balancing.  

4   Comparison Results and Analysis  

In this section, the 11 methods stated in section 2 are compared and evaluated from the 
6 aspects defined in section 3. A sketch map is shown in Table 4. and detailed com-
parison and evaluation by every aspect are presented in the following subsections. The 
scales “ ”, “ ” and “ ” stand respectively for high, medium and low degree for 
aspects Centralization, Homogeneity, Complexity and Uncertainty. Their meanings for 
Value orientation and Executive ability are explained in the responding subsections.  

Table 4. Summary of evaluation for the methods 

Methods 

Aspects 

In
di

vi
du

al

N
et

w
or

k

C
ri

tic
al

 C
ha

in
 

R
es

ou
rc

e 
M

od
el

in
g 

M
ul

ti-
ag

en
t 

Vi
rt

ua
l T

ea
m

 

C
or

e 
Te

am
 

P
ai

r 
P

ro
gr

am
m

in
g 

E
xc

ha
ng

e 

M
ul

ti-
pr

od
uc

t 

C
la

ss
ifi

ca
tio

n
Value orientation 
Centralization 
Homogeneity 
Complexity 
Uncertainty 
Executive ability  

4.1   Value Orientation 

Companies may save on production costs by sharing resources across projects, but 
they risk technical compromises [34] and placing too many restrictions on creativity 
of engineers [12]. And similar to attitudes to multi-tasking in individual project  
context, many practices suggest people or team focus on one project at a time. Thus 
Individual PM encourages concentration or creativity rather than resource utilization. 
Companies may pursue project quality or lead-time at cost of dedicated and redundant 
resources. But resources are always scarce for too many projects in organization, and 
resource utilization is the starting-point of most multi-project scheduling methods. 
Network can choose various optimization goal or priority rule such as minimum lead 
time, maximum resource utilization, and minimum project slack, however, treating 
people as machine may not be applicable in software industry. Critical Chain is based 



 Software Multi-project Resource Scheduling: A Comparative Analysis 69 

on Theory of Constraint to maximize throughout of the whole system rather than load 
balancing or certain resource utilization. Resource Modeling means to assign right 
people right task so as to increase productivity and product quality, attaching more 
importance to people knowledge and experience. Multi-agent is intended for an adap-
tive and distributed decision making for dynamic requirements. Agile methods such 
as Virtual Team, Core Team and Pair Programming aim to deal with schedule uncer-
tainty and knowledge sharing or component reuse, and they trust people’s initiative 
and communication. Exchange is out of the consideration for collective cohesion, and 
also a way of cross-training, showing highly respects to people. Multi-product is to 
decrease institutionalization in mini organizations. Classification recognizes different 
types of resources need different scheduling methods. Everyone has its own consid-
eration. We use “ ” to express more emphasis on people or project individuality, 
“ ” for more emphasis on resource utilization and “ ” between them. 

4.2   Centralization 

A frequently asked question about multi-project is: is it just a large project? The an-
swer is “No”. Regarding multi-project as a large virtual project and mechanically 
borrowing the methods for single project would lead to [29]: a vicious circle of bu-
reaucratic management, a linear lifecycle without flexibility to respond timely to 
business change, and many rote technologies. Just think of the origin of PM, coordi-
nating multiple projects does not reduce the need to integrate the functional areas of 
individual projects but probably makes this coordination even more important as well 
as more difficult [12]. Both cross-functional integration and cross-project manage-
ment are necessary for effective multi-PM. 

Individual PM possibly allocates resources centrally before projects start but little 
interference after carrying out. Network, Critical Chain, Resource Modeling and 
Multi-product, are basically central methods, allocating resources to “everywhere”. 
They ignore the root why a project forms to overcome the difficulties in traditional 
functional organization. General speaking, relevance between projects is weaker than 
that within a project and project teams should be relatively stable, leaving scheduling 
across projects as tools dealing with uncertainty and cross-training. Some heuristic 
rules can be added to “decentralize” these methods. For example, Multi-agent [16] 
fixes a set of permanent agents for a group and dynamically allocates marketable 
agents across groups. Agile methods such as Virtual Team, Core Team, Pair Pro-
gramming and Exchange are federal, scheduling autonomously by every project and 
adjusting at a central point such as a meeting. Classification has relatively high cen-
tralization (to classify the resources) and depends on concrete methods for every re-
source type. The federal methods may suffer from lacking a central view of multi-
project for senior or top management, out of this paper scope (see [23] [50] for more).  

4.3   Homogeneity 

Homogeneous projects facilitate adoption of a common PM approach. Advantages are 
said to be [35]: a consistent reporting mechanism and thus comparable progress re-
ports across these projects; a consistent calculating basis for resource requirements 
enabling identification of bottle neck and resource sharing. Most methods advocate 
 



70 F. Dong  et al. 

grouping similar projects together. Of course, heterogeneity is unavoidable in prac-
tice. We assume using uniform (or tailored) method, rather than multiple methods, in 
a multi-project; otherwise projects should be divided into multiple “multi-project”s.  

Individual PM needs no similarity between projects. Homogeneity matters little for 
Exchange, determined by the goal of cross-training. Critical Chain needs common 
resource as synchronizer. Network, Resource Modeling and Multi-Agent ask for com-
mon supporting tool or exchangeable data format to run (on computer). Multi-project 
with strongly interrelated projects, e.g. “decomposed” from a common goal, might be 
scheduled more centrally, like a large project. It is true in particular for Network. It is 
suggested to group projects with similar priority together, otherwise less important 
projects might never get scarce resources possessed by high priority projects. Re-
source Modeling and Multi-Agent can theoretically schedule projects sharing no re-
sources, by assigning projects corresponding resources. Then they are the same with 
Individual PM. 

Common attributes among projects, e.g. interlaced scope, common technology, and 
potential reusable component, also make sense for agile methods such as Virtual 
Team, Core Team, and Pair Programming. After all, the main purpose of multi-
project scheduling is to share resources and their skills. Pair Programming is a con-
troversial practice but useful in expert and novice cases. An expert (rare resource) can 
pair up with a stable project member who can serve as maintenance staff to shorten 
the queue time of request for expert from other projects. A new coming developer can 
work together with a stable project member who is familiar with the project to speed 
up learning curve. It can help resources shift among heterogenic projects. Multi-
product is not a good practice in PM, but may work in relatively extreme cases, e.g. 
component-based development, product line, or in a mini organization. Classification 
schedules shared and unshared resources respectively.  

4.4   Complexity 

Individual PM can solve high complexity with managed interfaces. It is advised to 
decompose a mega project into several projects to decrease its risk. As well, if a 
multi-project is extra huge, it’s better to divide it into smaller groups. Network intends 
to solve high complexity, but Resource Constrained Multi-Project Scheduling Prob-
lem, as a generalization of classical job shop scheduling problem, belongs to NP-hard 
optimization problems [7], and some optimization algorithms would crash for a large 
activity network. This makes heuristic procedures the only available means for com-
plex problems in practice. The outcome schedule of Network may add price to context 
switch or communication, unsuitable for work with high initiating threshold. Critical 
Chain can solve high complexity from project size or amount, but may be oversimpli-
fied when involving various resources and diverse utilization rate among projects.  
 
Resource Modeling and Multi-Agent can model/simulate complex resources or situa-
tions but it is even harder to schedule them by automatic algorithms. Opponents of 
agile methods criticize they are only applicable for small and medium-sized projects 
and lack scalability for large ones. Considering the relatively high complexity in 
multi-project environments, agile methods seem to be helpless. Experiences of Core 
Team, Pair Programming and Multi-product are mainly from small-and-medium 



 Software Multi-project Resource Scheduling: A Comparative Analysis 71 

companies, and their applicability for high complexity remains to be demonstrated. 
Maybe they need to be complemented by other methods. Differentiated Matrix or-
ganization, a similar form to Virtual Team observed in agile context, is successful in 
large company [12]. Exchange as cross-training can apply in any complexity. All of 
above can be balanced by Classification.  

4.5   Uncertainty  

Individual PM without scheduling resources between projects loses a coping mecha-
nism for uncertainty, and need resource redundancy for safekeeping. Network needs 
whole or accurate information nearly impossibly available in software PM environ-
ment with high uncertainty. When projects lag behind their schedules, resources 
scheduled to other projects are not possible to activate. Although there are some 
mechanisms to deal with uncertainty in progress, e.g. project or resource buffer in 
Critical Chain, they assume the network of activities/tasks known at the start, which 
is less common in reality of software development. When changes occur, the net-
working has to be restructured and optimized again. Resource Modeling and Multi-
Agent tend to model/simulate dynamic availability and capability of resources, but its 
scheduling is similar to Network. Agile methods are born to deal with uncertainty. 
They advocate iterative planning and scheduling. In addition, Core Team for example, 
project managers, architects and main programmers are fixed members to maintain a 
stable project, while others can transfer among projects as required to deal with uncer-
tainty. Pair Programming can act as an aid in transferring staff across projects. A 
Virtual Team member can apportion his own time among various projects to cope 
with uncertainty. Exchange can run like Core Team if need. Multi-product can adjust 
time for different products. Classification depends on concrete methods for every 
category. 

4.6   Executive Ability 

Individual PM asks for enough even redundant resources and depends on document to 
communicate with related projects. It is difficulty for Network, Resource Modeling 
and Multi-Agent to model projects and resources formally, and computer-supported 
systems are frequently the only practical way to handle the large volume of detailed 
information involved [3]. They need integrative system and standard process to col-
lect and update data. Resource Modeling needs extra detailed formal description and 
classification of people’s skills and tasks requirements as well, requiring unnecessary 
heavy workload in small companies where a staff must play many roles.  It is enough 
for Critical Chain to keep as little as one resource effectively utilized to maximize the 
throughput of the system[33]. This simplification is why Critical Chain is practicable 
and popular. Division of labor is clear-cut too for Classification. Agile methods ask 
for cooperation and initiative of people--in fact prerequisite of all methods. Take 
Network as an example: if a project manager can not argue for higher priority by ordi-
nary means, he may push the project into crisis to gain priority and resources[14]. In 
Virtual Team, Core Team, Pair Programming and Exchange, resource transfer is 
usually based on negotiation in meeting and relies on people cooperation. Managers 
may feel hesitate to help other projects, considering a major risk that resources lent 



72 F. Dong  et al. 

out would not come back when need [14]. And it is better to transfer between 2 itera-
tions, except expert, to keep every iteration stable and avoid unnecessary complexity. 
To achieve this smoothly, processes of synchronizing the increment control points of 
related projects are in need [47]. Multi-product should also carefully plan its iteration 
and concentrate on only one product every time, asking for culture embracing agile. 
We use “ ” to express more emphasis on people ability, “ ” for more emphasis on 
process capability and “ ” between them. 

5   Discussion and Conclusion 

We can conclude from the aspects of Value orientation and Executive ability that, 
some methods emphasize on people while others on process – classical balance in 
software community. The methods can be roughly classified into 3 categories: heavy-
weight, light-weight, and medium. Like condition of single project [28], heavy-weight 
methods suit for situations of high complexity and low uncertainty, and light-weight 
for low complexity and high uncertainty. However, multi-projects, compared to pro-
jects, face a higher level of complexity and uncertainty [36], as a result balanced 
methods combining advantages of the 2 types are in need. Considering the notable 
trend of individual software PM that traditional approaches and agile methods are 
coming from opposite to fusion [8], Classification, Multi-agent, Critical Chain and 
Virtual Team have relatively high overall performance and call for attention.  

Generally, some similarity among projects is asked to facilitate efficient multi-PM. 
Heavy-weight methods have higher degree of centralization and homogeneity than 
light-weight. Research indicates autonomic management with cooperation is more 
efficient than central management and individual PM [2]. Federation thought shown 
in agile methods should be learned. The balance between stability and flexibility 
should adjust according to complexity, similarity, and relevancy of projects. 

Due to space limitation, we do not discuss some important aspects of methods such 
as supporting to senior/top management and other processes. Multi-project resource 
allocation syndrome is not an issue in itself, rather an expression of many other, more 
profound, organizational problems [14]. We discuss some organization structure of 
multi-project but have no enough space for whole organization context (see [12] for 
more information). Change on organization structure is quite radical reformation. 
They can serve as a kind of methods but are preconditions in most cases. 

Much work needs to do in finding which of the various methods fits which situa-
tions. A more elaborated matching algorithm with measurable factors that actively 
contributes to the aspect is under consideration. Case study and questionnaire need to 
conduct to improve and validate the framework brainstormed in this paper. After 
more analysis, various multi-projects situations may be clustered into several patterns 
to reduce the problem complexity. We also plan to take in the good points of various 
methods and conclude a consolidated method with more scalability.  

 
Acknowledgments. This research is supported by the National Natural Science 
Foundation of China under grant No. 60573082, the National Basic Research Program 
(973 program) under grant No. 2007CB310802, the Hi-Tech Research and Develop-
ment Program of China (863 Program) under grant No. 2006AA01Z155. 



 Software Multi-project Resource Scheduling: A Comparative Analysis 73 

References 

1. Abdel-Hamid, T.K.: The Dynamics of Software Project Staffing: A System Dynamics 
Based Simulation Approach. IEEE Trans. Software Engineering 15(2), 109–119 (1989) 

2. Al-jibouri, S.: Effects of resource management regimes on project schedule. Int. J. Proj. 
Manag. 20(4), 271–277 (2002) 

3. Archibald, R.D.: Managing High-Technology Programs and Projects, 3rd edn. John Wiley, 
Hoboken (2003) 

4. Agile Alliance, http://www.agilealliance.com 
5. Ash, R.C.: Activity scheduling in the dynamic, multi-project setting: choosing heuristics 

through deterministic simulation. In: Proc. Winter Simulation Conference, vol. 2, pp. 937–
941 (1999) 

6. Beck, K.: Extreme programming explained: embrace change, 2nd edn. Addison-Wesley, 
Reading (2005) 

7. Blazewicz, J., Lenstra, J.K., Kan, A.H.G.R.: Scheduling subject to resource constraints: 
Classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983) 

8. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Ad-
dison-Wesley, Reading (2004) 

9. Briscoe, T.D.: Virtual team members: a case study in management of multiple projects in a 
limited resource environment. In: PICMET 1997: Portland Int. Conf. on Management and 
Technology, pp. 378–382 (1997) 

10. Cohn, M.: Agile Estimating and Planning. Prentice-Hall, Englewood Cliffs (2006) 
11. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: Portfolio management: fundamental for 

new product success, Working paper (2006), http://www.prod-dev.com/pdf/ 
wp12.pdf 

12. Cusumano, M.A., Nobeoka, K.: Thinking beyond lean: how multi-project management is 
transforming product development at Toyota and other companies. The free press (1998) 

13. Dean, B.V., Denzler, D.R., Watkins, J.J.: Multiproject staff scheduling with variable re-
source constraints. IEEE Trans. Engineering Management 39(1), 59–72 (1992) 

14. Engwall, M., Jerbrant, A.: The resource allocation syndrome: the prime challenge of multi-
project management. Int. J. Proj. Manag. 21, 403–409 (2003) 

15. Evaristo, R., van Fenema, P.C.: A typology of project management: emergence and evolu-
tion of new forms. Int. J. Proj. Manag. 17(5), 275–281 (1999) 

16. Fatima, S.S.: TRACE-An Adaptive Organizational Policy for MAS. In: 11th Int. Work-
shop on Database and Expert Systems Applications (DEXA 2000), p. 722 (2000) 

17. Ferns, D.C.: Developments in programme management. Int. J. Proj. Manag. 9(3), 148–156 
(1991) 

18. Gray, R.J.: Alternative approaches to programme management. Int. J. Proj. Manag. 15(1), 
5–9 (1998) 

19. Goncalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A Genetic Algorithm for the Resource 
Constrained Multi-Project Scheduling Problem, AT&T Labs Techniccal Report TD-
668LM4 (2004) 

20. Hendricks, M.H.A., Voeten, B., Kroep, L.H.: Human Resource Allocation in a Multipro-
ject Research and Development Environment. Int. J. Proj. Manag. (1999) 

21. Herroelen, W., Leus, R.: Project scheduling under uncertainty: survey and research poten-
tials. European Journal of Operational Research 165, 289–306 (2005) 

22. Hodgkins, P., Luke, H.: Agile Program Management: Lessons Learned from the VeriSign 
Managed Security Services Team. In: AGILE 2007, pp. 194–199 (2007) 



74 F. Dong  et al. 

23. Karlstrom, D., Runeson, P.: Combining Agile Methods with Stage-Gate Project Manage-
ment. IEEE Software 22(3), 43–49 (2005) 

24. Lacey, M.: Adventures in Promiscuous Pairing: Seeking Beginner’s Mind. In: AGILE 
2006 (2006) 

25. Lee, B., Miller, J.: Multi-project software engineering analysis using systems thinking. 
Software Process Improvement and Practice 9, 173–214 (2004) 

26. Levy, N., Globerson, S.: Improving multiproject management by using a queuing theory 
approach. Project Management Journal (2000) 

27. Li, J., Liu, W.: An agent-based system for multi-project planning and scheduling. In: IEEE 
Int. Conf. Mechatronics and Automation, vol. 2, pp. 659–664 (2005) 

28. Little, T.: Context-adaptive agility: managing complexity and uncertainty. IEEE Software 
(2005) 

29. Lycett, M., Rassau, A., Danson, J.: Programme Management: a critical review. Int. J. Proj. 
Manag. 22, 289–299 (2004) 

30. Nocks, J.: Multiple Simultaneous Projects with One eXtreme Programming Team. In: AG-
ILE 2006, pp. 170–174 (2006) 

31. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Pearson 
Education, London (2002) 

32. Patanakul, P., Milosevic, D., Anderson, T.: Criteria for project assignments in multiple-
project environments. In: Proceedings of the 37th Annual Hawaii Int. Conf. on System 
Sciences, p. 10 (2004) 

33. Patrick, F.S.: Program Management - Turning Many Projects into Few Priorities with 
Theory of Constraints. In: Proceedings of the Project Management Institute Annual Semi-
nars and Symposium (1999) 

34. Payne, H.: Management of multiple simultaneous projects: a state-of-the-art review. Int. J. 
Proj. Manag. 13(3), 163–168 (1995) 

35. Payne, J.H., Turner, J.R.: Company-wide project management: the planning and control of 
programmes of projects of different type. Int J Proj Manag 17(1), 55–59 (1998) 

36. Pellegrini, S.: Programme Management: organising project based change. Int. J. Proj. 
Manag. 15(3), 141–149 (1997) 

37. PMI: A guide to the project management body of knowledge (PMBOK® Guide), 3rd edn. 
Project Management Institute (2004)  

38. PMI: Organizational project management maturity model (OPM3TM) knowledge founda-
tion. Project Management Institute (2003)  

39. PMI: The standard for program management. Project Management Institute (2006)  
40. Podorozhny, R., et al.: Modeling Resources for Activity Coordination and Scheduling. In: 

3rd Int Conf on Coordination Models and Languages (April 1999) 
41. Reis, C.A.L., Reis, R.Q., Schlebbe, H., Nunes, D.J.: A policy-based resource instantiation 

mechanism to automate software process management. In: SEKE (2002) 
42. Reyck, B.D., et al.: The impact of project portfolio management on information technol-

ogy projects. Int. J. Proj. Manag. 23, 524–537 (2005) 
43. Scheinberg, M., Stretton, A.: Multiproject planning: tuning portfolio indices. Int. J. Proj. 

Manag. 12(2), 107–114 (1994) 
44. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, 

Englewood Cliffs (2001) 
45. Steyn, H.: Project management applications of the theory of constraints beyond critical 

chain scheduling. Int. J. Proj. Manag. 20(1), 75–80 (2002) 
46. Rodney, T.J.: The Handbook of Project-Based Management. McGraw-Hill, New York 

(1992) 



 Software Multi-project Resource Scheduling: A Comparative Analysis 75 

47. Vähäniitty, J., Rautiainen, K.: Towards an Approach for Managing the Development Port-
folio in Small Product-Oriented Software Companies. In: Proceedings of the 38th Hawaii 
Int. Conf. on System Sciences (2005) 

48. Vaziri, K., Nozick, L.K., Turnquist, M.A.: Resource allocation and planning for program 
management. In: Proceedings of the Winter Simulation Conference, vol. 9 (2005) 

49. Vereecke, A., et al.: A classification of development programmes and its consequences for 
programme management. Int. J. Operations & Prodction Manage 23(10), 1279–1290 
(2003) 

50. Wallin, C., Ekdahl, F., Larsson, S.: Integrating Business and Software Development Mod-
els. IEEE Software (2002) 

51. XBreed, 
http://www.agilealliance.com/resources/roadmap/xbreed/xbreed
_aspect  

52. Yahoo! Group of extreme programming, scrum and agile project management, 
http://tech.groups.yahoo.com/group/extremeprogramming/~/scru
mdevelopment/~/agileprojectmanagement/ 

53. Zhao, X., Chan, K., Li, M.: Applying agent technology to software process modeling and 
process-centered software engineering environment. In: SAC, pp. 1529–1533 (2005) 

 



Project Assets Ontology (PAO) to Support

Gap Analysis for Organization Process
Improvement Based on CMMI v.1.2

Suwanit Rungratri1 and Sasiporn Usanavasin2

1 Ph.D.in Information Technology Program, Graduate School,
Sripatum University, Bangkok, Thailand

suwanit r@hotmail.com
2 Master of Science Program in Software Engineering, Graduate School,

Sripatum University, Bangkok, Thailand
sasiporn.us@spu.ac.th

Abstract. In this paper, we introduce an ontology called Project Assets
Ontology (PAO) that describe concepts of CMMI Maturity and Capa-
bility levels, Generic and Specific Goals, Generic and Specific Practices
including concepts of Typical Work Products (an organization’s project
assets) of 22 Process Areas that may be produced in a software develop-
ment project based on CMMI v.1.2 model. This ontology can be used to
enable a CMMI Maturity/Capability assessment tool for automatic gen-
eration of metadata description that describe an organization’s project
work products. With the support of PAO and the generated metadata
descriptions, the tool can automatically perform a preliminary CMMI
gap analysis, which can lead to time and cost reductions in assessing the
CMMI Maturity/Capability level of the organization.

Keywords: CMMI, Ontology, Process Improvement, Gap Analysis, Ma-
turity Level Assessment.

1 Introduction

Due to the high competition in software industry in both global and local mar-
kets, many organizations try to gain competitive advantage over their competi-
tors by focusing on product quality improvement, cost reduction and schedule
acceleration. To achieve the objectives, those organizations have recently given
their interests and efforts toward improving their organizational process. CMMI
v.1.2 model [1] has become one of the most effective and internationally recog-
nized as a guideline for software process improvement [2]. Having a CMMI certi-
fied is now becoming an essential requirement that clients are looking for when
they want to outsource their work or assign a software development project to a
software house. However, for any software house to be certified by CMMI is not
easy and it is costly because it involves a number of changes in many processes
in the organization. Moreover, several documents and procedures have to be re-
organized and generated to provide evidence that the organization has actually

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 76–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Project Assets Ontology (PAO) to Support Gap Analysis 77

performed a number of practices and achieved goals that comply with CMMI
model during appraisal process.

Gap analysis is an important initial step for an organization process improve-
ment. The gap analysis helps the organization to recognize its current matu-
rity/capability level by finding the differences between its current practices and
the guidance given in CMMI model. In other words, the gap analysis tells how
well the organization’s current practices aligned with the specific practices rec-
ommended by CMMI for each of 22 process areas (PAs). This is usually when
a CMMI consultant team comes in to help locating the gaps and to assist the
organization to create the process improvement action plan once the gaps are
found. Performing gap analysis process is time-consuming as it requires a consul-
tant to manually reviews a number of the project assets (work products such as
policies, plans and other documents that were produced in software development
projects), conduct several meetings as well as interview the project members in
order to recognize what practices already aligned with the CMMI recommenda-
tions and what practices are missing.

In this paper, we introduce an ontology called Project Assets Ontology (PAO)
and a CMMI v.1.2 based Gap Analysis Assistant Framework (CMMI-GAAF)
that can be used to support an organization and a CMMI consultant for con-
ducting a gap analysis process more effectively. PAO describes concepts of assets
or work products of a software development project that conform to typical work
products that can be referred as evidences for all CMMI practices and goals. In
the CMMI-GAAF, the organization’s project assets will be analyzed and a meta-
data description for each project asset will be generated using PAO. The gen-
erated metadata descriptions will be processed further in order to identify gaps
between the organization’s current practices and CMMI specific practices. The
findings will be shown in a representation of a Practice Implementation Indicator
Description (PIID) sheet [3], which can be used as a preliminary assessment tool
for the organization’s Maturity/Capability assessment/appraisal.

This paper is organized as follows. Section 2 explains the structure of CMMI
v.1.2 model and Section 3 discusses some of the related works. Our proposed
PAO and its usage for CMMI gap analysis are introduced in section 4 and 5,
respectively. Section 6 discusses concluding remarks and future works.

2 CMMI v.1.2 Model

Capability Maturity Model Integration for Development version 1.2 [4] was de-
veloped by Software Engineering Institute (SEI) at Carnegie-Mellon University.
It consists of best practices that address development and maintenance activ-
ities applied to products and services in many industries including aerospace,
banking, computer hardware, software, defense, automobile manufacturing, and
telecommunications [10]. Although, in this paper, we focus on the software indus-
try but the proposed idea and framework can also be applied for other industries
that exploit CMMI for products and services development.



78 S. Rungratri and S. Usanavasin

Table 1. Five Maturity Levels defined in CMMI v.1.2

Level Process Areas Acronym
5 Optimizing Organizational Innovation and Deployment

Causal Analysis and Resolution
OID
CAR

4 Quantitatively
Managed

Organizational Process Performance
Quantitative Project Management

OPP
QPM

3 Defined Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management for IPPD
Risk Management
Decision Analysis and Resolution

RD
TS
PI
VER
VAL
OPF
OPD
OT
IPM+IPPD
RSKM
DAR

2 Managed Requirement Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

REQM
PP
PMC
SAM
MA
PPQA
CM

1 Initial

CMMI v.1.2 recommends best practices for 22 process areas (PAs) and pro-
vides two representations in terms of capability and maturity levels: continuous
representation and staged representation. The continuous representation offers
maximum flexibility when using a CMMI model for process improvement and
it uses the term “capability levels” that enables organizations to incrementally
improve processes corresponding to an individual process area selected by orga-
nization [4]. In this representation, the organization may choose to improve the
performance of a single process area, or it can work on several process areas that
are closely aligned to the organization’s business objectives. The staged repre-
sentation offers a systematic, structured way to approach model-based process
improvement one stage at a time. [6]. In this representation, the 22 PAs are orga-
nized into five “maturity levels” as shown in Table 1. The staged representation
prescribes an order for implementing process areas according to Maturity levels,
which define the improvement path for an organization from the initial level to
the optimizing level. Achieving each Maturity level ensures that an adequate
improvement foundation has been laid for the next Maturity level and allows for
lasting, incremental improvement.

In CMMI v.1.2, each PA is comprised of three components, which are required
components (represented in rounded rectangle), expected components (represented
in diamond) and informative components (represented in oval) as shown in Fig.1.



Project Assets Ontology (PAO) to Support Gap Analysis 79

Process Area 

(PA)
Purpose

Statement

Introductory

Notes

Related

Process

Subpractices Subpractices
Generic Practices

Elaborations

Typical Work

Products

Specific

Goals

Generic

Goals

Specific

Practices

Generic

Practices

Fig. 1. CMMI v.1.2 Model Components [10]

The required components describe what an organization must achieve to satisfy a
process area. This achievement must be visibly implemented in an organization’s
processes. The required components in CMMI are the specific and generic goals.
Goal satisfaction is used in appraisals as the basis for deciding whether a process
area has been achieved and satisfied. The expected components describe what an
organization may implement to achieve a required component. These components
refer to the specific and generic practices. These practices are the essential guid-
ance for any organizations who wish to implement process improvement or pre-
form CMMI appraisals. Finally, the informative components provide details that
help organizations to get started in thinking about how to achieve the required
and expected components. Subpractices, typical work products, amplifications,
generic practice elaborations, goal and practice titles, goal and practice notes, and
references are examples of informative model components.

To support a gap analysis process, our PAO cover concepts of the CMMI re-
quired components (generic and specific goals), the expected components (generic
and specific practices), and the informative components (typical work products).

3 Related Works

Some of the previous studies had introduced ontologies and tools for supporting
an organizational maturity level assessment/appraisal based on CMMI models.



80 S. Rungratri and S. Usanavasin

One of them is Soydan and Kokar’s work [6]. They developed an ontology of
the capability maturity model, CMMI v.1.1. This ontology was created based
on OWL-DL [11] specification and it contains 309 classes and four properties
that represent CMMI v.1.1 recommended practices and goals. However, this
ontology is not sufficient if we want to enable a tool to automatically identify
what practices that already conform to CMMI and which are missing for the sake
of an organization’s maturity level assessment. Therefore, in our study, we extend
their ontology by including concepts of typical work products and concepts of
possible project assets, which may be produced within a software development
project, in order to enable a tool to perform an automatic gap analysis.

Lee, Wang, Chen and Hsu [7] proposed an ontology-based intelligent decision
support agent (OIDSA) for supporting CMMI Project Monitoring and Control
(PCM) process area. In their study, they only focused on CMMI Maturity Level
2 so their ontology only covers seven process areas referenced in CMMI model.

The Appraisal Assistant Beta 3 [8] is a software application that was devel-
oped by the Software Quality Institute, Griffith University, in order to support
the CMMI assessment and appraisal processes. This tool can generate a variety
of reports such as appraisal/assessment findings and strength/weakness sum-
maries of an organization. For the tool to be able to generate those reports, the
appraisers have to manually review many project documents and input a lot of
information regarding those assets into the system, which is time-consuming.

The CMMiPal 1.0 is a tool that was developed by Chemututi Consultants
[9] It provides a function to facilitate the mapping between an organization’s
processes and CMMI elements that are referenced in Maturity Level 1 to Level 3.
Similarly to the work in [8], the appraisers have to manually fulfill the necessary
information regarding the organization’s goals, practices and work products into
the system in order for the system to generate the reports for gap analysis.

In this paper, we introduce an ontology called Project Assets Ontology (PAO)
that describe concepts of CMMI Maturity and Capability levels, generic and
specific goals, generic and specific practices of the 22 process areas including
concepts of typical work products and project assets that may be produced in a
software development project based on the CMMI v.1.2. This ontology can be
used to support a tool for an automatic generation of project assets’ metadata
descriptions and enabling the tool to automatically perform a preliminary gap
analysis for an organization based on CMMI Maturity/Capability assessment
process, which can lead to time and cost reductions.

4 Project Assets Ontology(PAO)

An ontology is a representation of a set of concepts within a domain and the
relationships between those concepts. It is used to reason about the properties of
that domain, and may be used to define the domain.[5] PAO is an ontology that
represents a set of possible assets or work products that may be produced within
a software development project. The concepts of assets in PAO were created
based on the concepts of typical work products for all practices and goals in 22



Project Assets Ontology (PAO) to Support Gap Analysis 81

PAs that are referenced in CMMI v.1.2 model. The main intended use of PAO is
to support the analysis process of a software project’s asset as well as to support
the synthesis process of a metadata description that describes the asset. This
metadata document will be further processed by our tool called CMMI-GAAF
in order to identify which of the organization’s practices already aligned with
CMMI practices and goals based on the visible implementation (evidence) of the
project’s asset. With the use of PAO and the supporting framework, a CMMI
consultant can use the tool to perform a preliminary gap analysis automatically.
Moreover, the organization can also use the tool to conduct self-evaluation of
its Maturity or Capability level as a starting point for the organization process
improvement.

PAO is built as an extension to the CMMI Ontology [6] based on OWL spec-
ification [11]. It consists of 601 classes (173 classes of specific practices and 428
classes of typical work products), five objects properties representing different re-
lationships (i.e., attains, satisfies, achieves , referTo, producedBy) between those
classes, and a number of data properties that defined a set of possible assets or
evidences of information that can refer to each typical work product referenced
in CMMI v.1.2. Fig.2 shows a portion of the logical abstraction of our PAO.

In Fig.2, a set of possible project assets such as a Project Plan, Schedule
and Task Dependency can be considered as parts of Task Description, which
can also be referred to as one of the Typical Work Products that is produced

- Project_Risk
- Activity
- Skill_and_Knowledge_

Acquisition
-Work_Product_

Component

Maturity_Level

Process_Area

Goal

SP_1.1_PP

SP_2.2_PP

Typical_Work_

Products

Typical_Work_

Products

Task_Descriptions

Work_Package_

Descriptions

WBS

Identified_Risks

Risk_Impacts_and_
Probability_of_

Occurence

Risk_Priorities

…..

- Project_Plan
- Schedule
- Labor_Hours
- Task_Dependency
- Duration

- Project_Tasks
-Work_Products
-Work_Package_

Description
- Task_Description

- Type_of_Risk
-Mitigation_Strategy

- Type_of_Impact
- Likelihood_of_Risk

- Degree_of_Risk

attains

satisfies

achieves

producedBy

referTo

producedBy

referTo

- ID
- Presented_In
- Project_ID

- ID
- Presented_In
- Project_ID

Fig. 2. A Portion of Project Assets Ontology (PAO)



82 S. Rungratri and S. Usanavasin

by performing a specific practice SP 1.1 in Project Planning (PP). Similarly, a
document that contains information about type of risks and strategy for handling
the risks can be considered as Identified Risks, which can also be considered as
evidence of the Typical Work Products that is produced by the specific practice
SP 2.2 PP. The following OWL description shows a partial description of PAO
based on Fig.2.

1 <?xml version="1.0"?>
2 All required Name Space declaration go here.
3 <owl:Class rdf:ID="SP_1.1_PP">
4 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
5 Specific Practice 1.1 for CMMI Project Planning </rdfs:comment>
6 <owl:equivalentClass
7 rdf:resource="&CMMI_Ont/#SP_1.1_Estimate_the_Scope_of_the_Project"/>
8 </owl:Class>
9 ...
10 <owl:Class rdf:ID="SP_2.2_PP">
11 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
12 Specific Practice 2.2 CMMI Project Planning </rdfs:comment>
13 <owl:equivalentClass
14 rdf:resource="&CMMI_Ont/#SP_2.2_Identify_Project_Risks"/>
15 </owl:Class>
16 <owl:Class rdf:ID="Typical_Work_Products"/>
17 <owl:Class rdf:ID="Task_Description"/>
18 <owl:ObjectProperty rdf:ID="producedBy">
19 <rdfs:comment rdf:datatype="&xsd;string">
20 This relationship specifies that a work product is an output from a
21 specific practice. </rdfs:comment>
22 <rdfs:domain rdf:resource="#Typical_Work_Products "/>
23 <rdfs:range rdf:resource="#SP_2.2_PP"/>
24 </owl:ObjectProperty>
25 <owl:ObjectProperty rdf:ID="referTo">
26 <rdfs:comment rdf:datatype="&xsd;string">
27 This is a relationship between a Typical_Work_Products and
28 a possible set of assets such as a task description.
29 </rdfs:comment>
30 <rdfs:domain rdf:resource="#Identified_Risks"/>
31 <rdfs:range rdf:resource="#Typical_Work_Products"/>
32 </owl:ObjectProperty>
33 ...
34 <owl:DatatypeProperty rdf:ID="ID">
35 <rdfs:domain rdf:resource="#Typical_Work_Products"/>
36 <rdfs:range rdf:resource="&xsd;string"/>
37 </owl:DatatypeProperty>
38 <owl:DatatypeProperty rdf:ID="PresentedIn">
39 <rdfs:domain rdf:resource="#Typical_Work_Products"/>
40 <rdfs:range rdf:resource="&xsd;string"/>
41 </owl:DatatypeProperty>
42 <owl:DatatypeProperty rdf:ID="Project_ID">



Project Assets Ontology (PAO) to Support Gap Analysis 83

43 <rdfs:domain rdf:resource="#Typical_Work_Products"/>
44 <rdfs:range rdf:resource="&xsd;string"/>
45 </owl:DatatypeProperty>
46 <owl:DatatypeProperty rdf:ID="Type_of_Risk">
47 <rdfs:domain rdf:resource="#Identified_Risks"/>
48 <rdfs:range rdf:resource="&xsd;string"/>
49 </owl:DatatypeProperty>
50 <owl:DatatypeProperty rdf:ID="Mitigation_Strategy">
51 <rdfs:domain rdf:resource="#Identified_Risks"/>
52 <rdfs:range rdf:resource="&xsd;string"/>
53 </owl:DatatypeProperty>
54 ...

5 PAO for CMMI Gap Analysis

Most of the organizations that wish to acquire CMMI certifications have to go
through a gap analysis process as an initial requirement for their maturity level
assessment before they can decide on what strategy and plan are needed to
achieve their process improvement objectives. In this section, we will illustrate
how PAO can be used to enable a tool to perform an automatic gap analysis
that will reduce time and cost for the organization.

Fig.3 shows our ongoing work called CMMI v.1.2 based Gap Analysis Assis-
tant Framework (CMMI-GAAF) that we have been implementing and with the

Project Assets Metadata

Generator

(PAM-Generator)

Project Assets

Repository

(PAR)

Ontology

Library

Project Assets

Metadata

Repository

(PAM-Repository)

Project Maturity

Level Assessment

(ProMLA)

CMMI PIID

Sheets

Project

Reports

Test Cases …..

Project

Plans

PAO

Fig. 3. CMMI v.1.2 based Gap Analysis Assistant Framework (CMMI-GAAF)



84 S. Rungratri and S. Usanavasin

Fig. 4. A Portion of a Project Planning document (a Sample Project Asset)

support of PAO, we will introduce this work as an automatic tool for gap analy-
sis process. The framework consists of five components, which are 1) Project
Assets Repository (PAR), 2) Project Assets Ontology (PAO), 3) Project Assets
Metadata Generator (PAM-Generator), 4) Project Assets Metadata Repository
(PAM-Repository), and 5) Project Maturity Level Assessment (ProMLA).

This framework allows the software development project members to store
all documents (assets) that were produced within the project or used in the
project (e.g., project reports, project plans, requirement documents, test cases,
etc.) in the PAR. These stored documents will be read and processed by the
PAM-Generator. With the support of PAO, the PAM-Generator can generate
metadata descriptions of those assets. The portion of a sample asset, a Project
Planing document in this case, is presented in Fig.4

The following description illustrates the generated metadata description of
the sample asset (Fig.4) by the PAM-Generator based on PAO.

1 <WP:Typical_Work_Product >
2 <WP:ID> Identify_Risks </WP:ID>
3 <WP:PresentedIn>
4 Initial Project Risk Assessment.doc
5 </WP:PresentedIn>
6 <WP:Project_ID> ABC </WP:Project_ID>
7 <WP:producedBy> SP_2.2_PP </WP:producedBy>
8 <WP:Risk_Assessment>
9 <WP:Type_of_Risk>Person_Hours</WP:Type_of_Risk>
10 <WP:Degree_of_Risk>Over 20,000</ WP:Degree_of_Risk>
11 <WP:Likelihood_of_Risk>Certainty</ WP:Likelihood_of_Risk>



Project Assets Ontology (PAO) to Support Gap Analysis 85

12 <WP:Mitigation_Strategy> Assigned Project Manager,
13 engaged 6 consultant, comprehensive project management
14 </WP:Mitigation_Strategy>
15 </WP:Risk_Assessment >
16 <WP:Risk_Assessment>
17 <WP:Type_of_Risk> Estimated Project Schedule </WP:Type_of_Risk>
18 <WP:Degree_of_Risk> Over 12 months </ WP:Degree_of_Risk>
19 <WP:Likelihood_of_Risk> Certainty </WP:Likelihood_of_Risk>
20 <WP:Mitigation_Strategy> Created comprehensive project
21 timeline with frequent baseline reviews
22 </WP:Mitigation_Strategy>
23 </WP:Risk_Assessment>
24 ...
25 </WP:Typical_Work_Products>

SP1.1 SP1.2 SP1.3 SP1.4 SP1.5 SP1.6 SP1.7 SP2.1 SP2.2 SP2.3 SP2.4 SP2.5 SP2.6 SP2.7 SP3.1 SP3.2 SP3.3 SP3.4 SP3.5

OID NA NA NA NA NA NA NA
CAR NA NA NA NA NA

OPP NA NA NA NA NA
QPM NA NA NA NA NA NA NA NA

RD S S S S NA S S NA NA NA
TS S S S S S S S S
PI S S S S S S NA NA NA
VER S S S S NA NA S S
VAL S S S NA NA
OPF NA S S S S S S NA NA

OPD+IPPD NA S S S S S S NA NA
OT S S NA S S S NA

IPM+IPPD S S S S S S S NA NA S NA NA NA NA
RSKM S S S S NA NA NA NA
DAR S NA NA S S S

REQM S S S S S
PP S S S S NA S NA S S NA S S S NA
PMC S S S NA NA NA NA S S NA
SAM S S S S S S NA NA
MA S S NA NA NA S S S
PPQA S NA S S
CM S S NA S S NA NA

SG1 SG2 SG3Maturity Level PA

PA: Process Area, SG: Specific Goal, SP: Specific Practice, S: Satisfied, NA: Not Available

5

4

3

2

Fig. 5. Example of a resulting PIID Sheet

All of the generated metadata documents will be stored in PAM-Repository
and will later be processed by the ProMLA for identifying the list of CMMI
practices and goals that the organization may already performed and achieved.
In addition, a list of absent practices and a list of documents that must be made
will also be specified. The ProMLA will generate the findings in a form of a
Practice Implementation Indicator Description (PIID sheet) [3] that provides a
summary of the organization’s current Maturity level, as shown in Fig.5.

Without PAO, the organization and the consultants may have to spend a
great deal of time to manually dig into hundreds of documents for reviews in
order to discover the gaps between the organization’s current practices and the
CMMI recommendations.



86 S. Rungratri and S. Usanavasin

With the use of PAO and the generated metadata descriptions, we can reduce
some of manual work by exploiting the automated tool to analyze the available
project documents and to identify and generate the preliminary gap reports,
which we expect that it would result in time and cost reductions.

6 Concluding Remarks and Future Work

In this paper, we introduce our ontology called Project Assets Ontology (PAO)
that describe the concepts of CMMI Maturity levels, generic and specific goals,
generic and specific practices of 22 process areas including the concepts of typ-
ical work products and a set of possible assets that may be produced in a soft-
ware development project based on the CMMI v.1.2 model. We also introduce
our ongoing work called CMMI v.1.2 based Gap Analysis Assistant Framework
(CMMI-GAAF) with an intention to illustrate how PAO can be applied in order
to support an organization to conduct a gap analysis process more effectively to
assess its Maturity level.

Without PAO and the supporting tool, an organization has to put a lot of
effort in term of time and money for examining and reviewing a number of docu-
ments in order to discover the gaps between the organization’s current practices
and the CMMI recommendations. With the use of PAO and the metadata de-
scriptions of the project assets, the tool can automatically indicate some of the
existing gaps, which can help the organization to reduce time and cost consump-
tions of its gap analysis process.

For our future work, we attempt to complete the implementation of our frame-
work, CMMI-GAAF. In addition, we intend to perform a number of experiments
based on real projects’ work products and also evaluate our framework based on
the accuracy of the gap analysis findings.

References

1. Kulpa, K., Johnson, A.: Interpreting the CMMI: A Process Improvement Ap-
proach. Taylor & Francis, Abington (2003)

2. Loon, H.: Process Assessment and ISO/IEC 15504: A Reference Book. Springer,
Heidelberg (2004)

3. Berauer, R.: The Use of Tailored Practice Implementation indicators for Process
Definition and Assessment Preparation. In: National Defense Industrial Associa-
tion 3rd Annual CMMI Technology Conference and User Group Denver, Colorado
(2003)

4. CMMI Product Team: CMMI for Development Version 1.2: Improvement Processes
for Better Products. Carnegie Mellon. Software Engineering Institute, USA (2006)

5. Ontology, http://en.wikipedia.org/wiki/Ontology
6. Soydan, G., Kokar, M.: An OWL Ontology for Representing the CMMI-SW

Model. In: International Workshop on Semantic Web Enabled Software Engineer-
ing (SWESE 2006), USA (2006)

7. Lee, C., Wang, M., Cheng, J., Hsu, C.: Ontology-based Intelligent Decision Support
Agent for CMMI Project Monitoring and Control. In: Fuzzy Information Processing
Society (NAFIPS 2006), IEEE Press, Canada (2006)

http://en.wikipedia.org/wiki/Ontology


Project Assets Ontology (PAO) to Support Gap Analysis 87

8. Software Quality Institute, Griffith University: The Appraisal Assistant Beta 3,
http://www.sqi.gu.edu.au/AppraisalAssistant/about.html

9. Chemuturi Consultants: CMMiPal 1.0: CMMiPal Description,
http://www.softpedia.com/get/Others/Finances-Business/CMMiPal.shtml

10. Chrissis, M., Konrad, M., Shrum, S.: CMMI:Guidelines for Process Integration and
Product Improvement. Addison-Wesley, New York (2007)

11. The World Wide Web Consortium (W3C): Web Ontology Language (OWL),
http://www.w3.org/2004/OWL

http://www.sqi.gu.edu.au/AppraisalAssistant/about.html
http://www.softpedia.com/get/Others/Finances-Business/CMMiPal.shtml
http://www.w3.org/2004/OWL


Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 88 – 99, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Towards Individualized Requirements Specification 
Evolution for Networked Software Based on Aspect 

Zaiwen Feng, Keqing He, Yutao Ma, Jian Wang, and Ping Gong 

State Key Lab of Software Engineering,  
Wuhan University 

430072 Wuhan City, Hubei Province, China 
fengzaiwen@sina.com 

Abstract. Networked software is a kind of Internet-based online complex soft-
ware system produced through interaction and cooperation between networks 
and users who act as both consumer and producer of the system composed of 
web services. To meet a mass of individualized requirements, specifications for 
common requirements of the domain need to modify and evolve. Aiming at the 
concern, we propose a 3-step process of requirements evolution modeling of 
networked software. Focusing on the first step, the paper analyzes inducements 
for individualized requirements evolution, proposes a meta-model to describe the 
evolutionary requirements specification of networked software based on aspects, 
and presents a case study to demonstrate the usage of our approach. Finally a 
process for implementing the individualized requirements evolution is proposed. 
So it is helpful to guide the modeling for evolutionary requirements specifica-
tions and implement individualized requirements from common specifications.  

Keywords: requirements specification, evolution, OWL-S, aspect. 

1   Introduction 

Before developing a software production, we should make sure what users want to do. 
The purpose of software requirements engineering is to define problems which the 
software will solve [4]. The final artifact of requirements engineering is software 
requirements specification that explicitly defines users’ requirements. The general 
process of software requirements engineering is composed of requirements eliciting, 
analyzing, modeling, checking and evolution. Requirements evolution concerns how 
to reflect user’s evolutionary requirements into primitive requirements specification. 

Software paradigm has changed with the born of Service-Oriented Architecture af-
ter 2000. For the new paradigm, software artifacts can be aggregated by software 
resources on Internet. Based on the background, we propose Networked Software (NS 
below) that is a complex system of which topology structure and activity can be evo-
lutionary dynamically [1] [13]. To solve the problem of modeling for requirements of 
the NS, some researchers have been done on meta-model for requirements, language 
for acquiring requirements, requirements analysis of complex system, dynamic com-
position of requirements and methodology for modeling requirements evolution [4]. 
To describe the individualized and diversiform requirements for user of the NS, the 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 89 

meta-models of domain requirements modeling framework which support context-
awareness named RGPS is proposed [5]. In addition, to capture the individualized and 
diversiform requirements in the mode of intercommunication between users and net-
work which is specific for the NS, a service-oriented requirements language named 
SORL is proposed [12]. In the requirements engineering of NS, common domain re-
quirements specifications are stored in domain knowledge repository. Under the sup-
port of RGPS, SORL and domain requirements specification, the individualized re-
quirements of the user of the NS can be elicited dynamically, and matched by domain 
requirements specification which is represented in the form of domain process model 
described by OWL-S in domain knowledge repository finally.  

But sometimes the domain requirements specification stored in domain knowledge 
repository probably cannot fulfill the individualized requirements for the user of the 
NS completely. For example, the common domain requirements specification for 
arrange trip for traveler only provides the user three traffic patterns: by train, by air 
or by car. If someone plans to travel by ship, his requirements cannot be fulfilled by 
common domain requirements specification. In the scenario similar to the example, 
we should design a method to make the common domain requirements specification 
evolved to fulfill the user’s individualized requirements. To address this problem, we 
import aspect to support modeling for the evolutionary requirements, and design the 
corresponding process that implements the evolution of common domain require-
ments specifications.  

One of our contributions is proposing OWL-SA and its meta-model that can de-
scribes the evolutionary requirements, the other is designing the process supports 
individualized requirements evolution. The outline of the paper is arranged as fol-
lows: In Section 2, we introduce RGPS and the requirements evolution stages based 
on it. The catalogue of inducements for individualized requirements evolution is ana-
lyzed in Section 3. In Section 4 we propose the meta-model and corresponding defini-
tions of OWL-SA. In Section 5 the process for implementing the individualized  
requirements evolution is proposed. In Section 6, related work is reported. Finally, in 
section7, we conclude the paper and outline our future work. 

2   Requirements Evolution Modeling of NS 

2.1   RGPS: Meta-models of Domain Modeling Framework for NS 

In traditional software engineering, requirements specification is the normal document 
which is used to describe the requirements for the user of the software. Several re-
quirements modeling methodology have been proposed in traditional software re-
quirements engineering, such as: Role-oriented requirements modeling methodology, 
as well as Goal-oriented, Process-oriented and Service-oriented requirements modeling 
methodology [14-16]. The requirements modeling methodologies and the correspond-
ing established requirements specifications are different from one another. It is neces-
sary to propose universal requirements modeling language and methodology to instruct 
somebody to edit requirements specification. After studying various requirements 
modeling methodology, meta-models which describe the requirements specification 
models from each viewpoints have been proposed. That is RGPS: meta-models of 
domain modeling framework for NS [4][5]. RGPS is composed of four meta-models: 



90 Z. Feng et al. 

 Role Meta-Model: describes the roles of the users of NS, actors and the con-
texts which actors are in, intercourse between different roles, and the business 
rules which intercourse must abide by. 

 Goal Meta-Model: describes the requirements goals of the user, including 
functional and non-functional goal, which can be decomposed to operational 
goal further. An operational goal can be realized by business process. The 
decomposition of goal is not completed until the lowest goals are all opera-
tional goals. 

 Process Meta-Model: describes the business process, including functional de-
scription such as IOPE (input, output, precondition and effect), and non-
functional description such as Qos expectation and individualized business 
context expectation. A process can realize functional goal and promote the 
realization of non-functional goal. 

 Service Meta-Model: describes the solution based on service resource, in-
cluding functional and non-functional attributes. A service solution realizes 
the business process. 

 

The domain expert defines a number of domain requirements specifications stored 
in domain knowledge repository in each lay of RGPS, which correspond to the re-
quirements of different users group of the NS. In fact, it is the application of mass-
customization. In Process layer, a great deal of domain requirements specifications 
represented as domain process model are defined. Requirements of the user are elic-
ited, analyzed, which is finally matched to common domain requirements specifica-
tions described by process model. 

2.2   Requirements Evolution Modeling Based on RGPS 

As described above, the domain requirements specification represented as domain 
process model is custom-made for a user group. But actually the user requirements is 
always individualized, which is not fulfilled by common solution. In traditional soft-
ware engineering, the software capability may grow as the user of software claims 
more requirements. As a new software paradigm, NS can make the user feel that he is 
producing a software system himself through intercommunication between user and 
network. In fact, the important feather of NS is self-evolution capability. That is to 
say, NS can continually absorb new common user’s requirements from the network, 
extend or integrate the old domain requirements specifications to the greater ones, and 
form the universal domain requirements specification which can fulfill almost all the 
users of the domain finally. Generally speaking, the requirements evolution modeling 
based on RGPS is divided to the following three stages [4]: (1) Weaving the individu-
alized requirements specification into the domain requirements specification, the 
requirements specification fulfilling the individualized requirements case is set up. (2) 
Aggregation. The requirements specification from different roles and different goals 
are aggregated to several classes. The specifications in each class are integrated. The 
universal domain requirements specification is set up. (3) Optimization. The universal 
domain requirements specification is optimized according to complex network envi-
ronment and the current context. 

The corresponding content in stage one of requirements evolution modeling is pro-
posed in the paper below. 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 91 

3   Inducement for Individualized Requirements Evolution 

The inducement leading to the evolution of domain process model includes three 
points: (1) Additional functional requirements: Common domain process model can-
not fulfill the individualized user’s functional requirements. For example, the domain 
process model: constructing does not comprise atomic process: supervising. If the 
user claims that the whole constructing process can be supervised by the third party, 
the process model should be evolved. (2)Additional business context requirements: 
one or some processes in process model are put different business context expecta-
tion. For example, there is a process model named plan the travel abroad which com-
prises an atomic process: arrange the travelling routine. Now the traveler hopes  
specially that the arranged travelling routine consumes no more than 7 days. Thus the 
process model needs evolving. (3) Additional non-functional requirements. For ex-
ample, there is another atomic process named pay for the travel in the process model 
plan the travel abroad. The traveler hopes higher security in the process of paying for 
the travel. Thus the process model needs to be evolved. 

4   Description Model for Evolutionary Requirements Specification 

If the common domain requirements specification is not enough to fulfill the user’s 
individualized requirements, the requirements specification is driven to evolve. The 
requirements specification is represented by process model in the process layer of 
RGPS framework, and process model is represented by the extension of OWL-S. But 
process meta-model has not enough capability to model the individualized evolution-
ary requirements specification because the OWL-S does not support modeling where 
the evolution happens, when the evolution happens and how the evolution happens. 
After studying some features of AOP, we defined OWL-SA based on OWL-S that has 
capability to describe the attributes of the evolutionary requirements specification. 

4.1   Brief Introduction of OWL-S and Aspect-Oriented Programming 

OWL-S [2] is proposed by W3C which describes services. OWL-S makes the com-
puter understand the semantics of services. It describes the service through a normal 
ontology based on OWL. Described by semantic markup language, services can be 
automatic discovered, invoked and composited. 

OWL-S release 1.1 defines three ontologies to describe services: service profile, 
service model and service grounding. Service profile gives the basic capability of 
service such as IOPE. Service model describes the constitution of service from the 
viewpoint of process flow. And service grounding describes how a concrete instance 
of service can be accessed. 

In traditional software development, scattered and tangled code always exists in 
many modules of the software. The scattered and tangled sections lead verbose soft-
ware code and make it difficult to debug, modify and maintain the program. The goal 
of Aspect-Oriented Programming (AOP) is to solve this issue [7]. AOP insists on 
aggregating the scattered and tangled code to a whole modularity, named as aspect. 
An aspect comprises pointcut, join point, and advice. Join point is a well-defined 



92 Z. Feng et al. 

point in a program’s execution, Pointcut predicates on join points. It is a collection of 
selected join points. And advice is a piece of code that is executed whenever a join 
point in the set indentified by a pointcut is reached [8]. There are some AOP lan-
guages now such as: AspectJ, AspectC++, and AspectWerkz.  

4.2   OWL-SA: Describing the Evolutionary Requirements 

In process layer of RGPS, the OWL-S is used to describe the domain process model. 
It is the proposal of the new individualized user’s requirements that drives the domain 
process model to evolve. Only the domain process model is tailored can the require-
ments evolution be realized. Aspect is a good solution to realize the customization of 
the process model. Several evolution points within one process or several evolution 
points within several processes can be described easily by aspect, as well as the evolu-
tionary content that happens near evolution point. So it is convenient to add, modify 
or remove evolutionary elements from several evolution points of one or several 
process model with aspect and the evolution of process model is realized. Further-
more, the modularity of evolutionary element at the requirements stage will be 
brought to the design and implementation stages smoothly. Thus the runtime evolu-
tion of NS can be realized. 

Since aspect is introduced to realize the requirements evolution, first we need to 
describe how the evolution happens. Besides, we also need to describe the point 
where the evolution happens and what something of evolution is. In fact, it is neces-
sary to set up a unified modeling language to describe the requirements evolution. 

OWL-SA is proposed to describe the evolutionary requirements. OWL-SA is based 
on OWL-S, ‘A’ of OWL-SA refers to aspect, and pointcut-advice model in AspectJ is 
exerted in it. In OWL-SA, an aspect describes an evolutionary requirements specifica-
tion, which comprises one or several pointcut-advice pairs. One pointcut and one or 
several advices constitute a pointcut-advice pairs. 

In a requirements specification described by OWL-SA, pointcut describes the posi-
tion where the evolution takes place. Advice describes the content of requirements 
evolution. Advice also has an attribute: evolutionOrder, which illuminates the order 
between the evolutionary requirements specification and evolutionary position. The 
meta-model of OWL-SA is presented in Fig.1. 

 

 
Fig. 1. Meta-Model for OWL-SA 

 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 93 

(1) Describing the position of evolution 
When we describe the evolutionary requirements specification, the position of evolu-
tion should be described firstly. Xpath [11] is always used to address a certain node in 
an XML document tree. Since domain process model is mainly described in OWL-S, 
which adopts XML syntax, it is appropriate to use Xpath to locate some certain posi-
tion of OWL-SA.  

There are two types of pointcut in OWL-SA. One is the performance to the certain 
process in the process model. The inserting, substituting, or removing action takes 
place on or near the certain process when we perform the certain process in the proc-
ess model, so the process model evolves. This type of pointcut is demonstrated as 
following: 

 
 

When we insert or substitute new process to the process model, the input or output 
parameter of the process model would be added or modified. So the other type of 
pointcut is the declaration of input or output parameter of the process model. The type 
of pointcut is demonstrated as following: 

 
 

(2) Description of evolutionary content 
Advice describes the content of requirements evolution. The evolutionary content is 
either the performance of new process that is inserted or substituted near pointcut, or 
the added input (or output) parameter to the process model. The inserted or substi-
tuted new process may be either atomic process or composite process described by 
OWL-S. The inserted or substituted evolutionary process is usually invoked by a 
control construct Perform, in which there are some data binding relationships. Data 
binding of performance is composed of two sections. One is the input data binding 
represented by InputBinding, the other is the output data binding represented by Pro-
ducedBinding. InputBinding describes the data source of evolutionary process. Pro-
ducedBinding describes the destination of output data of evolutionary process.  

It is not always that the evolutionary process has data bindings with conjoint proc-
esses in the process model, which is due to the order type of the process model. There 
exist two types of order in process model: business logic order and data flow order. 
The business logic order is defined by business flow. There is not always data binding 
In this case. For example, the business flow prescribes that the process “send mobile 
phone message to somebody” takes place before “send Email to somebody”. There 
could be no data binding between the two processes. Another data flow order is de-
fined by the order of data binding in process model, and there exist data bindings 
between the two nearby processes. For example, the process “select cargo” must 
precede the process “pay for the cargo” in the process model “e-business shopping”, 
since the output of “select cargo”, such as “cargo list”, is one of inputs of the process 
“pay for the cargo”. 

In summary, three patterns of the data binding exist between evolutionary process 
and other processes when the evolutionary process is imported into the process model. 
(1) Complete data binding. The new process receives all the outputs of preceding 
process as the inputs of its, and pushes all the outputs of its to the inputs of the suc-
ceeding process. (2)Complete non data binding. It is the business logic order between 

//process:CompositeProcess[@rdf:ID=”CP1”]//process:perform[@rdf:ID=”Step1”] 

//process:CompositeProcess[@rdf:ID=”CP1”]//process:hasInput[@rdf:ID=”I1”] 



94 Z. Feng et al. 

the new process and other processes, no data binding exists. Thus the process model 
adds some inputs and outputs corresponding to the new process. The new process sets 
up data binding to the added inputs and outputs of process model. (3) Partial data 
binding. The new process receives output of preceding process as its partial input, and 
pushes its partial output to the succeeding process. At the same time, the process 
model adds some inputs and outputs corresponding to the rest of inputs and outputs of 
the new process. And the rest of inputs and outputs of the new process sets up data 
binding to the added inputs and outputs of process model. 

There is an issue arising if the evolutionary process has data binding to point proc-
ess. A pointcut is probably composed of several join points which are represented 
corresponding performed processes. Thus the inserted new process probably has sev-
eral data bindings to different join points of the pointcut. Here a variable is defined to 
solve the issue: ThePointcutPerformed, The variable is introduced as the extension to 
OWL-S, which represents the collection of processes that represent join points. 

 
 
 
 

(3) Order between evolutionary content and evolutionary position 
In a specification describing evolutionary requirements in OWL-SA, the pointcut 

describes the position where evolution takes place, and advice describes evolutionary 
content in the pointcut. The sequence between evolutionary content and evolutionary 
position is represented by evolutionaryOrder. As an attribute of advice, evolutionary-
Order is composed of four values: before, after, around and parallelTo. Before, after 
or parallelTo represents that the imported new process is performed before, after or 
parallel to the process designated by pointcut. Around represents the imported new 
process substitute the process designated by pointcut.  

4.3   A Case Study 

We present an example to illustrate the evolutionary requirements specification de-
scribed in OWL-SA. There is a domain process model construction, which involves 6 
sub-processes: project planning, blueprint designing, builder team recruitment, material 
purchasing, building and project checking. They are sequent in the process model. The 
user argues the individualized requirements to domain requirements specification.  
Req1: 

He hopes the recruited builder team has no bad record before. 
Req2: 

He hopes the third party supervises material purchasing, building and project 
checking. 

It means the domain process model needs to be tailored to fulfill the individualized 
user’s requirements. After requirements analysis based on RGPS framework, we get 
that the evolutionary requirements are composed of: (1) Substitution of the old proc-
ess builder team recruitment for the new process with no bad record. (2) Introduction 
of process supervising after material purchasing, building and project checking. Sce-
nario is the following. 

<swrl:Variable rdf:ID=”ThePointcutPerform”> 
<rdfs:comment> 

A special-purpose variable, used to refer, at runtime, to the execution instances of the point-
cut process definition. 

</rdfs:comment> 
</swrl:Variable> 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 95 

 

Fig. 2. Construction process model evolution scenario 
 

The evolutionary requirements specification about Req2 is demonstrated in the fol-
lowing code list. We add ThePointcutPerform to support data binding between point-
cut and imported new process in OWL-SA. 

 

<Aspect name = “Supervising”> 

<pointcut name = “xxx”> 

//CompositeProcess[@rdf:ID=construction]// 

Perform[@rdf:ID=”Mateiral Purchasing”]  

//CompositeProcess[@rdf:ID=construction]// Perform[@rdf:ID=”Building”] 

//CompositeProcess[@rdf:ID=construction]//  

Perform[@rdf:ID=”Project Checking”] 

</pointcut>    

<advice evolutionOrder= “after”> 

 < Perform rdf:ID = “SupervisingPerformed”> 

<process rdf:resource=”&aux;#Supervising”> 

<hasDataFrom> 

        <InputBinding>    

           <theParam rdf:resource=“&aux, #I11”/>   

/*I11 is the input of Supervising*/ 

    <valueSource>                  

         < ValueOf> 

    < theVar rdf:resource=“#OP”/>  

/*OP refers to output of the performed pointcut.*/ 

    < fromProcess 

rdf:resource=“#http://www.daml.org/services/owl-

s/1.1/Process.owl#ThePointcutPerformed”/>   

/*Setup data binding to the variable of pointcut process.*/ 

         <ValueOf> 

                </valueSource> 

        </InputBinding>  

     </hasDataFrom> 

      <Produce> 

         <ProducedBinding> 

      <OutputBinding> 

         <theParam rdf:resource=”#O11”/>  

/*O11 is the output of Supervising*/ 

         <valueSource>                  

              <ValueOf> 

         <theVar rdf:resource=“#O1”/>  



96 Z. Feng et al. 

<fromProc-

essrdf:resource=”#http://www.daml.org/services/owls/1.1/Proce

ss.owl#TheParentPerform”/>   

/*set up data binding to output O1 of Construction*/ 

             <ValueOf> 

                     </valueSource> 

      </OutputBinding> 

        </ProducedBinding> 

</Produce> 

</Perform> 

</advice> 

</Aspect> 

5   Process of Requirements Evolution Modeling 

Requirements evolution process is driven by the user’s individual requirement. In 
section3, inducements of requirements evolution are analyzed including functional 
requirements, some non-functional Quality expectation and business context expecta-
tion. After acquiring the user’s individualized requirements, which is then through 
requirements analyzing and modeling based on RGPS framework, we get the evolu-
tionary position and expected process that supports evolution. Meta-model of OWL-
SA describing the evolutionary specification is proposed in section 4. In this section 
we will illustrate the process of requirements evolution modeling. 

In general, the process of individualized evolution modeling is composed of two 
basic stages: discovery of process specification in domain knowledge and the modifi-
cation to the domain process model.  

It is necessary of stage1 because the evolution of domain process model needs 
some evolutionary elements represented as atomic process or composite process. If no 
suitable process provides inserting or substituting operation, the evolution of domain 
process model maybe pauses. Discovery of process requirements specification com-
prises semantic matching and Quality/Contextual matching. The semantic matching 
finds the process that fulfill the user’s requirements by the semantics of input or out-
put based on domain ontology in domain knowledge repository. Based on semantic 
matching, the Quality/contextual matching finds the process that fulfills the user’s 
Quality requirement or individualized business context requirement in the domain 
knowledge repository. It is necessary to refer that the process meta-model, as the 
extension of meta-model of OWL-S, has the capability to describe user’s quality or 
contextual requirement.  

If user argues additional functional requirements, semantic matching will help to 
find evolutionary element. If user argues additional contextual or quality require-
ments, the semantic matching and Quality/Contextual matching are both needed. 

Stage2 is the modification to the domain process model. If user argues more func-
tional requirements, usually some new processes are imported to domain process 
model. If user argues additional contextual or quality requirements, new process with 
more suitable Quality or contextual expectation substitutes corresponding one in the 
domain process model. 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 97 

6   Related Works 

Aspect technology had been applied in the domain of requirement engineering. Awais 
Rashid et.al propose a general model for aspect oriented requirements engineer-
ing(AORE), which supports separation of crosscutting functional and non-functional 
properties at requirement level [17]. In [18] Awais Rashid et.al further proposes an 
approach to modularize and compose aspectual requirements and concrete realization 
with viewpoints and XML. Ivar Jacobson et.al proposes a method which utilizes use 
case to modeling for crosscutting in software requirements stage in [19], and use case 
slice is designed based on use case in software design stage in order to constitute the 
model for the whole system. [20] shows aspects can be discovered during goal-
oriented requirement model. [17-20] demonstrates how to apply aspect to several 
software requirements models in order to modularize the concern in software  
requirement stage and improve the software quality. The paper combines aspect to 
requirements specification represented as process model to describe evolutionary 
requirements. 

Anis Charfi et.al proposes the application of AOP at the level of the workflow 
process definition language [8]. They argued that AO4BPEL could be used to modu-
larize the concerns in process-oriented BPEL workflows. AO4BPEL enhances the 
modularity and flexibility of BPEL, and supports dynamic adaption of composition at 
runtime. OWL-SA encapsulates the evolutionary requirements specification from a 
process model in OWL-S. The difference between OWL-SA and AO4BPEL is: (1) 
OWL-SA is used to describe the evolutionary requirements specification, however, 
AO4BPEL is used to addresses dynamic adaption at the time of running of service 
composition as well as BPEL. (2)There are some difference in definition between 
OWL-SA and AO4BPEL, because the structures of OWL and BPEL are different. 

Yanbo Han classifies various types of workflow adaption, and discusses potential 
mechanisms for achieving adaptive workflow management in [3]. Boris Bachmendo 
proposed the method for workflow adaption using aspect in [9], and Qinyi Wu fo-
cused on code for defines the permissible sequences of execution for activities in 
BPEL and encapsulate code in synchronization-aspect [10]. He also presented tool 
DSCWeaver to enable extension to BPEL. Bart Verheecke et.al proposed WSML [18] 
between client and Web Service. Web service composition can evolve by the support 
of WSML through the selection of services. But their works do not focus on the adap-
tion of requirements specification represented as process. 

7   Conclusions 

In the paper, we demonstrate process and method on the first step of requirements 
evolution modeling of the NS: individualized requirements evolution modeling. 
Firstly we analyze the inducements of the individualized requirements evolution. 
Generally, it is due that the domain common requirements specification can not fulfill 
the user’s individualized requirements. Then we define OWL-SA which can describe 
the evolutionary requirements specification. And the meta-model of it is proposed at 
the same time. Finally, the process of requirements evolution modeling is proposed, 
which involves discovery of specification and tailoring of domain process model. The 
paper brings a new method to the requirements evolution modeling of NS. 



98 Z. Feng et al. 

As a representation of requirements specification, OWL-S is not suitable to con-
struct the Web Service composition at runtime. In fact, BPEL [6] is the most popular 
language to set up and execute web service composition flow. So the transformation 
from OWL-S to BPEL is necessary. At the same time, as the representation of evolu-
tionary specification, OWL-SA needs to be mapped to aspect in BPEL, such as 
AO4BPEL. Thus, with the help of dynamic weaving tool, such as AO4BPEL engine 
[8], weaving aspect to the executable web service composition flow will be imple-
mented finally. Therefore, we will study on the mapping relation between OWL-SA 
and aspect in BPEL in the future, and corresponding tool will be developed. 

Acknowledgements  

This research project was supported by the National Basic Research Program of 
China (973) under Grant No.2006CB708302 and 2007CB310801, the National High 
Technology Research and Development Program of China (863) under Grant 
No.2006AA04Z156, the National Natural Science Foundation of China under Grant 
No.90604005, 60703018 and 60703009, and the Provincial Natural Science Founda-
tion of Hubei Province under Grant No.2005ABA123, 2005ABA240 and 
2006ABA228. 

Reference 

1. He, K., Liang, P., Peng, R.: Requirement emergence computation of networked software. 
J. Frontier of Computer Science in China 1(3), 322–328 (2007) 

2. David, M., Mark, B., et al.: OWL-S: Semantic Makeup for Web Services (November 
2004), http://www.w3.org/Submission/OWL-S/ 

3. Yanbo, H., Amit, S.: A Taxonomy of Adaptive Workflow Management,  
http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf/0/a7 
fac9b815f26c87c1256c8e00669076/$FILE/CSCW98Workshop%20han-
sheth-bussler.pdf 

4. Jin, Z., He, K., Wang, Q.: Software Requirements Engineering: Part of Progress of Study-
ing. J.Communications of CCF (in Chinese) (November 2007) 

5. Jian, W., Keqing, H., Bing, L., Wei, L., Rong, P.: Meta-models of Domain Modeling 
Framework for Networked Software. In: Proceedings of The Sixth International Confer-
ence on Grid and Cooperative Computing (GCC 2007), pp. 878–885 (2007) 

6. Tony, A., Francisco, C., et al.: BPEL4WS V1.1 specification (May 2003),  
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf 

7. Gregor, K., John, L., Anurag, M., Chris, M., Cristina, L., Jean-Marc, L., John, I.: Aspect-
Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, 
vol. 1241, Springer, Heidelberg (1997) 

8. Anis, C., Mira, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. J.World Wide 
Web, 309–344 (October 2007) 

9. Boris, B., Rainer, U.: Aspect-Based Workflow Evolution, http://www.comp. 
lancs.ac.uk/~marash/aopws2001/papers/bachmendo.pdf 



Towards Individualized Requirements Specification Evolution for NS Based on Aspect 99 

10. Qinyi, W., Calton, P., Akhil, S., Roger, B., Gueyoung, J.: DSCWeaver: Synchronization-
Constraint Aspect Extension to Procedural Process Specification Languages. In: IEEE In-
ternational Conference on Web Services (ICWS 2006), Chicago, US, pp. 320–330 (2006) 

11. W3C: XML Path Language, Version 1.0 (November 1999), http://www.w3. 
org/TR/xpath 

12. Liu, W., He, K.Q., Wang, J., et al.: Heavyweight Semantic Inducement for Requirement 
Elicitation and Analysis. In: IEEE Proceedings of 3rd International Conference on Seman-
tics, Knowledge and Grid (SKG 2007), Xi’an, China, October 29–31, 2007, pp. 206–211 
(2007) 

13. He, K.Q., Peng, R., Liu, J., et al.: Design Methodology of Networked Software Evolution 
Growth Based on Software Patterns. J. Journal of Systems Science and Complexity 19(3), 
157–181 (2006) 

14. Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceedings 
of the 5th IEEE International Symposium on Requirements Engineering, August 2001, pp. 
249–263. IEEE Press, Toronto, Canada (2001) 

15. Hans-Erik, E., Magnus, P.: Business Modeling with UML: Business Patterns at Work. 
John Wiley & Sons, Inc., New York (2000) 

16. Yu, E.: Modeling strategic relationships for process reengineering. Ph.D thesis, Depart-
ment of computer science, University of Toronto (1994) 

17. Awais, R., Peter, S., Ana, M., Joao, A.: Early Aspect: a Model for Aspect-Oriented Re-
quirements Engineering. In: IEEE Joint International Conference on Requirement Engi-
neering, Essen, Germany, September 2002, pp. 199–202 (2002) 

18. Awais, R., Ana, M., Joao, A.: Modularisation and Composition of Aspectual Require-
ments. In: Proceedings of the 2nd International Conference on Aspect-oriented Software 
Development (AOSD), Boston, USA, pp. 11–20 (2003) 

19. Ivar, J., Pan-Wei, N.: Aspect-Oriented Software Development with Use Cases (Chinese 
Version). Publishing House of Electronics Industry, Beijing (2005) 

20. Yu, Y., Leite, J.C.S.d.P., Mylopoulos, J.: From Goals to Aspects: Discovering Aspects 
from Requirements Goal Models. In: Proceedings of 12th IEEE International Conference 
on Requirements Engineering, Kyoto, Japan, September 2004, pp. 38–47 (2004)  

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 100 – 111, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Requirement-Centric Traceability for Change Impact 
Analysis: A Case Study  

Yin Li1, 2, Juan Li1, Ye Yang1, and Mingshu Li1 

1 Institute of Software, Chinese Academy of Sciences 
2 Graduate University of Chinese Academy of Sciences 

{liyin, lijuan, ye, mingshu}@itechs.iscas.ac.cn 

Abstract. Requirement change occurs during the entire software lifecycle, 
which is not only inevitable but also necessary. However, uncontrolled re-
quirement change will lead to a huge waste of time and effort. Most studies 
about the change impact analysis assume changes take place in code, which re-
sults in the analysis only at the source code level and ignoring the requirement 
change is the fundamental cause. This paper introduces a Requirement Centric 
Traceability (RCT) approach to analyze the change impact at the requirement 
level. The RCT combines with the requirement interdependency graph and dy-
namic requirement traceability to identify the potential impact of requirement 
change on the entire system in late phase. This approach has been successfully 
applied to a real-life project, and the benefits and lessons learned will also be 
discussed. 

Keywords: Change Impact Analysis, Requirement Interdependency, Dynamic 
Requirement Traceability, Information Retrieval. 

1   Introduction 

It’s common knowledge that software requirements are volatile, because of the 
change of business strategy and the rapid evolution of the technology. Lacking of 
effective way to manage the evolution of the requirement will lead to project disaster. 
Change Impact Analysis (CIA) is “the activity of identifying the potential conse-
quences, including side effects and ripple effects, of a change, or estimating what 
needs to be modified to accomplish a change before it has been made” [1].  

Traditionally, most studies on CIA aim to analyze the change impact from the per-
spective of maintenance. For example, the program slicing [2] is code analysis tech-
nique which receives great attention in supporting the program modification. It pro-
duces the decomposition slice graph from the program items (e.g. variable), and based 
on this graph the change impact can be gained through the propagation path [3]. Es-
sentially, these code based CIA techniques are helpful to the programmer to catch the 
influencing details, but it is hard for high level decision maker to understand the im-
pact and make a wise decision. Moreover, they assume the change occurs in code and 
ignore the fact that in many cases requirement changes are the source.  

The reasons stated above motivate us to treat the change from the decision maker’s 
view. In this paper, we report our experience in applying RCT based on requirement 



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 101 

specification to assessing the change impact of a practical project through requirement 
interdependency graph and traceability matrix in late phase. The requirement interde-
pendency is identified at the beginning of the project and maintained along with the 
development. The traces from the requirements to the artifacts are automatically gen-
erated by the information retrieval. When comes a requirement change proposal, the 
quantitative impact can be calculated through the interdependency graph and trace-
ability matrix. At last, the project was completed successfully within budget on time.  

The rest of the paper is organized as follows. Section 2 describes the process of 
RCT. Section 3 reports the data analysis and lessons learned in our practice. We com-
pare our method with the related work in Section 4. The paper is concluded in Section 
5 with a summary and directions for future work. 

2   The Model and Application of RCT 

The model and application of RCT falls into four major phrases: Interdependency 
Modeling, Trace Detection, Impact Analysis and Decision Making. Requirement in-
terdependency and dynamic requirement traceability are the basis of our approach, 
and correspond to the Interdependency Modeling and Trace Detection respectively. 
The process is depicted in Fig 1. 

Interdependency Modeling
Trace Detection

Impact Analysis

Decision Making

Establish Graph
Update the graph along 

with development

Maintain Graph
Modify the graph when 

change has passed audit
Trace Retrieval

Adopt the DRT to generate 
the candidate traces

User Filter
Filter out the candidate 

traces

Traceability Evaluation
Analyze the traces

Dependency Evaluation
Analyze the 

interdependency

recursive

User Decision
Make decision 

according to the report

Interdependency 
graph

Traceability matrix

Change Proposal

Agree the change proposal Agree the change proposal

Requirement 
specification

Requirement 
specification

Requirement 
specification

Requirement 
specification

Requirement 
specification

Requirement 
specification

Requirement 
specification

Requirement 
specification

Source code, 
UML, test case

 

Fig. 1. The process of RCT Chang Impact Analysis 

These relations among the requirements are established in the phase Interdepen-
dency Modeling. The Trace Detection phase is to establish the traces from the re-
quirement to other artifacts. The more artifacts the requirement traces to, the more 
change cost it will be. When comes a change proposal, it’s analyzed in Impact Analy-
sis according to dependency graph and traceability matrix. Eventually, the quantita-
tive change impact is computed to help the decision maker. If the change is accepted, 
the requirement dependency graph and traceability matrix will be updated. 



102 Y. Li et al. 

2.1   Interdependency Modeling 

The purpose of this phase is to construct the relations among requirements using re-
quirement interdependency. It’s a bridge to enumerate all the indirect traces of the 
affected requirement. 

Requirements relate to each other and these relationships are called interdepen-
dency. Researches on it have different classification of interdependency [9-11]. 
Dahlstedt et al compiled these different classifications into an integrated view and 
developed “an overall, neutral model of requirement interdependencies” [12].  

Table 1. Åsa G’s Interdependency Types [12] 

Category Description Type 
STRUCTURAL The structure of the 

requirement set 
Requires, Explains, Similar_to, Con-
flict_with, Influences 

COST/VALUE The cost and value of 
realizing requirement 

Increase/Decrease_cost_of, In-
crease/Decrease_value_of 

 
The purpose of our approach is to estimate the impact of requirement change, 

which includes addition, modification and deletion. The added requirement may con-
flict with other existed requirements, so the type Confict_with is selected. To modify 
or delete a requirement, the requirements which depend on it will need some modifi-
cation. So this dependent relationship should be identified through the type Requires 
and Explains. 

2.2   Trace Detection 

Trace is established by the Requirement Traceability activity. As current traceability 
methods usually manually establish traces, they face problems such as hard to main-
tain, error-prone and overrunning cost. Dynamic Requirement Traceability [14] 
adopts Information Retrieval (IR) to automate traceability and improve accuracy. It 
takes generating the traces from requirements to artifacts as searching the internet 
using, for example, Google. So the requirement and the artifact are expressed as query 
and document respectively [8].  

We adopt the common used Vector Space IR Model [7] to compute the similarity 
between requirements and artifacts. The candidate traces are ranked by the similarity 
score in descending order, and threshold value is introduced to filter out the fault 
traces. It indicates that the higher score the artifact gets, the more it correlates with the 
query. More detail about IR can be seen in [7].  

Compared to Cleland-Huang’s [14] and Hayes’s [13] work on dynamic require-
ment traceability, we had to establish traces between the Chinese requirement specifi-
cations and the English source code. Therefore, we used the Google Translate [15] to 
translate the Chinese requirement to English requirement, and then the synonyms 
between requirement and code were matched through the WordNet [16]. For the lim-
ited length of the paper, we ignore the detail of this process.  

The result of traces generating by IR can be evaluated by the metrics of recall and 
precision [7], where 



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 103 

Precision = No. of relevant documents retrieved / No. of documents retrieved 
Recall = No. of relevant documents retrieved / No. of relevant documents 
 

Maximum precision is thinking of how to retrieve more highly considered relevant 
documents, and maximum recall can be gained by reducing the threshold value. 
Hayes introduced a harmonic mean of precision and recall called F-measure [13]. 
This measurement balances the precision and recall, and the max of value indicates 
the “best achievable combination of precision and recall”.  It is computed 

as

precisionrecall

b

b
f

1

1
2

2

+

+
= . Here, b represents the relative importance between recall and 

precision.  b<1, b=1 and b>1 mean precision more important, equal important, recall 
more important respectively. So, the IR system is trying to balance precision and 
recall simultaneously according to different consideration.  

2.3   Impact Analysis 

When comes a requirement change proposal, it is analyzed in the impact analysis 
phase and the impact is represented as the number of affected artifacts. Briefly speak-
ing, the algorithm, which is described below, mainly contains two parts: to find out all 
the affected requirements through interdependency graph; to get all the change and 
affected requirements’ traces through the traceability matrix.  
 

(1)Judge the change type, if type = ‘addition’, goto 2; 
else if type = ‘modification’, goto 3; 
else if type = ‘deletion’, goto 4; 

(2)If newReq conflicts with existed req: ExistedReqList 
for each req in ExistedReqList 

if req needs to do some modification, goto 3; 
else if req needs to be deleted, goto 4; 

(3)For each dependent dreq of modifyReq 
get dreq’s traces to artifacts into IA; 
revise IA to IA’;//eliminate repeated change impact 
calculate number(IA’)* wchange * df(i) into cost; //i 
is set to 1 initially 
add cost into cc; 
set modifyReq = dependOnReq, i=i+1 and goto 3; 

(4)For each dependent dreq of deleteReq 
get dreq’s traces to artifacts into IA; 
revise IA to IA’;//eliminate repeated change impact 
calculate number(IA’)* wdelete * df(i) into cost; //i 
is set to 1 initially 
add cost into cc; 
set deleteReq = dependOnReq, i=i+1  and goto 4; 
 

In step (1), we judge the change type. If the type is ‘addition’, the conflict require-
ments should be identified through analyzing the whole requirement set (2). To mod-
ify or delete the conflict requirements, the algorithm will move to corresponding 
modification (3) or deletion (4) module.  



104 Y. Li et al. 

The total change impact is the sum of the impact of every affected requirement. 
The impact of affected requirement is the product of three parts: the number of cur-
rent traces, the change type weight and depression factor.  

The number of requirement traces should be revised, for the affected requirements 
trace to the same artifact in some cases, which leads to the repeatedly calculated im-
pact. Therefore, we take the maximal impact as their whole impact to the artifact, and 
the impact set of every requirement will be revised.  

The modification type and deletion type should have different trace weights, which 
comes from general knowledge that the influence in deletion is larger than in modifi-
cation. In algorithm, wchange and wdelete , which are set to 0.2 and 1 respectively based 
on our experience, represent the weight of modification and deletion.  

The third part is the depression of impact through the dependent relationship, 
which is called df short for depression factor. Obviously, this factor is the function of 
i, i.e. the distance from the change source to the affected requirement. In our practice, 

we set this factor to
12

1
−i

. The formula tells us that the farther the affected requirement 

is from the original change requirement, the less it will be influenced.  

2.4   Decision Making 

In this last phase, we use the ratio of the number of affected artifacts to the number of 
total artifacts compared with high risk ratio and low risk ratio predefined by experts 
to help determine the risk of current requirement change and take actions accordingly. 
Basically, if the ratio exceeds high risk ratio, this change will be refused automati-
cally; if the ratio is lower than low risk ratio, it will be accepted automatically; when 
the ratio stays at the middle area, the impact detail will be analyzed to determine 
change or not. And finally, if the change is approved, the interdependency graph and 
traceability matrix will be updated correspondingly. The process is showed in Fig 2. 

According to different project type, team and schedule, the high and low risk ratios 
are different, which are determined by the experts through discussion.  

High Confidence to fail if
accept the change

The change impact is low
to influence the project

Low risk ratio

High risk ratio

Refuse the change

Accept the change

Analyze the impact detail to
determine change or not

0%

100%

Update the
interdependency graph
and traceability matrix

 

Fig. 2. Change impact during development 



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 105 

3   Quantitative Change Impact Analysis 

The proposed method was validated using data from a software project which was 
developing a Requirement Management System (RM). RM aims to provide seamless 
connection between requirement and development, which incorporates with another 
in-house software project management product. Table 2 lists the project context.  

At the beginning of each iteration, we model the dependencies among require-
ments. The traceability between the requirement and the artifact is established auto-
matically with the development at any time. During the development, 10 requirement 
change proposals were evaluated through our method, and the high and low risk ratios 
were originally set to 20% and 5% respectively based on a group of experts’ discus-
sion. The project manager (PM) made convincible decision to manage requirements 
change, which plays an important role in the success of project.  

Table 2. Project context 

Project Characteristics Description 
Project type Web based application 
Development process iterative 
Development tool Java/applet/struts/jsp/ajax, mysql, tomcat4 
Team size 5 
Developer skill experience 
Project duration 30 weeks 
Project scale  43 requirements, 70 KLOC, 468 classes 
Logical module number 7 
Deployment package pmreq.jar, pmapplet.jar, pmwss.jar 
Change proposal time 10 
Project status Successfully completed on time 

3.1   Construct Requirement Interdependency 

The whole system can be divided into 7 modules, and the dependencies among these 
modules can be seen in Fig 3. P1, P2 and P3 represent the java package pmreq.jar, 
pmreqapplet.jar and pmwss.jar which encapsulate the server side’s logic, the rich UI  
 

Requirement 
project 

management

Requirement
tree 

management

Requirement
view 

mangement

Requirement
Baseline

management

Requirement
Search

Base data 
management

Requirement 
detail info

Deploy into P1,P2,P3 Deploy into P1,P3

Deploy into P1 Depend on
requires
explains

Requirement
set 

management

Requirement
Detail 

information

Requirement 
purview 

management

Edit the detail 
information

Current req 
viewer can see 

detail info

Project 
manager can 

edit detail info

Current req 
manager can 

edit detail info

Edit Basic 
information

Edit Purview 
information  

         Fig. 3. Modules dependency graph              Fig. 4. An example of interdependency graph  



106 Y. Li et al. 

implementation by java applet and the interface provided to other modules respec-
tively. The symbol of P1, P2 and P3 will also be used in section 3.2.  

The high level relationships among the modules help us define the relationships 
among requirements in fine-grained. Due to the limitation of the paper length, only a 
part of the detailed graph is shown in Fig 4. 

3.2   Establish the Requirement Traceability Automatically 

The source code is the main artifact, so we use the traces between the requirement and 
code to demonstrate the analysis of impact. The traces from requirement to the code 
were generated in three parts, for the implementation was deployed into P1, P2 and 
P3. The result of full data set is shown in Table 3. We use the F-measure to evaluate 
the synthetical accuracy of precision and recall, and the parameter b in F-measure was 
set to 3, which means recall is more important than precision. The F-measure of three 
packages reaches its maximum in chosen set, and the data collected in other sets is 
organized by decreasing and increasing the threshold value.  

For different java package, the precision and recall are not the same. In P1, when 
the threshold value was set to 0.2, the maximum f-measure value was gained, and the 
precision and recall reach at 26.7% and 73.9%. In P2 and P3, the recall reaches at 
92% and 90.4%, which are almost 20 percentage points higher than P1. The precision 
in P2 and P3 is also higher than P1. For the reason that P1, deployed on server side, 
encapsulates the business logic and provides the uniform access to the database, and 
then all the modules depend on it. For example, the class BaseDBOperation encapsu-
lates the atomic access to the database, but doesn’t refer to any requirements. How-
ever, it contains the word ‘base’ also contained in requirement base data management 
and baseline management, so the similarity computed by IR among them is higher 
than threshold value and that leads to the fault trace.  

Table 3. Dynamic retrieval result on all data set 

Set No. Java 
Package 

Threshold 
value 

All correct 
No. 

Retrieved 
No. 

Correct 
retrieved No. 

Precision 
(%) 

Recall 
(%) 

F-measure 
b=3.0 

 P1 0.15 295 1143 218 20.7 80.3 0.624 
1 P2 0.14 600 2423 563 23.2 93.8 0.72 
 P3 0.1 198 735 187 25.4 94.4 0.743 
 P1 0.18 295 946 226 23.9 76.6 0.628 
2 P2 0.16 600 2123 556 26.2 92.7 0.739 
 P3 0.12 198 651 182 27.9 91.9 0.748 
 P1 0.2 295 815 218 26.7 73.9 0.629 
Chosen P2-full 0.18 600 1889 552 29.3 92 0.757 
Set P2-part 0.15 600 1363 556 40.8 92.7 0.821 
 P3 0.14 198 578 179 30.1 90.4 0.758 
 P1 0.23 295 677 204 30.1 69.1 0.614 
4 P2 0.2 600 1681 534 31.8 89 0.754 
 P3 0.16 198 500 171 34.2 86.3 0.749 
 P1 0.25 295 595 197 33.1 66.8 0.606 
5 P2 0.22 600 1517 518 34.1 86.3 0.749 
 P3 0.18 198 439 159 36.2 80.3 0.715 

The P2-full and P2-part in P2 means the full requirement traces to P2 and parts of 
requirement traces to P2. The precision in P2-full is 10 percentage points lower than 
in P2-part. As stated above, P2, embedded in the Jsp pages, is Java Applet and only 



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 107 

used for the modules of requirement tree management and requirement detail info. 
So, the requirements in other modules shouldn’t trace to P2, and then we eliminate 
requirements of other modules and the result was showed in P2-part. 

The P3 uses Webservice to encapsulate P1’s function, and provides the interfaces 
to the P2 and other in-house tools. The F-measure of P3 is 0.758, it’s because the 
higher level encapsulation of the function can better align to the requirement than 
lower level realization in P1 and P2. Another reason is the habit of programmers. P3 
is the interface to other tools and modules, so the naming of the code item follows the 
words in requirement. 

It’s worthwhile to mention that the 43 requirements and 468 classes would produce 
20124 potential traces! The analyst needs to do the inspection to find out the real 
traces, which is a huge waste of time and error-prone. When applying the RCT, the 
analyst only needs to inspect the 745 potential traces (the number is computed by the 
data in column Retrieved No. of Chosen Set) on average.  

3.3   Change Impact Analysis 

There were 10 change proposals during the development, and they are briefly illus-
trated in Fig 5. The symbol A., D. and M. represent the change type Addition, Dele-
tion and Modification. For example, the change proposal #2 was to add some func-
tions in implementation phase, and predicated and actual impact was zero and one 
respectively.  

These change proposals were introduced in implementation phase and the impact 
were calculated through the requirement interdependency graph and the traceability 
matrix following our algorithm. All of these change proposals are accepted except 
#10, which will be discussed in section 3.4.  

Compared between predicted and actual impact of different change type, we found 
that most of the predicated impact is almost equal to the actual impact, but #2 and #3 
have some exceptions. The #2 and #3 belong to the addition type, and they don’t con-
flict with any existed requirements. However, the actual impact (one) isn’t equal to 
the predicated impact (zero). The reason is that the new functions were inserted into 
existed class.  

 

Fig. 5. Change impact during development 



108 Y. Li et al. 

3.4   Details in Change #10: Modify Version Management 

Initially, in order to provide fine-grained management of the evolution of the re-
quirement set, we used the main version and subordinate version (sub version) to 
record the history of requirement. The main version is used for recording the require-
ment content evolution, and the sub version keeps track of the evolutive tree structure 
under the requirement. However, this function was argued by its practicability, and 
the customer proposed to delete the sub version. The change proposal was analyzed 
by our approach and the result indicated that it would cost a lot of resources to modify 
this function. So the PM decided to delay this modification to next version of RM. 

The interdependency graph is shown in Fig 6. Obviously, the modification of ver-
sion management would lead to some modification of, for instance, add main-version. 
The impact analysis algorithm estimated the impact through the change type and 
distance between change requirement and affected requirements.  

Requirement 
tree management

Expand and 
collapse Add Delete

Switch 
versions

Requirement 
detail management

Switch 
Main-

versions

Switch 
Sub-

versions

Basic 
information

Version 
management

Add Main-
version

Add Sub-
version

Delete Sub-
version

Delete Main-
version

requires

explains

Change 
requirement

Legend

Affected 
requirement

 

Fig. 6. The impact of modifying Version Management 

The dynamic retrieval result on these change and affected requirements is shown in 
Table 4. These requirements have no implementation in P3, so the data is collected 
from P1 and P2. For example, the precision of switch versions is 29.4% (in P2 with 
threshold 0.15) and 30% (in P1 with threshold 0.2). 

Table 4. Dynamic retrieval on changing version mechanism 

Correct No. Precision(%)  Recall(%) Affected requirement 
P2 (threshold=0.15) / P1 (threshold=0.2) 

version management 39/5 35.5/16.1 100/100 
add main-version 33/4 45.2/26.7 100/100 
add sub-version 30/4 42.9/25 100/100 
del main-version 23/4 41.1/21.1 100/100 
del sub-version 24/4 40/23.5 100/100 
basic information 53/2 61.6/18.4 88.3/87.5 
add requirement 32/11 41/53.3 97/72.7 
del requirement 11/8 40.7/50 55/62.5 
switch versions 30/6 29.4/30 96.8/100 
switch main-versions 26/5 37.7/21.7 96.3/100 
switch sub-versions 32/4 43.8/21 94.1/100 



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 109 

The recall of candidate traces from version related requirements to code reaches at 
100% for the meaning of ‘version’ is unique in all the modules. On the contrary, the 
word ‘base’ residing in several modules (for instance, base data management, basic 
requirement information, requirement baseline management) has different meaning, 
which leads to the lowest precision and recall of P1. 

We compared the precision and recall between the chosen and individual threshold 
in Fig 7. The chosen threshold is the uniform value (0.2 in Fig 7) to filter all the re-
quirements’ candidate traces, and the individual threshold is one requirement’s value 
to filter its candidate traces when the F-measure reaches maximum. Basically, the 
recall of the two thresholds has little difference, but the precision in chosen threshold 
set is less than in individual set. Especially in version management, the precision in 
individual set is two times as in chosen set.  

 

Fig 7. Comparison of precision and recall between chosen and individual threshold 

The calculated impact of this change is 24 (classes), and the ratio of the impact 
number to the total class number (468 classes) is 5.1%, lower than high risk value but 
higher than low risk value. The affected classes were analyzed in detail, and we found 
that these classes are too complex to be modified. So PM decided to delay the modifi-
cation to the next version. 

3.5   Discussion 

We got at least three benefits from applying the RCT: 
 

1. Our approach addresses the change on the requirement specification rather than 
code, which can help the non-technical people who don’t know the detail of the 
code to predict the change cost quantitatively.  

2. The impact to both requirements and artifacts was unified into the number of 
artifacts, which is easy to use and understand.  



110 Y. Li et al. 

3. It’s time-saving to apply the IR to automatically establish the traces among the 
requirements and artifacts, and is highly probable to adopt in practice. Without 
the dynamic generating approach, the analyst has to analyze every possible rela-
tion among requirements and artifacts, and the candidate traces number is  
Numreq×Numartifact.  

 

Also, we found the weakness of this approach. The precision and recall of the 
traces are not good enough to totally automatically calculate the change impact, and 
the user inspection is also needed to filter the traces.  

4   Related Work 

There are mainly three kinds of techniques: static and dynamic program slicing, call 
graph based analysis to estimate the modification of impact on the code. A program 
slicing is composed of some parts of program which affects the values computed at 
some point of interest [2]. The static and dynamic slices both can be based on the 
program dependency graph [4], and the difference between them is the static slicing 
makes no assumption to the input but the dynamic slicing is based on the specific test 
case. Compared with the slicing, the transitive closure analysis on call graph is less 
expensive, but it suffers from imprecision [3]. Of course, the code based method re-
sults in an accuracy analysis of change impact. However, it’s time-consuming and 
requires the full comprehension of code; for example, it’s an impossible mission to 
catch every detail in our 70 KLOC project. Our method pointing against this problem 
focuses on the requirement specification to deal with the change, and it’s proved prac-
tical and effective in supporting the high level decision.  

Hassine [5] and Maryam [6] propose requirement based CIA using Use Case Map 
(UCM). They move the dependency graph analysis in the code to the UCM. However, 
UCM is a formal model of requirement rather than natural language specification and 
it needs additional cost to be mapped from requirement specification. In practice, this 
mapping is too complex for us to adopt in our project. On the contrary, we take an 
easier and more practical way which is to construct the interdependency graph among 
requirements. The impact analysis is through not only interdependency graph, but also 
traceability matrix among requirements and artifacts. 

5   Conclusion and Future Work 

In this paper, we introduced a practical approach, called Requirement-Centric Trace-
ability, to do the CIA from the requirement perspective rather than code. It incorpo-
rates with requirement interdependency analysis and dynamic requirement traceability 
to calculate the change impact completely. Firstly, according to the three change 
types, we choose several interdependency types to model the requirement relation-
ship. Then, the candidate traces from requirements to artifacts are generated automati-
cally by IR method, and the actual traces can be gained by user inspection. Therefore, 
the cost of this activity is reduced to the least based on the IR. When comes a change 
proposal, the decision maker can show the quantitative impact result to change or not 
instead of experiential judgment. The interdependency graph and the traceability 
matrix may be updated when the change is accepted.  



 Requirement-Centric Traceability for Change Impact Analysis: A Case Study 111 

We have applied the approach to our 5-people and 30-week project. The result 
demonstrated that it is feasible to estimate the change impact. The PM can evaluate 
the change cost from high level perspective rather than details in the code. 

Our future work will concentrate on how to improve the accuracy of the traces and 
also keep the automation level. 

Acknowledgments. This research is supported by the National Natural Science Foun-
dation of China under grant No. 60573082, the National Basic Research Program (973 
program) under grant No. 2007CB310802, the Hi-Tech Research and Development 
Program of China (863 Program) under grant No. 2006AA01Z155. 

References 

1. Bohner, S.A., Arnold, R.S.: Software change impact analysis. IEEE Computer Society 
Press, Los Alamitos (1996) 

2. Weiser, M.: Program slices: formal, psychological, and practical investigations of an 
automatic program abstraction method. PhD thesis, University of Michigan (1979) 

3. Law, J., Rothermel, G.: Whole Program Path-Based Dynamic Impact Analysis. In: ICSE 
2003, Portland, Oregon (2003) 

4. Tip, F.: A Survey of Program Slicing Techniques. J. Programming Languages 3(3), 121–
189 (1995) 

5. Hassine, J., Rilling, J., Hewitt, J., Dssouli, R.: Change Impact Analysis for Requirement 
Evolution using Use Case Maps. In: Proc. of the 8th Int. Workshop on Principles of Soft-
ware Evolution, pp. 81–90 (2005) 

6. Maryam, S., Jameleddine, H., Juergen, R.: Modification Analysis Support at the Require-
ments Level. In: IWPSE 2007 (2007) 

7. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Pearson Education, 
London (1999) 

8. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering Traceability 
Links between Code and Documentation. IEEE Transaction on Software Engineering, 
970–983 (2002) 

9. Pohl, K.: Process-Centered Requirements Engineering. John Wiley & Sons, Chichester 
(1996) 

10. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE 
Transactions on Software Engineering 27(1), 58–93 (2001) 

11. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements Interaction Management, 
GSU CIS Working Paper 99-7, Department of Computer Information Systems, Georgia 
State of University, Atlanta (1999) 

12. Dahlstedt, A.G., Persson, A.: Requirements Interdependencies - Moulding the State of Re-
search into a Research Agenda. In: Ninth International Workshop on Requirements Engi-
neering: Foundation for Software Quality in conjunction with CAiSE 2003 (2003) 

13. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing Candidate Link Generation for Re-
quirements Tracing: The Study of Methods. IEEE Transaction on Software Engineering, 
4–19 (2006) 

14. Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing Supporting Evidence to Im-
prove Dynamic Requirements Traceability. In: Proceedings of the 13th IEEE International 
Requirements Engineering Conference (RE 2005), pp. 135–144 (2005) 

15. Google Translate, http://www.google.com/translate_t 
16. WordNet, http://wordnet.princeton.edu/ 
 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 112 – 122, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Scaling Up Software Architecture Evaluation Processes 

Liming Zhu, Mark Staples, and Ross Jeffery 

NICTA, Australian Technology Park, Eveleigh, NSW, Australia  
School of Computer Science and Engineering, University of New South Wales, Australia 

{Liming.Zhu, Mark.Staples, Ross.Jeffery}@nicta.com.au 

Abstract. As software systems become larger and more decentralized, increas-
ingly cross organizational boundaries and continue to change, traditional struc-
tural and prescriptive software architectures are becoming more rule-centric for 
better accommodating changes and regulating distributed design and develop-
ment processes. This is particularly true for Ultra-Large-Scale (ULS) systems 
and industry-wide reference architectures. However, existing architecture  
design and evaluation processes have mainly been designed for structural archi-
tecture and do not scale up to large and complex system of systems. In this pa-
per, we propose a new software architecture evaluation process – Evaluation 
Process for Rule-centric Architecture (EPRA). EPRA reuses and tailors existing 
proven architecture analysis process components and scales up to complex 
software-intensive system of systems. We exemplify EPRA’s use in an archi-
tecture evaluation exercise for a rule-centric industry reference architecture.  

1   Introduction 

A software architecture is defined as “the structure or structures of the system, which 
comprise software elements, the externally visible properties of those elements, and 
the relationships among them” [1]. Most current architecture research reflects this 
definition by focusing on designing and evaluating structural components and connec-
tions. However, such views of architecture are not suitable for all situations. As sys-
tems become larger, more decentralized and continue to change, it is difficult for a 
prescriptive structural architecture to allow flexibility and evolvability . In such situa-
tions, an architecture should focus on providing quality-centric architectural rules 
rather than structural prescription [2, 3]. An architecture rule is defined as principles 
that need to be followed by structures within a system [4]. An architectural rule may 
be satisfied by several potential structural architectures. They are usually flexible, 
evolvable and survivable architectures for a whole industry or an Ultra-Large-Scale 
system. Just as in urban design planning, the rules have an economics rationale and a 
quality focus, with little formal control. Rule-centric architectures are for software 
“cities”, rather than software buildings.  

A number of architecture evaluation processes, such as Architecture Trade-off 
Analysis Method (ATAM) [5], Software Architecture Analysis Method (SAAM) [6] 
and Architecture-Level Maintainability Analysis (ALMA) [7], have been developed 
to evaluate quality-related issues for software architectures. Recently, a number of 
process components common to many of these processes have been extracted [8]. 



 Scaling Up Software Architecture Evaluation Processes 113 

These process components are relatively atomic and generic and have been proven 
useful for evaluating structural architectures. However, all these evaluation processes 
do not scale up to system of systems due to their focus on structural architectures and 
strict step-based processes.   

In this paper, rather than extending an existing architecture evaluation process for 
rule-centric architecture, we instead use the extracted common process components 
directly. We propose a new process – Evaluation Process for Rule-centric Architec-
ture (EPRA) by selecting, reusing, and tailoring existing process components [8].  
The focus of EPRA is not on prescribing methodical steps but rather on adapting 
existing analysis process components in the context of rule-centric architecture. The 
adapted process components are loosely organized into several traditional evaluation 
phases. 

We have used EPRA in evaluating a rule-centric reference software architecture 
for Australia’s mortgage lending industry. This systematic process identified a num-
ber of trade-offs among these rules and improved them by explicitly providing con-
texts and condition guidelines for applying the rules. The process also tremendously 
increased our confidence in releasing the reference architecture.  

The paper is organized as follows. Section 2 will explain the motivation of the 
work. We will explain the process component adaptation and composition in EPRA in 
section 3. An industry case study is used to illustrate EPRA in section 4. We discuss 
our experience in using EPRA in section 5. We conclude and propose some future 
work in section 6.  

2   Motivation and Background 

This work is entirely motivated by immediate industry needs recognised through our 
industry engagements. Vertical industries have been developing e-business standards 
to improve their business-to-business interoperability, and to foster efficient and or-
ganically-grown industry-wide systems. NICTA has been working with a leading 
Australian e-Business industry standardization body – Lending Industry XML Initia-
tive (LIXI) [9] – that serves the lending industry in Australia. The LIXI e-business 
standards are essentially a set of governing rules for systems supporting the current 
and future lending industries in Australia.  

Until recently, LIXI standards have been composed of XML-based business data 
models (associated with message exchange patterns) and Business Process Modelling 
Notation (BPMN)-based business process models.  Business data and process models 
alone have limited power to regulate the healthy evolution of the whole system. We 
were consequently asked by LIXI to help devise a reference architecture and associ-
ated development processes to supplement their e-Business standards. 

Both the LIXI standardization body and NICTA realized that the role of a refer-
ence architecture in this case is significantly different from traditional technical 
reference architectures, which only exemplify a possible arrangement of structural 
components and connectors. This is because the LIXI context has a number of com-
plicating characteristics:  

 



114 L. Zhu, M. Staples, and R. Jeffery 

1. Decentralization: Data, development processes, evolution and operational control 
are all decentralized. LIXI is a non-profit organization with no standard enforce-
ment power. Its membership is voluntary.  

2. Inherently conflicting requirements: Most parties want complexity to reside in oth-
ers’ parts of the overall system, want information to be shared, but do not want to 
share their own information. Technical solution companies provide and favor in-
termediary gateways and custom-built applications, while smaller players typically 
want commoditized applications and to remove intermediaries.  

3. Continuous evolution with heterogeneous elements:  The whole ecosystem can’t be 
stopped and re-engineered. Day-to-day lending activities have to go on, and hori-
zontal interactions with the larger financial and government systems also exert 
constant influence.  

4. No clear people/system boundary: The scale of the companies involved varies 
widely. Some companies have sophisticated systems that can automate most tasks 
while others still rely on fax and manual processing. Messages and activities in the 
e-Business standards can map to systems or people depending on the specific par-
ties and the characteristics of individual transactions.  
 

The LIXI eco-system resembles the characteristics of an Ultra-Large-Scale (ULS) 
system. In order to address both the business perspective and ULS system challenges, 
the reference architecture needs to balance consistency and variety, address compet-
ing needs from different parties and consider trade-offs between prescriptive guidance 
and an ability to evolve.The reference architecture for LIXI should provide governing 
quality-centric rules rather than structural prescriptions. These rules also act as guid-
ance to the distributed design and development process.  

To analyze such a rule-centric architecture we need a new architecture evaluation 
process. We therefore developed EPRA from the basis provided by the proven proc-
ess components of traditional architecture evaluation processes.  

3   Evaluation Process for Rule-Centric Architecture (EPRA) 

3.1   Adapt Architecture Analysis Process Components for Rule-Centric 
Architecture  

We analysed the ten common process components in architecture analysis and evalua-
tion for their suitability, and adapted them for rule-centric architectures in the context 
of ULS systems.  

Inevitably, our approach is not yet fully mature, as rule centric architecture is still 
relatively new compared to structural architecture approaches.  Also, the EPRA proc-
ess were developed to support the immediate needs of a commercial project. Never-
theless, the process has proven useful in the project, and has a theoretical grounding 
in the process components of Kazman et al [8]. We discuss the ten process compo-
nents below. 

 

1. Explicit elicitation of business goals.  As for all types of architecture, the ultimate 
purpose is to satisfy business goals. Our method requires a presentation of business 
goals. Depending on the level of abstraction, we observe that certain business goals 



 Scaling Up Software Architecture Evaluation Processes 115 

can be presented as business rules. Such business rules are especially useful in 
evaluating architecture rules since there is a smoother mapping between the two. 
Competing goals are another major concern for ULS systems. More flexible rules 
are essentially designed for addressing this problem. We adapt the process compo-
nent by introducing a new process artefact - perspective-based goals and tailoring 
the corresponding activities, so a rule can be evaluated under different perspec-
tives. The essence of this new process component is about perspective-based busi-
ness goals and rules elicitation.  

2. Active stakeholder participation and communication. As mentioned above, in ULS 
systems rule-centric architectures can be used across entire industries to provide 
flexibility and evolvability. These architecture rules need to be applied to different 
competing and collaborative companies in different contexts, resulting in different 
concrete structural decisions. A single common understanding among stakeholders 
is not expected. The essence of adapting this process component is similar to the 
last one – to recognise the different perspective of different stakeholders. Two lev-
els of understanding are considered. One is a rule-level understanding, i.e. the un-
derstanding of the industry reference architecture. The other is instance-level un-
derstanding, i.e. the understanding of applying the rules to a specific system from a 
particular stakeholder’s perspective. 

3. Explicit elicitation of architecture documentation and rationale. The documenta-
tion of architecture rules is different from the documentation of structural architec-
tures. Some architecture description languages can express architectural constraints 
which are enforced on the implementation at run-time. However, there is an ex-
tremely limited ability to express meta-level rules to allow structural change at de-
sign-time and run-time. Textual descriptions can be used. An architecture descrip-
tion language in the form of UML profiles for describing design decisions includ-
ing design rules has been proposed [10], but is not yet mature. We also found that 
it is useful to document exemplary structural architectures derived by following the 
rules. These exemplars can be for a specific technology binding or from the per-
spective of a particular system. They act as a way of documenting possible con-
texts and results for applying the rules. The essence of this process component is to 
elicit rule-centric architecture documentation explicitly and provide illustrative ex-
emplary structural architectures whenever necessary. 

4. Use of quality attribute scenarios. Business goals and rules need to be related to 
quality scenarios for design and evaluation purposes. Considering the genericity of 
rule-centric architecture, the scenarios they can be evaluated against tend to be gen-
eral scenarios or a range of concrete scenarios. These concrete scenarios can be 
perspective-based or technology- and context-based. This allows flexibility in the 
final structural architectures derived from these rules. The essence of this technique 
is to use general scenarios with associated perspective or context-based concrete 
scenarios in evaluation. In our adapted process component, we also suggest catego-
rizing quality attributes scenarios into business goal categories [11] in addition to 
the quality attribute categories. This enables explicit trade-off and coverage analy-
sis between rules and business goals. 



116 L. Zhu, M. Staples, and R. Jeffery 

5. Mapping of quality attribute scenario onto the architecture representation. The 
architecture representation in rule-centric systems are rules. When rules are being 
applied in specific technology and organizational contexts, structural representa-
tions will emerge. In our adapted technique we suggest several mappings. The first 
mapping is from general quality attribute scenarios to rules. Further mappings can 
be provided from example concrete scenarios to example structures derived for a 
specific technology bindings or other context-oriented interpretation of rules. The 
essence of the process component is to understand different types of mappings.  

6. Representation of design primitives, called tactics.  We consider this an essential 
technique in the evaluation of rule-centric architectures. Firstly, we observe rules 
are often the application of one or more tactics. This is similar to extracting tactics 
from structural architectures and design patterns [12] for evaluation purposes. Sec-
ondly, architectural tactics are now being directly used in quality attribute reason-
ing models by manipulating model parameters [13]. Having corresponding tactics 
for each rule and further using them in quality reasoning models improve the effi-
ciency of the evaluation process for rule-centric architecture. The essence of this 
process component is to extract architectural tactics from architectural rules. 

7. Use of templates to capture information. Our process component reuses the 6-part 
template [1] for capturing quality scenarios. For design rules and rationale, a set of 
templates based on an informal UML profile for design decisions [10] can be used. 
An enumeration of all the tags and stereotypes in this UML profile can produce an 
initial template.  

8. Explicit elicitation of costs and benefits. For evaluating rules and making architec-
ture improvement over rules, it is necessary to elicit information on costs. Since 
rules were developed at a certain level of genericity, the contextual implications of 
applying rules (e.g. on organization capabilities and existing infrastructure) are 
very important in cost-benefit analysis for rule-centric architecture. The goal of this 
process component is to have context-based cost analysis, rather than analysis from 
a single perspective such as the standardization body. Our initial failure to realize 
this in our industry engagement made much of our first attempts at analysis invalid. 

9. Use of quality attribute models for architecture analysis. As suggested in [8], cer-
tain quality attribute models (e.g. for performance and reliability) are well estab-
lished while others (e.g. for interoperability, variability and security) are not. The 
process component essentially evaluates how a rule improves or impedes quality 
attributes and associated business goals by investigating how it manipulates pa-
rameters in the quality attribute reasoning models. Due to the lack of reasoning 
models for the quality attributes that are important for ULS systems, we had to in-
vent our own informal reasoning models. Rigorous parameters can be replaced by 
informal factors. This has proven very useful in guiding qualitative analyses.  

10. Use of quality attribute design principles derived from the quality attribute model. 
This process component concerns the same problem illustrated in the last item. 
When a collection of design principles (tactics) for a quality attribute exist, an 
evaluation analysis is usually about whether the rules follow these principles prop-
erly in its specific context. When such collections of principles do not exist, the 
evaluation analysis has to rely on parameter manipulation in their reasoning mod-
els, or even on informal reasoning.  



 Scaling Up Software Architecture Evaluation Processes 117 

3.2   EPRA  

As mentioned previously, EPRA is not intended to give a prescriptive step-wise proc-
ess, but instead to adapt existing process components for rule-centric systems and 
loosely organize them into phases. This is intended to improve the process scalability 
and usefulness to distributed design and development.  

An evaluation method for rule-centric architecture does not change the normal 
phases of an evaluation. Depending on how exemplary structure architectures would 
be evaluated along with a rule-centric architecture, interactions between EPRA and 
other evaluation processes may occur.  This is represented in Figure 1 which illus-
trates EPRA’s conceptual flow and corresponding process components.  

 
Fig. 1. Rule centric analysis process components in EPRA 

• Phase I: Business Goals and Quality Scenarios 
• Process component: Perspective-based business goals/rules elicitation 
• Process component: Multiple-level based participation and understanding 
• Process component: Use of general scenarios and example concrete scenarios 
• Process component: Use of templates for general scenarios 
• Interaction with business goals and concrete scenarios for example structural ar-

chitecture evaluation 
• Phase II: Rule Analysis 

• Process component: Documentation of rules and example structural architecture 
• Process component: Mappings from quality scenario onto rules on different  

levels 
• Process component: Use of templates or ADL for capturing architecture rules 
• Process component: Use of quality attribute models for perspective-based analysis 
• Process component: Compare rules with design tactics derived from the quality 

attribute model 
• Interaction with architecture analysis for example structural architecture evaluation 

• Phase III: Architectural Tactics 
• Process component: Extracting architectural tactics from rules 
• Process component: Use of templates for tactics extraction and documentation 



118 L. Zhu, M. Staples, and R. Jeffery 

• Process component: Compare rules with design tactics derived from the quality 
attribute model 

• Interaction with design approaches for example structural architecture evaluation 
• Phase IV: Tradeoff Analysis 

• Process component: Perspective and contextual based cost benefit analysis 
• Process component: Use of quality attribute models for perspective-based analysis 
• Process component: Compare rules with design tactics derived from the quality 

attribute model 
• Interaction with perspective-based cost benefit analysis 
 

As shown, some of the process components are used in different phases. This is 
similar to many other evaluation processes, and supports an explorative, dynamic and 
iterative process. We do not intend to place strict limitations on using certain process 
components in certain phases – the important thing is to have specific consideration 
for the issues of rule-centric architecture and their business context.  

Inputs of an EPRA-based evaluation will be elicited from participants or recovered 
from existing informal design and business documentation. However, quality attribute 
based reasoning models and architecture tactics for certain attributes are not well un-
derstood and are often lacking. Methodically evaluating how a rule affects a quality 
attribute can be challenging. In our case study, we developed our own interoperability 
issue matrix as a substitute for a more formal reasoning model. We also extracted 
architectural tactics for interoperability from existing literature so as to compare rules 
with these tactics.  

4   Case Study 

4.1   LIXI Reference Architecture Evaluation Using EPRA 

The case study background was introduced in section 2.  We performed a full evalua-
tion for this reference architecture by following EPRA. The following shows some 
results of our evaluation: 

Phases I: Business Goals and Quality Scenarios 

We categorize these goals using the categories proposed in [11]. The followings are 
just a few examples: 

Category: Reduce Development Cost – Manage Flexibility 
 

Cost reduction for the lending industry is a major driver behind the standard. The 
overall goal is to achieve cost reduction in the area of cross-organization transactions, 
which will consequently benefit individual organizations.   

Quality attribute general scenario 1: When an organization wants to conduct e-
business transactions with a new partner, the cost of re-development should be very 
low if both parties are in compliance with LIXI standard. Ideally, little reconfigura-
tion should be required, and re-development should be minimized.  

Category: Reduce Development Cost – Distributed Development  
 



 Scaling Up Software Architecture Evaluation Processes 119 

The business goal is to enable parallel and distributed development with no central 
control or collaborative overhead except the LIXI standards. 

Quality attribute general scenario 1: When systems are developed in total isolation 
by following the LIXI standards and reference architecture, they should be able to 
interoperate with minimal re-development effort.  

For example, depending on the rules and design of a particular system, the re-
development effort could shift between two parties. Within the lending industry, 
banks have the ability to accommodate relatively large development effort. On the 
other hand, small brokers and valuers usually do not invest substantially in IT devel-
opment. An intermediary can be introduced to decouple the involving parties, central-
ize all possible changes and conduct transaction matching. However, from the per-
spective of the intermediary, a reasonable transaction volume based premium should 
be paid to cover the re-development cost. Smaller players can be supportive of an 
intermediary because of their incapability to deal with changes effectively. However, 
from the perspective of large players, the goal is to leverage their central influence by 
absorbing such intermediaries.  

All these different perspective are captured for later phases of EPRA. 

Phase II: Rules Analysis  

The following are two sample sets of rules (development process guidelines) from a 
list of 40 rules in the LIXI context, with commercial sensitive information removed: 

1) Semantic Alignment Rules 

Semantic alignment provides architectural mechanisms for minimizing the effort 
needed to integrate components built independently. LIXI standards provide an ontol-
ogy vocabulary and associated XML Schema for defined LIXI messages. The purpose 
of architectural support for semantic alignment is to enable linking of technical ele-
ments with business semantics to provide: 1) enough flexibility to technical elements, 
and 2) interoperability between technical elements by consulting the business mean-
ing at both design-time and run-time.  The reference architecture provides two set of 
rules for achieving semantic alignment in the context of service oriented architecture. 
Both also act as suggestive enforcement mechanisms for auditing business standards 
compliance: 
 

Semantic annotation (lightweight) This allows the service architecture to be devel-
oped without initially considering business standards.  Developers can then annotate 
technology elements by referring to the common vocabulary through XML reference 
or semantic web service mechanisms. This is a bottom-up approach and relatively 
lightweight. When two systems communicate, they can know what each other means 
business-wise even though labels might differ.  
 
Model Driven (heavyweight) Another approach is a top-down one. High-level 
BPMN models can be translated into a technical BPEL (Business Process Execution 
Languages) models. A similar approach can be used to translate business messages 
into web service messages. The transformation rules (manual or automated) then can 
be exposed for interoperability purposes.  



120 L. Zhu, M. Staples, and R. Jeffery 

2) Minimum Service Interface Rules 

The business world is essentially a service oriented world. The technology world has 
recently been catching up by introducing the “service” concept, either as SOAP-based 
Web services, REST-ful services and other forms.  The governing rules and develop-
ment processes for service interface designs should follow this principle. The set of 
rules we propose in the reference architecture for LIXI use a loose message-centric 
interface approach. Messaging behaviors are specified by content structure and ex-
change protocols. Service interfaces should not expose abstractions as remote proce-
dures.  Essentially, we advocate the use of a single operation on a service – Proc-
essLIXIMessage – but allow more complicated interfaces to exist. This rule encour-
ages maximum flexibility in the face of constant evolution. Shared contexts are car-
ried within messages. Message processing can either be hidden behind the service or 
exposed as metadata.  
 

Phases III: Architectural Tactics 
By analyzing the above rules, we extract a number of architectural tactics for interop-
erability. Currently, there are no large collections of interoperability tactics. However, 
a number of papers and technical reports [14-20] have documented current ap-
proaches for achieving interoperability.  A critical analysis activity in this phase is to 
use a reasoning model for quality attributes to determine if a proposed rule or tactic 
improves or hinders important quality attributes. Formal reasoning models for archi-
tectural interoperability (the main quality attribute we are investigating) do not yet 
exist, and so we have had to invent an informal model with informal issues (rather 
than well-defined parameters) for our evaluation. Using this simple matrix approach, 
we were able to analyze each rule and tactic systematically. 

Phases IV: Trade-off Analysis 

The trade-off analyses conducted for the LIXI reference architecture fall into two 
categories: 
 

• Trade-off analysis between different quality attributes 
• Trade-off analysis based on different perspectives 
 

The two types of trade-off analysis also interact with each other. Some trade-off 
analyses will result in an explicit trade-off decision being made and the rationale cap-
tured. Other trade-off analyses will result in perspective-based trade-off decisions 
being captured as guidelines for different perspectives.  

For example, an explicit trade-off decision is made between interoperability and 
flexibility by not prescribing operational interfaces. We sacrifice immediate interop-
erability for flexibility and evolvability.  

5   Discussion 

The full evaluation of EPRA in the LIXI context has not yet finished. However, since 
we are using proven common architecture analysis process components in EPRA, we 
are reasonably confident about the feasibility and effectiveness of the process. We 
have learned a number of lessons in this exercise: 



 Scaling Up Software Architecture Evaluation Processes 121 

1. Reusing process components is very effective in constructing a new method. Our 
method leverages existing expertise among stakeholders and evaluators.  Actually, 
these process components are more familiar and user-friendly to participants than 
well-known evaluation methods such as ATAM . 

2. Devising a reference architecture is a very explorative activity. A non-stepped proc-
ess like EPRA has proved to be very appropriate compared to other more formal 
processes. We initially tried to directly use ATAM but found a lot of input informa-
tion was hard to produce and tempted us to jump between phases very frequently. 

3. We feel there is a need for a more systematic trade-off analysis process for EPRA. 
The number of trade-off points has increased tremendously due to perspective-
based analysis and rule-structure level-based analysis. CBAM [21] and AHP [22] 
have demonstrated to be useful, but we need to further investigate their scalability.  

6   Conclusion 

The needs we have observed in our industry engagement have prompted our research 
into a new evaluation process. We believe as more systems are connected in a decen-
tralized manner, the software world will evolve towards the ULS system vision. In 
this paper we have proposed EPRA, an architecture evaluation process for systems 
with rule-centric architectures. This systematic process helps identify trade-offs 
among these rules and improved them by explicitly providing contexts and condition 
guidelines for applying the rules. EPRA is constructed by loosely connecting and 
adapting existing process components to improve its scalability and usefulness to dis-
tributed design and development processes.  

We have used EPRA in an architecture evaluation for the rule-centric reference ar-
chitecture of the LIXI lending industry organization in Australia. The process has 
helped us to improve the reference architecture significantly and has increased our 
confidence in releasing it into the industry. Nonetheless, as a new process, EPRA is 
not yet either mature or widely tested, and we are currently working to validate it in 
different contexts.  

Acknowledgements 

NICTA is funded by the Australian Government's Department of Communications, 
Information Technology, and the Arts and the Australian Research Council through 
Backing Australia's Ability and the ICT Research Centre of Excellence programs. 

References 

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley, 
Reading (2003) 

2. Northrop, L., Kazman, R., Klein, M., Schmidt, D., Wallnau, K., Sullivan, K.: Ultra-Large 
Scale Systems: The Software Challenge of the Future. SEI, Pittsburgh (2006) 



122 L. Zhu, M. Staples, and R. Jeffery 

3. Zhu, L., Staples, M., Jeffery, R.: Reference Architecture for Lending Industry in ULS Sys-
tems. In: Kazman, R. (ed.) 1st ICSE Workshop on Software Technologies for Ultra-Large-
Scale (ULS) Systems (2007) 

4. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys, B.C., Morrison, 
R. (eds.) EWSA 2004. LNCS, vol. 3047, Springer, Heidelberg (2004) 

5. Kazman, R., Barbacci, M., Klein, M., Carriere, S.J.: Experience with Performing Architec-
ture Tradoff Analysis. In: 21th International Conference on Software Engineering, pp. 54–
63. ACM Press, New York (1999) 

6. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A Method for Analyzing the Prop-
erties of Software Architectures. In: Proceedings of the 16th International Conference on 
Software Engineering, pp. 81–90 (1994) 

7. Bengtsson, P., Lassing, N., Bosch, J., Vliet, H.v.: Architecture-level modifiability analysis 
(ALMA). Journal of Systems and Software 69(1-2), 129–147 (2004) 

8. Kazman, R., Bass, L., Klein, M.: The essential components of software architecture design 
and analysis. Journal of Systems and Software 79, 1207–1216 (2006) 

9. Architectural-level risk analysis using UML. IEEE Transaction on Software Engineering 
(2003) 

10. Zhu, L., Gorton, I.: UML Profiles for Design Decisons and Non-Functional Requirements. 
In: 2nd International Workshop on SHAring and Reusing architectural Knowledge - Ar-
chitecture, Rationale, and Design Intent (SHARK/ADI 2007), colocated with ICSE 2007 
(2007) 

11. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. SEI (2005) 
12. Zhu, L., Ali Babar, M., Jeffery, R.: Mining Patterns to Support Software Architecture 

Evaluation. In: 4th Working IEEE/IFIP Conference on Software Architecture, pp. 25–36. 
IEEE, Los Alamitos (2004) 

13. Bachmann, F., Bass, L., Klein, M.: Deriving Architectural Tactics: A Step Toward Me-
thodical Architectural Design (2004) 

14. Metcalf, C., Lewis, G.A.: Model Problems in Technologies for Interoperability: OWL 
Web Ontology Language for Services (OWL-S). Software Engineering Institute (2006) 

15. Lewis, G.A., Wrage, L.: Model Problems in Technologies for Interoperability: Web Ser-
vices. Software Engineering Institute (2006) 

16. Hohpe, G., Woolf, B.: Enterprise integration patterns: designing, building, and deploying 
messaging solutions. Addison-Wesley, Boston (2004) 

17. Carney, D., Smith, J., Place, P.: Topics in Interoperability: Infrastructure Replacement in a 
System of Systems. SEI (2005) 

18. Carney, D., Fisher, D., Place, P.: Topics in Interoperability: System-of-Systems Evolution. 
SEI (2005) 

19. Carney, D., Fisher, D., Morris, E., Place, P.: Some Current Approaches to Interoperability. 
SEI (2005) 

20. Carney, D., Anderson, W., Place, P.: Topics in Interoperability: Concepts of Ownership 
and Their Significance in Systems of Systems. SEI (2005) 

21. Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and Benefits of Architectural De-
cision. In: 23rd International Conference on Software Engineering (ICSE), pp. 297–306 
(2001) 

22. Zhu, L., Aurum, A., Gorton, I., Jeffery, R.: Tradeoff and Sensitivity Analysis in Software 
Architecture Evaluation Using Analytic Hierarchy Process. Software Quality Journal 13, 
357–375 (2005) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 123 – 134, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Software Project Similarity Measurement Based on 
Fuzzy C-Means 

Mohammad Azzeh, Daniel Neagu, and Peter Cowling 

Department of Computing, University of Bradford,  
Bradford, BD7 1DP, U.K. 

{M.Y.A.Azzeh, D.Neagu, P.I.Cowling}@brad.ac.uk 

Abstract. A reliable and accurate similarity measurement between two soft-
ware projects has always been a challenge for analogy-based software cost es-
timation. Since the effort for a new project is retrieved from similar historical 
projects, it is essentially to use the appropriate similarity measure that finds 
those close projects which in turn increases the estimation accuracy. In software 
engineering literature, there is a relatively little research addressed the issue of 
how to find out similarity between two software projects when they are de-
scribed by numerical and categorical features. Despite simplicity of exiting 
similarity techniques such as: Euclidean distance, weighted Euclidean distance 
and maximum distance, it is hard to deal with categorical features. In this paper 
we present two approaches to measure similarity between two software projects 
based on fuzzy C-means clustering and fuzzy logic. The new approaches are 
suitable for both numerical and categorical features.  

Keywords: Software Project Similarity, Fuzzy Logic, Fuzzy C-means. 

1   Introduction 

Software projects similarity measurement is the key accuracy of software cost estima-
tion by analogy. It plays significant role in identifying closest projects to a project 
being estimated which in turn affects estimation accuracy [12].  

The use of similarity measures between two software projects has been evaluated 
and confirmed in previous researches of software cost estimation. The most widely 
used approaches are based on nearest neighborhood techniques such as Euclidean 
distance [1], Manhattan [3], Weighted Euclidean distance [12] and Maximum meas-
ures [11]. In these algorithms the closest analogue to a project pi is the project with 
maximum similarity. Stamelos et. al. [19], and Mendes et. al. [11,12] compared be-
tween different types of distance metrics in analogy software estimation and revealed 
that using different distance metrics yield dissimilar results which indicate the impor-
tance of distance between software projects on effort estimation. According to Idri et 
al [7], software projects environment has significant impact on the similarity between 
two software projects, in that software projects within single company give different 
similarity than projects gathered from cross companies [8].  

In general, nearest neighborhood based techniques suffer from several disadvan-
tages [16, 17]. First, they depend mainly on numerical features and binary data. Thus, 



124 M. Azzeh, D. Neagu, and P. Cowling 

it is difficult to handle categorical variables. Second, they are sensitive to the irrele-
vant features and missing values as discussed in [17]. Moreover, the attributes em-
ployed should first be normalized in order to have same degree of influence to further 
processing. 

In order to overcome the limitations in the current similarity measures between 
software projects we proposed alternative approaches based on fuzzy C-means clus-
tering and fuzzy logic [10, 22] which has several advantages over nearest neighbor-
hood techniques. First, it groups the most similar projects together in the same cluster 
and represent their features values in the same fuzzy set. This eventually will enhance 
prediction accuracy. Second, it handles uncertainty and imprecision, where each at-
tribute is described by several fuzzy sets instead of using single values.  

The prime objective of this paper is to measure similarity between two software 
projects in terms of similarity between two fuzzy sets that they most belong to. For 
example, let A be the fuzzy set that has maximum membership value for project px 
and let B be the fuzzy set that has maximum membership value for project py. The 
similarity between two projects in terms of feature j is denoted as SMj(Fj(px), Fj(py)) 
which is intuitively identical to SMj(A,B) in this work. However, in order to find 
which cluster does software project p most belong to, we use max operator as de-
picted in equation 1. The overall similarity is aggregated by calculating the average of 
all similarities between fuzzy sets in each feature as discussed in section 4.1. 

)}(),...,(),(max{)(
21

pppp CcCCCi
μμμμ =  (1) 

The reminder of the paper is organized as follows: Section 2 discusses related 
work. Section 3 introduces the Fuzzy c-means clustering algorithm. Section 4 presents 
our proposed method of similarity distance measurement between two software pro-
jects. Section 5 presents dataset. Section 6 compares the efficiency of our method 
with the most often used distance metrics in literature. Finally, section 7 summarizes 
our work and outlines the future studies. 

2   Related Works 

To our knowledge, there is relatively little research in literature concerned with simi-
larity between two software projects based on the fuzzy logic. Idri et al [7] proposed a 
new approach based on fuzzy logic to measure the similarity between software pro-
jects that are represented by categorical variables. They stated that the equality be-
tween two software projects is not null when they have membership different from 
zero to at least one same fuzzy set of Fj. They built rule base engine for each attribute 
to find distance between two software projects using max, min and i-or operators. It is 
interesting to observe from their work that Kleenes-Dienes aggregation is not valid 
for software project similarity, using i-or operator gave better and stable results than 
max and min operators. However, they claimed that each organization must initially 
determine appropriate linguistic quantifier that complies with their situation in order 
to obtain better results. 



 Software Project Similarity Measurement Based on Fuzzy C-Means 125 

3   Fuzzy C-Means Clustering 

Like clustering algorithms which assign a data point to distinct cluster, Fuzzy c-
Means (FCM) algorithm assigns membership values to each observation in all derived 
clusters. FCM aims at minimizing objective function Jm(A) to local minima which 
depends on the initial chosen of membership values. Different initial membership will 
lead to different local minima [1, 6, 13]. 

Indeed, there is no standard way to pre-assign number of clusters unless another 
algorithm is being used [9].  In addition, it is recommended to use weighting parame-
ter m=2 in fuzzy clustering [13, 20]. After clustering data using FCM the next step is 
construct fuzzy model based on clustered data. In literature [6, 21] there are two main 
ways to construct fuzzy model from data, the first is the expert knowledge which is 
formed in if-then-rules where parameters and memberships are tuned using input and 
output data. The second is no prior knowledge about the system, so the model is built 
based on particular algorithms. However, the fuzzy model was constructed based on 
the second approach where membership functions obtained by FCM and projection as 
explained in [21]. 

4   Software Project Similarity Approach 

4.1   The First Approach 

To explain our first approach in more details, let px, py be two software projects de-
scribed by M features Fj (j=1…M), for each feature (linguistic variable) there are sev-

eral fuzzy sets j
kA  obtained by FCM and fuzzy identification as mentioned in section 

three where k represents the number of clusters. Particularly, we impose our approach 
to use fuzzy sets as normal fuzzy sets [15]. Our algorithm is described by the following 
steps: 
 

1. for each linguistic variable, find fuzzy set j
xA that represents maximum member-

ship value of Fj(px) and fuzzy set j
yA  that contains maximum membership value of 

Fj(py) by using maximum operators as depicted in equation 1.  

2. for each linguistic variable, find SMj (
j

xA , j
yA ) using approaching degree (see next 

paragraph). In terms of one feature, SMj(Fj(px), Fj(py)) is intuitively identical to    

SMj (
j

xA , j
yA ). 

3. find overall similarity between two M features software projects:  

( )))p(F),p(F(SMavg)pp(SM yjxjj

M

j
y,x

1=
=  (2) 

Consequentially, the closes analogue to a particular project is the project with 
maximum similarity. 

The approaching degree mentioned in step 2 is a method used to assess the similar-
ity between two given fuzzy sets in a particular universe of discourse X [15]. Let  



126 M. Azzeh, D. Neagu, and P. Cowling 

assume S(X) be a power set of normal fuzzy sets with j
kA ≠ 0 and j

kA ≠ X. Let A, B 

be two normal fuzzy sets where A, B )X(S∈ . The similarity degree between two 

fuzzy sets A and B is assessed as shown in equation 3: 

( ))⊕(,)•(min=),( BABABASM  (3) 

where )•( BA the inner product is defined by equation 4 and )⊕( BA is the outer 

product defined by equation 5: 

XxxxBA BA ∈=• ,)])(),(max(min[)( μμ  (4) 

XxxxBA BA ∈=⊕ ,)])(),(min(max[)( μμ  (5) 

Particularly, when the value of SM(A,B) approaches a value 1, this represents that 
the two fuzzy sets A and B are “more closely similar”. When SM(A,B) approaches a 
value 0, the two fuzzy sets are “more dissimilar”. 

In software cost estimation, it is interesting to define a suitable fuzzy set member-
ship function that copes with the problem domain. We have chosen Gaussian mem-
bership function for this research. The final form of similarity measure for one feature 
is given in equation 6 [14]: 

SM(A,B)=min(
⎥⎦
⎤

⎢⎣
⎡

+ 2)(

2)-(-

BA

ba

e σσ
,1) 

(6) 

where a, b are the mean values; and Aσ , Bσ are the standard deviation of Fuzzy mem-

bership functions A and B respectively. In fact, the inner product of two fuzzy sets 
represents the membership value of intersection point between them.  
 
Definition 1. Let px and py be two software projects described by M features. Let 

Fj(px) mostly belong to fuzzy set j
xA and Fj(py) mostly belong to fuzzy set j

yA . The 

similarity between two software projects in terms of features j is given as: 

SMj(Fj(px), Fj(py))=min(
2)+(

2)-(-

yσxσ

yx

e ,1) 
(7) 

where x, y are the mean values and yx σσ , are the standard deviation for j
xA and 

j
yA respectively. 

 
Definition 2. The Overall similarity between two software projects px and py is given 
by equation 8: 

( )))p(F),p(F(SMavg)pp(SM yjxjj

M

j
y,x

1
1

=
=  (8) 



 Software Project Similarity Measurement Based on Fuzzy C-Means 127 

4.1.1   Example 
Let assume there are three projects (p1, p2, p3) described by feature j as shown in fig-
ure 1; we want to asses which project is closer to p1. Let p1 mostly belong to fuzzy set 
B with parameters (b=30, Bσ =9), and p2 mostly belong to fuzzy set D with parameter 

(d=50 , Dσ =12 ), while p3 mostly belongs to fuzzy set E with parameters(e=70, 

Eσ =14). According to definition 1:  

SMj(Fj(p1), Fj(p2))=min(
2)+(

2)-(-

DσBσ

db

e ,1) = min(
2)12+9(

2)50-30(-

e ,1)=min(0.404,1)=0.404. 

SMj(Fj(p1), Fj(p3))=min(
2)+(

2)-(-

EσBσ

eb

e ,1) = min(
2)14+9(

2)70-30(-

e ,1)=min(0.049,1)=0.049. 

Thus, we conclude that project p2 is closer to project p1 than project p3.  
 

 

Fig. 1. Fuzzy sets for linguistic variable j 

 

Fig. 2. Fuzzy linguistic variable with three fuzzy sets where p2 belongs to two clusters with 
same maximum membership value 

It is also worth to point out that using this approach could cause problems when a 
particular project belongs to two fuzzy sets at the same time with same maximum 
membership as shown in figure 2. For example, to compute similarity between p1 and 
p2 (SIMj(p1, p2)) there are two ways; first, if we assume that p2 belongs to fuzzy set B 
then the two projects p1, p2 are similar with degree over zero. Second, if we assume 
that p2 belongs to fuzzy set C then p1, p2 are more dissimilar and approaches 0 which 
is not realistic in this case. To avoid this problem we restrict our model to use the 
fuzzy set that presents larger similarity. 

4.2   The Second Approach 

Our second similarity approach is mainly concerned with partition matrix that is ob-
tained by FCM. The final partition matrix contains membership of a project in each 



128 M. Azzeh, D. Neagu, and P. Cowling 

particular cluster as shown in table 1.The similarity between two software projects is 
computed based on similarity between their fuzzy values as shown in equation 9 [15]. 
In this case, we have to decide how to assign membership for a new project. The sim-
plest way is to use distance formula that is applied in FCM algorithm which tends to 
assign any new project to different clusters with a particular membership value. 

 
Table 1. Fuzzy partition matrix for software projects 

Project Cluster A1 Cluster A2 ... Cluster Ak 
P1 )( 11

pAμ  )( 12
pAμ   ... )( 1pAkμ  

P2 )( 21
pAμ  )( 22

pAμ  ... )( 2pAkμ  

… … … … … 
Pn )(

1 nA pμ  )(
2 nA pμ  ... )( nAk pμ  

 

∑
1=

2 ))(,)(min(=),(
k

i
yAxAyx pμpμppSM

ii
 (9) 

Where ∑
=

=
k

i
A P

i

1

1)(μ  (10) 

4.3   Project Similarity Properties 

As in other software measurement fields it is appropriate to provide an evaluation for 
our similarity approaches. The validation of similarity measures will help us to ensure 
that our model respects the main properties of similarity between two software pro-
jects [7]. In the following paragraphs we introduce the main properties that are used to 
assess our model in narrow sense [5]. 

Let Fj(px) mostly belong to fuzzy set A with membership function parameters (a, 

Aσ ) and Fj(py) mostly belong to fuzzy set B with membership function parameters (b, 

Bσ ). 
 
Property 1. Similarity between a software project px to itself is equal to one. 
For feature j. According to equation 7: 

))(),(( xjxjj pFpFSM =min(
2)+(

2)-(-

AσAσ

aa

e ,1)=>min( 0e ,1)=>min(1,1) which produces 1.  

Then the overall similarity will be calculated using equation 8. 

( )),()(
1

,1 xxj

m

j
xx ppSMavgppSM

=
= = ( ) 1=1....,1,1avg . 

A significant issue arises when we deal with one linguistic variable. It can be seen 
that when two projects have different crisp values falling in the same fuzzy set they 
have unity similarity degree same as similarity between project to itself. This seems 
not true and contradicts to the crisp set approach, where similarity between two close 



 Software Project Similarity Measurement Based on Fuzzy C-Means 129 

projects is not necessary to be unity unless they have the same feature value. For the 
second approach, this definition is true according to equations 9 and 10, let 
px={ )(

1 xA pμ , )(
2 xA pμ ,..., )( xA pμ

k
}  then: 

SM2(px, px)= min( )(
1 xA pμ , )(

1 xA pμ )+...+min( )( xA pμ
k

, )( xA pμ
k

)=1. 
 

Property 2. The similarity between two different projects px and py must be less than 
similarity of project px to itself SM(px, py)<SM(px, px)).  

The SMj(Fj(px), Fj(px)) produces 1 as discussed in property 1. However, Since a≠b 

and Aσ ≠ Bσ , the inner product 
2)+(

2)-(-

=)•( BσAσ

ba

eBA will be less than 1 because it 

represents the membership value of intersection point between two different fuzzy 
sets which is always less than 1, and consequentially:  

SMj(Fj(px), Fj(py))=min( 1<
2)+(

2)-(-

BσAσ

ba

e ,1)= 
2)+(

2)-(-

BσAσ

ba

e which it is less than 1. 
Therefore the overall similarity )pp(SM y,x1 will be definitely less than 1 because 

when any similarity degree is less than 1 then the average will be also less than 1.   
On the other hand, when two different projects described by one feature fall in the 

same cluster then the similarity will be always 1: )( ,1 yx ppSM = )( ,1 xx ppSM . This 

contradicts with Property 2 that say the similarity between two different projects 
should be less than similarity between a project to itself.  

For the second approach, we have seen earlier that )( ,2 xx ppSM  is always equal to 

one therefore )( ,2 yx ppSM  will not exceed this value according to equations 9 and 10 

because similarity will sum only the minimum membership of both fuzzy sets. 
 

Property 3. SM(px,py)=SM(py,px)  

Since (a-b)2= (b-a)2and 22 )+(=)+( ABBA σσσσ then: 

))(),(( yjxjj pFpFSM =min(
2)+(

2)-(-

BσAσ

ba

e ,1)≡ ))(),(( xjyjj pFpFSM =min(
2)+(

2)-(-

AσBσ

ab

e ,

1) which yields: 

( )))(),(()(
1

,1 yjxjj

m

j
yx pFpFSMavgppSM

=
= ≡ ( )))(),(()(

1
,1 xjyjj

m

j
xy pFpFSMavgppSM

=
=  

For the second approach: 
min( )( 11

pAμ , )( 21
pAμ )≡ min ( )( 21

pAμ , )( 11
pAμ ) according to reflexive property of 

fuzzy operations. 
 
Property 4. Let px, py, pz be three projects where px mostly belong to fuzzy set A, and 
py mostly belong to fuzzy set B, pz mostly belong to fuzzy set C, and Fj(px)< Fj(py) < 
Fj(pz) for all features then SM(px,pz)<min(SM(px,py),SM(py,pz)). 

Let a, b, c are the mean values and Aσ , Bσ , Cσ are the standard deviation of fuzzy sets 

A, B, C respectively. Let assume a<b<c, and ≤Cσ ≤Aσ Bσ . 

Since |a-c|>|a-b| and |a-c|>|b-c| then consequentially 



130 M. Azzeh, D. Neagu, and P. Cowling 

2)+(

2)-(-

CσAσ

ca

e < 
2)+(

2)-(-

BσAσ

ba

e  , and 
2)+(

2)-(-

CσAσ

ca

e < 
2)+(

2)-(-

CσBσ

cb

e which satisfy that:  
))(),(( zjxjj pFpFSM < min ( ))(),(( yjxjj pFpFSM , ))(),(( zjyjj pFpFSM ) 

   This property is not true in case of Bσ < Aσ << Cσ because )+(>)+( BACA σσσσ  

and )+(>)+( BCCA σσσσ , therefore : 

))(),(( zjxjj pFpFSM > min ( ))(),(( yjxjj pFpFSM , ))(),(( zjyjj pFpFSM ) 

5   The Dataset 

The analysis presented in this paper was based on ISBSG Repository (release 10, 
January 2007) which currently contains more than 4000 software projects gathered 
from different software development companies [6]. Seven effort drivers were se-
lected including 3 numerical attributes (Adjusted Function points, Maximum Team 
size, and productivity) and 4 categorical attributes (development types, Business type, 
Application types, and organization types) in addition to the effort. We omitted the 
projects with missing values which results in 480 projects. Categorical variable must 
be handled because each of them has many categories. Rather grouping projects ac-
cording to their nature, we intend to merge each categorical variable into two homo-
geneous categories and replaced by ordinal values (1=Low Effort, 2=High Effort). For 
example, in case of organization type, one would say that “wholesale & retail trade” 
and “financial” types would naturally be grouped in the same category but they 
are not. The merging was conducted using mean effort value of each category based 
on work of [18] in which the categories that has same impact on the mean effort have 
been placed together in the same group. We do consider this categorization is an ad 
hoc approach which follows a data driven context. Only Development type was cate-
gorized into three categories (1 = Enhancement, 2 = New Development, 3 = Re-
development) according to the type of software development followed. 

6   Results and Discussion 

The results shown in Tables 2 and 3 were obtained using leave-one-out cross-
validation. The results obtained in Table 2 represent a sample of the similarity be-
tween software projects using our first approach. However, it can be seen that the 
maximum similarity between two software projects is always equal to one and ob-
tained when two projects are similar (i.e. SM(Px,Px)). It is also observed that there is 
violation in property 3 because the FCM algorithm generates different initial member-
ship values every time we run the leave-one-out cross validation. The way to solve 
this problem is to use the same initial membership function every time. It is worth to 
point out that the similarity between two different projects does not exceed similarity 
between a project to itself which consequentially respects Property 2. 

The results obtained for the second approach as shown in Table 3 indicate that 
there is no violation in the similarity properties. Similarity between any project to 
itself is always equal one. In addition, the similarity between two different projects  
 



 Software Project Similarity Measurement Based on Fuzzy C-Means 131 

Table 2. Similarity value between software projects using first approach 

 P1 P2 P3 P4 P5 
P1 1 0.97 0.86 0.93 0.656 
P2 0.97 1 0.684 0.959 0.635 
P3 0.87 0.684 1 0.841 0.568 
P4 0.93 0.956 0.845 1 0.58 
P5 0.65 0.626 0.569 0.59 1 

Table 3. Similarity value between software projects using second approach 

 P1 P2 P3 P4 P5 
P1 1 0.406 0.148 0.263 0.405 
P2 0.406 1 0.318 0.11 0.186 
P3 0.148 0.318 1 0.469 0.604 
P4 0.263 0.11 0.469 1 0.92 
P5 0.405 0.186 0.604 0.92 1 

 
did not exceed one and still over or equal zero. The first approach has an advantage 
over the second approach in terms of the feature impact.  The first approach takes into 
account the similarity between two projects in each feature while the second approach 
takes the distribution of membership values across clusters. 

In order to assess the performance of each similarity approach on software effort 
estimation, we compared our two approaches against Euclidean and weighted Euclid-
ean distance in analogy estimation as shown in Table 4. This validation is analogous 
to Case-based reasoning techniques but it did no take in account its parameters (fea-
tures subset selection, adaptation rules and case adaptation). For all similarity meas-
ures we first compared the actual effort with closest analogy, and then with the mean 
of K nearest neighbors where K=3. The results shown in table 4 represent the com-
parison between four similarity measures based on Mean Magnitude of relative errors 
(MMRE) and Performance indicator (Pred(e)). Pred(e) calculates how many MRE 
values fall below 25%. MMRE is the mean of estimating error for all individual esti-
mates. MMRE has been criticised that is unbalanced in many validation circum-
stances and leads to overestimation more than underestimation [16]. Another ap-
proach called balanced mean magnitude relative error measure (BMMRE) [16] was 
proposed to overcome the limitation of MMRE. The new approach has been criticised 
to be more effective in measuring estimation accuracy.  

∑
=

=
n

i i

ii

actual

estimatedactual

n
MMRE

1

|-|1
 (11) 

∑
=

=
n

i ii

ii

estimatedactual

estimatedactual

n
BMMRE

1
),min(

|-|1
 (12) 

According to Table 4 , Effort estimation based on our two approaches contribute to 
better estimation accuracy than those based on Euclidean distance and weighted 
 



132 M. Azzeh, D. Neagu, and P. Cowling 

Euclidean distance in terms of MMRE, BMMRE and Pred(0.25). The results of the 
MMRE evaluation criterion for both proposed approach are significant. Using mean of 
three analogies in the first approach gives slightly better accuracy.  Whilst for the sec-
ond approach, the good results achieved when two and three analogies have been used. 
In case of Pred(0.25) evaluation criteria, the best result obtained when using mean of 
three  analogies in the first proposed approach, even though the other results in both 
proposed approaches are still significant. So we can figure out that using two ap-
proaches gives better results than using conventional geometrical distance measures. 

In Comparison with Idri et al [7] approach who used fuzzy logic to measure simi-
larity between software projects. Their approach was mainly dedicated to ordinal 
categorical data, especially for COCOMO model. Moreover, there is a lack of evi-
dence of how their approach could be useful for other datasets described by Nominal 
categorical data. Our approaches show how nominal categorical data can be also used 
in software projects similarity measurement. Their model was fuzzified based on ex-
perience where productivity ratio was used to find boundary of each fuzzy set. In our 
model we used automatic fuzzification process based on fuzzy c-means algorithm 
which seems more reliable than relying on experience. The aggregation operators 
(min and max) always give the extreme values and do not seem contributing in identi-
fication of the closest projects. While in our model we tried to take the influence of 
similarity between two software projects in each feature. 

Table 4. Comparison between proposed similarity measures against Euclidian distance and 
Weighted Euclidean distance on Effort estimation 

Evaluation 
Criteria  

First proposed approach 

One Analogy Mean of two analogies Mean of three analogies 
MMRE 18.23% 16.06% 13.55% 
BMMRE 22.4% 17.7% 17.0% 
PRED(25%) 72% 78% 84% 
 Second proposed approach 

One Analogy Mean of two analogies Mean of three analogies 
MMRE 20.3% 16.6% 16.8% 
BMMRE 26.6% 23.4% 22% 
PRED(25%) 72% 74% 74% 
 Euclidean Distance 

One Analogy Mean of two analogies Mean of three analogies 
MMRE 59.4% 62.8% 65.6% 
BMMRE 62.2% 60.1% 64.7% 
PRED(25%) 44.4% 44.6% 45.4% 
 Weighted Euclidean Distance 

One Analogy Mean of two analogies Mean of three analogies 
MMRE 59.4% 55.2% 56.7% 
BMMRE 62.2% 59% 59.3% 
PRED(25%) 44.4% 47.9% 50.2% 

 



 Software Project Similarity Measurement Based on Fuzzy C-Means 133 

7   Conclusions 

In this paper we introduced new approaches to measure similarity between two soft-
ware projects based on fuzzy C-means and fuzzy logic. The approaches have been 
validated to their appropriateness for software projects. Both approaches do respect 
the main properties for similarity measures between two software projects. The first 
approach showed better MMRE results in terms of one analogy (closest project) than 
second approach. In general the results obtained showed that there is no significant 
difference between two proposed approaches and they contribute to better effort esti-
mation accuracy than using conventional distance measures.  

As discussed in the introduction, most geometrical distance based techniques ap-
plied to software cost estimation suffer from irrelevant features and dealing with cate-
gorical variables. The methods hereby proposed overcome these disadvantages by: 

 

1. handling categorical in the same way numerical attributes are handled where 
they are represented by fuzzy sets. 

2. using Fuzzy C-means has the advantage to group close projects together in 
the same cluster and then represent them in the same fuzzy set. 

3. using Fuzzy logic has also advantage in dealing with uncertainty rather than 
single values. 

 

However, the limitations of solution proposed this paper are: first, when two dif-
ferent projects feature values fall in the fuzzy set and is given unity similarity degree 
as similarity between a project to itself, therefore the similarity should be based on 
composition of values of project intersects each fuzzy set. Second, our approach is 
restricted to Gaussian membership function. Third, the project must be defined by 
more than one feature. Lastly, the fuzzy set must satisfy normal conditions. 

There are sometimes factors affecting similarity measure such as using irrelevant 
features which has significant impact on similarity measurement, thus, decreasing 
estimation accuracy.  The solution is to use either weight setting for each feature or 
remove irrelevant features. Weigh setting is difficult to determine and it is hard to be 
defined by expertise. The validation of using weight setting in our approaches will be 
for future improvement. 

We are therefore continuing to extend our approach by addressing the limitation 
and restrictions mentioned earlier.  

 
Acknowledgments. We would like to thank ISBSG Repository for granting us per-
mission to utilize their datasets in this research. 

References 

1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer 
Academic Publishers, Norwell (1981) 

2. Dvir, G., Langholz, G., Schneider, M.: Matching attributes in a fuzzy case based reason-
ing. In: 18th International Conference of the North American on Fuzzy Information Proc-
essing Society, NAFIPS, New York, pp. 33–36 (1999) 

3. Emam, K.E., Benlarbi, S., Goel, N., Rai, S.: Comparing case-based reasoning classifiers 
for predicting high risk software components. J. Systems and software 55, 301–320 (2001) 



134 M. Azzeh, D. Neagu, and P. Cowling 

4. Esteva, F., Garcia-Calves, P., Godo, L.: Fuzzy Similarity-based models in Case-based 
Reasoning. In: Proceedings of the 2002 IEEE International Conference on Fuzzy systems, 
Honolulu, USA, pp. 1348–1353 (2002) 

5. Fenton, N., Pfleeger, S.L.: Software metrics: A rigorous and practical approach, Interna-
tional Computer. Thomson Press (1997) 

6. Huang, S.J., Chiu, N.H.: Optimization of analogy weights by genetic algorithm for soft-
ware effort estimation. J. Information and software technology 48, 1034–1045 (2006) 

7. Idri, A., Abran, A.: A fuzzy logic based set of measures for software project similarity: 
validation and possible improvements. In: Seventh International Software Metrics Sympo-
sium, London, pp. 85–96 (2001) 

8. Jeffery, R., Ruhe, M., Wieczorek, I.: A comparative study of two software development 
cost modeling techniques using multi-organizational and company-specific data. J. Infor-
mation and software technology 42, 1009–1016 (2000) 

9. Krishnapuram, R., Frogui, H., Nasraoui, O.: Fuzzy and Possibilistic Shell Clustering Algo-
rithms and Their Application to Boundary Detection and Surface Approximation – Part 
1&2. J. IEEE Trans. Fuzzy Systems 3, 29–61 (1995) 

10. Martin, C.L., Pasquier, J.L., Yanez, C.M., Gutierrez, A.T.: Software Development Effort 
Estimation Using Fuzzy Logic: A Case Study. In: Sixth Mexican International Conference 
on Computer Science, Mexico, pp. 113–120 (2005) 

11. Mendes, E., Mosley, N., Counsell, S.: A replicated assessment of the use of adaptation 
rules to improve Web cost estimation. In: International Symposium on Empirical Software 
Engineering, pp. 100–109 (2003) 

12. Mendes, E., Mosley, N., Counsell, S.: Do adaptation rules improve web cost estimation? 
In: Fourteenth ACM conference on Hypertext and hypermedia, Nottingham, pp. 173–183 
(2003) 

13. Michalewics, Z., Fogel, D.B.: How to solve it: Modern Heuristics. Springer, New York 
(2002) 

14. Musflek, P., Pedrycz, W., Succi, G., Reformat, M.: Software Cost Estimation with Fuzzy 
Models. J. ACM SIGAPP Applied Computing Review 8, 24–29 (2000) 

15. Ross, T.J.: Fuzzy Logic with engineering applications. John Wiley & Sons, Chichester 
(2004) 

16. Shepperd, M., Schofield, C.: Estimating software project effort using analogy. J. IEEE 
Trans. On software engineering 23, 736–743 (1997) 

17. Shepperd, M., Schofield, C., Kitchenham, B.: Effort estimation using analogy. In: 18th In-
ternational Conference on Software Engineering, Berlin, pp. 170–178 (1996) 

18. Sentas, P., Angelis, L.: Categorical missing data imputation for software cost estimation 
by multinomial logistic regression. J. Systems and Software 79, 4040–4414 (2006) 

19. Stamelos, I., Angelis, L., Morisio, M.: Estimating the development cost of custom soft-
ware. J. Information and management 40, 729–741 (2003) 

20. Xie, X.L., Beni, G.: A Validity Measure for Fuzzy Clustering. J. IEEE Transaction on pat-
tern analysis and machine intelligence 13, 841–847 (1991) 

21. Xu, Z., Khoshgoftaar, T.: Identification of fuzzy models of software cost estimation. J. 
Fuzzy Sets and Systems 145, 141–163 (2004) 

22. Zadeh, L.: Toward a theory of fuzzy information granulation and its centrality in human 
reasoning and fuzzy logic. J. Fuzzy sets and Systems 90, 111–127 (1997) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 135 – 146, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Empirically–Based Process to Improve the Practice  
of Requirement Review 

Juan Li1, Lishan Hou1, Zhongsen Qin1,2, Qing Wang1, and Guisheng Chen3 

1 Institute of Software, Chinese Academy of Sciences 
2 Graduate University of Chinese Academy of Sciences 

3 China Institute of Electronic System Engineering 
{lijuan,houlishan,qinzhongsen,wq}@itechs.iscas.ac.cn,  

cgs@tsinghua.edu.cn 

Abstract. Requirement quality serves as the basis of the whole software devel-
opment. How to improve and assure the quality of requirements is one of the 
most difficult issues. Aiming to improve requirement review in a software 
company, we propose a role-based requirement review process based on the 
idea that requirement quality should meet needs of all roles involved to the 
largest extent, and not only determined by the number of defects found in re-
quirements. This process helps reviewers focus on their own concerns and find 
more defects related to their tasks, and provides a quantitative method to ana-
lyze and evaluate the quality of the requirement document. We also provide a 
case study to illustrate the new process and report some preliminary results. 

Keywords: requirement review, role-based, quantitative, requirement quality 
characteristic. 

1   Introduction 

Requirements are important inputs of many key activities in software projects, such as 
project planning, designing and testing. Many studies have shown that requirements 
deficiencies are one of prime causes for project failures, and over 40% of problems in 
the software development cycle result from the poor quality requirements [1]. Re-
quirement review is one important way to control requirement quality. Current re-
searches mainly assess the requirement quality from the number of deficiencies found 
in requirements and propose several effective methods to check out deficiencies as 
many as possible. Basili et al. adopt a multi-perspectives method and enable the 
stakeholders to review the requirements specification from different views [2]. This 
method has been proven to check out more defects than other methods, such as ad-hoc 
reading and checklist-based reading [2],[3]. Gantner et al. emphasize that sufficient 
time for individual preparation of the reviewers is a crucial success factor for reviews 
[4]. In addition, many researches focus on the automatic assessment of requirement 
document with natural language checking technology [5]. 

In a Chinese company A which was rated CMMI Level 4, how to control require-
ment quality at the early phase has always been a serious problem for a long time. 



136 J. Li et al. 

Poor requirement quality results in much testing and developing effort. In order to 
resolve this problem, we propose a role-based requirement review process, which 
addresses that requirement quality should satisfy all the reviewers to the largest ex-
tent. This process not only helps inspectors concentrate on their own perspectives to 
improve review efficiency, but also provides quantitative analysis method based on 
defects and the satisfaction of inspectors. In the case study of this paper, requirement 
documents were reviewed according to the new process and some preliminary results 
were provided. 

The remainder of this paper is organized as follows. Section 2 introduces the prob-
lems in the requirement review process in company A. Section 3 proposes the role-
based quality evaluation process with a case study. Section 4 illustrates the case study 
and summarizes some lessons learned. Section 5 contains the conclusion and future 
work. 

2   Problem Description 

Our research was conducted in company A, a Chinese software company with 170 
employees. It passed CMMI4 assessment in 2005. From 2002, Company A has suc-
cessfully developed a software product line, called L in this paper. The product line 
has a core architecture and each new release adds features addressing key customers’ 
needs. The New features are generally requested by a Marketing Unit (MU), express-
ing both market needs and strategic corporate concerns. 

In May 2007, one important version of L (V3.0) was released. 2468 bugs were 
found during test. Among these bugs, there were 481 requirement-related bugs and 
the effort of modifying them takes 80% of total reworking effort. The cause classifi-
cation of these 481 bugs is shown in Fig. 1.  

 

Fig. 1. Cause classification 

Software Requirement Specification (SRS) review was an important way for this 
company to control requirement quality. The review process is shown in Fig. 2. The 
most important step is Review Meeting. Project Manager (PM), MU, Software Qual-
ity Assurance engineer (SQA), testers, and designers joined this meeting and checked 
SRS based on their own skills and experiences. If there were severe defects, SRS had 
to be modified and reviewed again. Otherwise, SRS could be put forward into the 
next phase. 



 An Empirically–Based Process to Improve the Practice of Requirement Review 137 

Through interviewing with those reviewers, we found there were three main prob-
lems in the current process: (1) Reviewers were often distracted by the problems they 
did not really care about. For example, the structure of SRS was not important to 
testers and designers. But they often found this kind of defects because they did not 
know who should care about. (2) The efficiency of requirement review meeting was 
low. In the review meeting, some reviewers often fell into argument, and the others 
had to wait. (3) Reviewers lacked a quantitative method to judge whether the quality 
of SRS was satisfying. The quality was only judged according to the number of severe 
defects. 

 

Fig. 2. Current review process 

We checked records of 13 requirement reviews of two projects in 2007 (L2.9 and 
L3.0). There were 397 defects and the number of defects found by different roles is 
shown in Fig. 3. Table 1 shows concerns of different roles, and we can see that differ-
ent roles have different viewpoints on the requirement quality. For instance, SQA 
mainly cares about requirement description format, while testers mainly focus on 
requirement verifiability. Also there are intersections among perspectives of these 
roles. 

 

Fig. 3. Requirement defect distribution 

Table 1. Concerns of different roles 

 Correctness, 
Completeness, 
Unambiguity 

Realizability Verifiability Description 
format 

SQA 28% 0 0 72% 
MU 82% 0 0 18% 
Tester 10% 0 79% 11% 
PM 39% 48% 5% 8% 
Designer 16% 74% 0 10% 



138 J. Li et al. 

Based on the above analysis, we conclude that the current requirement review 
process should be improved. The new process should meet three main objectives. 
Objective 1: Help reviewers focus on their own concerns and check out more role-
related defects; Objective 2: Improve the defect discovering efficiency (Number of 
Defect/Effort); Objective 3: Provide a quantitative method to evaluate the quality of 
SRS. We propose a role-based requirement review process, which will be described in 
section 3. 

3   The Role-Based Requirement Review Process 

The role-based requirement review process is shown in Fig. 4. We will explain the 
steps in detail in later sub-sections. 

In step “Establish O-RQC”, the requirement engineer establishes an O-RQC (Or-
ganizational Requirement Quality Characteristic). O-RQC contains requirement qual-
ity attributes for different specific roles. Detailed check items for every attributes are 
provided. In step “Specify Multi-role RQC”, the requirement engineer tailors O-RQC 
into Multi-role RQC, which contains the multi-role checklist for a project. In step 
“Review”, people review SRS separately according to the multi-role checklist. In step 
“Calculate and Analyze Review Result”, the review result shows whether the re-
quirement quality satisfies all the inspectors. PM can make decision on whether SRS 
should be modified or delivered into the next phase. If two people have different opin-
ions on the same quality attributes, they and the requirement engineer will resolve the 
problem in step “Meeting”.  

 

Fig. 4. Role-based requirement review process 

3.1   Establish O-RQC 

O-RQC provides a series of quality characteristics which describe different perspec-
tives of requirement quality in company A. In O-RQC, the requirement quality is 
classified into three levels: requirement content quality, requirement description qual-
ity, and requirement sufficiency quality. 



 An Empirically–Based Process to Improve the Practice of Requirement Review 139 

Requirement content quality: Requirement content means what function or per-
formance of the system should be provided to customers. It emphasizes writing the 
“right” requirements. 
 
Requirement description quality: Requirement description means the way require-
ments are described and organized, including the requirement description language 
and document format. It emphasizes writing requirements “right”. 
 
Requirement sufficiency quality: Requirements are important inputs of many tasks. 
Different tasks have different needs on requirement quality. Requirement sufficiency 
emphasizes getting an “enough” requirements specification for different tasks. For 
example, if testers cannot specify test cases based on requirements, the requirement 
quality is not good enough for them. 

At every level, there is a group of Quality Characteristics (QCs), as shown in Fig. 
5. Each QC is divided into several sub-QCs, and each sub-QC can be described by a 
list of check items. According to these check items, reviewers can check SRS step by 
step.  

 

Fig. 5. O-RQC 

To specify QC, we try to follow as much as possible a standard terminology, in 
particular the one defined by IEEE 830[6]. It provides 8 characteristics of a good SRS 
including “correct”, “unambiguous”, “complete”, “consistent”, “ranked for impor-
tance and/or stability”, “verifiable”, “modifiable” and “traceable”. We distribute these 
QCs onto the 3 above levels separately. Also one change is made in order to develop 
consistent QCs to evaluate requirements: “ranked for importance and/or stability” is 
divided into “important” and “stable”, and “ranked” becomes the sub QC of these two 
QCs. In the end, we introduce some QCs not included in IEEE830, especially those 
on sufficiency level. The characteristics at different levels are listed in Table 2. The 
QCs and sub-QCs represented in bold are not presented in IEEE 830. 

As shown in Table 2, some QCs of IEEE 830 distribute both on Content and De-
scription level. That is because in IEEE 830, the definition of these QCs includes both 
content and description. Also, on sufficiency level, we add new QCs to describe dif-
ferent roles’ needs. A brief description of each QC added is presented as follows: 



140 J. Li et al. 

Usable: Expresses the value to customers and end users. If the function or perform-
ances meet their needs, then the requirements are usable. 
 
Realizable: Indicates if the requirement can be realized under the constraints of cur-
rent technologies, the schedule and the personnel capability.  
 
Important: Shows how essential the requirement is for the market. Some require-
ments are desirable and some are necessary.  
 

Stable: Evaluates the probability of the requirement will change in the development. 
 

Profitable: Expresses the ability of the requirement to yield advantageous returns or 
results for the company. 

The QCs are divided into sub-QCs. The sub-QCs provided by IEEE 830 are main-
tained and new sub-QCs for some QCs in IEEE 830 are added. For instance, on de-
scription level, we add several sub-QCs for the use case model, which is used to de-
scribe requirements in company A. There are 14 QCs, 31 sub-QCs and 64 check items 
in Q-RQC totally. 

Table 2. QC in O-RQC 

Quality Level Quality Characteristic 
Content Correct, Complete, Consistent, Usable 
Description Modifiable, Complete, Unambiguous, Consistent 
Sufficiency Realizable, verifiable, traceable, Important, Stable, Profitable 

3.2   Specify Multi-role RQC 

The O-RQC lists the main quality attributes the company A should care, but for dif-
ferent projects, not all the QCs must be cared. For a specific project, PM and the re-
quirement engineer tailor O-RQC into the multi-role RQC according to the project 
context and the responsibility of every role. The multi-role RQC provides checklists 
for different roles.  
 

According to the characteristics of project: For those time-to-market projects, the 
product needs to be delivered to the market as soon as possible. In order to get cus-
tomers’ feedback, the “important” and “usable” requirement should be realized first. 
Not all the requirements should be realized, so “unambiguous” is not the first met QC. 
But for those projects without the schedule pressure, or using waterfall development 
model, the “unambiguous” is the very first QC that should be satisfied. 
 

According to different roles: Different roles have different concerns on the require-
ment quality. For example, testers care more about “Verifiable” and designers care 
more about “Realizable”. PM and the requirement engineer choose those QCs impor-
tant for different roles. 

Furthermore, one QC may be related with many roles, and we use the Weight of 
Role to deal with different importance of multi-role on the same characteristic. The 
higher the weight, the more important the role is. We use the expert experience 
method to specify weights of roles. 



 An Empirically–Based Process to Improve the Practice of Requirement Review 141 

3.3   Review 

Based on the Multi-role RQC, inspectors review requirements according to their own 
checklist alone. They need to record defects and feed back their satisfaction for every 
QC. 

There are three types of defects: severe defect, slight defect and advice. Severe de-
fects means, if they are not corrected, the function or performances will be wrong or 
not be realized. Slight defect means the defect that does not affect the whole system 
realization. Advice means the recommendation on SRS. 

In addition, the quality of QC is measured through the reviewers’ satisfaction. A 
three-category rating scale is used which includes “2-Satisfying”, “1-Acceptable”, “0-
Dissatisfying”. 

3.4   Calculate and Analyze Review Result 

After reviews, the requirement engineer calculates the review result represented by 
the satisfaction degree. Here we provide two kinds of satisfaction degree: Satisfaction 
degree of every QC (SDqc), Satisfaction degree of the SRS quality (SDSRS). The 
range of these two satisfaction degree value is from 0 to 2. 0~1 means the quality is 
dissatisfying; 1 means acceptable; 1~2 means satisfying. 
 
SDqc: Expresses the satisfaction degree of every QC based on all the related roles’ 
viewpoints and severe defect ratio. For example, if satisfaction degree of “Correct” is 
1, that means the “Correct” of SRS is acceptable for all the stakeholders. 
 
SDSRS: Means the quality satisfaction degree of SRS based on the Multi-role RQC. If 
the SDSRS is 1, that means the SRS’ quality is acceptable. 

We introduce the following symbols to illustrate our calculating method. Suppose 
there are m quality characteristics and n roles in the requirement inspections. 

QC={qc1,..,qcm} is the set of all QCs, in which qci(i=1,..,m) is one QC. 
Role={R1,..,Rn} is the set of all roles, in which Rj(j=1,..,n) is one role. Each role may 
be acted by several people. R={P1,..,Pk}�Role is the set of people acting the same 
role. Wqc(R) means the weight of the role R for the characteristic qc; SDqc(Pk) means 
the score of the characteristic qc marked by the person Pk; SDqc(R) means the score of 
the characteristic qc marked by the role R; Numdft(R) means the number of the defects 
found by the role R. Numsdft(R) means the number of the severe defects found by the 
role R. 

∑
=

=
k

i
kqcqc PSD

k
RSD

1

)(
1

)(  (1) 

∑
=

−=
n

j jdft

jsdft
jqcjqcqc RNum

RNum
RWRSDSD

1

)
)(

)(
1(*)(*)(  

(2) 

∑
=

=
m

i
qcSRS SD

m
SD

1

1  (3) 



142 J. Li et al. 

4   Case Study 

In this section, we illustrate the process through a case study. We want to prove the 
three objectives are achieved by the new process. To address this need, the study uses 
six reviewers to re-evaluate the requirement documents of previous projects according 
to the new process proposed in this paper. The findings from this study are then com-
pared with the earlier findings of reviews in previous projects to gain useful insights 
about the applicability of the new process. Also, we invited the requirement engineer 
of previous projects to take part in the whole process to learn more experiences. 

4.1   Study Design 

SRS. The SRSes inspected during this study were requirements documents of a previ-
ous project L3.0. The product had three large functions modules and every module 
had individual SRS. These three SRSes were numbered SRS1, SRS2, SRS3. 

 

Reviewer. There were six reviewers drawn from project teams. These participants 
had about at least 2 years of experience in the field and did not attend previous re-
quirement review of L3.0. They had different experiences and skills: one PM, one 
designer, one tester, one marketing unit engineer and one SQA.  
 

Review Process. People reviewed these three SRSes according to the process pro-
posed in section 3. Firstly, the participants received training on the new process and 
the context of the previous project. Secondly, the requirement engineer of project 
L3.0 specified Multi-role RQC and determined the weight of role. Thirdly, partici-
pants performed their own inspection of SRSes according to the multi-role checklist  
 

Table 3. Multi-role RQC used in the Case 

 Role 
Quality Charac-
teristic 

PM Designer Tester SQA MU 

Content      
Correct √    √ 
Complete  √ √   
Consistent      

 

Usable √    √ 
Description      

Complete  √ √ √  
Unambiguous      
Modifiable    √  

 

Consistent    √  
Sufficiency      

Realizable √ √    
Verifiable   √   
Traceable      
Important √     
Stable      

 

Profitable     √ 



 An Empirically–Based Process to Improve the Practice of Requirement Review 143 

Table 4. Weight of role 

 Correct Usable Content 
Complete 

Description 
Complete 

Realizable 

PM 0.5 0.4   0.6 

MU 0.5 0.6    

Designer   0.5 0.5 0.4 

Tester   0.5 0.4  

SQA    0.1  

alone to identify and record defects as many as possible. Also, they recorded their 
subjective remark about QC. At last, the defect lists, efforts and remarks of six people 
were collected and processed. In processing, the requirement engineer caculated the 
review result for every SRS and analyzed their quality. 
 

Multi-role RQC and weight of role. We interviewed the PM of L3.0 to learn about 
the project context. L3.0 was a time-to-market project and the product needed to be 
delivered to market as soon as possible. So QCs like “Important” and “Usable” were 
important, but “Unambiguous” was not the first met QC. Table 3 lists the QCs in 
Multi-role RQC of this case. For the space is limited, the sub-QCs chosen are not 
shown in detail. 

Also, the requirement engineer defined the weights of the roles because she was 
the expert and knew well about the sample project. The weights of roles are shown in 
Table 4. For example, PM and MU both care about “Correct”. The weight of PM is 
0.5 and equal to the weight of MU. The sum of weights equals 1. 

4.2   Data Collection and Analysis 

Table 5 lists the data collected in the three reviews. In Table 5, for every QC, there 
are three rows to describe the information of satisfaction and the defect amount. The 
first row shows the review data of SRS1, the second shows data of SRS2, and the third 
shows data of SRS3. The last column lists the review result we calculated according to 
formula (1)~(2). According to formula (3), we got the value of every document: 
SDSRS1=0.684, SDSRS2=1.415, SDSRS3=0.468. From these values, we can see the qual-
ity of SRS2 is satisfying, and the other two are dissatisfying. Although there were 
some differences, the requirement engineer of L3.0 considered that the result reflected 
the true quality of the three SRSes by and large. 

Now we take SRS3 as an example to illustrate the analysis process. Fig. 6 shows 
SDqc and satisfaction degrees of reviewers for every QC. We can see most QCs’ 
quality is unsatisfying except “Important”, “Realizable” and “Profitable”. We take 
“Verifiable” and “Content Complete” for instances. In project L3.0, the SRS3 was 
reviewed once and delivered into design. But during the test phase, many bugs were 
found due to the poor quality of SRS3. Most of them were caused by incomplete and 
unverifiable requirements. In our study, the satisfaction degree of “Verifiable” and 
“Content Complete” were dissatisfying, because the multi-role checklist helped re-
viewers find more defects. But several results are not consistent with the real situa-
tion. For example, the quality of “Correct” was dissatisfying in this study, but the MU 
 



144 J. Li et al. 

Table 5. Review data of three documents 

P1 P2 P3 P4 P5 P6 
 

S D S D S D S D S D S D 
SDqc 

1 5:2       1 2:1   0.55 

1 3:0       2 4:0   1.5 Correct 

1 4:2       0 2:2   0.25 

2 2:0       1 5:0   1.4 

2 2:0       2 4:0   2 Usable 

1 3:1       0 3:2   0.93 

0 4:2           0 

1 3:0           1 Important 

1 5:0           1 

  1 2:0 1 0:0 1 1:0     1 

  2 2:0 1 2:0 2 2:0     1.75 
Content 

Complete 
  1 7:4 0 5:4 1 2:1     0.5 

  2 2:0 1 3:0 1 0:0   0 2:2 1.4 

  1 2:0 2 1:0 1 2:1   1 2:0 1 
Description 
Complete 

  1 9:1 0 4:4 1 1:1   1 3:1 0.51 

          1 4:2 0.5 

          1 2:1 0.5 Consistent 

          0 2:2 0 

          1 1:1 1 

          2 2:1 1 Modifiable 

          0 3:2 0 

    1 4:2 1 3:3     0.29 

    2 6:0 2 0:0     2 Verifiable 

    0 6:6 0 10:7     0 

0 3:3 1 4:1         0.3 

1 5:0 2 2:0         1.4 Realizable 

2 0:0 1 7:2         1.49 
        1 5:3   0.4 
        2 0:0   2 Profitable 
        0 0:0   0 

Note: P1- Person 1 (PM), P2- Person 2 (Designer), P3-Person 3(Tester), P4-Person 4 (Tester), P5- 
Person 5 (Marketing Unit Engineer), P6-Person 6 (SQA); S-Satisfaction degree, D-Number of defect: 
Number of severe defect 

in project L3.0 thought the functions were correct because they had got good feed-
backs from customers. This is because their understandings about the function were 
different. So O-RQC provides detailed and operable checking items for designers, 
testers and SQA, but for MU and PM, this method can only provide guidance and the 
result highly depends on the experiences of reviewers. We also found that on “De-
scription Complete”, two testers had different opinions. Then we had a meeting with 
P3 and P4. P3 was dissatisfied with the QC because he found 4 severe defects in half  
 



 An Empirically–Based Process to Improve the Practice of Requirement Review 145 

 

Fig. 6. SDqc and satisfaction degree of reviewers for SRS3 

an hour and P4 considered the QC was satisfying because he found only 1 severe 
defect in an hour. Therefore satisfaction degree was determined by both the number 
of severe defects and the speed of defect discovering. So their marks were reasonable 
and need not to be changed. 

4.3   Discussion 

In order to learn about the effects of the process, we interviewed the six people at-
tended SRS reviews and the requirement engineer. Based on their opinions and data 
collected in the case, we want to prove the new process has achieved the three objec-
tives proposed in section 2. 

Objective 1: Help reviewers focus on their own concerns to find more defects re-
lated with their tasks;  

All the reviewers mentioned the multi-role checklist helps them concentrate on 
their own perspectives. The defects are all related with concerns of reviewers. Re-
viewers need not to consider those unrelated perspectives.  

Objective 2: Improve defect discovering efficiency;  
We compared the defect discovering efficiency of the case with that of project 

L3.0, as shown in Table 6. For every SRS, the row in grey lists the data of this case 
and another lists data from project L3.0. We found the efficiency was improved. Al-
though in this case study, the data set was not large, it also could prove the effects of 
new process to some extent. 

Table 6. Comparison between review data of the case and project L3.0 

 Size 
(Page) 

Number of 
reviewer 

Number of 
Defect 

Effort 
(Human Hour) 

Defect 
Discovering 
Efficiency 

6 52 6 8.67 
SRS1 20 

6 24 12 2 

6 46 6.8 6.76 
SRS2 11 

12 38 24 1.58 

6 75 8 9.34 
SRS3 16 

11 12 22 0.55 



146 J. Li et al. 

Objective 3: Provide a quantitative method to analyze and evaluate the total quality 
of SRS easily. 

The requirement engineer mentioned the quantitative evaluation result could help 
her learn about the quality of SRS and analyze problem easily, but she also suggested 
that there should be a data analysis process because some data were subjective  
ratings.  

In addition, we find some weaknesses in this process. Firstly, if a person plays sev-
eral roles, the weights of roles should be adjusted. In this paper, we only consider one 
person with one role. Secondly, the weights of roles are very subjective. Different 
person and project context may affect their values. It is necessary to apply the new 
process in more projects to assure its effectiveness. 

5   Conclusion 

The process proposed in this paper is motivated by the factual problem in a Chinese 
company. We propose a role-based requirement review process to help reviewers 
analyze and assess requirement quality. We apply the new process in a case study and 
discuss its advantages and drawbacks. In the future, we will apply this process into 
more projects and improve the process continuously. 

 
Acknowledgments. This research is supported by the National Natural Science 
Foundation of China under grant No. 60573082, the National Basic Research Program 
(973 program) under grant No. 2007CB310802, the Hi-Tech Research and Develop-
ment Program of China (863 Program) under grant No. 2006AA01Z155. 

References 

1. The Standish Report (2004), http://www.standishgroup.com/chronicles/ 
index.php 

2. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz, 
M.V.: The Empirical Investigation of Perspective Based Reading. Empirical Software Engi-
neering: An International Journal 1(2), 133–164 (1996) 

3. He, L., Carver, J.: PBR vs. Checklist: A Replication in The N-fold Inspection Context. In: 
2006 International Symposium on Empirical Software Engineering, pp. 95–104. ACM 
Press, New York (2006) 

4. Gantner, T., Barth, T.: Experiences on Defining and Evaluating An Adapted Review Proc-
ess. In: The 25th International Conference on Software Engineering, pp. 506–511. IEEE 
Press, New York (2003) 

5. Ormandjieva, O., Hussain, I., Kosseim, L.: Toward A Text Classification System for the 
Quality Assessment of Software Requirements Written in Natural Language. In: Fourth In-
ternational Workshop on Software Quality Assurance, pp. 39–45. ACM Press, New York 
(2007) 

6. IEEE Standard Association, IEEE recommended practice for software requirements specifi-
cations, IEEE Std-830 (1998), http://standards.ieee.org/reading/ieee/ 
std_public/des-cription/se/830-1998_desc.html 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 147 – 159, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Capability Assessment of Individual Software 
Development Processes Using Software Repositories and 

DEA 

Shen Zhang1,2, Yongji Wang1,3, Ye Yang1, and Junchao Xiao1 

1 Laboratory for Internet Software Technologies, Institute of Software,  
The Chinese Academy of Sciences, Beijing 100080, China  

2 Graduate University of Chinese Academy of Sciences, Bejing 100039, China 
3 State Key Laboratory of Computer Science, Institute of Software,  

The Chinese Academy of Sciences, Beijing 100080, China 
{zhangshen, ywang, ye, xiaojunchao}@itechs.iscas.ac.cn 

Abstract. Effective capability assessment of individual software processes is a 
key issue involved in validating the past and adjusting future development proc-
esses. While most of the current assessment approaches have been successfully 
demonstrated in academic communities, new challenges in metric data extraction 
and further analysis still arise when considering actual industrial applications. In 
this paper, we propose a novel integrated method for capability assessment of in-
dividual software development processes. Firstly, our method facilitates the capa-
bility metrics extraction task by making use of software repositories as the data 
source, enabling recording of data effortless and more accurate. Then, we decom-
pose these metrics at the individual-level of granularity by exploring different 
human identities from various sources. Finally, the data envelopment analysis 
(DEA) is also adopted to assist our method to carry out an objective and quantita-
tive assessment for individual software processes under MIMO constraints. Em-
pirical illustrations from a practical case study illustrate the effectiveness of the 
proposed method. 

Keywords: individual software development process (IDP), software reposi-
tory, data envelopment analysis (DEA), multi-input-multi-output (MIMO). 

1   Introduction 

People are well regarded as the largest source of variation in project performance, 
those organizations that have been able to sustain people performance improvement 
programs have demonstrated impressive gains in productivity and quality [1]. Among 
the published studies, the P-CMM [2] and PSP [3], which are both developed by SEI, 
have been widely recognized as two of the most notable and influential workforce 
practices. The P-CMM organizes a series of increasingly sophisticated practices into a 
course of action for evaluating and improving workforce capability, while PSP is also a 
performance and process improvement technique aimed at individual software engi-
neers and small software organizations. For both P-CMM and PSP, their principal 
objective is to assess the current personal practices and then galvanize the organization 



148 S. Zhang et al. 

and individual to take action on needed improvements immediately following the as-
sessment [2,3]. However, some challenges still arise, especially regarding the industrial 
applications [4,5]. 

Firstly, an undue burden is placed on developers and empowered teams due to the 
extensive overhead of collecting measures manually, and a rather lengthy training 
time of 150 to 200 hours for PSP users and 2-3 months for a P-CMM assessment team 
creates extra workload too [2,5].  

Secondly, implementing P-CMM and PSP in an industrial setting also involves pri-
vacy and integrity issues, the temptation for developers to alter their practice meas-
ures can lead to measurement dysfunction [6].  

Thirdly, they are both more prone to subjective bias, but inadequate for objective-
quantitative assessment. In P-CMM, the assessing phase tasks are conducted by the 
assessment team through interviews, workforce discussion and questionnaires [2], so 
the lack of delicate objective quantitative analysis makes it inadequate for accurate 
capability estimations and improvement suggestions. While in PSP, the estimated data 
required in the measurement program inevitably leads to biased results. 

Fortunately, the software repositories and data envelopment analysis (DEA)[7] of-
fer alternatives to overcome these challenges. In this paper, a novel integrated method 
is proposed for the assessment of individual development processes, and it can be 
expected to be ultimately incorporated into P-CMM and PSP to assist in raising the 
efficiency and effectiveness of their capability assessment processes. In our method, 
firstly, we facilitate the process metrics extraction task by making use of software 
repositories as the data source, enabling recording of data effortless and more accu-
rate. Secondly, we decompose the process metrics at the individual-level of granular-
ity by exploring different human identities from various sources. Finally, based on 
these metrics, a DEA model is presented for the quantitative capability assessment of 
individual development processes (throughout this paper, we use the terms “IDP” 
interchangeably with “individual development process”).  

This paper is outlined as follows. Section 2 discusses the state of the art. In section 3, 
we first present our work done in the direction of the capability measures extraction 
from the software repositories, then focus on the DEA-based assessment of individual 
process capability. The experimental results are reported in section 4. Section 5 closes 
with a conclusion. 

2   Related Work 

2.1   Software Repositories 

Software repositories such as version control systems, defect tracking systems and 
mailing lists contain a wealth of valuable information. Such information is not only 
useful for managing the progress of software projects, but also as a detailed log of the 
evolution of human activities during development.  

Software practitioners and researchers are beginning to recognize the potential 
benefit of collecting the vast amount of information contained in software reposito-
ries. [13] presents a method to track the progress of students developing a term  
project, using the historical information stored in their version control repository. 



 Capability Assessment of Individual Software Development Processes 149 

However, due to the lack of statistical information on defects, the impact of quality 
factors hasn’t been taken into consideration in their work. Keir et al. [14] outline their 
experiences of mining and analyzing a set of assignment repositories, the focus of 
their work is on the extraction of quantitative measures of students’ performance. 
They recognize static error as an important performance indicator but ignore to inte-
grate field defect information from defect reports. 

2.2   Data Envelopment Analysis  

As we observed in our previous work[9,10], the software development process, which 
commonly takes the cost, effort, etc. as input and the program size, defects, etc. as 
output, is doubtless a multi-input-multi-output (MIMO) process. Besides, [8] also 
points that, in software engineering, it seems more sensible to compare the perform-
ance with the best practice rather than with some theoretical optimal (and probably 
not attainable) value. DEA offer us an opportunity to evaluate the relative perform-
ance under MIMO constraints. 

Data Envelopment Analysis (DEA) developed by A. Charnes and W. W. Cooper 
[7] in 1978 is a non-parametric programming-based performance assessment model. It 
can be used to analyze the relative performance of a number of units, which can be 
viewed as a multi-input-multi-output system consuming inputs to produce outputs. 
DEA is superior to ordinary statistical regression in situations where multiple inputs 
and outputs exist with no objective way to aggregate scores into a meaningful index 
of production. At present, DEA has been extensively accepted in performance analy-
sis research and then applied to benchmarking of projects and processed. For exam-
ple, [8] illustrates how to evaluate the performance of ERP projects by using DEA, 
and a DEA-based empirical study on benchmarking software tasks as well as an 
evaluation approach for project quality is also presented in our previous work[10,11].. 

3   Approach Overview 

Fig. 1 illustrates the flow chart of the proposed assessment method. 
Our work extends the state of the art in the following ways: 
It enables the extraction of data from the following information sources to return 

four groups of predictors:  
 

• Program features mined from source code  
• Software changes recorded in version control system 
• Pre-release defects exposed by static analysis tool 
• Field defects (customer reported software problems requiring developer interven-

tion to resolve) found in defect tracking system 
 

It adopts a decomposition strategy to decompose the organizational-level metrics at 
the individual-level of granularity by identifying the different identities of the in-
volved people from various sources. 

It proposes the DEA model to deal with the multi-input-multi-output capability as-
sessment of individual development process, the IDP-related metric sets are classified 
into input and output metrics to be used in this model.  



150 S. Zhang et al. 

 

Fig. 1. The Capability Assessment Method 

3.1   Metric Extraction 

Identifying and collecting predictors (metrics available before release) are prerequi-
sites activities for our assessment method. Since our study only focuses on the most 
commonly software repositories such as VCS and defect tracking systems, the predic-
tors we extracted can be mainly divided into four classes.  

Table 1. Predictors collected in our study 

Predictors Description 

Predictors-1 The first group of predictors comes from parsing the source code directly, such as the 
metrics related the flow of program control, number of distinct operations and statements, 
degree of modularity of a program, and number of instances of certain formatting habits.  

Predictors-2 For the second group of predictors, we used static analysis technique [15] to examine all 
source files outputted from IDP. Static analysis technique can detect many types of higher-
level features of code, particularly style violations or bad practices, such as buffer over-
flows, null pointer dereferences, the use of uninitialized variables, etc. Most of these static 
programming errors are important quality predictors and good candidates for pre-release 
defects. 

Predictors-3 The third group of predictors is extracted from VCS repositories, these predictors largely 
represent individual behavior and work habits. They include things like the number of VCS 
operations per day, number of update transactions per module, average number of lines of 
code added or deleted per day, how often to make modifications or add new features to 
existing code, and more. 

Predictors-4 The final group comes from defect tracking systems. Our aim is to assess the quality of 
individual software process from the end user’s perspective. They include things like the 
number of defect records with high severity level, number of defect records that are fixed 
before current release, and more.   



 Capability Assessment of Individual Software Development Processes 151 

All the four groups of predictors can be transformed into standard product metrics 
and development metrics for software process measurement.  

The first two groups of predictors, which are mined from source code directly or 
indirectly, can be categorized as product metrics. The product metrics measure the 
attributes of any intermediate or final product of the software development process. 
Similarly, the last two groups of predictors, which are extracted from the VCS and the 
defect tracking system, can be categorized as development metrics. The development 
metrics measure the attributes of the development process. 

3.1.1   Metrics Extraction at the Individual-Level of Granularity 
In view of the definition of product and development metrics, all of them are com-
monly applicable to the process assessment at the organizational level, but not avail-
able for immediate use of process assessment at the individual level. In general, the 
team development process for a massive software project, which may involve dozens 
of people, can be regarded as an aggregation of many small individual processes. 
Therefore, the data of the product and process metrics, such as the total numbers of 
LOC added and field defect, can also be attributed to all of the people involved in the 
development work. To this end, we also adopt some strategy to “decompose” these 
organizational-level metrics at the individual-level of granularity. 

Since each person can appear with many identities in various repositories�real life 
names (such as in copyright notices), user account with associated e-mail addresses, 
etc. The goal of our strategy is to mine the user identities from the metric data and 
then match each piece of metric data to certain IDP by referring to these user identi-
ties. To illustrate this strategy, we give the following examples. In our examples, we 
use a specific VCS tool CVS and Java programming language as a demonstration.  

 

 

Fig. 2. Example of PMD Outputs 

In the first example, we adopt static analysis technique to extract the second group 
predictors from source code. Tool support is necessary for this work, so we call API 
of PMD [17] to examine a snapshot of Java code. PMD uses its pre-defined ruleset 



152 S. Zhang et al. 

files and source code as inputs, then returns the errors’ locations and their descriptions 
as outputs. Fig. 2 shows an example of PMD outputs.  

To match these metric data to certain individual software processes, we must ac-
quire the corresponding developer identity. Since only VCS and defect tracking sys-
tems are required to have at least a mandatory identity in order to participate, source 
code does not hold mandatory identities. Therefore, it is necessary to combine the 
PMD outputs and the VCS log outputs in order to determine the developer identity. In 
this example, the VCS log is retrieved from a CVS repository by issuing CVS anno-
tate command. Fig. 3 illustrates the combination process above. The top part of Fig. 
3 depicts a sample static error taken from the Fig. 2, so we can locate the error in line 
43 of the source file JcmdProcess.java. On the other hand, the bottom part of Fig. 3 
represents the CVS annotate outputs on the modification for line 43 of source file 
JcmdProcess.java, so we can identify that the developer with a CVS account ezust is 
just the person who made this error in version 1.1 on the date of 15-Jun-06.  

 

 
 

                Fig. 3. Combination Process                        Fig. 4. Snippet from SourceForge.net 

 

For the second example, we extract the fourth group of predictors from defect re-
ports held in a defect tracking system. To obtain these data, we call API of HTML 
tidy [19] to convert the defect reports to XHTML format via HTTP, then extract the 
necessary defect properties from the XML documents based on a pre-defined schema. 
Besides some intrinsic defect properties, each report also contains the identity infor-
mation of the developer who brought the defect. The identity is a user account with 
associated e-mail addresses for the developer to login into the defect tracking system. 
Fig. 4 depicts a snippet of an XML formatted defect report from Sourceforge.net. 
From Fig. 4, we can confirm that the developer with an account ezust should be re-
sponsible for the bug 1527424. 

In the above two examples, a CVS account ezust is identified in the second group 
of predictors, while a defect tracking system account ezust is identified in the fourth 
group of predictors. However, we still need to determine whether these two accounts 
can be attributed to the same real person and his individual software process. More-
over, since each person can appear with one or more identities in a repository, some 



 Capability Assessment of Individual Software Development Processes 153 

other CVS account names such as p_ezust, ezust1 and ezust_alan may refer to the 
same person ezust as well. For our goal is to mine the user identities from the metric 
data and then match each piece of metric data to corresponding developer and his 
individual software process, it is vital to clarify the relationship of different identities 
and match them for the completeness and accuracy of our assessment study.  

A heuristic-based method [12] has been proposed to identify the developers’ identi-
ties by matching the different identifiers from software repositories, but even the 
authors themselves also admit “some matches will be false, and some will be missing, 
which can cause problems.” Therefore, we use a more simple approach to ensure the 
accuracy of the data in our study. We first establish a people identity set by consulting 
the developers under study for their user accounts in various repositories, then we 
adopt a string-matching technique to match these identity information based on the 
people identity set, so a much lower probability for matching failure can be achieved. 

Due to the software repository and language-specified constraints, several predic-
tors in this section may vary slightly. However, as long as the software organizations 
adopt VCS and defect tracking system to maintain the evolution of software devel-
opment processes, all four groups of predictors extraction and their decomposition 
processes can proceed automatically without human intervention.  

3.2   Capability Assessment Model 

The acquisition of individual-level metrics is an essential prerequisite of our assess-
ment method, while choosing statistical methods for further analysis of the metrics 
data is also identified as a vital step.  

In this section, we will present a short introduction to the DEA model, and place 
emphasis on the actual meaning for individual capability assessment.  

Since the IDP is a multi-input-multi-output (MIMO) process, which commonly 
takes the cost, effort, etc. as input and the program size, defect density, etc. as output, 
the four groups of predictors stated in section 3.1 are taken as the input/output metrics 
in our IDP capability assessment model, 

Let us assume that there are n IDPs to be evaluated. Each IDP consumes varying 
amounts of m different inputs to produce s different outputs. Specifically, the input 
and output metrics of IDPj can be written as:  

( )
( )

1 2

1 2

: , , , 0, 1, ,

: , , , 0, 1, ,

T

j j j mj

T

j j j sj

input metrics x x x x j n

output metrics y y y y j n

= > =

= > =

 

  The DEA BCC model is written as:   

                                        

( )2

0
1

B
0

1

1

min( )

1 0, 1, ,

n

j j j
j

n
C

j j j
j

n

j j
j

x x

D
y y

j n

θ

λ θ

λ

λ λ

=

=

=

⎧
⎪
⎪ ≤
⎪
⎪= ⎨ ≥⎪
⎪
⎪

= ≥ =⎪
⎩

∑

∑

∑ …

                                (1) 



154 S. Zhang et al. 

Where the scalar variable θ in (1) represents the capability score, and it ranges from 0 
to 1. If IDPj0 receives the maximal value θ= 1, then it is of relative high capability, but 
if θ< 1, it is of relative low capability, Furthermore, since the value of θ means that 
the IDPj0 can still achieve a minimal decrease of θ times in its inputs without decreas-
ing the production for any outputs, its capability is relatively lower when the θ is 
relatively smaller. 

The λ in model (1) is the peer weight. Each IDP can be presented by a linear com-
bination of the whole IDP set, such as:

0 1 1j j j n nIDP IDP IDP IDPλ λ λ= + + + + . In 

fact, only a relative high-capability IDPj may have a peer weight λj > 0, so we can 
define a reference set RSj0 for each IDPj0 as: 

0 { : 0 , 1, , }j j jRS IDP j nλ= ≠ = … . Here, 

each high-capability IDPj in the reference set is called as a peer of the IDPj0, The corre-
sponding peer weight λj indicates the important degree of the peer IDPj to the given 
IDPj0. In our study, via the peers {IDPj} and their weights {λj}, researchers can fur-
ther determine which peer (the IDP of relative high capability) is of the biggest im-
provement value to the low-capability IDPj0 and thus need to be learned more from.  

4   Experimental Results and Analysis 

In this section, we demonstrate the IDP capability assessment approach on a devel-
opment team in ISCAS. The organization (ISCAS) which we collect data from is one 
of the leading research and development organizations in China and has high software 
process capability maturity level (CMMI level 4). The work of the developers in IS-
CAS is entirely performed under strict quantitative CMMI-based processes manage-
ment and maintained in organizational software repositories, such as CVS, firefly, 
bugrat and so on. Besides, the organization imposes strict defect report-
ing/tracing/fixing procedures on their development processes. Thus, the data quality 
and relative completeness of the defect reports can be sufficiently guaranteed. Since 
the ISCAS is responsible for a China “863” project SoftPM [16], which is being de-
veloped in pure Java with hundreds of person-years of development behind it, 30 
developers within the project team are selected for our experimental study. 

We collect the following predictor data from SoftPM’s software repositories. In the 
CVS repository, we successfully evaluate 4,904 Java source files stored in 657 direc-
tories. Upon inspecting these files, 2,871 CVS commits with the corresponding  
 

Table 2. Input and output assessment metrics of IDPs 

Metric Type Meaning  Unit 
Total Schedule 

(TS) 
Input The sum of actual time devoted to individual software process 

i  
Person hour 

Cost Input Total money invested in individual software process i during 
the development period 

Chinese yuan 

Scale Output Total source lines of code produced by individual software 
process i  

LOC 

Pre-Defect Output Total static errors found across all files in individual software 
process i  

Pre-defects 

Field Defect   Output Total defect records found in individual software process i 
during the development period in all releases 

field defects  

 



 Capability Assessment of Individual Software Development Processes 155 

15,301 revisions, which can be linked to 96 developers, are also obtained up to date. 
Then, we perform a static analysis on the source code to identify 89,722 static errors 
as well as the relationships between them and individual engineers. Furthermore, we 
extract a total number of 3,532 defect reports from the defect tracking systems, after 
filtering out 228 duplicate reports and 472 invalid reports, a final number of 2,832 
defect reports are recorded, and most of them can be tracked to their assigners. 

To simplify the experimental verification in this paper, we only derive five most di-
rect metrics (Table 2) for assessing individual software development processes.. The 
time and money consumed by development processes should be taken as the input 
metrics, while other metrics defined in Table 2 are regarded as the output metrics in 
our DEA model. Moreover, we also provide an explanation here:  

The total schedule (TS) is actually computed from the accumulation time intervals 
between check-out time and check-in time of the version changes brought about by 
IDP i. Since some time intervals may overlap each other, we eliminate the overlap-
ping time intervals during the sum process. 

We choose money as one of the sample metrics, the reason is that the time and 
money are always taken as the most representative factors in empirical software engi-
neering models such as COCOMO. Since no cost-related information can be found in 
software repositories, we have to consult managers about this.  

The two metrics which require for transformation in Table 2 are: pre-defect and 
field defect. Because an increase in an input should contribute to increased output and 
increasing the pre-defect and field defect are undesirable outputs, we adopt the [TRβ] 
transformation to transform these metrics which are undesirable outputs in DEA ter-
minology. For a detailed discussion of the [TRβ] transformation, readers may refer to 
our previous work [11]. 

Based on sample metrics defined in Table 2, the collected metric data of each IDP 
are shown in Table 3. 

The capability score θ for the 30 IDPs is calculated using DEA model in 3.2 and 
presented in Fig.5. We observe that there are 9 IDPs of relative high capability, while 
the other 21 IDPs are all of relative low capability, since their capability score are 
smaller than 1. 

 

Table 3. Statistics for the 20 IDPs’ input/output metrics 

IDP TS Cost Scale Pre- 
Defect 

Field  
Defect 

IDP TS Cost Scale Pre- 
Defect 

Field  
Defect 

1 9130 291561 79248 1156 18 16 1548 43670 6118 6746 163 
2 595 17503 5061 2460 87 17 585 23433 6352 6600 67 
3 12054 454094 83144 2230 42 18 748 28891 10891 2863 95 
4 1737 47061 24020 6517 82 19 662 18457 4418 7414 176 
5 6137 166813 72578 3053 54 20 395 12209 4749 7487 164 
6 3855 112353 34593 5943 131 21 2333 80532 25938 5495 86 
7 575 19617 7177 4532 131 22 635 23904 7632 7512 132 
8 1903 56987 12964 8311 188 23 1902 55517 10696 6555 187 
9 861 34423 9451 7541 133 24 352 10252 5228 6548 114 
10 310 11179 4059 6257 153 25 428 17498 4476 5555 179 
11 908 28278 6318 7041 168. 26 2005 68137 15677 6560 153 
12 250 10219 3972 7162 178. 27 406 14479 6285 7556 157 
13 683 27526 5379 6470 119 28 675 20640 6445 7561 143. 
14 6245 250275 33206 6428 143 29 1167 46381 8708 7548 148. 
15 495 19451 5338 7336 96 30 535 21229 5203 8545 158 



156 S. Zhang et al. 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Thirty IDPs

C
ap

ab
ili

ty
 S

co
re

Capability Score

 
Fig.5. Capability Score θ 

Table 4. Peer sets and peer weights 

IDP P1 Peer 1 
Weight 

P2 Peer 2 
Weight 

P3 Peer 3 
Weight 

IDP P1 Peer 1 
Weight 

P2 Peer 2 
Weight 

P3 Peer 3 
Weight 

1 1 1.0000 × × × × 16 4 0.1019 12 0.8166 24 0.0815 

2 12 0.1330 24 0.8670 × × 17 4 0.0038 27 0.9962 × × 

3 3 1.0000 × × × × 18 4 0.2597 27 0.7403 × × 

4 4 1.0000 × × × × 19 8 0.1605 12 0.6679 27 0.1716 

5 5 1.0000 × × × × 20 4 0.0277 12 0.7951 24 0.1773 

6 5 0.3989 12 0.2033 27 0.0487 21 4 0.8751 5 0.0645 12 0.0605 

7 4 0.0503 27 0.9497 × × 22 4 0.0645 8 0.0305 27 0.9051 

8 8 1.0000 × × × × 23 8 0.8950 12 0.1050 × × 

9 4 0.1785 27 0.8215 × × 24 24 1.0000 × × × × 

10 12 0.9307 24 0.0693 × × 25 8 0.0950 12 0.9050 × × 

11 4 0.0964 5 0.0060 12 0.8976 26 5 0.1769 12 0.6548 27 0.1683 

12 12 1.0000 × × × × 27 4 0.0645 8 0.0305 27 0.9051 

13 12 0.3917 27 0.6083 × × 28 4 0.0043 8 0.0125 27 0.9831 

14 3 0.2856 5 0.0033 8 0.7111 29 4 0.0926 8 0.1169 27 0.7905 

15 12 0.4094 27 0.5906 × × 30 8 0.0058 12 0.0390 27 0.9551 

 
As depicted in Fig.5, these individual development processes have been clearly 

classified into relatively high-capability and low-capability ones. According to the 
reference relationships (the peer sets and the peer weights, see Section 3.2) among the 
30 IDPs shown in Table 4, the developers with high-capability processes can learn 
how to make better improvements by comparing against a peer process or a combina-
tion of peer processes. For example, managers can find that IDP11 derives a peer set 
{IDP4, IDP5, IDP12}. By further investigating the peer weight of each peer in this 
peer set, IDP11 can determine IDP12 as the most suitable one to borrow best practices 
from, because IDP12 has the biggest peer weight (0.8976) in the peer set. The peer set 
and the most valuable development process to emulate for the other IDPs in Table 4 
can be derived in a similar way.  

 



 Capability Assessment of Individual Software Development Processes 157 

Table 5. Reference number and total reference weight 
 

IDP Reference 
 Number 

Reference 
Weights 

IDP Reference  
Number 

Reference 
Weights 

IDP Reference  
Number 

Reference 
Weights 

1 1 1.0000 5 6 1.6496 24 5 2.1951 
3 2 1.2856 8 10 3.0578 27 15 10.6341 
4 13 2.8193 12 15 8.0096 × × × 

 
To sum up, by investigating the reference relationships, managers can establish dif-

ferent reference sets for each relatively low-capability IDP. Moreover, with the aid of 
peer weights of the peers, developers can further find which process is of the biggest 
improvement reference value to his own IDP. 

Moreover, the reference number and total weight, which indicate the relative im-
portance and reference value among the high performance IDPs, are also computed, 
as shown in Table 5. The IDP27, which has been referred 15 times and has a total 
reference weight more than 10, is doubtless the most useful when the comparison 
with the best individual software processes is sought.  

Besides, we can also draw a sound conclusion from the above results: Our statisti-
cal model can measure IDPs with similar scale and ensure that relatively large-scale 
development processes are compared with other relatively large-scale ones and rela-
tively small-scale development process with relatively small ones. To make it clear, 
we can refer to Table 4 for the peer set. From Table 4, we find that each relative low-
capability IDPi chooses a peer IDP, which has the largest peer weight and the most 
similar input and output scale, as the most suitable one to borrow best practices from. 
For example, IDP7 (input: 575 hours, 19617 yuan) choose IDP27 (input: 406 hours, 
14479 yuan) to emulate, while IDP10 (input: 310 hours, 11179 yuan) choose IDP12 
(input: 250 hours, 10219 yuan) to learn the best practices from. The results surely 
show that our model has the ability to establish different capability benchmarks for 
IDPs of different scales. 

ISCAS proposes an individual performance-related pay (IPRP) scheme [18], which 
links salary to the result of an individual appraisal of job performance, in a variety of 
organizational contexts. At present, the developers’ performance scores are drawn 
upon the findings from project managers’ interpretation and daily reports of work. A 
performance score with a greater value means a piece of high-performance work and 
leads to an increase in the bonus rate applied to the base salary, and vice versa.  

From the above analysis results, it is found that the our assessment model seems to 
be more reasonable for scoring personal capability and enabling organization to estab-
lish different process performance benchmarks for IDPs of diffident scale than the 
current IPRP scheme. Indeed, we have planned to put our assessment method into use 
to improve the IPRP scheme of ISCAS in the near future. 

5   Conclusions 

In this paper, we present a novel combined method for capability assessment of indi-
vidual software processes and practices. Our method facilitates the process metrics 
extraction task by making use of software repositories as the data source, enabling 
recording of data effortless and more accurate. Then, the process metrics are decom-
posed at the individual-level of granularity by exploring different human identities 



158 S. Zhang et al. 

from various sources. Since software repositories provide the necessary foundation 
for the assessment process execution, the proposed method is generally applicable to 
any software organizations that adopt software repositories to maintain the evolution 
of software development processes.  

Besides the feasible mechanisms for metrics extraction and decomposition from 
software repositories, the DEA model has also been adopted to measure the capability 
of individual software development processes under MIMO constraints 

Empirical illustrations from a practical case study illustrate the effectiveness of the 
proposed methodology. The results show that our method is quite helpful in scoring 
individual capability to facilitate the IPRP scheme adopted in most software compa-
nies. Furthermore, this appraisal approach can be expected to be ultimately incorpo-
rated into P-CMM and PSP to assist in raising the efficiency of their capability as-
sessment programs. 

Acknowledgements 

This research is supported by the National Natural Science Foundation of China 
(60473060, 60573082, 60673022), and the National Hi-Tech Research and Develop-
ment Plan of China (2006AA01Z185, 2006AA01Z182) 

References 

1. Biberoglu, E., Haddad, H.: A survey of industrial experiences with CMM and the teaching 
of CMM practices. Journal of Computing Sciences in Colleges 18(2), 143–152 (2002) 

2. Curtis, B., Hefley, W.E., Miller, S.A.: People Capability Maturity Model (P-CMM) Ver-
sion 2.0. Addison-Wesley Professional, Reading (2001) 

3. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley, Read-
ing (1997) 

4. Johnson, P.M., Disney, A.M.: A critical Analysis of PSP Data Quality: Results from a 
Case Study. Journal of Empirical Software Engineering 4(4), 317–349 (1999) 

5. Morisio, M.: Applying the PSP in Industry. IEEE Software 17(6), 90–95 (2000) 
6. Nasir, M.M., Yusof, A.M.: Automating a modified personal software process. Malaysian 

Journal of Computer Science 18(2), 11–27 (2005) 
7. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the Efficiency of Decision Making 

Units. European Journal of Operational Research 2(6), 429–444 (1978) 
8. Stensrud, E., Myrtveit, I.: Identifying High Performance ERP Projects. IEEE Transaction 

on Software Engineering 29(5), 387–416 (2003) 
9. Liping, D., Qiusong, Y., Liang, S., Jie, T., Yongji, W.: Evaluation of the Capability of Per-

sonal Software Process Based on Data Envelopment Analysis. In: Li, M., Boehm, B., Os-
terweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 235–248. Springer, Heidelberg (2006) 

10. Shen, Z., Yongji, W., Jie, T., Jinhui, Z., Li, R.: Evaluation of Project Quality: A DEA-
based Approach. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and 
ProSim 2006. LNCS, vol. 3966, pp. 88–96. Springer, Heidelberg (2006) 

11. Li, R., Yongji, W., Qing, W., Mingshu, L., Shen, Z.: Empirical Study on Benchmarking 
Software Development Tasks. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. 
LNCS, vol. 4470, pp. 221–232. Springer, Heidelberg (2007) 



 Capability Assessment of Individual Software Development Processes 159 

12. Robles, G., Jesus, M., Gonzalez-Barahon: Developer identification methods for integrated 
data from various sources. In: Proceedings of the 2005 international workshop on Mining 
software repositories, St. Louis, pp. 1–5 (2005) 

13. Liu, Y., Stoulia, E., German, D.: Using CVS Historical Information to Understand How 
Students Develop Software. In: 1st International Workshop on Mining Software Reposito-
ries, Edinburgh, pp. 32–36 (2004) 

14. Mierle, K., Laven, K., Roweis, S., Wilson, G.: Mining student CVS repositories for per-
formance indicators. In: Proceedings of the 2005 international workshop on Mining soft-
ware repositories, St. Louis, pp. 1–5 (2005) 

15. Vanek, L.I., Culp, M.N.: Static analysis of program source code using EDSA. In: Proceed-
ings of the International Conference on Software Maintenance, Miami, pp. 192–199 
(1989) 

16. Qing, W., Mingshu, L.: Measuring and Improving Software Process in China. In: Proceed-
ings of the 4th International Symposium on Empirical Software Engineering, Australia, 
pp. 17–18 (2005) 

17. PMD, http://pmd.sourceforge.net/ 
18. Harris, L.: Rewarding employee performance: line managers’ values, beliefs and perspec-

tives. Int. J. Hum. Resource. Manag. 12(7), 1182–1192 (2001) 
19. HTML TIDY, http://www.w3.org/People/Raggett/tidy/ 
 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 160 – 172, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Scoping Software Process Models - Initial Concepts  
and Experience from Defining Space Standards 

Ove Armbrust1, Masafumi Katahira2, Yuko Miyamoto2, Jürgen Münch1,  
Haruka Nakao3, and Alexis Ocampo1 

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany 
2 Japanese Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan 

3 Japan Manned Space Systems Corporation, 1-1-26, Kawaguchi, Tsuchiura, Ibaraki, 300-0033, 
Japan 

{armbrust, ocampo, muench}@iese.fraunhofer.de, 
katahira@computer.org, 
miyamoto.yuko@jaxa.jp, 

haruka@jamss.co.jp 

Abstract. Defining process standards by integrating, harmonizing, and stan-
dardizing heterogeneous and often implicit processes is an important task, espe-
cially for large development organizations. However, many challenges exist, 
such as limiting the scope of process standards, coping with different levels of 
process model abstraction, and identifying relevant process variabilities to be 
included in the standard. On the one hand, eliminating process variability by 
building more abstract models with higher degrees of interpretation has many 
disadvantages, such as less control over the process. Integrating all kinds of 
variability, on the other hand, leads to high process deployment costs. This arti-
cle describes requirements and concepts for determining the scope of process 
standards based on a characterization of the potential productzs to be produced 
in the future, the projects expected for the future, and the respective process ca-
pabilities needed. In addition, the article sketches experience from determining 
the scope of space process standards for satellite software development. Finally, 
related work with respect to process model scoping, conclusions, and an out-
look on future work are presented. 

1   Introduction 

Many facets of process technology and standards are available in industry and acade-
mia, but in practice, significant problems with processes and process management re-
main. Rombach [1] reports a variety of reasons for this: Some approaches are too ge-
neric, some are too specific and address only a small part of daily life. Many approaches 
are hard to tailor to an organization’s needs. In addition, some approaches impose rather 
strict rules upon an organization – but since not everything can be foreseen, there must 
be room for flexibility. Yet it remains unclear what must be regulated, and what should 
be left open. In general, support for process problems is plentiful, but very scattered, 
without a systematic concept addressing problems in a comprehensive way. One result 
of this unsatisfactory support is an unnecessarily high number of process variants within 
an organization. For example, each department of a company may have its own process 



 Scoping Software Process Models - Initial Concepts and Experience  161 

variant, all of them varying only in details, but existing nevertheless and needing to be 
maintained in parallel. 

A traditional countermeasure taken to overcome this phenomenon is to define fixed 
process reference standards like the German V-Modell® XT [2], which fulfill the 
requirements of maturity models such as CMMI  or ISO/IEC 15504 [3]. While this 
potentially reduces the number of variants, it often also leads to very generic proc-
esses that are no great help in dealing with daily problems, and that do not provide the 
necessary variability for coping with changing contexts. Thus, processes and their 
variations must be modeled in order to be understood, but at the same time, the mod-
eling extent must be limited, in order to maintain high quality of the modeled proc-
esses and achieve high user acceptance. 

Together, these circumstances have gradually turned software process management 
into a complex problem – and this process is nowhere near finished. As a conse-
quence, software process management challenges comprise, but are not limited to, the 
following key issues: 

− How can processes be characterized? Such a characterization is necessary in order 
to decide which process parts should become mandatory, variable, or be left out 
completely. 

− How can stable and anticipated variable process parts be identified? 
− In order to account for unanticipated changes, process models must be variable to 

some extent – but what is the right degree of variability? 
− How can variable processes be adequately described in a process model? 
− How can process models be tailored efficiently, based on the particular demand? 
− On which level(s) of granularity should process engineers work? 

We propose a systematic approach of Software Process Scoping to address these 
questions. We define Software Process Scoping as the systematic characterization of 
products, projects, and processes and the subsequent selection of processes and proc-
ess elements, so that product development and project execution are supported effi-
ciently and process management effort is minimized. 

This paper is structured as follows. Section 2 names a number of requirements that 
a Software Process Scoping approach addressing the issues listed above should sat-
isfy. Section 3 explains our initial solution, followed by the description of its applica-
tion at JAXA in Section 4. We give an overview of what process scoping means in the 
aerospace domain and describe our experiences. Related work and its relationship to 
Software Process Scoping are analyzed in Section 5. Finally, we draw some conclu-
sions and give an outlook in Section 6. 

2   Requirements for Software Process Scoping 

Based on the problems observed with software process management, we have phrased 
a number of requirements for an approach to scoping software processes.  

(1) First of all, the approach should support software product development by pro-
viding an appropriate selection of necessary processes. This means that for a collec-
tion of existing, planned, and potential products developed in specific projects, the 
 



162 O. Armbrust et al. 

approach should determine the extent and provide a selection of software develop-
ment processes that supports the creation of these products by providing, for each 
product and project, the processes needed. 
(2) Second, in order to support the selection process, the approach should provide 
ways to characterize software products, projects, and processes accordingly. Since 
the approach is supposed to provide tailored processes for an organization, it must 
also provide ways to select these processes, based on process characteristics and the 
specific needs of projects and (future) products to be developed. 
(3) Third, in order to minimize process management effort, the approach should pro-
vide ways to distinguish stable process parts from variable ones. Many products 
and projects often share large parts of the processes, with none or only minimal varia-
tions. Managing all these variants independently significantly increases process man-
agement effort. Therefore, the approach should identify stable and variable process 
parts, and provide a systematic method for classifying process parts accordingly, so 
that process management effort can be effectively decreased. 
(4) Fourth, in order to cope with the unforeseen, the approach should provide ways to 
incorporate unanticipated variability in a controlled manner, such as process 
changes during project runtime. This requirement comes from the fact that usually, 
not all events can be foreseen, and thus need to be taken care of as they occur. In 
some cases, this requires process changes. The approach should support these changes 
in such a way that it sensibly constrains and guides process changes after the start of a 
project. 
As necessary preconditions for Software Process Scoping, the following two require-
ments must also be fulfilled by the process modeling mechanisms used: 
(1) The process modeling approach should provide ways to store stable and variable 
parts within one process model, in order to facilitate model management. Obvi-
ously, the information about whether a process part is stable or variable, and the vari-
ability’s further circumstances must be stored somehow. We suggest storage within 
one combined model in order to facilitate further support, e.g., through tools. 
(2) The process modeling approach should provide ways to cost-efficiently instanti-
ate such a combined model into a project-specific process model without variabil-
ity. This means that the combined model is transformed, and during this transforma-
tion, all variabilities are solved, resulting in a single process model without any 
remaining variability. 

These requirements are by no means complete. They may need to be amended, re-
fined or changed – however, they seem to be a good starting point to venture further. 
In the following section, we will present an initial solution that at least partially satis-
fies these requirements. 

3   Initial Solution 

One possible solution addressing the requirements mentioned is the concept of a soft-
ware process line (see Fig. 1): Scoping determines the members of such a process 
line, process domain engineering constructs a process repository containing all stable 
and variable process parts as well as a decision model governing when to use which 
variant. Process line instantiation extracts from the process repository one specific 



 Scoping Software Process Models - Initial Concepts and Experience  163 

process instance without variability for each project, which can then be further 
adapted during customization. These activities are supported by a number of ap-
proaches, such as software process commonality analysis [4], process model differ-
ence analysis [5], [6] and rationale support for process evolution [7], [8]. In this 
software process line environment, scoping and process domain engineering pro-
actively cope with stable and anticipated variable processes, while customization 
(often also just called “process tailoring”) re-actively integrates unanticipated vari-
ability into a descriptive process model. 

Process
Domain

Engineering

Process
Line

Instantiation

Customi-
zation

Software Process Line Engineering Core

Scoping Process
Line

Project-
specific
Process

Software Process Line Engineering Support

Process Model 
Difference Analysis

Rationale Support for 
Process Evolution

Process
Line

Instance

Process Commonality 
Analysis

Process
Domain

Engineering

Process
Line

Instantiation

Customi-
zation

Software Process Line Engineering Core

Scoping Process
Line

Project-
specific
Process

Software Process Line Engineering Support

Process Model 
Difference Analysis

Rationale Support for 
Process Evolution

Process
Line

Instance

Process Commonality 
Analysis

 

Fig. 1.  Software process line overview 

The fundamental difference between this software process line concept and well-
known concepts of software process tailoring is that within a software process line, an 
organization’s processes are actively prepared for a number of anticipated needs be-
forehand and then possibly tailored further to incorporate unanticipated changes, 
whereas classic process tailoring typically modifies a process individually for a spe-
cific project, e.g., for the creation of product P1 in cooperation with suppliers S1 and 
S2, to be delivered to customer C1. Within a process line, scoping would evaluate 
how many products of the product P1 type are anticipated to be produced in the fu-
ture, how often cooperation with suppliers S1 and S2 would presumably occur, and 
how many projects with customer C1 are likely to happen. Taking this into account, 
scoping then defines mandatory and optional process parts as determined by the re-
sults of the evaluation, and process domain engineering provides the appropriate 
process model which reflects the scoping results. 

The software process line concept is in fact quite similar to software product lines: 
In a product line, a software product is systematically prepared to suit future antici-
pated needs by determining a common core and various variants satisfying different 
specific needs. The software process line concept transfers this idea to software proc-
esses in such a way that it prepares an organization’s processes to suit future antici-
pated (process) needs by determining a common process core and variable process 
parts that satisfy specific needs. Since product creation and processes have a very 
close relationship, a combination of both approaches seems only too reasonable, and 
was, in fact, already envisioned by Rombach in [1]. 



164 O. Armbrust et al. 

In this article, we focus on the concept of scoping. Scoping determines what to in-
clude in the process line and what not, based on characteristic features described in 
product, project, and process maps. 

Product characteristics determine which process capabilities are needed to develop 
the respective product(s). These characteristics may include, for example, that a prod-
uct is safety-critical, or that its requirements are only vaguely known at the beginning 
of development. Product characteristics are determined in a product map for current, 
future, and potential products. 

Project characteristics also influence which process capabilities are needed in de-
velopment projects. Such characteristics may be, for example, that a project must 
follow a certain development standard, or that it is performed in a distributed manner. 
Project characteristics are recorded in a project map for existing/historical, future, and 
potential projects. Both product and project characteristics may be prioritized, for 
example by their likelihood of really becoming necessary, or by the potential damage 
that may occur if they become necessary, but are not considered in the company’s 
processes. 

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

Produc
t 
Charac
teristic
s

…

…

Reqs
vague

Safety 
critical

P9P8P7P6P5P4P3P2P1

Potential ProductsFuture ProductsExisting Products

P
roduct

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

distribu
ted

Project 
Charac
teristic
s

…

…

SPICE 
compli
ance

P9P8P7P6P5P4P3P2P1

Potential ProjectsFuture ProjectsExisting Projects

P
roject

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

Proces
s 
Charac
teristic
s

…

Risk-
based

ISO 
12207 
compli
ant

P9P8P7P6P5P4P3P2P1

Potential ProcessesFuture ProcessesExisting Processes

P
rocess

C
haracteristics

 

Fig. 2. Product, project, and process map sketches 

Once the product and project characterizations are complete, they form a set of 
demands for the company’s processes. For example, product characterization may 
lead to the insight that for every product, its certification according to a certain stan-
dard is mandatory. Project characterization may reveal that in all upcoming projects, 
SPICE compliance is a must, while support for distributed development is only 
needed for some projects. Together, these results demand processes that are SPICE-
compliant and allow for the necessary product certification by default, while explicit 
support for distributed development is less important. 

Available processes are characterized using the same attributes, describing the ca-
pabilities of a process in a process map for existing, future, and potential processes 
and thus providing the counterpart to the demands of products and projects. By 
matching the prioritized product and project characteristics to the process characteris-
tics, the scope of the future company processes is determined, with “must have”-
process features being part of the standard process and optional features representing 
capabilities needed only in some cases. In our simple example, SPICE-compliant 
processes that also support the desired certification would be included as a core for 



 Scoping Software Process Models - Initial Concepts and Experience  165 

every development project, while explicit support for distributed development would 
be an optional feature that can be invoked on demand. Capabilities needed only very 
seldom or never are left out; in case they become necessary, the project-specific proc-
ess tailoring will supply them. 

Fig. 2 shows sketches of the three tables explained above. The topmost table dis-
plays product characteristics for existing, future, and potential products, with future 
products being concretely planned and potential products being a possibility, but not 
yet devised in any way. The middle and bottom tables contain project and process 
characteristics, featuring the same three-way distinction, where existing processes are 
processes in daily use, future processes are processes that have been prepared for 
application, but have not been institutionalized yet, and potential processes are proc-
esses that might become used, but have not been adapted or prepared for use within 
the organization yet. 

4   Case Study 

In this section, we are reporting on our experiences from an ongoing effort within the 
Japanese Space Exploration Agency (JAXA) to provide a process line for their space 
software development. Our focus hereby lies on scoping for satellite software devel-
opment (see Fig. 3). In the next section, we will describe the project context and re-
sults. Following up on that, we will share our experiences. 

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

Satellite 1
Process

Launch
Vehicle
Process

Launch Vehicle
Process Line

Ground
Segment
Process 1

Ground Segment
Process Line

Ground
Segment
Process 2

ISO 12207

SPICE FOR SPACE

JAXA PAM

refers
to

Satellite 2
Process

Paper Focus  

Fig. 3. JAXA process line overview 

4.1   Process Scoping in the Aerospace Domain 

The ultimate goal of the ongoing project we are reporting on is to provide a software 
process line for JAXA’s space software development. This includes satellite software, 
launch vehicle software, and ground segment software (see Fig. 3). So far, the first 
version of a satellite software process line has been finished, the scoping portion of 
which provided characterizations of two products (satellites) developed in two pro-
jects. In this domain, there is a very strong correlation between product and projects, 
since each product is unique. Nevertheless, a meaningful project and product charac-
terization is not trivial. In our case, it became apparent very soon that while attributes 
for project characterization often had only two possible values (e.g., “National” and 



166 O. Armbrust et al. 

“International” for the “Collaboration type” attribute), this was not the case for prod-
uct characterization. For example, complexity, criticality, and size were determined 
on a 3-piece scale by experts. 

Tables 1 and 2 show an extract of the characterizations of the projects and prod-
ucts, respectively. So far, only satellite products and projects have been characterized: 
however, similar work for the launch vehicle and ground segment is currently going 
on. Due to confidentiality reasons, subsystems and suppliers are represented by num-
bers. In Table 2, higher numbers mean higher rating of the respective attribute. 

Table 1. Excerpt from project characterization 

Sat1 Sat2 LV1 LV2 GS1 GS2
Collaboration 
type

National International

Mission type Engineering Science
Subsystem 1, 2, 3 3
Supplier 1, 2 1

…

P
ro

ject
C

h
aracteristics

Satellites Launch Vehicle Ground Segment

 

Table 2. Excerpt from product characterization 

Sat2
Subsystem1 Subsystem2 Subsystem3 Subsystem3 LV1 LV2 GS1 GS2

Complexity 3 2 1 1
Criticality 2 3 1 1
Size 3 3 2 2
Stable
Requirements

yes yes yes no

…

Ground Segment
Sat1

P
ro

d
u

ct
C

h
aracteristics

Satellites Launch Vehicle

  

There are a number of interdependencies between project and product characteriza-
tion data that are not apparent at first sight, but that surfaced during scoping efforts. 
For example, the unstable requirements for Sat2, Subsystem3 require an iterative 
development approach – this led to the fact that for each potential supplier, it had to 
be checked whether such a process could be supported. In our case, Supplier 1 was 
chosen and had to adapt (for Sat2) their processes to the international collaboration 
type. Other interdependencies led to conflicts, e.g., the collaboration type “interna-
tional” demanded that documentation had to be made available in English upon re-
quest, suggesting one set of potential suppliers, but the mission type suggested a dif-
ferent set – this was solved by prioritizing characteristics. 

4.2   Experiences 

Translating the project and product characterizations into requirements for the process 
proved not to be an easy task. Most “soft” product characteristics such as complexity, 
size, or criticality could not be used to directly derive new or changed processes. In 
fact, these factors mostly did not lead to qualitative process changes (i.e., new or 
changed activities or work products), but influenced project planning in such a way 



 Scoping Software Process Models - Initial Concepts and Experience  167 

that the number of reviews was increased, or that the amount of independent V&V 
was increased. This was not modeled in detail in the software process line: instead, 
only high-level directives and quality requirements were given, which have to be 
implemented individually by the suppliers. 

Project characterization, on the other hand, led to a number of variation points 
within the process itself. While some findings did not change the process itself (e.g., 
the requirement that for international projects, documentation was to be produced in 
English upon request), others did. For example, for international cooperation projects 
with ESA, a new activity was introduced for analyzing hardware/software interaction, 
producing the new work product FMECA (Failure Mode, Effects, and Criticality 
Analysis). Especially for exploratory science projects, the usual process standard was 
perceived as being too heavy. As a consequence, the number of quality assurance 
activities was reduced, and the requirements and design rationales were waived. Also, 
source code quality assurance measures were decreased for this type of project. 

The variations were modeled using the graphical software process modeling tool 
[9] SPEARMINT™. Process parts that were optional in some cases were marked 
accordingly, with a detailed description of when to consider the respective part. Fig. 4 
displays the result: The characterization information was used to derive the satellite-
specific process line from the generic JAXA Space Domain Engineering Process 
Line. It contained a number of variable parts, the work products FMECA and Ration-
ale for Design being shown. The rules describing these optional parts are as follows:  

(Opt1.1) if (collaboration type == international) then (produce FMECA) 
(Opt1.2) resolve (Opt7) 
(Opt2.1) if (mission type == engineering) then (produce Rationale for Design) 

For Opt1, two rules were defined: one that governs the creation of the FMECA, 
and one requiring resolution of variation point Opt7, which is concerned with the 
activities creating the FMECA work product (not shown). For Opt2, one rule was 
sufficient. Using these rules, the satellite process line could then be instantiated into 
two specific satellite processes. From one of these, the formerly optional parts were 
erased, whereas in the other one, these parts were now mandatory: The resulting Sat-
ellite 1 Process supports a national science-type project, the Satellite 2 Process an 
international engineering-type project. 

The resulting process model contains 76 modeled activities, 54 artifacts, 18 graphi-
cal views depicting product flow, and another 18 graphical views depicting control 
flow. Transferring the new process model into daily practice, however, has proved to 
be no simple task. The modification of standards in the aerospace domain cannot be 
done on-the-fly because many stakeholders are involved and the consequences of 
software failures (possibly stemming from a faulty standard) are potentially grave. So 
far, the software process line we have developed has been published as an appendix to 
the official JAXA software standard. It has therefore not yet replaced the current 
standard, but JAXA engineers and their suppliers are encouraged to examine the 
process line and to provide comments and feedback. 

Our experiences with the scoping approach taken were positive. From interviews 
with JAXA process engineers, we have feedback that our scoping approach helped 
them to focus on the relevant processes and saved a significant amount of effort in 
 



168 O. Armbrust et al. 

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

iterative: ++
international: +
…

Characterization
Information

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

Opt1

Opt2

optional

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

Opt1

Opt2

optional

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Opt1

Opt2

optional

Satellite 1
Process

Satellite 2
Process

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Instantiation
Customization

Scoping &
Domain

Engineering

Design
Software

Software Design
Specification

Design
Software

Software Design
Specification

Software Design
Specification

 

Fig. 4. JAXA satellite process line architecture (excerpt) 

later modeling and standardization phases. The classic approach would have devel-
oped two independent processes for satellite development, so with the process line,  
the expected maintenance complexity has been decreased as well due to the fact that 
only the variable parts have to be considered separately, while for most of the process 
line, there is only one process to be maintained instead of two. 

Regarding the requirements formulated before, we can state that the first three re-
quirements concerning Software Process Scoping are already well addressed by the 
approach. The fourth requirement (incorporate unanticipated variability in a controlled 
manner) has not been addressed yet so far, which we accredit to the short lifetime of the 
process line: There just were no unanticipated process changes necessary yet. Consider-
ing the first process modeling mechanism requirement (storage of stable and variable 
parts within one process model), the JAXA project has shown that it is not feasible for 
larger process models to manage variable parts manually. Therefore, the tool used has 
been enhanced, so that it supports the definition and display of variable process ele-
ments. The second requirement (cost-efficiently instantiate a combined com-
mon/variable model into a project-specific process model), however, has not been  
addressed at all. JAXA did not want to provide a number of process model variants to 
its engineers, but instead opted for one combined model highlighting all variable parts, 
and describing within the model when to follow which variant. This was feasible for the 
relatively low number of variants; however, we expect that for larger process models 
with more complex variants, instantiations will become necessary. 



 Scoping Software Process Models - Initial Concepts and Experience  169 

5   Related Work 

In this section, we connect some related work to the issue of Software Process Scop-
ing. As a basis for all scoping activities, descriptive process modeling [10] is neces-
sary for identifying essential process entities. Becker describes an 8-step approach to 
descriptive process modeling. During the first step, the objectives and scope of the 
modeling effort are determined. This narrows the extent of the model, but the ap-
proach considers only solitary process instances on the project level, not a set of proc-
esses with variabilities. Nevertheless, descriptive process modeling can be used to 
determine isolated, real processes that can be used as input for a variant analysis. 

Bella et al. [11] describe their approach to defining software processes for a new 
domain. Based on a reference process model, they used descriptive process modeling 
to document the as-is processes and utilized this model as a basis for deriving suitable 
processes for engineering wireless Internet services. Through a number of iterations, 
they collected qualitative and quantitative experience and adapted the processes 
where necessary. Their focus thus was the past; they evaluated only past events and 
processes. Software Process Scoping also considers the future in terms of expected 
products and projects. 

The idea of systematically combining software product lines with matching proc-
esses was described by Rombach [1]. We consider Software Process Scoping as one 
potential building block of such a combined approach. 

Characterization and customization approaches exist for a number of software en-
gineering concepts, for example, for inspections [12], [13]. However, they are con-
strained to characterizing a limited number of methods of a class of methods (in the 
above case, the class of inspection methods). This comprises only a fraction of a 
Software Process Scoping approach, namely, that when scoping determines the need 
for certain characteristic features in an inspection approach, the above characteriza-
tion can be used to determine which inspection approach should be used. 

Denger [14] broadens the scope to quality assurance activities in general and  
provides a framework for customizing generic approaches to the specific needs of a 
company. The goal of the framework, however, is to optimize only a single factor 
(software quality), whereas Software Process Scoping as proposed in this article aims 
at optimizing multiple factors, which can be chosen freely through the product and 
project characterization vectors. 

Avison and Wood-Harper [15] describe an approach to supply an organization with 
a number of methods from which a suitable one can be selected for different purposes. 
The authors admit that the necessary method competence for a multitude of methods 
is hard to achieve in reality, and therefore suggest that alternatives should be included 
within a single method already. Based on our experience, we support this assumption 
and consider this for Software Process Scoping by representing variability on differ-
ent levels of abstraction. 

Fitzgerald et al. [16] describe an approach taken at Motorola, which involves tai-
loring up-front to encompass expected deviations from the organization standard, and 
dynamic tailoring during project runtime, to encompass unanticipated circumstances. 
This corresponds to our requirements 1 and 4. 



170 O. Armbrust et al. 

In the software product line domain, scoping has been considered in a number of 
publications. Clements and Northrop [17] describe three essential activities for soft-
ware product line development, with scoping being a part of one of them. The authors 
give a detailed description of what scoping is for and what it should accomplish, but 
do not provide practical guidance on how to actually do it in a project. This has been 
done by Schmid [18]. He developed a product- and benefit-based product line scoping 
approach called PuLSE-Eco 2.0, which defines the scope of a software product line 
depending on the economical benefit of the products to be produced. The latest ver-
sion of the approach is described in [19], integrating 21 customization factors that can 
be used to adapt the generic approach to a company’s specific needs. These works 
were used as a basis for the Software Process Scoping approach and terminology; 
however, product line scoping focuses on products only and does not consider process 
or other context factors. Bayer et al. developed a product line based on scoping a 
number of business processes [20]. Their product line reflects business processes, and 
by determining the scope of the business processes to be implemented in software, 
they determined the scope of the product line. However, no more information on how 
scoping was done is disclosed. 

Under the name of Quality Function Deployment [21], Cohen published a method 
for clearly specifying and ranking customer needs and then evaluating each proposed 
product or service capability systematically in terms of its impact on meeting those 
needs. This corresponds to the Software Process Scoping concepts of product/project 
mapping and process mapping, respectively, but is also strictly limited to products 
and services. 

There is currently only little research going on that tries to provide a similarly sys-
tematic approach for software processes. So far, adapting processes (also known as 
“process tailoring”) is done either generally for an organization, resulting in a single 
process standard, or individually for every project, resulting in a large number of 
process variants. Most available tailoring instructions are very generic, e.g., in inter-
national standards such as ISO/IEC 12207:1995 [3] or the German V-Modell XT [2]. 
However, due to their general applicability, they rarely provide more than phrases like 
“pick the activities and work products necessary for the purpose”, and thus provide 
only little help in actually tailoring a process. 

6   Conclusions and Outlook 

In this paper, we presented an idea for systematically selecting and adapting software 
processes, depending on the project and product structure of an organization. We 
formulated four requirements for the approach and two requirements for supporting 
process modeling mechanisms, presented an initial solution addressing these require-
ments, and presented an application of our idea in the space software engineering 
domain.  

Our experiences encourage us to continue on this path, and to expand the process 
line from satellite software development both horizontally to other branches (launch 
vehicle, ground segment) and vertically (JAXA-wide). The experience we collected 
so far supports the requirements we have set up. However, since process scoping 
research is yet in its infancy, a number of open questions remain. Until now, it is 



 Scoping Software Process Models - Initial Concepts and Experience  171 

unclear which decision models can help to determine which process elements should 
be part of the process line, and which should not. A meaningful limitation of charac-
terization attribute values (e.g., for attributes such as “complexity” or “criticality”) 
and their objective assessment is another open issue. Furthermore, thorough investiga-
tion is needed on the subjects of how to handle different levels of abstraction in proc-
esses and characterizations (especially when talking about variability on these levels 
of abstraction, introduced, for example, by a vertically growing process line), how to 
describe interdependencies among variable parts and characterization attributes, and 
how to sensibly limit the number of characteristics and variation points. 

Following up on what we have learned so far, our next steps will be the horizontal 
expansion and the inclusion of more satellite projects and products in the base of our 
process line, and the concurrent refinement of our approach. 

Acknowledgements 

We would like to thank Ms. Sonnhild Namingha from Fraunhofer IESE for reviewing 
the first version of this article. We also thank the anonymous reviewers for their valu-
able comments on the first version of this article. 

References 

[1] Rombach, H.D.: Integrated Software Process and Product Lines. In: Li, M., Boehm, B., 
Osterweil, L.J. (eds.) LNCS, Springer, Heidelberg (2006) 

[2] V-Modell XT, http://www.vmodellxt.de/ 
[3] International Organization for Standardization: ISO/IEC 12207:1995, Geneva, Switzer-

land (1995) 
[4] Ocampo, A., Bella, F., Münch, J.: Software Process Commonality Analysis. Software 

Process - Improvement and Practice 10(3), 273–285 (2005) 
[5] Soto, M., Münch, J.: Focused Identification of Process Model Changes. In: Wang, Q., 

Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, Springer, Heidelberg (2007) 
[6] Soto, M.: Delta-P: Model Comparison Using Semantic Web Standards. In: Proceedings of 

the Workshop Vergleich und Versionierung von UML-Modellen (VVUM 2007), co-
located with the GI-Fachtagung Software Engineering 2007, March 27, 2007, Hamburg 
(2007) 

[7] Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Proc-
ess. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 160–174. 
Springer, Heidelberg (2007) 

[8] Ocampo, A., Münch, J.: The REMIS Approach for Rationale-Driven Process Model Evo-
lution. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 12–
24. Springer, Heidelberg (2007) 

[9] Spearmint/EPG, 
http://www.iese.fhg.de/fhg/iese/research/quality/pam/index.jsp 

[10] Becker, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Processes, 
Kaiserslautern, Germany (ISERN Report 97-10) 



172 O. Armbrust et al. 

[11] Bella, F., Münch, J., Ocampo, A.: Observation-based Development of Software Process 
Baselines: An Experience Report. In: Proceedings of the Conference on Quality Engineer-
ing in Software Technology (CONQUEST), Nuremberg, Germany, September 22-24 
(2004) 

[12] Biffl, S., Halling, M.: Managing Software Inspection Knowledge for Decision Support of 
Inspection Planning. In: Aurum, A., Jeffery, R., Wohlin, C., Handzic, M. (eds.). Springer, 
Berlin (2003) 

[13] Schweikhard, T.: Identification of inspection-variation-factors for a decision-support-tool. 
Diploma Thesis, Fachbereich Informatik, Technische Universität Kaiserslautern (2006) 

[14] Denger, C., Elberzhager, F.: A Comprehensive Framework for Customizing Quality As-
surance Techniques, Kaiserslautern (2006) 

[15] Avison, D.E., Wood-Harper, A.T.: Information Systems Development Research: An Ex-
ploration of Ideas in Practice. The Computer Journal 34(2), 98–112 (1991) 

[16] Fitzgerald, B., Russo, N.L., O’Kane, T.: Software Development Method Tailoring at Mo-
torola. Communications of the ACM 46(4), 65–70 (2003) 

[17] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002) 

[18] Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for Software 
Product Lines. PhD Thesis. Fachbereich Informatik, Universität Kaiserslautern (2003) 

[19] John, I., Knodel, J., Lehner, T., Muthig, D.: A Practical Guide to Product Line Scoping. 
In: Proceedings of the 10th International Software Product Line Conference (SPLC 2006), 
Baltimore, Maryland, USA, August 21-24 (2006) 

[20] Bayer, J., Kose, M., Ocampo, A.: Improving the Development of e-Business Systems by 
Introducing Process-Based Software Product Lines. In: Münch, J., Vierimaa, M. (eds.) 
PROFES 2006. LNCS, vol. 4034, pp. 348–361. Springer, Heidelberg (2006) 

[21] Cohen, L.: Quality Function Deployment: How to Make QFD Work for You. Addison-
Wesley Longman, Amsterdam (1995) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 173 – 185, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Detection of Consistent Patterns from Process  
Enactment Data 

Ming Huo, He Zhang, and Ross Jeffery 

National ICT Australia 
University of New South Wales, Sydney, Australia 

{ming.huo, he.zhang, Ross.Jeffery}@nicta.com.au  

Abstract. Software process improvement has been a focus of industry for many 
years. To assist with the implementation of process improvement, we provide an 
approach to recover process enactment data. The goal of our method is to un-
cover the actual process used and thereby provide evidence for improving the 
quality of a planned software process that is followed by an organization in the 
future. The recovered process model (or patterns) is presented at the same level 
of abstraction as the planned process model. This allows an easy and clear 
method to identify the distance between a planned process model and the actual 
project enactment. We investigate the enactment of a defined software process 
model from the view of understanding the opportunity for process model im-
provement from the viewpoint of the project managers in the context of a small 
software development organization. We collected data from one of our collabo-
ration organizations and then applied our method to a case study. The consisten-
cies between a planned process model and the project enactment were measured. 
The outcomes of our method provide precise information including qualitative 
and quantitative data to assist project managers with process improvement in fu-
ture practice. The main contribution of our work is to provide a novel approach 
to assist software process improvement by recovering a model from process  
enactment data. 

Keywords: agile method, process recovery, software process modeling, soft-
ware process improvement. 

1   Introduction 

One basic implicit assumption in software process research is that improving the 
software process will improve the software product quality, and increase project suc-
cess rates. There are three main reasons to improve software process quality. The first 
reason is to improve the quality of software products [7]. The second reason is that 
improving process quality can increase the probability of software project success [7]. 
Lastly, software process improvement also contributes to an increase in the develop-
ment team’s productivity by reducing rework effort [3]. Hence software process im-
provement has been a long term industry pursuit. Practitioners from research areas 
and industry continue to explore techniques to improve software processes. They are 
curious as to what is really happening in the implemented stage, such as if the process 



174 M. Huo, H. Zhang, and R. Jeffery 

model is applicable for a project and how appropriate it is, and if there is a distance 
between a planned process and the project enactment and so on. 

Under these demands, we produced a systematic approach that aims to reveal what 
took place during process implementation. The goal of our approach is to uncover the 
actual process used at a fine-grained granularity and provide strong evidence to assist 
project managers in improving their defined software process model. Our work fo-
cuses on analyzing the low-level process enactment data. Instead of studying a soft-
ware process as a completed instance, we investigate each development team mem-
ber’s behaviors and project tasks that compose a software process during a project 
development. Software process has long been considered as a complex procedure due 
to human involvement [6, 7]. Our work concentrates on the time sequence of the 
process stages that are carried out by development team while producing a software 
product. 

We collected data from one of our collaborating software development companies. 
These data concern the development team’s behavior and project tasks, the design of 
which is based on a defined software process model. By applying our approach to 
these data, process patterns are discovered. They are presented at the same level of 
abstraction as the pre-defined process model. We have applied our approach to three 
case studies. One case study showed how to detect conflicts between the project en-
actment and the predefined process detected by using our approach which is presented 
[8]. In this paper, we report the other one that mainly focuses on presenting how we 
discover the consistent elements of the processes.  

Section 2 introduces the background of our method. Section 3 explains our method 
in detail. Following this, in section 4, examples are exhibited by using our case study 
data. Section 5 discusses the major difference between our work and previous re-
search, and then is followed by highlighting our contributions. Finally, Section 6 
draws the conclusion and outlines our future work. 

2   Related Work and Background 

2.1   Related Work 

Process mining techniques have been used to extract non-trivial and useful informa-
tion from event logs. Although the idea of process mining is not new, it has been 
developed mainly in the business process area, especially in workflow management 
systems [15]. Due to the wide use of information system, such as ERP, WFM and 
CRM, the process mining technique has also been adopted in these fields.  

Process mining seeks to recover a process model from records of people’s daily ac-
tivities. The recovered process model is a type of abstract presentation of these activi-
ties. The goal of process mining is to unveil what people are doing in the real world. It 
analyzes this data and then seeks to identify rules or patterns in people’s daily work, 
such as efficient working rules or bad habits that may cause problems. Process mining 
can be used in the software process area as well. Software process improvement needs 
the support of precise information on any deviation between the planned process 
model and the project process instantiation.  



 Detection of Consistent Patterns from Process Enactment Data 175 

In the software process domain, Cook and Wolf performed a similar investigation 
[5]. They developed a data analysis technique and called it process discovery. The 
data of process events are captured from an on-going process. Following this, a for-
mal process model is generated from these data. The goals of their approach include 
1) reducing the cost of developing a process model, 2) demoting the error proneness 
in developing a process model, and 3) lowering the barrier of adopting a process 
model by introducing automated assistance in creating formal models.  

However, there are two major limitations when utilizing Cook and Wolf’s method 
in software process analysis. The first issue is that hundreds of process data instances 
have to be collected [2, 12, 14]. It is very difficult to collect sufficient data on many 
projects that consistently follow one process model. In this context, the data might 
never be enough to recover a single consistent process model. The second problem is 
that the recovered model is a low-level process model defined generally in the terms 
of daily activities. Most pre-defined software process models, such as the waterfall 
model and spiral model are moderately high-level process models. There is a distinct 
gap between these and the enactment activities. In this paper, we present a methodol-
ogy that copes with the two limitations noted in [5]. We start by collecting low-level 
project data, which is then mined to recover process patterns.  

2.2   Preliminaries 

In this section, we explain the primary definitions and notations used in our method 
before we detail our approach. There are six primary definitions, which are: 1) Petri-
net, 2) path in a process model, 3) conflict, 4) consistent pattern, 5) frequency, and 6) 
pattern amount.  

In Definition 1, we propose the basic assumptions and notations of a Petri-net as 
we used. We employ Petri-nets in our approach for two main reasons. One is to pro-
vide a unified format for representing different software process models across or-
ganizations. The other reason is for easy comparison of the final outcomes with the 
pre-defined process model. Definition 2 shows how a path is defined among the proc-
ess elements. 
 
Definition 1: A Petri-net N can be defined as 

1. O is a finite set of elements. 
2. V is a subset of the set O: V = {vi | vi∈O}  
3. P is the place1 and it indicates the paths. 
4. R is a set of relations on the set V and P, in the other words, the transitions 

among the process elements and places.  
At this stage, a process model is represented in its Petri-net format, N = (O, P, R). 

 

Definition 2: Path. In a Petri-net N = (O, P, R), for any two elements vi, vj, there is a 
path from vi to vj iff 

∃ p∈P s.t. (vi, p) ∈R & (p, vj) ∈R , or 
∃ vk s.t. there exists a path from vi to vk and a path from vk to vj. 
If there is a path from vi to vj we say that vi happens before vj, and all tasks that are 

categorized to vi should complete before any task that belongs to vj starts. Definition 3 
                                                           
1 A place, presented as P, indicates the paths between two process elements. 



176 M. Huo, H. Zhang, and R. Jeffery 

defines how a conflict part is detected between a project enactment and the pre-
defined process model. Definition 4 presents how a consistency part is mined out. 
Meanwhile, we need to count the occurrence time of each consistency and conflict. It 
is called frequency. Definition 5 defines how a frequency of a conflict (inconsistency 
part) and a consistency pattern is counted.  
 

Definition 3: Conflict. A conflict is an inconsistent part between a pre-defined proc-
ess model and its project enactment. Given a task t1 and E1, E1 is the process element 
that t1 belongs to, i.e., E1 = Vt(t1). Similarly for task t2 and E2, E2 = Vt(t2). t1 and t2 are 
called conflict iff: There exists a path from E1 to E2 and start(t2) < end(t1). 
For example, when classify tasks to process elements, we use T(vi) to present the set 
of tasks that belong to a process element. T(vi) = {ti | ti is a task and ti belongs to vi} 
 

Definition 4: Process Pattern Content: A process element sequence Ptn = {Ei | 1 ≤ i ≤ 
k ,Ei is a process element } is a process pattern with length k iff ∃ k tasks t1,…,tk s.t. 

1. ∀ 1≤ i < j ≤ k, there exists a path from Ei to Ej in the process model; 
2. ∀ 1 ≤ i ≤ k, Vt(ti) = Ei , which means Ei is the process element that ti belongs to; 
3. ∀ 1 ≤ i ≤ k –1, End(ti )< Start(ti+1), which means ti and ti+1 are sequential. 
This set of tasks is named as a supporting task-set for this process pattern Ptn. 

 

Definition 5: Process Pattern Frequency. The support of a process pattern Ptn is de-
fined as the number of the unique supporting task-sets for this process pattern Ptn.  
 

Definition 6: Process Pattern Amount in one process element: the total number of the 
frequencies of all the pattern types. 

One step in our method, data pre-processing (Section 3.2), involves experts’ sub-
jective opinions. We use Kappa method to verify the data pre-processing result. 
Cohen’s Kappa is a chance-corrected measure of agreement among raters. It has long 
been used to quantify the level of agreement among raters in classifying any types of 
subjects [4]. The Kappa value is computed as (1).  

                                                       e

eo

p

pp
K

−
−=

1                                              (1) 

Po is observed agreement and Pe is expected agreement. They are computed as (2). 

                                            ∑
=

=
k

i
iio pp

1

, ∑
=

=
k

i
iie ppp

1

21
                                   (2) 

K=0 means that agreement is not different from chance and K=1 means perfect agree-
ment. The conclusion can be drawn when K value is above 0.8 [11]. In our method, 
we accept the results only when the Kappa value is above 0.8. 

3   Process Recovery Approach  

This section presents our process discovery approach in general. The full explanation 
of our approach is published in [8]. Here we give a brief overview of our approach.  



 Detection of Consistent Patterns from Process Enactment Data 177 

There is normally a pre-defined process model to guide the process enactment in 
an organization. There are four major phases in our method: 1) representation of a 
pre-defined process model being followed by an organization, 2) data pre-processing, 
3) process mining, and 4) analysis of a recovered process model or patterns from two 
aspects, consistency and inconsistency with a pre-defined process model. Each of 
these phases also includes several steps.  
 

Phase 1. This phase is to use Petri-nets to represent an organization’s pre-defined 
process model. The definition of Petri-net is explained in Definition 1.  
 

Phase 2. The gathered data need to be pre-processed. This phase includes three steps. 
The first step is to formalize the data set collected from industry by using formal nota-
tions. The next step is to categorize the data to each pre-defined process element. The 
process elements are the steps designed inside a model. For example, in a process 
model, which is designed from eXtreme Programming, there are some process ele-
ments such as ‘unit test’, ‘code’, ‘acceptance test’, etc. We call this procedure as task 
classification. The third step is to verify the results of task classification by using the 
Kappa statistic.  
 

Phase 3. Process mining is applied in this phase. The qualified results of task classifi-
cation are as the inputs for this phase. There are two types of outcomes, i.e., consis-
tent and inconsistent patterns. The recovered consistent process patterns are part of 
the pre-defined process model. On the contrary, the inconsistent patterns are the con-
flicts between the pre-defined process model and the project enactment. 
 

Phase 4. The final phase of the method is to analyze these outcomes. Meanwhile, 
problems and findings are discovered. 

3.1   Phase 1: Process Representation 

We transform a pre-defined process model into Petri-net format. Petri-net has been 
extensively used as a process modeling language due to its formal definition and 
graphical characteristic [13]. Below we describe the basic assumptions and notations 
of a pre-defined process model:  
 

1. After a process model has been established in an organization or a development 
team, the development team will follow it during their projects.  

2. A process is composed of a set of sequenced steps or tasks which we call process 
elements in our approach. 

3. There are relationships and constraints among the process elements, e.g. to start 
software implementation, the team needs to accomplish the software design first.  

4. There should be a set of well-defined steps in a process model, such as the in-
struction or explanations of each process element. 

 

A process model with the above basic characteristics can be formally represented 
in a Petri-net format. Definition 1 defines a Petri-net. Definition 2 defines a path. We 
allow ‘one-to-many’ paths among process elements.  



178 M. Huo, H. Zhang, and R. Jeffery 

3.2   Phase 2: Data Pre-processing  

The collected data needs pre-processing before process mining stage. There are three 
steps in this phase. To ensure the classification quality and to evaluate the agreement 
degree, the Kappa statistic is used [10].  
 

Data formalization: Given a task t, start(t) represents the start date or time of task t and 
End(t) represents the end date or time of the task. The precision of the start and end 
time of a task in our case study is accurate to the date. Obviously, we have 
End(t)>Start(t). We use Vt(ti) to represent the process elements that task ti belongs to: Vt(ti) 
= {vj| ti∈T(vj) }, where T(vj) is the set of tasks that belongs to vj. For example, two tasks 
with ID 1 and 2, t1 and t2, are designed for writing the code. Then, we categorize t1 and t2 
to ‘Code’ process element. The presentations are, Vt(t1) = {‘Code’}, Vt(t2) = {‘Code’}, and 
T(Code)={t1,t2}. 
 

Data classification: This step is to categorize each task to a process element in O. In 
Definition 1, O is a finite set of process elements. The raters need to possess compre-
hensive knowledge of the pre-defined process model. They also need to understand 
the project content. In addition, a list of the task descriptions is provided to the raters. 
They do the classification individually. 

 

Verification of task classification: This step aims to verify the results of task classifi-
cation. In our approaches, we do not accept the classification until the K value is 
above 0.8.  

3.3   Phase 3: Process Mining Approach 

We investigated many process mining algorithms. A most suitable algorithm, the 
alpha algorithm was chosen and revised to fit our needs. The main content of the 
alpha algorithm is to detect the temporal relationship among tasks and then build the 
connection and transitions among these tasks [14].  

After task classification (data pre-processing), each task is categorized to a project 
element vi in O. The next step is to mine the data in order to recover the process pat-
terns from the data set. We focus on the temporal relations between two tasks to in-
vestigate if there is a temporal dependency between them. For example, if one task is 
always followed by another task, it is likely that there is a temporal dependency be-
tween them. Furthermore, if such dependency exists, it implies that a connecting tran-
sition exists between these two tasks, and there has to be a place connecting the tran-
sitions in the Petri-net [14]. The temporal relationship is searched in the whole data 
set. While accumulating the temporal relationship and the connecting places, the 
process patterns are generated and gathered piece by piece.  
 

Example: Given any two tasks ti, tj we say that ti and tj have temporal relationship  
ti → tj iff End(ti) < Start(tj), and then we add a directed line from ti to tj. We already 
know that each task has its own process element character. For example, Task 1，t1 is 
described as ‘writing C code’. In the task classification phase, t1 is categorized as 
‘Code’ (one of the pre-defined process elements). Task 2 is recorded as ‘testing the 
bar function’ (t2). It is classified as ‘Test’. We found that there is a temporal relation-
ship between t1 and t2 because t2 ends before t1 starts, End(t2) < Start(t1). We say that 



 Detection of Consistent Patterns from Process Enactment Data 179 

there is a temporal relationship between t2 and t1, i.e. t2 → t1. Because Vt(t1) = 
{‘Code’} and Vt(t2) = {‘Test’}, we say there is a temporal relationship from ‘Test’ to 
‘Code’. The temporal relationship in the task level also reflects the corresponding 
relationship at the process element level in the pre-defined process model.  

However, we cannot simply claim that the development team is doing testing be-
fore coding only by one occurrence of this temporal relationship. It needs to be vali-
dated by counting its frequency in the next phase explained in Section 3.4. 

3.4   Phase 4: Measurement of Outcomes 

Compared with the pre-defined process model, two types of patterns are mined out. 
They are the consistency patterns, which are consistent with the pre-defined process 
model, and the conflicts, which are the inconsistent patterns.  

The frequency of each pattern is determined by its unique supporting task-sets. For ex-
ample, a pattern, Ptn={E17, E18, E20} (Ei is a process element). Its supporting tasks are t10, 
t17 and t71. Vt(t10)={E17}, Vt(t17)={E18} and Vt(t71)={E20}, we call these three tasks as Task-
set 1. If there are other three tasks, such as Task-set 2, which also support the pattern and 
the tasks in Task-set 1 and 2 are not all the same, the frequency of this pattern can go up to 
2. Hence, the frequency is the number of the unique supporting task-sets. Counting the 
frequency assists us in identifying the heavily adopted parts of a pre-defined process 
model. The frequency provides quantitative information on the usage of a pattern.  

4   Case Study 

We have cooperated with an Australian software firm for many years. The company 
decided to customize ISO 12207 as their fundamental process model. Attending to 
repeatedly follow their pre-defined process, the company provides guidance to the 
development team members by virtue of an Electronic Process Guideline2.  

4.1   Case Study Background 

This section describes a case study done by using our method and the results from 
analysis. Instead of enumerating all the details of each step, we present the patterns  
 

Table 1. Project Information 

Project Information 
Team size 10 persons 
Total Effort 2212.25 man-hours 
Duration 717 days 
Closed year 2002 
Total task number 138 

EPG Tasks 106 (82%) 
Task Classification 

None-EPG Tasks 23 (18%) 
Kappa Agreement  0.810 

                                                           
2 The detailed information on EPG is published in paper [9]. 



180 M. Huo, H. Zhang, and R. Jeffery 

we discovered and the potential problems found from comparing the mined process 
pattern with the pre-defined process model. Table 1 shows the project information. 

4.2   Results of Consistency 

In this case study, the recovered patterns range from length 3 to 11. Fig.1 lays out 
their distributions. The detected patterns are grouped by their lengths. Each column 
presents the amount of patterns in different length. The frequencies of each pattern are 
also counted. The patterns are divided into two groups. One group holds the patterns 
with high frequency and the other group contains the low frequency patterns. The 
frequency is one of the key indicators to measure the importance of a pattern because 
the patterns with high frequencies reveal two main issues. First, the patterns with high 
frequency must have been adopted heavily during the project development or more 
development effort was spent on them. They might be the essential parts of the pre-
defined process model. Second, the high frequency patterns are important to future 
projects as well inside the organization because of the high probability of reuse. It is 
subjective to determine if the frequency of a pattern is classified as high. 

 

Fig. 1. Distributions of Patterns from Length 3 to 11 
 

Table 2. Content of patterns with length 3 
 

Length 3 Pattern’s Content and Frequency 

Content Frequency 
Ptn1={ E18, E17, E18} 27.8% 

Ptn2={E17, E18, E24} 23.3% 

Ptn3={ E17, E18,E25} 10.7% 

Ptn4={ E17, E18,E22} 8.8% 

Ptn5={ E17, E18,E19} 6.2% 

E17= ‘Detailed Design’   E18= ‘Code’  E19= ‘Test’ 
E22=‘Write User Documentation’ 
E24=‘Setup Hardware for Installation’ 

EPG 
Element 
ID 

E25= ‘Installation and Test’ 
 



 Detection of Consistent Patterns from Process Enactment Data 181 

We convert the frequency of each pattern from absolute numbers to percentage 
within the patterns of the same length. In this case study, the patterns with frequency 
above 1% from length 3 to 11 are considered for further analysis. We show the con-
tent of the top 5 high frequency patterns in length 3 as examples. Table 2 lists their 
content and frequencies. 

The highest frequency pattern among length 3 patterns is Ptn1={E18, E17, E18}. 
There is a loop in it. In EPG model, a cycle between ‘Detailed Design’ and ‘Code’ 
exists. Ptn1 is consistent with EPG. Based on its frequency, it is apparent that Ptn1 is 
followed heavily during the development, which means the system design might not 
be completed in one time. Meanwhile, some other patterns, such as Ptn2, Ptn3 and 
Ptn5 indicate that the team starts from design and then coding. It discloses that the 
team leans towards a short iteration that mainly focuses on design and coding, i.e. the 
team was doing a bit of design and then coding it. We use Ptn2 as an example and 
show its Petri-net format in Fig. 2. 

 

Fig. 2. Pattern 2 in Petri-net Format 

 
Similar investigations were performed in patterns with length from 4 to 11. We 

found the cycle of ‘Detailed Design’ and ‘Code’ also appeared in the pattern across 
different lengths. The patterns from length 4 to 11 but all with a frequency above 1% 
are compared. From the comparisons, the longest pattern that happened mostly during 
project development is identified. We summarize the patterns in Petri-net format in 
Fig.3. In this pattern, there is a path directly from ‘Test’ to ‘Setup Hardware for In-
stallation’, which means ‘Write User Documentation’ might be skipped during project 
development. Similar to the path from ‘Code’ to ‘Setup Hardware for Installation’, it 
shows that in some circumstance, the development team skipped the tasks of ‘Test’ 
and ‘Write User Documentation’. 

 

 
 

Fig. 3. Case Study Patterns 
 



182 M. Huo, H. Zhang, and R. Jeffery 

We conclude some findings from the analysis of the consistency patterns. The de-
velopment team did not follow the project preparation procedures designed in their 
pre-defined process model, because there is no consistency detected in project design 
stage of the pre-defined model. However, no pattern found in this phase reveals that 
the development team may have their procedures for preparing the project. This phase 
might be not as useful as it was planned to this project. 

The iteration of ‘Detailed Design’ (E17) and ‘Code’ (E18) is repeated heavily and up 
to four times. A pattern with length 11 is found to have this iteration four times and its 
frequency is up to 28.6% among all the length 11 patterns, Ptn={E18, E17, E18, E17, E18, 
E17, E18, E17, E18, E22, E24} (E22=‘Write User Documentation’, E24=‘Setup Hardware 
for Installation’). Regarding this fact, we can claim that the team was doing a bit of 
design, and coding it, then again back to design. The occurrence of the path from 
‘Code’ to ‘Test’ is not high, which implies that the team might follow a test-driven 
process unconsciously.  

4.3   Summary of Detected Problems and Findings 

The analysis of a case study should be carried out from three aspects, 1) analysis of 
the conflicts, 2) investigations of the patterns, and 3) review of non-EPG tasks. In this 
case study, we only present the analysis of consistency patterns due to the page limit. 
Generally, the detected problem and findings emphasize three aspects; 1) iterations 
composed by project design and code, 2) test driven, and 3) scope of EPG model. 
 

Iteration Composed by Project Design and Code: The analysis of consistency patterns 
shows that this project follows a short iteration in which the development team design 
a bit and then code a little. In the data set, the first design happened on 21st, Feb, 
2001 and the first coding on the next day. The development team designed for one 
day and then coded for another day. They were apparently trying to finish a small 
function each time in a short iteration. The design and coding were coupled tightly. 
The interval between the design task and code task ranged from one day to thirty 
days. However, most design-code iterations happened closely to each other, which is 
similar to eXtreme Programming (XP) method. In XP, each iteration lasts 1 to 3 
weeks [1]. However, the iterations in this case study are incomplete compared with 
XP’s, containing only two elements: design and code. XP iterations involve iteration 
planning, development, test, and so on.  
 

Test Driven: There are few patterns found which are expecting to show that the de-
velopment team did coding before testing. Agile methods suggest writing unit test 
cases before coding. In this circumstance, the team was tending to follow a test driven 
practice in this project.  
 

Scope of EPG model: There are three phases in the pre-defined process model. The 
first phase is designed for project preparation, the next phase is for development, and 
the third one is for project close up. However, most of the detected patterns are gath-
ered in the development phase. It means that the project preparation and wrapping up 
stages have not been extensively adopted or recorded by the development team. The 
project manager may need to consider re-designing these two phases, if necessary. 



 Detection of Consistent Patterns from Process Enactment Data 183 

From the analysis of the process patterns, several agile practices were identified at 
the project enactment level. This seems reasonable because the project’s characteris-
tics were likely suitable for adopting agile methods.  

5   Discussions and Comparison with Previous Work 

Scalability: We have applied our approach on three different sized projects including 
the case study presented in this paper. In the other two case studies, one is a team with 
6 persons, and its total effort is 1652.25 man-hours. The other one is composed of 14 
persons and 3524.5 man-hours. We won’t enumerate them to save space. Each case 
study is a typical representative of different sized software development projects. 
These case studies proved that our approach is applicable to different sized projects, 
including small to middle sized projects and even to project modules.    
 

Data type: The alpha algorithm tries to recover a whole process model and the data 
set must be complete [2]. A complete data set means that all process elements are 
adopted. Our algorithm is able to process an incomplete data set. The incomplete data 
set is produced when the development team skips some process elements while fol-
lowing the pre-defined process model during development. In our approach, we try to 
find the process patterns first. If the recovered process patterns contain all the pre-
defined process elements, it can be treated as a full process model.  

 

Data size: Data type and required amount: Previous work used a similar approach in 
the software process context. Their approach involved statistical methods where the 
amount of data required is large, normally more than hundreds of cases. It is difficult 
to gather enactment data from hundreds of projects which follow the same process 
model within the similar project environment. The required data size of our approach 
could be as small as one single project (as shown in case study).  
 

Mining method: Our approach does not include any statistical method. On the other 
hand, most of the process mining approaches do include it. We try to find the tempo-
ral relations from the data set and then to detect the connecting places (see definition 
1) from the relations. These places make up the recovered process patterns. 
 

Output: The output of previous work presents the relationships among the daily ac-
tivities, such as “code check-in”, “code inspection” and so on. The recovered process 
model or patterns through our method are in the same context as the pre-defined proc-
ess model. The major advantage is that a high-level process pattern or model can be 
captured. This is the most distinctive difference with previous work. 

6   Conclusion and Future Work 

This paper presents our approach to recover process patterns based on project enact-
ment. In our approach, process patterns are discovered in the same format as a pre-
defined process model, which can be designed from any general process methods or 
models, e.g. waterfall model. In the previous research, the recovered process remains 
at the same level as the raw data. The breakthrough from our work is that we can 



184 M. Huo, H. Zhang, and R. Jeffery 

discover higher-level process patterns or models at the same level as the pre-defined 
process. Furthermore, our work makes project enactment become comparable with 
the planned process model. The deviations between a pre-defined process model and 
the discovered process patterns can be taken as the input for software process im-
provement, evolution or tailoring. The value of our method can be summarized as: 1) 
providing evidence of how a process executes during development, 2) identifying the 
coverage of the process model, 3) extracting the process patterns from live data, 4) 
discovering the conflicts and consistence between the defined process model and its 
enactment model.  

From our case studies, we find some issues needs to be improved in our future 
work. Our current work has not provided a method to deal with noise data. The noise 
data are the tasks that do not belong to the predefined process model. Currently our 
approach does not take these data into account. Another limitation is that while the 
project is a moderate-large sized project, it needs to be divided into its modules or 
components. Our approach has no clear instructions on which type of projects should 
be divided into modules. In addition, our work only deals with the sequential temporal 
relation at current stage. We need to investigate the relationships among process ele-
ments, such as concurrency or choices, which remain as future work. Also after min-
ing process patterns, how to accurately compare them with the defined process model 
and to present the deviation quantitatively will be investigated. Last but not least, a 
comprehensive process amendment mechanism for using these results will be pro-
posed in the future. 
 
Acknowledgement. NICTA is funded by the Australian Government as represented 
by the Department of Broadband, Communications and the Digital Economy and the 
Australian Research Council through the ICT Centre of Excellence program. 

References 

1. Extreme Programming: A gentle introduction,  
http://www.extremeprogramming.org 

2. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Using Genetic Al-
gorithms to Mine Process Models: Representation, Operators and Results. BETA Working 
Paper Series, WP 124, Eindhoven University of Technology, Eindhoven (2004) 

3. Boehm, B.: A view of 20th and 21st century software engineering. In: 28th International 
Conference on Software Engineering, pp. 12–29. ACM, Shanghai, China (2006) 

4. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological 
Measurement 20, 37–46 (1960) 

5. Cook, J.E., Wolf, L.A.: Discovering models of software processes from event-based data. 
ACM Trans. Softw. Eng. Methodol. 7, 215–249 (1998) 

6. Curtis, B.: Modeling the software process: three problems overcome with behavioral mod-
els of the software development process (panel session). In: 11th International Conference 
on Software Engineering, pp. 398–399. ACM, New York (1989) 

7. Fuggetta, A.: Software process: a roadmap. In: Proceedings of the Conference on The Fu-
ture of Software Engineering, pp. 25–34. ACM Press, Limerick, Ireland (2000) 



 Detection of Consistent Patterns from Process Enactment Data 185 

8. Huo, M., He, Z., Jeffery, R.: A Systematic Approach to Process Enactment Analysis as In-
put to Software Process Improvement or Tailoring. In: APSEC 2006, XIII Asia Pacific 
Software Engineering Conference, pp. 401–410. IEEE Computer Society Press, Los 
Alamitos (2006) 

9. Jeffery, R., Kurniawati, F.: The Use and Effects of an Electronic Process Guide and Ex-
perience Repository: A Longitudinal Study Information and Software Technology. Infor-
mation and Software Technology 48, 57–566 (2005) 

10. Henningsson, K., Wohlin, C.: Assuring fault classification agreement - an empirical 
evaluation. In: ISESE 2004, International Symposium on Empirical Software Engineering, 
pp. 95–104 (2004) 

11. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. Sage Publica-
tions, Newbury Park, CA (1980) 

12. Wen, J.W.L., van der Aalst, W.M.P., Wang, Z., Sun, J.: A Novel Approach for Process 
Mining Based on Event Types. BETA Working Paper Series, WP 118, Eindhoven Univer-
sity of Technology, Eindhoven (2004) 

13. Murata, T.: Petri nets: Properties, Analysis and Applications. Proceedings of the 
IEEE 77(4), 541–580 (1989) 

14. van der Aalst, W., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process 
Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 
1128–1142 (2004) 

15. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) 
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 186 – 197, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Deviation Management System for Handling Software 
Process Enactment Evolution 

Mohammed Kabbaj, Redouane Lbath, and Bernard Coulette  

Université de Toulouse II – IRIT 
5, allées Antonio Machado, F-31058 Toulouse Cedex 9, France 

Tel.: +33 (0) 561 50 39 85, Fax: +33 (0) 561 50 25 40 
{kabbaj, lbath, bernard.coulette}@univ-tlse2.fr 

Abstract. An important problem encountered in Process-centered Software En-
gineering Environments (PSEE) is that software development processes are 
subject to permanent evolution during enactment. Without managing evolution, 
PSEEs are condemned to fail in being adopted in software industry. This article 
presents an original approach to process enactment evolution, based on formal 
management of process deviations. Deviations are defined as operations that 
violate process constraints. Once a deviation is detected, a deviation-tolerance 
model attached to the preset process is used to decide whether to accept or to re-
ject the deviation. 

Keywords: Software Process Modeling, Process Enactment, Process Deviation, 
Process Enactment Evolution, Dynamic Adaptation of Software Processes. 

1   Introduction 

After the apparition of Process-centered Software Engineering Environments 
(PSEEs), researchers and practitioners have realized that process models must be 
flexible enough to allow process changes to face unexpected situations [4]. Processes 
need to continuously undergo changes and refinements to increase their ability to deal 
with customer’s requirements and expectations of the market. Consequently, PSEEs 
must accept a permanent evolution of process models, and tolerate and manage incon-
sistencies and deviations. This requirement reflects the nature of a creative activity 
such as software development, where consistency is the exception, not the rule [1][3]. 
The objectives of the work presented in this paper are to support process enactment 
evolution, by managing the deviations that occur during the enactment time. Ad-
dressed processes are those of organizations where the software process corresponds 
to « The Defined Level » of maturity according to the Capability Maturity Model [5].  

The problem of process evolution is well known in software process community 
but only a few works [2] [7] [8] have addressed it. As discussed in section 2.4, exist-
ing approaches do not respond real-world situations that require context-dependant 
handling of process evolution. To contribute to solve this problem, we propose an 
innovative approach, which stems from the following postulate: “absence of deviation 
is the exception, not the rule.” In other words, we consider that process models are 



A Deviation Management System for Handling Software Process Enactment Evolution 187 

needed to guide humans, not to be enforced prescriptively. Humans must always be 
allowed to decide whether to follow process models whenever they need to face un-
expected situations or to improve process models. Our approach [10] is based on 
detection and management of process deviations, by making two process models 
coexist: a preset process model that guides development, and an observed process 
model that is dynamically constructed by observing visible actions of human actors. 
Deviations are defined as operations executed by human actors that violate process 
constraints. A first-order logic representation of the preset process’ constraints, the 
observed process model, and operations, is used in order to rigorously characterize 
deviations as operations that cannot be deduced from that logical representation. 
Once a deviation is detected, context-dependant deviation-tolerance rules attached to 
the preset process are used to decide whether to accept or to reject the deviation. 

This paper is organized as follows. Section 2 deals with problems and concepts of 
process deviation and process enactment evolution. Section 3 outlines the approach 
we propose, and illustrates it through a simplistic example. Section 4 deals with im-
plementation aspects. Section 5 concludes the paper and gives some perspectives.  

2   Software Process Deviation Problem 

2.1   Consistency of Supported Software Processes 

First of all, let us define some of the terms used in the remainder of this paper (see [6] 
for more detailed definitions). A process model is a static description of the expected 
software process expressed in a Process Description language. It is typically com-
posed of activities (tasks), which represent work items to be executed by a human or 
automated resource. An actual process is the actual software process as it is per-
formed in the real world. During process model enactment, a PSEE has a partial view 
of the actual process. This partial view of the actual process owned by the PSEE is 
called the observed process. At each instant, it may be described by a history of the 
activities that users perform under the PSEE . 

Actual 
Process

Observed 
Process

Process 
Model

 

Fig. 1. Software process consistency relationships in ideal situation 



188 M. Kabbaj, R. Lbath, and B. Coulette 

2.2   Concepts of Deviation and Inconsistency 

People behave differently in different situations and, therefore, it is hard to capture in 
advance in a formal process model all the possible behavior of a complex and dy-
namic system like software process development. Unforeseen situations may always 
occur. Typically, the effect of an unmanaged failure or exception is an action that 
breaks the consistency relationships shown in Figure 1. This often leads to the impos-
sibility of continuing executing the process under the PSEE’s control. To better clar-
ify possible effects of undesired events not adequately managed by the PSEE, we use 
the following terminology [6]. A deviation is an action performed that is not de-
scribed in the predefined process or that violates constraints expressed in the process. 
An inconsistency is a state of software process resulting from a process deviation. An 
actual process deviation is an action that breaks the consistency relationship between 
the actual process and the process model. Usually, actual process deviations are the 
result of an exception. An observed process deviation is an action performed within 
the PSEE that is not reflected in the process model. These deviations break the consis-
tency relationship between the observed process and the process model. An environ-
ment deviation is an action that breaks the consistency relationship between the actual 
process and the observed process. It typically occurs when human actors perform a 
relevant action out of the PSEE control. The PSEE has then an incorrect view, so it 
cannot correctly support the actual process anymore. A PSEE is said to be coherent 
[9] if it is capable of tracking all developers’ actions. 

2.3   Dealing with Process Deviation 

To face an unexpected situation, three different responses are possible [8]: (1) Noth-
ing is done: the process model is not modified and actions needed to cope with the 
unexpected situation are performed out of the PSEE control. Consequently, the PSEE 
cannot analyze the deviation, nor can it support developers in reconciling the actual 
process with the process model. (2) Model-changing: the PSEE provides mechanisms 
to change the process model on-the-fly. Actions needed to cope with the unexpected 
situation are added to the model and the PSEE is given the new process model to 
enact. The result of this approach is that consistency of process relationships is re-
stored. (3) Model-relaxing: the process model is not modified but the PSEE provides 
mechanisms to explicitly deviate from the model without the need of modifying the 
process model. The PSEE offers the possibility of executing actions necessary to cope 
with the unexpected situation under its control, by explicitly deviating from the proc-
ess model. The PSEE can analyze deviations and support developers in reconciling 
the actual process with the process model.  

2.4   Related Works 

Although the process deviation problem is well known in software process commu-
nity, only a few works have addressed it. In a previous research work, we developed 
RHODES [7], a PSEE that manages dynamic inconsistencies through an exception 
handling mechanism. However, process deviations are not supported. Other signifi-
cant works dealing with process enactment evolution are those of SPADE [2], and 
SENTINEL [8]. SPADE assumes that humans do not change the way they work 



A Deviation Management System for Handling Software Process Enactment Evolution 189 

unless they change the process model. The process deviation problem is tackled by 
providing features for changing process models “on-the-fly”. This approach may be 
effective to cope with major deviations from process models that are expected to 
occur again in the future, but the approach is unsuitable for situations that require 
minor or temporary deviations. SENTINEL tolerates deviations while critical re-
quirements of processes are not violated. But it makes no difference between devia-
tions according to their origin, and has no consistency handling policies. However, 
practical situations of real-world software development require context-dependent 
tolerance of deviations. 

Besides these works that aim to allow process performers to deviate from the proc-
ess model, there are many other works dealing with process evolution and/or process 
inconsistencies, but with a different focus such as process improvement, process elici-
tation, etc. For example, [12] proposes an algebraic approach based on the π-calculus 
to detect inconsistencies between a process model and its performance, and help proc-
ess designers locate and resolve the inconsistencies; [13] provides a viewpoints-based 
approach to manage inconsistency for process analysis and improvement; [14] pre-
sents a pattern-matching technique for process elicitation. 

3   Proposed Approach  

Figure 2 gives an overview of our approach. The Enacting Process Model represents 
the process model that actually guides development. The Observed Process Model 
represents a description of the actual process reflecting visible human actors’ actions. 
The Deviation-Tolerance Model consists of deviation-tolerance rules that describe 
tolerance to process deviations. 

The Deviation Detection System is a module in charge of detecting process devia-
tions. Role of the Deviation Management System is to decide whether to accept or to 
reject deviations according to DTM. Details are given in the following sections.  
 

Human 
Actors 

Deviation-Tolerance 
Model 

Observed 
Process Model

Actual Process 

Enacting 
Process Model 

Detecting 
Deviation 

System 

Deviation 
Management 

System 

builds

Monitoring 
System

uses

uses / 
adapts

Process 
Enactment 

Engine 

uses
uses

informs 
uses

guides 
observes  
actions 

inform 

uses / 
rectifies 

perform 
informs 

request 
deviations  

 

Fig. 2. General overview of our approach 



190 M. Kabbaj, R. Lbath, and B. Coulette 

3.1   Modeling Process Models 

The Enacting Process Model (EPM) mentioned in figure 2 represents a process model 
that actually guides the development process. Initially, it is obtained by instantiating a 
generic process model, which represents the “ideal” process that describes the know-
how and policies of a software development organization. The generic process model 
conforms with a UML process meta-model described in [11], which is an extension of 
SPEM. It allows specification of activities with associated pre-conditions, post-
conditions, invariants, roles played by actors, tools to be used, artifacts, and guidance 
for achieving activities. EPM is created by customizing the generic process model to a 
particular software project, i.e. by defining specific activities, assigning roles and 
resources, and setting correct initial states. 

 An example of EPM, called “Student Project”, is shown by figure 3. It is a sim-
plistic process favored by our students in developing small-size software within a few 
weeks. The process consists of two activities: Design which produces a design model 
from specifications, and Coding which produces software code that implements the 
design model. The process involves roles of designer, and developer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A simplistic process example: the “Student Project” 

3.2   Process Enactment Engine 

The Process Enactment Engine (PEE) is a module in charge of enacting process mod-
els. It is based on structure and behavior of process elements expressed as state ma-
chines that describe their nominal life cycles, i.e. without deviations.  

Figure 4 shows extracts of the state machines expressing nominal life cycles of ac-
tivities and artifacts. States are connected by either automatic transitions that corre-
spond to conditions to be checked, or manual transitions that constitute responses to 
users’ actions. For example, for an activity, the state Enactable indicates that the 
activity is instantiated. The State Activatable indicates that the activity’s precondition 
and precedence are verified, thus it can be launched. The transition from Enactable to 
Activatable is automatic. The state Enacting indicates that the activity is being per-
formed. The transition launch corresponds to a user action (launch the activity) and it 
is a manual transition. For an artifact, the state Initial indicates that the artifact is 
ready for elaboration. The state Draftα indicates that the artifact is ready for evalua-
tion and revision, and the state Draftβ means that it is ready for validation. 



A Deviation Management System for Handling Software Process Enactment Evolution 191 

[precondition 
∧ precedence]

launch
Activatable 

[⎤ precondition 
∨⎤ precedence] 

Enactable 

Enacting 

create 
…

Activities Artifacts

elaborate

Draftα

create 
…

elaborate 
Draftβ

Initial 

 

Fig. 4. Extracts of nominal behavior for enactment of process elements 

3.3   Monitoring System 

The Observed Process Model (OPM) represents a description of the actual process 
that reflects visible actions that human actors perform while carrying out the process. 
The Monitoring System collects events relating to the performed process in order to 
build OPM. Without deviations, OPM indicates at each instant parts of process model 
that have been performed and parts that have to be performed in the next instant. So, 
in this case, OPM would represent trace of following the process without deviation.  

The Monitoring System receives events from observers of process elements and 
observers of operations that human actors may execute (e.g. launch an activity, vali-
date an artifact). The observers of process elements are event listeners to changes of 
significant process elements’ properties (e.g. state of an activity). The observers of 
operations generate an event whenever an operation is executed.  

3.4   Detecting Deviation System 

Deviations correspond to operations that do not conform to the process elements’ 
nominal behavior, or break process elements’ relationships (e.g. “launching an activ-
ity whose precondition is not satisfied”, “pursuing an activity whose invariant has 
been violated”). The Detection Deviation System (DDS) receives events relating to 
operations executed by human actors from the Monitoring System. Role of DDS is to 
analyze events in order to determine whether executed operations conform with proc-
ess’ structure and behavior or constitute deviations. 
 
Logical Formalization of Process Models. A UML description of the process model 
does not allow direct exploitation of the model to detect violations of constraints. A 
logical formalization is more appropriate for checking constraints and, thus, for de-
tecting process deviations. The idea is to consider the union of the structure and the 
nominal behavior of the enacting process model, and the observed process model, as a 
set of first-order logical formulas from which non-deviating operations are deductible. 
Consequently, deviations can be characterized as operations that are not deductible 
from that set of formulas.  

The logical description of the enacting process model’s structure is obtained from 
its UML description by translating types and relationships into first-order logic for-
mulas1. For example, let us consider the simplistic process shown by figure 3. The 
                                                           
1 The translation is achieved automatically from XMI representation of UML diagrams. 



192 M. Kabbaj, R. Lbath, and B. Coulette 

following set of formulas indicate that Design is an activity having the artifact Speci-
fications as input, the role Developer is the responsible role for the activity Coding, 
the precedence of Coding is satisfied when Design is validated, and the precondition 
of Coding is always true (i.e. Coding has no precondition to be checked): 

    { activity(Design); artifact(Specifications); input(Specifications, Design) ; 

   activity(Coding); role(Developer);  responsibleForWork(Developer, Coding) ; 
   validated(Design) → precedence(Coding) ; precondition(Coding) } . 

The logical formalization of the observed process model is a set of first-order logic 
formulas that represent current states of process elements, and operations performed 
by human actors. For example, let us consider the process shown by figure 3. To 
indicate that the activity Design has been launched by Designer and its state has 
moved to Enacting, the observed process model will contain the following formulas: 

{operation(launch, Design, Designer); enacting(Design)} . 

As discussed in section 3.2, process elements are associated with state machines 
that describe nominal behavior for enactment. The logical representation of this be-
havior is obtained by translating state machines into a set of implicative first-order 
logic formulas. For example, the extract of the state machine associated with activi-
ties, shown by Figure 4, is translated into the following set of formulas, where w 
stands for an activity and r for a role: 

   {  ∀w (initial(w) → enactable(w)) ; 

  ∀w ((precondition(w) ∧ precedence(w) ∧ enactable(w)) → activatable(w)) ; 

  ∀w ∀r ((activatable(w) ∧ responsibleForWork(r, w)) → operation(launch, w, r)) ; 

∀w ∀r (operation(launch, w, r) → enacting(w)) } . 

Detecting Deviations. Operations executed by human actors are represented by logi-
cal formulas in the observed process model (e.g., operation(launch, Design, De-
signer)). If we analyze the implicative formulas describing the process’ nominal  
behavior, we can easily see that: an operation is not a deviation if and only if it can be 
deduced from the logical representation of the process model and the observed model. 

Formally, if M is the union of the set of formulas that describe structure and behav-
ior of an enacting process model, and the set of formulas that describe the observed 
process model, and o is an operation executed by human actors, then: 

o is not a deviation   ⇔   M  |⎯⎯  o . 

For example, let us consider the process StudentProject shown by figure 3, and let 
us suppose that: Design is in state enacting (i.e. not validated yet), the activity Coding 
is in state Enactable (i.e. not activatable yet), and Coding is launched by the role 
Developer. According to the nominal behavior of activities listed above, Coding can 
be legally launched only when it is in state Activatable, which cannot be reached if 
Coding’s precedence is not satisfied, i.e. if Design is not validated. Thus, in this con-
text, the operation constitutes a deviation. Formally, the situation can be characterized 
as follows2:  

                                                           
2 The set M is restricted here to only those formulas that are relevant to the example’s context. 



A Deviation Management System for Handling Software Process Enactment Evolution 193 

o = operation(launch, Coding, Developer) . 

M = { ∀w∀r ((activatable(w) ∧ responsibleForWork(r, w)) → opera-
tion(launch, w, r)) ;  

   validated(Design) → precedence(Coding) ;  

 enacting(Design) ; enactable(Coding) ; responsibleForWork(Developer, 
Coding) } . 

M  |⎯/⎯  o . Thus,  o constitutes a deviation. 

3.5   Deviation-Tolerance Model 

The deviation-tolerance model describes tolerance to process deviations. It helps 
process designers authorize deviations in order to meet specific needs, and thus im-
prove process models’ flexibility. It consists of deviation-tolerance rules that indicate 
tolerability of deviations in terms of numeric value ranging from 0 to 1, called devia-
tion-tolerance index (DTI). Two threshold values are defined: tolerance threshold 
(TT) and non-tolerance threshold (NT) as shown by figure 5. So, the interval [0,1] is 
partitioned into three intervals: zero-tolerance interval, from 0 to NT; uncertainty 
interval, from NT to TT; and tolerance interval, from TT to 1. Deviations marked with 
values belonging to the zero-tolerance interval are automatically rejected. Deviations 
marked with values belonging to the tolerance interval are automatically tolerated. 
Deviations marked with values within the uncertainty interval are context-sensitive, 
i.e. the decision of whether rejecting or tolerating them remains in the hands of human 
actors. Moreover, the two threshold values may be dynamically adjusted in order to 
authorize more flexibility and context-sensitive response to deviations. 

 

0 1 TTNT

reject deviations accept deviations reject / accept deviations  

Zero-tolerance 
Interval

Tolerance Interval Uncertainty Interval 
(context-sensitive decision)

 
 

Fig. 5. Intervals of deviation-tolerance values 

 
 
 
 
 
 
 
 
 

Fig. 6. An example of deviation-tolerance rule attached to activities 

Deviation-tolerance rules are associated to process elements (activities, artifacts, 
etc.). Figure 6 gives an example. A rule relates to a single deviation and consists of 
different parts: a natural-language description, a qualification (minor or major), a 

Description : “In case of violation of precedence of an activity w, then if any input 
of w is in the state Draftβ with at least a 90% degree of achievement, the deviation is 
to be qualified as minor and is to be tolerated (with DTI=0.9)”. 

Deviation : ∃ r (operation(launch, w, r) ∧ ¬ precedence(w)) 

Context : ∀ P (input(P,W) → (Draftβ(P) ∧ GreaterThan(achievement(P), 90%))) 

Qualification : minor Deviation Tolerance Index : 0.9 



194 M. Kabbaj, R. Lbath, and B. Coulette 

logical formula that characterizes the deviation, a logical formula that describes the 
context of tolerating or rejecting the deviation, and a deviation-tolerance index.  

Deviations qualified as minor are considered to be without significant impact on 
process models, thus they do not imply the modification of process models. In contrast, 
deviations qualified as major are considered to be with significant impact on process 
models, meaning that the enacting process model has to be adapted accordingly. 

With respect to generic process elements’ structure and nominal behavior, we have 
identified about thirty context-independent deviations (e.g., launching an activity 
whose precondition is not satisfied, not performing a planned activity, etc.). A logical 
characterization of deviation is a first-order logic formula that describes a context-
independent deviation. It indicates an illegal operation and violated constraints of the 
process model. For example, if we analyze the description of the rule shown by figure 
6, we see that it clearly relates to context-independent deviation “violation of prece-
dence”, which can be characterized as shown by deviation part in the figure. 

The context part of a rule aims to take into account specific and context-dependent 
aspects of actual processes. Such aspects are expressed through a first-order logic 
formula, in terms of observed process elements’ states. For example, the context part 
of rule shown by figure 6 states that “all input are in state Draftβ with at least 90% 
degree of achievement” and can be described by the formula shown by the context 
part in the figure.   

The set of the context-independent deviations has not to be considered as a fixed 
set for all situations. It is defined through the deviation-tolerance rules, and may 
change as these rules change, dynamically, according to unexpected situations. 

Specifying deviations through deviation-tolerance rules is equivalent to adding al-
ternative enactment paths to the process model. The benefit of the rules formalism 
described above mainly resides in the first-order logic’s power of expressiveness.  

3.6   Deviation Management System 

Detected deviations and human actors’ requests for deviations are submitted to the 
Deviation Management System whose role is to decide whether to accept or to reject 
deviations, according to the deviation-tolerance model. It uses both model changing 
and model relaxing approaches (discussed in section 2.3). If an accepted deviation is 
assumed to be of a deep impact on the process, the enacting process model is adapted 
according to the deviation (model changing). Otherwise, the enacting process model 
remains unchanged and thus the deviation is tolerated (model relaxing).  

The deviation to be considered is analyzed in order to determine the relating process 
element. Then, deviation-tolerance rules attached to the process element are considered. 
Rules that match with the deviation and whose context part matches with the current 
context of the development are selected. Finally, the rule of the weakest deviation-
tolerance index is used to set a tolerance value to the deviation. Actions envisaged for a 
deviation depend on two different criteria: (1) the interval that the deviation’s tolerance 
value belongs to (zero-tolerance interval, tolerance interval, or uncertainty interval); and 
(2) the qualification of the deviation, minor or major. 

 



A Deviation Management System for Handling Software Process Enactment Evolution 195 

Regarding the tolerance value assigned to a deviation, three cases are possible:  
 

(1) The value belongs to the tolerance interval, i.e. the deviation is acceptable. Then, 
the deviation is automatically tolerated. 
(2) The value belongs to the zero-tolerance interval, i.e. the deviation is incompatible 
or unacceptable with the development. Then the deviation is automatically rejected 
and, the observed process model is reset to its state previous, eventually (for detected 
deviations, not for requested deviations). 
(3) The value belongs to the uncertainty interval. Then, a human decision is requested 
to whether accept or reject the deviation. Risks, costs, and reconciliation actions to 
keep project’s coherence should be considered before making decision. 
 

Regarding the qualification of a tolerated deviation, two cases are possible:  
 

(1) The deviation is qualified as a minor deviation. Then the deviation is assumed to 
be an exceptional and temporary deviation that requires no change of the enacting 
process model. It continues to be enacted for guiding the development (application of 
the model relaxing principle discussed in section 2.3). 
(2) The deviation is qualified as a major deviation. Then, the deviation is assumed to 
be of a deep impact on the process, which requires changing the process model. The 
enacting process model is modified3 according to the deviation (application of the 
model changing principle discussed in section 2.3).  

4   Implementation 

A prototype system of our approach, called DM_PSEE (Deviation Management 
PSEE) has been developed under ECLIPSE 3.2. Plugins EMF and UML2.0 are used 
for editing generic process models and their associated deviation-tolerance rules, 
graphically. Checking of conformity to the process metamodel PMM is implemented 
in Java. Figure 7 shows the Student Project example, described in section 3.1, and 
associated tolerance-deviation model edited within DM_PSEE.  

To automate building of enacting process models, each generic process’ element is 
mapped into a Java process execution class that includes enacting aspects of the proc-
ess element (e.g. process element states, degree of achievement, operations, etc.). The 
process enactment engine implements (in Java) state machines that describe nominal 
behavior of processes (presented in section 3.2). A user interface allows human actors 
to see process elements and their current state, and to execute different operations 
(e.g. login, launch an activity, terminate an activity, invalidate an artifact, validate an 
artifact, etc.). The process enactment engine also ensures resource management such 
as role assignation, artifact versioning, etc. The monitoring system is implemented as 
a set of java listeners that collect events relating to process execution classes. Events 
indicate either changes of process elements states, or operation executed by human 
actors. Collected events are used to build the observed process model. The detection 
deviation system is implemented in the Prolog language, thanks to an Eclipse plug-in 

                                                           
3 Changing the generic process model is not necessary. Only its instance, the enacting process 

model, has to be adapted to restore consistency relationships discussed in section 2.1.  



196 M. Kabbaj, R. Lbath, and B. Coulette 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. DM_PSEE prototype: editing process models and associated deviation-tolerance rules 

Prolog. The first-order logic representation of process models (presented in section 
3.4) is described as a set of Prolog clauses to be used for deducing illegal operations 
executed by human operators, and thus for detecting deviations. Tolerance-deviation 
rules and the management deviation system are implemented in Prolog as well. 

5   Conclusion and Perspectives 

An important problem encountered in PSEE is that software development processes 
are subject to permanent dynamic evolution. This article presents an original approach 
to support process enactment evolution. Addressed processes are those corresponding 
to the “Defined Level” of the Capability Maturity Model. 

The approach makes two process models coexist: a preset process model that 
guides development, and an observed process model. A first-order logic representa-
tion of process models is used for detecting process deviations. Tolerance to devia-
tions is expressed as a set of rules that specify tolerance for accepting or refusing 
deviations. Our approach is founded on a postulate: “absence of deviation is the 
exception, not the rule”. It considers that process models are needed just to guide 
humans, who must always remain the masters of decision, and be allowed to decide 
whether to follow process models whenever they need to face unexpected situa-
tions. Such a view makes our approach very innovative and radically different from 
the approaches proposed so far. A prototype system has been developed. The lan-
guage Prolog has been used for logical representation of process models and rule-
based reasoning for detection and management of deviations.  

The simplistic example described in sections 3 has been used as a case study for 
validation. It could show feasibility of the approach but a real-world validation, 
through industrial processes, remains to be done. In addition to real-world validation, 



A Deviation Management System for Handling Software Process Enactment Evolution 197 

our future work will concern this important issue: in case of process adaptation after a 
major deviation, how to ensure that changes do not generate new inconsistencies with 
the process observed until the detection of the deviation? 

References 

1. Balzer, B.: Tolerating Inconsistencies. In: 13th International Conference on Software En-
gineering (ICSE 1991), Austin, Texas, pp. 158–165 (1991) 

2. Bandinelli, S., et al.: SPADE: An Environment for Software Process Analysis, Design and 
Enactment. In: Finkelstein, A., et al. (eds.) Software Process Modeling and Technology, 
pp. 223–244. Wiley, London (1994) 

3. Gervais, M.-P., Blanc, X., Bendraou, R.: UML4SPM: a UML2.0-Based Metamodel for 
Software Process Modeling. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, 
vol. 3713, pp. 17–38. Springer, Heidelberg (2005) 

4. Berande, P.: Understanding and Evaluation of Software Process Deviations. Master The-
sis, Blekinge Institute of Technology, Sweden (2002) 

5. Capability Maturity Model Integration, http://www.sei.cmu.edu/cmmi 
6. Casati, F., Cugola, G.: Error Handling in Process Support Systems. In: Romanovsky, A., 

Dony, C., Knudsen, J.L., Tripathi, A.R. (eds.) ECOOP-WS 2000. LNCS, vol. 2022, pp. 
251–270. Springer, Heidelberg (2001) 

7. Coulette, B., et al.: RHODES: a Process Component Centered Software Engineering Envi-
ronment. J. ICEIS, 253–260 (2000) 

8. Cugola, G.: Tolerating Deviations in Process Support Systems via Flexible Enactment of 
Process Models. J. IEEE Transactions on Soft. Eng. 24(11), 982–1001 (1998) 

9. Cugola, G., et al.: A Framework for formalizing Inconsistencies in Human-Centered Sys-
tems. J. ACM Trans. On Soft. Eng. and Methodology 5(3), 191–230 (1996) 

10. Kabbaj, M., Lbath, R., Coulette, B.: A Deviation-tolerant Approach to Software Process 
Evolution. In: 9th Int. Workshop on Principles of Software Evolution, in conjunction with 
the 6th ESEC/FSE Joint Meeting, Dubrovnik, Croatia, pp. 75–78 (2007) 

11. Lbath, R., Coulette, B., et al.: A multi-Agent Approach to a SPEM-based Modeling and 
Enactment of Software Development Processes. In: 7th Int. Conf. on Software Engineer-
ing. and Knowledge Engineering (SEKE), Taipei, Taiwan, pp. 241–246 (2005) 

12. Qiusong, Y., et al.: An Algebraic Approach for Managing Inconsistencies. In: Wang, Q., 
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 121–133. Springer, Hei-
delberg (2007) 

13. Sommerville, I., et al.: Managing process inconsistency using viewpoints. J. IEEE Trans-
actions on Software Engineering 25(6), 784–799 (1999) 

14. Soto, M., et al.: Focused Identification of Process Model Changes. In: Wang, Q., Pfahl, D., 
Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 182–194. Springer, Heidelberg 
(2007) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 198 – 209, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Assessing Quality Processes with ODC COQUALMO 

Raymond Madachy and Barry Boehm 

University of Southern California Center for Systems and Software Engineering 
941 W. 37th Place, Los Angeles, CA, USA  

{madachy, boehm)@usc.edu 

Abstract. Software quality processes can be assessed with the Orthogonal De-
fect Classification COnstructive QUALity MOdel (ODC COQUALMO) that 
predicts defects introduced and removed, classified by ODC types.  Using pa-
rametric cost and defect removal inputs, static and dynamic versions of the 
model help one determine the impacts of quality strategies on defect profiles, 
cost and risk.  The dynamic version provides insight into time trends and is 
suitable for continuous usage on a project.  The models are calibrated with em-
pirical data on defect distributions, introduction and removal rates; and supple-
mented with Delphi results for detailed ODC defect detection efficiencies.  This 
work has supported the development of software risk advisory tools for NASA 
flight projects.  We have demonstrated the integration of ODC COQUALMO 
with automated risk minimization methods to design higher value quality proc-
esses, in shorter time and with fewer resources, to meet stringent quality goals 
on projects. 

Keywords: quality processes, defect modeling, orthogonal defect classification, 
COQUALMO, COCOMO, system dynamics, value-based software engineering. 

1   Introduction 

The University of Southern California Center for Systems and Software Engineering 
(USC-CSSE) has been evaluating and updating software cost and quality models for 
critical NASA flight projects.  A major focus of the work is to assess and optimize 
quality processes to minimize operational flight risks. We have extended the CO-
QUALMO model [1] for software defect types classified with Orthogonal Defect 
Classification (ODC).  COQUALMO uses COCOMO II [2] cost estimation inputs 
with defect removal parameters to predict the numbers of generated, detected and 
remaining defects for requirements, design and code.  It models the impacts of prac-
tices for automated analysis, peer reviews, and execution testing and tools on these 
defect categories.  ODC COQUALMO further decomposes the defect types into more 
granular ODC categories.   

The ODC taxonomy provides well-defined criteria for the defect types and has 
been successfully applied on NASA projects.  The ODC defects are then mapped to 
operational flight risks, allowing “what-if” experimentation to determine the impact 
of techniques on specific risks and overall flight risk.  The tool has been initially cali-
brated to ODC defect distribution patterns per JPL studies on unmanned missions.  A 



 Assessing Quality Processes with ODC COQUALMO 199 

Delphi survey was completed to quantify ODC defect detection efficiencies, gauging 
the effect of different defect removal techniques against the ODC categories. 

The approach is value-based [3] because defect removal techniques have different 
detection efficiencies for different types of defects, their effectiveness may vary over 
the lifecycle duration, different defect types have different flight risk impacts, and 
there are scarce resources to optimize.  Additionally the methods may have overlap-
ping capabilities for detecting defects, and it is difficult to know how to best apply 
them.  Thus the tools help determine the best combination of techniques, their optimal 
order and timing. 

ODC COQUALMO can be joined with different risk minimization methods to op-
timize strategies.  These include machine learning techniques, strategic optimization 
and the use of fault trees to quantify risk reductions from quality strategies. 

Empirical data is being used from manned and unmanned flight projects to further 
tailor and calibrate the models for NASA, and other USC-CSSE industrial affiliates are 
providing data for other environments.  There will be additional calibrations and im-
provements, and this paper presents the latest developments in the ongoing research. 

2   COQUALMO Background 

Cost, schedule and quality are highly correlated factors in software development. 
They essentially form three sides of a triangle, because beyond a certain point it is 
difficult to increase the quality without increasing either the cost or schedule, or both. 
Similarly, development schedule cannot be drastically compressed without hampering 
the quality of the software product and/or increasing the cost of development. Soft-
ware estimation models can (and should) play an important role in facilitating the 
balance of cost/schedule and quality. 

Recognizing this important association, COQUALMO was created as an extension 
of the COnstructive COst MOdel (COCOMO) [2], [4] for predicting the number of 
residual defects in a software product.  The model enables 'what-if' analyses that 
demonstrate the impact of various defect removal techniques.  It provides insight into 
the effects of personnel, project, product and platform characteristics on software 
quality, and can be used to assess the payoffs of quality investments.  It enables better 
understanding of interactions amongst quality strategies and can help determine prob-
able ship time.   

A black box representation of COQUALMO’s submodels, inputs and outputs is 
shown in Fig 1.  Its input domain includes the COCOMO cost drivers and three defect 
removal profile levels. The defect removal profiles and their rating scales are shown 
in Table 1.  More details on the removal methods for these ratings are in [2].  From 
these inputs, the tool produces an estimate of the number of requirement, design and 
code defects that are introduced and removed as well as the number of residual de-
fects remaining in each defect type.  

The COQUALMO model contains two sub-models: 1) the defect introduction 
model and 2) the defect removal model. The defect introduction model uses a subset 
of COCOMO cost drivers and three internal baseline defect rates (requirements, de-
sign, code and test baselines) to produce a prediction of defects that will be introduced  
 



200 R. Madachy and B. Boehm 

COCOMO II

COQUALMO

Defect Removal 
Model

Software size

Software product, 
process, platform and 
personnel attributes

Defect removal capability 
levels 

• Automated analysis
• Peer reviews
• Execution testing and 
tools

Software development effort
and schedule 

Number of residual defects

Defect Introduction

Model

Defect density per unit of size

• Requirements
• Design
• Code

 

Fig. 1. COQUALMO overview 

Table 1. Defect removal practice ratings 

Highly 
advanced 

tools, model-
based test

More advance 
test tools, 

preparation.
Dist-

monitoring

Well-defined 
test seq. and 

basic test 
coverage tool 

system

Basic test
Test criteria 
based on 
checklist

Ad-hoc test 
and debug

No testingExecution 
Testing and 

Tools

Extensive 
review 

checklist

Statistical 
control

Root cause 
analysis, 

formal follow

Using 
historical data

Formal review 
roles and 

Well-trained 
people and 

basic 
checklist

Well-defined 
preparation, 

review, 
minimal 
follow-up

Ad-hoc 
informal walk-

through

No peer 
review

Peer Reviews

Formalized 
specification, 
verification.
Advanced 

dist-
processing

More 
elaborate 

req./design
Basic dist-
processing

Intermediate-
level module

Simple 
req./design

Compiler 
extension

Basic req. and 
design 

consistency

Basic 
compiler 

capabilities

Simple 
compiler 
syntax 

checking

Automated 
Analysis

Extra HighVery HighHighNominalLowVery Low

Highly 
advanced 

tools, model-
based test

More advance 
test tools, 

preparation.
Dist-

monitoring

Well-defined 
test seq. and 

basic test 
coverage tool 

system

Basic test
Test criteria 
based on 
checklist

Ad-hoc test 
and debug

No testingExecution 
Testing and 

Tools

Extensive 
review 

checklist

Statistical 
control

Root cause 
analysis, 

formal follow

Using 
historical data

Formal review 
roles and 

Well-trained 
people and 

basic 
checklist

Well-defined 
preparation, 

review, 
minimal 
follow-up

Ad-hoc 
informal walk-

through

No peer 
review

Peer Reviews

Formalized 
specification, 
verification.
Advanced 

dist-
processing

More 
elaborate 

req./design
Basic dist-
processing

Intermediate-
level module

Simple 
req./design

Compiler 
extension

Basic req. and 
design 

consistency

Basic 
compiler 

capabilities

Simple 
compiler 
syntax 

checking

Automated 
Analysis

Extra HighVery HighHighNominalLowVery Low

 

 
in each defect category during software development. The defect removal model uses 
the three defect removal profile levels, along with the prediction produced by the 
defect introduction model, to produce an estimate of the number of defects that will 
be removed from each category.  

2.1   ODC Extension 

ODC COQUALMO decomposes defects from the basic COQUALMO model using 
ODC [5].  The top-level quantities for requirements, design and code defects are  



 Assessing Quality Processes with ODC COQUALMO 201 

decomposed into the ODC categories per defect distributions input to the model.  
With more granular defect definitions, ODC COQUALMO enables tradeoffs of dif-
ferent detection efficiencies for the removal practices per type of defect.  Table 2 lists 
the ODC defect categories used in the model, and against which data is collected. 

Table 2. ODC defect categories 

Requirements 
• Correctness  
• Completeness 
• Consistency 
• Ambiguity/Testability 

 

Design/Code 
• Interface 
• Timing 
• Class/Object/Function 
• Method/Logic/Algorithm 
• Data Values/Initialization 
• Checking 

 
This more detailed approach takes into account the differences between the meth-

ods with specific defect pairings.  Peer reviews, for instance, are good at finding com-
pleteness defects in requirements but not efficient at finding timing errors for a real-
time system.  Those are best found with automated analysis or execution and testing 
tools.   

The model also provides a distribution of defects in terms of their relative frequen-
cies. The tools described in the next section have defect distribution options that al-
lows a user to input actuals-based or expert judgment distributions, while an option 
for the Lutz-Mikulski distribution is based on empirical data at JPL [6].   

The sources of empirical data used for analysis and calibration of the ODC CO-
COQUALMO model were described in [7].  The quality model calculating defects for 
requirements, design and code retains the same calibration as the initial COQUALMO 
model1.  The distribution of ODC defects from [6] was used to populate the initial 
model with an empirically-based distribution from the unmanned flight domain at 
JPL.  The Lutz-Mikulski distribution uses the two-project average for their ODC 
categories coincident across the taxonomy used in this research for design and code 
defects.  Their combined category of “Function/Algorithm” is split evenly across our 
two corresponding categories.   

A comprehensive Delphi survey [8], [9] was used to capture more detailed effi-
ciencies of the techniques against the ODC defect categories.  The experts had on 
average more than 20 years of related experience in space applications. The ODC 
Delphi survey used a modified Wideband Delphi process and went through two rigor-
ous iterations [9].  The results are summarized separately for automated analysis, 
execution testing and tools, and peer reviews in Fig. 2, Fig. 3 and Fig. 4 respectively. 

The values represent the percentages of defects found by a given technique at each 
rating (sometimes termed “effectiveness”).  The different relative efficiencies of the 
defect removal methods can be visualized, in terms of the general patterns between 
the methods and against the defect types within each method.  For example, more 
automated analysis from very high to extra high increases the percent of checking 
defects found from 65% to almost 80%.  



202 R. Madachy and B. Boehm 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Very Low Low Nominal High Very High Extra High

Automated Analysis Rating

D
ef

ec
t D

et
ec

tio
n

 E
ff

ic
ie

n
cy

 
(%

 o
f D

ef
ec

ts
 F

o
u

n
d

)

Ambiguity/Testability 
Completeness 
Consistency
Correctness 
Checking 
Class/Object/Function 
Data Values/Initialization 
Interface 
Method/Logic/Algorithm 
Timing 

 

Fig. 2. Automated analysis ODC defect detection efficiencies 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Very Low Low Nominal High Very High Extra High

Execution and Tools Rating

D
ef

ec
t D

et
ec

tio
n

 E
ff

ic
ie

n
cy

 
(%

 o
f D

ef
ec

ts
 F

o
u

n
d

)

Ambiguity/Testability 
Completeness 
Consistency
Correctness 
Checking 
Class/Object/Function 
Data Values/Initialization 
Interface 
Method/Logic/Algorithm 
Timing 

 

Fig. 3. Execution testing and tools ODC defect detection efficiencies 
 



 Assessing Quality Processes with ODC COQUALMO 203 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Very Low Low Nominal High Very High Extra High

Peer Reviews Rating

D
ef

ec
t D

et
ec

tio
n

 E
ff

ic
ie

n
cy

 
(%

 o
f D

ef
ec

ts
 F

o
u

n
d

)

Ambiguity/Testability 
Completeness 
Consistency
Correctness 
Checking 
Class/Object/Function 
Data Values/Initialization 
Interface 
Method/Logic/Algorithm 
Timing 

 
Fig. 4. Peer reviews ODC defect detection efficiencies 

2.2   ODC COQUALMO and Risk Minimization 

Different methods for risk analysis and reduction have been performed in conjunction 
with ODC COQUALMO, which can produce optimal results in less time and allow 
for insights not available by humans alone.  In [11] machine learning techniques were 
applied on the COQUALMO parameter tradespace to simulate development options 
and measure their effects on defects and costs, in order to best improve project out-
comes. Another technique to reduce risks with the model is a strategic method of 
optimization.  It generates optimal risk reduction strategies for defect removal for a 
given budget, and also computes the best order of activities [12]. 

An integration of ODC COQUALMO has also been prototyped with the DDP risk 
management tool [13], [14], which uses fault trees to represent the overall system's 
dependencies on software functionality.  These experiments to optimize quality proc-
esses are described in more detail in [15]. 

3   ODC COQUALMO Tools 

There are different implementations of ODC COQUALMO.  There are static versions 
in a spreadsheet and one that runs on the Internet that estimate the final levels of de-
fects for the ODC categories. The Internet-based tool at http://csse.usc.edu/tools/odc_ 
coqualmo.php now supersedes the spreadsheet.  It has the latest defect detection effi-
ciency calibrations and is our base tool for future enhancements.  The inputs to the 
static model are shown in Fig. 5, while Fig. 6 shows an example of ODC defect out-
puts.  A dynamic simulation version models the defect generation and detection rates  
 



204 R. Madachy and B. Boehm 

 
 

Fig. 5. COQUALMO sample inputs 

 
over time for continuous project usage, and provides continuous outputs as shown in 
the next section.   

3.1   Dynamic Simulation Model 

This section summarizes a continuous simulation model version using system dynam-
ics [10] to evaluate the time-dependent effectiveness of different defect detection 
techniques against ODC defect categories.  As a continuous model, it can be used for 
interactive training to see the effects of changes midstream or be updated with pro-
jects actuals for continuous usage on a project [10].  

The model uses standard COCOMO factors for defect generation rates and the de-
fect removal techniques for automated analysis, peer reviews and execution testing 
and tools.  The model can be used for process improvement planning, or control and 
operational management during a project.  

COQUALMO is traditionally a static model, which is a form not amenable to con-
tinuous updating because the parameters are constant over time.  Its outputs are final 
cumulative quantities, no time trends are available, and there is no provision to handle 
the overlapping capabilities of defect detection techniques.  The defect detection 
methods and the defect removal techniques are modeled in aggregate, so it is not 
possible to deduce how many are captured by which technique (except in the degen-
erate case where two of the three methods are zeroed out). 

In this system dynamics extension to ODC COQUALMO, defect and generation 
rates are explicitly modeled over time with feedback relationships.  It can provide  
 



 Assessing Quality Processes with ODC COQUALMO 205 

1501

653

483

131

495

783

1566

1566

1174

1957

783

391

2349

1566

391

2349

783

1338

582

431

116

442

742

1484

1484

1113

1854

742

371

2225

1484

371

2225

742

163

71

52

14

54

41

82

82

62

103

41

21

123

82

21

123

41

0 500 1000 1500 2000 2500

Requirements - Correctness

Requirements - Completeness

Requirements - Consistency

Requirements - Ambiguity/Testability

Requirements - Requirements Enhancement

Design - Interface

Design - Timing

Design - Class/Object/Function

Design - Method/Logic/Algorithm

Design - Data Values/Initialization

Design - Checking

Code - Interface

Code - Timing

Code - Class/Object/Function

Code - Method/Logic/Algorithm

Code - Data Values/Initialization

Code - Checking

Type

# Defects

Introduced

Removed

Remaining

 

Fig. 6. ODC COQUALMO sample defect outputs 

continual updates of risk estimates based on project and code metrics.  This model 
includes the effects of all defect detection efficiencies for the defect reduction tech-
niques against each ODC defect type per Fig.2, Fig 3 and Fig. 4. 

The defect removal factors are shown in the control panel portion in Fig. 7. They 
can be used interactively during a run.  A simplified portion of the system diagram 
(for completeness defects only) is in Fig. 8.  The defect dynamics are based on a 
Rayleigh curve defect model of generation and detection.  The buildup parameters for 
each type of defect are calibrated for the estimated project schedule time, which may 
vary based on changing conditions during the project. 

 
 

3U

Peer Reviews

3U

Automated Analysis

6U

Execution Testing and Tools

(1=very low, 2=low, 3=nominal, 4=high, 5=very high, 6=extra high)  

Fig. 7. Defect removal sliders on interactive control panel 



206 R. Madachy and B. Boehm 

requirements 
detection start time

completeness defects

completeness defect �
generation rate

total completeness defects

completeness�
defect fraction

completness defect �
detection rate

completeness defects found

~

execution testing and tools�
completeness defect detection effic

composite completness 
defect detection efficiency

~

peer reviews �
completeness defect detection efficiency

~

automated analysis �
completeness defect detection efficiency

SLOC Automated Analysis Peer Reviews Execution Testing and Tools

requirements defect generation�
elaboration function

requirements defect detection�
elaboration function

~

requirements defect multiplier

requirements �
defect fraction

 

Fig. 8. Model diagram portion (completeness defects only) 

The defect detection efficiencies are modeled for each pairing of defect removal 
technique and ODC defect type.  These are represented in graph functions for defect 
detection efficiency against the different ODC defect types. 

The scenario is demonstrated in Figs. 9 through 11, showing the dynamic re-
sponses to changing defect removal settings on different defect types.  Fig. 9 shows 
the defect removal settings with all defect removal practices initially set to nominal.  
At about 6 months automated analysis goes high, and then is relaxed as peer reviews 
is kicked up simultaneously.  The variable impact to the different defect types can be 
visualized in the curves.   

 

Defect Removal Settings

Page 1
0.00 6.00 12.00 18.00 24.00 30.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

0

3

6
1: Automated Analysis 2: Peer Reviews 3: Execution Testing and Tools

1

1

1 12 2 2 23 3 3

 

Fig. 9. Defect removal setting changes 



 Assessing Quality Processes with ODC COQUALMO 207 

The requirements consistency defects are in Fig. 10, showing the perturbation 
from the defect removal changes.  The graph in Fig. 11 from the simulation model 
shows the dynamics for code timing defects, including the impact of changing the 
defect removal practices in the midst of the project at 18 months.  At that time the 
setting for execution testing and tools goes high, and the timing defect detection curve 
responds to find more defects at a faster rate.  

 

Requirements - Consistency  Def ects

Page 1
0.00 6.00 12.00 18.00 24.00 30.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

0

20

40

0

10

20

0

100

200

1: consist…eration rate 2: consist…tection rate 3: consistency  def ects 4: consist…f ects f ound

1

1

1 1 12

2
2

2
2

3

3

3

3 3
4

4

4
4 4

 

Fig. 10. Requirements consistency defect dynamics (1: requirements consistency defect genera-
tion rate, 2: requirements consistency defect detection rate, 3: requirements consistency de-
fects, 4: requirements consistency defects found) 

< 

 

Code - Timing Def ects

Page 1
0.00 6.00 12.00 18.00 24.00 30.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

0

25

50

0

15

30

0

100

200

1: code tim…eration rate 2: code tim…tection rate 3: code timing def ects 4: code ti…ef ects f ound

1 1

1

1 12 2

2 2

23 3

3

3
3

4 4

4

4 4

 

Fig. 11. Code timing defect dynamics (defect removal practice change at time = 18) (1: code 
timing defect generation rate, 2: code timing defect detection rate, 3: code timing defects, 4: 
code timing defects found) 



208 R. Madachy and B. Boehm 

4   Conclusions and Future Work 

Software estimation models can and should play an important role in facilitating the 
right balance of activities to meet quality goals.  By predicting software defect intro-
duction and removal rates, ODC COQUALMO is useful for identifying appropriate 
defect reduction strategies.  The extension for ODC defect types provides more granu-
lar insight into defect profiles and their impacts to specific risks.  We have shown that 
the ODC COQUALMO model can be used in different ways to reason about and 
optimize quality processes.   

The use of value-neutral software engineering methods often causes software pro-
jects to expend significant amounts of scarce resources on activities with negative 
returns on investment.  The use of models and risk minimization techniques can be 
used to optimize the scarce resources. Results of experiments combining ODC CO-
QUALMO with various methods show they can produce optimal results in less time 
and allow for insights not available by humans alone.   

The ODC defect detection efficiency functions are being evaluated for different 
domains and operational scenarios.  The ODC Delphi survey will be revisited for the 
extra high usage of defect removal techniques, and to address issues identified by the 
experts so far in this work.  We will continue to integrate the ODC COQUALMO 
model with complementary techniques to support risk management practices, and to 
compare their performances. 

We are also analyzing additional empirical case studies.  Model calibration data is 
being used from manned and unmanned NASA flight projects, as well as other USC-
CSSE data sources including industrial affiliates who serve as contractors on space 
projects.  There are also affiliates in commercial domains undertaking ODC defect 
analysis for which specialized calibrations are being done.  With more comprehensive 
data the quality model will be further improved, tailored for NASA projects and other 
organizations, and integrated with complementary methods for value-based decision 
making on quality strategies.   

 
Acknowledgments. This work was partially supported by NASA AMES Cooperative 
Agreement No. NNA06CB29A for the project Software Risk Advisory Tools.  The 
authors wish to thank the CSEE affiliates who contributed data, the ODC Delphi 
participants, Dr. Mike Lowry and John Powell at NASA. 

References  

1. Chulani, S., Boehm, B.: Modeling software defect introduction and removal: CO-
QUALMO (COnstructive QUALity MOdel), University of Southern California Center for 
Software Engineering, USC-CSE Technical Report 99-510 (1999) 

2. Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, 
D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood 
Cliffs (2000) 

3. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based Soft-
ware Engineering. Springer, Heidelberg (2005) 

4. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981) 



 Assessing Quality Processes with ODC COQUALMO 209 

5. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong, M.: Or-
thogonal Defect Classification - A Concept for In-Process Measurements. IEEE Transac-
tions on Software Engineering 18(11), 943–956 (1992) 

6. Lutz, R., Mikulski, I.: Final Report: Adapting ODC for Empirical Analysis of Pre-Launch 
Anomalies, version 1.2, NASA Jet Propulsion Laboratories, JPL Caltech report (2003) 

7. Madachy, R.: Risk Model Calibration Report, USC Center for Systems and Software En-
gineering, Report to NASA AMES (2006) 

8. Madachy, R.: JPL Delphi Survey for V&V Defect Detection Efficiencies, USC Center for 
Systems and Software Engineering, Report to NASA (2006) 

9. Madachy, R.: Calibration of ODC COQUALMO to Predict V&V Effectiveness, USC 
Center for Systems and Software Engineering, Report to NASA AMES (2007) 

10. Madachy, R.: Software Process Dynamics. IEEE-Wiley, Hoboken NJ (2008) 
11. Menzies, T., Richardson, J.: XOMO: Understanding Development Options for Autonomy. 

In: 20th International Forum on COCOMO and Software cost Modeling, USC (2005) 
12. Port, D., Kazman, R., Polo, B., Nakao, H., Katahira, M.: Practicing What is Preached: 80-

20 Rules for Strategic IV&V Assessment, Center for Strategic Software Engineering, 
Technical Report, CSSE-TR20051025, University of Hawaii at Manoa (2005) 

13. Feather, M., Cornford, S.: Quantitative Risk-based Requirements Reasoning. Require-
ments Engineering 8(4), 242–265 (2005) 

14. Feather, M., Cornford, S., Hicks, K., Johnson, R.: Applications of Tool Support for Risk-
informed Requirements Reasoning. Computer Systems Science and Engineering 20(1), 5–
17 (2005) 

15. Madachy, R., Boehm, B., Richardson, J., Feather, M., Menzies, T.: Value-Based Design of 
Software V&V Processes for NASA Flight Projects. In: AIAA Space 2007 Conference 
(2007) 

 



Accurate Estimates without Calibration?

Tim Menzies1, Oussama Elrawas1, Barry Boehm2, Raymond Madachy2,
Jairus Hihn3, Daniel Baker1, and Karen Lum3,�

1 LCSEE, West Virginia University, Morgantown, WV, USA
tim@menzies.us, oelrawas@mix.wvu.edu, danielryanbaker@gmail.com

2 CS, University of Southern California, Los Angeles, California, USA
boehm@sunset.usc.edu, madachy@usc.edu

3 JPL, California, USA
jairus.hihn@jpl.nasa.gov, karen.t.lum@jpl.nasa.gov

Abstract. Most process models calibrate their internal settings using historical
data. Collecting this data is expensive, tedious, and often an incomplete process.

Is it possible to make accurate software process estimates without historical
data? Suppose much of uncertainty in a model comes from a small subset of the
model variables. If so, then after (a) ranking variables by their ability to constrain
the output; and (b) applying a small number of the top-ranked variables; then it
should be possible to (c) make stable predictions in the constrained space.

To test that hypothesis, we combined a simulated annealer (to generate random
solutions) with a variable ranker. The results where quite dramatic: in one of
the studies in this paper, we found process options that reduced the median and
variance of the effort estimates by a factor of 20. In ten case studies, we show that
the estimates generated in this manner are usually similar to those produced by
standard local calibration.

Our conclusion is that while it is always preferable to tune models to local
data, it is possible to learn process control options without that data.

1 Introduction

Without precise knowledge from an organization, it is difficult to make precise estimates
about software processes at that site. For example, initial development effort estimates
may be incorrect by a factor of four [7] or even more [17].

It can be very difficult to find relevant data within a single organization to fully
specify all the internal parameters inside a process model. For example, after 26 years of
trying, we have only collected less than 200 sample projects for the COCOMO database.
There are many reasons for this, not the least being the business sensitivity associated
with the data. Therefore, in this paper, we explore what can be decided from process
models without local data.

For this experiment, we adopt the following framework. We say that a process model
P yields estimates from a combination of Project and Model variables:

� This research was conducted at WVU, USC, and NASA’s Jet Propulsion Laboratory partially
under a NASA sub-contract. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government.

Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 210–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Accurate Estimates without Calibration? 211

estimates = P (Project, Model)

P describes the space of influences between variables. and may take many forms:

– discrete-event models [19, 16];
– system dynamics models [1];
– state-based models [3, 13, 23];
– rule-based programs [28];
– standard programming constructs such as those used in Little-JIL [11, 33];
– or the linear models used in COCOMO [7,9], PRICE-S [29] and SEER-SEM [15].

The strength of each influence is controlled by the Model variables. Taken together, the
process model P and the Model variables store what we’ve leaned from the past.

Project variables, on the other had, concern a new situation that should be analyzed
using past knowledge. For example, P could assert “effort ∝ pcap” (programmer
skills is proportional to development effort) while Model could assert the proportional-
ity constant of -0.7 (i.e. “effort = −0.7pcap”). Finally, Project could assert that pro-
grammer skills are “in the upper range”; e.g. for a COCOMO model “pcap ∈ {4, 5}”.

We say Project and Model variables can be:

– fixed to one value such as “programmer capability (pcap) is nominal”;
– free to take on any legal value. In COCOMO, a free pcap can take values

{veryLow = 1, low = 2, nominal = 3, high = 4, veryHigh = 5}

– or float to some subset of the whole range. For example, a manager might declare
that “our programmers are in the upper ranges”; i.e. this pcap floats in a particular
part of the entire pcap range (pcap ∈ {4, 5}).

The range of legal values for variables increases from fixed to float to free:

(|fixed| = 1) < |float| < |free|

This paper reports an experiment that frees both the Model and Project variables.
At first glance, such an experiment may seem perverse, particularly if the goal is to
reduce uncertainty. Free variables range over a larger space than fixed variables: the
more free variables, the wider the range of Estimates. If we free both Model and
Project variables then, surely, this will result in greater Estimate uncertainty?

However, our analysis is not just some passive observer of a large space of options.
Instead, it is an active agent that seeks parts of the options space where predictions can
be made with greater certainty. We augment a Monte Carlo analysis with two tools.
SA is a simulated annealing algorithm that minimizes Estimates. RANKER is a vari-
able pruning algorithm, that seeks the smallest number of Project variables that most
reduce the Estimates. The combination of SA+RANKER is called STAR1.Since it
knows the most influential Project ranges, STAR can discover (and then constrain) the
factors that most most impact Estimates.

1 The name is a geek joke. In regular expressions, the star meta-character “*” matches any
characters. That is, just like STAR, it can be used to search a wide range of options.



212 T. Menzies et al.

Monte Carlo STAR
case study SCAT STAR

flight 712 44
ground 389 18
OSP 629 68
OSP2 84 31

Fig 1a: variance, in months.

Monte Carlo STAR
case study SCAT STAR

flight 1357 86
ground 737 38

OSP 1951 410
OSP2 297 182

Fig 1b: median, in months.

Fig. 1. Effort estimates seen in 1000 simulations of the Project ranges found by STAR. “Vari-
ance” (left hand side) shows the difference between the 75th and 50th percentile. “Median” (right
hand side) shows the 50th percentile estimate.

When compared to state-of-the-art process models, the effects of a STAR-style
analysis are quite dramatic. Figure 1 compares STAR’s estimates to those generated
by SCAT [22, 21, 20], a COCOMO-based tool used at NASA’s Jet Propulsion Labora-
tory. SCAT fixes Model and perform a Monte Carlo simulation of the Project ranges.
Each row of Figure 1.A is one case study:

– flight and ground systems software from NASA’s Jet Propulsion Laboratory;
– OSP is the GNC2 for NASA’s Orbital Space Plane (prototype);
– OSP2 is a newer version of OSP.

Note that, for all four case studies, STAR reduces the variance and median estimates to
a small fraction of SCAT’s estimates, sometimes as much as a factor of 20 (in Figure
1a: 712

44 ≈ 20; in Figure 1b: 737
38 ≈ 20).

The rest of this paper describes STAR. We extend prior work in two ways. Prior
reports on STAR [26] were based on limited case studies; here we report ten new case
studies showing that our main effect (reduced median and variance) holds in a wide
range of cases. Also, prior reports on Figure 1 [25] failed to check the validity of those
results. The ten case studies discussed below show that STAR’s estimated are shown to
be close to those generated via standard local calibration, despite being generated from
a large space of Project and Model options. This validity check greatly increases our
confidence in the STAR method.

It is unknown if our results apply to software process models more complex than
STAR’s COCOMO-style of models. However, our results to date suggest that other
process models could make reasonably accurate predictions without local data by:

– finding the fewest number of variables that most effect model output;
– constrain them;
– check for stable conclusions in the constrained space.

2 Related Work

In terms of the framework of this paper, related work may be divided into:

2 GNC= guidance, navigation, and control.



Accurate Estimates without Calibration? 213

– Prediction: fix Model and Project and generates fixed estimates.
– Calibration: import an log of fixed estimates and Project variables, find fixes to

Model that best explain how Project inputs lead to estimation outputs.
– Monte Carlo studies: fix the Model values (perhaps to values learned via calibra-

tion), import floating Project values, generates a range of possible estimates.

In the field of effort estimation:

– Prediction is used to create one point estimate for a project; e.g. COCOMO [7,
8],PRICE-S [29] and SEER-SEM [15].

– Calibration is useful for learning from historical data; e.g. see Boehm’s local cali-
bration procedure [7, p526-529] or the COSEEKMO toolkit [24].

– Monte Carlo studies are useful for conducting what-if queries across a range of
possible projects [30]. Such Monte Carlo studies are conducted by many tools in-
cluding COBRA [10], CrystalBall [5], SCAT [21, 20], and 2CEE [6].

To the best of our knowledge, this work is the first to try freeing both the Project and
Model variables. Even in the field in search-based software engineering, we have not
seen anything like this study. It is true that search-based SE often uses non-liner search
methods like SA. A recent review of 123 search-based SE papers [31] showed that much
of that work relates to testing (e.g. SA to minimize test suites for regression testing)
while only a handful of those papers related to the kinds of early project process plan-
ning discussed here. For example, Aguilar-Ruiz et.al. [2] and Alvarez et.al. [4] apply
search-based methods for effort estimation. One facets that distinguished STAR from
other methods is that we are searching over more than just the effort models explored
by the Aquilar-Ruiz & Alvarez teams. Also, unlike standard data mining approach, we
do not try to learn better Model variables from historical data.

3 STAR

STAR’s current implementation explores three software process models:

– The COQUALMO software defect predictor [9, p254-268].
– The COCOMO software effort predictor [9, p29-57].
– The THREAT predictor for project effort & schedule overrun [9, 284-291].

COQUALMO models two processes (defect introduction and defect removal) for
three phases (requirements, design, coding). COCOMO assumes that effort is expo-
nentially proportional to some scale factors and linearly proportional to some effort
multipliers. COCOMO estimates are development months (225 hours) and includes all
coding, debugging, and management activities. The THREAT model contains a large
set of two-dimensional tables representing pairs of variable settings are problematic.
For example, using the rely vs sced table, the THREAT model would raise an alert if
our tool decides to build a system with high rely (required reliability) and low sced
(schedule available to the development).

STAR samples the space of possibles models inside COCOMO and COQUALMO
using the following technique. Internally, COCOMO and COQUALMO models contain



214 T. Menzies et al.

strategic? tactical?
scale prec: have we done this before? ✓
factors flex: development flexibility ✓
(exponentially resl: any risk resolution activities? ✓
decrease team: team cohesion ✓
effort) pmat: process maturity ✓

upper acap: analyst capability ✓
(linearly pcap: programmer capability ✓
decrease pcon: programmer continuity ✓
effort) aexp: analyst experience ✓

pexp: programmer experience ✓
ltex: language and tool experience ✓
tool: tool use ✓
site: multiple site development ✓

sced: length of schedule ✓

lower rely: required reliability
(linearly data: secondary memory storage requirements ✓
increase cplx: program complexity ✓
effort) ruse: software reuse ✓

docu: documentation requirements ✓
time: runtime pressure
stor: main memory requirements ✓

pvol: platform volatility
COQUALMO auto: automated analysis ✓ ✓
defect removal execTest: execution-based testing tools ✓ ✓
methods peer: peer reviews ✓ ✓

Fig. 2. The variables of COCOMO, COQUALMO, and the THREAT model

many linear relationships. Nominal values of x = 3 change some estimate by a factor
of one. These COCOMO lines can hence be modeled as a straight line y = mx + b
passing through the point x, y = 3, 1. Such a line has a y-intercept of b = 1 − 3m.
Substituting this value of b into y = mx + b yields y = m(x − 3) + 1. COCOMO’s
effort slopes are either positive or negative, denoted m+, m− (respectively):

– The positive slopes m+ represents the variables that are proportional to effort; e.g.
increasing required reliability also increases the development effort.

– The negative slopes m− represents the variables that are inversely proportional to
effort; e.g. increasing analyst capability decreases the development effort.

Based on decades of experiments with calibrating COCOMO models, we have iden-
tified variables with different slopes. These following COCOMO variables have m+

slopes: cplx, data, docu, pvol, rely, ruse, stor, and time. Also, these variables have m−

slopes acap, apex, ltex, pcap, pcon, plex, sced, and site (for an explanation of those
terms, see Figure 2). Further, based on decades of calibration of COCOMO models, we
assert that effort estimation, m+ and m− have the ranges:

−0.178 ≤ m− ≤ −0.078
0.073 ≤ m+ ≤ 0.21 (1)

Using an analogous procedure, it is possible to derive similar equations for the CO-
COMO scale factors, the COQUALMO scale factors/effort multipliers/ defect removal
variables (for full details, see [26]).

With the above machinery, it is now possible to define a Monte Carlo procedure
to sample the space of possible THREAT/COCOMO/COQUALMO Models: just



Accurate Estimates without Calibration? 215

randomly selecting {m−, m+}. As to sampling the space of possible THREAT models,
this is achieved by adding random variables to the cells of THREAT’s tables.

STAR tries to minimize defects (D), threats (T ), and development effort (E). This is
a non-linear optimization function: e.g. reducing costs can introduce more defects. For
this reason, we use simulated annealing (SA) to explore trade-offs between models. SA
is best explained in comparison to the Metropolis algorithm.

A Metropolis Monte Carlo algorithm [27] improves on basic Monte Carlo as fol-
lows. New solutions are created by small mutations to some current solutions. In the
case of STAR, an “solution” is some randomly selected part of the space of possi-
ble Projects. If a new solution is “better” (as assessed via an energy function), it be-
comes the new current solution used for future mutations. STAR’s energy function is

E =
√

E
2
+ D

2
+ T

2
/
√

3 where x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1.

Energy ranges 0 ≤ E ≤ 1 and lower energies are better. If a new solution does not
have lower energy, a Boltzmann acceptance criteria is used to probabilistically decide
to assess the new state: the worse the new state, the less likely that it becomes the new
current state.

A simulated annealer (SA) [18] adds a “temperature” variable to the Boltzmann
accept criteria such that, at high temperatures, it is more likely that the algorithm will
jump to a new worst current state. This allows the algorithm to jump out of local minima
while sampling the space of options. As the temperature cools, such jumps become less
likely and the algorithm reverts to a simple hill climber.

Our RANKER algorithm instruments the internals of SA. Whenever a solution is
assigned some energy, that energy is added to a counter maintained for each variable
setting in Projects. When SA terminates, RANKER sorts all variable ranges by the
sum of the energies seen during their use. The ranges that are lower in the sort order
are associated with lower energy solutions; i.e. lower defects, efforts, threats. RANKER
then conducts experiments where it fixes the first N ranked ranges and lets the remain-
ing variables float. N is increased till some minimum energy point is reached. A policy
are the project settings that achieve that minimum energy point.

The last two columns of Figure 2 show the results of Delphi panel session at JPL
where the COCOMO variables were separated into those tactical variables that can be
changed within the space of one project, and those strategic variables that required
higher-level institutional change (and so may take longer to change). For example, the
panel declared that pmat (process maturity) is hard to change within the space of a
single JPL project. In the sequel, all our RANKER experiments will be divided into
those that just use the strategic variables and those that just use the tactical variables3.

4 Experiments

Figure 3 shows various Projects expressed in term of floating and fixed variables.
For example, with JPL’s flight systems, the rely (required reliability) can float anywhere

3 Note that these definitions of strategic and tactical choices are not hard-wired into STAR.
If a user disagrees with our definitions of strategic/tactical, they can change a simple configu-
ration file.



216 T. Menzies et al.

float fixed
project variable low high variable setting

prec 1 2 data 3
OSP flex 2 5 pvol 2

resl 1 3 rely 5
team 2 3 pcap 3
pmat 1 4 plex 3
stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

float fixed
project variable low high variable setting

rely 3 5 tool 2
data 2 3 sced 3

flight cplx 3 6
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2
data 2 3 sced 3

ground cplx 1 4
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 3. Four case studies

X variable = setting
1 pmat = 4
2 ltex = 4
3 acap = 3
4 apex = 3
5 prec = 2
6 pcon = 3
7 execution testing and tools = 6
8 peer reviews = 6
9 automated analysis = 6

Fig.4.A: controlling only strategic Project variables

X variable = setting
1 ruse = 2
2 cplx = 5
3 resl = 3
4 tool = 3
5 sced = 2
6 stor = 3
7 flex = 5
8 automated analysis = 6
9 peer reviews = 6

10 docu = 2
11 execution testing and tools = 6
12 sced = 1

Fig.4.B: controlling only tactical Project variables

Fig. 4. Some RANKER results on OSP. The settings shown under the plots describe the policy
that leads to the policy point.

in the upper range; i.e. rely ∈ {3, 4, 5}. However, for flight systems, sced (schedule
pressure) is tightly defined (so sced is fixed to the value 3).

Figure 4 and Figure 5 shows the results of STAR. The variable ranges are sorted
along the x-axis according the order generated by RANKER. At any x value we see the
results of fixing the ranges 1..x, letting all ranges x + 1...max float, then running 1000



Accurate Estimates without Calibration? 217

X feature = range
1 pmat = 3
2 site = 6
3 pcon = 5
4 plex = 4
5 pcap = 5
6 ltex = 4
7 apex = 5
8 prec = 5
9 acap = 5

10 automated analysis = 6
11 execution testing and tools = 6
12 peer reviews = 6
13 acap = 4

Fig.5.A: controlling only strategic Project variables

X feature = range
1 resl = 5
2 cplx = 1
3 execution testing and tools = 6
4 flex = 5
5 docu = 1
6 ruse = 2
7 data = 3

Fig.5.B: controlling only tactical Project variables.

Fig. 5. Some RANKER results on JPL ground systems. The settings shown under the plots. de-
scribe the policy that leads to the policy point.

Monte Carlo simulations. In the results, “median” refers to the 50th percentile band
and “spread” refers to the difference between the 75th and 50th percentile in the 1000
generate estimates.

For this paper, we ran SA+RANKER on the four case studies of Figure 3, plus a
fifth study called “ALL”” that used the entire COCOMO ranges, unconstrained by a
particular project. Each study was repeated twice- one for controlling just the strate-
gic variables and once for controlling just the tactical variables. This resulted in ten
experiments.

Some of the results from four of those experiments are shown in Figure 4 and Fig-
ure 5 (space restrictions prevent us from showing all the results). In those four experi-
ments (and in the other six, not shown) the same effect was observed. Minimum effort
and defects was achieved after fixing a small number of Project variables (in Fig-
ure 4.A, Figure 4.B, Figure 5.A, and Figure 5.B, that number was at X={9,12,13 7}
respectively). At these minimum points, the median and spread estimates were greatly
reduced. We call this minimum the policypoint and use the term policy to refer to the
intersection of the case study defined in Figure 3, and the ranges found in the range
between {1 ≤ x ≤ policypoint}.

Figure 4 and Figure 5 are the reports we would offer back to the manager. Start at
the top of this list, we would advise, and apply as many oft eh top N things that you
can. Do not waste time implementing policy changes off this list.

In terms of controlling uncertainty, the reduction in the spread estimates at the pol-
icy point is particularly interesting. Note that this reduction in model uncertainty was
achieved by only controlling a few of the Project variables while letting all other
Project and Model variables float free. That is, in these case studies, projects could
be controlled (development effort and defects reduced) without using historical data to
constrain the Model variables.

For each of our ten experiments, a set of random Projects were generated, consis-
tent with the policies; i.e.

– If the policy fixes a value, then the Project contains that value;
– Otherwise, if the variable is found Figure 3, it is drawn from those constraints;



218 T. Menzies et al.

cast study control method δ %
OSP2 tactical 34
All strategic 35
OSP2 strategic 35
flight tactical 36
ground tactical 37
All tactical 41
flight strategic 42
ground strategic 49
OSP tactical 112
OSP strategic 147

Fig. 6. Median δ = (estimate(STAR)− estimate(lc)) between effort estimates generated by
conventional means (LC) and STAR

– Otherwise, the variable’s value is selected at random from background knowledge
of the legal range of the Figure 2 variables.

For each set, the following procedure was repeated 20 times. Ten examples were re-
moved at random and Boehm’s local calibration (LC) procedure [7, p526-529] was used
to train a COCOMO model on the remaining Project examples4. LC’s estimates were
then compared to the estimates generated by STAR’s simulation at the policy point (i.e.
floating over both the policy and the Model ranges). Figure 6 show the median differ-
ence in the estimates generated by LC or STAR . Note that, in 8

10 cases, the difference
is under 50%. The reason for the large deltas seen in 2

10 of the results (from the OSP
case study) are currently unknown but are a subject of much current exploration.

The median δ values of Figure 6 are around 0.4; i.e. a STAR estimate of 100 months
could really range for 60 to 140 months. Compared to the effort estimate reductions
shown in the introduction, δ is quite small. Recall that STAR reduced effort estimates
to a small part of the initial values, sometimes a factor of 20; i.e by a factor that is much
larger than 0.4. Clearly, even if STAR is wrong by ±40%, then the overall benefits to
be gained from applying STAR’s policies are still dramatically large.

5 Discussion

Given all the randomized exploration STAR performs over the space of possible
Models, this discrepancy is very small. and those discrepancies are dwarfed by the
much larger effort reductions of Figure 1.

How are we to explain the remarkable effectiveness of STAR in managing uncer-
tainty? Researchers in planning and theorem proving have recently shown that as model
complexity grows, other constraining effects may appear such as “master variables”; i.e.
a small number of settings that control all other settings [12,32]. Such master variables
can greatly reduce the search space within large models.

We hypothesize that software process models also contain master variables; i.e. much
much of uncertainty in a model is due to the influence of a small subset of model

4 LC was chosen since, in extensive experiments, we have found this decades old procedure
to be remarkably competitive with current data mining methods [14] including bagging and
boosting [6].



Accurate Estimates without Calibration? 219

variables. If so, then after (a) ranking variables by their ability to constrain the output;
and (b) applying a small number of the top-ranked variables; then it should be possible
to (c) make stable predictions in the constrained space.

6 Conclusion

In studies with one widely-used suite of effort/ detect/ threat predictors for software
systems, we have shown that:

– Estimation median values can be greatly reduced (see Figure 1). In comparisons
with other effort estimation tools, the reduction can quite dramatic. In the best case
our tools found Project ranges that yields estimates that were 5% of estimates
found by other means.

– Estimation variance can be reduced by only floating the Project values and leav-
ing the Model values free (see Figure 4 and Figure 5).

– Within the space of Project options that most reduce Estimation median and
variance, the predictions made by our process models are remarkably similar to
those made by conventional methods (see Figure 6 ).

The first result suggests that it may be highly advantageous to use STAR. Projects
designed around STAR’s recommendations will be will be delivered sooner and have
fewer bugs or threats.

The second result is of much practical importance since it means we do not require
calibration data to tune the Model variables. If process models can be deployed without
calibration, then they can be used with much greater ease and without the requirement
for an expensive and time-consuming period of data collection.

The third result is showing that (a) this method can find and remove the major sources
of uncertainty in a project; (b) in the reduced space, it is possible that the estimates in
the resulting constrained space will be close to estimates found via tuning on historical
data. In the above discussion section, we commented that this result has precedent in
the AI planning and theorem proving literature.

Finally, we comment on the external validity of these results. Compared to many
other process models5 this combination of effort/threat/defect models is relatively sim-
ple. As model complexity grows, then the space of possible Estimates can grow ex-
ponentially and STAR’s controlling effect may disappear. Therefore it is clear that we
can not claim that, for all process models, that Estimate variance can be controlled by
just constraining Project, not Model, variance.

Nevertheless, data collection for the purposes of model calibration remains as a ex-
pensive, tedious, and often incomplete process. Our results suggest that such data col-
lection may be, for some process models, an optional activity (caveat: provided that a
process model exists that specifics the general relationships between concepts in a do-
main). Our hope is that the results of this paper encouraging enough that other software
process modeling researchers will try the following strategy. First, find the fewest num-
ber of variables that most effect model output. Next, constrain them. Finally, check for
stable conclusions in the constrained space.

5 See Software Process journal, issue on Software Process Simulation, vol. 7, No. 3-4, 2002.



220 T. Menzies et al.

If these results from STAR generalize to more complex models, then is should be
possible to make reasonably accurate predictions without local calibration data.

Note that if such stability is absent in more complex models, and those models are
being used in domains with data collection problems, then we would argue that that is
a reason to abstain from such complexity, and use COCOMO-style models instead.

References

1. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series, Englewood Cliffs (1991)

2. Aguilar-Ruiz, J.S., Ramos, I., Riquelme, J., Toro, M.: An evolutionary approach to estimat-
ing software development projects. Information and Software Technology 43(14), 875–882
(2001)

3. Akhavi, M., Wilson, W.: Dynamic simulation of software process models. In: Proceedings
of the 5th Software Engineering Process Group National Meeting, Costa Mesa, California,
April 26-29, 1993, Software engineering Institute, Carnegie Mellon University (1993)

4. Alvarez, J.L., Mata, J., Riquelme, J.C., Ramos, I.: A data mining method to support decision
making in software development projects. In: ICEIS 2003: Fifth International Conference on
Enterprise Information Systems (2003)

5. Bailey, J.: Using monte carlo and cocomo-2 to model a large it system development (2002)
6. Baker, D.: A hybrid approach to expert and model-based effort estimation. Mas-

ter’s thesis, Lane Department of Computer Science and Electrical Engineering,
West Virginia University (2007), https://eidr.wvu.edu/etd/documentdata.
eTD?documentid=5443

7. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
8. Boehm, B.: Safe and simple software cost analysis. IEEE Software, 14–17 (Septem-

ber/October 2000),
http://www.computer.org/certification/beta/Boehm Safe.pdf

9. Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B., Brown, A.W.,
Chulani, S., Abts, C.: Software Cost Estimation with Cocomo II. Prentice-Hall, Englewood
Cliffs (2000)

10. Briand, L.C., Emam, K.E., Bomarius, F.: Cobra: A hybrid method for software cost estima-
tion, benchmarking, and risk assessment. In: ICSE, pp. 390–399 (1998)

11. Cass, A.G., Staudt Lerner, B., Sutton, S.M., Jr., McCall, E.K., Wise, A., Osterweil, L.J.,:
Little-jil/juliette: A process definition language and interpreter. In: Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000), June 2000, pp. 754–757
(2000)

12. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms
to scheduling problems. In: AAAI 1994 (1994)

13. Harel, D.: Statemate: A working environment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering 16(4), 403–414 (1990)

14. Jalali, O.: Evaluation bias in effort estimation. Master’s thesis, Lane Department of Computer
Science and Electrical Engineering, West Virginia University (2007)

15. Jensen, R.: An improved macrolevel software development resource estimation model. In:
5th ISPA Conference, April 1983, pp. 88–92 (1983)

16. Kelton, D., Sadowski, R., Sadowski, D.: Simulation with Arena, 2nd edn. McGraw-Hill, New
York (2002)

17. Kemerer, C.: An empirical validation of software cost estimation models. Communications
of the ACM 30(5), 416–429 (1987)

protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443
protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443
http://www.computer.org/certification/beta/Boehm_Safe.pdf


Accurate Estimates without Calibration? 221

18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

19. Law, A., Kelton, B.: Simulation Modeling and Analysis. McGraw-Hill, New York (2000)
20. Lum, K.: Software cost analysis tool user document (2005)
21. Lum, K., Bramble, M., Hihn, J., Hackney, J., Khorrami, M., Monson, E.: Handbook for

software cost estimation (2003)
22. Lum, K., Powell, J., Hihn, J.: Validation of spacecraft software cost estimation models for

flight and ground systems. In: ISPA Conference Proceedings, Software Modeling Track (May
2002)

23. Martin, R., Raffo, D.M.: A model of the software development process using both continuous
and discrete models. International Journal of Software Process Improvement and Practice
(June/July 2000)

24. Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting best practices for effort estima-
tion. IEEE Transactions on Software Engineering (November 2006), Available from:
http://menzies.us/pdf/06coseekmo.pdf

25. Menzies, T., Elrawas, O., Baker, D., Hihn, J., Lum, K.: On the value of stochastic ab-
duction (if you fix everything, you lose fixes for everything else). In: International Work-
shop on Living with Uncertainty (an ASE 2007 co-located event) (2007), Available from:
http://menzies.us/pdf/07fix.pdf

26. Menzies, T., Elwaras, O., Hihn, J., Feathear, M., Boehm, B., Madachy, R.: The busi-
ness case for automated software engineerng. In: IEEE ASE 2007 (2007), Available from:
http://menzies.us/pdf/07casease-v0.pdf

27. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: J. Chem. Phys. 21,
1087–1092 (1953)

28. Mi, P., Scacchi, W.: A knowledge-based environment for modeling and simulation software
engineering processes. IEEE Transactions on Knowledge and Data Engineering, 283–294
(September 1990)

29. Park, R.: The central equations of the price software cost model. In: 4th COCOMO Users
Group Meeting (November 1988)

30. Raffo, D.M., Vandeville, J.V., Martin, R.: Software process simulation to achieve higher cmm
levels. Journal of Systems and Software 46(2/3) (April 1999)

31. Rela, L.: Evolutionary computing in search-based software engineering. Master’s thesis,
Lappeenranta University of Technology (2004)

32. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proceedings
of IJCAI 2003 (2003),
http://www.cs.cornell.edu/gomes/FILES/backdoors.pdf

33. Wise, A., Cass, A., Staudt Lerner, B., McCall, E., Osterweil, L., Sutton, S.M., Jr.: Using little-
jil to coordinate agents in software engineering. In: Proceedings of the Automated Software
Engineering Conference (ASE 2000) Grenoble, France (September 2000), Available from:
ftp://ftp.cs.umass.edu/pub/techrept/techreport/2000/UM-CS-
2000-045.ps

http://menzies.us/pdf/06coseekmo.pdf
http://menzies.us/pdf/07fix.pdf
http://menzies.us/pdf/07casease-v0.pdf
http://www.cs.cornell.edu/gomes/FILES/backdoors.pdf
ftp://ftp.cs.umass.edu/pub/techrept/techreport/2000/UM-CS-
2000-045.ps


Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 222 – 233, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Investigating Factors Affecting the Usability of  
Software Process Descriptions 

Mohd Naz’ri Mahrin, David Carrington, and Paul Strooper 

School of Information Technology and Electrical Engineering 
The University of Queensland, St. Lucia 

4072 Queensland, Australia 
{mahrin, davec, pstroop}@itee.uq.edu.au 

Abstract. This paper presents the findings of our investigation into factors that 
affect the usability of software process descriptions from three sources of in-
formation: the literature on software process descriptions, data we collected 
from a survey of practitioners at the 5th Australia SEPG conference, and an 
analysis of core elements of software process metamodels. To understand how 
the identified factors can be used to evaluate process descriptions, we used sev-
eral factors as a set of criteria for a qualitative comparison of a number of proc-
ess descriptions. As a result, we discovered some gaps between the sample 
process descriptions and those usability factors. 

Keywords: Software Process Descriptions, Usability, Metamodels. 

1   Introduction 

The software process is important to the success of software development projects and 
needs to be adapted in various project environments. Process performers are responsi-
ble for enacting the process by interpreting process descriptions. In this paper, a soft-
ware process description is defined as a representation of a software process created 
to facilitate process enactment and evaluation, and to serve as a medium for commu-
nicating software process information.  

Producing a usable software process description is essential, since usability prob-
lems may translate into difficulty during process enactment. The demand for system-
atic and usable software process descriptions is high [13] but in practice, process de-
scriptions suffer from usability problems, including complexity and inflexibility of 
their structure, incompleteness of process information, and inconsistent process in-
structions [16, 21, 23].  

A growing number of studies have examined the key success factors that affect 
software processes (e.g. [19]) but there is little research dealing with the factors that 
affect the usability of process descriptions. A study by Kellner et al. [14] investigated 
usefulness and usability issues of software process descriptions and proposed some 
factors to be considered when designing and developing process descriptions, such as: 
process descriptions should be “up-to-date”, “well-structured”, “consistent in presen-
tation style”, and “tailorable”. We believe there is a need to investigate the application 
of these factors to existing process descriptions and observe how these factors can af-
fect the usability of process descriptions.  



 Investigating Factors Affecting the Usability of Software Process Descriptions 223 

In this paper, we attempt to answer a basic research question: what key factors 
make a software process description usable? To answer this question, we conducted a 
series of investigations from three sources of information: the literature on software 
process descriptions, data we collected from a survey of practitioners at the 5th Aus-
tralia SEPG conference, and an analysis of core elements of software process meta-
models. To understand how the identified factors can be used to evaluate process de-
scriptions, we used several factors as a set of criteria for a qualitative comparison of a 
number of process descriptions.  

The motivation for this research is based on the premise that process descriptions 
should be usable because of the important roles they have [4, 14, 23]: 

 

− To help process performers understand, communicate and enact the process. 
− To facilitate monitoring and control of the execution process.  
− To facilitate process evolution and reuse. 
− To support process management, evaluation and improvement. 
− To support automated execution of software process (whenever possible). 
− To provide a foundation for building a software engineering culture. 

 

The remainder of this paper is structured as follows: Section 2 presents the litera-
ture in the field of software process descriptions. Section 3 focuses on the usability 
factors investigation and results. A comparative review of a number of software proc-
ess descriptions is presented in Section 4, followed by research implications and con-
clusions in Section 5.  

2   Software Process Descriptions 

Bunse et al. [2] emphasise that the description of software development processes is a 
prerequisite for software process improvement (SPI), to explain the roles, activities 
and techniques applied by an organisation. Process descriptions support effective 
communication from project to project and among peers in software project organisa-
tions and can help demonstrate an organisation’s capabilities to customers. They can 
also serve as process asset evidence when certifying an organisation according to ex-
ternal process improvement models such as the Capability Maturity Model Integrated 
(CMMI) [3]. Derniame et al. [5] state that process descriptions can be used to drive 
software process enactment, which is one of the goals of software process technology. 

Before process performers can enact a process description in a specific software 
project environment, the process description needs to be instantiated. According to 
Wang et al. [23], instantiating a process description to suit a specific project environ-
ment is crucial, since activities, techniques, work products etc. need to be adapted to 
the specific project environment.  

To promote a structured way of describing software processes, a software process 
metamodel can be used as a reference. The Software Process Engineering Metamodel 
(SPEM) [17] is a software process metamodel introduced by the Object Management 
Group (OMG). In general, a software process metamodel provides a common struc-
ture for software process engineers to describe process elements including tasks, 
roles, work products and their interrelationships. According to Henderson-Sellers 



224 M.N. Mahrin, D. Carrington, and P. Strooper 

[10], process descriptions developed based on a metamodel are expected to be more 
extensible, configurable and tailorable to individual and project-specific needs. 

Process descriptions may be paper-based (known as process handbooks) or elec-
tronically-based (known as electronic process guides) documents. Commonly, process 
descriptions employ a combination of text and graphics [14]. For example, a generic 
structure of a process description might contain structured narrative text descriptions 
for the specific processes, methods, techniques, roles, guidance, etc. The graphical 
representations of process descriptions often contain decision tables or decision trees, 
graphical aids such as process flow diagrams, activity diagrams and work product de-
pendency diagrams.  

Paper-based process descriptions are traditionally used to communicate and dis-
seminate process knowledge, but experience has shown that process handbooks are 
not widely accepted by process performers. For example, paper-based process de-
scriptions are not very user-friendly which may cause difficulty for process perform-
ers wanting to find required information quickly. It is also difficult to distribute up-to-
date process knowledge in printed form [1, 14]. Some examples of paper-based proc-
ess descriptions are: the Personal Software Process (PSP) [12], and the Software En-
gineering Process Reference Model (SEPRM) [23]. 

The online EPG appears to be the trend for disseminating process knowledge 
across projects and process performers [16]. EPGs have advantages in terms of flexi-
bility to manage process information structure, increased maintainability and avail-
ability to all users [14]. Some online examples of EPGs are: OpenUP/Basic, XP and 
SCRUM (available at [7]), UPEDU [22] , and OPF [18].  

To some process performers, reading information through a computer screen is not 
as efficient as reading information on paper. Hornbæk et al. [11] summarised the po-
tential obstacles when reading information through a computer screen, including 
cumbersome navigation, a lack of overview of the document, lower tangibility of 
electronic documents compared to paper, uncertainty over of the length of document, 
lower reading speed caused by poor screen resolution, and possible fatigue if reading 
for an extended period.  

3   Usability Factors Investigation and Results 

Our investigations concentrated on identifying factors that enhance the usability of 
software process descriptions. We considered three sources of input: existing litera-
ture on software process descriptions, data from a survey of practitioners at the 5th 
Australia SEPG conference, and software engineering process metamodels.  

3.1   Potential Factors from Literature Reports 

Our literature search was performed in the digital libraries of well-known publishers 
in computer science and software engineering with “software process descriptions” 
and “process guides” as the search key. We identified four papers that suggested ideas 
for effective process descriptions. Such ideas are considered in our investigation and 
the ideas relevant to usability are presented in Table 1. The small number of relevant 
studies can be viewed as evidence that there is limited research in the software proc-
ess description field on usability issues.  



 Investigating Factors Affecting the Usability of Software Process Descriptions 225 

Table 1. Potential usability factors from literature reports 

Researcher 
Potential Factor Kellner 

et al. [14] 
Moe et 
al. [15] 

Scott et 
al. [21] 

Henderson-
Sellers [10] 

 Up-to-date Yes    
 Well-structured Yes   Yes 
 Consistency of presentation style  Yes  Yes  
 Understandable Yes    
 Tailorable Yes Yes Yes Yes 
 Checklist  Yes Yes   
 Searching features Yes  Yes  
 Include the basic process elements and their  

relationships 
Yes    

 Use diagrams, tables and narrative effectively Yes    
 Description of best practice  Yes   
 Enable integration with other CASE tools  Yes Yes  
 Collaborative process description development  

(between process engineer and process per-
former) 

 Yes   

 Templates for all documents to be produced   Yes Yes  
 Use graphical overview of the process Yes  Yes  
 Details on how to carry out tasks (e.g. steps 

etc) 
 

 
Yes  

 Provide forum or experience sharing facility   Yes  
 Provide completed work product examples   Yes  
 Use software process metamodels     Yes 
 Link to project databases to access examples   Yes  

 
Many factors are identified by multiple authors. For example, Kellner et al. [14], 

Moe et al. [15] and Scott et al. [21] all consider ability to tailor as an important feature 
for process descriptions. Work product templates and integration capability between 
process descriptions and CASE tools are other repeated factors.  

On the other hand, some factors are identified by only one author. For example, a 
link between process descriptions and project databases to access example documents 
and provide a forum or experience sharing infrastructure was highlighted only by 
Scott et al. [21].  

3.2   Potential Factors from Exploratory Survey 

We conducted an exploratory survey during the 5th Australia SEPG conference to un-
derstand how software practitioners develop and use process descriptions. We distrib-
uted approximately 70 self-administered questionnaires and 14 were returned with 
data appropriate for our analysis.  

The questionnaire consisted of seven questions and took approximately five min-
utes to complete. Five questions were about how software practitioners within their 
organisation develop and use process descriptions. One question was specifically on 
the factors that make process descriptions usable and the last question was about the 
willingness of the respondent to be involved and to contribute to our research. The us-
ability factors listed by respondents are presented in Table 2.  



226 M.N. Mahrin, D. Carrington, and P. Strooper 

Table 2. Potential usability factors from exploratory survey 

Original words/phrases Potential Factor 
 Minimal information 
 Not complex 
 Simple 

Simple 

 Easy to understand 
 Clear and unambiguous 
 Use understandable terminology 
 Software engineers have same understanding 
 Content – needs to be clear 

Understandable 

 Customizable – able to suit process to the project. Can be changed by 
practitioners over time 

 Tailorable – to any project and to any existing methodology in organi-
sation. 

 Multiple versions for different project types (e.g. safety critical, small, 
customer-driven, embedded). 

Tailorable 

 Repeatable 
 Reusable  

Reusable 

 Easy to implement 
 Easy to administration 

Operable 

 Consider local situation by taking input from software engineers 
 Own by the whole organization – not limited to process group only 

Collaborative process de-
scription development 

 Perform audit review to process description from time to time Process audit 
 Metrics to measure Metrics 
 Provide help desk Provide help desk 
 Reporting 
 Provide feedback mechanism 

Provide feedback 

 Explain to team on how to use and their purpose Provide training 
 Realization Realization 
 Immediately available – accessable in work environment. Immediately available 

 
We noticed some overlap in the meaning of words or phrases used by respondents 

to name the factors, for example: “easy to understand”, “clear and unambiguous” and 
“use understandable terminology” are quite similar in meaning. Such words and 
phrases were reviewed and aggregated as shown in the “potential factor” column of 
Table 2. 

3.3   Potential Factors from Software Engineering Process Metamodels 

We also investigated the elements of software process descriptions as defined in soft-
ware engineering process metamodels including SPEM [17], Open Process Frame-
work (OPF) [18], and Unified Method Architecture (UMA) [6].  

The focus is on the foundational elements (roles, work products, activities, and 
guidance) that underlie process descriptions. These four core elements are the main 
concern in our investigation. See Figure 1 for the relationships between these core 
elements and Table 3 for their definitions. We limit our investigation to these core 
elements because they are an essential part of any process description.  

 
 



 Investigating Factors Affecting the Usability of Software Process Descriptions 227 

 

Fig. 1. Software Process Descriptions Core Elements and their Relationships 

Table 3. Core Elements of Software Process Descriptions 
 

Factor Definition 

Activity Activity is a work element that defines basic units of work. It describes work per-
formed by a role, assisted by guidance and associated with work products. An activ-
ity may consist of atomic elements called steps. 

Role Role is a performer of, or a participant in, an activity. A role defines a set of related 
skills, competencies, and responsibilities of an individual or individuals (a.k.a. per-
formers or agents). It may be a human or a computerised tool. 

Work product Work product is a general term for activity inputs and outputs, descriptions of con-
tent elements that are used to define anything used, produced, or modified by an ac-
tivity.  

Guidance Guidance is a general term for additional information related to role, activity, and 
work product. Guidance provides information to assist a performer in creating a 
work product, how to perform an activity, and so on. Examples of guidance are: 
checklists, work product examples, guidelines, experience reports, and templates. 

Work products and roles are quite tangible and visible, e.g., they can be touched as 
well as seen. The activity is difficult to touch, but it can be observed from an explicit 
process description. Guidance is a general term for additional information related to 
roles, activities, and work products. In particular, guidance provides information to 
assist a performer on how to create a work product, how to perform an activity, and so 
on. Guidance can appear in many forms, such as templates, examples, and guidelines. 

In the context of software architectural design, Folmer et al. [8] suggest that guid-
ance can have a positive effect on usability and considering usability issues early at 
the architectural level can improve the usability of that software system. Analogously, 
we suggest that guidance can affect the usability of process descriptions and detecting 
usability problems prior to enactment is essential. We have therefore considered guid-
ance elements as one of the potential usability factors. 



228 M.N. Mahrin, D. Carrington, and P. Strooper 

4   Software Process Descriptions Comparative Review 

This section discusses the results from a qualitative comparison of several software 
process descriptions based on selected usability factors as identified in Section 3. The 
aim of this study is to observe how usability factors have been applied in these sample 
process descriptions.  

4.1   The Comparative Review Criteria 

There are many usability factors that could be considered as our comparison criteria, 
but for this study we select a small subset based on our assumption that this subset is 
essential for every process description. In particular, the selected factors and a brief 
justification for their selection are: 

  

− Tailoring guide: Instantiating a software process description to suit a specific soft-
ware project environment is crucial and the capability of process descriptions to be 
tailored to a specific project environment prior to enactment is crucial too.  

−  Searching feature and help support: Searching features and help support will sup-
port users when using a process description.  

− Enable integration with CASE tools: The capability of a process description to in-
tegrate with CASE tools can support users to perform tasks. 

− Use of a process metamodel: A software process description based on a process 
metamodel is expected to be better structured, more consistent in terms of presenta-
tion style and easier to tailor.  

− Use of diagrams, tables and narrative: Combinations of these presentation styles 
are expected to make a process description more presentable. 

− Consistency of presentation style: A consistent presentation style to describe proc-
ess elements can make process information more readable and searchable.  

− Well-structured: A well-structured process description can also make process in-
formation more readable and searchable.  

− Supported by guidance: Guidance for the three foundational elements of process 
descriptions (roles, work products and activities) is expected to assist users with 
enacting the process. 

4.2   Selected Software Process Descriptions  

Many paper-based and electronically-based process descriptions have been developed 
internally by software organisations, the open source community or third-party ven-
dors. For the purpose of our comparison, the focus is on one paper-based and two 
electronically-based process descriptions. The reviewed process descriptions are: 

 

− Open Unified Process (OpenUP) [7]: This electronically-based process description 
was developed using the Eclipse Process Framework Composer (EPFC). EPFC is 
an open-source product produced by the Eclipse Process Framework Project [6]. In 
brief, OpenUP applies iterative and incremental approaches within a structured 
software development lifecycle. OpenUP embraces a pragmatic, agile philosophy 
that focuses on the collaborative nature of software development. It is not tied to 



 Investigating Factors Affecting the Usability of Software Process Descriptions 229 

any specific CASE tools and provides a tailorable process description to address a 
variety of project types.    

− Unified Process for EDUcation (UPEDU) [22]: This is an electronically-based 
process description developed by Rational Software Corporation and École Poly-
technique de Montréal. UPEDU has been customized from the Rational Unified 
Process (RUP) for the educational environment. It provides a disciplined approach 
to assigning tasks and responsibilities within a development organisation. Its goal 
is to ensure the production of high-quality software that meets the needs of end us-
ers within a predictable schedule and budget.  

− Personal Software Process (PSP) [12]: PSP is a set of paper-based process descrip-
tions developed by Watts S. Humphrey. PSP was designed to facilitate project con-
trol, management, and improvement by individual software engineers using a 
structured framework of forms, guidelines, and scripts. The purpose of PSP is to 
train a software engineer to be able to manage and assess their ability to plan, track 
the performance, and measure the quality of developed products. In this paper, we 
analysed only the simplest PSP process: PSP0. 

4.3   Software Process Descriptions Comparison 

The result of our comparison is presented in tabular form and is divided into two cate-
gories: a comparison based on criteria given in Section 4.1 (in Table 4) and a detailed 
comparison based on guidance criteria for producing work products (in Table 5). We 
investigated work product guidance in detail because we believe this is a key aspect of 
making process descriptions more usable. In the following we discuss the findings and 
issues to be highlighted from the data in Table 4. 

 

− Tailoring guide: Both EPGs provide a tailoring guide only for work products, but 
not for activities and roles. To us, tailoring guides for activities and roles are also 
important and the absence of tailoring guides may negatively affect the usability of 
process descriptions. We found that no specific section of the PSP0 description 
discussed tailoring.  

− Searching feature and help support: All the sample descriptions provide ways for 
users to search process information and help support. For PSP0, the index at the 
back of the PSP book [12] is considered a tool for searching process information.    

− Enable integration with CASE tools: None of the sample descriptions explain how 
to integrate process descriptions with CASE tools.  

− Use of process metamodel: For OpenUP [7], information about the underpinning 
process metamodel is provided in the “overview” section. UPEDU discusses proc-
ess metamodels in one section of the UPEDU textbook [20]. No information was 
found about process metamodels in the PSP description.  

− Use of diagrams, tables and narrative: These presentation styles are present in 
both EPGs and the PSP book.  

− Consistency of presentation style: Both EPGs provide consistency of presentation 
style. PSP0 is also consistent in presentation style based on a tabular structure. 

− Well-structured: All sample process descriptions are considered well-structured, but 
the EPG examples have more dynamic structure compared to PSP0. For example, 



230 M.N. Mahrin, D. Carrington, and P. Strooper 

the relationships between process core elements (roles, work products and activities) 
of EPGs are structured by using hyperlinks and hypertext technology. 

− Supported by guidance: Not all sample process descriptions are supported by guid-
ance according to the core process elements structure shown in Figure 1. In fact, 
some core process elements were not supported by any guidance, for example, 
none of the roles in OpenUP other than the “architect” role. 
 

Table 4. Software process descriptions comparison 

Software Process Descriptions 
Criteria OpenUP - V1.0 

(EPG) 
UPEDU 
(EPG) 

PSP0 
(Paper-based) 

Tailoring guide 
Yes 

(for each work  
product) 

Yes 
(for each work  

product) 
No 

Searching feature and 
help support 

Yes 
(via web search) 

Yes 
(via web search) 

Yes 
(via textbook index) 

Enable integration with 
CASE tools 

No No No 

Use of process  
metamodel  

Yes 
(Unified Method  

Architecture) 

Yes 
(Unified Software 

Process Metamodel) 
No 

Use of diagrams, tables 
and narrative  

Yes Yes Yes 

Consistency of  
presentation style 

Yes Yes Yes 

Well-structured Yes Yes Yes 

Support by guidance 
Yes 

(for each discipline1) 
Yes 

(for each discipline) 
Yes 

(for each work product) 

 
From Table 5, we can see that different types of guidance are provided as support. 

“Example” appears to be the preferred form of guidance for UPEDU and PSP0, fol-
lowed by “template”, “guideline” and “checklist”. For OpenUP, “Checklist” is the 
main form of guidance, followed by “template”, “guideline” and “example”.  

The detected gaps in both comparisons give us some insights into issues regarding 
usability that are worth investigating:  

 

− Insufficient guidance for tailoring process descriptions may translate into difficulty 
instantiating process descriptions for a specific project context. To what extent is it 
possible to provide sufficient guidance for tailoring and what sort of project con-
text information is useful to support tailoring?  

− According to Henderson-Sellers [10], process descriptions developed based on a 
metamodel are expected to be more extensible, configurable and tailorable to indi-
vidual and project-specific needs. To what extent can process metamodels support 
software process engineer to achieve these expectations and how does it affect 
process descriptions usability?  
 
 

                                                           
1 A discipline is a collection of tasks that are related to a major area of concern of software de-

velopment, for example, requirements, architecture, and project management [6]. 



 Investigating Factors Affecting the Usability of Software Process Descriptions 231 

Table 5. Software process descriptions (SPD) comparison – details on work product guidance  

Guidance Type 
SPD Phase Work Product 

Template Example Check-
list 

Guide-
line 

Architecture Architecture notebook Yes No Yes Yes 
Build No No No Yes 
Design Yes No Yes No 
Developer test Yes  No No Yes 

Development 

Implementation No No Yes Yes 
Iteration plan Yes Yes Yes Yes 
Project plan Yes Yes Yes No 
Risk list Yes No Yes No 

Project  
Management 

Work items list Yes Yes Yes Yes 
Glossary No No No No 
Supporting requirements specifi-
cation 

Yes No Yes Yes 

Use case Yes Yes Yes No 
Use case model No Yes Yes Yes 

Requirements 

Vision Yes No Yes No 
Test case Yes No Yes No 
Test log No No No No 

OpenUP 
[7] 

Test 
Test scrip Yes No Yes Yes 
Glossary Yes Yes Yes No 
Software req. specifications Yes Yes Yes Yes 
Supplementary specifications Yes Yes Yes Yes 
Use case Yes Yes Yes Yes 
Use case model No Yes Yes Yes 
Use case package No Yes No No 

Requirements 

User interface prototype Yes Yes No Yes 
Analysis class No Yes Yes Yes 
Design class No Yes Yes Yes 
Design model No Yes Yes Yes 
Design package No Yes Yes No 
Software architecture document Yes Yes Yes Yes 

Analysis & 
Design 

Use case realization Yes Yes Yes Yes 
Build No Yes No No 
Component No Yes No No 
Imp. Model (model) No Yes No No 

Implementa-
tion 

Imp. Model (document) Yes Yes No No 
Defect Yes Yes No No 
Test case Yes Yes Yes Yes 
Test evaluation report Yes Yes No No 
Test plan Yes Yes Yes No 

Test 

Test results Yes Yes No No 
Change request Yes Yes No No Configuration 

& Chg. Mgmt. Configuration mgmt. plan Yes Yes No No 
Iteration plan Yes Yes No Yes 
Gantt diagrams No Yes No No 
Measurement plan Yes Yes No Yes 
Project measurements No Yes No Yes 
Review record Yes Yes No Yes 
Risks list Yes Yes No Yes 
Software development plan Yes Yes No Yes 

UPEDU 
[22] 

Project  
Management 

Work order Yes Yes No No 
Project plan summary Yes Yes No Yes 
Time recording log Yes Yes No Yes Planning 
Problem description No Yes No No 
Requirements statement No Yes No No 
Defect type standard Yes Yes No Yes 
Source program No No No Yes 

Development 

Defect recording log Yes Yes No Yes 

PSP0 
[12] 

Postmortem 
PSP0 used the same work products and the same guidance types in the postmortem 
phase as in the planning and development phases. 

 



232 M.N. Mahrin, D. Carrington, and P. Strooper 

− Which work product guidance types (template, example, checklist or guideline) are 
more effective in supporting the usability of process descriptions, particularly for 
work product descriptions? Is it necessary to provide all these guidance types to 
support software engineers? 

5   Implications of the Study and Conclusions 

This study has identified usability factors that need to be addressed when designing 
and developing software process descriptions. The findings from this study provide 
initial results regarding factors that impact process description usability, but we have 
not yet evaluated the actual impact on usability. The factors can be used as a guide for 
defining basic requirements for selecting or developing process descriptions.  

With respect to the software process research roadmap [9] created by the Interna-
tional Process Research Consortium (IPRC), our research aligns with the research 
node: “specifying processes using evidence”, which is categorized under the “soft-
ware process engineering” research theme. It is our intention to support software 
process engineers in preparing usability evidence through a set of measurable factors 
that affect the usability of process descriptions. Without usability evaluation, software 
process engineers run the risk of designing software process descriptions that are dif-
ficult to understand and enact by process performers.  

In this paper, we have used a small set of usability factors as a set of criteria for 
comparative review of three sample process descriptions. As a result, the analysis has 
detected a number of potential usability issues. The work in this paper is a part of our 
broader investigation into various aspects of usability for process descriptions. Some 
other aspects that still need elaboration are: 

 

− Validation of identified usability factors – we plan to ask a panel of software proc-
ess experts to review our consolidated list of usability factors.  

− We plan to apply the refined list of usability factors to a number of process descrip-
tions to evaluate their effectiveness in indicating usability problems. 

− We are also interested to investigate further how the identified usability factors can 
be incorporated to formulate a usability evaluation framework to support the Proc-
ess and Product Quality Assurance (PPQA) process area of the CMMI [3]. We ex-
pect that having a well-defined usability evaluation framework for process descrip-
tions can provide insight into processes, roles and associated work products for 
effective software process management.  

References 

1. Becker-Kornstaedt, U., Verlage, M.: The V-Modell guide: experience with a Web-based 
approach for process support. In: Proc. of the Software Technology and Engineering Prac-
tice, pp. 161–168 (1999) 

2. Bunse, C., Verlage, M., Giese, P.: Improved software quality through improved develop-
ment process descriptions. Automatica 34, 23–32 (1998) 

3. CMMI-DEV: Capability Maturity Model® Integration (CMMISM), Version 1.2. Software 
Engineering Institute (2006) 



 Investigating Factors Affecting the Usability of Software Process Descriptions 233 

4. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35, 75–90 (1992) 
5. Derniame, J.-C., Kaba, B.A., Wastel, D. (eds.): Software process: principles, methodology, 

and technology. Springer, Heidelberg (1999) 
6. Eclipse Process Framework (EPF) (Retrieved: March 10, 2007), Available at: 

http://www.eclipse.org/epf/ 
7. EPF Wiki (Retrieved: December 8, 2007), Available at: http://epf.eclipse.org/ 
8. Folmer, E., Gurp, J.V., Bosch, J.: A framework for capturing the relationship between us-

ability and software architecture. Softw. Process: Improve. and Pract. 8, 67–87 (2003) 
9. Forrester, E. (ed.): A Process Research Framework: The International Process Research 

Consortium (IPRC). Software Engineerng Institute (2006) 
10. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples Using 

the OPEN Process Framework (OPF). Annals of Software Engineering 14, 341–362 
(2002) 

11. Hornbæk, K., Frokjaer, E.: Reading patterns and usability in visualizations of electronic 
documents. ACM Trans. Comput.-Hum. Interact. 10, 119–149 (2003) 

12. Humphrey, W.S.: A discipline for software engineering. Addison-Wesley, Reading (1995) 
13. Humphrey, W.S. (ed.): The Software Process: Global Goals. In: Li, M., Boehm, B., Os-

terweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, Springer, Heidelberg (2006) 
14. Kellner, M.I., Becker-Kornstaedt, U., Riddle, W.E., Tomal, J., Verlage, M.: Process 

guides: effective guidance for process participants. In: Proc. of the Fifth International Con-
ference on the Software Process: Computer Supported Organizational Work, pp. 11–25 
(1998) 

15. Moe, N.B., Dingsøyr, T., Nilsen, K.R., Villmones, N.J.: Project Web and Electronic Proc-
ess Guide as Software Process Improvement. In: Richardson, I., Abrahamsson, P., Mess-
narz, R. (eds.) EuroSPI 2005. LNCS, vol. 3792, Springer, Heidelberg (2005) 

16. Moe, N.B., Dybå, T.: The use of an electronic process guide in a medium-sized software 
de-velopment company. Softw. Process: Improve. and Pract. 11, 21–34 (2006) 

17. OMG: Software Process Engineering Metamodel Specification (SPEM) Version 2, OMG 
document ptc/07-02-01 (Retrieved: March 1, 2007), Available at: http://www. 
omg.org 

18. OPEN Process Framework (Retrieved: March 10, 2007), Available at: http://www. 
opfro.org/ 

19. Rainer, A., Hall, T.: A quantitative and qualitative analysis of factors affecting software 
processes. Journal of Systems and Software 66, 7–21 (2003) 

20. Robillard, P.N., Kruchten, P., D’Astous, P.: Software engineering process with the 
UPEDU. Addison Wesley, Boston (2003) 

21. Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J., Becker-Kornstaedt, U.: Understanding 
the use of an electronic process guide. Information and Software Technology 44, 601–616 
(2002) 

22. Unified Process for Education (UPEDU) (Retrieved: March 11, 2007), Available at: 
http://www.upedu.org/upedu/index.asp 

23. Wang, Y., King, G.A.: Software engineering processes: principles and applications. CRC 
Press, Boca Raton (2000) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 234 – 245, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Degree of Agility in Pre-Implementation Process Phases 

Jaana Nyfjord  and Mira Kajko-Mattsson 

DSV, Stockholm University/KTH, Forum 100, SE-164 40 Kista, Sweden 
{jaana,mira}@dsv.su.se  

Abstract. In this paper, we investigate the degree of agility in the pre-
implementation software process phases within three Canadian organizations. 
Our results show that although the organizations studied have adopted an agile 
process, they still do substantial amount of planning upfront, which is typical 
for heavyweight processes. They claim that this planning is obligatory for car-
rying out subsequent development effectively. 

Keywords: Lifecycle, software process model, comparison, heavyweight. 

1   Introduction 

Little is known about what exactly happens in the agile pre-implementation software 
development phases. Most of the current research mainly reports on the status of the 
implementation phase instead, i.e. the phase during which the teams choose, priori-
tize, and implement requirements.  

In this paper, we investigate the state of the pre-implementation phase within three 
Canadian software organizations. We do this by comparing the industrial practice 
against Pre-Implementation Process Model, a model that is synthesized from a set of 
current agile process models. Because some customary planning activities are missing 
in the current agile models, we have complemented the synthesized model with the 
activities taken from a standard heavyweight software process model [6]. Our goal is 
threefold: (1) to identify the state of industrial pre-implementation practice, (2) to 
compare it to the existing agile process models, and (3) to find out how the industry 
has approached both agile and heavyweight activities.  

The remainder of this paper is as follows. Section 2 presents our research method. 
Section 3 describes the synthesized Pre-Implementation Process Model. Section 4 
presents the status within three Canadian organizations. Finally, Sections 5 and 6 
make conclusions and suggestions for future research. 

2   Research Method 

In this paper, we study the process phases that take place prior to implementation. 
These are Product Vision Planning, Product Roadmap and Release Planning, and the 
first part of the Implementation phase called the Iteration Planning phase. The shad-
owed area in Figure 1a outlines our scope. Regarding the remaining phase in the  
Implementation phase, it has already been studied and published in [9]. Some of its 
results indicate that substantial planning is conducted even in an agile context. This 
has, in turn, urged us to study the Pre-Implementation process phases.  



 Degree of Agility in Pre-Implementation Process Phases 235 

 

                                   (a)                                                               (b)                          

Fig. 1. Pre-implementation phases. a. Original model (left). b. Modified model (right). 

 
As a first step, we studied current agile process models. There is a substantial 

number of published agile process models. However, we decided to base our further 
work on eXtreme Programming (XP) [3] and Scrum [11]. We selected these because 
they were the most widely accepted models [5] and because they complement each 
other [1]. Together, they constitute a comprehensive framework covering both the 
engineering and management process levels [11]. 

As a next step, we elicited the activities belonging to their pre-implementation 
phases, and put them into a synthesized Pre-Implementation Process Model. When 
doing this, however, we observed that some important pre-implementation activities 
were missing. To ensure the comprehensiveness of our synthesized model and to 
fulfill our third goal, we complemented it with some heavyweight pre-implementation 
activities taken from the standard software process model [6]. In this way, we could 
enquire about their applicability in an agile context. Our synthesized model is pre-
sented in Figure 2 and described in Section 3. Each activity is marked with its origin, 
where XP stands for eXtreme Programming, S stands for Scrum, and HW stands for 
heavyweight.  

After having created the synthesized Pre-Implementation Process Model, we cre-
ated a questionnaire. The questionnaire was open-ended and semi-structured. It cov-
ered more than 100 questions. Due to space restrictions, we cannot list them all. How-
ever, they mainly concentrated on finding out whether the companies performed the 
activities as defined in our synthesized model.  

Using the questionnaire, we then interviewed the representatives in our companies 
and established their state of practice. During the course of this work, we realized that 
they used a set of heavyweight activities. To find out the reasons and to validate the 
status, we contacted the organizations anew. These reasons are described in Section 5.  

Regarding the organizations studied, we interviewed five representatives of the ag-
ile development organizations in three Canadian companies. The companies were 
selected according to their relative ease of access, i.e. by the convenience sampling 
method [10]. All of them apply a mix of Scrum and XP practices in their projects. 

The first company, denoted as Organization 1, develops products ranging from 
ground stations for satellite radar systems to e-commerce applications. Here, we in-
terviewed a process owner, project manager, and chief architect. We studied one 
small and one middle-sized agile project evolving data transaction systems. 



236 J. Nyfjord and M. Kajko-Mattsson 

The second company, denoted as Organization 2, is an IT management consulting 
firm. Here, we interviewed a method owner responsible for a small agile project con-
verting an old desktop based scheduling system to a new web-based system. 

The third company, denoted as Organization 3, is an IT consultancy firm. It fo-
cuses on consulting agile development practice, mainly within the financial and insur-
ance industries. Here, we interviewed an agile coach responsible for a middle-sized 
agile project evolving a banking system. 

3   The Process Model 

The Pre-Implementation process phase covers the following phases: Product Vision 
Planning, Product Roadmap and Release Planning, and Iteration Planning. These are 
described in Sections 3.1-3.3, respectively. They are also listed in Figure 2. 

 3.1   Product Vision Planning 

Organizations generally have an overall picture of their businesses, core values, stra-
tegic goals, mission and product portfolios. In the Product Vision Planning phase, this 
overall picture is evolved into a more detailed product vision focusing on product 
goals, overall business and product structure and return on investment. Product Vision 
Planning guides work in subsequent planning, decision making, and work [11].  

As listed in Figure 2, the phase starts with determining the product vision, calculating 
return on investment (ROI) and creating the business case [11]. In order to understand 
the client business and to identify business needs, one makes a top-down analysis of the 
business, its goals, operations, and existing systems. One then creates a business archi-
tecture model. This model will provide guidance in identifying functionality in subse-
quent planning [11]. Similarly, to guide the identification of technical needs, one  
outlines a system architecture model. One also specifies the overall quality goals and 
identifies the needs of the development environment [11]. 

Using the information gathered, one then develops a product vision plan. Here, one 
identifies the overall system functionality, elicits high-level requirements (product 
backlog items in Scrum and Stories in XP [3][11]), outlines future releases, and plans 
resource allocation [4][11]. The requirements are coarsely prioritized and grouped 
according to the criteria such as ROI or system functionality [11].  

Based on the product vision plan, one records an initial high-level requirements 
specification covering for instance feature descriptions and high-level use cases [4]. 
Finally, one records the product vision plan [4].  

3.2   Product Roadmap and Release Planning 

The Product Roadmap and Release Planning consists of three sub-phases: Release 
Preparation, Product Roadmap Planning and Release Planning. Release Preparation 
involves preparatory activities for the whole phase. Here, one schedules the planning 
meetings and gathers all the necessary information, including the product vision plan 
and high-level requirements specification [4][11]. 



 Degree of Agility in Pre-Implementation Process Phases 237 

 
 

Fig. 2. Our synthesized process model. S stands for Scrum. XP stands for eXtreme Program-
ming. Bullets (●) and (I) stands for the activities elicited from industry in this study. 
 
 



238 J. Nyfjord and M. Kajko-Mattsson 

In the Product Roadmap Planning phase, one outlines a high-level roadmap of fu-
ture product versions. Here, one studies the product vision plan, identifies new or 
revises old high-level requirements, creates a requirements list (a backlog in Scrum or 
a set of Stories in XP [3][11]), and updates the requirements specification [4] [11].  

In the next step, one creates a product roadmap outlining future releases. One starts 
by designating or revising the product releases and their contents using various crite-
ria such as customer priority, business value, criticality, and other [11]. One then 
determines their schedule and budget [11]. Finally, one records the results [4].  

Once the product versions and their release dates are determined, the actual release 
is planned in the Release Planning phase. Here, one creates a high-level plan for the 
identified releases which one then regularly revisits before each release start [11].  

In the Release Planning phase, one first studies the product roadmap, requirements 
list and the current version of the requirements specification [4][11]. To pin down the 
requirements for the upcoming release, one identifies new or revises old requirements 
[4]. For each requirement, one assigns business value, identifies risks, estimates de-
velopment effort, assigns priority value and records the results [3][11]. One then pri-
oritizes and/or re-prioritizes the requirements accordingly [3]. Based on the prioritiza-
tion results, one then re-organizes the requirements list and groups its items according 
to the chosen criteria [11]. Its top-priority items should reflect the requirements to be 
selected for the release [3]. 

After having defined the preliminary contents of the release, one once again scruti-
nizes the release scope with respect to the requirements chosen. To determine its final 
scope, one decides upon the number and length of iterations and assigns requirements 
to them [3]. One then studies their development feasibility and determines the effort 
for both the iterations and the release [11]. Finally, one confirms and records the re-
lease plan [4]. 

3.3   Iteration Planning 

Iteration Planning is conducted at the start of each iteration. It involves three phases, 
Iteration Preparation, Iteration Scoping and Task Planning. Here, the team, product 
management and other relevant stakeholders meet to plan the implementation work to 
be conducted in the coming iteration [3][11].  

In the Iteration Preparation phase, one conducts preparatory activities for starting 
the iteration, that is, one schedules the iteration planning meeting and collects all the 
necessary input to plan the iteration effectively [11]. In the next two phases (Iteration 
Scoping and Task Planning), one conducts the actual iteration planning. These phases 
take place during the first day of the iteration [3].  

In the Iteration Scoping phase, one studies, analyses and prioritizes the require-
ments planned for the next iteration in order to determine its scope [3]. One first pre-
sents a current state of business conditions, and the pending requirements.  One may 
also identify new requirements and include them in the iteration plan. [11]  

To facilitate analysis and design, one groups the requirements according to some 
chosen criteria [4]. One then prioritizes them and revises the extant requirements list 
[3]. The requirements having the highest priority get selected for the implementation 
[3]. In cases when the original requirements cannot be squeezed into the iteration or in 



 Degree of Agility in Pre-Implementation Process Phases 239 

technically complicated cases, one may suggest alternative requirements that may 
better fit into this iteration [11]. 

After having agreed on the requirements to be implemented, one then plans for the 
iteration and determines its scope. Here, one defines the iteration objective, ensures 
that each requirement is understood and feasible within the iteration and estimates or 
re-estimates the development effort [3]. One then agrees upon the iteration plan [4].  

In the Task Planning phase, one makes an execution plan to implement the priori-
tized requirements [3]. One first creates or modifies an analysis model for each re-
quirement [7]. One then combines the analysis models, identifies quality problems, 
and creates traceability among the requirements [4]. Based on these results, one up-
dates or modifies requirements specification accordingly [4]. 

For each requirement and its analysis model, one identifies/revises design goals, 
studies architecture, identifies architectonical changes, and creates/modifies a design 
model, if required [7]. 

After having agreed upon the analysis and design model, one plans the implemen-
tation of each requirement [4][7]. Here, one identifies tasks required for implementing 
the design model, groups the tasks, estimates or re-estimates resources required for 
implementing them, estimates combined resources for the entire requirement and 
signs up for the tasks [3]. For follow-up reasons, one records the task assignments and 
other relevant data [3]. 

Based on the outcome from the analysis, design and task planning, one revises the 
implementation plan [3][4]. One then specifies the acceptance tests constituting the 
criteria for accepting or rejecting each requirement implementation [3]. Finally, one 
confirms the iteration plan and updates the iteration plan anew, if required. 

4   Status within the Organizations Studied 

This section presents the status within the organizations studied based on the inter-
view results.  

4.1   Product Vision Planning 

On a general level, our results indicate that many of the activities described in the 
Product Vision Planning phase are typically done in the agile projects studied, but to 
varying degrees, depending on the project type, size, criticality, and resources.  

Our results also show that the organizations studied have two levels of planning, 
the Business and Engineering planning levels. Product Vision Planning takes place 
upfront on the Business level. It is not carried out on the Engineering level. However, 
it is required as input to the Engineering planning level.  

The product vision plan is always produced on the Business level in the studied or-
ganizations. Besides a project go/no-go decision, the product vision plan provides a 
foundation for the subsequent product, release and iteration planning. In Organization 
1 and Organization 2, it is called Operational Concept. It gives a high-level view of 
the system needs, its context and its operational characteristics. Regarding Organiza-
tion 3, they do not use the term Operational Concept, but refer to a similar outcome. 
This outcome seems to be less formal than the Operational Concept. 



240 J. Nyfjord and M. Kajko-Mattsson 

Regarding the Product Vision Planning activities as listed in our model, all the five 
interviewees have confirmed that their organizations carry out the majority of them. 
They create product visions, conduct high-level business and architecture analyses, 
identify the overall system functionality requirements and quality goals. The activities 
that do not to take place in any of the organizations studied are the ROI calculation, 
requirements prioritization, requirements grouping, and mapping the requirements 
onto the releases. All but the ROI calculation take place in later planning phases. 

Regarding the ROI analysis, the coarse-grained granularity character of the func-
tionality requirements does not allow the organizations studied to make any meaning-
ful ROI calculations. The interviewees claim that they simply lack appropriate tools 
for making certain calculations. Hence, business stakeholders do not even try to quan-
tify ROI. However, our interviewees agreed that with appropriate tools, the activities 
concerning ROI calculations should take place in this phase.  

When studying the Product Vision Planning phase in our organizations, we have 
observed a new activity that has neither been suggested by Scrum nor by eXtreme 
Programming. It concerns contract writing.  

Contracts are always written in all the studied organizations in this phase. How-
ever, in Organization 3, they may be finalised after the start of a project. A project 
may start based on an oral agreement. Organization 3 does so in order to avoid time 
consuming interaction with legal departments.  

4.2   Product Roadmap and Release Planning 

The Roadmap and Release Planning phase is conducted by all the organizations stud-
ied. As shown in Figure 1b, it takes place on the Engineering planning level and is 
generally called the Release Planning phase in all of the organizations. It starts after a 
decision to initiate a project has been made and a product vision plan has been  
produced. 

All the organizations studied have defined a Product Roadmap Planning phase. 
During this phase, they break down the product vision plan (their Operational Con-
cept) into an overall high-level product roadmap. This roadmap outlines the evolution 
of the product and delineates the product releases. The time span of the product road-
map varies from months to years.  

All the organizations studied have also defined a Release Planning process. How-
ever, they conduct it formally only in cases of evolution and maintenance projects or 
where the product is known for other reasons. They do not conduct it as formally in 
some specific innovative projects. Organization 1, for instance, does not conduct it in 
small projects where entirely new products are developed. The reason for this is the 
fact that one does not exactly know in advance what is to be built.  

Regarding the projects that undergo the release planning, the practice does not dif-
fer much in the organizations studied. In Organization 1, this phase is also called 
Iteration 0. Its obligatory input is the Operational Concept which provides a basis for 
(1) identifying key system features and their dependencies, (2) eliciting and analyzing 
requirements, (3) creating the requirement specification, (4) making estimations, and 
for (5) creating/updating/revising a backlog. Requirements are primarily described in 
terms of use cases at this stage.  

 



 Degree of Agility in Pre-Implementation Process Phases 241 

Identification of the dependencies between the system features helps in organizing 
and prioritizing the work. This in turn aids in the identification and planning of high-
level work packages to be distributed over several releases.  

With the knowledge gained in the former steps, high-level estimations are made 
and compared against the current known capacity to further scope the releases and 
their iterations.  

Finally, a preliminary backlog is created based on the high-level system functional-
ity requirements as identified in the Operational Concept. The backlog is complimen-
tary to the planning documentation. It lists new functionality, enhancements, and 
problems to be addressed in the future. It is only used as a reminder internally by the 
team and continuously updated where after ideas or concerns are identified.  

Overall, the Release Planning phase follows the same process in all the organiza-
tions studied. We have however noticed some differences. They mainly concern the 
practice of architecture analysis, requirements elicitation, analysis and specification, 
and documentation. In Organization 1, for instance, these activities are always carried 
out. Whether agile or not, architecture and requirements analyses are conducted up-
front in all projects, i.e. before the implementation starts. They are conducted in a 
traditional way with all the required documentation according to an organizational 
process standard.  

In Organization 2 and Organization 3, on the other hand, the degree of formality 
depends on the size and criticality of a project. Generally, however, release planning 
encompasses the creation of an architectural model and process flow diagrams. Simi-
larly, the documentation practice of the requirements specification varies. Organiza-
tion 3, for instance, strives to use only Stories and the Informative Workspace as pre-
scribed by XP [3]. They document them only if need arises. 

4.3   Iteration Planning 

In all the three organizations studied, the minimum inputs required to start planning 
the iterations are the product roadmap, release plans and the specification of the over-
all requirements. 

Regarding the Iteration Preparation phase, all the organizations studied cover the 
scheduling and preparation activities. We have however observed one practical differ-
ence in this phase. The agile methods do not suggest any document to guide the itera-
tion planning. Regarding the organizations studied, they use a planning document 
dedicated to this activity. In Organization 1, it is called Work Definition. It is pro-
duced by the chief system engineer prior to the iteration planning start. It describes 
the requirements preliminarily selected for the iteration. Its purpose is to serve as the 
main input to the detailed iteration planning. It also provides a high-level or concep-
tual overview of the upcoming iterations. 

Concerning the Iteration Scoping phase, all the three organizations follow the ac-
tivities as defined in our model. This phase is conducted by the development team 
together with the project manager. They meet with the customer, negotiate the priori-
ties, and determine the scope of the iteration. Business and customer values are the 
main driving factors for prioritization in all the studied organizations. The Iteration 
Scoping phase takes place on the first day of the iteration.  



242 J. Nyfjord and M. Kajko-Mattsson 

Task Planning, on the other hand, is conducted by engineers only as it focuses on 
planning the engineering tasks. It usually takes place immediately after the Iteration 
Scoping phase. In some cases, however, it can take two additional days to complete it. 
Its duration depends on the complexity of the tasks and the skills of the developers. 

Most of the differences in the Iteration Planning phase are found in the Task Plan-
ning phase. Organization 1 covers the majority of the activities that we have listed in 
our synthesized model, including thorough requirements analysis and design, task 
break down and estimation, and recording of the iteration plan. In addition, Organiza-
tion 1 conducts an activity that we have not covered in our model. This activity is a 
form of an official contract between the developer and the chief system engineer, 
where the developer signs off the undertaking of the assigned tasks in her work pack-
age. The contracts are signed on an individual developer level, but the organization 
combines them and refers to them as a Team Service Level Agreement. The reason is 
that the responsibility for delivering the iteration results is shared by the team. 

The Task Planning phase in Organization 2 and 3 is almost similar. It only differs 
with respect to the documentation practice and contract writing. The developers do 
not sign any contracts on the developers’ level in these organizations. In Organization 
3, the documentation differs in the sense that the iteration plan and the requirements 
are primarily put on a Story wall [3] that is openly displayed for everyone. Traditional 
documentation is only conducted if required, for instance if the customer demands it. 

5   Comparison of Synthesized Model and the Industrial Practice 

In this study, we noticed some discrepancies between the industrial practice and our 
model. This, in turn leads us to modify our synthesized model to better reflect the 
industrial state of practice. The modifications are presented in Figure 2. They are 
marked with bullets next to the activity number and with an (I) put after the activity 
name to indicate that the change is implied by the industrial status. Below, we list and 
describe the observed differences. 

 

• Organizational Planning Levels: The agile models studied do not describe organ-
izational levels of planning. Our study shows evidence that the organizations studied 
conduct planning on two levels. The levels recognized in the industry are the Business 
and Engineering levels. Product Vision Planning, as described in our model, takes 
place on the Business level, whereas the Product Roadmap and Release Planning and 
Iteration Planning take place on the Engineering level. We believe that it is a useful 
division because it clearly communicates the purpose of the different planning phases. 
Hence, we modify our model and designate two levels of planning, the Business and 
Engineering levels (see Figure 1b). 
• Use of ROI: Agile models studied suggest measurement of productivity in ROI 
[11]. The organizations studied however do not make any ROI calculations. They 
claim that they lack appropriate tools for doing it at this level. Despite this, they agree 
that it should take place in the Product Vision Planning phase. For this reason, we 
keep the activities involving the ROI calculation in this phase (see Activities A-1.2 
and A-1.9.5 in Figure 2), and do not modify our synthesized model. Instead, we pro-
pose that the research community analyses the current ROI tools to find out reasons 
for why they are insufficient. 



 Degree of Agility in Pre-Implementation Process Phases 243 

• Requirements Specification: The agile process models are vague about pointing out 
the phase during which requirements are identified, analyzed and specified. As men-
tioned by the companies, the identification of the overall high-level functionality is 
already carried out in the Product Vision Planning phase (see Activity A-1.9.4). It is 
documented in a product vision plan called Operational Concept, a document corre-
sponding to a high-level specification of the overall system functionality. This speci-
fication is further evolved in subsequent phases, where each phase adds more detail to 
it. To address this, we have added the Activity A-2.14: Create requirement specifica-
tion in the Release Planning phase to our model (see Figure 2).  
• Use of Backlog: Scrum defines the backlog as a prioritized list of requirements that 
drives the release planning, iteration planning and implementation [11]. Scrum also 
suggests that it be maintained by a product owner [11]. In all the organizations stud-
ied, the objective of the backlog differs from the one defined in Scrum. It is main-
tained by the team and serves only as a complementary list of work to be done inter-
nally within the team. Other documents are used for planning and organizing the 
iteration work, such as the Operational Concept and Work Definition. This observa-
tion does not lead us to make any observable changes in our model. We believe that 
one should be free to decide on the media used for planning and managing the itera-
tions. We however clarify that a backlog can be used as a complimentary driving 
wheel of iterations [8], by adding the Activity A-2.21 Create/update backlog, if 
needed in the Release Planning phase in Figure 2.  
• Contract Management: Generally agile models value customer collaboration over 
contracts [2]. Our results show that the organizations studied negotiate contracts be-
fore the Product Roadmap and Release Planning phase. The reason claimed is that 
some contract items such as for instance budget constitute an important prerequisite 
for carrying out product and release planning. Only one of the organizations studied 
may start some projects based on an oral agreement and good-will. However, a con-
tract is always written. For this reason, we add a new activity for contract writing in 
the Product Vision Planning phase (see A-1.12 in Figure 2).  
• Iteration Planning Practice: Scrum suggests that the planning of iterations be 
prepared by scheduling meetings and by gathering the necessary information [11]. We 
have found that the iteration preparation activity involves a study of a document 
called Work Definition, produced prior to the iteration planning. It functions as a driv-
ing wheel of the iteration planning sessions by providing an overview of the iteration 
plan. We believe that this is a relevant aspect to consider in addition to the two al-
ready existing activities of the Iteration Preparation phase (see activities A-3.2 and A-
3.3 in Figure 2). Creating such a document also results in new input to the Iteration 
Scoping phase. Hence, we add two new activities. These are A-3.1 Create Work Defi-
nition in the Iteration Preparation phase and A-3.4 Study Work Definition in the It-
eration Scoping phase. 
• Duration of Task Planning: Agile models suggest that the Task Planning take 
place during the first day of the iteration [3]. Time-wise, it was clear however that it 
took longer than one day in the organizations studied. Within middle-sized projects in 
Organization 1 and 3, planning the tasks could sometimes take up to three days. 
Hence, we extend the number of days dedicated to Task Planning to 1-3 days instead 
(see Figure 2). We also propose that the models revise their suggestions for the dura-
tion length of this activity.  



244 J. Nyfjord and M. Kajko-Mattsson 

• Personal/Team Service Level Contracts: The agile models do not suggest any 
contract writing on the developers nor on the team level. However, this is a practice 
that is spreading in one of the organizations studied. It is claimed that it is a necessary 
quality assurance activity. At the end of the iterations, the deliverables provided by 
the developers and teams are measured against these contracts [9]. In this respect, we 
have identified one additional activity relevant for the Iteration Planning phase, i.e. 
an activity where the developer signs under her work assignment. For this reason, we 
add a new activity to our model, see Activity A-3.28 Write Personal/Team Service 
Level Agreement in the Iteration Planning phase in Figure 2.  
• Validation of the Status: Finally, when analyzing the pre-implementation phases, 
we observed that the organizations had implemented various activities typical for 
heavyweight processes. These concern activities such as requirements elicitation, 
analysis and specification, architectural analysis and design, documentation practice, 
guidelines regarding scalability, risk management and thorough task planning.  
 

This observation has made us contact the interviewees anew to find out the rea-
sons. Our interviewees claim that the degree of agility of the pre-implementation 
phases varies among projects. It depends on the phase in the product lifecycle, project 
type, its size, criticality, innovative character, degree of uncertainty, risk taking, per-
mission from stakeholders’ side to take risk, and budget. For instance, the majority of 
their fixed budget projects follow a more traditional pre-implementation approach 
whereas other yet unfunded projects follow a more agile approach. Also, in small, 
innovative, creative and totally new projects, one has difficulties to conduct detailed 
planning in advance. Hence, one mainly outlines product vision and high level re-
quirements within the pre-implementation phases and allows the rest to be resolved 
within the later phases.  

The claims made by the interviewees are well aligned with those of Scrum, stating 
that the primary difference between planning a fixed price/fixed date projects and 
new, unfunded projects is the degree to which the system must be analyzed and speci-
fied prior to the project start [11].  

Finally, our interviewees claim that good planning upfront in the Pre-
Implementation phases allows more agility in the Implementation phase. The key 
issue is to set up an instructive plan and then let the teams decide on the implementa-
tion process approach. With good and thorough plans, any degree of agility works 
well as long as long as one keeps control of the product vision, goals and fulfillment 
of these goals.  

6   Final Remarks 

The synthesized process model we have built is based on a subset of the existing agile 
process models. It also reflects the state of practice within the Pre-Implementation 
phases of three software organizations. Our results show that the organizations stud-
ied have adopted an agile approach. However, the degree of agility is lower than the 
degree of agility as observed in the Implementation phase [9]. The organizations stud-
ied have added some traditional activities in the Pre-Implementation phases. The 
reason for this is mainly the fact that larger, critical, fixed-budget projects involving 
for instance the evolution and maintenance of existing business critical systems  



 Degree of Agility in Pre-Implementation Process Phases 245 

require more traditional planning. The organizations however dare introduce more 
agility into smaller, more innovative, creative, and risky new projects. This observa-
tion makes us conclude that two different agile planning paths are developed: (a) one 
for projects requiring more upfront planning, such as for instance evolution and main-
tenance projects, and (b) another one for projects requiring less formal and more agile 
planning, such as for instance totally new innovative projects. 

References 

[1] Abrahamsson, P., et al.: Agile Software Development Methods: Review and Analysis. 
VTT Electronics (2002) 

[2] Beck, K., et al.: Manifesto for Agile Development, http://agilemanifesto.org 
[3] Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley, 

Reading (2004) 
[4] Bruegge, B., Allen, H.: Object-Oriented Software Engineering: Using UML, Patterns, and 

Java. Prentice-Hall, Englewood Cliffs (2004) 
[5] Charette, R.: The Decision is in: Agile vs. Heavy Methodologies. Cutter Consor-

tium 2(19) (2001), http://www.cutter.com/content/project/fulltext/ 
updates/2001/epmu0119.html 

[6] IEEE Standard 12207.0-1996 - Software Life Cycle Processes. IEEE Inc. (1998) 
[7] Jeffries, R., Anderson, A., Hendrickson, C.: eXtreme Programming Installed. Addison-

Wesley, Reading (2000) 
[8] Merriam-Webster Dictionary, Online:  

http://www.m-w.com/dictionary/backlog 
[9] Nyfjord, J., Kajko-Mattsson, M.: Agile Implementation Phase in Two Canadian Organi-

zations. In: Proceedings of 19th Australian Software Engineering Conference (2008) 
[10] Robson, C.: Real World Research. Blackwell Publishing, Malden (2002) 
[11] Scrum: Scrum Methodology: Incremental, Iterative Software Development from Agile 

Processes. Rev. 0.9. Advanced Development Methods Inc. (2003) 
 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 246 – 256, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Support IT Service Management with Process  
Modeling and Analysis 

Beijun Shen 

Dept. of Computer Science and Engineering, Shanghai Jiaotong University,  
Shanghai 200240, China 
bjshen@sjtu.edu.cn 

Abstract. We propose a generic approach for introducing process modeling and 
analysis technology into IT Service Management (ITSM) to facilitate manage-
ment of efficient IT services with guaranteed quality. Our approach consists of 
five steps: identifying core processes in ITSM, establishing the scope of appli-
cability, defining the processes using the Flex language, executing/automating 
the processes, and analyzing the processes to find improvement opportunity. 
We illustrate our approach by applying it to a bank’s IT incident management 
process.  

Keywords: Process Technology, Process Modeling and Analysis, IT Service 
Management. 

1   Introduction 

In the past two decades, there have been considerable advances in software engi-
neering and management. Tremendous efforts have been made to make software 
development an engineering discipline, and many new process modeling, analysis, 
simulation, automation and optimization techniques have evolved. Concurrently 
with these increasing understandings of the possible mechanics of continuous 
software process improvement, has come the realization that software development 
is only one of a multitude of diverse domains in which the continuous improve-
ment of processes can lead to important benefits. So it is suggested to apply these 
process technologies in many other domains to lead to superior products and out-
comes [1]. Some practices have indicated they are effective in some specific  
domains [1][2][3].  

In this paper, we attempt to apply process modeling and analysis technology to IT 
service management (ITSM). ITSM is a discipline that strives to better the alignment 
of IT efforts to business needs and to manage the efficient supply of IT services with 
guaranteed quality. Like in the early days of the software engineering discipline, 
when dissatisfaction of customers with the often unsuccessful outcome of software 
development projects drove the focus from providing the individual programmer with 
ever better tools to adaptation of engineering, now there is a fundamental shift hap-
pening in the ITSM field. Here it is mostly companies’ discontent with a perceived 



 Support IT Service Management with Process Modeling and Analysis 247 

lack of transparency in IT provisioning that drives the rising interest in organizational 
aspects of ITSM. This paper reports our approach to manage IT service from a formal 
point of process and presents a case study conducted at a bank. 

The rest of the paper is organized as follows: Section 2 discusses related work. 
Section 3 presents our generic approach for introducing process modeling and analy-
sis technology into ITSM, followed by a detailed case study in section 4. Section 5 
concludes the paper. 

2   Related Work 

There have been some attempts at process technology application in other domains 
such as government [2] and medical care [3]. The notation of process in those do-
mains is far less well developed than they are in software engineering. Thus these 
other domains have much to gain from the application of software process technolo-
gies [1]. Process is also the core of IT service management; however no related works 
have been reported to apply software process modeling, analysis, and optimization 
technology to this domain. 

Another relevant piece of work is from researches of IT service management. Due 
to its increasing role in the enterprise, various IT frameworks have been developed to 
provide guidelines to the IT industry. Among them, IT Infrastructure Library (ITIL) 
[4] has developed into a de facto standard for the domain. The release of ISO 20000 
[6], which is based on the ITIL, will probably bring even wider adoption of ITIL in 
the industry. However ITIL does not dictate IT service processes but provides a com-
prehensive, consistent and coherent set of best practices for ITSM. It should be also 
noted that IT Service CMM was drafted as a capability maturity model for IT services 
providers [7]. However, IT Service CMM aims to measure the capability of the IT 
service processes of organizations, and doesn’t provide any guideline for process 
modeling, analysis and automation.  

Moreover, there is some existing work describing definition and automation of as-
pects of service management. S. Jansen provided a process model for customer con-
figuration updating that can evaluate the practices of a software vendor in these proc-
esses [8]. A. Keller proposed a general approach for automating ITSM [9].  

In spite of its relevance, its wide distribution and a large number of publications, a 
generic and comprehensive approach to manage IT service from a formal point of 
process is lacking. Our work employs modeling, analysis and automation techniques 
that are applicable to reasoning about the software processes, and applies these tech-
niques to ITSM to improve its management efficiency and quality. 

3   Our Approach 

In this section, we present a generic approach to apply process technology in IT ser-
vice management, which can also guide the practices in other domains. Our approach  
 



248 B. Shen 

Process
Identifying

Process
Scope

Process
Definition

Process
Execution

Process
Analysis

Lesson 
Learned

Core
Processes

Scope

Process
ModelExecution

Data

 

Fig. 1. Generic approach to apply process technology in ITSM 

comprises five steps, as shown in figure 1, and each of them will be described de-
tailedly in following subsections. 

3.1   Identify Core Processes for the Domain 

To identify the best-practice processes for ITSM, we turn to the IT Infrastructure 
Library (ITIL), which deals with the control and monitoring of IT services based on 
principles of classical service provision. Within the ITIL there are two areas of ITSM: 
service support [4] and service delivery [5]. Each of them defines five processes, as 
depicted in figure 2. Service support also has a chapter for service desk guidance. The 
service desk is however a business function and not a process. 

 

Fig. 2. Core Processes of ITSM 



 Support IT Service Management with Process Modeling and Analysis 249 

3.2   Establish the Scope of Applicability  

We find that not all of these ten ITSM processes are best suited for making them more 
efficient through the applicability of software process technology. So we adopt the fol-
lowing basic ITSM process characteristics [10] to establish the scope of applicability: 
 

1) Recurrence: degree of the recurrence frequency of process instances.  
2) Cycle Time: average duration of a process instance from the event that triggers 

it to its conclusion. 
3) Organizational Complexity: a compound measure, based on the number of dis-

tinct parties involved in the process and the complexity of their interactions. 
4) Service Level Impact: a measure of how lacking effectiveness in process execu-

tion influences the service level compliance. 
5) Structure: a measure of how concrete an activity flow structure can be defined 

for the process. 
 

According to these characteristics, the ITSM processes are evaluated [10] as shown 
in table 1. Among these ten processes, incident management, problem management and 
change management are “classic” processes, which involve multiple actors in a clearly 
structured activity flow. This makes them best suited for process modeling, analysis, 
and automation. Incidentally, those are also the processes that are determined to have 
the most immediate impact on service level compliance and shortest cycle times. 

Table 1. Characteristics of ITSM processes 

ITSM process Recurrence Cycle Time Complexity SL Impact Structure 
incident management high low high high high 
problem management medium medium medium medium high 
configuration management - - low low low 
change management medium medium high medium high 
release management low high high medium medium 
service level management low high medium low low 
financial management - - low low low 
capacity management  - - low low low 
IT service 
continuity management 

- - low low low 

availability management - - low low low 

3.3   Define the Processes 

According to ITIL, ITSM processes can be defined through four aspects: 
 

- Resource Management (RM) is designed to manage resources, including human, 
facilities, and the work environment. 

- Management Responsibility (MR) is designed to define functions and their inter-
relations within the organization, including responsibilities and authorities. 

- Service Realization (SR) is that sequence of processes required to achieve the 
services. 

- Measurement Analysis Improvement (MAI) is designed to define, plan and im-
plement the measurement and monitoring services needed to assure conformity 
and achieve improvement. 



250 B. Shen 

For this research, we use our process language - Flex [11][12][13], to define inci-
dent management, problem management and change management. We use its re-
source model to represent RM, its cooperation model to represent MR, its function 
model and product model to represent SR, and its KPI (Key Performance Indicator) 
feature to support MAI. The Flex is a flexible and scalable process modeling language 
designed for software process originally. It has two representations, one is the formal 
representation Flex/BM which allows expert to tailor, and the other is the pre-defined 
high level graphical representation Flex/PL based on Flex/BM. At current preliminary 
research phase, Flex/PL is selected as the modeling language; and later on Flex/BM 
will be customized to reflect features of ITSM. These modeling works are supported 
by our Process-sensitive engineering environments – E-Process [14], which also as-
sists analysis, automation and measurement of process models. 

3.4   Automate and Execute the Processes 

Automation is regarded as an appropriate means of containing and even reducing the 
labor costs of ITSM. In ITSM processes, some of their activities will be amenable to 
automation (such as deploying a change in Change Management) whereas others will 
not (such as obtaining change approvals from Change Control Boards). Therefore, in 
this step involves identifying the candidate activities for automation, determining 
whether the value of automating them outweighs the cost of developing and maintain-
ing the automation, and selecting a final set of process activities to automate. 

We implement the Flex-annotated ITSM processes using our E-Process environ-
ment, to automatically coordinate the process’s activities and the flow of information 
between them. And also automated and manual activities within the same overall 
process are integrated harmoniously in E-Process. 

3.5   Analyze the Process Model and Identify Improvement Opportunity 

During process execution, relevant parameters are constantly monitored and KPI 
related data are collected, which are the basis of process analysis. Our suggested 
ITSM process analysis techniques include KPI measurement, value analysis, competi-
tive comparison, benchmarking, risk analysis, and postponement analysis.  

The goal of this step is to identify defects and shortcomings in these processes, and 
propose improvement to the processes. To achieve it, several best practices for ITSM 
processes are summarized as followings: 

 

1) Task elimination: delete tasks that do not add value from a client’s view-
point. 

2) Task automation: introduce technology if automated tasks can be executed 
faster, with less cost, and with a higher quality. 

3) Task simplifying: simplify intermediate steps, and merge similar or sequen-
tial tasks into one. 

4) Parallelism: introduce concurrency within a process to reduce lead times. 
5) Balance: eliminate process inefficiencies, such as bottlenecks and workload 

imbalances, for more effective resource utilization. 
6) Empower: give workers most of the decision-making authority and reduce 

middle management. 



 Support IT Service Management with Process Modeling and Analysis 251 

7) Outsourcing: relocate work to a third party that is more efficient in doing the 
same work, to reduce costs. 

8) Contact reduction: combine information exchanges to reduce the number of 
times that waiting time and errors may show up. 

9) Buffering: subscribe to updates instead of complete information exchange. 
10) Case-based work: removing constraints that introduce batch handling may 

significantly speed up the handling of cases. 

4   Case Study 

To demonstrate the efficiency of our approach, a case study on an incident manage-
ment was conducted in a real organization. 

4.1   Background of the Case Project 

The case organization described herein is a commercial bank. Since 1967, this bank 
has been serving neighborhoods and businesses in the New York Chinatown area with 
the very best in community banking services. Its business has increased by leaps and 
bounds over the years. It provides customers with a wide variety of banking products 
and outstanding personal service. Striving and succeeding in a competitive service 
industry, the bank pays close attention to optimizing its business processes.  

Like many other organizations, the bank has developed IT support services deliv-
ered by help desks, which is responsible to achieve good customer relations by restor-
ing the failed services/incident in minimum time. As the bank’s business becomes 
increasingly dependent upon its IT services, the need to react quickly and effectively 
to any incidents has become vital. An ITSM Process Improvement project was initi-
ated in 2005 within the bank, whose goal is to find an effective and consistent way to 
address all IT related incidents, aligned with best practices from ITIL model. 

4.2   As-is Analysis 

Incident management at the bank is concerned with restoring normal service operation 
as quickly as possible and minimizing its adverse impact on business operations. The 
original incident management process (as-is process) at the bank consisted of the 
following four main tasks: 
 

1) Incident reporting: Occurring incidents are detected and recorded. 
2) Incident analysis and diagnosis: Recorded incidents are investigated to give 

initial support to the customer. 
3) Incident resolution: Recorded incidents are closely examined in order to re-

store service. 
4) Incident review and closure: The given solution is evaluated and the recorded 

incident is formally closed. 
 

For the purpose of further analysis, we defined this as-is process in Flex/PL lan-
guage, as shown in figure 3. Our efforts at process modeling led to a number of im-
portant results. 

 



252 B. Shen 

Incident 
reporting

Incident 
analysis and 

diagnosis

Incident 
resolution

Incident 
review and 

closure

Close?

Yes

No

To-Resolve?

Yes

No

AssignmentIncident record Solution and result Review opinion  

Fig. 3. As-is process of incident management 

Key Issues Improvement Actions 
Standard for closing is not 
defined and inconsistent. 

Precise and comprehensive 
process definitions using 
process modeling language 

Defined process does not 
cater for concurrent assignees 

Mechanism to assign an 
incident to multiple groups – 
Parent and Child records, to 
promote parallelism 

Timeframes to reassign 
incidents when incorrectly 
assigned is an issue. 

Metrics for ongoing 
measurement and reporting 

Reassignment process is not 
clear.

Establish incident  
knowledgebase

Ownership of incidents needs 
to be clarified. 

Classify incidents, and define 
their ownership 

Time taken to make decisions 
around assignment is often a 
problem

Simplify the service request 
handling

Slow response times by 
resolver groups 

Define times for resolver 
groups to hold an incident 

Mis-diagnosis of incidents Automatically log system 
generated incidents 

Inappropriate assignment of 
incidents

Define role of Incident 
Coordinator function for 
incident coordination across 
multiple groups 

Incident record is time 
consuming
Lack of coordination with 
multiple incidents for the 
same issue 
No integration with problem 
management and change 
management

Establish interaction with 
other processes 

 

Fig. 4. Key issues and its improvement actions 



 Support IT Service Management with Process Modeling and Analysis 253 

First, those involved in executing and managing the process gained a substantial 
increase in understanding the overall goals of the process, as well as recognition of 
the effect of regulations and standards on the process. Several different organizational 
subunits were involved in various stages of the incident management process. The 
view of most of these subunits was rather parochial, focusing on a specific subtask 
with little appreciation for overall implications. Such situations frequently led to 
suboptimization with respect to overall organizational goals. 

In addition to providing mechanisms for representing process models, E-Process 
provides a number of powerful analysis capabilities. A wide variety of static analyses 
were made to check the model for completeness and consistency, such as, checking 
for missing sources or targets of information flows, no exception handling, unreach-
able states, and activities without ownership. 

Furthermore, we carried out several deeper analyses on the as-is process, using the 
dynamic performance data. These included KPI measurement, value analysis, com-
petitive comparison, risk analysis, and postponement analysis. Herein best practices 
from ITIL were also embraced.  

These analyses identified several key issues, and led to a series of recommenda-
tions for changes in the as-is process, as shown in figure 4.  

4.3   To-be Process 

Based on proposed recommendations, we redesigned the incident management proc-
ess, streamlining the process and improving its timeliness. Figure 5 illustrates the 
model of to-be incident management process.   

Recording ensures that there are no lost incidents or service requests, allows the re-
cords to be tracked, and provides information to aid problem management and plan-
ning activities. The process includes the use of technology to provide self-service 
facilities to customers, which reduces the workload and personnel requirements of the 
service desk.  

Service requests, such as a request for change or a batch job request, are also re-
corded and then handled according to the relevant processes for that type of service 
request. 

Incidents undergo classification to ensure that they are correctly prioritized and 
routed to the correct resolver groups. Complex incidents can be separated into several 
parts to be resolved in parallel. Incident management includes initial support processes 
that allow new incidents to be checked against known errors and problems so that any 
previously identified workarounds can be quickly located. 

Incident management then provides a structure by which incidents can be investi-
gated, diagnosed, resolved, and then closed. The process ensures that the incidents are 
owned, tracked, and monitored throughout their life cycle. 

It should be noted that each activity in the incident management process is sub-
process, which is composed of several sub-activities.  

This overall incident management process was modeled and analyzed in E-Process 
environment, while it was automated using another workflow system, which is more 
flexible than the Enactment tool of E-Process. 



254 B. Shen 

Detection, self 
service & recording

Classification & 
initial support

Investigation 
and diagnosis

Incident 
closure

Close?

Yes
No

Service 
request?

Yes

No

AssignmentIncident record Solution and result Review opinion

Service Request 
procedure

Resolution 
and recovery

No further service

Incident
knowledgebase

Knowledge management

 

Fig. 5. To-be process of incident management 

4.4   Process Execution and Evaluation 

After five months of dedicated work, the redesigned process was in place and use of 
process technologies was starting to pay dividends in increased availability, higher 
productivity, and faster cycle time for services. Figure 6 and 7 show some of the inci-
dent management process improvement results.  

The re-designed process provides a seamless incident management workflow 
aligned with industry-leading incident management best practices. Through avoiding 
duplication of work and dropped incidences, freeing up IT resources and lowering 
costs, the productivity and efficiency in incident management is increased. Moreover, 
IT service quality is improved with faster resolution of disruptive events, resulting in 
increased IT customer satisfaction. 

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Month

M
in

ite
s

Hardware incident
Application incident
Network incident

 

Fig. 6. Average cycle time to resolve incidents 



 Support IT Service Management with Process Modeling and Analysis 255 

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10

Month

P
er

ce
nt

 re
so

lv
ed

 %

Hardware incident
Application incident
Network incident

 

Fig. 7. Ratio of incidents resolved in fixed duration 

5   Conclusion and Future Work 

This paper describes how process technology can be used to support IT service man-
agement. Technologies such as process modeling, analysis, and automation have 
proven to be an important part of ITSM. These technologies form the basis for service 
process improvement and their deployment often leads to increased understanding of 
the process by managers and participants. 

Moreover, there are several additional efforts that would be highly beneficial to the 
application of software process technology. One is to customize Flex/BM language to 
reflect features of ITSM. Another valuable contribution would be to apply process 
technology to other modern service domains such as logistics and telecommunication. 
We look forward to carrying out these future works and playing our part in contribut-
ing to the maturation of ubiquitous process engineering as a technique in facilitating 
growth of the modern service industry. 
 
Acknowledgements. This research is partially supported by the National Natural 
Science Foundation of China (Grant No. 60373074). Also, I appreciate all project 
members and the help offered by Prof. W. Bandara and Prof. Hengming Zou. 

References 

1. Osterweil, L.J.: Ubiquitous Process Engineering: Applying Software Process Technology 
to Other Domains. In: Proceedings of International Software Process Workshop and Inter-
national Workshop on Software Process Simulation and Modeling (2006) 

2. Raunak, M.S., Chen, B., Elssamadisy, A., Clarke, L.A.: Definition and Analysis of Elec-
tion Processes. In: Proceedings of International Software Process Workshop and Interna-
tional Workshop on Software Process Simulation and Modeling (2006) 



256 B. Shen 

3. Clarke, L.A., Chen, Y., Avrunin, G.S., et al.: Process Programming to Support Medical 
Safety: A Case Study on Blood Transfusion. In: Proceedings of the Software Process 
Workshop, China (2005) 

4. CCTA (ed.): Service Support, IT Infrastructure Library. The Stationary Office (2000)  
5. CCTA (ed.): Service Delivery, IT Infrastructure Library. The Stationary Office (2001)  
6. ISO/IEC 20000-1:2005: Information Technology - Service Management- Part 1: Specifi-

cation, ISO/IEC (2005) 
7. Niessink, F., Clerc, V., Tijdink, T., van Vliet, H.: IT Service Maturity Model Version1.0 

(2005), http://www.itservicecmm.org 
8. Jansen, S., Brinkkemper, S.: Definition and Validation of the Key process of Release, De-

livery and Deployment for Product Software Vendors: turning the ugly duckling into a 
swan. In: Proceeding of IEEE International Conference on Software Maintenance (2006) 

9. Keller, A., Brown, A.B.: A Best Practice Approach for Automating IT Management Proc-
esses. In: Proceeding of Network Operations and Management Symposium (2006) 

10. Brenner, M.: Classifying ITIL Processes — A Taxonomy under Tool Support Aspects. In: 
Proceedings of First IEEE/IFIP International Workshop on Business–Driven IT Manage-
ment (2006) 

11. Chen, C., Shen, B.: Towards Flexible and High-Level Process Modeling Language. In: 
Proceedings of International Symposium on Future Software Technology (2001) 

12. Chen, C., Shen, B., Gu, Y.: A Flexible and Formalized Process Modeling Language. Jour-
nal of Software 13(8) (2002) 

13. Shen, B., Chen, C.: The Design of a Flexible Software Process Language. In: Proceedings 
of Software Process Workshop/Workshop on Software Process Simulation (2006) 

14. Shen, B., Gu, C.et al.: A Distributed Architecture for Process-Sensitive Engineering Envi-
ronment. In: Proceedings of Conference on Software: Theory and Practice (2000) 

15. Battell, N., Brooks, T.: Service Management Functions: Incident Management (2005), 
http://www.microsoft.com/technet/itsolutions/cits/mo/smf/smf
incmg.mspx  

16. Bandara, W., Cornes, J., Rosemann, M.: Business Process Redesign in Information Tech-
nology Incident Management: A Teaching Case. In: Proceedings of the 16th Australasian 
Conference on Information Systems (2005) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 257 – 268, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

The Secret Life of a Process Description: 
A Look into the Evolution of a Large Process Model 

Martín Soto, Alexis Ocampo, and Jürgen Münch 

Fraunhofer Institute for Experimental Software Engineering 
Fraunhofer-Platz 1 

67663 Kaiserslautern, Germany 
{soto, ocampo, muench}@iese.fraunhofer.de 

Abstract. Software process models must change continuously in order to re-
main consistent over time with the reality they represent, as well as relevant to 
the task they are intended for. Performing these changes in a sound and disci-
plined fashion requires software process model evolution to be understood and 
controlled. The current situation can be characterized by a lack of understand-
ing of software process model evolution and, in consequence, by a lack of  
systematic support for evolving software process models in organizations. This 
paper presents an analysis of the evolution of a large software process standard, 
namely, the process standard for the German Federal Government (V-Modell® 
XT). The analysis was performed with the Evolyzer tool suite, and is based on 
the complete history of over 600 versions that have been created during the de-
velopment and maintenance of the standard. The analysis reveals similarities 
and differences between process evolution and empirical findings in the area of 
software system evolution. These findings provide hints on how to better man-
age process model evolution in the future. 

Keywords: process modeling, process model change, process model evolution, 
model comparison, V-Modell® XT. 

1   Introduction 

In his seminal paper from 1987 [1], Leon Osterweil pointed out the similarities be-
tween software processes and software programs. 20 years later, however, it is clear 
to us that his vision of process descriptions similar in its degree of formality and detail 
to actual computer programs has been much harder to realize than he actually envi-
sioned. In fact, the majority of contemporary, practical software process descriptions 
still contain a large proportion of informal material in the form of natural language 
text. This does not mean, however, that process descriptions must be completely  
informal. Indeed, they are often highly structured and use standardized, uniform ter-
minology. They also often contain an intricate lattice of internal and external cross- 
references that are not only intended to guide the reader in navigating the description 
but also ensure the description's internal consistency. The presence of this complex 
internal structure, and the consistency requirements associated with it, clearly make 
process descriptions look similar to software systems in many respects. 



258 M. Soto, A. Ocampo, and J. Münch 

One aspect of this analogy that has undergone little research until now is the evolu-
tion of large process descriptions and its relation to the much better understood field 
of software evolution. As every process modeling practitioner can attest to, changing 
a process description over time while preventing its structure from deteriorating or its 
consistency from being lost is a difficult task. Still, it remains unclear up to what ex-
tent maintaining a software process description is similar to maintaining a software 
system, and how much of the existing software maintenance knowledge can be ex-
trapolated to the process realm. While considering this fundamental question, a num-
ber of more concrete questions may arise, for instance: 

− if an evolving process description increases its complexity over time unless work is 
done to reduce it; 

− if most changes of process models are performed only on a few parts of a process 
description; 

− if changes performed shortly before a release cause more post-release changes than 
changes performed earlier before a release; 

− if parts of process models that have been changed many times have a higher prob-
ability of additional changes. 

We expect the answers to such questions to be useful for supporting process man-
agement activities better than they can be supported nowadays. Knowing, for exam-
ple, that changing certain areas of a process description may potentially imply further 
changes in the near future, could be used to inspect these changes more carefully or to 
avoid changing certain parts of a process description for minor reasons. 

Our current knowledge of process model evolution is not sufficient to answer these 
questions on an empirical basis. This is caused, in part, by the fact that mechanisms 
and tools for analyzing process model evolution and visualizing the results are widely 
missing. Another reason is that only few organizations have a history of the versions 
of their process models in sufficient detail, that is, including versions in between re-
leases and documented justifications (i.e., rationale) for the changes introduced in 
each new version. 

In this article, we present preliminary results aimed at understanding process model 
evolution. Our findings are based on detailed evolution data for a large and complex 
process description: the German V-Modell® XT. This description is interesting not 
only because of its significance for the German information technology domain, but 
also because of its large size and complexity. The V-Modell describes about 1500 
process entities, and its printed documentation is over 700 pages long. 

In order to perform our analysis, we applied novel comparison and annotation 
techniques to identify the changes made to the model over its versioning history, and 
to link these changes, whenever possible, with their underlying rationale. By doing 
this, we obtained a comprehensive, integrated representation of the V-Modell's life 
along three major public releases and over 600 individual versions. With this informa-
tion as a basis, we have been able to answer a number of basic questions related to the 
V-Modell's evolution. These questions, as well as the way we approached them, form 
the core of this article. 

The rest of the paper is structured as follows: Section 2 gives a short overview of 
the evolution of the V-Modell® XT. Section 3 briefly discusses the techniques used 
to perform our analysis of the model. Section 4 presents our analysis in more detail, 



 The Secret Life of a Process Description 259 

and discusses its results. The paper closes with an overview of related work, a sum-
mary, and an outlook on future work. 

2   The German V-Modell® XT and the History of Its Evolution 

The German process standard V-Modell [2] (not to be confused with Royce’s  
V-Model [3]) has a long history, and an ever increasing significance for the German 
IT landscape. Its origin dates to the mid-eighties. In 1997, the so-called V-Modell 97 
was officially released as a software development standard for the German federal 
government. The standard remained unchanged until 2004, when a consortium of in-
dustrial and research institutions received public funding to perform a thorough up-
date of the model. The result was the new V-Modell® XT, which was established as 
German federal standard for software development. Since its inception, the model has 
seen continuous updates, represented by three major and two minor releases. Also, 
since a few months ago, an English version has also been available, which is kept 
synchronized with the original German version. 

The V-Modell® XT is a high-level process description, covering such aspects of 
software development as project management, configuration management, software 
system development, and change management, among others. In printed form, the 
latest English version at the time of this writing (version 1.2.1) is 765 pages long and 
describes about 1500 different process entities. 

Internally, the V-Modell® XT is structured as a hierarchy of process entities inter-
connected by a complex graph of relationships. This structure is completely formal-
ized, and suitable for automated processing. The actual text of the model “hangs” 
from the formalized structure, mainly in the form of entity and relationship descrip-
tions, although a number of documentation items (including a tutorial introduction to 
the model) are also integrated into the structure in the form of text module entities. 
Actual editing of the model is performed with a software tool set created specially for 
the purpose. The printed form of the V-Modell® XT is generated automatically by 
traversing the structure in a predefined order and extracting the text from the entities 
found along the way. 

The V-Modell® XT contents are maintained by a multidisciplinary team of ex-
perts, who work, often concurrently, on various parts of the model. In order to provide 
some measure of support to this collaborative work, the model is stored as a single 
XML file in a standard code versioning system (CVS). As changes are made by the 
team members, new versions are created in this system. As usual for a versioning sys-
tem, versions can, and often do, include a short comment from the author describing 
the changes. Also, an Internet-based issue tracking system is available so that model 
users can report problems with the model. This system often includes discussions 
between team members and users about how certain issues should be resolved. Not all 
actual changes in the model can be traced to a particular issue in the tracking system, 
but many of them can. 

The change logs show that, since its initial inception, the model has been changed 
often and for a wide variety of reasons. Changes can be as simple as individual spell-
ing or grammar corrections, or as complex as the introduction of a whole set of proc-
esses for hardware development and software/hardware integration. The richness and 



260 M. Soto, A. Ocampo, and J. Münch 

complexity of this change history makes the V-Modell a very interesting target for 
evolution analysis. 

3   Analyzing the Evolution of a Process Description 

The first step in order to analyze the evolution of this process description was to read 
its versioning history into our Evolyzer model comparison system. Although a de-
scription of the internal operation of Evolyzer is beyond the scope of this paper (see 
[4] for details), a short explanation of its workings is in order. The basis of  the system 
is a model database that can contain an arbitrary number of versions of a model. The 
formalism used for representing the models is the RDF notation [5] and the whole 
model database can be queried using a subset of the SPARQL [6] query language for 
RDF. 

The central characteristic that distinguishes Evolyzer from other RDF storage sys-
tems is its ability to efficiently compare versions of an RDF model. Given two arbi-
trary versions, the system is able to compute a so-called comparison model that con-
tains all model elements (RDF statements, actually) present in the compared versions, 
marked with labels indicating whether they are common to both versions, or are only 
present in one of them, and, in the latter case, in which one of the versions they are 
present. Given the high level of granularity of this comparison, identifying changes in 
it by direct inspection is generally a difficult task. For this reason, change identifica-
tion is performed by looking for special change patterns in the comparison model (see 
[4] for a detailed explanation.) This not only makes it possible to look for changes 
that are specific, in their form or structure, to a particular model schema, but allows 
for restricting change identification to particular areas of the model or to specific 
types of model elements. 

For the present study, we attempted to read 604 versions from the original version-
ing repository into our system. These versions were created in somewhat more than 
two years time, with three major and one minor public releases happening during that 
period. Since Evolyzer uses the RDF notation for model representation (this is neces-
sary in order for our comparison technique to work at all), each V-Modell version was 
mechanically converted from its original XML representation into an RDF model 
before reading it into the system. This conversion did not add or remove information, 
nor did it change the level of formalization of the original process description. Process 
entities described in the original XML through XML elements were translated into 
RDF resources (the original XML already contained unique identifiers, which were 
reused for the RDF resources) and the text associated to them was stored as RDF 
property values. Relations encoded in XML as element references were converted 
into RDF relations. The conversion process was successful for all but 4 of the 604 
analyzed versions. These 4 versions could not be read into our repository because 
their corresponding XML files contained syntax errors. 

After importing the version history, we proceeded to compare the versions pairwise to 
identify individual changes happening from one version to the next. As changes, we con-
sidered the addition or deletion of entities, the addition or deletion of relations between 
entities, and the alteration of text properties. We identified these changes by defining 
corresponding change patterns and searching for them in the version comparisons.  



 The Secret Life of a Process Description 261 

Information about each of the identified changes including type, version number and 
affected process entities was encoded in RDF and stored in the repository together with 
the model versions. This allowed us to easily go from the change information to the ac-
tual model contents and back from the models to the changes as necessary for our analy-
sis (see [7] for the details of how this cross referencing works.) 

4   An Exploratory Look into a Process Description's Evolution 

The resulting RDF repository containing detailed information about the V-Modell's 
change history provided the basis for our exploratory analysis of the model's evolu-
tion. Our long-term research goal is to formulate explicit verifiable hypotheses about 
process model evolution, but in order to do that, observation is a first, indispensable 
step. For this reason, the fundamental objective of the present analysis was to observe 
and informally characterize the evolution of the model. We attempted to do that by 
formulating rather open questions and then trying to extract data from the change re-
pository and visualize them in such a way that we could attempt to address the ques-
tions by direct observation. 

Given the complex structure of the V-Modell® XT, we concentrated our analysis 
on only one part of it, namely, the so-called process modules,1 a number of large enti-
ties that act as containers for a good number (but not all) of the finer-grained entities 
in the model. We did this for two reasons. First, the process modules contain the 
“meat” of the description, namely, the process entities used to describe the actual 
process steps and products: activities, products, roles, and the relationships among 
them. Second, since process modules are the official means for tailoring the model to 
specific project types, they correspond to sensible components of the whole descrip-
tion, and are thus more likely to produce meaningful results when observed independ-
ently from each other. 

Additionally, and for the sake of simplicity, we decided to reduce this analysis to 
changes affecting the text descriptions contained in the entities, and to exclude the 
relationships connecting entities. In the following, we present the analysis questions, 
together with the approach we took to analyze them, the resulting visualization, and 
the results we derived from it. 

4.1   Complexity Over Time 

The starting point of the analysis is the question of whether the V-Modell has in-
creased its complexity over time. This question is related to Lehman’s law with re-
spect to system evolution, which states that the complexity of a system increases over 
time unless work is done to reduce it ([8], cited in [9]). To address this question, we 
chose a simple metric for the model complexity, namely, the total number of entities 
contained in each process module. By running a special query and performing simple 
postprocessing of the results, we determined this number for each process module and  
 

                                                           
1 In German, process modules are called Vorgehensbausteine, a term that would rather corre-

spond to process building blocks. We decided, however, to stick to the translation used by the 
official English version of the V-Modell® XT. 



262 M. Soto, A. Ocampo, and J. Münch 

 

Fig. 1. Number of entities in the process modules along the version history 

for each of the 604 analyzed versions, and produced individual plots displaying the 
process module's size for each version number. Due to space limitations, we are omit-
ting the individual plots (22 in total) but Figure 1 shows the total size accumulated 
over the 22 process modules for each version number. 

The curve in Figure 1 shows a clear growing tendency, going from around 850 to 
over 1000. Pronounced growth is observed after two of the releases, probably point-
ing to major changes that were held back until the release. The analysis of the plots 
covering specific process modules (not included here) shows a similar growing ten-
dency. Significant reductions of the entity count can only be observed in cases where 
a module was split at some point. As the cumulative graph shows, however, this did 
not affect the total element count. Some “dents” can be observed at the 4 points were 
versions could not be read. 

Even despite major restructuring, the total number of entities in the V-Modell® XT 
increased significantly during the observed period. This growth can be attributed, at 
least in part, to model enhancements such as the introduction of processes for hard-
ware development. Still, these results suggest that monitoring the complexity of proc-
ess descriptions and possibly taking measures to keep it under control can be a valu-
able strategy for maintaining complex process models. 

4.2   Distribution of Changes Over Time and Over the Model 

The next questions are concerned with the way changes affect different parts of the 
model: How are changes distributed among versions, and how do they relate to re-
leases?  How are they distributed over the process modules? 



 The Secret Life of a Process Description 263 

 

Fig. 2. Changes discriminated by process module along the version history 

 
Our approach to addressing these questions was to display the changes in such a 

way that the process module affected by the change, as well as the time and size of 
the changes, become visible. Figures 2 and 3 are two such displays.  

The X-axis in Figure 2 shows the version number (from 1 to 604), whereas the Y-
axis shows the process modules (numbered arbitrarily). There is a circle wherever a 
version changed an entity in a particular process module. The size of the circle is pro-
portional to the number of changes affecting entities in the module. Figure 3 is similar 
to Figure 2, but the X-axis corresponds to actual calendar times. Changes are dis-
played at the locations where their corresponding versions were checked in. Since 
versions are not distributed uniformly across time, this figure also contains a “version 
density” bar at the bottom that has black bars at the points in time where versions  
actually happened.  

Several points are worth mentioning about these figures. First, activity concentrates 
around releases. Activity before a release probably corresponds to release preparation, 
whereas activity after a release points to changes held back and introduced after the 
release. Both of these points were corroborated verbally by members of the V-Modell 
development team, and can also be confirmed by inspecting the version logs. An in-
teresting observation is that the version-based graph (Figure 2) also looks busy around 
releases, implying that versions close to a release often collect more changes in a sin-
gle version than versions far from the release. If this were not the case, the “conges-
tion” around releases would only be observable on the time-based graph. A partial 
explanation for this phenomenon is that a number of the versions grouping several  
 



264 M. Soto, A. Ocampo, and J. Münch 

 

Fig. 3. Changes discriminated by process module, against time 

changes are related to reviews or to other bulk corrections that result in many small 
changes spread over the model. Still, it is possible that some of the “congested” ver-
sions are the result of changes being rushed into the model shortly before a release. 

One aspect that is evident on the time-based graph is that release 1.0 looks delayed 
with respect to its preparatory “burst” of activity, with a period of low activity before 
the actual release date. According to the team members, the bulk of the preparatory 
work was done for the model's “presentation in society” at a public event in Novem-
ber 2004. Only minor corrections were made until the official release in February 
2005. This can also be observed by looking at the version density bar, which shows 
clear peaks of activity around the releases, except for release 1.0. 

Finally, the version-based graph shows us a number of process modules that pre-
sent more activity than the remaining ones: 10, 16, 5 and, to some extent, 1. Although 
this is often related to their larger size, change activity seems not to be strictly propor-
tional to size, and also seems to depend on the relative importance of the various 
modules (we need to investigate both of these points in more detail). The graphs also 
show that process modules often undergo “bursts” of activity that calm down later on, 
such as the one observed in process module 10 between releases 1.1 and 1.2. This 
suggests that, similar to what happens in software development, complex changes 
have to be performed step-wise and often introduce errors that must be corrected later. 

The previous observations point in different ways to the similarities between proc-
ess model and software evolution. In particular, one should not believe that change 
management is simpler or less risky for process models than it is for software sys-
tems. Practices such as inspections, configuration management, or issue management 



 The Secret Life of a Process Description 265 

are most probably advisable for complex modeling projects and may even be neces-
sary in order to achieve high-quality results over time. 

4.3   Changes in Detail 

Our last question is concerned with the relationship between local and global changes: 
Does the evolution of individual modules look similar to the evolution of the whole 
model? To address this question, we decided to analyze the change history of one 
single process module in more detail.  

 

 

Fig. 4. Changes in process module System Development 

Figure 4 shows the changes happening to single entities in one particular module, 
System Development, (number 10 in the previous two figures). The X-axis corre-
sponds to the version number, whereas the Y-Axis shows the entity number (entities 
were numbered arbitrarily). A dot is present where a version changes a particular  
entity. 

The first observation is that this figure presents a pattern similar to the one in Fig-
ure 2, with changes concentrating around the releases. Also, shortly before the re-
leases, there are versions affecting many entities at a time. This corroborates a similar 
observation made in the previous section. 

An interesting point is that several instances of changes happening in sequence to a 
particular entity can be seen on the graph. Although the change logs show that this may 
happen for a variety of reasons, it would be interesting to analyze whether it has a sta-
tistical significance, that is, when an entity was changed, there is a higher probability 



266 M. Soto, A. Ocampo, and J. Münch 

that it will be changed in the near future. Also, it would be interesting to determine 
which types of changes are more likely to cause such follow-up changes. Knowing this 
would make it possible to better handle similar changes in the future. 

5   Related Work 

Several other research efforts are concerned, in one way or another, with comparing 
model variants syntactically, and providing an adequate representation for the result-
ing differences. Most of them, however, concentrate on UML models representing 
diverse aspects of software systems. Coral [10],  SiDiff [11], UMLDiff [12] and the 
approach discussed in [13] deal with the comparison of UML models. Although their 
basic comparison algorithms are applicable to our work, they are not concerned with 
providing analysis or visualization for specific uses. Additionally, FUJABA [14] 
manages model versions by logging the changes made to a model during editing, but 
is not able to compare arbitrary model versions. Models must also be edited with the 
FUJABA tool in order to obtain any useful change information. 

Mens [15] presents an extensive survey of approaches for software merging, many 
of which involve comparison of program versions. The surveyed works mainly con-
centrate on automatically merging program variants without introducing inconsisten-
cies, but not, as in our case, on identifying differences for analysis. The Delta Ontol-
ogy [16] provides a set of basic formal definitions related to the comparison of RDF 
graphs. SemVersion [17] and the approach discussed by [18] are two systems cur-
rently under development that allow for efficiently storing a potentially large number 
of versions of an RDF model by using a compact representation of the raw changes 
between them. These works concentrate on space-efficient storage and transmission 
of change sets, but do not go into depth regarding how to use them to support higher-
level tasks (such as process improvement). 

We are not aware of any previous work on analyzing the evolution of process  
descriptions. 

6   Summary and Future Work 

Software process descriptions are intended to be faithful representations of the actual 
processes used to develop and maintain software systems. This fact implies a twofold 
challenge for process engineers: On the one hand, descriptions must be continuously 
improved in order to make them closer to the actual process and to make them more 
accessible to their users. On the other hand, as processes are improved and expanded 
to deal with new development challenges, descriptions must be changed accordingly. 
We have used novel tools and techniques to gain some insight into the evolution of a 
large, practical process description. We expect to use the results of the initial observa-
tions, such as those presented here, for formulating specific hypotheses to guide our 
future research. 

A number of research directions seem promising. Currently, we are in the process 
of analyzing the results of the connection of the V-Modell's change history with two 
sources of information related to the rationale of the changes: the human edited  



 The Secret Life of a Process Description 267 

version log and the issue tracking system [7]. We expect this to give us more insight 
into the dynamics of the change process: what causes changes in the first place and 
how the various motivations for change affect process descriptions at different points 
in their evolution. In particular, this may help us identify areas of the process that may 
be continuously causing problems, so that future improvement efforts can concentrate 
on them. 

A final, more general question is related to process adoption. The introduction of 
good practices to an organization's software process involves complex learning and an 
increase in the necessary level of discipline. For this reason, finding an appropriate 
strategy for introducing good practices over time in a non-disruptive, coherent way 
can be very difficult. We consider that studying process evolution may teach us how 
to effectively introduce good practices into new organizations or into groups within 
an organization. 

 
 

Acknowledgments. We would like to thank Rubby Casallas from Los Andes Univer-
sity, Bogotá, Colombia, for her valuable comments on a draft of this article. We 
would also like to thank Sonnhild Namingha from Fraunhofer IESE for proofreading 
this paper. This work was supported in part by the German Federal Ministry of Edu-
cation and Research (V-Bench Project, No. 01| SE 11 A). 

References 

1. Osterweil, L.: Software processes are software too. In: Proceedings of the 9th International 
Conference on Software Engineering, IEEE Computer Society, Los Alamitos (1987) 

2. V-Modell® XT (last checked 2007-12-20), Available from http://www. 
v-modell.iabg.de/  

3. Royce, W.W.: Managing the development of large software systems: concepts and tech-
niques. In: Proceedings of the 9th International Conference on Software Engineering, 
IEEE Computer Society, Los Alamitos (1987) 

4. Soto, M., Münch, J.: Focused Identification of Process Model Changes. In: Wang, Q., 
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, Springer, Heidelberg (2007) 

5. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004) (last checked 
2007-12-20), available from http://www.w3.org/TR/rdf-primer/ 

6. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C 
Work-ing Draft (2006) (last checked 2006-10-22), available from 
http://www.w3.org/TR/rdf-sparql-query/  

7. Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Proc-
ess. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, Springer, 
Heidelberg (2007) 

8. Lehmann, M.M.: On Understanding Laws, Evolution, and Conservation in the Large-
Program Life Cycle. The Journal of Systems and Software 1(3), 213–231 (1980) 

9. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering. Pearson, 
London (2003) 

10. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., 
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003) 

11. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. In: 
German Software Engineering Conference 2005 (SE 2005) (2005) 



268 M. Soto, A. Ocampo, and J. Münch 

12. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing. In: 
Proceedings of the 20th IEEE/ACM International Conference on Automated Software En-
gineering, Long Beach, CA, USA (2005) 

13. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation 
Testing and Version Control in Model Driven Software Development. In: OOPSLA 
Workshop on Best Practices for Model-Driven Software Development, Vancouver (2004) 

14. The Fujaba Manual (last checked 2007-09-06), available from http://wwwcs.uni-
paderborn.de/cs/fujaba/ 

15. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Soft-
ware Engineering 28(5) (2002) 

16. Berners-Lee, T., Connolly, D.: Delta: An Ontology for the Distribution of Differences Be-
tween RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory 
(CSAIL) (last checked 2006-03-30), Online publication  
http://www.w3.org/DesignIssues/Diff  

17. Völkel, M., Enguix, C.F., Ryszard-Kruk, S., Zhdanova, A.V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe 
(2005) 

18. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings 
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002, 
Lyon, France (2002) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 269 – 281, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Simulating Worst Case Scenarios and Analyzing Their 
Combined Effect in Operational Release Planning 

Ahmed Al-Emran1, Puneet Kapur2, Dietmar Pfahl1,3,4, and Guenther Ruhe1 

1 University of Calgary  
{aalemran, dpfahl, ruhe}@ucalgary.ca  

2 Chartwell Technology Inc.  
pkapur@chartwelltechnology.com  

3 Simula Research Laboratory  
dietmarp@simula.no 

4 University of Oslo, Department of Informatics  
dietmarp@ifi.uio.no 

Abstract. Operational release planning (ORP) is concerned with assigning hu-
man resources to development tasks in software projects such that a defined set 
of product features can be completed under given constraints. In this paper, we 
present a simulation-based approach to study the impact of uncertainty. Uncer-
tainty parameters considered in this paper are related to the features themselves 
(functionality, effort) and to developers (availability and productivity). The ef-
fect of variation of these four parameters (two static and two dynamic) on 
make-span is studied in isolation and in combination. This is done for three lev-
els of (stochastic) pessimism (“bad”, “worse”, and “worst”). In addition to that, 
a comparison is done with a deterministic worst case scenario. To illustrate the 
applicability of the method and usefulness of results, we have conducted an  
explorative case study at Chartwell Technology Inc.  

Keywords: Release planning, resource allocation, uncertainty, discrete-event 
simulation. 

1   Introduction and Motivation 

Software release planning is performed at both strategic and operational levels. At the 
strategic level, managers deal with prioritizing and assigning features to successive 
releases so that both technical and resource constraints are met with maximized cus-
tomer satisfaction. We consider features to be "a logical unit of behavior that is speci-
fied by a set of functional and quality requirements" [1]. Once strategic planning is 
done (i.e., which features will be implemented in which releases), operational release 
planning (ORP) takes place, and focuses on the development on one particular re-
lease. It deals with the assignment of developers to necessary tasks that needed to be 
carried out in order to realize each of the selected features for that particular release.  

“Uncertainty is inherent and inevitable in software development processes and 
products” [2] and may arise from inaccurate or incomplete information, from linguis-
tic imprecision and from disagreement between information sources. Uncertainty can 



270 A. Al-Emran et al. 

be assumed in both informal knowledge (uncertainty due to lack of understanding 
and/or incomplete information) and in formalized knowledge (uncertainty due to 
imprecise information).  

The focus of this paper is to study the impact of uncertainty due to imprecise in-
formation related to features and their effort as well as related to developers, their 
availability and their productivity. More precisely, we study the following factors: 

 

1. The effort required to accomplish different tasks in order to realize a defined set of 
features in the release. This parameter will be referred as “Effort” in the later  
sections. 

2. Additional features may need to be included in a release in order to accommodate 
change requests from customers. This parameter will be referred as “Feature” in 
the later sections. 

3. Each developer has different skill levels for different types of tasks. Depending on 
the skill level of the assigned developer, the duration of a task varies, which im-
pacts the release make-span. This parameter will be referred to as “Productivity” in 
later sections. 

4. Availability of developers may be restricted due to illness or reassignment and may 
cause a delayed delivery of products to customers. This parameter will be referred 
to as “Developer” in later sections. 

 

“Effort” and “Productivity” parameters are considered to be static since the variation 
of these two parameters are done at beginning of each simulation runs but kept un-
changed across each time step. On the other hand, “Feature” and “Developer” pa-
rameters are dynamic since their occurrence and time of occurrences are stochastic.  

The impact of these parameter variations on release make-span are studied both in 
isolation and in combination and at three levels of pessimism: “bad”, “worse”, and 
“worst”. Three research questions are formulated and evaluated through an explor-
ative case study conducted at Chartwell Technology Inc. The overall approach is 
based on a simulation-based risk analysis method which is adapted from the frame-
work ProSim/RA [3] and implemented via the simulation model DynaReP [4]. 

The structure of the paper is as follows. Section 2 describes related research on op-
erational release planning. Section 3 formalizes the ORP problem and introduces the 
research questions investigated. Section 4 describes the solution approach and its 
necessary instantiation for the case study environment. Section 5 describes the con-
ducted case study, its results and relation to the research questions introduced. Section 
6 discusses threats to validity. Finally, Section 7 presents conclusions and suggestions 
for follow-up research. 

2   Related Work 

In the context of project scheduling, Chang et al. proposed the application of genetic 
algorithms (GA) for software project management [5]. It is now well known that there 
are strong differences in the skills and productivity of software developers [6] which 
was not considered in the proposed method of Chang et al. for scheduling minimiza-
tion. More recently, Duggan et al. proposed a GA-based task allocation optimizer [7]. 
However, the proposed approach fails to work on fine-grained level where each of the 



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 271 

work packages (e.g., features) can be further divided in several overlapping smaller 
work units (e.g., tasks). 

In the context of release planning, the method: EVOLVE* can perform strategic re-
lease planning [8] whereas OPTIMIZERASORP provides solution for both strategic and 
operational release planning simultaneously [9]. However, the impact of uncertainty 
has not been investigated. Optimized staffing for product releases in deterministic 
way has been conducted by Kapur et al [10]. 

From the context of simulation, Kellner et al. proposed several fundamental direc-
tions for applying process simulation in software engineering [11]. All of these direc-
tions are in some way approaching the inherent uncertainty of software processes and 
related data. Control and operations management is one of them. Padberg pointed out 
that software engineering currently offers little help to software project managers on 
how to develop good schedules for their projects [12]. He proposed a stochastic 
Markov decision model for software projects in order to compute optimal scheduling 
strategies for allocating developer teams to software components considering comple-
tion time and rework uncertainties. However, the author has mentioned that although 
he succeeded in computing an exact optimal policy for a given small sample project, 
it is unlikely that realistic project with dozens of components can be exactly opti-
mized with the proposed approach [13]. 

3   The Operational Release Planning Problem – Problem 
Statement and Three Related Research Questions 

3.1   Problem Statement 

We assume a set F of features f(1), …, f(N) will be developed in the next release. In 
ORP, the realization of each feature requires a sequence of individual tasks. For our 
purposes, the vector T consists of S different types of tasks t(1),…,t(S). Task types 
correspond to the fundamental technical, managerial or support contributions neces-
sary to develop software in general. Typical task types are design, implementation 
and testing. Note that certain dependency relationships between task types can apply, 
e.g., testing cannot be started before some or all of the implementation has been fin-
ished. The possible dependency relationships are represented by a set called DEP. 

The set of all possible feature development tasks is denoted as TASK and its ele-
ments are actually executable work packages or simply “tasks” denoted as task(i,j), 
with i = 1, …,N, and j = 1,…,S. Human resources (e.g., different types of developers, 
analysts, external collaborators) are intended to perform the different tasks needed to 
create the features. Our resource allocation process addresses the assignment of the 
individual human resources to tasks. Each developer is working on just one task at a 
time. An additional assumption is that for each task only one developer is allowed to 
work on it. In the case that different developers are allowed to work on the task, the 
original task would need to be further decomposed. 

In order to differentiate among skills of developers, we introduce an average skill 
level with a normalized productivity factor of 1.0 for each type of task. This allows us 
to consider more or less skilled developers having a higher or lower productivity 



272 A. Al-Emran et al. 

factor than 1, respectively. We assume that the project manager can judge the differ-
ent degrees of productivity of the developers.  

We consider a pool D of developers denoted by d(1),…, d(M). Each developer can 
perform one or more types of development activities with a specific productivity. The 
productivity factor p(k, j) of a developer d(k) for performing a task of predefined type 
t(j) indicates if the developer is able to perform the task at all (p(k, j) ≠ 0), and if 
‘yes’, how productive he/she is performing that task (on average). We note that the 
assignment of a skill level for the different developers in dependence of a whole class 
of tasks is a simplification of reality as there might be further differentiation even 
within different areas of e.g. testing. While in principle the granularity of the defini-
tion of a task is flexible, we have to keep the model reasonable in size and conse-
quently do not consider this advanced aspect. 

Each task can be associated with an effort eff(i,j), where i corresponds to feature 
f(i) and j corresponds to task type t(j). Effort eff(i,j) then denotes the estimated effort 
needed to fulfill a task. Note that the duration needed to perform the tasks depends not 
only on the workload (i.e., effort), but also on the productivity of the developer as-
signed to this task. ST and ET are sets of starting times and end times of all the tasks, 
respectively.  

Solving the ORP problem means finding an assignment x(i,j,k) of developers d(k) 
∈ D to tasks task(i,j) ∈ TASK such that the overall release make-span is minimized. 
Introducing the space X for all vectors x fulfilling all resource and technological con-
straints, the problem becomes: 

Min {Max {ET(task(i,j)): i = 1,…,N, j = 1,…,S}, x ∈ X} 

3.2   Research Questions Studying the Impact of Uncertainty 

Our impact analysis is focused on investigation of different kinds of worst case be-
haviors. For each of the four factors (“Effort”, “Feature”, “Productivity”, and “Devel-
oper”), we have defined four levels of pessimism (bad, worse, worst, extreme). We 
have formulated the following three research questions (RQ) that also will be ad-
dressed by our proposed method (Section 4). They will also be investigated in the 
case study (Section 5): 

 

• RQ1: Considering the impact of each factor in isolation: Is there some variation 
between factors in the degree of impact? 

• RQ2: Considering the impact of the factors in conjunction: What is the tendency of 
impact for combined occurrence of factors? 

• RQ3: Considering the four stages of pessimism for both the factors in isolation and 
in conjunction: How is the tendency of impact on make-span? 

4   The Proposed Approach 

4.1   The Simulation Model and Integrated Heuristic 

The simulation model used to perform the case study is an enhanced version of Dy-
naReP (Dynamic Re-Planner) originally introduced in last year’s ICSP conference [4]. 
DynaReP is a discrete-event process simulation model developed using EXTENDTM 



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 273 

(http://www.imaginethatinc.com). The simulation model is able to perform operational 
release planning as well as automatic re-planning of operational releases in respond to 
some unexpected events (e.g., developer dropout, change in effort, etc.). For this re-
search, DynaReP has been enhanced in a way so that it is now has the ability to ac-
commodate the stochastic nature of the process required by the case study conducted. 
The description of the ten high level block of DynaReP can be found in [4] and more 
detailed information can be found in [14]. 

The heuristic used in DynaReP for assigning developers to tasks essentially con-
sists in matching the next available developer with the highest task-specific productiv-
ity to the next waiting task that belongs to an incomplete feature with the largest ef-
fort. Note that for some special situations, this naive assignment procedure may result 
in undesired developer allocations. To avoid such a worst case situation, one thresh-
old variable is defined per task type and the heuristic does not allow developers to be 
assigned to tasks of a type for which their productivity is not greater than the corre-
sponding threshold. The optimal threshold values for different tasks are computed by 
the simulation model itself. According to the heuristic, a developer d(k) will be as-
signed to a task task(i,j) if the following conditions are fulfilled: 

 

• There is work still pending for the task task(i,j), i.e., the respective feature f(i) is 
incomplete. 

• The effort of the feature f(i) given by S j= 1,…,S eff(i,j) for all i= 1,…,N is the maxi-
mum efforts among all incomplete features. 

• The productivity p(k,j) of a candidate developer d(k) related to a specific task type 
t(j) is greater than the threshold productivity for t(j). 

• The candidate developer with sufficient productivity is currently idle. 
• For j ∫ 1, at least the percentage of task(i,j-1) (as defined by DEP) needs to fin-

ished and task(i,j) can not be finished before task(i,j-1). 

4.2   The Method 

In order to perform the analysis of the impact of uncertain problem parameters in the 
ORP, we adapt a risk analysis procedure called ProSim/RA (Process Simulation based 
Risk Analysis) [3]. The result is a five step procedure that applies modeling, base-
lining, simulation, and analysis of ORPs. For a given ORP problem <F, T, TASK, D, 
E, P, DEP, ST, ET> the steps are: 

 

• STEP 1: Determining the baseline solution. 
• STEP 2: Identifying uncertain attributes and defining uncertainty ranges. 
• STEP 3: Defining observation variables.  
• STEP 4: Conducting MCPS analyses.  
• STEP 5: Interpreting simulation results. 

STEP 1 – Determining the Baseline Solution 

The analysis of the impact of uncertainty is always done in relation to a baseline solu-
tion. To determine the baseline solution, we apply the process simulation model Dy-
naReP that uses effort and productivity data supplied by Chartwell Technology Inc. 



274 A. Al-Emran et al. 

The generated solution will be referred to as the “Baseline” in later sections (not 
shown due to space limitation). The make-span of the baseline ORP is 15 weeks. 

STEP 2 – Identifying Key Uncertainty Parameters and Defining Their 
Uncertainty Ranges 

Uncertainty in the project data can be related to various parameters of the ORP prob-
lem. In our study, we focus on the impact of uncertainty in ORP for parameters “Ef-
fort” (E), “Productivity” (P), “Feature” (F), and “Developer” (D) by defining prob-
ability distributions for these parameters. In order to provide our industrial partner 
important information on which type of uncertainty, both in isolation and in combina-
tion, affects the ORP and to what extent, we considered three levels of pessimism 
representing three categories of worst case scenarios – bad, worse, and worst. Each of 
these levels of pessimism comes with their own probability distribution for the OPR 
parameters E, P, F, and D. In case of E and P variation, the probability distribution 
sampling simply represents error in the estimation process. Occurrence of this varia-
tion is static in nature since the sampling from provided distribution in done only at 
the beginning of each simulation run. For feature addition (F) and/or developer drop-
out (D), it reveals the dynamic natures of the system since the occurrence of the 
events are stochastic.  

Table 1 shows three levels of variation conducted on selected “Effort” and “Pro-
ductivity” parameters in terms of percentage with respect to their original values. In 
case of “Feature” and “Developer”, the values represent the number of additional 
features/developer dropout in percentage with respect to total number of fea-
tures/developers considered in the baseline plan (i.e., 35 features and 15 developers). 
Each of the first 12 cases shown in Table 1 represents different probability distribu-
tion sampling patterns for effort and productivity estimates, as well as number of 
newly added features or number of developer dropout. Each of these parameter values 
are varied based on the triangle distributions of the type TRIANG (min, peak, max). 
The “peak” represents the most probable value whereas “min” and “max” represent 
the minimum and maximum values, respectively. In case of “Effort” and “Productiv-
ity” parameters, the sampled value from TRIANG determines how much variation in 
percentage need to be made in terms of the original effort/productivity values. 

In case of “Feature” and “Developer”, the distribution range is always from 0% to 
30% but the peak is 0%, 15%, and 30% for bad, worse, and worst levels, respectively. 
This represents the amount of new features/developer dropout compared to the base-
line case. The effort values for the tasks of additional features are again sampled from 
a probability distribution. These probability distributions are determined considering 
the input task effort data used to generate baseline solution and finding the best fitted 
distribution curve.  

Cases A-D are deterministic worst cases where only one simulation run is con-
ducted and the corresponding parameters are forced to be sampled from the most 
extreme end rather than sampling from a defined distribution. 

STEP 3 – Defining Observation Variables 

The observation variables of ORP are the parameters of interest that are supposed to 
be affected by the input variations due to the defined probability distribution in Step 



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 275 

2. In our case study the observation variable considered is the release make-span that 
represents the duration of a release in calendar weeks from the beginning of a release 
construction to the end of its realization. Due to the variation in problem parameters, 
the duration of a release may change. 

STEP 4 – Conducting MCPS Analyses 

In this step the simulations defined in the previous steps are conducted. MCPS (Monte 
Carlo enhanced Process Simulation) means using Monte Carlo based sampling for 
problem parameters from the distributions defined in STEP 2 and executing Process 
Simulation using the sampled values to determine process outcomes. In this study 50 
simulation runs are conducted per scenarios at a particular level of pessimism.  

STEP 5 – Interpreting Simulation Results 

The results from simulation runs conducted in the previous step are analyzed. The 
analysis usually involves summary and descriptive statistics (mean, standard devia-
tion, minimum and maximum values) expressing corresponding impact. 

 
Table 1. ProSim/RA levels of pessimism and 
corresponding parameter variation 

Table 2. Impact on make-span due to varia-
tion of parameters 

Input 
Cases Levels of 

Pessimism Varied 
Parameter Min Peak Max

1 Effort -20% 0% 30%

2  Productivity -30% 0% 20%

3 Feature 0% 0% 30%

4 

Bad 

Developer 0% 0% 30%

5 Effort -10% 0% 40%

6 Productivity -40% 0% 10%

7 Feature 0% 15% 30%

8 

Worse 

Developer 0% 15% 30%

9 Effort 0% 0% 50%

10 Productivity -50% 0% 0%

11 Feature 0% 30% 30%

12 

Worst 

Developer 0% 30% 30%

A Effort - 50% - 

B Productivity - -50% - 

C Feature - 30% - 

D 

Extreme 

Developer - 30% - 
 

Pessimism Level Varied 
Bad Worse Worst Extreme

Effort  (E) 10% 12% 23% 47%

Productivity (P) 16% 22% 30% 93%

Feature (F) 21% 28% 49% 153%

Developer (D)  10% 16% 22% 47%

E + P 21% 35% 53% 173%

E + F 24% 40% 47% 253%

E + D 16% 31% 49% 100%

P + F 31% 44% 58% 340%

P + D 21% 35% 56% 163%

F + D 24% 43% 53% 273%

E + P + F 30% 61% 84% 507%

E + P + D 24% 47% 78% 293%

E + F + D 32% 54% 80% 381%

P + F + D 38% 58% 98% 547%

E + P + F + D 43% 79% 114% 828%
 

5   Case Study 

In order to demonstrate the applicability of the proposed approach and results of the 
study, we have conducted a case study based on real-world release planning data  
for ongoing product development at the Chartwell Technology Inc. which is a leading 
 



276 A. Al-Emran et al. 

developer and supplier of Internet gaming software systems to the online and mobile 
gaming industry. 

5.1   Case Study Data 

The studied ORP problem involves the following problem parameters: 
 

• A total of 35 features to be developed:  F = {f(1), …, f(35)}. 
• Each feature involves 3 task types:  T = {t(1), …, t(3)}. 
• A pool of 15 available developers:  D = {d(1), …, d(15)}. 
• The estimated work volume for each task, and the estimated productivity of each 

developer per task type are supplied by Chartwell Technology Inc. 
• DEP represents additional dependencies beside start-start & end-end dependencies 

among the tasks of the same features. That means, a task task(i,j) can start if and 
only if task task(i,j-1) is started and the task task(i,j) will not be finished before 
task(i,j-1) is completed. No additional dependencies are considered for this study. 

5.2   Case Study Results 

5.2.1   Overview 
The summary of the results for each of the 15 possible scenarios are shown in Table 2 
that contains mean impact values (by running 50 simulations using DynaReP per 
entry except “extreme” scenarios). An x% impact refers to the fact that the make-span 
is increased by x% on average compared to the baseline case (i.e., 15 weeks) due to 
variation of parameters (as shown in Table 1) both in isolation and combination for 
each of the pessimism level.  

5.2.2   Research Question 1 
The first four rows of Table 2 provide mean impact information for all four factors in 
isolation. From the information above we can see that there is no significant difference 
between the factors “Effort” and “Developer”. Even for the extreme case when all task 
efforts are increased by 50% and 30% of the developers are dropped out, the make-
span is not increasing more than 50%. On the other hand, “Feature” is the strongest 
impacting factor that outperforms all other factors at each of the pessimism levels 
considered. The effect of the factor “Productivity” always lies in between the effect of 
“Effort”/“Developer” and “Feature” with a high impact on release make-span.  

5.2.3   Research Question 2 
Figure 1 shows sorted results based on “extreme” impact. We can see that the more 
uncertainty factors are combined, the stronger gets the impact. With just three data 
points per scenario, the formal type of the dependency is hard to judge. 

In order to examine the research question in more detail, let us consider the impact 
of the factor “Productivity” as an example and see the difference when it is consid-
ered in isolation and in combination to other factors as shown in Figure 2. When con-
sidered in isolation, we can see that the curve representing increase in make-span due 
to increase in pessimism level is flatter than other curves. The other curves i.e., when 
an additional factor is combined with “Productivity” or with its one of the superset 
factors (e.g., “Productivity + Feature”) are going much steeper. The observation  



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 277 

concludes that with the increase in number of factors in combination (or in isolation) 
the impact value for all four pessimism level increases in a great deal. 

5.2.4   Research Question 3 
Figure 1 is providing the impact information per types of parameter variation for both 
in isolation and in combination. With the increase in pessimism level the make-span 
 

 

Fig. 1. Make-span increase per variation type 

 

Fig. 2. Make-span trend relative to baseline 
for different types of combinations 

Fig. 3. Distributions fitted1 to histograms for 
“Feature” variation in all pessimism levels 

                                                           
1 The fitted curves were generated by Minitab® Statistical Software (www.minitab.com) 



278 A. Al-Emran et al. 

is increasing as well. For some factors the increments are not significant (e.g., “Ef-
fort”) and for some other factor the changes happen drastically (e.g., combination of 
all factors, and for “Feature” as an individual impacting factor). The reason for having 
a very sharp increase from “worst” to “extreme” is a switch from stochastic case to 
deterministic case. The “extreme” case is actually a special deterministic case of 
“worst” case where all parameter values are set to the highest possible value that 
could be sampled from the distributions defined in the “worst” case scenario. Since 
for the stochastic pessimism levels, say for worst case, input parameters are defined as 
distributions, the output make-span comes as a distribution as well. Figure 3 shows 
how output make-span distributions for the three cases when the “Feature” parameter 
is set for bad, worse, and worst, respectively. We can see the shifts in mean values 
and changes in shapes if the pessimism level increases from one level to another. 

In order to further support our argument, we have conducted a one-way ANOVA 
(analysis of variance) statistical test within each pessimism level and the related test 
results are shown in Table 3 below. The result shows that the Null Hypothesis: “the 
mean values in each of the three categories (just one parameter, 2, and 3 parameters 
combined) are the same” is rejected since all the Fstat values are well above the Fcritical 
= F2, 11, 0.05 = 3.98. 

Table 3. ANOVA test results for each of the pessimism level 

Pessimism Level 

BAD WORSE WORST 

Sum of 

Squares 

(SS) SS df MS Fstat SS df MS Fstat SS df MS Fstat

SSamong 561.27 2 280.64 10.04 2522.43 2 1261.21 35.66 5929.52 2 2964.76 40.80

SSwithin 307.58 11 27.96 389.00 11 35.36 799.33 11 72.67

SStotal 868.86 13 2911.43 13 6728.86 13
 

5.3   Relevance of Results 

Chartwell's project managers were intuitively aware of the uncertainty arising from all 
the factors mentioned in the paper but lacked the means to quantify or mitigate the 
associated risks. Consequently, the process of ORP has, until recently, been princi-
pally a manual activity. In the absence of tool support for management of uncertainty 
project managers resorted to lengthy planning sessions and past experience to gener-
ate candidate operational plans. The manual approach had numerous shortcomings 
including lack of repeatability, high labor cost and no provision for easy re-planning. 
The usefulness of this approach is that it addresses the concerns above while also 
allowing managers analyze the effects of multiple areas of uncertainty acting in con-
crete and offers advice on which areas are the largest contributors to overall plan 
uncertainty. The fact the planning problems tend to manifest themselves in groups 
makes the former point important while the value of the latter is best understood 
through the following example.  

Project Alpha conducted under conditions similar to Case 1 and Case 2 (“Bad Ef-
fort” and “Bad Productivity” of Table 1) was under serious risk of schedule slippage. 
In response, considerable effort was invested in improving the effort estimates with 



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 279 

negligible results. Despite the improved effort estimates the project remained behind 
schedule and exceeded its initial deadline. Traditional software engineering encour-
ages the view that effort uncertainty is the primary influence on make-span and 
should be paramount in ORP. However Chartwell's experience on Project Alpha, and 
other projects, shows that increasing the accuracy of effort estimates offers marginal 
improvements to schedule adherence. Reducing the uncertainty in other areas of the 
operational plan can provide far greater benefit. This realization is borne out in 
Chartwell's recent success with Project Beta which was faced with conditions similar 
to Case 5 and Case 6. This time eschewed improving effort estimates in favor of 
measures to increase developer productivity (e.g. increased training, co-located teams, 
etc). Though the level of ORP uncertainty was greater on Project Beta (i.e. Bad vs. 
Worse) the improvements in developer productivity enabled Project Beta to be deliv-
ered on schedule.  

Note that in case of both projects Alpha and Beta, the feature set was predeter-
mined by existing commitments to customers and contractual obligations and there 
was no change in the respective developer pool. Thus, it was not possible to observe 
the effect of “Feature” and “Developer” uncertainty in these projects. These results 
have provided valuable insight into the subject matter and it has certainly affected 
other planning efforts and changed how Chartwell conducts ORP.  

6   Threats to Validity 

From running a series of coordinated simulation scenarios we have gained additional 
insight into the nature of worst cases in the context of operational release planning. 
This question has been confirmed of practical relevance by our case study. In order to 
better judge the meaningfulness and applicability of the results, we have to carefully 
check their validity status. 

Internal validity is asking for the treatment-outcome construct. There is no restric-
tion here, as for all research questions, we have studied the impact of different types 
of uncertainty on the overall release duration. The conclusions drawn for all of the 15 
different scenarios are based on a set of 50 randomly generated test examples in each 
case. That means that the treatment-outcome relationship is statistically significant for 
all the research questions raised.  

All the determined solutions for all the worst case scenarios to the ORP problem 
were obtained from running process simulation with some embedded heuristic for 
assigning developers to the different tasks. The applied heuristic has been shown to 
work sufficiently good in general. However, as is the case for heuristics in general, we 
cannot precisely evaluate the quality of the solution for an individual scenario. This 
might also impact the comparability between the different scenarios. However, having 
50 simulation runs all the time is assumed to be sufficient to overcome the inherent 
uncertainties with heuristics. 

The nature of worst cases was described by triangular distributions for all the sto-
chastic variables. While this is a frequently used assumption, it is not the only one 
possible. We have applied the equal distribution for one of the fifteen scenarios, and 
the results have been even more critical than in the case of the triangular function. 

Another threat to validity is the underlying model assumptions. Our model is an ab-
straction from all the details of real-world software release planning where productivity 



280 A. Al-Emran et al. 

might vary over time and, in addition, might vary also in dependence of not only the 
task, but also the specific feature. Tasks are typically more differentiated, and the de-
pendencies between tasks are often more dynamic. Despite of all these abstractions, we 
think that the stated tendencies of the worst-case analysis are remaining the same (if 
not getting stronger because of the tighter constraints in more detailed models).  

Finally, as often the case in simulation, the emphasis of the results should be on the 
trends, not the detailed numbers. In that sense, we think the presented results based on 
scenarios derived from a real-world case study are relevant and indicate some funda-
mental insight not known as such before. However, more comprehensive empirical 
analysis with real-world data is necessary to improve the level of our understanding 
and to demonstrate the scalability of results.  

While stressing the limitations of the applicability of the results, we also want to 
emphasize that the overall methodology is applicable more broadly in the context of 
simulation-based analysis. It is not restricted to discrete event simulation, nor to the 
operational release planning ORP. The only difference would be the adjustment of the 
simulation model and the inherent algorithms (heuristics). 

7   Summary and Conclusions 

Operational software release planning including the assignment of resources to per-
form tasks necessary to implement the features is of significant practical importance 
for planning and performing incremental software development. Staffing for product 
releases is assumed to take about one third of the time of a product or project manager 
[10]. With all the inherent uncertainties, it is important to pro-actively evaluate the 
possible impact of worst case scenarios, especially in case of the combined occur-
rence as suggested by Murphy's Law "Whatever can go wrong will go wrong, and at 
the worst possible time, in the worst possible way".  

We have studied three research questions in this context. From a technical perspec-
tive, the importance of our results is based on the following types of analysis of simu-
lation runs: (i) Comparison of the impact of four classes of individual uncertainty 
factors (both static and dynamic in their influence); (ii) Analysis of the different kinds 
of combined impact of uncertainties; (iii) Consideration of different levels of negative 
impact of uncertainty factors; and (iv) comparison between stochastic and determinis-
tic uncertainty.  

The results of the simulation-based planning will be the more meaningful the more 
qualified the data are. Proper design and analysis of measurement data will qualify 
productivity data (productivity measurement is a research topic of its own) as well as 
effort estimation. Knowing more about the worst case does not mean being overly 
pessimistic. Instead, it means to initiate preventive actions already in advance. The 
expected practical benefit of the simulation method is early risk detection and devel-
opment of mitigation strategies. These benefits have been confirmed by our industrial 
case study conducted at Chartwell Technologies. 

Future research will be devoted to combine the strengths of the simulation ap-
proach(es) with the accuracy  and computational power of advanced optimization meth-
ods. The method can and will be extended to other criteria than make-span. Based on 
more comfortable computer and decision support, we foresee more practical applica-
tions of the approach allowing to further evaluation of the validity of the stated results. 



 Simulating Worst Case Scenarios and Analyzing Their Combined Effect in ORP 281 

Acknowledgement 

Part of the work presented was financially supported by the Informatics Circle of 
Research Excellence (iCORE) of Alberta in Canada, and the Natural Sciences and 
Engineering Research Council (NSERC) of Canada under Discovery Grant no. 
327665-06 as well as Discovery Grant no. 250343-07. Chartwell’s Jenny Ye and the 
late Andrew Smith provided valuable contributions for the acquisition of the simula-
tion data and parts of the write-up for section 5. Thanks to Jim McElroy, Kornelia 
Streb, and Sudipta Sharkar for their efforts and comments on the paper. 

References 

1. Gurp, J., Bosch, J., Svahnberg, M.: Managing Variability in Software Product Lines. In: 
Proceedings of LAC 2000, Amsterdam (2000) 

2. Ziv, H., Richardson, D.J. Klösch, R.: The Uncertainty Principle in Software Engineering., 
Technical Report UCI-TR-96-33, University of California, Irvine (1996)  

3. Pfahl, D.: ProSim/RA – Software Process Simulation in Support of Risk Assessment. In: 
Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.) Value-based Soft-
ware Engineering, pp. 263–286. Springer, Berlin (2005) 

4. Al-Emran, A., Pfahl, D., Ruhe, G.: DynaReP: A Discrete Event Simulation Model for Re-
Planning of Software Releases. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. 
LNCS, vol. 4470, pp. 246–258. Springer, Heidelberg (2007) 

5. Chang, C., Christensen, M., Zhang, T.: Genetic Algorithms for Project Management. An-
nals of Software Engineering 11, 107–139 (2001) 

6. Acuña, S., Juristo, N., Moreno, A.M.: Emphasizing Human Capabilities in Software De-
velopment. IEEE Software 23(2), 94–101 (2006) 

7. Duggan, J., Byrne, J., Lyons, G.J.: A Task Allocation Optimizer for Software Construc-
tion. IEEE Software 21(3), 76–82 (2004) 

8. Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Software Release Planning. International 
Journal of Hybrid Intelligent Systems 1(2), 99–110 (2004) 

9. Ngo-The, A., Ruhe, G.: Optimized Resource Allocation for Software Release Planning. 
IEEE Transactions Software Engineering (accepted, 2008) 

10. Kapur, P., Ngo-The, A., Ruhe, G., Smith, A.: Optimized Staffing for Product Releases - 
Focused Search and its Application at Chartwell Technology. Software Maintenance and 
Evolution (Special Issue on Search-based Software Engineering) (submitted)  

11. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software Process Simulation Modeling: Why? 
What? How? Journal of Systems and Software 46, 91–105 (1999) 

12. Padberg, F.: Scheduling software projects to minimize the development time and cost with 
a given staff. In: 8th Asia-Pasific Software Engineering Conference, pp. 187–194 (2001) 

13. Padberg, F.: Computing optimal scheduling policies for software projects. In: 11th Asia-
Pasific Software Engineering Conference, pp. 300–308 (2004) 

14. Al-Emran, A.: Dynamic Re-Planning of Software Releases. Master’s Thesis, University of 
Calgary (2006) 

 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 282 – 293, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Using Process Simulation to Assess the Test Design Effort 
Reduction of a Model-Based Testing Approach 

Eduardo Aranha and Paulo Borba 

Informatics Center of the Federal University of Pernambuco,  
PO Box 7851, Recife, PE, Brazil 

{ehsa, phmb}@cin.ufpe.br 

Abstract. Several researches are being performed to address current software 
development problems in industry. However, quantifying the benefits of using 
these solutions in the practice is also a challenge. Usually, pilot studies are run to 
get evidences about these benefits. Nevertheless, it may be difficult to run these 
studies due to the required changes in the development process and the lack of 
available resources. In this work, we address the problem of assessing the test 
design effort reduction provided by TaRGeT, a tool that supports a Model-Based 
Testing (MBT) approach. We used process simulation to provide evidence of 
this effort reduction in a multi-site industry. For that, we modeled, simulated and 
compared the use of the current and the model-based test design processes.  We 
identified interesting advantages of using process simulation, such as its reduced 
costs and the possibility to analyze multiple scenarios. We also show some 
drawbacks of this approach, such as the difficult to create models close to the re-
ality and the lack of processes simulation and comparison support. 

Keywords: process simulation, test design effort, model-based testing, process 
improvement assessment, technology adoption. 

1   Introduction 

In industry, we usually need empirical evidence of the benefits of a given solution in 
order to convince people to use it. For instance, Model-Based Testing (MBT) is a 
testing approach in which test cases are automatically generated from software speci-
fications written in a more formal notation or structure that can be processed by a 
tool. In this way, MBT can significantly improve test coverage and reduce test design 
effort [7] [9]. However, although these improvements are expected to occur, they 
need to be quantified to verify if these benefits justify the effort to change the current 
process to adopt MBT. 

In general, pilot studies are run to evaluate these solutions and to get evidences 
about their benefits. Nevertheless, pilot studies are usually simples and they are not 
representative when considering all different environments of a global software de-
velopment. Also, even pilot studies are difficult to run, since they usually require 
changes in the development process and the availability of additional resources. 

An alternative way to evaluate new solutions and to support their adoption is the use 
of process simulation [3]. With this technique, we can model processes as currently 



 Using Process Simulation to Assess the Test Design Effort Reduction 283 

implemented and as planned for future implementation. Then, we run these models to 
get useful insights, predictions and empirical evidences for questions related to the 
benefits and drawbacks of each modeled process. Despite of the reduced costs of using 
process simulation instead of pilot studies, we also can address the uncertainty and the 
different possible situations existing in a multi-site organization, achieving more repre-
sentative results through the analysis of these multiple scenarios. 

Currently, software testing is being considered so important that organizations can 
allocate teams exclusively for testing activities [12]. In this context, this work shows 
the use of process simulation to provide evidences of the effort reduction provided by 
the use of a new test design process and its supporting tool, called TaRGeT [9].  

We run the process simulation considering an industrial setting with multiple de-
veloping and testing sites distributed around the world. The simulation model was 
created using data analysis and expert opinion. Actually, these models can always be 
refined as data is acquired from new experiments, pilots and case studies. This paper 
also highlights interesting advantages of using process simulation, such as its reduced 
costs and the analysis of multiple scenarios. It also presents some drawbacks of this 
approach, such as the difficulty to create the simulation models. 

2   Test Design Processes 

In this section, we model two different processes used to design test cases.  The first 
one is the process currently used to create test cases manually in a real company. The 
second process considers the use of TaRGeT [9], a tool developed to support a 
Model-Based Testing approach. Both test design processes are presented here using 
the notation of the process modeling tool used in this work [16]. 

2.1   Manual Test Design 

This process is used to create test cases manually. This probably still the most com-
mon process used in industry due to the current lack of appropriate tool support for 
functional test generation. We modeled this process as shown in Figure 1. There are 
two types of roles in this process, the test designers and the reviewers.  

The first activity of the test designers is the requirements analysis. Basically, the 
test designers read the requirements and any other source of information that helps to 
describe the behavior of the application to be tested. The output of this activity is a 
skeleton of the application behavior, which summarizes how to navigate in the appli-
cation, what are the alternative flows in case of errors, etc. 

With the skeleton of the application behavior, the test designer is able to start the 
next activity, which goal is to write the test cases. These specifications are commonly 
written in natural language and they usually describe the test precondition, procedure 
(list of test steps with inputs and expected outputs) and post-condition [13]. The out-
put of this activity is the set of specified tests (test suite). 

Once the test cases are written, they need to be inspected in order to ensure their 
correctness, the conformity with writing standards and the quality of the text. This 
activity is detailed in Figure 2. First, two or more reviewers are responsible to read the 
test specifications and take notes about any identified problem. This activity is called 
inspection preparation. 



284 E. Aranha and P. Borba 

 

Fig. 1. Test design process for creating test cases manually 

 

Fig. 2. Details of the test inspection activity 

After that, the identified problems are discussed in one or more meetings. The goal 
of these meetings is to confirm all the identified problems. The test designers are then 
responsible to rework the test specifications in order to correct all reported problems. 
Finally, the reworked test cases are validated by one of the reviewers to confirm that 
the problems were really solved. 



 Using Process Simulation to Assess the Test Design Effort Reduction 285 

2.2   Automated Test Design 

Model-Based Testing (MBT) is a technique used to generate test cases from the appli-
cation requirements. Using this approach, test designers concentrate their efforts in 
modeling the application behavior using a specific notation instead of in the writing of  

 

 

Fig. 3. Test design process for generating test cases automatically 



286 E. Aranha and P. Borba 

the test specifications. In general, the notation to be used depends on the input re-
quired by the MBT supporting tool. 

In this work, we consider the use of the Test and Requirements Generation Tool 
(TaRGeT), which is a MBT supporting tool for automatic test case generation from 
use case scenarios written in Natural Language (NL) [10]. This tool is a result of 
several research studies related to MBT [9]. In summary, TaRGeT automates a sys-
tematic approach for dealing with use cases scenarios and test artifacts in an inte-
grated way. The possible scenarios are specified as use cases using NL and a struc-
tured template that supports automatic processing. 

The process required to use TaRGeT is presented in Figure 3. Similarly to the 
manual test design process, we have the roles of test designers and reviewers and the 
first activity is also the Requirement Analysis, performed in the same way as de-
scribed in Section 2.1 for the manual test design process. 

Then, we have the Use Case Writing activity. Basically, the test designers describe 
the application behavior writing use case flows, as shown in Figure 4. In this example 
of a messaging application, the main flow of the use case describes a scenario in 
which the user selects his favorite message and moves it to the hot message folder. 
The flows are described through steps, identified by a Step Id, and composed by a 
User Action, the respective System Response and System State (the necessary condi-
tions to occur the system response). Although the use cases written by the testers can 
be based on use cases written by developers to save effort, we do not consider this 
possibility in this work because some development methodologies may not include 
the creation of use cases. 

The use cases written by the test designers are then inspected by two or more re-
viewers. This inspection activity is very similar to the one described in Section 2.1 
and, for this reason, it is not described here. 

 

 

Fig. 4. Use case flow used to describe the application behavior 



 Using Process Simulation to Assess the Test Design Effort Reduction 287 

Based on the reviewed use cases, the test designers use TaRGeT to automatically 
generate the test cases. Due to some technical limitations, it is not possible to generate 
all the information required to execute the tests. For this reason, the test designers 
have to complement the generated test specifications with some additional informa-
tion, such as some test preconditions or setup information. After that, the information 
written manually in the test specification must be inspected. We called this last activ-
ity by test validation to differentiate from the test inspection activity of the manual 
test design process. 

3   Assessment of Effort Reduction Using Processes Simulation 

We want to use process simulation to assess the effort reduction achieved by using the 
automated test design process instead of using the manual test design process. For 
that, we created and run simulation models for these test design processes, as de-
scribed next.  

3.1   Simulation Models 

For each process, we defined variables that characterize the artifacts used as inputs or 
outputs of the activities defined in the test design processes. Then, we modeled the 
effort spent in each activity based on the generated or updated artifacts (activity out-
put). Table 1 lists the artifacts artifact used in the test design processes and describes 
the variables used to characterize them. 

 
Table 1. Variables used to characterize the artifacts used in the test design processes 

 
Artifact Variable Description Determined by 
Requirements Req Number of requirements defined in 

the document. 
 

Skeleton of application 
behavior 

SkF Number of control flows identified 
in the skeleton. 

Req 

Use cases UCF Number of control flows written in 
the use cases. 

SkF 

 RwUCF Number of control flows written in 
the use cases that required rework 
after inspection. 

UCF 

Test cases MTC Number of test cases created manu-
ally. 

SkF 

 RwMTC Number of manually created test 
cases that required rework after 
inspection. 

MTC 

 GTC Number of test cases generated 
automatically. 

UCF 

 CompGTC Number of generated test cases that 
required a manual completion. 

GTC 

 RwGTC Number of generated test cases that 
required rework after validation. 

CompGTC 

 



288 E. Aranha and P. Borba 

In addition, we are considering that all the output artifacts of a process activity can 
be characterized only by analyzing the input artifacts (see column “Determined by” of 
Table 1). These relations are modeled as shown by the sample Equations 1 and 2. 

 

SkF = round(β1 * Req) . (1) 

MTC = round(β2 * SkF) . (2) 

In Equation 1, the number of requirements (Req) is a variable that has values as-
signed during the simulation to represent different situations, such as documents with 
small, medium or large number of requirements. These values are chosen according to 
a probability distribution, which basically describes the values and probabilities that 
the random event (e.g., size of the requirements) can take [14]. Then, the number of 
control flows created in the skeleton of the application behavior (SkF) is determined 
by Req and β1, which represents the intrinsic variance and uncertainty of the (linear) 
relation between SkF and Req. We use the function round to ensure that only integer 
values are assigned to SkF. 

Similarly, we see in Equation 2 that the number of test cases created manually 
(MTC) is determined by the number of control flows (SkF) and the intrinsic variance 
and uncertainty (β2) of this other relation. To easy the reading of this paper, variables 
having probabilistic distribution (random values assigned during the simulation) ap-
pear in italic in the equations and texts.  

The probabilistic distributions to use in the simulation model are defined using ex-
pert judgment and by the analysis of the available historical data. For instance, we 
analyzed the relation between the artifacts created in previous projects and then used 
normal, triangular and other probabilistic distributions that best fitted the data or the 
expert opinion. Regarding the automated test design approach, the only historical data 
available were extracted from studies carried out by the TaRGeT development team. 
This lack of data is a characteristic of new proposed technologies. Since the details of 
these distributions (types and parameters) are specific for the analyzed industrial set-
ting, we kept the privacy of this information without compromising the contributions 
of this paper. 

As our goal is to assess the effort reduction by using the automated test design 
process, we need to model the effort required to perform the activities of both manual 
and automated test design processes. For that, we defined variables and equations 
related to the effort spent in the activities presented in Section 2. 

Basically, we calculate the effort spent in each activity based on their output arti-
facts. For instance, the effort required to perform the Requirements Analysis activity 
(RAEffort) is given by multiplying the number of flows in the skeleton of the applica-
tion behavior (SkF) by the average time required to write each flow (TSkF): 

RAEffort = SkF * TSkF . (3) 

The variable TSkF and some others used in the next equations represent the time re-
quired to generate output artifacts. Probabilistic distributions are assigned to these  



 Using Process Simulation to Assess the Test Design Effort Reduction 289 

variables in order to model the uncertainty and variance related to the team productivity 
for the considered activity of the process. 

For calculating the effort spent in the Test Design activity of the manual process 
(TDEffort), we multiply the number of test cases created manually (MTC) by the 
average time required to write each test case (TMTC) manually: 

TDEffort = MTC * TMTC . (4) 

The effort spent in the Test Inspection (TIEffort) is the sum of the efforts spent in 
Preparation (PrepEffort), Meetings (MeetEffort), Rework (RwEffort) and Validation 
(ValidEffort): 

TIEffort = PrepEffort + MeetEffort + RwEffort + ValidEffort . (5) 

PrepEffort = MTC * TPrepTC * Reviewers . (6) 

MeetEffort = RwMTC * TMeetTC * Reviewers . (7) 

RwEffort = RwMTC * TRwTC . (8) 

ValidEffort = RwMTC * TValidTC . (9) 

Where: 
− TPrepTC is the average time for reading a test case for the inspection. 
− TMeetTC is the average time to discuss a test case in a meeting. 
− TRwTC is the average time to rework a test case. 
− TValidTC is the average time to verify if the corrections were done. 
− Reviewers is the number of reviewers attending the inspection. 

 

For the automated test design process, the effort spent in requirement analysis is 
considered the same as in the manual process. Also, the effort spent in the Use Case 
Inspection (UCInspEffort) and Test Validation (TVEffort) activities are calculated 
similarly to the Test Inspection effort for the manual test design process (Equation 5). 
For modeling the effort of the Test Case Generation activity (TCGEffort), we used a 
probabilistic distribution that represents the effort to use TaRGeT (create a project, 
import the use cases and generate the tests), which is practically independent of the 
size of the use cases.  

For the Use Case Writing activity, we calculate the spent effort (UCEffort) by mul-
tiplying the number of use case flows (UCF) by the average time required to write 
each one of these flows (TUCF): 

UCEffort = UCF * TUCF . (10) 

For calculating the time spent in the Generated Test Cases Completion 
(CompGTCEffort), we consider the average time spent to analyze each generated test 
case (TAnalyzeGTC) and the average time spent to complement each test case with 
missing information (TCompGTC). 



290 E. Aranha and P. Borba 

CompGTCEffort = GTC * TAnalyzeGTC + CompGTC * TCompGTC . (11) 
 

Finally, to support the analysis of the effort reduction provided by the automated 
test design process, we defined equations to calculate the effort spent in each test 
design process, as well the percentage gain (EffortReduction) of using the automated 
test design process: 

ManualProcessEffort = RAEffort + TDEffort + TIEffort . (12) 

AutomatedProcessEffort = RAEffort + UCEffort + UCInspEffort + TCGEffort 
+ CompGTCEffort + TVEffort . 

(13) 

EffortReduction = (ManualProcessEffort – AutomatedProcessEffort) / Manu-
alProcessEffort . 

(14) 

Due to some limitations of the tool used for modeling the process, it did not sup-
port the creation of the presented simulation model. Then, we created and run the 
simulation model in a general purpose simulation tool [15]. 

3.2   Simulation Results 

After running the simulation, we were able to perform several analyses. First, we 
analyzed the effort reduction by using the automated test design process instead the 
manual process and the differences of the effort distributions of both processes, as the 
sample graphs presented in Figure 5, which shows the effort reduction (gain) by using 
the automated process and the distribution of the effort spent in both process during 
the simulated situations. 

In addition, we analyzed and compare the performance of the test design processes 
with respect to the effort distribution among their activities. Descriptive statistics and 
the data generated during the simulation were also a valuable source of information to 
analyze. Finally, we were able to change the probabilistic distribution of some vari-
ables to represent specific situations under investigation, such as during the adoption 
of the new technology (high productivity with the manual process and low productiv-
ity with the automated process). 

 

         

Fig. 5. Sample charts used to analyze the results of the simulation (with illustrative data) 



 Using Process Simulation to Assess the Test Design Effort Reduction 291 

4   Advantages and Drawbacks of This Approach 

In this section, we summarize and generalize the advantages and drawbacks of using 
process simulation to compare two different processes. Regarding the advantages, we 
verified that: 

 

• The process simulation usually has a low cost than pilot studies. 
• Usually, we have historical data about the currently used process and this informa-

tion can be used to create and validate its simulation model. 
• The execution of new empirical studies (pilot projects, case studies, experiments, 

etc.) can generate data to incrementally calibrate the simulation models. Then, 
these models can be simulated again at a very low cost to provide more accurate 
results. 

• We can perform the analysis of multiple scenarios, analyzing the application of 
new processes in specific situations. 

• An analysis per process activity can highlight points in the process to improve. 
 

Although all these advantages, some drawbacks of using process simulation to 
compare processes must be observed: 

 

• Difficulty to create models close to reality. The validity of its results strongly de-
pends on the correct simulation model construction. It may be a challenge to con-
vince managers about the correctness of the model construction. 

• New processes have only few data from expert opinion and initial experiments run 
by the developers of the new process (possibly biased information). 

• The relationship between input and output artifacts of the process activities may be 
non-linear, making more difficult the modeling of these relations. 

• The simulation models are valid only for the aspect under investigation, such as 
effort reduction, and not for others, such as the creation of effective tests. 

• Process modeling and simulation tools may be too complex without providing the 
needed resources. 

5   Related Work 

In [6], the authors simulated a software development process to analyze different 
strategies, such as iterative development, pair programming and test automation. They 
defined parameters to represent the effort to perform the activities in the process 
(team productivity), the defect introduction rate, the probability of finding bugs, etc. 
They identified situations were the use of these strategies can provide benefits in 
terms of effort and bug detection.  In our work, we study the automation of the test 
design process using MBT. The generated tests can then be automated or executed 
manually. 

In [5] and [11], the authors compared different prediction techniques using simula-
tion. Basically, their works simulate data to create datasets with different characteris-
tics. They compared the predictions techniques with these simulated datasets and 
identified that the best technique can be defined only for particular contexts. In our 



292 E. Aranha and P. Borba 

work, we create a larger number of different situations through simulation to assess 
the effort spent in two different test design processes. 

Mutation testing [8] is a technique to simulate the introduction of software defects 
in order to evaluate the best set of tests cases able to reveal these defects (kill the 
mutants). While this paper only considers the effort reduction criteria to assess the test 
design approaches, Mutant testing can be used to assess these approaches considering 
the effectiveness of the created tests. 

6   Conclusions 

In this paper, we presented the use of process simulation to address the problem of 
assessing the test design effort reduction provided by a Model-Based Testing (MBT) 
approach. We modeled both manual and automated test design processes. For the 
automated process, we modeled the process supported by the Test and Requirements 
Generation Tool (TaRGeT). 

We used process simulation to provide evidences of this effort reduction in a multi-
site industry. For that, we created a simulation model that characterized the artifacts 
produced and manipulated during the processes. Then, we modeled the effort spent in 
each processes activity based on these artifacts. The modeling of each individual proc-
ess activity make easy the model construction and validation process. All these models 
were created using expert opinion and data analysis. Actually, these models can be 
refined as the data is acquired through new experiments, pilots and case studies.  

We identified interesting advantages of using process simulation, such as its re-
duced costs and the achievement of more representative results, since we can simulate 
several different situations. We also show some drawbacks of this approach, such as 
the difficult to create models close to the reality and the lack of support of the process 
simulation tools. 

We also believe that similar works can be done to provide evidences about the 
benefits of solutions for other software development problems. After this study, we 
believe that process simulation is an interesting alternative to evaluate the impact of 
using new technologies that require changes in the processes. 

Acknowledgments. We would like to thank all anonymous reviewers who have 
helped us to improve this paper through their valuable comments. Also, the first 
author is a PhD candidate partially supported by Motorola, grant BCT-0021-1.03/05, 
through the Motorola Brazil Test Center Research Project. The second author is 
partially supported by CNPq, grant 306196/2004-2. 

References 

1. Angelis, L., Stamelos, I.: A Simulation Tool for Efficient Analogy Based Cost Estimation. 
Empirical Software Engineering 5(1), 35–68 (2000) 

2. Ebert, C., De Neve, P.: Surviving Global Software Development. IEEE Software 18(2), 
62–69 (2001) 

3. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling: Why? 
What? How? Journal of Systems and Software 46(2), 91–105 (1999) 



 Using Process Simulation to Assess the Test Design Effort Reduction 293 

4. Rask, R., Laamanen, P., Lyytinen, K.: Simulation and Comparison of Albrecht’s Function 
Point and Demarco’s Function Bang Metrics in a CASE Environment. IEEE Transactions 
on Software Engineering 19(7), 661–671 (1993) 

5. Shepperd, M., Kadoda, G.: Comparing Software Prediction Techniques Using Simulation. 
IEEE Transactions on Software Engineering 27(11), 1014–1022 (2001) 

6. Ur, S., Yom-Tov, E., Wernick, P.: An Open Source Simulation Model of Software Test-
ing, Hardware and Software, Verification and Testing. In: Ur, S., Bin, E., Wolfsthal, Y. 
(eds.) HVC 2005. LNCS, vol. 3875, pp. 124–137. Springer, Heidelberg (2006) 

7. Pretschner, A.: Model-based testing. In: 27th international conference on Software engi-
neering, pp. 722–723. IEEE Press, St. Louis (2005) 

8. Fabbri, S.C.P.F., Maldonado, J.C., Masiero, P.C., Delamaro, M.E.: Mutation analysis test-
ing for finite state machines. In: 5th International Symposium on Software Reliability En-
gineering, pp. 220–229. IEEE Press, Monterey (1994) 

9. Nogueira, S., Cartaxo, E., Torres, D., Aranha, E., Marques, R.: Model based test genera-
tion: A case study. In: 1st Brazilian Workshop on Systematic and Automated Software 
Testing, Recife (2007) 

10. Schwitter, R.: English as a formal specification language. In: 13th International Workshop 
on Database and Expert Systems Applications (DEXA 2002), pp. 228–232 (2002) 

11. Shepperd, M., Kadoda, G.: Using Simulation to Evaluate Prediction Techniques. In: IEEE 
METRICS 2001, IEEE Press, Los Alamitos (2001) 

12. Broekman, B., Notenboom, E.: Testing Embedded Software. Addison-Wesley, Reading 
(2002) 

13. Jorgensen, P.: Software Testing, A Craftsmans Approach. CRC Press, Boca Raton (2002) 
14. Maxwell, K.: Applied Statistics for Software Managers. Prentice Hall, Englewood Cliffs 

(2002) 
15. Crystal Ball, http://www.crystalball.com 
16. Metastorm Provision, http://www.metastorm.com 
 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 294–306, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

GENSIM 2.0: A Customizable Process Simulation Model 
for Software Process Evaluation 

Keyvan Khosrovian1, Dietmar Pfahl1, 2, 3, and Vahid Garousi1 

1 Schulich School of Engineering, University of Calgary, Canada 
2 Simula Research Laboratory, Lysaker, Norway, 

3 Department of Informatics, University of Oslo, Norway 
{kkhosrov, dpfahl, vgarousi}@ucalgary.ca 

Abstract. Software process analysis and improvement relies heavily on empiri-
cal research. Empirical research requires measurement, experimentation, and 
modeling. Moreover, whatever evidence is gained via empirical research is 
strongly context dependent. Thus, it is hard to combine results and capitalize 
upon them in order to improve software development processes in evolving de-
velopment environments. The process simulation model GENSIM 2.0 addresses 
these challenges. Compared to existing process simulation models in the litera-
ture, the novelty of GENSIM 2.0 is twofold: (1) The model structure is custom-
izable to organization-specific processes. This is achieved by using a limited set 
of macro-patterns. (2) Model parameters can be easily calibrated to available 
empirical data and expert knowledge. This is achieved by making the internal 
model structures explicit and by providing guidance on how to calibrate model 
parameters. This paper outlines the structure of GENSIM 2.0, shows examples 
of how to calibrate the simulator to available empirical data, and demonstrates 
its usefulness through two application scenarios. In those scenarios, GENSIM 
2.0 is used to rank feasible combinations of verification and validation (V&V) 
techniques with regards to their impact on project duration, product quality and 
resource consumption. Though results confirm the expectation that doing more 
V&V earlier is generally beneficial to all project performance dimensions, the 
exact rankings are sensitive to project context. 

1   Introduction and Motivation 

Empirical research is essential for developing a theory of software development, and, 
subsequently, for transforming the art of software development into engineering. 
Engineering disciplines require provision of evidence on the efficiency and effective-
ness of tools and techniques in varying application contexts. In the software engineer-
ing domain, the number of tools and techniques is constantly growing, and ever more 
contexts emerge in which a tool or technique might be applied. The application con-
text of a tool or technique is defined, firstly, by organizational aspects such as process 
organization, resource allocation, staffing profiles, management policies, and, sec-
ondly, by the set of all other tools and techniques applied in a development project. 

Since most activities in software development are strongly human-based, the actual 
efficiency and effectiveness of a tool or technique can only be determined through 



 GENSIM 2.0: A Customizable Process Simulation Model 295 

real-world experiments. Controlled experiments are a means for assessing local effi-
ciency and effectiveness, e.g., defect detection effectiveness of an inspection or test 
technique applied to a specific type of artifact, by a typical class of developers. Global 
efficiency and effectiveness of a tool or technique relates to its impact on the overall 
development project performance dimensions (duration, quality, effort). Typically, 
global efficiency and effectiveness are evaluated through case studies. 

Controlled experiments and case studies are expensive. Support for making deci-
sions as to which experiments and case studies to perform would be helpful. Cur-
rently, these decisions are made relying purely on experience and intuition. This way 
of decision-making has two major drawbacks. Firstly, numerous mutual influences 
between entities, involved in a process, make it hard for an expert to estimate to what 
extent a locally efficient and effective tool or technique positively complements other 
locally efficient and effective tools or techniques applied in other activities of the 
chosen development process. Secondly, for the same reasons as mentioned above, it is 
hard for an expert to estimate how sensitive overall project performance dimensions 
will react to variations in local efficiency or effectiveness of a single tool or tech-
nique. The second point is particularly important if a decision has to be made whether 
assumed improvements are worthwhile to be empirically investigated within various 
contexts.  

To address the above mentioned challenges, one can provide experts with a soft-
ware process simulator that generates estimates of the impact of local process changes 
on overall project performance. For example, if the defect detection effectiveness of a 
unit test technique A is expected to be 10% better than that of another unit test tech-
nique B in a given context, this might yield a simulated overall positive impact of, 
say, 2% or 20% on end-product quality (plus effects on project duration and effort). If 
simulations indicate that it has only 2% overall impact or less, it might not be worth-
while to run additional experiments to assess the advantage of technique A over tech-
nique B. More complex questions could address the overall effectiveness of varying 
combinations of different development and V&V techniques. Also, one could ask 
how much workforce should be allocated to development and V&V activities in order 
to achieve predefined time, cost and quality goals. One can even go one step further 
and use process simulators to analyze how better developer skills improve project 
performance. This, in turn, can be used to assess whether and to what extent invest-
ment in training or in hiring better qualified developers would pay off. 

Well-known issues of process simulators are related to assessing their validity, and 
their high development and maintenance costs. This paper offers a solution to the 
cost-related issue and provides some initial guidance addressing the validity-related 
issue. A core element of the proposed solution is the simulation framework GENSIM 
2.0 (GENeric SIMulator, Version 2.0), which is an enhanced version of an older  
research prototype (GENSIM [18]).  

2   Related Work  

The idea of using software process simulators for predicting project performance or 
evaluating processes is not new. Beginning with pioneers like Abdel-Hamid [1], 
Bandinelli [4], Gruhn [9], Kellner [10], Scacchi [15], dozens of process simulation 



296 K. Khosrovian, D. Pfahl, and V. Garousi 

models have been developed for various purposes1. However, all published models 
have at least one of the following shortcomings: 

 

• The model is too simplistic to actually capture the full complexity of real-world 
processes (e.g., GENSIM was used for purely educational purposes [18]). 

• The model structure and calibration is not comprehensively reported (e.g., [19]) 
and thus cannot be independently adapted and used by others. 

• The model captures a specific real-world development process with sufficient 
detail but fails to offer mechanisms to represent complex product and resource 
models. This has typically been an issue for models using System Dynamics (SD) 
[7] modeling environments.  

• The model structure captures a specific real-world development process (and asso-
ciated products and resources) in sufficient detail, but is not (easily) adaptable to 
new application contexts due to lack of design for reusability and lack of guidance 
for re-calibration (e.g., [17]). 

 

While the third issue can easily be resolved by fully exploiting the modeling con-
structs offered by commercial process simulation environments such as Extend® [6] 
and Vensim® [22], the fourth issue has not yet been satisfactorily resolved, neither by 
researchers proposing proprietary process simulation modeling environments (e.g., 
Little-Jil [24]) nor by researchers using commercial process simulation environments.  

A first attempt to define a set of core structures of process simulation models 
which could be regarded as a set of basic building blocks of any process simulator 
was made by Senge in the early 1990s [21]. He identified ten “Systems Archetypes”, 
i.e., generic process structures which embody typical behavior patterns of individuals 
and organizations. Although these archetypes are certainly a good tool for understand-
ing individual and organizational behavior modes, they are too generic and too quali-
tative as to be directly applicable for the modeling of software development proc-
esses. More recently, following the approach taken by Senge but having software 
development processes in mind, Madachy suggested a core set of reusable model 
structures and behavior patterns [14]. This set comprises several very specific micro-
patterns (and their implementations) suited for SD process simulation models. Mad-
achy’s micro-patterns are well-thought reusable process structures, with very specific 
purpose and focused scope. They can be interpreted as a bottom-up approach to sup-
port reusability of process simulation structure. However, there exist no guidelines 
that help modelers combine individual micro-patterns to capture more complex, soft-
ware development specific process structures. 

Emerging from suggestions made several years ago [2], the work presented in this 
paper complements Madachy’s micro-patterns by a top-down approach that provides 
a set of reusable and adaptable macro-patterns of software development processes. 
The suggested macro-patterns are described in more detail by giving an implementa-
tion example of the research prototype GENSIM 2.0. Besides capturing key structural 
and behavioral aspects of software development processes, GENSIM 2.0 provides a 

                                                           
1 For an overview of software process simulation work done in the past 15 to 20 years, refer to 

[16]. Currently, a systematic review is being conducted by researchers at National ICT Aus-
tralia (NICTA) that will offer a more comprehensive overview of work done in the field of 
software process simulation. 



 GENSIM 2.0: A Customizable Process Simulation Model 297 

blueprint on how to integrate detailed product and resource models. In GENSIM 2.0, 
each instance of a process artifact type and resource type, i.e., roles involved in soft-
ware development, is modeled individually. Since GENSIM 2.0 is the core element of 
a long-term research program supporting the integration of results from empirical 
software engineering research conducted worldwide, this paper also presents exam-
ples on how to calibrate GENSIM 2.0 to empirical data. 

3   The GENSIM 2.0 Model 

This section describes the macro-patterns of software development processes, the key 
parameters associated with these patterns, and their implementation in GENSIM 2.0. 
Some of the underlying assumptions and heuristics used in the prototype are de-
scribed. Moreover, examples that illustrate how GENSIM 2.0 can be calibrated to 
empirical data collected from specific software development processes are presented. 
All implementation details of GENSIM 2.0 can be found in [11]. 

3.1   Generic Process Structures (Macro-patterns) 

Inspired by the idea of frameworks in software engineering, customizable software 
process simulation models can be constructed from reusable structures [3, 16, 20] 
referred to as macro-patterns. An example of a reusable structure representing devel-
opment (including rework) and verification activities is shown in Fig. 1 on the left-
hand side. Associated with activities are input/output products and resources. In addi-
tion, each artifact, activity, and resource is characterized by attributes representing 
states. “Learning” is an example attribute related to resources (e.g., developers), while 
“maturity” is an example of a state attribute related to artifacts and activities. The 
right-hand side of Fig. 1 shows state-transitions for development (top) and verifica-
tion (bottom) maturity. The macro-pattern shown in Fig. 1 is applied to different de-
velopment phases of a generic development process. Each develop-
ment/rework/verification sub-process can be complemented by an optional validation 
(i.e., testing) sub-process. 

Fig. 2 shows an example instance of such a generic process (the well-known “V” 
model) with three levels of refinement, i.e., requirements development and verifica-
tion (system level), design development and verification (sub-system level), code 
development and verification (module level), and their validation (test) counterparts. 
Verification activities could involve, e.g., requirements, design, and code inspections. 
On each level, one or more artifacts are developed, verified, and validated. In this 
example process, only development activities are mandatory. Depending on the or-
ganizational policies and the type of product under development, verification and 
validation activities are optional. If defects are detected during verification or valida-
tion, rework has to be done (through the development activity in the macro-pattern of 
Fig. 1). On code level, rework is assumed to be mandatory no matter by which activ-
ity defects are found, while rework of design and requirements artifacts due to defects 
found in other V&V activities than design and requirements verification, respectively, 
may be optional depending on the organizational or project policies. 

 



298 K. Khosrovian, D. Pfahl, and V. Garousi 

 

Fig. 1. Macro-pattern for development/verification activity pairs (with state-transition charts) 

 

Fig. 2. An example instance of a software development process in GENSIM 2.0 

3.2   Model Implementation 

GENSIM 2.0 was implemented using the SD simulation modeling tool Vensim, a 
mature commercial tool widely used by SD modelers. Vensim offers three features in 
support of reuse and interoperability: views, subscripts, and the capability of working 
with external DLLs. 

In order to capture the main dimensions of project performance (duration, effort 
and quality) together with different artifact/activity/resource states, the generic proc-
ess instance shown in Fig. 2 is implemented in four separate views: product-flow 
(process), defect flow (product quality), workforce allocation (developers, techniques, 
tools), and project states.  

 



 GENSIM 2.0: A Customizable Process Simulation Model 299 

Specific product types are associated with different refinement levels of the devel-
opment process, i.e., system, subsystem, and module. If a new refinement level is 
required, e.g., design shall be split into high-level design and low-level design, exist-
ing views can easily be reused. The subscripting mechanism provided by Vensim 
allows for modeling individual work products as product type instances. For example, 
if one system consists of several sub-systems, and each sub-system of several mod-
ules, then each of these products would be identifiable via its subscript value. Ven-
sim’s subscripting mechanism is also used to distinguish defect origins and the ISO 
9126 quality characteristics that they potentially affect. 

Vensim’s capability of working with external DLLs was exploited to extract or-
ganization-specific heuristics from the SD model and incorporating them into external 
DLL libraries where they can be changed easily without affecting the model structure. 
The algorithm that allocates developers to development and V&V activities is an 
example of such a heuristic. The DLL’s main allocation function takes as input head-
count and skill levels of the available workforce, workload of all activities, and the 
minimum skill level required for developers in order to be assigned to different activi-
ties. Without going into full detail, the heuristic works as follows. Developers are 
classified according to the number of different types of activities they are able to 
conduct. Ability to conduct an activity is given whenever the related skill level of a 
developer is higher than the minimum required level. First, all developers that are able 
to work only on one artifact type are assigned to the related activity. Next, those de-
velopers that can work on two artifact types are assigned to the related activities pro-
portional to the number of waiting artifacts per type. This procedure is continued until 
all developers that can be allocated are assigned to activities. The formal definition of 
the algorithm used by the developer assignment heuristic can be found in [11]. 

The following list summarizes the most important assumptions underlying the 
model corresponding to the process instance shown in Fig. 2. These assumptions are 
explicit and thus can be modified as needed to adapt the model to other organization-
specific processes: 

 

• A downstream activity can only begin when working on its input artifact has 
been completely finished in the upstream activities. 

• Working on different modules and subsystems can be done independently. 
• The rates at which development/rework and V&V activities are carried out de-

pend on the efficiencies of the chosen techniques, the headcount and average skill 
level of the assigned development team and the learning status. 

• Defect injection rates depend on the headcount and average skill level of the 
assigned developer team, the development/rework rates and the learning status. 

• Defect detection rates depend on the effectiveness of the chosen V&V tech-
niques, the headcount and average skill level of the assigned team and the learn-
ing status. 

• Learning happens during development/rework and V&V activities.  

3.3   Model Parameters 

GENSIM 2.0 has a large number of parameters. Parameters can represent model in-
puts and outputs, or they are used to calibrate the model to expert knowledge and 
empirical data specific to an organization, process, technique or tool.  



300 K. Khosrovian, D. Pfahl, and V. Garousi 

Table 1 shows a selected list of 17 (out of 28) parameters related to the macro-
pattern code development (including rework) and verification. Corresponding pa-
rameters exist for the requirements specification and design related sub-processes.  

Input parameters represent project specific information like estimated product sizes 
and developer skills, as well as project specific policies that define which verification 
and validation activities should be performed and whether requirements and design 
documents should be reworked if defects are found in code (by different V&V activi-
ties) that actually originate from design or requirements defects. 

Calibration parameters represent organization specific information. An example of 
how model parameters are calibrated is given in Section 3.4. 

Output parameters represent values that are calculated by the simulation engine 
based on the dynamic cause-effect relationships between input and calibration pa-
rameters. Which output values are in the focus of interest depends on the simulation 
goal. Typically, project performance variables such as product quality, project dura-
tion, and effort are of interest.  

Table 1. A subset of model parameters related to code development and verification 

 

 Parameter Name Attribute Type View 
1 Verify code or not Process Input C-P 
2 # of modules per subsystem Product Input C-P 
3 Code doc quality threshold per size unit Project Input C-Q 
4 Required skill level for code dev Project Input C-W 
6 Developers’ skill level for code dev People Input C-W 
8 Maximum code ver. effectiveness Process Calibrated C-P 
9 Maximum code ver. rate per person per day Process Calibrated C-P 
12 Minimum code fault injection rate per size unit Product Calibrated C-Q 
14 Code rework effort for code faults detected in CI Product Calibrated C-Q 
16 Code rework effort for code faults detected in IT Product Calibrated C-Q 
18 Initial code dev. rate per person per day People Calibrated C-W 
19 Initial code ver. rate per person per day People Calibrated C-W 
20 Code doc size (actual) Product Output C-P 
22 Code development rate (actual) Process Output C-P 
24 Code faults undetected Product Output C-Q 
26 Code faults corrected Product Output C-Q 
28 Code ver. effort (actual) Process Output C-W 

#=number, CI=Code Inspection, UT=Unit Test, IT=Integration Test, ST=System Test 

3.4   Model Calibration 

The possibility to calibrate GENSIM 2.0 is essential for the validity of simulation 
results. Generally, parameters can be calibrated by using expert judgment or empirical 
data. Empirical data can either be gathered from organization specific measurement 
and experimentation or from publications that publish data which is assumed to have 
been derived from sufficiently similar contexts.  

Table 2 shows snapshots of two literature-based calibrations (A and B) of model 
parameters related to code defect injection, detection, and correction. For the parame-
ters shown, three sources were used: Frost and Campo [8] provide an example of a 
defect containment matrix from which values for the calibration fault injection rates 



 GENSIM 2.0: A Customizable Process Simulation Model 301 

and verification effectiveness can be derived. Table 2 shows only the code related 
parameters. Wagner [23] provides much data on typical (average) verification and 
validation rates, and rework efforts for defects of various document types. According 
to Wagner, defect rework efforts vary depending on the type of defect detection activ-
ity. He observed that defect rework effort increases the later defects are detected. For 
example, as shown in Table 2 (Calibration A), a code defect detected in system test 
(ST) requires about 2.4 times as much rework effort than a code defect detected dur-
ing unit test (UT). Unfortunately, Wagner does not state clearly in which context his 
numbers are valid. Since there exist other studies (e.g., [5]) which report a much 
higher distance between rework efforts for code defects found in UT as compared to 
integration test (IT) and ST, Table 2 shows an alternative calibration. Calibration B 
applies factors of 2.5 and 13 on correction effort for defects found in UT in order to 
calculate the rework effort for code defects detected in IT and ST, respectively. Many 
other calibrations based on data from published sources were made in GENSIM 2.0 
but cannot be shown here due to space limitations, but can found in [12]. 

Table 2. Examples of coding related calibration parameters 

 

Value 
Calibration Parameter 

Calibration A Calibration B 
Minimum code fault injection rate per size unit 14.5 Defect/KLOC [8] 
Maximum code verification effectiveness 0.53 [8] 
Max. code verification rate per person per day 0.6 KLOC/PD [23] 
Code rework effort for code faults detected in CI 0.34 PD/Def. [23] 
Code rework effort for code faults detected in UT 0.43 PD/Def. [23] 
Code rework effort for code faults detected in IT 0.68 PD/Def. [23]  1.08 PD/Def. [5, 23]  
Code rework effort for code faults detected in ST 1.05 PD/Def. [23]  5.62 PD/Def. [5, 23]  

KLOC = Kilo Lines of Code, PD = Person-Day, Def. = Defect. 

4   Model Application  

Software process simulation in general – and GENSIM 2.0 in particular – can support 
software decision-makers in many ways. The following list of possible applications is 
not exhaustive but gives an idea of the diversity of questions that could be addressed: 

 

• What combinations (and intensity levels) of development, verification, and valida-
tion techniques should be applied in a given context to achieve defined time, qual-
ity or cost goals? 

• What staffing levels should be assigned to achieve time, quality or cost targets? 
• Does investment in training pay off for specific development contexts and goals? 
• Do investments in improving development, verification, and validation techniques 

pay off for specific development contexts and goals? 
• What are the promising areas of research for improving development, verification, 

and validation techniques? 
 

To demonstrate the applicability and usefulness to relevant problems software deci-
sion-makers are facing, the remainder of this section summarizes results of a model 



302 K. Khosrovian, D. Pfahl, and V. Garousi 

application related to the first question listed above in two different scenarios. Under-
lying assumptions of the application are: (1) A project has a given set of features 
(which are assumed to define the size of work products) and a target deadline; (2) The 
project manager wants to know which verification and validation techniques should 
be combined to hold the deadline (priority 1) and deliver high quality code (priority 
2); (3) The developer team and their skills are given; (4) The requirements, design, 
and code implementation methods and tools are given.  

4.1   Scenario 1 

This scenario shows the impact of different combinations of verification and valida-
tion (V&V) activities on project duration, product quality, and effort. Verification 
activities include Requirements Inspections (RI), Design Inspections (DI) and Code 
Inspections (CI). Validation activities include Unit Test (UT), Integration Test (IT), 
and System Test (ST). Exactly one technique with given efficiency and effectiveness 
measures is available per V&V activity. A V&V technique is either applied to all 
artifacts of the related type (e.g., requirements, design, and code documents) or it is 
not applied at all. 
 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

400 900 1400 1900 2400

Project Duration (Day)

N
um

be
r 
of

 U
nd

et
ec

te
co

de
 d

ef
ec

ts

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

To
ta

l p
ro

je
ct

 e
ff

or
t (

Pe
rs

on
-D

a

Quality vs. Duration Effort vs. Duration

Linear (Effort vs. Duration) Power (Quality vs. Duration)

 

Fig. 3. Quality vs. Duration and Effort vs. Duration (Scenario 1 – Calibration A) 

Fig. 3 shows simulation results for model calibration A. Due to space constraints, the 
results for calibration B are not reported in this paper, but can be found in [13]. 
Squares represent (Quality, Duration) result value pairs, where quality is measured as 
the total number of undetected code faults.  

Filled triangles represent non-dominated (Quality, Duration) result values, i.e., 
simulation results to which no other simulation exists with both less undetected de-
fects and less duration. Obviously, for calibration A, there exists a trade-off between 
Quality and Duration. This is also true for calibration B [13]. By looking at the non-
dominated solutions, it can be seen that in order to achieve less undetected defects 
(higher quality), more time is needed. In fact, if the goal was to explore which combi-
nations of V&V activities should be applied to achieve the target duration, in case 
there are several eligible V&V combinations, a decision-maker could pick the non-
dominated solution with the lowest number of undetected defects. 

 



 GENSIM 2.0: A Customizable Process Simulation Model 303 

Circles represent (Effort, Duration) result value pairs, where effort is measured as 
the total number of person-days spent on all activities (including rework). The only 
non-dominated solution is represented by the diamond symbol near the lower left end 
of the (Effort, Duration) regression line. For calibration A, it is the case where only RI 
is performed.  

Differences between simulation results of calibrations A and B are reported in [13]. 
For instance, on average, simulations with Calibration B take longer and consume 
more effort. This can be explained by the fact that Calibration B assumes larger per 
defect rework effort for code defects found in IT and ST than Calibration A.  

4.2   Scenario 2 

This scenario uses only Calibration B. Scenario 2 shows the impact of different com-
binations of verification activities and techniques on project duration, product quality, 
and effort. This scenario assumes that all validation activities UT, IT, and ST are 
always performed, while verification activities RI, DI, and CI can be performed or 
not. If a verification activity is performed, one of alternative techniques A or B can be 
applied. Compared to A-type verification techniques, B-type techniques are 10%  
 

Table 3. Simulation results of Scenario 2 

RI DI CI RI-tec DI-tec CI-tec Duration [Day] Effort [PD] Quality [UD] 
0 1 0  B  1085 28401 96 
0 1 0  A  1086 30272 108 
1 0 0 B   1102 32830 135 
1 0 0 A   1103 34448 145 
1 1 0 A A  1103 26216 89 
1 1 0 B A  1106 25637 86 
1 1 0 A B  1108 25220 82 
1 1 0 B B  1110 24892 81 
1 1 1 A A A 1135 22032 43 
0 1 1  B A 1138 24297 50 
1 1 1 B A A 1143 21516 40 
1 1 1 B B A 1144 20926 36 
0 1 1  B B 1149 23888 45 
0 1 1  A A 1152 25916 61 
1 1 1 A B A 1156 21253 38 
1 1 1 B B B 1158 20728 33 
0 1 1  A B 1169 25412 54 
1 0 1 B  B 1171 27094 72 
1 1 1 A B B 1172 21153 35 
1 0 1 A  A 1173 29187 90 
1 0 1 B  A 1178 27836 82 
1 1 1 A A B 1179 21865 40 
1 1 1 B A B 1181 21434 38 
1 0 1 A  B 1183 28302 79 
0 0 1   B 1355 39446 139 
0 0 1   A 1363 40287 149 
0 0 0    1394 48683 233 



304 K. Khosrovian, D. Pfahl, and V. Garousi 

more effective (i.e., find 10% more of all defects contained in the related artifact) and 
25% less efficient (i.e., 25% less document size can be verified per person-day).  

The simulation of all possible combinations generates 33 = 27 different results (cf. 
Table 3). The main difference to Scenario 1 is that in addition to the (Quality, Dura-
tion) trade-off there exists a simultaneous (Effort, Duration) trade-off. Moreover, as 
can be seen in Table 3, for the specific values chosen, in cases where only one verifi-
cation activity is performed, solutions using the B-type technique (i.e., slower but 
more effective) perform better with regards to project duration, effort consumption, 
and quality than solutions using the A-type techniques.  

When there is a mix of A-type and B-type verification techniques, the picture is 
more complex. In cases involving only two verification activities, solutions that use 
B-type techniques more often and/or later seem to slightly extend project duration but 
consume considerably less effort and leave less defects undetected. 

5   Discussion 

The scenarios presented in the previous section exemplify how GENSIM 2.0 can be 
applied for decision support. Many other practical scenarios could have been pre-
sented, addressing various aspects of the questions listed at the beginning of Section 
4. Two observations can be made with regards to the simulation results in Scenarios 1 
and 2. Firstly, the results are consistent with empirical evidence about the effects of 
performing V&V activities. The more, and – if not all V&V activities are performed – 
the earlier V&V is done, the better the end product quality. Secondly, the results show 
that effects of V&V activities on project duration and effort consumption are com-
plex. They depend on the combinations and types of V&V techniques, and the overall 
project context. The complex behavior partly results from non-linear effects in the 
model due to learning and the specific workforce allocation heuristic. 

To what extent the presented results are reliable depends on the validity of the 
simulation model. Model validity is mainly affected by three factors: proper imple-
mentation of cause-effect structures, proper representation of real-world attributes by 
model parameters, and proper calibration. As all underlying assumptions (and thus 
limitations) of GENSIM 2.0 are explicit, it is always possible to judge to what extent 
the model structure and parameters correspond to an actual organizational process. 
Moreover, the design of GENSIM 2.0 allows for easy adaptation where and when 
needed. Finally, calibration to available organization-specific data and expert knowl-
edge is simple as demonstrated by the example shown in Section 3 using external 
source of information, i.e., data published in scientific papers. 

6   Conclusions and Future Work 

GENSIM 2.0 is a customizable and publicly available software process simulation 
model. Different to most SD software process simulation models, GENSIM 2.0 al-
lows for detailed modeling of work products, activities, developers, techniques, tools, 
defects and other entities by exploiting the subscription mechanisms of Vensim. 
Moreover, the possibility to use external DLL libraries gives the opportunity to  



 GENSIM 2.0: A Customizable Process Simulation Model 305 

extract potentially time-consuming algorithms from the SD model and thus speed up 
model execution.  

Future work on GENSIM 2.0 will address some of its current limitations. For ex-
ample, currently it is not possible to represent incremental software development 
processes easily. Mechanisms will be added to the model that allow for concurrent 
execution of development cycles following the generic process of which an instance 
was presented in Fig. 3 (Sub-section 3.1).  

GENSIM 2.0 is part of a long-term research program that aims at combining re-
sults from empirical studies and company-specific measurement programs with proc-
ess simulation. While writing this paper, GENSIM 2.0 is calibrated to data from a 
German research institute and its industrial partners. Once completely calibrated to 
this data, simulations will be performed to explore which combination of V&V activi-
ties (and applied techniques) is most suitable to achieve certain product quality goals, 
under given resource and time constraints. The quality goals will be defined according 
to standard ISO 9126. 

Acknowledgements 

Keyvan Khosrovian and Dietmar Pfahl were supported by Discovery Grant no. 
327665-06 of the Canadian Natural Sciences and Engineering Research Council 
(NSERC). Vahid Garousi was supported by an Alberta Ingenuity New Faculty Award. 

References 

1. Abdel-Hamid, T.K., Madnick, S.E.: Software Projects Dynamics – an Integrated Ap-
proach. Prentice-Hall, Englewood Cliffs (1991) 

2. Angkasaputra, N., Pfahl, D.: Making Software Process Simulation Modeling Agile and 
Pattern-based. In: ProSim 2004, pp. 222–227 (2004) 

3. Armbrust, O., et al.: Simulation-Based Software Process Modeling and Evaluation. In: 
Chang, S.K. (ed.) Handbook of Software Engineering & Knowledge Engineering, Ad-
vanced Topics, vol. 3, pp. 333–364. World Scientific, Singapore (2005) 

4. Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M., Picco, G.P.: Modeling and Improving an 
Industrial Software Process. IEEE Trans. on Soft. Eng. 21(5), 440–453 (1995) 

5. Damm, L., Lundberg, L., Wohlin, C.: Faults-slip-through - a concept for measuring the ef-
ficiency of the test process. Software Process: Improv. and Practice 11(1), 47–59 (2006) 

6. Extend Product Information (March 22, 2007),  
 http://www.imaginethatinc.com/ 

7. Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961) 
8. Frost, A., Campo, M.: Advancing Defect Containment to Quantitative Defect Manage-

ment. CrossTalk – The Journal of Defense Software Engineering 12(20), 24–28 (2007) 
9. Gruhn, V., Saalmann, A.: Software Process Validation Based on FUNSOFT Nets. In: Pro-

ceedings of EWSPT 1992, pp. 223–226 (1992) 
10. Kellner, M.I., Hansen, G.A.: Software Process Modeling: A Case Study. In: Proceedings 

of AHICSS 1989, vol. II - Software Track, pp. 175–188 (1989) 
11. Khosrovian, K., Pfahl, D., Garousi, V.: A Customizable System Dynamics Simulation 

Model of Generic Software Development Processes. Technical Report SERG-2007-07, 
Schulich School of Engineering, University of Calgary (2007)  



306 K. Khosrovian, D. Pfahl, and V. Garousi 

12. Khosrovian, K., Pfahl, D., Garousi, V.: Calibrating a Customizable System Dynamics 
Simulation Model of Generic Software Development Processes. Technical Report SERG-
2007-08, Schulich School of Engineering, University of Calgary (2007) 

13. Khosrovian, K., Pfahl, D., Garousi, V.: Application Scenarios of a Customizable System 
Dynamics Simulation Model of Generic Software Development Processes. Technical Re-
port SERG-2007-09, Schulich School of Engineering, University of Calgary (2007) 

14. Madachy, R.: Reusable Model Structures and Behaviors for Software Processes. In: Wang, 
Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and ProSim 2006. LNCS, 
vol. 3966, pp. 222–233. Springer, Heidelberg (2006) 

15. Mi, P., Scacchi, W.: A knowledge-based environment for modeling and simulating soft-
ware engineering processes. IEEE Trans. on Know. and Data Eng. 2(3), 283–294 (1990) 

16. Müller, M., Pfahl, D.: Simulation Methods. In: Singer, J., Shull, F., Sjøberg, D. (eds.) 
dvanced Topics in Empirical Software Engineering: A Handbook, pp. 117–153. Springer, 
London (2007) 

17. Pfahl, D., Lebsanft, K.: Knowledge Acquisition and Process Guidance for Building Sys-
tem Dynamics Simulation Models: An Experience Report from Software Industry. Int. J. 
of Software Eng. and Knowledge Eng. 10(4), 487–510 (2000) 

18. Pfahl, D., Klemm, M., Ruhe, G.: A CBT module with integrated simulation component for 
software project management education and training. Journal of Systems and Soft-
ware 59(3), 283–298 (2001) 

19. Raffo, D.M., Nayak, U., Setamanit, S., Sullivan, P., Wakeland, W.: Using Software Proc-
ess Simulation to Assess the Impact of IV&V Activities. In: Proceedings of ProSim 2004, 
Fraunhofer IRB, pp. 197–205 (2004) 

20. Raffo, D., Spehar, G., Nayak, U.: Generalized Simulation Models: What, Why and How? 
In: Proceedings of ProSim 2003, Portland State University, no page (2003) 

21. Senge, P.: The Fifth Discipline. Doubleday, New York (1990) 
22. Vensim User Manual (March 22, 2007), http://www.vensim.com/ 
23. Wagner, S.: A Literature Survey of the Quality Economics of Defect-Detection Tech-

niques. In: Proceedings of ISESE 2006, pp. 194–203 (2006) 
24. Wise, A.: Little-JIL 1.5 Language Report, UM-CS-2006-51. Department of Computer Sci-

ence, University of Massachusetts, Amherst, MA 01003 (2006) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 307 – 319, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

RVSim: A Simulation Approach to Predict the Impact of 
Requirements Volatility on Software Project Plans 

Dapeng Liu1,2, Qing Wang1, Junchao Xiao1, Juan Li1, and Huaizhang Li1 

1 Laboratory for Internet Software Technologies, Institute of Software,  
Chinese Academy of Sciences, Beijing 100190, China 

{liudapeng, wq, xiaojunchao, lijuan, hzli}@itechs.iscas.ac.cn 
2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China 

Abstract. Requirements volatility is a common project risk which has severe 
consequences on software projects. Though its impact on various aspects of 
software projects has been highlighted extensively, its influence on project 
plans is not well explored yet. This paper proposes a simulation approach 
RVSim (Requirements Volatility Simulation) which utilizes requirements trace-
ability and dependency information to predict the impact of requirements vola-
tility on software project plans. RVSim can help analyze the effects of require-
ments volatility in depth, and provide useful information for users to make bet-
ter decisions. Moreover, RVSim supports customization for users’ own soft-
ware processes and projects. We also provide a case study to illustrate the ap-
plicability and effectiveness of RVSim.  

Keywords: Requirements Volatility, Requirements Traceability, Requirements 
Dependency, Software Process Simulation, Risk Management. 

1   Introduction 

Software development projects are highly complex and involve various kinds of risks 
from customers, business environments, resources and so on. Many researchers have 
reported that requirements volatility is one of the most frequent and severe risks in 
software projects [1-3]. Requirements volatility often results in cost and schedule 
overruns, unmet functions and, at times, cancelled projects. 

Requirements volatility has great impacts on diverse aspects of software projects. 
Existing studies have investigated the relationship between requirements volatility 
and development productivity [4-6], project cost [7, 8], defect density [9], project 
effort [7], customer satisfaction [6], project duration [7, 8, 10], change effort [11] and 
software releases [10]. However, the impact of requirements volatility on software 
project plans is not well explored yet. Project plans, which drive software projects, are 
highly important for software project management. Researching the impact of re-
quirements volatility on project plans is especially necessary and valuable for improv-
ing the project management. 

In this paper, we propose a simulation approach named RVSim (Requirements 
Volatility Simulation) which utilizes requirements traceability and dependency infor-
mation to predict the impact of requirements volatility on project plans during the 



308 D. Liu et al. 

software development lifecycle. RVSim is able to not only predict the impact of defi-
nite requirement changes, but also do impact analysis according to the trajectory of 
requirements volatility. RVSim can assist software project managers to understand the 
impact of requirements volatility deeply, make decisions accurately and improve their 
project plans continuously.  

RVSim has three abstraction levels, which support customizing simulation models 
for users’ own software processes and projects. The three levels also improve the 
reusability of RVSim models, saving users’ modeling time greatly. RVSim uses re-
quirements traceability and dependency information to handle requirement changes, 
which is considered as a main strategy for impact analysis [12].  

The remainder of the paper is structured as follows. Section 2 describes RVSim in 
detail with customization for an iterative software development process for demon-
stration. Section 3 illustrates the applicability and usefulness of RVSim with the help 
of a case study. Section 4 discusses the related work. Finally, Section 5 concludes the 
paper and gives directions of our future work. 

2   The RVSim Approach 

RVSim is a discrete-event simulation approach. There are four components in the 
RVSim simulation model, which is shown in Fig. 1.  
  Requirements Traceability/Dependency Repository (RTDR) stores software re-
quirements traceability and dependency information. Requirements traceability is 
concerned with tracing information between requirements and other work products 
such as design documents and codes, while requirements dependency deals with the 
relationship between requirements. One change on a certain requirement not only 
influences work products related to the requirement through traceability, but also 
probably impacts other requirements through dependency. The information in this 
component is fully utilized 
by Requirements Change 
Event Routines to accu-
rately analyze the impact of 
requirements volatility on 
Software Project Plan. We 
detailedly describe this 
component in Section 2.1.  

Requirements Change 
Event Generator (RCEG) 
generates events which 
represent requirements changes in simulation. There are three types of events in 
RVSim: Requirements Addition, Requirements Modification and Requirements Dele-
tion [13]. We describe this component in detail in Section 2.2. 

Requirements Change Event Routines (RCER) includes three routines responsible 
for handling the three kinds of events respectively in simulation. We give a detailed 
description of the three routines in Section 2.3. 

Utilize
Change

Requirements 
Traceability/Dependency 

Repository

Requirements 
Change Event 

Generator

Requirement 
Change Event 

Routines

Software 
Project 

Plan

Generate 
RC Events

Utilize

Change

Fig. 1. The RVSim simulation model 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 309 

Software Project Plan (SPP) is the plan of the software project which is analyzed 
by RVSim. Software Project Plan is changed during simulation, so users can easily 
see how requirements volatility impacts on the project plan. 
  When simulating, firstly, RCEG generates requirements change events and sends 
them to RCER. Secondly, the corresponding routines are started to deal with these 
events in order utilizing the information in RTDR. Finally, the routines analyze the 
effects of these events, and then change related part in SPP and RTDR.  

One simulation model hardly covers all kinds of situations because there are so 
many differences between software projects such as application domains, customers, 
business environments, organization strategies and so on. Considering this problem, 
we divide the RVSim model into three abstraction levels, shown in Fig. 2. 

The top level is RVSim-General, which is the framework of the RVSim model. 
RVSim-General is independent of any software development process, but some con-
tents in it can be customized by users, which are called “Customizable Points”. 
RVSim-General provides the general expressions of components and guidelines for 
user customization.  

The middle level is RVSim-
Process, which is particular for one 
concrete software development 
process. RVSim-Process simulation 
model is achieved by customizing 
the Customizable Points defined in 
RVSim-General with rules about the 
concrete software process. There are 
some parameters related to real 
projects defined in a software de-
velopment process’s rules. 

The bottom level is RVSim-
Project, which is particular for one 
real software development project. 
RVSim-Project simulation model is achieved by inputting parameters of a real software 
project defined in the corresponding RVSim-Process model, so RVSim-Process model 
is reusable in different software projects using the same software development process. 

In order to clearly demonstrate RVSim, we have built a RVSim-Process model for 
an iterative development process. This iterative development process has four phases 
in every iteration: Requirements, Design, Coding and Test. Because requirements 
volatility is constructive in Requirements phase and destructive in other three phases 
[8], the Requirements phase is ignored in the model. It is noted that due to the page 
limit, some contents of the iterative development process are simplified. 

2.1   Requirements Traceability/Dependency Repository 

In RVSim-General, RTDR is represented as a set: 

RTDR = {RTDI1, RTDI2, …, RTDIN } 

Every item RTDIi (Requirement Traceability/Dependency Information, 1≤i≤N, N is 
the total number of requirements) contains the traceability and dependency informa-
tion of one requirement. RTDI is defined as a tuple: 

RVSim-General

RVSim-Process

RVSim-Project

Rules

Parameters

Software
Development 

Process

Software
Development 

Project

Fig. 2. The three abstraction levels of the RVSim 
simulation model 



310 D. Liu et al. 

RTDI = (RequirementID, Volatility, WorkProductSet, DependencySet) 
 

where: 
 RequirementID is the ID of the requirement which traceability and dependency 

information is contained in this RTDI. Assume this requirement is R.  
 Volatility specifies the relative probability the requirement R is changed. All 

values of Volatility are held in the VolatilitySet, which is a Customizable Point. 
 WorkProductSet is a set of work products related to R. It keeps the requirements 

traceability information of R, which is represented as follows: 

WorkProductSet = {WorkProduct1, WorkProduct2, …, WorkProductM} 

Every item WorkProductj (1≤j≤M, M is the number of work products) contains 
type, size and size unit of one work product. WorkProduct is defined as a tuple: 

WorkProduct = (Type, Size, SizeUnit) 

WorkProductSet is a Customizable Point.   
 DependencySet is a set of relationship between requirements. It keeps the re-

quirements dependency information of R, which is represented as follows: 

DependencySet = {Dependency1, Dependency2,…, DependencyS} 

Every item Dependencyk (1≤k≤S, S is the number of requirements depending on 
R) represents a relationship that one other requirement depends on R. Depend-
ency is defined as a tuple: 

Dependency = (RequirementID, DependencyStrength) 

where: 
 RequirementID is the ID of the requirement depending on R. Assume this 

requirement is Rd. 
 DependencyStrength specifies the degree to which Rd depends on R. All 

values of DependencyStrength are held in the DependencyStrengthSet, 
which is also a Customizable Point. 

 

Regarding the RVSim-Process model for the iterative development process, we cus-
tomized all the Customizable Points mentioned above. In this iterative process, every 
requirement is related to three work products: design documents, codes and test cases, 
which size units are page, line of code (LOC) and test case respectively. Assume the 
sizes of the three work products are ds, cs and ts, the Customizable Points for the 
iterative process are expressed as follows: 

 

VolatilitySet = {high, low}, DependencyStrengthSet = {strong, weak}  
WorkProductSet = {DesignDocs, Codes, TestCases} 
DesignDocs = (DesignDocument, ds, page) 
Codes = (Code, cs, LOC) 
TestCases = (TestCase, ts, test case)  

2.2   Requirements Change Event Generator 

In RVSim-General, the requirements change event (RCEvent) is represented as a  
tuple: 

RCEvent= (RCType, RCTime, RTDI, ModificationLevel) 

 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 311 

where: 
 

 RCType is the type of RCEvent. There are three types: RA (Requirements Addi-
tion), RM (Requirements Modification) and RD (Requirements Deletion). 

 RCTime is the time when RCEvent occurs. 
 RTDI corresponds to the requirement which is added, modified or deleted.  
 ModificationLevel specifies the degree to which one requirement is modified if 

RCType is RM or RD. ModificationLevel is null if RCType is RA. All values of 
ModificationLevel are held in the ModificationLevelSet, which is a Customizable 
Point. RVSim-General defines a special value delete in the ModificationLevelSet, 
which stands for the RD event. 

 

RCEG allows users to specify how requirements change events are generated in 
one concrete software development process. There are two modes for generating 
events:  

 

 Definite events inputted by users. This mode is suitable for the situation that one 
requirement change request has arrived, and the user wants to know the impact 
of this change on the software project plan.  

 Supposed events generated automatically according to user-defined rules, which 
is a Customizable Point. This mode is suitable for the situation that the user 
wishes to predict the impact according to the trajectory of requirements volatil-
ity. The rules can be obtained by analyzing historical project data (like [13, 14]) 
or by their experience. Users can also do “what-if” analysis by setting up differ-
ent rules.  

 

As to our RVSim-Process model for the iterative development process, we custom-
ized ModificationLevelSet= {delete, major, moderate, minor}. RCEG adopts the sec-
ond mode, and the rules are defined as follows: 

 

 Requirement change events occur at a constant interval p (p>0) since the begin-
ning of Design phase in one iteration. 

 There are no more requirement change events after a constant period q (q>0) 
since the beginning of Design phase in one iteration.  

 The percents of RA, RM and RD events are ap, mp and dp respectively (ap≥0, 
mp≥0, dp≥0, ap+mp+dp=100%).  

 For RA events, a new RTDI corresponding to the new added requirement is gen-
erated. In this RTDI, the RequirementID is generated automatically; the Volatil-
ity is chosen randomly from the VolatilitySet; the DependencySet is empty be-
cause we believe that no existing requirements depend on a new one; the Size of 
every Type is generated randomly between lower and upper limits parameters. 
For DesignDocument, the lower and upper limits are dll and dul. For Code, the 
lower and upper limits are cll and cul. For TestCase, the lower and upper limits 
are tll and tul. 

 For RM and RD events, RTDI is chosen from the RTDR randomly. A RTDI with 
Volatility=high is more likely to be chosen than one with Volatility=low. 

 For RM events, the percents of major, moderate and minor of ModificationLevel 
is map, mop and mip (map≥0, mop≥0, mip≥0, map+mop+mip=100%). For RD 
events, ModificationLevel=delete.  



312 D. Liu et al. 

The time unit in the above rules is hour. The time is the working time, not the ab-
solute time. For example, if a project proceeds 24 hours and the development team 
works 8 hours per day, it means that 3 days have passed. 

2.3   Requirements Change Event Routines 

In RVSim-General, RCER includes three general routines for the three types of re-
quirement change events in simulation, which are presented in the following. 

Requirement Addition Event Routine 
Assume the RA event is EA and the new added requirement is RA. This routine has four 
steps as follows:  

 

 Put EA.RTDI into the RTDR. The EA.RTDI corresponds to the requirement RA. 
 Generate dependency relationship that RA depends on existing requirements in 

the RTDR.  
 Create project tasks related to RA. These tasks produce or use WorkProducts in 

the EA.RTDI. 
 Rearrange tasks properly in the Software Project Plan (SPP). 

 

There are three Customizable Points in this routine, which are how to generate de-
pendency relationship, how to create project tasks and how to adjust the SPP. They all 
are customized by user-defined rules. 

With regard to the RVSim-Process model for the iterative development process, the 
corresponding rules are defined as follows: 

 

 Rule for dependency information RA depends on existing requirements: Assume 
total number of requirements is N and the number of requirements RA depends on 
is NA , the parameter dper (dependency percent) of RA is defined as follows:  

100%AN
dper

N
= ×  

NA can be calculated easily by N and dper. Choose NA different requirements 
from all as ones which RA depends on. The DependencyStrength is chosen ran-
domly from the DependencyStrengthSet. 
Set up the lower and upper limits of dper as dperll and dperul. dper is generated 
randomly between dperll and dperul.  

 Rule for new project tasks: In this iterative development process, one require-
ment is related to three tasks: design task, coding task and test task, which are in 
Design, Coding and Test phases respectively. Design task produces design 
documents; coding task generates software codes; and test task uses test cases. 
Set up the productivities of three types of new tasks as dpro page/hour, cpro 
LOC/hour and tpro test case/hour respectively. The duration of new tasks can be 
calculated easily by Size in the EA.RTDI.WorkProductSet and the productivities.  

 Rule for adjusting the SPP: In this iterative development process, overlapping of 
the phases in one iteration is not allowed. In Design phase, design tasks have 
precedence relationship the same as the dependency of requirements related to 
them. For example, if design tasks T1 and T2 realize requirements R1 and R2 re-
spectively, and R2 depends on R1, then T2 must be arranged to start after T1 is 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 313 

finished. In Coding and Test phases, tasks do not have such precedence relation-
ship, so tasks in the same phase can be parallel. In addition, there is no idle time 
between tasks. 
This rule is also applied to the following RM and RD events routines for the it-
erative development process. 

Requirement Modification/Deletion Event Routines 
The routines for RM and RD events are very similar, so we present them together 
here. Assume the event is EMD, and the modified or deleted requirement is RMD. There 
are four steps in the routines. 

 

 Find the EMD.RTDI from the RTDR, and modify or delete it. If EMD.RCType=RM, 
modify the RTDI according to the EMD.ModificationLevel, but keep the Re-
quirementID unchanged. If EMD.RCType=RD, remove the RTDI from the RTDR. 

 If EMD.RCType=RM, modify the dependency relationship that RMD depends on 
other requirements in the RTDR according to the EMD.ModificationLevel. 

 Modifying or deleting RMD may influence the requirements depending on RMD. 
The following pseudocodes express this chain effect: 

void modifyOrDeleteRequirement  
              (RTDI rtdi, ModificationLevel ml) 

{ 
     if (ml==delete) 
         delete rtdi from the RTDR; 
     else 
     { 
  modify rtdi according to ml; 
  modify dependency relationship of RMD;    

      } 
for(int i=0;i<|rtdi.DependencySet|;i++) 

      { 
 get a requirement Rd which depends on RMD; 

  get the ModificationLevel mld for Rd; 
  modifyOrDeleteRequirement(Rd, mld); 
      } 
} 

 Adjust the SPP. Requirements modification or deletion may change duration and 
precedence relationship of related project tasks, or cause idle time between tasks, 
so the SPP needs to be adjusted.  

 

There are three Customizable Points in the routines, which are how to modify the 
RTDI according to the ModificationLevel, how to modify dependency relationship of 
RMD, and how to get ModificationLevel mld for Rd. 

With regard to the RVSim-Process model for the iterative development process, the 
corresponding rules are defined as follows: 

 

 Rule for modifying the RTDI according to the ModificationLevel: major, moder-
ate and minor all represent numeric values between 0 and 1, ma-
jor≥moderate≥minor. For Size, set up a parameter smp (size modified percent). 
If the original Size of a work product is S, the Size after modification is 
S*(1+smp). smp is the same for the three types of work products. The range of 
smp is decided by the ModificationLevel. For example, assume major=0.8,  
moderate=0.5, minor=0.2. If ModificationLevel=major, 50%<|smp|≤80%; if 



314 D. Liu et al. 

DesignTask 1
DesignTask 2
DesignTask 3
DesignTask 4
CodingTask 1
CodingTask 2
CodingTask 3
CodingTask 4

TestTask 1
TestTask 2
TestTask 3
TestTask 4

0 36 86 99

Design Coding Test
20

16
5

5
50
50

12
10

13
12

4
2

moderate, 20%<|smp|≤50%; if minor, 0<|smp|≤20%. smp is generated ran-
domly in its range. Keep the Volatility and DependencySet unchanged. 

 Rule for modifying RMD’s dependency on other requirements: Set up a parameter 
dpermp to represent the modified percent of dper. The range of dpermp is also 
decided by the ModificationLevel, that is, 0≤|dpermp|≤ModificationLevel. 
dpermp is generated randomly in its range. 

 Rule for ModificationLevel of Requirements depending on RMD: Assume Rd is a 
requirement depending on RMD, this rule is shown in Table 1, where “none” in-
dicates that Rd is not influenced. 

Table 1. Rule for ModificationLevel of Rd 

RMD’s ModificationLevel DependencyStrength Rd’s ModificationLevel 
delete strong delete 
delete weak major 
major strong major 
major weak moderate 

moderate strong moderate 
moderate weak minor 

minor strong minor 
minor weak none 

 
So far we have finished building the RVSim-Process model for the iterative devel-

opment process.  

3   Case Study 

In this section, we apply the RVSim-Process model for the iterative development 
process to an example software project to illustrate the applicability and usefulness of 
RVSim. 

The objective of the example project is to develop a function module of a large web 
application in one iteration of the iterative development process. The time limit for 
the project is three weeks. The 
development team works 8 hours 
per day, that is, the project has 120 
working hours before the deadline. 
The human resources are enough 
for the example project. 

The example project gets 4 re-
quirements after Requirements 
phase. We call them R1, R2, R3 
and R4 respectively for conven-
ience in the following. Among 
these requirements, R1 is the core 
function of the module; R2 and R3 

Fig. 3. The original software project plan 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 315 

are two extension functions based on R1; R4 is an independent function about user 
interface, which has no dependency relationship with other functions. All require-
ments are clearly analyzed, but R3 is a new feature that the development team has 
never implemented before, which brings some uncertainty. We have made a plan for 
the example project shown in Fig. 2, where DesignTaski, CodingTaski and TestTaski 
are related to the requirement Ri (1≤i≤4). 

We have developed a tool named RVSimulator which implements the RVSim-
Process model for the iterative development process. RVSimulator is developed based 
on an open source simulation package SimJava1, and it has a user-friendly graphical 
interface which can display the adjusted SPP after every requirement change event, so 
users can see how SPP evolves due to requirements volatility. For the example pro-
ject, we plan to use RVSimulator to get the probability that the project is finished 
before the deadline, so the output of RVSimulator is the project duration data.  

In order to apply RVSimulator to the example project, firstly, we build a RVSim-
Project simulation model for the example project by inputting parameters defined in 
the RVSim-Process model as follows: 

 

Input Parameters in RCEG: p=16, q=40, ap=25%, dp=25%, mp=50%; dul=8, 
dll=2; cul=4000, cll=1000, tul=30, tll=10; map=10%, mop=20%, mip=70%.   
Input Parameters in RCER: major=0.8, moderate=0.5, minor=0.25; dperul=30%, 
dperll=0; dpro=0.4, cpro=50, tpro=2. 
 

Secondly, we input the requirements traceability and dependency information, and 
the software project plan to the RVSimulator. The RTDIi corresponding to Ri(1≤i≤4) 
are expressed as follows: 

 

RTDI1=(1, low, {(DesignDocument, 6, page), (Code, 2000, LOC), (TestCase, 25, 
test case)}, {(2, strong), (3, strong)}) 
RTDI2=(2, low, {(DesignDocument, 8, page), (Code, 3000, LOC), (TestCase, 30, 
test case)}, {}) 
RTDI3=(3, high,{(DesignDocument, 2, page), (Code, 600, LOC), (TestCase, 6, 
test case)}, {}) 
RTDI4=(4, low, {(DesignDocument, 1.5, page), (Code, 500, LOC), (TestCase, 5, 
test case)}, {}) 
RTDR = {RTDI1, RTDI2, RTDI3, RTDI4} 

In order to illustrate how the RVSim-Project model works, we describe one execu-
tion of the simulation model in detail in the following.   

 

 The first requirement change is requirement addition, which occurs at time 16. 
We call the new added requirement R5.The event and RTDI for R5 are as fol-
lows: 

RCEvent=(RA, 16, RTDI5, null) 
RTDI5=(5, high, (DesignDocument, 6.96, page), (Code, 2032, LOC), (Test-
Case, 26, test case), {}) 

The following is the event routine for this RA event. 
 RTDR = {RTDI1, RTDI2, RTDI3, RTDI4, RTDI5}. 

                                                           
1 http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/ 



316 D. Liu et al. 

 dper=21.04%, so NA= N*dper=21.04%*4=0.8416≈1. It means that R5 de-
pends on one existing requirement. Choose one requirement randomly, and 
get R3. Generate DependencyStrength=weak. After that,  

RTDI3=(3, high, {(DesignDocument, 2, page), (Code, 600, LOC), 
(TestCase, 6, test case)}, {(5, weak)}) 

 Create DesignTask5, CodingTask5 and TestTask5 for R5. The duration of 
the three tasks is 6.96/0.4=17.4, 2032/50≈40.6, 26/2=13 hours respectively. 

 Rearrange tasks according to the Rule for adjusting the SPP.  
 

RVSimulator displays the SPP after adjusted shown in Fig. 4 (a). We see that the 
project is delayed for 105.4-99=6.4 hours due to this event.  

 

(a) After the first event (b) After the second event

DesignTask 1
DesignTask 2
DesignTask 3
DesignTask 4

CodingTask 1
CodingTask 2
CodingTask 3
CodingTask 4

TestTask 1
TestTask 2
TestTask 3
TestTask 4

0 42.4 92.4 105.4

Design Coding Test

DesignTask 5

CodingTask 5

TestTask 5

16

20
16

5
5

17.4
50
50

12
10

40.6
13
12

13

4
2

DesignTask 1
DesignTask 2
DesignTask 3
DesignTask 4

CodingTask 1
CodingTask 2
CodingTask 3
CodingTask 4

TestTask1
TestTask2
TestTask3
TestTask4

0 43.3 93.3 106.3

Design Coding Test

DesignTask 5

CodingTask 5

TestTask5

32

20
16

5
5

7
50
50

15.9
10

37.8
13
12

12

5.3
2

1.6

9.7

 

Fig. 4. The adjusted software project plan 

 The second requirement change is requirement modification, which occurs at 
time 32. The changed requirement is R3. The event is  

RCEvent=(RM, 32, RTDI3, moderate).  
The event routine for this RM event is as follows:  

 Modify the RTDI3. smp=32.72%. After modification, 
RTDI3=(3, high,{(DesignDocument, 2.65, page), (Code, 796, LOC), 
(TestCase, 8, test case)}, {(5, weak)}) 

 dpermp=-9%, so dper=1/5-9%=11%, NA=11%*5=0.55≈1. Keep unchanged. 
 R5 depends on R3, so R5 is influenced. For R5, Modification=minor, 

smp=-6.93%, dpermp=5%. After modification,  
RTDI5=(5, high, (DesignDocument, 6.48, page), (Code, 1891, LOC), 
(TestCase, 24, test case), {}) 

 Adjust the SPP. The precedence relationship between tasks does not 
change. The duration of tasks related to R3 increases while the duration of 
tasks related to R5 decreases.  

 

RVSimulator presents the SPP after adjusted shown in Fig. 4 (b). We see that the 
project is delayed again for 0.9 hours due to this event. 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 317 

 

Fig. 5. Simulation results in two situations 

So far one simulation execution has been finished because there are no more re-
quirement change events, and Fig. 4 (b) is the final project plan. This plan duration is 
7.3 hours longer than the original plan duration (99 hours), but it is still within the 
time limit for the example project (120 hours).  

We simulate 10000 times for the example project, and the simulation results of pro-
ject duration are shown in Fig. 5 (a), which fit a Normal distribution. From the distri-
bution, we calculate that the probability the project is finished before the deadline is 
66.3%. Then we change the parameter p=24 to simulate another situation. The simu-
lation results are shown in Fig. 5 (b). The probability the project is finished before the 
deadline is 73.2% in this situation. 

4   Related Work 

There are several researches about the impact of requirements volatility on software 
project schedule [7, 8, 10]. Zowghi et al [8] conducted a survey of 430 software de-
velopment companies in Australia, and the results showed that over 80% projects 
were late because of requirements volatility. Stark et al [10] developed a regression 
analysis model to predict the schedule change percent due to requirements volatility. 
Pfahl et al [7] built a simulation model for Siemens Corporate Technology to demon-
strate the impact of requirements volatility on project duration and effort, and find out 
the optimal effort invested in requirements engineering.  

Discrete-event simulation allows for more detailed statistics on the entities, so 
RVSim is able to provide more useful information for users to make better decisions. 
In addition, unlike studies based on specific data or for specific software processes, 
RVSim supports customization for users to build their own simulation models. We 
believe it can produce more accurate results for users. 

5   Conclusions and Future Work 

In this paper, we present a simulation approach RVSim which can predict the impact 
of requirements volatility on software project plans using requirements traceability 
and dependency information. RVSim adopts discrete-event simulation which is able 



318 D. Liu et al. 

to provide many kinds of project data for users besides the project duration in the case 
study. These data can assist users to understand the impact of requirements volatility 
in depth, and make better decisions. 

One significant feature of RVSim is that it supports users to customize simulation 
models for their own software development processes and projects. This feature not 
only produces more accurate simulation results for users, but also improves the reus-
ability of the simulation models and reduces the modeling effort greatly. 

Our future work will focus on applying and improving RVSim continuously. One 
problem of RVSim-Process model aforementioned is that some assumptions are not 
realistic to some extent. We plan to apply the model to real software development 
projects, collect feedback from users and improve this approach continuously.  
 
Acknowledgments. We would like to thank Prof. Yongji Wang and Ph.D candidate 
Qiusong Yang for their precious suggestions and advice on this paper. This work is 
supported by the National Natural Science Foundation of China under grant No. 
60573082, 60473060, the National Hi-Tech Research and Development Program (863 
Program) of China under grant No. 2006AA01Z155, 2006AA01Z185, 2007AA010303, 
as well as the National Basic Research Program (973 Program) of China under grant 
No. 2007CB310802. 

References 

1. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1), 
32–41 (1991) 

2. The Standish Group: The CHAOS Report (1995) 
3. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying Software Project Risks: An In-

ternational Delphi Study. Journal of Management Information Systems 17(4), 5–36 (2001) 
4. Finnie, G.R., Wittig, G.E., Petkov, D.I.: Prioritizing Software Development Productivity 

Factors Using the Analytic Hierarchy Process. Journal of Systems and Software 22(2), 
129–139 (1993) 

5. Lane, M.S.: Enhancing Software Development Productivity in Australian Firms. In: Pro-
ceedings of the 9th Australian Conference on Information Systems (ACIS 1998), Sydney, 
Australia (1998) 

6. Zowghi, D., Offen, R.: Nurmuliani: The Impact of Requirements Volatility on the Soft-
ware Development Lifecycle. In: Proceedings of the International Conference on Software 
Theory and Practice (IFIP World Computer Congress), Beijing, China (2000) 

7. Pfahl, D., Lebsanft, K.: Using Simulation to Analyze the Impact of Software Requirements 
Volatility on Project Performance. Information and Software Technology 42(14), 1001–
1008 (2000) 

8. Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements Volatility on Soft-
ware Project Performance. In: Proceedings of the 9th Asia-Pacific Software Engineering 
Conference, Gold Coast, Australia, pp. 3–11 (2002) 

9. Malaiya, Y.K., Denton, J.: Requirements Volatility and Defect Density. In: Proceedings of 
10th International Symposium on Software Reliability Engineering, pp. 285–294 (1999) 

10. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements 
Changes on Software Releases. CROSSTALK, The Journal of Defense Software Engineer-
ing, 11–16 (December 1998) 



RVSim: A Simulation Approach to Predict the Impact of RV on Software Project Plans 319 

11. Nurmuliani, N., Zowghi, D., Williams, S.P.: Requirements Volatility and Its Impact on 
Change Effort: Evidence Based Research in Software Development Projects. In: Proceed-
ings of the 11th Australian Workshop on Requirements Engineering (AWRE 2006), Ade-
laide, Australia (2006) 

12. Jönsson, P., Lindvall, M.: Impact Analysis. In: Engineering and Managing Software Re-
quirements, pp. 117–142. Springer, Heidelberg (2005) 

13. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of Requirements Volatility During Soft-
ware Development Life Cycle. In: Proceedings of the 2004 Australian Software Engineer-
ing Conference (ASWEC 2004), Melbourne, Australia (2004) 

14. Nurmuliani, N., Zowghi, D., Williams, S.P.: Characterising Requirements Volatility: An 
Empirical Analysis. In: Proceedings of the 4th International Symposium on Empirical 
Software Engineering (ISESE 2005), Noosa, Australia (2005) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 320–332, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Identifying Key Success Factors for Globally  
Distributed Software Development Project Using 

Simulation: A Case Study 

Siri-on Setamanit1 and David Raffo2 

1 Faculty of Commerce and Accountancy, Chulalongkorn University, Phyathai Rd., 
Pathumwan, Bangkok, Thailand 

{siri-on@acc.chula.ac.th} 
2 Portland State University, 631 SW Harrison St., Portland, OR, USA 

{raffod@pdx.edu} 

Abstract. With the increased pressure to reduce cost, reduce development time, 
and improve quality, many software companies are moving toward using a 
Globally Distributed Software Development (GSD) paradigm. Due to the chal-
lenges and difficulties with GSD, researchers and practitioners are attempting to 
identify key success factors for GSD projects.  Based on our previous work, we 
found that the key success factors can be different depending upon specific pro-
ject characteristics. To ensure a successful outcome, project managers have to 
focus on the right success factors for their particular project.  In this paper, we 
illustrate how a GSD simulation model can be used to represent a specific pro-
ject and to identify key success factors for that project. We use a case study 
from an actual software development firm.  We also perform sensitivity analy-
sis to assess the magnitude of the performance impact for the key factors for the 
specific project.  For the case study site, which uses a combination of phase-
based and module-based task allocation strategies, we found that team member 
familiarity, frequency of team meetings, and communication frequency each 
have a strong impact on total project effort and duration.   

Keywords: Globally Distributed Software Development, Success Factors, 
Process Simulation, Case Study. 

1   Introduction 

Due to increased competition in software development industry, software companies 
are under pressure to further reduce costs, decrease development cycle time, and im-
prove software quality.  With the advancement of communication media (especially 
through the use of Internet), many software companies are moving toward developing 
software in globally distributed setting.  Today, there are almost 100 nations partici-
pating in globally distributed software development [1]. 

There are several potential benefits from GSD such as reduction in time-to-market, 
reduction in development costs, better use of scarce resources, business advantages from 
proximity to customers, and etc. [1-5]. Unfortunately, due to geographical dispersion, 
time zone differences, coupled with cultural and language differences, communication 



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 321 

and coordination between development sites can become exceedingly difficult.  As a 
result, it has been reported that some GSD projects have been unsuccessful and have 
had to be abandoned [2]. 

Despite these challenges and difficulties, GSD will continue to be a major para-
digm in software development industry.  Therefore, it is important to identify key 
success factors for GSD projects and to identify approaches to improve the develop-
ment process so that full potential GSD benefits can be achieved.   

Researchers and practitioners have attempted to identify and understand factors 
that enable or hinder the success of GSD projects.  Several key important factors have 
been identified such as communication frequency [6-10], time zone differences  
[2, 11-13], cultural differences [11, 14-19], language differences [2, 11, 13, 20], de-
velopment site characteristics such as infrastructure, programmer experience and 
skills [2, 21], etc.  Nevertheless, most of this work is based on case studies or experi-
ence of the developers on specific projects.  Moreover, this work consists of mostly 
qualitative studies which make it difficult for practitioners to gauge the potential im-
pact these factors may have on their own specific projects. 

According to our previous work, we found that the impact (magnitude and direc-
tion) of many of the above key factors varied depending on the specific task alloca-
tion strategies used on the project [22].  This suggests that GSD practitioners need a 
methodology to evaluate the impact of key factors as they vary simultaneously on a 
specific project so that they can focus their effort in improving the factors that will 
strongly contribute to the success of that specific project.  

1.1   Research Objectives 

There are two objectives in this paper.  First, we strive to illustrate how a Global 
Software Development simulation model (GSD model) can be used to identify and 
assess the performance impact of key success factors on a specific project.  Second, 
we show how project managers (PMs) can use a GSD model to select the most impor-
tant success factors for their particular project and then to identify way to improve 
them.  This enables the PM the ability to focus on the right success factors that have 
the most impact for their own specific project. 

1.2   Organization of the Paper 

This paper is divided into 4 sections.  Section 1 contains the introduction and motiva-
tion for this research.  Section 2 briefly discusses the use of a simulation model to-
gether with other techniques to identify and assess the impact of GSD success factors 
for a particular project.  Section 3 presents the case study showing the application of 
the simulation model directed toward project managers who wish to focus their effort 
on the right factors in order to capture the full benefits of GSD.  This application of 
the GSD model was done in a real world setting.  Section 4 presents a conclusion.  

2   Methodology 

In order to identify and assess the impact of key success factors, a GSD simulation 
model was used as a platform for experimentation. An overview of this model is  



322 S. Setamanit and D. Raffo 

presented in Section 2.1.  An experimental design is then created to explore the re-
sponse surface of the key GSD factors contained in the model.  Results obtained from 
the model identify the success factors for the specific GSD project that is being repre-
sented.  After the key factors have been identified for a specific project, a sensitivity 
analysis is conducted to further evaluate the impact of the most important success 
factors for the project.  This provides specific guidance to project managers as to 
where they should focus their efforts. 

2.1   A Simulation Model as an Experimentation Platform  

In software engineering, it is very costly, time consuming, and nearly impossible to 
conduct controlled experiments [23].  In addition, it is extremely difficult to separate the 
impact of any particular factor from other factors especially in large, complex, and dy-
namic project environments (like GSD projects) [24].  As a result, most GSD studies are 
primarily exploratory or based on experience on a particular project.  Moreover, the 
studies address only limited aspects of GSD projects.  For example, Herbsleb et al. [4] 
focused on how distance affects cycle time, but not concerned about cultural and lan-
guage differences or time-zone differences.  This makes it a challenge to generalize the 
findings to other GSD projects that may be conducted under different circumstances or 
in different development settings. 

One of the significant advantages of simulation is that these models can be con-
structed and calibrated to reflect real world behavior when provided with sufficient 
empirical data for a specific system (in this case a GSD project). This data is rarely 
perfect.  However, for parameters where there is not sufficient data, ranges, industrial 
averages or other information can be provided and a consensus as to reasonable val-
ues or ranges of values can be determined. It is from this starting point that the simu-
lation model can be used as an experimental platform to investigate and/or evaluate 
the system under study.  Individual parameters or combinations of parameters can 
then be varied and the magnitude and strength of the impact of these factors on vari-
ables of interest can be measured [25]. Thus, a simulation model can enable research-
ers and/or practitioners to identify and assess the effects of any factor on project  
performance. As a result, it is far less costly and less risky to perform experimentation 
using simulation models than to make changes to the GSD project. 
 
The GSD Model. A simulation model was developed to capture important GSD pro-
ject and process issues.  The GSD model used in this paper is classified as a hybrid 
simulation model combining system dynamics and discrete-event paradigms in order 
to represent GSD projects.  The GSD model includes the factors that were reported to 
affect GSD project performance.  The GSD model has three high-level components: a 
discrete-event (DES) model, a system dynamics (SD) model and an Interaction Effect 
(IE) model.  The DES model captures how tasks are allocated between development 
sites.  It represents activities performed at each site and the artifact transfer between 
sites.  The SD model captures both overall project environment such as planning and 
controlling activities and specific characteristic of each development site such as hu-
man resource and productivity.  The IE model captures the impact when developers 
work collaboratively with developers from other sites.  In addition, the GSD model 
was designed to be flexible and expandable.  Therefore, one can easily modify the 
GSD model to represent any particular project with different number of development 



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 323 

sites, different task allocation strategies, and etc.  The detail information about the 
model and the important GSD factors incorporated in the model can be found in  [22, 
26-29]. 

2.2   Experimental Design or Design of Experiment (DOE) 

Experimental design or Design of Experiments (DOE) is a statistical technique for 
organizing and analyzing experiments.  DOE can be used to examine the impacts of 
changes in parameter values on the outcome measures of interest.  Important inter-
actions in complex systems can be revealed by performing DOE.  DOE has been 
widely used in simulation studies since the 1990s [30].  Law and Kelton [31] pro-
vide good overviews of an experimental design and optimization in the simulation 
context.  DOE has also been applied to several simulations of software projects.  
For example, Houston et al. [32] used DOE to measure the relative contribution of 
several factors to variations in the response variables in order to behaviorally char-
acterize four system dynamics software process models.  Wakeland et al. [33] illus-
trate the application of DOE combined with Broad Range Sensitivity Analysis 
(BRSA) on a hybrid model in order to study the impacts of removing inspection 
steps on duration and latent defects. 

A 2k factorial design, where each of the k factors is allowed to have two values or 
levels, is a common and useful approach in DOE.  It is an economical approach, 
which is effective in examining the impacts of changes in a model’s inputs on its out-
puts and also revealing interaction effects [31]. 

2.3   Sensitivity Analysis 

Sensitivity analysis is the process to systematically vary the values of the model’s 
parameters and see how these changes affect its output or behavior.  This allows the 
modeler to examine the impact of uncertainty on a model’s input parameters [34, 35].  
Sensitivity analysis can be used to compliment a 2k factorial design.  In general, a 2k 
factorial design is first conducted in order to identify factors that can have significant 
impacts on model output measures (i.e. for the purposes of this study, this relates to 
GSD project performance).  After that, sensitivity analysis on these factors can be 
performed in order to examine the magnitude of the impact to changes in these factors 
on each performance measure. 

3   A Case Study 

In this section, we will describe a case study that was conducted at a global software 
development company in Thailand.  We will illustrate how a GSD model was adapted 
to represent a specific project at the case study site.  The model was then used to help 
project managers identify key project success factors and focus their efforts on the 
right factors. 



324 S. Setamanit and D. Raffo 

3.1   Case Study Overview 

This case study was conducted at a global software development company in Thai-
land.  The company is engaged in the development of application software that sup-
ports real-time financial applications.  This site is one of the seven major development 
centers located around the world for this company, including the United States, Eng-
land, Europe, and Asia. 

The project under study is named “ABC-1”.  It is a collaboration project between 
two development sites: Bangkok, Thailand (BKK) and Chicago, Illinois, USA (USA).  
The scope of the project ranges from gathering customer requirements to releasing the 
software.  ABC-1 project has 6 major development phases; each phase contains mul-
tiple activities.  For simplicity and to provide a general understanding, Fig. 1 shows 
the high-level process flow for ABC-1 project.   

REQ DES CODEUSA Site 

DES CODE

BKK Site

ST

INT SPEC

INT

ST SPEC

RA REL

DOCUMENTATION

REQ = Requirements
DES = Design
CODE = Coding
INT = Integration Test
INT SPEC = Integration Test Specification

RA = Requirements Analysis
ST = System Test
ST SPEC = System Test Specification
DOCUMENTATION = Create Document  

Legend:

 

Fig. 1. ABC-1 Top Level Process 

One can see that the majority of the work (approximately 70%) is handled by the 
BKK site.  However, the requirements phase which includes requirements gathering, 
requirements analysis, and requirements specification, all of which require expertise 
and proximity to the clients, was performed at the USA site.  In general, the require-
ments specification is developed by the USA staff at the beginning of the project.  
Then, development work is divided into 3 modules.  The USA staff designs and codes 
one module, and the other two modules are sent to BKK.    

Once the requirements specification from the USA site is received, the BKK site 
starts the project by analyzing the specification and creating a detailed design.  Most of 
the communication and feedback between sites occur regularly at this stage until the 
detailed design is finalized.  After that, the communication and coordination activity 
between the two sites is kept to a minimum.  Note that there is no formal integration 



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 325 

activity because changes to the code are automatically integrated by the server at the 
USA site.  Nevertheless, there is a formal integration test at the BKK site after the 
CODE phase. 

3.2   Identifying Key Success Factors 

First, we tailored the GSD model to represent the ABC-1 project, called “ABC-1” 
model.  This includes configuring the number of development sites, the activities that 
will be carried out at each site, and the transfer points.  We also calibrated the model 
based on information from survey questionnaires as well as in-depth interviews with 
the technical director, the ABC-1 project manager, and software developers.  We also 
used secondary data from the project metrics repository. 

After performing several tests to verify and validate the model, the model showed 
stable performance and reasonable results which approximated the actual perform-
ance of the ABC-1 project. The next step was to conduct a 2k factorial design to ex-
amine the effects of key factors on ABC-1 project performance measures (total effort 
and project duration).  Based on the literature, expert opinion, and initial experimen-
tation, we identified 7 factors that potentially could have a strong impact on project 
performance. 

A 27 factorial design was constructed with 5 replications for each design point (a 
modest sample size from a statistical viewpoint [31]) for a total of 640 runs. The de-
pendent variables were total effort and project duration.  Table 1 shows the factors, 
their levels, and descriptions. 

Table 1. Factor levels in a 27 factorial design for ABC-1 project 

Factors Description

Low

High

No overlap working hour

100% overlap working hour

Same

Different

Same

Different

Low

High

Low

High

Infrequent

Frequent

Levels

Communication 
Frequency

2
The level of communication between 
development sites

Time-zone 
(% Overlap of Work 
Hours)

2
Different time-zone means less 
overlap working hour

Culture 2
National culture between two 
development sites (related to the 
location of development sites)

Language 2
Common language between two 
development sites

Team Meeting 2
The frequency of team meeting 
during the course of the project

Overhead of 
Distribution (% OH)

2

Additional effort/time required when 
tasks are distributed across sites 
including artifact trasnfer and 
knowledge transfer.

Member Familiarity 2
The degree that members are familiar 
with one another (i.e. work together 
before, kick-off meeting = high)

 



326 S. Setamanit and D. Raffo 

Key Success Factors for Total Effort. The main effects of all factors on total effort 
were found to be statistically significant.  Fig. 2 shows the main effect plot for the 
seven key factors on the total effort.  To interpret Fig. 2, we look at the direction of 
the slope of the line on the main effect chart in comparison to the values used in the 
factorial analysis (x-axis).  For example, the first section of Fig. 2 is devoted to the 
percentage of overlap time.  The slope of the line indicates that as the % overlap of 
work hours varies from 0% to 100%, total effort is reduced since project level produc-
tivity of the GSD team is increased by having better coordination through synchro-
nous communication.  The other variables can be interpreted similarly. 

 

Fig. 2. Main effect plot on total effort  

The top three success factors that had the strongest impact on total effort (steep 
slope) were team member familiarity, followed by communication frequency, and the 
frequency of team meetings.  When developers are familiar with one another, they 
tend to coordinate better and have higher productivity, thus require lower effort.  Fre-
quent communication between developers also leads to higher productivity, resulting 
in lower project effort.  This is particularly true in the Thai culture.  Lastly, as men-
tioned in the literature [2, 12], frequent meetings help improve trust between team 
members, which further reduces effort. 

Key Success Factors for Duration. The main effects of all factors on duration except 
team meeting were statistically significant.  Fig. 3 shows the main effect plot for the 
seven key factors on the total project duration.   

The top three success factors with the strongest impact on duration were member fa-
miliarity, followed by % overlap of work hours, and communication frequency.  Like its 
effect on total effort, member familiarity had a negative relationship with project dura-
tion.  Increasing percent overlap of work hours allowed for increased synchronous 
communication between developers. Synchronous communication facilitated better co-
ordination between sites and thus improved productivity, which contributed to lower 
effort required.  Since duration was correlated with effort, increased percent overlap of  
 



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 327 

 

Fig. 3. Main effect plot on duration  

 

Fig. 4. Interaction plot on duration  

work hours contributed to shorter duration.  Frequent communication between develop-
ers also contributed to lower effort, which made the project duration shorter.  Note that 
the interactions between member familiarity and team meeting are also significant as 
shown in Fig. 4. 

Team meeting helps decrease duration only when team member are not familiar 
with one another.  On the other hand, when developers are familiar with one another, 
having frequent meeting will increase duration.  Using this information together with 
the result from factorial analysis on total effort in previous section, one can see that 
when team members have met before or are familiar with one another, frequent meet-
ings did not reduce effort (improve productivity), and actually increased duration.  
The reason is that the improvement in productivity was not enough to off-set the de-
velopment time lost when the meeting(s) were held.  However, when team members 
were not familiar with one another, frequent meetings provided significant benefit by 
reducing effort and duration. 

This finding is very important. Almost all research on GSD has mentioned the impor-
tance of having frequent meeting during the course of the project. Simply following this 
suggestion without considering specific project conditions may result in an unfavorable 
outcome. 



328 S. Setamanit and D. Raffo 

Summary. Based on the factorial design that was conducted, we can conclude that 
the key success factors for the ABC-1 project are member familiarity, communication 
frequency, team meeting, and percent overlap of work hours (time-zone).  The next 
step was to assess the magnitude of the impact of these factors on ABC-1 project per-
formance, which is described in the next section. 

3.3   Quantifying Key Success Factors 

In the previous section, we identified the key success factors for ABC-1 project.  
However, when making a decision to improve project performance, a project manager 
needs more information such as the magnitude of the impact of each factor so that 
he/she can focus efforts on the factors that will yield the most benefit to the project.  
In this section, we conducted a sensitivity analysis to evaluate the impact of changes 
in key success factors on project performance. 

The Impact of Member Familiarity and Team Meeting.  For the ABC-1 project, the de-
gree of member familiarity is at the maximum level since key developers from the 
BKK site were brought to the USA site for training for 3 months before the project 
started.  Nevertheless, GSD model results showed that member familiarity interacts 
with team meeting frequency.  Hence, we conducted a sensitivity analysis in order to 
identify the appropriate meeting frequency when team members have high familiarity.  
Fig. 5 shows the effect of meeting frequency on total effort and project duration. 

2500

2550

2600

2650

2700

2750

2800

2850

8 7 6 5 4 3 2 1

Total Effort (person hours)

Meeting
Frequency:
every "x"
months

100

110

120

130

140

150

160

8 7 6 5 4 3 2 1

Duration (days)

Meeting
Frequency:
every "x"
months

 

Fig. 5. Effect of team meeting frequency when degree of member familiarity is high  

Increasing meeting frequency contributed to lower effort but longer duration (but 
the effects are not uniform).  One can see that the appropriate frequency for team 
meetings could be every 4 or 5 months which will result in the best combination of 
total effort and duration (low effort with short duration).  However, if the degree of 
member familiarity is lower or different, the impact of meeting frequency on total 
effort and project duration can be different.  To illustrate the point, we conducted a 
sensitivity analysis on meeting frequency when team members are not familiar with 
one another (i.e. never work together before) as shown in Fig. 6.   



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 329 

2500

2700

2900

3100

3300

3500

3700

8 7 6 5 4 3 2 1

Total Effort (person hours)

Meeting
Frequency:
every "x"
months

110

120

130

140

150

160

170

180

190

8 7 6 5 4 3 2 1

Duration (days)

Meeting
Frequency:
every "x"
months  

Fig. 6. Effect of team meeting frequency when degree of member familiarity is low  

When team members’ familiarity is low, it makes much more sense to have more 
frequent meetings.  At the same time, however, having too many meetings can result 
in longer duration without a significant improvement in productivity to off-set the 
development time lost when the meeting(s) were held. 

 
The Impact of Communication Frequency.  From a factorial analysis, we found 
that communication frequency has strong impact on total effort and project duration.  
Therefore, we conducted a sensitivity analysis to evaluate the impact of the changes 
in communication frequency on total effort and duration.  The results are shown in 
Fig. 7. 

15%

10%

5%

0%

5%

10%

15%

20%

25%

30%

50% 20% Baseline +20% +50%

Effect of CommunicationFrequency

Total Effort

Duration

Commu.
Frequency

 

Fig. 7. Sensitivity analysis of communication frequency on total effort and duration  

One can see that the impact of the change in communication frequency is relatively 
low except when communication frequency was reduced by 50%.  This implies that it 
is very important to maintain the level of communication frequency between devel-
opment sites.    

The Impact of Percent Overlap of Work Hours.  Based on the discussion with the 
project manager, it is possible that the developers at the BKK site can adjust their 
working schedule such that there is an overlap of work hours with the USA site (up to 
3 hours or 37.5% overlap).  Fig. 8 shows the effect of the increased in percent overlap 
of work hours on total effort and duration. 



330 S. Setamanit and D. Raffo 

8%

7%

6%

5%

4%

3%

2%

1%

0%

Baseline 12.5%OV 25.0%OV 37.5%OV

Effect of%Overlapof Work Hours

Total Effort

Duration

%Overlap of
Work Hours

 

Fig. 8. Sensitivity analysis of percent overlap of work hours on total effort and duration 

The impact of percent overlap of work hours is relatively small.  It may not be 
worthwhile to increase overlap of work hours if it will increase the project costs (for 
example, overtime wages).  Nevertheless, it is clear that if we need to reduce project 
duration, increasing overlap of work hours can help. 

3.4   Future Work 

The analysis that we performed in this section focused on the impact of the changes of 
each variable on project performance.  This allows project managers to understand 
and quantify the impact of each key success factor on the project performance.  In the 
future, we can use the ABC-1 model to examine the impact of improvement in several 
key success factors at the same time in order to find the combined conditions that 
would make the ABC-1 project realize the full benefits of GSD.  

4   Conclusion 

In this paper, we illustrate how to use a GSD model to identify and quantify key suc-
cess factors for specific GSD projects.  Key success factors can vary based on specific 
characteristics such as task allocation strategy, time-zone difference, member famili-
arity, among others.  Simply improving the general set of key success factors without 
considering the impact each factor may have on the particular project of interest may 
result in unfavorable outcome.  For the case study described in this paper, we found 
that member familiarity had the strongest impact on project performance.  However, 
there was also an interaction between member familiarity and team meeting fre-
quency.  As a result, the project manager would need to be more careful when exam-
ining the impact of these factors on project performance and manage any changes that 
might occur related to these parameters.  These factors while generally recognized as 
important, are rarely mentioned as being critical.  However, for this particular project, 
the GSD model was able to identify them as being most important for this specific 
real world project.  This research emphasizes the importance of using a simulation 
model to help project managers assess the impact of potential project changes before 
implementing them and experiencing large, unanticipated negative effects.   



 Identifying Key Success Factors for GSD Project Using Simulation: A Case Study 331 

References 

1. Carmel, E., Tija, P.: Offshoring Information Technology: Sourcing and Outsourcing to a 
Global Work-force. Cambridge University Press, Cambridge (2005) 

2. Carmel, E.: Global Software Teams. Prentice Hall PTR, Upper Saddle River (1999) 
3. Gorton, I., Motwani, S.: Issues in co-operative software engineering using globally dis-

tributed teams. Information and SoftwareTechnology 38, 647–655 (1996) 
4. Herbsleb, J.D., Grinter, R.E., Finholt, T.A.: An empirical study of global software devel-

opment: distance and speed. In: ICSE 2001, pp. 81–90. IEEE, Toronto, Canada (2001) 
5. Norbjerg, J., Havn, E.C., Bansler, J.P.: Global production: the case of offshore program-

ming. In: Krallmann, H. (ed.) Wirtschaftsinformatik 1997, Physica-Verlag, Berlin (1997) 
6. Allen, T.J.: Managing the Flow of Technology. MIT press, Cambridge (1977) 
7. Kraut, R.E., Egido, C., Galegher, J.: Patterns of contact and communication in scientific 

research col-laborations. In: Galegher, J., Kraut, R.E., Egido, C. (eds.) Intellectual Team-
work: Social Foundations of Cooperative Work, pp. 149–172. Lawrence Erlbaum Associ-
ates, New Jersey (1990) 

8. Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of the 
ACM 38, 69–81 (1995) 

9. Herbsleb, J.D., Grinter, R.E.: Conceptual Simplicity Meets Organizational Complexity: 
Case Study of a Corporate Metrics Program. In: International Conference on Software En-
gineering, pp. 271–280. IEEE Press, Kyoto, Japan (1998) 

10. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code: conway’s 
law revisited. In: International Conference on Software Engineering (ICSE 1999), pp. 85–
95. ACM Press, Los Angeles (1999) 

11. Carmel, E., Agarwal, R.: Tactical approached for alleviating distance in global software 
development. IEEE Software 18, 22–29 (2001) 

12. Jarvenpaa, S.L., Knoll, K.: Is anybody out there? Antecedents of trust in global virtual 
teams. Journal of Management Information Systems 14, 29–64 (1998) 

13. Keil, L., Eng., P.: Experiences in distributed development: a case study. In: The Interna-
tional Workshop on Global Software Development, Portland, OR USA, pp. 44–47 (2003) 

14. Carmel, E.: The explosion of global software teams. Computerworld (1997) 
15. Karolak, D.W.: Global Software Development: Managing Virtual Teams and Environ-

ments. IEEE Computer Society, Los Alamitos (1998) 
16. Battin, R.D., et al.: Leveraging resources in global software development. IEEE Software, 

70–77 (2001) 
17. Damian, D.E., Zowghi, D.: The Impact of Stakeholders’ Geographical Distribution on 

Managing Requirements in a Multi-site Organization. In: IEEE Joint International Confer-
ence on Requirements Engineering, IEEE, Essen, Germany (2002) 

18. Ives, B., Jarvenpaa, S.L.: Applications of Global Information Technology: Key Issues for 
Management. MIS Quarterly, 33–49 (1991) 

19. Borchers, G.: The Software Engineering Impacts of Cultural Factors on Multi-cultural 
Software Devel-opment Teams. In: International Conference on Software Engineering, pp. 
540–545. IEEE, Portland, OR, USA (2003) 

20. Ishii, H.: Cross-cultural communication and CSCW. In: Harasim, L.M. (ed.) Global Net-
works: Computers and International Communication, pp. 143–151. MIT Press, Cambridge 
(1993) 

21. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Software 18, 16–20 (2001) 
22. Setamanit, S., Wakeland, W., Raffo, D.: Using simulation to evaluate global software de-

velopment task allocation strategies. Software Process: Improvement and Practice 12, 
491–503 (2007) 

23. Myers, G.J.: Software Reliability: Principle and Practices. John Wiley & Sons, Inc., New 
York (1976) 



332 S. Setamanit and D. Raffo 

24. Glass, R.L.: Modern Programming Practices: A Report from Industry. Prentice-Hall, Inc, 
Englewood Cliffs (1982) 

25. Rus, I., Biffl, S., Halling, M.: Systematically Combining Process Simulation and Empirical 
Data in Support of Decision Analysis in Software Development. In: The fourteenth Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE 2002), 
ACM, Ischia, Italy (2002) 

26. Raffo, D., Setamanit, S.: A simulation model for global software development project. In: 
The International Workshop on Software Process Simulation and Modeling, St. Louis, MO 
(2005) 

27. Setamanit, S., Wakeland, W., Raffo, D.: Exploring the Impact of Task Allocation Strate-
gies for Global Software Development Using Simulation. In: Software Process Change, 
Springer, Heidelberg (2006) 

28. Setamanit, S., Wakeland, W., Raffo, D.: Planning and Improving Global Software Devel-
opment Process Using Simulation. In: The First International Workshop on Global Soft-
ware Development for the Practitioner, Shanghai, China (2006) 

29. Setamanit, S., Wakeland, W., Raffo, D.: Improving Global Software Development Project 
Performance Using Simulation. In: Portland International Conference on Management of 
Engineering and Technology Portland, OR, USA (2007) 

30. Donohue, J.M.: Experimental Designs for Simulation. In: Tew, J.D., Manivannan, S., 
Sadowski, D.A., Seila, A.F. (eds.) The 1994 Winter Simulation Conference, pp. 200–206 
(1994) 

31. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. The McGraw-Hill Compa-
nies, Inc., New York (2003) 

32. Houston, D., et al.: Behavioral characterization: finding and using the influential factors in 
software process simulation models. Journal of Systems and Software 59, 259–270 (2001) 

33. Wakeland, W., Martin, R., Raffo, D.M.: Using Design of Experiments, Sensitivity Analy-
sis, and Hybrid Simulation to Evaluate Changes to a Software Development Process: A 
Case Study. In: The International Workshop on Software Process Simulation and Model-
ing, Portland, OR, USA (2003) 

34. Sargent, R.G.: Verification and Validation of Simulation Models. In: Cellier, F.E. (ed.) 
Progress in Modelling and Simulation, pp. 159–169. Academic Press, London (1982) 

35. Pegden, C.D., Shannon, R.E., Sadowski, R.P.: Introduction to Simulation using SIMAN. 
McGraw-Hill, New York (1990) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 333–344, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Hybrid Modeling of Test-and-Fix Processes in 
Incremental Development 

He Zhang, Ross Jeffery, and Liming Zhu 

National ICT Australia, Locked Bag 9013, Alexandria NSW 1435, Australia 
School of Computer Science and Engineering, University of New South Wales, Australia 

{he.zhang, ross.jeffery, liming.zhu}@nicta.com.au 

Abstract. Software process simulation modeling has become an increasingly 
active research area for managing and improving software development proc-
esses since its introduction in the last two decades. Hybrid process simulation 
models have attracted interest as a possibility to avoid the limitations of apply-
ing single modeling method, and more realistically capture complex real-world 
software processes. This paper presents a hybrid process modeling scheme to 
build an integrated software process model. It focuses on the particular portion 
of software process by using different techniques on separate but interconnected 
phases, while still allows for the integrity of modeling development process. 
We developed a hybrid simulation model of the test-and-fix process of incre-
mental software development. Results conclude that this approach can support 
the investigation of portions of software process at different granularity levels 
simultaneously. It also avoids the limitation caused by incomplete process detail 
of some phases, and may help reduce the effort of building a hybrid simulation 
model. 

Keywords: Software process simulation model, hybrid modeling, test-and-fix, 
incremental development. 

1   Introduction 

Software process simulation modeling (SPSM) has become an increasingly active 
research area for managing and improving software development processes in the last 
two decades. In [1], Osterweil identified two complementary types of software proc-
ess research, which can be characterized as macro-process research, focused on phe-
nomenological observations of external behaviors of processes, and micro-process 
research, focused on the study of the internal details and workings of processes. In 
SPSM area, the continuous and discrete-event modeling approaches are correspond-
ing to these two types of research. 

Our systematic review [2] found that continuous simulation (system dynamics, SD) 
and discrete-event simulation (DES) are the two most applied paradigms in ProSim1 
community in the last decade. The review also concludes that hybrid process simula-
tion models have attracted interest as a possibility to avoid the limitations of applying 
                                                           
1 International Workshop on Software Process Simulation Modeling. 



334 H. Zhang, R. Jeffery, and L. Zhu 

single modeling method, and more realistically capture complex real-world software 
processes. Among the published hybrid SPSM models, SD plus DES has been the 
most common combination [2]. 

Many studies published in ProSim series conferences have tried to integrate SD 
and DES to model software process more realistically. They both have their own 
advantages and limitations (Section 2). In this paper, we propose a flexible hybrid 
SPSM solution, and then demonstrate its use for investigating the test-and-fix process 
of incremental development. 

This paper is structured as follows. In Section 2, we review the previous hybrid 
SPSM approaches, and then propose our hybrid modeling scheme. Section 3 briefly 
introduces the characteristics of incremental development, describes the conceptual 
model of software quality applied in this study, and reviews the related models. Sec-
tion 4 describes the development of an incremental development model by using our 
proposed hybrid modeling scheme. We include a case example to illustrate the capa-
bility and usefulness of the model in Section 5. Finally, we conclude our research and 
provide future work in Section 6. 

2   Hybrid Simulation Modeling 

2.1   Previous Hybrid Modeling Approaches 

Martin and Raffo’s analyzed the manpower utilization using hybrid simulation model 
[3], which presents how workforce levels vary on the basis of the changes in a set of 
factors. Their hybrid simulation model was developed to maintain the consistency 
between the discrete activities and the change of continuous portions. This hybrid 
model allows investigation of the effects of discrete resource changes on continuously 
varying productivity, and the influences of discrete tasks on continuously varying 
defect rates. 

Rus et al. [4] and Lakey [5] modeled the software process as a set of discrete ac-
tivities. To achieve continuous modeling and incorporate the feedback loops of sys-
tem dynamics, they divided the inputs by five, and iterate the activity five times. This 
solution improves the continuity of calculating the process factors and performances, 
such as implementation size, defect level, and workforce. It also makes it possible to 
explicitly analyze the performance of a single discrete process, which is regarded as a 
difficult task in pure continuous simulation, e.g. system dynamics [3]. However, such 
approximation of continuous models is coarse, and the time advance might be differ-
ent between discrete phases. 

Table 1. Solutions for hybrid software process modeling 

Authors Martin & 
Raffo 

Rus et al. & 
Lakey 

Choi et al. Zhang et al. 

Model framework Continuous Discrete-event Discrete-event Discrete-event 

Module/phase 
level 

Discrete-event Continuous Continuous Continuous/ 
Discrete-event 

Sim tool Extend Extend DEVSim++ Extend 



 Hybrid Modeling of Test-and-Fix Processes in Incremental Development 335 

Choi et al. [6] proposed their hybrid modeling approach by constraining the time 
advance of discrete-event model to be a small enough constant-time, which enables 
them to model differential equation system with discrete-event modeling. Therefore, 
their solution is an enhancement to Rus and Lakey’s approach with the refined time 
advance, which presents the feedback mechanism of system dynamics more effec-
tively in a discrete-event framework.  

Table 1 (column 2 to 4) summarizes the characteristics of the above hybrid model-
ing solutions. These solutions employ continuous and discrete-event modeling at 
different levels, i.e. modeling portions of continuous model with discrete-event ap-
proach, or using finer time advance for modeling discrete activities to observe the 
continuously varied process performance. 

2.2   Flexible Hybrid Modeling Scheme 

One limitation of the previous hybrid simulation modeling approaches is that they 
emphasized continuous and discrete-event modeling at different model levels. For 
instance, if the model’s framework is based on discrete-event, they tried to implement 
continuous simulation in every single discrete phase. However, the selection of simu-
lation modeling is a function of the characteristics of the system (what we know) and 
the objectives of our study (what we need) [7]. This principle should not only be ap-
plied at model level, but module (or phase) level also. 

Our hybrid modeling scheme described in this paper is shown in Table 1 as well 
(in bold) for comparison with the previous approaches. At model (or framework) 
level, our approach is discrete-based, which presents the transitions between sequen-
tially connected discrete phases. Whereas, the decision of choosing continuous or 
discrete-event modeling depends on the answers to the following questions: 

− What is the purpose of modeling and simulation of this module/phase? 
− Which portion of the investigated process(es) is the focus of our study? 
− What are the observed process factors in this phase related to model outputs? 
− At what granularity level we possess the information of this phase?   

In the real cases, we do not always possess the micro-process level knowledge on 
all phases of software processes, which limits our capability to carry out fine-grained 
investigation on portion(s) of processes. The flexible selection of simulation modeling 
approach on module level, however, can assist our investigation in focusing on the  

 

SD module DES module SD module DES module

Phase 1 Phase 2 Phase 3 Phase 4

Continuous parameters / outputs

 

Fig. 1. Flexible hybrid simulation modeling scheme 
 



336 H. Zhang, R. Jeffery, and L. Zhu 

specific phase or process by using discrete-event approach, while still maintain the 
overall model integrity by using continuous approach on other portion(s) of the proc-
ess. By reusing the well-developed the generic continuous modules, it may also help 
reduce the effort of building a hybrid simulation model. Figure 1 visualizes our flexi-
ble hybrid SPSM scheme. 

To demonstrate this proposed hybrid modeling approach, one model of incremental 
development is presented in the following sections as an example.  

3   Background 

3.1   Incremental Development 

Incremental development is a broad term describing a type of software development 
process, which may cover iterative development, versioned implementation, spiral 
model, etc [8]. The basic idea is to divide the development into several smaller incre-
ments, which are gradually accumulated to become the complete system. 

Basically, there are three phases in one increment. They are analysis (design), im-
plementation, and test-and-fix. In this article, we model these phases by focusing on 
investigation of the test-and-fix process in an intermediate increment. After the cur-
rent release is implemented, the progress enters a test-and-fix process, where this 
release is thoroughly tested and the detected defects are cleared. During this period, 
no new functionality is added into the current release. The purpose of the process is to 
make sure that each release provides a robust foundation for its succeeding releases. 

Compared with waterfall process, the incremental development reflects more typi-
cal characteristics of software processes, such as transition, concurrence, and itera-
tion. Each transition is necessary to trigger next phase of process, as well as the re-
leases aggregate to the final product. It is difficult to implement the simulation of an 
incremental development process, because every single phase in every release (itera-
tion) cannot be omitted from the simulation model. Nevertheless, given the specific 
research question(s) and the knowledge of different process portions, our hybrid mod-
eling scheme can investigate some portion(s) of the process on a fine-grained level 
and allow the incomplete process detail in others, while maintain the required model 
integrity for simulation. 

3.2   Software Quality Conceptual Model 

In our work, we assume that any reduction in software defects that remain in a prod-
uct improves the quality of that product. Accordingly, the defect level, measured by 
the number of residual defects in each release (including undetected defects, detected 
but uncorrected defects, and bad-fixing defects), is used as the indicator of software 
quality in this study. 

Boehm described the “software defect introduction and removal model” in [9], 
which is analogous to the “tank and pipe" model introduced by Jones [10]. Based on 
their models, we developed the fundamental “tank-and-pipe" model focusing on test-
and-fix process of incremental development, as shown in Figure 2. 

The graphic model shows that defects conceptually flow into a cascade of tanks 
through various defect source and transferring pipes. To be noticed, we don't include 



 Hybrid Modeling of Test-and-Fix Processes in Incremental Development 337 

the quality assurance activities, e.g. walk-through and inspection, in our model at 
current stage. The figure depicts that defects are drained off through the defect detec-
tion and defect fixing pipes. The residual defects of current release will be input to 
next increment. In the following sections of this paper, we use ‘error’ as the equiva-
lent term to ‘defect’. 

 

Fig. 2. “tank-and-pipe" model of test-and-fix process of incremental development 

3.3   Related Models 

Some previous researches have investigated the software testing process using quanti-
tative models. A brief description and comments of these models are given separately 
as below. 

Abdel-Hamid and Madnick (AHM) modeled the basic software testing process, 
which is a sector of their integrated software process model with system dynamics 
[11]. However, their model is based on the waterfall testing process, rather than the 
testing process in incremental development. They did not differentiate the newly 
generated errors and the residual errors from the test-and-fix process of the previous 
increments, which influence the current testing performance. Plus, as a continuous 
model, their model neglects the switchover phenomenon (identified in [12]) of error 
fixing productivity. 

Huff et al. developed an alternative causal model for the test-and-fix process of in-
cremental development [12]. They quantified the relations by quantitative equations. 



338 H. Zhang, R. Jeffery, and L. Zhu 

Nevertheless, their models did not identify the reproduction of the residual (old)  
|active errors in the succeeding increments. 

Tvedt developed a comprehensive process model of concurrent incremental devel-
opment [13]. He considered the impacts on defect creation from engineer's capability, 
technical risk, and interdependency among the concurrent increments, which is not 
the case of our process. However, the error types were not explicitly handled across 
increments. 

Cangussu et al. developed a software test process model based on concepts and 
techniques from control theory [14]. Their model reinforces modeling the continuous 
feedback during test process, and computes the effort required and schedule slippage 
to meet the quality objectives under changing process environment. As AHM's model, 
they did not identify the error categories. In addition, they concentrated on the con-
trol-feedback during one test process alone, and omitted the influence between im-
plementation and test (and/or fix) processes. 

Zhang et al. developed a qualitative simulation model of test-and-fix process in in-
cremental development, and further constrained the model for semi-quantitative simu-
lation [15]. Though, phase transitions are handled in their model, it is still a continu-
ous-based model of test-and-fix process. 

Although the above related models developed for modeling the similar software 
testing and/or fixing processes, most of them were continuous- or analytical-based 
models. Therefore, the use of these models is limited by the lack of capability to 
evaluate the impacts of process changes on micro-process. With respect to our knowl-
edge, there is few discrete-event model developed for the test-and-fix process of in-
cremental development. 

4   Modeling Incremental Development Process 

The primary purpose of test-and-fix process model is to examine whether the incre-
ment can be completed in the desired time period with the required quality, and 
evaluate the process changes of test-and-fix phase in incremental development. 

Overall, the simulation model was developed using ExtendTM (by ImagineThat 
Inc.). Aiming at the model purposes, it consists of two interlinked sub-models: system 
dynamics model of the design-and-implement process (for defect generation) and 
discrete-event model of the test-and-fix process (for defect detection and correction). 

4.1   Sub-model of Design-and-Implement Phase 

One widely used linear model for software implementation is employed as the basic 
skeleton of this model, i.e. given workforce (wf), release size (si), and unit productiv-
ity (pd), the elapsed calendar days to complete the release can be calculated by si /(wf 
* pd). However, because we are interested in the processes related to defect generat-
ing, detecting and fixing during each increment, more features related to defect gen-
eration need to be involved in the sub-model of this phase. In addition, the manage-
ment and communication overheads and staff capability need to be considered as well 
when calculating the elapsed time. The high level continuous feedback loops of this 
model, especially for continuous modules, are shown in Figure 3. 



 Hybrid Modeling of Test-and-Fix Processes in Incremental Development 339 

During the implementation phase, there are two basic types of defects generated: 
active defects and passive defects [11]. An undetected “active defect” may reproduce 
more active or passive defects in its succeeding increments until it is detected or re-
tired. The undetected “passive defects” remain dormant until they are captured. 

Schedule or Effort

Defect generated

Defect detected

Defect level

Rework efforts

Staffing profile

Communication
overheads

Skills &
experience

Productivity

Development rate

 

Fig. 3. Continuous feedback loops 

We pay more attention on the active and passive defects in implementation process 
because their combination and reproduction to some extent influence the total amount 
of available defects introduced to test-and-fix phase. If we suppose the system is de-
veloped with an incremental top-down strategy, then in the early releases, most of 
defects committed are in the core or high level components and become active. If 
these defects are not detected, they tend to propagate through the succeeding incre-
ments that build on one another. 

Therefore, the defects generated through each implementation in the model come 
in two ways. The first is through the development of the incremental size for each 
release; the second is through the reproduction of the residual (old) active defects.  

However, for many undetected active defects, the reproduction will not continue 
after producing one or two “generations” of defects [11]. In this case, they effectively 
become undetected passive defects. 

Other important assumptions of this sub-model include: no concurrent increment 
(increment dependency); no change of release size during current increment; and no 
change of developer’s productivity during design-and-implement phase. 

4.2   Sub-model of Test-and-Fix Phase 

The objective of test-and-fix process is to achieve an “acceptable level of quality”, 
meaning that a certain percentage of defects will remain unidentified at release of the 
software [16]. During the incremental development, a small percentage of defects 
may escape from the current test-and-fix process, and remain in the implementation of 
the next increment (Figure 2). 

In the test-and-fix process, a specific test suite is run and analyzed, detected defects 
are reported, assigned, and eventually fixed. In incremental development, the test 
cases are usually performed by a standalone team to avoid any potential bias. On the 



340 H. Zhang, R. Jeffery, and L. Zhu 

other hand, the work of correcting defects mostly falls to the team who implement the 
design and coding. 

The test suite contains multiple test cases, which are prepared in advance, and 
ready prior to test-and-fix. We assume that the black-box testing strategy is applied in 
this process. Different from the implementation, the time spent detecting defects de-
pends on the size of test suite (or the number of test cases in queue) for the current 
release, instead of the release size (lines of code or function points). On the other side, 
the time spent on correcting defects relates to the number of detected defects, defect 
characteristics (e.g. severity), developer’s competency, and defect fixing process. 

Here we focus on the “new” and “old” defects in the test-and-fix process model, as 
they are associated with different possibility and effort to detect them [12], which 
ultimately influences the performance of the testing process. Four types of defect 
severity are modeled (i.e. “easy”, “medium”, “hard”, and “very hard”), and associated 
with different fixing efforts as well. 

 

Fig. 4. Portion of test-and-fix process model with three developers 

Figure 4 depicts a portion of defect fixing process in test-and-fix phase. At the 
leftmost, the defects are delivered to developers in terms of different strategies (fur-
ther discussion in Section 5.2). The time required for fixing a defect is determined by 
defect severity, its original release, original developer, developer’s competency. 
Besides, the process performance and developer utility are also related to the defect 
delivery strategies in use. The defect fixing activities may produce a small propor-
tion of bad-fix at the same time, and they are captured by the blocks in dashed-line 
(Figure 4). Its possibility is handled stochastically in the simulation model. 

Other important assumptions of this sub-model include: no change of the prede-
fined test suite in each increment; and the uniform distribution of defects across the 
test suite (no regression). 

4.3   Integration 

These two sub-models connect each other iteratively to model the entire incre-
mental development process (as shown in Figure 5). The design-and-implement 
sub-model is developed using system dynamics, while test-and-fix sub-model by 
discrete-event approach. At the connection between them, the information flow 



 Hybrid Modeling of Test-and-Fix Processes in Incremental Development 341 

(output from design-and-implement) is split into information and entity flow. The 
latter contains two types of entity: defect and developer, which are associated with a 
set of attributes. The entity flow is accumulated and converted into information 
flow, then input to next increment. During this course, some important continuous 
parameters are observed, e.g. effort and defect level. As ExtendTM does not offer the 
capability of controlling the transitions between continuous and discrete-event sub-
models in its visual modeling workbench, at current stage, we have to work with 
ModL language [17] to control the transitions at code level. 

The intermediate increment may have multiple exits when performing simulation. 
This process is not completed until all detected defects are fixed, or a required per-
centage of test cases are passed within a desired period, and so on. 

 

Fig. 5. High level hybrid model structure of incremental development 

5   Case Example 

5.1   Baseline Project 

The baseline project in this section used for comparison is derived from data reported 
by Tvedt [13]. The characteristics of this project are given in Table 2. The require-
ments size of the baseline project was 80,000 lines of code written in COBOL. Be-
cause the incremental development is applied in this project, it causes 10,667 lines of  
 

Table 2. Characteristics of the baseline project 

Attributes Values 
Project size 90,667Loc
Number of increments 3
  - Increment 1 26,667Loc
  - Increment 2 32,000Loc
  - Increment 3 32,000Loc
Project schedule 250days (1 year)
Project team size 15 experienced engineers
Estimated budget 3750 man-days

 



342 H. Zhang, R. Jeffery, and L. Zhu 

code as the overheads. Therefore, the total project size became 90,667 lines of code. 
The project was scheduled to last one calendar year, with a workforce level of 15 full-
time engineers from start through finish. 

In the baseline project, we assume that the team fixing defects is the same team de-
veloping the current release. Further, to maintain the high individual productivity of 
defect correction, the detected defects should be returned to its original developer for 
rework. 

Tvedt’s model was developed using system dynamics. In contrast to our model, his 
model simulated the concurrent development that allows overlapping between incre-
ments. However, at current stage, we do not consider the increment dependency in 
our model. Thus, it is not necessary to compare the elapsed times. We present the 
simulated quality feature for the brief comparison. After 20 runs of the simulation, 
Figure 6 shows the result distribution. It was reported that 279 defects remains in the 
final product by Tvedt’s model, which was calibrated with the real project. The major 
difference from Tvedt’s result might be caused by the different modeling approaches 
applied. 

 

Fig. 6. Defect levels generated through simulations 

5.2   Simulated Process Change 

Our model focuses on the test-and-fix process of incremental development, which 
allows us to perform an investigation of possible process changes in this phase. In the 
baseline project, the detected defects are required to be fixed by its original developer. 
It may maintain the high productivity of individual developer on every single defect. 
Nevertheless, in some cases, there might be a long defect queue prior to one devel-
oper when another is idle. This situation turns to be more frequent when competency 
deviations exist among the developers. Experienced developers may produce fewer 
defects than novices in implementation. On the other hand, they may work more effi-
ciently on defect fixing, while novices are struggling on their long defect list. 

For this reason, we try to investigate the impact of corresponding process change. 
In the new case, an incoming detected defect should be assigned to one developer 
with the shortest defect queue. When two developers have the shortest queues with 
the same length, the incoming defect is assigned to the more experienced one. 



 Hybrid Modeling of Test-and-Fix Processes in Incremental Development 343 

After 20 runs of simulation, Figure 7 shows the average developer utilities of each 
release in these two cases. In the baseline case, the average developer utility may vary 
between 0.1 and 0.9 (Figure 7-a). When we applied the process change, the possible 
utility falls into the range from 0.6 to 0.9 (Figure 7-b). Moreover, the proposed process 
change also decreases the deviation of developer utility in the defect fixing process. 

 

 

(a) defects assigned to original developer (b) defects assigned to developer with short queue 

Fig. 7. Developer utilities between baseline and proposed process change 

6   Conclusion 

This paper has proposed a hybrid software process simulation modeling scheme com-
bining continuous and discrete-event methods. Compared with the existing hybrid 
modeling approaches, its distinct enhancement is that by choosing continuous or dis-
crete-event modeling at phase (module) level, it allows the different zooms applied to 
each single process phase. It makes the selection of modeling methods more flexible 
at the low level, which is ultimately determined by our knowledge about the process 
and the real needs of our simulation. Without loss of model integrity, it may also help 
reduce the effort of building a hybrid simulation model. 

Using this hybrid modeling scheme, we developed a hybrid simulation model of 
incremental development with focus on the test-and-fix process. We also applied this 
model for estimating product defect level and investigate the possible process change. 
The simulation model provides powerful analysis capability, especially for the test-
and-fix process, and avoids the limitation of incomplete process detail (on micro-
process level) of other phases, normally required by discrete-event modeling. 

The future work on this hybrid modeling approach can be carried out in two di-
mensions: 1) to improve this hybrid modeling scheme and develop hybrid simulation 
models of other software processes (e.g. agile processes) using this approach; 2) to 
enhance this hybrid simulation model by considering more interventions that are not 
included in current model, such as test suite regression, and increment dependency. 

Acknowledgement 

NICTA is funded by the Australian Government as represented by the Department of 
Broadband, Communications and the Digital Economy and the Australian Research 
Council through the ICT Centre of Excellence program. 



344 H. Zhang, R. Jeffery, and L. Zhu 

Reference 

1. Osterweil, L.J.: Unifying Microprocess and Macroprocess Research. In: Li, M., Boehm, 
B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 68–74. Springer, Heidelberg 
(2006) 

2. Zhang, H., Kitchenham, B., Pfahl, D.: Reflections on 10 Years of Software Process Simu-
lation Modeling: A Systematic Review. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) Inter-
national Conference on Software Process (ICSP) 2008, Springer, Heidelberg (2008) 

3. Martin, R.H., Raffo, D.: A model of the software development process using both continu-
ous and discrete models. Software Process: Improvement and Practice 5(2-3), 147–157 
(2000) 

4. Rus, I., Collofello, J., Lakey, P.: Software process simulation for reliability management. 
Journal of Systems and Software 46(2-3), 173–182 (1999) 

5. Lakey, P.B.: A Hybrid Software Process Simulation Model for Project Management. In: 
4th International Workshop on Software Process Simulation Modeling (ProSim), Portland, 
OR (2003) 

6. Choi, K., Bae, D.-H., Kim, T.: An approach to a hybrid software process simulation using 
the DEVS formalism. Software Process: Improvement and Practice 11(4), 373–383 (2006) 

7. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simulation. 
Prentice-Hall, Englewood Cliffs (2005) 

8. Karlsson, E.-A.: Incremental Development - Terminology and Guidelines. In: Chang, S.-
K. (ed.) Handbook of Software Engineering & Knowledge Engineering, vol. 1, pp. 381–
400. World Scientific, Singapore (2001) 

9. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981) 
10. Jones, C.: Programming Defect Removal. GUIDE 40 (1975) 
11. Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics: An Integrated Approach. 

Prentice Hall, Englewood Cliffs (1991) 
12. Huff, K.E., Sroka, J.V., Struble, D.D.: Quantitative Models for Managing Software Devel-

opment Processes. Software Engineering Journal 1(1), 17–23 (1986) 
13. Tvedt, J.D.: An Extensive Model for Evaluating the Impact of Process Improvements on 

Software Development Cycle Time. PhD dissertation. Arizona State University (1996) 
14. Cangussu, J.W., DeCarlo, R.A., Mathur, A.P.: A Formal Model of the Software Test Proc-

ess. IEEE Transactions on Software Engineering 28(8), 782–796 (2002) 
15. Zhang, H., Keung, J., Kitchenham, B., Jeffery, R.: Semi-Quantitative Modeling for Man-

aging Software Development Processes. In: 19th Australian Software Engineering Confer-
ence (ASWEC), IEEE Computer Society, Perth, Australia (2008) 

16. Galin, D.: Software Quality Assurance: from Theory to Implementation. Pearson, London 
(2004) 

17. Imagine That Inc.: Extend Developer’s Reference Manual,  
 http://www.extendsim.com 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 345 – 356, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Reflections on 10 Years of Software Process  
Simulation Modeling: A Systematic Review 

He Zhang1,2, Barbara Kitchenham3, and Dietmar Pfahl4,5 

1 National ICT Australia, Locked Bag 9013, Alexandria NSW 1435, Australia 
2 School of Computer Science and Engineering, University of New South Wales, Australia 

3 School of Computer Science and Mathematics, Keele University, UK 
4 Simula Research Laboratory, P.O. Box 134, NO-1325, Lysaker, Norway 

5 Department of Informatics, University of Oslo, Norway 
he.zhang@nicta.com.au, barbara@cs.keele.ac.uk, 

dietmarp@simula.no, dietmarp@ifi.uio.no  

Abstract. Software process simulation modeling (SPSM) has become an in-
creasingly active research area since its introduction in the late 1980s. Particu-
larly during the last ten years the related research community and the number of 
publications have been growing. The objective of this research is to provide in-
sights about the evolution of SPSM research during the last 10 years. A system-
atic literature review was proposed with two subsequent stages to achieve this 
goal. This paper presents the preliminary results of the first stage of the review 
that is exclusively focusing on a core set of publication sources. More than 200 
relevant publications were analyzed in order to find answers to the research 
questions, including the purposes and scopes of SPSM, application domains, 
and predominant research issues. From the analysis the following conclusions 
could be drawn: (1) Categories for classifying software process simulation 
models as suggested by the authors of a landmark publication in 1999 should be 
adjusted and refined to better capture the diversity of published models. (2) Re-
search improving the efficiency of SPSM is gaining importance. (3) Hybrid 
process simulation models have attracted interest as a possibility to more realis-
tically capture complex real-world software processes. 

Keywords: ProSim, software process simulation, systematic literature review. 

1   Background 

Software Process Simulation Modeling (SPSM) was introduced into the software 
engineering domain by the pioneering work summarized in [1]. In the last two dec-
ades, it has been emerging as an effective tool to help evaluate and manage changes 
made to software projects and organizations. As a major research event, the ProSim 
workshop1 series has taken place since 1998, and focuses on the state-of-the-art theo-
ries and applications of SPSM research in addressing real-world problems. 

In ProSim’98, Kellner, Madachy, and Raffo (KMR) discussed a variety of aspects of 
software process simulation in their widely-cited paper, “Software process simulation 
                                                           
1 International Workshop on Software Process Simulation Modeling. 



346 H. Zhang, B. Kitchenham, and D. Pfahl 

modeling: Why? What? How?” [2], such as the reasons for undertaking simulations of 
software process models, and simulation approaches/paradigms. However, after almost 
10-years (1998 - 2007) progress in software process simulation, it is appropriate to 
review and update the status of SPSM research, to summarize the 10-years progress, 
best practice and lessons learned, and propose the possible directions of our future re-
search activities in this domain. 

From this viewpoint, this paper reports the preliminary results of a systematic lit-
erature review of papers published in the proceedings and journals associated with 
ProSim since 1998. This paper is part of a larger study and presents only a subset of 
the research questions and research literature addressed by the larger study. As an 
anniversary review of the previous work, this paper also partially serves as the latest 
continuation and enhancement to the topics discussed in the KMR’s paper. 

2   Systematic Literature Review 

In 2004, Kitchenham et al. [3] suggested software engineering researchers should 
adopt “Evidence-Based Software Engineering” (EBSE). EBSE aims to apply an evi-
dence-based approach, which was initially developed in medicine and is being 
adopted in many domains, to software engineering research and practice. In this con-
text, evidence is defined as a synthesis of best quality scientific studies on a specific 
topic or research question. The main method of synthesis is a systematic literature 
review (SLR). 

In contrast to an ad hoc literature review, a systematic literature review (also 
known as systematic review) is a methodologically rigorous review of research re-
sults. It is a means of identifying, evaluating and interpreting all available research 
relevant to a particular research question, or topic area, or phenomenon of interest [4]. 
A systematic review is a form of secondary study, the identified individual studies 
contributing to a systematic review called primary studies. 

A systematic literature review involves several discrete activities, which can be 
grouped into three main phases: planning the review, conducting the review, and 
reporting the review. A pilot review is recommended for the reviews including multi-
ple research questions or a large set of primary studies. 

3   Method 

This study follows Kitchenham’s methodological guidelines for systematic reviews 
[4, 5], as adapted for PhD candidates. It was carried out in two stages. This paper 
reports the review process and the preliminary results from Stage 1. Currently, three 
researchers are involved in this research, one principal reviewer (a PhD candidate), 
one secondary reviewer (the candidate’s supervisor), plus one researcher acting as the 
expert panel. 

3.1   Research Questions 

Each stage of the systematic review is intended to answer the following research 
questions. This paper only addresses questions 1 to 4. 



 Reflections on 10 Years of Software Process Simulation Modeling 347 

Q1. What are the purposes or motivations of SPSM in the last decade's practice? Q1 
can be split into two sub-questions: Q1.1 How are the purposes identified by 
KMR supported by SPSM practice in the last ten years? Q1.2 Are any updates 
required? 

Q2. Which simulation paradigms have been applied in the last decade, and how 
popular are they? Are there any new techniques emerging during this period? 

Q3. Which simulation tools are available for SPSM and have been in use in the last 
decade? And how popular are they? 

Q4. On model level, what are problem domains and model scopes focused on by 
software process simulation models? 

Q5. On parameter level, what are the output variables considered when developing 
software process simulation models of software process? 

Q6. Which simulation paradigm is most appropriate for a specific SPSM purpose? 

3.2   Search Process 

As the review of 10-years’ efforts in SPSM, the time frame of sources for our study is 
constrained to the period from 01 Jan 1998 to 31 Dec 2007. Because the ProSim 
workshop series (which continued as a special track of ICSP since 2007) are regarded 
as the most important forum of SPSM, the sources related to ProSim (including 
ProSim workshop, simulation track of ICSP, and special issues of JSS and SPIP) are 
the primary data sources for the Stage 1 of this study. The corresponding source and 
search strategy are summarized in Table 1. 

Table 1. Selected sources for Stage 1 of the systematic review 

Source Acronym Period Search method 
The proceedings of ProSim workshop ProSim 1998 - 2006 Manual 
The proceedings of ICSP conference ICSP 2007 Manual 
Journal of Systems and Software JSS 1999 - 2001 Manual 
Journal of Software Process: 
Improvement and Practice 

SPIP 2000 - 2007 Manual 

 
In Stage 2, we will select the external sources of software process research with high 
relevance to SPSM for our review. To avoid possible source bias and missing some 
important work, we will also conduct an online search in some major electronic 
sources (digital libraries). 

We carried out manual search in the ProSim conference proceedings and special is-
sues of the journals published within the proposed time frame during Stage 1. There 
are over 200 candidate papers. When there are a large number of research questions 
and a large set of potential primary studies, Kitchenham recommends undertaking a 
pilot review after the planning phase [4]. The purposes of a pilot systematic review is 
“to assess and refine the review protocol, and further to secure the quality of the 
systematic review”, We chose the papers published in the special issues (SPIP) of 
ProSim Workshop 2005/2006 (10 latest journal papers available at the planning 
phase), which reflect the current state and progress, for our pilot review. 



348 H. Zhang, B. Kitchenham, and D. Pfahl 

3.3   Inclusion and Exclusion Criteria 

There are two major steps in primary study selection: an initial selection and a final 
selection. The theme for this systematic review, “software process simulation model-
ing” contains two keywords: “software process” and “simulation modeling”. There-
fore, as the inclusion criteria, the primary studies identified must employ simulation 
paradigm(s) for software process research; in the other words, the process model or 
modeling in the studies can be used for simulation studies. 

From the candidate studies retrieved by data sources (Table 1), an initial selection 
was obtained by reviewing the title, abstract, and keywords of the publications. When 
an exclusion decision could not be made, the paper’s structure, conclusion, and refer-
ences were also checked. Unless studies could be excluded based on the above crite-
ria, full copies of the papers were obtained and included in the initial selection.  

Next, a final selection that satisfied the selection criteria was obtained from the ini-
tially selected papers. We excluded: 

− Editorials, position papers and keynotes 
− Abstracts, posters and slides alone. 

We included the most recent and comprehensive versions of duplicated papers or 
continued studies. For example, some SPSM papers published in the ProSim work-
shop series were selected for publication in special issues of journals. To avoid dupli-
cate aggregation, we only selected and reviewed the journal articles as they typically 
enhance the proceedings papers with more details. However, to track any trends over 
time, the first publication date of the original research paper was recorded during data 
extraction. The selection process was performed by the principal researcher. 

3.4   Study Classification 

We initially identified two broad categories of publications by briefly reviewing the 
most recent papers published in SPW/ProSim 2006 and ICSP 2007 (16 papers on the 
special tracks of process simulation). One category includes the specific process 
simulation models or simulators, and their applications; the other discusses the meth-
odology and guidelines for process simulation modeling. Both categories are relevant 
to most research questions (except Q5). 

Based on the results of the pilot review, we refined the study classification into 
four categories as follows: 

− A: Software process simulation models or simulators; 
− B: Process simulation modeling paradigms, methodologies, and environments; 
− C: Applications, guidelines, and frameworks of adopting process simulation in 

software engineering practice; 
− D: Experience reports of SPSM research and practice. 

These four types of studies focus on different aspects of software process simula-
tion research, and may give answers to the research questions on different levels of 
granularity and from different points of view. We defined the concrete criteria (ques-
tions) to facilitate the effective identification of each study category.  



 Reflections on 10 Years of Software Process Simulation Modeling 349 

The categorization was not a mutually exclusive one, i.e. it is possible that a spe-
cific study falls into more than one category. For example, one case could be that the 
author(s) introduced a novel simulation paradigm to software process research, and 
then described a simulation model for a specific problem domain by using this para-
digm as an example. We allow these studies to be mapped to multiple categories. 

3.5   Quality Assessment 

The quality of a primary study is assessed with the help of a checklist (Table 2), 
which specifies the questions to each study category separately. For each question, the 
study’s quality is evaluated as ‘yes’, ‘partial’, or ‘no’, which are scored with the value 
1, 0.5, and 0 respectively. The studies were evaluated by the principal researcher, and 
a selection of approximately 30% was checked by the secondary researcher. Dis-
agreements were resolved by the principal researcher. 

Table 2. Study quality assessment checklist 

Question Score 
Common questions (for all categories) 

Did the study clearly state the aims/research questions? y/p/n 
Did the study review the related work for the problem? y/p/n 
Did the study discuss related issues, and compare with the alternatives? y/p/n 
Did the study recommend the further continuous research? y/p/n 

Questions for Category A 
Are the model’s assumptions explained explicitly? y/p/n 
Is the model construction fully described? y/p/n 
Did the study explain why choosing the applied simulation paradigm(s)? y/p/n 
Are the conditions when the model adoption explained? y/p/n 
Did the study avoid any selection bias exist during experiment design? y/p/n 
Has the model been trialed on an industry scale problem? y/p/n 
Did the study carry out a sensitivity or residual analysis? y/p/n 
Are any model evaluation methods applied on the model? y/p/n 
Does the study interpret the findings? y/p/n 

Questions for Category B and C 
Are the scopes of the method/paradigm/solution clearly defined? y/p/n 
Are the modeling approach/method/environment clearly defined? y/p/n 
Are the problems that the study addresses defined with appropriate SE exam-
ples? 

y/p/n 

Did the study specify the limitations of the argued paradigm/method/solution? y/p/n 
Did the empirical evidence include support the arguments of the study? y/p/n 

Questions for Category D 
Can the experience be used for validating and calibrating simulation 
model/modeling? 

y/p/n 

Are the best practices or lessons learnt extracted from experience? y/p/n 

3.6   Data Extraction 

The major attributes to be collected for each study through the review are listed in 
Table 3. They are grouped by the study categories. The ‘Q’ column indicates which 
research question(s) is the attribute collected for answering. 



350 H. Zhang, B. Kitchenham, and D. Pfahl 

Table 3. Attributes collected during data extraction 

Q Attribute Description 
Common Attributes 

1 Purpose category 
The specific purpose for the simulation model or modeling. It 
can be one of purposes identified by KMR, or any new ones. 

2 
Modeling  
paradigm(s) 

The paradigm used to build the simulation model. It can be one 
of identified by KMR, or some other approaches.  

Attributes for Category A 
4 Problem domain The specific problem domain in SE, e.g. open-source, evolution. 

5 Model complexity 
Including single-module model or integrate model, the number 
of modules and levels of the simulation model. 

3 Simulation tool The simulation tools used in executing the process model. 
5 Model scope Including the process phase(s) of life-cycle, and time span. 

5 Output variables 
The information produced through simulation answers the  
questions specified with the purpose of the model. 

Attributes for Category B 
4
6 

Study’s theme The emphasized and discussed aspects of SPSM in the study. 

Attributes for Category C 
4
6 

Focused questions The specific questions related to SPSM raised in the study 

4
6 

Proposed solution The corresponding answers given in the study 

6 Application effects  The expected effects caused by the solution. 
Attributes for Category D 

6 Experience source 
Where does the experience come from? Industry, government, 
education/academia, or somewhere else. 

6 
Outcome of  
applying SPSM 

The result of the application experience, i.e. positive, negative, 
or mixed. 

1
6 

Supported  
arguments 

The arguments supported by the experience report. 

4   Results 

4.1   Primary Studies 

In total, 209 papers have been published in the ProSim sources, including the work-
shop and conference (ICSP) proceedings and the special issues of JSS/SPIP. They 
form a comprehensive body of knowledge of software process simulation and model-
ing. Unfortunately, because the electronic proceedings were not available for 
ProSim’98 - ’00, nine papers could not be evaluated in our review. Although we con-
tacted the author(s) for each missing paper individually to request the electronic ver-
sion, only three of them had responded to us. Hence, there were around 4.3% (9/209) 
papers missed from the review at the current stage. Nevertheless, we believe that the 
low proportion will not influence the review results significantly. 

By carefully reviewing their titles, abstracts, keywords, conclusions and references, 
96 articles were selected from the publications in ProSim sources and identified as the  
 



 Reflections on 10 Years of Software Process Simulation Modeling 351 

Table 4. Sources identified for primary studies 

 1998 1999 2000 2002 2003 2004 2005 2006 2007 Total 

Proceedings 15 13 21 0 32 27 24 8 8 148 
Missing 2 1 6 0 0 0 0 0 0 9 
JSS 11 0 12 0 0 0 0 0 0 23 
SPIP 0 10 0 7 5 7 7 2 0 38 
Selected 13 9 14 7 16 10 13 6 8 96 

primary studies. The total number of papers per year and source are summarized in 
Table 4. The individual primary studies will be available online (systematicre-
view.org) for public access. 

Data extraction was performed by two researchers: the principal and secondary re-
viewer. The former was responsible for reviewing all primary studies, extracting data, 
and assessing study quality. The other reviewer selected approximately one third of 
the papers and performed a secondary review for validation of the extraction and 
assessment. When the disagreement could not be solved, the final decision was made 
by the principal researcher. 

Table 5 summarizes per year the number of different countries the first authors 
came from. All contributions to ProSim were mainly from 13 countries. The ProSim 
workshop became more international since 2000, when the first authors from 7 coun-
tries were involved. After that, the number of participating countries varied between  
4 and 6. 

The results also indicate that USA is the leading country of SPSM research in 
terms of ProSim publications, where 41 (49%) studies were originated. It is followed 
by Germany (18%) and UK (17%). 

Table 5. Number of countries involved in the ProSim series (workshops and conference) 

 1998 1999 2000 2002 2003 2004 2005 2006 2007 Total 

Number of 
Country 

3 3 7 5 5 5 6 4 6 13 

4.2   Classification 

Four study categories were identified in the pilot review. By reviewing the full papers, 
all primary studies were classified into at least one category (A, B, C, and D). Figure 
1 shows the distribution of studies per category and year. 

Most primary studies were identified as Category A, for both the decade (58%) and 
each year separately. In total, there have been 61 software process simulation models 
(simulators) developed and published in ProSim series during the last 10 years. Only 
18 primary studies (19%) were identified as Category C, while 29% of primary stud-
ies were of Category B and 23% of Category D. 22 studies were classified into two 
categories, and 3 studies were identified as combinations of three categories. 
 



352 H. Zhang, B. Kitchenham, and D. Pfahl 

5

6

9

5

7

6

9

5

4

5

1

4

3

6

3

4

22 2

1

6

2

1

4

5

3 3

1 1

3 3 3

0

1

2

3

4

5

6

7

8

9

10

1998 1999 2000 2002 2003 2004 2005 2006 2007

A

B

C

D

 

Fig. 1. Summary of study categories distribution 

4.3   Quality Assessment 

The primary studies were assessed for quality using the checklist in Section 3.7. Al-
though the full score for each study cannot be included in this paper, we present the 
normalized average quality score per source type (proceedings and journals) and year 
in Figure 2. The study quality of workshop proceedings was stable from 2000 to 
2005. In most cases, the quality of journal articles was equal to or better than the 
proceedings papers of the same year. Overall, many Category A studies failed to ex-
plicitly address the conditions of model/simulator adoption. For Category B and C 
studies, the limitations associated with the paradigm/method/solution were rarely 
discussed. 
 

0

0.2

0.4

0.6

0.8

1

Proceedings 0.7 0.56 0.6 0.59 0.61 0.48 0.73

Journals 0.65 0.47 0.54 0.67 0.65 0.82 0.71 0.73

1998 1999 2000 2002 2003 2004 2005 2006 2007

 

Fig. 2. Average study quality per source type and year 

5   Discussions 

In this section, we discuss the primary answers to our first four research questions 
(defined in Section 3.1).  



 Reflections on 10 Years of Software Process Simulation Modeling 353 

5.1   Purposes for SPSM (Q1) 

During the process of Stage 1 review, we gradually perceived that it is difficult to 
handle the purpose identification clearly according to the definitions addressed by 
KMR. There are two major shortcomings: 1) Ambiguity to some extent exists among 
their 6 purposes; 2) Since the examples given in KMR’s paper were mainly derived 
from the publications in ProSim’98, the scope of their purposes is limited. 

For instance, in terms of their classification, ‘planning’ is different from ‘strategic 
management’. But the latter usually consists of the former at the organizational level 
or on a long-term scale. As another example, process simulation can help predict size 
of open source software. However, according to the definition in PMBoK [6], ‘plan-
ning’ is the process that contains the activities of ‘define scope’, ‘develop manage-
ment plan’, ‘identify and schedule activities and resources’, which are not the cases in 
open-source development. Therefore, ‘planning’ needs to be refined as ‘prediction 
and planning’ to fit such change. 

To clearly represent the purposes for SPSM research identified from the primary 
studies, they can be grouped at three levels: 

Cognitive level 
Tactical level  
Strategic level 
They can be further detailed as 10 purposes. The cognitive level contains the pur-

poses of 1) understanding, 2) communication, 3) process investigation, 4) training 
and learning. On the tactical and strategic levels purposes are similar. They are 5) 
prediction and planning, 6) control and operational management, 7) risk manage-
ment, 8) process improvement, 9) technology adoption, 10) tradeoff analysis and 
optimizing. They differ in scope and impact between the two levels. 

5.2   Modeling Paradigms (Q2) 

Overall, 10 simulation modeling paradigms were found in the review of Stage 1. Fig-
ure 3 shows the paradigms with the applied study number more than one. System 
dynamics (SD, 49%) and Discrete-event simulation (DES, 31%) were the most widely  
 

47

30

6 5 4 3 3 2

0

5

10

15

20

25

30

35

40

45

50

SD DES SBS Qsim KBS Game ABS DTS

Study

 

Fig. 3. Study distribution by simulation paradigms 



354 H. Zhang, B. Kitchenham, and D. Pfahl 

used techniques in SPSM. Other paradigms included state-based simulation (SBS), 
qualitative(semi-quantitative) simulation (QSIM), knowledge(rule)-based simulation 
(KBS), role-playing game, agent-based simulation (ABS), and discrete-time simula-
tion (DTS). However, only SD, DES, SBS and KBS were discussed by KMR. 

QSIM and ABS are paradigms that are relatively new to software process research. 
As a special case, DTS was classified as one type of SBS by some studies. In addi-
tion, three games (role-playing simulators) were developed with focus on training and 
learning purposes. 

During the last decade, hybrid simulation has been one of the most frequent re-
search themes in the ProSim community. Most of these studies (10 papers) presenting 
the hybrid simulation focus on the combination of continuous (SD) and discrete-event 
simulation (DES). 

5.3   Simulation Tools (Q3) 

With respect to the simulation models/simulators presented in Category A studies, 13 
tools were identified. Their application numbers are shown in Table 6. Because some 
authors did not explicitly mention the simulation tools in their papers, the total appli-
cation number (38) is less than the number of Category A studies (56). 

Table 6. Application of simulation tools 

V
en

si
m

 

E
xt

en
d 

iT
hi

nk
 

Q
si

m
 

N
et

lo
go

 

R
ep

as
t 

D
SO

L
 

Sm
al

lta
lk

 

D
E

V
Si

m
+

+
 

D
E

V
SJ

av
a 

Q
N

A
P

2 

P
M

L
 

SE
SA

M
 

12 11 3 2 1 1 1 1 1 1 1 1 1 

Due to a large number of SD models developed and published, VensimTM (by Ven-
tana Systems, Inc. www.vensim.com) is the most popular tool for continuous simula-
tion. Since ExtendTM (by ImagineThat, Inc. www.extendsim.com) offers the capabil-
ity of building both continuous and discrete simulation model, it has been the first 
choice by the discrete-event and hybrid modelers in SPSM community. 

5.4   Problem Domains and Model Scope (Q4) 

Our systematic review extracted 19 problem domains from Category A studies.  “Ge-
neric development” models the normal development process of software project. 
Among other domains, software evolution has been the most frequently modeled 
topic. 

To review simulation model scope, we extended the 5 scopes defined by KMR to 
7, i.e. single-phase, multi-phase, project, multi-project, product, product evolution, 
and long-term organization. Table 7 shows the relations between modeled domains 
and scope extracted from Category A studies. The number in the ‘subtotal’ row is not  
 



 Reflections on 10 Years of Software Process Simulation Modeling 355 

Table 7. Modeling problem domains vs. model scopes 

 si
ng

le
 p

ha
se

 

m
ul

ti
-p

ha
se

 

pr
oj

ec
t 

m
ul

ti
-

pr
oj

ec
t 

pr
od

uc
t 

ev
ol

ut
io

n 

lo
ng

-t
er

m
 

or
ga

ni
za

tio
n 

un
kn

ow
n 

or
 

N
/A

 

T
ot

al
 

generic development   9     1 10 
SW evolution   1   7   8 
SPI 1 1     1 3 6 
requirement 2  1   1  1 5 
incremental development 1 2 1     1 5 
open-source SD 1   1  2   4 
global SD   1   3   4 
SW economics 1  1  1    3 
SW product-line     1  1  2 
agile development   1     1 2 
QA  1      1 2 
acquisition/outsourcing  1      1 2 
SE education   2      2 
SW testing 1        1 
SW design 1        1 
SW services     1    1 
productivity analysis   1      1 
SD risk mgmt   1      1 
SW reliability        1 1 
Subtotal 7 5 19 1 2 8 2 9  

always the exact sum of the column. This is because some studies modeled multiple 
domains, e.g. a combination of global development and evolution. 

‘Project’ was the most frequently modeled study scope, particularly for ‘generic 
development’. ‘Product evolution’ was the next most studied topic. 

5.5   Other Categories 

Most studies (17 papers) of Category B discussed methods of building process simu-
lation model more correctly, effectively and efficiently. Some papers introduced 
novel simulation paradigms (8 studies) and simulation environments (8 studies). 6 
studies dealt with the strategic questions, or presented perspectives of SPSM. KMR’s 
paper [2] is the best known example of them. 

The low proportion of Category C study (Section 4.2) implies that modelers may 
need to pay more attention to the methodologies and guidelines needed to support the 
application and adoption of process simulation modeling in practice. 

6   Conclusions and Future Work 

The main limitation of our review is that the process recommended for PhD candi-
dates is not as rigorous as that adopted by multiple-researchers. However, it does 



356 H. Zhang, B. Kitchenham, and D. Pfahl 

include a quality assurance check by the secondary researcher and review of the re-
search protocol, and the results by an external researcher. 

Our results indicate that: (1) Categories for classifying software process models as 
suggested by the authors of a landmark publication in 1999 should be adjusted and 
refined to better capture the diversity of published models. (2) Research improving 
the efficiency of SPSM is gaining importance. (3) Hybrid process simulation models 
have attracted interest as a possibility to more realistically capture complex real-world 
software processes. 

Our future work will include a more detailed analysis of the studies of categories 
B, C and D, and an investigation of the issues raised by our other two research ques-
tions (Q5 and Q6). We also intend to extend our systematic review to include studies 
outside of the ProSim sources (Stage 2).  

Acknowledgement 

NICTA is funded by the Australian Government as represented by the Department of 
Broadband, Communications and the Digital Economy and the Australian Research 
Council through the ICT Centre of Excellence program. Barbara Kitchenham's re-
search is funded by the UK EPSRC project EP/E046983/1. 

References 

1. Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics: An Integrated Approach. 
Prentice Hall, Englewood Cliffs (1991) 

2. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software Process Simulation Modeling: Why? 
What? How? Journal of Systems and Software 46(2-3), 91–105 (1999) 

3. Kitchenham, B., Dybå, T., Jørgensen, M.: Evidence-based Software Engineering. In: 26th 
International Conference on Software Engineering (ICSE), pp. 273–281. IEEE Computer 
Society, Los Alamitos (2004) 

4. Kitchenham, B.: Guidelines for Performing Systematic Literature Reviews in Software En-
gineering. Software Engineering Group, School of Computer Science and Mathematics, 
Keele University, and Department of Computer Science, University of Durham (2007) 

5. Kitchenham, B.: Procedures for Undertaking Systematic Reviews. Computer Science De-
partment, Keele University and National ICT Australia (2004) 

6. PMI: A Guide to the Project Management Body of Knowledge. Project Management Insti-
tute (2004) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 357 – 368, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Integrating Joint Reviews with Automotive SPICE 
Assessments Results 

Fabrizio Fabbrini1, Mario Fusani1, Giuseppe Lami1, and Edoardo Sivera2 

1 Istituto di Scienza e Tecnologie dell’Informazione – C.N.R.  
56124 Pisa, Italy 

{fabrizio.fabbrini, mario.fusani, giuseppe.lami}@isti.cnr.it 
2 Fiat Group Automobiles 

Torino, Italy 
Edoardo.sivera@fiat.com  

Abstract. The continuous changes in customer requirements as well as the 
ever-increasing market-driven demand for innovation make automotive soft-
ware projects success strongly dependent on the customer-supplier communica-
tion and co-operation throughout the software life cycle. Joint reviews and 
software process assessments (mostly performed according to the Automotive 
SPICE model) are popular means used by car manufacturers and their suppliers 
of software-intensive components to face such a situation. Often these two re-
source-consuming techniques are performed separately, without mutual support 
or interaction. This paper presents an approach to integrating joint reviews with 
software process assessment results. The effectiveness of joint reviews depends 
on the degree of car manufacturer’s knowledge and understanding of the sup-
plier’s way of proceeding in software development. We show how assessment 
results can be used as input to joint reviews to support car manufacturers in 
conducting joint reviews effectively. 

Keywords: Joint Reviews, Software Process Assessment, Automotive SPICE, 
Software Process Improvement.  

1   Introduction 

Up to a few years ago, car makers could not completely understand what the software 
component of Electronic Control Units (ECU) was about, and hardly intervene any-
where in the software development process, that was guarded realm of subsystems 
suppliers. On the other hand, most suppliers were just emerging from years of experi-
ence limited to hardware design, barely coated with low-level software drivers. 

Today the competency and experience of car manufacturers in automobile’s elec-
tronics is much increased, rousing competition that in turn demands for more and 
more basic and sophisticated functions, ranging from car control to passenger comfort 
to continuous information exchange between vehicles and their environment. This has 
led the software to play a key role in the whole car design, now scoring an 80% of the 
whole project. [1], [2] 

Although Software Engineering as a discipline may now be sufficiently mature to 
guarantee the trustworthiness of software-controlled systems, what is not guaranteed is 
that ECU manufacturers are actually adopting the most suitable techniques and practices. 



358 F. Fabbrini et al. 

In facts, serious problems interested the earliest cars provided with complex elec-
tronic components network, especially those regarding the car body functions. This 
led manufacturers to reconsider their initially unquestioned acceptance of software as 
a minor component of car subsystems. 

Such a hard situation, that caused huge loss of resources to the automotive indus-
try, was due to several reasons: 
 

- Cultural transition in designing and producing automobiles from a mechanic 
(or electro-mechanic) centered approach to an approach where the software 
plays a crucial role. An important effect of such a cultural gap has been the dif-
ficulty of interaction between car makers and their software suppliers. In fact, 
often car makers’ language and competency were different from those of soft-
ware suppliers, which heavily affected software acquisition capability. 

- Lack of standard approaches and platforms, which caused budget overruns. 
- High complexity of ECU interactions, which determined system integration 

problems. 

In such a context the acquisition of software-intensive systems has become a criti-
cal activity for car manufacturers, that need to monitor and control the software de-
velopment of their suppliers in order to avoid losses in terms of time and quality of 
product. This paper focuses on the discussion of two widely adopted techniques 
aimed at enabling the car manufacturer to control and understand the supplier’s way 
to produce software. These are joint reviews and software process assessments.  

The paper is structured as follows: Section 2 deals with the most popular tech-
niques used in the practice to controlling, monitoring and evaluating the software 
suppliers in automotive. In section 3, open problems occurring today in controlling 
and monitoring supplies in automotive are discussed. In Section 4 an approach is 
described to integrate joint reviews in software process assessments made according 
to the Automotive SPICE model [7]. The way such an approach is going to be 
adopted at FIAT Automobiles Group is also presented. Finally, in Section 5 some 
conclusions are provided. 

2   Controlling Software Suppliers in the Practice 

The increasing importance of the electronics in automobiles stimulated a considerable 
offer of electronic components and systems by many specialised producers. Car mak-
ers are thus facing problems of interoperability, integration and distributed intelli-
gence. Acquisition has become a key process because the time-to-market as well the 
overall functionality of the vehicle depend on the car manufacturers’ ability to interact 
effectively with its own software suppliers. 

In the recent past a huge amount of resources have been lost for insufficient man-
agement of the technical aspects of the acquisition processes.  That caused late re-
leases and after-market problems.  

The success of the acquisition process depends on the capability of effectively 
managing the relationship between customer and suppliers. Customers should im-
prove their ability of assisting and monitoring the software development of their sup-
pliers and suppliers should be more open to customer involvement.. 



 Integrating Joint Reviews with Automotive SPICE Assessments Results 359 

To face this challenge, in practice, many car manufacturers adopt both software 
process assessments and joint reviews as means to control the capability of their sup-
pliers in producing software. The purposes and the impact of these two approaches 
are different, in that joint reviews address the ongoing activities of a project and aim 
at verifying specific requirements of a specific project (in terms of quality and com-
pleteness of delivered work products, compliance to plans and process requirements), 
while software process assessments provide general information of the supplier’s 
software process and are more oriented towards the supplier selection phase. 

In the following these two approaches are shortly described and discussed. 

2.1   Joint Reviews 

Generally speaking, joint reviews are meeting where persons having different roles, 
responsibilities and perspectives join together to analyse the status of an activity or 
the content of a product. The purpose of such an analysis is to ensure that agreed 
objectives and requirements are satisfied. Joint reviews are conducted with a substan-
tial degree of formality and are regulated by precise requirements. [3] 

The object, scope and goals of joint reviews can be different depending on the pro-
ject/product development phase. They can address issues at both project management 
and technical levels and are held throughout the life of a development project. [4] 

On the basis of the authors’ experience, two principal types of joint reviews can be 
identified. 

- Internal joint reviews: they involve member of the software development team, 
and aim at reviewing key work products at specific project’s milestones. Typi-
cally, they occur when a particular work product (e.g. software requirements, 
test plans...) is to be released, and such a work product is to be used by differ-
ent members of the team. In this case, the work product is jointly reviewed in 
order to achieve a formal agreement on its content.  

- External joint reviews: they involve both members of the supplier’s software 
development team and customer representatives. The objective of these joint 
reviews is either to obtain a formal agreement on the content of specific work 
products (typically the specifications) or to verify managerial aspects of the 
supplier’s software development project (e.g. respect of planning, compliance 
with process requirements, control of risks, …).     

In particular, in this paper we consider external joint reviews involving software 
suppliers (i.e. typically suppliers of Electronic Control Units (ECU) to be integrated 
into the automobile’s network) and car manufacturers (i.e. system integrators).  

This kind of joint reviews are an effective mean to control and monitor the ad-
vancement of a software development project as well as to verify the quality of the 
intermediate work products.  

2.2   Software Process Assessments 

The traditional reliance on Quality Systems Standards such as ISO9001, QS9000 [5] 
and ISO/TS 16949 [6] has not provided sufficient confidence in the software area. 
 



360 F. Fabbrini et al. 

The car manufacturers, like others in the defense and aerospace industries, have 
turned to international standards for software process assessment, based on ISO/IEC 
15504 (known also as SPICE) [7] and/or the Capability Maturity Model Integration 
(CMMI) [8], as a mean to identify and control supplier-related risks and to assess 
supplier’s software capability [9], [10], [11]. A common trend in the European auto-
motive industry to face this question consists of principally addressing the improve-
ment of the software acquisition process. While different car makers set up their own 
improvement program, a commonly adopted policy is the choice of the SPICE model 
as the principal mean [7] to assess the capability of the suppliers’ software process. 
This choice has been supported by some large-scale awakening effort: In year 2001 an 
initiative was launched by the Procurement Forum [12] with the principal European 
car makers, their assessors and representative bodies to address the problems related 
to software assessments in automotive. In the framework of this initiative, a Special 
Interest Group (SIG) has been founded with the aim to design a special version of the 
SPICE model (called Automotive-SPICE) tailored on the needs and peculiarities of 
the automotive business area [13]. The initiative aimed at creating consensus on 
commonality of approach in order to avoid that suppliers face multiple assessments 
from multiple manufacturers using different models and criteria and consume re-
sources that put additional pressure on delivery times. Furthermore, the focus on 
software capability determination by means of software process assessment has estab-
lished a common trend among the European Car Makers in using Automotive SPICE 
as a mean for determining a qualification mechanism. Such a qualification mechanism 
is based on the definition of a target capability profile that the suppliers shall reach to 
be admitted in the supply selection. 

Benefits derived from the Automotive-SPICE initiative not only can be quantified 
as an increased degree of satisfaction for the quality of the acquired software product, 
but include some positive "side effects" as: 

- better supplier selection (only supplier having a high capability profile can be 
selected); 

- better project monitoring  (customers can identify the principal phases and 
work products to be controlled during the supplier’s software development 
process); 

- better relationship with own suppliers (clearer than before, because based on a 
deeper knowledge of the suppliers organization and processes and on a com-
mon technical language); 

- identification of internal improvement areas (both for customer and suppliers) 
addressing specific processes (e.g. Requirement Management, Testing Man-
agement, etc.) and work products. 

The strategy adopted by many European Car Makers based on SPICE capability 
profile as a mean for qualifying their suppliers gives practical benefits and opportuni-
ties also for the automotive software suppliers. In particular, it has been provided an  
important stimulus to accelerate the suppliers’ software process improvements. More-
over it can be used as a sort of benchmark where the required capability profile be-
comes a target to be aligned with the competitors. 



 Integrating Joint Reviews with Automotive SPICE Assessments Results 361 

3   Capability Determination vs. Project Performance 

External Joint Reviews are practices performed by manufacturers to interact with their 
software suppliers with the aim of monitoring and, if case, driving the performance of 
the supply-related development project. 

In the automotive domain, external Joint Reviews are planned and performed at 
specific and predefined times conciliating and synchronizing supplier’s software de-
velopment project milestones with car development phases (typically such external 
joint reviews are performed after requirements elicitation/analysis, at development 
project planning, once software design has been defined or at software testing plan-
ning time). Moreover, Joint Reviews can be iterated when the development project is 
composed of several incremental cycles. 

The principal purpose of these joint reviews is to make the car manufacturer able to 
understand the status of the supplier’s project in order to verify its schedule, the qual-
ity of the technical solutions adopted and the compliance to its own needs. 

The effectiveness of external joint reviews depends on the amount and quality of 
information the car manufacturer can have at its disposal. In fact, only having a com-
plete set of information allows the car manufacturer to get full understanding of the 
status of the supplier’s project. For example, the availability of project planning 
documentation is necessary to understand the suitability of the resources to be allo-
cated to the project. 

Unfortunately, often car manufacturers are not able to make the external joint re-
views effective because of incomplete evidence provided by the software suppliers. 
This reduces the benefits that can be expected by the joint reviews. 

It is a common practice (principally in the European automotive industry) to re-
quire a specific capability profile for potential software suppliers according to the 
Automotive SPICE model. It is even common practice that car manufacturers sponsor 
the initial assessment for determining such a capability profile. The return of such an 
investment is, for the car manufacturer, the possibility to know the capability of a 
defined set of suppliers’ processes taken from the Process Reference Model of Auto-
motive SPICE; such knowledge becomes one of the main criteria used by the car 
manufacturers for supplier selection.  

Moreover, to assess the capability of the software process, assessors use process 
instances (i.e. processes executed in projects that are representative of the organiza-
tion’s business goals) to collect evidences and consequently rate the Automotive 
SPICE process attributes.  

Nevertheless, car manufacturers cannot be guaranteed that any current supplier’s 
project has the same characteristics of the projects whose process instances were 
assessed. 

In other words, a new project might be designed, planned, managed and conducted 
with a different level of care, effort and resources, without adopting the same good 
practices that were in use in assessed process instances. 

That should not be surprising. Performing an assessment means to determine, in a 
disciplined manner, the capability of a set of selected processes. 

According to ISO/IEC 15504-1 [7] the process capability is a characterization of 
the ability of an organization’s process to meet current and predicted business goals 



362 F. Fabbrini et al. 

and it is not involved with the evaluation of the specific techniques and management 
choices of a project. 

In other words, determining the capability of a process means rating the ability of 
an organization of achieving the outcomes associated with a particular process, no 
matter how and no matter according what technical or managerial solutions. 

So, there is no contradiction if an organization, having a process with high capabil-
ity level, implements that process in a different (and possibly poorer) way with re-
spect to the standard way it performs. Such a situation does not depend on a defect in 
the SPICE assessment model, nor on a bad assessment made by the assessors, nor on 
the fact that the organization under assessment (the software supplier, in our case) 
was cheating during the assessment. It is simple due to management choices of the 
supplier, that can decide to devote different care in the project without making invalid 
the results of the assessment already performed. 

4   Integrating Joint Reviews and Software Process Assessments 

The integration of software process assessment and external joint reviews is able to 
provide an added value respect the performance of these two techniques in isolation.  

In this section we describe how joint reviews and software process assessment can 
support each other in the supplier monitoring and control activity. 

We present a mechanism where software process assessment results and related 
evidences can be used to give information to support the car manufacturer in conduct-
ing external joint reviews with the supplier. 

The mechanism we present is composed of three phases: 

Phase 1:  Software Process Assessments: the car manufacturer sponsors software 
process assessments to a set of important1 software suppliers. Sponsor-
ship is important because it allows the ownership of the assessment re-
sults. 
Software Process Assessment reports should be compliant with the re-
quirements contained in the ISO/IEC15504 Part.2 and, in addition, 
should provide specific information to be used to support the external 
joint reviews.  

Phase 2: Process mapping: the processes in the assessment scope are mapped on 
the planned Joint Reviews. Each Joint Review has a purpose, a set of 
input items and a scope (in terms of activities and work product to be 
reviewed); they are to be used to guide such a mapping.  

Phase 3: Joint Reviews: the external joint reviews should be prepared and con-
ducted taking into account the additional information from the process 
assessment the supplier involved in the joint review undertook. 

According to what stated in Section 2.1, the objects (i.e. the project aspects to be 
evaluated) of an external Joint Review can be: 

A - Technical solutions adopted in the specific project 
B - Management choices adopted in the specific project 

                                                           
1 With the term important we intend characterise a supplier that is either a new one or that is 

supplying a critical component for the vehicle. 



 Integrating Joint Reviews with Automotive SPICE Assessments Results 363 

C - Quality of Work Product (i.e. documents, artefacts, …) developed 
D - Content of the Work Products developed 

The kind of evidences collected during an assessment that can be used during a 
Joint Review depends on the level of capability achieved by a specific process. In 
fact, the higher the capability levels high the more the amount of useful information 
available.  

In the following we discuss the nature of information that can be obtained from an 
assessment according to the capability level achieved by the process assessed. 

The ISO/IEC 15504 standard, as well as every compliant assessment model includ-
ing Automotive SPICE, has a five-value scale for measuring the capability of single 
processes. Processes having the capability level rated as 1 don’t provide relevant 
information to be used in a Joint Review. In fact, capability level 1 means that the 
process outcomes are obtained but neither the project is managed nor a standard proc-
ess is in place, then the information collected unlikely can be used to support the joint 
review of different projects. 

For this reason we consider in this paper the evidences derivable from assessments 
that have reached a capability level 2 or 3. We don’t consider capability levels 4 and 5 
because, in the practice, the most common assessment profiles required in automotive 
don’t ask for Automotive SPICE capability levels higher than 3. [14] 

A process capability level 2 means that the organization is able to manage the 
process-related activities and artefacts of its own projects. In some sense, evidences 
collected in a process capability level 2 assessment indicate the potentiality of the 
organizational unit. Then, the evidences of how the projects used as process instance 
in the assessment has been managed can be useful in a joint review because it is pos-
sible to ask the justification of possible under-management of the reviewed project. 
Having a process rated at level 3, means that a standard process is adopted, and then 
the same process (i.e. technical and managerial practices as well as documentation 
characteristics), should be expected also for the process under joint review. Possible 
differences shall be justified by the supplier.  

In Table 1. a list of possible evidences collectable in a process assessment that can 
support a joint review is provided. Such evidences are grouped by capability level and 
cross-mapped with the four types of object a Joint Review can have. 

The evidences described in Table 1 are all available after an Automotive SPICE 
process assessment is made. These evidences and information, if suitably organized 
and provided, can support Joint Reviews. In the following a couple of examples are 
provided in order to better explain the use in a joint review of the information de-
scribed in Table 1. 

Example 1: let’s suppose to have the Software Requirements Analysis process rated at 
capability level 2 by an Automotive SPICE assessment. That means that the evidences 
corresponding to the first line of table 1 are available. In particular, the needs in terms 
of personal skills (see third bulled in the Management Choices column) and the corre-
spondent responsibility allocation (see second bulled in the Management Choices 
column), shall be available. Then, if the project used as process instance during the 
assessment has characteristics similar to those of the project under Joint Review, it 
should be expected that the human resources allocated to the two projects are almost 
the same.  



364 F. Fabbrini et al. 

Table 1. Evidences collectable in process assessment by capability level 
 

 A   
Technical 
solutions 

B 
Management choices 

C 
Quality of Work 

Products 

D  
Content of 

Work  
Products 

Capability 
Level 2 

- Criteria for 
resource allo-
cation exist 
(tools, facilities, 
infrastructures 
…) 

 

- Definition of project’s 
objectives in terms of 
quality of artefacts, proc-
ess cycle, resource usage 

- Criteria for responsibility 
allocation in the project 
exist 

- Definition of skills profiles 
needs for the project 
 

- Definition of 
requirements for 
work products 
(structure) 

- Definition of 
review and ap-
proval criteria 
for work prod-
ucts 

- Identification of 
dependencies 
among work 
products 

- Definition of 
require-
ments for 
work prod-
ucts (con-
tents) 

- Review and 
adjusting of 
work  
products 

Capability 
Level 3 

- Infrastructures 
and work envi-
ronment 
needed identi-
fied 

- necessary 
infrastructures 
and work envi-
ronment allo-
cated 

- Data and 
analysis on the 
suitability and 
effectiveness 
of technical 
solutions used 
in project avail-
able 

- Tailoring guidelines exist 
- Interaction with other 

processes are described 
- Roles and competencies 

identified 
- Verification of the project 

conformance to the stan-
dard process 

- necessary competencies 
identified 

- Data available and analy-
sis made on the suitability 
and effectiveness  

- necessary resources 
allocated to the project 

 

- Procedures to 
support the im-
plementation of 
the standard 
process exist 

- Verification of the 
project confor-
mance to the 
standard process 
(including work 
products) 

Example 2: let’s suppose to have the Software Testing process rated at capability 
level 3; in this case, the effectiveness and suitability of the technical solutions adopted 
in the project have been evaluated. The same evidence should be available for the 
project under review. Then, at joint review time, the supplier can be asked to provide 
such evidences in order to understand if the project is conducted with appropriate 
technical support. 

4.1   A Pilot Initiative at Fiat Group Automobiles 

Fiat Automobiles Group, in cooperation with the System and Software Evaluation 
Centre of the CNR’s Information Science and Technologies Institute (SSEC), is un-
dertaking an activity aimed at improving its capability in managing, controlling and 
driving the acquisition of software-intensive systems since year 2000 [14], [15], [16 ]. 
Such an activity has been mainly based on the performance of SPICE (and, since year 
2004, Automotive SPICE) software process assessments with the aim of determining 



 Integrating Joint Reviews with Automotive SPICE Assessments Results 365 

a supplier qualification mechanism based of the achievements of a predefined capabil-
ity profile. Only suppliers having such a capability profile can be qualified as suppli-
ers. Today FIAT Group Automobiles is able to know the way its own suppliers de-
velop software because it got an understanding of their processes by means these 
assessments.   

In addition, FIAT Group Automobiles is conducting, on a regular basis, external 
joint reviews (called Design Reviews) with its own suppliers in order to monitor their 
software projects. These joint reviews aim at verifying the suitability and correctness 
of key work products and managerial practices; they are primary means to: 

- Verify completeness and quality of delivered work products 
- Monitor respect of plans and other process requirements 
- Monitor and control project risks 
- Ensure that safety and security are properly managed 
- Manage open issues 
- Provide recommendations of alternatives. 

The FIAT Group Automobiles design review process requires that four design re-
views shall be planned and performed for each project. Specific check-lists have been 
defined for each design review. In the following these reviews are shortly described: 

- Software Requirements Review (SRR): it shall ensure the correctness and 
completeness of the software requirements to be implemented.  In addition the 
review will focus on project management. The stakeholders of SRR are: pro-
ject manager, configuration manager, requirements analyst, quality manager. 
Documents reviewed are: Functional Requirements Specification, Require-
ments Analysis Report (RAR), and Validation Test Strategy. 

- Software Architecture Review (SAR): it shall confirm correctness and com-
pleteness of software architecture, agree on the technical approach and on im-
plementation choices. The stakeholders of SAR are: project manager, software 
engineering manager. Documents reviewed are RAR, Functional Requirements 
Specification, Software Requirements, Software Architecture, and System  
Architecture. 

- Software Test Readiness Review (STRR): it shall be conducted to confirm 
successful completion of coding, unit testing and integration testing and to 
gain confidence for the beginning of the software validation. The stakeholders 
of STRR are: project manager, software engineering manager, V&V manager. 
Documents reviewed are: RAR, Functional  Requirements Specification, 
Software Requirements, Software Architecture, Software tests, Software Test 
Reports, Quality Reports. 

- Software Validation Review (SVR): it shall be conducted to confirm success-
ful completion of validation phase, and to gain confidence for the delivery to 
Fiat Group Automobiles. A successful validation review does not imply accep-
tance, as the software shall undergo a separate acceptance process after the 
validation review. Stakeholders of SVR are: project manager, V&V manager, 
quality manager. Documents reviewed are: Software Requirements, Traceabil-
ity Matrices, Software Validation Reports, Safety and Security Reports. 

Because problems similar to those described in Section 3 occurred, FIAT Group 
Automobiles, with the support of the SSEC, is going to implement the mechanism 



366 F. Fabbrini et al. 

described above to integrate Automotive SPICE assessments results with the design 
reviews. Fiat Group Automobiles is going to sponsor Automotive SPICE software 
process assessments to a selected group of software suppliers.  

The Automotive SPICE assessments FIAT Automobiles Group sponsored until 
now, had the assessment scope depicted in Figure 1. 

 

0

1

2

3

E
N

G
.1

R
eq

ui
re

m
en

ts
E

lic
ita

tio
n

E
N

G
.2

S
ys

te
m

R
eq

ui
re

m
en

ts
A

na
ly

si
s

E
N

G
.5

S
of

tw
ar

e
D

es
ig

n

E
N

G
. 8

S
of

tw
ar

e
T

es
tin

g

E
N

G
.1

0
S

ys
te

m
In

te
gr

at
io

n 
&

T
es

tin
g

M
A

N
.3

 P
ro

je
ct

M
an

ag
em

en
t

M
A

N
.5

 R
is

k
M

an
ag

em
en

t

S
U

P
.8

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

processes

ca
p

ab
ili

ty
 le

ve
l

 

Fig. 1. FIAT Automobiles Group Automotive SPICE assessment scope, until year 2007 

To improve the integration between design reviews and Automotive SPICE as-
sessment results, the assessment scope is going to be modified by adding new proc-
esses and modifying the target capability levels. The current scope, in fact, doesn’t 
allow an adequate coverage of the four design review phases.  

A possible new scope will be composed of the following processes: ENG.1 Re-
quirements Elicitation; ENG.2 System Requirements; ENG.3 System architectural 
design; ENG.4 Software requirements analysis; ENG.5 Software design; ENG.6 
 

Design Review Phases 

SRR 

STRR 

SVR 

SAR 

ENG.1 

ENG.2 

ENG.3 

ENG.4 

ENG.5 

ENG.6 

ENG.7 

ENG.8 

ENG.10 

ENG.9 

SUP.8 SUP.9 SUP.10 MAN.3 SUP.1  

Fig. 2. Mapping between Design Review Phases and Process into the Assessment Scope 



 Integrating Joint Reviews with Automotive SPICE Assessments Results 367 

Software construction; ENG.7 Software integration test; ENG.8 Software testing; 
ENG.9 System integration test; ENG.10 System testing; SUP.1 Quality assurance; 
SUP.8 Configuration management; SUP.9 Problem resolution management; SUP.10 
Change request management; MAN.3 Project Management. 

In figure 2, the mapping between the design review phases and the processes in the 
assessment scope is shown. The link between a design review phase and a process 
indicates that the results of the assessment of such a process should be used in the 
correspondent review phase.  

5   Conclusions and Future Works 

In this paper we proposed a mechanism to integrate the Automotive SPICE assess-
ment results into the joint reviews. Such a mechanism allows using the evidences 
collected during a software process assessment to support the joint reviews between 
FIAT Group Automobiles and its suppliers of software-intensive devices. To adopt 
the mechanism we propose, software assessments reporting shall be modified by 
providing information suitable to be applied in the different design reviews FIAT 
Group Automobiles performs regularly. The mechanism described in this paper can 
be considered as a way to conciliate the products based software evaluation and the 
process-based one. 

FIAT Group Automobiles is going to sponsor a number of Automotive SPICE as-
sessments in order to be able to apply such a mechanism on a sample set of important 
suppliers. The next step will be the definition of techniques to quantitatively evaluate 
the possible advantages obtained with the application of the mechanism. 

References 

[1] Leen, G., Hefferman, D., Dunne, A.: Digital Networks in the Automotive Vehicle. IEE 
Computer and Control Eng. Journal, 257–266 (December 1999) 

[2] Kassakian, J.G.: Automotive Electrical Systems: The Power Electronics Market of the 
Future. In: Proceedings of Applied Power Electronics Conference, APEC 2000, pp. 3–9. 
IEEE Press, Los Alamitos (2000) 

[3] ISO/IEC 12207 Amd 1:2002, Software Engineering – Software life cycle processes  
[4] Staples, M., Mahmood, N.: Experiences Using Systematic Joint Review Guidelines. Jour-

nal of Systems and Software 80(90), 1425–1437 (2007) 
[5] Quality System Requirements (QS-9000 Third Edition) Vers. 03.00. DaimlerChrysler, 

Ford Motor Company and General Motors Quality Publications (1998) 
[6] ISO/TS 16949- Quality Management Systems - Automotive Suppliers - Particular Re-

quirements for the Application of ISO 9001:2000 for Automotive Production and Rele-
vant Service Part Organizations (2002) 

[7] ISO/IEC 15504 International Standard. Information Technology – Software Process As-
sessment: Part 1–Part 5 (2006) 

[8] Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and 
Product Improvement. Addison-Wesley, Reading (2004) 

[9] Paulk, M.: Top-Level Standards Map: ISO 12207, ISO 15504 (January 1998 TR) Soft-
ware CMM v1.1 and v2, Draft C. Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1998 (date of access January 31, 2007), available at  

  http://www.sei.cmu.edu/pub/cmm/Misc/standards-map.pdf 



368 F. Fabbrini et al. 

[10] Hailey, V.: A comparison of ISO 9001 and the SPICE framework. In: SPICE: The Theory 
and Practice of Software Process Improvement and Capability Determination, IEEE CS 
Press, Los Alamitos (1998) 

[11] Jung, H.W., Hunter, R.: The relationship between ISO/IEC 15504 process capability lev-
els. ISO 9001 certification and organization size: an empirical study Journal of Systems 
and Software 59, 43–55 (2001) 

[12] http://www.procurementforum.org 
[13] http://www.automotivespice.com 
[14] Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: A SPICE-based Supplier Qualification 

Mechanism in Automotive Industry. Software Process Improvement and Practice Jour-
nal 12(6), 523–528 (2007) 

[15] Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: Performing Process Assessment to Improve 
the Supplier Selection Process - An Experience. In: Proceedings of the Automotive Euro-
pean Software Process Improvement Conference EuroSPI 2002, pp. 267–274 (2002) 

[16] Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: Software Process Assessment as a Mean to 
Improve the Acquisition Process of an Automotive Manufacturer. Software Process Im-
provment CMM & SPICE in Practice. Verlag UNI-DRUCK, Munchen, 142–154 (2002) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 369–380, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Quantitatively Managing Defects for Iterative Projects: 
An Industrial Experience Report in China 

Lang Gou1,2, Qing Wang1, Jun Yuan3, Ye Yang1, Mingshu Li1, and Nan Jiang1,2 

1 Institute of Software, Chinese Academy of Sciences 
{goulang, wq, ye, mingshu, jiangnan}@itechs.iscas.ac.cn 

2 Graduate University of Chinese Academy of Sciences 
3 Beijing ZZNode Technologies Development Co., Ltd. 

jun.yuan@zznode.com 

Abstract. Iterative development methodology has been widely adopted in re-
cent years since it is flexible and capable of dealing with requirement volatility. 
However, how to quantitatively manage iterative projects, and in particular, 
how to quantitatively manage defects across multiple iterations, remains a chal-
lenging issue. There is lack of quantitative defect management support for itera-
tive projects due to the difficulty in selecting appropriate control points and 
measures to collect and analyze data, and determining the “sweet spot” amount 
of effort for performing testing and defect fixing activities. In this paper, we 
first propose the BiDefect (process-performance Baselines based iteration De-
fect management) method to support quantitative defect management in itera-
tive development. Then we report an industrial experience that a Chinese tele-
communications company, ZZNode, successfully applied the BiDefect method 
in initial estimating, analyzing, re-estimating, and controlling defects for itera-
tive development projects.  

Keywords: Measurement, Quantitative process management, Defect Management, 
Software process improvement. 

1   Introduction 

Iterative development concepts have been a recommended practice by prominent 
software engineering thought leaders over the past 30 years [1], esp. during the recent 
popularity of agile methods. A common theme of iterative development is to avoid a 
single-pass sequential, gated-step approach. Due to the process agility introduced by 
iterative concepts, there is a consensus that it is more difficult to implement quantita-
tive management for iterative projects. 

Quantitative management is among the advanced features of highly mature proc-
esses as defined in CMMI [2], which provides insights on the degree of goal fulfill-
ment and root causes of significant process/product deviation. Quantitative defect 
management is the key to ensure the production of high quality software, which has 
been an important part of quantitative quality management. Unfortunately, how to 
quantitatively manage defects across multiple iterations, remains a challenging issue. 
Existing defect management methods [3] very few focus on quantitative management 
support for iterative development. 



370 L. Gou et al. 

Nowadays, iterative development is applied widely in China. The concept of soft-
ware process improvement and quantitative process management has also been 
adopted in many organizations. There are more than 200 software organizations de-
ploy CMM or CMMI by 2007, some of them have applied quantitative management, 
but not all of them get benefit from it in reality [5]. Although two process areas (OPP 
- Organizational Process Performance and QPM - Quantitative Project Management) 
and some statistical techniques (e.g. SPC – Statistical Process Control) are described 
in CMMI [2] for implementing quantitative management, most software organizations 
still do not know clearly how to apply quantitative management. Therefore, some 
detail guidance on quantitative management, especially some experience results, is 
very helpful for software organizations who want apply or are being applied quantita-
tive management. 

This paper presents the BiDefect (process-performance Baselines based iteration 
Defect management) method, developed to address the quantitative defect (including 
defects from all defect detection activities, e.g., review, inspection and testing) man-
agement problems for iterative projects, along with an industrial experience of 
ZZNode. ZZNode is a leading Chinese telecommunications company, which suc-
cessfully applied the BiDefect in quantitative defect control for its iterative projects 
based on the deployment of SoftPM [5]. SoftPM is a toolkit developed by Institute of 
Software, Chinese Academy of Sciences (ISCAS), which is used to manage software 
process and has been applied in over 200 organizations. The paper includes both 
research and experience results based on the collaboration between ISCAS and 
ZZNode throughout ZZNode’s process improvement movement from CMMI ML3 to 
CMMI ML4. 

This paper is organized as follows. The next section describes the challenges of de-
fect management in iterative development. Related work is discussed in Section 3. 
Section 4 introduces the BiDefect method. Section 5 presents the application of the 
BiDefect method in quantitative defect management for iterative development in 
ZZNode. Section 6 concludes the paper and points out future directions of our work. 

2   Challenges of Defect Management in Iterative Development 

Iterative development has been adopted widely in China in recent years. ZZNode is a 
high-tech Chinese telecommunications company which has recently adopted iterative 
development. ZZNode was funded in Oct. 1999 and has about 360 employees today. 
In Jan. 2005, ZZNode was appraised and rated at CMMI ML 3. After that, ZZNode 
initiated quantitative process management program towards CMMI ML4. In the last 
two years, about 40% product lines adopted iterative development. The expectation 
was to control the quality of iterative development projects through controlling the 
quality of each iteration release and the final product. 

ZZNode applied an adapted iterative development as shown in Fig. 1. The whole 
iterative development lifecycle includes several iterations and a system testing phase. 
Through each iteration, different functions are implemented separately and concur-
rently. When all functions are implemented and passed unit testing, testing for all 
functions will be performed. After all iterations are finished, product integration and 
system testing for products developed by all iterations are performed. Normally, the 



 Quantitatively Managing Defects for Iterative Projects 371 

system testing phase 
includes several test-
ing rounds. Compared 
to normal iterative  
development, the ad-
apted iterative devel-
opment lifecycle can 
control the quality of 
product more effec-
tively because of the system testing stage involved. Through the application of itera-
tive development, three challenges of quantitative defect management appear:  

(1) The first challenge is identifying appropriate “control points” in each iteration. 
Many activities are related to defect, such as defect injection activity, defect 
detection activity and defect removal activity. For iterative development pro-
jects, the same kind of defect related activity is performed many times in the 
same and different iteration, which makes the defect management more com-
plicated. For example, we can collect and analyze defect data after defect de-
tection activity of each function, which supports precise control. However, it 
may incur too much effort on analyzing defect data. In addition, the defect 
data of each defect detection activity vary widely, which may not be appropri-
ate to be placed under quantitative control.  

(2) The second challenge is selecting appropriate measures and effective meas-
urement methods. There are many existing defect related measures and meas-
urement methods. How to select an appropriate set of measures and corre-
sponding measurement methods for iterative projects, which support defect 
management for each iteration as well as the final product and do not incur too 
much effort of defect analysis, is a challenge issue.  

(3) The third challenge is determining the “sweet spot” amount of effort for per-
forming testing and defect fixing activities. If developers spend too much ef-
fort in testing, the schedule may very likely be delayed and additional cost 
may be incurred, however, if they spend too little testing effort, the quality of 
the software cannot be assured. In addition, the more defects, the more effort is 
needed to fix and verify them. Unfortunately, how to estimate the defect fixing 
effort accurately based on the actual defects is difficult. 

The above challenges frequently place iterative developers in situations of making 
quality-schedule-function trade-offs from time to time. Unfortunately, the developers 
are left with very little help in making such kind of decisions. The goal of the BiDe-
fect method is to solve these challenges. 

3   Related Work 

There is much research on management of defect related activities [5][6][7][13]. The 
DRM (phase-based Defect Removal Model) summarizes the relationships among 
three metrics: defect injection, defect removal, and effectiveness [3]. As a basic con-
cept in DRM, the DRE (Defect Removal Effectiveness) of each phase is analyzed; 

Fig. 1. The adapted iterative development lifecycle 



372 L. Gou et al. 

this is helpful for waterfall development. However, in iterative development projects, 
different functions are implemented separately and concurrently in each iteration, 
which means that there are not clear phases of requirements, design, coding in an 
iteration and the DRE cannot be and analyzed as in waterfall development. Therefore, 
the DRM model cannot solve the first challenge mentioned in Section 2. COCOMO 
(COnstructive COst MOdel) II [8] is a widely-used estimation model, which allows 
one to estimate the total effort of a project depending on the estimated size. It pro-
vides two sets of empirical results on effort distribution for both waterfall and RUP 
lifecycle phases, which can be used to estimate effort of each phase including testing 
activities proportionally. COCOMO II cannot predict the effort of defect detecting 
and fixing accurately. COQUALMO (COnstructive QUALity MOdel) [8] is a quality 
model extension to COCOMO II. It is used to estimate defects injected in different 
activities, and defects removed by defect removal activities. COQUALMO does not 
associate the defects with the effort of defect fixing. Therefore, COCOMO and 
COQUALMO cannot solve the third challenge mentioned in Section 2. 

4   BiDefect Method 

This section presents 
the BiDefect (process-
performance Baselines 
based iteration Defect 
management) method 
as shown in Fig. 2. In 
the acronym, the ‘B’ 
stands for ‘baselines’ 
established based on 
organization historical 
data analysis, and the 
‘iDefect’ means the 
iteration defects or 
defects during iterative development. The BiDefect method is an integration of three 
method components: PPBs (Process-Performance Baselines), iDRE (iteration Defect 
Removal Effectiveness) model, and Fixing model. The PPBs specify the measures and 
measurement methods for iterative development, which are used to solve the second 
challenge of defect management in iterative development (see Section 2). The iDRE 
model identified appropriated control points in each iteration, which is used to solve the 
first challenge. And the Fixing model are helpful in determining the “sweet spot” amount 
of effort for performing defect management activities in the system testing process, 
which can solve the third challenge. The BiDefect method can support initial estimating, 
analyzing, re-estimating, and controlling defects for iterative development projects. 

4.1   PPBs 

PPBs are measurement of performance for the organization’s set of standard process 
at various levels of detail, as appropriate [2]. Before establishing PPBs, some defect 

Fig. 2. The BiDefect method 



 Quantitatively Managing Defects for Iterative Projects 373 

related measures for iterative development are selected as shown in Table 1. The 
principles of selecting these measures are: (1) the measures can be collected easily, 
e.g. there is tool support for data collection; and (2) the measures are closely related to 
the organization’s defect management objectives. In Table 1, the measures No. 1 to 4 
focus on all kinds of defects, including defects detected in review, inspection, unit 
testing, integration testing, system testing, etc; and the measures No.6, 9 and 10 just 
focus on defects detected in integration testing and system testing activities. 

Table 1. Measures for iterative development projects 

No. Measures 
1 Defect Injection Rate (DIR) of requirements, design, coding and testing activities = defects injected at 

the activity / all defects of the project 
2 Defect Removal Effectiveness (DRE) of requirements, design, coding and testing activities = defects 

removed at the activity / (defects existing on activity entry + defects injected during development of the 
activity) 

3 Pre-release defect density = defects removed before product release / product size 
4 Post-release defect density = defects detected within one year after product release / product size 
5 Productivity = product size / total effort of project 
6 Defect Injection Distribution (DID) = defects injected in requirements (or design, coding and testing) / 

all defects removed in system testing * 100% 
7 Percentage of Detecting Effort (PDE) = effort of defect detecting activity in system testing stage / total 

effort of project * 100%   
8 Percentage of Fixing Effort (PFE) = effort of defect fixing activity in system testing stage / total effort 

of project * 100% 
9 Test efficiency = number of defects / defect detecting effort 

10 Rework efficiency = number of defects / defect fixing effort 

PPBs contain two important indicators: process performance and process capabil-
ity. The process performance is a measure of actual results achieved by following a 
process, specified by central line (CL). The process capability is the range of expected 
results that can be achieved by following a process, specified by upper control limit 
(UCL) and lower control limit (LCL). In the paper, we used BSR method [9] and 
XmR (individuals and moving range) control chart [10] to establish PPBs. Due to 
space limit, we do not describe the process of calculating CL, UCL, LCL in detail. 

4.2   iDRE Model 

In ZZNode, each iteration release is submitted to customer as an intermediate result, 
which requires each iteration finish on schedule with high quality. However, as men-
tioned in Section 2, it is a challenge issue to identify appropriate control points in 
each iteration for defect management. The iDRE model is established to solve this 
challenge. As a variant DRE model, the iDRE 
model is derived from the concept of DRE [3] 
aiming at controlling the quality of each itera-
tion, as shown in Fig. 3. Since the normal 
method of analyzing DRE of each phase is not 
applicable for iterative development (men-
tioned in Section 3), the iDRE model improves 
the implementing method to analyze DRE of 
each kind of activity in iteration instead of Fig. 3. iDRE model 



374 L. Gou et al. 

DRE of each lifecycle phase. In addition, the iDRE model collects defect data through 
each defect related activity, but analyzes them until all functions have been imple-
mented (which means before the testing activity of an iteration). The selected control 
points in iDRE model are before the testing activity of each iteration. Compared to 
traditional DRE, the iDRE model is coarse-grained but requires less effort of meas-
urement and analysis. Besides, in many organizations, an iteration often takes not a 
long period, such as one to two months. Therefore, a coarse-grained quantitative 
method is more than sufficient. In the iDRE model, the PPBs for DIR, DRE, pre-
release defect density, test efficiency and rework efficiency are adopted. The steps for 
applying iDRE model are:  

(1) At the beginning of projects, the defects that could be removed in different kinds 
of activity of each iteration are estimated based on the PPBs of DRE and DIR. 
The control limits of the defects number are also defined. Normally, the iteration 
(n+1) is developed based on the iteration (n), but the functions developed in it-
eration (n) will not be tested in iteration (n+1). Therefore, defects that should be 
removed in each iteration could be estimated separately and no feed-forward of 
defect results from one iteration to another is needed. 

(2) Before the integration testing activities of each iteration, actual defects removed 
before testing are collected and analyzed. The number of defects that could be 
removed in integration testing is re-estimated based on the actual defects re-
moved before testing and the quality objectives of the iteration. If the actual de-
fects removed before testing are out of control limits, causal analysis should be 
performed and corrective actions should be implemented if necessary.  

(3) Before the system testing phase, where all iterations are finished, the number of 
defects removed in all iterations are collected and analyzed. Based on the quality 
objectives of the project, the number of defects that could be removed in system 
testing phase is re-estimated. If the re-estimated defects that could be removed in 
system testing are out of the control limits, causal analysis should be performed 
and corrective actions should be implemented if necessary. In addition, the defect 
detecting effort and the defect fixing effort of the system testing activity are re-
estimated based on the PPBs of test efficiency and rework efficiency. 

4.3   Fixing Model 

The Fixing model is established to solve the third challenge of defect management in 
iterative challenge, which is determining the “sweet spot” amount of effort for per-
forming testing and defect fixing activities. The Fixing model supports quantitatively 
manage system testing process in iterative development projects, which was derived 
from our previous work in [11]. The Fixing model includes PPBs of three measures: 
PDE, PFE and DID. It also includes one regression equation as shown below, which 
describes the correlation between PFE and DID.  

PFE = A * DID_Requirements + B * DID_Design + C * DID_Coding + D 

The parameters A, B, C and D should be specified using multiple regression analy-
sis of historical data, and then be evaluated by statistical method, e.g. F test [12].  

By using the PPBs of PDE, PFE and DID, the Fixing model can estimate the 
amount of effort for performing testing and defect fixing activities, and the number of 



 Quantitatively Managing Defects for Iterative Projects 375 

defects injected in each activity. By using the regression equation, the Fixing model 
can re-estimated the effort of defect fixing based on the actual defects.. More informa-
tion about the Fixing model is described in [11]. 

5   Experience Result of BiDefect 

This section presents the experience result of applying the BiDefect method in ZZNode. 
First, ZZNode established PPBs for iterative development projects based on its histori-
cal project data, as shown in Table 2. In ZZNode, all defects (including defects discov-
ered in review, inspection and testing) 
were submitted by engineers and were 
collected in SoftPM. These defects were 
classified into four severities: A, B, C and 
D, where A is the most serious. After 
revising the defect reports (e.g., removing 
duplicated defects, dividing defect reports 
that recorded multiple defects into several 
defect reports), ZZNode describe the total 
defects without distinguishing them by 
different severity.  

Then, ZZNode analyzed the historical 
data and derived the regression equation 
for the Fixing model as follows: 

PFE =0.1065*DID_Requirement-
0.0043*DID_Design-

0.3925*DID_Coding+ 0.3597 

The regression equation was evalu-
ated using F test [12]. At the confidence 
level α=0.05, the regression equation 
was linearly prominent.  

In ZZNode, several iterative projects 
applied the BiDefect method, including a few large-scaled projects. Due to space 
limit, we only take one project as an example to demonstrate the process of using 
BiDefect. Table 3 summarizes the information about the project.  

Table 3. Brief information about the project 

Category Information 
# of staff 34 (each staff just involves some activities and divides his/her time on several projects) 
Plan Schedule 11 months 
Pan Size 224.6 KLOC 
Lifecycle Iterative development (total four iterations in overlap time, and three testing rounds in 

system testing activity) 
Techniques J2EE 
Quality  
Objectives  

Whole project: Post-release defect density <= 0.65 defects/KLOC and no class A defects 
Each iteration: Post-release defect density <= 0.8 defects/KLOC 

Description To develop the inventory management and service assurance function of the next gen-
eration network for PCCW, the biggest telecom operator in Hong Kong, P.R. China. 

Table 2. PPBs for iterative projects 

PPBs UCL LCL CL 
Requirements 64.1% 8.6% 36.4% 
Design 20.2% 8.0% 14.1% 
Coding 76.0% 13.6% 44.8% 

DIR (%) 

Testing 9.2% 0.2% 4.7% 
Requirements 85.9% 25.6% 55.8% 
Design 93.9% 2.4% 48.1% 
Coding 52.0% 0.0% 25.5% 

DRE 
(%) 

Testing 90.9% 28.0% 59.5% 
Pre-release defect density 
(defects / KLOC) 

4.07 3.40 3.70 

Post-releases defect 
density (defects / KLOC) 

1.02 0.99 1.01 

Software productivity 
(LOC / Labor Day) 

69.20 25.20 47.20 

Requirements 9.7% 5.2% 7.4% 
Design 12.2% 5.6% 8.9% 
Coding 80.4% 61.0% 70.7% 

DID (%)

Testing 15.9% 10.1% 13.0% 
PDE (%) 2.4% 0.8% 1.6% 
PFE (%) 1.6% 0.4% 1.0% 
Test efficiency (defects / 
labor day) 

5.59 0.00 2.29 

Rework efficiency  
(defects / labor day) 

5.60 0.00 2.61 



376 L. Gou et al. 

5.1   Initial Estimation from PPBs 

At the beginning of the project, the project manager and experienced engineers 
planned the project. The estimation for each iteration was specified through the fol-
lowing steps: (1) estimate the size, schedule, and total effort; (2) estimate the defects 
that should be removed in each iteration based on the PPB of pre-release defect den-
sity; (3) estimate defects that should be removed in requirements, design, coding and 
testing activities based on the PPBs of DIR and DRE; and (4) calculate the escaped 
defect density of each iteration, and judge whether it satisfy the quality objectives of 
each iteration. If not, some corrective actions would be performed and the initial esti-
mation should be refined until escaped defect density satisfies the quality objectives. 
For the selected project, the initial estimation for four iterations all satisfied the qual-
ity objectives of each iteration, as shown in Table 4. 

Table 4. Estimation and actual performance for each iteration of the project 

Iteration #1 Iteration #2 Iteration #3 Iteration #4 Measures 
Estimation Actual Estimation Actual Estimation Actual Estimation Actual 

Size (KLOC) 117.3 113.8 39.1 42.6 47.5 46.7 20.7 22.5 
Schedule (Month) 5.9 6 2.95 3 2.5 2.6 2.5 1.5 
Total effort (Labor Day) 2480 2512 829.25 841 968.75 1013.9 270.75 289.75 
Total defects removed 346 410 115 154 140 170 61 41 
Defects removed at re-
quirements 

88 42 29 12 36 15 16 17 

Defects removed at design 63 90 21 30 26 38 11 12 
Defects removed at coding 67 85 22 34 52 44 12 12 
Defects removed at testing 128 193 43 78 27 73 23 0 

The system testing phase was estimated by the following steps: (1) estimate the to-
tal defect detecting (or fixing) effort in the system testing based on the PPB of PDE 
(or PFE); (2) estimate the defect detecting (or fixing) effort of each testing round 
based on the effort distribution which was 50%, 30% and 20% in the project; (3) 
estimate the total defects that could be removed in system testing activity based on 
defects escaped from the four iterations and the PPB of DIR in testing; (4) estimate 
the defects could be removed in each testing round based on the defect distribution 
which was 50%, 40% and 10% in the project; and (5) calculate the escaped defect 
density of system testing, and judge whether it satisfy the quality objectives of the 
project. If not, some corrective actions would be performed and the initial estimation 
should be refined until escaped defect density satisfied the quality objectives of the 
project. For the selected project, the initial estimation for system testing activity satis-
fied the quality objectives of the project, so no corrective actions were needed, as 
shown in Table 5. The control limits of defects related data were also estimated and 
 

Table 5. Initial Estimation for system testing activity of the project 

Estimation Testing round #1 Testing round #2 Testing round #3 
Effort of defect detecting (Labor Day) 40.9  24.5  16.4  
Effort of defect fixing (Labor Day) 25.6  15.3  10.2  
Total defects detected in system testing 61  49  12  



 Quantitatively Managing Defects for Iterative Projects 377 

specified in the project plan based on the PPBs. Due to space limit, we do not de-
scribe the control limits. The project was performed against the project plan. 

5.2   Quantitative Defect Management for Each Iteration Using iDRE 

The iDRE model was used to quantitatively manage each iteration. Due to space limit, 
we take the first iteration as an example. In the first iteration, after all functions were 
implemented, actual defects removed before testing were collected as shown in Table 4. 
The control limits of defects removed in requirements, design, coding and testing in the 
first iteration are shown in Table 6. Compared the actual defects to the control limits, the 
actual defects removed at require-
ments, design and coding activity 
of the first iteration are between the 
UCL and LCL, which means no 
abnormality. Then, defects that 
should be removed at testing activ-
ity in the first iteration were re-
estimated. Based on the actual defects removed before testing, the number of defects 
escaped before testing was calculated, which was 184. The number of defects injected in 
testing activity of the first iteration was 20. In order to satisfy the quality objectives of the 
first iteration, the number of defects existed after testing activity should be no more than 
0.8*113.8=91. Therefore, the number of defects that should be removed at testing should 
be at least 184+20-91=113. After the testing activity of the first iteration, actual defect 
data were collected. As shown in Table 4, 193 defects were removed through the testing 
activity, which is more than the UCL=191. Given this abnormality, some further causal 
analysis was performed. First, they analyzed the quality of the product through the inter-
view and data analysis, and 
found the quality of the 
product was similar to his-
torical projects. Then, they 
applied cause-and-effect 
diagram as shown in Fig. 4. 
The project team concluded 
that detecting more defects 
in the first iteration was a 
good phenomenon and no 
corrective action was 
needed. 

Similarly, through the development of the later iterations, iDRE model was applied. 
Before the product integration and system testing phase, where all iterations were fin-
ished, the actual number of 
defects removed in all itera-
tions was collected as shown 
in Table 4. Fig. 5 shows the 
defects escaped after testing 
activity and the defects al-
lowed by the quality objec-

Table 6. Control limits for defects removed in each 
activity  

Defects Removed Requirements Design Coding Testing 
UCL 132  119  132  191  
LCL 39  3  0  59  

More defects removed

Large amount of defects submitted by customers

Large amount of defects submitted by testers

Good understanding of the 
requirements

80% testers performed the testing 
activity of previous similar projects

Skilled 
testers

More customers involved in 
the testing activity

Fig. 4. Cause-and-effect diagram 

11 4 3

42

91

34 37
18

0

50

100

1 2 3 4 Iteration

nu
m

be
r 

of
de

fe
ct

s escaped defects

quality objectives

Fig. 5. Satisfaction of quality objectives in each iteration 



378 L. Gou et al. 

tives of the four iterations. The first three iterations all satisfied the quality objectives 
since the defects escaped was less than the defects allowed by the quality objectives. 
Due to the testing activity in the fourth iteration was moved and integrated with the 
system testing activity, the fourth iteration did not satisfied the quality objectives.  

Based on the actual defects removed in the four iterations, the number of defects 
that should be removed in the system testing activity was re-estimated, which was 73, 
based on the quality objectives of the project. Compare to the control limits, the re-
estimated defects were between the UCL and LCL. Therefore, no corrective actions 
were needed. In addition, since the estimated defects that should be removed in the 
system testing activity were changed, the effort of defect detecting and fixing in the 
system testing activity was re-estimated based on the PPBs of test efficiency and 
rework efficiency. The plan for the system testing process was adjusted correspond-
ingly.  

5.3   Quantitative Defect and Fixing Management for System Testing Using  
         Fixing 

The Fixing model was used to quantitatively manage the system testing process. As 
mentioned before, the system testing process contained three testing rounds. Based on 
historical data, defects removed in each testing round were not equal. For the project, 
the percentages of defects removed in the three testing rounds were 50%, 40%, and 
10% respectively. Therefore, based on the total defects that should be removed in the 
system testing activity (which was 73); defects should be removed in the three testing 
rounds were 36, 30, and 7 respectively. In addition, based on the PPBs of DID, de-
fects injected in each activity of the three testing rounds were re-estimated corre-
spondingly as shown in Table 7. Based on the re-estimated data for the system testing 
activity, the project manager refined the plan for each system testing round and per-
formed testing activity against the plan. 

Table 7. Re-estimated and actual performance of each testing round in system testing process 

Testing round #1 Testing round #2 Testing round #3 
Process-performance Re-

estimation
Actual 
data 

Re-
estimation

Actual 
data 

Re-
estimation 

Actual 
data 

Effort of defect detecting (Labor Day) 41.2 22.75 28.8 11.75 12.4 7.25 
Effort of defect fixing (Labor Day) 26.53 28 26.98 21 13.09 10 
Total defects detected in system testing 36 37 30 26 7 6 
Defects injected in requirements 3 3 2 1 0 0 
Defects injected in design 3 3 3 2 1 1 
Defects injected in coding 25 26 21 17 5 4 
Defects injected in testing 5 5 4 6 1 1 

Through testing round #1, actual defects and effort data were collected as shown in 
Table 7. The actual DIDs of the requirements, design, coding and testing activities 
were 8.11%, 8.11%, 70.27% and 13.51% respectively. Compared to the PPBs of DID, 
the actual DID performance was normal and no corrective actions were needed. By 
using the actual DID and correlation regression between DID and PFE, the effort of 
defect fixing in testing round #1 was re-estimated, which was 26.53 labor days. When 



 Quantitatively Managing Defects for Iterative Projects 379 

testing round #1 was finished, the actual effort of defect detecting and fixing were 
collected in Table 7. 

Similarly, the latter two testing rounds were quantitatively controlled by using the 
Fixing model. Fig. 6 shows the initially estimated (Table 5), re-estimated (Table 7) 
and actual defects (Table 7) removed in each testing round, as well as the relative 
variance between initial estimation and actual data (RV1 = ABS (actual data–initial 
estimation) / initial estimation * 100%) and relative variance between re-estimation 
and actual data (RV2=ABS(actual data – re-estimation)/re-estimation* 100%). Fig. 6 
indicates that the re-estimated defects were more precise than the initial estimation 
since it is closer to the ac-
tual defects.  

Supported by the BiDe-
fect method, the project 
finished in time and the 
quality of the project satis-
fied its quality objectives. 
PCCW, the customer of the 
project, was satisfied with 
the project and had con-
tracted new projects to 
ZZNode afterwards. 

5.4   Discussion 

In Aug 15, 2007, ZZNode was appraised and rated at CMMI ML4. ZZNode high-
lighted some benefits of using BiDefect as follows: (1) better management of defect 
data repository. The PPBs were established according to organization’s defect man-
agement objectives. Compared to the previous PPBs, current PPBs are more appropri-
ate; (2) quantitatively controlling projects efficiently. The BiDefect method was co-
herent to ZZNode’s business objectives, and covered the entire lifecycle; (3) 
promotion of customer satisfaction. From 2006 Q1 to 2007 Q1, the percentage of 
“Very Satisfied or Satisfied” was increased from 46% to 82%, especially, the percent-
age was 100% in 2006 Q4; and (4) improvement of product quality. From 2005 to 
2007, the average post-release defect density was decreased year by year and the 
range of post-release defect density was converged. 

Through the implementation of BiDefect, we found that the result of applying 
BiDefect is most dependent on the availability and quality of historical data in the 
organization. Therefore, if the historical data is missing or not sufficient, we recom-
mend collecting more data from stable process before using the BiDefect method. 

6   Conclusions 

This paper described a process-performance Baselines based iteration Defect man-
agement method named BiDefect, which was developed to solve the three challenges 
of defect management in iterative development. Its three components: PPBs, iDRE 
 

Initially estimated, re-estimated, actual defects removed
in each testing round

0

30

60

1 2 3 Testing round

N
um

be
r 

of
de

fe
xt

s

0%

50%

100%

R
el

at
iv

e
va

ria
nc

e

Initial Estimation Re-estimation Actual data
RV1 RV2

Fig. 6. Initially estimated, re-estimated and actual defects 
removed in each testing round 



380 L. Gou et al. 

model, and Fixing model, provide support in establishing process-performance base-
lines, managing defects in each development iteration, and managing the quality of 
overall integrated products respectively. The BiDefect method was evolved from the 
collaboration between ZZNode and ISCAS, which combined research results and 
ZZNode’s best practice. Based on the application of quantitative process management 
supported by the BiDefect method, ZZNode was appraised and rated at CMMI ML4 
in Aug. 2007. Through the implementation of BiDefect, the customer satisfaction of 
ZZNode had been promoted together with the improvement of product quality. 

The future work in our study includes: (1) extend BiDefect to suit more generalized 
iterative process needs; (2) integrate with SoftPM and automate the defect management 
process; and (3) validate and improve BiDefect in other selected organizations. 

Acknowledgments 

This work is supported by the National Natural Science Foundation of China under 
grant Nos. 60573082, 60473060; the National Hi-Tech Research and Development 
Plan of China under Grant No. 2006AA01Z182, 2007AA010303; the National Basic 
Research Program of China under Grant NO. 2007CB310802. 

References 

1. Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief History. Com-
puter 36(6), 47–56 (2003) 

2. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI(R): Guidelines for Process Integration and 
Product Improvement. Addison-Wesley Publishing Company, Boston (2006) 

3. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley Profes-
sional, Reading (2002) 

4. Wang, Q., Li, M.S.: Measuring and Improving Software Process in China. In: 4th Interna-
tional Symposium on Empirical Software Engineering, Australia, pp. 183–192 (2005) 

5. Fenton, N.E., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Transac-
tions on Software Engineering 25(5), 675–689 (1999) 

6. Mizuno, O., Shigematsu, E., Takagi, Y., Kikuno, T.: On Estimating Testing Effort Needed 
to Assure Field Quality in Software Development. In: 13th International Symposium on 
Software Reliability Engineering, Annapolis, MD, pp. 139–146 (2002) 

7. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley Pro-
fessional, Boston (2000) 

8. Boehm, B.W., Horowitz, E., Madachy, R., et al.: Software Cost Estimation with 
COCOMO II. Prentice Hall PTR, Upper Saddle River (2000) 

9. Wang, Q., Jiang, N., Gou, L., et al.: BSR: A Statistic-based Approach for Establishing and 
Refining Software Process Performance Baseline. In: 28th International Conference on 
Software Engineering, Shanghai, China, pp. 585–594 (2006) 

10. Florac, W.A., Carleton, A.D.: Measuring Software Process-Statistical Process Control for 
Software Process Improvement. Addison-Wesley Publishing Company, Reading (1999) 

11. Wang, Q., Gou, L., Jiang, N., et al.: An Empirical Study on Establishing Quantitative 
Management Model for Testing Process. In: International Conference on Software Proc-
ess, pp. 233–245. Springer, Minneapolis (2007) 

12. Wooldridge, J.: Introductory Econometrics: A Modern Approach. South-Western College 
Pub., Boston (2002) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 381 – 394, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Investigation of Software Development Productivity 
in China* 

Mei He1,2, Mingshu Li1,3, Qing Wang1, Ye Yang1, and Kai Ye1, 2 

1 Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of 
Sciences, Beijing 100080, China 

{hemei,mingshu,wq,ye,yekai}@itechs.iscas.ac.cn 
2 Graduate University of Chinese Academy of Sciences, Beijing 100039 China 

3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of 
Sciences, Beijing 100080, China 

Abstract. Software productivity conveys fundamental information for many 
decision making processes, such as in-house development benchmarking and 
outsourcing strategic planning. However, there is a lack of statistical results on 
this matter with respect to Chinese software industry. In this paper, through the 
analysis of 999 industry projects in China, we seek to develop in-depth and 
comprehensive understanding about software productivity status in China, by 
identifying significant influential factors and examining their true effects based 
on our dataset. As a result, Organization is identified as the most significant fac-
tor, followed by Development type, Business area, Region, Language, Project 
size and Team size. Further assessment and findings are also presented with 
relevant recommendations to increase productivity and improve software  
processes.  

Keywords: Software productivity, empirical analysis, Chinese software industry, 
globalization of software development, software process improvement. 

1   Introduction 

New types of software processes such as IT outsourcing and globally distributed de-
velopment have become widely adopted practices. A successful outsourcing approach 
requires a systematical consideration and management of many critical factors such as 
people factors, process factors, product factors, etc. Among these, it is believed that 
software productivity study provides the most insights to help organizations seeking 
for a beneficial outsourcing option. 

On the other hand, software industry in China has been experiencing great-leap-
forward development resulting from this global outsourcing paradigm. As a result, 
software export value has increased from 3.3 billion RMB in 2000 to 46.8 billion 
RMB in 2006. An 8-year longitude analysis of the industry size is shown in Fig. 1  
                                                           
* This work is supported by the National Natural Science Foundation of China under Grant No. 

60573082; the National Hi-Tech R&D Plan of China under Grant Nos. 2006AA01Z182 and 
2007AA010303; the National Basic Research Program (973 program) under Grant No. 
2007CB310802. 



382 M. He et al. 

The Size  of Software Industry in China
(Billion RMB)

59.3 79.6
110

163.3

278

390

480

44.05

0
100
200
300

400
500
600

1999 2000 2001 2002 2003 2004 2005 2006

Fig. 1. The size of software industry in China 
from Year 1999 to 2006 [1-3] 

[1-3]. Meanwhile, Chinese software industry is also facing a great deal of challenges, 
such as scalability difficulty, lack of core technology advance, lack of top-level per-
sonnel, and management policy mismatch [3]. 

During the development course of 
its software industry, China also 
grows into one of the major outsourc-
ing service bases. However, there is 
lack of comprehensive studies on 
Chinese software industry to provide 
information on the latest status of 
software development productivities 
and its associated issues. Having seen 
the big numbers in Fig. 1, one may 
immediately ask what the actual 
productivity level is like compared to 
other countries and what are the important factors are on influencing the productivity in 
China? Such information offers great insights and value to business planner and decision 
makers, as well as local software organization to make organization/process benchmark 
and/or fine-tuning prediction models [4].  

In this paper, we provide results of an investigation on software productivity in 
Chinese software industry. To that end, 999 software project data points from the 
China Software Benchmarking Standard Group (CSBSG) database are used and ana-
lyzed in our investigation. The data is from 140 companies which are across 15 re-
gions of China. The investigation is designed in a way to better develop understand-
ing of Chinese software productivity comparable to knowledge published in existing 
productivity studies. Through this paper, some answers to above questions are con-
cluded, and the characteristics and potential problems of software development in 
China are elaborated. 

The remainder of the paper is organized as follows. Section 2 briefly introduces the 
motivation and goals of our research. Next, analysis results are addressed in Section 
3. Finally, a discussion of the significance of the results and some comments on the 
future data collection and analysis are summarized to conclude. 

2   Motivation and Goals of the Investigation 

2.1   Related Work on Software Productivity 

Software productivity is generally defined as the ratio of software output to input. 
Previous research on software productivity has produced different terms such as lines-
of-code productivity [5], function point productivity [6, 7], process productivity [8], 
according to the specific measurement used for software output. As an essential 
measurement in software development, software productivity is a good indicator for 
the condition of software process, product, and personnel. There is a consensus that 
productivity is highly variable across the software industry [5], and results from pro-
ductivity studies are frequently used as a basis for building organization/process 
benchmark and/or fine-tuning prediction models. 



 An Investigation of Software Development Productivity in China 383 

For the purpose of our study, we are more interested in comparing and analyzing 
the significant factors affecting productivity defined by different groups of research-
ers. Table 1 summarizes a comparison of such factors in 5 previous studies.   

Table 1. Critical factors influencing productivity in previous studies. N represents the number 
of projects involved in each database.  

Data source Year N  Factors discussed 
European Space Agency 
data (from 8 countries) [5] 

1996 99 
 

Company, Language, Category, Environment, Team 
size, Duration, KLOC & a set of COCOMO drivers 

Software Technology 
Transfer Finland (old) [9] 

2000 206 Company, Business sector, Operating system, DBMS 
tools, Hardware platform etc. 

STTF (new)  [6], [7] 2004 
2005 

622 Company, Process model, Business sector, Year, 
Hardware 

ISBSG [10] 2003 1238 organization type, business area, development type, 
primary programming language etc.  

ISBSG [11], [12] 2007 >3000 Team size, Language, Dev Type, Platform, Dev 
techniques, Dev methodology, CASE tool 

Though some common factors (e.g. business area, language) appear in different 
studies, it is interesting for these different studies to conclude different results. An 
example is that new development projects are found to have a higher productivity in 
ISBSG data, while other analysis of development type attribute has been inconclusive, 
showing either no difference [7] or in some situations higher productivity for en-
hancement projects [12]. Some of these inconsistencies will need to be resolved on 
the basis of the Chinese real projects. 

2.2   Overview of CSBSG Database 

To develop further understanding to software productivity status in China, this study 
uses a dataset of 999 industry projects from the first version of the CSBSG database, 
as of August 2007. The CSBSG was established in Jan. 2006, and its mission is to 
advocate and establish domestic benchmarking standards for system and software 
process improvement in Chinese software industry. The CSBSG projects were col-
lected from 140 organizations and 15 regions across China with the support of gov-
ernment and industry association. Each data point follows the similar format of 
ISBSG definitions [9]. Table 2 summarizes the general information of our database. 

Table 2. Summary of the CSBSG project data   

Variable N Mean Median Min Max 
Project size (LOCs) 999 666341 36109 771 2339728 
Effort (person hours) 999 6207 3152 132 134840 
Team size 998 9 6 1 110 
Development Region    From 9 primary regions including Beijing, Shanghai, Jiangsu, Tianjin, Shan-

dong, Liaoning, Zhejiang, Anhui, Chongqing (#Obs.> 10) 
Business Area  Across 7 primary business areas including Public admin, Energy, Manufactur-

ing, General, Retail & Inventory, Finance, Telecom (#Obs.> 20) 
Language type     Consisting of 7 primary language types: C#, Java, C++, ASP, VB, C, Cobol 

(#Obs.> 10) 
Development Type   New development, Enhancement, Re-development 



384 M. He et al. 

2.3   Research Questions 

In addition to identify the significant factors influencing productivity in the CSBSG 
database, we also attempt to validate different conclusions and findings for previous 
studies using this dataset. To that end, some research questions are proposed with 
respect to the CSBSG database. 
RQ1: Do organizations differ a lot from each other in productivity?  

Every organization carries its own set of characteristics that influence on software 
productivity. This has been identified as the most significant factor in many literatures 
such as [5], [7], [13].  
RQ2: Does new development always cost more effort than enhancement?  

Software projects can be new development, re-development, or enhancement. 
Some researchers consider new development costs more effort than enhancement 
[12], and claim that while new development starts everything from scratch, software 
enhancement simply adds, changes, or deletes software functionality of legacy sys-
tems to adapt to changing business requirements [14]. On the other hand, some find 
them no difference [7], but in one version of ISBSG data, new development projects 
also show higher productivity [9]. 
RQ3: What business area corresponds to a higher productivity rate? What cor-
responds to a lower one?  

Business area has been identified as one of the most significant factors influencing 
productivity for times [5], [6], [7], [10]. However, the most productive area is not 
consistent from the results of different researchers.  
RQ4: Is there a relationship between software productivity and the region/city 
where the organization is from?  

Development region has very rarely been discussed in previous studies, except that 
some studies give information about productivity by country [15]. However, it is 
reported that region is one of the most differentiating factors in Chinese software 
industry [1-3].  
RQ5: Does programming language matter in terms of affecting productivity?  

Language is also a frequently studied factor in terms of software development and 
its productivity [5], [9], [11], [12]. In previous research, some have removed the lan-
guage effect either by considering only programs written in the same language or by 
converting all data into one language using conversion factors, but a number of re-
searchers have found that productivity varies with the level of the language [5].  
RQ6: Will larger team size reduce the productivity?  

Team size is included as a variable influencing productivity in several researches 
[5], [11], [12], [16], and many of them agree that increasing team size will reduce 
productivity. Then, how about its influencing trend in China? 
RQ7: Will larger project size reduce the productivity?  

Projects size is a major estimator in almost all effort estimation models, such as 
COCOMO [17], COBRA [18]. As productivity is identified as a ratio of size and 
effort, and size is such an important estimator for effort, then the relation between 
productivity and size is also an interesting issue for many researchers.  



 An Investigation of Software Development Productivity in China 385 

3   Analysis Results 

General Linear Models (GLM) procedure [19] is a commonly used procedure to ana-
lyze the variance of unbalanced data in previous studies [5], [19]. In our study, a 
GLM procedure was followed to produce a list of factors that significantly influence 
the productivity based on the whole 999 project data points as listed in Table 3.  

Table 3.  Variance of productivity explained by each variable  

Variables Type Variance explained 
Organization Class 91.32% 
Development type Class 25.66% 
Business area Class 21.36% 
Region  Class 21.07% 
Language Class 16.33% 
Project size Nonclass 14.84% 
Team size Nonclass 2.63% 

 

The results show that, the single variable which explains the greatest amount of 
variance of productivity in the dataset is Organization. This is followed by Region, 
Business area, Development type, Language and Project size. The Team size which is 
the peak size of development teams explains only 2.63% of the variance in productiv-
ity. In the remainder of this section, analysis results based on each variable are dis-
cussed and formulated into findings in answering the proposed RQs. 

3.1   Productivity by Organization (RQ1)  

For the whole dataset, Organization is identified as the most significant factor (91.32%), 
and this result is similar to the research identifying Company as the most significant one 
as in [5], [7]. Indeed, organizations adopt different technologies, face to diverse market 
competition environments, and vary in the way of managing software process, the com-
position and capability of the personnel and the culture of corporate etc. All of these 
make individual organizations quite different from each others. 

This might be one essential reason why all kinds of estimation model and quality 
management toolkit, which help organizations better track and control software de-
velopment, recommend the users to customize and calibrate the models and tools 
according to the dataset and requirements of their own. 

Finding 1：Organizations in the CSBSG database display great difference in produc-
tivity. Due to the significant variance, it is always recommended that one organiza-
tion be cautious while using cross-organization data as benchmark, estimation or 
control reference. It is better to build their own database to identify the most relevant 
aspects and critical factors for enhancement in their own organizational settings. 

3.2   Productivity by Development Type (RQ2) 

In the CSBSG database, new development projects display obviously higher produc-
tivity than enhancement. (Due to the small sample size of Re-development, we focus 



386 M. He et al. 

our attention mainly on the comparison of New development and Enhancement. 13 
project data missing “development type” records are removed from this analysis.)  

Table 4. Productivity and the number of projects for each development type  

Development type N Median productivity 
Re-development 39 7.08 
New development 683 13.65 
Enhancement 264 5.27 

 

Furthermore, productivity of the three development types is compared again in combi-
nation with other group breakdown criteria. As shown in Fig. 2, all results concur that 
the new development projects were developed faster than enhancement development.  

0

5

10

15

20

25

PC Multi-
platform

Mid-
range

Other

 

0

5

10

15

20

25

30

Ene
rg

y

Fi
na

nc
e

Gen
er

al

M
an

ufa
ctu

rin
g

Pu
bl

ic 
ad

min
Reta

il

Tele
co

m
Othe

r

 
    a) Different development platforms                          b) Different business areas 

0

5

10

15

20

25

30

35

40

ASP C C# C++ Cobol Java VB Other

Re-development

New development

Enhancement

 
                                                                 C) Different languages 

Fig. 2. Further breakdown comparison results with additional breakdown criteria as: a) devel-
opment platform; b) business area; c) language 

There is no consensus as to which type would cost more effort in existing litera-
tures. Our results correspond to those in [12], where new development type of pro-
jects turns out to have higher productivity. However, other researchers suggested the 
two categories have little difference [7], while some suggested enhancement projects 
have higher productivity.   

Some lessons learned from possible reasons for low productivity in enhancement 
are: it is better to continue to use the development team or key design personnel to 



 An Investigation of Software Development Productivity in China 387 

reduce the effort in renewed study. At the same time, in new development, not only 
the efficiency of producing lines of code, but also the disciplined documentation is 
important to lay a good foundation for future maintenance or enhancement. 
 

Finding 2：Productivity in new development is found to be higher than in enhance-
ment in the CSBSG database.  

3.3   Productivity by Business Area (RQ3) 

We selected the top 7 most frequent business areas (energy, public admin, manufac-
turing, general, retail, finance, and telecom) in the dataset, grouped the data into 7 
subsets accordingly, and compared the median productivity of the 7 subsets. Fig. 3 
shows the results, where business areas are arranged in an ascending order in terms of 
productivity.   

21.301

12.979

12.606

9.638

9.129

7.943

5.645

0 5 10 15 20 25

Energy (128)

Public admin (223)

Manufacturing (93)

General (78)

Retail & Inventory (85)

Finance (108)

T elecom (171)

B
us

in
es

s 
A

re
a

Productivity (LOC/hour)  

Fig. 3. Productivity by business areas (Number of projects is shown in the parentheses) 

For Telecom software, constant evolution is dominant, shaping both software  
design and software process, and it is now evolving more rapidly than usual on the 
influence of the Internet [20]. Many telecom software products have to deal with 
complex and evolving new platforms, unstable requirements, real-time performance, 
multi-site settings, and high availability and reliability, which justify the low produc-
tivity as reported in many other studies [21]. Additionally, the telecom industry in 
China lacks of fair competition. Immature customer and bureaucracy could be other 
possible reasons for low productivity in the Telecom area. 

For the Finance area, some analysis also revealed its low productivity [10]. Since 
financial software requires real-time, excessive data exchange, vast data processing, 
high level security and other complex technologies, the productivity is easier to de-
crease than other business sectors. Meanwhile, as some information is highly confi-
dential, some banks or investment companies insist finishing internal software devel-
opment even if the productivity is low.  

Nevertheless, productivities in Public Admin, Energy and Manufacturing are rela-
tive higher in the CSBSG data. One possible reason may be most of the projects in 
this subset belonging to administrative management systems. They have compara-
tively less complexity and more stable requirements. Also, some Chinese govern-
ment-agencies come to deploy more formal public bidding processes to ensure the 
quality and efficiency of the entrusted software development team as reported in [22], 



388 M. He et al. 

[23]. ([23] is a Chinese website proclaiming a government project biding result). At 
this point, we are in short of detailed information about the application type to carry 
out further investigation in this matter, due to missing data items in the current 
CSBSG database. The analysis will be continued in the future when data is available. 

 

Finding 3：In the CSBSG database, Telecom and Finance are found to be the lower 
productivity area, while Public Admin, Manufacturing and Energy are found to be 
relative more productive.  

3.4   Productivity by Region (RQ4) 

In the CSBSG database，Region explains more than 21% of the variation of produc-
tivity, and the detailed results about each region is presented in Table 5. 

Table 5. Productivity across Region in the whole dataset. Prod, N.Proj, N.Org and N.Bus repre-
sent median productivity measured in SLOC/Hr, number of projects, number of organizations and 
number of business areas covered. The figure on the right shows the region distribution pie chart.  

Region Prod. N.Proj N.Org N.Bus 
Zhejiang 28.79 76 6 1 
Tianjin 27.68 56 5 2 

Shanghai 15.46 17 5 4 
Shandong 15.02 21 3 5 
Liaoning 9.72 237 23 6 
Beijing 8.49 428 73 8 
Jiangsu 8.10 90 13 7 
Anhui 6.89 29 3 3 

Chongqing 6.83 28 2 1 
Other 6.90 17 7 6 
Total 10.36 999 141 8 Projects Distribution in Main Regions

Shandong
2%

Shanghai
2%

Tianjin
6%

Zhejiang
8%

Other
2%

Anhui
3%

Chongqing
3%

Jiangsu
9%

Liaoning
23%Beijing

42%

 

 

Table 5 shows that the regions of Zhejiang and Tianjin are the top two highest pro-
ductivity regions, with median productivity of 28.79Sloc/Hr and 27.68Sloc/Hr respec-
tively, while Beijing is ranked No. 6 with a productivity of 8.49Sloc/Hr. However, the 
proportion of projects they contribute in the whole dataset varies highly. As men-
tioned earlier, region is reported as one of the most differentiating factors in Chinese 
software industry [1-3], thus, in this section, further study is especially developed. 

According to three quartiles for the whole dataset, 5.88, 10.23, 20.63 Sloc/Hr, all 
data is divided into 4 groups in terms of the level of their productivity: low, normal, 
high, and very high. We define the productivity smaller than 5.88 as “low” level, 
greater than 20.63 as “very high” level, and so forth. In each level, the number of 
projects involved in each region is shown in Table 6. 

Table 6.  Breakdown of projects by Region and productivity levels 

Region Zheji
ang 

Tian
jin 

Shang
hai 

Shan-
dong 

Liaon-
ing 

Bei-
jing 

Ji-
angsu 

An-
hui 

Chong
qing 

Other Total 

low n/a n/a 1 1 76 126 25 8 6 8 251 
normal n/a n/a n/a 1 51 129 25 20 21 3 250 

high 26 6 16 13 61 100 26 n/a n/a 1 249 
very high 50 50 n/a 6 49 73 14 1 1 5 249 



 An Investigation of Software Development Productivity in China 389 

As shown in Table 6, Beijing has more projects than other regions in all 4 groups.  
Furthermore, we took the “very high” subset and compared the median productivity 
of each region using only this subset. In this subset, Beijing is found to be the only 
region involving all business areas as shown in Table 7.  

Table 7.  Median productivity and the number of involved organizations and business areas for 
each region in the “very high” level part  

Region N.Proj Productivity N.Org Business areas (“Other” is omitted) 
Liaoning 57 44.90 10 General, Public admin, Telecom 

Beijing 70 38.16 20 
Energy, Finance, General, 
Manufacturing, Public, Retail, Telecom 

Shandong 6 34.38 1 Energy, General, Manufacturing 
Zhejiang 49 34.00 5 Energy 
Chongqing 1 31.09 1 Public admin 
Jiangsu 14 28.59 3 Energy, Telecom 
Tianjin 50 28.36 5 Finance 
Anhui 1 21.87 1 Other 
Shanghai 0 n/a 0  n/a 
Other 5 27.81 3 Public admin, Retail 

According to above results, Beijing contributes more proportion in the high-
productivity projects and organizations; moreover, it is the only region owning high-
productivity projects cross all business areas. Hence, we believe it is a fair conclusion 
that Beijing is the only high productivity and the most equally developed region 
across all business domains. In fact, Beijing is also the No. 1 region for software 
process improvement, since its CMM/CMMI 4/5 organizations account for the largest 
percentage of all CMM/CMMI 4/5 organizations in the country, i.e. 27.1% [3]. 

This is consistent with the report result shown in Table 8. That is, no matter in terms 
of the total number of software organizations in 2006 [24], industry revenue scale, or 
total number of employees [3], Beijing has absolute advantage over other regions.  

Table 8. Software industry sizes in different regions 

 Total No. of enter-
prises  

Industry size 
(Billion RMB) 

Employed personnel (Thou-
sand persons) 

Beijing 4064 97.2 165 
Shanghai 1779 61.7 141 
Jiangsu 959 51.2 170 
Zhejiang 725 30.6 50 
Liaoning 604 27.8 48 
Shandong 291 22.4  53 
Tianjin 296 12.4 26 
Anhui 265 Not available Not available 
Chongqing 249 Not available Not available 

 

However, there are also limitations to this result, mainly due to the small number 
of organizations included in some regions. For example, Shanghai only has 5 organi-
zations included in CSBSG database, while its total number of organizations is ranked 
the 2nd in China as shown in Table 8.  



390 M. He et al. 

Additionally, due to factors such as fierce personnel competition, preferential poli-
cies, and large numbers of excellent enterprises, some developed regions such as 
Beijing, demonstrates more advantages, and they keep on top in various business 
areas. On the other hand, despite some regions are less developed and have less re-
source, they still perform quite well in certain business areas. For instance, some 
organizations in Tianjin have really high productivity in the finance business area, 
which indicates that in regions owning less resource, to focus on one type of business 
area software might be a feasible way to strengthen local software industry. 

 
Finding 4：In relatively developed regions whose industry size is larger, there are 
more high-productivity organizations than others and the high-productivity organiza-
tions can appear in each business area.  

3.5   Productivity by Language (RQ5) 

A subset of 7 languages applied by at least 10 projects is listed in Table 9. As a num-
ber of researchers have found that productivity varies with the level of the language 
[6], we also take this issue into account. According to the conversion factors (shown 
in the last column in Table 9) given by SPR [25], high level languages show relatively 
higher productivity, and this result is consistent with the finding in [6].  

Table 9.  Productivity by Language. Since the conversion ratio varies significantly for different 
versions of VB, the value for VB (without version information) cannot be confirmed.  

Language N Median productivity  Average LOCs per FP 
ASP 14 34.68 14 
C# 205 18.68 25 
VB 48 9.94 n/a 
Java 362 9.58 53 
C++ 217 7.52 53 
C 95 6.41 128 
Cobol 24 6.27 107 

Also, variance by Language is corresponding to the variance by other factors. Take 
an example, ASP is shown to be the most productive language, while all the ASP pro-
jects are from the energy business area (the highest productivity area). On the other side, 
in relatively low productivity C projects, 54% are from the telecom domain.  

Meanwhile, it is also noticed that the most productive language ASP is not so 
popular in recent years (after 2005). One possible reason is that while technologies 
like .NET and J2EE enhance the development efficiency, security, components sup-
ported and scalability in Web development, script languages on the server side like 
ASP appear less frequently in large-scale projects. Correspondingly, in the CSBSG 
database, the size of projects using ASP just varies from 16 to 23 KLOC. Therefore, 
while selecting programming languages, not only the productivity but also the per-
formance advantage and limitation of each language should be taken into account. 



 An Investigation of Software Development Productivity in China 391 

6.42

7.59
6.55

7.15

5.16

6.79

5.56
5.99

6.54

5.99

4.13

10.62
10.1010.70

11.27

0
50

100
150
200
250
300
350
400
450
500

5 10 15 20 25 30 35 40 50 55 60 65 70 75 >75

Team size

N
um

be
r 

of
 s

am
pl

e

0.00

2.00

4.00

6.00

8.00

10.00

12.00
M

ed
ia

n 
pr

od
uc

tiv
ity

No. of
sample

Median
Prod.

Except ASP, the languages like C# and Java appearing most frequently in the data-
set are also more productive than many other languages, and it also confirms their 
popular application in real world.  

 

Finding 5：As to programming language, high level ones are found to be more pro-
ductive, and it is coherent to the finding in a European database [6]. Moreover, it is 
also necessary to consider the software performance required, such as scalability, 
security etc. while selecting languages 

3.6   Productivity by Team Size (RQ6) 

Software development teams grow and contract at different phases of the project, and 
the average team size and peak team size have both been used [13], [17]. As over the 

whole project it is easier to 
measure than average team 
size, Team size used in this 
analysis is measured as the 
maximal team size. 

As shown in Fig. 4, for the 
998 data points with “Team 
size” records, increasing Team 
size leads to decreasing 
productivity, which is consistent 
with the conclusion in [6], [26], 
and the coordination and com-

munications problems that occur while adding more people may cause this trend.  
However, 90% of the CSBSG projects are developed by small teams with less than 

15 persons. This makes the descending line in Fig. 4 suffer from small sample size. 
Therefore, we performed a further study on the subset of projects whose team size is 
no greater than 15. The productivity of those teams is presented in Fig. 5.  

Dot/Lines show Means

LLR Smoother

5 10 15
Team size

0.00

40.00

80.00

120.00

pr
od

uc
ti

vi
ty

n=3 n=46 n=68 n=149 n=172 n=135 n=46 n=24 n=38 n=60 n=49 n=48 n=37 n=24 n=12

9.37

25.36

16.08
16.39

13.54

16.12 17.22
24.06 21.11

20.97
13.16

19.72
17.25

27.05

 

Fig. 5. Productivity by team size (for teams smaller than 15-person). The numbers after ‘n=’ 
listed below each box indicate how many projects are involved in this team size, and the num-
bers listed above each box are the means of productivity for each team size. 

Fig. 4. Productivity by Team size 



392 M. He et al. 

25

176

481

274

41
2

7.08

19.87

5.48

11.5 12.69

26.15

0

100

200

300

400

500

600

0
～

4 4
～

16 16
～

64 64
～

256 256
～

1024 >1024

Project size (KLOC)

N
um

be
r 

 o
f 

sa
m

pl
e

0

5

10

15

20

25

30

M
ed

ia
n 

P
ro

du
ct

iv
ity

In Fig. 5, the boxplot for each team size indicates the level of project productivity, 
the horizontal bars within the box show the median value, and the ‘*’s and ‘+’s denote 
extremes and outliers. The tendency for projects decreasing in productivity is not obvi-
ous as indicated by the smoother (shown as a dark continuous line in Fig. 5) or the 
dotted line showing mean productivities. As a result, it is illustrated that teams smaller 
than 15 persons can be almost controlled in a relatively high-productivity level; how-
ever, while the personnel increases largely, due to the lack of disciplined process man-
agement and enhanced coordination mechanism, productivity decreases rapidly. 

 

Finding 6：Increasing team size is found to have a negative influence on productiv-
ity. While the teams smaller than 15 persons can be almost controlled in a relatively 
high-productivity level, productivity for larger teams decreases rapidly.  

3.7   Productivity by Project Size (RQ7) 

Similar to the way that the continuous size representation was handled into discrete 
levels in [18], we split the CSBSG dataset into 6 groups to study the impact of soft-
ware size on productivity. In Fig. 6, 
the numbers over each column are 
the sample sizes, and the line 
connects the median productivity of 
each group. 

Interestingly, the productivity is 
found to increase while software 
size increases on the CSBSG data-
base, which demonstrates an econ-
omy of scale effect. This result is the 
opposite of some researchers, who 
have found that productivity decreases with increasing system size [9], [27], but in 
agreement with [6], [17]. For a similar result, Agrawal et al. [17] explained that is due 
to the high maturity for organizations in their study. However, this is not the case in 
terms of a variation of nearly 1000 software organizations.  
  What business area, language, and region those large scale projects come from? 
How to force consistency with previous findings? Due to limited information  
contained in the CSBSG database, it may be the condition that smaller size projects 
come from low productivity organizations and the bigger from high productivity ones. 
Therefore, this result will be further investigated with more evidence in the future 
data collection and analysis. 

 

Finding 7：Productivity is found to increase with increasing system size (Lines of 
code) for our data.  

4   Conclusions 

IT outsourcing and globally distributed development have become practices with 
worldwide adoption. Software productivity, as a good indicator for the condition of 
software process, product, and personnel, conveys the critical information for outsourc-
ing strategic planning and decision making. On the other hand, software organizations 

Fig. 6. Productivity with increasing project size 



 An Investigation of Software Development Productivity in China 393 

frequently rely on productivity as a basic measurement to build organization/process 
benchmark and/or fine tune prediction models. 

There is a consensus that productivity varies highly across the software industry. 
Results from productivity studies are examined, and their differences in both data 
sources and conclusions necessities an independent investigation on Chinese software 
industry before any immediately useful conclusions could be adopted as a solid 
groundwork for both outsourcing partners and local Chinese software organizations to 
make their decision on. 

To that end, this paper provides an in-depth investigation and draws a more compre-
hensive picture of software productivity status in Chinese software industry. The most 
significant factors mostly impacting software productivity are: Organization, Region, 
Business area, Development type, and Language. Meanwhile, team size and project 
size also influence productivity significantly in the CSBSG database. In addition to the 
productivity results for answering the research questions set in this paper, further 
analysis and assessment are also given by examining characteristics of each factor with 
respect to current circumstance in Chinese software industry. 7 findings are summa-
rized with recommendations to increase productivity and improve software process. 

Finally, we are aware that analysis results involved in this paper have only revealed 
the surface of this large and complex dataset. For example, some interpretations for 
the variance of productivity in different business areas are related to the cross influ-
ence from other factors; however, further suggestion in handling such interrelation is 
not offered in this study. For our future work, it is planed to model the interrelation-
ship among these factors in order to minimize the effects of notable cross influence 
and provide more thorough benchmarking and management guidelines. At the same 
time, as the CSBSG database, by now, is the only available and relative comprehen-
sive database to explore the characteristics of software development projects in China, 
we believe that this study and the continued study based on this database do help 
researchers and industry better understand software development in China.   

Acknowledgements 

The authors would like to thank the China Software Industry Association and CSBSG 
in particular for their tremendous effort in the data collection process and the generos-
ity in sharing the data with us. Also, we appreciate all the help offered by the mem-
bers in ISCAS-iTechs Lab (especially to Fengdi Shu, Da Yang, Lang Gou, Jing Du, 
Qi Li and Shujian Wu). 

Reference 

1. China Software Industry Association: 2002-2003 Annual Report of China Software Indus-
try. Beijing (2003)  

2. Ministry of Information Industry of the People’s Republic of China and China Software 
Industry Association: 2006 Annual Report of China Software Industry. Beijing (2006)  

3. Ministry of Information Industry of the People’s Republic of China and China Software 
Industry Association: 2007 Annual Report of China Software Industry. Beijing (2007) 

4. Olsen, K.B.: Productivity impacts of offshoring and outsourcing: a review (2006), 
http://www.oecd.org/dataoecd/16/29/36231337.pdf 



394 M. He et al. 

5. Maxwell, K.D., Wassenhove, L.V., Dutta, S.: Software Development Productivity of 
European Space, Military, and Industrial Applications. IEEE Transactions on Software 
Engineering 22(10), 706–718 (1996) 

6. Premraj, R., Twala, B., Mair, C., Forselius, P.: Productivity of Software Projects by Busi-
ness Sector: An Empirical Analysis of Trends. In: 10th IEEE International Software Met-
rics Symposium (Late Break-in Papers) (September 2004) 

7. Premraj, R., Shepperd, M., Kitchenham, B.A., Forselius, P.: An Empirical Analysis of 
Software Productivity over Time. In: IEEE METRICS 2005, vol. 37 (2005) 

8. Putnam, L.H., Myers, W.: Measures for Excellence: Reliable Software on Time, within 
Budget. Prentice-Hall, Englewood Cliffs (1992) 

9. Maxwell, K.D., Forselius, P.: Benchmarking Software Development Productivity. IEEE 
Software, 80–88 (January/February 2000) 

10. ISBSG Benchmark Release 8, http://www.isbsg.org 
11. Jiang, Z., Naudé, P., Comstock, C.: An investigation on the variation of software develop-

ment productivity. International Journal of Computer, Information, and Systems Sciences, 
and Engineering 1(2), 72–81 (2007) 

12. Jiang, Z., Naudé, P.: An examination of the factors influencing software development ef-
fort. International Journal of Computer, Information, and Systems Sciences, and Engineer-
ing 1(3), 182–191 (2007) 

13. Lawrence, M.J.: Programming methodology, organizational environment, and program-
ming productivity. Journal of Systems and Software 2, 257–269 (1981) 

14. Kemerer, C.F., Slaughter, S.: Determinants of software maintenance profiles: an empirical 
investigation. Journal of Software Maintenance 9, 235–251 (1997) 

15. Cusumano, M., MacCormack, A., Kemerer, C.F., Crandall, B.: Software development 
worldwide: the state of the practice. IEEE Software, 28–34 (2003) 

16. Agrawal, M., Chari, K.: Software Effort, Quality and Cycle Time: A Study of CMM Level 
5 Projects. IEEE Transactions on Software Engineering 33(3), 145–156 (2007) 

17. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981) 
18. Briand, L.C., Emam, K., Bomarius, F.: COBRA: A hybrid method for software cost esti-

mation, benchmarking and risk assessment. In: Proc. of the 20th Int’l Conf. on Software 
Engineering, pp. 390–399. IEEE CS Press, Los Alamitos (1998) 

19. SAS/STAT User’s Guide, version 8, http://www2.stat.unibo.it/ManualiSas/stat/pdfidx.htm 
20. Zave, P.: Requirements for Evolving Systems: A Telecommunications Perspective. In: 

Fifth IEEE International Symposium on Requirements Engineering (RE 2001), August 
2001, pp. 2–9 (2001) 

21. Tomaszewski, P.: Software development productivity issues in large telecommunication 
applications. Blekinge Institute of Technology (2005) 

22. He, M., Yang, Y., Wang, Q., Li, M.: Cost Estimation and Analysis for Government Con-
tract Pricing in China. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, 
vol. 4470, pp. 134–146. Springer, Heidelberg (2007) 

23. http://www.gd-emb.org/detail/id-27114.html  
24. China “Double-soft” Cognizance Website (sponsored by Department of Electronics and 

Information Product Administration of Ministry of Information Industry of the People’s 
Republic of China), http://www.chinasoftware.com.cn/ 

25. SPR programming languages table (2003), http://www.spr.com/ 
26. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley, Reading (1975) 
27. Behrens, C.A.: Measuring the Productivity of Computer Systems Development Activities 

with Function Points. IEEE Trans. Software Eng. 9(6), 648–652 (1983) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 395 – 406, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Optimized Software Process for Fault Handling in Global 
Software Development 

Dirk Macke1 and Tihana Galinac2 

1 Ericsson Deutschland GmbH, Ericsson Allee 1, D-52134 Herzogenrath 
Dirk.Macke@ericsson.com 

2 Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia 
Tihana.Galinac@riteh.hr 

Abstract. Software development organizations are turning to global software 
development (GSD) to reach a competitive lead on the global market. This pa-
per presents experiences and results of an Six Sigma based improvement project 
in a GSD organization. The improvements address better process definition, in-
crease of awareness for different levels of expectations in globally distributed 
teams, and introduction of regular scanning mechanisms. Success indicators are 
defined to connect process capability to business value, and are used to measure 
improvement success by applying SPC techniques. 

1   Introduction 

Global software development (GSD) as a promising approach for getting competitive 
advantages on the global market is becoming common practice in the software indus-
try. Coordination, communication and control are the main challenges of GSD as  
reported by academic and corporate researches, [1]-[5]. The proposed solutions to 
overcome these challenges are implementation of clear processes as communicating 
instrument between GSD teams, process support within collaboration information 
systems, clear responsibilities and roles, and awareness of cultural diversity build on 
positivism and trust. 

The Interest in software process improvement (SPI) has been growing in the soft-
ware industry for the last decade. There are many SPI models and initiatives – most of 
them evolved initially from the manufacturing and production industry [6]-[9]. One of 
such approaches is Six Sigma [10]. There are other published research studies dealing 
with the application of Six Sigma in software development [11], [12]. The main ob-
jection of its usage in the software industry, especially design, is its statistical focus 
[13]. This is often thought to be inappropriate, since many designers consider them-
selves more an artist than an engineer. Nevertheless, the growing application of 
measurements [14], and statistics [15]-[17] is evident in the software industry. 

This paper presents a case study performed for an industrial telecom software pro-
ject within a GSD organization, which aims to achieve operational excellence through 
continuous improvement programs. The project has applied the Six Sigma Define-
Measure-Analyze-Improve-Control (DMAIC) methodology [10]. 



396 D. Macke and T. Galinac 

The focus of this paper is the improvement of the Fault Handling (FH) process. 
The FH process constitutes the main interface between the development, and integra-
tion and verification (I&V) part of the GSD organization. Faults identified during the 
I&V phase are reported to the development unit. It is important to stress, that a sig-
nificant part of the costs within I&V is spent on equipment usage, i.e. lab usage, and 
IT equipment. Every lost hour for I&V tests means a significant loss of money. Set-
ting the right level of formal and informal communication is of crucial importance to 
ensure the efficient handling of faults.  

The main contribution of the paper is the proposed FH process decomposition, 
identification of process users, control indicators, and finally the improved FH proc-
ess itself. Both the presented way of driving improvements in GSD environments and 
the improved FH process are applicable in any GSD environment. Emphasis is put on 
describing the use of the Six Sigma methodology, which will be shown as a unique 
tool for both identifying, and driving the improvements.  

2   Research Framework 

The case study described in this paper has been performed within an industrial project 
of the GSD organization at Ericsson A.B. 

The GSD organization is developing software for mobile telephony exchanges, and 
offering complete network solutions as product. The development is done in GSD or-
ganization, and face strong quality and reliability requirements, both from national, 
and international standards bodies and legislation. A short time to market due to a rap-
idly changing business environment is required. As a consequence, a large amount of 
global software engineering efforts is needed in order to achieve the required level of 
competitiveness. 

 

Global Development Unit

Global Network Integration
and Verification unit

Design

Integration

Maintenance

Verification C
us

to
m

er

 

Fig. 1. Global Software Development Organization 

The global development (GD) unit is a part of the GSD organization as presented 
in figure 1. It is distributed within four geographically different design units (Ger-
many, Croatia, Italy, and Greece), which deliver software packages to the global net-
work integration and verification (GNIV) unit. GNIV is distributed over different 
geographical organizations (Germany, Canada, Croatia, Spain, China and Australia), 



 Optimized Software Process for Fault Handling in Global Software Development 397 

too. Because the development model is an in-house developed variant of an incre-
mental development model with waterfall increments, the process of handing over 
smaller packages (‘shipments’) from GD to GNIV is repeated for each increment dur-
ing a project.  

The research was performed on the fault handling (FH) process, which forms the 
interface between the GD and GNIV units. The high level process map for the FH 
process is depicted in figure 2. Four main steps characterize the FH process: 

 
• Fault Detection 
• Trouble Report (TR) Handling 
• TR Analysis 
• Release of Solution/Correction deployment 
 

During the Fault Detection step in GNIV, the product is integrated into different net-
work and hardware configurations, and verified in a real mobile telephony environ-
ment (so called end-to-end testing). The product is put under different test conditions 
such as negative test (NT, probing the code for memory leaks etc.), provocative test 
(PT, network-level disturbances, such as broken cables, hot-swapping of processor 
boards etc.), regression test (RT, testing that legacy functionality is still working), etc. 
These test conditions will be referred to as test types, and will be used later on for 
analysis purposes. All events experienced while executing the different tests are re-
ported, and stored into a database. The event database is available to all involved 
GSD units. The main purpose of this database is to avoid work on a particular issue in 
more than one site in parallel. Otherwise there would be the risk, that geographically 
separated sites of the GSD organization (potentially also in different time zones), 
would spend effort on troubleshooting the same issue in parallel, not knowing of simi-
lar activities ongoing at another site. By this approach, GNIV can even draw addi-
tional testing potential of the global organization, by e.g. continuing troubleshooting 
in Canada, while engineers in Germany start to finish up for the day.  

 

Event
Database

Event

Register
Event

Fault Detection 
(GNIV)

Trouble Report 
Handling Process 
(GNIV)

Event analysis,
Troubleshooting,

Fault identification

TR?Central
Modification
Handling DB

End
NoYes

TR Analysis Process (GD)

TR
Analysis

AC? End
No

Prepare
AC

Solution Release 
(GNIV)

(GD)

Re-Test

OK?
No

Release
Yes

Yes

 

Fig. 2. Fault Handling Process 



398 D. Macke and T. Galinac 

Once an event is reported, the event analysis, troubleshooting, and/or fault identifi-
cation is started. When a fault is identified, located, and a temporary solution is pro-
posed, the Trouble Report (TR) is issued in Ericsson's official, company wide modifi-
cation handling tool. A TR should contain all relevant information, which makes it 
possible for the GD organization to analyze the fault. 

Activities such as troubleshooting, information retrieval, documentation, commu-
nication, tools and testing configuration set up issues, belong to the FH process. All 
these activities are subject to analysis. 

The outcome of the TR handling process is a written TR, which is sent to the GD 
organization, and triggers execution of the next step in the FH process. A TR handler 
is assigned within the GD maintenance unit, investigates the problem, and develops a 
proposed solution. An expert, who decides on how to proceed, evaluates the proposed 
solution. This can either result in no action, an approved correction (AC), or even a 
product change. After this decision the last step begins with the development of the 
solution (unless no action is decided), and an answer is sent back to the TR issuer. If 
the decision was to issue an AC, the designer prepares a correction of the fault. When 
this correction has been tested and approved (by the GNIV organization), the AC is 
sent to be released, and included in the product. The main activities within TR analy-
sis and the solution release process are TR analysis, screening, desk check, AC prepa-
ration and TR closure. All these activities will be subject to analysis. 

3   Approach to Improvements 

The original motivation for triggering the improvement project described in this case 
study was to reduce TR lead time. But the Six Sigma method 'Voice of the Customer' 
[7] revealed, that the real motivation for the improvement was cost reduction, ideally 
in conjunction with a productivity increase within the FH process. 

3.1   Goal Definition 

The magnitude of the potential cost benefit of the project was derived from work-
shops and interviews performed at the various units, and by the analysis of historical 
data from the event, and modification handling databases. The main outcome of the 
DEFINE part of the DMAIC process was the identification of missing knowledge 
about the FH cost structure. 

The FH cost was divided into two parts belonging to GNIV and GD organizations re-
spectively. The GNIV contribution to the process is mostly Fault Detection, and TR 
Handling, while GD's participation is mostly the TR Analysis, and the solution release 
as presented in figure 2. Based on the analysis results for both organizations, way of 
working, and historical data, the following goals were defined for the Six Sigma project: 

• Reduce GNIV fault handling cost by 10% 
• Reduce GNIV Cost of Poor Quality (COPQ) by 30% 
• Reduce GD cost for fault reproduction by 10% 
• Reduce GD Cost of Poor Quality (COPQ) by 5% 
• Improve productivity of GNIV and GD by 10% 
(The definition of COPQ is given in the next section.) 



 Optimized Software Process for Fault Handling in Global Software Development 399 

3.2   Definitions 

The data flow within the FH process presented in figure 2 is graphically represented 
in figure 3. Circled numbers in figure 3 represent branches, and correspond to the cir-
cled numbers in figure 2. Vertical dotted lines represent boundaries between the proc-
ess steps of the FH process. 

Fault
Detection
Process

TR
Handling
Process

TR
Analysis
Process

Solution
Release

NE

Nno-TR Nno-AC

NTR NAC

 

Fig. 3. Fault Handling Data Flow 

In order to define the business case and control indicators, we will use the follow-
ing notational conventions: The number of incoming events detected within the FH 
process is denoted by NE. During the TR handling process the total number of NE  
faults are divided into two branches, depending if a fault will be registered as TR in 
the corporate TR database (NTR), or if a fault is handled internally in GNIV, and will 
therefore not lead to a TR in the corporate TR database (Nno-TR). Note that all of these 
events are considered to be faults within this case study, while not all of them will be 
handled as TRs – the main difference being, that only TRs will also be handled by the 
GD organization. The relation of these two classes of faults is obviously 

TRnoTRE NNN −+=  (1) 

Three reasons leading to Nno-TR could be identified: Duplication of an issue (e.g. 
two testers detecting a fault at different sites in parallel independently of each other, 
or faults belonging to the same root cause), denoted by Nno-TR_D, cancellation of an is-
sue, because there was no fault at all (e.g. diverging opinions between testers in GNIV 
and designers in GD in what way a certain feature or functionality should work, or 
simply a misunderstanding of the code), denoted by Nno-TR_C, and finally issues, which 
represent internal faults Nno-TR_I, like problems with the test environment etc. All these 
faults will not lead to an improvement of product quality, albeit requiring the same ef-
fort as any other fault, and  are therefore considered to be COPQ. These cases sum up 
to Nno-TR: 

ITRnoCTRnoDTRnoTRno NNNN ___ −−−− ++=  (2) 

Not all registered TRs in the TR database end up with an AC. The amount of regis-
tered TRs, NTR, that need to be analyzed by the GD organizations, is split into two 



400 D. Macke and T. Galinac 

categories: TRs going to be fixed with an AC (NAC), and TRs which are not going to 
be fixed in the current release of the product (Nno-AC), e.g. because the fault can only 
be fixed within a new release (no patch possible), or the fault is too minor to risk late 
code changes. The sum of all TRs is then 

ACnoACTR NNN −+=  (3) 

Based on the goals defined in the previous section, the business case (BC) can now 
be denoted as: 

σ6COSTGDGNIVBC asas −+=  (4) 

with 
 

• GNIVas Annual savings within GNIV organizations related to fault handling, in-
cluding 
− increased efficiency: 10% increase of NTR generated per week, 
− reduced fault handling cost, 
− reduced COPQ: Reduced Nno-TR and Nno-AC, 

• GDas Annual savings within GD organization related to FH, including 
− increased efficiency: Increased amount of NTR, 
− savings due to less COPQ: Reduced Nno-TR, 
− decreased effort for fault analysis 

• COST6σ Cost spent for the Six Sigma improvement project itself, e.g. travel, 
tools, working hours spent for meetings in the different organizations etc. 

 
To validate the improvement result and goal achievement, the following success indi-
cators were defined: 

• Fault Handling Efficiency (FHE) defined as 

TR

E

N

N
FHE =  (5) 

The smaller the value for FHE, the higher the amount of TRs within the total num-
ber of events, in other words: Less time and money is spent on issues not leading to 
an TR, and by this not improving product quality. 

• Fault Finding Efficiency (FFE) defined as 

TR

ITRno

N

N
FFE _−=  (6) 

The smaller the value for FFE, the less time and money is spent on troubleshooting 
internal faults in GNIV, which do not lead to a product quality improvement. This is a 
direct measure for COPQ in GNIV, with respect to the test environment. 

 
 



 Optimized Software Process for Fault Handling in Global Software Development 401 

• Fault Handling Effectiveness (FHEff) defined as 

DTRnoCTRno NNFHEff __ −− +=  (7) 

The smaller the value of FHEff, the less money and time is spent on troubleshoot-
ing on ‘assumed’ faults (Nno-TR_C + Nno-TR_D). This is a direct measurement of COPQ 
in GNIV, with focus on internal processes and testing competence. 

• Fault Finding Effectiveness (FFEff) defined as 

ACnoNFFEff −=  (8) 

Here we use Nno-AC directly as indicator for the effectivness of fault finding in 
GNIV. The rationale behind this definition is, that the ultimate goal of I&V is to im-
prove product quality – this can only be done, if a found fault leads to an AC, and by 
this to improved code (or hardware) in the final product. 

These indicators were measured weekly, and the resulting control charts were used 
for the CONTROL part of the Six Sigma project (see section ‘Results of the optimized 
Fault Handling’ for details). 

4   Data Collection and Analysis 

Lack of knowledge on the FH cost structure, effort spent on the individual process 
steps, and effort distribution over the various involved organizations was identified as 
the vital data to be analyzed in order to improve the FH process. 

Since such data was not readily available, and existing definitions for effort and 
lead time were widely varying within process steps and organizations, dedicated tem-
plates and work instructions were developed, and extensively communicated across 
the whole GSD organization. The measurements were performed manually by process 
participants (design and test engineers, and their associated managers). The sample 
which was taken included 350 measurements in the GNIV unit, and 100 measure-
ments in the GD unit. Central points of contact were established in the GNIV and GD 
organizations, to support testers, maintenance engineers, and their managers through-
out the data collection process. The effort measurements were combined with records 
from databases used in the FH process such as event data, and TR and AC data from 
the corporate modification handling database. 

The data was analyzed using standard statistical methods: 

− for analyzing fault distributions per category we used Pareto charts and/or pie 
charts to identify the most significantly contributing categories/factors 

− for identifying differences between data distributions we used hypothesis tests 
(t-test) 

− if data was not normally distributed we used a Box-Cox transformation to nor-
malize the data 

The main results of the analysis is summarized in table 1. In the first column of the table 
the questions we wanted to answer during the analysis are given. In the second column 
the conclusions we draw from the analysis are stated. For analysis purposes we differen-
tiate between 'quick' and 'normal' faults 'Quick' faults are defined as faults needing less 



402 D. Macke and T. Galinac 

than one day in the FH handling process. All other faults are considered as 'normal' 
faults, and typically require a lead-time of 1-2 weeks. The existence of two categories of 
faults was not anticipated, but a result of the data analysis. Since these two fault catego-
ries lead to the identification of different measures in order to improve the FH process, it 
can be recommended to be very wary of average data from such processes, as long as 
the arbitrary data distribution has not been analyzed before. Examples of Pareto charts 
used to obtain the conclusions in table 1 are presented in fig. 4. 

 

Fig. 4. Effort distributions for GNIV and GD 

5   Optimized Fault Handling 

Improvements to the FH process presented in fig. 2 were implemented based on the 
conclusions from the analysis listed in table 1. Actions taken in the IMPROVE part of 
the Six Sigma project can be summarized as follows: 

TR Skeleton. Due to the identified lack of communication and understanding be-
tween experts from the GNIV and GD organizations, additional rules and database 
fields for the corporate TR handling tool were implemented. This was done by means 
of a template (TR skeleton), which is to be filled out by the TR issuer. 

FH Process. Two new work instructions were incorporated into the process, describ-
ing handling of the event database, and unifying the way of working between the dif-
ferent GNIV organizations. 

PT Process. During analysis of effort spent in software testing, a significant ineffi-
ciency was identified while analyzing data from PT test activities. This kind of testing 



 Optimized Software Process for Fault Handling in Global Software Development 403 

is run over night on a network under full load (mobile telephony traffic), and in the 
morning all events observed are analyzed. Due to competence limitations often 
groups of faults having the same root cause were treated individually, causing addi-
tional costs both in GNIV and GD organizations. The improved way of working now 
puts in a mandatory screening step by a senior software engineer. 

Screening Control. A main reason of inefficient interaction between GNIV and GD 
experts is caused by a lack of timely communication. Additional information related 
to TRs is better obtainable while the test network is still configured. While this sounds 
straight forward, it is nothing easily achievable in a very dynamic environment with 
TR turn-around times (time from TR to AC) in the order of magnitude of the lead-
time of a test activity. Since the test equipment is very expensive, planning of testing 
activities with different configurations is a process which sets strict constraints of the 
flexibility of repeating a particular test, with obvious limitations to the possibilities for 
fault reproduction. The improvement implemented was to add an additional screening 
process step in the GD organizations, where the incoming TRs are not only analyzed 
by priority of the fault itself, but also on re-testability within the GNIV organizations. 

6   Results of the Optimized Process Implementation 

The results of the improvements proposed in this paper were controlled, verified and 
validated during the CONTROL phase of the Six Sigma project. The success/control 
indicators introduced in the ‘Definitions’ section were used for that purpose. Usage of 
 

week

N
_n

o
-A

C

2320171411852514845

15

10

5

0

-5

__
X=5

UCL=9.76

LCL=0.24

FFEff

month

N
_n

o
-T

R
_I

/N
_T

R

JuneMayApri lMarchFebruaryJanuaryDecemberNovember

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

__
X=1.2

UCL=1.5317

LCL=0.8683

FFE

C25

N
_E

/N
_T

R

242322212019181716151413

3.0

2.5

2.0

1.5

1.0

0.5

__
X=1.688

UCL=2.246

LCL=1.131

FHE

week

N
_n

o
-T

R
_C

 +
 N

_n
o

-T
R

_D

2320171411852514845

16

12

8

4

0

__
X=5

UCL=11.83

LCL=-1.83

FHEff

 

Fig. 5. Moving average charts for the success indicators (SPC) 



404 D. Macke and T. Galinac 

Table 1. Questions and conclusions from the measurement and analysis phases 

Q C Information 
Q1  How is effort and cost distributed between the different FH activities? 
 C1 Almost 40% of the total effort is spent on troubleshooting. 
 C2 Significant contribution from information retrieval (24%) 
 C3 More effort is spent on documenting faults, than on communication! 
Q2  What is the fault distribution between different test activities? 
 C4 PT contributes the vast majority to fault finding (~55-60%). 
Q3  How is the effort distributed for faults leading to TRs (NTR), and those not 

leading to TRs (Nno-TR)? 
 C5 More than 40% of the faults ultimately do not leadt to TRs, i.e. the effort 

spent does not improve product quality. 
Q4  How is effort and cost distributed for PT activities? 
 C6 Troubleshooting makes up for 40% of the effort/ 
 C7 Documenting the TRs takes up 20% of the effort. 
Q5  How is effort and cost distributed for non-PT activities? 
 C8 Information gathering is the biggest contributor with 30% of the effort. This is 

significantly more than what is spent/needed in the PT activities. 
Q6  Is the effort spent in PT and non-PT activities different? 
 C9 There is no statistical significant evidence, that the total effort spent is differ-

ent. 
 C10 There is a significant difference on how the effort is spent. 
Q7  Is the effort spent different for faults leading to to TRs (NTR), and those not 

leading to a TR (Nno-TR)? 
 C11 The total effort spent on faults leading to a TR is significantly bigger com-

pared to the effort spent on faults not leading to a TR. 
Q8  Is there a statistically significant difference in the TR analysis results for 

‘quick’ (less than 1 day), and ‘normal’ (1-2 weeks) fault turn-around times? 
 C12 There is a significant difference in the TR analysis results. 
 C13 The major part of ‘quick’ faults do not lead to an approved correction (Nno-AC) 
Q9  What are the reasons for faults not leading to an approved correction (Nno-AC)? 
 C14 50% of the TRs leading to Nno-AC are due to insufficient TR input quality, de-

spite the surprisingly big effort spent on documentation!. 
Q10  How is effort spent in GD organizations within the TR analysis process? 
 C15 Almost 50% of the effort is spent on the preparation of approved corrections. 
Q11  Is there a difference in the effort distribution for NAC and Nno-AC? 
 C16 More effort is spent on AC preparation for NAC. This is an interesting result, 

because one would have expected zero effort for AC preparation for Nno-AC, 
but the analysis revealed, that in quite some cases the TR analysis identifies 
the lack of need for an AC rather late. This is COPQ in GD. 

 C17 A significant amount of effort is spent on AC preparation for Nno-AC as well! 

SPC techniques to software development processes has been proved to be applicable 
and useful by several authors [8] – [10]. The control charts proved to be also very 
helpful in transporting the message to the various organizations during the IMPROVE 
and CONTROL phases of the Six Sigma project. The power of such diagrams is often 
underestimated in global change activities like the Six Sigma project presented here, 



 Optimized Software Process for Fault Handling in Global Software Development 405 

because often the change management aspect is underestimated in favor of the more 
technical/statistical work. 

The control variables were followed up weekly using moving average charts, and 
time-weighted control charts. The advantage of using time-weighted control charts 
is the ability to detect small shifts from the target value. In the figures the horizontal 
line always represents the target, which needs to be reached in order to fulfill the 
goals in the ‘Goal Definition’ section. Measurements below the target value indi-
cate an improvement exceeding the goals. It can be seen from figure 5, that the effi-
ciency of fault finding, and the effectiveness of fault handling could be improved 
beyond expectations. In the same time, the effectiveness indicator for fault finding, 
and the fault handling efficiency were stabilizing around the target line. Break-even 
for the BC (4) (GNIVas + GDas = COST6σ) was reached approximately six months 
after implementing the improvements. Since then the improved process generates 
yearly savings. 

7   Conclusion 

To reach higher competitiveness, the software development organizations increas-
ingly enter the GSD world. This opens new questions and challenges to the software 
engineering community. As already reported by many authors, communication, coor-
dination and control are the main challenges. This paper presents experiences and  
results of an improvement project executed within a GSD organization. The im-
provement project was based on the Six Sigma DMAIC methodology. The main focus 
was to increase process effectiveness and efficiency for FH in a GSD organization. 

The DMAIC method proved to be a useful tool to gather, analyze, stratify and pre-
sent non-existing data, and to combine it with existing corporate resources to generate 
a new view on exiting processes. The approach to use data sampling to create a fact 
base for argumentation with impacted organizations and practitioners proved to be a 
powerful tool to change and improve processes, which run largely unattended and 
without much supervision for many years. All project goals could be achieved, result-
ing in a significant cost reduction for FH in the GSD.  

References 

1. Aranda, G.N., Vizcaino, A., Cechich, A., Piattini, M.: Technology selection to improve 
global collaboration. In: 1st International Conference on Global Software Engineering, pp. 
223–232. IEEE Computer Society, Washington (2006) 

2. Barbagallo, D.: The challenges of managing a global software engineering capability: 
Theory to practice. In: 16th Australian Software Engineering Conference, p. 4. IEEE 
Computer Society, Washington (2005) 

3. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordination. In: 
Future of Software Engineering 2007, pp. 188–198. IEEE Computer Society, Washington 
(2007) 

4. Jonsson, N., Novosel, D., Lillieskold, J., Eriksson, M.: Successful management of com-
plex, multinational R&D projects. In: 34th Annual Hawaii International Conference on 
System Sciences, p. 8044. IEEE Computer Society, Washington (2007) 



406 D. Macke and T. Galinac 

5. Ribeiro, M.B., Czekster, R.M., Webber, T.: Improving productivity of local software de-
velopment teams in a global software development environment. In: 1st International Con-
ference on Global Software Engineering, pp. 253–254. IEEE Computer Society, Washing-
ton (2006) 

6. Binder, V.R.: Can a Manufacturing Quality Model Work for Software? IEEE Software, 
101–105 (1997) 

7. Crosby, P.B.: Quality is Still Free: Making Quality Certain in Uncertain Times. 
McGrow—Hill, New York (1996) 

8. Ishikawa, K.: Guide to Quality Control. White Plains, New York (1989) 
9. Juran, J.: Juran’s Quality Control Handbook. McGrow—Hill, New York (1999) 

10. Breyfogle, F.: Implementing Six Sigma. John Wiley & Sons, Hoboken (2003) 
11. Galinac, T., Car, Ž.: Software Verification Process Improvement Using Six Sigma. In: 

Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 51–64. Springer, 
Heidelberg (2007) 

12. Arul, K., Kohli, H.: Six Sigma for Software Application of Hypothesis Tests to Software 
Data. Sw. Quality J. 12, 29–42 (2004) 

13. Binder, V.R.: Six Sigma for Software. IEEE Software 20, 68–70 (2004) 
14. Briand, L.C., Emam, K.E., Morasca, S.: On the Application of Measurement Theory in 

Software Engineering. Empirical Sw. Eng. 1, 61–88 (1996) 
15. Eickelmann, N., Anant, A.: Statistical process control: What you don’t measure can hurt 

you! IEEE Softw. 20, 49–51 (2003) 
16. Komuro, M.: Experiences of applying SPC techniques to software development processes. 

In: 28th International Conference on Software Engineering, pp. 577–584. ACM Press, 
New York (2006) 

17. Cangussu, J.W., DeCarlo, R.A., Mathur, A.P.: Monitoring the software test process using 
statistical process control: a logarithmic approach. In: 4th joint meeting of the European 
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of 
Software Engineering, pp. 158–167. ACM Press, New York (2003) 



Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2008, LNCS 5007, pp. 407–419, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Measuring and Comparing the Adoption of Software 
Process Practices in the Software Product Industry 

Mikko Rönkkö1,2, Antero Järvi2, and Markus M. Mäkelä2 

1 University of Turku, Department of Information Technology, Joukahaisentie 3-5, 
20014 Turun yliopisto, Finland 

2 Helsinki University of Technology, Software Business Laboratory, Otaniementie 17, 
02015 TKK, Finland 

{Mikko.Ronkko, Antero.Jarvi, Markus.Makela}@utu.fi 

Abstract. Compatibility of agile methods and CMMI have been of interest for 
the software engineering community, but empirical evidence beyond case stud-
ies is scarce, which be attributed to the lack of validated measurement scales for 
survey studies. In this study, we construct and validate a set of Rasch scales for 
measuring process maturity and use of agile methods. Using survey data from 
86 small and medium-sized software product firms, we find that the use of agile 
methods and the maturity level of the firm are complementary in this sample. In 
addition to providing initial survey evidence of the compatibility of agile meth-
ods and process maturity, our study provides a set of validated scales that can 
be further refined and used in later survey studies. 

Keywords: CMMI, agile methods, XP, Scrum, software process improvement, 
survey research, Rasch model, scale development. 

1   Introduction 

Compatibility of agile methods and CMMI has been of interest for the software engi-
neering community: The contemporary software process research often discusses 
combining of agile methods and process maturity as an act of balancing [1]. However, 
while evidence exists that these approaches can be made to coexists with proper re-
searcher intervention [2-4], there is currently insufficient evidence on the inherent 
compatibility or conflict of agile approaches and disciplined methods, as is evident 
considering the number of opinions for [1, 5, 6] and against [7-9] their compatibility. 
Larger scale evidence beyond case studies is required as validating evidence, as is 
commonly used in more mature disciplines However, the lack of validated measure-
ment scales has limited the number of software engineering surveys [10]. 

In this paper, we construct and validate a scale that is relatively compact when 
compared to other existing scales [e.g. 11], and due to adhering to the stringent docu-
mentation requirements [10, 12, 13], can be refined and re-used in other survey stud-
ies. Moreover, applying these scales in the Finnish software product industry provides 
- although on an initial level - much needed large scale empirical evidence on the 
issue of compatibility and conflict of agile methods and process maturity. 

The paper is structured as follows: We will start by reviewing the existing research 
on process maturity and agile methods. Thereafter, the empirical study section  



408 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

explains our scale development and analysis approach, followed by data collection, 
and the results of statistical analyses. We conclude with a discussion of our results. 

1.1   Agile Software Development and Process Maturity 

Agile and plan-driven software development methods have distinct origins; agile 
development has its roots in the software developer camp while plan-driven methods 
are focused on controlling the complexity of large projects. They were initially - al-
beit perhaps somewhat falsely as will be discussed below - seen as alternative, con-
tradicting ways to develop software that are based on profoundly different values and 
principles. This dichotomy can be considered to be well-founded when agile methods 
are contrasted against full-fledged plan-driven software development methods. 

During the recent more than a decade CMMI has established itself as the leading 
software process improvement framework, and has consequently been often com-
pared with agile development approach [14]. When used in conjunction with plan 
driven methods CMMI can add more administrative overhead to the process. Agile 
methods were initially presented as an alternative to the increased overhead, and 
hence it is widely but somewhat falsely believed that agile software development and 
CMMI based processes are opposite ends of the same continuum. However it has 
been argued that agile methods and CMMI are more compatible and can coexist: 
Agile methods have proved very efficient and effective as team level software devel-
opment processes [4], while CMMI is a tool for organizational improvement, manag-
ing complexity and gaining consistency through the disciplined application of proven 
practices and processes. Thus the scope of agile methods is primarily the development 
team, whereas CMMI approaches are used at the organizational level. In our view, the 
key to successful co-existence of the two is complying with these scopes. In practice, 
CMMI can provide a framework for scaling up agile methods into the product devel-
opment level and implementing agile methods in a consistent manner, and provides 
the framework for putting the required supportive processes in place. On the other 
hand, agile methods can be used as a very efficient implementation of CMMI process 
areas in engineering and project management groups, yielding efficiency and adapta-
bility especially in smaller firms where coordination between development teams is 
not an issue. 

The topic of the compatibility of agile and more disciplined development methods 
has been approached from several perspectives. Valuable insights have been gained 
through case reports of companies that have adopted agile methods into traditional 
development organization [2], and of companies using agile development processes 
that have implemented CMMI, even up to maturity level 5 [15]. In general, the papers 
report challenges in the process, but eventually a clearly positive outcome indicating 
that the processes can be made to work. Similarly, agile process frameworks have 
been modified to fit the requirements of CMMI [16]. Numerous practitioner-oriented 
papers outline guidelines for bringing agile approaches into traditional organizations. 
The key contribution of this work is the identification of common pitfalls and con-
flicts while introducing an agile process, and suggestions for effective approaches for 
the transition are presented from the perspective of various roles in the organization 
[17] as well as from the viewpoints of development process, business process and 
people issues [3]. Some approaches use the situation at hand for tailoring the method 



 Measuring and Comparing the Adoption of Software Process Practices 409 

for a particular project. Examples include selecting the development method based on 
situation characteristics [18] and risk-based method [1] for adapting the process 
framework for a project according to its agile or plan-driven requirements. In addi-
tion, some authors have looked closely at the constituents of agile methods and 
CMMI, trying to identify compatible and incompatible areas using purely conceptual 
research methods. Rationalizing on these areas using general software engineering 
experience and expertise, they devise detailed guidance for the combing agile devel-
opment with CMMI framework [14].While there is a large number of non-empirical 
research and case studies, survey studies seem sparse limiting the statistical gener-
alizability of the results. For example, in a recent review paper by Bowers, Sangwan 
and Neill [19] identified only three survey studies investigating the use of XP prac-
tices in the industry. In contrast to the lack of large scale empirical evidence for the 
success of agile methods, strong evidence seems to exist for the positive performance 
effect of software process maturity [20-22]. However, a majority of the major studies 
focus on the use of the CMM family of models using appraisal data [cf., 23, 24]. This 
approach has one key weakness: CMM adoption and appraisals are primarily used by 
larger firms, due to the cost and effort required [25]. Hence the generalizability of 
these results outside the population of large project-centric firms can be called into 
question due to lack of data triangulation [26]. Finally, we are not aware of any stud-
ies comparing use of agile methods and the process maturity using survey data and 
statistical analysis, regardless of the requirement for alternative designs and larger 
datasets to establish validity of the results [13, 26]. 

2   Empirical Study 

This section explains our empirical scale development and subsequent application of 
the scales to test an implicit hypothesis about the compatibility of agile methods with 
process maturity. We structure our reporting of the research in a manner that is used 
for survey studies [e.g. 20] and complies with the guidelines for survey research in 
software engineering [10, 13]. We start by explain our scale development procedure 
and analysis approach, after which we present our data. The empirical section con-
cludes by presenting results in the form of descriptive and analytical statistics. 

2.1   Scale Development and Statistical Analysis Approach 

In this study we use the CMMI model as a benchmark for maturity and Scrum and XP 
process areas as surrogate constructs for agile methods. These frameworks were chosen 
due to the large amount of attention they have received compared to other alternatives. 

In survey studies such as this, the use of these different models is often measured 
with scales. Scale is a set of question or other measures that as an aggregate describe 
one particular trait or property of the subject that is being analyzed, and scaling refers 
to the process for calculating a one score describing the degree of the trait being 
measured [12]. Most commonly these scales consist of a set of Likert-type questions, 
which are analyzed as a summated scale: Each question consists of a statement and 
the informants’ task is to rate their degree of agreement with the statement. These 
ratings are converted to numbers (e.g. completely disagree =1, completely agree=7), 



410 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

and the score for the measured trait is established by calculating the sum of the nu-
meric values of the responses. While being simple and widely used, this approach has 
some weaknesses, of which most important is while summing treats all items in the 
scale as equal, in reality they might not be that [12, 27]. Consider a scale consisting of 
the CMMI key practice areas: Measuring process maturity construct with this scale 
should not only take into account how many practices are implemented, but that im-
plementing level 4 and level 5 items indicate significantly more mature process than 
implementing the same amount of level 2 and 3 practices. Due to this weakness of the 
summated scales approach, we decided to use Rasch scaling [27, 28], which has been 
designed to overcome the problem mentioned above. This method, which has been 
used in measuring software process in the information system research [29, 30], 
comes with the disadvantage of increased mathematical complexity and additional 
requirements for the structure of the data, as explained below. 

Rasch scaling takes in answers to a set of questions from numerous respondents, 
and establishes a difficulty measure for each and ability measure for each respondent 
based on which items each respondent has answered correctly. In this study the scal-
ing is used to establish scores indicating the adoption of several models (ability meas-
ures), and to establish in which order (difficulty measures) particular practices are 
adopted within the model. The method requires discrete data but does not pose any 
requirements for the distribution of the data. The only assumption is that the items are 
progressively more difficult indicators of one underlying measured dimension, thus 
having a probabilistic Guttman structure [27]. This scaling approach fits measuring 
software process maturity particularly well, since CMMI provides a recommended 
order of adoption for the different practices, and consequently, more advanced prac-
tices should indicate higher process maturity. 

The conformance of the data to the requirements of the scaling algorithm is com-
monly established by examining the scale and item reliability statistics as well as 
scale unidimensionality measures [27]. Ability and difficulty are measured on a logit 
scale, where the zero means the average difficulty or ability and moving one unit to 
positive direction means doubling of ability or difficulty. If ability and difficulty are 
equal, the respondent has a 50% chance of answering the item correctly. In other 
cases the odds of answering an item correctly can be calculated based on the differ-
ence of the item difficulty and organizational ability. For example, a respondent with 
ability of 2 has a 75% chance of answering an item with difficulty of 1 correctly, 
since the doubling of ability means that the likelihood of failure is decreased by one 
half. The scaling algorithm establishes the likelihoods of correct answer for each item 
respondent pair and proceeds to minimize the sum of squares of the differences be-
tween the likelihoods predicted by the model and actual performance of the respon-
dents. Readers interested in the mathematical and conceptual details of the scaling 
algorithm are encouraged to read the original paper by Rasch [28], the derivative 
work by Andrich [31], or a recent book by Fox and Bond [27]. Practical examples of 
the use of this analysis method in the context of software process are available in the 
work by Dekleva and Drehmer [29, 30]. 

In this study we generated and evaluated five Rasch scales. Three atomic scales 
were developed for the items indicating different CMMI key practice areas, XP prac-
tices, and Scrum practices. Two aggregate scales were developed – “agile” by com-
bining the items from the XP and Scrum scales and “combined” by combining the 



 Measuring and Comparing the Adoption of Software Process Practices 411 

items from CMMI scale with the items from XP and Scrum scales. Finally, we exam-
ine the correlations between these five scores for organizations measured using the 
developed five scales. In all, this analysis approach gives three sets of results: First, 
we can estimate the relative difficulty of each practice in the frameworks, or to assess 
in which order different practices are implemented. Second, using tests for scale 
unidimensionality, we can assess whether the items in the frameworks have an order 
of adaptation – as they should with CMMI and probably should not with agile meth-
ods. And third, the study enables us to evaluate the possible mutual dependencies 
between the evaluated frameworks. 

All scales were developed specifically for this study., warranting a detailed de-
scription of the development of the survey instrument [12, 13] While several survey 
instruments exist measuring adoption of CMMI key process areas [e.g. 11] and other 
software process models [e.g. 29], these were considered inappropriate to be used in 
this study. A key weakness in many of the preexisting scales is that they measure the 
degree of adoption of the software processes using binary items (not used – used) to 
measure the use of different processes. However, this dichotomous approach has a 
poor fit with the reality where different process areas are often first experimented 
with, then taken into use and finally institutionalized as processes. To remedy this 
problem, we decided to use seven point Likert scales to allow the respondents to rate 
to which degree statements applied to their organization. Due to the limitation of the 
original Rasch model to dichotomous items, we used the rating scale model, or the 
Rasch-Andrich model [31], departing from the other similar studies [29, 30]. 

Measuring general process maturity is often implemented through measuring the 
degree of fit between the development process and a particular framework – most 
commonly CMM. This approach has a key weakness: It fails to fully appropriate the 
part of processes maturity that is not directly covered by the framework used in the 
measurement. To remedy this problem, we use indicative rather than formative meas-
ures. That is, our items do not measure elements that constitute a good process, but 
general elements that reflect that such processes are instituted. In addition, using in-
dicative items has the advantage of reducing the effect of assumptions that the re-
spondents have on the use and goodness of the evaluated frameworks [32]. The 
weakness of this approach is that one item can act as an indicator for several process 
areas, but due to the large amount of items per scale, this does not cause problems to 
the overall validity of the study. 

The items for the three atomic scales were based on CMMI for Development, Ver-
sion 1.2 [33], XP practices as explained by Beck, [34] and Scrum practices as ex-
plained by Schwaber and Beedle [35]. To improve the generalizability of our findings 
outside product oriented software development, we decided to exclude the integrated 
product and process development (IPPD) additions to the CMMI. Initially this process 
resulted in the inclusion of 21 items for CMMI, 12 items for XP and 5 items for 
Scrum. Although these frameworks have overlap, especially in the more ‘common 
sense good practice’ sections, this is not an a problem since all models strive to im-
prove the same underlying dimension of software process capability, and our analysis 
method – the Rasch model – does not require items to be mutually independent. 

The initial descriptions for practices or key practice areas, adopted verbatim from 
the sources presented above, were considered too long to be included in the survey 
instrument and often were not clear enough to be understood by a person that is not 



412 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

familiar with the process areas. The items were iteratively reduced in length empha-
sizing what was important or at the core of the practice. Finally the items were trans-
lated to Finnish and tested for clarity with several persons from the industry and re-
worded for clarity. During this pretesting of the instrument ‘Continuous Integration’ 
XP practice was dropped due to insufficient discrimination between ‘Product Integra-
tion’ key practice area of CMMI. The final version of the exact wordings of the scales 
is reported in the appendix1. 

Scale was analyzed with the Winsteps 3.63.2 software package using survey data 
which is described in the next subsection. Recommendations by Bond and Fox [27] 
were followed for new scale development: Each scaling was performed twice as to first 
identify and eliminate problematic items and then subsequently repeating the scaling to 
establish the final measures. This resulted in elimination of four items falling outside the 
acceptable range of infit values between .7 and 1.4. In addition two items from the 
CMMI scale were eliminated due to notable conflict with the recommended order of 
adoption. This final elimination was performed to eliminate the effect of construct op-
erationalization bias, or the effect of badly formulated questions, from the final analyses, 
as is generally recommended when constructing new scales [27]. 

2.2   Data 

The scales were tested with a sample of firms in the Finnish software product indus-
try. Our data were collected as a follow up survey to the Finnish Software Product 
Industry Survey. The target population of this parent survey is all Finnish software 
product firms, which includes all firms with the NACE industry code 72.21 (Publish-
ing of software). More details on this population is available in the report of the par-
ent survey [36]. We use the respondents of the parent survey as a population of this 
study. Since this population is characterized by a large number of very small firms, 
which are not likely to provide useful data for measuring adoption of software proc-
esses, we decided to restrict the sampling frame of this study to include only firms 
with at least five employees. Moreover, we restricted our sampling frame to include 
only those firms that reported developing software products, excluding a small num-
ber of firms that mainly provided custom development. In all, 123 firms qualified for 
inclusion in our sampling frame. In the parent survey the CEO had nominated one 
person as a head of software development, and subsequently this second person was 
used as an informant for this study. 

Data collection was implemented following a modified version of the tailored survey 
design method [37]. The fact that a firm CEO had already responded was heavily lever-
aged when contacting the software development managers. We obtained a high re-
sponse rate via this approach: we received 86 usable responses, a response rate of 70%.  

In all, the amount of missing data due to omitting questions was small and since 
Rasch scaling can effectively accommodate small amounts of holes in the data, missing 
data analysis did not result in any actions. The possible biasing effect of nonresponse 
was tested using two different methods. First, we compared the means of control vari-
ables age, size, region and industry code, between early and late respondents using  

                                                           
1 The survey was implemented in Finnish and thus the appendix shows the translations of items 

in English.  



 Measuring and Comparing the Adoption of Software Process Practices 413 

t test. No significant differences were found. Second, we compared the sampling frame 
with the respondents. No differences were found in geographical location, industry 
code, age or size. Hence we conclude that non-response should not be a problem. 
However, the small size of the respondent firms in the sample probably limits the gen-
eralizability of the results: The mean number of personnel is only 33.0, and only seven 
firms employ more than 50 people. Descriptive statistics (means and standard devia-
tions) of the 37 Likert responses from 86 development organizations are presented in 
the appendix. 

2.3   Analysis and Results2 

Rasch scales were analyzed with the Winsteps 3.63.2 software package. Recommen-
dations by Bond and Fox [27] were followed for new scale development: Each scaling 
was performed twice as to first identify and eliminate problematic items and then 
subsequently repeating the scaling to establish the final measures. This resulted in 
elimination of four items falling outside the acceptable range of infit values between 
.7 and 1.4. In addition two items from the CMMI scale were eliminated due to notable 
conflict with the recommended order of adoption. This final elimination was per-
formed to eliminate the effect of construct operationalization bias, or the effect of 
badly formulated questions, from the final analyses, as is generally recommended 
when constructing new scales [27]. 

Table 1 shows the reliability statistics for the five estimated scales. In general, the 
CMMI and Combined scale show high reliability and the XP and Agile scales are on 
an acceptable level. The Scrum scale, however, does not reach the acceptable level of 
Cronbach’s alpha [38]. Nevertheless, all scores were used in the correlation analysis. 

Unidimensionality of the scales was estimated using principal component analysis 
of the residuals. This method first removes all variance explained by the Rasch model 
from the data and groups the remaining items based on the amount of shared residual 
variance resulting in several contrasts further explaining the covariance of the items. 
Unidimensionality was assessed by comparing the amount of explained variance and 
eigenvalue of the model with the corresponding values of the first principal contrast. 
All scales, excluding the Scrum scale, have a low ratio of principal contrast eigen-
value and model eigenvalue, indicating good level of unidimensionality. To under-
stand the nature of the weak multidimensionality of the scales, item loadings for the 
first contrast were examined for all scales. If the empirical loadings show a dimension 
that should be expected based on the existing theory of the relationships between the 
items, the confidence of the validity of the measures is increased. All loadings had 
feasible interpretations. 

Detailed results of the adoption of different practices compared to other practices 
are presented in the appendix in the form of item scores. The measures for items in 
the CMMI scale shows a good and even spread indicating good scale structure and the 
ability of the scale to accurately measure different levels of process maturity. The 
results suggest that levels 2 and 3 of the CMMI are adopted in a parallel manner: That 
is, the need for these process areas seems to arise simultaneously. Level 4, on the 
 

                                                           
2 More analysis results are available from the first author upon request. 



414 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

Table 1. Scale Reliability and Unidimensionality Measures 

Eigenvalue
Variance 
explained

Eigenvalue
Variance 
explained

CMMI .91 .98 40.9 56.90 % 3.7 5.10 %

XP .72 .98 16.5 64.70 % 1.7 6.70 %

Scrum .65 .90 7.4 59.80 % 1.8 14.10 %

Agile .77 .96 18.1 56.40 % 2.1 6.60 %

Combined .93 .97 40.9 56.90 % 3.7 5.10 %

1st  principal contrast
Scale

Cronbach’s 
alpha

Item 
reliability

Scale

 

other hand, represents a significant leap from the lower levels, and these practices are 
not widely adopted. Interestingly, all engineering process areas seem to be adopted 
relatively early and measurement related process areas later than suggested by CMMI 
model. Level 5 items appear earlier than expected, which can probably be attributed 
to error in operationalization. The difference of our empirical observation and the 
structure of the CMMI model is an interesting finding, since this study – in contrast to 
many prior studies – does not give the respondents any hints that the questions corre-
spond to the CMMI model, and hence the informants can give more valid data about 
the adoption of particular practices instead of attempting to perform a self assessment 
of how far in the CMMI model the organization has proceeded. 

On the XP scale, we can see that the items, which can be considered to be general 
good software development practices, are implemented earlier than practices that are 
more characteristically agile. Pair programming is rarely used and hence is scaled 
high. In all, the natural order of the agile methods is present, but not as significantly 
as with the CMMI model. 

Second part of the analysis consisted of calculating the correlations between scores 
for organizations on the different scales and control variables for the age and size of 
using Intercooled Stata 8.2. Prior to analyzing correlations, Harman’s single factor 
test [32] was performed to assess the possible biasing effect of common method vari-
ance. Principal factor analysis of all the items resulted in one dominant factor which 
accounted for 43% of variance indicating a significant amount of bias. As a remedy, 
we calculated a summated scale of all the items and calculated partial correlations 
controlling for this newly formed measure, and compared these values to the non-
controlled correlations.  

Table 2 shows the correlations and partial correlations for the measures and Figure 
1 illustrates the graphical dependency of use of the different models. The strong and 
significant correlations in the correlation table can be a sign of two issues: there can 
be a problem with common method variance as discussed earlier or the process areas 
can be linked. Due large effects sizes, our interpretation of this data is that agile 
methods and CMMI model share a link in the data: CMMI in general and our scale in 
particular does not indicate what specific development practices are used, and in this 
data it seems that several firms are implementing processes through the agile para-
digm, which leads to the increased process maturity, which is then indicated by our 
 



 Measuring and Comparing the Adoption of Software Process Practices 415 

Table 2. Correlations and partial correlations between measures 

1 CMMI -.08   -.33 ★★ -.27 ★ .43 ★★ .22 ★ .12   

2 XP .67 ★★ .26 ★ .85 ★★ .68 ★★ -.05   -.23 ★ 

3 Scrum .47 ★★ .54 ★★ .69 ★★ .40 ★★ .06   .01   

4 Agile .67 ★★ .91 ★★ .83 ★★ .69 ★★ .01   -.15   

5 Combined .94 ★★ .83 ★★ .66 ★★ .87 ★★ .12   -.08   

6 Age .16   .01   .10   .05   .13   .23 ★ 

7 Size .16   -.14  .09  -.05  .09  .23 ★ 

Lower diagonal shows correlations, upper diagonal partial correlations.

Two-tailed tests of significance.  † = p<.10, ★ = p<.05, ★★= p<.01 

7Variable 1 62 3 4 5

 

-2 0 2

-1

0

1

2

-1 0 1 2

-1

0

1

2

-1 0 1 2
-2

0

2

4

CMMI Agile XP 

A
gi

le
 

X
P 

Sc
ru

m
 

 

Fig. 1. Scatter plot matrix of scores for organization on the scales 

CMMI scale. The presence of high maturity organizations with low agile methods 
scores, but absence of highly agile but low maturity firms in the upmost scatter plot in 
Figure 1 supports this interpretation. 

3   Discussion and Conclusions 

This study has implications for both research and practice. For research, we report the 
development of scales for measuring process maturity and the use of agile methods. 
 



416 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

Particularly the CMMI scale – although clearly suffering from some poorly opera-
tionalized items – seems robust and valid to be used in further studies of the software 
process. While our study used Rasch scaling, this does not limit the further use of 
these items as a summated scale. For further studies, we recommend either using the 
scale as a whole, or choosing a set of items with fit values close to one and selecting 
items having an even spread of difficulty measures across the scale. 

For practice, our data show that the practices indicative to CMMI process areas 
seem to have a natural order of adoption that aligns with the intended order, regard-
less of whether the model is explicitly used for software process improvement in the 
organizations, with the exception that process areas belonging to levels two and three 
seem to be adopted in parallel. However, the construct validity of our measurement 
approach does not allow us to draw any deeper conclusions about the order of the 
items. Our research serves primarily as a scale development study, and the results 
obtained with these scales should be considered currently as initial, and require fur-
ther validation. Finally, our data show the complementary nature of the CMMI model 
and agile development methods, which is evident when examining Figure 1: the 
measured level of CMMI seems to always be higher than the measured level of use of 
agile methods. One plausible explanation for this is that the good software develop-
ment practices codified in the agile frameworks, if properly implemented, will take 
smaller development organizations a long way towards maturity levels two and three. 
However, due to exploratory nature of correlation analysis, this should be only con-
sidered as one possible explanation. 

Our study context of small software product firms can be considered both a limita-
tion and a merit. Most previous software engineering surveys have targeted large 
development organizations [cf., 23, 24]. While software processes certainly differ in 
large and small development organizations [39], the choice of population limits the 
generalizability of the findings of this study, but broaden the generalizability of the 
software process research in general by focusing on a segment largely neglected in 
previous survey studies thus providing data triangulation [26]. 

While our sample size and degree of conformance to reporting guidelines [13] can 
be argued to be at or above par to the other survey studies indentified in the literature 
review, our study is not without limitations. In this study, we set out to develop a 
measurement scale to assess the level of process maturity using only one question per 
key process area to enable construction of more compact survey instrument. Although 
we attempted to follow good scale development practices, some items in our scale 
probably have poor construct validity. That is, they measure too narrowly the extent 
of corresponding process area implementation. On hindsight, to measure something as 
complex as CMMI structurally, more items per key practice area are clearly needed. 
However, if one wishes to measure the maturity of the software process in general, 
adopting the items with the least amounts of error and misfit from our study probably 
provides a good basis for further scales. On the content side, our study is probably one 
of the first ones statistically examining the adoption of CMMI and agile methods. We 
found that process areas on the CMMI levels two and three seem to be adopted in 
parallel, and seem to be supported by the use of agile methods. This is an interesting 



 Measuring and Comparing the Adoption of Software Process Practices 417 

finding that should be studied further, not least due to this being a common process 
combination for a lot of smaller software product firms. 

References 

1. Boehm, B., Turner, R.: Using risk to balance agile and plan-driven methods. Computer 36, 
57–66 (2003) 

2. Baker, S.W.: Formalizing agility: an agile organization’s journey toward CMMI accredita-
tion. In: Agile Conference, Proceedings, pp. 185–192 (2005) 

3. Boehm, B., Turner, R.: Management challenges to implementing agile processes in tradi-
tional development organizations. IEEE Software 22, 30–39 (2005) 

4. Salo, O., Abrahamsson, P.: Integrating agile software development and software process 
improvement: a longitudinal case study. In: International Symposium on Empirical Soft-
ware Engineering, pp. 187–196 (2005) 

5. Merisalo-Rantanen, H., Tuunainen, T., Rossi, M.: Is extreme programming just old wine 
in new bottles: A comparison of two cases. J. Database Manage. 16, 41–61 (2005) 

6. Paulk, M.C.: Extreme programming from a CMM perspective. IEEE Software 18, 19–26 
(2001) 

7. Boehm, B.: Get ready for agile methods, with care. Computer 35, 64–69 (2002) 
8. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, I., Slaughter, S.: Is Internet-speed 

software development different? IEEE Software 20, 70 (2003) 
9. Murru, O., Deias, R., Mugheddu, G.: Assessing XP at European Internet Company. IEEE 

Software 20, 37–43 (2003) 
10. Kitchenham, B.A., Pfleeger, S.L.: Principles of survey research: part 3: constructing a sur-

vey instrument. SIGSOFT Softw. Eng. Notes 27, 20–24 (2002) 
11. Zubrov, D., Hayes, W., Siegel, J., Goldenson, D.: Maturity Questionnaire. Software Engi-

neering Institute, Pittsburgh (1994) 
12. DeVellis, R.F.: Scale development theory and applications. Sage, Thousand Oaks (2003) 
13. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, 

K., Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. 
IEEE Transactions on Software Engineering 28, 721–734 (2002) 

14. Turner, R., Jain, A.: Agile meets CMMI: Culture clash or common cause? In: Proc. EX-
treme Programming and Agile Methods-XP/Agile Universe 2002, pp. 153–165 (2002) 

15. Sutherland, J., Jacobson, C.: Scrum and CMMI Level 5: A Magic Potion for Code Warri-
ors! In: Agile 2007, Washington, DC, IEEE, Los Alamitos (2007) 

16. Anderson, D.J.: Stretching Agile to fit CMMI Level 3. In: Agile Development Conference 
(ADC 2005), pp. 193–201 (2005) 

17. Cohn, M., Ford, D.: Introducing an agile process to an organization. Computer 36, 74–78 
(2003) 

18. Cockburn, A.: Selecting a project’s methodology. Software, IEEE 17, 64–71 (2000) 
19. Bowers, A.N., Sangwan, R.S., Neill, C.J.: Adoption of XP Practices in the Industry–A 

Survey. Software Process Improvement and Practice 12, 283–294 (2007) 
20. Jiang, J.J., Klein, G., Hwang, H.G., Huang, J., Hung, S.Y.: An exploration of the relation-

ship between software development process maturity and project performance. Informa-
tion & Management 41, 279–288 (2004) 

21. Agrawal, M., Chari, K.: Software effort, quality, and cycle time: A study of CMM level 5 
projects. IEEE Transactions on Software Engineering 33, 145–156 (2007) 



418 M. Rönkkö, A. Järvi, and M.M. Mäkelä 

22. Galin, D., Avrahami, M.: Are CMM program investments beneficial? Analyzing past stud-
ies. IEEE Software 23, 81–87 (2006) 

23. Harter, D.E., Krishnan, M.S., Slaughter, S.A.: Effects of process maturity on quality, cycle 
time, and effort in software product development. Management Science 46, 451–466 
(2000) 

24. Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M.: Software quality and the 
Capability Maturity Model. Communications of the Acm 40, 30–40 (1997) 

25. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory 
study of why organizations do not adopt CMMI. Journal of Systems and Software 80, 
883–895 (2007) 

26. Miller, J.: Triangulation as a basis for knowledge discovery in software engineering. Em-
pirical Software Engineering (in press) 

27. Bond, T.G., Fox, C.M.: Applying the Rasch model fundamental measurement in the hu-
man sciences. Lawrence Erlbaum Associates Publishers, Mahwah (2007) 

28. Rasch, G.: Probabilistic Models for Some Intelligence and Attainment Tests. Danmarks 
Pædagogiske Institut, Copenhagen (1960) 

29. Dekleva, S., Drehmer, D.: Measuring software engineering evolution: A rasch calibration. 
Information Systems Research 8, 95–104 (1997) 

30. Drehmer, D.E., Dekleva, S.M.: A note on the evolution of software engineering practices. 
Journal of Systems and Software 57, 1–7 (2001) 

31. Andrich, D.: Rating formulation for ordered response categories. Psychometrika 43, 561–
573 (1978) 

32. Lindell, M.K., Whitney, D.J.: Accounting for common method variance in cross-sectional 
research designs. Journal of Applied Psychology 86, 114–121 (2001) 

33. Software Engineering Institute: CMMI® for Development, Version 1.2. Software Engi-
neering Institute, Pittsburgh, PA (2006) 

34. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Pub. Co., 
Reading (1999) 

35. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, 
Englewood Cliffs (2001) 

36. Rönkkö, M., Eloranta, E., Mustaniemi, H., Mutanen, O.-P., Kontio, J.: Finnish Software 
Product Business: Results of National Software Industry Survey 2007. Helsinki University 
of Technology, Espoo, Finland (2007) 

37. Dillman, D.A.: Mail and internet surveys the tailored design method. Wiley, Hoboken 
(2007) 

38. Nunnally, J.C., Bernstein, I.H.: Psychometric Theory. McGraw-Hill Book, New York 
(1994) 

39. Strigel, W.: In software processes, organization size matters. IEEE Software 24, 55–57 
(2007) 



 Measuring and Comparing the Adoption of Software Process Practices 419 

Appendix: Items, descriptive statistics, and results of Rasch scaling 

Item Mean S.D. S.E.
Infit 
M.S.

Outfit 
M.S.

We deal with programming errors by looking for their fundamental causes from our own ways of 
working. (CAR)

4.13 1.24 .47 .09 1.19 1.19

We use a version management system. (CM) 6.19 1.58 -1.31 a .12 2.75 2.43
We make the more important decisions concerning software development by comparing 
alternatives by using predefined criteria. (DAR)

4.24 1.43 .38 .09 .87 .95

We use metrics when monitoring the progress and efficiency of our software development. (MA) 3.33 1.50 .94 b .09 .92 .94

We continuously innovate and develop our software development processes to better support our 
business. (OID)

4.88 1.40 -.19 b .10 .71 .72

We maintain a collection of the methods and tools of software development that we have used. 
(OPD)

4.97 1.70 -.27 .10 1.20 1.18

We develop our software process by analyzing strengths, weaknesses, and development 
opportunities. (OPF)

4.28 1.45 .36 .09 1.01 1.02

We monitor our software development process and product quality by metrics. (OPP) 3.14 1.50 1.14 .09 .94 .94

We train software developers according to an existing training plan. (OT) 3.31 1.65 .97 .09 1.14 1.10
During software development, we continuously focus on the integration of our software 
components. (PI)

5.38 1.36 -.58 .11 .80 .79

We monitor the realization of our software development plans and react to deviations with 
corrective procedures. (PMC)

4.80 1.31 -.04 .10 .82 .80

We design a proper project plan for our larger software development projects. (PP) 5.62 1.42 -.76 .11 1.13 1.15

We monitor the quality of our software and software development process. (PPQA) 5.02 1.55 -.22 .10 .95 .95

We use numerically-measurable quality and productivity goals in the operative management of 
software development. (QPM)

2.94 1.64 1.25 .09 1.00 .97

We create a requirements document for a product or a component that we develop. (RD) 4.79 1.72 -.03 a .09 1.48 1.52

We maintain a real-time account of all requirements for the software we develop. (REQM) 4.69 1.72 .05 .10 1.14 1.10

We monitor the risks of software development projects and otherwise carry out risk management 
operations. (RSKM)

3.76 1.67 .69 .09 1.10 1.14

When subcontracting, we actively monitor the progress of the subcontractor. (SAM) 3.13 2.95 -.58 .14 1.34 1.35

When developing a software component, we evaluate alternative solutions and pursue 
reusability. (TS)

5.76 1.19 -.99 .11 .80 .84

We evaluate the suitability of a software solution for the task that has been planned for it to 
perform. (VAL)

6.10 0.95 -1.32 .12 .87 .81

We evaluate the correspondence of the functioning and definition of the parts of the software 
solution being developed. (VER)

5.38 1.20 -.54 .10 .78 .76

We use use cases as the primary tools to define our software. (The Planning game) 4.51 1.49 .08 .09 .89 .83
We do a simple, funcitonal system and later add more features incrementally. (Small Releases) 5.13 1.24 -.41 .10 .74 .75

We strive to ensure that all developers understand the structure and functions of the software 
(Metaphor)

5.22 1.48 -.44 .10 1.05 1.03

We create unit tests for each new feature that is implemented.  (Testing) 4.34 1.64 .18 .09 1.28 1.34
We keep the software we develop as simple as possible. (Simple Design) 5.04 1.35 -.30 .09 .94 .96
We constantly improve - refactor - the existing source code. (Refactoring) 4.80 1.22 -.12 .09 .74 .82
Programming is performed by two developers working as a pair with one computer. (Pair 
Programming)

2.08 1.37 1.66 .11 1.30 1.19

We do not name responsible persons for each part of the software, but the code is shared and any 
developer can edit any part of the software. (Collective Ownership)

3.67 2.03 .42 a .08 1.44 1.42

Our developers work overtime for several consequtive weeks. (Reverse coded) (Sustainable pace) 2.73 1.59 -.39 a .09 1.71 1.88

Our developers are in close contact with the users. (Onsite Customer) 4.63 1.57 .00 .09 1.25 1.26
We use common standards and style guides when editing the source code. (Coding Standards) 5.40 1.32 -.64 .10 .91 .90

Software development is done in small independent teams. 5.61 1.65 -.56 .11 1.51 1.41
Software development is managed usign constantly updated lists of tasks and feature requests. 4.75 1.63 .17 .08 .89 .85

Our software development projects are divided into relatively short development periods durign 
which development team is isolated from the environment.

4.31 1.75 .39 .08 .73 .71

We use weekly meetings to which all developers participate. 5.00 1.83 -.02 .08 1.39 1.41
Software development is organized into short iterations which include designing, programming 
and testing activities.

5.01 1.52 .02 .08 .73 .69

Descriptives Rasch results
Mea-
sure

C
M

M
I

X
P

Results of scaling are reported for independent scalings of each framework. Statistics for dropped items are from the initial scaling. All other 

S
cr

um

a Dropped due to large infit mean square.
b Dropped due to poor content validity.
All items are anchored as 1=never, 7=always, and 0=does not apply. 'Does not apply' is processed as missing data.

 



Author Index

Ågerfalk, Pär J. 1
Al-Emran, Ahmed 269
Aranha, Eduardo 282
Armbrust, Ove 160
Azzeh, Mohammad 123

Baker, Daniel 210
Bannerman, Paul L. 12
Boehm, Barry 198, 210
Borba, Paulo 282
Burton, John 24

Carrington, David 222
Chen, Guisheng 135
Colla, Pedro E. 36
Coulette, Bernard 186
Cowling, Peter 123

Debari, Junya 51
Dong, Fei 63

Elrawas, Oussama 210

Fabbrini, Fabrizio 357
Feng, Zaiwen 88
Fitzgerald, Brian 1
Fusani, Mario 357

Galinac, Tihana 395
Garousi, Vahid 294
Gong, Ping 88
Gou, Lang 369

He, Keqing 88
He, Mei 381
Hihn, Jairus 210
Hirayama, Masayuki 51
Holmström Olsson, Helena 1
Hou, Lishan 135
Huo, Ming 173

Järvi, Antero 407
Jeffery, Ross 112, 173, 333
Jiang, Nan 369

Kabbaj, Mohammed 186
Kajko-Mattsson, Mira 234

Kapur, Puneet 269
Katahira, Masafumi 160
Khosrovian, Keyvan 294
Kikuchi, Nahomi 51
Kikuno, Tohru 51
Kitchenham, Barbara 345

Lami, Giuseppe 357
Lbath, Redouane 186
Li, Huaizhang 307
Li, Juan 63, 100, 135, 307
Li, Mingshu 63, 100, 369, 381
Li, Yin 100
Liu, Dapeng 307
Lum, Karen 210

Ma, Yutao 88
Macke, Dirk 395
Madachy, Raymond 198, 210
Mahrin, Mohd Naz’ri 222
Mäkelä, Markus M. 407
McCaffery, Fergal 24
Menzies, Tim 210
Miyamoto, Yuko 160
Mizuno, Osamu 51
Montagna, Jorge Marcelo 36
Münch, Jürgen 160, 257

Nakao, Haruka 160
Neagu, Daniel 123
Nyfjord, Jaana 234

Ó Conchúir, Eoin 1
Ocampo, Alexis 160, 257

Pfahl, Dietmar 269, 294, 345

Qin, Zhongsen 135

Raffo, David 320
Richardson, Ita 24
Rolland, Colette 10
Rönkkö, Mikko 407
Ruhe, Guenther 269
Rungratri, Suwanit 76



422 Author Index

Setamanit, Siri-on 320
Shen, Beijun 246
Sivera, Edoardo 357
Soto, Mart́ın 257
Staples, Mark 112
Strooper, Paul 222

Usanavasin, Sasiporn 76

Wang, Jian 88
Wang, Qing 135, 307, 369, 381
Wang, Yongji 147

Xiao, Junchao 147, 307

Yang, Ye 63, 100, 147, 369, 381

Ye, Kai 381

Yuan, Jun 369

Zhang, He 173, 333, 345

Zhang, Shen 147

Zhao, Yuzhu 63

Zhu, Liming 112, 333


	Title Page
	Preface
	Organization
	Table of Contents
	Benefits of Global Software Development: The Known and Unknown
	Introduction
	Challenges of GSD
	Assumptions Made About GSD

	The ‘Known’ Benefits of GSD
	Cost Savings
	Access to Large Multi-skilled Workforces
	Reduced Time to Market
	Proximity to Market and Customer

	The ‘Unknown’ Benefits of GSD
	Organizational Benefits
	Team Benefits
	Process/Task Benefits

	Conclusions
	References

	Method Engineering: Towards Methods as Services
	References

	Macro-processes Informing Micro-processes: The Case of Software Project Performance
	Introduction
	Current Explanations
	Reframing the Problem
	Contributing Theory
	Resource-Based View and Organizational Capabilities
	Organizational Learning
	Learning and Capability Development Barriers

	Alternative Explanation
	Illustration
	Discussion and Conclusion
	References

	Improving Software Risk Management Practices in a Medical Device Company
	Introduction
	Medical Device Regulation
	Risk Management in Software

	Overview of RMCM
	Research Methodology
	Action Research
	Data Collection and Analysis

	Evaluation of the RMCM
	Safety Pre-production
	Safety Post-production
	Requirements Changes
	Training
	Lifecycle Phases for Software RM

	Discussion
	Changes to the RMCM
	Changes to the Company’s Procedures

	Conclusion
	References

	Framework to Evaluate Software Process Improvement in Small Organizations
	Introduction
	Process Improvement Framework

	Investment Modeling
	Implementation Costs
	On-going Returns
	Investment Analysis
	Other Investment Critical Factors
	Opportunity Cost

	Model Execution
	Organization Size Sensitivity
	Investment Horizon Sensitivity
	Appraisal Cost Sensitivity
	Cost per Engineer Sensitivity
	Opportunity Cost Sensitivity
	Limitations and Further Work

	Conclusions
	References

	On Deriving Actions for Improving Cost Overrun by Applying Association Rule Mining to Industrial Project Repository
	Introduction
	The Proposed Approach
	Industrial Project Repository in Japan
	Analysis by Association Rule Mining (Phase 1)
	Association Rule Mining
	Outline of Analysis
	Analysis for Cost Overrun
	Analysis for Project Improvement

	Case Study: Application to Actual Development
	Result of Analysis (Step 0 -- Step 3)
	A Case Study from Result of Analysis (Phase 1 -- Phase 4)

	Related Works
	Conclusion

	Software Multi-project Resource Scheduling: A Comparative Analysis
	Introduction
	An Overview of Multi-projects Resource Scheduling Methods
	A Comparison Framework
	Comparison Results and Analysis
	Value Orientation
	Centralization
	Homogeneity
	Complexity
	Uncertainty
	Executive Ability

	Discussion and Conclusion
	References

	Project Assets Ontology (PAO) to Support Gap Analysis for Organization Process Improvement Based on CMMI v.1.2
	Introduction
	CMMI v.1.2 Model
	Related Works
	Project Assets Ontology(PAO)
	PAO for CMMI Gap Analysis
	Concluding Remarks and Future Work

	Towards Individualized Requirements Specification Evolution for Networked Software Based on Aspect
	Introduction
	Requirements Evolution Modeling of NS
	RGPS: Meta-models of Domain Modeling Framework for NS
	Requirements Evolution Modeling Based on RGPS

	Inducement for Individualized Requirements Evolution
	Description Model for Evolutionary Requirements Specification
	Brief Introduction of OWL-S and Aspect-Oriented Programming
	OWL-${{\rm S}^{\rm A}}$: Describing the Evolutionary Requirements
	A Case Study

	Process of Requirements Evolution Modeling
	Related Works
	Conclusions
	Reference

	Requirement-Centric Traceability for Change Impact Analysis: A Case Study
	Introduction
	The Model and Application of RCT
	Interdependency Modeling
	Trace Detection
	Impact Analysis
	Decision Making

	Quantitative Change Impact Analysis
	Construct Requirement Interdependency
	Establish the Requirement Traceability Automatically
	Change Impact Analysis
	Details in Change #10: Modify {\it Version Management}
	Discussion

	Related Work
	Conclusion and Future Work
	References

	Scaling Up Software Architecture Evaluation Processes
	Introduction
	Motivation and Background
	Evaluation Process for Rule-Centric Architecture (EPRA)
	Adapt Architecture Analysis Process Components for Rule-Centric Architecture
	EPRA

	Case Study
	LIXI Reference Architecture Evaluation Using EPRA

	Discussion
	Conclusion
	References

	Software Project Similarity Measurement Based on Fuzzy C-Means
	Introduction
	Related Works
	Fuzzy C-Means Clustering
	Software Project Similarity Approach
	The First Approach
	The Second Approach
	Project Similarity Properties

	The Dataset
	Results and Discussion
	Conclusions
	References

	An Empirically–Based Process to Improve the Practice of Requirement Review
	Introduction
	Problem Description
	The Role-Based Requirement Review Process
	Establish O-RQC
	Specify Multi-role RQC
	Review
	Calculate and Analyze Review Result

	Case Study
	Study Design
	Data Collection and Analysis
	Discussion

	Conclusion
	References

	Capability Assessment of Individual Software Development Processes Using Software Repositories and DEA
	Introduction
	Related Work
	Software Repositories
	Data Envelopment Analysis

	Approach Overview
	Metric Extraction
	Capability Assessment Model

	Experimental Results and Analysis
	Conclusions
	References

	Scoping Software Process Models - Initial Concepts and Experience from Defining Space Standards
	Introduction
	Requirements for Software Process Scoping
	Initial Solution
	Case Study
	Process Scoping in the Aerospace Domain
	Experiences

	Related Work
	Conclusions and Outlook
	References

	Detection of Consistent Patterns from Process Enactment Data
	Introduction
	Related Work and Background
	Related Work
	Preliminaries

	Process Recovery Approach
	Phase 1: Process Representation
	Phase 2: Data Pre-processing
	Phase 3: Process Mining Approach
	Phase 4: Measurement of Outcomes

	Case Study
	Case Study Background
	Results of Consistency
	Summary of Detected Problems and Findings

	Discussions and Comparison with Previous Work
	Conclusion and Future Work
	References

	A Deviation Management System for Handling Software Process Enactment Evolution
	Introduction
	Software Process Deviation Problem
	Consistency of Supported Software Processes
	Concepts of Deviation and Inconsistency
	Dealing with Process Deviation
	Related Works

	Proposed Approach
	Modeling Process Models
	Process Enactment Engine
	Monitoring System
	Detecting Deviation System
	Deviation-Tolerance Model
	Deviation Management System

	Implementation
	Conclusion and Perspectives
	References

	Assessing Quality Processes with ODC COQUALMO
	Introduction
	COQUALMO Background
	ODC Extension
	ODC COQUALMO and Risk Minimization

	ODC COQUALMO Tools
	Dynamic Simulation Model

	Conclusions and Future Work
	References

	Accurate Estimates without Calibration?
	Introduction
	Related Work
	STAR
	Experiments
	Discussion
	Conclusion

	Investigating Factors Affecting the Usability of Software Process Descriptions
	Introduction
	Software Process Descriptions
	Usability Factors Investigation and Results
	Potential Factors from Literature Reports
	Potential Factors from Exploratory Survey
	Potential Factors from Software Engineering Process Metamodels

	Software Process Descriptions Comparative Review
	The Comparative Review Criteria
	Selected Software Process Descriptions
	Software Process Descriptions Comparison

	Implications of the Study and Conclusions
	References

	Degree of Agility in Pre-Implementation Process Phases
	Introduction
	Research Method
	The Process Model
	Product Vision Planning
	Product Roadmap and Release Planning
	Iteration Planning

	Status within the Organizations Studied
	Product Vision Planning
	Product Roadmap and Release Planning
	Iteration Planning

	Comparison of Synthesized Model and the Industrial Practice
	Final Remarks
	References

	Support IT Service Management with Process Modeling and Analysis
	Introduction
	Related Work
	Our Approach
	Identify Core Processes for the Domain
	Establish the Scope of Applicability
	Define the Processes
	Automate and Execute the Processes
	Analyze the Process Model and Identify Improvement Opportunity

	Case Study
	Background of the Case Project
	As-is Analysis
	To-be Process
	Process Execution and Evaluation

	Conclusion and Future Work
	References

	The Secret Life of a Process Description: A Look into the Evolution of a Large Process Model
	Introduction
	The German V-Modell® XT and the History of Its Evolution
	Analyzing the Evolution of a Process Description
	An Exploratory Look into a Process Description's Evolution
	Complexity Over Time
	Distribution of Changes Over Time and Over the Model
	Changes in Detail

	Related Work
	Summary and Future Work
	References

	Simulating Worst Case Scenarios and Analyzing Their Combined Effect in Operational Release Planning
	Introduction and Motivation
	Related Work
	The Operational Release Planning Problem – Problem Statement and Three Related Research Questions
	Problem Statement
	Research Questions Studying the Impact of Uncertainty

	The Proposed Approach
	The Simulation Model and Integrated Heuristic
	The Method

	Case Study
	Case Study Data
	Case Study Results
	Relevance of Results

	Threats to Validity
	Summary and Conclusions
	References

	Using Process Simulation to Assess the Test Design Effort Reduction of a Model-Based Testing Approach
	Introduction
	Test Design Processes
	Manual Test Design
	Automated Test Design

	Assessment of Effort Reduction Using Processes Simulation
	Simulation Models
	Simulation Results

	Advantages and Drawbacks of This Approach
	Related Work
	Conclusions
	References

	GENSIM 2.0: A Customizable Process Simulation Model for Software Process Evaluation
	Introduction and Motivation
	Related Work
	The GENSIM 2.0 Model
	Generic Process Structures (Macro-patterns)
	Model Implementation
	Model Parameters
	Model Calibration

	Model Application
	Scenario 1
	Scenario 2

	Discussion
	Conclusions and Future Work
	References

	RVSim: A Simulation Approach to Predict the Impact of Requirements Volatility on Software Project Plans
	Introduction
	The RVSim Approach
	Requirements Traceability/Dependency Repository
	Requirements Change Event Generator
	Requirements Change Event Routines

	Case Study
	Related Work
	Conclusions and Future Work
	References

	Identifying Key Success Factors for Globally Distributed Software Development Project Using Simulation: A Case Study
	Introduction
	Research Objectives
	Organization of the Paper

	Methodology
	A Simulation Model as an Experimentation Platform
	Experimental Design or Design of Experiment (DOE)
	Sensitivity Analysis

	A Case Study
	Case Study Overview
	Identifying Key Success Factors
	Quantifying Key Success Factors
	Future Work

	Conclusion
	References

	Hybrid Modeling of Test-and-Fix Processes in Incremental Development
	Introduction
	Hybrid Simulation Modeling
	Previous Hybrid Modeling Approaches
	Flexible Hybrid Modeling Scheme

	Background
	Incremental Development
	Software Quality Conceptual Model
	Related Models

	Modeling Incremental Development Process
	Sub-model of Design-and-Implement Phase
	Sub-model of Test-and-Fix Phase
	Integration

	Case Example
	Baseline Project
	Simulated Process Change

	Conclusion
	Reference

	Reflections on 10 Years of Software Process Simulation Modeling: A Systematic Review
	Background
	Systematic Literature Review
	Method
	Research Questions
	Search Process
	Inclusion and Exclusion Criteria
	Study Classification
	Quality Assessment
	Data Extraction

	Results
	Primary Studies
	Classification
	Quality Assessment

	Discussions
	Purposes for SPSM (Q1)
	Modeling Paradigms (Q2)
	Simulation Tools (Q3)
	Problem Domains and Model Scope (Q4)
	Other Categories

	Conclusions and Future Work
	References

	Integrating Joint Reviews with Automotive SPICE Assessments Results
	Introduction
	Controlling Software Suppliers in the Practice
	Joint Reviews
	Software Process Assessments

	Capability Determination vs. Project Performance
	Integrating Joint Reviews and Software Process Assessments
	A Pilot Initiative at Fiat Group Automobiles

	Conclusions and Future Works
	References

	Quantitatively Managing Defects for Iterative Projects: An Industrial Experience Report in China
	Introduction
	Challenges of Defect Management in Iterative Development
	Related Work
	BiDefect Method
	PPBs
	iDRE Model
	Fixing Model

	Experience Result of BiDefect
	Initial Estimation from PPBs
	Quantitative Defect Management for Each Iteration Using iDRE
	Quantitative Defect and Fixing Management for System Testing Using Fixing
	Discussion

	Conclusions
	References

	An Investigation of Software Development Productivity in China
	Introduction
	Motivation and Goals of the Investigation
	Related Work on Software Productivity
	Overview of CSBSG Database
	Research Questions

	Analysis Results
	Productivity by Organization (RQ1)
	Productivity by Development Type (RQ2)
	Productivity by Business Area (RQ3)
	Productivity by Region (RQ4)
	Productivity by Language (RQ5)
	Productivity by Team Size (RQ6)
	Productivity by Project Size (RQ7)

	Conclusions
	Reference

	Optimized Software Process for Fault Handling in Global Software Development
	Introduction
	Research Framework
	Approach to Improvements
	Goal Definition
	Definitions

	Data Collection and Analysis
	Optimized Fault Handling
	Results of the Optimized Process Implementation
	Conclusion
	References

	Measuring and Comparing the Adoption of Software Process Practices in the Software Product Industry
	Introduction
	Agile Software Development and Process Maturity

	Empirical Study
	Scale Development and Statistical Analysis Approach
	Data
	Analysis and ${Results^2}$

	Discussion and Conclusions
	References

	Author Index



