
Evaluation of OpenMP Task Scheduling
Strategies

Alejandro Duran, Julita Corbalán, and Eduard Ayguadé

Barcelona Supercomputing Center
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona, 1-3, Barcelona, Spain
{aduran,juli,eduard}@ac.upc.edu

Abstract. OpenMP is in the process of adding a tasking model that al-
lows the programmer to specify independent units of work, called tasks,
but does not specify how the scheduling of these tasks should be done
(although it imposes some restrictions). We have evaluated different
scheduling strategies (schedulers and cut-offs) with several applications
and we found that work-first schedules seem to have the best perfor-
mance but because of the restrictions that OpenMP imposes a breadth-
first scheduler is a better choice to have as a default for an OpenMP
runtime.

1 Introduction

OpenMP grew out structured around parallel loops and was meant to handle
dense numerical applications. The simplicity of its original interface, the use
of a shared memory model, and the fact that the parallelism of a program is
expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today. However, the sophistication of parallel
programmers has grown in the last 10 years since OpenMP was introduced, and
the complexity of their applications is increasing. Therefore, the forthcoming
OpenMP 3.0[13] adds a new tasking model[2] to address this new programming
landscape. The new directives allow the user to identify units of independent
work, called tasks, leaving the scheduling decisions of how and when to execute
them to the runtime system.

In this paper we explore different possibilities about the scheduling of these
new tasks. We have extended our prototype runtime[15] with two scheduling
strategies: a breadth-first approach and a work-first approach. We have also
implemented several queueing and work-stealing strategies. Then, we have eval-
uated combinations of the different scheduling components with a set of appli-
cations. We also evaluated how these schedulers behave if the application uses
tied tasks, which have some scheduling restrictions, or untied ones, wich have
no scheduling restrictions.

The remaining of the paper is structured as follows: Section 2 describes our
motivation and the related work, Section 3 describes the different schedulers we

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 100–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation of OpenMP Task Scheduling Strategies 101

have implemented, Section 4 shows the evaluation results and finally Section 5
presents the conclusions of this work.

2 Motivation and Related Work

The Intel work-queueing model [14] was an early attempt to add dynamic task
generation to OpenMP. This proprietary extension to OpenMP allows hierarchi-
cal generation of tasks by nesting taskq constructs. The NANOS group proposed
dynamic sections [4] as an extension to the standard sections construct to
allow dynamic generation of tasks.

Lately, a committee from different institutions developed a task model[2] for
the OpenMP language that seems that it will be finally adopted[13]. One of the
things this proposal leaves open is the scheduler of tasks that should be used.

Scheduling of tasks is a very well studied field. There are two main scheduler
families: those that use breadth-first schedulers (see for example the work from
Narlikar[12] and those that use work-first schedulers with work-stealing tech-
niques (see for example Cilk[7] and Acar et al.[1]). Korch et al.[9] made a very
good survey of different task pool implementations and scheduling algorithms
and evaluated them with a radiosity application. Many of these works have found
that work-first schedulers tend to obtain better performance results.

Several works have studied how to reduce the overhead of task creation by
means of using cut-off strategies. They have found that strategies based on con-
trolling the recursion level tend to work very well[10,11]. Another proposal, uses
the size of data structures[8] to control task creation but it depends on the com-
piler understanding complex structures like lists, which is difficult in the C or
Fortran languages.

But, it is unclear how all these algorithms will map into the new task model
as most of the previous work was in the context of recursive algorithms and
where there were no scheduling restrictions at all. But the new task model
allows not only non-recursive applications but also applications that mix tra-
ditional work-sharing regions with the new task model. Our goal in this work
is to evaluate previous techniques in the context of OpenMP and to try to
find which ones work best in order to help implementors choose appropriate
defaults.

3 Task Scheduling

We have extended our research NANOS runtime[15] with two families of sched-
ulers: breadth-first schedulers and work-first schedulers. These schedulers imple-
ment the restrictions about scheduling of tied tasks (i.e. tied tasks can only
be scheduled on the thread to wich they are tied to). Also, we implemented two
cut-off strategies: one based on the level of task recursion and another in the
total number of existing tasks.

102 A. Duran, J. Corbalán, and E. Ayguadé

3.1 Breadth-First Scheduling

Breadth-first scheduling (BF) is a naive scheduler in which every task that is
created is placed into the team pool and execution of the parent task continues.
So, all tasks in the current recursion level are generated before a thread executes
tasks from the next level.

Initially, tasks are placed in a team pool and any thread of the team can grab
tasks from that pool. When a task is suspended (e.g. because a taskwait), if
it is a tied task it will go to a private pool of tasks of the thread that was
executing the tasks. Otherwise (i.e an untied task), it will be queued into the
team pool.

Threads will always try to schedule first a task from their local pool. If it is
empty then they will try to get tasks from the team pool.

We implemented two access policies for the task pools: LIFO (i.e., last queued
tasks will be executed first) and FIFO (i.e., oldest queued tasks will be executed
firsts).

3.2 Work-First Scheduling

Work-first scheduling (WF) tries to follow the serial execution path hoping that
if the sequential algorithm was well designed it will lead to better data locality.

The WF scheduler works as follows: whenever a task is created, the creating
task (i.e. the parent task) is suspended and the executing thread switches to the
newly created task. When a task is suspended (either because it created an new
one or because some synchronization) the task is placed in a per thread local
pool. Again, this pool can be accessed in a LIFO or FIFO manner.

When looking for tasks to execute, threads will look on their local pool. If it is
empty, they will try to steal work from other threads. In order to minimize con-
tention we used a strategy where a thread traverses all other threads starting by
the next thread (i.e. thread 0 starts trying to steal from thread 1, thread 1 from
thread 2, ... and thread n from thread 0). When stealing from another thread pool,
to comply with OpenMP restrictions, a task that has become tied to a thread can-
not be stolen (note that a tied task that has not been yet executed can be stolen).
The access to the victim’s pool can also be LIFO or FIFO.

We also implemented a stealing strategy that first tries to steal the parent
task of the current task. If the parent task cannot be stolen (i.e. because is either
already running or waiting on some synchronization) then the default stealing
mechanism is used.

The Cilk scheduler[7] pertains to this family of schedulers. In particular, it is a
work-first scheduler where access to the local pool is LIFO, tries to steal the parent
task first and otherwise steals from another thread pool in a FIFO manner.

3.3 Cutting Off

In order to reduce the size of the runtime structures and, also, reduce the over-
heads associated to creating tasks, the runtime can decide to start executing
tasks immediately. This is usually referred as cutting off.

Evaluation of OpenMP Task Scheduling Strategies 103

This is particularly important with breadth-first scheduling as it tends to
generate a large number of tasks before executing them. In work-first scheduling
the number of tasks that exist at a given time is not so large but it may grow
over time because of tasks being suspended at synchronization points.

It is important to note that tasks that are executed immediately because of
a cut-off policy are different than the ones that get executed immediately with
the work-first scheduler. When cutting off, the new task does not go through to
the whole creation process and in many aspects forms part of the creating tasks
(e.g. cannot be suspended on its own).

We have implemented two simple but effective cut-off policies:

Max number of tasks (max-task). The total number of tasks that can ex-
ist in the pool is computed as a factor of the number of OpenMP threads
(i.e. k ∗ num threads). Once this number is reached new tasks are executed
immediately. When enough tasks finish, tasks will be put into the task pool
again. In our implementation, we use a default value for k of 8.

Max task recursion level (max-level). When a new task is created, if it has
more ancestors than a fixed limit l then the new task is executed immediately.
Otherwise it can be placed in the task pool. In our implementation, we use
a default value for l of 4.

4 Evaluation

4.1 Applications

We have used the following applications (for more information on the paralleliza-
tion please check our previous work[3]) for the evaluation of the schedulers:

Strassen. Strassen is an algorithm[6]for multiplication of large dense matrices.
It uses hierarchical decomposition of a matrix. We used a 1280x1280 matrix
for our experiments.

NQueens. This program, which uses a backtracking search algorithm, com-
putes all solutions of the n-queens problem, whose objective is to find a
placement for n queens on an n x n chessboard such that none of the queens
attacks any other. We used a chessboard of size 14 by 14 in our experiments.

FFT. FFT computes the one-dimensional Fast Fourier Transform of a vector
of n complex values using the Cooley-Tukey algorithm[5]. We used a vector
with 33554432 complex numbers.

Multisort. Multisort is a variation of the ordinary mergesort, which uses a
parallel divide-and-conquer mergesort and a serial quicksort when the array
is too small. In our experiments we were sorting a random array of 33554432
integer numbers.

Alignment. This application aligns all protein sequences from an input file
against every other sequence and compute the best scorings for each pair
by means of a full dynamic programming algorithm. In our experiments we
used 100 sequences as input for the algorithm.

104 A. Duran, J. Corbalán, and E. Ayguadé

SparseLU. The sparseLU kernel computes an LU matrix factorization. The
matrix is organized in blocks that may not be allocated. Due to the sparse-
ness of the matrix, a lot of imbalance exists. In our experiments, the matrix
had 50 blocks each of 100x100 floats.

In all applications (except Alignment) we marked all tasks as untied and we
removed any kind of manual cut-off that was there from the programmer to
leave total freedom to the scheduler. The Aligment application makes heavy use
of threadprivate and, because of that, we could not mark the tasks as untied.

4.2 Methodology

We evaluated all the benchmarks on an SGI Altix 4700 with 128 processors,
although they were run on a cpuset comprising a subset of the machine to avoid
interferences with other running applications.

We compiled all applications with our Mercurium compiler[4] using gcc with
option -O3 as the backend. The serial version of the application was compiled
with gcc -O3 as well. The speed-ups were computed using the serial execution
time as the baseline and using the average execution time of 5 executions.

We have executed all applications with different combinations of schedulers.
Table 1 summarizes the different schedules we have used in the evaluation, their
properties (see Section 3 for details) and the name we will be using to refer to
them in the next sections.

Table 1. Summary of schedules used in the evaluation

Scheduler Name Scheduler Type Pool Access Steal Access Steal Parent
bff breadth-first FIFO - -
bfl breadth-first LIFO - -
wfff work-first FIFO FIFO No
wffl work-first FIFO LIFO No
wflf work-first LIFO FIFO No
wfll work-first LIFO LIFO No
cilk work-first LIFO FIFO Yes

For each schedule we have run the applications using no cut-off and then using
the cut-offs we had implemented:the max-task and the max-level.

Then, we wanted to know how the restrictions of untied tasks affected the
performance that can be obtained with the different schedulers. So, we have also
tried for those combinations that were best from each application but with all
tasks tied (we control this via an environment variable that the runtime checks).

4.3 Results

In this section we present several lessons we have learned about task scheduling
from this evaluation. Because of space considerations we are only showing part
of the evaluation.

Evaluation of OpenMP Task Scheduling Strategies 105

Lesson 1: Cutting Off: Yes, But How?. Figure 1 shows the speed-ups of
three of the applications (Alignment,FFT and Strassen) and different schedulers.
For each of them, three versions are shown: one that uses no cutoff, another that
uses the max-level cutoff mechanism and the last that uses the max-task mech-
anism.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

alignment

cilk-maxlevel
cilk-maxtask
cilk-nocutoff
bff-maxlevel
bff-maxtask
bff-nocutoff

bfl-maxlevel
bfl-maxtask
bfl-nocutoff

(a) for Alignment

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

fft

cilk-maxlevel
cilk-maxtask
cilk-nocutoff
bfl-maxlevel
bfl-maxtask
bfl-nocutoff

wffl-maxlevel
wffl-maxtask
wffl-nocutoff

(b) for FFT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

strassen

cilk-maxlevel
cilk-maxtask
cilk-nocutoff
bff-maxlevel
bff-maxtask
bff-nocutoff

wfff-maxlevel
wfff-maxtask
wfff-nocutoff

(c) for Strassen

Fig. 1. Performance of difference cutoffs

Except for Alignment, if a cut-off strategy is not used there is a degradation in
the obtained performance. The amount of degradation depends on the scheduler
and the application but as a general rule we can see that breath-first schedulers
suffer more (see for example Strassen) from the lack of a cut-off while work-first
schedulers seem to withstand better the lack of a cut-off.

Another observation from these results is that choosing the wrong cut-off can
be worse performance-wise than having no cut-off (see for example FFT where
the max-level cut-off has less speed-up than no cutoff). But, we can also see that
for different applications the right cut-off is different (for example compare FFT
versus Strassen).

So, while it seems clear that is important to use a cut-off technique the decision
of which to use remains unclear because it depends on the scheduler and also on
the exact application.

106 A. Duran, J. Corbalán, and E. Ayguadé

Lesson 2: Work-First Schedulers Work Best. Figure 2 shows the speed-
up obtained with different schedulers (in general we show the most efficient
schedulers, but also some others that might be interesting).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

alignment

cilk-maxlevel
cilk-maxtask
bff-maxlevel
bff-maxtask
bfl-maxlevel
bfl-maxtask

(a) Alignment

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

multisort

cilk-maxtask
bff-maxtask
bfl-maxtask

wfff-maxtask
wffl-maxtask
wflf-maxtask
wfll-maxtask

(b) Multisort

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

sparseLU

cilk-maxlevel
cilk-maxtask
bff-maxlevel
bff-maxtask
bfl-maxlevel
bfl-maxtask

(c) SparseLU

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

queens

cilk-maxlevel
bff-maxlevel
bfl-maxlevel

wfff-maxlevel
wfll-maxlevel

(d) N Queens

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

fft

cilk-maxtask
bfl-maxtask

wfff-maxtask
wffl-maxtask
wflf-maxtask
wfll-maxtask

(e) FFT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

strassen

cilk-maxlevel
bff-maxlevel
bfl-maxlevel

wffl-maxlevel
wflf-maxlevel
wfll-maxlevel

(f) Strassen

Fig. 2. Speed-ups with different schedulers

We can see that in most applications work-first schedulers get the best speed-
up as they tend to exploit data locality better. The exceptions are Alignment,
where tasks are tied, and SparseLU, where also a tied task limits the perfor-
mance that can be obtained (see next sections for more details). Among work-
first schedulers it seems that the Cilk scheduler is the best except for FFT where
a wffl scheduler gets the best speed-up.

Evaluation of OpenMP Task Scheduling Strategies 107

Also, we can observe again the difference in performance depending on the
cut-off. In Alignment and SparseLU there is only a small difference in perfor-
mance from using one cut-off or the other but in all other applications only
schedulers using a particular cut-off are among the top: for Multisort and FFT
cutting by number of tasks works better and for N Queens and Strassen cut-
ting by the depth level works better. Alignment and SparseLU are non-recursive
applications and this may be the reason why the cutting-off is not so important.

Lesson 3: Beware the Single!. In the sparseLU performance results from
Figure 2(c) the work-first schedulers do not scale even a bit. The structure of
the sparseLU application is similar to the one shown in Figure 3. There are a
number of untied tasks inside a nest of loops inside a single.

1#pragma omp paral lel

2#pragma omp single

3#pragma omp task default (shared) untied

4 {
5 for (k = 0 ; k < N ; k++)
6 // bunch o f u n t i e d t a s k s
7 }

Fig. 3. Structure of a false untied application

All explicit tasks are untied but then the single region forms part of an
implicit task. As such, it is always tied. As all tasks (unlike in other applications
with a recursive structure) are generated from the single region, but the region
cannot threadswitch, a work-first scheduling becomes a serial execution.

This can be easily solved by inserting an extra untied task after the single
construct as shown in Figure 4. Now, the generator code is part of an untied
task instead of the implicit task so it can be threadswitched.

We have implemented a second version of the sparseLU benchmark with this
minor modification. We can see, from the results in Figure 5, that the work-first
schedulers now achieve a better than the best breadth-first schedule. So, we can
see that the effect of this, rather obscure, performance mistake can actually make
a good scheduler look bad.

Lesson 4: Deep-First Schedulers Should Be the Default. The sparseLU
problem is already an indication that the work-first schedulers may have prob-
lems when there are no untied tasks. Figure 6 shows how the same schedulers
perform when task are untied versus when they are tied.

We can see that in all cases if the tasks are tied performance of the work-first
schedulers is severely degraded to the point that no speed-up is obtained.

But, for the breadth-first schedulers the difference is barely noticeable. More-
over, in some cases (multisort and FFT) the speed-up obtained is better than
when tasks are allowed to threadswitch.

Figure 7 shows the average speed-up from all the applications for all combi-
nations of schedulers and cut-offs both for when untied tasks and tied tasks

108 A. Duran, J. Corbalán, and E. Ayguadé

1#pragma omp paral lel

2#pragma omp single

3#pragma omp task default (shared) untied

4 {
5 for (k = 0 ; k < N ; k++)
6 // bunch o f u n t i e d t a s k s
7 }

Fig. 4. Solution to the false untied problem

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

sparseLU2

cilk-maxlevel
cilk-maxtask

wfff-maxlevel
wfff-maxtask
wfll-maxlevel
wfll-maxtask

Fig. 5. Speed-ups for sparseLU with an extra untied task

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

multisort

cilk-maxtask
cilk-maxtask(tied)

bff-maxtask
bff-maxtask(tied)

wfff-maxtask
wfff-maxtask(tied)

(a) Multisort

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

fft

cilk-maxtask
cilk-maxtask(tied)

bfl-maxtask
bfl-maxtask(tied)

wffl-maxtask
wffl-maxtask(tied)

wfll-maxtask
wfll-maxtask(tied)

(b) FFT

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

queens

cilk-maxlevel
cilk-maxlevel(tied)

bff-maxlevel
bff-maxlevel(tied)

bfl-maxlevel
bfl-maxlevel(tied)

wfff-maxlevel
wfff-maxlevel(tied)

(c) N Queens

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

strassen

cilk-maxlevel
cilk-maxlevel(tied)

bff-maxlevel
bff-maxlevel(tied)

bfl-maxlevel
bfl-maxlevel(tied)

wfff-maxlevel
wfff-maxlevel(tied)

(d) Strassen

Fig. 6. Untied vs tied tasks

Evaluation of OpenMP Task Scheduling Strategies 109

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

All applications (average)

cilk-maxlevel
cilk-maxtask
bff-maxlevel
bff-maxtask
bfl-maxlevel
bfl-maxtask

wfff-maxlevel
wfff-maxtask
wffl-maxlevel
wffl-maxtask
wflf-maxlevel
wflf-maxtask
wfll-maxlevel
wfll-maxtask

(a) with untied tasks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 12 16

S
pe

ed
-u

p

of threads

All applications (average)

cilk-maxlevel
cilk-maxtask
bff-maxlevel
bff-maxtask
bfl-maxlevel
bfl-maxtask

wfff-maxlevel
wfff-maxtask
wffl-maxlevel
wffl-maxtask
wflf-maxlevel
wflf-maxtask
wfll-maxlevel
wfll-maxtask

(b) with tide tasks

Fig. 7. Average speed-ups for all schedulers

are used. These graphs stress our last lesson, when using untied tasks work-
first schedulers tend to obtain better speed-up but they drop flat when tied
tasks are used. In that case, breadth-first schedulers perform about the same
as they did with untied task thus outperforming work-first schedulers.

As tied is the OpenMP default, it seems that a wise choice for a compiler
(or runtime) is a breadth-first scheduler unless it can safely be guaranteed that
all tasks will be untied.

5 Conclusions and Future Work

In this work, we have explored several scheduling strategies of OpenMP tasks.
We found that while work-first schedulers, in general, obtain better performance
that breadth-first schedulers they are not appropriate to be used as the default
for OpenMP programs. This is because tied and implicit tasks (which may
be difficult to spot for novice users) severely restrict the performance that can
be obtained. And in those circumstances, which are the default for OpenMP ,
breadth-first schedulers outperform work-first schedulers.

We have found that while it is a good idea to have a cut-off mechanism, it
is not clear which one to use as it may affect negatively the performance of the
application and more research is needed in that direction.

As future work, it would be interesting to explore a hybrid cut-off strategy (that
takes into account the maximum number of tasks and the depth level) as well as
some other more complex cut-off strategies that try to estimate the granularity of
the work of a task. Also, it would be interesting to develop a scheduler that detects
at runtime the structure of the application (whether it is recursive, whether it uses
tied tasks or not, . . .) and it chooses one scheduler or the other appropriately.

Acknowledgments

This work has been supported by the Ministry of Education of Spain under
contract TIN2007-60625, and the European Commission in the context of the
SARC project #27648 and the HiPEAC Network of Excellence IST-004408.

110 A. Duran, J. Corbalán, and E. Ayguadé

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing.
In: SPAA 2000: Proceedings of the twelfth annual ACM symposium on Parallel
algorithms and architectures, pp. 1–12. ACM, New York (2000)

2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Su, E.,
Unnikrishnan, P., Zhang, G.: A proposal for task parallelism in OpenMP. In: Pro-
ceedings of the 3rd International Workshop on OpenMP, Beijing, China (June
2007)

3. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental
Evaluation of the New OpenMP Tasking Model. In: Proceedings of the 20th Inter-
national Workshop on Languages and Compilers for Parallel Computing (October
2007)

4. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: a Research Compiler for OpenMP. In: Proceedings of the European
Workshop on OpenMP 2004 (October 2004)

5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation 19, 297–301 (1965)

6. Fischer, P.C., Probert, R.L.: Efficient procedures for using matrix algorithms. In:
Proceedings of the 2nd Colloquium on Automata, Languages and Programming,
London, UK, pp. 413–427. Springer, Heidelberg (1974)

7. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI 1998: Proceedings of the ACM SIGPLAN 1998 con-
ference on Programming language design and implementation, pp. 212–223. ACM
Press, New York (1998)

8. Huelsbergen, L., Larus, J.R., Aiken, A.: Using the run-time sizes of data structures
to guide parallel-thread creation. In: LFP 1994: Proceedings of the 1994 ACM con-
ference on LISP and functional programming, pp. 79–90. ACM, New York (1994)

9. Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing
of irregular algorithms: Research articles. Concurr. Comput. Pract. Exper. 16(1),
1–47 (2004)

10. Loidl, H.-W., Hammond, K.: On the Granularity of Divide-and-Conquer Paral-
lelism. In: Glasgow Workshop on Functional Programming, Ullapool, Scotland,
July 8–10, 1995, Springer, Heidelberg (1995)

11. Mohr, J. E., Kranz, D.A., Halstead, R.H.: Lazy task creation: a technique for
increasing the granularity of parallel programs. In: LFP 1990: Proceedings of the
1990 ACM conference on LISP and functional programming, pp. 185–197. ACM,
New York (1990)

12. Narlikar, G.J.: Scheduling threads for low space requirement and good locality.
In: SPAA 1999: Proceedings of the eleventh annual ACM symposium on Parallel
algorithms and architectures, pp. 83–95. ACM, New York (1999)

13. OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 3.0 (Draft) (October 2007)

14. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for paral-
lellism in OpenMP. In: 1st European Workshop on OpenMP (September 1999)

15. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP
tasks in Nanos v4. In: CAS Conference 2007 (October 2007)

	Evaluation of OpenMP Task Scheduling Strategies
	Introduction
	Motivation and Related Work
	Task Scheduling
	Breadth-First Scheduling
	Work-First Scheduling
	Cutting Off

	Evaluation
	Applications
	Methodology
	Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

