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Abstract. Approaching the theoretical performance of hierarchical mul-
ticore machines requires a very careful distribution of threads and data
among the underlying non-uniform architecture in order to minimize
cache misses and NUMA penalties. While it is acknowledged that
OpenMP can enhance the quality of thread scheduling on such archi-
tectures in a portable way, by transmitting precious information about
the affinities between threads and data to the underlying runtime system,
most OpenMP runtime systems are actually unable to efficiently support
highly irregular, massively parallel applications on NUMA machines.

In this paper, we present a thread scheduling policy suited to the
execution of OpenMP programs featuring irregular and massive nested
parallelism over hierarchical architectures. Our policy enforces a distri-
bution of threads that maximizes the proximity of threads belonging to
the same parallel region, and uses a NUMA-aware work stealing strat-
egy when load balancing is needed. It has been developed as a plug-in to
the forestGOMP OpenMP platform [TBG+07]. We demonstrate the
efficiency of our approach with a highly irregular recursive OpenMP pro-
gram resulting from the generic parallelization of a surface reconstruction
application. We achieve a speedup of 14 on a 16-core machine with no
application-level optimization.

Keywords: OpenMP, Nested Parallelism, Hierarchical Thread Schedul-
ing, Bubbles, Multi-Core, NUMA, SMP.

1 Introduction

Cache-coherent multiprocessor architectures now commonly introduce multiple
levels of locality preference between processor and caches or memory banks.
The penalty paid for non-local memory accesses can deeply affect speed-ups
when such expensive accesses frequently occur throughout application runs. It is
therefore acknowledged that multithreaded programs must carefully distribute
threads onto the processors to minimize both cache misses and NUMA penal-
ties. Traditional “opportunistic” scheduling approaches used by most operating
systems fail in exploiting hierarchical architectures efficiently however, because
they lack information about application behaviour.

Successfully using NUMA architectures requires an in-depth knowledge of
the application behaviour in terms of memory access patterns, affinity and
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inter-thread collaborations, relationship and synchronization. Gao et al. share
this analysis [GSS+06]: They emphasize the importance of exposing domain-
specific knowledge semantics to the underlying scheduling layer. Parallel lan-
guages such as OpenMP, that rely on the combination of a dedicated compiler
and a set of code annotations to extract the parallel structure of applications
and to generate scheduling hints for the underlying runtime system, are a great
step forward in this respect. However, they currently miss architecture-aware
runtime systems that would make an effective and thorough exploitation of the
gathered knowledge at runtime. As quoted in a proposal for task parallelism in
OpenMP [ACD+07]: “The overhead associated with the creation of parallel re-
gions, the varying levels of support in different implementations, the limits to the
total number of threads in the application and to the allowed levels of parallelism,
and the impossibility of controlling load balancing, make this approach imprac-
tical”. Moreover, most advanced OpenMP compilers [TTSY00,HD07,THH+05,
BS05, DGC05] (featuring super lightweight threads, work stealing techniques,
etc.) are not yet NUMA-aware.

In this paper, we present an extension to the GNU OpenMP runtime sys-
tem that is capable of running dynamic irregular programs over NUMA mul-
ticore machines very efficiently. Our runtime generates nested sets of threads
called bubbles, which encapsulate threads sharing common data, each time an
OpenMP parallel region is encountered [TBG+07]. We have designed a NUMA-
aware scheduling policy that dynamically maps these bubbles onto the various
levels of the underlying hierarchical architecture. When load balancing needs
to be performed, threads are thus redistributed with respect to their affinity
relations. We validate our approach using the OpenMP version of a real-life ap-
plication (the MPU [OBA+03] parallel surface reconstruction algorithm) that
features a highly irregular divide-and-conquer parallel structure based on a re-
cursive refinement process. We show that the OpenMP version of this program
clearly draws a substantial benefit from our approach.

2 An OpenMP Platform for Developing and Tuning
NUMA-aware Thread Scheduling Policies

To deal with dynamic, irregular OpenMP applications, we claim that the key step
is to transmit information extracted by the compiler to the underlying thread
scheduler in a continuous way. Indeed, only a tight integration of application-
provided meta-data and architecture description can let the underlying runtime
system take appropriate decisions during the whole application run time.

Thus we have designed “forestGOMP ”, an extension to the GNU OpenMP
runtime system [gom] that relies on the Marcel/BubbleSched thread schedul-
ing package. BubbleSched provides facilities for attaching various information
to groups of threads called bubbles, together with a framework that helps to
develop schedulers capable of using these metadata.
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2.1 Related Work

The numerous studies and papers [MAN+99, TTSY00, DSCL04, DGC05, BS05,
GSW+06, aMST07] that emphasized multilevel parallelism as a promising path
toward scalability with OpenMP, gradually brought compiler researchers and
vendors to put more of their efforts on OpenMP nested parallelism. Modern
OpenMP compilers have some support for nested parallelism and either rely
on an efficient user-level thread library (NANOS Nthlib [GOM+01], Omni/ST
[TTSY00], OMPi [HD07]) or on a pool of threads avoiding useless and costly
creation/destruction (Intel Compiler [TGS+03,TGBS05], OdinMP [Kar05]).

For instance, Omni/ST is based on a fine-grain thread management system
that uses a fixed number of threads to execute an arbitrary number of fila-
ments, as with the Cilk multithreaded system [FLR98]. The performance ob-
tained over symmetrical multiprocessors is often very good, mostly because many
tasks can be executed sequentially with hardly any overhead when all processors
are busy.

To deal with hierarchical architectures, the OMPi C Compiler uses user-level
non-preemptive threads that are inserted in the processor runqueues in the fol-
lowing way: threads that are spawned at the first level of parallelism are dis-
tributed cyclically and appended at the tail of the ready queues. Inner level
threads are inserted at the head of the ready queue of the processor that cre-
ated them. In order to favor data locality, an idle processor extracts threads
from the head of its local queue and steals work from the tail of the remote
ones. Moreover the work-stealing scheme follows the computer hierarchy. How-
ever, neither Omni/ST nor OMPi provide any support for annotating generated
tasks with high level information such as memory affinity. The theft of a thread
blindly ignores and breaks the affinity relation between threads that were cre-
ated together. This may put a strain on the performance on hierarchical, NUMA
multiprocessors.

Several OpenMP language extensions have been proposed to control the allo-
cation of work to the participating threads. The mechanism in GOMP [GOM+01]
to control the binding of threads is useful to tune an application for a given
computer. Binding, however, is non-portable from the performance point of
view. In order to favor affinities in a more portable manner, the NANOS com-
piler [DGC05, AGMJ04] allows to associate groups of threads with parallel re-
gions in a static way. The OpenUH Compiler [CHJ+06] proposes a mecanism to
accurately select the threads of a subteam, although this proposition does not
involve nested parallelism.

Finally, the KAI/Intel [STH+04] and the NANOS Mercurium compilers
[BDG+04] support task parallelism and a proposal for parallel tasks in OpenMP
3.0 has been written [ACD+07]. This is a major step towards natural support
of MIMD applications in OpenMP. Moreover, the OpenMP task paradigm will
naturally lead to the generation of structured parallelism, so we claim that the
techniques presented in this paper will also be beneficial to programs featuring
task parallelism.
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3 A Scheduling Policy Guided by Affinity Hints

The challenge of a scheduler for the nested parallelism resides in how to distribute
the threads over the machine. This must be done in a way that favors both a
good balancing of the computation and, in the case of multi-core and NUMA
machines, a good affinity of threads, for better cache effects and avoiding the
remote memory access penalty.

3.1 Assumptions

Divide and conquer algorithms generate intensively cooperating groups of threads
that run smoother if they are scheduled on the same limited subset of processors. A
baddistribution of these collaborating entities results inmultiple expensiveNUMA
accesses over hierarchical architectures, that lowers the general performance of par-
allel applications. Alternatively, a distribution that considers those affinity rela-
tions entails a better use of cache memory, and improves local memory accesses.

The Affinity bubble-scheduler is specifically designed to tackle irregular ap-
plications based on a divide and conquer scheme. In this aim, we consider that
each bubble contains threads and subbubbles that are heavily related, most of
the time through data sharing. We assume that the best thread distribution is
obtained by scheduling each entity contained in a bubble on the same processor,
sometimes breaking the load balancing scheme, even if a local redistribution is
needed once in a while. This scheduler provides two main algorithms, to dis-
tribute thread and bubble entities over the different processors initially, and to
rebalance work if one of them becomes idle.

3.2 Initial Thread Distribution

Entities scheduled in the same bubble should not be torn apart. Nevertheless
a bubble can be required to extract its contents to increase the number of ex-
ecutable entities in order to occupy every processor of the architecture. This
bubble is then said to be exploded. The runqueue level where a bubble ex-
plodes during the distribution is crucial to determine whether affinity relations
are preserved or not. For instance, if a bubble is exploded on the top level of the
topology, its contents can be scheduled on any processor. Therefore the Affinity
thread distribution algorithm delays these explosions as much as possible, to
maximize locality between the released entities.

More precisely, this first scheduling step is based on a mere recursive algorithm
to greedily distribute the hierarchy of bubbles and threads over the hierarchy
of runqueues. Upon each call, the algorithm counts the entities available to
be distributed from the considered runqueues. If there are enough entities to
occupy the complete set of processors covered by the runqueues, entities are
greedily distributed over the underlying lists. Otherwise, the algorithm analyzes
the contents of each available bubble to determine the ones that hold enough
threads or subbubbles to occupy a complete subset of processors on their own. If
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Fig. 1. Threads and bubbles distribution by the Affinity scheduler

so, bubble explosions are delayed to a further step, thus avoiding early separation
of collaborating entities.

Figure 1(a) shows the initial state of this recursive algorithm which has been
developed to guarantee bubbles and threads distribution from the most general
level of the topology, representing the whole computer, to the most specific
ones. Figure 1(c) shows the resulting distribution, where only the main top-
level bubble has exploded. This approach obviously values affinity relations over
load balancing, and could not be efficient without a NUMA-aware work stealing
algorithm that rearranges the thread distribution when a processor turns to be
inactive.

3.3 NUMA-aware Work Stealing

The irregular behaviour of some applications prevents estimation of the load
of each created thread. This lack of load hints forces the Affinity scheduler
to equally consider every entity. As a result, a continuous thread creation and
destruction scheme may unbalance the initial thread repartition, and some of
the processors may become idle.

The Affinity scheduler implements a dedicated work stealing algorithm to
prevent these processors from remaining inactive for too long. This algorithm
tracks down lists to steal from, from the most local lists to the most global one
if necessary, expanding the search domain as long as no eligible runqueue has
been found. Entities are thus stolen as locally as possible. If several entities are
usable for work stealing, the Affinity scheduler arbitrarily picks the most loaded
one, considering the number of recursively contained threads. If only one bubble
is found during the stealing process, its contents are browsed to pick a complete
subtree of entities, as illustrated by figures 1(d). When a thread, or a bubble,
is finally chosen, the algorithm moves its ancestors to the most internal level of
the topology common to the source runqueue and the idle processor, to avoid
locking convention issues.
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3.4 Discussion

A call to the Affinity’s thread distribution algorithm generally results in assign-
ing a tree of entities to every processor, similar to the Cilk language or OMPi
approaches to deal with divide and conquer applications. Statistically, the work-
ing load left to an entity located in the upper part of the tree is bigger than the
one executed by the leaves-positioned threads. The Affinity scheduler therefore
tries to steal from the top of the entity hierarchy, but differs from Cilk imple-
mentations by (1) looking for eligible subtrees as close as possible from the idle
processor, instead of randomly picking a victim runqueue, and (2) stealing a set
of threads that work together rather a lonely thread (like OMPi does). This way
of stealing respects the hierarchical nature of both NUMA architectures and the
application parallelization scheme.

4 Implicit Surface Reconstruction Application

With Affinity and several features of Marcel, it is now possible to parallelize
many recursive divide and conquer algorithms, using a naive approach and simple
OpenMP constructs, and yet to obtain good speedups. To back our claim, we
show that an extremely irregular divide and conquer algorithm, the Multi-Level
Partition of Unity algorithm (MPU) [OBA+03], can be parallelized efficiently
only by adding a few lines of code to its implementation.

This surface reconstruction algorithm processes a cloud of points sampling
a geometric surface, so as to compute a mathematical representation of this
sampled surface. Its main use is related to 3D scanners, that is, devices that are
capable of sampling the surface of a physical object by extracting a finite set
of 3D points. Reconstructing the whole surface from its samples is required for
many applications ranging from rendering to physical simulations.

Thanks to its divide and conquer scheme it is one of the fastest reconstruction
algorithms available. Starting from a box containing the whole cloud of points, it
tries to fit a simple surface (a quadric) to the points. This surface is implicit, which
means that it is defined by a real valued function defined over the entire space and
whose value is zero for every point of the implicit surface. If the fitted surface does

Fig. 2. Adaptive surface fitting using a recursive subdivision of space which forms a
tree hierarchy. Each box is subdivided until the fitted surface is close enough to the
points. The resulting surface is a weighted average of each local approximation using
partition of unity functions.
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void Node::compute () {
computeApprox();
if(_error > _max_error) {

splitCell();
for(int i=0; i<8; i++)

_children[i]->compute ();
}

}

Fig. 3. Sequential MPU code to pro-
cess a node. An approximation is com-
puted and the node is subdvided if it
is not precise enough. This process is
then repeated recursively.

void Node:: compute () {
computeApprox();
if(_error > _max_error) {

splitCell();
#pragma omp parallel for

for(int i=0; i<8; i++)
_children[i]->compute ();

}
}

Fig. 4. Parallel MPU code to process
a node. A single OpenMP directive has
been added to indicate that every node
can be processed concurrently.

not approximate the points closely enough, that is, if there are points too far away
from the fitted surface, the box is subdivided into 8 subboxes, thus forming an oc-
tree. This process is applied recursively to each child box until the error between
each approximation and the points of its box is small enough (see Figure 2).

This divide and conquer approach is made possible by the use of partition
of unity functions. Indeed, using these functions makes it possible to define the
global reconstructed surface as a weighted average of each function defining the
local surface approximations. The weight of each local approximation in the
weighted average at a given point in space is at its highest at the center of its
box, and decreases as the distance to this center increases.

What makes this technique especially attractive is that there is no “stitching”
involved between locally computed surfaces. This makes parallelization easier be-
cause such a step would require many synchronisations between threads working
on neighbour nodes. Therefore this algorithm is well suited to parallelization
since every node of the tree can be processed concurrently. The difficulty resides
in balancing the work between the processors as the tree is very irregular and
there is no simple way to predict where the tree is going to be refined. Ideally
the programmer should be able to simply express that the function calls for
processing the nodes can be executed concurrently and the runtime would be
responsible for balancing this work on the processors.

OpenMP provides constructs that are very well suited to this task, and par-
allelizing this algorithm using OpenMP is a matter of inserting a few lines of
code to indicate that each time a node is subdivided, its 8 children can be pro-
cessed concurrently (see Fig. 3 and 4). Running such an application efficiently
is challenging for however, because runtime systems need not only to deal with
a large number of thread creations/destructions (up to tens of millions for large
datasets), but also to schedule them in a way that optimizes memory locality.

5 Evaluation

We validated our approach by experimenting with the MPU application on a
cloud of 437644 points, which leads to the creation of 101185 threads.
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The target machine holds 8 dualcore AMD Opteron chips (hence a total of 16
cores) and 64GB of memory. The measured NUMA factor between chips varies
from 1.06 (for neighbor chips) to 1.4 (for most distant chips). We tested both the
Native POSIX Thread Library of Linux 2.6 (NPTL) and the Marcel library,
partitioning the set of usable cores in order to execute our tests on respectively
2, 4, 8 and 16 cores. The results can be seen on figure 5.

We first tried non-nested approaches to compare the behaviour of these two
libraries. Each parallel construct generates a number of threads equal to the
number of available cores. The MPU algorithm divides the computed surface in
eight different subdomains, every time the refinement primitive is called. Run-
ning non-nested tests with a number of threads exceeding 8 is thus not relevant,
only the first eight ones will be occupied. The Marcel thread scheduler oper-
ates at user-level, and is less preemptive than the one used by NPTL. MPU thus
runs much faster with Marcel threads.

In the next experiments, we allowed the GOMP compiler to create extra
threads when a nested parallel construct is encountered. This approach theoret-
ically suits the MPU application divide and conquer nature. We achieved the
best speedups by creating 4 threads at each parallel section. Allowing nested ap-
proaches results in creating a great number of threads, and thread creation and
management primitives are more expensive in a kernel-level thread library like
NPTL. Those used by Marcel are lighter, which explains why it scales better.
On the other hand, neither the runtime system of those libraries has sufficient
information about threads’ relations to adjust their distribution, so that related
threads may be executed by cores located on different NUMA nodes, and the
speedup is yet a bit limited. On the contrary, respecting affinity relations by
locally scheduling groups of threads results in much better speedups, as can be
seen on the Affinity curve.

We then evaluated the effectiveness of Affinity’s NUMA-aware scheduling al-
gorithm by running two tests. In the first test, the MPU application is unmodified
but the work stealing algorithm of Affinity is replaced by a random work stealing
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algorithm: the victim is elected from a randomly chosen runqueue. The achieved
speedup on 16 cores varies between 8.2 and 11.82.

In the second test, the MPU application is modified. A single thread is bound
per processor, which is used to schedule tasks in the form of lightweight threads.
An idle thread tries to steal tasks from the most local queues when necessary. The
structure of the application allows this version to use a lock-free stealing strategy
most of the time, in a Cilk-like manner. The result is that the Cilk-like version
obtains the best speed-up, 15.05 on 16 cores, at the cost of portability, since
the MPU application was modified to integrate this algorithm. With a speedup
of 14.04 out of 16 cores, the forestGOMP results almost reach the cilk-like
results, without sacrificing either portability or generality in application-specific
optimizations.

6 Conclusion

To exploit nowaday’s multiprocessor machines at their full potential, it is cru-
cial to transmit affinity relationships between application threads to the un-
derlying runtime system scheduler. Efficiently scheduling an application on top
of a NUMA architecture indeed requires an accurate knowledge of both the
machine and the application behaviour in order to make appropriate NUMA-
aware scheduling decisions at runtime. Parallel programming languages such as
OpenMP are therefore inherently promising since they are particularly fitted for
transparent information gathering.

In this paper, we presented a scheduling policy called Affinity embedded in our
GOMP-based OpenMP scheduling framework and programming environment.
Affinity is built on the bubble concept and the rich set of manipulation primi-
tives offered by the Marcel/BubbleSched hierarchical scheduler toolkit to let
the application programmer naturally express the thread cooperation affinities
and to follow these hints in the actual scheduling process. The experiments we
conducted on MPU, a real-life highly irregular surface reconstruction application
made a strong case in validating our approach in terms of development easiness
for the programmer, portability and performance. Our approach is therefore a
way for experts to build complex scheduling strategies that take characteristics
of the application into account. Using and mixing such strategies, application
programmers get a greater control on scheduling of their OpenMP programs.

In the near future, we intend to investigate two main directions. First, we are
currently extending our BubbleSched platform with advanced memory man-
agement primitives in order to allocate, register and potentially migrate memory
areas used within bubbles on NUMA architectures. This will enable us to take
into account memory “attraction” when computing thread redistribution pat-
terns and to operate data movements when significant thread redistributions
have to be performed. Second, forestGOMP could use static code analysis in
determining the groups of threads that are effectively sharing data, and esti-
mating bubble thickness. This information would improve the way the Affinity
scheduler distributes entities, by naturally preferring the less cooperating threads
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groups when a bubble must be exploded. This attribute could even be enriched
by dynamically refreshed hardware statistics on memory access frequency. Both
directions will benefit from our ongoing work towards supporting OpenMP 3.0
tasks in forestGOMP.
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