
Streams: Emerging from a Shared Memory
Model

Benedict R. Gaster

ClearSpeed Technology Plc
S/W Architecture Group
brg@clearspeed.com

Abstract. To date OpenMP has been considered the work horse for
data parallelism and more recently task level parallelism. The model has
been one of shared memory working in parallel on arrays of a uniform
nature, but many applications do not meet these often restrictive ac-
cess patterns. With the development of accelerators on the one hand
and moving beyond the node to the cluster on the other, OpenMP’s
shared memory approach does not easily capture the complex memory
hierarchies found in these heterogeneous systems.

Streams provide a natural approach to coupling data with its corre-
sponding access patterns. Data within a stream can be easily and effi-
ciently distributed across complex memory hierarchies, while retaining a
shared memory point of view for the application programmer.

In this paper we present a modest extension to OpenMP to support
data partitioning and streaming. Rather than add numerous new direc-
tives our approach is to utilize exiting streaming technology and extend
OpenMP simply to control streams in the context of threading. The in-
tegration of streams allows the programmer to easily connect distinct
compute components together in an efficient manner, supporting both,
the conventional shared memory model of OpenMP and also the trans-
parent integration of local non-shared memory.

1 Introduction

OpenMP’s shared memory model is one of its strongest points, providing a simple
view of memory for the programmer. However, to increase memory bandwidth
and reduce memory contention many of today’s processors have complex memory
hierarchies that do not directly fit this model. For example, both IBM’s Cell [1]
and ClearSpeed’s CSX [2] processors have small single cycle memories attached
to local processing elements. These memories are not memory mapped into the
larger outer memory system and thus are not shared in the conventional sense,
rather data is moved to and from shared memory via DMA transfers. These
memories are a problem for the OpenMP programmer as there is no easy why to
describe the connection between objects in shared memory and corresponding
objects in local memory. Moreover, these memories are often small in size, at
most in the region of hundreds of kilobytes, and it is often impossible to keep the
complete data set in memory at any given time. Data needs to be “streamed”.

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 134–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Streams: Emerging from a Shared Memory Model 135

In this paper we describe a primitive streaming API that when embedded
in a modest extension of OpenMP provides for a powerful alternative to the
conventional array based parallel programming model. In particular, it is possible
to express complicated non-uniform access patterns for streams that are not
easily expressed in OpenMP as is. Streams [3,4,5,6] are best described as a
declarative interface to conventional C/C++ style data arrays, that provide for
a parallel evaluation semantics, standard and user defined scatter/gather access,
and a small set of combinators for writing stream computations. Streams are
defined and referenced from anywhere within an OpenMP program, with data
pushed and pulled across thread boundaries as specified by the user.

We take the rather unconventional approach of assuming a new basic type,
i.e. streams, in the base language. However, it should be noted that we are not
proposing extending the base language itself, rather we assume that a stream-
ing API is provided as a library in the particular language of choice. There are
many examples of streaming APIs and their implementations are well under-
stood and given this it does not seem unreasonable to build upon these devel-
opments [3,4,5,6]. The advantage is that given a non-parallel program, written
using streams, it is a natural process to add (extended) OpenMP directives to
parallelize for a multi-core environment. This scheme is analogous to that of
adding OpenMP directives today in the context of arrays.

In this paper we make the following contributions:

– We describe a modest extension to OpenMP’s programming model based on
the notion of streams. This model provides an alternative to the conventional
array approach, conceptually extending OpenMP’s memory model to work
in the context of non-shared memory.

– We are implementing a prototype of OpenMP extended with streams for an
IA-32 and CSX accelerator based system and we outline its current status.

– We report our experience of using the proposed tasking model for OpenMP
with streams, highlighting its natural use in this context.

The remaining sections of this paper are as follows: Section 2 discusses related
work; Section 3 introduces, by way of example, how streams can be utilized in
OpenMP; Section 4 details the streaming API and the extensions to the OpenMP
directives; Section 5 outlines our implementation with some early performance
results; and finally Section 6 concludes with a discussion on possible directions
for the future.

2 Related Work

To our knowledge there has been very little previously published work on extend-
ing OpenMP with a notion of streams. One exception to this is the ACOTES
project defining a programming model for streams with a corresponding abstract
streaming machine [7]. Carpenter et al. propose a new streaming environment
consisting of a Stream Programming Model (SPM), implemented as an anno-
tated version of the C programming language, and an Abstract Streaming Ma-
chine (ASM), implemented as a cost-model simulator. Their approach is similar

136 B.R. Gaster

to what is proposed in this paper, although we present extensions to both the
data parallel and tasking features of OpenMP while they consider only the task-
ing aspects. To date they have not implemented their approach and work in this
area is necessary to better understand how useful it will be in practice.

There exist a number of proposals for mapping the shared memory model
of OpenMP to a distributed setting which is closely related [8,9,10]. These ap-
proaches have some important advantages over explicit distributed programming
models, such as MPI, including they are conservative extensions to OpenMP and
retain the shared memory model. However, the drawback is that they retain this
model at the expense of restricting control of data partitioning and movement to
the system, thus constraining expressiveness. Providing streams as a first class
data abstraction retains OpenMP’s shared memory model while exposing control
of both data partitioning and movement within a distributed memory setting.

Eichenberger et al. use a software cache to abstract the Cell’s SPEs local
memory, for both code and data, providing a transparent, shared memory, view
of memory [11]. The advantage of this approach is no new datatypes need to be
introduced and thus no unnecessary source code changes. What is less clear is
how well this approach works in the light of more complex memory layouts which
may include many levels of indirection. The overhead of maintaining a software
cache in this context could easily dwarf any benefits of such an approach.

The streaming library given in Section 4 is a variant of the streams of Open
Accelerator [3]. Open Accelerator is a programming environment that supports
accelerator specific code with the integration of streaming, allowing the pro-
grammer to easily and efficiently connect distinct components of a system. Open
Accelerator is itself orthogonal to OpenMP but Gaster et al. show by superim-
posing Open Accelerator the resulting system provides a powerful SPMD data
parallel and tasking programming abstraction for accelerated systems. A key
difference between Open Accelerator and this paper is that streams become a
data abstraction that OpenMP builds parallelism upon and are integrated into
the language, requiring no additional features or support.

Finally, our work on streams has continually built on the ideas of Brook [6]
and StreamIt [5], which provide the stream processor abstraction. While these
languages do not fit directly with an imperative programming model it is clear
that they provide a wealth of resources for the development of streaming tech-
niques in such a context.

3 Overview

When considering adding a new feature to OpenMP, the place to start, at least
one would believe, is the current set of existing directives and possibly some new
ones. This was our initial approach when looking at streams for OpenMP and
we developed a set of additional directives for working with streams along with
some new runtime functions and extensions to existing directives. As an example
of this approach consider code to perform a sum of squares for an input array,
a, given in Figure 1.

Streams: Emerging from a Shared Memory Model 137

#define CHUNK SIZE 5

double sumsq (double a [] , int s i z e) {
double msum = 0 . ; int i , n ;

#i f OPENMP
omp stream set chunk s i ze (CHUNK SIZE) ;

#endif

#pragma omp stream c r ea t e (s , a , s i z e , s izeof (f loat) ,
LINEAR FORWARD)

#pragma omp for r educt i on (+:msum) connect (s : s i z e)
for (i = 0 ; i < s i z e ; i++) {

double elem ;
#pragma omp stream read (s , elem)

elem = a [i] ;

msum += elem ∗ elem ;
}

return msum;
}

Fig. 1. Streams API directive extensions: sum of squares

Here a stream s is created from array, a, with the directive stream create,
introducing a new stream object into the OpenMP environment. The stream
is later consumed by the conventional parallel for construct with an additional
clause, connect(s : size), telling the system to produce a one-to-many stream
channel from the controlling thread to its corresponding children, that will per-
form the work of the loop body. The loop body itself is implemented as though
the function was operating over the original input array and makes no direct
reference to s. Instead, the stream read directive is used to connect the next
element of s to the private variable elem and the following statement is ignored,
i.e. elem = a[i]. While straightforward to modify the compiler to ignore the con-
nect statement, this approach reaches beyond the original intention of OpenMP’s
directives.

From this description of streams one might reasonably ask what is the benefit
of this approach over straightforward arrays? Well one important difference is
the use of the runtime function to set a stream’s “chunk” size and a related
reference to size in the connect clause. A streams chunk size corresponds to the
number of elements that will be copied to a particular thread when reading from
a stream’s channel. The actual pattern for reading chunk number of elements
is captured in the final argument to the stream create directive; in the above
example a simple linear-forward pattern is assumed. A consequence of chunks is
that each thread must maintain a private buffer of chunk size that when empty

138 B.R. Gaster

double sumsq (double a [] , int s i z e) {
double msum = 0 ; int i ;

Stream ∗ s = Stream . c r e a t e (a , s i z e ,CHUNK SIZE,LINEAR FORWARD) ;

#pragma omp p a r a l l e l r educt i on (+:msum) connect (s)
{

while (! s−>endOfStream (s)) {
double x = s−>getNextElement () ;
i f (s−>streamActive ()) {

msum += x ∗ x ;
}

}
}

s−>dest roy () ;

return msum;
}

Fig. 2. Streams API part of base language: sum of squares

is refilled with chunk or less elements by making a read request to the source
stream. The observant reader may now be asking but if chunk �= 1 then the loop
will be parallelized across size threads, but only the first size/chunk threads
will actually read elements of the stream and even worse the active threads will
process only the initial chunk element. Fortunately, this is easily over come by
requiring that the user link the controlling bounds variable, size in this case,
when connecting a stream, which is then used to control the number of iterations.

It should be clear that a compiler is free to implement OpenMP with or
without the streaming extensions, assuming it at least parses the connect clause,
while preserving the semantics of the program. This is, of course, in keeping with
the original design ethos of OpenMP, allowing both incremental parallelization
and programs execute correctly, albeit often with a slower execution time, if the
program is not parallelized at all. The problem with such an approach is that
OpenMP was not designed on top of a language with native stream support
and adding them explicitly to OpenMP is not only clumsy but it feels like using
a bulldozer to crush a nut. For C++ and Fortran arrays are the basic type
on top of which OpenMP builds parallelism but with the introduction of task
level parallelism this no longer needs to be the case and it should be possible to
introduce other parallel data types, including streams. This then leads us to the
question: what if streams were provided as a basic datatype?

If streams are provided as an abstract type with a corresponding API, then ap-
plication programmers could write stream programs with or without OpenMP di-
rectives. This meets our goal that any OpenMP program can be compiled and exe-
cuted correctly; even in the presence of a compiler that does not support OpenMP.
Such an approach does not preclude the need to add streams to OpenMP, rather

Streams: Emerging from a Shared Memory Model 139

while (! s−>endOfStream (s))
#pragma omp task captureva lue (s)

{
double x = s−>getNextElement () ;
i f (s−>streamActive ()) {

msum += x ∗ x ;
}

}

Fig. 3. Combining streams and tasks

it provides the foundations for a more modest extension. Figure 2 shows how the
sum of squares example might be written with this approach.

Intuitively, a stream s is created from an input array a and the parallel re-
gions creates a team of threads, as is normal, with the only difference that each
thread ti having a corresponding private stream si that is “connected” to the
input stream s. The behavior is similar to that of a variable marked as private,
except instead of copying s locally within the thread’s stack, a connection is
made between the private si and the stream s of the shared enclosing scope.
On entering the loop, for a particular thread, the private stream requests a new
chunk and if data greater than zero and less than or equal to the number of
elements in a chunk is received then the request returns the first of the elements
for the call getNextElement. If no elements at all are received, then the call to
streamActive returns false and the sum is not executed and finally the loop will
terminate, otherwise the element is squared and added into the running total
and the process repeats.

At first viewing the call to streamActive may seem unnecessary but there
are actually two reasons for its inclusion. Firstly, what happens in the time
between the call to endOfStream and getNextElement? In fact anything and
in particular as we are running in parallel the stream may get locked and read
by some other thread in the farm and thus leave the call undefined. Secondly,
if we are to support SIMD or predicated processors, where conditionals do not
necessarily imply control flow, then streamActive can provide functionality to
disable or enable particular processing elements.

Of course, in the case when the amount of work on each element of a chunk is
large the while loop itself can be parallelized with task parallelism. For example,
the loop of Figure 2 might be expressed as in Figure 3.

4 Extending OpenMP with Streams

In this section we introduce a streaming API and a small addition to OpenMP’s
parallel fork-join and producer-consumer threading models.

First we define streams as declarative representations of more conventional
random access C++/Fortran arrays. Random access to streams is not allowed,
and consequently no index operator exists; instead the user can define a gather/

140 B.R. Gaster

template<typename T> class Stream {
public :

// Creat ing and de s t r oy in g streams
stat ic Stream<T> ∗ c r e a t e (T ∗ p , int i n s t r e am s i z e ,

int chunk s ize ,
tuple<StreamAccess , TargetISA> ∗ t) ;

stat ic Stream<T> ∗ c r e a t e (Stream<T> ∗) ;
void dest roy (void) ;
// Reading and wr i t i n g streams
T getNextElement (void) ;
T ∗ getNextChunk (void) ;
void writeNextElement (T&);
// Stream in f o
void f l u s h (void) ;
bool endOfStream (void) ;
bool streamActive (void) ;
int numChunks(void) ;
int chunkSize (void) ;
// Stream reduc t ion
template<typename U> U reduce (funct ion<U (U, U) >);

private :
// cons t ruc tor , de s t ruc to r , e t c . . .

} ;

Fig. 4. Steaming API (C++ variant)

scatter style access, using either a set of statically defined patterns or dynami-
cally using streams themselves.

The streaming interface is split into four components: types for streams and
access patterns; functions for creating and destroying streams; functions to read
and write streams; and functions returning stream characteristics. A stream is
created with an array forming the data stream, the size of input, and a list of
access patterns. It may not at first be obvious why a list of access patterns is
required, rather than just a single value. A single access pattern works fine in
the case that a particular stream is destined for a single source but consider the
case when a particular stream is distributed across a number of different ISAs,
e.g. accelerator cores, which may themselves spread the received data across
any number of internal cores. It becomes necessary to associate a particular
target ISA (TargetISA) with a corresponding stream access, allowing the stream
implementation to know at which level a distribution is to be applied.

The streaming functions should be reasonably self-explanatory and the com-
plete set is given in Figure 4.1 A full description of the streaming API is beyond
the scope of this paper and the interested reader is pointed to Gaster et al. for
a detailed presentation [3].

For OpenMP itself Figures 5(a) and 5(b) show the extensions necessary for the
parallel fork-join and producer consumer directives. As discussed in the previous

1 For simplicity we use C++ as our base language.

Streams: Emerging from a Shared Memory Model 141

#pragma omp parallel [clause[[,]clause]...]
structured-block

where clause can be one of
firstprivate(list)

private(list)
shared(list)

reduction(operator:list)
num threads(integer-expression)

connect(list)
(a) Fork-join threading model

#pragma omp task [clause[[,]clause] ...]
structured-block

where clause can be one of
captureprivate(list)

private(list)
shared(list)

switch
connect(list)

(b) Producer-consumer threading model

Fig. 5. Streaming extensions to OpenMP pragmas

section this is reduced to a single additional clause connect, capturing the notion
that a stream defined at an outer scope is to be joined (one-to-many) to the
parallel region’s gang of threads. The stream creation method

static Stream<T> ∗ c r e a t e (Stream<T> ∗) ;

is provided for this and joins a stream to the calling region, which in this case
will be a thread in the parallel region. The resulting stream is then used in place
of the referenced stream within the structured block. On exit from the parallel
region the created stream(s) must be destroyed. For output streams this will
cause the streams to be flushed and data will be moved to the corresponding
stream of the outer scope.

An important consideration when describing a new API for OpenMP must
be how easily it can be expressed in C, C++, and FORTRAN. We choose to
specify the streaming library in C++ as the parametric polymorphism provided
by templates leads to a simple definition. However, while maybe not as com-
pelling when expressed in C or FORTRAN it is straightforward. With careful
use of the preprocessor it is possible to generate much of the boiler-plate code
necessary for parameterized stream types while retaining most of the generic
approach offered by C++. For example, the code in Figure 6 implements a C
macro, STREAMING TY PE(typ), that when instantiated generates the set
of steaming functions for streams of element type typ. While at times not the
most elegant of approaches, it does mean that it is possible to retain type safety
and makes it applicable in the context of FORTRAN.

5 Evaluation

The streaming environment described in this paper has already been imple-
mented within ClearSpeed for developing applications for an IA-32 system with
any number of CSX accelerators. The implementation is factored into two parts:
a source-to-source compiler, based on the Barcelona Supercomputing Center’s
Mercurium compiler [12]; and runtime components for both the IA-32 and CSX.

142 B.R. Gaster

#define STREAMING TYPE(typ) \
stat ic typ ∗ g e t n ex t ## typ ## chunk (stream s) { \

return ((typ ∗) get next chunk (s)) ; \
} \
stat ic typ g e t n ex t ## typ ## element (stream s) { \

return (∗ ((typ ∗) (ho s t g e t nex t e l ement p (s)))) ; \
} \
stat ic void wr i t e n ex t ## typ ## \

e lement (stream s , typ x) { \
wr i t e nex t e l ement p (s , (char ∗) &(x)) ; \

} \
stat ic void \
i n i t ## typ ## stream (stream s , \

typ ∗ p , \
typ ∗ buf0 , \
typ ∗ buf1 , \
int i n s t r e am s i z e , \
int ou t bu f s i z e , \
stream type t) { \

i n i t s t r e am (s , (char ∗) p , (char ∗) buf0 , (char ∗) buf1 ,\
i n s t r e am s i z e , ou t bu f s i z e , s izeof (typ) , t) ; \

}

STREAMING TYPE(int) ;
STREAMING TYPE(f loat) ;
STREAMING TYPE(double) ;

Fig. 6. Using C’s preprocessor to generate a stream API

The streaming API itself is a standard ClearSpeed product for both IA-32
and CSX and required no modifications. The OpenMP compiler expects a single
source input, expressed in C++ with OpenMP SIMD accelerator regions [13],
that is processed to produce corresponding IA-32 (C++) and CSX (Cn [14])
code, compiled by respective compilers.

For this paper we have evaluated our implementation against a small number
of representative benchmarks for performance evaluation. Rather than consid-
ering the performance ratio between a native IA-32 implementation and a CSX
accelerated system—it is easy to show performance improvements for applica-
tions with CSX assistance [2,13]—we considered differences for implementations
in OpenMP with and without streams.

The performance figures for each of the selected benchmarks are given in
Figure 72. The results themselves are of an early nature but they are very en-
couraging as is evident, in particular, from the results for the FFT (performing
10,0000 1k and 2k 2D FFTs), sum (sum of squares of one million doubles), and

2 All benchmarks were compiled with GCC 4.1, optimization level -03, and Clear-
Speed’s latest CSX SDK (3.0).

Streams: Emerging from a Shared Memory Model 143

0

1

2

3

4

5

6

7

8

9

FFT sum [0..1000000] docking dotp (1000x1000 matrix)

OpenMP OpenMP + Streams

Fig. 7. Performance for OpenMP + Streams vs OpenMP codes

dotp (dot product of 1k vector) which all show a performance improvement over
the OpenMP versions, the latter showing a 5x and 7x speedup.

6 Conclusion

In this paper we have presented an approach to extending OpenMP’s shared
memory model for systems where not all memory is shared. Taking the (pos-
sibly) surprising step of assuming a primitive notion for streams it is possible
to extend OpenMP in a modest fashion. The programmer is provided with a
powerful parallel programming abstraction with the ability to describe irregular
data access across distributed memory hierarchies.

In practice the streaming extensions are small and maintain the semantics of
existing programs while providing a natural approach to data partitioning not
present in OpenMP as it stands. Streams themselves provide a natural parallel
programming abstraction and it seems only sensible to consider their application
in a parallel programming language such as OpenMP.

With the introduction of streams as alternative containers to arrays, task level
parallelism may (often) be more convenient than the conventional data parallel
constructs. This is probably due, in part at least, to the fact that OpenMP’s
original parallel constructs were designed with large scale data-parallelism in
mind. With the introduction of task level parallelism it is possible to consider
irregular data access that fits well with the produce-consumer style model that
arises naturally when working with streams.

6.1 Future Work

Multimedia codecs, such a MEG2 and software radio, show a high amount of
data-parallelism and initially seem like a good fit for the data parallel constructs
of OpenMP. The problem is that often fine-grained control flow and data com-
munication is required that makes simply loop parallelization difficult and task

144 B.R. Gaster

parallelism finds a better fit. These applications also fit well with gather/scatter
and compute style semantics and an interesting area of future work is to develop
implementations for a selection of multimedia codecs using the model described
in this paper.

As the streams presented in this paper are treated as declarative objects
and their computations can be specified using a small set of combinators. It is
possible, in many cases, for the compiler to optimize the generation of possible
intermediate streams statically. A more detailed discussion of these and other
stream optimizations is outside of the scope of this paper and the interested
reader is pointed to work on Open Accelerator for more information [3]. To date
we have not evaluated the use of these kinds of optimizations in the presence of
OpenMP but believe this to be an interesting avenue for future work.

The shared memory model of OpenMP is known to have problems when scal-
ing to simultaneous multi-threaded (SMT) [15] processors. In particular, when
OpenMP applications are executed on SMT architectures many different forms
of interference between threads has been reported [16]. While not the motiva-
tion for the work described in this paper we believe that streams may provide
an approach to parallel data access that avoids many of the data interference
issues on SMT systems and this is an important area of future work.

Finally, it possible that an implementation of OpenMP built on top of a
streaming API could implicitly connect streams to parallel regions without the
need for the connect clause at all. One problem with this approach comes when
considering extending the connect clause to capture information on intermediate
stream production, which in practice could be optimized away, see Gaster et al.
[3] for an example. In this case an explicit stream connection provides vital static
information that may otherwise be hidden from the compiler.

References

1. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,
J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T.,
Yazawa, K.: The design and implementation of a first-generation CELL proces-
sor. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC,
vol. 1, pp. 184–592. IEEE International, Los Alamitos (2005)

2. ClearSpeed Technology Plc: White paper: CSX Processor Architecture (2004)
3. Gaster, B.R., Lacey, D., Sumner, B.: Open Accelerator: programming at the edges

(submitted 2007)
4. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program

GPUs for general-purpose uses. In: ASPLOS-XII: Proceedings of the 12th in- ter-
national conference on Architectural support for programming languages and op-
erating systems, pp. 325–335. ACM Press, New York (2006)

5. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt a language for streaming
applications. Computational Complexity, 179–196 (2002)

6. Buck, I.: Brook: A Streaming Programming Language. Stanford University (2001)

Streams: Emerging from a Shared Memory Model 145

7. Carpenter, P., Rdenas, D., Martorell, X., Ramrez, A., Ayguad, E.: A Streaming
Machine Description and Programming Model. In: Vassiliadis, S., Bereković, M.,
Hämäläinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, pp. 107–116. Springer,
Heidelberg (2007)

8. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to Global Arrays. Parallel Comput. 31(10-
12), 1114–1139 (2005)

9. Basumallik, A., Min, S.J., Eigenmann, R.: Programming distributed memory sys-
tems using openmp. In: 12th international workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (2007)

10. Sato, M., Harada, H., Hasegawa, A., Ishikawa, Y.: Cluster-enabled OpenMP: An
OpenMP compiler for the scash software distributed shared memory system. Sci.
Program 9(2,3), 123–130 (2001)

11. Eichenberger, A.E., O’Brien, J.K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H.,
Prener, D.A., Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P.,
Gschwind, M.K., Archambault, R., Gao, Y., Koo, R.: Using advanced compiler
technology to exploit the performance of the Cell Broadband EngineTM architec-
ture. IBM Syst. J. 45(1), 59–84 (2006)

12. Barcelona Supercomputing Center: The NANOS Environment
13. Bradley, C., Gaster, B.R.: Exploiting loop-level parallelism for SIMD arrays using

OpenMP. In: International Workshop on OpenMP (2007)
14. Lokhmotov, A., Gaster, B.R., Mycroft, A., Stuttard, D., Hickey, N.: Revisiting

SIMD programming. In: 20th InternationalWorkshop on Languages and Compilers
for Parallel Computing (2007)

15. Curtis-Maury, M., Ding, X., Antonopoulos, C.D., Nikolopoulos, D.S.: An evalua-
tion of OpenMP on current and emerging multithreaded/multicore processors. In:
First International Workshop on OpenMP (2005)

16. Zhang, Y., Burcea, M., Cheng, V., Ho, R., Voss, M.: An adaptive OpenMP loop
scheduler for Hyperthreaded SMPs. In: International Conference on Parallel and
Distributed Computing Systems, pp. 256–263 (2004)

	Streams: Emerging from a Shared Memory Model
	Introduction
	Related Work
	Overview
	Extending OpenMP with Streams
	Evaluation
	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

