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Preface

OpenMP is a widely accepted, standard application programming interface (API)
for high-level shared-memoryparallel programming in Fortran,C, and C++. Since
its introduction in 1997,OpenMP has gained support from most high-performance
compiler and hardware vendors. Under the direction of the OpenMP Architecture
Review Board (ARB), the OpenMP specification has evolved, including the re-
cent release of Specification 3.0. Active research in OpenMP compilers, runtime
systems, tools, and environments drives its evolution, including new features such
as tasking.

The community of OpenMP researchers and developers in academia and in-
dustry is united under cOMPunity (www.compunity.org). This organaization has
held workshops on OpenMP around the world since 1999: the European Work-
shop on OpenMP (EWOMP), the North American Workshop on OpenMP Appli-
cations and Tools (WOMPAT), and the Asian Workshop on OpenMP Experiences
and Implementation (WOMPEI) attracted annual audiences from academia and
industry. The International Workshop on OpenMP (IWOMP) consolidated these
three workshop series into a single annual international event that rotates across
the previous workshop sites. The first IWOMP meeting was held in 2005, in Eu-
gene, Oregon, USA. IWOMP 2006 took place in Reims, France, and IWOMP 2007
in Beijing, China. Each workshop drew over 60 participants from research and in-
dustry throughout the world. IWOMP 2008 continued the series with technical
papers, panels, tutorials, and OpenMP status reports. The first IWOMP work-
shop was organized under the auspices of cOMPunity. Since that workshop, the
IWOMP Steering Committee has organized these events and guided development
of the series. The first three IWOMP meetings were successful in every regard, due
largely to the generous support received from numerous sponsors, demonstrating
the importance of OpenMP as a practical programming paradigm.

The cOMPunity website (www.compunity.org) provides access to the talks
given at the meetings and to photos of the activities. The IWOMP website
(www.iwomp.org) provides information on the latest event. This book contains
the proceedings of IWOMP 2008. The workshop program included 16 technical
papers, a keynote talk on “Programming with Transactions” by Kunle Oluko-
tun, Stanford University, and an invited talk entitled “Taking OpenMP Beyond
HPC” by Tim Mattson, Intel Corp. The workshop program also featured a panel
entitled “Is OpenMP Irrelevant Next to MPI and Pthreads?”—of course, the
title created lively discussions, providing evidence to the contrary! The work-
shop concluded with a status and update report by OpenMP’s driving force—its
ARB—and several OpenMP vendors.

Rudi Eigenmann
Bronis R. de Supinski
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A Microbenchmark Study of OpenMP

Overheads under Nested Parallelism

Vassilios V. Dimakopoulos, Panagiotis E. Hadjidoukas,
and Giorgos Ch. Philos

Department of Computer Science, University of Ioannina
Ioannina, Greece, GR-45110

{dimako,phadjido,gfilos}@cs.uoi.gr

Abstract. In this work we present a microbenchmark methodology for
assessing the overheads associated with nested parallelism in OpenMP.
Our techniques are based on extensions to the well known EPCC mi-
crobenchmark suite that allow measuring the overheads of OpenMP
constructs when they are effected in inner levels of parallelism. The
methodology is simple but powerful enough and has enabled us to gain
interesting insight into problems related to implementing and support-
ing nested parallelism. We measure and compare a number of commercial
and freeware compilation systems. Our general conclusion is that while
nested parallelism is fortunately supported by many current implemen-
tations, the performance of this support is rather problematic. There
seem to exist issues which have not yet been addressed effectively, as
most OpenMP systems do not exhibit a graceful reaction when made to
execute inner levels of concurrency.

1 Introduction

OpenMP [1] has become a standard paradigm for shared memory programming,
as it offers the advantage of simple and incremental parallel program develop-
ment, in a high abstraction level. Nested parallelism has been a major feature of
OpenMP since its very beginning. As a programming style, it provides an elegant
solution for a wide class of parallel applications, with the potential to achieve
substantial processor utilization, in situations where outer-loop parallelism sim-
ply can not. Despite its significance, nested parallelism support was slow to find
its way into OpenMP implementations, commercial and research ones alike. Even
nowadays, the level of support is varying greatly among compilers and runtime
systems.

For applications that have enough (and balanced) outer-loop parallelism,
a small number of coarse threads is usually enough to produce satisfactory
speedups. In many other cases though, including situations with multiple nested
loops, or recursive and irregular parallel applications, threads should be able to
create new teams of threads because only a large number of threads has the
potential to achieve good utilization of the computational resources.

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Although many contemporary OpenMP compilation systems provide some
kind of support for nested parallelism, there has been no evaluation of the over-
heads incurred by such a support. The well known EPCC microbenchmark suite
[2,3] is a valuable tool with the ability to reveal various synchronization and
scheduling overheads, but only for single-level parallelism.

In this work, we present a set of benchmarks that are based on extensions to
the EPCC microbenchmarks and allow us to measure the overheads of OpenMP
systems when nested parallelism is in effect. To the best of our knowledge this is
the first study of its kind as all others have been based on application speedups
[4,5,6,7] which give overall performance indications but do not reveal potential
construct-specific problems.

The paper is organized as follows. In Section 2 we give an overview of the
OpenMP specification and the current status of various implementations with
respect to nested parallelism. In Section 3 we present the microbenchmarks in
detail. Section 4 reports on the performance of several OpenMP compilation
systems when used to execute our benchmarks. The section also includes a dis-
cussion of our findings. Finally, Section 5 concludes this work.

2 Nested Parallelism in OpenMP

The OpenMP specification leaves support for nested parallelism as optional,
allowing an implementation to serialize the nested parallel region, i.e. execute
it by only 1 thread. In implementations that support nested parallelism, the
user can choose to enable or disable it either during program startup through
the OMP_NESTED environmental variable or dynamically at runtime through an
omp_set_nested() call. The number of threads that will comprise a team can
be controlled by the omp_set_num_threads() call. Because this is allowed to
appear only in sequential regions of the code, there is no way to specify a different
number of threads for inner levels through this call; to overcome this, the current
version of OpenMP (2.5) provides the num_threads(n) clause. Such a clause can
appear in a (nested) parallel directive and request that this particular region
be executed by exactly n threads.

However, the actual number of threads dispatched in a (nested) parallel
region depends also on other things. OpenMP provides a mechanism for the
dynamic adjustment of the number of threads which, if activated, allows the
implementation to spawn fewer threads than what is specified by the user. In
addition to dynamic adjustment, factors that may affect the actual number of
threads include the nesting level of the region, the support/activation of nested
parallelism and the peculiarities of the implementation. For example, some sys-
tems maintain a fixed pool of threads, usually equal in size to the number of
available processors. Nested parallelism is supported as long as free threads exist
in the pool, otherwise it is dynamically disabled. As a result, a nested parallel
region may be executed by a varying number of threads, depending on the cur-
rent state of the pool.
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In general, it is a recognized fact that the current version of OpenMP has a
number of shortcomings when it comes to nested parallelism [7], and there exist
issues which need clarification. Some of them are settled in the upcoming version
of the API (3.0), which will also offers a richer functional API for the application
programmer.

According to the OpenMP specification, an implementation which serializes
nested parallel regions, even if nested parallelism is enabled by the user, is con-
sidered compliant. An implementation can claim support of nested parallelism
if nested parallel regions may be executed by more than 1 thread. Because of
the difficulty in handling efficiently a possibly large number of threads, many
implementations provide support for nested parallelism but with certain limita-
tions. For example, there exist systems that support a fixed number of nesting
levels; some others allow an unlimited number of nesting levels but have a fixed
number of simultaneously active threads.

Regarding proprietary compilers, not all of them support nested parallelism
and some support it only in part. Among the ones that provide unlimited sup-
port in their recent releases are the Fujitsu primepower compilers, the HP
compilers for the HP-UX 11i operating system, the Intel compilers [8] and the
Sun Studio compilers [9]. Full support for nested parallelism is also provided in
the latest version of the well-known open-source gnu Compiler Collection, gcc

4.2, through the libGOMP [10] runtime library.
Research/experimental OpenMP compilers and runtime systems that support

nested parallelism include MaGOMP, a port of libGOMP on top of the Marcel
threading library [11], the Omni compiler [12,6] and OMPi [13,14].

3 The Microbenchmark Methodology

The EPCC microbenchmark suite [2,3] is the most commonly used tool for mea-
suring runtime overheads of individual OpenMP constructs. However, it is only
applicable to single-level parallelism. This section describes the extensions we
have introduced to this microbenchmark suite for the evaluation of OpenMP
runtime support under nested parallelism.

The technique used to measure the overhead of OpenMP directives, is to
compare the time taken for a section of code executed sequentially with the time
taken for the same code executed in parallel, enclosed in a given directive. Let
Tp be the execution time of a program on p processors and T1 be the execution
time of its sequential version. The overhead of the parallel execution is defined
as the total time spent collectively by the p processors over and above T1, the
time required to do the “real” work, i.e. Tovh = pTp − T1. The per-processor
overhead is then To = Tp − T1/p. The EPCC microbenchmarks [2] measure To

for the case of single-level parallelism using the method described below.
A reference time, Tr, is first fixed, which represents the time needed for a

call to a particular function named delay(). To avoid measuring times that are
smaller than the clock resolution, Tr is actually calculated by calling the delay()
function sufficiently many times:
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for (j = 0; j < innerreps; j++)
delay(delaylength);

and dividing the total time by innerreps.
Then, the same function call is surrounded by the OpenMP construct un-

der measurement, which in turn is enclosed within a parallel directive. For
example, the testfor() routine that measures the for directive overheads, ac-
tually measures the portion shown in Fig. 1 and then divides it by innerreps,
obtaining Tp. Notice, that because the measurement includes the time taken
by the parallel directive, innerreps is large enough so that the overhead
of the enclosing parallel directive can be ignored. The overhead is derived
as Tp − Tr, since the total work done needs actually pTr sequential time. Of
course, to obtain statistically meaningful results, each overhead measurement is
repeated several times and the mean and standard deviation are computed over
all measurements. This way, the microbenchmark suite neither requires exclusive
access to a given machine nor is seriously affected by background processes in the
system.

testfor() {
...
<start measurement>

#pragma omp parallel private(j)
{
for (j = 0; j < innerreps; j++)

#pragma omp for
for (i = 0; i < p; i++)
delay(delaylength);

}
<stop measurement>
...

}

Fig. 1. Portion of the testfor() microbenchmark routine

3.1 Extensions for Nested Parallelism

To study how efficiently OpenMP implementations support nested parallelism,
we have extended both the synchronization and the scheduling microbenchmarks
of the EPCC suite. According to our approach, the core benchmark routine for
a given construct (e.g. the testfor() discussed above) is represented by a task.
Each task has a unique identifier and utilizes its own memory space for storing
its table of runtime measurements. We create a team of threads, where each
member of the team executes its own task. When all tasks finish, we measure
their total execution time and compute the global mean of all measured runtime
overheads. Our approach is outlined in Fig. 2. The team of threads that execute
the tasks expresses the outer level of parallelism, while each benchmark routine
(task) contains the inner level of parallelism.
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void nested_benchmark(char *name, func_t originalfunc) {
int task_id;
double t0, t1;

1 t0 = getclock();
2 #ifdef NESTED_PARALLELISM
3 #pragma omp parallel for schedule(static,1)
4 #endif
5 for (task_id = 0; task_id < p; task_id++) {
6 (*originalfunc)(task_id);
7 }
8 t1 = getclock();

<compute global statistics>
<print construct name, elapsed time (t1-t0), statistics>

}

main() {
<compute reference time>
omp_set_num_threads(omp_get_num_procs());
omp_set_dynamic(0);
nested_benchmark("PARALLEL", testpr);
nested_benchmark("FOR", testfor);
...

}

Fig. 2. Extended microbenchmarks for nested parallelism overhead measurements

In Fig. 2, if the outer loop (lines 5–7) is not parallelized, the tasks are executed
in sequential order. This is equivalent to the original version of the microbench-
marks, having each core benchmark repeated more than once. On the other
hand, if nested parallelism is enabled, the loop is parallelized (lines 2–4) and
the tasks are executed in parallel. The number of simultaneously active tasks is
bound by the number of OpenMP threads that constitute the team of the first
level of parallelism. To ensure that each member of the team executes exactly
one task, a static schedule with chunksize of 1 was chosen at line 3. In addition,
to guarantee that the OpenMP runtime library does not assign fewer threads
to inner levels than in the outer one, dynamic adjustment of threads is disabled
through a call to omp set dynamic(0).

By measuring the aggregated execution time of the tasks, we use the mi-
crobenchmark as an individual application. This time does not only include the
parallel portion of the tasks, i.e. the time the tasks spend on measuring the
runtime overhead, but also their sequential portion. This means that even if the
mean overhead increases when tasks are executed in parallel, as expected due to
the higher number of running threads, the overall execution time may decrease.
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In OpenMP implementations that provide full nested parallelism support, in-
ner levels spawn more threads than the number of physical processors, which
are mostly kernel-level threads. Thus, measurements exhibit higher variations
than in the case of single-level parallelism. In addition, due to the presence of
more than one team parents, the overhead of the parallel directive increases in
most implementations, possibly causing overestimation of other measured over-
heads (see Fig. 1). To resolve these issues, we increase the number of internal
repetitions (innerreps) for each microbenchmark, so as to be able to reach the
same confidence levels (95%). A final subtle point is that when the machine is
oversubscribed, each processor will be timeshared among multiple threads. This
leads to an overestimation of the overheads because the microbenchmarks ac-
count for the sequential work (Tr) multiple times. We overcame this by decreas-
ing delaylength so that Tr becomes negligible with respect to the measured
overhead.

4 Results

All our measurements were taken on a Compaq Proliant ML570 server with 4
Intel Xeon III single-core CPUs running Debian Linux (2.6.6). Although this
is a relatively small SMP machine, size is not an issue here. Our purpose is to
create a significant number of threads; as long as a lot more threads than the
available processors are active, the desired effect is achieved. We provide perfor-
mance results for two free commercial and three freeware OpenMP C compilers
that support nested parallelism. The commercial compilers are the Intel C++
10.0 compiler (icc) and Sun Studio 12 (suncc) for Linux. The freeware ones
are gcc 4.2.0, Omni 1.6 and ompi 0.9.0. As Omni and ompi are source-to-
source compilers, we have used gcc as the native back-end compiler for both
of them. In addition, because ompi is available with a multitude of threading
libraries, we have used two different configurations for it, namely ompi+posix

and ompi+psthreads. The first one uses the default runtime library, based on
posix threads which, although optimized for single-level parallelism, provides
basic support for nested parallelism. The second one uses a high-performance
runtime library based on posix threads and portable user-level threads [14].

Most implementations start by creating an initial pool of threads, usually
equal in size to the number of available processors, which is 4 in our case. Because
the number of threads in the second level is implementation dependent, in all our
experiments we have explicitly set it to 4 through an omp_set_num_threads(4)
call and we have disabled the dynamic adjustment of the number of threads.
I.e., when executing the second level of parallelism, there are in total 4 × 4 = 16
active threads. However, some implementations cannot handle this situation. In
particular, the Omni compiler and ompi+posix cannot create more threads on
the fly, even if needed; they support nested parallelism as long as the initial pool
has idle threads, otherwise nested parallel regions get serialized. To overcome
this problem, for those two implementations we set the OMP_NUM_THREADS en-
vironmental variable equal to 16 before executing the benchmarks, so that the
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initial pool is forced to have 16 threads; the omp_set_num_threads(4) call then
limits the outer level to exactly 4 threads, while all 16 threads are utilized in the
inner level. We have, however, been careful not to give those two implementa-
tions the advantage of zero thread creation overhead (since with the above trick
the 16 threads are pre-created), by including a dummy nested parallel region
at the top of the code. This way, all implementations get a chance to create 16
threads before the actual measurements commence.

A selection of the obtained results is given in Figs 2–4, for the synchronization
and scheduling microbenchmarks. Fig. 3 includes the overheads of all six systems
for the parallel, for, single and critical constructs. Each plot includes the
single-level overheads of each system for reference.

As the number of active threads increases when nested parallelism is en-
abled, the overheads are expected to increase accordingly. We observe, however,
that the parallel construct does not scale well for the Intel, gcc and Omni
compilers, although icc remains quite fast. For all three of them, the runtime
overhead is more than an order of magnitude higher in the case of nested paral-
lelism. For icc this could be attributed, in part, to the fact that threads join a
unique central pool before getting grouped to teams [8]. On the other hand, both
ompi+psthreads and suncc clearly scale better and their overheads increase
linearly, with suncc, however, exhibiting higher overheads than ompi for both
single level and nested parallelism.

Similar behavior is seen for the for and single constructs, except that gcc

shows significant but not excessive increase. The Sun compiler seems to han-
dle loop scheduling quite well showing a decrease in the actual overheads. This,
combined with the decrease in the single overheads, reveals efficient team man-
agement since both constructs incur mostly inter-team contention. Especially
in the single construct, ompi+psthreads shows the advantage of user-level
threading: inner levels are executed by user-level threads, which mostly live in
the processor where the parent thread is, eliminating most inter-team contention
and the associated overheads. In contrast, the (unnamed) critical construct
incurs global contention since all threads from all teams must compete for a
single lock protecting the critical code section. Overheads are increased signifi-
cantly in all systems, suggesting that unnamed critical constructs should be
avoided when nested parallelism is required.

Fig. 4 includes results from the scheduling microbenchmarks. For presentation
clarity, we avoided reporting curves for a wide range of chunksizes; instead, we
include only results for static, dynamic and guided schedules with a chunksize of
1, which represent the worst cases, with the highest possible scheduling overhead.
Scheduling overheads increase, as expected, for the static and guided schedules
in the case of nested parallelism. However, the overheads of the dynamic schedul-
ing policy seem to increase at a slower rate and in some cases (suncc, gcc and
ompi+psthreads) actually decrease, which seems rather surprising. This can
be explained by the fact that for this particular scheduling strategy and with this
particular chunk size, the overheads are dominated by the excessive contention
among the participating threads. With locality-biased team management, which



8 V.V. Dimakopoulos, P.E. Hadjidoukas, and G.Ch. Philos

#PRAGMA OMP PARALLEL

0

40

80

120

160

200

240

280

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

638,53μsec     601,95μsec

#PRAGMA OMP FOR

0

10

20

30

40

50

60

70

80

90

100

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

    384.57μsec

#PRAGMA OMP SINGLE

0

10

20

30

40

50

60

70

80

90

100

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

    391.43μsec

#PRAGMA OMP CRITICAL

0

5

10

15

20

25

30

35

40

45

50

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

    

Fig. 3. Overheads for parallel, for, single and critical



A Microbenchmark Study of OpenMP Overheads under Nested Parallelism 9

SCHEDULE(STATIC,1)

0

40

80

120

160

200

240

280

320

360

400

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

   499,62μsec

SCHEDULE(GUIDED,1)

0

40

80

120

160

200

240

280

320

360

400

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

1118,83μsec 510,05μsec

SCHEDULE(DYNAMIC,1)

0

160

320

480

640

800

960

1120

1280

1440

1600

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

  3308.75μsec 1788.88μsec

SCHEDULE(DYNAMIC, 8)

0

40

80

120

160

200

240

280

320

360

400

ICC SUNCC GCC OMNI OMPi+POSIX OMPi+PSTHR

O
ve

rh
ea

d 
(μ

se
c)

Single Level (4 threads)

Nested Parallelism (4x4 threads)

    639.41μsec

Fig. 4. Scheduling overheads for static, guided and dynamic



10 V.V. Dimakopoulos, P.E. Hadjidoukas, and G.Ch. Philos

ICC 

0

20

40

60

80

100

120

140

160

180

200

2 4 8

Number of Inner Threads

O
ve

rh
ea

d(
μs

ec
)

          8 Threads:
Parallel:     491,34μsec
Reduct ion: 448,01μsec

     

SUNCC 

0

20

40

60

80

100

120

140

160

180

200

2 4 8

Number of Inner Threads

O
ve

rh
ea

d(
μs

ec
)

          8 Threads:
Reduct ion: 271,9μsec

     

GCC 

0

20

40

60

80

100

120

140

160

180

200

2 4 8

Number of Inner Threads

O
ve

rh
ea

d
(μ

se
c)

           8 Threads
Parallel:     2295,67μsec  
Reduction: 2284,76μsec

          4 Threads:     
Parallel:      638,53μsec
Reduction: 638,38μsec

OMPi+POSIX 

0

20

40

60

80

100

120

140

160

180

200

2 4 8

Number of Inner Threads

O
ve

rh
ea

d(
μs

ec
)

     

OMPi+PSTHREADS 

0

20

40

60

80

100

120

140

160

180

200

2 4 8

Number of Inner Threads

O
ve

rh
ea

d(
μs

ec
)

     

Fig. 5. Overheads per compiler, for increasing team sizes at the second level of paral-
lelism

groups all team threads onto the same CPU, and efficient locking mechanisms,
which avoid busy waiting, the contention has the potential to drop sharply, yield-
ing lower overheads than in the single-level case. This appears to be the case
for the Sun Studio and gcc compilers. ompi with user-level threading achieves
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the same goal because it is able to assign each independent loop to a team of non-
preemptive user-level OpenMP threads that mainly run on the same processor.
However, as the chunksize increases, assigned jobs become coarser and any gains
due to contention avoidance vanish. This is confirmed in the last plot of Fig. 4;
with a chunksize of 8 all implementations show increased overheads with respect
to the single-level case.

In Fig. 5 we present the results of our next experimentation: we delved into
discovering how the behavior of our subjects changes for different populations of
threads. We fixed the number of first-level threads to 4 but changed the second-
level teams to consist of 2, 4 and 8 threads, yielding in total 8, 16 and 32 threads
on the 4 processors. Because this was only possible using the num_threads()
clause (an OpenMP V.2.0 addition), Omni was not included, as it is only V.1.0
compliant. Fig. 5 contains one plot per compiler, including curves for most syn-
chronization microbenchmarks. The results confirmed what we expected to see:
increasing the number of threads in the second level leads to increased over-
heads. Due to space limitations, we cannot comment on every aspect of the
plots but we believe that they present the situation very vividly. It is enough to
say that for some implementations things seems to get out of control, especially
for parallel and reduction. By far, the most scalable behavior is exhibited by
the ompi+psthreads setup, although in absolute numbers the Intel compiler
is in many cases the fastest.

5 Conclusion

In this paper we presented an extension to the EPCC microbenchmark suite
that allows the measurement of OpenMP construct overheads under nested par-
allelism. Using this extension we studied the behavior of various OpenMP compi-
lation and runtime systems when forced into inner parallel regions. We discovered
that many implementations have scalability problems when nested parallelism
is enabled and the number of threads increases well beyond the number of avail-
able processors. This is most probably due to the kernel-level thread model the
majority of the implementations use. The utilization of kernel threads introduces
significant overheads in the runtime library. When the number of threads that
compete for hardware recourses significantly exceeds the number of available
processors, the system is overloaded and the parallelization overheads outweigh
any performance benefits. Finally, it becomes quite difficult for the runtime sys-
tem to decide the distribution of inner-level threads to specific processors in
order to favor computation and data locality.

Although our study was limited to two nesting levels, it became clear that
studying deeper levels would only reveal worse behavior. It is evident that
there are several design issues and performance limitations related to nested
parallelism support that implementations have to address in an efficient way. In
the near future we plan to expand the microbenchmark suite appropriately so
as to be able to study the overheads at any arbitrary nesting level.
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Abstract. Despite its ease of use, OpenMP has failed to gain
widespread use on large scale systems, largely due to its failure to de-
liver sufficient performance. Our experience indicates that the cost of
initiating OpenMP regions is simply too high for the desired OpenMP
usage scenario of many applications. In this paper, we introduce CLOMP,
a new benchmark to characterize this aspect of OpenMP implementa-
tions accurately. CLOMP complements the existing EPCC benchmark
suite to provide simple, easy to understand measurements of OpenMP
overheads in the context of application usage scenarios. Our results for
several OpenMP implementations demonstrate that CLOMP identifies
the amount of work required to compensate for the overheads observed
with EPCC. Further, we show that CLOMP also captures limitations for
OpenMP parallelization on NUMA systems.

1 Introduction

OpenMP [11] is a simple method to incorporate shared memory parallelism into
scientific applications. While OpenMP has grown in popularity, it has failed to
achieve widespread usage in those applications despite the use of shared memory
nodes as the building blocks of large scale resources on which they run. Many
factors contribute to this apparent contradiction, most of which reflect the fail-
ure of OpenMP-based applications to realize the performance potential of the
underlying architecture. First, the applications run on more than one node of
these large scale resources and, thus, the applications use MPI [10]. While dis-
tributed shared memory OpenMP implemetantions [9] are an option, they fail
to provide the same level of performance.

Application programmers still might have adopted a hybrid OpenMP/MPI
style, using OpenMP for on-node parallelization. However, the performance
achieved discourages that also. OpenMP programs often have higher Amdahl’s
fractions than with MPI for on-node parallelization. Optimization of OpenMP
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usage has proven difficult due to a lack of a standard OpenMP profiling interface
and, more so, to a myriad of confusing and often conflicting environment settings
that govern OpenMP performance. In addition, the lack of on-node paralleliza-
tion within MPI implementations has often implied higher network bandwidths
with multiple MPI tasks on a node. Perhaps the most important factor has been
a mismatch between the amount of work in typical OpenMP regions of scientific
applications and the overhead of starting those regions.

Multi-core systems will impact many factors that have restricted adoption of
OpenMP. Future networking hardware will not support the messaging rates re-
quired to achieve reasonable performance with an MPI task per core. Also, greater
benefit fromon-node parallelizationwithin MPI implementationswill provide sim-
ilar (or better) aggregate network bandwidth to hybrid OpenMP/MPI applica-
tions compared to using an MPI task per core. Further, shared caches will provide
memory bandwidth benefits to threaded applications.

Since we expect OpenMP to gain popularity with future large scale systems,
we must understand the impact of OpenMP overheads on realistic application
regions. Accurately characterizing them will help motivate chip designers to
provide hardware support to reduce them if necessary. In this paper, we present
CLOMP, a new benchmark that complements the EPCC suite [13] to capture the
impact of OpenMP overheads (the CLOMP benchmark has no relationship to
Intel’s Cluster OpenMP). CLOMP is a simple benchmark that models realistic
application code structure, and thus the associated limits on compiler optimiza-
tion. We use CLOMP to model several application usage scenarios on a range of
current shared memory systems. Our results demonstrate that OpenMP over-
heads limit performance substantially for large scale multiphysics applications
and that NUMA effects can dramatically lower their performance even when
they can compensate for those overheads.

2 Characteristics of Scientific Applications

CLOMP provides a single easy-to-use benchmark that captures the shared mem-
ory parallelization characteristics of a wide range of scientific applications. We fo-
cused on applications in use at Lawrence Livermore National Laboratory
(LLNL), which are representative of large scale applications. We categorize LLNL
applications as multiphysics applications or as science applications that focus
on a particular physics domain. We need a simple easy-to-use benchmark that
accurately characterizes the performance that a system and its OpenMP imple-
mentation will deliver to the full range of these applications.

Multiphysics applications [4,16,5,14] generally have large, complex code bases
with multiple code regions that contribute significantly to their total run time.
These routines occur in disparate application code sections as well as third party
libraries, such as linear solvers [1,6]. While the latter may include large loops that
are relatively amenable to OpenMP parallelization, the application code often
has many relatively small but parallelizable loops with dependencies between
the loops that inhibit loop fusion to increase the loop sizes. Further, the loops
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frequently occur in disparate function calls related to different physics packages,
making consolidation even more difficult. Many multiphysics applications use
unstructured grids, which imply significant pointer chasing to retrieve the actual
data. Code restructuring to overcome these challenges is difficult: not only are
these applications typically very large (a million lines of code or more) but the
exact routines and the order in which they are executed depends on the input.
However, the individual loops have no internal dependencies and would appear
to be good candidates for OpenMP parallelization.

Science applications typically have fewer lines of code and less diverse exe-
cution profiles. While many still use high performance numerical libraries such
as ScaLAPACK [2], a single routine often contains the primary computational
kernel. Loop sizes available for OpenMP parallelization vary widely, from dense
large matrix operations to very short loops. LLNL science applications include
first principles molecular dynamics codes [8], traditional molecular dynamics
codes [7,12,15] and ParaDiS, a dislocation dynamics application [3].

The loop sizes available for OpenMP parallelization depend on the applica-
tion and the input problem. Currently, many HPC applications either use weak
scaling or increase the problem resolution, both of which imply the loop sizes
do not vary substantially as the total number of processors increases. However,
we anticipate systems with millions of processor cores in the near future, which
will make strong scaling attractive. Further, the amount of memory per core will
decrease substantially. Both of these factors will lead to smaller OpenMP loops.
Thus, while we need an OpenMP benchmark that characterizes the range of ap-
plications, capturing the impact of decreasing loop sizes is especially important.

3 The CLOMP Benchmark Implementation

CLOMP is structured like a multiphysics application. Its state mimics an unstruc-
tured mesh with a set of partitions, each divided into a linked list of zones, as
Figure 1 shows. The linked lists limit optimizations but we allocate the zones
contiguously so CLOMP can benefit from prefetching. The amount of memory
allocated per zone can be adjusted to model different pressures on the memory
system; however, computation is limited to the first 32 bytes of each zone. We
kept the per-zone working set constant because many applications only touch a
subset of a zone’s data on each pass, including our target applications. Although
the actual size varies from application to application, keeping it at 32 bytes makes
it easier to explore the interactions between the CPU and the memory subsystem.

CLOMP repeatedly executes the loop shown in Figure 2. calc deposit()
represents a synchronization point, such as an MPI call or a computation that de-
pends on the state of all partitions. The subsequent loop contains numPartitions
independent iterations. Each iteration traverses a partition’s linked list of zones,
depositing a fraction of a substance into each zone. We tune the amount of
computation per zone by repeating the inner loop flopScale times.

CLOMP models several possible loop parallelization methods, outlined in
Figure 3. The first applies a combined parallel for construct to the outer
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loop, using either a static or a dynamic schedule. We call these configurations
for-static and for-dynamic. The second method, called manual, represents
parallelization that the programmer can perform manually to reduce the Am-
dahl’s fraction. We enclose all instances of CLOMP’s outer loop in a parallel
construct and partition each work loop among threads explicitly. To ensure cor-
rect execution, we follow the work loop by a barrier and enclose the
calc deposit in a single construct. The last configuration, called best-case
represents the optimistic scenario in which all OpenMP synchronization is in-
stantaneous. It is identical to the manual version, except that the barrier and
single are removed. Although this configuration would not produce correct an-
swers, it provides an upper bound for the performance improvements possible
for the other configurations.

While similar to the schedule benchmark in EPCC that measures the overhead
of the loop construct with different schedule kinds, CLOMP emulates application
scenarios through several parameters in order to characterize the impact of that
overhead. The numPartitions parameter determines the number of independent
pieces of work in each outer loop while the numZonesPerPart and the flopScale
parameters determine the amount of work in each partition. While our results
in Section 4.2 fix numPartitions to 64, we can vary it as appropriate for the
application being modeled. The EPCC test fixes the corresponding factor at
128 per thread and requires source code modification to vary it; which prevents
direct investigation of speed ups for a loop with a fixed total amount of work.
The EPCC test also fixes the amount of work per iteration to approximately
100 cycles; our results show that this parameter directly impacts the speed up
achieved. CLOMP could mimic the EPCC schedule benchmark through proper
parameter settings but those would not correspond to any application scenarios
likely to benefit from OpenMP parallelization.
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Fig. 1. CLOMP data structures
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deposit = calc_deposit();
for(part = 0; part < numPartitions; part++) {

for(zone = partArray[part]->firstZone; zone != NULL; zone = zone->nextZone) {
for(scale_count = 0; scale_count < flopScale; scale_count++) {

deposit = remaining_deposit * deposit_ratio;
zone->value += deposit;
remaining_deposit -= deposit; } } }

Fig. 2. CLOMP source code

{

repeat {
#pragma omp parallel for schedule(static)
for(part = 0; part < numPartitions; part++) 

….
}
deposit = calc_deposit();

}

repeat {
#pragma omp parallel for schedule(dynamic)
for(part = 0; part < numPartitions; part++) {

….
}
deposit = calc_deposit();

}

#pragma omp parallel
repeat {

for(part = thread_part_min; 
part < thread_part_max; part++) {
….

}
#pragma omp barrier
#pragma omp single

deposit = calc_deposit();
}

for-static for-dynamic

manual best-case
#pragma omp parallel
repeat {

for(part = thread_part_min;
part < thread_part_max; part++) {

….
}
deposit = calc_deposit();

}

Fig. 3. Variants of CLOMP

Our results in Section 4.2 demonstrate that we must measure the impact of
memory issues as well as the schedule overheads alone to capture the effectiveness
of an OpenMP implementation for many realistic application loops. We control
CLOMP’s memory footprint through the zoneSize parameter that specifies the
amount of memory allocated per zone. In addition, the allocThreads parameter
determines whether each thread allocates its own partitions or if the master
thread allocates all of the partitions. As is well known, the earlier strategy works
better on NUMA systems that employ a first touch policy to place pages.

4 Experimental Results

In this section, we demonstrate that CLOMP provides the context of applica-
tion OpenMP usage for results obtained with the EPCC microbenchmarks [13]
through results on three different shared memory nodes. The LLNL Atlas sys-
tem has dual core, quad socket (8-way) 2.4GHz Opteron, 16GB main memory
nodes. Each core has 64KB L1 instruction and data caches and a 1MB L2 cache;
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each dual core chip has a direct connection to 4GB of local memory with Hyper-
Transport connections to the memories of the other chips. The LLNL Thunder
system has 4-way 1.4GHz Itanium2, 4GB main memory nodes. Each single core
chip has 16KB instruction and data caches, a 256KB L2 cache and a 4MB L3
cache. All four processors on a node share access to main memory through four
memory hubs. Our experiments on Thunder and Atlas use the Intel compiler
version 9.1, including its OpenMP run time library support. The LLNL uP sys-
tem has dual core, quad socket (8-way) 1.9GHz Power5, 32 GB main memory
nodes. Each core has private 64KB instruction and 32KB data caches while a
1.9MB L2 cache and a 36MB L3 cache are shared between the two cores on each
chip. Each dual core chip has a direct connection to 8GB of local memory with
connections through the other chips to their memories. Our experiments on uP
use the IBM xlc compiler version 7.0, including its OpenMP run time library
support.

All experiments on all platforms use the -O3 optimization level. Thread affinity
were used to force each thread to use a different core but the threads were
not bound, meaning that they could move if needed by the Operating System.
We relied on the kernel’s memory affinity algorithm to keep memory close to
the threads that allocated it but the exact details of the algorithms used are
unknown.

4.1 OpenMP Overheads Measured with EPCC

We measured the overheads of OpenMP constructs on our target platforms with
the EPCC microbenchmark suite. Figure 4 presents the results of the synchro-
nization microbenchmark and Figure 5 show the scheduling microbenchmark.
All figures list OpenMP constructs on the x-axis and their average overhead
from ten runs in processor cycles on the y-axis. The synchronization benchmark
data is plotted on a linear y-axis and the scheduling data uses a logarithmic axis.

Fig. 4. EPCC Synchronization Results
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Fig. 5. EPCC Scheduling Results

The synchronization microbenchmark data shows several interesting effects.
First, while the overhead of synchronization constructs with Intel OpenMP vary
little with the number of threads, the overhead of the constructs with IBM
OpenMP rises dramatically as the number of threads increases. However, despite
its poor scaling, IBM OpenMP is less expensive for most OpenMP constructs
The exceptions are the atomic and critical and parallel loop constructs, which
have higher overhead with IBM OpenMP on larger thread counts. Overall, most
synchronization overheads are on the order of tens of thousands of cycles. In
particular, a barrier costs between 27,000 and 38,000 cycles with Intel OpenMP
and from 7,000 to 31,000 with IBM OpenMP. The overhead of a loop construct
is 28,000-40,000 cycles with Intel OpenMP and ranges from 1,400 to 100,000
cycles with IBM OpenMP. The overhead of a combined parallel loop construct
is typically a little larger than the maximum overhead of the separate constructs.

The overhead of different schedule kinds varies between our platforms also,
as shown in Figures 5 (the y-axis is logarithmic). The overhead of the loop
construct changes little as the number of threads increases with our two Intel
OpenMP platforms for a fixed schedule kind and associated chunk size. Further,
static scheduling overhead is similar for all chunk sizes. In contrast, dynamic
scheduling overhead drops off exponentially with increasing chunk size while
guided scheduling overhead falls linearly. The reduced overheads reflect that the
dynamic and guided mechanisms impose a cost every time they are invoked. Since
larger chunks imply fewer invocations of the chunk assignment mechanism, they
impose a smaller overhead. This drop-off is less pronounced for guided scheduling
because it uses smaller chunks at the end of the allocation process, while dynamic
scheduling uses similar chunk sizes throughout. Nonetheless, dynamic and guided
scheduling overheads are consistently higher than static scheduling overhead on
the Intel OpenMP platforms, ranging from twice as high with a chunk size of
128 to a factor of ten higher on Thunder and 50 on Atlas with a chunk size of
one. On Thunder, guided scheduling overhead with a chunk size of 32 is 1.8x
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lower than the static scheduling overhead; the reason for this is unclear. The
overheads of different schedule kinds with IBM OpenMP rise superlinearly with
the number of threads. However, IBM OpenMP overheads exhibit the same
patterns with respect to chunk size patterns as seen with Intel OpenMP except
that static scheduling shows even steeper overhead drops than dynamic and
guided scheduling with increasing the chunk size. In addition, static scheduling
overhead is not much lower than the other schedule kinds with the same chunk
size and is sometimes larger.

The EPCC results capture the relative cost of different schedule kinds on our
platforms. When compared to Intel OpenMP, IBM OpenMP is always cheaper
with dynamic and guided and one thread and is usually cheaper with two. In
all other cases, IBM OpenMP is more expensive as its poor scalability overtakes
its good sequential performance. The results demonstrate that users should use
static scheduling with Intel OpenMP unless their loop bodies have very signifi-
cant load imbalances while, with IBM OpenMP, the more flexible schedule kinds
are more likely to prove worthwhile. However, these low level EPCC results do
not include sufficient information to determine if an application can compensate
for the overheads. While it helps to convert the overheads to cycles from the
microseconds that the test suite reports, we still need measures that capture the
effect of these overheads for realistic application scenarios.

4.2 Capturing the Impact of OpenMP Overheads with CLOMP

We model application scenarios through CLOMP parameter settings. All results
presented here set numPartitions to 64 and flopScale to 1. CLOMP’s default
parameters, including numZonesPerPart equal to 100, model the relatively small
loop sizes of many multiphysics application. The defaults use the minimum zone
size of 32 bytes, which provides the most opportunity for prefetching and lim-
its memory system pressure, and have the master thread allocate all memory
similarly to the usual default in most applications.

The untuned results, shown in Figure 6, use the default run time environment
variable settings, which is the most likely choice of application programmers.
With these settings the (unrealistic) best-case configuration scales well up to
8 threads, which shows that good performance for the loop sizes common to
multiphysics applications are possible. However, the realistic configurations all
scale poorly, even causing increased run times in many cases.

The tuned results, shown in Figure 7, reflect the impact of changing environ-
ment settings so idle threads spin instead of sleep on uP and so idle threads spin
much longer (KMP BLOCKTIME=100000) before they sleep on Atlas and Thunder
(we used these settings for the EPCC results presented in Section 4.1). These
settings, which are appropriate for nodes dedicated to a single user, result in im-
proved scaling for the manual and for-static scale configurations on both uP
and Atlas. However, the actual speed ups, no more than 3.9, are still disappoint-
ing in light of the potential demonstrated by the best-case configuration. Fur-
ther, the for-dynamic configuration still does not have sufficient work to com-
pensate for the high overhead of the dynamic schedule kind. In fact, the “tuned”
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Fig. 6. CLOMP Untuned Default Scenario

environment settings actually caused a slowdown for for-dynamic on uP and
they did not improve performance on Thunder. These results highlight the com-
plexity of choosing the best OpenMP configuration, a task for which CLOMP
results provide guidance. For our subsequent experiments we consistently used
the modified OpenMP flags because the best performance of for-dynamic is
much lower than the best performance of manual and for-static.

We examined the effects of memory bandwidth on the performance of parallel
loops by increasing the number of zones per partition by a factor of 10 (1,000
zones per partition), which corresponds to some multiphysics application runs
as well as some science codes. The results for this scenario, shown in Figure 8,
exhibit outstanding scaling since the single core’s memory bandwidth dominates
performance of the sequential run. In fact, we observe superlinear speedups with
manual and for-static on uP (e.g., 8.7x on with 8 threads) and on Atlas (peak-
ing at 36x on 7 threads). The dramatic improvement on Atlas arises from the
system’s NUMA architecture, in which the penalty for accessing remote memory
via Hyper-Transport is relatively very high. Since the problem fits in cache with
more threads, the performance benefit is significant. The cache effects are far
smaller on uP and Thunder since these systems provide uniform memory access,
with uP’s slightly super-linear speedups attributable to its much larger cache.
In all cases, these configurations are very close to the theoretical maximum of
best-case while the for-dynamic configuration results continue to disappoint.

For application scenarios with even larger memory footprints, corresponding
to science codes based on dense linear algebra routines, we no longer observe su-
perlinear speedups since they no longer fit into cache. However, while we observe
consistently good scaling on the uniform memory access systems, these scenar-
ios provide insight into NUMA performance issues. Figure 9 shows results on
Atlas for scenarios in which we increase the number of zones per partition over
the default scenario 100x (10,000 zones per partition) and 1,000x (100,000 zones
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Fig. 7. CLOMP Tuned Default Scenario

Fig. 8. CLOMP 10X Memory Scenario

per partition). Here, we compare the two strategies for allocating application
state: serial, where the master thread allocates all memory; and threaded,
where each thread allocates its own memory. For each allocation strategy we
show the speedup of the highest-performing realistic configuration. In both sce-
narios the two allocation strategies result in dramatically different performance,
with the threaded allocation achieving near-linear speedup, while the serial
allocation shows little improvement at all scales, similarly to previous obser-
vations on other NUMA systems. While application programmers generally will
make the necessary coding changes to achieve these performance gains, the gains
are not consistent: we still observed significant performance variation in our runs,
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Fig. 9. CLOMP 100X and 1000X Memory Scenarios

with speed ups as low as 4 with eight threads. Examination of /proc data
indicates that the threaded allocation does not guarantee the strict use of local
memory. We are investigating using the numactl command in the NUMA library
to provide more consistent performance.

By providing a best-case performance estimate, CLOMP puts the actual per-
formance numbers in context of OpenMP overheads, cache effects, and NUMA
effects. The best-case configuration is significantly different from the EPCC
schedule test and represents a contribution of our work. For example, in Fig-
ure 8, the 27.1 speedup for 8 threads on Atlas is great but an even higher
speedup of 30.5 was possible if the OpenMP overheads were lower. Similarly,
the low best-case serial Allocation performance corresponding to the results in
Figure 9 shows that OpenMP overhead is not the problem, NUMA effects are.

5 Conclusion and Future Work

Despite the popularity of shared memory systems and OpenMP’s ease of use, over-
heads in OpenMP implementations and shared memory hardware have
limited potential performance gains, thus discouraging the use of OpenMP. This
paper presents CLOMP, a new OpenMP benchmark that models the behavior of
scientific applications that have an overall sequential structure but contain many
loops with independent iterations. CLOMP can be parameterized to represent a
variety of applications, allowing application programmers to evaluate possible par-
allelization strategies with minimal effort and OpenMP implementors to identify
overheads that can have the largest impact on real applications. Our results on
three shared memory platforms demonstrate that CLOMP extends EPCC to cap-
ture the application scenarios necessary to characterize the impact of the overheads
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measured by EPCC. CLOMP guides selection of run time environment settings
and can identify the impact of architectural features such as memory bandwidth
and a NUMA architecture on application performance. The resulting insights can
be very useful to application programmers in choosing the parallelization strategy
and hardware that will provide the best performance for their application.

CLOMP is focused on single-node application performance while most sci-
entific applications execute on multiple nodes, using MPI for inter-node com-
munication. Our experience indicates that environment settings appropriate for
single node OpenMP applications are often detrimental to MPI performance.
Thus, our future work will extend CLOMP to include MPI communication so
we can analyze the performance trade-offs between OpenMP and MPI.

Overall, our results should not be seen as critiquing the OpenMP implemen-
tations that were used in our experiments. While we noted differences between
them, the most significant issues arose from differences in the underlying archi-
tecture. Ultimately, CLOMP would provide its greatest value if it could guide
architectural refinements that reduce the overheads of dispatching threads for
OpenMP regions. For this reason, we are including CLOMP in the benchmark
suite of LLNL’s Sequoia procurement.
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Abstract. The MPI standard allows the usage of multiple threads per
process. The main idea was that an MPI call executed at one thread
should not block other threads. In the MPI-2 standard this was refined
by introducing the so called level of thread support which describes how
threads may interact with MPI. The multi-threaded usage is restricted
by several rules stated in the MPI standard. In this paper we describe
the work on an MPI checker called MARMOT[1] to enhance its capabil-
ities towards a verification that ensures that these rules are not violated.
A first implementation is capable of detecting violations if they actu-
ally occur in a run made with MARMOT. As most of these violations
occur due to missing thread synchronization it is likely that they don’t
appear in every run of the application. To detect whether there is a run
that violates one of the MPI restrictions it is necessary to analyze the
OpenMP usage. Thus we introduced artificial data races that only occur
if the application violates one of the MPI rules. By this design all tools
capable of detecting data races can also detect violations to some of the
MPI rules. To confirm this idea we used the Intel R© Thread Checker.

1 Introduction

1.1 Hybrid MPI Applications

The MPI standard states that MPI calls should only block the calling thread.
This was refined in the MPI-2 standard by introducing the so called level of
thread support (thread level). Each MPI implementation supports the lowest
level and may support a higher one. The levels are:

MPI THREAD SINGLE: only one thread exists
MPI THREAD FUNNELED: multiple threads may exist but only the

main1 thread performs MPI calls
MPI THREAD SERIALIZED: multiple threads exist and each thread may

perform MPI calls as long as no other
thread is calling MPI

MPI THREAD MULTIPLE: multiple threads may call MPI simultane-
ously

1 The thread that initialized MPI.

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 26–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The application specifies a desired thread level and passes it to the MPI imple-
mentation, which might return a lower level. The level returned is referred to as
provided thread level and must not be violated.

1.2 Restrictions for Hybrid MPI Applications

Besides the definition of the thread level there are further restrictions mentioned
in the MPI standard. Here we present the restrictions that are currently checked
by our MPI checker. This list is incomplete, e.g. most MPI-2 calls are currently
unsupported. The currently checked restrictions are:

(I) The call to MPI FINALIZE should occur on the same thread that initialized
MPI. We call this thread the main thread. The call should occur only after
all the process threads have completed their MPI calls, and have no pending
communications or I/O operations. [2, page 194 lines 24-29]

(II) A program where two threads block, waiting on the same request, is erro-
neous. Similarly, the same request cannot appear in the array of requests
of two concurrent MPI WAIT{ANY|SOME|ALL} calls. In MPI, a request
can only be completed once. Any combination of wait or test which violates
this rule is erroneous. [2, page 194 lines 32-36]

(III) A receive call that uses source and tag values returned by a preceding call
to MPI PROBE or MPI IPROBE will receive the message matched by the
probe call only if there was no other matching receive after the probe and
before that receive. In a multithreaded environment, it is up to the user
to enforce this condition using suitable mutual exclusion logic. This can be
enforced by making sure that each communicator is used by only one thread
on each process. [2, page 194f line 46ff]

(IV) Finally, in multithreaded implementations, one can have more than one,
concurrently executing, collective communication call at a process. In these
situations, it is the usere’s responsibility to ensure that the same commu-
nicator is not used concurrently by two different collective communication
calls at the same process. [3, page 130 lines 37-41]

We will refer to these restrictions by using their respective number. The ad-
ditional restriction that the provided thread level may not be violated will be
referred to as (V). To our knowledge none of the available MPI Checkers does
check any of these restrictions. The MPI checkers we looked at are: Umpire[4],
MPI-Check[5] and Intel R© Message Checker[6].

2 Example

For restriction (II) we give an example violation in Table 1. Violations to this
restriction are only possible if the thread level MPI THREAD MULTIPLE is
available. This applies to most of the restrictions. In the example, process 1 has
two threads that are simultaneously performing an MPI Wait and an MPI Test
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Table 1. Violation to restriction (II), assuming that request is a shared variable

Process 1
Thread 1 Thread 2

MPI Isend(msg,&request)
#pragma omp barrier #pragma omp barrier
MPI Wait(request) MPI Test(request)

call. Both calls are using the same request. This violates restriction (II). As one
can see if the MPI Test call is performed before the MPI Wait call the error
won’t occur whereas simultaneous execution yields an error.

3 Constraints for the Restrictions

In order to create checks for restrictions (I) to (V) we want to define constraints
that implicate whether one of the restrictions is violated. These constraints can
be used to implement checks and to verify whether the implemented checks
can detect every instance of the problem. If a run of an application matches
any of these constraints this implies that there is a violation to the respective
restriction. The constraints are:

violation to (I):
If and only if one of the following holds:
(A) for a thread calling MPI Finalize holds: “MPI Is thread main() ==

False”
(B) one thread is performing an MPI Finalize call while another thread is

also calling MPI
(C) an MPI call is issued after the call to MPI Finalize is finished

violation to (II):
If and only if a thread performs a Wait2 or Test3 call using Request X
while another thread is also using Request X in a Wait or Test call.

violation to (III):
If and only if one of the following holds:
(A) one thread is performing a Probe4 call that will return the value X

as source and the value Y as tag and another thread is performing a
Recieve5 call with source and tag values that match X and Y at the
same time

(B) a thread is performing a Receive call with source and tag values returned
by a Probe call of another thread that did not receive that message yet

2 An MPI Wait{ANY|ALL|SOME} call.
3 An MPI Test{ANY|ALL|SOME} call.
4 An MPI Iprobe or an MPI Probe call.
5 An MPI Recv, MPI IRecv, MPI Sendrecv, MPI Sendrecv replace or (MPI Start)

call.
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(C) one thread is receiving a message with source and tag values returned
by a Probe it called and another thread is receiving a message with
matching source and tag values at the same time (assumed that the
probed message was not yet received)

violation to (IV):
If and only if a thread performs a collective call using communicator X
while another thread is within a collective call using communicator X

violation to (V):
If and only if one of the following holds:
(A) provided is MPI THREAD SINGLE, omp in parallel() returns true

and omp get num threads() returns a value greater than 1 while the
application is in an MPI call

(B) provided is MPI THREAD FUNNELED and MPI Is thread main() re-
turns false while application is in an MPI call

(C) provided is MPI THREAD SERIALIZED and two threads are calling
MPI simultaneously

One might have compressed constraints (A)-(C) of restriction (III) into one con-
straint which detects whether a Receive call is issued between a Probe and a Re-
ceive call of another thread (all using the same source and tag values). But we will
see later that this decomposition is useful when creating artificial data races.

4 Applying an MPI Checker to a Hybrid Application

4.1 Instrumenting the Application

Runtime MPI checkers have to monitor all performed MPI calls and check their
parameters and results. This is usually achieved by intercepting the MPI calls and
executing additional code before and after execution of the MPI call. For this pur-
pose the MPI standard specifies the so called Profiling Interface. For each MPI
call “MPI X” there is a second function “PMPI X” that executes the same call.
Thus it is possible to create wrappers that catch each MPI call and execute addi-
tional code before and after calling the appropriate PMPI call. This is illustrated
in Fig. 1. We will refer to the code executed before the PMPI Call as the pre exe-
cution code and to the code after the PMPI call as the post execution code.

Application     Wrapper     MPI−Library

MPI_X

PMPI_X

post execution code

pre execution code

Fig. 1. Execution of an MPI call when using a wrapper
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4.2 Propositions on Correctnes

Using pre and post execution code in an environment in which multiple threads
are calling MPI simultaneously might change the order in which MPI calls are
issued by the threads. Imagine a pre execution code that synchronizes the threads
such that only one thread is calling MPI at a time. That would prohibit violations
to most of the above mentioned restrictions. It is desirable that the pre and post
execution code is designed such that it does not change the semantics of the
application. This especially requires that if there is a run of the application
in which the commands are executed in a certain order between the threads
then there is a run with the wrapper attached in which the commands of the
application are executed in the same order. We propose several rules for the pre
and post execution code that should enforce preservation of semantics:

– the code must not enforce serialization or a certain ordering of the MPI calls
made on the threads of each process

– the code must not enforce an ordering of the MPI calls of different processes
– execution may only take a finite time
– parameters passed to the MPI call must not be modified
– no data that is used by the application or the MPI library must be changed
– no input files used by the application or the MPI library must be changed

We assume that as long as the code within the wrappers does not violate any of
these restrictions all errors that appear in the application may still appear when
the wrapper is used. However, the probabilities of errors to occur during a run
with or without wrapper might differ.

4.3 Synchronization

Our MPI checker uses process local data to store whether certain MPI events
have occurred and to track the usage of MPI resources. In a multi threaded
environment it is necessary to protect these data against unsynchronized access.
To do so we introduced a mutual exclusion mechanism that is executed in the pre
and post execution code. The scheme used is shown in Fig. 2. Before any process
global data is used in the pre execution code the synchronization is started with
a call to “enterMARMOT”. It is stopped at the end of the pre execution code
by calling “enterPMPI”. The same scheme is used for the post execution code.
To implement the mutual exclusion we use OpenMP locks. This synchronization
should not violate any of the above propositions thus all MPI errors of the
Application can still appear when our MPI wrappers are used.

5 First Implementation of Checks

As a first approach we implemented checks that detect violations if they actu-
ally occur in a run with MARMOT. Therefore we added pre and post execution
code. Note that some of the code might be executed before the mutual exclu-
sion starts and might thus require additional synchronization. Implementation
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MPI_X

leaveMARMOT

leavePMPI

PMPI_X

enterPMPI
checkAndExecute

enterMARMOT

MARMOT
Application     Wrapper      Synchronization     Core             MPI

Protected

Protected

post execution code

pre execution code

Fig. 2. Scheme of the applied synchronization within MARMOT

of most checks is straightforward and requires only a few lines of code. To im-
plement checks for the constraints of restrictions (II) and (IV) we register used
requests and communicators. We illustrate the used technique for the case of
the communicators. In the pre execution code of all collective calls we check
whether the given communicator is already registered as used. If that’s the case
we return an error, otherwise we register the communicator as used. In the post
execution code we remove the communicator from the registration. In order to
create a check for the constraints of restriction (III) we use a mechanism that
registers source and tag values returned by a probe. These values are registered
until the message is received. If the receiving thread was not the thread that
probed for the message we issue a warning. With these checks we were able to
detect violations to the restrictions in small test applications.

6 Detection with Artificial Data Races

6.1 General Design

The problem of the first detection is that it can only detect violations if they
actually appear in a run made with MARMOT. It is desirable to also detect
whether it is possible that a violation might ever appear. For the MPI calls of a
hybrid application different runs may have a different execution order of the MPI
calls and it might happen that certain MPI calls are issued by different threads.
The execution order is important for constraint (B) and (C) of restriction (I), for
all constraints of restrictions (II), (III), (IV) and for constraint (C) of restriction
(V). For all other constraints it is only of interest which thread is calling MPI
or how many threads are used. Note that for the constraints of restriction (III)
it is also important which threads are performing the MPI calls.

Assume that each thread writes one and the same variable in the pre execution
code of the Wrapper. Then there is a data race[7] on this variable if it is possible
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that two threads are issuing an MPI call simultaneously. This idea can be used to
create artificial data races that only exist if a violation to one of the constraints
is given. As there are tools that are capable to detect data races it is possible
to determine whether a violation of one of the constraints occurs by detecting
the associated data race. This technique can be applied to all the constraints
that require an unsynchronized execution of MPI calls to happen. As detecting
the violations relies on detecting a data race with a third party tool, results will
only be as good as the tool applied.

Another aspect of this design is that it is necessary to create these races either
before the synchronization starts or to stop and restart the synchronisation for
the race.

6.2 Detection of Thred Level Violation

For constraint (C) of this restriction it is simply necessary to write a variable in
the pre execution code of each MPI call. Note that most tools that detect data
races have a fixed output format and will thus only issue an error that there is
a data race on a certain variable. To influence this output we can only change
the name of the variable that caused the data race. For this constraint we use
the variable “App Needs MPI THREAD MULTIPLE”.

6.3 Detection of Wrong Communicator Usage

To detect a violation to constraint (IV) it is necessary to detect whether it is
possible that two collective calls use the same communicator simultaneously.
Thus we have to design a data race that only occurs when this restriction is
violated. We achieved this by mapping each communicator to an index. The
index is used to write the corresponding entry of an array. In this way we only get
a data race if two collective calls use the same communicator simultaneously. The
pre execution code code used has the following structure (this code is executed
before the synchronisazion starts):

beginCritical()
id = communicator2id(comm)
endCritical()
writeCommVarIndexed(id)

It is necessary to create a critical section here as mapping a communicator
to an index requires the usage of an internal list that stores all the known
communicators and their respective indizes. This list must only be used by one
thread at a time to avoid unintended data races.

6.4 Detection of MPI Probe Invalidation

To detect violations to this restriction it is necessary to create checks for the
associated constraints (A),(B) and (C). To illustrate the need to check all three
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Table 2. Different instances of violations to restriction (III)

Case 1
Thread 1 Thread 2

MPI Probe MPI Recv
MPI Recv

Case 2
Thread 1 Thread 2

MPI Probe
omp barrier omp barrier
MPI Recv MPI Recv

Case 3
Thread 1 Thread 2

MPI Probe MPI Recv
omp barrier omp barrier
MPI Recv

Case 4
Thread 1 Thread 2

MPI Probe
omp barrier omp barrier
– MPI Recv
omp barrier omp barrier
MPI Recv

constraints we present four different instances of this problem in table 2. Assume
that all calls are using the same values for source, tag and comm. For each of
these instances one of the three constraints is violated. Especially note that in all
cases except the fourth either constraint (A) or constraint (C) is violated. Due
to the synchronization present in the fourth case constraint (B) will be violated
for all runs of this case. Thus the already implemented detection for constraint
(B) is sufficient. So it is only necessary to create data races for constraints (A)
and (C). Detecting violations to (A) is hard as the result of the Probe call might
differ between runs. Thus it would be necessary to know all the possible return
values of the Probe call. We avoided this as restriction (III) only yields a warning.
Thus we only created data races that do not cover all instances of the problem
and that might be hard to detect by a tool. Better data races could be created
by using a more complicated scheme. The simple data races use the following
pre and post execution codes :

Post execution code for all Probe calls:
conflict_index = getNextIndex()
registerNewProbe(returned_source,returned_tag,comm,conflict_index)
endSynchronization()
writeProbeVarIndexed(conflict_index)
beginSynchronization()

Pre execution code for all Receive calls:
FORALL probes B in registered probes {

if (matchesProbe(B,my_source,my_tag,my_comm)) {
endSynchronization()
writeProbeVarIndexed(B->conflict_index)
beginSynchronization()
unregisterProbe(B)

}
}
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With this design there is a data race between two simultaneously executed Re-
ceive calls if one of them is invalidating a Probe call. There is also a data race if
a Receive call is called in parallel to a Probe call that returned source and tag
values matched by the receive. This race is hard to detect as not all runs will
enter the code in the if statement.

6.5 Detection of Wrong Request Usage

A data race for the constraint of restriction (II) can be constructed as in the
case of restriction (IV). Again it is necessary to map each request to an index
in an array of variables. Some of the Wait and Test calls can use an array of
Requests. In this case one has to map each request to an index and write the
respective variable.

6.6 Detection of Erroneus MPI Finalize

In order to create checks for the constraints of restriction (I) it is only necessary
to create a data race for constraint (B). This is achieved by reading a variable
for each MPI call and writing it in the pre execution code of MPI Finalize. Thus
if the application has the possibility to execute another MPI call in parallel to
MPI Finalize then there exists a data race.

7 Results with Intel R© Thread Checker

The Intel R© Thread Checker is a tool capable of detecting data races and thus
should be able to detect the artificial races. We used small test codes that violate
one of restrictions (I)-(V) to test this approach. In almost all the tests Thread
Checker detected the data race. Only some violations to restriction (III) could
not be detected. We want to present the gained output for a violation to restric-
tion (IV). The output is shown in Table 3. As the data race is caused by code
within our MPI checker the output points to source code of MARMOT. In order

Table 3. Thread Checker output for a violation to restriction (IV)

Intel(R) Thread Checker 3.0 command line instrumentation driver (23479) Copyright (c) 2006 Intel
Corporation. All rights reserved.
ID ... Severity

Name
Count ... Description 1st Access[Best] ...

...
2 ... Error 1 ... Memory write of this→App -

Comm In Two Collective Calls[]
at “mpo TCheck Races.cc”:105
conflicts with a prior memory
write of this→App Comm In -
Two Collective Calls[] at “mpo -
TCheck Races.cc”:105 (output
dependence)

“mpo TCheck -
Races.cc”:105

...

...
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to find out where the error occurred in the application one has to use the stack
trace feature of Thread Checker.

But usage of this tool also has disadvantes. OpenMP applications using source
code instrumentation of Thread Checker are only executed on one thread. Thus
for our MPI checker only one thread is visible which makes it impossible to
directly detect violations to the restrictions. When using binary instrumentation
of Thread Checker, execution uses multiple threads but the results of the tool
are less precise. We could still detect the data races in this case but the results
do not contain the variable names used within MARMOT which makes it hard
to interpret the results.

8 Conclusion

We presented an approach to find bugs in hybrid OpenMP/MPI applications
that violate restrictions in the MPI standard. A first implementation in the MPI
checker MARMOT is able to detect violations that actually occur in a run. In
order to detect race conditions and thus potential violations we introduced a
technique with artifical data races. Construction of these races is only necessary
for a subset of the constraints. The data races are detectable by appropriate
shared memory tools. We demonstrated our approach with the Intel R© Thread
Checker.
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Abstract. The paper describes some very early experiments on new ar-
chitectures that support the hybrid programming model. Our results are
promising in that OpenMP threads interact with MPI as desired, allow-
ing OpenMP-agnostic tools to be used. We explore three environments:
a “typical” Linux cluster, a new large-scale machine from SiCortex, and
the new IBM BG/P, which have quite different compilers and runtime
systems for both OpenMP and MPI. We look at a few simple, diagnostic
programs, and one “application-like” test program. We demonstrate the
use of a tool that can examine the detailed sequence of events in a hy-
brid program and illustrate that a hybrid computation might not always
proceed as expected.

1 Introduction

Combining shared-memory and distributed-memory programming models is an
old idea [21]. One wants to exploit the strengths of both models: the efficiency,
memory savings, and ease of programming of the shared-memory model and the
scalability of the distributed-memory model. Until recently, the relevant models,
languages, and libraries for shared-memory and distributed-memory architec-
tures have evolved separately, with MPI [7] becoming the dominant approach for
the distributed-memory, or message-passing, model, and OpenMP [9,15] emerg-
ing as the dominant “high-level” approach for shared memory with threads. We
say “high-level” since it is higher level than the POSIX pthread specification [8].
We use quotation marks around the expression because OpenMP is not as high
level as some other proposed languages that use models with a global view of
data [1,19].
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Recently, the hybrid model has begun to attract more attention, for at least
two reasons. The first is that it is relatively easy to pick a language/library in-
stantiation of the hybrid model: OpenMP plus MPI. While there may be other ap-
proaches, they remain research and development projects, whereas OpenMP com-
pilers and MPI libraries are now solid commercial products, with implementations
from multiple vendors. Moreover, we demonstrate in this paper that OpenMP and
MPI implementations on significant platforms work together as they should (see
Section 2.) The second reason is that scalable parallel computers now appear to
encourage this model. The fastest machines now virtually all consist of multi-core
nodes connected by a high speed network. The idea of using OpenMP threads to
exploit the multiple cores per node (with one multithreaded process per node)
while using MPI to communicate among the nodes appears obvious. Yet one can
also use an “MPI everywhere” approach on these architectures, and the data on
which approach is better is confusing and inconclusive. It appears to be heavily
dependent on the hardware, the OpenMP and MPI implementations, and above
all on the application and the skill of the application writer.

We do not intend to settle here the question of whether the hybrid approach is
good or bad. Postings to assorted discussion lists claim to have proven both posi-
tions. Instead we describe three interesting environments in which this question
can be studied, and present some preliminary experiments.

Considerable work has gone into studying the hybrid model. Some examples
can be found in [12,18,20]. What is new in this paper is 1) a discussion of the
relationship between the MPI standard and the OpenMP standard, 2) presenta-
tion of early results on two brand-new machines that support the hybrid model
in an efficient way, and 3) depiction of a particular performance visualization
tool looking at hybrid codes.

The rest of the paper is organized as follows. In Section 2 we describe aspects
of MPI and OpenMP that pertain to their use with each other. In Section 3
we describe a performance visualization tool and recent enhancements to it that
enable it to be used to study the behavior of hybrid programs. Section 4 describes
the three environments that we used for our experiments, and early results from
our experiments are in Section 5. We present some conclusions and plans for
future work in Section 6.

2 What the Standards Say

Hybrid programming with two portable APIs would be impossible unless each
made certain commitments to the other on how they would behave. In the case
of OpenMP, the important commitment is that if a single thread is blocked by an
operating system call (such as file or network I/O) then the remaining threads in
that process will remain runnable. In our situation, this means that an MPI call
that may block, such as MPI Recv or MPI Wait, will only block the calling thread
and not the entire process. This is a significant commitment, since it involves
the thread scheduler in the compiler’s runtime system and interaction with the
operating system.
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The commitments made by the MPI standard are more complex. The MPI-
2 standard defines four levels of thread safety. These are in the form of what
commitments the application makes to the MPI implementation.

MPI THREAD SINGLE There is only one thread in the application.
MPI THREAD FUNNELED There is only one thread that makes MPI calls.
MPI THREAD SERIALIZED Multiple threads make MPI calls, but only one at a

time.
MPI THREAD MULTIPLE Any thread may make MPI calls at any time.

An application can find out at run time which level is supported by the MPI
library it is linked with by means of the MPI Init thread function call.

These levels correspond to the use of MPI in an OpenMP program in the
following way:

MPI THREAD SINGLE There is no OpenMP multithreading in the program.
MPI THREAD FUNNELED All of the MPI calls are made by the master thread. This

will happen if all MPI calls are outside OpenMP parallel regions or are in
master regions. A thread can determine if it is the master thread with the
MPI Is thread main call. More precisely, it determines whether it is the
same thread that called MPI Init or MPI Init thread.

MPI THREAD SERIALIZED The MPI calls are made by only one thread at a time.
This can be enforced in OpenMP by a construction like:

#pragma omp parallel
...
#pragma omp single
{

...MPI calls allowed here...
}

(as long as nested parallelism is not used.)
MPI THREAD MULTIPLE MPI calls can be made anywhere, by any thread.

All MPI implementations of course support MPI THREAD SINGLE. The na-
ture of typical MPI implementations is such that they probably also support
MPI THREAD FUNNELED, even if they don’t admit it by returning this value from
MPI Init thread, presuming they use a thread-safe malloc and other system
calls, likely in any OpenMP application. Usually when people refer to an MPI im-
plementation as “thread safe” they mean at the level of MPI THREAD MULTIPLE.
It is worth noting that OpenMP encourages a style of programming that only
requires MPI THREAD FUNNELED, so hybrid programming does not necessarily re-
quire a fully “thread safe” MPI.

3 Visualizing the Behavior of Hybrid Programs

Over the years we have found it surprisingly difficult to predict the behavior of
complex MPI programs, and have developed a number of tools to assist in the
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process of understanding them as an important step in tuning them for perfor-
mance. Understanding complex hybrid programs will be even more difficult. We
describe here an extension to an existing tool to the hybrid case.

3.1 Jumpshot

Jumpshot [5,22] is a parallel program visualization program that we have long
used to examine the detailed behavior of MPI programs. It provides a “Gantt
chart” view of time lines of parallel processes, with colored rectangles to indicate
the state of a process over a particular time interval. It also uses arrows from one
line to another to indicate messages. While not scalable to very large numbers of
processes (say, greater than 512), Jumpshot’s panning and zooming capabilities,
coupled with its summary views allowing a wide range of time scales to be
viewed, have made it a valuable tool for studying the detailed behavior of parallel
programs.

Jumpshot displays data from SLOG2 [14] files, which are written in an efficient
way during the course of a parallel program execution. The library for logging
events is provided by the MPE package [4] distributed with MPICH2 [6]. Both
automatic logging of MPI calls via the MPI profiling interface and user-defined
states and events are provided.

3.2 Jumpshot and Threads

Recently MPE, SLOG2 and Jumpshot have been extended to allow visualization
of multi-threaded, and hence hybrid, programs. We made the assumption that
the threads calling the MPI function or the MPE logging routines directly were
POSIX pthreads, so that we could use the pthread library for the mutexes re-
quired as multiple threads wrote to the same memory buffer containing the logging
records. MPE and SLOG2 were modified to include thread ID’s in the log records.

Jumpshot needed to be augmented so that separate time lines for separate
threads would be shown. Controls were added to the Jumpshot display to allow
threads to be 1) collapsed into their parent processes, 2) grouped with their
parent processes, or 3) grouped into separate communicators. (A common ap-
plication structure in a program requiring MPI THREAD MULTIPLE is for separate
threads in a process to use separate communicators.) The rest of the figures in
this paper are screenshots of Jumpshot viewing SLOG2 files created by MPE
logging of hybrid programs.

The first step in determining whether Jumpshot could be used with OpenMP
was to determine whether the threads created by OpenMP compilers really were
POSIX pthreads, which MPE, SLOG2, and Jumpshot had already been modified
to handle. Fortunately, in all three of the environments described here, a simple
diagnostic program, in which OpenMP threads created by #pragma omp parallel
used the POSIX interface to request their pthread id’s, was able to prove that this
was the case, and that thread id’s were reused in multiple parallel regions. This
meant that no additional work was needed to adapt the MPE-SLOG2-Jumpshot
pipeline to OpenMP. While most OpenMP implementations “park” threads like
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this, the situation could change for some emerging architectures that support fast
thread creation.

Figure 1 is a Jumpshot view of a program with simultaneously communicating
threads that demonstrates that MPICH2 is thread safe at the level of
MPI THREAD MULTIPLE.

Fig. 1. Jumpshot’s Communicator-Thread view of an MPI/pthreads program that
forms a send and receive ring in the subcommunicator created from one single thread
of each process

Other tools, such as Paraver [13,17], Vampir [11], and TAU [3] are also avail-
able for visualizing hybrid programs. We focus here on the use of Jumpshot
because of its ability to show extreme detail and its wide availability, in par-
ticularly on the platforms presented here. Jumpshot is included as an optional
viewer in recent releases of TAU.

4 The Hybrid Environments

The three machine/compiler environments that we tested were different in both
hardware and software. All are quite new. The first is a “standard” Linux cluster
based on AMD dual dual-core nodes. The latter two are examples of low-power,
highly scalable computers. Our intention was not to explicitly compare the per-
formance of these machines, but rather to demonstrate the viability of the hybrid
programming model consisting of OpenMP and MPI on them, and to demon-
strate the Jumpshot tool in these environments.
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The details on the three platforms are as follows:

Linux cluster Each node is dual Opteron dual-core 2.8Ghz, i.e. four 2.8 Ghz
cores. The Intel 9.1 fortran compiler, ifort, is used with MPICH2-1.0.6p1
nemesis channel, which uses shared memory for intranode MPI communi-
cation and provides MPI THREAD MULTIPLE support. This is a typical Linux
cluster. Ours has multiple networks, but the experiments were done on Gi-
gabit Ethernet.

IBM BG/P In IBM’s BlueGene/P system [2], each compute node consists
of four PowerPC 850 Mhz cores. IBM’s XLF 11.1 fortran cross-compiler,
bgxlf r, is used with BlueGene MPI version V1R1M2 which provides
MPI THREAD MULTIPLE support. The BlueGene system has a high-
performance 3-D torus network for point-to-point communication.

SiCortex SC5832 The SiCortex SC5832[10] consists of 972 six-way SMP
compute nodes, i.e six MIPS 500 Mhz cores per node. The Pathscale 3.0.99
fortran cross-compiler, scpathf95, is used with the SiCortex MPI imple-
mentation, which provides MPI THREAD FUNNELED support. The SiCortex ma-
chine has a high-performance Kautz network.

All the Fortran compilers mentioned above provide OpenMP support for Fortran.
In addition, the companion C compilers provide OpenMP support for C.

5 Experiments

We did two sorts of experiments: first, a basic exploration of how things work,
and then two of the NAS parallel benchmarks, in order to investigate programs
amenable to the hybrid model for improving performance. The BG/P and SiCor-
tex machines that we used are so new that they are still being tuned by the
vendors, so we focused on behavior rather than scalability of performance. Even
on the large machines we used a small number of nodes.

5.1 Basic Tests

We wrote a simple hybrid Fortran program and instrumented it with MPE. The
core of the program looks like this:

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(ii, jj, sum, ierr)
!$OMP DO

do ii = 1, imax
ierr = MPE_Log_event( blkA_startevt, 0, ’’ )
sum = 0.0
call random_number( frands )
do jj = 1, jmax

sum = sum + frands(jj) * jj
enddo
ierr = MPE_Log_event( blkA_finalevt, 0, ’’ )

enddo
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!$OMP END DO nowait
!$OMP END PARALLEL

This loop is repeated three times, to check consistency of thread ids, with
three different event ids in the MPI Log event calls. The MPI calls are outside
the parallel regions, so MPI THREAD FUNNELED is sufficient. Also, no MPI calls
are made in the MPE Log event calls, so while pthread locks are used there,
MPI THREAD MULTIPLE is not needed.

5.2 NAS Benchmarks

To initiate our study of hybrid programs, we choose a family of parallel bench-
marks that have been written to take advantage of the hybrid style, the NAS
parallel multi-zone benchmarks, NPB-MZ-MPI, version 3.1 [16], as the base code
for our experiments. Two application benchmarks in NPB-MZ, namely BT and
SP, were compiled with the respective OpenMP Fortran compiler on the AMD
Linux cluster, the IBM Blue Gene P, and the SiCortex SC5832. We ran the codes
in two different sizes (W and B) and different “modes” i.e., 16 MPI processes on
four multi-core nodes and with four processes on four nodes, with each process
having four threads (and with six each on the SiCortex). Note that the structure
of NPB-MZ-MPI is such that it does not require MPI THREAD MULTIPLE.

From the outset it was clear that a tool capable of showing considerable detail
would be useful in understanding what these programs were actually doing. For
example, Figure 2 shows a short interval of execution on the Linux cluster. It is
clear that although process 1 has 4 threads (actually 6, in this case) active at one
time or another, something is preventing complete 4-way parallelism. (We would
expect the red and green states to be stacked 4 deep, instead of offset in pairs
the way they are.) This turned out to be a consequence of the way we had set the
environment variables OMP NUM THREADS and NPB MAX THREADS, which had the
side effect of deactivating the thread load-balancing algorithm in BT. Without
Jumpshot we might not have realized that something was wrong.

Note that we can see that MPI communication is being done only by the
first thread in each process. The “extra” threads that appear here are cre-
ated by the load-balancing code in the BT benchmark, which overrides the
OMP NUM THREADS environment variable set by the user. In later runs we con-
trolled this with NPB MAX THREADS. Jumpshot alerted us to this anomaly. Results
of our experiments are shown in Table 1.

The benchmarks were compiled with maximum optimization level known on
each platform, i.e. -O3 with ifort on AMD Linux cluster, -O5 with bgxlf r
on BG/P and -O3 with scpathf95 on SiCortex. All these experiments are per-
formed on 4 nodes on each chosen platform with either one process per core
or one thread per core. For instance 16x1 refers to 16 processes running with
1 thread per process on 4 nodes, and 4x4 refers to 4 processes running with 4
threads per process on 4 nodes.
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Fig. 2. Blocked Parallelism captured by Jumpshot

Table 1. NPB-MZ benchmark results are shown in seconds. The row labels are written
in the form of <benchmark name>.<class name> .<process count> x <thread count>.
Where benchmark name is either bt-mz or sp-mz, and class name is either W or B.

AMD cluster BG/P SiCortex

bt-mz.W.16x1 1.84 9.46 20.60

bt-mz.W.4x4 0.82 3.74 11.26

sp-mz.W.16x1 0.42 1.79 3.72

sp-mz.W.4x4 0.78 3.00 7.98

bt-mz.B.16x1 24.87 113.31 257.67

bt-mz.B.4x4 27.96 124.60 399.23

sp-mz.B.16x1 21.19 70.69 165.82

sp-mz.B.4x4 24.03 81.47 246.76

bt-mz.B.24x1 241.85

bt-mz.B.4x6 337.86

sp-mz.B.24x1 127.28

sp-mz.B.4x6 211.78

Here are a few general observations.

– The hybrid approach provides higher performance on small (size W) version
of BT on all three of these machines, as message-passing time dominated.

– For SP, even at size W, “MPI everywhere” was better.
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(a) np16x1, ViewDuration=0.7825s

(b) np4x4, ViewDuration=0.8000s

Fig. 3. Jumpshot pictures of BT class B running on 4 BG/P nodes with either 1
process or 1 thread per core. (a) np16x1, ViewDuration=0.7825s. (b) np4x4, ViewDu-
ration=0.8000s.
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– On the size B problems, the “MPI everywhere” model was better than the
hybrid approach.

– On the Sicortex only, we also ran 6 processes or threads per node, on 4
nodes, since each has 6 cores. The overall time dropped, showing the effect
of applying more CPUs, but the machine still preferred the MPI everywhere
model to the hybrid model.

Figure 3 shows the difference on BG/P between processes and threads. Subfig-
ures a) and b) show similar time intervals.

(a) np4x1 (b) np4x4

(c) np4x6 (d) np4x8

Fig. 4. Jumpshot pictures of the basic fortran program with OMP NUM THREADS=1, 4, 6,
and 8 on 4 SiCortex nodes.

Figure 4 shows the effects of running various numbers of threads in processes
on the SiCortex nodes, including more threads than cores, on our basic threading
test program (not NPB). As the number of threads increases over the number of
physical cores, the speed improvement due to parallelization of OpenMP threads
does not seem to be diminishing yet. The reason could be because the SiCortex
machine has yet to be fully optimized, so that extra CPU cycles are available
for extra work, letting it appear to have more physical cores than there are.
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6 Conclusions and Future Work

Our principal conclusion is that the hybrid programming model represented by
the OpenMP and MPI standards is now available on the newest entries in the
list of scalable high-performance computers as well as on traditional clusters.
Jumpshot is no doubt only one of the tools available for inspecting the detailed
behavior of hybrid programs, but so far few are both portable and freely avail-
able. Thus the pieces are in place, even on some of the largest and newest com-
puters in the high performance computing complex, for application developers
to create applications using this approach.

We have already begun extending the work presented here to other bench-
marks at larger scale and to begin developing useful benchmarks specialized for
the hybrid approach. Lack of space has limited us to the preliminary experiments
presented here, but these show a promising beginning to a more thorough study.
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Abstract. MPI and OpenMP are the de-facto standards for distributed-
memory and shared-memory parallelization, respectively. By employing
a hybrid approach, that is combing OpenMP and MPI parallelization in
one program, a cluster of SMP systems can be exploited. Nevertheless,
mixing programming paradigms and writing explicit message passing
code might increase the parallel program development time significantly.
Intel Cluster OpenMP is the first commercially available OpenMP imple-
mentation for a cluster, aiming to combine the ease of use of the OpenMP
parallelization paradigm with the cost efficiency of a commodity cluster.
In this paper we present our first experiences with Intel Cluster OpenMP.

1 Introduction

The main advantage of shared-memory parallelization with OpenMP over MPI
is that data can be accessed by all instruction streams without reasoning whether
it must be transferred beforehand. This allows for an incremental parallelization
approach and leads to shorter parallel program development time. Complicated
dynamic data structures and irregular and possibly changing data access pat-
terns make programming in MPI more difficult, whereas the level of complexity
introduced by shared-memory parallelization is lower in many cases. As OpenMP
is a directive-based language, the original serial program can stay intact, which
is an advantage over other shared-memory parallelization paradigms.

The downside of any shared-memory paradigm is that the resulting paral-
lel program is restricted to execute in a single address space. Bus-based multi-
processor machines typically do not scale well beyond four processors for
memory-intense applications. Larger SMP and ccNUMA systems require scal-
able and thus expensive interconnects. Because of that, several attempts to bring
OpenMP to clusters have been made in the past.

In [6] an OpenMP implementation for the TreadMarks software has been
presented, which supports only a subset of the OpenMP standard. In [7] an
OpenMP implementation on top of the page-based distributed shared-memory
(DSM) system SCASH has been presented for the Omni source-to-source trans-
lator. In this approach, all accesses to global variables are replaced by accesses
into the DSM and all shared data is controlled by the DSM. Although the full
OpenMP specification is implemented, support for the C++ programming lan-
guage is missing.

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 48–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In 2006, Intel made the first commercial implementation of OpenMP for clus-
ters available, named Intel Cluster OpenMP [4] (referred to as ClOMP in this
paper). The full OpenMP 2.5 standard for Fortran, C and C++ is implemented,
although nested parallel regions are not yet supported.

This paper is organized as follows: In section 2 we give an overview of OpenMP
and Intel Cluster OpenMP. In section 3 we present micro-benchmark measure-
ments of OpenMP and ClOMP constructs and discuss which types of applica-
tions we expect to profit from running on a cluster. In section 4 we present results
of four applications utilizing Intel Cluster OpenMP. The current tool support
for ClOMP is discussed briefly in section 5. We draw our conclusions and touch
on future plans in section 6.

All measurements were carried out on a cluster of Fujitsu-Siemens Primergy
RX200 servers equipped with two Intel Xeon 5450 (quad-core, 3.0 GHz) CPUs.
All nodes are running Scientific Linux 5.1 and are connected via Gigabit Eth-
ernet (referred to as Eth) and 4x DDR InfiniBand (referred to as IB). The
InfiniBand adapters are attached to the PCI-Express bus. We used the Intel
10.1.011 compiler suite for 64-bit systems.

2 OpenMP

OpenMP consists of a collection of compiler directives, library functions and a
few environment variables. It applies the so-called fork/join programming model.

As OpenMP is a shared-memory parallelization paradigm, all threads share
a single address space, but still can have thread local storage to hold private
data. It is the programmer’s responsibility to control the scoping, that is the
classification of variables into shared and private, of all variables that are used
within a parallel region.

2.1 Memory Model

OpenMP provides a relaxed memory consistency model similar to the weak
ordering memory model [3]. Each thread has a temporary view of the memory
that is not required to be consistent with the memory at all times. Writes to
memory are allowed to overlap other computation and reads from memory are
allowed to be satisfied from a local copy of memory under some circumstances.
For example, if within one synchronization period the same memory location is
read again, this can be done from fast local storage (the temporary view, e.g.
a cache). Thus, it is possible to hide the memory latency within an OpenMP
program to some extent. This also allows Intel Cluster OpenMP to fulfill reads
from local memory under certain circumstances, instead of accessing remote
memory in all cases, as will be explained in the following subsection 2.2.

The flush construct of OpenMP serves as a memory synchronization opera-
tion, as it enforces consistency between the temporary view and the global view,
by writing back a set of variables or even all thread’s variables to the memory.
All reads and writes from and to the memory are unordered with respect to each
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other (except for those being ordered by the semantics of the base language), but
ordered with respect to an OpenMP flush operation. All explicit and implicit
OpenMP barriers also contain an implicit flush operation.

2.2 Intel Cluster OpenMP

Beginning with version 9.1, the Intel C/C++ and Fortran compilers for Linux are
available with Cluster OpenMP. The distributed shared-memory (DSM) system
of Intel Cluster OpenMP is based on a licensed derivative of the TreadMarks
software.

Intel has extended OpenMP with one additional directive: sharable. It identi-
fies variables that are referenced by more than one thread and thus have to be
managed by the DSM system. While certain variables are automatically made
sharable by the compiler, some variables have to be declared sharable explicitly
by the programmer, e.g. file-scope variables in C and C++. Thus, the program-
mer’s responsibility for variable scoping has been extended to finding all variables
that have to be made sharable, in the cases where the compiler is unable to de-
tect it. As will be shown in section 4, this can sometimes be a tedious task for
application codes.

For the Fortran programming language several compiler options exist to make
different kinds of variables sharable automatically, e.g. all module or common
block variables. In addition to finding all variables that have to be declared
sharable, dynamic memory management in an application deserves some atten-
tion. For all variable allocations from the heap (e.g. by malloc), it has to be
determined whether the memory should be taken from the regular heap, thus
being only accessible by the thread calling malloc, or from the DSM heap, which
is accessible by all threads. Intel Cluster OpenMP provides several routines to
easily replace native heap memory management routines by DSM heap routines.

The task of keeping shared variables consistent across multiple nodes is han-
dled by the Cluster OpenMP runtime library. Intel provides detailed information
on how this process works in the product documentation and in the white pa-
per [4]. In principle the mechanism relies on protecting memory pages via the
mprotect system call; pages that are not fully up-to-date are protected against
reading and writing. When a program reads from such a protected page, a seg-
mentation fault occurs and after intercepting the corresponding signal the run-
time library requests updates from all nodes, applies them to the page and then
removes the protection. At the next access, the instruction finds the memory ac-
cessible and then the read will complete successfully. Still the page is protected
against writing. In case of a write operation, a so-called twin page is created for
further reads and writes on the accessing node, after the protection has been
removed. The twin page then becomes the thread’s temporary view.

The higher the ratio of cheap memory accesses, that means to thread private
memory or to twin pages, versus expensive memory accesses, the better the
program will perform. At each synchronization construct, e.g. a barrier, nodes
receive information about pages modified by other nodes and invalidate those.
As a consequence, the next access will be expensive.
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3 Micro-benchmarks

In order to better understand the behavior of Intel Cluster OpenMP’s DSM
mechanism and to get an estimate of how expensive the DSM overhead is, we cre-
ated a set of micro-benchmarks. In addition, we ported the well-known OpenMP
micro-benchmarks [1] to Intel Cluster OpenMP and examined their performance
on two different network fabrics.

Table 1 shows selected results of the OpenMP micro-benchmarks for tradi-
tional OpenMP and Intel Cluster OpenMP. The EPCC micro-benchmarks for
OpenMP measure the overhead of OpenMP constructs by comparing the time
taken for a section of code executed sequentially, to the time taken for the same
code executed in parallel enclosed in a given directive. We ported the EPCC
micro-benchmarks to Intel Cluster OpenMP by adding sharable directives, where
necessary.

Table 1. Selected results (overhead in microseconds [us]) of the EPCC OpenMP micro-
benchmarks for OpenMP and Intel Cluster OpenMP, with one thread per node

OpenMP ClOMP (Eth) ClOMP (IB)
(1 node)

PARALLEL FOR, 1 node 0.31 481.17 481.13
PARALLEL FOR, 2 nodes 1.00 1210.74 702.65
PARALLEL FOR, 4 nodes 1.12 1357.99 779.16

BARRIER, 1 node 0.01 480.59 480.71
BARRIER, 2 nodes 0.43 637.53 558.81
BARRIER, 4 nodes 0.60 662.70 634.64

REDUCTION, 1 node 0.35 481.54 482.44
REDUCTION, 2 nodes 1.54 1726.69 888.00
REDUCTION, 4 nodes 2.32 2202.01 1242.85

It is obvious that there is a severe difference in overhead between OpenMP
and Intel Cluster OpenMP, independent of the network fabric. While for a run
with a single thread only a small difference between the two network fabrics can
be observed, the overhead increase with two and four threads is significantly
lower on InfiniBand than on Ethernet. As will be seen in section 4, application
codes resemble this behavior. We found that using a fast network like InfiniBand
is crucial in order to exploit application scalability with Intel Cluster OpenMP.

We implemented a couple of own micro-benchmarks to test the DSM per-
formance by employing the same measurement approach as the EPCC micro-
benchmarks:

– testheap: A number of pages is allocated via kmp aligned sharable malloc
(OpenMP: valloc), then they are written and then freed again. This process
is repeated a couple of times and the average runtime is calculated.

– read f other : The time required to read a page allocated via the DSM by a
different thread is measured. For the Cluster OpenMP runtime that requires
transferring the page.



52 C. Terboven et al.

– write t other : Similar to read f other, but now the page allocated by a dif-
ferent thread is written. For the Cluster OpenMP runtime that requires
creating a twin page.

The performance results for traditional OpenMP and Intel Cluster OpenMP are
shown in table 2. The OpenMP measurements were run with two threads. Both
ClOMP measurements were run with two Cluster OpenMP threads schedules on
one or two nodes.

Table 2. Selected results (two threads, overhead in microseconds [us]) of our Cluster
OpenMP micro-benchmarks

testheap read f other write t other

OpenMP 2.76 1.6 2.11

ClOMP (Eth), 1 node 6.79 1.75 2.48
ClOMP (Eth), 2 nodes 4.77 247.24 251.13

ClOMP (IB), 1 node 4.37 1.78 2.49
ClOMP (IB), 2 nodes 22.96 94.94 94.38

Obviously, allocating dynamic memory is more expensive with ClOMP. With
Intel Cluster OpenMP, special care has to be taken in case of dynamic data
structures which involve many allocations, maybe even hidden from the user via
an abstract interface.

Although Cluster OpenMP allows the programmer to access memory on other
nodes transparently, from a performance perspective this is not for free. Intel
Cluster OpenMP can be started to use more than one thread per node, instead of
multiple processes on one node. In that case, accessing memory from a different
thread on the same node is significantly cheaper.

With Intel Cluster OpenMP it is even more important to respect and stick to
the following OpenMP tuning advices:

– Enlarge the parallel region: Creating a team of threads at the entrance to
a parallel region and putting it aside at the exit involves some overhead,
although most current compilers do a good job in keeping it minimal. Fewer
and shorter serial parts contribute to better scalability, thus parallel regions
should be as large as possible in most cases. With Cluster OpenMP the over-
head of creating or activating a team of threads is higher than for OpenMP,
as all involved nodes have to communicate.

– Work on data locally: Keeping data local is very important on ccNUMA
architectures. We found that tuning measures for ccNUMA also improve
performance on Cluster OpenMP. If threads are accessing local memory, no
page transportation occurs and no twin page has to be created.

– Prevent false sharing: Normally, false sharing occurs when threads write to
different parts of the same cache line, e.g. if two threads are running on
two different cores that do not share a cache, then only one core can hold
the valid cache line, the other core has to wait to perform any update. This
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can affect the performance significantly. In the case of Cluster OpenMP, false
sharing becomes an issue on a per page basis. If two or more threads write to
different locations on the same page, the update process has to occur at the
next synchronization point. This kind of problem is pretty hard to detect
in complex applications, but in many cases can be resolved by inserting
appropriate padding.

4 Applications

4.1 Jacobi

We tried Intel Cluster OpenMP on the Jacobian solver available on the OpenMP
website. We measured the scalability using a matrix size of 6000 × 6000 and
100 iterations. We compared the ClOMP version to traditional OpenMP and
two MPI implementations, one with synchronous communication and one with
asynchronous communication. Selected results are shown in figure 1.

In all versions the domain decomposition approach for the parallelization is
exactly the same. With MPI the data on the boundary has to be transferred
explicitly, while the OpenMP programmer does not need to care. As the DSM
system of Intel Cluster OpenMP works on a per page basis, in some cases de-
pending on the total number of threads and the number of threads per node,
some threads will have to access pages on other nodes for reading data at or
near the boundaries. This can be prevented by appropriate padding.

We found that binding Cluster OpenMP threads to scattered cores improves
the performance of up to 10% and was most effective for the runs with two
threads per node.

It can be noticed that the scalability on one 8-core node is limited to four
threads, as the Jacobi solver stresses the memory bandwidth. Thus, running
with two Cluster OpenMP threads on two nodes shows a better scalability (1.92
over 1.67) than the traditional OpenMP version on a single node, as the memory
bandwidth available to the application is virtually doubled by running on two
nodes. Of course, using more than four threads per node does not improve scala-
bility with Cluster OpenMP for the same reason. Instead, the performance drops
slightly. The maximum measured speedup for ClOMP on 16 nodes is 12.68 with
InfiniBand and four threads per node and 9.51 with Ethernet and two threads
per node.

Overlapping communication and computation with asynchronous MPI is par-
ticularly beneficial when employing the slower Gigabit Ethernet network fabric,
as shown for the MPI case with one process per node, whereas for InfiniBand
it does not make a big difference. Likewise the Cluster OpenMP version prof-
its from the faster network, because communication and computation cannot
be overlapped explicitly. In all cases MPI clearly outperforms Cluster OpenMP.
Both MPI versions deliver a speedup of about 27 with sixteen nodes and four
processes per node when using the fast InfiniBand network fabric.

There are two places in the program where communication is involved: In up-
dating data on the boundaries of the subdomains and in the reduction operation to
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Fig. 1. Speedup of the Cluster OpenMP and MPI versions of Jacobi

calculate the error estimation. In order to improve the ClusterOpenMPversion, we
implemented prefetching with an additional Posix-thread, that would be similar
to overlapping computation and communication. Unfortunately, we were unable
to achieve any significant performance improvement by prefetching the boundary
data. To understand this result, we estimated the runtime for eightClOMP threads
on eight nodes assuming perfect scalability and the runtime for page transfers and
reduction operations on the basis of our micro-benchmark measurements. As both
estimations only differwithin 1.5 percent,we concluded thatwithprefetching there
is only little to gain. This result corresponds to the observation that the asyn-
chronous and synchronous MPI versions perform similarly on the fast InfiniBand
network. Applying the prefetch strategy in combination with the slower GE net-
work, we observed a slight speedup improvement of about four percent.

As our micro-benchmark experiments revealed that an MPI reduction opera-
tion performs significantly better than a reduction operation in Cluster OpenMP,
we linked the Intel Cluster OpenMP program with the Intel MPI library and
called the MPI reduction operation from within the Cluster OpenMP program
- an approach which is not officially supported by Intel. By replacing Cluster
OpenMP’s reduction operation with the MPI reductions, we got an increase in
speedup of only 1.5% on the presented dataset, as we had to introduce addi-
tional locking. The improvement of course depends on the number of reduction
operations called. We concluded that there is still room for improvement in the
Intel Cluster OpenMP implementation, as the reduction can be implemented
more efficiently than in our experiments.
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4.2 Sparse Matrix-Vector-Multiplication

A sparse matrix-vector-multiplication (SMXV) typically is the most time con-
suming part in iterative solvers. In order to estimate whether Intel Cluster
OpenMP is suited for this class of applications, we examined the SMXV bench-
mark kernel of DROPS, a 3D CFD package for simulating two-phase flows with
a matrix of some 300 MB and about 19,600,000 nonzero values.

Table 3. Performance of SMXV [MFLOP/s] and runtime of GMRES [seconds]

SMXV-rows SMXV-nonzeros GMRES
1 thread 6 threads 1 thread 6 threads 1 thread 4 threads
p. node p. node p. node p. node p. node p. node

OpenMP 502.9 976.6 501.6 998.1 167.9 94.7
UMA 67.9 (8 threads)

OpenMP 326.3 793.9 324.5 1147.6 n.a. n.a.
ccNUMA

ClOMP 494.6 840.3 501.6 926.0 167.9 95.4
IB, 1 node

ClOMP 290.8 443.7 1900.6 3047.4 71.1 57.8
IB, 4 nodes

ClOMP 281.8 277.7 3580.3 5113.9 87.6 70.1
IB, 8 nodes

ClOMP 285.7 196.4 6111.2 9922.2 115.1 104.4
IB, 16 nodes

The performance of the SMXV benchmark is shown in table 3. In addition to
the Harpertown-based systems (UMA), we evaluated the performance on a Sun
Fire V40z server system, equipped with four AMD Opteron 848 single-core 2.2
GHz CPUs (ccNUMA), which provides a ccNUMA architecture. We compared
two parallelization strategies: In the rows-strategy the parallel loop runs over
the number of rows and a dynamic loop schedule is used for load balancing,
while in the nonzeros-strategy the number of nonzeros is statically partitioned
into blocks of approximately equal size, one block for each thread.

The nonzeros-strategy outperforms the rows-strategy on the ccNUMA archi-
tecture and on Intel Cluster OpenMP as well, when carefully initializing all data
while respecting the operating system’s first touch policy. Though the dynamic
loop scheduling in the rows-strategy provides good load balance, the memory
locality is not optimal. The nonzeros-strategy shows a negligible load imbalance
for the given dataset, but its advantage is that each thread works on local data.
Using the segvprof.pl tool we observed the number of page transfers dropping
by a factor of 50. For this strategy, there is only little difference between Giga-
bit Ethernet and InfiniBand, as there is only little communication involved. In
short, Cluster OpenMP behaves like a distinct ccNUMA architecture.
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4.3 GMRES Solver

We also examined the GMRES-type iterative solver of the DROPS application
and used the same matrix setup as for the SMXV kernel. The performance of
the GMRES benchmark is also shown in table 3.

The best speedup with traditional OpenMP is 1.8 with four threads per node
and 2.5 with eight threads per node, reducing the runtime from 167.9 to 67.9 sec-
onds. The scalability of this code is limited by the available memory bandwidth
as well as by the synchronization points in each iteration.

The original OpenMP version did not scale at all after being ported to Intel
Cluster OpenMP. As the vectors spanning up the Krylov-subspace were shared,
clearly too many page transfers occurred, thus we privatized those vectors for
the ClOMP version. Unluckily, we were then unable to employ 8 ClOMP threads
per node because of limitations of the sharable heap, as replicating the vectors
for each thread increased the memory consumption significantly. The best effort
speedup with Intel Cluster OpenMP is 2.9 with four threads per node on four
nodes, thus 16 threads in total. Still the scaling of the ClOMP version does not
fulfill our expectations. Computing the next Krylov-subspace vector involved
page transfers and that amount increases with the number of threads and nodes
used. We found that this part of the GMRES kernel is solely responsible for the
performance dropdown with more than four nodes.

Our future plan is to re-design the GMRES kernel to be better suited for
Cluster OpenMP by sharing the Krylov-subspace vectors, but optimizing the
access pattern throughout the algorithm.

4.4 PANTA

PANTA is a 3D solver that is used in the modeling of turbomachinery [9]. The
package used in our experiments consists of about 50,000 lines of Fortran 90
code. Several approaches to parallelize this code have been described, e.g. [5].
In order to achieve the best possible speedup with Cluster OpenMP, we have
chosen the highest parallelization level currently exploited with OpenMP, that
is a loop over 80 inversion zones.

We had to manually compute the distribution of loop iterations onto threads,
as the OpenMP DO work-sharing construct was not applicable in this case be-
cause of the code structure. As the number of loop iterations is relatively small
and at the end of each loop iteration there is a critical region in which some
global arrays are updated in a reduction-type manner, we cannot expect good
scaling from this code.

Creating a Cluster OpenMP version of the PANTA code parallelized with
OpenMP was straight forward: We enabled the compiler’s autodetection and
propagation of sharable variables and asked the compiler to make all argument
expressions, all common block variables, all module variables and all save vari-
ables sharable by default.

We are aware of the fact that making all these variable types sharable by
default puts more variables under the control of the DSM than necessary and
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that this will probably cause a performance penalty. Nevertheless, the scalabil-
ity of the Cluster OpenMP version on a single node is similar to the OpenMP
version. Better scalability with traditional OpenMP on a single node is prohib-
ited because the available memory bandwidth is saturated. Using Intel Clus-
ter OpenMP, we can use more than one node and thus effectively increase the
available memory bandwidth. Using two nodes, the best effort speedup can be
increased from 2.9 with traditional OpenMP to 3.3, using four nodes to 4.3.
Adding more nodes will only lead to slight improvements. For PANTA, Gigabit
Ethernet performs worse than traditional OpenMP in all cases.

Unluckily, the current version of Intel Cluster OpenMP does not support
Nested OpenMP. For the PANTA code, there is an additional OpenMP paral-
lelization at the loop level available, namely at the linear equation solver [5]. We
suspect that employing this level with two or even four threads per node would
increase the total scalability of the program.

4.5 Fire

The Flexible Image Retrieval Engine (FIRE) [2] has been developed at the Hu-
man Language Technology and Pattern Recognition Group of the RWTH Aachen
University. Given a query image and the goal to find k images from a database
that are similar to the query image, a score is calculated for each image from the
database. In [8] two layers have been parallelized with OpenMP and displayed
nearly linear scalability. Shared-memory parallelization is obviously more suit-
able than distributed-memory parallelization for the image retrieval task, as the
image database can then be accessed by all threads and does not need to be
distributed. Because of that, we expected FIRE to be a perfect candidate for
Intel Cluster OpenMP as searching through the database involves very little
synchronization and only negligible writing to shared memory.

To make variables of the C++ STL sharable, instances of such variables have
to use the kmp sharable allocator. In order to achieve this, that allocator has to
be specified at the variable declaration. On one hand this solution is elegant and
does not require many code changes at the declaration point, but on the other
hand the type signature of the variable is changed. This implies that if such a
variable is passed as a parameter to a function, the function declaration has to
be changed to reflect the type change.

The FIRE code makes extensive use of the STL. In order to make FIRE work
with IntelClusterOpenMP, virtually thewhole code basewouldhave to be touched
and nearly every class would have to be changed. This is not feasible in a limited
amount of time and in contrast to the findings in [8] that with OpenMP only very
little code changes were necessary. Providing an STL which allocates all STL vari-
ables on the DSM heap might be a solution for this and similar codes.

5 Tool Support

The DSM-mechanism used by Intel Cluster OpenMP uses segmentation fault
signals to activate the page movement and synchronization mechanism. That
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makes debugging a Cluster OpenMP program very hard, if not impossible, if
the debugger cannot be taught to ignore the segfaults and to not step into
the Cluster OpenMP library’s handler routine. In doing so we successfully used
the Intel command line debugger and the TotalView GUI-based debugger with
Cluster OpenMP programs. Nevertheless, using traditional debuggers is not very
helpful in finding errors related to Intel Cluster OpenMP. The typical problem
is that a variable has erroneously not been made sharable. In this case some
threads will run into segmentation faults when accessing that memory location,
but the runtime system is unable to deliver the page and thus terminates the
program in most cases.

In order to find the places in which accesses to variables that are not sharable
occur, one can use the command line tool addr2line on a core dump. We found
it easy to use and in most cases it was no problem to figure out which variable
caused the problem. Intel has announced that future versions of the Intel Thread
Checker tool will also find variables that should be made sharable.

In addition, Intel delivers a command line tool named segvprof.pl that pro-
vides means to count the number of segmentation faults on the function level.
This can be handy in locating parts of the program that are not performing well,
as e.g. too many accesses to remote pages occur.

Again, this tool is very basic in it’s current form and for complex codes like
PANTA, the provided functionality is too limited to find and understand per-
formance problems related to Cluster OpenMP. Intel has announced that future
versions of the Intel Trace Collector and Analyzer will support such an analysis.

6 Conclusions and Future Work

Intel Cluster OpenMP allows shared-memory OpenMP programs to be executed
on a cluster. It takes advantage of the relaxed consistency memory model of
OpenMP. Nevertheless, OpenMP primitives get in average two to four orders of
magnitudes more expensive.

Intel Cluster OpenMP proved to be successful for several small applications
and while preserving the easier and more comfortable parallelization paradigm
of OpenMP and shared-memory, a cluster of SMP nodes could be exploited. But
for more complex applications like the GMRES-kernel and PANTA, scalability
does not come for free and further tuning effort has to be invested.

We ran into problems with C++ programs employing the STL, which still
have to be resolved. We suspect that there is room for improvement concerning
Intel’s current implementation of reductions and on the tool support.

Future work will be to evaluate more programs of the scientific domain with
Intel Cluster OpenMP. Algorithms like GMRES have to be re-designed to some
extent to respect the high latencies for remote accesses with ClOMP. We will ap-
ply tuning measures to Cluster OpenMP programs: Porting codes like PANTA
was straight forward because of the compiler features provided, still the full perfor-
mance potential has not yet been achieved. We are interested in combining Cluster
OpenMP with other parallelization paradigms to enable multi-level parallelism.
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Abstract. The OpenMP memory model allows for a temporary view
of shared memory that only needs to be made consistent when barrier
or flush directives, including those that are implicit, are encountered.
While this relaxed memory consistency model is key to developing cluster
OpenMP implementations, it means that the memory performance of
any given implementation is greatly affected by which memory is used,
when it is used, and by which threads. In this work we propose a micro-
benchmark that can be used to measure memory consistency costs and
present results for its application to two contrasting cluster OpenMP
implementations, as well as comparing these results with data obtained
from a hardware supported OpenMP environment.

1 Introduction

Micro-benchmarks are synthetic programs designed to stress and measure the
overheads associated with specific aspects of a hardware and/or software sys-
tem. The information provided by micro-benchmarks is frequently used to, for
example, improve the design of the system, compare the performance of different
systems, or provide input to more complex models that attempt to rationalize
the runtime behaviour of a complex application that uses the system.

In the context of the OpenMP (OMP) programming paradigm, significant
effort has been devoted to developing various micro-benchmark suites. For in-
stance, shortly after its introduction Bull [3,4] proposed a suite of benchmarks
designed to measure the overheads associated with the various synchronization,
scheduling and data environment preparation OMP directives. Other notable
OMP related work includes that of Sato et al. [16] and Müller [12].

All existing OMP micro-benchmarks have been developed within the con-
text of an underlying hardware shared memory system. This is understandable
given that the vast majority of OMP applications are currently run on hardware
shared memory systems, but it is now timely to reassess the applicability of these
micro-benchmarks to other OMP implementations. Specifically, for many years
there has been interest in running OMP applications on distributed memory
hardware such as clusters [14,8,9,2,7]. Most of these implementations have been
experimental and of a research nature, but recently Intel released a commercial
product that supports OMP over a cluster – Cluster OpenMP (CLOMP) [6]. This
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interest, plus the advent of new network technologies that offer exceptional per-
formance and advanced features like Remote Direct Memory Access (RDMA),
stands to make software OMP implementations considerably more common in
the future. Also it is likely that the division between hardware and software will
become increasingly blurred. For example, in recent work Zeffer and Hagersten
[19] have proposed a set of simplified hardware primitives for multi-core chips
that can be used to support software implemented inter-node coherence.

This paper addresses the issue of developing a benchmark to measure the
cost of memory consistency in cluster OMP implementations. In the OMP stan-
dard, individual threads are allowed to maintain a temporary view of memory
that may not be globally consistent [13]. Rather, global consistency is enforced
either at synchronization points (OMP barrier operations) or via the use of
the OMP flush directive1. On a hardware shared memory system both oper-
ations are likely to involve hardware atomic and memory control instructions
such as the fence, sync, or membar operations supported on x86, POWER, and
SPARC architectures respectively. These operations can be used to ensure that
the underlying hardware does not a) move any of the load/store operations that
occurred before the barrier/flush to after or vice versa, and b) ensure that all
load/store operations that originated before the barrier/flush are fully completed
(e.g. not waiting on a store queue).

It is important to note that memory consistency and cache coherency are
different concepts. Cache coherency policies ensure that there is a single well de-
fined value associated with any particular memory address. Memory consistency
on the other hand determines when a store instruction executed by one thread is
made visible to a load operation in another thread and what that implies about
other load and store operations in both threads [1].

A fundamental difference between hardware and software supported OMP is
that much of the work associated with enforcing the OMP memory consistency
model occurs naturally in the background on a hardware shared memory system,
but this is not the case for most software supported OMP systems. That is on a
typical hardware shared memory system the result of a store operation becomes
globally visible as soon as it is propagated to a level where the cache coherency
protocol knows about it (e.g. when it has been retired from the store queue).
Thus if an OMP program has one thread executing on one processor that is
periodically changing the value of a shared variable, while another thread is
executing on another processor and is periodically reading the same variable,
the reading thread is likely to see at least some of the different values written
by the other thread, and this will be true regardless of whether there are any
intervening OMP barrier or flush directives. This is not, however, required
by the OMP memory consistency model (and must not be relied upon by any
valid OMP program). From the OMP perspective it can be viewed as if the
cache coherency hardware is speculatively updating global shared memory on

1 Note that OpenMP flush operations may be implied. For instance, they are implied
before reading from and after writing to volatile variables. Thus, the temporary
and global views of these variables are kept consistent automatically.
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the expectation that the current change will not be overwritten before the next
barrier or flush directive is encountered; and if the change is overwritten,
propagating it will have been a waste of time and bandwidth!

For software supported OMP systems, propagating changes to global mem-
ory generally implies significant communication cost. As a consequence global
updates are generally stalled as long as possible, which for OMP means waiting
until a thread encounters a flush or barrier directive. What happens then
varies greatly between different cluster OMP implementations. The aim of this
paper is to outline a micro-benchmark that can be used to quantify these dif-
ferences, and then to illustrate its use on two software enabled OMP systems,
comparing the results with those obtained from a hardware supported OMP
system.

The following section outlines the memory consistency benchmark, while Sec-
tion 3 details the two software supported OMP systems used in this work. Sec-
tion 4 contains the results obtained for the two software OMP systems and the
contrasting hardware supported OMP system. Finally Section 5 contains our
conclusions and comments for future work.

2 MCBENCH: A Memory Consistency Benchmark

The goal of the Memory Consistency Benchmark (MCBENCH)2 is to measure
the overhead that can be attributed to maintaining memory consistency for an
OMP program. To do this, memory consistency work is created by first having
one OMP thread make a change to shared data and then flush that change to
the globally visible shared memory; and then having one or more other OMP
threads flush their temporary views so that the changes made to the shared data
are visible to them.

As noted above it is important that the readers’ flushes occur after the writer’s
flush, otherwise OMP does not require the change to have been propagated. Both
these requirements are met by the OMP barrier directive since this contains
both synchronization and implicit flushes [13]. Accordingly, the general structure
used by MCBENCH is a series of change and read phases that are punctuated
by OMP barrier directives (where implicit flushes and synchronization occurs)
to give rise to memory consistency work.

Since the above includes other costs that are not related to the memory con-
sistency overhead, it is necessary to determine a reference time. This is done by
performing the exact same set of operations but using private instead of shared
data. The difference between the two elapsed times is then the time associated
with the memory consistency overhead.

To ensure that the same memory operations are performed on both the private
and shared data, the MCBENCH kernel is implemented as a routine that accepts
the address of an arbitrary array. Figure 1 shows that this array of a bytes
is divided into chunks of fixed size c which are then assigned to threads in a
round-robin fashion. In the Change phase, each thread changes the bytes in
2 MCBENCH is available for download at http://ccnuma.anu.edu.au/dsm/mcbench.
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Fig. 1. MCBENCH – An array of size a-bytes is divided into chunks of c-bytes. The
benchmark consists of Change and Read phases that can be repeated for multiple
iterations. Entering the Change phase of the first iteration, the chunks are distributed
to the available threads (four in this case) in a round-robin fashion. In the Read phase
after the barrier, each thread reads from the chunk that its neighbour had written
to. This is followed by a barrier which ends the first iteration. For the subsequent
iteration, the chunks to Change are the same as in the previous Read phase. That is,
the shifting of the chunk distribution only takes place when moving from the Change
to Read phases.

their respective chunks. This is followed by a barrier, and the Read phase where
the round-robin distribution used in the Change phase is shifted such that, had
the array been a shared one, each thread will now read the chunks previously
changed by their neighbours. The size of the shared array is the total number
of bytes that was modified during the Change phase, and this is also the total
number of modified bytes that must be consistently observed in the subsequent
Read phase. Thus, this number represents the memory consistency workload in
bytes that the underlying memory system must handle.

3 Two Software Supported OMP Implementations

Two software supported OMP implementations have been used in this work;
both layer OMP over a page-based software Distributed Shared Memory (DSM)
system [15,14,8,9,7]. The first is Intel’s Cluster OpenMP product (CLOMP) [6]
that uses a modified form of the TreadMarks DSM [10] for its underlying shared
memory. The second is based on the Omni OpenMP Compiler [11] and uses
the SCLIB DSM that has been developed by one of us [18]. The latter stands
for “SCash LIBrary” and is so named because the consistency model used is the
same as SCASH [5], but in contrast to SCASH it uses MPI for its communication
requirements as opposed to the specialized PM communication library [17].
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Two key activities that DSMs need to perform are detecting access to shared
data and determining what changes, if any, have been made to local copies of
shared data so that those changes can be made globally visible:

– Detecting Shared Data Accesses – At the granularity of a page, a subset
of the virtual address space associated with each user process is designated as
globally shared. Access to these shared pages is detected by using mprotect
to modify the page’s memory protection and implementing a handler for
the associated SIGSEGV signal. To catch both read and write accesses, the
PROT NONE setting can be used, while to catch only writes PROT READ is used.

– Determining Changes to Shared Data – When a write is attempted on
a read-only page, a copy of the page is made before modifying the memory
protection to allow the write to proceed. This process is called twinning. The
presence of the twin then makes it possible to determine if changes have been
made to any data on that page at a later stage. This process is called diffing.
Using the twinning-and-diffing strategy makes it possible to have multiple
threads modifying the same page concurrently.3

TreadMarks and SCLIB differ in that SCLIB is a home-based DSM while
TreadMarks is not (or homeless). Home-based means that for each page of glob-
ally shared memory there is a uniquely defined node that is responsible for
maintaining the currently valid version of that page, i.e. the master copy. An
advantage of the home-based approach is that a thread only needs to communi-
cate with one node in order to obtain a fresh copy of any given shared page or
to send diffs relating to that page. In contrast, TreadMarks does not maintain
any master copy of pages. Rather, diffs are held by their respective writers and
only requested for when required. The advantage of this approach is that if a
page is only accessed by one thread, there would be no communication of diffs
pertaining to that page. This makes the DSM naturally adaptive to data access
phase changes within the user application.

The difference between the two approaches is succinctly captured by what
happens in a barrier. In TreadMarks, diffs are created for all modified pages
which are then stored in a repository. Write notices are communicated amongst
the threads, detailing which pages have been modified and by which threads.
Pages that have been modified are also invalidated by changing the page protec-
tion to PROT NONE. Post barrier, any access made to a modified page will invoke
the SIGSEGV handler that fetches diffs from the various writer threads and ap-
plies them to the local page, thereby updating the page. At this point the page
can be made read-only.

SCLIB is similar to TreadMarks in that diffs for all the modified pages are
made during the barrier. However, rather than storing these in repositories, the
diffs are communicated immediately to the page-home and applied directly onto
the master copy of the page. Thus, at the end of the barrier, all master copies of
3 Although multiple writers can modify the same page concurrently, these should be

on separate portions of that page, otherwise the result from merging the diffs will
be non-deterministic.
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Table 1. Details of the experimental environments used in this work

Item Detail GigE Cluster InfiniBand Cluster Hardware
(Sun V1280)

CPU Manufacturer AMD Intel Sun
Type Athlon 64 X2 4200 Xeon 5150 UltraSPARC
Clock 2.2GHz 2.66GHz 900MHz
Cores 2 2 1

Nodes Count 8 20 3 (boards)
CPU Sockets 1 2 4 (per board)

Network Type Gigabit Ethernet InfiniBand (4x DDR) -
Latency 60 usec 3 usec -
Bandwidth 98 MB/s 1221 MB/s -

OpenMP Impl1 ICC-10.0.026,
CLOMP-1.3, -O

ICC-10.0.026,
CLOMP-1.3, -O

-

Impl2 Omni/SCLIB,
OpenMPI-1.1.4
(GCC-3.3.5), -O

Omni/SCLIB,
OpenMPI-1.2.5
(GCC-4.1.2), -O

-

Impl3 - - Sun Studio 11,
-xopenmp=noopt

pages will be up-to-date. Post barrier, a page is read-only for the home thread
and either read-only or invalid for all other threads, depending on whether there
were changes4. Subsequent page faults cause the contents of a page to be fetched
from the page-home, updating the temporary view of the faulting thread.

In summary, TreadMarks only sends the locally made changes to other threads
when and if those other threads request them 5; this restricts communication
within the barrier to relatively short messages that just notify the other nodes
that something has changed in a given page. SCLIB, on the other hand, sends the
actual changes to a page to the home thread where the master copy is updated
during the barrier event. In principle the time spent within the TreadMarks
barrier is shorter than for SCLIB, but this comes at the expense of possibly
having to retrieve diffs from multiple threads after the barrier and apply them.
A priori it is not easy to judge which scheme is best.

4 Experimental Results

MCBENCH was used to measure the memory consistency overheads of the two
software OMP implementations introduced in the previous section on the two
different cluster environments detailed in Table 1. Some results were also ob-
tained using the Sun Studio 11 OMP compiler on a Sun V1280 hardware shared
memory machine.

4 In a single-writer situation, the writer, if not the home of the page, will not receive
an invalidation notice because its copy is as up-to-date as the master copy.

5 Or when the repository of diffs become too full.
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Fig. 2. MCBENCH results using an array of 4MB on the Gigabit Ethernet and Infini-
Band clusters. The chunk size is 4 bytes, 4096 bytes, and blocked (4MB/n).

There are three parameters that can be adjusted when running MCBENCH.
These are the size of the array (a), the chunk size (c), and the number of threads
(n). The first parameter, a, represents the OMP memory consistency workload
at each iteration in terms of bytes. This array is then divided into chunks of c
bytes, which the available n threads then modify and read using the round-robin
distribution illustrated in Figure 1. Thus, varying the chunk size modifies the
memory access patterns of the threads.

4.1 Analysis: Software OMP Implementations

In studying the software OMP implementations, we observe how the overheads of
the implementations scale with the number of threads. Scalability of this nature
is important for clusters because the primary means of increasing computational
power in a cluster is to add more nodes.

The chunk sizes that were used are 4 bytes, 4096 bytes, and blocked (� a
n�

bytes). At 4 bytes, the memory access pattern represents the worst case for
the two software OMP implementations because they are layered on page-based
DSMs whose pages are many times larger than 4n bytes. The result of such an
access pattern is that each thread has to perform memory consistency over the
whole array even though it only modifies/reads a

n bytes in a phase. The second
chunk size is 4096 bytes and is the same as the page size of the DSMs used by
both software OMP implementations. By further aligning the shared array to
the page line, a dramatic difference can be observed in the overheads. Lastly, the
blocked chunk size is a simple block distribution of the shared array between the
available threads. This represents the case of accessing large contiguous regions
of shared memory.

Figure 2 plots the overhead in terms of “Milliseconds/MB” for both software
OMP implementations while using a 4MB shared array together with the three
different chunk sizes. As expected, both implementations give their worst per-
formances when the chunk size is 4 bytes. However, these scale very differently.
The SCLIB DSM is home-based and so maintains a master copy of each page.
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Fig. 3. MCBENCH results on the Sun V1280 SMP. A 4MB array is used with chunk
sizes varied from 4 bytes to blocked (4MB/n). The left shows the overhead in terms
of Microseconds/MB and the right reports the L2-cache-misses/MB observed by the
master thread.

During each iteration of the worst case access pattern, each thread will fetch,
twin, diff and later send diffs for n−1

n of the pages in the shared array. This
explains the O(n−1

n ) scaling observed in Figure 2 for both clusters.
In contrast, CLOMP is not home-based. Instead of sending modifications to

a central master copy, modifications are maintained by the various writers and
must be retrieved from each of these if a thread encounters a subsequent page
fault for this page. Since every page has been modified by every thread in the
worst case scenario, every page fault during the Read Phase of the benchmark
inevitably results in communication with all the other threads. This results in
the observed O(n) complexity.

For the 4096-byte and blocked chunk sizes, the number of pages accessed for
modification or reading can be approximated as 1

n × a
pagesize . Thus O( 1

n ) com-
plexity is observed for the CLOMP implementation. For Omni/SCLIB, only n−1

n
of the pages accessed are remote (i.e. the master copy is at another thread). Due
to this, only n−1

n × 1
n of the pages need to be fetched. Therefore the implementa-

tion scales at O(n−1
n2 ). Although, for large enough n this complexity approaches

O( 1
n ).

4.2 Analysis: Hardware OMP Implementation

The L1 data cache on the Sun V1280 has a line size of 32 bytes, with 16-byte
sub-blocks. The L2 cache is of size 8MB, with 512-byte lines with 64-byte sub-
blocks (these form the unit of cache coherency), and is 2-way associative with a
random replacement policy.

Figure 3 shows the effect of varying the chunk size c for a = 4MB, i.e. over
data that can fit entirely in the L2 cache. In addition to the time overhead met-
ric, MCBENCH was instrumented to count the L2 cache misses observed by the
master thread. As expected, that there is a reasonably high correlation between
the time-based and counter-based overheads. Again, c = 4 represents a worst-case
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Fig. 4. MCBENCH results on the Sun V1280 SMP. The effect of varying the array size
for 4096-byte chunks is shown.

scenario, showing roughly O(n−1
n ) scalability due to cache-line transfers (includ-

ing a L1 cache invalidation) that could possibly occur for every element updated.
The observed results suggest that the coherency-related hardware has been sat-
urated in this manner. The performance is markedly improved and the scaling
becomes roughly O( 1

n ) when the chunk size, c, is increased to 16 and 32 bytes.
Finally, when c reaches or exceeds the size of the unit of cache coherency, trans-
fers occur once for every 64-byte region accessed that needs to be made consistent.
The backplane fat-tree topology hardware is able to parallelize the coherency traf-
fic effectively at this point, resulting in greatly reduced overhead and a clear O( 1

n )
scaling.

Figure 4 shows the effect of increasing the array size from 1 MB to 32 MB. The
results indicate that the consistency overhead is apparently reduced when the
array size exceeds the L2 cache capacity. While this may seem at first counter-
intuitive, at this point we see the distinction between memory and cache con-
sistency overheads emerging, and it must be noted that MCBENCH results are
the difference between the access patterns for shared and private arrays. For the
latter, a simple cache simulation program showed that for this L2 cache, there
is a cache hit rate of only 15% (a = 16 MB) and 1% (a = 32 MB) upon the first
byte in each line that is accessed. Hence, the effect is due to the introduction of
memory access overheads for the private array, which, while not as great as the
cache coherency overheads for the shared array, reduce some of the difference
between the two cases.

5 Conclusions

The overhead reported by MCBENCH is determined by the difference in perfor-
mance between memory operations on shared and private data. This is achieved
by using an access pattern that is designed to force the memory subsystem to
perform memory consistency work when shared data is used.

Although MCBENCH was designed in the context of cluster OpenMP imple-
mentations, it has been demonstrated that the benchmark can be used on both
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software and hardware OMP implementations. The results show that the magni-
tude of the memory consistency overhead is greatly influenced by the structure
of the underlying memory subsystem. In particular, varying the chunk size shows
that the granularity of coherency is able to sway results from one end of the scale
to the other. This is true for both software and hardware based OMP implemen-
tations. Beyond the coherency granularity, the same scaling is observed for all
three implementations.

Finally, it is important to remember that micro-benchmarks measure specific
system overheads by using small well defined operations to exercise that aspect
of interest. Thus, it is rare for a single micro-benchmark to explain the perfor-
mance of a full application completely. Rather, they give an appreciation of the
overheads of specific conditions that may manifest during the execution of the
application of interest.
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Abstract. Current OpenMP compilers are often limited in their anal-
ysis and optimization of OpenMP programs by the challenge of incor-
porating OpenMP memory consistency semantics into conventional data
flow algorithms. An important reason for this is that data flow analy-
sis within current compilers traverse the program’s control-flow graph
(CFG) and the CFG does not accurately model the memory consis-
tency specifications of OpenMP. In this paper, we present techniques
to incorporate memory consistency semantics into conventional dataflow
analysis by transforming the program’s CFG into an OpenMP Producer-
Consumer Flow Graph (PCFG), where a path exists from writes to reads
of shared data if and only if a dependence is implied by the OpenMP
memory consistency model. We present algorithms for these transforma-
tions, prove the correctness of these algorithms and discuss a case where
this transformation is used.

1 Introduction

OpenMP [1] has established itself as an important method and language exten-
sion for programming shared-memory parallel computers. With multi-core ar-
chitectures becoming the commodity computing elements of the day, OpenMP
programming promises to be a dominant mainstream computing paradigm.

OpenMP is supported by several vendors by means of compilers and run-
time libraries that convert OpenMP programs to multi-threaded code. However,
current compilers are often limited in the extent to which they use the mem-
ory consistency semantics of OpenMP to optimize OpenMP programs. A reason
for this is that most data flow analysis employed by state-of-the-art optimizing
compilers are based on the traversal of a conventional control-flow graph – a
program representation for sequential programs. In sequential programs, data
always flows as expressed by the control-flow graph (CFG) and data flow algo-
rithms infer dependences by traversing this CFG. In parallel programs, this is
no longer accurate, as data can flow into a thread potentially at any read from a
shared variable. To understand such flow, the specific memory consistency model
of the employed parallel programming paradigm must be considered.

In this paper, we present techniques to incorporate OpenMP memory consis-
tency semantics into conventional control-flow graphs. Our proposed techniques

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 71–82, 2008.
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transform a conventional control-flow graph (CFG) into an “OpenMP Producer-
Consumer Flow Graph” (PCFG), which resembles a conventional CFG and incor-
porates OpenMP memory consistency semantics into its structure. This enables
the use of conventional data flow algorithms for OpenMP programs.

Related approaches to internally representing OpenMP programs for compiler
analysis have proposed techniques to incorporate OpenMP control-flow semantics
into a program’s control-flow graph [2,3]. The present paper is meant to comple-
ment, rather than compete with, these related approaches. The focus of this paper
is more specifically on techniques to incorporate the memory consistency seman-
tics of OpenMP programs into the internal representation. We shall illustrate why
simply incorporating OpenMP control-flow information into the CFG may not be
sufficient to account for the effects of the OpenMP memory consistency model.
We shall then present formal algorithms to transform a conventional CFG into a
representation that accurately reflects OpenMP memory consistency.

The rest of the paper is organized as follows. Section 2 describes the OpenMP
Memory Model and introduces transformations that can be applied to a pro-
gram’s CFG to incorporate OpenMP semantics. Section 3 presents algorithms
to accomplish the transformations required to create the PCFG, presents a for-
mal proof of correctness of these algorithms and discusses an application of the
PCFG. Section 4 discusses related work. Section 5 concludes the paper.

2 The OpenMP Memory Consistency Model

The OpenMP memory consistency model is roughly equivalent to Weak Consis-
tency [4]. Writes to shared data by one thread are not guaranteed to be visible
to another thread till a synchronization point is reached. OpenMP has both
implicit and explicit memory synchronization points. Examples of explicit syn-
chronization points include barrier and flush directives. Implicitly, there are
memory synchronization points at the end of work sharing constructs (unless
they have explicit nowait clauses) and at the end of synchronization directives
like master and critical. This means, for example, that writes to shared data in
one iteration of an OpenMP for loop by one thread are not guaranteed to be
visible to another thread executing a different iteration of the same loop till the
implicit synchronization at the end of the loop is reached.

Figure 1 illustrates some ramifications of how the OpenMP consistency model
affects analysis that are based on the program’s control-flow graph. The nowait
clause in loop L1 denotes that writes to the array A by one thread in loop L1
are not guaranteed to be visible to another thread executing iterations of loop
L2. However, any analysis based on the corresponding control-flow graph (which
incorporates OpenMP control information) shown in the figure will find a path
from vertex v1 to v2 and incorrectly infer that there is a dependence between
the write to A in V 1 and the read of A in v2.

On the other hand, the flush and atomic directives denote that the atomic
update to the scalar tf lag after loop L2 by one thread may be visible to another
thread reading tf lag in loop L1. However, in the graph there is no path from
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v3 to v1 and data flow analysis based on this graph will infer that there is no
dependence between the two.

To correctly model these two cases, the control-flow graph needs to be adjusted
so that there is a path from the write to a shared variable to a read if the write by
one thread is visible to the read by another thread as per OpenMP specifications.
A way of doing this for the graph shown in Figure 1 would be to add the edge e1
to account for the flush directives, delete the edge e2 to account for the nowait
clauses and to add edges e3 and e4 to keep other paths in the graph unbroken
even though the edge e2 has been deleted. By doing these edge additions and
deletions, we create an OpenMP producer-consumer flow graph where there is
a path from a write W to a read R in the program if and only if the write W
occurring on one thread can be visible to the read R occurring on another thread.
In certain cases, like the reads and writes connected by edge e1 in Figure 1, the
read may be before the write in program order.

The next section of this paper presents formal algorithms to create such
a OpenMP Producer-Consumer Flow Graph, starting from the sequential

tflag = 1 ;

#pragma omp parallel

{

/* Loop L1 */

#pragma omp for nowait

for(j=1;j<N;j++) {

#pragma omp flush(tflag)

… = tflag … ;

A[j] = …

}

/* Loop L2 */

#pragma omp for nowait

for(j=1;j<M;j++) {

… = A[i]... 

}

#pragma omp atomic  

tflag++ ;

}

tflag = 1

tflag++

/* Loop Body for Loop L1 */

… = tflag ...

A[j] = …

/* loop exit for Loop L1 */

/*loop_entry for Loop L1*/

/* loop_entry for Loop L2 */

/* loop exit for Loop L2 */

/*Start_parallel*/

/*End_parallel*/

e1

v1 v2
/* Loop Body for Loop L2 */

…. = A[j]

e3

e2

e4

/*Start Atomic *

/*End Atomic *

v3

Fig. 1. Incorporation of OpenMP Memory Consistency Semantics: The graph edges
drawn with solid arrows are present in the CFG for the program. The dependence
implied between writes to array A in loop L1 and the read of A in loop L2 are relaxed by
the nowait clause. Therefore, the path from vertex v1 to v2 in the sequential CFG must
be broken to model this relaxation. The combination of flush and atomic directives
imply a dependence between the update to tflag in vertex v3 and the read of tflag in
vertex v1. Therefore, a path must be introduced between v3 and v1 in the sequential
CFG to model this additional dependence. These path adjustments are accomplished
by removing edge e2 and adding edges e1, e3, e4 to the CFG.
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control-flow graph for the program. We are incorporating these algorithms into
the Cetus [5] infrastructure as part of an OpenMP to MPI translation pass.

3 Incorporation of OpenMP Memory Consistency into
the Dataflow Analysis

Our compiler creates an OpenMP producer-consumer flow graph using four
steps –

1. Identify Shared Data.
2. Incorporate OpenMP control and data synchronization.
3. Relax Sequential Consistency.
4. Adjust for flushes.

We start with the sequential control-flow graph (CFG) for the program. The
first step distinguishes between shared and private data in the program. The sec-
ond step incorporates OpenMP constructs into the CFG to create an OpenMP
control-flow graph (OpenMP CFG). The third and fourth steps first relax and
then tighten ordering constraints in the program based on OpenMP memory con-
sistency semantics to transform the OpenMP CFG into an OpenMP Producer-
Consumer Flow Graph (PCFG).

3.1 Identification of Shared Data

The very first step in the incorporation of OpenMP semantics is to distinguish
between shared and private data in the program. Shared data is defined as data
in the program that may be read or written by more than one thread. Private
data, on the other hand, is written by only a single thread in the program.
The only way that private data is affected by the OpenMP semantics is when
it is classified using clauses such as firstprivate, lastprivate and threadprivate.
Thus, dataflow analysis for private data can still use the sequential CFG for the
program. It is for the shared data that the PCFG needs to be created before any
dataflow analysis can be done. In the very first step, our compiler identifies data
that may be shared between multiple threads using the algorithm in Figure 2.

At this point, our compiler has separated data in the program into two classes
- shared and private. Dataflow analysis for private data can be now invoked using
the sequential CFG for the program. Once that analysis is complete, our compiler
transforms the graph to incorporate OpenMP memory consistency semantics
prior to invoking dataflow analysis for shared data. For this, our compiler starts
by making OpenMP constructs explicit in the CFG to create the OpenMP CFG.

3.2 Making OpenMP Constructs Explicit

Our starting point for this step is the sequential CFG G =< V, E > for the
program, where a vertex V represents a basic block in the program and an
edge E = V1 → V2 exists if the basic block denoted by V2 is a successor of



Incorporation of OpenMP Memory Consistency 75

Algorithm list shared variables
Input : A - An OpenMP program. Output : S - A List of Shared Variables in A.
Start list shared variables
1. Set S = Φ
2. do ∀R, R is an OpenMP parallel region in A
3. Set V = Set of all variables used in R
4. Set L = Set of all variables declared locally within R
5. Set PV = Set of all variables explicitly declared private for R
6. Set SV = Set of all variables explicitly declared shared for R
7. Set S = S ∪ (V − L − PV ) ∪ SV
8. end do
9. if (S = Φ) , exit, endif
10. do ∀F , F is function call within program A
11. do ∀Pa , Pa is a parameter of F
12. if (Pa ∈ S)
13. Let FP be the Procedure that defines F
14. Let PA be the Procedure Parameter of FP

corresponding to function parameter Pa
15. Set S = S ∪ PA
16. end if
17. end do
18. end do
19. if (Steps 10 through 18 have added new elements to S)
20. Go to Step 10
21. end if
End list shared variables

Fig. 2. Algorithm to create list of Shared Variables in an OpenMP Program. A key
challenge in identifying shared variables is that function calls with shared variables as
parameters may introduce additional shared variables that are not explicitly identified
as shared by OpenMP directives. This algorithm addresses this challenge using the
inter-procedural analysis shown in lines 10 through 21.

the basic block denoted by V1. To incorporate OpenMP constructs into G for
the OpenMP program, our compiler inserts vertices corresponding to OpenMP
directives. Directives that refer to a set of statements in the program code are
represented by entry and exit vertex pairs. For example, for each OpenMP
parallel region in the program, there is a parallel region entry and a parallel
region exit vertex. For each OpenMP critical section in the program, there is a
critical section entry and a critical section exit vertex.

Stand-alone directives such as the flush and barrier directives are represented
with a single vertex in the program flow graph. Each OpenMP flush vertex is
associated with a flush set, which is a list of all shared variables that need to be
flushed at that point. When the flush set is explicitly specified in the program, the
corresponding flush vertex is annotated with this flush set. The atomic directive
is represented with a pair of atomic entry and atomic exit vertices around the
atomic statement.
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Next, our compiler inserts an explicit barrier vertex wherever control synchro-
nization is implicit in an OpenMP directive. Thus, barrier vertices are added to
G at the entry to an exit from parallel regions and at the exit of worksharing
regions that do not have nowait clauses. flush vertices are inserted where a flush
is implicit without a barrier, such as at entry to and exit from critical, ordered
and atomic regions. Flush sets are derived by the compiler for these inserted
flush vertices. For example, for critical and atomic regions, flush sets include
the shared variables accessed in these regions. For shared variables that have a
volatile type, pairs of flush vertices enclose every access to these variables.

Thus, at the end of this step, we have an OpenMP Control Flow Graph Ĝ that
contains vertices corresponding to OpenMP constructs, barrier vertices where
control synchronization is implied in the program and flush vertices where a
data coherence is implied in the OpenMP program.

3.3 Relaxation of Sequential Consistency

With the graph Ĝ now containing explicit synchronization vertices and ver-
tices corresponding to OpenMP directives, our compiler proceeds to the next
step of relaxing sequential consistency constraints using the algorithm re-
lax sequential consistency shown in Figure 3.

In this algorithm, the compiler deletes edges from the program’s control-flow
graph, to break paths from writes to subsequent reads of shared data elements
where the weak consistency model of OpenMP specifies that the write by one
thread may not be visible to the read on another thread. Then the compiler adds
edges from the previous synchronization points in the program to preserve paths
to the read from writes before the previous synchronization.

At the end of this step, our compiler produces a control-flow graph where any
path from a producer to a consumer for a shared variable exists only if this path
exists in the original graph and the OpenMP directives in the program do not
relax this dependence. In the next step, the compiler adds paths to account for
producer-consumer relationships that are additionally introduced by OpenMP
directives.

3.4 Adjustment for Flushes

Finally, our compiler uses the algorithm Adjust for Flushes shown in Figure 4 to
adjust for explicit flushes in the program. For line 6 of this algorithm, two flushes
are termed concurrent in our context if there is no execution order enforced
upon them by the program structure. Thus, these may execute in any order, on
different threads, between two synchronization points (barriers) in the program.
To find concurrent flushes, the compiler uses a concurrency analysis for OpenMP
[3] which has been used by other researchers as part of static race detection in
OpenMP programs.

At this point, the compiler has a control-flow graph that reflects the OpenMP
memory consistency model. In this graph, there is a path from a write statement
S1 to a future read statement S2 if and only if the execution of S1 by one thread
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Algorithm relax sequential consistency
Input : 1. The OpenMP Control-Flow Graph Ĝ containing

explicit synchronization vertices for barrier and flush
and entry and exit vertices for OpenMP directives.

Output : 1. An OpenMP Control-Flow Graph Ĝ that models
the Relaxed Memory Consistency of OpenMP.

Start relax sequential consistency
1. do ∀L, L is an OpenMP loop,
2. Remove the back edge from loop entry to loop exit for L.
3. end do
4. do ∀Vx, Vx is an OpenMP exit vertex in Ĝ

5. if ( Ĝ contains an edge Vx → Vy where
6. Vy is not an OpenMP barrier vertex ) then
7. Delete edge Vx → Vy

8. Let Vey be a barrier vertex reachable from Vy without intervening barriers
9. Let Vdx be a barrier vertex that strictly dominates Vx

10. Add edge Vx → Vey to Ĝ

11. Add edge Vdx → Vy to Ĝ
12. end if
11. end do
End relax sequential consistency

Fig. 3. Algorithm to adjust the Control-Flow Graph to remove dependencies according
to OpenMP’s Memory Consistency specifications

produces an update to memory that is visible to the execution of S2 by another
thread, as per OpenMP specifications. We refer to this adjusted control-flow
graph as the OpenMP Producer-Consumer Flow Graph (PCFG).

3.5 Proof of Correctness

We now present a formal proof of the correctness of the two algorithms presented
above.

Theorem 1. For an OpenMP Producer-Consumer Flow Graph, a Read state-
ment R is reachable from a Write statement W ⇔ the execution of W by one
thread is guaranteed to be visible to the execution of R by another thread accord-
ing to OpenMP specifications.

Proof. We begin by first proving proposition in the forward direction – A Read
statement R is reachable from a Write statement W in the OpenMP PCFG ⇒
the execution of W by one thread is guaranteed to be visible to the execution of
R by another thread according to OpenMP specifications.

Consider two cases.

Case 1 – R occurs after W in program order.
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Algorithm Adjust for Flushes
Input : 1. The OpenMP Control-Flow Graph Ĝ for the OpenMP program

created by algorithm relax sequential consistency.
Output : 1. An OpenMP Producer-Consumer Flow Graph Ĝ for the program.

Start Adjust for Flushes
1. do ∀Vf , Vf is a flush vertex in Ĝ,

2. do ∀V ′
f , V ′

f is a flush vertex in Ĝ, Vf �= V ′
f

3. if (Vf �= V ′
f and V ′

f is not reachable from Vf ) then
4. Let S be the flush-set of Vf

5. Let S′ be the flush-set of V ′
f

6. if (Vf and V ′
f can be concurrent [3]

7. and S ∩ S′ �= Φ ) then
8. Add edge Vf → V ′

f to Ĝ
9. end if
10. end if
11. end do
12. end do
End Adjust for Flushes

Fig. 4. Algorithm to adjust the Control-Flow Graph to incorporate dependencies cre-
ated by explicit flushes

In this case, there can be three scenarios – (i) both R and W are in serial regions,
(ii) either R or W is in a serial region and (iii) both R and W are in parallel
regions.

If R and W are both in serial sections and there is a path from W to R, then
the statement is trivially true.

If W is in a serial region and R is in a parallel region, let ER be the entry
vertex for the parallel region that R is in. ER dominates R and so any path
from W to R must contain ER. Since there is an implicit synchronization at the
beginning and end of each parallel region, ER is dominated by a barrier vertex
which must also be in the path from W to R and thus, the execution of W will
be visible to an execution of R on any thread. Similarly, if W is in a parallel
region and R is in a later serial region, the barrier at the end of this parallel
region must be in the path from W to R and thus the execution of W on any
thread will be visible to the thread executing the serial region that contains R.
If W and R are both in a parallel regions then let EW be the exit vertex for
the OpenMP construct that W is within. Since Algorithm 3 ensures that the
successor of EW is always a barrier vertex, there is always a barrier vertex in
the path from W to R and thus the execution of W will be visible to an execution
of R on any thread.

Case 2 – R occurs before W in program order.
In this case, the path from W to R must contain an edge not present in the
original control-flow graph of the program. Additional edges are introduced by
line 8 in algorithm Adjust for Flushes in Figure 4 and by lines 10-11 in algorithm
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relax sequential consistency in Figure 3. Since these edges contain vertices which
are either barriers or flush pairs, the execution of W must be visible to an
execution of R on any thread.

We now prove the proposition in the reverse direction – The execution of a
Write statement W by one thread is guaranteed to be visible to the execution
of a Read statement R by another thread according to OpenMP specifications
⇒ R is reachable from W in the OpenMP PCFG.

If W is visible to R on all threads as per OpenMP specifications, then one of
two cases must be true –
Case 1 – R is reachable from W in the original program flow graph.
In this case, there must be an intervening barrier vertex in the path from W
to R since W is guaranteed to be complete before R is started on any thread.
We call this barrier vertex Vb. The only transformation that deletes edges from
the original control-flow graph is line 7 in algorithm relax sequential consistency
in Figure 3. However, the additional edges introduced in lines 10 and 11 of this
algorithm ensure that paths from OpenMP entry and exit vertices to preceding
and succeeding barriers are not broken. Thus, a path from W to Vb and from
Vb to R is unbroken by the two algorithms. Thus, R is reachable from W in the
OpenMP PCFG.
Case 2 – R is not reachable from W in the original program flow graph.
In this case, W must become visible to R because of OpenMP flush directives.
Thus, there must be a flush in the program after W that is reachable from W in
the OpenMP CFG. There must also be a flush in the OpenMP CFG from which
R is reachable. Additionally, these two flushes must be concurrent. However,
if these flushes are concurrent, then line 8 in algorithm Adjust for Flushes in
Figure 4 will create an edge between them. Thus, R will be reachable from W
in the OpenMP PCFG.

Thus, by combining the two propositions proved above, we get “A Read state-
ment R is reachable from a Write statement W in the OpenMP PCFG ⇔ the
execution of W by one thread is guaranteed to be visible to the execution of R
by another thread according to OpenMP specifications.”

3.6 Applications of the OpenMP Producer-Consumer Flow Graph

The OpenMP producer-consumer flow graph is just like a conventional control-
flow graph except that it accurately represents producer-consumer relationships
between writes to and reads of shared data. Thus, this graph can now form the
basis for subsequent dataflow analysis passes for shared variables.

Consider, for example, a typical dataflow analysis pass to find reaching defi-
nitions. Consider again the program snippet shown in Figure 1. Let B1 be the
basic block that contains the statement accessing the shared variable tf lag in
loop L1 and let B2 be the basic block containing the statement tf lag + + after
loop L2. The algorithm Adjust for Flushes shown in Figure 4 creates a path from
B2 to B1 in the graph and thus, the definition of tf lag in B2 would get included
in the list of reaching definitions for the use of tf lag in B1.

In our compiler, the OpenMP producer-consumer graph is a key element in a
pass to transform OpenMP programs directly to MPI programs [6]. A summary
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Fig. 5. Performance of seven representative OpenMP applications translated to MPI,
compared with their hand-coded MPI counterparts on 16 WinterHawk nodes of an
IBM SP2 system. A key step in the OpenMP to MPI translation is the creation of the
OpenMP Producer-Consumer Flow Graph.

of the performance of this transformation is shown in Figure 5. This pass per-
forms a whole program analysis of accesses to shared variables and communicates
shared data, as it is produced, to all potential future consumers. This analysis
needs to be conservative. Therefore, accurately representing the relaxation of
constraints implied by weak consistency and OpenMP clauses such as nowait
enables performance optimizations by eliminating certain producer consumer
relationships. On the other hand, it includes additional constraints introduced
by flush operations into the dataflow analysis framework, thereby preserving the
correctness of the derived producer-consumer relationships.

4 Related Work

Previous research into the compiler analysis for programs with relaxed consis-
tency models have focused on delay set analysis [7,8,9] to ensure correct execu-
tion of programs. Others have proposed techniques to use the compiler to hide
or abstract the effects of the memory model from the programmer [10,11] and in
doing so have relied on specialized graph representations such as the Concurrent
Static Single Assignment form to represent parallel programs. Our techniques
do not have to incorporate delay set analysis since the requisite fences or barri-
ers in our program are already present in the form of OpenMP synchronization
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statements. Also, rather than modifying the dataflow analysis passes in any way,
our technique modifies the sequential control-flow graph for the program, adding
and deleting edges to incorporate the effects of weak memory consistency and
the additional constraints introduced by OpenMP flushes.

Our work complements recent research to analyze the synchronization struc-
ture of OpenMP programs [3]. To build the PCFG our algorithm starts from
the sequential CFG. A first addition is to incorporate control-flow semantics for
the parallel program to create the OpenMP CFG. This extension has been ad-
dressed in recent work [2,3]. In addition, we consider data flow that results from
cross-thread communication at flush operations and dependences excluded by
nowait type directives using the techniques proposed in this paper. Recent work
on data flow analysis for OpenMP programs [12] has proposed the incorporation
of OpenMP semantics by creating Super Nodes and Composite Nodes in the con-
trol flow graph to encapsulate OpenMP constructs and then use different data
flow equations for these to incorporate OpenMP semantics. In this paper, we
present a different approach that adjusts predecessor and successor relationships
between basic blocks to incorporate OpenMP semantics and thus, we do not
need to introduce any special data flow equations into the framework.

In our work, we use a simple conservative approach for differentiating between
shared and private data. Recent work on autoscoping of data in OpenMP pro-
grams [13] proposes alternative approaches to accomplish this. Our work has
also benefited from recent efforts to further elucidate the OpenMP memory con-
sistency specifications [14] and to formalize the OpenMP memory model [15].

5 Conclusions

In this paper, we have presented techniques for incorporating OpenMP memory
consistency semantics into conventional dataflow analysis. Instead of modifying
dataflow analysis in any way, our method is to distinguish between shared and
private data in the program, use the sequential control-flow graph of the program
to perform dataflow analysis for private data, then transform the control-flow
graph into an OpenMP producer-consumer flow graph that reflects the effects
of OpenMP memory consistency and to use this graph to perform data flow
analysis for shared data.

Our transformation has three essential steps - (i) distinguishing shared and
private data, (ii) incorporating relaxed consistency semantics into the control-
flow graph and (iii) incorporating any additional constraints introduced by
the programming model (by flush operations). Thus, our transformations are
broadly applicable for any parallel programming paradigm whose memory con-
sistency model can be specified by (i) how it differentiates shared and private
data, (ii) ordering constraints that are relaxed and (iii) additional ordering con-
straints that are introduced.

We use the techniques presented in this paper in the Cetus compiler as part of
a set of transformations to translate OpenMP programs to MPI programs. These
techniques are essential both for preserving the correctness of the translation and
for performance optimization. We believe that these techniques hold promise in a
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broad spectrum of transformations for a variety of parallel programming models
when the memory consistency semantics differ from sequential consistency.
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Abstract. To benefit from distributed architectures, many applications
need a coarse grain parallelisation of their programs. In order to help a
non-expert parallel programmer to take advantage of this possibility, we
have carried out a tool called STEP (Système de Transformation pour
l’Exécution Parallèle). From a code decorated with OpenMP directives,
this source-to-source transformation tool produces another code based
on the message-passing programming model automatically. Thus, the
programs of the legacy application can easily and reliably evolve without
the burden of restructuring the code so as to insert calls to message
passing API primitives. This tool deals with difficulties inherent in coarse
grain parallelisation such as inter-procedural analyses and irregular code.

1 Introduction

On the one hand, parallel applications must evolve with hardware architectures
ranging from computational grids to multi-core/many-core architectures. Indeed,
since parallel programming seeks performance, parallel algorithms will be differ-
ent depending on architectures in order to take advantage of their specificities.
On the other hand, when developing a parallel version of some sequential appli-
cation (or a new parallel application from scratch), parallel programmers have
currently the choice between two alternatives to program their application: either
MPI for message-passing programming [PIF95] or OpenMP for shared-memory
programming [arb04]. Both ways have advantages and drawbacks. MPI provides
a way for the programmer to control the behaviour of his parallel application
precisely and especially the time spent in communication or computation. For
this reason, MPI programming is considered low-level, and using it for develop-
ment is time consuming. Furthermore the SPMD programming model of MPI
provides a fragmented view of the program [CCZ06]. MPI code is intermingled
with the original sequential code and this makes the global structure of the re-
sulting code difficult to read. In contrast programming with OpenMP directives
provides a simple way to specify which parts should be executed in parallel and
helps keeping a “global view” of the original application. Driven by the direc-
tives, the actual parallelisation is delegated to a compiler. The main drawback of
OpenMP is to be restricted mainly to shared-memory architectures. Furthermore
hybrid programming OpenMP/MPI is necessary to exploit hybrid architectures
such as clusters of many-cores.

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 83–99, 2008.
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Considering this dilemma, we propose an approach which tries to make the
best of both ways : keeping the relative simplicity of programming with OpenMP
directives and developing MPI applications ready to be tuned to run efficiently on
distributed memory architectures. Our goal is to propose a MPI implementation
of OpenMP directives specifically well-suited to express coarse-grain parallelism.
The program written by the programmer remains generic in the sense that it
can be either directly compiled by an openMP compiler to be run on some
shared-memory architecture, or transformed into an MPI source code that can be
further optimised by an expert in order to make the best of non shared-memory
architectures such as clusters. In this paper, we propose a tool called STEP
(Système de Transformation pour l’Exécution Parallèle) that, being based on the
source-to-source transformation PIPS workbench [AAC+94], semi-automatically
generates MPI programs for some widely-used coarse-grain parallel application
structures.

The paper is organised as follows : the next section describes the context and
gives a typical use case to emphasize the motivations of our work. In section 3
we describe the prototype we have developed and the results. In section 4, we
describe the related work before conclusion.

2 Context

To benefit from distributed architectures, many applications need a coarse grain
parallelisation of their programs. Therefore the goal of our work is two-fold:

– find a way to express the potential parallelism of an application that can be
derived into both shared and distributed memory parallelisation;

– find a way to parallelise legacy applications without preventing evolutions.

2.1 The Goals of Our Work

Expressing parallelism within an application without corrupting it is the main
advantage of the OpenMP paradigm. Using techniques developed in the field of
automatic parallelisation, we conceived STEP, a tool that transforms a program
semi-automatically into an MPI source program and produces MPI code close
to hand-written MPI code. The programmer adds OpenMP directives and then
the tool generates a MPI program automatically. The collaboration between the
user and the tool provides a semi-automatic parallelisation.

Semi-automatic parallelisation. One of our major goals in this work is to de-
termine to what extent a compiler can help the programmer in developing MPI
programs. On the one hand, coarse-grain parallelism is difficult to extract auto-
matically. Automatic parallelism is able to extract fine-grain parallelism auto-
matically. However these techniques could never be used to extract coarser-grain
parallelism. There are multiple reasons for this as for example the coarser the
grain is, the stronger the analyses must be dealing with inter-procedural anal-
yses, irregular code... Furthermore when dealing with more statements, paral-
lelism may logically exist but can be prevented because of the way the program
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is written: false dependency because of the use of variables... On the other hand,
programmers of the legacy applications have a logical view of the global struc-
ture of their applications and thus can easily add simple directives to specify
which tasks could be done in parallel.

Combining intelligence of the programmer with techniques of the automatic
parallelisation field gives an opportunity to use powerful program transformation
tools to discharge the programmer from the parallelising task.

A subset of the OpenMP standard. Another goal of our work is to facilitate paral-
lel programming especially for the programmer of legacy applications who is not
a parallel programming specialist. OpenMP programming is relatively straight-
forward if we stand to main work sharing directives such as “parallel for” and
“sections”. Nevertheless taking into account all possible directives, clauses and
SPMD programming with runtime routines, OpenMP programming can become
as tricky as MPI programming and suffer from the same disadvantages as MPI,
that is to say, produce code difficult to read and maintain, and error-prone.
Firstly, the idea is to restrict our MPI transformation to coarse-grain paral-
lelism to be able to generate efficient code for distributed-memory architectures.
Secondly, some clauses are difficult to use and could be determined by analysing
tools. For instance, “private” and “shared” data inside a parallel construct can
in some cases be determined from data dependency analyses that could also de-
tect potential problems. Alternatively, when inserted by the programmer, those
clauses could be a support to analyses that fail without them.

Generation of source code. Parallel programmers seek performance and for that
sake, don’t necessarily trust black-boxes. Generating source code provides the
user a way to understand the parallel program and furthermore gives him an
opportunity to tune the generated code to improve its performance. In addition
to that, the generated parallel code should propose a generic structure to allow
the user to replace part of the generated code with his own code. Thus one
important goal of STEP is to provide source-to-source transformation. This has
also the advantage, in the end, that the written code makes no hypothesis about
the target architecture.

2.2 An Illustrative Use Case

It is often critical in a collaborative scientific context to easily derive parallel
versions of an application which are dedicated to different types of architec-
tures. Here we give the example of a real application which gives a flavour of
applications eligible for the STEP processing. It is an application implementing
a physical optics algorithm that computes the radiation patterns of non-planar
aperture antennas over a range of observation angles [BL05].

The target application is composed of two disctinct phases: computation1 and
computation2. Data dependencies imply that the input of the first computation
phase array array1 is read entirely by all parallel tasks so it should be shared
by all these tasks; the first computation can be processed independently on all
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parallel tasks; and the output of this first phase, array2, can then be partitioned
on parallel tasks. This pattern applies to the second computation too: array2
should globally be shared by all parallel tasks while the output of this second
phase, array3, can be distributed on parallel tasks.

In the shared-memory execution, the fork-join model is used. Arrays array1,
array2 and array3 are shared. There is no need for any explicit synchronisa-
tion since there is no write conflict. A barrier is used to synchronise the two
computational phases. In the distributed-memory execution, the SPMD model
is used. Array array1 is duplicated for every process. Array array2 resulting
from the first computation phase is distributed among the processes and then
an all-to-all exchange provides necessary data for the second computation phase
to all processes. The resulting array array3 is distributed on all processes and
can be gathered on one process if necessary.

Given these execution organisations, corresponding OpenMP and MPI parallel
programs can be represented as in listings 1.1 and 1.2 respectively.

Listing 1.1. OpenMP implementation

real (N) : : array1 , array3
real (N) : : array2

i n i t i a l i s a t i o n ( )

!$OMP PARALLEL DO
do i =1,N

array2 ( i )= computat ion1 ( array1 )
end do

!$OMP END PARALLEL DO

!$OMP PARALLEL DO
do i =1,N

array3 ( i )= computat ion2 ( array2 )
end do

!$OMP END PARALLEL DO

Listing 1.2. MPI implementation

real (N) : : array1 , array3
real (M) : : array2

i n i t i a l i s a t i o n ( )

TASK PARTITIONING( )
DETERMINATION OF LOOP INDICES( )

do i=i s t a r t , iend
array2 ( i )= computat ion1 ( array1 )

end do

ALL TO ALL DATA REDISTRIBUTION()
DETERMINATION OF LOOP INDICES( )

do i=i s t a r t 2 , iend2
array3 ( i )= computat ion2 ( array2 )

end do

DATA GATHERING( )

The OpenMP standard guarantees that:

– each thread will access shared arrays array1, array2 and array3;
– i is private to a thread;
– there is an implicit data flush and an implicit barrier at the end of the

PARALLEL DO constructs.

The MPI program is more complicated to develop. Data and tasks must be
explicitly partitioned depending on the number of processes and on process iden-
tifiers. Temporary buffers might have to be allocated. Communications must be
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handled and may involve personalised all-to-all communication. Furthermore it
makes the code much more intricate and difficult to read. Both OpenMP and
MPI versions being necessary, a semi-automatic tool able to derive them from
the sequential program is clearly welcome.

3 Description of the STEP Prototype

STEP has been developed in the PIPS workbench detailed below. The PIPS
project (Inter-procedural Parallelisation of Scientific Programs) [AAC+94] has
been developed at ENSMP/CRI since 1988 and is distributed under the term
of the GNU public license. PIPS has been used as support to develop new anal-
yses and program transformations for Fortran programs by several teams from
CEA-DAM, Southampton University, SRU, ENST Bretagne and ENS Cachan.
Nowadays PIPS is composed of more than 200 000 lines of C code. Since it was
first developed for automatic parallelisation, PIPS provides powerful code trans-
formations and analyses that can be used on real codes: source-to-source code
based generation, inter-procedural analyses and the array regions analysis.

Using the PIPS workbench, the STEP tool implements the three following
phases:

1. the outlining phase that consists in the restructuration of the sequential
program by outlining statements in parallel sections,

2. the analysis phase that computes SEND array regions based on PIPS array
regions analyses,

3. and the compilation phase that generates the MPI parallel code.

3.1 Parallel Execution Model

To limit changes in the sequential program, the statements delimited by di-
rectives are outlined, communications and work-scheduling take place in a new
generated subroutine. Data are allocated on all processes and at the end of par-
allel constructs, each process communicates to other processes the data which
may be used in the future. All processes redundantly execute serial regions and
iterations of OpenMP “parallel do” loops are partitioned between processes.

3.2 PIPS Array Regions Analysis

In PIPS, array regions are represented by convex polyhedra [Cre96]. They are
used to summarise accesses to array elements. Due to region representation, the
analyses are not necessarily exact and some regions can be over-approximated.
Four different types of array regions are computed. The READ and WRITE re-
gions represent the effects of statements and procedures on sets of array elements.
However, READ and WRITE regions can not represent array data flow and they
are not sufficient for advanced optimisations such as array privatisation. IN and
OUT regions have been introduced for that purpose. For a block of statements
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or a procedure, an IN region is the subset of the corresponding READ region
containing the array elements that are imported (i.e. read before being written in
the block) and an OUT region contains the exported array elements (i.e. elements
assigned in the block before being potentially read outside it).

Program example for array regions analysis. The program given in the listing 1.3
is an example of a program P1 composed of a DO loop labelled 20 that is par-
allelised with OpenMP directives. Inside the loop, the computation subroutine
F1 is called.

Listing 1.3. Fortran program for array regions analysis

PROGRAM P1
INTEGER I ,N, F1
PARAMETER (N=10)
INTEGER T(N, 2 ) ,A(N−1)
. . .

!$OMP PARALLEL DO
DO 20 I = 1 , N−1

A( I ) = F1(T, I )
20 CONTINUE
!$OMP END PARALLEL DO

. . .
END

INTEGER FUNCTION F1(T, J )
INTEGER N, J
PARAMETER (N=10)
INTEGER T(N, 2 )

IF (MOD(J , 2 ) .EQ. 0 ) THEN
F1 = T(J+1,1)−T(J , 1 )

ELSE
F1 = T(J+1,2)−T(J , 2 )

ENDIF

END

Array region analysis on this example. Based on the previous example, PIPS per-
forms array regions analysis at every statement level of the abstract syntax tree.
For example, a result of such an analysis can be seen in the listing 1.4, line 33 :

<T(PHI1,PHI2)-R-EXACT-{PHI2==1, J<=PHI1, PHI1<=1+J}>

It means that at the statement level of the assignment (see listing 1.4, line
35) the READ region represented by R of the array T is exactly the sub-array
T (PHI1, PHI2) with : J <= PHI1 <= 1 + J and PHI2 == 1.

Regions READ, WRITE, IN and OUT (see subsection 3.2) are tagged re-
spectively R, W , IN and OUT by the pretty-printer. An over-approximated
array region is tagged MAY ; the tag EXACT refers to a non-approximated
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array-region (under-approximation are not computed and fixed at ∅). A such
approximation is shown in the listing 1.4, line 30 where the two exact regions
line 33 and 37 are cumulated at the level of the IF statement line 32. These
array region analyses are performed at each statement level for intra-procedural
analysis, as well as gathered at function level for inter-procedural analysis (see
line 24 and line 13 at the call statement).

A new source file is generated by the PIPS pretty-printer that displays the
results of READ, WRITE, IN and OUT array regions analyses (listing 1.4).

Listing 1.4. Resulting READ / WRITE / IN and OUT array regions displayed in
the program

1 PROGRAM P1
2 INTEGER I ,N, F1
3 PARAMETER (N=10)
4 INTEGER T(N, 2 ) ,A(N−1)
5 . . .
6 C <A(PHI1)−W−EXACT−{1<=PHI1 , PHI1<=9}>
7 C <T(PHI1 , PHI2)−R−MAY−{1<=PHI1 , PHI1<=10, 1<=PHI2 , PHI2<=2}>
8 C <T(PHI1 , PHI2)−IN−MAY−{1<=PHI1 , PHI1<=10, 1<=PHI2 , PHI2<=2}>
9 C <A(PHI1)−OUT−EXACT−{1<=PHI1 , PHI1<=9}>

10 !$OMP PARALLEL DO
11 DO 20 I = 1 , N−1
12 C <A(PHI1)−W−EXACT−{PHI1==I , 1<=I , I<=9}>
13 C <T(PHI1 , PHI2)−R−MAY−{I<=PHI1 , 1<=PHI1 , PHI1<=1+I , PHI1<=10,
14 C 1<=PHI2 , PHI2<=2, 1<=I , I<=9}>
15 C <T(PHI1 , PHI2)−IN−MAY−{I<=PHI1 , 1<=PHI1 , PHI1<=1+I , PHI1<=10,
16 C 1<=PHI2 , PHI2<=2, 1<=I , I<=9}>
17 C <A(PHI1)−OUT−EXACT−{I==PHI1 , 1<=I , I<=9}>
18 A( I ) = F1(T, I )
19 20 CONTINUE
20 !$OMP END PARALLEL DO
21 . . .
22 END
23
24 C <T(PHI1 , PHI2)−R−MAY−{J<=PHI1 , PHI1<=1+J , 1<=PHI2 , PHI2<=2}>
25 C <T(PHI1 , PHI2)−IN−MAY−{J<=PHI1 , PHI1<=1+J , 1<=PHI2 , PHI2<=2}>
26 INTEGER FUNCTION F1(T, J )
27 INTEGER N, J
28 PARAMETER (N=10)
29 INTEGER T(N, 2 )
30 C <T(PHI1 , PHI2)−R−MAY−{J<=PHI1 , PHI1<=1+J , 1<=PHI2 , PHI2<=2}>
31 C <T(PHI1 , PHI2)−IN−MAY−{J<=PHI1 , PHI1<=1+J , 1<=PHI2 , PHI2<=2}>
32 IF (MOD(J , 2 ) .EQ. 0 ) THEN
33 C <T(PHI1 , PHI2)−R−EXACT−{PHI2==1, J<=PHI1 , PHI1<=1+J}>
34 C <T(PHI1 , PHI2)−IN−EXACT−{PHI2==1, J<=PHI1 , PHI1<=1+J}>
35 F1 = T(J+1,1)−T(J , 1 )
36 ELSE
37 C <T(PHI1 , PHI2)−R−EXACT−{PHI2==2, J<=PHI1 , PHI1<=1+J}>
38 C <T(PHI1 , PHI2)−IN−EXACT−{PHI2==2, J<=PHI1 , PHI1<=1+J}>
39 F1 = T(J+1,2)−T(J , 2 )
40 ENDIF
41 END
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Combining READ, WRITE, IN and OUT array region analyses helps us de-
termine SEND array regions that represent data that need to be exchanged
between processes and generate MPI code.

In the next subsections, we describe the three different steps of code transfor-
mation to produce MPI parallel code.

3.3 First Step: Outlining

To limit changes in the sequential program, the statements delimited by directives
are outlined. This code transformation keeps the semantics of the original program
and allows to add parallelism without alteration in the original code of sequential
parts. For instance, the loop below labelled 20 in the listing 1.5 is outlined and
replaced by a call to a subroutine called P1 DO20 as shown the listing 1.6.

Listing 1.5. Before outlining

PROGRAM P1
INTEGER I ,N, F1
PARAMETER (N=10)
INTEGER T(N, 2 ) ,A(N−1)
. . .

!$OMP PARALLEL DO
DO 20 I = 1 , N−1

A( I ) = F1(T, I )
20 CONTINUE
!$OMP END PARALLEL DO

. . .
END

Listing 1.6. After outlining

PROGRAM P1
INTEGER I ,N, F1
PARAMETER (N=10)
INTEGER T(N, 2 ) ,A(N−1)
. . .

!$OMP PARALLEL DO
CALL P1 DO20( I , 1 , N−1, N, A, T)

!$OMP END PARALLEL DO
. . .

END

SUBROUTINE P1 DO20( I , I L , I U , N, A, T)
INTEGER I , I L , I U , N, F1
INTEGER A(1 :N−1) , T( 1 :N, 1 :2 )
DO 20 I = I L , I U

A( I ) = F1(T, I )
20 CONTINUE

END

The parameters of the prototype of the new subroutine are composed of:

– loop parameters : the loop index and the loop bounds (see parameters I, I L
and I U in listing 1.6),

– and variables, arrays and parameters used in the outlined statements (see
parameters N , A and T in listing 1.6).

The variable and array updates between callers and callees are performed by
the call by reference used in Fortran.

3.4 Second Step: Analysis

In order to generate calls to MPI primitives, data that must be exchanged are
determined using PIPS array regions analysis. We distinguish four different types
of array regions:
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– send regions represent updated array regions which need to be sent at the
end of a parallel section;

– receive regions represent data and array regions which need to be received
at the beginning of a parallel section;

– private regions represent variables and arrays that could be privatised;
– used regions represent necessary memory allocation gathering READ and

WRITE regions.

In our execution model (see subsection 3.1), we suppose that sequential com-
putations are done redundantly in parallel by each process. Then at the be-
ginning of the first parallel section, each process owns up-to-date data. At the
end of the parallel section each process must send its own data to update the
data of other processes. Thus in our prototype we only use the SEND regions to
determine which sub-arrays must be communicated to other processes.

Computation of the SEND array regions. The SEND array regions for a given
procedure represent updated array regions which need to be sent at the end of
a parallel section thus it is included into OUT array regions. Nevertheless, due
to the PIPS inter-procedural array regions analysis, the OUT region of an array
A that is a parameter of a procedure P , refers to the array region of A updated
(and used after) by all calls to the P procedure through the whole program.
However the SEND region of the array A corresponds to only one call to the
P procedure. Thus the SEND region of A for procedure P is the intersection
between the OUT region and the WRITE region of A:

SEND(A) = OUT (A) ∩ WRITE(A)

Handling region overlap. Moreover, array regions can be over-approximated.
That is to say SEND regions of different processes can overlap each other. Thus
it prevents us from directly exchanging sub-arrays described by the SEND re-
gions. In case of overlap, we compute at runtime data that should be exchanged.
Besides, the results of array region analyses are convex polyhedra. For simplic-
ity sake, in our prototype, we limit ourselves to communicating “rectangular”
sub-arrays. Rectangular sub-arrays are represented by polyhedra with at most
one dimension of the array appearing in each constraint that delimits a SEND

Listing 1.7. Region analyses performed on the subroutine P1 DO20 ( excerpt)

Reg ion write P1 DO20 : 2
<A(PHI1)−W−EXACT−{I L<=PHI1 , PHI1<=I U}>
<I−W−EXACT−{}>
Reg ion out P1 DO20 : 1
<A(PHI1)−W−EXACT−{1<=PHI1 , PHI1<=9, I==11, I L==1, I U==9, N==10}>
Reg ion Send P1 DO20 : 1
<A(PHI1)−W−EXACT−{I L<=PHI1 , 1<=PHI1 , PHI1<=I U , PHI1<=9}>
Reg ion i n t e r l a c e d P1 DO20 : 0
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region. In case sub-arrays are not given rectangular by array region analysis, we
make an over-approximation to come back to a rectangular case. In this case
also, we must compute at runtime data that should be updated.

The following listing 1.7 shows the array regions analysis performed on the
outlined subroutine P1 DO20.

3.5 Third Step: Compilation

The compilation phase consists in generating the MPI parallel code and inserting
communications and work-scheduling.

For a “parallel do” directive, we create a new routine suffixed with MPI that
replaces the outlined sequential routine. For instance, in the main program, the
call P1 DO20 is replaced by a call to P1 DO20 MPI (see listing 1.8 line 6 and
line 26).

This new procedure is divided into four parts :

– computation of the loop partitioning: the initial loop range is split in different
slices for each process;

– computation of the SEND array regions according to the loop partitioning;
– call of the outlined procedure according to the loop partitioning: before the

call, each process owns necessary data for the computation of its loop slice.
After the call, a process owns only the updated data in its own SEND region;

– communications of the updated data between processes : to deal with the
potential overlap of send data, at the first step, we merge all the SEND
regions on a master process and in the second step, the master broadcasts
the global send region corresponding to the initial loop bounds.

In our generated code (see listing 1.8), calls at the MPI library are encap-
sulated into our own Fortran functions that deal with send and receive arrays
described by our own internal region representation.

3.6 Results

STEP has reached several goals specified in subsection 2.1. We have implemented
a source-to-source program transformation tool that semi-automatically gener-
ates MPI programs called STEP. Currently, STEP is in its early development
stage. Its input (resp. output) files are Fortran 77 programs with OpenMP di-
rectives (respectively with MPI primitives) to express the parallelism.

Handling more OpenMP directives. STEP handles “section” and “parallel do”
work-sharing directives for which the number of available computation nodes is
known at runtime. As previously said, we do not necessarily intend to handle the
entire OpenMP standard. Nevertheless, STEP is currently limited and we want
to extend it to several widely-used OpenMP directives for instance the master
directive for I/O management. Furthermore the loops are currently partitioned
using static scheduling assigning one loop chunk to each process. This should
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Listing 1.8. The generated MPI parallel source file

1 PROGRAM P1
2 include ” s tep . h”
3 C de c l a r a t i o n s
4 CALL STEP Init
5 . . .
6 CALL P1 DO20 MPI( I , 1 , N−1, N, A, T)
7 . . .
8 CALL STEP Fina l ize
9 END

10
11 SUBROUTINE P1 DO20 MPI( I , I L , I U , N, A, T)
12 include ” s tep . h”
13 C de c l a r a t i o n s
14
15 C Loop s p l i t t i n g
16 CALL STEP SizeRank ( STEP Size , STEP Rank)
17 CALL STEP SplitLoop ( I L , I U , 1 , STEP Size , I STEP SLI )
18
19 C SEND r eg i on computing
20 CALL STEP COMP SEND(A STEP SR , . . . )
21
22 C Where the work i s done
23 I IND = STEP Rank+1
24 I LOW = I SLI (LOWER, I IND )
25 I UPP = I SLI (UPPER, I IND )
26 CALL P1 DO20( I IND , I LOW, I UPP , N, A, T)
27
28 C SEND r e g i o n s communicat ions
29 IF (STEP Rank .EQ.MASTER) THEN
30 CALL STEP RecvMergeRegion ( . . . )
31 ELSE
32 CALL STEP SendRegion ( . . . )
33 ENDIF
34 CALL STEP BcastRegion ( . . . )
35 END

also be extended to other types of scheduling proposed by OpenMP. Although
only one level of parallelism is currently supported, nested parallelism is planned
to deal both coarse and fine grain parallelism.

At last, STEP does not handle explicit OpenMP synchronisation directives;
only implicit synchronisations at the end of “parallel sections” and “parallel do”
are performed. Although this limits the developer’s possibilities, it reduces all
the more the synchronisations between processes. Besides limiting the amount
of synchronisations potentially provides a good execution performance.

Handling data. On the contrary to the OpenMP standard, data are private
by default. It is the analysis phase and the computation of the SEND regions
that determine which data are shared. These analyses specify which data must
be transmitted/shared from one process to another at the end of a parallel
region. Currently the same amount of memory is allocated on all processes.
This is mainly due to Fortran 77. As this is a important limitation of the STEP
prototype, we want as a short-term improvement distribute arrays when analyses
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are successful, for instance at least for arrays with regular access. Besides, our
first STEP prototype converts polyhedric regions into rectangular regions in
order to generate simple MPI communication datatypes. This could be improved
to benefit from the array region representation in PIPS [Cre96].

Communication patterns. Currently, the SEND region analysis leads to use dif-
ferent auxiliary functions to deal with data exchanges :

– when the SEND regions are computed without over-approximation, our tool
generates exact MPI messages to perform the exchange;

– when the SEND regions are computed with over-approximation and without
interlacing, the same function performs the exchange of all the data specified
by the SEND region;

– when the SEND regions are over-approximated and interlaced, another func-
tion is used to deal with the interlaced access. A runtime solution has been
implemented. It consists in a first step in exchanging all data in the SEND
region, and in the second step in systematically comparing original and up-
dated values. Nevertheless, this simple solution with an important overhead
allows to detect concurrent accesses.

Currently, the all-to-all data redistribution is centralised for simplicity sake. This
could be further refined since array region analyses provide all the necessary
information.

At last, current analyses need to be improved to deal with reductions: recog-
nising a reduction pattern in the sequential code when no OpenMP reduction
clause is present and then generating the appropriate MPI code. In case where a
reduction pattern is not recognised, STEP should be able to handle the OpenMP
reduction clause.

Quality of the generated source code. At last, the generated code is close to hand-
written code. First, the original sequential code is not altered. The sequential
parts that are executed in parallel can be found unmodified in outlined functions.
Second, code transformations keep track of the original variable names, and
proposes readable function names. At last, MPI communications are close to
hand-written communications since the volume of the communicated data is
given by array region analysis. Nevertheless it is already possible to use the STEP
generated code, read it and modify to tune MPI communications if necessary.
For this purpose, auxiliary functions provide several services, as for instance
index conversion functions to convert array indices.

At last, the STEP tool is currently limited to Fortran 77 but an extension to
C is considered.

4 Related Work

”Distributed OpenMP” refers to research projects that help running an OpenMP
application on distributed-memory architectures.
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Historically, most distributed OpenMP projects addressed Software
Distributed Shared Memory (SDSM) architectures. SDSM architectures rely on
a software layer in order to manage data placement on the nodes of a distributed-
memory architecture and keep memory consistency between nodes. For instance,
the OMNI OpenMP compiler [SSKT99] is based on a DSM runtime system in-
serting check codes before each load/store to/from the shared data space. Those
check codes are implemented using a communication library supporting one-
sided remote memory transfer and synchronization between nodes. Several im-
plementations of “distributed OpenMP” are based on the SDSM Treadmarks
system [HLCZ00, BME02]. Those approaches suffer from very fine-grain com-
munication patterns. In order to avoid unnecessary data checks and group them
when possible, those projects have evolved to use compiler analyses intensively
in order to generate efficient code. The OMNI compiler uses analyses to elimi-
nate check codes outside parallel regions, eliminate redundant check codes and
merge multiple check codes. In order to do so, the static extent and the dynamic
extent are defined. The static extent corresponds to the statements lexically
enclosed within an OpenMP construct. The dynamic extent includes the func-
tions called from within the construct. By default, the compiler determines data
mapping according to the scheduling of the loop which references the data. One
further optimization proposed by the OMNI compiler is to optimize data trans-
fers between two parallel regions. Using Treadmarks, Basumallik et al. [BME02]
proposed optimizations such as data prefetch, barrier elimination and data priva-
tization. Barrier elimination and data privatization both rely on strong compiler
analyzes. Barrier separating two consecutive loops can be eliminated when per-
mitted by data dependencies. Shared data with read-only access during a section
can be privatized by copy-in during this section. Shared data that are exclusively
accessed by the same processor can also be privatized. There is also some work
related to automatic data placement and adding HPF-like directives to OpenMP
to distribute data [MMS00]. The Cluster OpenMP software system proposed by
Intel [Hoe06] allows OpenMP programs to run on clusters. It relies also on the
DSM Treadmarks system. As can be assumed, it is mainly suitable for applica-
tions with small amount of read / write sharable data and few synchronisation.
SDSM-based distributed OpenMP projects represent opposite approaches from
ours since they start from the finest communication grain and then use program
analyses to communicate less. Our tool STEP targets coarse-grain parallelism,
thus aims at issuing MPI primitives only at specific points in the program.

Several projects generate hybrid MPI and SDSM programs from OpenMP di-
rectives. Based on the OMNI compiler, the PaRADE project [KKH03] replaces
synchronization and work-sharing directives associated with small data struc-
tures by MPI explicit collective communication. The critical synchronization
directive is translated in an MPI Allreduce as well as the atomic directive. The
single work-sharing directive is translated in MPI Bcast whereas the for di-
rective has no message-passing translation. Generating MPI, the approach also
considers fine-grain communication and computation patterns while we think
that MPI is best-suited for coarser-grain parallelizations. Based on the Polaris
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compiler, the OpenMP compiler proposed by Eigenmann et al. [EHK+02] gen-
erates MPI programs in case of regular data pattern and Treadmarks SDSM
programs in irregular cases. Three classes of data are distinguished: private
data, distributed data for simple usage pattern and shared data for irregular
pattern. Irregular or unknown patterns are handled by the SDSM system. Reg-
ular patterns are handled with message-passing primitives (see HPF compiler
techniques): first, determine send/receive pairs for data accessed but not owned
by threads; then determine the intersection between the region of an array (rep-
resented by Linear Memory Access Descriptor (LMAD)) accessed in one thread
and the region owned by another thread; at last determine the overlap using
the LMAD intersection algorithm of Hoeflinger and Paek [PHP98]. Several cases
of intersection between array regions accessed by processors are discussed in the
paper. For a read reference, more data can be fetched (superset mode). For a
write reference, the write-back must be precise otherwise it generates a failure.
A non-empty overlap indicates necessary communications and therefore proper
message-passing calls are generated. In the paper, several OpenMP extensions
are mentioned: for data distribution as HPF directives, for explicit communica-
tion operations outside parallel regions with the copy clause and for computation
distribution with the schedule clause to specify which thread computes which
iteration and the home clause to specify the thread owner.

In the OpenMPI project which follows a similar objective to ours, Boku et
al. [BSMT04] propose a programming tool for OpenMP-like incremental paral-
lelization based on MPI scheme. They introduce specific directives to express
parallelism based on domain decomposition. They focus on data and take into
account neighbour communications to exchange border elements. So doing, they
obtain some dedicated code which lacks genericity. These new directives can be
very interesting when program analyses fail to express these specific communi-
cation patterns.

The closest approach to ours is proposed by Basumallik and Eigenmann
[BE05, BME07]. They propose a source-to-source OpenMP to MPI transfor-
mation based on the Cetus infrastructure (which is the next version of Polaris).
All participating processes redundantly execute serial regions and parallel re-
gions marked by omp master. Iterations of OpenMP for loops are statically par-
titioned. Shared data is allocated on all processes using a producer/consumer
paradigm. At the end of a parallel construct, each participating process com-
municates the shared data it has produced that other processes may use. This
approach is based on a strong program analysis tool. As a matter of fact, the
compiler constructs a control flow graph (with each vertex corresponding to a
program statement) and records array access summaries with Regular Section
Descriptors (RSDs) by annotating the vertices of the control flow graph. Havlak
and Kennedy [HK91] compare array region representation and in particular RSD
and convex regions used in PIPS. Both methods have advantages and drawbacks
depending on applications. In both projects array regions are then propagated
through the interprocedural analysis. In addition to READ and WRITE array
regions, IN and OUT regions are computed in PIPS implying additional analysis.
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All in all comparing compilation, transformation and analysis tools as Cetus or
PIPS is not straightforward. Nevertheless generated codes by both tools could
be compared in the short term.

5 Conclusion and Future Work

Based on a solid parallel programming experience, our goal is to develop a pro-
gramming environment that is a trade-off between 1) the current situation of
the parallel programmer who programs the entire application by himself based
on OpenMP and MPI 2) and the compilation community which has developed
powerful program analyses and transformations.

The STEP tool is the first phase. Based on the PIPS workbench, STEP gen-
erates MPI source code from some OpenMP directives. Thanks to the PIPS
workbench, this implementation was relatively straightforward. As a matter of
fact, PIPS provided us with both a workbench for program transformation and a
clearly defined internal representation as well as powerful inter-procedural array
region analyses. This paper presents early achievements that we can conclude
with several perspectives.

Short-term perspectives. This STEP tool must be completed with several tech-
nical improvements described earlier in subsection 3.6 as OpenMP, communica-
tions... The most important one is to really distribute and not allocate entire
arrays since this strongly limits the scope of potential parallel applications. Fur-
thermore this work must be completed with tests on popular benchmarks and
speedup figures.

Middle-term perspectives. We want to take into account multilevel parallelism
and generate hybrid MPI/OpenMP applications from OpenMP programs. Fo-
cusing on coarse-grain parallelisation for MPI parallel code generation, we could
delegate fine-grain parallelisation to OpenMP directives for shared-memory ex-
ecution on multi-core/many-core nodes for instance. In this perspective, a pro-
gram analysis could compute the ratio between computation and communication
and propose to distribute the data on different nodes or not.

Long-term perspectives. The STEP generated MPI code is close to hand-written
parallel code in specific cases. We want to further focus on the interaction be-
tween STEP and the user. Our goal is to build a tool that is able to work in
collaboration with the user and for instance ask for more guidance from the user
in case analyses for data dependencies fail. In these “failure” cases, OpenMP pro-
gramming could be refined by the user adding OpenMP clauses such as private,
shared, reduction...

To conclude, we believe that this approach is very promising and we intend
to improve this work in these three directions.
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Abstract. OpenMP is in the process of adding a tasking model that al-
lows the programmer to specify independent units of work, called tasks,
but does not specify how the scheduling of these tasks should be done
(although it imposes some restrictions). We have evaluated different
scheduling strategies (schedulers and cut-offs) with several applications
and we found that work-first schedules seem to have the best perfor-
mance but because of the restrictions that OpenMP imposes a breadth-
first scheduler is a better choice to have as a default for an OpenMP
runtime.

1 Introduction

OpenMP grew out structured around parallel loops and was meant to handle
dense numerical applications. The simplicity of its original interface, the use
of a shared memory model, and the fact that the parallelism of a program is
expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today. However, the sophistication of parallel
programmers has grown in the last 10 years since OpenMP was introduced, and
the complexity of their applications is increasing. Therefore, the forthcoming
OpenMP 3.0[13] adds a new tasking model[2] to address this new programming
landscape. The new directives allow the user to identify units of independent
work, called tasks, leaving the scheduling decisions of how and when to execute
them to the runtime system.

In this paper we explore different possibilities about the scheduling of these
new tasks. We have extended our prototype runtime[15] with two scheduling
strategies: a breadth-first approach and a work-first approach. We have also
implemented several queueing and work-stealing strategies. Then, we have eval-
uated combinations of the different scheduling components with a set of appli-
cations. We also evaluated how these schedulers behave if the application uses
tied tasks, which have some scheduling restrictions, or untied ones, wich have
no scheduling restrictions.

The remaining of the paper is structured as follows: Section 2 describes our
motivation and the related work, Section 3 describes the different schedulers we
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have implemented, Section 4 shows the evaluation results and finally Section 5
presents the conclusions of this work.

2 Motivation and Related Work

The Intel work-queueing model [14] was an early attempt to add dynamic task
generation to OpenMP. This proprietary extension to OpenMP allows hierarchi-
cal generation of tasks by nesting taskq constructs. The NANOS group proposed
dynamic sections [4] as an extension to the standard sections construct to
allow dynamic generation of tasks.

Lately, a committee from different institutions developed a task model[2] for
the OpenMP language that seems that it will be finally adopted[13]. One of the
things this proposal leaves open is the scheduler of tasks that should be used.

Scheduling of tasks is a very well studied field. There are two main scheduler
families: those that use breadth-first schedulers (see for example the work from
Narlikar[12] and those that use work-first schedulers with work-stealing tech-
niques (see for example Cilk[7] and Acar et al.[1]). Korch et al.[9] made a very
good survey of different task pool implementations and scheduling algorithms
and evaluated them with a radiosity application. Many of these works have found
that work-first schedulers tend to obtain better performance results.

Several works have studied how to reduce the overhead of task creation by
means of using cut-off strategies. They have found that strategies based on con-
trolling the recursion level tend to work very well[10,11]. Another proposal, uses
the size of data structures[8] to control task creation but it depends on the com-
piler understanding complex structures like lists, which is difficult in the C or
Fortran languages.

But, it is unclear how all these algorithms will map into the new task model
as most of the previous work was in the context of recursive algorithms and
where there were no scheduling restrictions at all. But the new task model
allows not only non-recursive applications but also applications that mix tra-
ditional work-sharing regions with the new task model. Our goal in this work
is to evaluate previous techniques in the context of OpenMP and to try to
find which ones work best in order to help implementors choose appropriate
defaults.

3 Task Scheduling

We have extended our research NANOS runtime[15] with two families of sched-
ulers: breadth-first schedulers and work-first schedulers. These schedulers imple-
ment the restrictions about scheduling of tied tasks (i.e. tied tasks can only
be scheduled on the thread to wich they are tied to). Also, we implemented two
cut-off strategies: one based on the level of task recursion and another in the
total number of existing tasks.
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3.1 Breadth-First Scheduling

Breadth-first scheduling (BF) is a naive scheduler in which every task that is
created is placed into the team pool and execution of the parent task continues.
So, all tasks in the current recursion level are generated before a thread executes
tasks from the next level.

Initially, tasks are placed in a team pool and any thread of the team can grab
tasks from that pool. When a task is suspended (e.g. because a taskwait), if
it is a tied task it will go to a private pool of tasks of the thread that was
executing the tasks. Otherwise (i.e an untied task), it will be queued into the
team pool.

Threads will always try to schedule first a task from their local pool. If it is
empty then they will try to get tasks from the team pool.

We implemented two access policies for the task pools: LIFO (i.e., last queued
tasks will be executed first) and FIFO (i.e., oldest queued tasks will be executed
firsts).

3.2 Work-First Scheduling

Work-first scheduling (WF) tries to follow the serial execution path hoping that
if the sequential algorithm was well designed it will lead to better data locality.

The WF scheduler works as follows: whenever a task is created, the creating
task (i.e. the parent task) is suspended and the executing thread switches to the
newly created task. When a task is suspended (either because it created an new
one or because some synchronization) the task is placed in a per thread local
pool. Again, this pool can be accessed in a LIFO or FIFO manner.

When looking for tasks to execute, threads will look on their local pool. If it is
empty, they will try to steal work from other threads. In order to minimize con-
tention we used a strategy where a thread traverses all other threads starting by
the next thread (i.e. thread 0 starts trying to steal from thread 1, thread 1 from
thread 2, ... and thread n from thread 0). When stealing from another thread pool,
to comply with OpenMP restrictions, a task that has become tied to a thread can-
not be stolen (note that a tied task that has not been yet executed can be stolen).
The access to the victim’s pool can also be LIFO or FIFO.

We also implemented a stealing strategy that first tries to steal the parent
task of the current task. If the parent task cannot be stolen (i.e. because is either
already running or waiting on some synchronization) then the default stealing
mechanism is used.

The Cilk scheduler[7] pertains to this family of schedulers. In particular, it is a
work-first scheduler where access to the local pool is LIFO, tries to steal the parent
task first and otherwise steals from another thread pool in a FIFO manner.

3.3 Cutting Off

In order to reduce the size of the runtime structures and, also, reduce the over-
heads associated to creating tasks, the runtime can decide to start executing
tasks immediately. This is usually referred as cutting off.
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This is particularly important with breadth-first scheduling as it tends to
generate a large number of tasks before executing them. In work-first scheduling
the number of tasks that exist at a given time is not so large but it may grow
over time because of tasks being suspended at synchronization points.

It is important to note that tasks that are executed immediately because of
a cut-off policy are different than the ones that get executed immediately with
the work-first scheduler. When cutting off, the new task does not go through to
the whole creation process and in many aspects forms part of the creating tasks
(e.g. cannot be suspended on its own).

We have implemented two simple but effective cut-off policies:

Max number of tasks (max-task). The total number of tasks that can ex-
ist in the pool is computed as a factor of the number of OpenMP threads
(i.e. k ∗ num threads). Once this number is reached new tasks are executed
immediately. When enough tasks finish, tasks will be put into the task pool
again. In our implementation, we use a default value for k of 8.

Max task recursion level (max-level). When a new task is created, if it has
more ancestors than a fixed limit l then the new task is executed immediately.
Otherwise it can be placed in the task pool. In our implementation, we use
a default value for l of 4.

4 Evaluation

4.1 Applications

We have used the following applications (for more information on the paralleliza-
tion please check our previous work[3]) for the evaluation of the schedulers:

Strassen. Strassen is an algorithm[6]for multiplication of large dense matrices.
It uses hierarchical decomposition of a matrix. We used a 1280x1280 matrix
for our experiments.

NQueens. This program, which uses a backtracking search algorithm, com-
putes all solutions of the n-queens problem, whose objective is to find a
placement for n queens on an n x n chessboard such that none of the queens
attacks any other. We used a chessboard of size 14 by 14 in our experiments.

FFT. FFT computes the one-dimensional Fast Fourier Transform of a vector
of n complex values using the Cooley-Tukey algorithm[5]. We used a vector
with 33554432 complex numbers.

Multisort. Multisort is a variation of the ordinary mergesort, which uses a
parallel divide-and-conquer mergesort and a serial quicksort when the array
is too small. In our experiments we were sorting a random array of 33554432
integer numbers.

Alignment. This application aligns all protein sequences from an input file
against every other sequence and compute the best scorings for each pair
by means of a full dynamic programming algorithm. In our experiments we
used 100 sequences as input for the algorithm.
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SparseLU. The sparseLU kernel computes an LU matrix factorization. The
matrix is organized in blocks that may not be allocated. Due to the sparse-
ness of the matrix, a lot of imbalance exists. In our experiments, the matrix
had 50 blocks each of 100x100 floats.

In all applications (except Alignment) we marked all tasks as untied and we
removed any kind of manual cut-off that was there from the programmer to
leave total freedom to the scheduler. The Aligment application makes heavy use
of threadprivate and, because of that, we could not mark the tasks as untied.

4.2 Methodology

We evaluated all the benchmarks on an SGI Altix 4700 with 128 processors,
although they were run on a cpuset comprising a subset of the machine to avoid
interferences with other running applications.

We compiled all applications with our Mercurium compiler[4] using gcc with
option -O3 as the backend. The serial version of the application was compiled
with gcc -O3 as well. The speed-ups were computed using the serial execution
time as the baseline and using the average execution time of 5 executions.

We have executed all applications with different combinations of schedulers.
Table 1 summarizes the different schedules we have used in the evaluation, their
properties (see Section 3 for details) and the name we will be using to refer to
them in the next sections.

Table 1. Summary of schedules used in the evaluation

Scheduler Name Scheduler Type Pool Access Steal Access Steal Parent

bff breadth-first FIFO - -

bfl breadth-first LIFO - -

wfff work-first FIFO FIFO No

wffl work-first FIFO LIFO No

wflf work-first LIFO FIFO No

wfll work-first LIFO LIFO No

cilk work-first LIFO FIFO Yes

For each schedule we have run the applications using no cut-off and then using
the cut-offs we had implemented:the max-task and the max-level.

Then, we wanted to know how the restrictions of untied tasks affected the
performance that can be obtained with the different schedulers. So, we have also
tried for those combinations that were best from each application but with all
tasks tied (we control this via an environment variable that the runtime checks).

4.3 Results

In this section we present several lessons we have learned about task scheduling
from this evaluation. Because of space considerations we are only showing part
of the evaluation.
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Lesson 1: Cutting Off: Yes, But How?. Figure 1 shows the speed-ups of
three of the applications (Alignment,FFT and Strassen) and different schedulers.
For each of them, three versions are shown: one that uses no cutoff, another that
uses the max-level cutoff mechanism and the last that uses the max-task mech-
anism.
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Fig. 1. Performance of difference cutoffs

Except for Alignment, if a cut-off strategy is not used there is a degradation in
the obtained performance. The amount of degradation depends on the scheduler
and the application but as a general rule we can see that breath-first schedulers
suffer more (see for example Strassen) from the lack of a cut-off while work-first
schedulers seem to withstand better the lack of a cut-off.

Another observation from these results is that choosing the wrong cut-off can
be worse performance-wise than having no cut-off (see for example FFT where
the max-level cut-off has less speed-up than no cutoff). But, we can also see that
for different applications the right cut-off is different (for example compare FFT
versus Strassen).

So, while it seems clear that is important to use a cut-off technique the decision
of which to use remains unclear because it depends on the scheduler and also on
the exact application.
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Lesson 2: Work-First Schedulers Work Best. Figure 2 shows the speed-
up obtained with different schedulers (in general we show the most efficient
schedulers, but also some others that might be interesting).
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Fig. 2. Speed-ups with different schedulers

We can see that in most applications work-first schedulers get the best speed-
up as they tend to exploit data locality better. The exceptions are Alignment,
where tasks are tied, and SparseLU, where also a tied task limits the perfor-
mance that can be obtained (see next sections for more details). Among work-
first schedulers it seems that the Cilk scheduler is the best except for FFT where
a wffl scheduler gets the best speed-up.
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Also, we can observe again the difference in performance depending on the
cut-off. In Alignment and SparseLU there is only a small difference in perfor-
mance from using one cut-off or the other but in all other applications only
schedulers using a particular cut-off are among the top: for Multisort and FFT
cutting by number of tasks works better and for N Queens and Strassen cut-
ting by the depth level works better. Alignment and SparseLU are non-recursive
applications and this may be the reason why the cutting-off is not so important.

Lesson 3: Beware the Single!. In the sparseLU performance results from
Figure 2(c) the work-first schedulers do not scale even a bit. The structure of
the sparseLU application is similar to the one shown in Figure 3. There are a
number of untied tasks inside a nest of loops inside a single.

1#pragma omp paral lel

2#pragma omp single

3#pragma omp task default ( shared ) untied

4 {
5 for ( k = 0 ; k < N ; k++ )
6 // bunch o f u n t i e d t a s k s
7 }

Fig. 3. Structure of a false untied application

All explicit tasks are untied but then the single region forms part of an
implicit task. As such, it is always tied. As all tasks (unlike in other applications
with a recursive structure) are generated from the single region, but the region
cannot threadswitch, a work-first scheduling becomes a serial execution.

This can be easily solved by inserting an extra untied task after the single
construct as shown in Figure 4. Now, the generator code is part of an untied
task instead of the implicit task so it can be threadswitched.

We have implemented a second version of the sparseLU benchmark with this
minor modification. We can see, from the results in Figure 5, that the work-first
schedulers now achieve a better than the best breadth-first schedule. So, we can
see that the effect of this, rather obscure, performance mistake can actually make
a good scheduler look bad.

Lesson 4: Deep-First Schedulers Should Be the Default. The sparseLU
problem is already an indication that the work-first schedulers may have prob-
lems when there are no untied tasks. Figure 6 shows how the same schedulers
perform when task are untied versus when they are tied.

We can see that in all cases if the tasks are tied performance of the work-first
schedulers is severely degraded to the point that no speed-up is obtained.

But, for the breadth-first schedulers the difference is barely noticeable. More-
over, in some cases (multisort and FFT ) the speed-up obtained is better than
when tasks are allowed to threadswitch.

Figure 7 shows the average speed-up from all the applications for all combi-
nations of schedulers and cut-offs both for when untied tasks and tied tasks
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1#pragma omp paral lel

2#pragma omp single

3#pragma omp task default ( shared ) untied

4 {
5 for ( k = 0 ; k < N ; k++ )
6 // bunch o f u n t i e d t a s k s
7 }

Fig. 4. Solution to the false untied problem
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Fig. 6. Untied vs tied tasks
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Fig. 7. Average speed-ups for all schedulers

are used. These graphs stress our last lesson, when using untied tasks work-
first schedulers tend to obtain better speed-up but they drop flat when tied
tasks are used. In that case, breadth-first schedulers perform about the same
as they did with untied task thus outperforming work-first schedulers.

As tied is the OpenMP default, it seems that a wise choice for a compiler
(or runtime) is a breadth-first scheduler unless it can safely be guaranteed that
all tasks will be untied.

5 Conclusions and Future Work

In this work, we have explored several scheduling strategies of OpenMP tasks.
We found that while work-first schedulers, in general, obtain better performance
that breadth-first schedulers they are not appropriate to be used as the default
for OpenMP programs. This is because tied and implicit tasks (which may
be difficult to spot for novice users) severely restrict the performance that can
be obtained. And in those circumstances, which are the default for OpenMP ,
breadth-first schedulers outperform work-first schedulers.

We have found that while it is a good idea to have a cut-off mechanism, it
is not clear which one to use as it may affect negatively the performance of the
application and more research is needed in that direction.

As future work, it would be interesting to explore a hybrid cut-off strategy (that
takes into account the maximum number of tasks and the depth level) as well as
some other more complex cut-off strategies that try to estimate the granularity of
the work of a task. Also, it would be interesting to develop a scheduler that detects
at runtime the structure of the application (whether it is recursive, whether it uses
tied tasks or not, . . . ) and it chooses one scheduler or the other appropriately.
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Extending the OpenMP Tasking Model to Allow

Dependent Tasks

Alejandro Duran, Josep M. Perez, Eduard Ayguadé,
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Barcelona Supercomputing Center (BSC) - Technical University of Catalunya (UPC)

Abstract. Tasking in OpenMP 3.0 has been conceived to handle the dy-
namic generation of unstructured parallelism. New directives have been
added allowing the user to identify units of independent work (tasks) and
to define points to wait for the completion of tasks (task barriers). In
this paper we propose an extension to allow the runtime detection of de-
pendencies between generated tasks, broading the range of applications
that can benefit from tasking or improving the performance when load
balancing or locality are critical issues for performance. Furthermore the
paper describes our proof-of-concept implementation (SMP Superscalar)
and shows preliminary performance results on an SGI Altix 4700.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and was meant to
handle dense numerical applications. The simplicity of its original interface, the
use of a shared memory model, and the fact that the parallelism of a program
is expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today.

The latest specification released includes tasking, which has been conceived to
handle the dynamic generation of unstructured parallelism. This allows program-
mers to parallelize program structures like while loops and recursive functions
more easily and efficiently. When a thread in a parallel team encounters a task
directive, the data environment is captured. That environment, together with
the code represented by the structured block, constitutes the generated task.
The data-sharing attribute clauses private, firstprivate, and shared determine
whether variables are private to the data environment, copied to the data en-
vironment and made private, or shared with the thread generating the task,
respectively. The task may be executed immediately or may be queued for ex-
ecution. All tasks created by a team in a parallel region are completed at the
next barrier. It is also possible to wait for all tasks generated by a given task
(whether implicit or explicit) using the taskwait directive.

The Intel work-queueing model [1] was an early attempt to add dynamic
task generation to OpenMP. This proprietary extension to OpenMP allows hi-
erarchical generation of tasks by nesting taskq constructs. Synchronization of
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descendant tasks is controlled by means of implicit barriers at the end of taskq
constructs. Tasks have to be defined in the lexical extent of a taskq construct.

The Nanos group at UPC proposed dynamic sections as an extension to the
standard sections construct to allow dynamic generation of tasks [2]. Direct
nesting of section blocks is allowed, but hierarchical synchronization of tasks
can only be attained by nesting parallel regions. The Nanos group also proposed
the pred and succ constructs to specify precedence relations among statically
named sections in OpenMP [3]. [4] also proposed an extension to define a name
for section and to specify that a section dependson another named section.

2 Motivation

Task parallelism in OpenMP 3.0 [5] gives programmers a way to express pat-
terns of concurrency that do not match the worksharing constructs defined in
the current OpenMP 2.5 specification. The extension in 3.0 addresses common
operations like complex, possibly recursive, data structure traversal, and situ-
ations which could easily cause load imbalance. However tasking, as currently
propose in 3.0, may still be too rigid too express all parallelism available in
some applications, specially when the scalability to a high number of cores is the
target.

1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ i nner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8

9 for ( kk=0; kk<NB; kk++) {
10 lu0 (A[ kk ] [ kk ] ) ;
11 /∗ fwd ph a s e ∗/
12 for ( j j=kk+1; j j <NB; j j++)
13 i f (A[ kk ] [ j j ] != NULL)
14 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
15 /∗ b d i v and bmod p h a s e s ∗/
16 for ( i i=kk+1; i i <NB; i i ++)
17 i f (A[ i i ] [ kk ] != NULL) {
18 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
19 for ( j j=kk+1; j j <NB; j j ++)
20 i f (A[ kk ] [ j j ] ! = NULL)
21 {
22 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
23 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
24 }
25 }
26 }
27 }

Fig. 1. Main code of the sequential SparseLU kernel

To motivate the proposal we use one of the examples that was used to test
the appropriateness and performance of the tasking proposal in OpenMP 3.0:
the sparseLU kernel shown in Figure 1. This kernel computes an LU matrix
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1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ inner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8

9 for ( kk=0; kk<NB; kk++) {
10 lu0 (A[ kk ] [ kk ] ) ;
11#pragma omp paral lel

12 {
13 /∗ fwd ph a s e ∗/
14#pragma omp for schedu le ( dynamic , 1 ) nowait

15 for ( j j=kk+1; j j <NB; j j++)
16 i f (A[ kk ] [ j j ] != NULL)
17 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
18

19 /∗ b d i v p h a s e ∗/
20#pragma omp for schedu le ( dynamic , 1 )
21 for ( i i=kk+1; i i <NB; i i ++)
22 i f (A[ i i ] [ kk ] != NULL)
23 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
24

25 /∗ bmod pha s e ∗/
26#pragma omp for schedu le ( dynamic , 1 ) private ( j j )
27 for ( i i=kk+1; i i <NB; i i ++)
28 i f (A[ i i ] [ kk ] != NULL)
29 for ( j j=kk+1; j j <NB; j j ++)
30 i f (A[ kk ] [ j j ] ! = NULL)
31 {
32 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
33 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
34 }
35 }
36 }
37 }

Fig. 2. Main code of the OpenMP 2.5 SparseLU kernel

factorization. The matrix is organized in blocks that may not be allocated. In
this kernel, once lu0 is computed (line 10), all instances of fwd and bdiv can be
executed in parallel (lines 14 and 18, respectively). Each pair of instances fwd
and bdiv allow the execution of an instance of bmod (line 23). Across consecutive
iterations of the kk loop there are dependences between each instance of bmod
and instances of lu0, fwd, bdiv and bmod in the next iteration.

With these data dependences in mind, the programmer could use the current
worksharing directives in 2.5 to partially exploit the parallelism available in the
kernel, for example using for to distribute the work in the loops on lines 15, 21
and 27 or 29 in Figure 2. Due to the sparseness of the matrix, a lot of imbalance
exists, forcing the programmer to use dynamic scheduling of the iterations to
have good load balance. For the bmod phase we have two options: parallelize the
outer (line 27) or the inner loop (line 29). If the outer loop is parallelized, the
overhead is lower but the imbalance is greater. On the other hand, if the inner
loop is parallelized the iterations are smaller which allows a dynamic schedule
to have better balance but the overhead of the worksharing is much higher.

Notice that it has been necessary to apply loop distribution to isolate the
loop that executes the multiple instances of function bdiv. The nowait clause
in the loop in line 14 allows the exploitation of the parallelism that exist among
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1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ i nner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8#pragma omp paral lel

9 for ( kk=0; kk<NB; kk++) {
10#pragma omp single

11 lu0 (A[ kk ] [ kk ] ) ;
12 /∗ fwd ph a s e ∗/
13#pragma omp for nowait

14 for ( j j=kk+1; j j <NB; j j++)
15 i f (A[ kk ] [ j j ] != NULL)
16#pragma omp task f irstprivate ( kk , j j )
17 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
18 /∗ b d i v p h a s e ∗/
19#pragma omp for

20 for ( i i=kk+1; i i <NB; i i ++)
21 i f (A[ i i ] [ kk ] != NULL)
22#pragma omp task f irstprivate ( kk , i i )
23 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
24

25 /∗ bmod pha s e ∗/
26#pragma omp for private ( j j )
27 for ( i i=kk+1; i i <NB; i i ++)
28 i f (A[ i i ] [ kk ] != NULL)
29 for ( j j=kk+1; j j <NB; j j ++)
30 i f (A[ kk ] [ j j ] ! = NULL)
31#pragma omp task f irstprivate ( kk , j j , i i )
32 {
33 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
34 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
35 }
36 }
37 }

Fig. 3. Main code of SparseLU with OpenMP 3.0 tasks

the instances of functions fwd and bdiv. The implicit barrier at the end of
worksharing in line 20 forces the dependences of fwd and bdiv with bmod.

Using the task proposed in 3.0, the code restructuring is quite similar, as
shown in Figure 3; however tasks allow to only create work for non-empty ma-
trix blocks. We also create smaller units of work in the bmod phase with an
overhead similar to the outer loop parallelization. This reduces the load imbal-
ance problems. The nowait clause in line 13 allows the parallel execution of fwd
and bdiv instances. The implicit barriers at the end of loops in lines 19 and 16
force the dependences between pairs of fwd/bdiv with bmod inside a single kk
iteration and viceversa across consecutive iterations of loop kk.

Figure 4 shows an execution trace obtained from an instrumented run of the
kernel and visualized with Paraver [6]. The window represents time in horizontal
axis and per-thread activity in the vertical axis (in this case, each color identifies
the function that is being executed). The visualization corresponds to the end of
a kk iteration and the beginning of the next kk+1 iteration. Yellow lines represent
thread creation and thread execution points (in the window only for fwdand bdiv).

As we pointed at the beginning of this section, there exists more parallelism in
this kernel that can not be exploited with the current task definitions: parallelism
that exists between tasks created in lines 17 (fwd) and 23 (bdiv) and tasks
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Fig. 4. Paraver window with a portion of SparseLU execution: lu0 (blue), fwd (green),
bdiv (red) and bmod (orange) functions

created in line 34 (bmod) inside a single iteration . Also it would be interesting
to express the parallelism that exists across consecutive iterations of the kk loop.

3 Proposed Extension

In this section we describe the extensions we propose to the OpenMP tasking
model. We first describe them as part of the StarSs framework, a new program-
ming paradigm for task-based programming that targets homogeneous symmet-
ric multiprocessors (SMPSs) and the Cell/B.E. architecture [7] (CellSs [8]).

3.1 StarSs Pragmas and Execution Model

With StarSs the programmer identifies the functions that will be executed as
tasks, using a pragma annotation right before the function definition. In addition
the programmer specifies the directionality of each of the function parameters:
input, output or input/output.

#pragma smpss task [clause[[,]clause] ...]
{function-header|function-declaration}

where clauses can be:

– input(argument-list)
– output(argument-list)
– inout(argument-list)

Each element in argument-list is a block of contiguous memory locations
whose number of elements is specified either in the function header or in the
construct.

The following optional pragmas indicate a scope of the program where StarSs
is used:
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#pragma smpss start
#pragma smpss finish

When the start pragma is reached, the runtime initializes a worker thread
in each processing element, who will wait for tasks to execute. Only a single
thread (main thread) continues with the execution of the program, dynamically
creating the tasks that are stored in a task graph. Both the main thread and
the worker threads get tasks from the task graph once dependences are honored
and execute the function associated. The finish pragma finishes all idle threads
once the task graph is totally executed. Functions annotated with task have to
be called between these two pragmas. If they are not present in the user code,
the compiler will automatically insert the start pragma at the beginning of the
application and the finish pragma at the end.

Figure 5 shows the SparseLU kernel programmed with the SMPSs extensions.
The programmer identifies four tasks that correspond to the execution of func-
tions lu0, fwd, bdiv and bmod. For example, for function bmod the programmer
is specifying that the first and second arguments (row and col) are input pa-
rameters (they are only read during the execution of the function) and that the
third argument (inner) is inout since it is read and written during the exe-
cution of the function. Notice that the annotations are placed on the original

1#pragma smpss task input ( diag [B ] [B ] ) inout ( c o l [B ] [B ] )
2 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
3

4#pragma smpss task input ( row [B ] [B] , c o l [B ] [B ] ) inout ( inner [B ] [B ] )
5 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ inner ) ;
6

7#pragma smpss task input ( diag [B ] [B ] ) inout ( row [B ] [B ] )
8 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
9

10#pragma smpss task inout ( diag [B ] [B ] )
11 void lu0 ( f loat ∗ diag ) ;
12

13 int sparseLU ( ) {
14 int i i , j j , kk ;
15

16#pragma smpss start

17 for ( kk=0; kk<NB; kk++) {
18 lu0 (A[ kk ] [ kk ] ) ;
19 /∗ fwd ph a s e ∗/
20 for ( j j=kk+1; j j <NB; j j++)
21 i f (A[ kk ] [ j j ] != NULL)
22 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
23 /∗ b d i v and bmod p h a s e s ∗/
24 for ( i i=kk+1; i i <NB; i i ++)
25 i f (A[ i i ] [ kk ] != NULL) {
26 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
27 for ( j j=kk+1; j j <NB; j j ++)
28 i f (A[ kk ] [ j j ] ! = NULL)
29 {
30 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
31 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
32 }
33 }
34 }
35#pragma smpss finish

36 }

Fig. 5. Main code of SparseLU with StarSs tasks
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sequential version, with no transformations applied to allow the specification of
the inherent parallelism available.

When a call to a function annotated with the task construct is found, the main
thread creates a task for the associated function and adds information about data
dependencies in a task graph. For each task, the runtime dynamically computes
data dependencies by analyzing the direction (input, output or both), length and
address of each parameter against those of previous tasks in sequential order.
True data dependences (read-after-write) are honored by the runtime system by
deferring the execution of the task until all input and inout arguments have
been computed. The execution of the task can be done by any thread in the
current parallel team. Once a task finishes its execution, the runtime updates
the task graph to signal the modification of all output and inout arguments.

The runtime systemautomatically removes false dependencies (write-after-read
andwrite-after-write) usingmemory renaming, a technique borrowed fromthe idea
of register renaming in current out-of-order superscalar processors. For each vari-
able that needs to be renamed, the runtime allocates temporary memory space for
it. That is, if a task writes to an array, renaming can replace that array by a tempo-
rary one and redirect all following reads of that definition to the temporary array.

While the underlying runtime is capable of handling all inter-task related
data dependencies, it cannot handle dependencies with the code executed by
the master thread. To handle this, StarSs includes a data barrier:

#pragma smpss wait on (address-list)

At the wait on pragma, the master thread waits for all memory locations in
the address-list to be updated. Once this happens, the main thread continues
with the execution of the code.

3.2 StarSs and OpenMP

The StarSs pragmas and execution model fit well with the tasking definition in
OpenMP 3.0

#pragma omp task [clause[[,]clause] ...]
structured-block

In addition to the clauses supported in OpenMP 3.0:

– untied
– shared (variable-list)
– firstprivate (variable-list)
– private (variable-list)

our proposal is to include:

– input(variable-list)
– output(variable-list)
– inout(variable-list)
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1 int sparseLU ( ) {
2 int i i , j j , kk ;
3

4 for ( kk=0; kk<NB; kk++) {
5#pragma omp task inout (A[ kk ] [ kk ] )
6 lu0 (A[ kk ] [ kk ] ) ;
7 for ( j j=kk+1; j j <NB; j j ++)?
8 i f (A[ kk ] [ j j ] != NULL)?
9#pragma omp task input (A[ kk ] [ kk ] ) inout (A[ kk ] [ j j ] )

10 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
11

12 for ( i i=kk+1; i i <NB; i i ++) {
13 i f (A[ i i ] [ kk ] != NULL)?
14#pragma omp task input (A[ kk ] [ kk ] ) inout (A[ i i ] [ kk ] )
15 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
16 for ( j j=kk+1; j j <NB; j j ++)?
17 i f (A[ kk ] [ j j ] != NULL) {
18 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e a n b l o c k ( ) ;
19#pragma omp task input (A[ i i ] [ kk ] , A[ kk ] [ j j ] ) inout (A[ kk ] [ kk ] )
20 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
21 }
22 }
23 }

Fig. 6. Main code of SparseLU with the proposed dependent tasks, version 1

We also propose to include the

#pragma omp wait on (address-list)

in order to provide a more flexible version of taskwait.
The first difference wit StarSs is that our proposed clauses apply to an OpenMP

task, which is a structured block of code and not a function declaration or defi-
nition. The main implication of this is that the variable-list does not indicate
formal function arguments but variables used in the scope of the structured block
of code. Figure 6 shows the SparseLU example with the proposed extension in
OpenMP.

The second difference is that StarSs forces dependent tasks to be generated
in sequential order (or at least in an order that guarantees that the source
is generated before the target of the dependence). In addition, only the main
thread can generate tasks for the worker threads. In OpenMP is it possible to
have multiple task generators (by having task inside a worksharing or by nesting
task). This needs to be considered in the implementation of the extensions in
the prototype OpenMP implementation, but in any case, it is the programmer
responsibility to ensure the appropriate order of task generation.

Clauses Input,output and inoutprovide additional information to the shared
data clause. This information is used by the runtime to dynamically build and
update the task graph and schedule tasks for execution as soon as all their input
variables are generated. A variable in a shared data clause, but not in a input,
output or inout clause, indicates that the variable is accessed inside the task but
it is not affected by any data dependence in the current scope of execution (or is
protected by another one). Firstprivate variables could also be affected with an
input clause, meaning that the per-task private copy of the variable should be
initialized with the value generated by another task (in its output clause) instead
of the value at creation time.
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1 int sparseLU ( ) {
2 int i i , j j , kk ;
3 int lu0done , fwddone [NB] , bdivdone [NB] , bmoddone [NB] [NB] ;
4

5 for ( kk=0; kk<NB; kk++) {
6#pragma omp task input ( bmoddone [ kk ] [ kk ] ) output ( lu0done )
7 lu0 (A[ kk ] [ kk ] ) ;
8 for ( j j=kk+1; j j <NB; j j ++)?
9 i f (A[ kk ] [ j j ] != NULL)?

10#pragma omp task input ( lu0done , bmoddone [ kk ] [ kk ] ) output ( fwddone [ j j ] )
11 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
12

13 for ( i i=kk+1; i i <NB; i i ++) {
14 i f (A[ i i ] [ kk ] != NULL)?
15#pragma omp task input ( lu0done , bmoddone [ kk ] [ kk ] ) output ( bdivdone [ i i ] )
16 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
17 for ( j j=kk+1; j j <NB; j j ++)?
18 i f (A[ kk ] [ j j ] != NULL) {
19 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e a n b l o c k ( ) ;
20#pragma omp task input ( bdivdone [ i i ] , fwddone [ j j ] ) inout (bmoddone [ kk ] [ kk ] )
21 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
22 }
23 }
24 }

Fig. 7. Main code of SparseLU with the proposed dependent tasks, version 2

Previous proposals based on providing a name to each section or task [3,4] can
also be implementedusing theproposed extensions in this paper, as shown inFigure
7. In this case, a dependence is encapsulated in a variable that should be declared
by the programmer and used in an output clause (in the source task) and and in a
input clause (in the target task). This synchronization variable can be subject of
reuse and therefore, false dependences; the automatic renaming mechanism in the
runtime avoids these false dependences and avoids its scalar (or vector) expansion.

4 Additional Runtime Features

The prototype task implementation for OpenMP 3.0 enqueues new created tasks
in a team pool of tasks. Any thread of the team can access this pool a execute the
tasks from there. Threads have also a local pool in which they place those tasks
that have been suspended by them if those tasks are tied tasks. Other threads are
not allowed to steal tasks from this pool. But the OpenMP specification allows for
other forms of scheduling (with certain restrictions related to tied/untied tasks).
For example, it would be possible to implement a work-first scheduler (like Cilk
[9] does) where tasks are executed as soon as they are created and the parent
task is suspended and stored in a per task pool of tasks. Dependence restrictions
would need to be considered in this case. To avoid starvation (because all tasks
go to the local pools) work-stealing is allowed.

In the implementation of SMPSs each thread has a local pool of ready tasks.
The main thread is responsible of running the main program by going through
the non task user code, analyzing the data dependencies and adding the tasks
to the task graph. New tasks that have no input dependencies are added to the
main thread task pool; any worker thread can steal from the pool of the main
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thread. When the main thread stops task generation (because the task pool is
full or he is waiting for tasks to finish) it also execute tasks from its own pool.

Worker threads look for ready tasks first in their own pool, then on the main
thread pool and then on the other thread pools. When a thread finishes running
a task, it puts all the task successors that have become ready into its task pool.
While worker threads consume tasks from their pool in LIFO order, they steal
them from other threads in FIFO order. That is, they consume the graph in a
depth first order as long as they can can get ready tasks, and then steal tasks
from other threads in a breadth first order when their task pools become empty.

The idea behind this design is that each thread will be executing tasks in a
different region of the graph and have little interference with other threads as
long as there are ready tasks in that region or there are unexplored zones in the
graph. Otherwise they will steal work from other threads in a way that tries to
minimize the effect on the cache locality of that thread.

5 Preliminary Evaluation

In order to test the proposal in terms of expressiveness and performance, we have
developed the StarSs runtime for SMP (named SMPSs) and used the Mercurium
compiler (source-to-source restructuring tool) [2]. For comparison purposes we
also use the reference implementation [10] of the tasking proposal in OpenMP
3.0 based on the Nanos runtime and the same source-to-source restructuring
tool. and the workqueueing implementation available in the Intel compiler.
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Weevaluatehowtheproposedextension improvesthescalabilityoftheSparseLU
benchmark that has been used to motivate the proposal. All the executions have
been done on an SGI Altix 4700 using up to 32 processors in a cpuset (to avoid in-
terference with other running applications).

Figure 8 shows the speed-up with respect to the sequential execution time.
Notice that up to 16 threads the three versions (taskq, task and smpss) be-
have similarly. When more threads are used, load unbalancing starts to be more
noticeable and the overheads of tasking are not compensated with the parallel
execution. Task barriers between fwd/bdiv and bmod phases (inside iteration
kk) and between bmod and fwd/bdiv phases (in consecutive iterations of kk) in-
troduce this load unbalance and overheads. However, smpss is able to overcome
these two limitations by overlapping tasks in these computational phases inside
and across iterations of the kk loop.

The implementation of SMPSs has overheads. Table 1 shows a breakdown
of the execution time of the SMPSs version of SparseLU. The table shows the
percentage of time that each thread is in each phase (worker threads ’ information
has been summarized due to space limitations). For this example, the main thread
invests around the 30% of its time in the maintenance of the task graph, and
around 65 % of its time is left for execution of tasks. The worker threads also
suffer of some overheads (around 5%), not only due to the maintenance of the
task graph but also to the time the threads are waiting for tasks ready to be
executed and the time invested in getting the tasks description. Depending on the
application and on the number of threads, these overheads will have more or less
impact in the performance, but we are looking for more efficient implementations
of the task graph to reduce them.

Table 1. Breakdown of SMPSs overheads for the SparseLU with 16 threads

Thread phase Main Thread Max Worker th. Min Worker th. Avg. Worker th.

User code 5.12 %
Initialisation 0.13 %
Adding task 10.51 %
Remove tasks 19.67 % 2.41 % 0.86 % 1.46 %

Waiting for tasks 0.46 % 1.95 % 1.04 % 1.47 %
Getting task descr. 0.36 % 1.28 % 0.56 % 1.10 %
Tasks’ execution 63.76 % 97.43 % 94.97 % 95.97 %

6 Conclusions

This paper proposed an extension to the OpenMP 3.0 tasking model: data depen-
dent tasks. Data dependencies among tasks are indirectly expressed by specifying
the input and output direction of the arguments used in a task. This is a key
difference with respect to previous proposals that were based on the specification
of named tasks and dependson relationships.

The paper uses one of the application kernels used to demonstrate the expres-
siveness of tasking in OpenMP 3.0: SparseLU. We motivate the proposal with
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this kernel and show how its scalability improves with a prototype implementa-
tion of the proposal (SMP Superscalar – SMPSs).

The possibility of expressing input and output direction for the data used by the
task provides extra benefits for other multicore architectures, such as for example
the Cell/B.E. processor [7] (Cell Superscalar [8]). In this case, the information pro-
vided by the programmer allows the runtime system to transparently inject data
movement (DMA transfers) between SPEs or between SPEs and main memory.
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Abstract. This paper proposes extensions to the OpenMP standard to
provide first-class support for parallelizing generic libraries such as the
C++ Standard Library (SL). Generic libraries are especially known for
their efficiency, reusability and composibility. As such, with the advent
of ubiquitous parallelism, generic libraries offer an excellent avenue for
parallelizing the existing applications that use these libraries without
requiring the applications to be rewritten. OpenMP, which would be
ideal for executing such parallelizations, does not support many of the
modern C++ idioms such as iterators and function objects that are used
extensively in generic libraries. Accordingly, we propose extensions to
OpenMP to better support modern C++ idioms to aid in the paralleliza-
tion of generic libraries and applications built with those libraries.

1 Introduction

For many years, the performance of mainstream software applications was able
to improve at a fairly rapid pace because the performance of CPU cores increased
more or less in accordance with Moore’s law. Although Moore’s Law is still in
effect (VLSI feature sizes are still decreasing), recent increases in chip density
do not come with corresponding increases in clock speeds or single processor
performance. Rather, more processing cores are being put onto single chips,
with the result that now even mainstream applications must look to parallel
programming in order to obtain continued increases in performance [1,15].

Parallelizing mainstream applications obviously requires that parallelism be
somehow expressible in mainstream programming languages. Approaches to pro-
viding such support include language extensions, libraries, compiler directives,
and automatic parallelizing compilers. There are a number of issues that come
into play in determining how effective any of these approaches will be. The jury
is still out as to which approaches will be most effective—the programming com-
munity needs to gain experience with a wide variety of possible approaches to
determine the best one. Indeed, there may not be a best approach and some
combination of approaches will need to be available to programmers indefinitely.

To become accepted by mainstream programmers, parallelization technolo-
gies must account for established programming practices. For example, beyond
issues of programming languages, modern software development is based on key
programming paradigms (e.g., the object-oriented paradigm or the generic pro-
gramming paradigm) and the extensive use of libraries. In many cases, it will
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be established sequential codes that must be parallelized. New approaches to
parallelism must therefore be unobtrusive and support incremental adoption.

OpenMP is a well-understood and mature parallelization technology [3]. Al-
though OpenMP currently provides some support for the C++ language, the full
range of paradigms and libraries that are common to C++ are not well-supported.
In particular, the generic programming paradigm has recently emerged as an
important development practice for C++. Generic programming in C++ simul-
taneously stresses modularity and performance and has garnered widespread
support in the C++ community and standardization bodies. Currently there is
little built-in support for parallelism in the standardized C++ language and this
situation is unlikely to change in the foreseeable future. Rather, support for par-
allelism in C++ programs will need to come from libraries (e.g., Boost.MPI [8]
or the Threading Building Blocks [11]) or from compiler directives such as those
provided by OpenMP.

Accordingly, this paper presents a proposal for extensions to OpenMP to
support modern generic programming practice in C++. This proposal results
from a decade of experience with generic programming (and even longer with
parallel programming). Based on the analysis of the generic programming process
and of several important C++ libraries (reported in [7]), we identified the areas
where new functionality is required from OpenMP in order for it to properly
support generic programming. In particular, our proposal includes extensions to
the for and reduction clauses and introduces a new clause, requires. Our proposed
extensions follows the guiding principles of OpenMP: they are simple to use,
simple to specify, and consistent with rest of OpenMP.

Direct support of generic programming in the proposed fashion will greatly
facilitate parallelization of modern C++ libraries and applications. In fact, par-
allelized generic algorithms retain their sequential semantics. Programmers will
be able to realize immediate (and seamless) parallelization of their applications
simply by using parallelized libraries. Finally, and importantly with respect to
evolving the practice of parallel programming, our proposed approach provides
a disciplined conceptual framework in which to reason about parallelism.

2 Motivation

We motivate our proposal with an extended example based on the generic
accumulate algorithm and use it to illustrate the issues that must be addressed
in extending OpenMP for use with generic programming in C++. The accumulate
algorithm is a generalization of summation over all the elements in a collection
and is a stereotypical example of many of the algorithms in the C++ Standard
Library (SL). The SL version of accumulate is as follows:

template<typename InputIterator, typename T, typename BinaryFunction>
T accumulate (InputIterator first, InputIterator last, T init, BinaryFunction f) {

for ( ; first != last; ++first) init = f(init, ∗first);
}
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Note that technically accumulate is a function template, not a function. That
is, rather then being expressed in terms of concrete types, it is paramaterized
by three template parameters: InputIterator, T and BinaryFunction. When the
accumulate algorithm is invoked, the template parameters are bound to actual
types and the resulting instantiated algorithm is compiled. Thus, the very same
accumulate algorithm can be used with arrays, linked lists, or many other types
(but not any other type, as we will see below):

double x[10];
double a = accumulate(x, x+10, 0.0, plus<double>()); // add elements in a

node∗ n = cons(1, cons(2, cons(2, null )));
int s = accumulate(n, null , 1, multiplies <int>()); // multiply elements in n

Although originally popularized by the Standard Template Library [10], generic
programming is about much more than programming with templates. Funda-
mentally, generic programming is a systematic approach to classifying entities
within a problem domain according to their underlying semantics and behav-
iors. Component interface definitions are based on finding minimal interface re-
quirements, thereby providing maximal opportunities for composition and reuse.
Moreover, because component interfaces are based on requirements rather than
on types, components from separate libraries can readily be composed, even if
the libraries were developed independently of each other.

The specification of generic libraries thus includes specification of interface
requirements (encapsulated as “concepts”) as a central feature. The arguments
to accumulate must therefore meet the following requirements:

– The type of the parameters first and last must meet the requirements of
the InputIterator concept. A type that meets these requirements (said to
“model” the concept) can iterate through the elements of a collection. It can
be a built-in type, such as double∗ or an aggregate type such as an iterator
over a user-defined container. As can be seen from the body algorithm, the
InputIterator concept requires (at least) operator++, operator!=, operator∗.

– The type of f must model the BinaryFunction concept, i.e., be a type that has
operator() defined for it. Furthermore, operator() accepts two parameters and
returns a value that can be converted (and hence assigned) to the type T.

– The final requirement then is that the type bound to T be convertible to
the type obtained when InputIterator is dereferenced. Also, the type bound
to T must model Assignable, i.e., it must have operator= defined for it, and
it must model CopyConstructible, i.e., we must be able to create copies of
variables of that type.

The example invocations of accumulate shown above are correctwith respect to the
above specified requirements. For the first example, double∗ models InputIterator,
std::plus<double> models BinaryFunction, and double can be assigned to return
value of std::plus<double>. By expressing accumulate in terms of the InputIterator
and BinaryFunction concepts, we have separated the expression of the algorithm
from the details of the types upon which the algorithm can operate, a fundamental
tenet of generic programming [9].
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Now, let us consider parallelizing accumulate using OpenMP. This task might
seem straightforward since accumulate is comprised of a for loop that performs
a reduction operation. However, the loop is not in the canonical form that is re-
quired by OpenMP. To address this (seemingly syntactic) issue, we could rewrite
the loop of accumulate as follows (including also the OpenMP pragma):

template<typename InputIterator, typename T, typename BinaryFunction>
T accumulate (InputIterator first, InputIterator last, T init, BinaryFunction f) {

#pragma omp parallel for
for (int i=0; i < (last−first); ++i) init = f (init, first[i]);

}

Although the syntactic form of this loop now lends itself to being parallelized
using OpenMP, this form is both incomplete and incorrect. First, note that
accumulate is performing a reduction operation and hence the parallel version as
given above is incorrect. We must either further modify the algorithm by intro-
ducing manual reduction before and after the loop or use OpenMP’s reduction
clause (about which more will be said). Second, by rewriting the loop and making
it parallel, we have introduced additional requirements on the input types:

– The type bound to InputIterator must support operator[] and operator−.
– The operation bound to BinaryFunction must be associative since the opera-

tions may be reordered during parallel execution. Also, since OpenMP sup-
ports reductions only on certain operations [3], BinaryFunction is required to
be an operation that we can map onto an operation supported by OpenMP.

– The type bound to T must posses an identity element with respect to the
type bound to BinaryFunction so that private variables of T can be properly
initialized. Furthermore, since OpenMP reduction clause supports only built-
in types, we require that T be a built-in type.

If we create a parallel version of accumulate in this way, we have enabled par-
allelism but we have broken genericity. The parallel version of accumulate can
be invoked only on those types that meet the old requirements and that meet
the new requirements. It cannot be used on types that only meet the old re-
quirements but not the new—even though, according to the SL specification,
that would be a correct invocation of accumulate. The flexibility of the template
system in C++ does provide an escape hatch of sorts for this problem, through
algorithm specialization. Algorithm specialization allows us to take advantage
of extra properties that sets of types might have, in order to achieve improved
performance (or, in this case, parallelization), by providing overloads of the al-
gorithm based on concept properties. Algorithm specialization is realized with
template metaprogramming techniques with the current C++ but is a likely fea-
ture for the upcoming C++ standard, C++0x, discussed below.

Thus, to parallelize accumulate, we would need to create a specialization of it
with the additional requirements given above. However, we need to write a new
specialization for every single reduction operation that is supported by the the
OpenMP reduction clause. This measure effectively reduces the genericity of the
accumulate algorithm since each specialization is bound to a particular type of
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BinaryFunction. It is also a poor use of specialization: since the accumulate al-
gorithm itself remains the same (only the pragma and requirements differ), this
approach requires significant redundant code, which violates basic software de-
velopment principles. Furthermore, we have had to intrusively change the struc-
ture of the accumulate algorithm to conform to OpenMP’s canonical form which
directly violates OpenMP design principles. Finally, this solution is still incom-
plete since there is no support for user-defined types or user-defined reduction
operations, further limiting its genericity.

Generic Programming with ConceptC++. Currently, generic programming
is realized in C++ through various techniques such as polymorphic containers,
iterators, function objects and traits classes [4]. Recently, the concepts extension
to C++ [5] was proposed, which provides complete linguistic support for generic
programming, and which is a likely candidate for adoption in the next C++0x
standard [6]. One of the main features of concept-enabled C++ (“ConceptC++”)
is the ability to specify concepts, define algorithms in terms of concepts, and
to check whether particular types model specific concepts. Writing generic algo-
rithms and their specializations is greatly simplified as a result. For example, a
specialization of the accumulate algorithm for the reduction operation + is given
below.

template<typename Iterator, typename T, typename Op>
requires RandomAccessIterator<Iterator> && Monoid<Op, T>
requires && AddOperation<Op> && BuiltInIntegralType<T>
T accumulate (Iterator first, Iterator last, T init, Op f) {

#pragma omp parallel for reduction(+:init)
for (int i=0; i < (last−first); ++i) init = f (init, first[i]);

}

Here, the requires clause describes the requirements on the template parameters,
e.g., the Iterator type must meet the requirements of the RandomAccessIterator
concept. The requires clause both enables type checking of the body of the
function template and also ensures that users of the function template have
provided types that meet the requirements in the requires clause. The following
concepts are contained in the above requires clause:

– RandomAccessIterator<Iterator>: The Iterator type must provide random ac-
cess to the elements in its collection. Hence, operator[] and operator− are
valid on it.

– Monoid<Op, T>: A pair (Op,T) modeling this concept ensures the presence
of an identity element of type T with respect to Op. Since Monoid concept also
includes all the requirements for (i.e., “refines”) the BinaryFunction concept,
it guarantees that Op models BinaryFunction as well.

– AddOperation<Op>: This concept refines the BinaryFunction concept and
requires Op to be an addition operation.

– BuiltInIntegralType<T>: The type bound to T must model BuiltInIntegralType,
meaning it must be a built-in integral type.
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Related Work. The first attempt to study the requirements behind paralleliz-
ing generic libraries was made by Austern et al. [2] and was based on the IRIS
Power C compiler pragmas. The Intel workqueueing [12] model enables paral-
lelization of certain iterator-based algorithms by treating each loop statement as
a task to be executed. Terboven et al. [16] exposit on some of the shortcomings of
OpenMP with respect to modern C++ programming paradigms and suggest cer-
tain strategies to overcome these limitations. However, these strategies are aimed
at specific problems rather than the fundamentals of generic programming. Fi-
nally, Suess et al. [13,14] have reported on shortcomings in implementing sorting
algorithms and singleton patterns in C++.

3 Extensions to OpenMP

We propose three primary extensions to OpenMP to provide first-class support
for parallelizing generic libraries: extensions to for to support iterators; exten-
sions to reduction to support user-defined types, function objects and overloaded
operators; the introduction of the requires clause to support conditional paral-
lelization.

3.1 The for Construct

The OpenMP for loop construct places certain restrictions on the loop form
(called the canonical form). This restriction ensures accurate determination of
the loop parameters at compile time. However, it also precludes the paralleliza-
tion of C++ iterator loops despite the fact that some of these iterator loops can
be rewritten in the required canonical form [16]. We propose to extend the for
loop construct as follows:

Syntax for (init-expr ; cond-expr ; incr-expr) statement
init-expr is required to be in one of the following three forms.

– ;, the empty expression. In this case, the lhs in the cond-expr is taken to be
the loop iterator.

– iter type iterator = init;
– iterator = init;

• iterator models the RandomAccessIterator concept.
• init is an expression that returns a value convertible to iterator ’s type.

cond-expr is of the form iterator rel-op bound-expr, where

– iterator is the same variable that was used in init-expr. If init-expr was an
empty statement, then the iterator is taken to be the loop variable.

– rel-op is one of <, <=, >, >=, !=. The only addition here is the != operator
that is used frequently in generic libaries. Inclusion of this operator does not
impede the ability to deduce the iteration space.

– bound-expr is loop-invariant and returns a value that is convertible to the
type of iterator.
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incr-expr is of the form incr-expr-1[,incr-expr-2,...,incr-expr-n] where incr-
expr-i is a currently allowed increment expression. Any iterators named in the
incr-expr list are required to model the RandomAccessIterator as well.

Use case. The SL copy algorithm copies elements from the range [first, last) to
the range [result, result + (last − first)). The return value is (result+(last−first)).
Parallelization is possible only when both InputIterator and OutputIterator model
the RandomAccessIterator concept.

template <typename InputIterator, typename OutputIterator>
OutputIterator copy (InputIterator first, InputIterator last, OutputIterator result) {
#pragma omp parallel for

for ( ; first!=last; ++first, ++result) ∗result = ∗first;
}

3.2 The Reduction Clause

We propose to extend the OpenMP reduction clause to support user-defined
types, overloaded operators, and function objects in the same way that it cur-
rently supports built-ins. Two important requirements for parallel reduction are
that the operation be associative and that the operand have an identity element
with respect to the operation.

Syntax reduction (operation: operand-1[,operand-2,..,operand-n])
operation is either an operator specified by the OpenMP 3.0 standard (built-in
or overloaded) or a function object that satisfies the following requirements:

– Model the BinaryFunction or the UnaryFunction concept, and
– Types modeling BinaryFunction must also model the Associative concept.

Note that the operations are not required to be either commutative or re-entrant.
However, if the operation does model the Commutative or the ReEntrant concept,
additional optimizations may be performed.
operand must satisfy the following:

– Either be a builtin type or an aggregate type (struct, class),
– Model the CopyConstructible concept, and
– Model the Assignable concept.

Identity requirement

– Each pair of (operation, operand-i) must model the Monoid concept.

Use case With the proposed extensions, the accumulate algorithm described in
section 1. can be parallelized as follows:

template <typename InputIterator, typename T, typename BinaryFunction>
T accumulate (InputIterator first, InputIterator last, T init, BinaryFunction f) {
#pragma omp parallel for reduction(f:init)

for ( ; first!=last; ++first) init = f (init, ∗first);
}



130 P. Kambadur, D. Gregor, and A. Lumsdaine

To illustrate the ramifications of this version of accumulate, consider its use
with the std::string class and the std::plus function object. std::plus is a syn-
onym for the + operator, and models both the BinaryFunction and Associative
concepts; in the case of std::string it performs string concatenation (and is there-
fore not commutative). We establish the relationships between these types and
their concepts using the concept map keyword in ConceptC++. The concept map
specifies the empty string as the identity element for the std::plus operation
applied to strings. Note that we are using std::vector iterators, which model
RandomAccessIterator.

concept map Monoid<plus<string>, string> {string identity() {return string(””); }};
vector<string> string vec(n);
string init(”CONCATENATE”);
accumulate (string vec.begin(), string vec.end(), init, plus<string>());

3.3 The Requires Clause

As discussed in Section 2, parallelization of generic algorithms often imposes
additional requirements on its input types, thereby requiring more refined con-
cepts. To meet the principles of generic programming and OpenMP, we need
to be able to parallelize a generic algorithm with a single directive and without
modifying the generic algorithm. At the same time, since the parallelization will
only be correct for more refined concepts, we need a means to express these ad-
ditional constraints within the scope of the directive. Parallelization will occur
conditionally, when the input types model the more refined concepts. Otherwise,
the sequential algorithm is instantiated. To enable the expression of conditional
parallelization based on concepts, we propose the requires clause.

Syntax requires (default)
requires (concept-name:var-1[,var-2,...,var-n])
requires (cond-expr)

– var-1[,var-2...,var-n] is the list of function objects, operators or variable
declarations that need to model the concept-name concept.

– cond-expr is any expression that returns value that is convertible to bool.

Scope. The requires clause may be used with the parallel, for, and sections con-
structs.

Behavior. When the default keyword is used, the compiler checks if the min-
imal requirements specified by the constructs/clauses are met. Although these
requirements are checked regardless of this clause, presence of this clause ensures
that the compilation will not fail upon not meeting the specified requirements;
rather, the OpenMP pragma will be ignored. When the concept-name form is
used, the adjoining list is checked against this concept. The OpenMP directive
is enabled if and only if the types of all elements in the list model the given
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concept. Otherwise, the OpenMP construct in question is discarded. When a
cond-expr is used, the construct is enabled only when the condition evaluates to
true. Note that this condition does not have to be evaluatable at compile time.
The requires clause is intended to be a strict add-on to the requirements specified
for the reduction and for construct extensions. Hence, it would not be allowed to
undermine the minimal requirements laid down by either of these extensions.

Use case. Using the requires clause, we can express the ultimate generic version
of accumulate in ConceptC++ syntax as follows:

template<typename InIter, typename T, typename Func>
requires InputIterator<InIter> && BinaryFunction<Func>

&& CopyConstructible<T> && Assignable<T>
T accumulate (InIter first, InIter last, T init, Func f) {
#pragma omp parallel for reduction(f:init) requires(default) requires(Commutative:f) \

requires((last−first) > 100)
for (;first!=last;++first) init = f (init, ∗first);

}

Here, the parallel for construct is enabled if and only if all three requires clauses
evaluate to be true.Note that the final requires clause (i.e.,(last−first) > 100) is
a runtime condition (effected by injection of appropriate conditional code).

Because this definition of accumulate is so concise, its significance may not
be obvious. However, it is quite remarkable. With a single directive, we have
enabled parallelization of a generic algorithm, without changing the algorithm
itself. The resulting algorithm can be used exactly as before without the directive,
i.e., with any types that model the required concepts. Users of accumulate enjoy
the benefits of automatic parallelization. If accumulate is invoked with types
that model the concepts specified in the OpenMP directive, the algorithm will
be parallelized.

4 Prototype Implementation

Implementation of our proposed extensions is currently being carried out with
the ConceptGCC compiler, a prototype compiler that implements the Con-
ceptC++ proposal. Based on the GCC 4.3 branch, ConceptC++ therefore also
includes OpenMP support from the GOMP project.

We have completed implementation of the for loop construct and reduction
clause extensions. Much of the implementation revolves around source code
transformation techniques that ensue once the concept requirements of the con-
structs are satisfied. In case of the reduction clause, we map the reduction
operations to primitive OpenMP reductions when the types meet the appro-
pritate requirements thereby avoiding abstraction penalty. For example, a call
to accumulate with std::plus<int> maps to + with ints. In cases where we cannot
map it to primitive operations, the loop is transformed to perform the reductions
manually (for example, string concatenation).
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Performance is a paramount concern of generic programming. The perfor-
mance goal is that generic algorithms should exhibit exactly the same perfor-
mance as their non-generic counterparts. For example, accumulate invoked with
pointer types should have the same performance as a raw for loop with those
same pointer types. In the parallel case, we similarly require that a parallelized
generic algorithm exhibit the same performance as a parallelized non-generic
algorithm. Experimental results with our prototype show that no overhead is
introduced by the proposed extensions.1

5 Conclusion

We have proposed extensions to OpenMP to provide first class support for par-
allelization of generic libaries. By providing only three extensions (for, reduction,
and requires), we were able to provide this support while simultaneously staying
true to the principles of generic programming and OpenMP. As proposed, paral-
lelizing generic algorithms requires only the introduction of OpenMP directives,
yet the algorithms so parallelized fully retain their genericity. This capability
will be an important one as library developers and application developers seek
to take advantage of ubiquitous parallelism. Moreover, by relating parallelizabil-
ity to concepts, new opportunities for model checking and debugging are now
also open.

An important area for future work has to do with the nature of parallel al-
gorithms themselves. The proposed approach is effective for those algorithms
for which the sequential and parallel variants admit the same expression. How-
ever, in some cases, the parallel version of an algorithm differs significantly from
the sequential version. In this case, overloading will still provide a single func-
tional interface, but specialization may be required for various implementations.
Characterizing the manner in which generic algorithms must be modified for par-
allelization will allow principled construction of parallel generic libraries using
OpenMP.
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Abstract. To date OpenMP has been considered the work horse for
data parallelism and more recently task level parallelism. The model has
been one of shared memory working in parallel on arrays of a uniform
nature, but many applications do not meet these often restrictive ac-
cess patterns. With the development of accelerators on the one hand
and moving beyond the node to the cluster on the other, OpenMP’s
shared memory approach does not easily capture the complex memory
hierarchies found in these heterogeneous systems.

Streams provide a natural approach to coupling data with its corre-
sponding access patterns. Data within a stream can be easily and effi-
ciently distributed across complex memory hierarchies, while retaining a
shared memory point of view for the application programmer.

In this paper we present a modest extension to OpenMP to support
data partitioning and streaming. Rather than add numerous new direc-
tives our approach is to utilize exiting streaming technology and extend
OpenMP simply to control streams in the context of threading. The in-
tegration of streams allows the programmer to easily connect distinct
compute components together in an efficient manner, supporting both,
the conventional shared memory model of OpenMP and also the trans-
parent integration of local non-shared memory.

1 Introduction

OpenMP’s shared memory model is one of its strongest points, providing a simple
view of memory for the programmer. However, to increase memory bandwidth
and reduce memory contention many of today’s processors have complex memory
hierarchies that do not directly fit this model. For example, both IBM’s Cell [1]
and ClearSpeed’s CSX [2] processors have small single cycle memories attached
to local processing elements. These memories are not memory mapped into the
larger outer memory system and thus are not shared in the conventional sense,
rather data is moved to and from shared memory via DMA transfers. These
memories are a problem for the OpenMP programmer as there is no easy why to
describe the connection between objects in shared memory and corresponding
objects in local memory. Moreover, these memories are often small in size, at
most in the region of hundreds of kilobytes, and it is often impossible to keep the
complete data set in memory at any given time. Data needs to be “streamed”.
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In this paper we describe a primitive streaming API that when embedded
in a modest extension of OpenMP provides for a powerful alternative to the
conventional array based parallel programming model. In particular, it is possible
to express complicated non-uniform access patterns for streams that are not
easily expressed in OpenMP as is. Streams [3,4,5,6] are best described as a
declarative interface to conventional C/C++ style data arrays, that provide for
a parallel evaluation semantics, standard and user defined scatter/gather access,
and a small set of combinators for writing stream computations. Streams are
defined and referenced from anywhere within an OpenMP program, with data
pushed and pulled across thread boundaries as specified by the user.

We take the rather unconventional approach of assuming a new basic type,
i.e. streams, in the base language. However, it should be noted that we are not
proposing extending the base language itself, rather we assume that a stream-
ing API is provided as a library in the particular language of choice. There are
many examples of streaming APIs and their implementations are well under-
stood and given this it does not seem unreasonable to build upon these devel-
opments [3,4,5,6]. The advantage is that given a non-parallel program, written
using streams, it is a natural process to add (extended) OpenMP directives to
parallelize for a multi-core environment. This scheme is analogous to that of
adding OpenMP directives today in the context of arrays.

In this paper we make the following contributions:

– We describe a modest extension to OpenMP’s programming model based on
the notion of streams. This model provides an alternative to the conventional
array approach, conceptually extending OpenMP’s memory model to work
in the context of non-shared memory.

– We are implementing a prototype of OpenMP extended with streams for an
IA-32 and CSX accelerator based system and we outline its current status.

– We report our experience of using the proposed tasking model for OpenMP
with streams, highlighting its natural use in this context.

The remaining sections of this paper are as follows: Section 2 discusses related
work; Section 3 introduces, by way of example, how streams can be utilized in
OpenMP; Section 4 details the streaming API and the extensions to the OpenMP
directives; Section 5 outlines our implementation with some early performance
results; and finally Section 6 concludes with a discussion on possible directions
for the future.

2 Related Work

To our knowledge there has been very little previously published work on extend-
ing OpenMP with a notion of streams. One exception to this is the ACOTES
project defining a programming model for streams with a corresponding abstract
streaming machine [7]. Carpenter et al. propose a new streaming environment
consisting of a Stream Programming Model (SPM), implemented as an anno-
tated version of the C programming language, and an Abstract Streaming Ma-
chine (ASM), implemented as a cost-model simulator. Their approach is similar
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to what is proposed in this paper, although we present extensions to both the
data parallel and tasking features of OpenMP while they consider only the task-
ing aspects. To date they have not implemented their approach and work in this
area is necessary to better understand how useful it will be in practice.

There exist a number of proposals for mapping the shared memory model
of OpenMP to a distributed setting which is closely related [8,9,10]. These ap-
proaches have some important advantages over explicit distributed programming
models, such as MPI, including they are conservative extensions to OpenMP and
retain the shared memory model. However, the drawback is that they retain this
model at the expense of restricting control of data partitioning and movement to
the system, thus constraining expressiveness. Providing streams as a first class
data abstraction retains OpenMP’s shared memory model while exposing control
of both data partitioning and movement within a distributed memory setting.

Eichenberger et al. use a software cache to abstract the Cell’s SPEs local
memory, for both code and data, providing a transparent, shared memory, view
of memory [11]. The advantage of this approach is no new datatypes need to be
introduced and thus no unnecessary source code changes. What is less clear is
how well this approach works in the light of more complex memory layouts which
may include many levels of indirection. The overhead of maintaining a software
cache in this context could easily dwarf any benefits of such an approach.

The streaming library given in Section 4 is a variant of the streams of Open
Accelerator [3]. Open Accelerator is a programming environment that supports
accelerator specific code with the integration of streaming, allowing the pro-
grammer to easily and efficiently connect distinct components of a system. Open
Accelerator is itself orthogonal to OpenMP but Gaster et al. show by superim-
posing Open Accelerator the resulting system provides a powerful SPMD data
parallel and tasking programming abstraction for accelerated systems. A key
difference between Open Accelerator and this paper is that streams become a
data abstraction that OpenMP builds parallelism upon and are integrated into
the language, requiring no additional features or support.

Finally, our work on streams has continually built on the ideas of Brook [6]
and StreamIt [5], which provide the stream processor abstraction. While these
languages do not fit directly with an imperative programming model it is clear
that they provide a wealth of resources for the development of streaming tech-
niques in such a context.

3 Overview

When considering adding a new feature to OpenMP, the place to start, at least
one would believe, is the current set of existing directives and possibly some new
ones. This was our initial approach when looking at streams for OpenMP and
we developed a set of additional directives for working with streams along with
some new runtime functions and extensions to existing directives. As an example
of this approach consider code to perform a sum of squares for an input array,
a, given in Figure 1.
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#define CHUNK SIZE 5

double sumsq (double a [ ] , int s i z e ) {
double msum = 0 . ; int i , n ;

#i f OPENMP
omp stream set chunk s i ze (CHUNK SIZE) ;

#endif

#pragma omp stream c r ea t e ( s , a , s i z e , s izeof ( f loat ) ,
LINEAR FORWARD)

#pragma omp for r educt i on (+:msum) connect ( s : s i z e )
for ( i = 0 ; i < s i z e ; i++) {

double elem ;
#pragma omp stream read ( s , elem )

elem = a [ i ] ;

msum += elem ∗ elem ;
}

return msum;
}

Fig. 1. Streams API directive extensions: sum of squares

Here a stream s is created from array, a, with the directive stream create,
introducing a new stream object into the OpenMP environment. The stream
is later consumed by the conventional parallel for construct with an additional
clause, connect(s : size), telling the system to produce a one-to-many stream
channel from the controlling thread to its corresponding children, that will per-
form the work of the loop body. The loop body itself is implemented as though
the function was operating over the original input array and makes no direct
reference to s. Instead, the stream read directive is used to connect the next
element of s to the private variable elem and the following statement is ignored,
i.e. elem = a[i]. While straightforward to modify the compiler to ignore the con-
nect statement, this approach reaches beyond the original intention of OpenMP’s
directives.

From this description of streams one might reasonably ask what is the benefit
of this approach over straightforward arrays? Well one important difference is
the use of the runtime function to set a stream’s “chunk” size and a related
reference to size in the connect clause. A streams chunk size corresponds to the
number of elements that will be copied to a particular thread when reading from
a stream’s channel. The actual pattern for reading chunk number of elements
is captured in the final argument to the stream create directive; in the above
example a simple linear-forward pattern is assumed. A consequence of chunks is
that each thread must maintain a private buffer of chunk size that when empty



138 B.R. Gaster

double sumsq (double a [ ] , int s i z e ) {
double msum = 0 ; int i ;

Stream ∗ s = Stream . c r e a t e ( a , s i z e ,CHUNK SIZE,LINEAR FORWARD) ;

#pragma omp p a r a l l e l r educt i on (+:msum) connect ( s )
{

while ( ! s−>endOfStream ( s ) ) {
double x = s−>getNextElement ( ) ;
i f ( s−>streamActive ( ) ) {

msum += x ∗ x ;
}

}
}

s−>dest roy ( ) ;

return msum;
}

Fig. 2. Streams API part of base language: sum of squares

is refilled with chunk or less elements by making a read request to the source
stream. The observant reader may now be asking but if chunk �= 1 then the loop
will be parallelized across size threads, but only the first size/chunk threads
will actually read elements of the stream and even worse the active threads will
process only the initial chunk element. Fortunately, this is easily over come by
requiring that the user link the controlling bounds variable, size in this case,
when connecting a stream, which is then used to control the number of iterations.

It should be clear that a compiler is free to implement OpenMP with or
without the streaming extensions, assuming it at least parses the connect clause,
while preserving the semantics of the program. This is, of course, in keeping with
the original design ethos of OpenMP, allowing both incremental parallelization
and programs execute correctly, albeit often with a slower execution time, if the
program is not parallelized at all. The problem with such an approach is that
OpenMP was not designed on top of a language with native stream support
and adding them explicitly to OpenMP is not only clumsy but it feels like using
a bulldozer to crush a nut. For C++ and Fortran arrays are the basic type
on top of which OpenMP builds parallelism but with the introduction of task
level parallelism this no longer needs to be the case and it should be possible to
introduce other parallel data types, including streams. This then leads us to the
question: what if streams were provided as a basic datatype?

If streams are provided as an abstract type with a corresponding API, then ap-
plication programmers could write stream programs with or without OpenMP di-
rectives. This meets our goal that any OpenMP program can be compiled and exe-
cuted correctly; even in the presence of a compiler that does not support OpenMP.
Such an approach does not preclude the need to add streams to OpenMP, rather
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while ( ! s−>endOfStream ( s ) )
#pragma omp task captureva lue ( s )

{
double x = s−>getNextElement ( ) ;
i f ( s−>streamActive ( ) ) {

msum += x ∗ x ;
}

}

Fig. 3. Combining streams and tasks

it provides the foundations for a more modest extension. Figure 2 shows how the
sum of squares example might be written with this approach.

Intuitively, a stream s is created from an input array a and the parallel re-
gions creates a team of threads, as is normal, with the only difference that each
thread ti having a corresponding private stream si that is “connected” to the
input stream s. The behavior is similar to that of a variable marked as private,
except instead of copying s locally within the thread’s stack, a connection is
made between the private si and the stream s of the shared enclosing scope.
On entering the loop, for a particular thread, the private stream requests a new
chunk and if data greater than zero and less than or equal to the number of
elements in a chunk is received then the request returns the first of the elements
for the call getNextElement. If no elements at all are received, then the call to
streamActive returns false and the sum is not executed and finally the loop will
terminate, otherwise the element is squared and added into the running total
and the process repeats.

At first viewing the call to streamActive may seem unnecessary but there
are actually two reasons for its inclusion. Firstly, what happens in the time
between the call to endOfStream and getNextElement? In fact anything and
in particular as we are running in parallel the stream may get locked and read
by some other thread in the farm and thus leave the call undefined. Secondly,
if we are to support SIMD or predicated processors, where conditionals do not
necessarily imply control flow, then streamActive can provide functionality to
disable or enable particular processing elements.

Of course, in the case when the amount of work on each element of a chunk is
large the while loop itself can be parallelized with task parallelism. For example,
the loop of Figure 2 might be expressed as in Figure 3.

4 Extending OpenMP with Streams

In this section we introduce a streaming API and a small addition to OpenMP’s
parallel fork-join and producer-consumer threading models.

First we define streams as declarative representations of more conventional
random access C++/Fortran arrays. Random access to streams is not allowed,
and consequently no index operator exists; instead the user can define a gather/
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template<typename T> class Stream {
public :

// Creat ing and de s t r oy in g streams
stat ic Stream<T> ∗ c r e a t e (T ∗ p , int i n s t r e am s i z e ,

int chunk s ize ,
tuple<StreamAccess , TargetISA> ∗ t ) ;

stat ic Stream<T> ∗ c r e a t e ( Stream<T> ∗ ) ;
void dest roy (void ) ;
// Reading and wr i t i n g streams
T getNextElement (void ) ;
T ∗ getNextChunk (void ) ;
void writeNextElement (T&);
// Stream in f o
void f l u s h (void ) ;
bool endOfStream (void ) ;
bool streamActive (void ) ;
int numChunks(void ) ;
int chunkSize (void ) ;
// Stream reduc t ion
template<typename U> U reduce ( funct ion<U (U, U) >);

private :
// cons t ruc tor , de s t ruc to r , e t c . . .

} ;

Fig. 4. Steaming API (C++ variant)

scatter style access, using either a set of statically defined patterns or dynami-
cally using streams themselves.

The streaming interface is split into four components: types for streams and
access patterns; functions for creating and destroying streams; functions to read
and write streams; and functions returning stream characteristics. A stream is
created with an array forming the data stream, the size of input, and a list of
access patterns. It may not at first be obvious why a list of access patterns is
required, rather than just a single value. A single access pattern works fine in
the case that a particular stream is destined for a single source but consider the
case when a particular stream is distributed across a number of different ISAs,
e.g. accelerator cores, which may themselves spread the received data across
any number of internal cores. It becomes necessary to associate a particular
target ISA (TargetISA) with a corresponding stream access, allowing the stream
implementation to know at which level a distribution is to be applied.

The streaming functions should be reasonably self-explanatory and the com-
plete set is given in Figure 4.1 A full description of the streaming API is beyond
the scope of this paper and the interested reader is pointed to Gaster et al. for
a detailed presentation [3].

For OpenMP itself Figures 5(a) and 5(b) show the extensions necessary for the
parallel fork-join and producer consumer directives. As discussed in the previous

1 For simplicity we use C++ as our base language.



Streams: Emerging from a Shared Memory Model 141

#pragma omp parallel [clause[[,]clause]...]
structured-block

where clause can be one of
firstprivate(list)

private(list)
shared(list)

reduction(operator:list)
num threads(integer-expression)

connect(list)
(a) Fork-join threading model

#pragma omp task [clause[[,]clause] ...]
structured-block

where clause can be one of
captureprivate(list)

private(list)
shared(list)

switch
connect(list)

(b) Producer-consumer threading model

Fig. 5. Streaming extensions to OpenMP pragmas

section this is reduced to a single additional clause connect, capturing the notion
that a stream defined at an outer scope is to be joined (one-to-many) to the
parallel region’s gang of threads. The stream creation method

static Stream<T> ∗ c r e a t e ( Stream<T> ∗ ) ;

is provided for this and joins a stream to the calling region, which in this case
will be a thread in the parallel region. The resulting stream is then used in place
of the referenced stream within the structured block. On exit from the parallel
region the created stream(s) must be destroyed. For output streams this will
cause the streams to be flushed and data will be moved to the corresponding
stream of the outer scope.

An important consideration when describing a new API for OpenMP must
be how easily it can be expressed in C, C++, and FORTRAN. We choose to
specify the streaming library in C++ as the parametric polymorphism provided
by templates leads to a simple definition. However, while maybe not as com-
pelling when expressed in C or FORTRAN it is straightforward. With careful
use of the preprocessor it is possible to generate much of the boiler-plate code
necessary for parameterized stream types while retaining most of the generic
approach offered by C++. For example, the code in Figure 6 implements a C
macro, STREAMING TY PE(typ), that when instantiated generates the set
of steaming functions for streams of element type typ. While at times not the
most elegant of approaches, it does mean that it is possible to retain type safety
and makes it applicable in the context of FORTRAN.

5 Evaluation

The streaming environment described in this paper has already been imple-
mented within ClearSpeed for developing applications for an IA-32 system with
any number of CSX accelerators. The implementation is factored into two parts:
a source-to-source compiler, based on the Barcelona Supercomputing Center’s
Mercurium compiler [12]; and runtime components for both the IA-32 and CSX.
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#define STREAMING TYPE( typ ) \
stat ic typ ∗ g e t n ex t ## typ ## chunk ( stream s ) { \

return ( ( typ ∗) get next chunk ( s ) ) ; \
} \
stat ic typ g e t n ex t ## typ ## element ( stream s ) { \

return (∗ ( ( typ ∗) ( ho s t g e t nex t e l ement p ( s ) ) ) ) ; \
} \
stat ic void wr i t e n ex t ## typ ## \

e lement ( stream s , typ x ) { \
wr i t e nex t e l ement p ( s , ( char ∗) &(x ) ) ; \

} \
stat ic void \
i n i t ## typ ## stream ( stream s , \

typ ∗ p , \
typ ∗ buf0 , \
typ ∗ buf1 , \
int i n s t r e am s i z e , \
int ou t bu f s i z e , \
stream type t ) { \

i n i t s t r e am ( s , (char ∗) p , (char ∗) buf0 , (char ∗) buf1 ,\
i n s t r e am s i z e , ou t bu f s i z e , s izeof ( typ ) , t ) ; \

}

STREAMING TYPE( int ) ;
STREAMING TYPE( f loat ) ;
STREAMING TYPE(double ) ;

Fig. 6. Using C’s preprocessor to generate a stream API

The streaming API itself is a standard ClearSpeed product for both IA-32
and CSX and required no modifications. The OpenMP compiler expects a single
source input, expressed in C++ with OpenMP SIMD accelerator regions [13],
that is processed to produce corresponding IA-32 (C++) and CSX (Cn [14])
code, compiled by respective compilers.

For this paper we have evaluated our implementation against a small number
of representative benchmarks for performance evaluation. Rather than consid-
ering the performance ratio between a native IA-32 implementation and a CSX
accelerated system—it is easy to show performance improvements for applica-
tions with CSX assistance [2,13]—we considered differences for implementations
in OpenMP with and without streams.

The performance figures for each of the selected benchmarks are given in
Figure 72. The results themselves are of an early nature but they are very en-
couraging as is evident, in particular, from the results for the FFT (performing
10,0000 1k and 2k 2D FFTs), sum (sum of squares of one million doubles), and

2 All benchmarks were compiled with GCC 4.1, optimization level -03, and Clear-
Speed’s latest CSX SDK (3.0).
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Fig. 7. Performance for OpenMP + Streams vs OpenMP codes

dotp (dot product of 1k vector) which all show a performance improvement over
the OpenMP versions, the latter showing a 5x and 7x speedup.

6 Conclusion

In this paper we have presented an approach to extending OpenMP’s shared
memory model for systems where not all memory is shared. Taking the (pos-
sibly) surprising step of assuming a primitive notion for streams it is possible
to extend OpenMP in a modest fashion. The programmer is provided with a
powerful parallel programming abstraction with the ability to describe irregular
data access across distributed memory hierarchies.

In practice the streaming extensions are small and maintain the semantics of
existing programs while providing a natural approach to data partitioning not
present in OpenMP as it stands. Streams themselves provide a natural parallel
programming abstraction and it seems only sensible to consider their application
in a parallel programming language such as OpenMP.

With the introduction of streams as alternative containers to arrays, task level
parallelism may (often) be more convenient than the conventional data parallel
constructs. This is probably due, in part at least, to the fact that OpenMP’s
original parallel constructs were designed with large scale data-parallelism in
mind. With the introduction of task level parallelism it is possible to consider
irregular data access that fits well with the produce-consumer style model that
arises naturally when working with streams.

6.1 Future Work

Multimedia codecs, such a MEG2 and software radio, show a high amount of
data-parallelism and initially seem like a good fit for the data parallel constructs
of OpenMP. The problem is that often fine-grained control flow and data com-
munication is required that makes simply loop parallelization difficult and task
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parallelism finds a better fit. These applications also fit well with gather/scatter
and compute style semantics and an interesting area of future work is to develop
implementations for a selection of multimedia codecs using the model described
in this paper.

As the streams presented in this paper are treated as declarative objects
and their computations can be specified using a small set of combinators. It is
possible, in many cases, for the compiler to optimize the generation of possible
intermediate streams statically. A more detailed discussion of these and other
stream optimizations is outside of the scope of this paper and the interested
reader is pointed to work on Open Accelerator for more information [3]. To date
we have not evaluated the use of these kinds of optimizations in the presence of
OpenMP but believe this to be an interesting avenue for future work.

The shared memory model of OpenMP is known to have problems when scal-
ing to simultaneous multi-threaded (SMT) [15] processors. In particular, when
OpenMP applications are executed on SMT architectures many different forms
of interference between threads has been reported [16]. While not the motiva-
tion for the work described in this paper we believe that streams may provide
an approach to parallel data access that avoids many of the data interference
issues on SMT systems and this is an important area of future work.

Finally, it possible that an implementation of OpenMP built on top of a
streaming API could implicitly connect streams to parallel regions without the
need for the connect clause at all. One problem with this approach comes when
considering extending the connect clause to capture information on intermediate
stream production, which in practice could be optimized away, see Gaster et al.
[3] for an example. In this case an explicit stream connection provides vital static
information that may otherwise be hidden from the compiler.
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Abstract. The boolean satisfiability problem sat is a well-known NP-
Complete problem, which is widely studied because of its conceptual
simplicity. Nowadays the number of existing parallel SAT solvers is quite
small. Furthermore, they are generally designed for large clusters using
the message passing paradigm. These solvers are coarse grained applica-
tion since they divide the search-tree among the processors avoiding com-
munication and synchronization. In this paper mtss, for Multi Threaded
Sat Solver, is introduced. It is a fine grain parallel sat solver, in shared
memory. It defines a rich thread in charge of the search-tree evaluation
and a set of poor threads that will help the rich one by simplifying the
opened node. mtss is well designed for multi-core CPU since it reduces
the memory allocation during the search.

Keywords: combinatorial optimization, satisfiability, dll, collabora-
tive, OpenMP, parallel.

1 Introduction

The boolean satisfiability problem (short for sat) is a well-known NP-Complete
problem[1]. During the last decade, the interest in studying sat has grown sig-
nificantly because of its conceptual simplicity and its ability to express a large
set of various problems. Nowadays, it remains a central problem in artificial
intelligence, logic and computational complexity theory. Thus, it was recently
used as a guide to show the convergence between combinatorial optimization
and the statistical physics of disordered systems and to propose a new class of
algorithms [2]. Within a more practical framework, a lot of works highlight sat

implications in ”real world” problems as diverse as Planning [3], Model Check-
ing [4], Cryptography [5], VLSI design, . . . In recent years several improvements
dedicated, on the one hand to the original backtrack-search dll procedure [6],
and on the over hand to the logical simplification techniques [7] have allowed sat

solvers to be very efficient in solving huge problems from industrial areas [8]1.
In spite of the actual trend in processor development which is from single-core

to multi-core CPU, there is few parallel solving approaches dedicated to the sat

1 http://www.satcompetition.org

R. Eigenmann and B.R. de Supinski (Eds.): IWOMP 2008, LNCS 5004, pp. 146–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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problem and more generally to the combinatorial problems solving. In fact, the
parallel solvers available in the literature are generally dedicated to the mes-
sage passing paradigm. Even if some CSP (Constraint Satisfaction Problems)
solvers in shared memory exist [9], they mainly distribute the search-tree among
the available processors. In this paper, we present a collaborative approach ded-
icated to solve combinatorial problems on shared memory architecture using
the OpenMP Application Program Interface. In other words, only one thread,
named the rich thread, will branch the search-tree while the others, named the
poor threads will try to simplify the opened, not visited by the rich thread,
branches near it. The key advantage of this solution is the data locality involved
by this approach which is interesting when considering multi-core CPU.

This paper is organized as follows. In section 2 we briefly describe the sat

problem and provides an overview of the main techniques used to efficiently
solve it within a sequential framework. Section 3 presents the different works
dedicated to the parallel implementation of the dll procedure. We describe our
approach using the OpenMP API in the section 4. Finally, we provide some
experimental results in section 5

2 Preliminaries

A CNF-Formula (Conjunctive Normal Form) F is a set (interpreted as a conjunc-
tion) of clauses, where a clause is a set (interpreted as a disjunction) of literals.
A literal is a signed propositional variable x or its negation x̄. In the following,
formula (resp. variable) is used instead of CNF formula (resp. propositional vari-
able). An interpretation of F is an assignment of truth values {true, false} to
its variables. Given a set of boolean variables and a formula F , the sat problem
is to decide if there exists an interpretation of F in such a way as to make the
formula evaluate to true. When no such an assignment exists, F is false. In
this latter case, we would say that F is unsatisfiable; otherwise it is satisfiable
and each interpretation satisfying F is a solution.

2.1 The sat Solving

As mentioned above, sat is formulated as a decision problem. However, we
distinguish two related problems. The first one is to find an interpretation that
satisfies F . Local search methods [10] are useful in this case. Nevertheless, there
is no guarantee that such an algorithm will find a solution even if the problem
is known to be solvable. Hence, these approaches are Incomplete. The second
problem related to sat is to provide a proof of the non-existence of a solution of
F . To date, only the enumerative methods which mostly are based on Backtrack-
Search are able to prove efficiently the unsatisfiability [11]. Thus, these methods
scan the search-space systematically and find a solution to the problem if it
exists. If they cannot find a solution, they provide a guarantee that the problem
has no solution. Hence, these methods are complete.
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2.2 The dll Procedure

In this paper we mainly focus on the parallelization of the complete algorithms
where most of them are based on the dll procedure [6]. The dll procedure
appears in the algorithm 1 if not consider the ”then” part of the ”Poor Task”
label. Assigning a variable x = true (resp. x = false) helps to simplify the
current formula by satisfying (and then deleting) all the clauses containing x
(resp x̄) and by contradicting (and then deleting) all the occurrences of x̄ (resp.
x). This is denoted F\x in the algorithm 1. A literal is monotonic when its
opposite does not belong to F . A unit clause is a clause which consists of exactly
one literal. Each unit clause will be satisfied by its unique literal (see ”Unit
Propagation” label in Algorithm 1) unless an empty clause is encountered. The
dll procedure recursively enumerates the search-space by constructing a tree
whose paths correspond to variable assignments. At each node of the search-tree,
a variable v is chosen and the formula F is split into two simpler sub-problems
F\v and F\v̄. If at least one of them contains at least one empty clause, dll

backtracks to the nearest (in term of hamming distance) unvisited assignment
(see ”Backtrack” label). A solution is found when no clause belongs to at least
one of them (see ”Solution” label).

In order to improve the dll procedure, the literature proposes some research
fields which the mains are:

• The choice of the splitting variable (see ”Split” label of the algorithm 1)
determines the order in which search is executed. It is an essential key to
minimize the size of the search-tree. To date, we mainly distinguish splitting
policies dedicated for randomly generated problems [11] and for industrial
problems [8].

• The pruning techniques for dll are related to all techniques which are able
to reduce the domain of the variables. The most known of them is Unit Prop-
agation described above. We refer to the look-ahead, equivalency reasoning,
and more recently the clause recording and non-chronological backtracking.

• The preprocessing of the formula refers to all techniques which simplifiy the
formula before applying dll. For instance we can find restrictive resolution
or hyper-resolution [7] techniques.

3 sat Parallel Solving

During the last decade, a lot of works to improve the sequential resolution run-
time of the sat problem have been proposed and have allowed sat solvers to be
very efficient in solving formulas from which the size and the solving difficulty
increase. Nevertheless, there is to date few parallel solving approaches dedicated
to the sat problem. Moreover, the most of them are dedicated to the message
passing paradigm and use the search-space partitionning to assign work to the
available threads during the runtime. This often leads to use a master-slave
scheme where the most difficult part consists in balancing the workload.
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Among the parallel sat solvers from the literature, we can remark PSATO [12],
based on the sequential solver SATO which introduces the important notion of
guiding path. The guiding path is a dynamic object which represents the partial
ordered interpretation of the splitting variables from the root to the current leaf
of the search-tree during the backtrack-search process. Thus, it defines disjoint
search-spaces respectively assigned to the parallel tasks. The fig. 1(a) provides
a sample illustration of it. Thus, each CPU executes the sequential solver on
each associated subtree rooted at each node of the guiding path. An important
characteristic of the sat search-space is its unbalanced distribution. Hence, it is
hard to predict the time needed to achieve the enumerative process of a branch.
Following the same master-slave model, //satz [13], which is based on the satz

solver, is a parallel distributed solver that uses a dynamic workload balancing.
This solver exhibits the ping-pong phenomenon [13]. It was essentially dedicated
to solve Random k-sat formula [14]. MiraXT [15] and ySAT [16] use the same
scheme as above and integrate the clause learning [17] technique in order to
share logical informations between tasks ; these two solvers are multi-threaded.
GridSAT [18] is a distributed sat solver based on zChaff [8]. It is especially ded-
icated to grid computing. Finally, a new approach named JackSAT [19] uses a
decomposition and join scheme of the variables set.

4 Our Collaborative Approach

In this paper we propose a new parallel scheme of the dll procedure. The first of
our contribution is to enhance the guiding path notion. Thus, we describe in the
fig. 1(b) the notion of guiding tree which is a subset of all dangling nodes of the
search-tree. This new notion is strongly coupled with the two others concepts:
the rich thread and the poor thread.

Conflict

Nodes belonging to guiding path

Nodes next to guiding path

Nodes not explored

Visited branches
Guiding Path
Branches not yet explored

(a) Guiding Path

Conflict

Visited branches
Guiding Path
Guiding Tree

Nodes belonging to guiding path
Nodes belonging to guiding tree

Nodes not explored

(b) Guiding Tree

Fig. 1. Guiding Path and Guiding Tree samples

The rich thread is able to decide if a formula is sat or unsat in a finite
(and exponential) time. The poor thread is able to provide partial or global
information about the formula but without any guarantee (e.g.: unit propaga-
tion, choice heuristic of the splitting variable, local search algorithm, look-ahead,
preprocessing technique, clause learning . . . ).
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4.1 Rich Thread vs. Poor Thread

mtss is not a classical partitionning search-tree with similar solving threads. It
consists in exactly one rich thread dll-like which is helped with an asynchronous
model by one or more poor threads. If none poor contributes to the solving, the
rich thread is equivalent to a classical sequential sat solver. The cooperation
between rich and poor threads is done when rich thread backtracks. At this
instant, the rich thread is able to use logical or structural informations com-
puted by poor threads. On the other hand, the poor threads are entities which
browse the guiding-tree resulting from the rich thread treatment (see fig. 2).
They achieve some tasks according to the node status they are watching and
initiate themselves their job. Hence, there is no other thread dedicated to assign
the jobs (no master/slave model). Moreover, this induces a natural workload
balancing.

Algorithm 1. The Rich Thread (dll-like) procedure
Require: F : a propositional formula

RichThread(F)
if F contains one monotonic literal l. then return RichThread(F\l) (Monotonic
Literal)
if F contains one unit clause containing l. then return RichThread(F\l ) (Unit
Propagation)
if F contains at least one empty clause then return false(Backtrack)
if F is empty then return true(Solution)
v ← one unassigned variable of F (Split)
if dll (F\v) = true then return true

else if At least one Poor Thread has finished its local calculus on the current node
then replace current computing context by the Poor Thread’s one (Poor Task)
else return RichThread(F\v̄))

Conflict

Visited branches
Rich Path

a job
search for

Poor Threads

Fig. 2. Poor threads search themselves job (guiding path)

4.2 Poor Tasks

The poor tasks may be numerous. Nevertheless, to date, our solver named mtss

implements two essential poor tasks needed for winning time. The first one is the
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Algorithm 2. PoorThread procedure
Require: F : a propositional formula
Require: T : a task

PoorThread(F, T)
n ← Root of F-search-tree
while F has no solution

if T can be applied on n then

Apply T on n
if n is the last node of guiding path or threshold reached then

n ← Root of F-search-tree
else n ← next node of the guiding tree from n

backtrack and look-ahead node. When the rich thread visits the node below the
left branch, a poor thread can computes the right one. Thus, the poor thread pre-
computes the formula with the opposite truth value chosen by the rich thread
on the left branch. The second task is the splitting variable selection. If the
first task is finished on a node, the choice of the next splitting variable can be
computed. Thus, if the rich thread must backtrack at this node, the computation
of the formula and the heuristic are already done. The fig. 3(a) illustrates these
tasks. According to our experimental results, the first task is rarely a win of time
cause the time of computation for this task is smaller than the time needed to
load the computation context in processor’s cache memory which is running the
rich thread. The second task takes a long time. Within our practical framework
the rich thread does not use the informations computed by poor threads when
only the first task is ready. Nevertheless, that can generate useless work from
poor threads. To avoid it, we define an empirical threshold value. This value
corresponds to the number of splits from the root to the current node. Beyond
this value, poor threads don’t work (see fig. 3(b)). In this case the rich thread
works alone. The default value of this threshold is set to 5% of the total number of
variables (with the splitting variable selection used - BSH [11] where the number
of splitting variables represents around 10% of total number of variables). Hence,
the poor tasks pratically work until the middle depth of the search-tree.

Finally, we define a third poor task with aim to “open“ the right nodes of
the guiding path and describing the guiding tree. This task can be computed
from any node of the guiding tree and computes either left branch or right
branch if the left one is in course of computation or finished. After computing
the propagation of a literal, it selects the splitting variable. With this third task,
the poor threads simultaneously deploy several partial sub-trees (guiding tree)
rooted in rich path (the guiding path). This task is shown in fig. 4.

In order to maximize the helpful future work of the rich thread and the future
nodes to develop (i.e. the right dangling nodes), the poor thread chooses to first
open left branch from a node belonging to the guiding tree.

Table 1 shows the spending time to swap the context informations from poor
to rich (see the ”rich“ columns) and from rich or poor to poor (see the ”poor“
colums). We clearly can remark that this information exchange cost for rich
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Conflict

Visited branches
Rich Path

Task 1
Task 2

(a) Poor threads’s tasks

Conflict

Threshold

Visited branches
Rich Path

Task 1
Task 2

(b) Threshold system

Fig. 3. Tasks and Threshold

Conflict

Task 1 Task 2

Task 3

Threshold

Visited branches
Rich Path

Fig. 4. Example of execution with the third task

thread decreases as the formula size increases. Poor thread spends much more
time swapping context than the rich thread one because it always begins a task
by copying the current context of a node in its memory, then it computes a task
and finally copies the new computed context in the node. The rich thread never
changes its context but when it takes informations from poor thread.

Table 1. Context swap cost between one poor thread and one rich thread

Execution Time 0.6s. (240 vars) 9.7s. (300 vars) 40s. (350 vars)

Thread rich poor rich poor rich poor

# Swap 327 3,764 2,756 53,383 8,188 170,944

% / Time 0.32% 3.63% 0.17% 3.77% 0.13% 3.74%

Time spent (sec.) 0.00192 0.02178 0.01649 0.36569 0.052 1.496

4.3 Memory Management

Our technique leads to irregular memory time and memory space accesses. To
insure good performances despite that difficulty, we have implemented a specific
memory management. It consists in isolating memory as mentionned in [20] (see
fig. 5). The memory allocations are grouped by usage so that each part will
be contiguous. Thus, cache-faults (cache-miss not required) are restricted. Some
free areas are needed to avoid the allocation of a memory page dedicated to two
areas with different usages. So, each kind of memory is isolated:
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• Private memory for each thread (arrays of some datas in functions...), more-
over each thread memory is isolated too

• Shared and read-only memory (invariant datas as clauses or number of vari-
ables...)

• Read & write shared memory (search-tree) and each node is isolated from
the others
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Private memory for each thread Ti
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Free memory managed by mtss (minimum size: memory page)

Memory not managed by mtss

avoid writing in other processors cache memory

i in {1, n} for n threads

read only read & write

Each node is isolated

Fig. 5. Memory management

To estimate improvements due to this memory locality, we made some bench-
marks shown in fig. 6. We can note a difference between efficiency: with 4 threads,
our solver is 78% efficient versus 63% for a modified solver using classical mallocs.
This difference of efficiency increases with number of threads.
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Fig. 6. Efficiency of our approach using two memory managing policies according to
the number of threads

To avoid waits among threads, beside some specific locks (final solution lock
for example), there are as much locks as branches in the search-tree. Indeed with
the aim to have a very thin granularity of parallelism (two threads on the same
node), a lot of locks are required. That is the reason for which we put two locks
a node.
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5 Experimental Results

5.1 Formulas

The formulas tested are random 3-sat at the pick of difficulty [14] for each size.
Each curve is generated from several computations and for different number of
threads on ten formulas for each size. The benchmarks were on three different
sizes of formulas: 350, 400 and 450 variables. Each curve is the result of a different
threshold (fig 7).

The studied formulas are relatively small: the sequential solving time is around
1, 10 and 120 minutes respectively for the formulas of tiny, medium and huge
size (see table 2).

Table 2. Informations on sequential running time

Sequential Time (s.)
#vars #instances min max mean

350 10 56.606 105.772 79.3038

400 10 162.554 886.551 517.9526

450 10 1,682.609 5,994.016 3,576.3146

5.2 Protocol

The cluster of SMP used for benchmarks is ROMEO II2 from the University
of Reims. 48 dual Core Itanium 2 (Montecito 4M 1.6Ghz) are dedicated to
computation. The cluster is made-up of 6 SMP servers of 8 cores, 1 of 16 cores
and the last SMP node offers 32 cores. Each core of the cluster has at least 2
Gbytes of main memory.

mtss is developed in C language with OpenMP primitives and functions. It
has been compiled with the Intel compiler ICC 10.1.

5.3 Results

As mentioned earlier, the objective is to have an efficient sat solver for multi-core
CPU, this is the reason why the experiments are limited to 8 cores.

For each size of the problem, 10 formulas have been generated. Each formula
has been two times computed with 1, 2, 4 and 8 processors. So, 240 runs have
been conducted to obtain results in fig. 7.

One can observe that mtss achieves good efficiencies until 8 processors even
for the smaller problems (with 350 variables, the efficiency is greater than 60%).
When using only 4 cores, the efficiency measured is closed to 80%. The reader
may notice that we have a fine grain application since mtss threads visit more
than 1700 nodes per second.

2 http://www.romeo2.fr

http://www.romeo2.fr
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Fig. 7. Efficiency graph of random 3-SAT unsatisfiable formulas solving with a ratio
#vars

#clauses
= 4.25 (pick of difficulty) for 350, 400 and 450 variables
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Second, when the size of the problem increases, the efficiency is more and
more higher. The efficiency observed with 450 variables is near from 70% for 8
processors which is 10 points better than with 350 variables.

Third, one can remind that the threshold used to decide if a poor thread is
allowed to treat a node or not, is an arbitrary value. For these experiments the
value varies from 3 to 10% of the number of variables. In practice, it is well-
known that sat solvers will in general not go down beyond this value in the
search tree. So, when considering a value of 10%, it means that there all the
nodes can be visited by the poor threads. By fixing the threshold near from 5%,
the efficiency is improved by 5 to 10%.

6 Conclusion

In this paper, we present a new parallel scheme to improve the main state-of-the-
art enumerative sat solving technique and provide an easy way to use and to
parallelize the existing sequential deduction techniques. Our approach has been
implemented in a new parallel solver named mtss. The current version of mtss

is efficient, but our solver lacks of maturity and is not yet competitive compared
to the best current sequential solvers. Several improvements to speed it up can
be done. The number of poor tasks used in mtss is very limited. Each new poor
task is a new hope to improve it and we plan to study some of the existing ones
such as the preprocessing techniques, subsumption deduction, clause learning,
stochastic local search, . . . Moreover, it could be interesting to study the impact
of swapping poor and rich threads status when a rich thread is waiting for a
poor computation.
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Abstract. The recent trends in processor architecture show that par-
allel processing is moving into new areas of computing in the form of
many-core desktop processors and multi-processor system-on-chip. This
means that parallel processing is required in application areas that tradi-
tionally have not used parallel programs. This paper investigates paral-
lelism and scalability of an embedded image processing application. The
major challenges faced when parallelizing the application were to extract
enough parallelism from the application and to reduce load imbalance.
The application has limited immediately available parallelism. It is dif-
ficult to further extract parallelism since the application has small data
sets and parallelization overhead is relatively high. There is also a fair
amount of load imbalance which is made worse by a non-uniform mem-
ory latency. Even so, we show that with some tuning relative speedups
in excess of 9 on a 16 CPU system can be reached.

Keywords: OpenMP, image processing, parallelization.

1 Introduction

To reach higher performance, processor designers have in the last few decades
focused on clock frequency and elaborate designs that can extract implicit paral-
lelism from sequential code. However, presently that approach leads to diminish-
ing returns and high power consumption. As a consequence, vendors have turned
their focus to multi-core architectures where several processors are placed on a
single silicon chip. Such architectures are inherently explicitly parallel. So far
the programming models for multi-core architectures have been very similar to
the programming models for shared memory multiprocessors.

Embedded systems follow a similar trend where multi-processor
system-on-chip solutions with advanced interconnection networks have been pro-
posed [1,2,3]. Thus, there is a need to explore parallel processing in the context
of embedded systems. Thereby new challenges are exposed as embedded systems
have requirements different from those of high performance computing systems.
In embedded systems, processing time may be more important than processing
throughput.

In this paper, we explore an embedded image processing application and we
investigate its parallel behavior using OpenMP [4]. In short, our contributions
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are: 1) The analysis of an embedded image processing application; 2) A thor-
ough performance evaluation of the parallel properties of the application using
OpenMP.

The major challenges faced when parallelizing the application were to extract
enough parallelism from the application and to reduce load imbalance. The ex-
perimental results show that, with some tuning, relative speedups in excess of 9
on a 16 CPU system can be reached.

The rest of the paper is organized as follows. This section is concluded with a
discussion of related work. In Sect. 2, we describe the application and in Sect. 3
we explain how the application has been parallelized. Experimental results are
presented in Sect. 4. The paper ends with conclusions in Sect. 5.

1.1 Related Work

Parallelization of image processing algorithms for image classification using
OpenMP has previously been presented [5]. The work investigated an algorithm
used for identifying forest areas in satellite images. The algorithm is scaled by
running individual processing steps in parallel and by splitting the data set
into smaller parts. A 64 processor high performance computer was used as test
platform to process the 1.2 gigabyte images. Our work differs in that we present
experiences with a potential embedded application with images two orders of
magnitude smaller, which means that parallelization overhead is more pronounced.

Content-based image retrieval is another application of automated image clas-
sification which can benefit significantly from parallelization. Content-based im-
age retrieval allows advanced image database queries based on image content. A
database query thereby involve processing every image in the database in order
to examine its content. A shared memory parallelization of this application has
been presented previously [6]. The application is made parallel by processing
individual queries and images involved in each query in parallel. In contrast, we
strive to minimize processing latency of a single image by parallelizing the pro-
cessing of the individual image, which requires more fine grained parallelization.

2 Image Processing Application

In this paper, we are focusing on an image processing application developed at
DTU [7] and written in Matlab. The application can be used for many different
purposes. For example, it can be used for identifying the species of a Penicil-
lium fungus in a petri dish from a multi-spectral image [7]. The information is
extracted in the form of scalar values, called features, that each describe some
aspect of the input image. Features are grouped into feature sets, based on ex-
traction method used for the particular features.

The flowchart in Fig. 1 gives an overview of the application. It consists of
three major parts of which only two are shown: Pre-processing/mask genera-
tion, feature generation based on arithmetic and morphological operations and
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feature generation based on scale spaces. In this paper, we focus on the pre-
processing/mask generation and features from arithmetic operations. The sta-
tistical methods for classifying the contents of images are outside the scope of
this paper and are described elsewhere [7].

The remaining parts of this section will describe the algorithm in more detail.

2.1 Pre-processing and Mask Generation

Before information can be extracted from the image, two steps have to be run
on the input.

The pre-processing step produces a noise-filtered normalized image. First, the
pixel-wise average intensity across spectral bands in the multi-spectral input
image is found. The mean of the resulting single-channel image is found and
subtracted from each pixel in the multi-spectral input. Following this, each pixel
is then divided by the standard deviation producing the normalized image. Fi-
nally, a 3 × 3 median filter is used to filter noise, see Fig. 1.

The mask step is used to select the interesting parts of the image, thus its
generation varies depending on what information is extracted. For the input
images used in this paper, the edge detection is used to find the useful parts of
the image. For each pixel, the magnitude of the numerical gradient |(df

dx , df
dy )| is

calculated where f describes the pixel values as function of coordinates (x, y).
The median of the gradient values is found and all pixels whose gradient is
greater than or equal to the median are included in the mask. They correspond
to interesting areas in the image. The mask can be seen as a bit field where each
bit corresponds to a pixel in the image. Each bit indicates if the pixel should be
considered or not.

2.2 Arithmetic Feature Extraction

The mask is applied to each spectral band in the input image by discarding
all pixels not in the mask. Five feature sets are extracted from the masked
spectral bands of the input image, using five different arithmetic operations.
Two operations take a single band at a time, while the other three operate on
all pairs of bands. The two single-operand operations are the no-operation and
the base-10 logarithm. The other three operations find the pixel-wise difference,
product and quotient of all pairs of bands. Each pair is considered only once,
e.g. if Ia − Ib is calculated, Ib − Ia is not.

If the input image has n spectral bands, the operations produce 2n+3n(n−1)
2

data sets. The features of each feature set are extracted from the data sets by
finding the 1st, 5th, 10th, 30th, 50th, 70th, 90th, 95th and 99th percentiles.
Doing so requires the data sets to be sorted individually.

3 Parallelization

We will now discuss the parallelization and the OpenMP implementation of the al-
gorithm described in Sect. 2. The image processing algorithm differs from
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Fig. 1. Overview of immediately available parallelism in the application

traditional high performance computing applications, such as matrix multiplica-
tion and physics simulation by having a significantly smaller data set and shorter
execution time. Thus, the parallelization overhead can not be neglected.

The algorithm has two main parts as illustrated in Fig. 1. The pre-processing
and mask generation part is governed by data dependencies, while the arithmetic
feature extraction has parallelism immediately available among the feature sets,
but also within the individual sets.

Profiling a sequential implementation of the algorithm revealed that 95% of
the execution time is spent in feature extraction. Thus, it is the target for par-
allelization.

To summarize the task parallelism illustrated in Fig. 1, five independent fea-
ture sets are computed, which each produce n or n(n − 1)/2 data sets for which
the features are extracted by finding certain percentiles in the data sets. This
means that the processing required for each feature set differs significantly. The
feature extraction within each feature set should, in theory, be possible to split
into parallel and equally sized workloads. However, non-uniform memory laten-
cies caused by the target architecture may cause the execution time of each such
parallel workloads to differ. Scaling properties are discussed in Sect. 3.1 without
considering architectural effects which are discussed in Sect. 3.2.
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3.1 Scaling Properties

The running times of the feature sets differ by up to a factor of (n − 1)/2
leading to load imbalance problems if different feature sets are run in parallel. In
this paper, we therefore concentrate on extracting parallelism of each individual
feature set.

As mentioned earlier, each feature set has n or n(n−1)/2 equally sized work-
loads immediately available, which can be run in parallel. But if n is less than
the number of available processors |P |, in processor set P , more parallelism must
be extracted from these workloads. This is also advantageous to reduce the im-
balance slack for the feature sets containing n(n − 1)/2 workloads, as this may
not match a multiple of |P |.

Additional parallelism can be extracted by splitting data sets into subsets that
can be computed independently and then recombined. Thereby adding an extra
nested level of parallelism. The arithmetic operations of all feature sets have no
inter-pixel dependencies, which mean that the processing of spectral bands into
data sets can be split without creating any subset border synchronization issues.
The sorting involved in the percentile calculation, can be done on each subset
separately and then merged to recombine the subsets before the percentiles are
found. This allows the arithmetic operations to scale further, but with the over-
head of merge sorting the subsets. It should be noted that the execution time of
sorting each subset decreases by d × log(d), where d is the number of pixels in
the subset, while the time to do the merge sort increases linearly with the num-
ber of subsets. This means that the amount of parallel work decreases and the
sequential part increases with an increasing number of subsets. Thus, the gain of
increasing parallelism is diminishing. In addition, the parallelization overhead,
such as spawning threads and synchronization, may be significant at this level
as the subsets are small.

The two levels of parallelism within each feature set, among data sets and
among subsets, are denoted as l0 and l1 respectively. In our implementation,
the parallelism at each level s0 and s1, can be adjusted independently, though
the parallelism at l0 is limited. The total number of subsets across all data sets
w is given by w = s0 × s1 and constitutes the total number of workloads in
the application. Subset processing time is defined as the wall clock time spent
performing arithmetic operations on the parts of the spectral band data that
corresponds to the subset and time spent sorting the subset.

In order to avoid load imbalance, s0 and s1 should be determined such that
w is equal to or slightly less than a m × |P |, where m is a multiple of the
number of available processors |P |. If w is slightly larger than m × P , only one
or a few processors will be involved in processing the last remaining subsets
while the majority of processors are idle, causing a large slack. The slack will
be reduced by increasing w. But as mentioned earlier, s0 is limited by n or
n(n−1)/2 and s1 is limited by the merge sort overhead, which causes diminishing
parallelization gain. Determining s0 and s1 is a trade off between load imbalance
and parallelization overhead.
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3.2 Non-uniform Memory Latency

The discussion in the previous section holds under the assumption that the
execution time of equally sized workloads do not differ. This assumption will
not hold for architectures with non-uniform memory latencies. Threads running
on processors which have long memory latency will have longer subset processing
times than threads with short memory latency.

In this application all spectral bands of the image are loaded into memory se-
quentially and then processed in parallel. Assuming a first touch memory place-
ment policy in a hierarchical memory system, all image data will be located in
the part of main memory local to the processor loading in the images, e.g. in the
local memory on a Uniboard in a Sun Fire architecture system. A thread run-
ning on a processor associated with a different branch of the memory hierarchy,
e.g. a processor on a different Uniboard than the one holding the main memory
containing the image data, will access all data through the global memory in-
terconnect and therefore have a significant longer memory latency. This is not
easily solved through parallel loading of the spectral images due to the fact that
the data set processing requires all combinations of spectral bands. Thus, the
effective subset processing time depends on the processor.

Combining this effect with the scaling properties, means that even though
the total number of subsets w match the number of available processors, linear
speedup can not be obtained. Consider a system with |P | processors, where
Pl ⊂ P is the subset of processors having local memory access to the image
data and Pr ⊂ P is the subset of processors having remote memory access to
the image data through global memory interconnect. The execution times of a
subset on pi ∈ Pl and pj ∈ Pr are tl and tr respectively, where tr > tl.

In the case of uniform memory latency, where P = Pl and w = m × |Pl|,
the total execution time is given by T = m × tl, neglecting the parallelization
overhead. In the non-uniform case where P = Pl∪Pr , T depends on the workload
scheduling. Consider the case where w equals the number of processors |P |. In
this case every processor will process one subset each. Thus the total execution
time is given by T = max(tl, tr) = tr, if the parallelization overhead is assumed
to be negligible. The processors in Pl finish before the processors in Pr, but the
final results is not available until all processors have finished processing their
subset. In the case where w = 2 × |Pl| + |Pr|, assuming dynamic scheduling,
T = max(2tl, tr) as the processors in Pl will finish two subsets. If 2tl > tr the
remote memory access of Pr, will not influence T . This is illustrated in Fig. 2.
As a consequence of these two cases, resolving load imbalance may not result
in the speedup outlined in Sect. 3.1. This applies to scaling both the number
of processors and subsets, as these are both parameters that influence the load
imbalance. Increasing the number of processors, such that w = 2 × |Pl| + |Pr1|
becomes w = |Pl| + |Pr2|, where |Pr2| = |Pr1| + |Pl|, results in T = tr. Thereby
the total execution time reduction is only 2 × tl − tr, and not tl.

The effect of load imbalance due to non-uniform memory latency also de-
creases significantly when w becomes much larger than the number of proces-
sors. Then again, the amount of parallelism available in the application may
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Fig. 2. Different workload execution times caused by non-uniform memory latency

be limited and comes at a high cost in terms of parallelization overhead. The
optimum solution is a trade off between parallelization overhead and load im-
balance, where load imbalance is caused both by the algorithm itself, but also
the architecture of the target execution platform. It should be noted that this is
based on dynamic workload scheduling. Static workload scheduling will perform
worse, due to execution time variation among the workloads.

3.3 OpenMP Implementation

The application was originally implemented in Matlab, and then ported to C
using standard libraries only, without OpenMP parallelization in mind. It was
then modified to meet the requirements for OpenMP parallelization.

In the sequential algorithm implementation, each feature set is implemented
as loops, where each iteration performs the arithmetic operation on a spectral
band or pair of spectral bands, to form a new data set from which features are
extracted. Unary arithmetic operators are applied to each individual spectral
band in feature sets 1 and 2. These are implemented by a single loop through all
the spectral bands. The feature sets 3, 4 and 5 are based on binary arithmetic
operations which are implemented by first generating the list of pairs to be
processed, and then process one pair for each iteration in a single loop.

Two different OpenMP versions have been implemented. One of the versions
use nested parallelism and the other does not.

The nested version has two levels of parallelism. The first level of parallelism,
l0, consists of the aforementioned loop over data sets. This loop is parallelized
using the OpenMP [4] for loop workload sharing construct with dynamic schedul-
ing.

Within each l0-thread the data set is further split into subsets processed by
a loop, which forms the nested parallelism level l1. One thread is created for ev-
ery subset. Creating more threads than processors will enable operating system
schedulers capable of dynamic thread migration to load balance the proces-
sors. However, spawning more threads than processors may also induce a large
scheduling overhead in the operating system.

To avoid relying on the operating system thread load balancing capabilities a
non-nested version has also been made. To flatten the two levels of parallelism,
all s1×n or s1×n(n−1)/2 subsets are enumerated and then processed in a single
parallel for loop. The number of threads is thereby completely independent of
how many subsets the data sets are split into.
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To avoid cache and memory effects, the data sets must be merged as soon as
all their subsets have been processed. Doing so ensures that as much as possible
of the processed data remains in processor caches. This has been implemented by
making the thread finishing processing the last subset of a data set merge all the
subsets. Experiments have indicated that this can improve performance by 4%
to 18%. A consequence of the non-nested version is that the subset processing
times are not equal. Thus, dynamic scheduling is used for the workload sharing
construct. Although the non-nested version is more complex than the nested,
the extra book-keeping code does not negatively influence the execution time.

4 Results and Discussion

This section presents results obtained by running the nested and non-nested par-
allelized algorithm implementations using 16 processor cores on the test platform
and compares these with the scalability issues discussed in Sect. 3.

4.1 Test Setup

In the presented results, the algorithm has been used to calculate all arithmetic
feature sets of the input images. The input images are ten images, each containing
nine spectral bands in a resolution of 777×776 pixels. The light intensity of each
pixel is represented by a double precision floating point number.

The test platform used for producing the results in this paper is a Sun Fire
E6900. The machine has 48 UltraSPARC IV CPUs. Each processor has two
cores running at 1200 MHz and has 8 MB L2 cache per core. The machine is
running Solaris 10. Compilation has been done using the Sun C compiler ver-
sion 5.9 patch 124867-01 using these options: -fast -xarch=sparcvis2 -m32
-xopenmp=parallel -lm.

The image loading time has been excluded from the measurements by loading
all ten images, one by one, into main memory before they are processed. Warm
up is done by processing all ten images once. The presented results are based
on the average execution times of ten or 20 consecutive runs of each feature set,
where all ten images are processed. The number of runs is determined by the
run time of the particular test case. This is done to increase the accuracy of the
measurements, as the processing time is limited by the image size. Using larger
input images is not representative for the practical use of the algorithm and will
lead to unrealistic results.

The average sequential execution times for feature sets 2 and 3 are 35 s and
127 s respectively, processing all ten multi-spectral image.

4.2 Parallel Efficiency

All tests have been limited to a maximum of 16 processor cores. Several par-
allelization approaches have been tested to investigate how the two levels of
parallelism, l0 and l1, influence the parallel efficiency. It should be noted that
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even though all tests have 16 processors available, they may not all be utilized,
depending on the number of threads in the particular test case. The nested ver-
sion creates more than 16 threads in some tests. In order to prevent the threads
to use more than 16 processor cores in these cases, a 16 core processor affinity
set was specified using the SUNW MP PROCBIND environment variable for all runs
with the nested version. This method may potentially lead to uneven load on
the cores, but dynamic workload scheduling counters this effect and it is not
observable in the results. Even though the main focus of the tests is parallel
efficiency, scalability trends can also be extracted from the results of the nested
version.

Figures 3 and 4 illustrate the speedup obtained in feature sets 2 and 3 for the
nested version by increasing the number of threads at l0 with different data set
partitioning at l1. As mentioned in Sect. 3.3, one l1-thread is created for each
subset. The measurements of feature set 1, 4 and 5 are not significantly different
from what can be observed in feature set 2 and 3, thus they are not shown.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

l
0
−threads

S
pe

ed
up

Subsets = 1
Subsets = 2
Subsets = 4
Subsets = 8
Subsets = 16

Fig. 3. Speedups for the nested version
of feature set 2 with 16 processors
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Fig. 4. Speedups for the nested version
of feature set 3 with 16 processors

Parallelization at l0 does not impose any parallelization overhead except for
thread creation overhead. However, parallelism is limited to nine l0 threads.
Linear relative speedup should be expected, when more threads can be created
to utilize more processors. This can be observed in Fig. 3 for one to eight threads
with no data set partitioning for feature set 2, which means w = 9. As discussed
in Sect. 3.2, going from eight to 16 threads would double the theoretical speedup
since load imbalance is improved. However, a speedup of only 1.5 is obtained,
because tr > tl meaning that data has to be fetched from a remote Uniboard
leading to higher memory latency.

This effect has been confirmed by measuring the execution time of each l0-
thread, when running three and nine threads in parallel without any nested
l1-threads. The Sun Fire E6900 UltraSPARC IV Uniboards have four processors
each with two cores, which means that if more than eight threads are used,
some of them will be running on different processor boards. Figures 5 and 6
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show histograms of thread execution time using three and nine threads. It can
be seen that using three threads, the histogram is a uniform distribution with a
narrow range, while the histogram of nine threads is spread out. The lower part
represents threads running on the board that holds the main memory containing
the images, while the upper part is slow threads running on a different board.
The ratio between a fast and a slow thread match the speedup obtained going
from eight to 16 l0-threads in Fig. 3.
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Fig. 5. Thread execution time histogram
when running 3 threads
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Fig. 6. Thread execution time histogram
when running 9 threads

As discussed in Sect. 3.1 parallelization at l1 has sequential overhead. This can
be observed in Figs. 3 and 4 when comparing the speedups of tests with one l0-
thread and increasing the number of l1 threads. Even though more processors are
utilized, the sequential merge eventually outweighs the parallelization speedup.
Having more threads than processors also adds thread switching overhead as
several threads share a single processor core. It can be observed on both Figs. 3
and 4 that matching s0 × s1 = |P | leads to best results in general.

The effects observed in the results of feature set 2 can also be seen for fea-
ture set 3. However, the amount of parallelism available at l0 is potentially 36
data sets. This leads to better parallel efficiency as less parallelism needs to
be extracted at the l1 level, where the sequential parts are limiting. The effi-
ciency observed in feature set 2 is considered more realistic for real uses of this
application, as only a subset of the features is typically needed [7].

The coupling between parallelization and the number of threads is removed in
the non-nested version. Splitting the data sets creates more workloads that may
lead to better workload balancing among the threads. In Figs. 7 and 8, it can be
observed that the non-nested version performs up to 20% better than the nested
version. We believe that the performance difference is because the non-nested
version will not spawn more threads than processors. This leads to less thread
switching overhead and potentially better cache performance.
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Fig. 7. Speedups for the non-nested ver-
sion of feature set 2 with 8 and 16 pro-
cessors
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5 Conclusions

This paper has investigated an image processing application that can be targeted
for a future multi-processor system-on-chip embedded system. Such a system is
inherently parallel, and the major challenges in parallelizing the application have
been identified.

These challenges include limited directly exploitable parallelism, a significant
parallelization overhead caused by small workloads and difficult load balancing
which is aggravated by non-uniform memory latencies.

We have shown that despite these challenges, a relative speedup in excess of
9 on a 16 CPU system can be achieved.

We have experimented with different parallelization approaches. In the results
we can observe that a version of the application with nested parallelism is less
efficient than a more elaborate version with a single level of parallelism.

Acknowledgements

We gratefully acknowledge the support from the Danish Center for Scientific
Computing at the Technical University of Denmark. In particular we acknowl-
edge the technical support from Bernd Dammann. We also would like to thank
Jens Sparsø for many thoughtful comments.

References

1. Magarshack, P., Paulin, P.: System-on-chip beyond the nanometer wall. In: Design
Automation Conference, Proceedings, pp. 419–424 (2003)

2. Benini, L., De Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35(1),
70–78 (2002)



Parallelism and Scalability in an Image Processing Application 169

3. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L.,
De Micheli, G.: NoC synthesis flow for customized domain specific multiproces-
sor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems 16(2),
113–129 (2005)

4. OpenMP Architecture Review Board: OpenMP Application Program Interface 2.5
(2005), http://www.openmp.org

5. Phillips, R., Watson, L., Wynne, R.: Hybrid image classification and parameter se-
lection using a shared memory parallel algorithm. Computers and Geosciences 33(7),
875–897 (2007)

6. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-memory parallelization for
content-based image retrieval. ECCV Workshop on Computation Intensive Methods
for Computer Vision, Graz, Austria (May 2006)

7. Clemmensen, L.H., Hansen, M.E., Frisvad, J.C., Ersboll, B.K.: A method for com-
parison of growth media in objective identification of penicillium based on multi-
spectral imaging. Journal of Microbiological Methods 69(2), 249 (2007)

http://www.openmp.org


Scheduling Dynamic OpenMP Applications over
Multicore Architectures

François Broquedis, François Diakhaté, Samuel Thibault,
Olivier Aumage, Raymond Namyst, and Pierre-André Wacrenier

INRIA Futurs - LaBRI — Université Bordeaux 1, France

Abstract. Approaching the theoretical performance of hierarchical mul-
ticore machines requires a very careful distribution of threads and data
among the underlying non-uniform architecture in order to minimize
cache misses and NUMA penalties. While it is acknowledged that
OpenMP can enhance the quality of thread scheduling on such archi-
tectures in a portable way, by transmitting precious information about
the affinities between threads and data to the underlying runtime system,
most OpenMP runtime systems are actually unable to efficiently support
highly irregular, massively parallel applications on NUMA machines.

In this paper, we present a thread scheduling policy suited to the
execution of OpenMP programs featuring irregular and massive nested
parallelism over hierarchical architectures. Our policy enforces a distri-
bution of threads that maximizes the proximity of threads belonging to
the same parallel region, and uses a NUMA-aware work stealing strat-
egy when load balancing is needed. It has been developed as a plug-in to
the forestGOMP OpenMP platform [TBG+07]. We demonstrate the
efficiency of our approach with a highly irregular recursive OpenMP pro-
gram resulting from the generic parallelization of a surface reconstruction
application. We achieve a speedup of 14 on a 16-core machine with no
application-level optimization.

Keywords: OpenMP, Nested Parallelism, Hierarchical Thread Schedul-
ing, Bubbles, Multi-Core, NUMA, SMP.

1 Introduction

Cache-coherent multiprocessor architectures now commonly introduce multiple
levels of locality preference between processor and caches or memory banks.
The penalty paid for non-local memory accesses can deeply affect speed-ups
when such expensive accesses frequently occur throughout application runs. It is
therefore acknowledged that multithreaded programs must carefully distribute
threads onto the processors to minimize both cache misses and NUMA penal-
ties. Traditional “opportunistic” scheduling approaches used by most operating
systems fail in exploiting hierarchical architectures efficiently however, because
they lack information about application behaviour.

Successfully using NUMA architectures requires an in-depth knowledge of
the application behaviour in terms of memory access patterns, affinity and
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inter-thread collaborations, relationship and synchronization. Gao et al. share
this analysis [GSS+06]: They emphasize the importance of exposing domain-
specific knowledge semantics to the underlying scheduling layer. Parallel lan-
guages such as OpenMP, that rely on the combination of a dedicated compiler
and a set of code annotations to extract the parallel structure of applications
and to generate scheduling hints for the underlying runtime system, are a great
step forward in this respect. However, they currently miss architecture-aware
runtime systems that would make an effective and thorough exploitation of the
gathered knowledge at runtime. As quoted in a proposal for task parallelism in
OpenMP [ACD+07]: “The overhead associated with the creation of parallel re-
gions, the varying levels of support in different implementations, the limits to the
total number of threads in the application and to the allowed levels of parallelism,
and the impossibility of controlling load balancing, make this approach imprac-
tical”. Moreover, most advanced OpenMP compilers [TTSY00,HD07,THH+05,
BS05, DGC05] (featuring super lightweight threads, work stealing techniques,
etc.) are not yet NUMA-aware.

In this paper, we present an extension to the GNU OpenMP runtime sys-
tem that is capable of running dynamic irregular programs over NUMA mul-
ticore machines very efficiently. Our runtime generates nested sets of threads
called bubbles, which encapsulate threads sharing common data, each time an
OpenMP parallel region is encountered [TBG+07]. We have designed a NUMA-
aware scheduling policy that dynamically maps these bubbles onto the various
levels of the underlying hierarchical architecture. When load balancing needs
to be performed, threads are thus redistributed with respect to their affinity
relations. We validate our approach using the OpenMP version of a real-life ap-
plication (the MPU [OBA+03] parallel surface reconstruction algorithm) that
features a highly irregular divide-and-conquer parallel structure based on a re-
cursive refinement process. We show that the OpenMP version of this program
clearly draws a substantial benefit from our approach.

2 An OpenMP Platform for Developing and Tuning
NUMA-aware Thread Scheduling Policies

To deal with dynamic, irregular OpenMP applications, we claim that the key step
is to transmit information extracted by the compiler to the underlying thread
scheduler in a continuous way. Indeed, only a tight integration of application-
provided meta-data and architecture description can let the underlying runtime
system take appropriate decisions during the whole application run time.

Thus we have designed “forestGOMP ”, an extension to the GNU OpenMP
runtime system [gom] that relies on the Marcel/BubbleSched thread schedul-
ing package. BubbleSched provides facilities for attaching various information
to groups of threads called bubbles, together with a framework that helps to
develop schedulers capable of using these metadata.
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2.1 Related Work

The numerous studies and papers [MAN+99, TTSY00, DSCL04, DGC05, BS05,
GSW+06, aMST07] that emphasized multilevel parallelism as a promising path
toward scalability with OpenMP, gradually brought compiler researchers and
vendors to put more of their efforts on OpenMP nested parallelism. Modern
OpenMP compilers have some support for nested parallelism and either rely
on an efficient user-level thread library (NANOS Nthlib [GOM+01], Omni/ST
[TTSY00], OMPi [HD07]) or on a pool of threads avoiding useless and costly
creation/destruction (Intel Compiler [TGS+03,TGBS05], OdinMP [Kar05]).

For instance, Omni/ST is based on a fine-grain thread management system
that uses a fixed number of threads to execute an arbitrary number of fila-
ments, as with the Cilk multithreaded system [FLR98]. The performance ob-
tained over symmetrical multiprocessors is often very good, mostly because many
tasks can be executed sequentially with hardly any overhead when all processors
are busy.

To deal with hierarchical architectures, the OMPi C Compiler uses user-level
non-preemptive threads that are inserted in the processor runqueues in the fol-
lowing way: threads that are spawned at the first level of parallelism are dis-
tributed cyclically and appended at the tail of the ready queues. Inner level
threads are inserted at the head of the ready queue of the processor that cre-
ated them. In order to favor data locality, an idle processor extracts threads
from the head of its local queue and steals work from the tail of the remote
ones. Moreover the work-stealing scheme follows the computer hierarchy. How-
ever, neither Omni/ST nor OMPi provide any support for annotating generated
tasks with high level information such as memory affinity. The theft of a thread
blindly ignores and breaks the affinity relation between threads that were cre-
ated together. This may put a strain on the performance on hierarchical, NUMA
multiprocessors.

Several OpenMP language extensions have been proposed to control the allo-
cation of work to the participating threads. The mechanism in GOMP [GOM+01]
to control the binding of threads is useful to tune an application for a given
computer. Binding, however, is non-portable from the performance point of
view. In order to favor affinities in a more portable manner, the NANOS com-
piler [DGC05, AGMJ04] allows to associate groups of threads with parallel re-
gions in a static way. The OpenUH Compiler [CHJ+06] proposes a mecanism to
accurately select the threads of a subteam, although this proposition does not
involve nested parallelism.

Finally, the KAI/Intel [STH+04] and the NANOS Mercurium compilers
[BDG+04] support task parallelism and a proposal for parallel tasks in OpenMP
3.0 has been written [ACD+07]. This is a major step towards natural support
of MIMD applications in OpenMP. Moreover, the OpenMP task paradigm will
naturally lead to the generation of structured parallelism, so we claim that the
techniques presented in this paper will also be beneficial to programs featuring
task parallelism.
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3 A Scheduling Policy Guided by Affinity Hints

The challenge of a scheduler for the nested parallelism resides in how to distribute
the threads over the machine. This must be done in a way that favors both a
good balancing of the computation and, in the case of multi-core and NUMA
machines, a good affinity of threads, for better cache effects and avoiding the
remote memory access penalty.

3.1 Assumptions

Divide and conquer algorithms generate intensively cooperating groups of threads
that run smoother if they are scheduled on the same limited subset of processors. A
baddistribution of these collaborating entities results inmultiple expensiveNUMA
accesses over hierarchical architectures, that lowers the general performance of par-
allel applications. Alternatively, a distribution that considers those affinity rela-
tions entails a better use of cache memory, and improves local memory accesses.

The Affinity bubble-scheduler is specifically designed to tackle irregular ap-
plications based on a divide and conquer scheme. In this aim, we consider that
each bubble contains threads and subbubbles that are heavily related, most of
the time through data sharing. We assume that the best thread distribution is
obtained by scheduling each entity contained in a bubble on the same processor,
sometimes breaking the load balancing scheme, even if a local redistribution is
needed once in a while. This scheduler provides two main algorithms, to dis-
tribute thread and bubble entities over the different processors initially, and to
rebalance work if one of them becomes idle.

3.2 Initial Thread Distribution

Entities scheduled in the same bubble should not be torn apart. Nevertheless
a bubble can be required to extract its contents to increase the number of ex-
ecutable entities in order to occupy every processor of the architecture. This
bubble is then said to be exploded. The runqueue level where a bubble ex-
plodes during the distribution is crucial to determine whether affinity relations
are preserved or not. For instance, if a bubble is exploded on the top level of the
topology, its contents can be scheduled on any processor. Therefore the Affinity
thread distribution algorithm delays these explosions as much as possible, to
maximize locality between the released entities.

More precisely, this first scheduling step is based on a mere recursive algorithm
to greedily distribute the hierarchy of bubbles and threads over the hierarchy
of runqueues. Upon each call, the algorithm counts the entities available to
be distributed from the considered runqueues. If there are enough entities to
occupy the complete set of processors covered by the runqueues, entities are
greedily distributed over the underlying lists. Otherwise, the algorithm analyzes
the contents of each available bubble to determine the ones that hold enough
threads or subbubbles to occupy a complete subset of processors on their own. If
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Fig. 1. Threads and bubbles distribution by the Affinity scheduler

so, bubble explosions are delayed to a further step, thus avoiding early separation
of collaborating entities.

Figure 1(a) shows the initial state of this recursive algorithm which has been
developed to guarantee bubbles and threads distribution from the most general
level of the topology, representing the whole computer, to the most specific
ones. Figure 1(c) shows the resulting distribution, where only the main top-
level bubble has exploded. This approach obviously values affinity relations over
load balancing, and could not be efficient without a NUMA-aware work stealing
algorithm that rearranges the thread distribution when a processor turns to be
inactive.

3.3 NUMA-aware Work Stealing

The irregular behaviour of some applications prevents estimation of the load
of each created thread. This lack of load hints forces the Affinity scheduler
to equally consider every entity. As a result, a continuous thread creation and
destruction scheme may unbalance the initial thread repartition, and some of
the processors may become idle.

The Affinity scheduler implements a dedicated work stealing algorithm to
prevent these processors from remaining inactive for too long. This algorithm
tracks down lists to steal from, from the most local lists to the most global one
if necessary, expanding the search domain as long as no eligible runqueue has
been found. Entities are thus stolen as locally as possible. If several entities are
usable for work stealing, the Affinity scheduler arbitrarily picks the most loaded
one, considering the number of recursively contained threads. If only one bubble
is found during the stealing process, its contents are browsed to pick a complete
subtree of entities, as illustrated by figures 1(d). When a thread, or a bubble,
is finally chosen, the algorithm moves its ancestors to the most internal level of
the topology common to the source runqueue and the idle processor, to avoid
locking convention issues.
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3.4 Discussion

A call to the Affinity’s thread distribution algorithm generally results in assign-
ing a tree of entities to every processor, similar to the Cilk language or OMPi
approaches to deal with divide and conquer applications. Statistically, the work-
ing load left to an entity located in the upper part of the tree is bigger than the
one executed by the leaves-positioned threads. The Affinity scheduler therefore
tries to steal from the top of the entity hierarchy, but differs from Cilk imple-
mentations by (1) looking for eligible subtrees as close as possible from the idle
processor, instead of randomly picking a victim runqueue, and (2) stealing a set
of threads that work together rather a lonely thread (like OMPi does). This way
of stealing respects the hierarchical nature of both NUMA architectures and the
application parallelization scheme.

4 Implicit Surface Reconstruction Application

With Affinity and several features of Marcel, it is now possible to parallelize
many recursive divide and conquer algorithms, using a naive approach and simple
OpenMP constructs, and yet to obtain good speedups. To back our claim, we
show that an extremely irregular divide and conquer algorithm, the Multi-Level
Partition of Unity algorithm (MPU) [OBA+03], can be parallelized efficiently
only by adding a few lines of code to its implementation.

This surface reconstruction algorithm processes a cloud of points sampling
a geometric surface, so as to compute a mathematical representation of this
sampled surface. Its main use is related to 3D scanners, that is, devices that are
capable of sampling the surface of a physical object by extracting a finite set
of 3D points. Reconstructing the whole surface from its samples is required for
many applications ranging from rendering to physical simulations.

Thanks to its divide and conquer scheme it is one of the fastest reconstruction
algorithms available. Starting from a box containing the whole cloud of points, it
tries to fit a simple surface (a quadric) to the points. This surface is implicit, which
means that it is defined by a real valued function defined over the entire space and
whose value is zero for every point of the implicit surface. If the fitted surface does

Fig. 2. Adaptive surface fitting using a recursive subdivision of space which forms a
tree hierarchy. Each box is subdivided until the fitted surface is close enough to the
points. The resulting surface is a weighted average of each local approximation using
partition of unity functions.
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void Node::compute () {
computeApprox();
if(_error > _max_error) {

splitCell();
for(int i=0; i<8; i++)

_children[i]->compute ();
}

}

Fig. 3. Sequential MPU code to pro-
cess a node. An approximation is com-
puted and the node is subdvided if it
is not precise enough. This process is
then repeated recursively.

void Node:: compute () {
computeApprox();
if(_error > _max_error) {

splitCell();
#pragma omp parallel for

for(int i=0; i<8; i++)
_children[i]->compute ();

}
}

Fig. 4. Parallel MPU code to process
a node. A single OpenMP directive has
been added to indicate that every node
can be processed concurrently.

not approximate the points closely enough, that is, if there are points too far away
from the fitted surface, the box is subdivided into 8 subboxes, thus forming an oc-
tree. This process is applied recursively to each child box until the error between
each approximation and the points of its box is small enough (see Figure 2).

This divide and conquer approach is made possible by the use of partition
of unity functions. Indeed, using these functions makes it possible to define the
global reconstructed surface as a weighted average of each function defining the
local surface approximations. The weight of each local approximation in the
weighted average at a given point in space is at its highest at the center of its
box, and decreases as the distance to this center increases.

What makes this technique especially attractive is that there is no “stitching”
involved between locally computed surfaces. This makes parallelization easier be-
cause such a step would require many synchronisations between threads working
on neighbour nodes. Therefore this algorithm is well suited to parallelization
since every node of the tree can be processed concurrently. The difficulty resides
in balancing the work between the processors as the tree is very irregular and
there is no simple way to predict where the tree is going to be refined. Ideally
the programmer should be able to simply express that the function calls for
processing the nodes can be executed concurrently and the runtime would be
responsible for balancing this work on the processors.

OpenMP provides constructs that are very well suited to this task, and par-
allelizing this algorithm using OpenMP is a matter of inserting a few lines of
code to indicate that each time a node is subdivided, its 8 children can be pro-
cessed concurrently (see Fig. 3 and 4). Running such an application efficiently
is challenging for however, because runtime systems need not only to deal with
a large number of thread creations/destructions (up to tens of millions for large
datasets), but also to schedule them in a way that optimizes memory locality.

5 Evaluation

We validated our approach by experimenting with the MPU application on a
cloud of 437644 points, which leads to the creation of 101185 threads.
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The target machine holds 8 dualcore AMD Opteron chips (hence a total of 16
cores) and 64GB of memory. The measured NUMA factor between chips varies
from 1.06 (for neighbor chips) to 1.4 (for most distant chips). We tested both the
Native POSIX Thread Library of Linux 2.6 (NPTL) and the Marcel library,
partitioning the set of usable cores in order to execute our tests on respectively
2, 4, 8 and 16 cores. The results can be seen on figure 5.

We first tried non-nested approaches to compare the behaviour of these two
libraries. Each parallel construct generates a number of threads equal to the
number of available cores. The MPU algorithm divides the computed surface in
eight different subdomains, every time the refinement primitive is called. Run-
ning non-nested tests with a number of threads exceeding 8 is thus not relevant,
only the first eight ones will be occupied. The Marcel thread scheduler oper-
ates at user-level, and is less preemptive than the one used by NPTL. MPU thus
runs much faster with Marcel threads.

In the next experiments, we allowed the GOMP compiler to create extra
threads when a nested parallel construct is encountered. This approach theoret-
ically suits the MPU application divide and conquer nature. We achieved the
best speedups by creating 4 threads at each parallel section. Allowing nested ap-
proaches results in creating a great number of threads, and thread creation and
management primitives are more expensive in a kernel-level thread library like
NPTL. Those used by Marcel are lighter, which explains why it scales better.
On the other hand, neither the runtime system of those libraries has sufficient
information about threads’ relations to adjust their distribution, so that related
threads may be executed by cores located on different NUMA nodes, and the
speedup is yet a bit limited. On the contrary, respecting affinity relations by
locally scheduling groups of threads results in much better speedups, as can be
seen on the Affinity curve.

We then evaluated the effectiveness of Affinity’s NUMA-aware scheduling al-
gorithm by running two tests. In the first test, the MPU application is unmodified
but the work stealing algorithm of Affinity is replaced by a random work stealing
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algorithm: the victim is elected from a randomly chosen runqueue. The achieved
speedup on 16 cores varies between 8.2 and 11.82.

In the second test, the MPU application is modified. A single thread is bound
per processor, which is used to schedule tasks in the form of lightweight threads.
An idle thread tries to steal tasks from the most local queues when necessary. The
structure of the application allows this version to use a lock-free stealing strategy
most of the time, in a Cilk-like manner. The result is that the Cilk-like version
obtains the best speed-up, 15.05 on 16 cores, at the cost of portability, since
the MPU application was modified to integrate this algorithm. With a speedup
of 14.04 out of 16 cores, the forestGOMP results almost reach the cilk-like
results, without sacrificing either portability or generality in application-specific
optimizations.

6 Conclusion

To exploit nowaday’s multiprocessor machines at their full potential, it is cru-
cial to transmit affinity relationships between application threads to the un-
derlying runtime system scheduler. Efficiently scheduling an application on top
of a NUMA architecture indeed requires an accurate knowledge of both the
machine and the application behaviour in order to make appropriate NUMA-
aware scheduling decisions at runtime. Parallel programming languages such as
OpenMP are therefore inherently promising since they are particularly fitted for
transparent information gathering.

In this paper, we presented a scheduling policy called Affinity embedded in our
GOMP-based OpenMP scheduling framework and programming environment.
Affinity is built on the bubble concept and the rich set of manipulation primi-
tives offered by the Marcel/BubbleSched hierarchical scheduler toolkit to let
the application programmer naturally express the thread cooperation affinities
and to follow these hints in the actual scheduling process. The experiments we
conducted on MPU, a real-life highly irregular surface reconstruction application
made a strong case in validating our approach in terms of development easiness
for the programmer, portability and performance. Our approach is therefore a
way for experts to build complex scheduling strategies that take characteristics
of the application into account. Using and mixing such strategies, application
programmers get a greater control on scheduling of their OpenMP programs.

In the near future, we intend to investigate two main directions. First, we are
currently extending our BubbleSched platform with advanced memory man-
agement primitives in order to allocate, register and potentially migrate memory
areas used within bubbles on NUMA architectures. This will enable us to take
into account memory “attraction” when computing thread redistribution pat-
terns and to operate data movements when significant thread redistributions
have to be performed. Second, forestGOMP could use static code analysis in
determining the groups of threads that are effectively sharing data, and esti-
mating bubble thickness. This information would improve the way the Affinity
scheduler distributes entities, by naturally preferring the less cooperating threads
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groups when a bubble must be exploded. This attribute could even be enriched
by dynamically refreshed hardware statistics on memory access frequency. Both
directions will benefit from our ongoing work towards supporting OpenMP 3.0
tasks in forestGOMP.

References

[ACD+07] Ayguade, E., Copty, N., Duranl, A., Hoeflinger, J., Lin, Y., Massaioli, F.,
Su, E., Unnikrishnan, P., Zhang, G.: A proposal for task parallelism in
OpenMP. In: Third International Workshop on OpenMP (IWOMP 2007),
Beijing, China (2007)

[AGMJ04] Ayguade, E., Gonzalez, M., Martorell, X., Jost, G.: Employing Nested
OpenMP for the Parallelization of Multi-Zone Computational Fluid Dy-
namics Applications. In: 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2004)

[aMST07] an Mey, D., Sarholz, S., Terboven, C.: Nested Parallelization with
OpenMP. Parallel Computing 35(5), 459–476 (2007)

[BDG+04] Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta,
J.: Nanos mercurium: A research compiler for openmp. In: European Work-
shop on OpenMP (EWOMP) (October 2004)

[BS05] Blikberg, R., Sørevik, T.: Load balancing and OpenMP implementation of
nested parallelism. Parallel Computing, 31(10-12):984–998 (October 2005)

[CHJ+06] Chapman, B.M., Huang, L., Jin, H., Jost, G., de Supinski, B.R.: Extend-
ing openmp worksharing directives for multithreading. In: EuroPar 2006
Parallel Processing (2006)

[DGC05] Duran, A., Gonzàles, M., Corbalán, J.: Automatic Thread Distribution for
Nested Parallelism in OpenMP. In: 19th ACM International Conference on
Supercomputing, Cambridge, MA, USA, June 2005, pp. 121–130 (2005)

[DSCL04] Duran, A., Silvera, R., Corbalán, J., Labarta, J.: Runtime adjustment of
parallel nested loops. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS,
vol. 3349, Springer, Heidelberg (2005)

[FLR98] Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-
5 Multithreaded Language. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Montreal, Canada
(June 1998)

[gom] GOMP – An OpenMP implementation for GCC,
http://gcc.gnu.org/projects/gomp/

[GOM+01] Gonzalez, M., Oliver, J., Martorell, X., Ayguade, E., Labarta, J., Navarro,
N.: OpenMP Extensions for Thread Groups and Their Run-Time Support.
In: Languages and Compilers for Parallel Computing, Springer, Heidelberg
(2001)

[GSS+06] Gao, G.R., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: Hierarchical
multithreading: programming model and system software. In: 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS) (April
2006)

[GSW+06] Gerndt, A., Sarholz, S., Wolter, M., an Mey, D., Bischof, C., Kuhlen, T.:
Nested OpenMP for Efficient Computation of 3D Critical Points in Multi-
Block CFD Datasets. In: Super Computing (November 2006)

http://gcc.gnu.org/projects/gomp/


180 F. Broquedis et al.

[HD07] Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested Parallelism in the OMPi
OpenMP/C compiler. In: EuroPar, Rennes,France, July 2007, ACM, New
York (2007)

[Kar05] Karlsson, S.: An Introduction to Balder - An OpenMP Run-time Library
for Clusters of SMPs. In: International Workshop on OpenMP (IWOMP)
(June 2005)

[MAN+99] Martorell, X., Ayguadé, E., Navarro, N., Corbalán, J., González, M.,
Labarta, J.: Thread Fork/Join Techniques for Multi-Level Parallelism Ex-
ploitation in NUMA Multiprocessors. In: International Conference on Su-
perComputing, pp. 294–301. ACM Press, New York (1999)

[OBA+03] Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level
partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

[STH+04] Su, E., Tian, X., Haab, M.G.G., Shah, S., Petersen, P.: Compiler Support
of the Workqueuing Execution Model for Intel SMP Architectures. In:
European Workshop on OpenMP (EWOMP) (October 2004)

[TBG+07] Thibault, S., Broquedis, F., Goglin, B., Namyst, R., Wacrenier, P.-A.: An
Efficient OpenMP Runtime System for Hierarchical Architectures. In: In-
ternational Workshop on OpenMP (IWOMP), Beijing,China, June 2007,
pp. 148–159 (2007)

[TGBS05] Tian, X., Girkar, M., Bik, A., Saito, H.: Practical Compiler Techniques on
Efficient Multithreaded Code Generation for OpenMP Programs. Comput.
J. 48(5), 588–601 (2005)

[TGS+03] Tian, X., Girkar, M., Shah, S., Armstrong, D., Su, E., Petersen, P.: Com-
piler and Runtime Support for Running OpenMP Programs on Pentium-
and Itanium-Architectures. In: Eighth International Workshop on High-
Level Parallel Programming Models and Supportive Environments, April
2003, pp. 47–55 (2003)

[THH+05] Tian, X., Hoeflinger, J.P., Haab, G., Chen, Y.-K., Girkar, M., Shah, S.: A
compiler for exploiting nested parallelism in OpenMP programs. Parallel
Comput. 31(10-12), 960–983 (2005)

[TTSY00] Tanaka, Y., Taura, K., Sato, M., Yonezawa, A.: Performance evaluation
of openmp applications with nested parallelism. In: Languages, Compilers,
and Run-Time Systems for Scalable Computers, pp. 100–112 (2000)



Visualizing the Program Execution Control Flow

of OpenMP Applications�

Karl Fürlinger and Shirley Moore

Innovative Computing Laboratory,
EECS Department,

University of Tennessee, Knoxville
{karl,shirley}@eecs.utk.edu

Abstract. One important aspect of understanding the behavior of an
application with respect to its performance, overhead, and scalability
characteristics is knowledge of its control flow. In comparison to sequen-
tial applications the situation is more complicated in multithreaded par-
allel programs because each thread defines its own independent control
flow. On the other hand, for the most common usage models of OpenMP
the threads operate in a largely uniform way, synchronizing frequently
at sequence points and diverging only to operate on different data items
in worksharing constructs.

This paper presents an approach to capture and visualize the control
flow of OpenMP applications in a compact way that does not require a
full trace of program execution events but is instead based on a straight-
forward extension to the data collected by an existing profiling tool.

1 Introduction

An important aspect of understanding the behavior of a parallel application is
knowledge about its control flow. In the context of this paper we define the con-
trol flow as the sequence in which an application executes blocks of code, where
a block of code might be as big as a function body or as small as individual
statements. Typically, as we will discuss later, in our approach the individual
elements of the control flow representations are the source code regions corre-
sponding to whole OpenMP constructs such as parallel regions, critical sections,
functions, or user-defined regions. A user can add individual statements to the
control flow representation by manually instrumenting them, but typically the
user-defined regions would be larger and at least contain a couple of statements.

To motivate the benefit of knowing the control flow of an application, consider
the following simple example. Assume our application calls two functions foo()
and bar() as show in Fig. 1a. The gprof output corresponding to an execution
of this application is shown in Fig. 1c. Now consider the alternative version in
Fig. 1b. Analyzing these two applications with gprof gives exactly the same
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profile, even though the control flow with respect to the functions foo() and
bar() is different. In the first example bar() is always called after foo() (20
times) while in the second case foo() is the predecessor of bar() in the control
flow only once (at the beginning of the loop), while it is its own predecessor 19
times. This is visualized in Figs. 1d and 1e, respectively.

void main() {
int i;
for( i=0; i<20; i++ ) {

  foo();
/* ... */

  bar();
 }
}

(a) Version A.

void main() {
int i;
for( i=0; i<20; i++ ) {

  foo();
 } 

/* ... */
for( i=0; i<20; i++ ) {

  bar();
 }
}

(b) Version B.

index % time    self  children    called     name
                                                 <spontaneous>
[1]    100.0    0.00    9.77                 main [1]
                4.94    0.00      20/20          foo [2]
                4.83    0.00      20/20          bar [3]
-----------------------------------------------
                4.94    0.00      20/20          main [1]
[2]     50.6    4.94    0.00      20         foo [2]
-----------------------------------------------
                4.83    0.00      20/20          main [1]
[3]     49.4    4.83    0.00      20         bar [3]
-----------------------------------------------

(c) gprof profile, versions A and B.

201 1

19

foo() 
20

bar() 
20

(d) Control flow of version A.

1

1919

1 1foo() 
20

bar() 
20

(e) Control flow of version B.

Fig. 1. A simple example demonstrating that differences in the control flow are not
reflected in runtime profiles

Knowledge about the control flow can be important with respect to perfor-
mance considerations related to data locality and reuse. If foo() and bar() work
on the same data items, version A keeps data in cache which can be beneficial
over version B, which iterates over all data items twice. Evidently the control
flow information is not retained in the gprof profiles, as in both cases the func-
tions have been called the same number of times and in both cases bar() as well
as foo() have been called from main(). Hence, analyzing the callgraph cannot
uncover the control flow information.

One approach to recover the control flow is of course to do a full trace of all
enter and exit events of all interesting functions, constructs or other source code
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regions and to visually analyze this trace with tools like Vampir [9], Intel Trace
Analyzer [4] or Paraver [10]. However, with raw trace visualization it can be
cumbersome to visualize the essential parts of the control flow as the number of
events is often overwhelming. In this paper, we discuss an approach that shows
that full tracing is not necessary and that the control flow information can be
uncovered using a simple extension of a profiling tool.

The rest of this paper is organized as follows: the next section introduces
the profiling tool that we extended to extract the control flow information and
describes the necessary extensions. Sect. 3 then discusses the visualization of
the control flow for OpenMP constructs and presents an example control flow
of an application from the NAS parallel benchmark suite. In Sect. 4 we describe
related work and in Sect. 5 we conclude and outline directions for future work.

2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications designed for Unix-like sys-
tems. Since it is independent of the OpenMP compiler and runtime system, it
works with any OS/compiler combination. ompP differs from other profiling tools
like gprof or OProfile [7] in primarily two ways. First, ompP is a measurement
based profiler and does not use program counter sampling. The instrumented
application invokes ompP monitoring routines that enable a direct observation of
program execution events (like entering or exiting a critical section). The direct
measurement approach can potentially lead to higher overheads when events are
generated very frequently, but this can be avoided by instrumenting such con-
structs selectively. An advantage of the direct approach is that the results are not
subject to sampling inaccuracy and hence they can also be used for correctness
testing in certain contexts.

The second difference lies in the way of data collection and representation.
While general profilers work on the level of functions, ompP collects and displays
performance data in the user model of the execution of OpenMP events [5]. For
example, the data reported for critical section contain not only the execution
time but also list the time to enter and exit the critical construct (enterT and
exitT, respectively) as well as the accumulated time each threads spends inside
the critical construct (bodyT) and the number of times each thread enters the
construct (execC). An example profile for a critical section is given in Fig. 2

R00002 main.c (20-23) (unnamed) CRITICAL
TID execT execC bodyT enterT exitT

0 1.00 1 1.00 0.00 0.00
1 3.01 1 1.00 2.00 0.00
2 2.00 1 1.00 1.00 0.00
3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Fig. 2. Profiling data delivered by ompP for a critical section
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Profiling data in a similar style is delivered for each OpenMP construct, the
columns (execution times and counts) depend on the particular construct. Fur-
thermore, ompP supports the query of hardware performance counters through
PAPI [1] and the measured counter values appear as additional columns in the
profiles. In addition to OpenMP constructs that are instrumented automatically
using Opari [8], a user can mark arbitrary source code regions such as func-
tions or program phases using a manual instrumentation mechanism. Function
calls are automatically instrumented on compilers that support this feature (e.g.,
-finstrument-functions) for the GNU compilers.

Profiling data are displayed by ompP both as flat profiles and as callgraph
profiles, giving both inclusive and exclusive times in the latter case. The call-
graph profiles are based on the callgraph that is recorded by ompP. An example
callgraph is shown in Fig. 3. The callgraph is largely similar to the callgraphs
given by other tools, such as callgrind [11], with the exception that the nodes are
not only functions but also OpenMP constructs and user-defined regions, and
the (runtime) nesting of those constructs is shown in the callgraph view. The
callgraph that ompP records is the union of the callgraph of each thread. That
is, each node reported has been executed by at least one thread.

ROOT [critical.i686.ompp: 4 threads]
REGION +-R00004 main.c (40-51) (’main’)

PARALLEL +-R00005 main.c (44-48)
REGION |-R00001 main.c (20-22) (’foo’)
REGION | +-R00002 main.c (27-32) (’bar’)

CRITICAL | +-R00003 main.c (28-31) (unnamed)
REGION +-R00002 main.c (27-32) (’bar’)

CRITICAL +-R00003 main.c (28-31) (unnamed)

Fig. 3. Example callgraph view of ompP

2.1 Data Collection to Reconstruct the Control Flow Graph (CFG)

As discussed in the introduction, the callgraph does not contain enough infor-
mation to reconstruct the CFG. However, a full trace is not necessary either. It
is sufficient to keep a record that lists all predecessor nodes and how often the
predecessors have been executed for each callgraph node. A predecessor node is
either the parent node in the callgraph or a sibling node on the same level. A
child node is not considered a predecessor node because the parent–child rela-
tionship is already covered by the callgraph representation. An example of this
is shown in Fig. 4. The callgraph (lower part of Fig. 4) shows all possible pre-
decessor nodes of node A in the CFG. They are the siblings B and C, and the
parent node P . The numbers next to the nodes in Fig. 4 indicate the predecessor
nodes and counts after one iteration of the outer loop (left hand side) and at the
end of the program execution (right hand side), respectively.

Implementing this scheme in ompP was straightforward. ompP already keeps a
pointer to the current node of the callgraph (for each thread) and this scheme
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P() {
  for(i=1; i<5; i++ ) {
    A();
    B();
    C();
  }
}

 P
  +-A
  |  +-X
  |  +-Y
  +-B
  +-C
     +-Z

(P:1)
(A:1)
(X:1)
(A:1)
(B:1)
(C:1)

 P
  +-A
  |  +-X
  |  +-Y
  +-B
  +-C
     +-Z

(P:1,C:4)
(A:5)
(X:5)
(A:5)
(B:5)
(C:5)

A() {
  X();
  Y();
}

C() {
  Z();
}

predecessor
list

predecessor
list

Fig. 4. Illustration of the data collection process to reconstruct the control flow graph

is extended by keeping a previous node pointer as indicated above. Again this
information is kept on a per-thread basis, since each thread can have its own
independent callgraph as well as flow of control.

The previous pointer always lags the current pointer one transition. Prior to
a parent → child transition, the current pointer points to the parent while the
previous pointer either points to the parent’s parent or to a child of the parent.
The latter case happens when in the previous step a child was entered and exited.
In the first case, after the parent → child transition the current pointer points
to the child and the previous pointer points to the parent. In the latter case the
current pointer is similarly updated, while the prior pointer remains unchanged.
This ensures that the previous nodes of siblings are correctly handled.

With current and previous pointers in place, upon entering a node, informa-
tion about the previous node is added to the list of previous nodes with an
execution count of 1, or, if the node is already present in the predecessor list, its
count is incremented.

3 Visualizing the CFG of OpenMP Applications

The data generated by ompP’s control flow analysis can be displayed in two forms.
The first form visualizes the control flow of the whole application, the second is a
layer-by-layer approach. The full CFG is useful for smaller applications, but for
larger codes it can quickly become too large to comprehend and cause problems
for automatic layout mechanisms. An example of an application’s full control
flow is shown in Fig. 5. The code corresponds to the callgraph of Fig. 3 where
the critical section’s body contains work for exactly one second.

Rounded boxes represent source code regions. That is, regions correspond-
ing to OpenMP constructs, user-defined regions or automatically instrumented
functions. Solid horizontal edges represent the control flow. An edge label like
i|n is interpreted as thread i has executed that edge n times. Instead of drawing
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0:3|5

0:3|5

0:3|5

0|1

0:3|5

0|1

0:3|5

0|4

R00004.0 USER REGION 
main.c (40-51) ('main')

R00005.0 PARALLEL 
main.c (44-48)

R00001.0 USER REGION 
main.c (20-22) ('foo')

R00002.1 USER REGION 
main.c (27-32) ('bar')

R00002.0 USER REGION 
main.c (27-32) ('bar')

R00003.0 CRITICAL 
main.c (28-31) (unnamed) 

enterT: ( 7.01, 0.00, 8.01,15.02) 
bodyT: ( 5.01, 5.01, 5.01, 5.01)

R00003.1 CRITICAL 
main.c (28-31) (unnamed) 

enterT: (15.03,15.03,15.03,15.03) 
bodyT: ( 5.01, 5.01, 5.01, 5.01)

Fig. 5. An example for a full control flow display of an application

each thread’s control flow separately, threads with similar behavior are grouped
together. For example the edge label 0–3|5 means that threads 0, 1, 2, and 3 com-
bined executed that edge 5 times in total. This greatly reduces the complexity
of the control flow graph and makes it easier to understand.

For each node the box contains the most important information. This includes
the type of the region (such as CRITICAL), the source code location (file name
and line number) and performance data. Due to space limitations the included
performance data do not list the full profile but only the most important aspects
for the particular construct. This information includes the overall execution time
as well as the most likely cause for a potential bottleneck. For critical sections
this is the time required to enter the construct (enterT) and for parallel loops
it is the waiting time at the implicit barrier, for example.

Dotted vertical lines represent control flow edges from parent to child (with
respect to the callgraph). The important difference in interpreting these two
types of edges is that a solid edge from A to B means that B was executed after
A finished execution while a dotted line from C to D means that D is executed
(or called) in the context of C (i.e., C is still “active”).

The graphs shown in Figs. 5 and 6 are created with the Graph::Easy tool [2],
which takes a textual description of the graph and generates the graph in HTML,
SVG, or even ASCII format. For graphs that are not overly complicated the
automated layout engine of Graph::Easy does a very good job. However, for
bigger graphs a full control flow graph can be unwieldy and it is advisable to do
a layer-by-layer visualization in this case.

An example of the layer-by-layer visualization is shown in Fig. 6. Here each
graph only shows a single layer of the callgraph, i.e., a parent node and all its
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child nodes. Since the predecessor nodes of each node are only its siblings or
the parent node, this view is sufficient to cover the local view of the control
flow graph. The horizontal and vertical edges have the same meaning as in the
previous case. To indicate which nodes have child nodes, the text box contains
a (+) sign. Clicking on such a node brings up the control flow graph of the child
nodes to allow an interactive exploration of the CFG.

The example in Fig. 6 is derived from an execution of the CG benchmark of
the OpenMP version of the NAS parallel benchmarks [6] (class C) on a 4-way
AMD Opteron processor node (1.8 GHz, 3 GB of main memory). The application
is automatically instrumented with Opari and the initialization phase and the
iteration loop have been additionally instrumented manually.

As shown in Fig. 6a, the application spends 17.8 seconds in the initialization
phase and then executes 75 iterations of the main iteration loop with a total
of 702.6 seconds of execution time. Fig. 6b shows the control flow of the ini-
tialization phase, while Fig. 6c is the control flow of the main iteration loop.
The initialization proceeds in a series of parallel constructs and parallel loops1.
Significant time is only spent in the regions R00017 and R00027.

Fig. 6c shows the control flow of the iteration loop. We see a nested loop
around the R00017 parallel region which is executed 1875 times in total and
represents by far the most time consuming region. Region R00017 is called in
the initialization as well as in the iteration phase. Drilling down to this parallel
region in Fig. 6d, we see that it contains four loops (R00018, R00019, R00020,
R00021) of which the first one is the most time consuming. The performance data
include the waiting time at the end of worksharing regions (exitBarT). It is an
indicator for load imbalance but does show any severe performance problems in
this case.

Note that in Figs. 6a, 6b, and 6c the edges are only executed by the master
thread (thread 0). Since the application executes sequentially in the phases out-
side of parallel regions (only the master thread is active). Only after a parallel
region is entered, a thread team (with four threads in this case) is created and
several threads show up in the control flow graph as in Fig. 6d.

4 Related Work

Control flow graphs are an important topic in the area of code analysis, gener-
ation, and optimization. In that context, CFGs are usually constructed based
on a compiler’s intermediate representation (IR) and are defined as directed
multi-graphs with nodes being basic blocks (single entry, single exit) and nodes
representing branches that a program execution may take (multithreading is
hence not directly an issue). The difference to the CFGs in our work is primarily
twofold. First, the nodes in our graphs are generally not basic blocks but they are
usually larger regions of code containing whole functions. Secondly, the nodes in
our graphs record transitions that have actually happened during the execution
and also contain a count that shows how often the transition occurred.
1 A parallel loop is one of OpenMP’s combined parallel-worksharing constructs.
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0|1

0|1 0|74

R00001.0 USER REGION 
cg.f (101-470) ('main') 

bodyT: (720.39) 
(+)

R00002.0 USER REGION 
cg.f (103-305) ('initialization') 

bodyT: (17.76) 
(+)

R00011.0 USER REGION 
cg.f (321-374) ('iteration_loop') 

bodyT: (702.63) 
(+)

(a) Toplevel control flow

0|10|10|1

0|1

R00002.0 USER REGION 
cg.f (103-305) ('initialization') 

bodyT: (17.76) 
(+)

R00003.0 PARALLEL 
cg.f (186-190) 

bodyT: ( 0.00, 0.00, 0.00, 0.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

0|10|1

R00028.0 PARALLEL 
cg.f (982-1004) 

bodyT: ( 0.28, 0.28, 0.28, 0.28) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

0|1

0|1

R00022.0 PARALLEL 
cg.f (683-705) 

bodyT: ( 0.36, 0.36, 0.36, 0.36) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

0|1

0|1

0|1

0|1

R00025.0 PARALLEL 
cg.f (788-811) 

bodyT: ( 0.17, 0.33, 0.49, 0.64) 
exitBarT: ( 0.48, 0.32, 0.16, 0.00)

R00004.0 PARALLEL 
cg.f (209-234) 

bodyT: ( 0.05, 0.05, 0.05, 0.05) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

R00008.0 PARALLEL LOOP 
cg.f (266-272) 

bodyT: ( 0.00, 0.00, 0.00, 0.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

R00026.0 PARALLEL 
cg.f (865-879) 

bodyT: ( 0.03, 0.04, 0.04, 0.03) 
exitBarT: ( 0.01, 0.00, 0.00, 0.01)

R00014.0 PARALLEL 
cg.f (521-545) 

bodyT: ( 0.00, 0.00, 0.00, 0.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

R00009.0 PARALLEL LOOP 
cg.f (280-284) 

bodyT: ( 0.00, 0.00, 0.00, 0.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

R00027.0 PARALLEL 
cg.f (899-973) 

bodyT: ( 7.24, 7.29, 7.32, 7.38) 
exitBarT: ( 0.14, 0.09, 0.06, 0.00)

0|24

R00017.0 PARALLEL 
cg.f (557-671) 

bodyT: ( 9.00, 9.00, 9.00, 9.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

R00010.0 PARALLEL LOOP 
cg.f (295-299) 

bodyT: ( 0.00, 0.00, 0.00, 0.00) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

(b) Control flow of the “initialization” phase

0|750|75 0|75 0|75

0|75

R00011.0 USER REGION 
cg.f (321-374) ('iteration_loop') 

bodyT: (702.63) 
(+)

R00014.1 PARALLEL 
cg.f (521-545) 

bodyT: ( 0.15, 0.15, 0.15, 0.15) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

0|1800

R00017.1 PARALLEL 
cg.f (557-671) 

bodyT: (675.23,675.20,675.21,675.25) 
exitBarT: ( 0.10, 0.12, 0.12, 0.09) 

(+)

R00022.1 PARALLEL 
cg.f (683-705) 

bodyT: (26.81,26.81,26.81,26.81) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00) 

(+)

R00012.0 PARALLEL LOOP 
cg.f (347-353) 

bodyT: ( 0.02, 0.02, 0.02, 0.02) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

R00013.0 PARALLEL LOOP 
cg.f (368-372) 

bodyT: ( 0.02, 0.02, 0.02, 0.02) 
exitBarT: ( 0.01, 0.01, 0.01, 0.01)

(c) Control flow of the “iteration phase”

0:3|18750:3|18750:3|1875

0:3|1875

R00017.1 PARALLEL 
cg.f (557-671) 

bodyT: (675.23,675.20,675.21,675.25) 
exitBarT: ( 0.10, 0.12, 0.12, 0.09) 

(+)

R00018.1 LOOP 
cg.f (572-580) 

bodyT: (668.68,668.01,670.43,668.37) 
exitBarT: ( 2.80, 3.47, 1.05, 3.12)

R00019.1 LOOP 
cg.f (622-626) 

bodyT: ( 0.75, 0.75, 0.72, 0.74) 
exitBarT: ( 0.09, 0.09, 0.12, 0.10)

R00020.1 LOOP 
cg.f (643-656) 

bodyT: ( 1.60, 1.64, 1.59, 1.61) 
exitBarT: ( 0.12, 0.09, 0.13, 0.11)

R00021.1 LOOP 
cg.f (666-670) 

bodyT: ( 0.71, 0.69, 0.69, 0.71) 
exitBarT: ( 0.00, 0.00, 0.00, 0.00)

(d) Most time is spent in the region R00017

Fig. 6. Four layers of the control flow graph of the CG application of the NAS parallel
benchmarks (class C)

Dragon [3] is a performance tool from the OpenUH compiler suite. It can display
static as well as dynamic performance data such as the callgraph and control flow
graph. The static information is collected from OpenUH’s analysis of the source
code, while the dynamic information is based on the feedback guided optimiza-
tion phase of the compiler. In contrast to our approach, the displays are based on
the compiler’s intermediate representation of source code. The elements of our vi-
sualization are the constructs of the user’s model of execution to contribute to a
high-level understanding of the program execution characteristics.
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5 Conclusion

We have presented an approach to visualize the control flow graph of OpenMP
applications. We have extended an existing profiling tool to collect the data
required for the visualization and used a versatile automated layout tool to
generate the graph images.

We believe that the CFG represents valuable information to anyone trying
to understand the performance characteristics of an application. Naturally, the
author of a code might be very well aware already of their application’s control
flow and benefit little from the insight ompP’s control flow graph can offer. For
someone working on a foreign code and especially for big and unfamiliar appli-
cations, we believe the CFG view is very helpful to get an understanding of the
application’s behavior, to understand the observed performance behavior and to
identify tuning opportunities.

Future work is planned in several directions. First, ompP cannot currently han-
dle nested parallelism but adding support for this is planned for a future release.
Visualizing nested parallelism will pose new challenges when displaying the con-
trol flow graph as well. Secondly, we plan to develop an integrated viewer for
the profiling data delivered by ompP, eliminating the need for an external graph
layout mechanism. Among other graphical displays such as overhead graphs this
viewer will also be able to display the control flow graph. We plan to support
both the full CFG display as well as the layered approach in an interactive way,
i.e., navigating between the nodes of the control flow graph and call graph and
linking this information to the detailed profiling data as well as the source code.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.J.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

2. The graph::easy web page, http://search.cpan.org/∼tels/Graph-Easy/
3. Hernandez, O., Liao, C., Chapman, B.: Dragon: A Static and Dynamic Tool for

OpenMP. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 53–66.
Springer, Heidelberg (2005)

4. Intel Trace Analyzer, http://www.intel.com/software/products/cluster/
tanalyzer/

5. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for
profiling. In: Accepted by the OpenMP ARB as an official ARB White Paper
available online, http://www.compunity.org/futures/omp-api.html

6. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical Report NAS-99-011 (1999)

7. Levon, J.: OProfile, A system-wide profiler for Linux systems. Homepage,
http://oprofile.sourceforge.net

8. Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Towards a performance tool in-
terface for OpenMP: An approach based on directive rewriting. In: Proceedings of
the Third Workshop on OpenMP (EWOMP 2001) (September 2001)

http://search.cpan.org/~tels/Graph-Easy/
http://www.intel.com/software/products/cluster/tanalyzer/
http://www.intel.com/software/products/cluster/tanalyzer/
http://www.compunity.org/futures/omp-api.html
http://oprofile.sourceforge.net


190 K. Fürlinger and S. Moore

9. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69–90 (1996)

10. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visualise and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam De-
velopments, vol. 44, pp. 17–31. IOS Press, Amsterdam (1995)

11. Weidendorfer, J., Kowarschik, M., Trinitis, C.: A Tool Suite for Simulation Based
Analysis of Memory Access Behavior. In: Bubak, M., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 440–447. Springer,
Heidelberg (2004)



Author Index

Aumage, Olivier 170
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Wagner, Marcus 48
Wong, H.J. 60


	Title Page
	Preface
	Organization
	Table of Contents
	A Microbenchmark Study of Open MP Overheads under Nested Parallelism
	Introduction
	Nested Parallelism in OpenMP
	The Microbenchmark Methodology
	Extensions for Nested Parallelism

	Results
	Conclusion

	CLOMP: Accurately Characterizing OpenMP Application Overheads
	Introduction
	Characteristics of Scientific Applications
	The CLOMP Benchmark Implementation
	Experimental Results
	OpenMP Overheads Measured with EPCC
	Capturing the Impact of OpenMP Overheads with CLOMP

	Conclusion and Future Work

	Detection of Violations to the MPI Standard in Hybrid OpenMP/MPI Applications
	Introduction
	Hybrid MPI Applications
	Restrictions for Hybrid MPI Applications

	Example
	Constraints for the Restrictions
	Applying an MPI Checker to a Hybrid Application
	Instrumenting the Application
	Propositions on Correctnes
	Synchronization

	First Implementation of Checks
	Detection with Artificial Data Races
	General Design
	Detection of Thred Level Violation
	Detection of Wrong Communicator Usage
	Detection of MPI_Probe Invalidation
	Detection of Wrong Request Usage
	Detection of Erroneus MPI_Finalize

	Results with Intel® Thread Checker
	Conclusion

	Early Experiments with the OpenMP/MPI Hybrid Programming Model
	Introduction
	What the Standards Say
	Visualizing the Behavior of Hybrid Programs
	Jumpshot
	Jumpshot and Threads

	The Hybrid Environments
	Experiments
	Basic Tests
	NAS Benchmarks

	Conclusions and Future Work

	First Experiences with Intel Cluster OpenMP
	Introduction
	OpenMP
	Memory Model
	Intel Cluster OpenMP

	Micro-benchmarks
	Applications
	Jacobi
	Sparse Matrix-Vector-Multiplication
	GMRES Solver
	PANTA
	Fire

	Tool Support
	Conclusions and Future Work

	Micro-benchmarks for Cluster OpenMP Implementations: Memory Consistency Costs
	Introduction
	MCBENCH: A Memory Consistency Benchmark
	Two Software Supported OMP Implementations
	Experimental Results
	Analysis: Software OMP Implementations
	Analysis: Hardware OMP Implementation

	Conclusions

	Incorporation of OpenMP Memory Consistency into Conventional Dataflow Analysis
	Introduction
	The OpenMP Memory Consistency Model
	Incorporation of OpenMP Memory Consistency into the Dataflow Analysis
	Identification of Shared Data
	Making OpenMP Constructs Explicit
	Relaxation of Sequential Consistency
	Adjustment for Flushes
	Proof of Correctness
	Applications of the OpenMP Producer-Consumer Flow Graph

	Related Work
	Conclusions

	STEP: A Distributed OpenMP for Coarse-Grain Parallelism Tool
	Introduction
	Context
	The Goals of Our Work
	An Illustrative Use Case

	Description of the STEP Prototype
	Parallel Execution Model
	PIPS Array Regions Analysis
	First Step: Outlining
	Second Step: Analysis
	Third Step: Compilation
	Results

	Related Work
	Conclusion and Future Work

	Evaluation of OpenMP Task Scheduling Strategies
	Introduction
	Motivation and Related Work
	Task Scheduling
	Breadth-First Scheduling
	Work-First Scheduling
	Cutting Off

	Evaluation
	Applications
	Methodology
	Results

	Conclusions and Future Work

	Extending the OpenMP Tasking Model to Allow Dependent Tasks
	Introduction
	Motivation
	Proposed Extension
	StarSs Pragmas and Execution Model
	StarSs and OpenMP

	Additional Runtime Features
	Preliminary Evaluation
	Conclusions

	OpenMP Extensions for Generic Libraries
	Introduction
	Motivation
	Extensions to OpenMP
	The for Construct
	The Reduction Clause
	The Requires Clause

	Prototype Implementation
	Conclusion
	References

	Streams: Emerging from a Shared Memory Model
	Introduction
	Related Work
	Overview
	Extending OpenMP with Streams
	Evaluation
	Conclusion
	Future Work


	On Multi-threaded Satisfiability Solving with OpenMP
	Introduction
	Preliminaries
	The {\sc sat} Solving
	The {\sc dll} Procedure

	{\sc sat} Parallel Solving
	Our Collaborative Approach
	Rich Thread vs. Poor Thread
	Poor Tasks
	Memory Management

	Experimental Results
	Formulas
	Protocol
	Results

	Conclusion

	Parallelism and Scalability in an Image Processing Application
	Introduction
	Related Work

	Image Processing Application
	Pre-processing and Mask Generation
	Arithmetic Feature Extraction

	Parallelization
	Scaling Properties
	Non-uniform Memory Latency
	OpenMP Implementation

	Results and Discussion
	Test Setup
	Parallel Efficiency

	Conclusions

	Scheduling Dynamic OpenMP Applications over Multicore Architectures
	Introduction
	An OpenMP Platform for Developing and Tuning NUMA-aware Thread Scheduling Policies
	Related Work

	A Scheduling Policy Guided by Affinity Hints
	Assumptions
	Initial Thread Distribution
	NUMA-aware Work Stealing
	Discussion

	Implicit Surface Reconstruction Application
	Evaluation
	Conclusion

	Visualizing the Program Execution Control Flow of OpenMP Applications
	Introduction
	The OpenMP Profiler ompP
	Data Collection to Reconstruct the Control Flow Graph (CFG)

	Visualizing the CFG of OpenMP Applications
	Related Work
	Conclusion

	Author Index



