
HCV Quasispecies Assembly Using Network Flows

Kelly Westbrooks1,�, Irina Astrovskaya1,�, David Campo2, Yury Khudyakov2,
Piotr Berman3, and Alex Zelikovsky1

1 Department of Computer Science, Georgia State University, Atlanta, GA 30303
{csckew,iraa,alexz}@cs.gsu.edu

2 Centers for Disease Control and Prevention, Atlanta, GA 30333
{fyv6,yek0}@cdc.gov

3 Department of Computer Science and Engineering, Pennsylvania State University
University Park, PA 16802
berman@cse.psu.edu

Abstract. Understanding how the genomes of viruses mutate and evolve within
infected individuals is critically important in epidemiology. By exploiting knowl-
edge of the forces that guide viral microevolution, researchers can design drugs
and treatments that are effective against newly evolved strains. Therefore, it is
critical to develop a method for typing the genomes of all of the variants of a
virus (quasispecies) inside an infected individual cell.

In this paper, we focus on sequence assembly of Hepatitis C Virus (HCV)
based on 454 Lifesciences system that produces around 250K reads each 100-
400 base long. We introduce several formulations of the quasispecies assembly
problem and a measure of the assembly quality. We also propose a novel scalable
assembling method for quasispecies based on a novel network flow formulation.
Finally, we report the results of assembling 44 quasispecies from the 1700 bp
long E1E2 region of HCV.

1 Introduction

Many viruses found in nature encode their genomes in RNA rather than DNA. While
the problem of sequencing an organism’s DNA is well-studied, sequencing RNA viruses
presents its own unique set of challenges. Perhaps the biggest challenge associated with
sequencing RNA viruses is that they lack DNA polymerases and are unable to repair
mistakes in their sequences as they reproduce. Over the course of infection, the mistakes
made in replication are passed down to descendants, producing a family of related vari-
ants of the original viral genome referred as a quasispecies.

The allele frequencies across all of the quasispecies in an infected individual may
drift significantly. Among all of the new quasispecies produced, some may be more
virulent than others. Thus, it is of epidemiological interest to identify common charac-
teristics of virulent quasispecies to aid in the design of effective drugs and treatments
for the disease that the virus causes. This paper is devoted to the problem of sequencing
of all quasispecies inside a patient based on 454 Lifesciences system.

454 Lifesciences system is one promising technology that may prove useful for se-
quencing quasispecies. It is a massively-parallel pyrosequencing system developed by

� Partially supported by GSU Molecular Basis of Disease Fellowship.

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



160 K. Westbrooks et al.

biotechnology firm 454 Lifesciences for DNA sequencing. Briefly, the system frag-
ments the source genetic material to be sequenced into pieces approximately 100 bp
long called reads. Each read is sequenced and the original genome is reconstructed via
software. Since this system was originally designed to sequence genetic material from a
single organism, the software assembles all of the reads to a single genome. In order to
use it for sequencing quasispecies, new software must be created that can also correctly
distribute reads between multiple quasispecies.

Informally, the Quasispecies Assembly problem can be stated as follows: Given a set
of reads taken from a single specimen, determine how many quasispecies are present
and what are their sequences.

Quasispecies Assembly is related to several well-known problems: DNA fragment
assembly (see e.g., [2,5,6]), haplotype assembly [3], population phasing (see e.g., [7])
and DNA finding in a mixed environment (see e.g., [15]) . Indeed, the fragments (reads)
should be assembled into a long genome sequence although it becomes a lesser chal-
lenge since consensus genome sequence is already available. In [2], a network flow-
based approach is presented which bears similarity to the approach adopted in this
article. A plausible reduction genome sequencing is as follows: place all quasispecies
genomes back-to-back in a long sequence and treat common segments as repeats. Qua-
sispecies Assembly is very close to the haplotype assembly problem where fragments
are given from two different haplotypes of the same diploid organism and the goal is
to correctly attribute segments to one of these two haplotypes. Unfortunately, the pro-
posed solution methods are not scalable with respect to the number of haplotypes per
individual and this is critical since in a specimen there are hundreds or even thousands
of different quasispecies. Therefore, one can find similarity with the population phasing
problem where multiple diplotypes (mixtures of two haplotypes) are given and it is re-
quired to identify underlying common haplotypes and their frequencies. Finally, it can
also be viewed as variant of the newly-arisen problem of finding and distinguishing all
the different species in a given DNA sample – but in our case, the complicating factor
is that the sequencing of different quasispecies are very similar to each other.

Our contributions are the following:

– Several optimization formulations for Quasispecies Assembly and its different
versions.

– Estimation of the probability that two overlapping read belong to the same quasis-
pecies.

– A network flow based method for solving the quasispecies assembly problems.
– An efficient and scalable implementation of the proposed network flow methods.
– Application of the network flow method to the set of simulated reads drawn from

44 quasispecies in the E1E2 region of Hepatitis C Virus.

In the next section we give several optimization formulations for Quasispecies As-
sembly. Then we will construct proposed data structure incorporating information about
given reads and the consensus genome. Section 4 will propose solutions for Quasis-
pecies Assemble problems based on reductions to network flows. Finally, Section 5
will describe validation of network flow approaches on E1E2 region of HCV.



HCV Quasispecies Assembly Using Network Flows 161

2 Quasispecies Assembly Models and Optimization Formulations

The ultimate goal of Quasispecies Assembly is to correctly reconstruct genomes of
all quasispecies in a given sample. Since multiple quasispecies have indistinguishable
common segments that are significantly longer than a read, one cannot guarantee to
find even the exact number of quasispecies. Although only cross-validation of proposed
techniques can really tell if their quality are of practical interest, it is important to for-
mulate models and corresponding optimization objectives that do not simply rely on
cross-validation.

We will start with the formal description of the input and output for Quasispecies
Assembly. The output of 454 Lifescience system consists of N ≈ 250K reads, each
read r is a sequence of l nucleotides (l may be about 100 or even 400). The rate of
typing errors is claimed to be 0.04% (see [9]). Also we may usually rely on existence
of a known consensus genome of all quasispecies which is in case of HCV has length
L = 9600 bp. Each reconstructed quasispecies should be covered by given reads and
be close to the consensus genome sequence H .

We first consider the simplest parsimonious model for Quasispecies Assembly. The
corresponding optimization formulation is as follows.

Most Parsimonious Quasispecies Assembly. Given a set of reads R and a consensus
genome sequence H , find the minimum size set of quasispecies Q covering all reads
from R, i.e., such that each read r ∈ R is contained in at least one q ∈ Q.

Although the parsimonious model is worth considering, it is usually oversimplified.
Indeed, it usually predicts less than observed number of quasispecies and cannot dis-
tinguish between numerous different equally good (from parsimonious point of view)
solutions. In order to break ties, we introduce penalties over read overlaps. The penalty
cost(r, r′) over an overlap between reads r, r′ ∈ R should reflect how unsure we are
that these two reads came from the same quasispecies. We set cost(q) to be the sum
of costs of constituting overlaps. For example, cost can be inversely proportional to the
probability that such overlap occurs. Then the overall probability of the quasispecies
q is the product of costs of consecutive overlapping pairs of reads which can be trans-
formed to the sum by replacing costs with their logarithms. In the next section we will
suggest several different cost functions.

Minimum Cost Parsimonious Quasispecies Assembly. Given a set of reads R with
costs on read overlaps and a consensus genome sequence H , find the most parsimonious
set of quasispecies Q that have the total minimum cost.

We may also trade the number of quasispecies for smaller cost or just completely
disregard minimization of the number of quasispecies.

Minimum Cost Quasispecies Assembly. Given a set of reads R with costs on read
overlaps and a consensus genome sequence H , find the set of quasispecies Q covering
all reads that have the total minimum cost.

Besides accurately assembling all quasispecies as a set, it is also important to as-
semble certain frequent individual quasispecies. There is an evidence that the frequency



162 K. Westbrooks et al.

distribution of quasispecies in a single cell is usually not uniform. The most frequent
quasispecies may contribute the major part of reads and may also contribute the most to
virus resiliency. Although frequently repeated reads may come from the most frequent
quasispecies, the alternative explanation would be that multiple different quasispecies
have the same common segment. Therefore, we again rely on estimated probability for
overlapping reads. This results in the following problem formulation.

The Most Frequent Quasispecies Assembly. Given a set of reads R with costs on
read overlaps and a consensus genome sequence H , find a single quasispecies q with
the minimum total cost.

3 The Read Graph

In this section we propose the method of incorporating the input information about
reads and genome consensus sequence into a single data structure to which we apply
network flow methods for solving quasispecies assembly problems.

We will first describe how to align reads to the consensus genome and distinguish
single nucleotide polymorphisms (SNP) from typing errors. For every possible starting
position, we align both the read and its reverse compliment to the consensus sequence
and count the number of mismatches. The “true” starting position has the fewest num-
ber of mismatches. In our experiments we have never encountered read misalignments
which can be explained by a lack of sizable repeats in the RNA viral genomes and
the low typing error rate (0.04% [9]). We can distinguish typing errors from infrequent
SNPs if we have at least double coverage of each quasispecies – indeed, the probability
of the same typing error occurring twice is insignificantly small.

Formally, each read r is supplied with its beginning and ending positions in the
consensus sequence br and er, respectively. The read graph G = (V, E, cost) has the
set of vertices V each representing a read and the set of directed edges E, where each
edge (u, v) connects two reads u and v if their alignments overlap (i.e., bu ≤ bv ≤
eu ≤ ev) and if they coincide with each other across the overlapping region.

Obviously, some edges correspond to true overlaps of pairs of reads coming from
the same quasispecies while other correspond to false overlaps that occur between reads
of similar but different quasispecies. The cost function of an edge (u, v) reflects how
unsure we are that u and v correspond to a true overlap.

In the next subsection we describe how we reduce the size of the read graph without
losing any information. Our reduction is based on an efficient algorithm for minimum
transitive reduction. In Subsection 3.2 we estimate the probability for an edge in the
transitively reduced read graph to correspond to a true overlap.

3.1 Transitive Reduction of the Read Graph

In general, the read graph G may be very dense since it contains edges connecting
non-consecutive reads (see Figure 3.1). If there are three reads u, v and w such that
(u, v), (v, w) ∈ E and u overlaps with w (i.e., bw < eu), then (u, w) ∈ E. The path
u − v − w is called closed since there is a single edge (u, w) connecting the beginning



HCV Quasispecies Assembly Using Network Flows 163

u

v w

bv
bw eu ev

Fig. 1. The edge (u, w) is logically implied by the edges (u, v) and (v, w). Indeed, the segment
[bw, ew] is the same in the reads u and v since (u, v) ∈ E and [bw, ew] is the same in the reads v
and w since (v, w) ∈ E, therefore, it is the same for u and w.

with the end. The edge (u, w) is logically implied by the other edges and we can safely
remove it without losing any information.

Thus, we wish to remove maximum possible number of edges, or, in other words,
obtain the minimum transitive reduction G′ = (V, E′) of the graph G. The transitive
reduction is a subgraph of G in which if a vertex v is reachable from u, then it should be
reachable in G′. In general, finding minimum transitive reduction is NP-complete but
since G is is a directed acyclic graph, it can be found efficiently [10]. Besides lacking
directed cycles, the read graph G is also partially transitively closed, i.e., all subpaths
of closed paths are closed.

Input: Partially transitively closed directed acyclic graph G = (V, E)
Output: Minimum transitive reduction of G

1. Topologically sort vertices of G
2. For each vertex u ∈ V in topological order do
3. Sort all outgoing edges from u according to left end: v1, . . . , vk

4. Thread set T ← ∅
5. For i = 1, . . . , k do
6. For each x ∈ T do

If edge (x, vi) ∈ E, then E ← E − (u, vi), T ← T − x, break
T ← T ∪ vi

7. Output G

Fig. 2. Minimum transitive reduction for partially transitively closed directed acyclic graph

Claim. A read graph G is partially transitively closed.

Proof. Toward contradiction assume that there exists a closed u − v-path P without
chords. Let (w, v) be the last edge of P , we will show that there exists the edge (u, w).
Indeed, existence of u − w-path and (w, v)-edge implies that bu ≤ bw ≤ bv ≤ eu and,



164 K. Westbrooks et al.

therefore, u and w overlap. Since there exists a u − w-path, u and w do not disagree.
These two facts imply there should be an edge u and v.

The following algorithm for finding minimum transitive reduction (see Figure 2) is
more efficient than for general directed acyclic graphs since it relies on G being par-
tially transitively closed. The runtime is O(δ|E|), where δ is the maximum number of
quasispecies containing the same read and |E| is the number of edges in G. This is
significantly faster than O(|V |2) for arbitrary directed acyclic graphs.

From now on, we assume that the read graph G is transitively reduced. Obviously,
an arbitrary quasispecies corresponds to unextendable path of G, although not every
unextendable path corresponds to a quasispecies.

3.2 Estimating Probability of a True Overlap

We first give intuition behind estimation of the true overlap probability and then present
results of the formal analysis of the uniform and non-uniform quasispecies distributions.

Intuitively, given a choice, one would trust a larger read overlap more than a smaller
read overlap. That makes a lot of sense in the standard sequencing when the consensus
genome is unknown. The entire de Bruijn graph approach relies only on sufficiently
long overlaps (see [4]). Indeed, it is quite improbable that a long overlap happens by
chance – only repeats may result in false long read overlaps. But Quasispecies Assem-
bly exactly the case with long and frequent repeats – many segments can be repeated in
very many quasispecies.

Only multiple coverage may give a clue for deciding which overlaps are probably
true. If there are two reads u and v adjacent in the transitively reduced read graph, then
we may try to measure our surprise with the fact that (u, v) ∈ E by the length of the
“overhang” Δ = |bv − bu|. Indeed, assuming that (u, v) represents a true overlap in a
quasispecies q, why there is no other read w that is taken from q and which is between
u and v? If Δ is large, then there great chance that the overlap is false.

Formally, let us consider a simplified model where every read has the same length
and that each quasispecies has the same frequency.

Let bu be the starting position, in sequence H , or read u. After transitive reduction,
the event that two reads u, v from the same quasispecies are connected with an edge
(u, v) is the event that (a) these two reads exist, and (b) no read w from the same
quasispecies satisfies bu < bw < bv.

Let us fix a quasispecies A. Given N reads, L positions in H and q quasispecies,
the probability that a position is bu for some read u of A is N/Lq. Assuming that bu

is such a position, there is a unique true edge (u, v) indicating an overlap with another
read of A. The event that bv − bu > k is the event that bu + 1, bu + 2, . . . , bu + k are
not beginnings of reads of A, and since the reads have uniformly random positions, the
probability of that event is

pk =
(

1 − N

Lq

)k

≈ exp(−kN/Lq)

The probability that bv − bu = k is p′k = N
Lqpk−1.



HCV Quasispecies Assembly Using Network Flows 165

If bv − bu is much larger than Lq/N then most probably bv is a read from an-
other quasispecies B, and the reason for the difference is not a gap between the po-
sitions of various reads of A, but the fact that in the interval between bu and bv the
sequences of quasispecies A and B are different. Therefore if Δ = bv − bu, the number
1/pΔ ≈= exp(ΔN/Lq) measures the “implausibility” that (u, v) is a true edge. By
“implausibility” we mean a quantity that is low when the edge is plausible and high
when it is not.

If the lengths of the reads are variable and random, then after the cleaning we should
have larger gaps following beginnings of particularly long reads. However, the distri-
butions of lengths of the survivors of the cleaning process is more uniform (it has a
much smaller variance) than the original distribution of read lengths. Thus we have a
reasonable approximation.

If we have different frequencies of reads from different quasispecies, then the proper
formula for quasispecies A would be exp(ΔNfA/L) rather than exp(ΔN/Lq). How-
ever, We cannot use it because a-priori we do not know the frequencies.

What is least clear from our analysis is what function of pΔ would give the best result
if we use it as the cost of edge (bu, bv). We will try to natural candidates: the inverse,
giving formula exp(ΔN/Lq) and minus logarithm, giving formula ΔN/Lq.

4 Quasispecies Assembly Via Network Flows

In this section we show how to modify the read graph G into a flow network so that
Quasispecies Assembly would naturally represented by a network flow through G. We
then reformulate the Quasispecies Assembly problems into the minimum-cost network
flow problems.

As we noticed in Section 3.1, each quasispecies corresponds to a simple path in the
(transitively reduced) read graph G. Each such path can be viewed as a flow originated
in the source corresponding to the first read flowing through intermediate reads and
ending at the sink corresponding to the last read.

Standard network flow formulations associate flow with the edges rather than the
vertices. Therefore, our first modification to the read graph would be replacement of
each vertex corresponding to a read r with the beginning vertex rb and the ending
vertex re connected with the edge (rb, re). Each edges with the head v changes its head
to rb and each edge with the tail v changes it tail to re (see Figure 3).

For simplification of the flow formulation we also introduce universal source and
sink vertices s and t for all flows (see Figure 4). We add an edge from the source s to
each read that does not have any incoming edges and an edge to the sink t from each
read that does not have outgoing edges. These two vertices are also supplied with back
edge (t, s) through which each quasispecies flow should return back thus making our
flow circular.

We now ready to formulate the minimum cost feasible flow problem corresponding
to Most Parsimonious Quasispecies Assembly. Let f : E → R+

0 be a circular flow
defined on all edges. The value of the flow f through a read edge (br, er) represents the
number of quasispecies that contain the read r. The corresponding linear program (1-4)
is as follows:



166 K. Westbrooks et al.

r

rerb

Fig. 3. Replacing of a vertex corresponding to a read r with the edge (rb, re). The new vertices
and edges are dashed.

s t

G

Fig. 4. Universal source s and universal sink t with the backward edge (t, s) are added to the read
graph. The new vertices and edges are dashed.

Minimize f(t, s) (1)

subject to

∀v ∈ V
∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u) (2)

∀read r ∈ R f(br, er) ≥ 1 (3)

∀(u, v) ∈ E f(u, v) ≥ 0 (4)

Objective (1) is parsimonious – it asks for minimizing number of quasispecies since
each unit of flow corresponding to a single quasispecies should pass through the edge
(t, s) exactly once. Constraint (2) is the flow conservation – for each vertex v ∈ V , the
total flow entering v equals the total flow exiting v. Constraint (3) requires that each
read to be covered by at least one predicted quasispecies. Constraint (4) forbids the
backward flow so that the flow would really correspond to quasispecies.

The linear program (1-4) does not predict complete quasispecies but rather decides
which pairs of overlapping reads belong to the same quasispecies. In order to obtain
a feasible set of quasispecies one can simply replace each edge e with f(e) copies
and in the resulted graph find f(t, s) edge-disjoint s − t-paths each corresponding to a
quasispecies.



HCV Quasispecies Assembly Using Network Flows 167

Although the linear program (1-4) does not require flow to be integer, the optimal in-
teger solution is always fractionally optimal. All linear program solvers (e.g., [13,12])
find optimal integer solutions very efficiently. Alternatively, one can use a faster com-
binatorial min-cost flow solver [11,14].

The next linear program solves Minimum Cost Quasispecies Assembly. Here, we set
to zero the cost of all edges introduced into G while modifying it into the flow network,
i.e., cost(t, s) = 0, cost(s, u) = cost(v, t) = 0 and, for each read r, cost(rb, re) = 0.1

The only difference with the previous formulation is in the objective. Objective (5)
does not pay attention to the number of predicted quasispecies but to the total cost of
all predicted quasispecies.

Minimize
∑
e∈E

cost(e) · f(e) (5)

subject to

∀v ∈ V
∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u)

∀read r ∈ R f(br, er) ≥ 1
∀(u, v) ∈ E f(u, v) ≥ 0

Finally, Minimum Cost Parsimonious Quasispecies Assembly is solved with the
same linear program as Minimum Cost Quasispecies Assembly. The only difference
is that cost(t, s) is set to a very large number. As a result any feasible assembly cannot
be optimal if it uses more than the minimum possible number of quasispecies and as a
secondary criteria the total cost of read overlaps is minimized.

5 Experimental Results

To our knowledge, full-genome quasispecies data for HCV is currently unavailable.
However, previous research has obtained the sequences of individual HCV quasispecies
for several important subregions. [1] obtained quasispecies data for the E1E2 region of
the HCV genome. This data is a contiguous region 1734 bp long over Q = 44 qua-
sispecies. We generated two simulated problem instances based upon the sequences in
this data. The first instance, which we shall refer to as the “uniform” instance, assumed
that the frequencies of each of the sequences in the data set were equal all equal (i.e.
f(qi) = 1/Q for all qi). The second instance, which we refer to as the “nonuniform”
instance, assumed that the frequency of one quasispecies was 1/2, while all other qua-
sispecies had equal frequency of 1/(2(Q − 1)).

We assumed that the 454 Lifesciences system would produce approximately 250K
reads of length 100 across the entire 9.6K bp length of the HCV genome. Since the
E1E2 region is 1.7K bp long, approximately 18% of the 250K reads (approx. 44K) reads
should span the E1E2 region. Reads were generated by iteratively selecting a sequence

1 Alternatively, the cost of the read can be set inversely proportional to the number of copies of
the read. This way the multiplicity of the read participation in assembly should correspond to
its multiplicity among collection of all reads.



168 K. Westbrooks et al.

Fig. 5. This table shows the original number of reads, the number of reads after “cleaning” (i.e.
removing subreads), and the number of overlaps (i.e. number of edges in the read graph) for the
two problem instances considered. The “uniform” problem instance consisted of 44 quasispecies
of length 1734 each with equal frequency. The “nonuniform” instance consisted of the same 44
quasispecies, but one quasispecies was selected to have frequency 1/2 and all others were given
frequency 1/(2(Q − 1)).

from E1E2 at random according to that read’s frequency and fragmenting it into reads
which were then accumulated in a collection; the lengths of reads were generated using
a normal distribution with μ = 100, σ2 = 10.

Once a problem instance was generated by the above procedure, we removed reads
that were contained within other reads. The reason we introduce this “cleaning” phase
of our algorithm is two-fold: first, any read that is subread of another cannot possibly
introduce a new quasispecies, and second, the graph formed by the remaining reads
is guaranteed to be acyclic, connected, and has a single global source and sink. Due
to the large degree of homogeneity between quasispecies, a surprisingly large number
of reads are cleaned out of the problem instance. After cleaning the problem instance
of subreads, the read graph is constructed. The table on Figure 5 gives the various
parameters for each of the two problem instances under consideration.

Out of the many possible overlaps between reads in the problem instance, only a
small portion actually belongs to real quasispecies. From the table on Figure 6 one can
see how well our min-cost flow based algorithms for Most Parsimonious Quasispecies
Assembly and Minimum Cost Quasispecies Assembly predict which overlaps are true
overlaps. The most parsimonious solution obtained by setting to 1 the back edge cost
while other edges has cost 0 – in the table the corresponding solution is placed the
row with cost function 1. We run the min-cost flow algorithm for the two problem
instances under the following two different edge-cost functions. The cost function Δ
equals the the difference in genome offsets of edge tail and head reads. This function
is proportional to the logarithm of the estimated probability of the read overlap to be
true overlap. As a result, the total cost of a path is proportional to the probability of
it to be a true quasispecies. The cost function eΔ is the estimated probability of the
corresponding overlap to be true overlap.

The table on Figure 6 gives the total number of true overlaps and the total number
of predicted overlaps. Then we give the number of true and false overlaps among pre-
dicted overlaps as well as the number of true overlaps which are missed by our method.
Our experiments show that Most Parsimonious Assembly is the furthest from the true
quasispecies and that the exponential cost is superior to the Δ-cost.

Similarly to the error measure for diploid organism phasing, we introduce the switch-
ing error, which is computed as follows. For each true quasispecies, we identify the path
in the transitively reduced read graph and count how many times that path switches



HCV Quasispecies Assembly Using Network Flows 169

Fig. 6. The number of real, predicted, correctly predicted, incorrectly predicted, and unpredicted
overlaps for the two instances and three network flow methods (cost functions). Minimum Cost
Quasispecies Assembly are denoted by cost Δ and eΔ.

Fig. 7. The runtimes for major subroutines in the program. All runtimes were recorded on a
modern machine with an Intel Core Duo 2 CPU and 2 GB of RAM.

between predicted quasispecies and then average number of switches over all true qua-
sispecies. The lower bound is the average number of unpredicted overlaps that occur
along the path corresponding to a real quasispecies. We split the flow into quasispecies
by walking from the universal source to the universal sink, randomly choosing which
edge of each fork to tranverse, decrementing the flow along each edge as it is traversed.
The column Random Walk in 6 reports the average switching distance over all true
quasispecies for the set of randomly predicted quasispecies. Our results show that the
exponential cost is superior to Δ-cost as well as the most parsimonious solution and
that our method admits only very small fraction of possible errors.

Obviously, randomly predicting quasispecies has an high switching error. By using
a more intelligent path-splitting heuristic, one can possibly reduce the switching error
down to the lower bound.

The table on Figure 7 gives the runtimes for the instance cleaning, transitive reduc-
tion, and linear programming subroutines in the program. As the table indicates, our
method can deliver results in a reasonable amount of time, and is expected to scale well
to the sizes of real problem instances.

References

1. Von Hahn, T., Yoon, J.C., Alter, H., Rice, C.M., Rehermann, B., Balfe, P., Mckeating, J.A.:
Hepatitis C Virus Continuously Escapes From Neutralizing Antibody and T-Cell Responses
During Chronic Infection In Vivo. Gastroenterology 132, 667–678 (2007)

2. Myers, G.: Building Fragment Assembly String Graphs. In: European Conf. on Computa-
tional Biology, pp. 79–85 (2005)



170 K. Westbrooks et al.

3. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nu-
cleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics 3(1), 23–
31 (2002)

4. Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem.
IEEE/ACM Trans Comput Biol Bioinform. 4(1), 98–107

5. Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes. Genome
research (to appear, 2007)

6. Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P., Batzoglou, S.: Whole-genome sequencing
and assembly with high-throughput, short-read technologies. PLoS ONE 2(5), e484 (2007)

7. Brinza, D., Zelikovsky, A.: 2SNP: Scalable Phasing Based on 2-SNP Haplotypes. Bioinfor-
matics 22(3), 371–373 (2006)

8. 454 Lifescience (2007), http://www.454.com/
9. Margulies, M., et al.: Genome sequencing in microfabricated high-density picolitre reactors.

Nature 437(7057), 376–380 (2005)
10. Albert, R., DasGupta, B., Dondi, R., Sontag, E., Zelikovsky, A., Westbrooks, K.: Signal

Transduction Network Inference from Indirect Experimental Evidence. Journal of Computa-
tional Biology 14(7), 927–949 (2007)

11. Goldberg, A.: An Effcient Implementation of a Scaling Minimum-Cost Flow Algorithm.
Journal of Algorithms 22(1), 1–29 (1997)

12. GNU Linear Programming Kit, http://www.gnu.org/software/glpk/
13. ILOG CPLEX, http://www.ilog.com/products/cplex/
14. IG Systems CS2 Software (2007), http://www.igsystems.com/cs2/
15. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D.,

Paulsen, I., Nelson, K.E., Nelson, W., et al.: Environmental genome shotgun sequencing of
the Sargasso Sea. Science 304, 66–74 (2004)

http://www.454.com/
http://www.gnu.org/software/glpk/
http://www.ilog.com/products/cplex/
http://www.igsystems.com/cs2/

	HCV Quasispecies Assembly Using Network Flows
	Introduction
	Quasispecies Assembly Models and Optimization Formulations
	The Read Graph
	Transitive Reduction of the Read Graph
	Estimating Probability of a True Overlap

	Quasispecies Assembly Via Network Flows
	Experimental Results



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




