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Preface

The 4th edition of the International Symposium on Bioinformatics Research and
Applications (ISBRA 2008) was held on May 6-9, 2008 at Georgia State Uni-
versity in Atlanta, Georgia. The symposium provides a forum for the exchange
of ideas and results among researchers, developers, and practitioners working on
all aspects of bioinformatics and computational biology and their applications.

The technical program of the symposium included 35 contributed papers,
selected by the Program Committee from a number of 94 full submissions re-
ceived in response to the call for papers. The technical program also included
six papers contributed to the First International Workshop on Optimal Data
Mining in Gene Expression Analysis (ODGEA 2008), which was held in con-
junction with ISBRA 2008. In addition to the contributed papers, the sympo-
sium included tutorials and poster sessions and featured invited keynote talks
by six distinguished speakers. Andrew Scott Allen from Duke University and
Dan Nicolae from the University of Chicago spoke on novel analysis methods
for genome-wide association studies; Kenneth Buetow, director of the National
Cancer Institute Center for Bioinformatics, spoke on the cancer Biomedical In-
formatics Grid; Andrey Gorin from Oak Ridge National Laboratory spoke on
peptide identification from mass spectrometry data; Yury Khudyakov from the
Center for Disease Control and Prevention spoke on integrative viral molecular
epidemiology; and Kwok Tsui from Georgia Institute of Technology spoke on
data mining and statistical methods for analyzing microarray experiments.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review and discuss symposium papers. We
would also like to thank the Chairs and the Program Committee of ODGEA
2008 for enriching the technical program of the symposium with a workshop on
an important and active area of bioinformatics research. We would like to ex-
tend special thanks to the General Chairs of the symposium for their continued
leadership, and to the Local Organization, Publications, Finance, Publicity, and
Posters Chairs for their hard work in making ISBRA 2008 a successful event.
Last but not least we would like to thank all authors for presenting their work
at the symposium.

May 2008 Ion Măndoiu
Raj Sunderraman

Alexander Zelikovsky
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Invited Keynote Talk:
Set-Level Analyses for Genome-Wide

Association Data

Dan L. Nicolae1, Omar De la Cruz2, William Wen2, Baoguan Ke2,
and Minsun Song2

1 Departments of Medicine and Statistics, The University of Chicago
2 Department of Statistics, The University of Chicago

5734 S. University Ave., Chicago, IL 60637

High-throughput genotyping platforms allow the investigation of hundreds of
thousands of markers at a time, and this has led to a growing number of genome-
wide association studies in which the entire human genome is mined for genes
involved in etiology of complex traits. This approach for discovery of genetic risk
factors has yielded promising results, but most of the analyses have focused on
single marker tests. In general, a method of analysis that uses the markers as if
they are biologically unrelated throws away all the information contained in the
structure of the genome.

In this paper, we propose a method for incorporating structural genomic in-
formation by grouping the markers in relevant units, and assigning a measure of
significance to these pre-defined sets of markers. The sets can be genes, conserved
regions, or groups of genes such as pathways. Using the proposed methods and
algorithms, evidence for association between a particular functional unit and a
disease status can be obtained not just by the presence of a strong signal from
a SNP within it, but also by the combination of several simultaneous weaker
signals that are uncorrelated. Note that the method will combine evidence for
association from both the genotyped and the untyped markers. The untyped
markers are tested using haplotype predictors for their alleles, with the predic-
tion training done in reference databases such as HapMap.

There are several advantages in using this approach. There is an increase in
the power of detecting genes associated to disease because moderately strong
signals within a gene are combined to obtain a much stronger signal for the gene
as a functional unit. The results are easily combined across platforms that use
different sets of SNP. Lastly, the results are easy to interpret since the refer to
functional regions, and they also provide targets for biological validation.

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Hierarchical Clustering Using Constraints

Mariana Kant1, Maurice LeBon1, and David Sankoff2

1 Computer Science and Engineering Department,
York University, Toronto, Canada M3J 1P3

mkant@yorku.ca
2 Department of Mathematics and Statistics,

University of Ottawa, Ottawa, Canada K1N 6N5
sankoff@uottawa.ca

Abstract. We describe a new supertree algorithm that extends the type
of information that can be used for phylogenetic inference. Its input is a
set of constraints that expresses either the hierarchical relationships in
a family of given phylogenies, or/and other relations between clusters of
sets of species. The output of the algorithm is a multifurcating rooted
supertree which satisfies all constraints. Moreover, if there were contra-
dictions in the set of constraints the corresponding part of the supertree
is identified and its set of constraints is displayed such as the user may
decide to modify or keep it. Our algorithm is not affected by the order
in which the input phylogenies or other constraints are presented. We
apply our method to a number of data sets.

1 Introduction

Supertree construction has taken on increasing importance with the widespread
adoption by biologists of the “Tree of Life” endeavour (e.g., [1,2,3,4]). The input
to the supertree problem is a family T of rooted trees with overlapping leaf sets.
The object is to build T, a supertree compatible with all trees in T , namely a
rooted tree whose leaf set includes all species of input trees and from which each
tree of the family can be derived by a sequence of edge contractions.

Numerous algorithms have been proposed to build supertrees. Gordon [5]
presented an algorithm for building a “strict consensus supertree” of two rooted
binary trees. The time complexity of his algorithm is O(p3), where p is the
maximum between the number of leaves of the two trees. Semple and Steel [6]
proposed MinCutSupertree algorithm to build a rooted supertree for a family
of rooted weighted binary trees. Berry and Nicholas [7] propose MergeTrees, an
algorithm for constructing a supertree compatible with two binary trees by graft-
ing “specific subtrees” or “specific leaves” of one tree onto the other. For |T | ≥ 3,
they apply MergeTrees repeatedly to pairs of trees, each time reducing |T | by 1.

In this paper we reformulate the supertree problem in a general way, but so
that it allows a unique solution by means of an efficient algorithm, which we de-
tail. The input is a set of constraints, which may or may not be derived from trees,
on sets of elements. There may be any number of constraints, e.g. for |T | ≥ 3. We
derive the unique rooted supertree compatible (in a strong sense) with the set of

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 2–13, 2008.
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constraints. Rather than weaken the notion of compatibility, we allow multifur-
cating trees (cf. [8]), both for input and output, where contradictory constraints
are handled by multifurcations. The output is independent of the order in which
the constraints are presented in the input. The algorithm runs in time propor-
tional to the number of distinct leaves across all constraints and proportional to
the number of constraints. The algorithm identifies contradictions in the set of
constraints, allowing the user to intervene and decide which constraints to retain
or discard from the set, depending on the degree of resolution desired.

We illustrate our procedures with data on primate phylogeny.

2 Definitions

In this paper we use “tree” to denote a multifurcating rooted tree, as exemplified
in Figure 1. Following the notation and terminology of [7], a tree T has a leaf set
L(T ) in bijection with a label set. Each internal node (including the root) has
at least two children. An edge between two internal nodes is an internal edge. A
leaf x, x ∈ L(T ) is a descendant of an internal node u, if the path from x to the
root passes through u. For a node u in T , we write S(u) for the subtree rooted
at u, i.e., u and all its descendant nodes, and L(u) the leaves of this subtree.

Definition 1 (Restriction of a tree). The restriction of a tree T to a set of
leaves X, itself a tree denoted T |X, is the smallest induced graph of T connecting
leaves with labels in X ∩ L(T ), where each degree two (non-root) node x as well
as its two incident edges (u, x) and (v, x) are replaced by a single edge (u, v) to
make the tree homeomorphically irreducible. If T is a collection of trees, then
the collection of subtrees T |X := {T |X : T ∈ T }.

Fig. 1. Diagram of the tree T ′

Definition 2 (Tree isomorphism and inclusion). Two rooted trees T, T ′ are
isomorphic, denoted T = T ′, if and only if there is a graph isomorphism T → T ′

preserving leaf labels (and the root). Tree T is homeomorphically included in T ′

if and only if T = T ′|L(T ).

Definition 3 (Tree refinement). If L(T ) = L(T ′), the tree T refines the tree
T ′, written T εT ′, if T can be transformed into T ′ by collapsing some of its in-
ternal edges (collapsing an edge means removing it and merging its extremities).



4 M. Kant, M. LeBon, and D. Sankoff

Fig. 2. Diagram of the tree T . T refines the tree T ′ in Figure 1.

The tree T in Figure 2 refines the tree T ′ in Figure 1. T ′ may be obtained from
T by collapsing the edges (x, y) and (z, t).

Definition 4 (Tree compatibility). Let T, T ′ be trees with leaf sets L, L′,
respectively. We say that T displays T ′ if T |L′ εT ′. Given a collection of trees
T , if there is a tree T that displays every tree in T , we say that T displays T
and that the collection T is compatible.

Our algorithms will make use a definition of a set-theoretic definition of a tree
[9,10,11].

Definition 5 (Tree-like family). Let S be a set of n elements. TS, a tree-like
family on the set S is a family of nonempty subsets of S such that:

1. S ∈ TS,
2. {e} ∈ TS for all e ∈ S,
3. ∀A, B ∈ TS , A ∩B ∈ {A, B, ∅}.

Example 1. Given S ={1, 2, 3, 4, 5, 6}, the collection TS ={S, {1}, {2}, {3}, {4},
{5}{6}, {1, 2, 3}, {4, 5, 6}, {4, 5}} is a tree-like family.

It is clear that TS is a partially ordered set under set inclusion. Moreover, for every
set {e} the collection A{e} = {A : A ∈ TS and {e} ⊆ A} is a totally ordered set.

For a tree-like family TS , we consider the graph GS = (E, V ), such that for
each set A ∈ TS there is a corresponding node vA ∈ V ; for every pair of nodes
vA, vB, with A ⊆ B and no set C in the family with A ⊆ C ⊂ B, there is an
edge between vA and vB.

Example 2. The graph in Figure 3 is the graph associated with the tree-like
family in Example 1.

Property 1. The graph GS associated to a tree-like family is a tree.

Proof: Let vS be the root of the tree. For every leaf v{e} there is an unique path
between the root vS and v{e}, namely the path corresponding to all sets in the
collection A{e}. Suppose there is a cycle between two distinct nodes vA and vB .
This means that A ⊆ B and also B ⊆ A. Hence, A = B, implying that vA and
vB are not distinct, a contradiction. 
�
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Fig. 3. Graph associated to a tree-like family. Also depicted are the sets associated to
internal nodes.

Definition 6. The tree-like family associated to the tree T , the set TL(T ) where
TL(T ) = {L(T )} ∪ {{v} : v ∈ L(T )} ∪ {{L(u)} : u internal node of T }.

Example 3. The family TL(T ) ={{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{1, . . . , 10}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {5, 6}, {1, . . . , 6}, {7, 8, 9}} is the tree-like
family associated to the tree T presented in Figure 2.

Definition 7 (Constraints). Let π denote a partition of a set S. We call every
element of π, a block. The partition π satisfies the constraint A ⊆ B, where B
is a subset of S, iff A is included in a block of π. Let C be a set of constraints.
The partition π satisfies C if it satisfies every constraint in C. Given a tree T ,
and u, v, two internal nodes where u is a child of v, the constraint associated
to the internal edge between u and v is L(u) ⊆ L(v). We denote CT the set of
constraints for all internal edges of T .

Example 4. Given the set S = {1, 2, 3, 4, 5, 6} and π = {{1, 2, 3}, {4, 5, 6}}
a partition on S. π satisfies the set of constraints {{1, 2, 3} ⊆ S, {4, 5, 6} ⊆
S, {4, 5} ⊆ {4, 5, 6}}.

Example 5. In Figure 2, the constraint {3, 4} ⊆ {2, 3, 4} is associated with the
edge connecting nodes x and y, and {7, 8, 9} ⊆ {1, 2, . . . , 10} to the edge con-
necting z and t. The set CT = {{3, 4} ⊆ {2, 3, 4}, {2, 3, 4} ⊆ {1, 2, 3, 4}, {5, 6} ⊆
{1, . . . , 6}, {1, . . . , 4}⊆{1, . . . , 6}, {7, 8, 9}⊆{1, . . . , 10}, {1, . . . , 6}⊆{1, . . . , 10}}
is the set of constraints associated with T .

Definition 8 (π1 refines π2). For π1, π2 two partitions of the same set S, we
say that π1 refines π2, denoted π1 ≤ π2, iff for every pair A, B, with A a block
of π1 and B a block of π2, the intersection set A ∩B is in {A, ∅}.

Example 6. The partition π1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}} refines the
partition π2 = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9, 10}}.

Definition 9 (π2 embedded in π1). For two partitions π1 and π2 we say that
π2 is embedded in π1 if π2 is a partition of a block of π1.

Example 7. The partition π1 = {{1, 2}, {3, 4}} is embedded in the partition
π2 = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9, 10}}.
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Example 8. Let S be the set with elements {1, 2, 3} and C the set of con-
straints {{1, 2} ⊆ {1, 2, 3}, {1, 3} ⊆ {1, 2, 3}}. There is a contradiction between
the two constraints: elements 1 and 2 cannot form a subcluster of {1, 2, 3} at the
same time as 1 and 3 form a subcluster of {1, 2, 3}. In this case the algorithm
TREE-LIKE presented below can only return the partition containing single block
{1, 2, 3}.

The algorithm COMP presented in this paper is an extension of the procedure
with the same name in [8]. Given a set of leaves S and a set of constraints C on
S, the procedure COMP(S, C, π) iteratively builds π, a partition of S satisfying
C. The same paper contains a procedure TREE(S, C, TS) which constructs a
family of embedded partitions π1, π2 . . . , πk and returns TS =

⋃k
i=1 πi, where TS

is a tree-like family on S. Our algorithm TREE-LIKE below is an extension of
procedure TREE.

3 Algorithms

We use Card(A) for the cardinality of set A.

Algorithm 1

Algorithm: COMP(S, C, )

Input: A set of leaves S, and a set of constraints C on S.
Output: , a partition of S that satisfies the set of constraints C.

begin
1. count  1

5. Let 0={S1, ..., Sk} , k=Card(S), be the initial partition of S,

where Si= {si}, 1  i k, consists of a single element (leaf) of S.

3. 0

4. repeat while count 0

5. count  0

6. for each constraint A B in C do

7. Find all St in  such that A St .

8. if there are at least two such St , then
(A St for only one St means that

A St and the constraint is already satisfied.)

9. count  1

10. Snew U
||

,1=
AS

t

t

t

S // A Snew

11. Delete from  all St with A St .

// they will be replaced by their union.
12. Add Snew to

13.    if Card( ) =1 then

14.      if Card (S) >1 then // there is a contradiction in C
15. return

16. end (if)
17.   end(if)
18. end (if)
19.  end (for)
20. end (repeat)
21. return

end
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π returned by COMP(S, C, π) is a partition of S. The algorithm starts with π,
a family of single element blocks, which is clearly a partition of S. During steps
6-12 one or more blocks of π are deleted and their union is added to the family
as a new block Snew. Clearly A ⊆ Snew and the number of blocks in the partition
diminishes by at least one at each pass of steps 6-12. Consequently, π returned
by algorithm COMP(S, C, π) is a partition which satisfies the constraint set C.
If π has only one block and the set of constraints is not empty then the set of
constraints is satisfied but it contains at least one contradiction.

Algorithm 2
Algorithm: TREE-LIKE(S, C, Ts)

Input: A set of leaves S, and a set of constraints C on S.

Output: Ts, a family of embedded partitions, such that each partition

satisfies its corresponding constraints of C.

begin

1. Ts

Let 0={S1, ..., Sk} , k=Card(S), be the initial partition of S,

where Si= {si}, 1  i k, consists of a single element (leaf) of S.

2. if C= , then Ts Ts
0 // partition having each block with cardinal 1

3. return Ts

else

4. Print the elements of S

5. Print the elements of C.

6.  COMP(S, C, )

Suppose = {S1, ...,Sm}, m  1

7. Ts Ts

8. if | |=1 then

9. Print “Possible error: The partition has only one block”

10. return Ts

else

11. for i=1 to m do

12. CSi  {A B: A B C and B Si}

(CSi is the subset of C concerning only the elements of Si.

so that Card( CSi) Card(C). )

13. TREE_LIKE(Si, CSi, Ti )

14. Ts Ts Ti

15. end (for)

16.      end (if)

17. end (if)

18. return Ts

end.

Suppose TREE-LIKE(Sp, CSp , Tp) and TREE-LIKE(Sk, CSk
, Tk) are two dis-

tinct calls of TREE-LIKE during the execution of TREE-LIKE(S, C, TS). The
following situations may occur:

1. Sp ∩ Sk = ∅, meaning that the two calls are made directly or recursively for
distinct values of i in the for loop of TREE-LIKE(S, C, TS);

2. Sp∩Sk �= ∅. Without loss of generality we suppose TREE-LIKE(Sp, CSp , Tp)
calls directly or recursively TREE-LIKE(Sk, CSk

, Tk). Hence, the partition
Tk is embedded in the partition Tp.

If there are no contradictions in the set of constraints then at each recursive call
of TREE-LIKE the input contains at least one constraint less than the caller
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TREE-LIKE. Hence, the last call on the recursive stack of executions is one
with the constraints set empty. Consequently, the last partition returned is the
partition where each block has cardinality 1.

If there are contradictions (Example 8) in the set of constraints, the algorithm
will return a partition with a single block S′ and will not continue the recursion.
A message saying “Possible error. The partition has only one block” is displayed.
To complete the algorithm, we also consider a subsequent partition for S′ with
single elements blocks.

Property 2. TS ∪ {S} is a tree-like family.

Proof: S belongs to the family. Every single leaf set is in the family. Consider
A, B two distinct sets in the family that are blocks in two partitions built during
the execution of the algorithm. Then A ∩B ∈ {A, B, ∅}.

4 Implementation

The algorithms COMP(S, C, π) and TREE-LIKE(S, C, TS) were implemented
using Java. We use a memory bit to represent each element of S and consequently
we realized all operations on sets using the Bitwise operators of the BitSet Class.
The result is a speed up of the running time of the program.1

Let k be the cardinal of the set of constraints C. The running time of the
algorithm COMP(S, C, π) is O(k) The set of constraints C is usually scanned
only once. If there are many scans to be done, then the number of repetitions is
no greater than k.

Fig. 4. T, supertree compatible with trees T1, T2 and T3

1 The program may be obtained from mkant@yorku.ca
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The algorithm TREE-LIKE(S, C, TS) is recursive. The total numbers of calls
equals the number of internal nodes in the final supertree. Let p be the cardinality
of the set of leaves in S. The worst-case running time of TREE-LIKE is then
O(kp). In the present implementation, at each recursive call of TREE-LIKE the
program outputs the corresponding set of elements and constraints. Hence, the
user may identify the contradictions in the set of constraints and choose which
constraints to retain and which ones to discard.

Fig. 5. Trees T1, T2 and T3

5 Applications

5.1 Supertree for a Family of Trees with Refinement

Consider the trees T1, T2 and T3 (Figure 5) where L(T1)={1, 2, 3, 4, 5, 6, 11, 12, 13,
14, 15}, L(T2) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, L(T3) = {7, 8, 9, 10, 20, 21, 22, 23, 24},
where T1|L(T1)∩L(T2) εT2|L(T1)∩L(T2) and T3|L(T2)∩L(T3) εT2|L(T2)∩L(T3).
The three trees (presented in Figure 5) have overlapping sets of leaves. Trees T1

and T3 include subtrees which are refinements of subtrees of T2.
The tree T in Figure 4 is the supertree compatible with T1, T2 and T3. It

refines all of them: T |L(T2) εT 2, T |L(T1) εT1, and T |L(T3) εT3.

5.2 Supertree for a Family of Trees with Contradiction

Koop et al. [12] computed the independent phylogenies for the ε−, γ−, η−, δ−,
and β−globin genes of groups of primates depicted in Figure 6. We obtained the
supertree in Figure 7 for this family of phylogenies.

In the β−globin phylogeny {Chimpanzee, Gorilla} ⊆ {Chimpanzee, Gorilla,
Human} while in the η−globin phylogeny {Chimpanzee, Human}⊆{Chimpanzee,
Gorilla, Human}. This is a contradiction. Hence, the supertree computed by
TREE-LIKE for the five phylogenies presents an internal node for the set
{Chimpanzee, Gorilla, Human} with three children (Figure 7 (a), internal node
x). To resolve this, we could choose, for example, to retain the constraint from
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Fig. 6. Phylogenies computed for ε−, γ−, η−, δ−, and β−globin genes of groups of
primates. From [12]. Used with permission.

Fig. 7. Supertree for the phylogenies for ε−, γ−, η−, δ−, and β−globin genes of
primates
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the η−globin phylogeny and to discard the other. The output supertree would
then have, from node x, a branch for Gorilla and another for the group Chim-
panzee and Human (Figure 7 (b)).

5.3 Supertree for a Set of Constraints on Clusters

Consider the set of elements L∗ = {1, . . . , 14} and the family of constraints
C∗ = {{1, 2} ⊆ {1, 2, 3}, {1, 2, 3} ⊆ {1, 2, 3, 4, 5, 6}, {7, 8} ⊆ {1, 2, 3, 4, 5, 6, 7, 8},
{1, 2, 3, 4, 5, 6, 7, 8} ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {11, 12} ⊆ {11, 12, 13, 14},
{11, 12, 13, 14} ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}}; A ⊆ B meaning that
either the elements in subset A are closer each other then the elements in B, or
that the cluster A is a distinct subcluster of the cluster B of L∗.

The supertree T ∗ corresponding to the set of constraints C∗ is presented in
Figure 8(a). The set of constraints identifies {1, 2, 3, 4, 5, 6, 7, 8} as a subcluster of
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {1, 2, 3} as subcluster of {1, . . .6}, {7, 8} as subcluster
of {1, . . . , 8}. There is no specific information for elements 4, 5, and 6. Con-
sequently, those three elements are presented as children of internal node x,
Figure 8(a). Adding the constraint {4, 5, 6} ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} induces
the algorithm to build the supertree in Figure 8(b).

Fig. 8. Supertree obtained for a set of constraints on clusters

6 Conclusion

The input of our algorithm may be constraints derived from cluster analyses
and/or from a family of small rooted trees with overlapping leaf sets or simply
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from previous biological knowledge. It outputs a multifurcating supertree, which
is the unique tree compatible in a strong sense with all the constraints, and which
does not depend on any ordering of these constraints, either in the input or in
preprocessing. At each recursive call of TREE-LIKE the program outputs the
set of elements and the set of associated constraints. This information identifies
contradictory constraints and helps the users decide if they must be retained,
further resolving the tree, or not.

Semple and Steel [6] have written about desirable properties of supertrees.
Among these are:

1. the method runs in polynomial time
2. the resulting supertree displays all rooted binary supertrees shared by all of

the trees in the family
3. if the family is compatible, the resulting supertree displays each of the trees

in the family
4. (a) the resulting supertree is independent of the order in which the members

of the family are listed
(b) if we rename all species and then apply the method to this new collection

of input trees, the resulting supertree is the one obtained by applying the
method to the original collection of trees, but with the species renamed
as before.

5. the method allows a possible weighting of the trees in the family.

Of these properties, our method satisfies 1-4. If there is no contradiction
among trees, property 5 is moot. If there is a contradiction, our provision for
manual intervention is a way of assigning priorities among the input trees, though
it is not a pre-assigned numerical weight.

Daniel and Semple [13] have used the notion of “semilabeling” in order to
build supertrees that are based on incompatible trees. While this may well be
advantageous from one point of view, it nevertheless has the disadvantage that
the supertree can no longer display all the trees in the family on which it is
based.
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Abstract. The gene-duplication problem is to infer a species supertree from a
collection of gene trees that are confounded by complex histories of gene duplica-
tion events. This problem is NP-complete and thus requires efficient and effective
heuristics. Existing heuristics perform a stepwise search of the tree space, where
each step is guided by an exact solution to an instance of a local search problem.
A classical local search problem is the NNI search problem, which is based on
the nearest neighbor interchange operation. In this work we (i) provide a novel
near-linear time algorithm for the NNI search problem, (ii) introduce extensions
that significantly enlarge the search space of the NNI search problem, and (iii)
present algorithms for these extended versions that are asymptotically just as ef-
ficient as our algorithm for the NNI search problem. The substantially extended
NNI search problem, along with the exceptional speed-up achieved, make the
gene-duplication problem more tractable for large-scale phylogenetic analyses.

1 Introduction

The rapidly increasing amount of available genomic sequence data provides an abun-
dance of potential information for phylogenetic analyses. Most phylogenetic analyses
combine genes from presumably orthologous loci, or loci whose homology is the re-
sult of speciation. These analyses largely neglect the vast amounts of sequence data
from gene families, in which complex evolutionary processes such as gene duplication
and loss, recombination, and horizontal transfer generate gene trees that differ from
species trees. One approach to utilize the data from such gene trees (gene families) is
to reconcile the gene trees with species trees based on the duplication optimality cri-
terion that was introduced by Goodman et al. [13]. The corresponding optimization
problem is called the gene-duplication problem [15]. This problem can be viewed as a
supertree problem, that is, assembling from a collection of input trees (the gene trees)
a species supertree that contains all species found in at least one of the input trees. The
decision version of the gene-duplication problem is NP-complete [17]. Existing heuris-
tics aimed at solving the gene-duplication problem search the space of all possible su-
pertrees guided by a series of exact solutions to instances of a local search problem [20].
The local search problem is to find an optimal phylogenetic tree under the duplication
optimality criterion in the neighborhood of a given tree. The neighborhood is the set of
all phylogenetic trees into which the given tree can be transformed by applying a tree
edit operation. A variety of different tree edit operations have been discussed in the lit-
erature [24, 26], and in practice the rooted nearest neighbor interchange (NNI) tree edit
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operation has shown much potential for phylogenetic studies [15,22]. However, despite
this potential, algorithms for local search problems based on NNI operations are still
in their infancy. To conduct large-scale phylogenetic analyses, there is much need for
more effective NNI based local search problems that can be solved efficiently.

In this work we extend the NNI neighborhood to the k–NNI neighborhood. The
k–NNI neighborhood contains all trees that can be obtained by performing at most
k successive NNI operations on the given tree.

Recently, efficient solutions were given for local search problems based on the stan-
dard SPR [2] and TBR [3] edit operations. It can be easily shown [11, 12] that 2 and
3–NNI neighborhoods of a tree have very small overlap with its SPR and TBR neighbor-
hoods. This results in novel and potentially more effective local searches. We greatly
improve on the complexity of the best known (brute-force) solutions for 2 and 3–NNI

based local search problems. Furthermore, we show that each subsequent instance of the
local search problem for 1, 2, and 3–NNI neighborhoods can be solved in linear time
after the first instance is solved. This is especially desirable since standard local search
heuristics for the gene-duplication problem typically involve solving several thousand
instances of the local search problem. Our novel near-linear time algorithms provide
much potential for making the gene-duplication problem more suitable for large-scale
phylogenetic analyses.

1.1 Previous Results

The gene-duplication problem is based on the Gene Duplication model from Goodman
et al. [13]. In the following, we (i) describe the Gene Duplication model, (ii) formulate
the gene-duplication problem, and (iii) describe a heuristic approach of choice [20] to
solve the gene-duplication problem.

Gene Duplication model. The Gene Duplication model is well studied [19, 15, 18,
29, 7, 5, 14] and explains incompatibilities between a pair of “comparable” gene and
species trees through gene duplications. A gene and a species tree are comparable, if
a leaf-mapping exists that provides a leaf to leaf mapping that maps every gene to the
species from which it was sampled. The minimum number of gene duplications that
are necessary under the Gene Duplication model to explain the incompatibilities can
be inferred from the mapping M, which is an extension of the given leaf-mapping. M

maps every gene in the gene tree to the most recent species in the species tree that
could have contained the gene. More precisely, M maps each gene to the least common
ancestor of the species from which the leaves (genes) of the subtree rooted at the gene
were sampled (given by the leaf-mapping). A gene in the gene tree is a duplication if
it has a child with the same M mapping. The reconciliation cost for a gene tree and
a comparable species tree is measured in the number of gene duplications in the gene
tree induced by the species tree. The reconciliation cost for a given collection of gene
trees and a species tree is the sum of the reconciliation costs for each gene tree in the
collection and the species tree. The mapping function is linear time computable on a
PRAM [29] through a reduction from the least common ancestor problem [4]. Hence,
the reconciliation cost for a collection of gene trees and a species tree is computable in
linear time.
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Gene-duplication problem and heuristics. The gene-duplication problem is to find
for a given set of gene trees a comparable species tree with minimum reconciliation cost.
This approach has been successfully applied to phylogenetic inference in snakes [27],
vertebrates [21, 23], Drosophila [8], and plants [25] among others. However, the deci-
sion variant of this problem and some of its characterizations are NP-complete [17, 10]
while some parameterizations are fixed parameter tractable [28,16]. Therefore, in prac-
tice, heuristics (e.g. [20]) are commonly used for the gene-duplication problem, even
though they are unable to guarantee an optimal solution. In these heuristics, a tree graph
(see [1,26]) is defined for the given set of gene trees and some fixed tree edit operation.
Each node in the tree graph represents a unique species tree comparable with the given
gene trees. An edge is drawn between two nodes exactly if the corresponding trees can
be transformed into each other by one tree edit operation. The reconciliation cost of
a node in the graph is the reconciliation cost of the species tree represented by that
node and the given gene trees. Given an initial node in the tree graph, the heuristic’s
task is to find a maximal-length path of steepest descent in the reconciliation cost of
its nodes and to return the last node on such a path. This path is found by solving the
local search problem for every node along the path. The local search problem is to find
a node with the minimum reconciliation cost in the neighborhood of a given node. The
time complexity of the local search problem depends on the tree edit operation used.

Here, the edit operation of interest is the NNI operation [1, 6]. Rooted and unrooted
NNI operations have been extensively studied [9]. An NNI operation on a species tree S
(represented as an undirected graph) can be performed by “swapping” two of its node
disjoint subtrees whose root nodes are connected by a simple path of length 3. The
resulting tree graph is connected and every node has a degree of Θ(n), where n is the
number of leaves in S. Thus, the local search problem for the k–NNI neighborhood and
r gene trees can be solved naively in O(rnk+1) time (assuming, for convenience, that
the gene trees differ in size from the species tree by at most a constant factor). These
brute-force solutions are the best available for k ≥ 1, and hence, the development of
faster algorithms is required in order to perform desired large scale phylogenetic studies
using k–NNI local searches.

1.2 Contribution of This Work

We provide efficient algorithms for local search heuristics based on 1, 2 and 3–NNI

neighborhoods. In fact, we show that local searches based on 2 and 3–NNI neighbor-
hoods are asymptotically just as efficient as those based on 1–NNI, even though they
search a much larger neighborhood of trees. For convenience assume that the size of the
r given gene trees differs by a constant factor from the size of the resulting species tree,
which we denote by n. Local searches based on 1, 2 and 3–NNI respectively induce
neighborhoods of size Θ(n), Θ(n2) and Θ(n3); and hence, best known (brute-force)
solutions for the 1, 2, and 3–NNI local search problems require O(rn2), O(rn3), and
O(rn4) time respectively. We provide algorithms that solve the local search problems
for both 2 and 3 NNI-neighborhoods in O(rn2) time.

Furthermore, we show that each subsequent 1, 2, or 3–NNI local search can be
solved in O(rn) time. In summary, for all three neighborhoods, the total complexity
of a heuristic search involving p local search steps is O(rn(n + p)). Thus, if p ≥ n,
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which largely holds true in practice, then the amortized time complexity per local search
step is linear in the input size. Consequently, our algorithms provide a total speed-
up of Θ(min{n, p}), Θ(n × min{n, p}), and Θ(n2 × min{n, p}) for heuristics that
are based on 1, 2 and 3–NNI local searches respectively. It is interesting to note that
for 2 and 3–NNI, the complexity of our algorithms is in fact sub-linear in the size of
the corresponding neighborhoods. The substantially enlarged neighborhoods, and the
exceptional speed-up achieved make the gene-duplication problem more tractable for
large-scale phylogenetic analyses.

2 Basic Notation and Preliminaries

In this section we first introduce basic definitions and notation, and then the necessary
preliminaries required for this work.

2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a node set V (T ) and an edge
set E(T ). T is rooted if it has exactly one distinguished node called the root which we
denote by Ro(T ). Let T be a rooted tree. We define≤T to be the partial order on V (T )
where x ≤T y if y is a node on the path between Ro(T ) and x. The set of minima
under≤T is denoted by Le(T ) and its elements are called leaves. If {x, y} ∈ E(T ) and
x ≤T y then we call y the parent of x denoted by PaT (x) and we call x a child of y. The
set of all children of y is denoted by ChT (y). If two nodes in T have the same parent,
they are called siblings. The least common ancestor of a non-empty subset L ⊆ V(T ),
denoted as lca(L), is the unique smallest upper bound of L under ≤T . A subtree of T
rooted at node y ∈ V (T ), denoted by Ty , is the tree induced by {x ∈ V (T ) : x ≤ y}.
T is fully binary if every node has either zero or two children. Throughout this paper,
the term tree refers to a rooted fully binary tree.

2.2 The Gene Duplication Problem

We now introduce necessary definitions to state the gene-duplication problem. A
species tree is a tree that depicts the evolutionary relationships of a set of species. Given
a gene family for a set of species, a gene tree is a tree that depicts the evolutionary re-
lationships among the sequences encoding only that gene family in the given species.
Thus, the nodes in a gene tree represent genes. In order to compare a gene tree G with
a species tree S a mapping from each gene g ∈ V (G) to the most recent species in S
that could have contained g is required.

Definition 1 (Mapping). A leaf-mapping LG,S : Le(G) → Le(S) specifies, for each
gene g the species from which it was sampled. The extensionMG,S : V (G) → V (S)
of LG,S is the mapping defined byMG,S(g) = lca(LG,S(Le(Gg)).

Note: For any node s ∈ V (S),M−1
G,S(s) denotes the set of nodes in G that map to node

s ∈ V (S) under the mappingMG,S .
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Definition 2 (Comparability). The trees G and S are comparable if there exists a
leaf-mapping LG,S . A set of gene trees G and S are comparable if each gene tree in G
is comparable with S.

Throughout this paper we use the following terminology: G is a set of gene trees that is
comparable with a species tree S, and G ∈ G.

Definition 3 (Duplication). A node v ∈ V (G) is a (gene) duplication ifMG,S(v) ∈
MG,S(Ch(v)) and we define Dup(G, S) = {g ∈ V (G) : g is a duplication}.

Definition 4 (Reconciliation cost). We define reconciliation costs for gene and species
trees as follows:

1. Δ(G, S) = |Dup(G, S)| is the reconciliation cost from G to S.
2. Δ(G, S) =

∑
G∈G Δ(G, S) is the reconciliation cost from G to S.

3. Let T be the set of species trees that is comparable with G. We define Δ(G) =
minS∈T Δ(G, S) to be the reconciliation cost of G.

Problem 1 (Duplication)
Instance: A set G of gene trees.
Find: A species tree S∗ comparable with G, such that Δ(G, S∗) = Δ(G).

2.3 Local Search Problems

Here we first provide the definition of an NNI edit operation [1, 6] and then formulate
the related local search problems that were motivated in the Introduction.

Definition 5 (NNI operation). Let T be a tree. For technical reasons we first define the
set valid(T ) = V (T ) \ {{Ro(T )} ∪ Ch(Ro(T ))} and call its elements valid nodes in
T . Now, for y ∈ valid(T ) we denote by NNIT (y) the tree that is obtained from T by
swapping the subtrees Tx and Ty where x is the sibling of Pa(y). We say that the tree
NNIT (y) is obtained from T by a nearest neighbor interchange (NNI) operation on y
(an example is depicted in Fig. 1).

In the remainder of this paper, whenever we write NNIT (y) we assume that y∈valid(T ).

Definition 6 (k–NNI neighborhood). The k–NNI neighborhood of a tree T is defined
to be the set of all trees that can be obtained by performing at most k successive NNI

operations on T . The k–NNI neighborhood of T is denoted by k −NNIT .

Thus, for instance, 1−NNIT (or simply NNIT ) is the set {NNIT (y) : y ∈ valid(T )}.

Problem 2 (k–NNI–Search)
Instance: A set G of gene trees, and a comparable species tree S.
Find: A tree T ∗ ∈ k −NNIS such that Δ(G, T ∗) = minT∈k−NNIS Δ(G, T ).

In the next section we study the structural properties of 1, 2 and 3–NNI–Search prob-
lems. In Section 4 we develop our algorithm for 2–NNI–Search. Our algorithm for
further speed-up of the p step 1 and 2–NNI heuristic search appears in Section 5. A
description of our algorithm for the 3–NNI–Search problem, and its further speed-up
appears in Section 6. Concluding remarks appear in Section 7.
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3 Structural Properties

In the following we study the effects of an NNI operation on the mappingMG,S and on
the gene duplication status of nodes from G. Given G and S, consider an NNI operation
that changes tree S into tree S′ = NNIS(y). Figure 1 depicts this situation. Figure 1
also depicts the naming convention that we follow for nodes in S before and after an
NNI operation. Essentially, our naming convention preserves the name of each species
tree node.

Note: In the interest of brevity, all lemmas in this paper appear with proofs omitted.

Fig. 1. The tree S′ = NNIS(y) is obtained by swapping the subtrees Sx and Sy

Lemma 1. M−1
G,S(s) =M−1

G,S′(s), for each s ∈ V (S) \ {u, v} (see Figure 1).

Definition 7. For each s ∈ valid(S) we define diffS(s) = Δ(G, S)−Δ(G, NNIS(s)).

Lemma 2. Let s ∈ valid(S), p and t be the siblings of s and PaS(s) in S, and p′ and t′

be the siblings of s and PaS′(s) in S′ respectively. If s ∈ valid(S′), Le(St) = Le(S′
t′),

Le(Ss) = Le(S′
s), and Le(Sp) = Le(S′

p′), then diffS(s) = diffS′(s).

Definition 8. Given s ∈ valid(S), let a and b be the siblings of PaS(s) and s respec-
tively. We define indS(s) = valid(S)\ ({a, b, s, PaS(s)}∪ChS(s)∪ChS(a)∪ChS(b)),
and say that the nodes in indS(s) are independent with respect to node s in S.

Essentially, the nodes in indS(s) are important because they satisfy the property in
Lemma 3. In the remainder of this paper, whenever we write indS(s) we assume that
s ∈ valid(S). A key idea in our algorithms is that when an NNI operation is per-
formed, much of the information computed for the original tree remains the same even
for the new tree. This idea is formally captured in Lemma 3. It can be derived based on
Lemma 2.

Lemma 3. If s ∈ valid(S′) ∩ indS(y), then diffS′(s) = diffS(s).

The next two lemmas follow more or less from the definition of indS(s), and they are
crucial for Lemma 6.

Lemma 4. |valid(S) \ indS(s)| ≤ 10.

Lemma 5. If s ∈ valid(S), then |{t ∈ valid(S) : s 	∈ indS(t)}| ≤ 10.
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4 Solving the 2–NNI–Search Problem

In this section we describe our algorithm to solve the 2–NNI–Search problem. The first
step in our algorithm is to compute the value diffS(s) for each s ∈ valid(S). This al-
ready gives a solution to the 1–NNI–Search problem. Subsequently, the algorithm com-
putes a lowest reconciliation cost tree in 2−NNIS \NNIS . All trees in 2−NNIS \NNIS ,
are obtained by performing exactly 2 successive NNI operations on tree S. Consider
some tree T ∈ 2 − NNIS \NNIS . Then there must exist two nodes s, t ∈ V (S) such
that T = NNIT ′(t), and T ′ = NNIS(s). Now there are two possible cases:
(i) t ∈ indS(s), or (ii) t 	∈ indS(s).

The overall idea of our algorithm is as follows: We compute a minimum reconcilia-
tion cost tree among the trees that satisfy Case (i) above, and a minimum reconciliation
cost tree among the trees that satisfy Case (ii). We also compute a minimum recon-
ciliation cost tree in NNIS . The best tree among these three trees must be a minimum
reconciliation cost tree in 2 − NNIS . The lemmas that follow, allow us to efficiently
compute a minimum reconciliation cost tree in 2−NNIS \NNIS .

Lemma 6. Let A denote the set of the first 11 nodes valid in S arranged according
to decreasing values of diffS(s). Let Γ = {T = NNIT ′(t) : T ′ = NNIS(s), and t ∈
indS(s)}. Let R∗ ∈ Γ with minimum reconciliation cost. Then, there exists a pair of
nodes a, b ∈ A such that b ∈ indS(a), R = NNIR′(b), R′ = NNIS(a), and Δ(G, R∗) =
Δ(G, R).

Lemma 7. Let t ∈ valid(T ) where T = NNIS(s), such that t 	∈ indS(s). Let a be
the sibling of PaS(s), and b be the sibling of s in S. Then, t ∈ {{a, b, s, PaS(s)}
∪ChS(s) ∪ ChS(a) ∪ ChS(b)}.
We can now present our algorithm to solve the 2–NNI–Search problem. We call this
algorithm ALG-2-NNI , and a description of this algorithm appears as Algorithm 1.

The input for Algorithm 1 is a set of gene trees G, and a species tree S. Let n =
| Le(S)|, and r = |G|. To simplify the complexity analysis, we shall assume that all input
gene trees have almost the same size. Thus, let m = |Le(S)| + | Le(G)| for some G ∈
G. Note: the speed-up obtained by our algorithm does not depend on this simplifying
assumption.

Theorem 1. Algorithm 1 solves the 2–NNI–Search problem in O(rmn) time.

Proof. (Correctness) Each tree T ∈ 2−NNIS belongs to one of the following cases:

1. T ∈ NNIS : The tree T1 computed in Algorithm 1 is a tree with minimum reconcil-
iation cost among all trees in NNIS .

2. T ∈ 2−NNIS \NNIS : There exist two nodes s, t ∈ V (S) such that T = NNIT ′(t),
and T ′ = NNIS(s). We now have two possible cases:
(a) t ∈ indS(s): According to Lemma 6, the tree T2 computed by Algorithm 1

must be a minimum reconciliation cost tree among all trees in this case.
(b) t 	∈ indS(s): According to Lemma 7, the tree T3 computed by Algorithm 1

must be a minimum reconciliation cost tree among all trees in this case.

Therefore, a minimum reconciliation cost tree among T1, T2, T3 must be a solution to
the 2–NNI–Search problem.
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Algorithm 1. ALG-2-NNI

Input: A set of gene trees G, and, a species tree S
Output: A tree T ∗ ∈ k −NNIS such that Δ(G, T ∗) = minT∈k−NNIS Δ(G, T )

1: for each s ∈ valid(S) do
2: Compute the value diffS(s).
3: Let α ∈ arg maxa∈valid(S) diffS(a), and set T1 = NNIS(α).
4: Let A denote the set of the first 11 nodes valid in S arranged according to decreasing

values of diffS(s).
5: (α, β) ∈ argmax(a,b) : a,b∈A, b∈indS(a) diffS(a) + diffS(b).
6: Set T = NNIS(α) and T2 = NNIT (β).
7: Set T3 = T2.
8: for each s ∈ valid(S) do
9: Let a be the sibling of PaS(s), and b be the sibling of s in S. Set T = NNIS(s).

10: for t ∈ valid(T ) ∩ {{a, b, s, PaS(s)} ∪ChS(s) ∪ChS(a) ∪ ChS(b)} do
11: R = NNIT (t).
12: if Δ(G, T3) > Δ(G, T ) then
13: Set T3 = T .
14: return an element of arg minT∈{T1,T2,T3} Δ(G, T ).

(Complexity) Computing the tree T1 involves computing the diffS(s) value for each
s ∈ valid(S), and identifying the node a for which diffS(a) is maximum. Computing
the reconciliation cost for a given species tree takes O(rm) time. Therefore, computing
T1 takes O(rmn) time.

After T1 has been computed, computing the tree T2 involves creating the set A
(which takes O(n) time), and then evaluating every possible 2-element ordered pair
from A. Each evaluation takes O(1) time, and the number of possible ordered pairs is
O(|A|2) i.e. O(1). Therefore, computing T2 (after having computed T1) requires O(n)
time.

Computing T3 involves evaluating the reconciliation costs of at most 10×n i.e. O(n)
trees, and then picking the best tree among these. Therefore, computing T3 requires
O(rmn) time.

In conclusion, the time complexity of Algorithm 1 is O(rmn). 
�

5 Further Speed-Up for 1 and 2–NNI Heuristics

As mentioned earlier, standard local search heuristics for the Duplication problem, in-
volve solving many instances of these local search problems. Consider a heuristic search
involving p instances of the local search problem, then, using our faster algorithm for the
2–NNI–Search problem allows both 1 and 2–NNI based heuristics to run in Θ(prmn)
time. We will now show that the 1, 2–NNI based heuristics can, in fact, both be executed
in O(rm(n + p)) time.

5.1 Heuristics Based on 1–NNI

Existing algorithms for the 1–NNI–Search (or simply NNI–Search) problem have a
time complexity of O(rmn), and hence they solve the NNI based heuristic problem
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in O(rpmn) time. Our algorithm to solve the NNI–Search problem involves comput-
ing the the value diffS(s) for each s ∈ valid(S), and then picking a tree T such that
T = NNIS(α) where α = arg maxa∈valid(S) diffS(a). This also requires O(rmn) time.
However, this approach allows us to reuse most of the previously computed information
in subsequent iterations of the local search.

Let T denote a minimum reconciliation cost tree in NNIS . Then, there exists a node
a such that T = NNIS(a). For the next iteration we must compute a minimum recon-
ciliation cost tree in NNIT . As seen earlier, this involves computing the value diffT (s)
for each s ∈ valid(T ). Let Γ = valid(T ) ∩ indS(a). Then, by Lemma 3 we know that
diffT (s) = diffS(s), for all s ∈ Γ . Therefore, for all s ∈ Γ we can reuse the values
from the previous iteration. In other words we must only compute the value diffT (s) for
all s ∈ valid(T ) \ Γ . It follows directly from Lemma 7 that if Φ = valid(T ) \ Γ , then
|Φ| ≤ 10.

This means that for each subsequent iteration of the NNI local search, we must com-
pute the reconciliation costs for at most 10 trees. Thus, once the first NNI local search
problem has been solved in O(rmn) time, each subsequent local search instance can
be solved in O(rm) time. This gives a total time complexity of O(rm(n + p)), which
gives a speed-up by a factor of Θ(min{n, p}) over existing solutions.

5.2 Heuristics Based on 2–NNI

Let T denote a minimum reconciliation cost tree in 2−NNIS . For the next iteration of
this local search, we wish to find a tree U with minimum reconciliation cost in 2−NNIT .
According to our algorithm (see Algorithm 1) computing U involves computing the
trees T1, T2, T3 ∈ 2−NNIT . We now show how to compute each of these three special
trees in O(rm) time by reusing previously computed information.

There exist two nodes a, b such that T ′ = NNIS(a) and T = NNIT ′(b). Computing
the tree T1 involves computing the value diffT (s) for all nodes s ∈ valid(T ). Since
a and b are known (from the previous iteration of the local search), the method used
for 1–NNI above can be used to obtain the values diffT ′(s) for all s ∈ valid(T ′) in
O(rm) time. Once this is done, the same algorithm is reapplied to compute the values
diffT (s) for all s ∈ valid(T ). This step also takes O(rm) time. Hence, the tree T1 can
be computed in O(rm) + O(rm) i.e. O(rm) time.

Once all the diffT (s) values have been obtained for all s ∈ valid(T ), computing the
tree T2 takes O(n) time (see the complexity analysis in the proof of Theorem 1).

In order to compute the tree T3, we first compute the tree NNIT (s) for each s ∈
valid(T ) and then compute the scores for at most 10 trees derived from NNIT (s), for
each s ∈ valid(T ) (see Algorithm 1). We will show how to efficiently obtain all these
O(10n) scores by reusing the scores computed in the previous iteration of the local
search. It is sufficient to show how to obtain these scores for the tree T ′ = NNIS(a),
because the exact same procedure can be applied again on T ′ to obtain the scores for
the tree T = NNIT ′(b).

Let c, d be two nodes such that R′ = NNIT ′(c) and R = NNIR′(d). Since we wish
to compute the tree corresponding to T3, we may assume that d 	∈ indR′(c). There are
three possible cases:
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1. c, d ∈ indS(a): Let Q = NNIS(c). In this case we have the values diffS(c) and
diffQ(d) computed from the previous iteration. Since c ∈ indS(a), by Lemma 3
we have diffT ′(c) = diffS(c). It can be shown that there are O(1) candidates for
d such that diffR′(d) 	= diffQ(d). Thus, in case diffR′(d) 	= diffQ(d), by Lemma 5
there are only O(1) candidates for c as well, and hence the score for each such pair
can be computed in O(rm) time. Otherwise, the previously computed scores can
be reused, which takes O(n) time. This gives a total time complexity of O(rm).

2. c ∈ indS(a), d 	∈ indS(a): d may be either valid or invalid in S. If d 	∈ valid(S),
then there are no more than two candidates for d (since d ∈ valid(R′), and R′ is
obtained from S by no more than two NNI operations). Otherwise, there are O(1)
candidates each for d (see Lemma 4). Since d 	∈ indR′(c), Lemma 5 implies that
there are O(1) candidates for c. Hence, we only need to compute O(1) scores.

3. c 	∈ indS(a): c may be either valid or invalid in S. If c 	∈ valid(S), then there is
exactly one candidate for c (since c ∈ valid(T ′)). Otherwise, there are at most 10
candidates each for c and d (see Lemma 4). Hence, we only need to compute O(1)
scores.

Thus, T3 can be computed in O(rm) time as well, which in turn implies that a
minimum reconciliation cost tree in 2 − NNIT can be computed in O(rm) time. This
gives a total time complexity of O(rm(n+p)) for 2–NNI based heuristics, which gives
a speed-up by a factor of Θ(n×min{n, p}) over the naive solution.

6 Optimizing the 3–NNI–Search Problem

The main idea behind our algorithms for the 1 and 2–NNI–Search problems, as well
as their speed-up, is that when an NNI operation is performed on a tree, it only affects
the mapping in a small, constant sized region of the tree. Since the reconciliation cost
depends only on the mapping from the gene trees, in the new species tree thus obtained,
much of the information computed for the original tree remains valid. This idea applies
equally well for solving the k–NNI–Search problem, for k > 2, but the algorithm be-
comes progressively more convoluted as k increases. However, for the special case of
k = 3, the algorithm for 2–NNI–Search extends in a rather straightforward manner.

The trees in 3−NNIS must be in at least one of 2−NNIS , or 3−NNIS \2−NNIS .
We have already seen how to obtain a minimum reconciliation cost tree in 2 − NNIS .
Therefore, the problem is to find a minimum reconciliation cost tree in 3−NNIS \2−
NNIS . All the trees in 3 − NNIS \2 − NNIS , are obtained by performing exactly 3
successive NNI operations on tree S. Consider some tree T ∈ 3−NNIS \2−NNIS . Then
there must exist three nodes s, t, u ∈ V (S) such that T = NNIT ′(u), T ′ = NNIT ′′(t),
and T ′′ = NNIS(s). We now have six cases, exactly one of which must be true.

1. t ∈ indS(s), u ∈ indT ′′(t) ∩ indS(s)
2. t ∈ indS(s), u ∈ indS(s) \ indT ′′(t)
3. t ∈ indS(s), u ∈ indT ′′(t) \ indS(s)
4. t ∈ indS(s), u 	∈ indT ′′(t) ∪ indS(s)
5. t 	∈ indS(s), u ∈ indT ′′(t) ∩ indS(s)
6. t 	∈ indS(s), u 	∈ indT ′′(t) ∩ indS(s)
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If we can calculate a minimum reconciliation cost tree separately for each of these
six cases, then the tree with minimum cost among these six trees will be a minimum
reconciliation cost tree in 3−NNIS \2−NNIS .

It can be shown that a minimum reconciliation cost tree can be obtained for each of
the six cases in O(rmn) time (details omitted for brevity). This gives us an O(rmn)
time algorithm for the 3–NNI–Search problem.

The algorithm used to obtain further speed-up for 2–NNI based heuristics also ex-
tends in a similar fashion to 3–NNI based heuristics. This gives a total time complexity
of O(rm(n + p)) for the 3–NNI based heuristic.

7 Outlook and Conclusion

We introduced algorithms that significantly speed up NNI based local search heuristics
for the duplication problem. These algorithms extend naturally to local search problems
based on the Edge Contraction and Refinement (ECR) edit operation [11, 12]. Thus,
heuristic searches involving p instances of the 1, 2, or 3–ECR–Search problems can all
be completed in O(rm(n + p)) time as well.

Our algorithms form the basis for extremely efficient local search heuristics. In par-
ticular, our 2 and 3–NNI local search algorithms can greatly improve on the perfor-
mance of classical 1–NNI local search heuristics, without sacrificing efficiency. The
real power of our algorithms can be best exploited as part of a heuristic that mixes 1, 2,
and 3–NNI local searches with SPR and TBR local searches (see [22]). Such a heuristic
would be both fast and effective, which would enable much larger analyses to be per-
formed within a reasonable time. In future work, these techniques might set base for
algorithmic theory that identifies a much broader class of local search problems which
can be solved more efficiently.
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Abstract. As the number of sequenced genomes has grown, we have become 
increasingly aware of the impact of horizontal gene transfer on our understand-
ing of genome evolution. Methods for detecting horizontal gene transfer from 
sequence abound. Among the most accurate are methods based on phylogenetic 
tree inference, but even these can perform poorly in some cases, such as when 
multiple trees fit the data equally well. In addition, they tend to be computation-
ally intensive, making them poorly suited to genomic-scale applications. We  
introduce a new method for detecting horizontal transfer that incorporates the 
distances typically used by phylogeny-based methods, rather than the trees 
themselves. We demonstrate that the distance method is scalable and that it per-
forms well precisely in cases where phylogenetic approaches struggle. We con-
clude that a distance-based approach may be a valuable addition to the set of 
tools currently available for identifying horizontal gene transfer.  

1   Introduction 

Horizontal or lateral gene transfer, the transfer of genes between genomes rather than 
by “vertical” inheritance from ancestors, has been known to occur among prokaryotes 
for many years (Davies 1996) and is increasingly of interest in eukaryotes as well 
(Doolittle 1998; Hotopp et al. 2007). Horizontally acquired genes can affect how we 
develop and interpret sequence and functional annotation. The extent and sources of 
horizontal gene transfer (HGT) in an organism may even affect our ability to recon-
struct the entire organism’s evolutionary history (Doolittle 1999). A wide range of al-
gorithms for identifying horizontal gene transfer have been suggested, from sequence 
composition methods to homology searching to phylogenetic approaches.   

Sequence composition methods (Mrazek and Karlin 1999) rely on the observation 
that sequences transferred from a distant genome retain some of the codon and se-
quence bias of the original organism, which they lose over time (Lawrence and Och-
man 1997). These are among the most efficient and scalable approaches to HGT  
detection, but they can fail in two important cases: when the transfers are ancient or 
when they are among sufficiently similar species. 
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Homology methods, in which conclusions are drawn from the species distributions 
of the genes’ closest neighbors, also scale to whole genomes (Lander et al. 2001; Po-
dell and Gaasterland 2007), but annotation errors, incomplete databases, and gene loss 
raise serious questions about the accuracy of such methods (Salzberg et al. 2001).    

In many cases, the best-performing algorithms use phylogenetic approaches to re-
construct the evolutionary histories of genomes and individual genes (Eisen 2000). A 
number of such “tree-based” approaches have been considered, most of which com-
pare inferred trees for individual genes to a “correct” tree showing the overall phy-
logenetic relationships of the considered species (Robinson 1981; Shimodaira 2002). 
Such methods are the only ones that incorporate putative evolutionary relationships. 
Bottom-up tree construction methods, such as the neighbor-joining algorithm (Saitou 
and Nei 1987), often identify fine structure successfully and so perform relatively 
well at identifying transfers even between similar species.   

However, even tree-based approaches are imperfect. First, they generally require 
construction of a phylogenetic tree for each gene under consideration. Thus, they are 
slow and tend to scale poorly to genome-wide applications. In addition, inference of 
correct phylogenetic trees is a difficult problem, and inferred gene trees can be incor-
rect, particularly when lineages evolve at different rates (Anderson and Swofford 
2004). There are two commonly-used approaches to building the “consensus” tree 
needed by typical tree-based methods: inferring a phylogenetic tree for each gene and 
then constructing a consensus of these trees; or else concatenating all the gene se-
quences together and inferring a tree representing these concatenated sequences. In ei-
ther case, an incorrect consensus tree will cause errors in the entire algorithm.    

We introduce an approach that has many of the strengths of phylogenetic ap-
proaches but avoids some of their pitfalls. Specifically, we use the same pairwise dis-
tances used by phylogenetic inference algorithms to detect horizontal transfer without 
building the trees themselves. Since determining the optimal tree topology is the most 
computationally-intensive part of the tree-based HGT-detection process, a distance-
based approach runs much more quickly, allowing scanning of whole genomes. Fur-
thermore, there is no “consensus” tree, so this method doesn’t suffer in cases where 
no single tree that fits all of the data well. Instead, we consider how the relative pair-
wise distances between species in one gene family relate to those relative distances in 
another. Thus, our method can accommodate genes with different rates of evolution 
and genes that appear in different sets of species. Because it relies only on the pair-
wise species distances, we refer to this as the Distance Method.   

As an example, consider the tree in Figure 1 showing five species (labeled A – E). 
One might expect that for most genes, sequence-derived distances between orthologs 
in D and E would be small, while distances between orthologs in A and D would be 
larger. However, suppose that a gene from D had relatively recently transferred into 
A’s genome. Then the sequence-derived distance between that gene in D and its clos-
est ortholog in A would be surprisingly small, while the distance between the 
orthologs in A and B would be surprisingly large. We detect these unusual events us-
ing these distances, avoiding the hazards of errors that can be introduced in the tree-
construction process and the computational cost of building the trees. Our method 
compares the pairwise species distances among different gene families and reports the 
number of unusual-looking distances detected in each family.  
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Fig. 1. A hypothetical tree of five species, A-E. Note that if a gene from D had been transferred 
into A’s genome, the distances between that gene (D’) in A and E would be surprisingly small, 
while that between A and B would be surprisingly large. Our method detects HGT by observing 
these differences.   

2   Methods 

This section first introduces the computational method used to identify horizontally 
transferred genes.  Next, it describes the construction of test data sets used to evaluate 
the computational approach.   

2.1   Identification of Horizontally Transferred Genes  

Given a species in which we want to find HGT, we start by identifying a set of related 
species for comparison. In the experiments described here, we followed the example 
of (Lerat et al. 2003) in selecting E. coli K12 as our target genome, and a commonly-
studied set of 12 other gamma-Proteobacteria (see Table 1) as additional species for 
comparison. We aim to identify genes from E. coli whose evolutionary history with 
respect to the other species in our data set is unusual.   

The basic assumption behind our algorithm is that, for a given pair of species, the 
sequence-derived distances between any two orthologous genes in those two species 
should be similarly ranked, when compared to the distances between other members 
of the same gene family in other species pairs. Note that this assumption allows for 
variation in the evolutionary rates of genes. 

For example, in Figure 1, for any gene with orthologs in all five species we expect 
the corresponding sequences in species A and B to be closer than those in A and D. If 
they are not, it suggests that the evolutionary history of that gene may be atypical. 
Specifically, if a gene has been recently transferred from another species (whether 
among those in the data set or outside it), we expect these distance ranks to be unusual 
for many species pairs. Our algorithm identifies such genes. We refer to these HGT 
candidates as “outlier” genes because of their unusual distance distributions. 

Computing Pairwise Species Distances. For each gene in the target genome, we 
identify all orthologous genes in each other species in the data set using BLASTP 
(Altschul et al. 1997; Schaffer et al. 2001) with an E-value below 10-20. For simplic-
ity, we use the single best BLAST hit in each species to identify orthologous genes, 
though ultimately more sophisticated approaches may be valuable (Remm et al. 2001; 
Podell and Gaasterland 2007). For each gene having at least three detectable orthologs  
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in species other than the target genome, we then construct multiple sequence align-
ments for the gene family using ClustalW (Thompson et al. 1994). Given these 
alignments, the protdist function in PHYLIP (Felsenstein 2002) calculates the dis-
tances between each pair of sequences in the alignment. 

We note that multiple sequence alignments can be unreliable, just as inferred phy-
logenetic trees can, so the distances produced by PHYLIP may be incorrect. However, 
our method does not need to resolve inconsistencies among the distances by choosing 
a single tree. Thus, it may be less sensitive than phylogenetic methods to errors or in-
consistencies in the inferred distances.   

Detecting “Outlier” Genes. Different genes evolve at different rates. If we were to 
rely on raw distances to identify genes whose evolutionary history appears unusual, 
genes evolving particularly quickly or slowly would be at the top of the list. To avoid 
this effect, we first normalize the distance data. Specifically, for each gene family and 
species, we z-score normalize the set of pairwise distances between the gene in that 
species and all other species (in which a unique best ortholog for that gene is 
detectable). For example, in a data set of 190 genes in 13 species (as in Dataset 1, 
below), we would z-score normalize 2470 sets (corresponding to 190 genes * 13 
species) of 12 distances each (corresponding to the other orthologs of that gene).   

To pick our “outliers” we create a distance vector for each pair of species; in the 
same example, there would be 13 * 12 distance vectors, each of length 190 (corre-
sponding to the total number of E. coli genes). For each pair of species, we then com-
pute the mean and standard deviation of the values in that distance vector, and we 
identify as outliers any genes that are more than c standard deviations from the mean.1 
Then, we count up how many of these flagged outliers over all species-pair vectors 
belong to the same gene. A gene that is flagged as an outlier in this way in more than 
half the species pairs that include species S is considered an outlier gene for species 
S. We then consider species S an outlier species for that gene. Genes with one or 
more outlier species are reported as having an unusual evolutionary history.  

Clustering Gene Families by Species. Though normalization is necessary to account 
for different rates of evolution, an unwelcome side-effect of normalization is that 
genes existing in only a small number of species are more likely to be chosen as 
outliers. However, to be applicable on a genome-wide level, our approach must be 
able to handle genes with detectable orthologs in only a small number of species. This 
missing-data bias disappears when comparisons are made among sets of genes 
occurring in roughly similar sets of species. Thus, we pre-process our data by 
clustering the E. coli genes according to the sets of species in which unique orthologs 
are identifiable. We call this procedure the Hamming Distance Clustering step.   

To start, we define a species set as a set of genes whose orthologs are detectable 
(by the BLAST method described above) in exactly the same subset of the considered 
species. We call a species set large if it contains more than 30 genes, and we assume 

                                                           
1  For all experiments in this paper, we choose c = 2.326, which would correspond to about 2% 

of the data in each vector if the distances are normally distributed. In practice, they are not, 
but the top half of the data – that part not constrained by the fact that distances must be non-
negative – is close.   



30 X. Wei et al. 

there are k species in our data set. Initially, each large species set becomes the core of 
its own cluster. We now extend these clusters to include the rest of the genes. We do 
this by an iterative process. 

First, for each existing cluster C in decreasing order by size, let vC be a binary vec-
tor of length k indicating the species in which the genes in C appear. Now, consider in 
turn each species set S not already clustered, and create binary indicator vector vS for 
set S. If the Hamming distance between vC and vS is at most 2, merge S into cluster C 
(without changing vC). When all S have been considered, we move on to the next core 
cluster and repeat the process. Finally, any remaining species sets are assigned to the 
cluster with the closest core Hamming distance. Once this pre-processing step has 
been completed, we run our outlier detection algorithm on each cluster and report any 
genes flagged as outliers in any cluster.   

2.2   Construction of Test Data Sets 

Here we describe the data sets we used to evaluate our approach. We started by 
downloading thirteen completed gamma-Proteobacteria genomes from the NCBI Ge-
nome database in November, 2006. Only the encoded protein sequences were used in 
this project. Table 1 summarizes the data from these 13 species, which are exactly 
those chosen by (Lerat et al. 2003). We then constructed three different data sets, 
which are summarized in Table 2. 

Table 1. The thirteen gamma-Proteobacterial genomes from which our test data sets were 
constructed  

Species Abbrev. Genome ID # of  proteins 
Buchnera aphidicola APS BA NC_002528 564 
Escherichia coli K12 EC NC_000913 4,243 
Haemophilus influenzae rd HI NC_000907 1,657 
Pseudomonas aeruginosa PAO1 PA NC_002516 5,566 
Pasteurella multocida Pm70 PM NC_002663 2,015 
Salmonella typhimurium LT2 ST NC_003197 4,425 
Vibrio cholerae VC NC_002505,NC_002506 3,835 
Wigglesworthia brevipalpis WB NC_004344 611 
Xanthomonas axonopodis  XA NC_003919 4,312 
Xanthomonas campestris  XC NC_003902 4,181 
Xylella fastidiosa 9a5c XF NC_002488 2,766 
Yersinia pestis CO92 YC NC_003143 3,885 
Yersinia pestis KIM YK NC_004088 4,086 

Dataset 1: Comparison with Lerat’s HGT Method. The first dataset was designed 
to determine whether we could identify the same cases of horizontal gene transfer 
(bioB and mivN) as the consensus-tree approach described in (Lerat et al. 2003). Of 
the 205 genes in their data set, we were able to identify 189 of them in our database 
(presumably because the E. coli genome annotation has changed somewhat in the in-
tervening years). In fact, only 168 of the 189 genes had orthologs detected by our cri-
teria in all of the 13 species considered. (This is because of differences between their 
methods and ours for identifying orthologs.) Given these differences, we therefore 
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added in one other known example of horizontal gene transfer, the tadA gene (Planet 
2006). In total, Dataset 1 contains 190 genes.  

 
Dataset 2: Calculating Sensitivity. This dataset is designed to test the sensitivity of 
our method. The problem with calculating the sensitivity, specificity, or indeed any 
measure of accuracy of an HGT detection method is that, for most real data, the right 
answers are unknown.  Specifically, it is impossible to identify the line between true 
positives and false positives. However, we can take advantage of an idea of Poptsova 
and Gogarten (Poptsova and Gogarten 2007) to create a small subset of data where we 
know that the evolutionary history of some specific genes is abnormal, because we’ve 
“spiked” in those abnormal sequences ourselves.   

In this data set, we restricted our attention to genes that were best reciprocal 
BLAST hits between each pair of species. Thus, only 148 genes from Dataset 1 were 
selected to form Dataset 2. To simulate horizontal gene transfer between E. coli and 
another species in the data set, we randomly select one of the other species and swap 
the orthologous gene sequences between E. coli and that other species.  

In fact, Dataset 2 is really comprised of 10 sub-datasets. Each sub-dataset contains 
the same 148 genes, but includes 10 different randomly-chosen swapped genes. In to-
tal, there are 100 simulated “outlier” genes planted in Dataset 2. 

 
Dataset 3: A Genomic-Scale Test Case. There are 4243 E. coli K12 genes in the  
genome sequence we downloaded. However, for our distance method to work, we re-
quire that genes have more than 3 detectable orthologs among the 13 species. We se-
lected all 2853 E. coli genes meeting this criterion, and their orthologs in the other 
species, to form Dataset 3. 

Table 2. Summary of test data sets   

 Dataset 1 Dataset 2 Dataset 3 
Number of genes  190 148 per sub-dataset 2853 
Number of subsets None 10  None 
Known outliers None 10 per sub-dataset None 
Demonstrates Feasibility Sensitivity Genomic Scale 

3    Results 

3.1   Feasibility 

We first ran our algorithm on Dataset 1. The distance method identifies 19 of the 190 
genes (10%) as outliers; these are listed in Table 3. Experts disagree on the expected 
prevalence of horizontal gene transfer in bacterial genomes (Martin 1999), but values 
between 5 and 15% of the genome are common, so identifying 10% of the input genes 
in this set seems reasonable. However, because this data set contains only widely-
conserved genes, we do not necessarily expect this 10% outlier-detection rate to ex-
tend to the whole genome (see Section 3.3).   

The 19 gene list includes all three known examples of HGT: tadA (Planet 2006) 
and mviN and bioB (Lerat et al. 2003). We also note that there are several ribosomal 
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proteins on the list; previous work suggests that horizontal gene transfer is common 
among ribosomal protein families (Coenye and Vandamme 2005).    

Finally, the gene ileS appears on this list because of a database error:  the H. influ-
enzae genome sequence listed in Table 1 lacks the ileS (isoleucyl-tRNA synthetase) 
gene entirely. This is presumably a database error in the NCBI sequence – the gene  
itself is essential, and the gene appears in other versions of the genome. However, be-
cause of this absence, the best BLAST hit of the E. coli ileS gene in H. influenzae 
turns out to be valyl-tRNA synthetase. Thus, the evolutionary history of the gene ap-
pears to the algorithm to be unusual, so this gene is flagged as an outlier. We chose 
not to correct this error because its presence testifies to the algorithm’s efficacy.    

Table 3. Genes identified as outliers in Dataset 1. Known examples of HGT and the detected 
database error are shaded.   

rank # outlier species # orthologs Locus  Product name 
1 5 5 secE Translocase 
2 4 13 ileS isoleucyl-tRNA synthetase  
2 4 4 rpmD 50S ribosomal protein L30 
2 4 4 rpmF 50S ribosomal protein L32 
2 4 7 rplO 50S ribosomal protein L15 
6 2 13 bioB Biotin synthase 
6 2 13 mviN Predicted inner membrane protein 
6 2 13 ftsZ cell division protein FtsZ  
6 2 9 rplL 50S ribosomal protein L7/L12 
6 2 7 rpmG 50S ribosomal protein L33 

11 1 13 tadA tRNA-specific adenosine deaminase 
11 1 13 atpD ATP synthase subunit B  
11 1 13 ftsA cell division protein  
11 1 13 gltX glutamyl-tRNA synthetase  
11 1 13 htpX heat shock protein HtpX 
11 1 13 ribA GTP cyclohydrolase II protein  
11 1 8 rplY 50S ribosomal protein L25 
11 1 13 rpsJ 30S ribosomal protein S10  
11 1 11 yqgF Holliday junction resolvase-like protein  

3.2   Sensitivity 

To evaluate the performance of the distance method, we used the simulated anomalies 
in Dataset 2.  We combine the results from each of the ten trials to identify how many 
of 100 randomly “spiked” anomalous genes we were able to detect. For comparison, 
we also applied the AU (“approximately unbiased”) test (Shimodaira 2002) to the 
same data. The AU test is a tree-based method that has been shown to perform well in 
identifying horizontal gene transfer (Poptsova and Gogarten 2007).   

Overall, our distance method did not do as well as the AU test in finding the 
swapped genes in this data. Only 46 of the 100 swapped genes were identified, com-
pared to 74 under the AU test method. However, a closer analysis of which swaps 
were found by each method yields some interesting insights.   

Figure 2a shows the 100 swapped genes identified by the species with which the  
E. coli representative was swapped. The distance method failed to identify any swaps 
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between E. coli and the two Y. pestis genomes (YC and YK), which are highly similar 
to E. coli. But it did well on identifying swaps from many other organisms.   

The most interesting phenomenon illustrated in Dataset 2 is that the distance 
method identifies all exchanges between E. coli and B. aphidicola or W. brevipalpis, 
while the AU test results are much weaker for these genes. These two species are en-
dosymbionts, which are evolving more rapidly than other species in the data set. Their 
evolutionary relationship to each other and to the rest of the species in the data set is 
unclear. Some phylogenetic methods suggest that they are closely related to each 
other (Lerat et al. 2003), but others disagree (van Ham et al. 1997; Spaulding and von 
Dohlen 1998; Moya et al. 2002). We suspect that for sequences from these species, 
the tree-based AU test fails because long branch attraction (Anderson and Swofford 
2004) creates errors in the consensus tree. However, the distance method does not suf-
fer from this problem at all.   
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Fig. 2. Known outliers detected by the Distance Method and the AU test. a) Breakdown by 
source species. While the AU test outperforms the distance method overall, this is not the case 
for all species. In particular, the distance method identifies all spiked sequences deriving from 
the B. aphidocola and W. brevipalpis genomes. This is interesting because these symbiotic spe-
cies are rapidly evolving, so many tree inference methods have trouble placing them correctly. 
The distance method for detecting outliers avoids this pitfall. b) Breakdown by percent identity 
of the swapped sequences. Distance outperforms the AU test for dissimilar sequences, but per-
formance of the AU test falls off less dramatically as sequence similarity increases.   

Figure 2b shows the Dataset 2 results broken down by the degree of sequence iden-
tity between the swapped genes. These results demonstrate that the distance method 
does well in identifying swapped sequences with only moderate sequence similiarity, 
even in cases where tree inference methods struggle, but it has trouble when the 
spiked sequences are too similar to those of the host genome.   

It is possible that the distance method preferentially identifies rapidly-evolving 
genes, despite our attempts to account for this via normalization. To eliminate this 
possibility, we examined the “outlier species” for all 19 genes flagged as outliers in 
Dataset 1 (i.e., without swapped-in genes). Not a single gene was considered to be an 
outlier in B. aphidicola or W. brevipalpis. This is because the variance of the pairwise 
distances is large for these species, so we don’t identify their genes as being unusually 
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far from the mean.  Thus, z-score normalization appears to be effective, and our abil-
ity to detect transfers with these species in Dataset 2 is not an artifact.   

Finally, we measured the running times of the two methods on a typical run of 
Dataset 2 (one set of 148 genes). Both methods use BLAST and ClustalW as pre-
processing steps, which took ~5.75 minutes on our 2.4 GHz linux machine. Building 
the trees in PAML and running the AU test code in CONSEL required 46.5 min., not 
including time needed to construct a consensus tree (already known for the 13 species 
involved). In contrast, the distance method required 2.5 min. to calculate pairwise dis-
tances in PHYLIP for all pairs of species in all gene families, and then a total of 0.41 
seconds to identify outliers in all 148 genes.  

3.3   A Genome-Scale Application 

We ran the Distance Method on Dataset 3 to identify efficacy across a genomic-scale 
data set. A total of 214 genes (7.5%) were detected as outliers. The full list is avail-
able as supplementary data. Figure 3 shows that the probability of a gene’s being de-
tected as an outlier is slightly lower for genes detected in few species. This makes 
sense, because if the sequences exist in fewer species, there are fewer species pairs 
available to witness the unusual history for that gene. In addition, however, this result 
demonstrates that the clustering approach successfully overcomes any normalization-
induced bias towards selecting genes that appear in few species.   

The entire run took 110 minutes on our linux machine; 28 minutes of that was 
needed to compute distances in PHYLIP, and just under 6 seconds to identify outliers. 
In other words, the part of the distance method after the pre-processing step of identi-
fying orthologs and aligning them (shared with the AU test) took less real time for the 
entire genome than the unique AU test calculations did for just 148 genes.   
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Fig. 3. Percentage of the 214 outliers from Dataset 3 with detectable orthologs in different 
numbers of species   

To assess accuracy in this data set, we did not compare our results to tree-based 
methods, since none to our knowledge is suitable for genome-wide scanning. How-
ever, a newly-published method for re-ranking BLAST results has been proposed as a 
way to find previously-undetected HGT events on a genomic scale (Podell and Gaast-
erland 2007). We compare our results to theirs. In addition, we can search the litera-
ture for validation of our findings, though this is a labor-intensive process.   

DarkHorse (Podell and Gaasterland 2007) identifies putative horizontal gene trans-
fer using BLAST to detect closest neighbors, but extending attention beyond the sin-
gle best BLAST hit. Their method has been shown to be applicable on a genomic 
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scale and more sensitive than traditional BLAST searching, and it has already been 
tested on the E. coli genome. We compared our results to those reported as supple-
mental data in the DarkHorse paper.    

Because genes in Dataset 3 must have more than three detectable orthologs among 
the 13 species in our data set, many of the E. coli genes that DarkHorse predicts to be 
horizontally transferred are not included in Dataset 3.  However, of the 2853 genes in 
Dataset 3, DarkHorse predicts that 31 of them are examples of HGT between E. coli 
and another species. Among our list of predicted outliers, we have only 7 in common 
with this list of 31: ygfK, ygfO, ydcU, yjhH, yjhG, yagE, and paaH.   

This result raises two questions. First, how likely is it that we would find that many 
overlapping genes just by chance? To address this question, we chose 100 random 
sets of 214 genes from Dataset 3, and measured their intersection with the 31 genes in 
the DarkHorse list. In none of those 100 cases did we ever see seven intersecting 
genes, and in only one case did we even see as many as six.  

Second, in the cases where the two methods disagree, which is correct?  We offer 
no dispute of the DarkHorse predictions, except the general observation that different 
evolutionary rates, gene loss, and sequence annotation errors are known to limit the 
accuracy of homology-based methods (Eisen 2000). However, we manually searched 
for publications linking 60 of our predicted outliers to horizontal transfer between E. 
coli and another species. We found such evidence in 5 of the 60 cases:  trkG (Ly et al. 
2004), fhiA and fliS (Ren et al. 2005), agaV (Charbit and Autret 1998), and cmtA 
(Sprenger 1993). These data suggest that many of our novel predictions may be cor-
rect, and that a method that combines multiple approaches might be the best one.  

4    Conclusions 

Our results demonstrate the potential of using distances to detect HGT instead of full 
phylogenetic methods. The Distance Method described here identifies many known 
positive examples, including some missed by other methods, but also appears to miss 
some that other methods detect. Specifically, the Distance Method does particularly 
well at identifying outlier sequences with only moderate sequence similarity to the 
host gene, even in cases (such as rapidly evolving symbiotic organisms) where tree-
inference methods often fail. On the other hand, the Distance Method struggles to de-
tect transfers between closely related genomes. These transfers are challenging for 
any HGT method, but the AU Test outperforms the Distance Method here. 

These results suggest that, if there were a fast (genomic-scale) tree-based method 
with accuracy similar to that of the AU Test, the best solution would be to combine 
that method with the Distance Method. We consider these initial results promising, 
and we expect that further development of such approaches will yield a scalable 
HGT-detection method with high accuracy and speed.   

This work also has implications for another problem beyond that of HGT-
detection: the detection of unnatural genes in the environment. Genetically-modified 
genomes may appear in the environment by accident, such as when genetically-
modified organisms escape containment (Warwick et al. 2007), or by design, such as 
the malicious engineering of pathogenic organisms. We are interested in ways to iden-
tify signs of such “unnatural” DNA by sequence analysis. If we can reliably find 
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genes that appear to have been derived from a foreign source, content-based methods 
may help us infer whether the transfer was recent or ancient (Lawrence and Ochman 
1997), and functional analysis may suggest whether the transfer occurred naturally or 
with human intervention. Thus, a distance-based approach to identifying atypical 
lineages may prove to be a powerful, scalable tool for finding unnatural DNA.   
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Abstract. Network-based phylogenetic analysis explores phylogenetic relation-
ships among different organisms by comparing their biological networks, espe-
cially metabolic networks. The differences between networks, often expressed 
as evolutionary distances, are normally measured using the plain Jaccard dis-
tance. In this paper, we show enzymes are different in phylogenetic conserva-
tion and topological importance, which are correlated significantly. Inspired by 
this observation, we propose a new approach to determine evolutionary dis-
tances. Our approach considers not only the number of different enzymes in  
different organisms, but also the phylogenetic or topological difference of indi-
vidual enzymes. The resulting evolutionary distance measures are compared 
with the plain Jaccard distance by use of 16s rRNA-based distance as refer-
ence. It shows that new distance measures make errors smaller in all test cases 
of comparison. 

Keywords: network-based phylogenetic analysis, metabolic network compari-
son, evolutionary distance, Jaccard distance, phylogenetic conservation, topo-
logical importance. 

1   Introduction 

One goal of phylogenetic analysis is to explore the cross-species natural connections 
or evolutionary history by exploring the difference among species[1]. Most previous 
researches are based on sequence alignment, in which single genes, proteins, espe-
cially small-subunit ribosomal RNAs(e.g. 16s or 18s rRNA), are often considered as 
the phylogenetic marks. In this case, evolutionary distances among organisms are 
always given by the difference of these corresponding molecular sequences. How-
ever, such sequence-based approaches would be influenced by horizontal gene  
transfer (HGT)[2], especially in bacteria and some unicellular eukaryotes. Unlike the  
sequence-based methods, network-based phylogenetic analysis is carried out by com-
paring different organisms’ homogeneous networks. In such cases, evolutionary dis-
tance is often defined as the difference of organisms’ biological networks. 
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Metabolic networks are hierarchical integration of metabolites, enzymes, reactions 
and the relationships among them. As the execution level of life, metabolic networks 
are known more exactly and explicitly than other biological networks (such as tran-
scriptional regulatory networks, protein-protein interaction networks as well as signal 
transduction networks)[3]. Therefore they are used more often in the network-based 
phylogenetic analysis. 

Comparing metabolic networks, however, is not an easy task. Composed of tens or 
even hundreds of interlaced pathways, global metabolic networks are very large and 
complicated, which could hardly be compared element by element. They are often 
considered as sets of nodes or edges so that evolutionary distance can be defined as 
the difference between the corresponding sets. Among all available difference meas-
ures, Jaccard distance(JC) is used most commonly[4-7]. Liao et al[5] has ever regarded 
metabolic networks as pathway sets, to determine distance by comparing the numbers 
of pathways present or absent in the organisms. However, enzyme sets are considered 
more proper than pathway sets when denoting metabolic networks, because enzymes 
are related to genome directly and their information is more local than pathways. 
Besides, the similar doubt lies in the work of Tohsato[7], in which reaction sets are 
concerned.  

More recent work on JC also includes that of Ma and Zeng[6]. They constructed 
phylogenetic trees with evolutionary distance determined by three indices, Jaccard 
index, Simpson index and Korbel index, and showed Jaccard index performed well in 
phylogenetic analysis by comparison. 

One of the most detailed phylogenetic analysis using set theory was carried out by 
Forst et al[4]. They used ‘clean’ metabolite-reaction bipartite graph to represent meta-
bolic network but still regarded the plain JC as the evolutionary distance measure. 
Despite the intricate graph representation, only reactions were compared as the ele-
ments of set. Moreover, less enzymatic information was considered. 

Although JC performed well in the previous researches of network-based phyloge-
netic analysis, it’s hard to say that JC is adequate since elements are often different 
even in the same set. For example, both phylogeny[8] and topology[9,10] make enzymes 
different in the case of enzyme network. 

In this paper, we show that enzymes are different in phylogenetic conservation and 
topological importance, which are correlated significantly in the case of directed en-
zyme networks. This observation inspires us to integrate phylogenetic conservation 
and topological importance of enzymes into the determination of evolutionary dis-
tance. Regarding them as some weights to JC, we propose a new approach to deter-
mine the evolutionary distance and obtain four new distance measures. Using the 16s 
rRNA-based distance[11] as reference, we compare these distances with the plain JC. 
Results show that in network-based phylogenetic analysis, evolutionary distance is 
decided not only by the number of enzymes present or absent, but also by their phy-
logenetic conservation and topological importance. 

This contribution is organized as following. Section 2 is arranged to display the 
proposed approach in detail. Section 3 displays the results, which show the good per-
formance of the evolutionary distance measures determined by our approach. The last 
section summarizes the conclusion. 
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2   An Approach for Determining Evolutionary Distance 

In this section, with the explanation of plain JC and the consideration of individual 
enzymes’ phylogenetic conservation and topological importance, we give the new 
approach in a unified way. After that we describe the definition and calculation of 
four new distances derived from this approach, namely phylogenetic-extent-weighted 
Jaccard distance, degree-centrality-weighted Jaccard distance, closeness-centrality-
weighted Jaccard distance and betweenness-centrality-weighted Jaccard distance 
(JCp, JCd, JCc, and JCb respectively). 

2.1   Definition of Jaccard Distance 

Jaccard distance (JC) is a common measure of the set difference, which is often re-
garded as the evolutionary distance in the network-based phylogenetic analysis by use 
of the set theory[4-6,10,12]. Suppose A and B are two sample sets, A\\B stands for their 
difference set an BA∪  for their union set, then JC of A and B is defined as the pro-
portion of the size of their difference set to that of their union set, as following: 
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where ‘|•|’ means to get the size of the set inside, or say the cardinality of the set. 
In the case of enzyme graph comparison, JC of two enzyme graphs equals to the 

proportion of the number of enzymes appearing only once in both of graphs to the 
total number of enzymes they contain. 

2.2   The Approach for Determining the Evolutionary Distance 

As a matter of fact, metabolic enzymes have phylogenetic extent of their own[8], which 
means they have their preferential organisms and should be treated discriminatingly. 
Besides, enzymes are also different for their topological importance[9,10], and the 
topological importance reflects individual enzyme’s evolution[13,14]. For these reasons, 
as the evolutionary distance the plain JC isn’t suitable any more. Thus, taking the phy-
logenetic conservation and topological importance information of individual enzymes 
into account, we propose a new approach to determine the global phylogeny of organ-
ism, which is based on JC but in a weighted way. 

Considering two different organisms A and B, the evolutionary distance between 
them is denoted as Dis(A, B). Enzyme’s phylogenetic extent(P) is used to measure its 
conservation, and the three centralities, degree centrality(Cd), closeness centrality(Cc) 
and betweenness centrality(Cb), are used to measure enzyme’s topological importance 
from different points of view. All of them are regarded as weights of individual en-
zymes. Therefore, by use of these weights, we obtain four new evolutionary distances, 
JCp, JCd, JCc, and JCb correspondingly. 
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The definition of these evolutionary distances can be described in a unified way. 
Let A\\B stand for A and B’s difference set and BA ∪  for their union set, also let w(e) 
denote some kind of weight of enzyme e, then the evolutionary distance can be de-
fined as: 
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where Dis∈ {JC, JCp, JCd, JCc, JCb} and w∈ {P, Cd, Cc, Cb}. It is the ratio of 
weighted enzyme number in A and B’s difference set to that in their union set. When 
all of the weights are set to 1, Dis(A, B) equals to the plain JC. 

2.3   Calculation of Weights 

As described in the previous section, the key of the new approach lies in how to de-
termine the conservation and topological importance of enzymes, which correspond to 
the four weights, phylogenetic extent (P), degree centrality (Cd), closeness centrality 
(Cc), and betweenness centrality (Cb). 

Phylogenetic Conservation Weight. Enzymes are proteins that catalyze metabolic 
reactions vital for the survival and functioning of cells. They tend to be either con-
served or eliminated in the tree of life along with the evolution. This property is often 
expressed as phylogenetic profile[12], a binary string which encodes the presence (‘1’) 
or absence (‘0’) of an enzyme in every species. Following the example of Liu et al[9], 
we use phylogenetic extent(P) to measure the phylogenetic conservation of enzymes, 
which is defined as the sum of bits in phylogenetic profile, or say the number of or-
ganisms that contain the certain enzyme. 

In brief, P equals to the number of ‘1’ in the profile string. Given the total number 
of investigated species, P is proportional to the ratio of species that contain the certain 
enzyme. It shows how conservative the enzyme is to some extent. 

Topological Importance Weights. In this work, metabolic network is represented as 
directed enzyme graph, and three common centralities are used to describe the topo-
logical importance of nodes from different points of view. They are the node’s con-
nectivity (degree centrality), its shortest paths to other nodes(closeness centrality) and 
the number of shortest paths going through the node(betweenness centrality) respec-
tively. A node with high degree centrality may be important because of its many di-
rect connections with others in the same work. A node with low closeness centrality 
would also be important since its influence could reach others in a short time. Nodes 
with high betweenness centrality would be important either, since they mediate many 
interactions between other nodes.  

Degree centrality. As a common centrality measure, degree centrality describes a 
node’s importance by counting the number of its direct interactions[15]. Formally, for  
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an undirected graph, the degree centrality of the node v is given by v’s degree, which 
is also the total number of v’s neighbors. For the directed network, degree centrality 
has two notions: one based on in-degree and the other based on out-degree, which are 
given by the number of edges that terminate and start at v respectively. Since either 
in-degree or out-degree belongs to the connection here, the degree centrality is given 
by the sum of them, that is: 

Cd(v) = Cdin(v) + Cdout(v).                                               (3) 

where Cd(v), Cdin(v) and Cdout(v) are the degree centrality, in-degree and out-degree of 
node v respectively. In this case, whether the network is directed or undirected doesn’t 
change the degree centrality. 

Closeness centrality. Closeness centrality is used to describe how important a node is 
by measuring how ‘close’ it is to, or how quickly it can communicate with, the other 
nodes in the network [16]. In [9], it is defined as the sum of shortest distances from the 
given node to all of the others reachable in the same network. Nevertheless, it should 
be noticed that their enzyme graph was undirected. Considering the additional direc-
tion of edges could change the nodes’ reachability, we define closeness centrality as 
the mean shortest path length between a vertex v and all other vertices reachable from 
it. To each node v in the network, its closeness centrality can be described as 
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where V denotes the set of nodes that are reachable to v. n>2 is the size of V, and 
dG(v,t) is the shortest path from v to t in the directed graph G.  

Betweenness centrality. Betweenness centrality is used to quantify an individual’s 
influence in a network. It illustrates how important a node is by measuring how high 
proportion of paths it will mediate between other nodes[16]. For a graph with n verti-
ces, let stσ be the total number of shortest paths between s and t, and )(vstσ be the 

number of shortest paths between s and t that pass through v, then the betweenness 
centrality of v, Cb(v), is given by: 
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Liu et al[9] adopted the similar definition as ours. But it should be noticed that since 
the additional direction of edges could change nodes’ reachability, the betweenness 
centrality of node in directed networks is different than undirected ones. 

In this paper, the degree centrality is obtained by counting neighbors of a node di-
rectly. The Floyd-Warshall algorithm is used to compute the shortest path lengths to  
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get the closeness centrality, and the fast algorithm proposed by Brandes[17] is modified 
to calculate nodes’ betweenness centrality in directed graph. 

3   Results and Discussion 

Enzyme and reaction data are obtained from metabolic database in [18], which is 
based on the famous KEGG/LIGAND database, with reaction reversibility added and 
current metabolites1 eliminated. In this paper, metabolic network is represented as 
direct enzyme graph, in which vertices denote individual enzymes and arcs denote 
the relationships between them. If there is not less than one metabolite listed in  
both of one enzyme’s products and the other’s substrates, there will be an arc di-
rected from the first enzyme to the second. The bidirectional arc is replaced by two 
individual arcs with opposite direction. And the enzyme with incomplete EC number 
(such as EC 6.-.-.-) is considered as an individual enzyme normally for its functional 
specialty. 

Firstly we construct a global metabolic network for all the 107 organisms (8 Eu-
karyotes, 83 Bacteria and 16 Archaea), 1271 nodes and 10,029 arcs in total. In order 
to illustrate the four weights’ reasonability, the phylogenetic conservation is studied 
for all the enzymes in the network (section 3.1). Then the correlation coefficient be-
tween phylogenetic conservation and topological importance is calculated, to show 
their significant correlation(section 3.2). 

In section 3.3, for the sake of comparison, we choose 73 organisms (62 Bacteria 
and 11 Archaea) which are involved by both [11] and [18], and construct another 
enzyme graph for these 73 organisms in the same way, which contains 988 nodes and 
7132 arcs. The weights are calculated respectively, and then the four evolutionary 
distances are determined by the proposed approach. After that these new distances are 
compared with JC respectively by using 16s rRNA-based distance as reference, which 
is given by Zhang et al[11]. 

3.1   Phylogenetic Conservation of Enzymes 

The phylogenetic profile of enzymes can be obtained for the 107 organisms in the 
database easily. Their phylogenetic extent ranges from 1 to 104. A total of 158 en-
zymes appear in only one organism and 8 enzymes appear for 104 times within the 
107 organisms. No one appears in all the 107 organisms. Most enzymes lie in few 
organisms, showing enzymes exhibit organism-specificity. And few enzymes appear 
in most organisms, showing they also exhibit some kind of conservation. It also re-
veals the phylogenetic conservation of enzymes is relative and various. In addition, 
we query the 10 enzymes with the topmost phylogenetic extent, and find 80% of them 
belong to transferring of phosphorus-containing groups, ‘EC 2.7.-.-’ (GO:0016772), 
which indicates that the transferring of phosphorus-containing groups is one of the 
most conservative functions. 

                                                           
1  It refers to ATP, ADP, NADH, NAD+, H2O, and so on, which is also known as redundant or 

external metabolites. 
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Fig. 1. Distribution of enzyme number along enzyme phylogenetic extent(P). The x-coordinate 
indicates increasing P from 1 to 107. The numbers under bars denote the range of P, e.g., ‘1’ 
indicates the range of 0~10. The y-coordinate indicates the number of enzymes, whose P is in 
the corresponding range. The first range of P is also displayed as a pie chart to show the de-
tailed ratio, and the ratio of P = 1 is split out. 

3.2   Correlation between Conservation and Topological Importance 

For the sake of further analysis, we compute the three centralities for each enzyme in 
the directed enzyme network of 107 organisms, namely degree centrality (Cd), close-
ness centrality (Cc) and betweenness centrality (Cb). Looking upon each enzyme as a 
sample, we test the hypothesis to determine the correlation between the three central-
ities and the profile. The correlation coefficients and the corresponding p-values are 
obtained with MATLAB, and shown in Table 1.  

Table 1. The correlation between P and three centralities 

 P -- Cd P – Cc P – Cb 
Correlation coefficient 0.28 0.16 0.30 

p-value 2.39E-24 0 9.86E-27 

 
All the three p-values are very small, especially P and Cc’s. It shows that signifi-

cant correlation exists between phylogenetic conservation and topological importance 
of enzymes. Of all the three correlation coefficients, P and Cc’s is the smallest and P 
and Cb’s is the biggest, which means enzyme conservation correlates best with be-
tweenness centrality but poorly with closeness centrality. It is consistent with the 
conclusion of Liu et al[9], although the network and the definition of centralities are  
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both different. Thus, the phylogenetic conservation and the topological importance 
are correlated significantly and then influence each other, no matter the network is 
directed or not. 

 

Fig. 2. Scatter figures of phylogenetic extent and three centralities. a) the correlation between 
phylogenetic extent and degree centrality; b) the correlation between phylogenetic extent and 
closeness centrality; c) the correlation between phylogenetic extent and the betweenness cen-
trality. The horizontal broken indicates the mean of centrality and the vertical broken line indi-
cates the mean phylogenetic extent. 

Illustrated by the case of Fig 2.b), each subgraph can be divided into four regions 
by the horizontal and vertical broken lines which correspond to the mean values of 
centrality and phylogenetic extent respectively. We name the four regions A, B, C, 
and D. As is shown in the Fig 2.a) and the Fig 2.c), the region C is, to some extent, 
rather dense. While in the Fig 2.b), region A contains a large number of nodes. Since 
the nodes in regions B and C contribute to the positive correlation while the nodes in 
regions A and D destroy it, it explains why the correlation between P and Cd as well 
as P and Cb are higher than P and Cc.  

3.3   Comparison of Evolutionary Distances 

In this section, a global enzyme network for 73 organisms is constructed. Then P and 
Cd, Cc as well as Cb are calculated for each enzyme within it, and the corresponding 
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evolutionary distances(JCp, JCd, JCc, and JCb) are obtained for 72 pair of organisms 
(eco to other 72 organisms) by use of the proposed approach. Moreover, the plain JC 
is also obtained for the same organism pairs in the traditional way. For the sake of 
comparison, the 16s rRNA-based distance in [11] is regarded as reference. The result 
of comparison shows that the four evolutionary distances we defined are closer to the 
reference than the original Jaccard distance (Fig 3), which proves that either phy-
logenetic conservation or topological importance of individual enzymes contribute to 
the definition of evolutionary distance. 
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Fig. 3. Comparison between the proposed evolutionary distances (solid with stars) and the plain 
JC (dashed) with the RNA-based distance (solid) as reference. The four improved distances in 
four subgraphs are JCp, JCd ,JCc and JCb respectively. The x-coordinate denotes organisms, 
number corresponds to the organisms in sequence, sorted according to the distance value with 
E.Coli K-12 as reference(see Appendix), which is denoted as the y-coordinate. 

However, there are some big errors occurring around the x-coordinate 11, 24, 29, 
54, 61 and so on. We think it may be caused by ‘size bias’, a drawback of the Jaccard 
index. That is, if the sizes (the number of enzymes in the metabolic network) of two 
sets are very different, the distance between them will be large, even if most of the 
enzymes in the smaller network are the same as that of the larger network[6]. Within 
the organisms we studied, E coli K-12 has the largest network with 601 enzymes and 
Ureaplasma urealyticum has the smallest with only 72 enzymes. The large errors of 
the five distances are mostly recorded when an organisms has a size which is small 
enough.  

Results of statistical hypothesis testing indicate all the six distances are highly cor-
related to each other (Table 2). For the sake of concision, the corresponding p-values 
are not shown here, all of which are no more than 3.2E-11. Of all the correlation coef-
ficients, those between the five JC-based distances are higher than those between 
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them and the RNA-based. It means although the addition of enzymes’ conservation or 
topological importance can reduce the error of the plain JC, it doesn’t change the 
nature of set-theory-based distance definition. It also can be illustrated by Fig.3, in 
which the curves of the five JC-based distances look rather like each other in shape 
while they are all different than that of the RNA-based. 

Table 2. The correlation between the six evolutionary distances 

 RNA JC JCp JCd JCc JCb 
RNA 1 0.70 0.61 0.70 0.68 0.69 
JC 0.70 1 0.97 0.99 1.00 0.99 
JCp 0.61 0.97 1 0.98 0.98 0.98 
JCd 0.70 0.99 0.98 1 0.99 1.00 
JCc 0.68 1.00 0.98 0.99 1 0.99 
JCb 0.69 0.99 0.98 1.00 0.99 1 

 
We also compute and compare the errors of the five distances to the reference (Ta-

ble 3). Compared with the error of JC, all the four weighted distances have smaller 
mean error. JCp’s mean error is smallest which is only 0.054, but its standard devia-
tion is the biggest. Corresponding to Fig 3 a), the curve of JCp is the one nearest to 
that of the reference. While JCd’s standard deviation is the smallest, although its mean 
error is the second smallest among the four weighted distance. It may indicate that the 
addition of between centrality makes JC insensitive to ‘size bias’ to some extent.  

Table 3. Errors’ mean and standard deviation 

 ErrJC ErrJCp ErrJCd ErrJCc ErrJCb 
Mean 0.2055 0.0540 0.1372 0.1759 0.1392 

Standard deviation 0.1482 0.1662 0.1462 0.1536 0.1473 

4   Conclusion 

A lot of effort has been put into phylogenetic analysis by comparing metabolic net-
works. In this paper, we have made some initial attempts to integrate evolutionary 
information as well as topological importance of enzymes into the definition of evolu-
tionary distance, which is shown with positive results. We not only show that in the 
case of directed enzyme graph the phylogenetic conservation and topological impor-
tance of enzymes are correlated significantly, but also illustrate that the conservation 
of individual enzymes contributes to the improvement of evolutionary distance defini-
tion and so does topological importance. It indicates that evolutionary distance is not 
only decided by the different coverage of enzymes, but also reflected by the conserva-
tion or topological importance of the present or absent enzymes. Thus, phylogenetic 
conservation as well as topological importance of individual enzymes should not be 
neglected in the network-based phylogenetic analysis.  
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Appendix: The List of 73 Organisms 

X O S X O S X O S 
1 eco 601 26 sco 491 50 hpy 278 
2 ece 586 27 spy 265 51 smu 320 
3 ecs 587 28 spg 266 52 tpa 145 
4 ecc 510 29 cef 153 53 cpa 159 
5 sfl 550 30 spm 269 54 cpn 160 
6 sty 578 31 cac 404 55 cmu 158 
7 stm 598 32 cgl 404 56 cte 331 
8 ypk 514 33 lin 385 57 fnu 371 
9 ype 538 34 lmo 397 58 tma 326 

10 bas 195 35 bsu 493 59 mpu 105 
11 buc 213 36 cpe 368 60 mpn 98 
12 son 463 37 oih 460 61 uur 72 
13 hin 365 38 mtc 444 62 aae 332 
14 pae 543 39 syn 404 63 mja 262 
15 xcc 482 40 mle 345 64 ape 273 
16 xac 475 41 cje 308 65 mth 275 
17 xfa 352 42 san 295 66 afu 313 
18 nme 360 43 sag 292 67 mka 213 
19 rso 571 44 spr 317 68 pho 225 
20 sme 585 45 tte 339 69 tvo 283 
21 ccr 468 46 sam 393 70 hal 299 
22 bja 253 47 spn 306 71 sso 337 
23 rpr 140 48 sav 396 72 mma 347 
24 rco 150 49 sau 395 73 mac 333 
25 tel 361       

Note:  ‘X’ denotes the x-coordinates; 
‘O’ denotes the abbreviation of organisms according to KEGG; 
‘S’ stands for the size of enzyme set corresponding to each organism, which is 

also the enzyme number in the organism. 
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Abstract. An important aspect of pairwise sequence comparison is as-
sessing the statistical significance of the alignment. Most of the cur-
rently popular alignment programs report the statistical significance of
an alignment in context of a database search. This database statistical
significance is dependent on the database, and hence, the same alignment
of a pair of sequences may be assessed different statistical significance
values in different databases. In this paper, we explore the use of pair-
wise statistical significance, which is independent of any database, and
can be useful in cases where we only have a pair of sequences and we
want to comment on the relatedness of the sequences, independent of any
database. We compared different methods and determined that censored
maximum likelihood fitting the score distribution right of the peak is the
most accurate method for estimating pairwise statistical significance. We
evaluated this method in an experiment with a subset of CATH2.3, which
had been previoulsy used by other authors as a benchmark data set for
protein comparison. Comparison of results with database statistical sig-
nificance reported by popular programs like SSEARCH and PSI-BLAST
indicate that the results of pairwise statistical significance are compara-
ble, indeed sometimes significantly better than those of database statisti-
cal significance (with SSEARCH). However, PSI-BLAST performs best,
presumably due to its use of query-specific substitution matrices.

Keywords: Database statistical significance, Homologs, Pairwise local
alignment, Pairwise statistical significance.

1 Introduction

Sequence alignment is extremely useful in the analysis of DNA and protein
sequences [1,2,3]. Sequence alignment forms the basic step of making various high
level inferences about the DNA and protein sequences - like homology, finding
protein function, protein structure, deciphering evolutionary relationships, etc.
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There are many programs that use some well known algorithms [4,5] or their
heuristic version [3,6,7]. Recently, some enhancements in alignment program
features have also become available [8,9] using difference blocks and multiple
scoring matrices. Quality of a pairwise sequence alignment is gauged by the
statistical significance rather than the alignment score alone, i.e., if an alignment
score has a low probability of occurring by chance, the alignment is considered
statistically significant.

For ungapped alignments, rigorous statistical theory for the alignment score
distribution is available [10], and it was shown that the statistical parameters K
and λ can be calculated analytically for a pair of sequences with given amino acid
composition and scoring scheme. However, no perfect theory currently exists for
gapped alignment score distribution, and for score distributions from alignment
programs using additional features like difference blocks [8], and which use mul-
tiple parameter sets [9]. The problem of accurately determining the statistical
significance of gapped sequence alignment has attracted a lot of attention in
the recent years [11,12,13,14,15]. There exist a couple of good starting points
for statistically describing gapped alignment score distributions [16,17], but a
complete mathematical description of the optimal score distribution remains far
from reach [17]. Some excellent reviews on statistical significance in sequence
comparison are available in the literature [18,19,20].

Pairwise protein local sequence alignment programs give the optimal or sub-
optimal alignment of a given sequence pair. In the case of database searches, the
second sequence is the complete database consisting of many sequences. Many
approaches exist currently to estimate the statistical significance of a database
hit (match of the query sequence with part of the database). For the database
searches, the statistical significance of a pairwise alignment score is reported in
terms of E-value, which is the expected number of hits in the database with a
score equal or higher arising by chance, or the P-value, which is the probability of
getting at least one score equal or higher arising by chance. These E-values and
P-values are corresponding to the database, and although these can be converted
to the pairwise E-values and P-values [15], they cannot estimate the true sta-
tistical significance of the specific pairwise alignment under consideration, since
the database E-values and P-values depend on the average sequence features
like length, amino acid composition, and not the features of sequence pair under
consideration.

In particular, BLAST2.0 [3] reports the statistical significance as the likelihood
that a similarity as good or better would be obtained by two random sequences
with average amino-acid composition and lengths similar to the sequences that
produced the score. However, if either of the two sequences has amino acid
composition significantly different from the average, the statistical significance
may be an over or underestimate. Similarly, the statistical estimates provided by
the FASTA package [6,21] report the expectation that a sequence would obtain
a similarity score against an unrelated sequence drawn at random from the
sequence database that was searched, which again is dependent on the average
sequence composition of the entire database and not on the specific sequence pair.
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Accurate estimates of the statistical significance of pairwise alignments can
be very useful to comment on the relatedness of a pair of sequences aligned
by an alignment program independent of any database. And thus, pairwise sta-
tistical significance can also be used to compare different alignment programs
independently. In addition to the standard local alignment programs [4,5], some
recent programs have been developed [8,9] that take into account other desirable
biological features in addition to gaps, like difference blocks, and the use of mul-
tiple parameter sets (substitution matrices, gap penalties). These features of the
alignment programs enhance the sequence alignment of real sequences by suiting
to different conservation rates at different spatial locations of the sequences. As
pointed out earlier, rigorous statistical theory for alignment score distribution is
available only for ungapped alignment, and not even for its simplest extension,
i.e., alignment with gaps. Accurate statistics of the alignment score distribution
from newer and more sophisticated alignment programs therefore is not expected
to be straightforward. For comparing the performance of newer alignment pro-
grams, accurate estimates of pairwise statistical significance are needed.

The statistical significance of a pairwise alignment depends upon various fac-
tors: sequence alignment method, scoring scheme, sequence length, and sequence
composition [19]. The straightforward way to estimate statistical significance of
scores from an alignment program for which the statistical theory is unavailable
is to generate a distribution of alignment scores using the program with ran-
domly shuffled versions of the pair of sequences and compare the obtained score
with the generated score distribution, either directly or by fitting an extreme
value distribution (EVD) curve to the generated distribution to calculate the
statistical significance of the obtained score (as described in the next section).

The PRSS program in the FASTA package [6,7,21] calculates the statistical
significance of an alignment by aligning them, shuffling the second sequence up
to 1000 times, and estimating the statistical significance from the distribution
of shuffled alignment scores. It uses maximum likelihood to fit an EVD to the
shuffled score distribution. A similar approach is also used in HMMER [22]. It
also uses maximum likelihood fitting [23] and also allows for censoring of data
left of a given cutoff, for fitting only the right tail of the histogram. A heuristic
approximation of the gapped local alignment score distribution is also available
[11], and based on these statistics, accurate formulae for statistical parameters
K and λ for gapped alignments are derived and implemented in a program
called ARIADNE [12]. These methods can provide an accurate estimation of
statistical significance for gapped alignments, but currently do not incorporate
the additional features of sequence alignment, like using difference blocks and
multiple parameter sets [8,9].

The contribution of this paper is two-fold: First, we compare various exist-
ing methods to estimate pairwise statistical significance and determine the most
accurate method for estimating it. We found that maximum likelihood fitting
of score distribution censored left of peak (fitting right of peak) is the most ac-
curate method. Secondly, we used this method in the experiments reported in [24]
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on a subset of the CATH2.3 database to compare the retrieval accuracy for pair-
wise statistical significance and database statistical significance. [24] had earlier
created this database to evaluate seven protein structure comparison methods
and the two sequence comparison programs SSEARCH and PSI-BLAST. Com-
parison of the results with those reported in [24] show that pairwise statistical
significance gives comparable and at times better accuracy than the SSEARCH
program, but less than PSI-BLAST.

2 The Extreme Value Distribution for Ungapped and
Gapped Alignments

Just as the distribution of the sum of a large number of independent identically
distributed (i.i.d) random variables tends to a normal distribution (central limit
theorem), the distribution of the maximum of a large number of i.i.d. random
variables tends to an extreme value distribution (EVD). This is an important
fact, because it allows us to fit an EVD to the score distribution from any local
alignment program, and use it for estimating statistical significance of scores
from that program. The distribution of Smith-Waterman local alignment score
between random, unrelated sequences is approximately a Gumbel-type EVD [10].
In the limit of sufficiently large sequence lengths m and n, the statistics of HSP
(High-scoring Segment Pairs which correspond to the ungapped local alignment)
scores are characterized by two parameters, K and λ. The probability that the
optimal local alignment score S exceeds x is given by the P-value:

Pr(S > x) ∼ 1− e−E,

where E is the E-value and is given by

E = Kmne−λx.

For E-values less than 0.01, both E-value and P-values are very close to each
other. The above formulae are valid for ungapped alignments [10], and the pa-
rameters K and λ can be computed analytically from the substitution scores
and sequence compositions. An important point here is that this scheme allows
for the use of only one substitution matrix. For the gapped alignment, no per-
fect statistical theory has yet been developed, although there exist some good
starting points for the problem as mentioned before [16,17]. Recently, researchers
have also looked closely at the low probability tail distribution, and the work in
[25] applied a rare-event sampling technique and suggested a Gaussian correc-
tion to the Gumbel distribution to better describe the rare event tail, resulting
in a considerable change in the reported significance values. However, for most
practical purposes, the original Gumbel distribution has been widely used to
describe gapped alignment score distribution [26,21,12,27,9].

From an empirically generated score distribution, we can directly observe the
E-value E for a particular score x, by counting the number of times a score x or
higher was attained. Since this number would be different for different number of
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random shuffles N (or number of sequences in the database in case of database
search), a normalized E-value is defined as

Enormalized =
E

N
.

3 Tools and Programs Used

We worked with the alignment programs SIM [28], which is an ordinary align-
ment program (similar to SSEARCH), GAP3 [8], which allows dynamically find-
ing similarity blocks and difference blocks, and GAP4 [9], which can also use mul-
tiple parameter sets (scoring matrices, gap penalties, difference block penalties)
to generate a single pairwise alignment. For estimating the statistical parame-
ters K and λ, we used several programs. First is PRSS from the FASTA package
[6,7,21], which takes two protein sequences and one set of parameters (scoring
matrix, gap penalty), generates the optimal alignment, and estimates the K and
λ parameters by aligning up to 1000 shuffled versions of the second sequence,
and fitting an EVD using maximum likelihood. In addition to uniform shuffling,
it also allows for windowed shuffling. We also used ARIADNE [12], that uses
an approximate formula to estimate gapped K and λ from ungapped K and λ.
Both these methods are currently applicable only for alignment methods using
one parameter set. We also used the linear regression fitting program used in [9]
to estimate K and λ from an empirical distribution of alignment scores. Finally,
we also used the maximum likelihood method [23] and corresponding routines
in the HMMER package [22] to fit an EVD to the empirical distribution. We
compared all these methods on the basis of accuracy in estimating K and λ
values for a pair of sequences.

4 Experiments and Results

4.1 Accurate Estimation of K and for λ a Specific Sequence Pair

For each sequence pair, we need to find accurate estimates of the statistical
parameters K and λ. Here, we are not too much concerned with the time taken
for estimating K and λ since we are interested in determining the method which
gives the most accurate estimates of the parameters. Therefore, we can afford to
spend more time for accurate estimates.

To decide on the method for estimating statistical parameters for a sequence
pair, we used the following approach: a pair of remotely homologous protein
sequences was selected using PSI-BLAST by giving a G protein-coupled recep-
tor sequence (GENE ID: 55507 GPRC5D) as query and running two iterations
of PSI-BLAST. The second sequence was selected from the new results after
second iterations that were not present in the results of the first iteration. The
sequence was a novel protein similar to vertebrate pheromone receptor protein
[Danio rerio] (emb|CAM56437.1|). We used this pair of real protein sequences
to generate eleven large scale simulations of alignment score distributions using
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different alignment programs and scoring schemes described in Section 3. Each
of the eleven simulations involved aligning one million pairs of randomly shuffled
versions of the sequence pair (with different seeds for the random number genera-
tor). Because we are mostly interested in the tail distribution of scores, we looked
at the distribution of scores for which the normalized E-value was less than 0.01.
We got eleven empirically derived random distributions, and although theoret-
ically they should have been same, there was slight variation within the eleven
distributions (because of random sampling). Here we combined the eleven distri-
butions by taking the mean of the E-values for each score from each of the eleven
distributions. This is equivalent to doing one big simulation with eleven million
shuffles. We assume that the resulting mean distribution is the most accurate
representation of the actual distribution and subsequently used this distribution
to validate the predicted E-values from different methods of estimating K and λ.
Fig. 1 shows the mean score distribution (complementary distribution function
in terms of statistics) based on the simulations, which is same as the normalized
E-value, for three alignment schemes. The solid line curve shows the mean of
the normalized E-values from the eleven different simulations. The vertical bars
for each alignment score indicates the variation in normalized E-values observed
within the eleven different simulations.

For evaluating various methods of estimating statistical parameters, the K
and λ estimates from different programs for the same sequence pair were ex-
amined. For the PRSS program, both uniform and windowed shuffling was used
with two values of window size: 10 and 20. The ARIADNE program was also
used to estimate gapped K and λ. Since we are interested in accurate fitting
of the tail distribution, for the curve fitting methods like maximum likelihood
(ML) and linear regression (LR), we used the censored distribution for fitting.
Here type-I censoring is defined as the one in which we fit only the data right
of the peak of the histogram [23], and type-II censoring is defined as one where
the cutoff is set to the score that corresponds to a normalized E-value of 0.01.
We also show results for uncensored fitting with ML method, applied to the
eleven empirical distributions (with a million shuffles each) to make a realistic
comparison of other fitting schemes with the methodology used in PRSS, which
also uses maximum likelihood method, but only up to 1000 shuffles. Since we
generated eleven independent score distributions, we used them individually to
estimate eleven pairs of K and λ using both ML and LR, so that we can perform
the best case, worst case and average case prediction analysis for fitting meth-
ods. The estimated K and λ values from each program are used to predict the
E-values for different alignment scores using the EVD formula, and the resulting
distribution is compared with the mean empirical distribution generated from
eleven independent simulations as described above.

Table 1 shows the comparison of the sum of squares of differences (SSD)
between predicted normalized E-values and actual normalized E-values for dif-
ferent methods and alignment schemes. Since we had eleven estimates of K and
λ for the ML and LR methods, we report the minimum, maximum and aver-
age SSD. PRSS and ARIADNE report one set of parameters, and thus there is
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Fig. 1. Distribution of alignment scores generated (a) using SIM program and BLO-
SUM62 matrix, (b) using SIM program and BLOSUM100 matrix and (c) using GAP4
program and BLOSUM62 and BLOSUM100 matrices. The solid line curve represents
the mean of the eleven distributions generated, and the vertical bars represent the
variation within the eleven distributions.

Table 1. Comparison of the Sum of Squares of Differences (SSD) between predicted
normalized E-values and actual normalized E-values for different methods and align-
ment schemes

Program: SIM Matrix: BLOSUM62 GapOpenPen.: 14, GapExtPen.: 3
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 8.05E-09 9.11E-09 2.67E-08 8.58E-08 8.05E-09
Max(SSD) 5.6× 3.46× 4.22× 7.5× 6.03E-07 2.75E-07 2.15E-06 5.20E-06 2.75E-07
Avg(SSD) E-04 E-05 E-02 E-03 3.02E-07 7.91E-08 6.08E-07 1.48E-06 7.91E-08

Program: SIM Matrix: BLOSUM100 GapOpenPen.: 16, GapExtPen.: 4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 1.88E-09 1.76E-09 8.16E-10 8.27E-09 8.16E-10
Max(SSD) 1.02× 4.58× 8.3× 4.38× 3.90E-08 2.50E-08 1.62E-07 4.20E-07 2.50E-08
Avg(SSD) E-05 E-05 E-04 E-04 8.51E-09 9.18E-09 4.54E-08 1.13E-07 8.51E-09

Program: GAP4 Matrix: BL62,BL100 GapOpen:14,16 GapExt:3,4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 2.20E-07 2.05E-08 1.35E-08 9.34E-08 1.35E-08
Max(SSD) NA NA NA NA 1.62E-06 6.86E-07 2.97E-06 9.77E-06 6.86E-07
Avg(SSD) 9.88E-07 2.42E-07 6.49E-07 2.83E-06 2.42E-07
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only one SSD corresponding to these methods. Further, for alignment method
GAP4 which can use multiple parameter sets, there is no entry corresponding
to ARIADNE and PRSS, as these methods do not currently support the use of
multiple parameter sets. The last column gives the minimum SSD obtained, and
its second and third entries correspond to the minimum worst case and minimum
average case error in prediction. We can see that the minimum SSD is obtained
for the ML method in all cases. Specifically, ML fitting with type-I censoring
gives the minimum Max(SSD), (i.e. minimum worst case error) for all the three
cases. Therefore, we conclude that ML fitting with type-I censoring gives the
most accurate estimates of statistical parameters K and λ.

4.2 Using Pairwise Statistical Significance to Infer Homology

To evaluate our method, we used a non-redundant subset of the CATH 2.3
database (Class, Architecture, Topology, and Hierarchy, [29]) provided by [24]
and available at ftp://ftp.ebi.ac.uk/pub/software/unix/fasta/prot sci 04/. As
described in [24], this dataset consists of 2771 domain sequences and includes 86
selected test query sequences, each representing at least five members of their re-
spective CATH sequence family (35% sequence identity) in the data set. We used
this database and query set for experimenting with pairwise statistical signifi-
cance. For each of the 86×2771 comparisons, we used the maximum likelihood
method with type-1 censoring with 2000 shuffles to fit the score distribution
from the GAP3 program with a very high difference block penalty (to not use
that feature), which essentially reduces it to an ordinary alignment program like
SIM. Alignments were obtained using the BLOSUM50 substitution matrix (in
1/3 bit units as used by SSEARCH) with gap open penalty as 10, and gap ex-
tension penalty as 2. The same combination of parameters was used in [24] to
report the results obtained with the SSEARCH program. The parameters K and
λ resulting from the ML fitting were then used to find the pairwise statistical
significance of the pairwise comparison, and the P-value was recorded. Follow-
ing [24], Error per Query (EPQ) versus Coverage plots were used to present the
results. To create these plots, the list of pairwise comparisons were sorted based
on statistical significance, and subsequently, the lists were examined, from best
score to worst. Going down the list, the coverage count is increased by one if the
two members of the pair are homologs, and the error count is increased by one
if they are not. At a given point in the list, EPQ is the total number of errors
incurred so far, divided by the number of queries. Coverage at that point is the
fraction of homolog pairs detected at this significance level.

For each of the 86 queries, 2771 comparisons were done, and EPQ vs. Cov-
erage curves were plotted. Since the EPQ vs. Coverage curves on the complete
dataset can be distorted due to poor performance by one or two queries (if those
queries produce many errors at low coverage levels), reference [24] examined the
performance of the methods with individual queries. Fig. 2(a) shows the level of
coverage generated by the median query (43 queries performed better, 43 worse)
at the 1st, 3rd, 10th, 30th, and 100th false positive for homologs. Fig. 2(b) shows
the same results for 25th percentile of coverage (i.e. 21 of the queries have worse
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Fig. 2. Errors per Query vs. Coverage plots for individual queries. (a) The median level
of coverage for 86 queries; (b) 1st quartile (25th percentile) coverage; (c) 3rd quartile
(75th percentile) coverage. Along with the curve for pairwise statistical significance,
the curves for SSEARCH and PSI-BLAST in (a) and (b) are derived from figures 2A
and 2B in [24]. The corresponding results for (c) were not available in [24].



Pairwise Statistical Significance Versus Database Statistical Significance 59

coverage, and 65 have better coverage). And fig. 2(c) shows the same results for
75th percentile of coverage (i.e. 65 of the queries have worse coverage, and 21
have better coverage). Along with the curve for pairwise statistical significance,
the curves for SSEARCH and PSI-BLAST in fig. 2(a) and (b) are derived from
the figures 2A and 2B in [24]. The results corresponding to Fig. 2(c) were not
available in [24], and hence, only the results of pairwise statistical significance
are reported. This figure shows that pairwise statistical significance performs
comparable to and sometimes significantly better than database statistical sig-
nificance (with SSEARCH program), particularly at higher error rates. However,
the results using PSI-BLAST are clearly the best.

Since the SSEARCH program used the same substitution matrix as we used
for our experiments (BLOSUM50) [24], the results indicate that pairwise statis-
tical significance works better in practice than database statistical significance.
However, even better results with PSI-BLAST using database statistical signif-
icance indicates that sequence specific substitution matrices should be used for
the pairwise comparisons, and to fairly compare pairwise statistical significance
with the database statistical significance reported by PSI-BLAST, more experi-
ments need to be performed with pairwise statistical significance using sequence
specific substitution matrices.

The time required to estimate pairwise statistical significance for a given pair
of sequences is certainly expected to depend on the length of the two sequences.
Therefore, to get an idea of the average time needed to estimate pairwise statisti-
cal significance using the proposed method, we used the following approach. We
took a real sequence from the CATH2.3 database of length 135 (1que01) and es-
timated its pairwise statistical significance with more than a thousand other real
sequences. It took 2574.151 seconds for finding 1013 pairwise statistical signifi-
cance estimates on an Intel processor 2.8GHz, which means on an average 2.54
seconds per comparison. Certainly, this is much faster than a database search,
if we are only interested in a specific (or a few) pairwise comparison(s), but will
take a huge amount of time if applied for all pairwise comparisons in a large
database search.

The program PairwiseStatSig is available for free academic use at
www.cs.iastate.edu/∼ankitag/PairwiseStatSig.html

5 Conclusion and Future Work

This paper explores the use of pairwise statistical significance, and compares it
with database statistical significance for the application of homology detection.
Large scale experimentation was done to determine the most accurate method
for determining pairwise statistical significance. Further, preliminary experimen-
tation for homology detection with a benchmark database (a subset of CATH2.3
database) shows that the pairwise statistical significance performs better than
database statistical significance (using SSEARCH program), but still the accu-
racy of retrieval results is best for PSI-BLAST.
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We believe that PSI-BLAST gives best results because of the use of sequence
specific substitution matrices, although it also uses database statistical signif-
icance to estimate the E-value. Using pairwise statistical significance is shown
to be better than database E-value (used in SSEARCH), and thus, we believe
that the results of pairwise statistical significance can be further improved by
using sequence specific substitution matrices, which is the significant part of our
future work. Also, more experimentation with other standard databases such as
SCOP can be done to compare the performance. Another major contribution
can be to estimate the pairwise statistical significance accurately in less time,
as the method used in this paper was to use maximum likelihood to fit a score
distribution generated by simulation, which is not time-efficient. Faster methods
for determining pairwise statistical significance are thus required. We have made
some progress in this direction [30]. Another aspect of future work is to exper-
iment with other sample space for shuffling of protein sequences for generating
score distribution, which may provide better significance estimates.
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Abstract. A central question in pairwise sequence comparison is as-
sessing the statistical significance of the alignment. The alignment score
distribution is known to follow an extreme value distribution with ana-
lytically calculable parameters K and λ for ungapped alignments with
one substitution matrix. But no statistical theory is currently available
for the gapped case and for alignments using multiple scoring matri-
ces, although their score distribution is known to closely follow extreme
value distribution and the corresponding parameters can be estimated by
simulation. Ideal estimation would require simulation for each sequence
pair, which is impractical. In this paper, we present a simple clustering-
classification approach based on amino acid composition to estimate K
and λ for a given sequence pair and scoring scheme, including using mul-
tiple parameter sets. The resulting set of K and λ for different cluster
pairs has large variability even for the same scoring scheme, underscoring
the heavy dependence of K and λ on the amino acid composition. The
proposed approach in this paper is an attempt to separate the influence
of amino acid composition in estimation of statistical significance of pair-
wise protein alignments. Experiments and analysis of other approaches
to estimate statistical parameters also indicate that the methods used in
this work estimate the statistical significance with good accuracy.

Keywords: Clustering, Classification, Pairwise local alignment, Statis-
tical significance.

1 Introduction

Sequence alignment is extremely useful in the analysis of DNA and protein
sequences [1]. Sequence alignment forms the basic step of making various high
level inferences about the DNA and protein sequences - like homology, finding
protein function, protein structure, deciphering evolutionary relationships, etc.
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There are many programs that use some well known algorithms [2,3] or their
heuristic version [1,4,5]. Recently, some enhancements in alignment program
features have also become available [6,7] using difference blocks and multiple
scoring matrices. Quality of a pairwise sequence alignment is gauged by the
statistical significance rather than the alignment score alone, i.e., if an alignment
score has a low probability of occurring by chance, the alignment is considered
statistically significant.

For ungapped alignments, rigorous statistical theory for the alignment score
distribution is available [8], and it was shown that the statistical parameters K
and λ can be calculated analytically for a pair of sequences with given amino acid
composition and scoring scheme. However, no perfect theory currently exists for
gapped alignment score distribution, and for score distributions from alignment
programs using additional features like difference blocks [6], and which use mul-
tiple parameter sets [7]. The problem of accurately determining the statistical
significance of gapped sequence alignment has attracted a lot of attention in the
recent years [9,10,11,12,13,14,15]. There exist a couple of good starting points
for statistically describing gapped alignment score distributions [16,17], but a
complete mathematical description of the optimal scores distribution remains
far from reach [17]. Some excellent reviews on statistical significance in sequence
comparison are available in the literature [18,19,20].

The statistical significance of a pairwise alignment depends upon various fac-
tors sequence alignment method, scoring scheme, sequence length, and sequence
composition [19]. The straightforward way to estimate statistical significance of
scores from an alignment program for which the statistical theory is unavailable
is to generate a distribution of alignment scores using the program with ran-
domly shuffled versions of the pair of sequences, and compare the obtained score
with the generated score distribution, either directly or by fitting an extreme
value distribution (EVD) curve (explained in the next section) to the generated
distribution to get the EVD parameters K and λ, and using the EVD formula
with the estimated K and λ to calculate the statistical significance of the ob-
tained score. However, the parameters thus obtained are ideally valid only for
the specific sequence pair under consideration, and for any other sequence pair,
the parameters should be recomputed by generating another distribution, which
is very time-consuming and impractical.

Thus, BLAST2.0 [1] uses a lookup method wherein the parameters K and
λ are pre-computed for different scoring schemes assuming average amino acid
composition of both sequences. PRSS program in the FASTA package [4,5,9]
calculates the statistical significance of an alignment by aligning them, shuffling
the second sequence up to 1000 times, and estimating the statistical significance
from the distribution of shuffled alignment scores. It uses maximum likelihood
to fit an EVD to the shuffled score distribution. A similar approach is also used
in HMMER [21]. It also uses maximum likelihood fitting [22] and also allows
for censoring of data left of a given cutoff, for fitting only the right tail of the
histogram. A heuristic approximation of the gapped local alignment score dis-
tribution is also available [10], and based on these statistics, accurate formulae
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for statistical parameters K and λ for gapped alignments are derived and im-
plemented in a program called ARIADNE [11]. These methods can provide an
accurate estimation of statistical significance for gapped alignments, but cur-
rently do not incorporate the additional features of sequence alignment, like
using difference blocks and multiple parameter sets [6,7].

The problem of estimating the statistical significance of the database searches
has been addressed in much detail over the past two decades as discussed earlier.
However, accurate estimation of the statistical significance of specific pairwise
alignments needs directed research efforts. It is an important problem critical in
comparison of various alignment programs, and especially with new alignment
programs coming up with additional features to suit the features of the real bio-
logical sequences, this problem of estimating statistical significance for pairwise
sequence alignments becomes particularly important. It has also been shown re-
cently [23] that pairwise statistical significance is a better indicator of homology
than database statistical significance. The method used in [23], although was
shown to be accurate, but is also very time-consuming, as it involves generat-
ing a score distribution of tens of thousands of alignments. The need for faster
methods for estimating pairwise statistical significance was also stressed in [23].

In this paper, we propose and implement a simple clustering-classification
approach that clusters the universe of protein sequences based on amino acid
composition, and estimates the parameters K and λ for all cluster pairs for
different scoring schemes and alignment methods. In this way, we attempt to
separate the dependence of the statistical parameters K and λ on amino-acid
composition from other factors like alignment method and scoring schemes. The
task of estimating statistical significance thus reduces to classifying the sequences
to appropriate clusters, and using the corresponding K and λ values of the
classified cluster pair. This approach is similar to the lookup method used in
BLAST2.0 [1] but takes into account the features of the specific sequence pair
being aligned. For simple alignment methods, the results are also presented using
other approaches (PRSS [4,5,9] and ARIADNE [11]), and for advanced alignment
methods [6,7] currently no other quick methods are available to estimate pairwise
statistical significance except the method described in this paper.

2 The Extreme Value Distribution for Ungapped and
Gapped Alignments

Just as the distribution of the sum of a large number of independent identically
distributed (i.i.d) random variables tends to a normal distribution (central limit
theorem), the distribution of the maximum of a large number of i.i.d. random
variables tends to an extreme value distribution (EVD). This is an important
fact, because it allows us to fit an EVD to the score distribution from any local
alignment program, and use it for estimating statistical significance of scores
from that program. The distribution of Smith-Waterman local alignment score
between random, unrelated sequences is approximately a Gumbel-type EVD [8].
In the limit of sufficiently large sequence lengths m and n, the statistics of HSP
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(High-scoring Segment Pairs which correspond to the ungapped local alignment)
scores are characterized by two parameters, K and λ. The probability that the
optimal local alignment score S exceeds x is given by

Pr(S > x) ∼ 1− exp[−Kmne−λx]

This is valid for ungapped alignments [8], and the parameters K and λ can be
computed analytically from the substitution scores and sequence compositions.
An important point here is that this scheme allows for the use of only one
substitution matrix. For the gapped alignment, no perfect statistical theory has
yet been developed, although there is ample evidence that it also closely follows
an extreme value distribution [9,11,24,7].

3 Clustering-Classification Approach

This paper presents a simple clustering-classification approach based on amino
acid composition for estimating statistical significance of pairwise protein local
alignments, which is essentially an enhanced lookup method, where K and λ
values are pre-computed for each cluster pair by simulation. Subsequently, for a
given sequence pair, the sequences are individually classified to the corresponding
clusters based on their amino acid composition, and the K and λ parameters for
the cluster pair are used for statistical significance calculation of alignments of
the sequence pair.

3.1 Clustering

There are many algorithms available for clustering like hierarchical clustering,
k-means clustering, etc. [25]. Here we are dealing with clustering the universe of
protein sequences whose number is in hundreds of thousands. Therefore, we use
k-means clustering as hierarchical methods typically involve the computation of
a distance matrix of quadratic complexity with respect to the input size. In this
work, we have used the k-means implementation in R package [26]. Each of the k
clusters of sequences is represented by a single representative sequence (central
sequence), and subsequently the parameters K and λ are computed for each pair
of the k representative sequences. Given below a pseudo code for the clustering
module:

alphabet = "ACDEFGHIKLMNPQRSTVWY" #protein alphabet (amino acids)

sequences4R = set of sequences to be clustered

nSeq = number of sequences

for (i in 1:nSeq) {

seqArray = sequences4R[i]

lenSeq=length(seqArray)

for (j in 1:lenAlphabet-1) {

AACounts[i,j] = number of occurrences of amino acid alphabet[j] in seqArray

}

AAComposition[i,]=AACounts[i,]/lenSeq

}
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k = number of clusters

seqClusters = clustered sequences based on AAComposition

for (i in 1:k) {

clust_reprSeq[i] = representative sequence of cluster[i]

}

for (i in 1:k) {

for (j in 1:i) {

Compute the value of K and lambda by empirical simulation

K_clusters[i,j] = K_clusters[j,i] = estimated K

lambda_clusters[i,j] = lambda_clusters[j,i] = estimated lambda

}

}

3.2 Classification

Given two protein sequences for estimation of statistical parameters, they are
classified individually to the appropriate clusters. Each of the k clusters ob-
tained in the clustering step have their center, which corresponds to the central
amino acid composition for that cluster. A sequence is classified to the cluster
that minimizes the sum of squares of differences between the amino acid com-
position of the sequence and the central amino acid composition of the cluster.
Subsequently, the pre-computed K and λ values for the classified cluster pair
are used for the statistical significance estimation of alignments of the two input
sequences. Given below a pseudo code for the classification module:

alphabet = "ACDEFGHIKLMNPQRSTVWY"

sequences4R = set of two sequences for which K and lambda is to be estimated

nSeq = 2

for (i in 1:nSeq) {

seqArray = sequences4R[i]

lenSeq=length(seqArray)

for (j in 1:lenAlphabet-1) {

AACounts[i,j] = number of occurrences of amino acid alphabet[j] in seqArray

}

AAComposition[i,]=AACounts[i,]/lenSeq

}

k = number of clusters

for (j in 1:nSeq) {

classifiedCluster[j] = classified cluster based on AAComposition

}

estimatedK = K_clusters[classifiedCluster[1],classifiedCluster[2]]

estimatedLambda=lambda_clusters[classifiedCluster[1],classifiedCluster[2]]

4 Tools and Programs Used

We worked with the alignment programs SIM [27], which is an ordinary align-
ment program (similar to SSEARCH), and GAP4 [7], which allows dynamically
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finding similarity blocks and difference blocks [6], as well as using multiple pa-
rameter sets (scoring matrices, gap penalties, difference block penalties) to gen-
erate a single pairwise alignment. For estimating the statistical parameters K
and λ, we used several programs. First is PRSS from the FASTA package [4,5,9],
which takes two protein sequences and one set of parameters (scoring matrix,
gap penalty), generates the optimal alignment, and estimates the K and λ pa-
rameters by aligning up to 1000 shuffled versions of the second sequence, and
fitting an EVD using Maximum Likelihood. In addition to uniform shuffling, it
also allows for windowed shuffling. We also used ARIADNE [11], that uses an
approximate formula to estimate gapped K and λ from ungapped K and λ,
which are calculable analytically as described before. Both these methods are
currently applicable only for alignment methods using one parameter set. We
also used the Linear Regression fitting program used in [7] to estimate K and
λ from an empirical distribution of alignment scores. Finally, we also used the
Maximum likelihood method [22] and corresponding routines in the HMMER
package [21] to fit an EVD to the empirical distribution. Here type-I censoring
is defined as the one in which we fit only the data right of the peak of the his-
togram [22], and type-II censoring is defined as one where the cutoff is set to
the score that corresponds to a normalized E-value of 0.01. We used all these
methods to estimate K and λ values for a pair of representative sequences for a
given alignment scheme.

5 Experiments and Results

We downloaded all the available 261513 Swissprot protein sequences from http://
www.ebi.ac.uk/FTP/. The statistics of the lengths of the sequences are given in
Table 1, and the histogram of sequence lengths less than 1000 is shown in Fig. 1.
Clearly, the variation in sequence length is very extreme, although the length of
most of the sequences is in the range of 150 to 450. To minimize the influence of
variation in length, we only select the sequences with length between the 1st and
3rd quartile for clustering. The number of sequences between 1st and 3rd quartile
is 131486. The amino acid composition of all these sequences is calculated, and an
implementation of the k-means clustering algorithm in R package [26] is used to
cluster the sequences into k=5 clusters, based on their amino acid composition.
The k-means implementation in R returns for each of the k clusters its center,
its within-sum-of-squares, its size, and of course, the classification of the input
data points in one of the k clusters.

Fig. 2 is an attempt to visualize the clusters by representing the 20 dimen-
sional amino-acid-composition vector as a point in x−y plane using the first two
amino-acid-compositions. Although it does not give a full picture of the clusters
and their separation, it nonetheless gives some idea of how the clusters are lo-
cated. One representative sequence for each of the k clusters is then selected
by choosing the one whose amino-acid-composition vector is the closest to the
center of the cluster (i.e., which gave the minimum sum of square of differences).
Then, for each pair of the representative sequences, the parameters K and λ are



68 A. Agrawal, A. Ghosh, and X. Huang

estimated using the methods described earlier. This work presents the prelimi-
nary analysis taking k as 5 to study the effectiveness of this method. However, no
detailed study on the number of clusters has been presented in this work. For k

Table 1. Statistics of lengths of sequences

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

2 165 296 365.7 460 34350

Fig. 1. Histogram of length of sequences with length ≤ 1000

= 5, there exist 15 (=5 C2 + 5) different pairwise cluster combinations. Table 2
gives the K and λ estimates for one of the 15 pairwise clusters (〈3, 2〉). Here, we
used several options for the alignment parameters. For substitution matrices, we
used all possible combinations of BLOSUM45, BLOSUM62, and BLOSUM100
matrices. The alignment program GAP4 [7] is capable of using multiple substitu-
tion matrices to produce a single optimal alignment of two sequences. It requires
all substitution matrices to be in the same scale, and thus all matrices were
used in 1/3 bit scale. Other parameters like gap penalties, etc. were the same
as the default values used in GAP4 [7] for matrices in 1/3 bit scale. We used
the various programs for statistical parameter estimation as described earlier.
Rows in first half of Table 2 show the K and λ estimates from ARIADNE [11]
and PRSS [4,5,9], and the second half of the table show the estimates from ML
and LR. As pointed out earlier, ARIADNE and PRSS currently can work only
with one parameter set, and cannot estimate the pairwise statistical significance
parameters for alignment programs that use multiple parameter sets, and hence,
the corresponding entries in Table 2 are not available.
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Fig. 2. k-means clusters (k=5). Sequences in each cluster are represented by different
colors. This visualization represents the 20-dimensional amino-acid-composition vector
by a 2-dimensional vector (corresponding to the first two entries of the 20-dimensional
amino-acid-composition vector), and hence is not complete, but gives an overall idea
of how the clusters are located.

Table 2. K and λ estimates for the cluster pair 〈3, 2〉

Substitution Gap Gap ARIADNE PRSS(1000 shuffles)
Matrix Open Ext K λ uniform -w 10 -w 20

K λ K λ K λ
BLOSUM45 12 2 0.01795 0.184148 0.0329 0.1869 0.03736 0.1941 0.0381 0.1974
BLOSUM62 14 3 0.06445 0.200311 0.0956 0.2104 0.1108 0.2154 0.1212 0.2181
BLOSUM100 16 4 0.15101 0.210326 0.1888 0.224 0.2624 0.2328 0.1564 0.2198
BL45,62,100 12,14,16 2,3,4 NA NA NA NA NA NA NA NA
BL45,BL62 12,14 2,3 NA NA NA NA NA NA NA NA
BL45,BL100 12,16 2,4 NA NA NA NA NA NA NA NA
BL62,BL100 14,16 3,4 NA NA NA NA NA NA NA NA

Substitution Gap Gap Maximum Likelihood (100000 shuffles) LinearRegr.
Matrix Open Ext Full Censored-I Censored-II (100000 shfls)

K λ K λ K λ K λ
BLOSUM45 12 2 0.03387 0.189248 0.0316 0.1876 0.089487 0.204045 0.1083 0.2063
BLOSUM62 14 3 0.08757 0.205953 0.0875 0.2058 0.045709 0.196304 0.2389 0.2195
BLOSUM100 16 4 0.18503 0.2191 0.1761 0.2179 0.358664 0.228915 0.4009 0.2304
BL45,62,100 12,14,16 2,3,4 0.10576 0.194163 0.0967 0.1923 0.096223 0.192396 0.2358 0.2044
BL45,BL62 12,14 2,3 0.06773 0.194176 0.0919 0.1982 0.123769 0.202883 0.1551 0.2057
BL45,BL100 12,16 2,4 0.09969 0.195183 0.0911 0.1932 0.147417 0.200051 0.3205 0.2102
BL62,BL100 14,16 3,4 0.15685 0.207436 0.1570 0.2074 0.243203 0.21407 0.2807 0.2157

It was reported in [23] that that Maximum likelihood fitting with type-I cen-
soring gives the most accurate estimates of K and λ for estimation of pairwise
statistical significance. Therefore, we report the corresponding the K and λ es-
timates for all cluster-pairs in Table 3, presenting the final result of this work.
There are 7 sub-tables in Table 3, each showing the K and λ estimates for all
cluster pairs for a unique scoring scheme (7 scoring schemes are presented here).
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Table 3. Pairwise cluster statistical significance parameters for a variety of scoring
schemes

Param- Substitution Matrix: BLOSUM45; Gap Open Penalty: 12; Gap Extension Penalty: 2
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1358571 0.036457
2 0.212847 0.1642628 0.055198 0.022692
3 0.2076972 0.187666 0.1501918 0.052404 0.031631 0.020645
4 0.2439074 0.1868858 0.2037552 0.1584317 0.070919 0.031597 0.040751 0.018778
5 0.1948708 0.1909384 0.190503 0.1971262 0.1733189 0.041417 0.033241 0.032547 0.034713 0.024396

Param- Substitution Matrix: BLOSUM62; Gap Open Penalty: 14; Gap Extension Penalty: 3
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.155231 0.053164
2 0.2214101 0.1904642 0.108926 0.076897
3 0.2173865 0.2058921 0.1772875 0.11316 0.087505 0.059218
4 0.2461108 0.209065 0.2199229 0.1976537 0.12987 0.091884 0.104014 0.085541
5 0.2085433 0.2057725 0.2063069 0.2142532 0.193569 0.09491 0.087126 0.089158 0.095499 0.069993

Param- Substitution Matrix: BLOSUM100; Gap Open Penalty: 16; Gap Extension Penalty: 4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1866353 0.154048
2 0.228544 0.2064503 0.200226 0.193781
3 0.2242455 0.2179898 0.2045788 0.192326 0.17616 0.167797
4 0.2456977 0.2182969 0.2276359 0.2107703 0.209087 0.173654 0.183061 0.167819
5 0.221009 0.2162649 0.2202855 0.2244157 0.2126472 0.188667 0.164509 0.173582 0.179575 0.164874

Param- Substitution Matrix: BL45, BL62,BL100; Gap Open Penalty: 12,14,16; Gap Extension Penalty: 2,3,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1368407 0.049183
2 0.213582 0.1701292 0.159863 0.063276
3 0.2079975 0.192342 0.154174 0.14941 0.096799 0.040994
4 0.2373249 0.1928895 0.207206 0.1650268 0.198173 0.095714 0.123883 0.043014
5 0.1994941 0.1937772 0.1957841 0.2015482 0.1787635 0.12346 0.099895 0.104908 0.10812 0.066458

Param- Substitution Matrix: BL45, BL62; Gap Open Penalty: 12,14; Gap Extension Penalty: 2,3
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1402432 0.05231
2 0.2145139 0.1712422 0.100205 0.045569
3 0.2093419 0.1982169 0.1540202 0.101861 0.091968 0.031788
4 0.2411866 0.1931565 0.2063857 0.1642365 0.125784 0.063434 0.075368 0.030885
5 0.1987875 0.1941648 0.1946307 0.2020014 0.1783505 0.079681 0.064921 0.066602 0.072043 0.046346

Param- Substitution Matrix: BL45, BL100; Gap Open Penalty: 12,16; Gap Extension Penalty: 2,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1382574 0.05416
2 0.2141082 0.1717717 0.14858 0.065682
3 0.2092158 0.1932967 0.1537908 0.141856 0.091108 0.036667
4 0.2404284 0.1954375 0.2076836 0.1648767 0.208871 0.104467 0.113331 0.041522
5 0.2003162 0.1949345 0.1968851 0.2041312 0.1789941 0.11604 0.094415 0.096769 0.109758 0.059355

Param- Substitution Matrix: BL62, BL100; Gap Open Penalty: 14,16; Gap Extension Penalty: 3,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1612023 0.088929
2 0.2201957 0.1928412 0.185743 0.137453
3 0.2210159 0.2074159 0.1823947 0.251905 0.157085 0.103554
4 0.2406616 0.210198 0.2198564 0.1994292 0.212245 0.164609 0.180414 0.144506
5 0.2090656 0.2068202 0.2068121 0.2145398 0.1982235 0.159461 0.152743 0.142889 0.161868 0.12984

The K and λ estimates in table 3 are for 1/3-bit scaled substitution matrices.
For each scoring scheme, there is a wide variation in the estimated K and λ
values. For instance, in the first sub-table, λ values range from 0.1358571 to
0.2439074, and K values range from 0.018778 to 0.070919, although all the pair-
wise alignments of random sequences for getting the K and λ estimates in the
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first sub-table were done using the SIM program with BLOSUM45 substitution
matrix, gap open penalty 12, and gap extension penalty 2, i.e. using the same
scoring scheme. Since the only contributing factor for the difference between
K and λ values for different cluster pairs is the amino acid composition, we
can observe that the statistical parameters heavily depend on the amino acid
composition. Clustering the protein sequences into groups of similar amino acid
composition has therefore to some degree separated the dependence of the sta-
tistical significance parameters on the amino acid composition, which is very
helpful for quick and accurate estimates of statistical significance for specific
pairwise alignments. Once parameter estimation for the cluster-pairs is done for
a given scoring scheme, subsequent statistical significance estimation for any se-
quence pair using the same soring scheme is very quick, since it only involves
classification of the sequences to corresponding clusters, and using the statistical
parameters for the corresponding cluster-pair.

6 Conclusion and Future Work

The implementation of a clustering-classification based approach for estimating
the statistical parameters K and λ for estimating the statistical significance of
pairwise alignments is done and is experimented with. The clusters are based on
the amino-acid composition and the estimates of the statistical parameters K
and λ for each cluster-pair are calculated by simulation. Given two sequences, the
estimate of K and λ for that pair is given by the K and λ values corresponding to
the cluster-pair to which the given sequences are classified based on the amino-
acid-composition.

The estimated values of K and λ for different clusters show a considerable
variability, even for the same alignment scoring scheme, which suggests that
the influence of amino acid composition on statistical parameters K and λ is
very strong, and it is imperative to use different K and λ values for different
sequences. The clustering technique used in this work has therefore separated the
influence of amino acid composition on statistical parameters, which is the main
contribution of this paper. Another major significance of this work is that this
method can be applied to any new alignment program with any scoring scheme
without the knowledge of the statistics of the alignment procedure (which is in
general difficult to determine). Once the influence of amino acid composition on
statistical significance parameters is separated from other factors, all that needs
to be done is the accurate estimation of the statistical parameters for all cluster
pairs using the new alignment program, and subsequently use those values for
any pair of sequences with individually similar amino acid composition as that of
the clusters to which the pair of sequences are individually classified. Especially
with a number of new alignment methods being developed, this technique is
expected to be very useful in comparing them.

Although the simple idea is very promising, it is unclear how well it works
for an application where statistical significance is used, like homology detection.
This approach is just a beginning of the efforts to separate the influence of amino
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acid composition, and clustering is just one of the many methods which can do
so. It may be possible that it is not the exact composition clusters that two
protein sequences under comparison fall into that matters, but instead, simply
the difference between the composition distributions of the two proteins, which
needs further exploration. Another shortcoming of this work is that by clustering
hundreds of thousands of sequences in to just five clusters, we lose a lot of in-
formation about the amino acid composition distribution across the real protein
sequences. An analytical study of the amino acid composition distribution may
be required to get the optimal number of clusters. Hence, this method can be
further looked into in detail to evaluate the performance of clustering. Another
improvement can be to use a small scale simulation along with the proposed
approach to increase the accuracy of the statistical significance estimates.
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Abstract. The identification of homologous DNA is a fundamental building
block of comparative genomic and molecular evolution studies. To date, pairwise
local sequence alignment methods have been the prevailing technique to identify
homologous nucleotides. However, existing methods that identify and align all
homologous nucleotides in one or more genomes have suffered poor scalability
and limited accuracy. We propose a novel method that couples a gapped extension
heuristic with a previously described efficient filtration method for local multiple
alignment. During gapped extension, we use the MUSCLE implementation of
progressive multiple alignment with iterative refinement. The resulting gapped
extensions potentially contain alignments of unrelated sequence. We detect
and remove such undesirable alignments using a hidden Markov model to
predict the posterior probability of homology. The HMM emission frequencies
for nucleotide substitutions can be derived from any strand/species-symmetric
nucleotide substitution matrix, and we have developed a method to adapt an
arbitrary substitution matrix (i.e. HOXD) to organisms with different G+C
content. We evaluate the performance of our method and previous approaches
on a hybrid dataset of real genomic DNA with simulated interspersed repeats.
Our method outperforms existing methods in terms of sensitivity, positive
predictive value, and localizing boundaries of homology. The described methods
have been implemented in the free, open-source procrastAligner soft-
ware, available from: http://alggen.lsi.upc.es/recerca/align/
procrastination

1 Introduction

The importance of accurate homology identification to comparative genomics cannot
be overestimated[1]. To date, pairwise local sequence alignment methods such as
BLAST [2,3,4] have been the prevailing technique to identify homologous nucleotides.
When more than two copies of a homologous sequence element are present in the
data, pairwise homology detection methods generate a listing of all possible pairs of
homologous elements in the form of pairwise local alignments. Apart from the obvious
inefficiency of considering all pairwise homology relationships, a collection of pairwise
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alignments is not ideal because they are rarely amenable to comparative genomic and
phylogenetic analysis without further processing into a multiple alignment.

Local pairwise alignments can be merged to create a multiple alignment by a
variety of methods[5,6,7,8]. Such methods commonly assume that pairwise homology
relationships are transitive, such that if nucleotide a is homologous to nucleotide b,
and b is to c, then a must also be homologous to c. Thus, in order to merge pairwise
alignments, such methods must tackle the challenging problem of resolving inconsistent
transitive homology relationships. Multiple alignment has been demonstrated to be
more accurate than pairwise alignment, especially when dealing with a large number
of divergent sequences[9,10]. As the number of homologous sequences grows, we
might expect that the number of inconsistent relationships in a collection of pairwise
alignments would grow quadratically, whereas a direct multiple alignment method
would provide an increasingly accurate alignment. Moreover, highly repetitive regions
in the input sequences can cause serious efficiency problems for pairwise methods,
as they create O(r2) pairwise alignments in the presence of a repeat with r copies.
Mammalian Alu repeats and IS elements in microbes are two common examples of the
overwhelming abundance of repetitive sequence in whole genomes.

Local multiple alignment has the inherent potential to avoid pitfalls associated
with pairwise alignment. Although optimal multiple alignment under the SP objective
function remains intractable[11], progressive alignment heuristics offer excellent
speed and accuracy[12,13] especially when combined with tree-independent iterative
refinement [14], or probabilistic consistency measures[15]. Rather than merging
pairwise alignments, why not exploit years of research into multiple alignment
heuristics by directly constructing a multiple alignment? We thus present a novel
heuristic for directly computing local multiple alignments via gapped extension of
chained seed matches.

2 A Heuristic for Gapped Extension of Local Multiple Alignments

Our method for computing local multiple alignments exploits the MUSCLE multiple
alignment algorithm to compute gapped extensions of ungapped multi-match seeds (see
Fig. 1). Gapped alignments arise when extending seeds to fully capture surrounding
sequence homology. Our method assumes that a fixed number of nucleotides flanking a
seed match are likely to be homologous and computes a global multiple alignment on
the flanking region. Our assumption of flanking homology often proves to be erroneous
and results in an alignment of unrelated sequences. In the context of local multiple
alignment, the fundamental problem with such an approach is that current methods
for progressive alignment with iterative refinement compute global alignments, i.e.
they implicitly assume that input sequences are homologous over their entire length.
To resolve the problem, we employ a hidden Markov model which detects unrelated
regions embedded in the global multiple alignment. Unrelated regions are then removed
from the alignment and the local multiple alignment is trimmed to reflect the updated
boundaries of homology.

Our method, depicted for an example sequence in Fig. 1, has seven primary steps:
(1) identify multi-match seeds in the input sequence, (2) chain individual seeds, (3)
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multiply align of regions between chained seeds, (4) gapped extension of seed chains (5)
detect unrelated regions using a hidden Markov model, (6) apply transitive homology
relationships, and (7) removal of any unrelated sequence from the final local multiple
alignment. We have previously published Steps 1-2 of our method[16], while steps 3-7
represent a new contribution and are the subject of the present manuscript. Steps 2-7
are applied repeatedly to seeds identified in step 1 to produce local multiple alignments
of all homologous nucleotides in the input sequence.

2.1 Chaining Multi-match Seeds from the Input Sequence

Given a sequence S = s1, s2, . . . , sN of length N defined over an alphabet
{A, C, G, T}, our method identifies local multiple alignments on homologous
subsequences of S. Our method first extracts candidate ungapped alignments, or
multi-matches, among subsequences in S, and we denote the set of all such matches
as M. To extract multi-matches from the input sequence, we utilize a palindromic
spaced seed pattern[17], which is analyzed at each position in the input sequence.
Palindromic spaced seeds offer good efficiency and reasonable sensitivity on a variety
of input sequences[16]. We refer the number of matching regions in S by a given match
Mi ∈M as the multiplicity of Mi, denoted as |Mi|. We refer to each matching region of
Mi as a component of Mi. Our algorithm has an important limitation on the matches in
M: no two matches Mi and Mj may have the same left-end coordinate, except for the
identity case when i = j. This constraint has been referred to by others as consistency
and transitivity[18] of matches.

Once a list of multi-matches has been generated, we employ an efficient chaining
and filtration algorithm to identify overlapping and nested chains of multi-matches[16].
In order to process each region of sequence O(1) times, matches are prioritized for
chaining in order of decreasing multiplicity. The method chains multi-match seeds of
the same multiplicity |Mi| occurring within w characters of each other, thus gaps of up
to size w are tolerated. When a multi-match can no longer be chained without including
a gap larger than w characters, neighboring subset matches within w characters are
identified. Each neighboring subset match is then linked to the chained match. We refer
to the chained match as a superset match. Rather than immediately extend the subset
match(es), we procrastinate and extend the subset match later when it has the highest
multiplicity of any match waiting to be extended. When chaining a match with a linked
superset, we immediately include the entire region covered by the linked superset match
and thus eliminate the need to re-examine sequence already covered by a previously
chained match.

2.2 Gapped Extension of High-Scoring Chains

Our new method computes gapped extensions of the chained multi-match seeds. After
chaining a multi-match Mi, we perform gapped alignment on all collinear regions
located between two adjacent components to generate unextended local multiple
alignments. We first evaluate the chain to decide whether expending computational
resources on gapped extension will be worthwhile. We can optionally require that two
or more seeds be present in the chain and use lower seed weights (k), a technique which
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Fig. 1. Overview of the method, starting with an input sequence and ending with a set of local
multiple alignments. First we (1) detect multi-matches in the input sequence(s) using palindromic
spaced seeds, then we perform (2) chaining and extension of all multi-matches within w nt of each
other. In the present example, one chain exists and contains two matches each with three match
components labeled 1, 2, and 3. We then perform gapped alignment of the region between chained
matches (3). In step (4), we perform a gapped extension by computing a global multiple alignment
on the regions to the left and right of each chain component. The resulting alignment may contain
unrelated sequence, so in step (5) we apply a hidden Markov model to detect poorly aligned
regions indicative of unrelated sequence. Step (6) computes transitive homology relationships
to ensure a consistent alignment and aid detection of divergent homologous sequences. Finally,
in step (7) we unalign regions found to be non-homologous. If we find after step (2) that the
alignment boundaries have been extended, we return to step (4) for another round of chaining.
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CC,GG: 0.448
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AA,TT: 0.128
   AT: 0.128
AC,GT: 0.115
AG,CT: 0.115
CC,GG: 0.104
   CG: 0.104
   gO: 0.048
   gE: 0.253

TTGGCGGGG-------TGGGAAGCCGTACGC-CCCCCTTTGCATAACTAGGTCTT---  Seq. 1:

---GC----AATACCCTGGGAAGCCGTACGAACCCCCTTTGCATAA---GGTCTTACT  Seq. 2:

Decoded: UUUUUUUUUUUUUUUUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHUUU

Fig. 2. Hidden Markov model used to detect pairwise alignments of unrelated sequence.
The HMM has states which model alignment columns containing homologous and unrelated
sequence. Emission probabilities are extracted from the HOXD substitution matrix and
correspond to alignment columns, for example AA indicates A aligned to A. gO indicates
gap-open and gE gap extend. Alignment columns are treated as strand-symmetric, so that AC also
indicates CA and the reverse complements TG and GT. The emission probabilities are adjusted to
the G+C content of the input genome as described in the test. The values shown here correspond
to a 47.5% G+C genome.

has previously been proven successful[2,19,20]. To perform a gapped extension in each
direction, we use MUSCLE to align dynamically-calculated window of nucleotides
(l) to the left and right of the current local multiple alignment. Small values of l
restrict the alignment search space, while larger values require more computation but
are potentially more sensitive. We have empirically determined that setting l based on
multiplicity (l = 70e−0.01∗|Mi|) offers a good tradeoff between speed and sensitivity.
The resulting extension window is small for high multiplicity chains, keeping the
alignment search space tractable.

2.3 Identifying Unrelated Regions

The MUSCLE alignment software dutifully reports the highest scoring global multiple
alignment of input sequences, regardless of whether they are related by common
ancestry. As a consequence of the gapped extension process, it is likely that our
method forcibly aligns unrelated sequence. We have configured a hidden Markov model
(Fig. 2) to detect alignments of unrelated sequence. The HMM consists of two hidden
states, Homologous and Unrelated. The observable states are the pairwise alignment
columns, which are all possible pairs in {A,G,C,T,-} with strand and species
symmetry, i.e. AG=GA=TC=CT. The emission probabilities for each possible pair of
aligned nucleotides were extracted from the HOXD substitution matrix presented by
Chiaromonte et al. [21]. We solved for the emission frequencies in the homologous
and unrelated state using the same equation used to calculate the values of the HOXD
substitution matrix on 47.5%G+C content sequence[21]:

s(x, y) = log2

(
p(x, y)

q1(x)q2(y)

)

(1)
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where p(x, y) is the fraction of the observed aligned pairs of nucleotides x and y in the
training set used and q1(x) and q2(y) denote the background frequencies of x and y,
respectively. Chiaromonte et al. scaled the resulting s(x, y) values by ψ = 32.5421 so
the largest was 100, with the rest rounded to the nearest integer. The resulting emission
probabilities for the Homologous and Unrelated states are given in Fig. 2. HMM
probabilities can be derived using any strand/species-symmetric nucleotide substitution
matrix, but any particular matrix makes specific assumptions about divergence time,
mutation pressures, and sequence composition of the aligned sequences. Genomes
can range in G+C content from 30-75%, and at the extremes, a substitution
matrix derived on 47.5% G+C sequence (such as HOXD) does not perform well.
Previously it has been shown that adapting substitution matrices to the composition
of the organisms under comparison can improve sequence alignment accuracy[22].
We have thus developed a method to adapt HMM emission frequencies derived
from an arbitrary substitution matrix to organisms with different G+C content (see
http://alggen.lsi.upc.es/recerca/align/procrastination/ for
details).

While emission frequencies for nucleotide substitutions can be derived from any
strand/species-symmetric nucleotide substitution matrix, the gap-open and extend
frequencies can not. To empirically estimate gap-open and extend values for the
unrelated state we aligned a 10-kb, 48% G+C content region taken from E. coli
CFT073 (Accession AF447814.1, coordinates 37,300-38,300) with an unrelated
sequence. We generated an unrelated sequence with identical nucleotide composition
by reversing the extracted sequence without complementation. We then forced an
alignment with MUSCLE and counted the number of gap-open and gap-extend
columns in the alignment of unrelated sequences. Gap-open and extend frequencies
for the homologous state were estimated by constructing an alignment of 10kb
of orthologous sequence shared among a pair of divergent organisms. We aligned
the 48%G+C segment between genes fruR and secA from E. coli K12 (Accession
U00096.21) and Y. pestis CO92 (Accession AL590842.1). We add the empirically
derived gap-open and extend frequencies for each state and normalize the emission
frequencies to a probability distribution. The resulting emission probabilities are
reported in Fig. 2.

Using the empirically derived transition and emission probabilities, we apply
the posterior HMM decoder implemented in the HMMoC software[23] to compute
the posterior probability (p.p.) that each alignment column represents homologous
sequence. Columns with a p.p. below 0.5 are considered to be unrelated; use of 0.5
as a p.p. threshold yields a maximum a posteriori estimate of homology. We then apply
the transitive homology principle to our predictions, resulting in a final set of consistent
homology predictions. See Fig. 1, steps 5 and 6 for an example. We trim the alignment
to exclude all columns beyond the Homologous state. If the original boundaries were
improved, we trigger another round of chaining (and consequently another round of
extension) in the same direction. When gapped extension fails to improve boundaries
in one direction, extension in the other direction is attempted until no further extension
is possible.

http://alggen.lsi.upc.es/recerca/align/procrastination/


80 T.J. Treangen et al.

3 Results

We have previously demonstrated the sensitivity of our chaining method in finding Alu
repeats in the human genome[16]. Figure 6 shows part of a local multiple alignment of
one such Alu family as generated with procrastAligner. To highlight the benefits
of our proposed heuristic for gapped extension, we compare procrastAligner’s
performance to the Eulerian path method for local multiple alignment as implemented
by eulerAlign[8]. The Eulerian path method uses a de Bruijn graph for filtration,
and goes beyond filtration to compute gapped alignments using banded dynamic
programming. To our knowledge, procrastAligner and eulerAlign represent
the only two automated methods to construct local multiple alignments directly from
genomic DNA.

3.1 Simulating Interspersed Repeats

We evaluate accuracy of each method when aligning simulated repeat families that have
been inserted into the complete genome of Mycoplasma genitalium. The M. genitalium
genome has been recognized as complex and repeat-rich[24], presenting a biologically
relevant and challenging example to evaluate alignment methods. We simulated repeat
families of 8 different multiplicities ranging between 2 and 256 (x-axis in Fig. 3).
Each repeat copy has an average length based on its family’s multiplicity (length =

7680
multiplicity ), thus high copy-number repeats are short. Evolution of repeat families was
simulated as a marked Poisson process on a star tree topology. The branch lengths were
varied between 0 and 24 (y-axis in Fig. 3), with the nucleotide substitution rate fixed at
0.09 per unit time, and the indel rate fixed at 0.01 per unit time. Rate heterogeneity among
sites was modeled with a gamma distribution (θ = 1.0, k = 0.5). Indel size was Poisson
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Fig. 3. Accuracy recovering simulated repeat families planted in the Mycoplasma genitalium
genome. Sum-of-pairs (SP) nucleotide sensitivity and positive predictive value (PPV) of
procrastAligner and eulerAlignwere measured for 200 combinations of branch length
and multiplicity. Three replicates of each simulation were performed and average accuracy values
are shown here. White points indicate perfect alignment of the simulated repeat family. Black
points indicate the program completely failed to recover any portion of the repeat family. Average
mutations per site can be calculated by multiplying branch length by the fixed substitution rate of
0.09, and indel rate of 0.01. For example, at branch length 20 there are 1.8 substitutions per site
and 0.2 indels per site. From the figure, it is apparent that procrastAligner performs better
at higher mutation rates and multiplicities than eulerAlign.
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Fig. 4. Pairwise boundary accuracy metric. We define our boundary accuracy metric to be
an all-pairs score by comparing the boundaries of all r components of the inserted repeat R to
the boundaries predicted by the alignment program. For any pair of components, ri and rj , we
take the maximum boundary of any local multiple alignments output by the program. The figure
shows a multiplicity five interspersed repeat R and four local multiple alignments, A, B, C, D.
Boundary predictions can be classified as (1) correct, (2) overprediction, and (3) underprediction,
with each discussed in turn: (1) Correct prediction. Consider scoring components r1 and r3.
Local multiple alignment A overlaps both r1 and r3 and no other alignment overlaps both r1 and
r3. The left and right boundaries of alignment A match the boundaries of r1&r3 exactly, thus
we assign scores of 0 for r1&r3. (2) Overprediction. Consider scoring components r1 and r2.
These components are overlapped by alignments A and C. Alignment A has perfect boundary
predictions for r1&r2, while alignment C extends beyond the true boundaries of components r1
and r2 by 4 nucleotides on the left and 5 nucleotides on the right. Our scoring metric always
uses the maximum predicted boundaries for a pair of components, thus the boundary predictions
from C are reported for r1&r2. (3) Underprediction. Consider scoring components r3 and r5.
Alignment B hits both r3 and r5, but stops short of the right-side boundary by 8nt in r3 and 4nt in
r5. We average the error and record -6 for the right-side of r3&r5. Finally, component pairs that
are not contained by any computed alignments are not scored, as indicated by n/a.

distributed with intensity 3, and insertions and deletions were taken to be equally likely.
Each family’s ancestral sequence was randomly generated using nucleotide frequencies
equal to the composition of Mycoplasma genitalium (A = 0.34, T = 0.34, G =
0.16, C = 0.16). Insertion sites for repeat copies were chosen uniformly at random in the
580kb M. genitalium genome, allowing tandem repeats but prohibiting mosaic repeats.

3.2 Alignment Accuracy Metrics

We used each program to find local multiple alignments in each of the 200 modified
M. genitalium genomes and recorded alignment accuracy as follows. We calculated
Sum-of-Pairs (SP) nucleotide sensitivity as TP

TP+FN , where TP is the number of aligned
nucleotide pairs in the program’s output which are also aligned in the simulated repeat
family. FN is the number of aligned nucleotide pairs in the simulated repeat family
which are missing from the program’s output. This sensitivity measure is identical to
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Fig. 5. Boundary prediction performance. All-pairs boundary prediction accuracy of
procrastAligner and eulerAlignwere measured for 200 combinations of branch length
and multiplicity. Accuracy on each combination is presented as a box-and-whiskers plot using
the scoring metric detailed in Section 3.2. Branch lengths range from 0 to 0.24 and increase
by intervals of 0.01. The x-axis label represents the multiplicity of the interspersed repeat in
log2-scale. i.e. axis label 8 indicates 28 = multiplicity 256. The y-axis label is the prediction
error in log2-scale nucleotides. Values at 0 represent correctly identified repeat boundaries, values
greater than 0 represent overpredictions, and values less than 0 represent underpredictions (see
Fig. 4). In general, procrastAligner identifies the true interspersed repeat boundaries more
accurately than eulerAlign.

the Sum-of-Pairs (SP) accuracy defined by BaliBASE[25]. We calculate the positive
predictive value (PPV) as TP

TP+FP , where TP is defined as above, and FP is the total
number of nucleotide pairs from the program’s output where one of the nucleotides are
part of the simulated repeat family and the other nucleotide was incorrectly aligned.
We also quantify the ability of each aligner to accurately predict the boundaries of
the interspersed repeats. For a given pair of repeat components, we calculate accuracy
by recording the number of nucleotides between the true boundary and the predicted
boundary on both the right and left sides of the repeat. Thus, over-extension gets a
positive score, while underextension yields a negative score and perfect boundaries
receive a 0 score. See Fig. 4 for further details on boundary under/overpredictions.

3.3 Accuracy When Aligning Interspersed Repeats

We applied procrastAligner and eulerAlign to the hybrid simulated &
real dataset. We ran procrastAligner with command-line parameters --z=15

--w=20 and eulerAlign with -k 15 -l -i 1000 -v based on suggestions from
the program’s user guide and manual experimentation. Simulations for each of the
200 combinations of branch length and multiplicity were replicated three times and
alignments generated in parallel on a 156-node compute cluster. Results of the
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experiments are reported in Fig. 3 and Fig. 5. Figure 3 illustrates the sensitivity and
PPV of both methods on datasets ranging from 0 substitutions and indels per site to
2.16 substitutions and 0.24 indels per site (branch length 24). As mutation rates and
repeat multiplicity increase the alignment accuracy decreases for both methods, with
accuracy of eulerAlign decreasing faster than procrastAligner. Surprisingly,
eulerAlign often fails to align low multiplicity repeats, even when mutation
rates are low. Manual experimentation with eulerAligner parameters, such
as: -v (tolerance for mismatches), -k (seed k-mer size) from 11 to 15, and -i
(number of iterations) from 1000 up to 10,000, failed to improve its performance on
low-multiplicity repeats. We conjecture that procrastAligner’s overall improved
accuracy largely derives from its use of spaced seed patterns[16] and tolerance of
gaps. With the -v option enabled, the Eulerian path method allows up to 10%
mismatches for matching k-mers to seed gapped alignment extensions. While this
certainly improves the sensitivity at lower mutation rates, the experimental results
presented Fig. 3 show that it is inadequate for higher mutation rates.In addition
to sensitivity and PPV benchmarks, we also assess how well each aligner recovers
the true boundaries of interspersed repeats. Figure 5 illustrates the ability of each
program to accurately localize the known boundaries of the simulated interspersed
repeats. From the figure, it is apparent that on average, procrastAligner
predicts the exact repeat boundary for all studied combinations of branch length
(repeat degeneracy) and multiplicity (repeat copy number). Moreover, the standard
error in procrastAligner’s boundary predictions is typically very low, within 4
nucleotides. eulerAlign, on the other hand, exhibits more erratic behavior. For low
multiplicity repeats it has a strong tendency to underpredict the repeat boundary. At
high multiplicities (≥ 32) eulerAlign tends to slightly overpredict the boundaries,
by including flanking unrelated sequence in the alignment of the interspersed repeat.

Finally, a direct comparison of run time is difficult, due to the differing natures of the
local multiple alignment programs. eulerAlign runtime depends on the iterations
parameter, which controls the total number of local multiple alignments reported,
whereas procrastAligner reports all local multiple alignments in a single run.
Despite this, we report the average per-experiment CPU time for each program on the
test dataset. procrastAligner required on average 55 seconds per experiment, with
the longest taking just over two minutes. eulerAlign required 1 hour total compute
time per experiment on average, which equates to about 4 seconds per iteration. Both
programs exhibited similar memory usage, procrastAligner requiring on average
50 MB per experiment and eulerAlign requiring on average 70 MB per experiment.

4 Discussion

We have presented a sensitive and efficient gapped-extension heuristic for local multiple
alignment. We have extended our previous results by converting chains of ungapped
multi-matches into gapped local multiple alignments. Our method is based around an
efficient heuristic for local multiple alignment, featuring a novel method for gapped
extensions joining global multiple alignment with a homology test based on a hidden
Markov model. Experimental results demonstrate that the described method offers a
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GGAGTTCACGACCACCTGGGGCAACAAGGCAAAAC-CCCGTCTCTACT---AAAAAT--ACAAAAAGCTAGCCAGGCGTGGTGGTGTGCATCTGTAACCCCAGCTACTGGGGA
GGGGTTCGAGACCAGCTTGGCCAGCATGGTGAAAC-CCTGTCTCTACT---AAAAAT--AC-AAAAATTAGCTGGGCGTAATGGCGCACGCCTGTAATCCTAGCTACTCGGGG
GGAGTTCAAGACCAGCCTGGCCAACATGGTGAAAC-CTCGTCTCTACT---AACAAT--AC-AAAAATTAGCCTGGTGTGGTGGTGGGTGCCTGTAATCCCAGCTACTGGGAA
GGAGTTCGAGACCAGCCTGACCAACATGGAGAAAC-CACGTCTCTACT---AAAAAT--AC--AAAATTAGCCAGGCGTGGTGGTGCATGCCTATAATCCCAGCTACTCGGGG
GGAGTTTGAGACCAGCCTGTCCAACATGGTGAAAC-TCCGTCTCTACT---AAAAAT--AC-AAAAATTAGCCGGGCATGGTGGCACATGCCTATAATCCCAGCTACTCCGGA
GGAGTTCAAGACCAGCCTGGTTAAGATGGTGAAAC-CCCATCTCTACT---AAAAATTAAA-AAAAATTAGCTGGGTGTGGTGATGGGCACCTGTAATCCAAGCTACTCAGGA
GGAGTTCAAGACCAGCCTGACCAACATGATGAAAC-CCCATCTCTACT-AAAAATAC--AA-AAAAATTAGCCAGGTGTGGTTGCGGGCACCTGTAATCCCAGCTACTCGGGA
GGAGTTTGAGACCAGCCTGGCCAACATGGCGAAAC-CCTGTCTCTACT---AAAAAT--AC-AAAAATTAGCCAGGTGTGATGGTGGGTGCCTACAGTCCCAGCCACTCAAGA
GGAATTCAAGACCAGCTTGGTCAACATGCCGAAAC-CCCATCTCTACTAAAAAAAAT--AC-AAAAATTAGCCAGGCGTGGTGGTGCACACCTGTGGTCCCAGCTACTCGGGA
GGAGTTCAAGACCAGCCTGGTCAACATGGTGAAAC-CCCATCTCTACC---AAAAAT--AC-AAAAATTAGCTGGACACGGTGATGCACGCTTGTAATCCCAGCTACTCGGGA
GGAGATCGAGACCATCTGGGTTAACACGGTGAAAC-CCCGTCTCTACT-AAAAATAC--AA-AAAAATTAGCCAGGCACAGTGGCAGGTGCCTGTAGTCCCAGCTACTCGGGA
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GGAGATTGAGACCATCCTGGCTAACAGGGTGAAAC-CCCATCTCTACT---AAAAAT--ACAAAAAATTCACCGGGCGCGGTGGCAGGTGCCTGTAGTCCCAGTTACTGGGGA
GTAGTTCAAGACCAGCCTGGGCAACATGGCAAAATGCCCATCTCTAC--AAAAAAAT--AC-AAAAATTAGCCAGGCGTGGTGGCATGTACCTGTAGTCCCAACTACTCAGGA
AGAGATCGAGACCATCCTGGACAATATGGTGAAAC-CC-GTCTCTACT---AAAAAT--AC-AAAAATTAGCTGGGCGTGGTGGTGCGCACCTGTAGTCCCAGCTACTCGGGC
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Fig. 6. Alu repeat alignment. Partial view of an Alu repeat alignment output by procrastAligner
in the H. sapiens BAC clone RP11-355H10 (Accession AC010145.10). Each row represents an
aligned Alu. Highlighted columns indicate conserved sequence among all 16 copies of the Alu.
Start positions are shown to the left, negative values indicate complement strand. Local multiple
alignment was generated with procrastAligner with parameters: --z=9 --w=50.

level of alignment accuracy exceeding that of previous methods. Accurately predicting
homology boundaries has important implications; for example, tools to build repeat
family databases can directly use the alignments without the manual curation required
in current approaches and also is likely to aid in the evolutionary analysis of transposon
proliferation. Further improvement of the alignment methodology will likely require
increasingly sensitive methods for seed matching in conjunction with a statistical
methodology to assign significance to local multiple alignments. One possible avenue
to increase seed matching sensitivity and reduce boundary underpredictions would
be merging overlapping seed matches into a shorter, higher-multiplicity match. A
second avenue would be to use of palindromic seed families instead of using a
single seed pattern. With increased seed matching sensitivity comes additional false
positive seed hits, so a statistical test for rejecting insignificant local alignments will
likely be required. Unfortunately exact computation of p-values for local multiple
alignments remains a daunting challenge, although fast approximation methods for
pairwise alignments have shown promise[26] and potentially can be extended to
multiple alignments[8,27].

4.1 Implementation

We have implemented our method in a program, procrastAligner, available for
Linux, Windows, and Mac OS X. Our open-source implementation is available as C++
source code licensed under the GPL , and can be downloaded from:
http://alggen.lsi.upc.es/recerca/align/procrastination.
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Abstract. In the last twenty years, protein databases have been growing
exponentially. To speed up the search, heuristic approaches have been
proposed and their accuracy has been steadily growing, but exact search
is still needed in some cases. The only exact search algorithm remains
SSEARCH (or it’s clones) which sequentially scans database of protein
sequences, and performs full alignment against each of the sequences.

Due to the need of the exact search, we focus on improving the se-
quential search algorithm. We decrease the costs needed to compute the
alignment of pair of protein sequences when used with large databases.
This is achieved by reusing alignment calculations of common parts of
the sequences without loss of accuracy.

With this method, we reduced the computational costs by up to 20 %
depending on the database size and subset used. We also implemented
approximate search which further reduced computational costs for the
the sake of some accuracy loss.

Keywords: protein databases, Smith-Waterman algorithm.

1 Introduction

In recent years, there has been an exponential growth of databases of protein
sequences. One of the reasons for this growth is the fact that similarity between
a protein sequence with an unknown function and a sequences in a database
of protein sequences with known functions is used by biologists to help to de-
termine the function of the inspected protein. Also protein sequences of dif-
ferent species can help (if they are sufficiently similar) in getting information
about the new protein, and therefore it makes sense to keep at disposal as large
repositories of sequences as possible, hence size of the repositories exponentially
grows. This growth has an obvious consequence - searching the repositories be-
comes slower, especially when Smith-Waterman (SW) algorithm [16] (which is
the most sensitive method for homology search) is used as the similarity mea-
sure. The Smith-Waterman algorithm is of quadratical complexity, and therefore
use of this algorithm became unacceptable for large repositories. To decrease
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quadratic complexity of the search to linear, heuristic algorithms were proposed
- most well known are FASTA [10] and BLAST [1]1.

Similarity of two sequences, when measured with Smith-Waterman algorithm,
is called Smith-Waterman (SW) score. SW-score is applied only to a single pair
of sequences and thus E-value (expected value computed out of SW-score) was
proposed to incorporate some statistics into the output such as lengths of the
aligned sequences, size of the database, etc. E-value for a query sequence q, a
database sequence and a SW-score S expresses number of database sequences
that will score with q equivalently or better than S with respect to the database
size. Hence, lower E-value leads to more significant matches. In usual scenario
user inputs an E-value and a protein sequence and gets on the output sequences
that are similar to the given sequence with E-value lower than the given value2.
Due to the rigorous nature of the algorithm, Smith-Waterman finds more distant
matches than BLAST or FASTA does, thus SW can output also sequences that
would have sufficient E-value but BLAST of FASTA would miss it. And there
are still situations where accuracy is preferred over speed, e.g. database curation,
finding structures by sequence alignment, etc. In these cases, rigorous algorithms
are used.

Smith-Waterman algorithm is nowadays implemented in ScanPS [2] (origi-
nal SW algorithm), SSEARCH (SW with SWAT optimizations [6]), or MPsrch
(MPsrch is parallelized version of the true Smith and Waterman3).

2 Similarity in Sequence Databases

Since protein sequence is a linear sequence of letters upon alphabet of 20 amino-
acids4, algorithms and similarity measures for searching protein databases are
similar to algorithms for searching databases of ordinary strings with the differ-
ence that the similarity measure used is a bit more complex (because of semantics
of protein sequences). As for every database of objects we must foremost define
a similarity measure which we will use to compare objects, and based on this
measure we can define methods for searching it. In string databases, similarity
measure is based on alignment of sequences (usually pairs of sequences5). Align-
ment of sequences is such an arrangement of it’s letters (by inserting gaps to
each of them) which holds order of the letters. Hence the simplest alignment
is defined upon sequences of equal lengths (pairing letters at equal positions).
Score of the alignment is number of positions where the sequences differ. Such
a scoring system is called Hamming distance (Fig. 1a).

1 Nowadays BLAST and it’s clones are the most exploited heuristic algorithms for
homology search among protein sequences.

2 Similar sequences have low E-value but high SW-score.
3 MPsrch, SSEARCH and ScanPS are operated by EBI and currently handle about

1100 jobs per month as stated by EBI support.
4 Each of the amino-acids is coded by a triplet of nucleotides from DNA called codons.
5 Techniques of multiple alignments of sequences are also widely investigated but it’s

not subject of this paper.
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Fig. 1. Hamming (a) and Edit (b) distance

To allow to compare sequences of different lengths we need to insert gaps
to them. The desired alignment minimizes number of gaps and positions at
which the sequences differ (score of the alignment). Equivalently we can compute
minimal number of editing operations needed to turn one sequence into the other
where editing operations are inserting, deleting and modifying a single letter.
Therefore the measure is called edit or Levenshtein distance (Fig. 1b).

Edit distance penalizes each of the editing operations with the same cost.
Weighted edit distance is an extension to the edit distance which distinguishes
editing operations by assigning different (but constant) costs to each of them.

For many applications weighted edit distance is sufficient, not so for protein
sequence alignment where we need to incorporate a weighting system which as-
signs a specific cost to each pair of amino-acids which is used when a pair of
amino-acids is aligned. The need arises from the fact that protein sequences com-
prise a kind of semantics which stems from the evolutionary history of protein
sequences. Knowing evolution history of many sequences allows us statistically
derive probability that an amino-acid will mutate into another one in a given
time period. Based on this probability, we are able to assign score to each pair of
amino-acids. In bioinformatics, we present this fact by 20x20 substitution matrix.
There are many different sets of matrices6 nowadays and the most wide spread
ones are PAM [3] and BLOSUM [7].

Final modification, specific to protein sequences alignment, is different costs
for opening and extending a gap. This means that in the resulting alignment
a position where a gap starts is penalized (usually noticeably) more then the
consequent gap positions.

Moreover to this scoring systems, we differentiate between local and global
alignment. The standard conception of aligning sequences is called global align-
ment. But if we are interested in finding substrings of pairs of sequences that
express high level of similarity, we use local alignment. Thus the best local align-
ment is an alignment of such a pair of substrings that has the highest global
alignment score among all possible pairs of substrings.

2.1 Dynamic Programming

There are quadratic complexity algorithms based on dynamic programming for
computing both global and local alignments.
6 Depending whether we are searching for evolutionary close or distant homologues

we use different matrices of these sets.
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Global Alignment. Dynamic programming algorithm for global alignment
of two sequences was published in 1970 by Needleman and Wunsch [12]. It is
based on dynamic programing matrix G of size (m + 1) × (n + 1) where m
and n are lengths of the sequences to be aligned. G[i, j] stores score of the
optimal alignment of prefixes of respective lengths (zero-th row and column are
designated for initialization). The recursive formula for computing cells of the
matrix is:

G[i, j] = max

⎧
⎨

⎩

G[i− 1, j] + σ
G[i, j − 1] + σ
G[i− 1, j − 1] + S[ai, bj]

(1)

In this formula σ stays for gap cost, i ∈ {1..m}, j ∈ {1..n}, a and b are
sequences to be aligned and S is a substitution matrix. Ergo, at position [i, j]
we can align i-th and j-th letter or add a gap to one of the sequences. In the
initialization phase, we fill the border cells with G[i, 0] = i ∗ σ, G[0, j] = j ∗ σ,
because alignment of a string of zero length with a string of length i demands
inserting i spaces into the empty string.

From the fact that G[i, j] contains score of the resulting optimal alignment
of respective prefixes follows that score of the optimal global alignment can be
fetched from G[m, n]. In this paper, the score is what matters to us but if we
were interested in the alignment itself, we could backtrack the matrix in the
same way it was filled according to the formula 1 (first line means adding space
into ’vertical’ sequence, second adding space into ’horizontal’ sequence and third
means aligning i-th and j-th letters of the sequences).

The original formula 1 lacks distinction for different costs for opening and
extending a gap. In order to express it, we must incorporate two matrices for
vertical and horizontal gaps [5]. Role of these matrices is to decide whether it
makes sense to start a new gap, or it would be better to continue an already
started gap7:

H [i, j] = max

{
G[i, j − 1] + σ
H [i, j − 1] + δ

(2)
V [i, j] = max

{
G[i − 1, j] + σ
V [i − 1, j] + δ

, (3)

where δ stays for the cost of continuing a gap. And finally, we also need to change
the recursion for G to incorporate the H and V matrices:

G[i, j] = max

⎧
⎨

⎩

V [i, j]
H [i, j]
G[i− 1, j − 1] + S[ai, bj ]

. (4)

7 We use matrices here but (as follows from the recursion) one-dimensional arrays
would be sufficient if we would align the sequences line by line or column by column
(for that matter, this is also true for the G matrix where two one-dimensional array
would be sufficient).
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Local Alignment. As mentioned earlier, in bioinformatics we are usually more
interested in searching common or highly conserved sections of protein sequences.
For this purpose, global alignment is not optimal since relatively short but highly
similar parts can be ’lost’ in order to properly align rest of the sequence. In 1981,
Smith and Waterman [16] published dynamic programming algorithm solving lo-
cal alignment problem. This algorithm is actually a slight modification of Needle-
man and Wunsch. If at any position score of the global alignment algorithm is
positive, the optimal local alignment will certainly not start at that position
because the already aligned parts score above zero. But if at any position the
score should be negative, it makes sense to start a new local alignment from
that position because the final score will be higher by the absolute value of the
particular score. Let’s add just stated decision into the recursive equation:

L[i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

V [i, j]
H [i, j]
L[i− 1, j − 1] + S[ai, bj]
0

.8 (5)

To get the best local alignment we also need to stop aligning at the position
with the highest score. Therefore, optimal local alignment score is not at posi-
tion L[m, n] but at position [imax, jmax] with the highest L[imax, jmax] value.
If we start backtracking from the position [imax, jmax] to position [i0, j0] where
L[i0, j0] = 0, we get route of the optimal local alignment.

3 Speed-Up by Using Common Parts

As mentioned earlier, there exist areas where rigorous alignment by Smith-
Waterman algorithm is needed. Here, we can not sake accuracy for speed and
thus the remaining ways how to speed up the search are indexing, parallelism,
or speeding up the distance computation itself.

Following the knowledge of distances among objects which are precomputed
and stored, the indexing methods filter out as many objects as possible without
even fetching them from the database. Methods with primary target to decrease
number of distance computations are called metric access methods (MAM) be-
cause of incorporating axioms of metric to filter out groups of objects. Never-
theless, MAM’s are not applicable to protein alignment problem since it is not
metric at all, and it is difficult to turn it into metric, as has been show in [8].
There have also been attempts to turn the distance into metric [18] by modifying
the substitution matrix which is based on observation done in [15]. However, this
method is applicable only to global alignment and just to q-grams (not the whole
sequences). Other approaches have similar drawbacks and up to date there is no
indexing method that could replace BLAST (as far as we know).

There are two possible approaches how to parallelize the database search with
Smith-Waterman. First one is to parallelize the whole database search by running
8 This method is applied to initialization phase too, so the border cells are filled with

zero values.
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multiple alignments at the same time on more than one computational unit.
The speed-up is directly proportional to the number of the computational units
involved (example of this approach is MPSrch [11]9). Second approach demands
hardware modifications and focuses on speeding up single distance computation
(computing the dynamic programming matrix). Hardware platform enabling this
solution is FPGA (Field Programmable Gate Array) [13] [4] or standard CPU
enabling certain degree of parallelism [14].

As far as we know, there have not been many attempts to improve the align-
ment of protein sequences itself without a specialized hardware. However, inter-
esting improvement was achieved in [9].

3.1 Basic Algorithm

Method presented in this paper saves computation costs as indexing methods
do, but instead of omitting distance computations it reuses parts of the distance
matrix computed by Smith and Waterman. This decreases number of operations
needed for virtually every alignment done during the whole database search.

So, the idea is to store parts of the matrix and use it later. But almost ev-
ery submatrix in the dynamic programming matrix is context dependent - its
content is dependent not only on the amino-acids to be aligned, but also on the
calculation made so far. This makes it impossible to store any inner submatrix
for later use unless content of the border cells are the same in a future alignment.
The only set of submatrices having the same left and top context are subma-
trices starting at position [0,0]. While the query sequence stays the same in the
search, if two sequences share a common prefix, their Smith-Waterman matrix
will be identical up to the point where they start to differ. Let’s imagine the
query sequence to be at the top side of the matrix and the database sequence at
the left side then if two sequences s1, s2 share common prefix of length n then
the main idea is as follows:

1. Align s1 with the query sequence (fill the dynamic programming matrix).
2. Replace s1 in the matrix by s2.
3. Start Smith-Waterman with s2 from the (n + 1)-th row.

Of course, we need to repeat the same technique with the H and V matrices
to make the whole thing work10.

Notice that we do not need to change the existing algorithm at all and we even
do not need a persistent storage for the submatrices corresponding to the com-
mon prefixes. All we need is to sort the database according to the prefixes. Then
we can traverse the database in prefix order, and if two consequent sequences
share a common prefix, we save portion of distance computations proportional
to the common prefix length. When traversing this way, the method has no
additional memory demands at all.
9 Since MPsrch is a commercial product, its exact algorithm is not known.

10 If we store just one-dimensional arrays instead of matrices L, H and V , the algorithm
still works fine we just need to store the respective one-dimensional arrays (located
at the position where sequences start to differ) and use it in the next step.
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We define so called prefix ratio which is the proportion between overall length
of the prefixes (i.e. if we sort the database according to the prefixes, then each
sequence contributes to the overall length with length of the shared prefix with
the previous sequence) and the length of the database (sum of lengths of in-
dividual sequences). The speed-up is then equivalent to the prefix ratio of the
database being searched, and is independent on the query sequence.

3.2 Improvement by Using Inversed Sequences

Further speed-up might be achieved if we would find another parts that are
common to some set of sequences and are context independent or the context
is the same among them. We realized that the score of the optimal alignment is
independent on the direction of the alignment, hence if we denote r(s) inversion
of sequence s, then score of the optimal alignment of s1 and s2 is equivalent to
the score of the optimal alignment of r(s1) and r(s2):

Theorem 1. Let’s denote an optimal alignment of strings s1 and s2 as a(s1, s2),
score of the alignment as opt = s(a(s1, s2)), r(s) the reverse string of s. Then
opt = s(a(s1, s2)) = s(a(r(s1), r(s2))).

Proof. First, we show that the score of an arbitrary alignment does not depend
on the direction in which it is computed. At each position of an alignment,
two letters are aligned or there is a space in one of the sequences. In the first
case, since aligning of two letters is not context dependent, the direction does
not matter. In the latter case, each position inside a longer gap is scored equally
independently of the direction. For border positions of the gaps, the first position
in the direction of the alignment is scored differently than the last one, but sum
of both is again equal independently of the direction.

Hence, score of an alignment is independent of the direction. Let optr be
the score of the optimal alignment of the reversed sequences. If opt < optr, than
s(a(s1, s2)) = opt < optr = s(a(r(s1)), r(s2)) which is in conflict with the proved
fact that s(a(s1, s2)) = s(a(r(s1), r(s2))). The same is true for opt > optr. Hence,
opt = optr.

We can use the knowledge of the score of the alignment of reversed strings to
improve the presented method. For each sequence in the database we can decide
whether to align it with the query sequence in the standard way or whether
to reverse both, the query and database sequence and do the alignment. If we
appropriately divide the database into two groups (sequences to be aligned in
the standard way and sequences to be aligned reversely) we might increase the
prefix ratio and thus speed-up the whole search.

Partitioning of the database can be done in two stages:

1. Divide a given percent of the database into 2 groups randomly, and then add
each of the remaining sequences into a group so that the overall prefix ratio
increases.

2. Repeat following step n-times - move a random sequence from one group
into the other one if it would increase the overall prefix ratio.
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3.3 Inexact Search

Method presented in this paper is dependent on the amount of the prefix ratio of
the database, so one of the goals is to increase this ratio. With growing size of the
database, the prefix ratio should increase because the probability of sequences
having common prefixes increases too. By chopping sequences into more parts,
we get bigger database with shorter sequences, hence the prefix ratio should
grow. But this method brings a serious drawback - if an optimal alignment of
an unbroken sequence will be spanned over the point of split then the sequence
might not occur in the result set any more11.

4 Experimental Results

In our experiments, we focused on how various parameters and methods influence
prefix ratio (PR). Remember that PR corresponds to percentage of the speed
increase according to the full scan. Experiments were performed on subset of
UniProt database [17] with restricted lengths of the sequences to 3000 letters
which makes 99.9% (5,340,227 sequences) of the whole database.

In all the experiments where subset of database were used, five independent
random subsets of given size were generated and experiments where carried out
against each of them. The results were averaged in order to avoid random subsets
with higher PR than the average.

4.1 Prefix Ratio

For the first experiment we generated subsets of size 1000, 5000, 10000, 15000,
30000, 50000, 80000, 100000, 200000, 50000 and 1000000. These datasets were
used to find out how size influences PR. We expected that when dealing with
bigger number of sequences, the probability of the sequences having more com-
mon prefixes increases. In Tab. 1, we can see that this assumption is correct,
e.g. subset of size 1,000,000 has PR 9.1 whilst subset of size 1000 only 0.9. To
receive the highest achievable prefix ratio (according to todays database size),
we carried out the same test also against the whole UniProt which gave us 18%
speed-up. This speed-up should grow (not unlimitedly) with increasing size of
the protein databases.

We also performed PR tests against few semantic based subsets which might
lead to higher prefix ratio since sequences from similar organisms might show
higher similarity in general. For these test we used subsets of UniProt based on
taxonomic divisions12. Results, supporting the assumption of higher prefix ratio
of semantically closed datasets, can be seen in Tab. 2. Majority of the sets have
noticeably higher prefix ratio than random sets of comparable size from Tab. 1
(especially bacteria and viruses datasets).

11 Sequence appears in the result set if one of it’s parts align with the query with score
higher than the threshold.

12 Can be downloaded from EBI FTP.
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Table 1. PR (in %) of random
subsets

Subset Size Prefix ratio
1000 0.9
5000 1.4
10000 1.7
15000 1.9
30000 2.4
50000 2.8
80000 3.2
100000 3.6
200000 4.6
500000 6.8
1000000 9.1
5340227 18

Table 2. PR (in %) based on taxonomic
divisions

Taxonomic Division Count Prefix ratio
archaea 11489 2.4
bacteria 140132 18.7
fungi 19520 2.1
human 17599 1.1
invertebrates 14001 3.8
mammals 16807 8.8
plants 23718 8.7
rodents 22280 4.2
vertebrates 12213 4.4
viruses 11525 9.2

4.2 Reversed Sequences

In order to see how we can improve PR by using reversed sequences as explained
in section 3.2, we performed experiments on subsets up to the size of 200,000.
First, experiments concerned the initial build of the two groups. In the building
stage, a portion of the database is divided into the groups randomly, and the
rest is added in the way that would increase the overall PR. Hence we focused
on finding the appropriate percentage of the database that should be inserted
randomly. In Fig. 2a, we can see that there is no given percentage that would be
optimal for all cases. However, in most cases to insert about 50% of the database
randomly works just fine. In absolute numbers, after the building stage the PR
is worse than the PR with basic algorithm.

In the next experiment, we were shifting sequences randomly between the two
groups to improve PR. Results in Fig. 2b clearly show that the ratio increases just
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Table 3. Prefix ratio growth by using reversed sequences

subset prefix ratio subset prefix ratio
build shifts no reverse build shifts no reverse

1000 0.6 1 0.9 50000 2 3.2 2.8
5000 1 1.8 1.4 80000 2.4 3.4 3.2
10000 1.2 2.1 1.7 100000 2.6 4.8 3.6
15000 1.4 2.4 1.9 200000 3.4 6.2 4.6
30000 1.7 3 2.4

up to a particular value for smaller datasets. We believe that the absolute possible
prefix ratio was not reached at this point, but the distribution reached a local op-
timum. What lead us to this assumption? We limited size of each group13 because
sequences tend to be cumulated in one of the groups (the bigger one). In the point
where the optimum was achieved, sizes of the groups were limitary which might
be an indication of a local optimum. Even though, we managed to increase PR
with this method about 20% according to the basic method. For convenience, in
Tab. 3 you can compare PR after building stage, PR achieved by shifting sequence
between groups14 and finally, PR achieved without using reversed sequences.

4.3 Splitting

Last experiments investigated impact of splitting on PR and accuracy. In all the
experiments, 5,000,000 alignments were performed and the results were averaged.
Tab. 415 presents first part of the experiment - for different E-values16 shows
number of sequences that pass the cutoff score, average lengths of these se-
quences, their average SW score, average score that they need to pass, and num-
ber of cells in the dynamic programming matrix that reach the maximal value
(hence number of possible optimal alignments). Next rows in the table show

Table 4. Alignment statistics

E-value
6 8 10 12 14 max

result size 7252 7455 7607 7685 7771 7906
∅ length 171 171 172 173 174 25

∅ SW score 384 389 396 402 411 31
∅ cutoff score 77.5 76.5 75.6 75 74.2 0
∅ max values 1.3 1.3 1.3 1.3 1.3 1.5

abs pct abs pct abs pct abs pct abs pct abs pct
1 splitting 5887 81.2 6001 80.5 6086 80 6173 79.4 6245 79 1159830 23.2
2 splittings 6694 92.3 6860 92 6984 91.8 7112 91.5 7216 91.3 2072025 41.4
3 splittings 6993 96.4 7172 96.2 7305 96 7450 95.9 7570 95.8 2700590 54
4 splittings 7092 97.7 7278 97.6 7420 97.5 7572 97.4 7695 97.3 3204691 64

13 The size of group A can be at most 2/3 of size of B.
14 These numbers slightly differ from numbers in Fig 2b because here we performed

more shifts (to reach the local optimum).
15 Experiments in Tab. 4 and Tab. 5 were performed against the whole UniProt

database.
16 In practice usually E-value 10 is used.



Improved Alignment of Protein Sequences Based on Common Parts 97

Table 5. Splitting accuracy loss

E-value
6 8 10 12 14

1 splitting 14.3% 16.2% 15.8% 17.2% 17.2%
2 splittings 13.4% 15.1% 15.8% 15.6% 15.9%
3 splittings 17.1% 17.2% 17% 18% 18.2%
4 splittings 15.9% 16.9% 17.1% 17.6% 18.1%

number of sequences that pass the cutoff score and (at the same time) span over
given number of splits17. Inspecting number of sequences spanning over a split
might lead us to a conviction that also real inaccuracy will show similarly poor
numbers (inaccuracy about 90%) which was not confirmed, as Tab. 5 certifies.
The accuracy loss (number of sequences that would normally score above a given
threshold but do not because of the split) is about 17%. SW score and cutoff
score from Tab. 4, together with number of maximal values in one alignment, are
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responsible for this contradiction.
When an optimal alignment is split,
it has such a high score that even
its parts may score above the cut-
off score alone. Moreover, in some
cases there are more than one opti-
mal alignment and thus one of them
might not be split at all.

Interesting observation is that the
accuracy is higher for three splits
than it is for two. Such an obser-
vation has already been made and
taken into account in computing the
E-value - probability of an alignment
in the middle of a sequence is higher
than on its edges.

Finally, we investigated how size
of the database influences PR when
splitting. In Fig. 3, we can see that
with increasing size of the database also the PR gain increases.

5 Conclusion

We implemented and tested a modification of Smith-Waterman algorithm for
large datasets which benefits from shared prefixes and suffixes of the sequences.
This modification can be incorporated into existing implementations, thus in-
creasing speed for the price of just slight modifications. If used with methods
aligning parallely more sequences in one moment, the speed-up might be lower
since neighboring sequences (in the sense of prefix order) might be evaluated

17 Splitting occurs equally along the sequence.
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concurrently. Nevertheless, the speed-up might be up to 20% without any ac-
curacy loss. When inacuraccy included, the speed-up increases approximately
two times.

Further speed-up might be achieved by incorporating a kind of lookahead
when categorizing sequences into the two groups. This might help to (partially)
avoid the observed stagnation in a local optimum.
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Abstract. Mass-spectrometry (MS) is a powerful experimental technology for 
"sequencing" proteins in complex biological mixtures. Computational methods 
are essential for the interpretation of MS data, and a number of theoretical ques-
tions remain unresolved due to intrinsic complexity of the related algorithms. 
Here we design an analytical approach to estimate the confidence values of pep-
tide identification in so-called database search methods. The approach explores 
properties of mass tags ⎯ sequences of mass values (m1 m2 ... mn), where indi-
vidual mass values are distances between spectral lines. We define p-function 
⎯ the probability of finding a random match between any given tag and a pro-
tein database ⎯ and verify the concept with extensive tag search experiments. 
We then discuss p-function properties, its applications for finding highly reli-
able matches in MS experiments, and a possibility to analytically evaluate 
properties of SEQUEST X-correlation function.  

Keywords: mass-spectrometry, database search, confidence values. 

1   Introduction 

Mass-spectrometry based proteomics is the driving engine behind an increasingly rich 
variety of biological experiments: from a pull-down "hunt" of the protein complexes 
to whole cell protein expression profiles. The resulting information flow, while  
disparate in nature and usually huge in volume, often has a common structure of the 
underlying raw data ⎯ individual spectra of short peptides converted into sequences 
assigned to them by various algorithms.  

In a typical experiment, cellular proteins are cut into relatively short peptides (10-
20 amino acids), and each analyzed peptide results in an MS spectrum as presented in 
Fig 1. Peaks are footprints of smaller chemical fragments, where peak position re-
flects each fragment’s mass-to-charge ratio that can be converted to a mass value. 
Ions corresponding to the breaking of a peptide bond (two highlighted peaks on the 
picture) are called b-ions and their complements to the full peptide are called y-ions. 
Typically these two types of ions have relatively high intensity as peptides break more 
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easily across peptide bonds. All identification methods utilize this property in some 
way, but other types of ions also saturate a spectrum (outnumbering "noble" b- and y-
ions by a ratio of 20:1), and some of them can be very strong as well.   

 

Fig. 1. MS experimental data. Highlighted peaks are formed by 2 b-ions; the distance between 
them is the mass of N residue at the right terminus of the partial peptide SELTAIN. 

Peptide identification aims to infer peptide amino acid sequence from its spectrum. 
Database search methods [1-5] dominate the field, with an overwhelming majority of 
experiments using one of them. In database search methods, a peptide is assumed to 
belong to a known protein database (DB). The SEQUEST program (developed in 
John Yates group, [2]) uses the following algorithms (some details are simplified): 

(1) The experimental spectrum is re-calibrated, so several of the strongest peaks 
are given an intensity of 1, and other peaks are rescaled accordingly.  

(2) The program forms a large list of candidate peptides selected from the target 
protein DB. 

(3) Theoretical spectra are generated for each of the candidate peptides. They 
usually include only b- and y-ions, and only ion positions are important, as 
currently there is no reliable way to model relative peak intensity. 

(4) Theoretical constructs are matched against the experimental spectrum to 
compute a matching score. The X-corr reflects the total intensity of experi-
mental peaks that were matched within experimental precision of theoretical 
positions. The candidate peptide with the highest X-corr value is selected as 
the output solution. 

A typical proteomics experiment incorporates millions of individual peptide identi-
fications, and the reliability of individual assignments is crucially important. We have 
described the SEQUEST algorithm, because (1) it is hugely popular (probably ~ 50% 
of the market); and (2) many other search methods were inspired by SEQUEST and  
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work in a similar fashion. The description is also instructive in regards to algorithm 
complexity and challenges that one needs to overcome to estimate the reliability of 
the answers. Every spectrum will be assigned some candidate peptide, but what cutoff 
of the X-corr values would guarantee, for example, that 95% of the assignments are 
correct?  

The standard way of addressing this problem is by introducing an artificial nega-
tive control into the experiment [6,7,8]. The identification procedure is run against a 
database with two parts: a "true" DB of all protein sequences, which actually were 
present in the source sample, and "false" one, containing negative controls (also called 
decoy DB). The decoy database contains proteins that cannot be possibly matched by 
the sample in question. Several research groups extensively investigated the best 
approaches to create negative control DB and use them for learning reliable values of 
the X-corr [9,10,11,12,13,14]. The matches to the decoy part are incorrect by design 
of the experiment, and X-corr cutoffs can be mapped to the sensitivity values by as-
suming, for example, that the total number of false matches was twice as high as ob-
served in the false DB.  

However, this approach has numerous drawbacks. The X-corr values recorded for 
a given spectrum depend on many factors: size of the database (in a non-trivial way 
that is hard to figure out), the particular type of MS device, the type of precursor ion, 
contaminations (MS experiments are ultra sensitive), and even on the organism, that 
was the source of the tested sample. On an intuitive level it is clear that the X-corr 
cutoff should be determined by parameters of a particular spectrum. But this road has 
insurmountable difficulties for an empirical approach, as there is no obvious way to 
divide spectra into classes.  

Strictly speaking the mapping of the X-corr to the probability has to be done for 
each modification of the experimental system, but it is not an easy demand. The prac-
tical approach is to take a "high enough" X-corr cutoff and hope that the fraction of 
correct matches will not fall too low. Usually only a small fraction of spectra passes 
the required cutoff (10-20%), and dissatisfaction goes both ways: it is often a rather 
small "crop", and it is still not obvious how reliable the obtained matches are.  

We propose to explore a different approach to the problem by examining database 
matches of somewhat simpler objects, which we call mass tags. The idea of "tags" 
was pioneered by Mann’s group [15] and further developed in [16]. We derive an 
analytical expression for the probability of tag random match and explore the proper-
ties of the corresponding function. We also propose a database search model that 
gives an analytical estimate for the fraction of correct matches and outline how SE-
QUEST X-corr function can be evaluated in the same mathematical framework. 

2   Probability Function of Peptide Mass  

We define mass tag as a sequence of mass values (m1 m2 ... ml), where individual 
values (called connector masses or simply connectors) are distances between spectral 
lines in a specific peak subset. One such subset and the corresponding mass tag of 
length 4 are illustrated for the spectrum in Fig. 1. We define a match between tag and 
database in a different way than match between spectrum and database is usually  
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defined. A DB entry seq matches a tag (m1 m2 … mn) if it contains n consecutive 
protein sequences (seq1 seq2 … seqn), where each sequence seqk has a mass mk within 
experimental precision of the MS device (for our purposes we assume it to be 0.5 Da).  

2.1   P-Function for a Single Connector  

To explore properties of tag matches we will introduce another definition, which is 
central for all subsequent developments. We define peptide probability mass function 
⎯ p-function ⎯ as probability to observe a peptide in the window (m-dm, m+dm) 
starting at an arbitrary point of the protein database. This probability is a function of 
both m (mass of the desired peptide) and dm (detection precision), but it does not 
depend on the size of the database. For example, if m is the mass of amino acid Ala 
and dm=0.5 Da, then the probability is equal to Ala frequency in the database.  

 

Fig. 2. The contribution of different steps into p-function distribution: green curve - single, blue 
–double, cyan - triple, magenta - 4 residue steps, and yellow - 5. The overall value of the theo-
retical p-function is shown in red. 

The p-function dependence from dm is an interesting topic that deserves a separate 
discussion. For the rest of the paper we assume dm=0.5 Da. This value is a good 
choice for two reasons: (1) 0.5 Da is the precision of the most common mass-
spectrometers used in proteomics research; (2) peptide masses are naturally concen-
trated to the centers of so-called Mann bins [17,18,19], which are separated by ~1Da 
distance on the mass axis. In this sense masses of all peptides, derived ions, and dis-
tances between ions are nearly integer (Mann's bin mass is ~1.0005 Da). Tags have 
connectors that could be expressed as an integer number of Mann bins, and p-function 
can be computed for m values centered on such bins with the dm=0.5. However it  
is worth to note that our methodology will straightforwardly accommodate any value 
of dm.  
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Fig. 3. Distribution of p-function values for 500 mass connectors on log10 scale. The Y-axis bin 
size was 0.1 with bin centers at 0.05, -0.05, -0.15, etc. The distribution contains data for 321 
connectors with non-zero p-function values. 

Remarkably the values of p-function are almost independent of all protein DB 
properties, except frequencies of 20 standard amino acids. We have demonstrated this 
independence by computing p-function recursively without keeping track of particular 
amino acid combinations leading to a given mass to avoid combinatorial explosion. 
The process is known as a renewal process [20], as was also pointed out in [16]. The 
calculations start from bins filled with single amino acids and continue until bin num-
ber of 2000.  

One can also compute an "experimental" p-function for a given database. One just 
has to generate all peptides, compute their masses, and figure out occupancy frequen-
cies for all [m-dm, m+dm] windows of interest. For example, for human genome DB 
the p-function can be obtained as a histogram of approximately ~2×108 values (ap-
proximate number of peptides in range mass 0 to 2000), which are distributed over 
2000 bins. After normalizing histogram by the DB length, we obtained p-function that 
was almost indistinguishable from the theoretically computed (shown in Fig. 2). Some 
of the bins are empty. They correspond to mass connectors that could never be ob-
served for a true protein tag. There are many such bins at masses below 200, as this 
region is occupied mostly by short amino acids combinations.  

It is instructive to understand why the model that assumes total independence of 
the consecutive amino acids provides such a good approximation to reality, while it is 
known that the real protein text has short and long range sequence correlations. The 
reason is a "combinatorial elimination" of the correlation artifacts. For example, 
though combinations like AAAA, QQQQ, and similar ones are much more frequent 
than it would be expected from uncorrelated model, their contribution changes the p-
function values only a little, because there are much more other combinations in the 
same mass bin, which do not show any statistical bias.  

The distribution of log10 p values for all 321 non-empty bins found in the interval 
of m values between 0 and 500 is presented in Fig 3. 
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2.2   Probability of a Random Database Match 

Calculated p functions allow us to compute the filtering power of an arbitrary tag (x1 
x2 ... xl), where l is the length of the tag. As we assume that there are no correlations 
between adjacent connectors (highly reasonable assumption for almost all connec-
tors), the total probability of a random realization for a general tag is: 

p∏ = p(xi

i=1

l

∏ )  

When the tag p-function is calculated, it is straightforward to estimate the probabil-
ity of a random match for a given database. As the match can start from any of ND 

amino acids in the database, the average expected number of matches is ΠpNr D= . 

The distribution over the observed number of m matches is binomial with the prob-

ability Πp  and the number of Bernoulli trials DN  (size of the DB), but since Πp  is 

small, and DN  is large, it is possible use its Poisson approximation: 
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The probability to observe at least one random match is: 

ΠpNepp D
r

m ≈−=−= −
> 1)0(10  

The last expression is an approximation for the case of strong filtering 

1<<ΠpN D . The same result can be obtained from the Binomial distribution. 

0>mp  or a complementary quantity ΠpNep D
r −≈= − 1)0(  is a natural measure 

of database match significance. For a single tag, the match can be considered as non-
random with the confidence level )0(p . 

We have tested our theory by conducting tag match experiments for 104 mass tags 
that were generated in the following way: 

(1) Random tag length l is chosen from values 2,3,4 and 5.  
(2) Random integer numbers are chosen from the interval 57 and 2000, and con-

verted to real values by random selection from centers of the corresponding 
Mann bins with Gaussian accuracy σ=0.15 (corresponds to the observations on 
0.5 Da accuracy devices). These numbers form the testing tag.  

(3) Tag probability pΠ is calculated. If pΠ=0, the tag is discarded, and we return to 
the step 2.  

The results of the tag matches against a large DB (ND~12×106
 ) are presented on 

Fig. 4. Here, the p-function was constructed from the experimental statistics, but the 
theoretical function yields similar results. Both the expected and the observed number 
of matches for the tag of given length span more than 2 orders of magnitude (red, 
green dots), but, nevertheless, there is a very high correlation between the two.  
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Fig. 4. Log-Log plot of experimental vs. theoretical number of matches. Human proteome DB 
(ND=12×106). Tag’s lengths are shown in color: red (2), green (3), blue (4), cyan (5). Solid 
lines show the diagonal and the confidence ranges. 

Nevertheless, the figure reveals appreciable number of overmatched tags. The con-
fidence ranges at both ends (black curves) are at 10-4 level, while the total number of 
tags was 104, so that all points beyond this range are statistically significant. An ap-
preciable amount of such tags is of length 3 (green) or 4 and even 5 (blue, cyan). In 
some typical cases, the tag of length 3 with the expected number of matches of about 
6 demonstrates about 30 of them, which is of course highly improbable. Such cases 
were investigated and all of them appeared to match identical peptides, resulting from 
homologies present in any real database.  

Fig. 4 contains several unexpected lessons for mass spectrometry identification 
methods. For green points the number of expected and observed matches concen-
trates around log-value 1 (ten matches). The green points correspond to tags of 3 
mass connectors or, in other words, containing just 2 real ions; and DB size here is 
larger than in a typical MS experiment.  It means that in a real experiments it may 
be sufficient (in many cases) to find just two true ions to uniquely identify underly-
ing peptide.   

2.3   P-Value for High throughput Identification  

The calculated probability of random tag matches provides an immediate opportunity 
to compute the "p-value" of peptide identification in high throughput tag search. Let 
us consider an asset of tags T={ti} generated by some tag-selecting algorithm. For 
each tag we will consider 3 outcomes: 

(1) No match: there is no place in the database, where all imposed constraints are 
satisfied simultaneously  
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(2) Correct match: tag has matched the correct peptide. By definition it is a single 
match, and it always happens if the database is complete and does not include 
mistakes (as we assume everywhere in this paper) 

(3) Random match(es): one or more matches that do satisfy all connector condi-
tions. This outcome is not mutually exclusive with outcome (2). Generally, it 
is possible to have a correct match together with several random ones.   

Assuming that for all tags ri << 1, we will get a number of random matches for the 
whole set Nrandom =Σri. The sum must be computed through all tags, including those 
that were never matched. Combining this sum with the observed total number of 
matches M, we can write a formula for the algorithm sensitivity C, i.e. fraction of 
correct matches over the total number of matches: 

C =
M − ri∑

M
 

This estimate will work for any tag-generating algorithm and for any database. It 
does not require machine learning procedures or an adaptation to a particular data-
base. It also accounts for the precision of ion detections, as well as other possible 
constraints on peptides (such as tryptic or nontryptic parent peptide). The only re-
quirement is a complete separation between the process of tag construction and tag 
matching. The part responsible for tag generation should not have "backdoor" access 
to the database and use only information contained in the spectra itself to generate  
the tag.  

Tag based approaches open new algorithmic possibilities for analysis of the pro-
teomics spectra. Our analysis shows that many different strategies can be pursued, but 
one has to take into account that informational value of tags differ by 4 (!) orders of 
magnitude, and it is true even inside the group of tags of length 5. It also seems un-
wise to consider very few tags in the searches, as the number of random matches can 
be tightly controlled.  

2.4   Computing SEQUEST X-Corr Values   

Now we can propose a possible way to calculate analytically "black box" of the SE-
QUEST X-corr function. We aim to estimate the following: for a given spectrum S 
and a given database DB, which is a decoy database for the spectrum, find probability 
to obtain an X-corr value above of a given cutoff CT. The calculation can be accom-
plished by the following algorithm: 

(1) Recalibrate spectrum by the usual SEQUEST procedure; 
(2) Determine all groups of peaks that have sum of the recalibrated intensities 

above CT;  
(3) Calculate pi ⎯ p-function value for tags formed by each of those groups. Each 

subgroup forms a single tag. In addition to all real peaks, two "pseudo" peaks 
positioned at the zero mass and at the parent mass are added.  

(4) The sum Σpi provides a very good estimate that one of those scenario will real-
ize, and the search procedure will detect an X-corr above CT. More precise es-
timation can be obtained by considering dependencies between overlapping tags. 
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3   Conclusions 

We presented a rigorous mathematical formalism quantifying the probability of ran-
dom DB matches for arbitrary tags extracted from the tandem MS spectra. It is shown 
that the tags consisting of ions separated by some hundreds of Da are in many cases 
more advantageous then tags consisting of shorter connectors. For example 3-ion tags 
(and in some cases even 2-ion tags) may suffice for an unambiguous identification in 
the non-redundant human DB. Developed approach allows a reliable quantification of 
the expected probability. The random match probabilities for the tags of similar length 
may differ by several orders of magnitude and are log-normal distributed.  

The observed number of random DB matches obeys the Poisson distribution with 
the mean value calculated as the product of probability of realization for the given 
mass tag and the database size. This holds even for the tags that differ by several 
orders of magnitude in the random match probability and observed number of 
matches. The deviations from this law are shown to be almost exclusively due to 
homologies present even in the curated non-redundant databases. 

Possible extensions of suggested approach include generalizations to arbitrary ex-
perimental accuracy, sequence correlations, consideration of database errors, as well 
as theoretical estimates for background values in many scoring functions currently 
existing in the field (including SEQUEST X-corr function). 
 
Acknowledgments. This work was funded by a Biopilot project from the DOE Office 
of Advanced Scientific Computing Research.  We also wish to thank Max Fridman 
for help with the manuscript. 

References 

1. Hirosawa, M., Hoshida, M., Ishikawa, M., Toya, T.: MASCOT: multiple alignment system 
for protein sequences based on three-way dynamic programming. Comput. Appl. Biosci. 9, 
161–167 (1993) 

2. Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass spectral 
data of peptides with amino acid sequences in a protein database. Journal of the American 
Society for Mass Spectrometry 5, 976–989 (1994) 

3. Yates III, J.R., Eng, J.K., McCormack, A.L.: Mining genomes: correlating tandem mass 
spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. 
Chem. 67, 3202–3210 (1995) 

4. Tabb, D.L., McDonald, W.H., Yates III, J.R.: DTASelect and Contrast: tools for assem-
bling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 
21–26 (2002) 

5. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identifi-
cation by searching sequence databases using mass spectrometry data. Electrophoresis 20, 
3551–3567 (1999) 

6. Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R.: Empirical statistical model to esti-
mate the accuracy of peptide identifications made by MS/MS and database search. Anal. 
Chem. 74, 5383–5392 (2002) 

7. Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R.: A statistical model for identifying 
proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003) 



 Computing P-Values for Peptide Identifications in MS 109 

8. Kapp, E.A., Schutz, F., Connolly, L.M., Chakel, J.A., Meza, J.E., Miller, C.A., Fenyo, D., 
Eng, J.K., Adkins, J.N., Omenn, G.S., Simpson, R.J.: An evaluation, comparison, and accu-
rate benchmarking of several publicly available MS/MS search algorithms: sensitivity and 
specificity analysis. Proteomics 5, 3475–3490 (2005) 

9. Higdon, R., Hogan, J.M., Van Belle, G., Kolker, E.: Randomized sequence databases for 
tandem mass spectrometry peptide and protein identification. Omics 9, 364–379 (2005) 

10. Higdon, R., Hogan, J.M., Kolker, N., van Belle, G., Kolker, E.: Experiment-specific esti-
mation of peptide identification probabilities using a randomized database. Omics 11, 351–
365 (2007) 

11. Huttlin, E.L., Hegeman, A.D., Harms, A.C., Sussman, M.R.: Prediction of error associated 
with false-positive rate determination for peptide identification in large-scale proteomics 
experiments using a combined reverse and forward peptide sequence database strategy. J. 
Proteome Res. 6, 392–398 (2007) 

12. Qian, W.J., Liu, T., Monroe, M.E., Strittmatter, E.F., Jacobs, J.M., Kangas, L.J., Petritis, 
K., Camp II, D.G., Smith, R.D.: Probability-based evaluation of peptide and protein identi-
fications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J. 
Proteome Res. 4, 53–62 (2005) 

13. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale 
protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007) 

14. Choi, H., Ghosh, D., Nesvizhskii, A.I.: Statistical validation of peptide identifications in 
large-scale proteomics using the target-decoy database search strategy and flexible mixture 
modeling. J. Proteome Res. 7, 286–292 (2008) 

15. Mann, M., Wilm, M.: Error-tolerant identification of peptides in sequence databases by 
peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994) 

16. Sunyaev, S., Liska, A.J., Golod, A., Shevchenko, A., Shevchenko, A.: MultiTag: multiple 
error-tolerant sequence tag search for the sequence-similarity identification of proteins by 
mass spectrometry. Anal. Chem. 75, 1307–1315 (2003) 

17. Frahm, J.L., Howard, B.E., Heber, S., Muddiman, D.C.: Accessible proteomics space and 
its implications for peak capacity for zero-, one- and two-dimensional separations coupled 
with FT-ICR and TOF mass spectrometry. J. Mass Spectrom 41, 281–288 (2006) 

18. Mann, M.: Useful tables of possible and probable peptide masses. In: 43rd ASMS Confer-
ence on Mass Spectrometry and Allied Topics, Am. Soc. Mass Spectr., Atlanta (1995) 

19. Zubarev, R.A., Hakansson, P., Sundqvist, B.: Accuracy Requirements for Peptide Charac-
terization by Monoisotopic Molecular Mass Measurements. Anal. Chem. 68, 4060–4063 
(1996) 

20. Kampen, N.G.v.: Stochastic processes in physics and chemistry. North-Holland, Amster-
dam, New York (1992) 



PFP: A Computational Framework for

Phylogenetic Footprinting in Prokaryotic
Genomes

Dongsheng Che1,2, Guojun Li1, Shane T. Jensen3, Jun S. Liu4, and Ying Xu1

1 Computational Systems Biology Laboratory,
Department of Biochemistry and Molecular Biology and Institute of Bioinformatics,

University of Georgia, Athens, GA 30602, USA
2 Department of Computer Science, University of Georgia, Athens, GA 30602, USA

3 Department of Statistics, The Wharton School, University of Pennsylvania,
Philadelphia, PA 19104, USA

4 Department of Statistics, Harvard University, Cambridge, MA 02138, USA

Abstract. Phylogenetic footprinting is a widely used approach for the
prediction of transcription factor binding sites (TFBSs) through iden-
tification of conserved motifs in the upstream sequences of orthologous
genes in eukaryotic genomes. However, this popular strategy may not
be directly applicable to prokaryotic genomes, where typically about
half of the genes in a genome form multiple-gene transcription units
or operons. The promoter sequences for these operons are located in the
inter-operonic rather than inter-genic regions, which require prediction of
TFBSs at the transcriptional unit instead of individual gene level. We
have formulated as a bipartite graph matching problem the identification
of conserved operons (including both single-gene and multi-gene operons)
whose individual gene members are orthologous between two genomes
and present a graph-theoretic solution. By applying this method to Es-
cherichia coli K12 and 11 of its phylogeneticly neighboring species, we
have predicted 2,478 sets of conserved operons, and discovered potential
binding motifs for each of these operons. By comparing the prediction
results of our approach and other prediction approaches, we conclude
that it is advantageous to use our approach for prediction of cis regula-
tory binding sites in prokaryotes. The prediction software package PFP
is available at http://csbl.bmb.uga.edu/∼dongsheng/PFP.

1 Introduction

Phylogenetic footprinting is a method for identification of cis regulatory ele-
ments in promoter regions of orthologous genes across species [1]. This strategy
attempts to find conserved sequence motifs in the provided promoter regions
based on the assumption that functional elements, such as transcription fac-
tor binding sites, evolve more slowly than non-functional elements over time.
A prerequisite for using a phylogenetic footprinting approach is the mapping
of orthologous genes across multiple genomes (often called reference genomes).

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 110–121, 2008.
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A number of orthology mapping approaches, mainly sequence similarity-based
such as COG [2] and OrthoMCL [3], have been widely used. By applying such
orthology mapping methods to eukaryotic genomes, a number of research groups
have carried out studies on identification of cis regulatory motifs at a genome
scale. For example, Wang et al. [4] developed PhyloNet to search for regula-
tory motifs in Saccharomyces cerevisiae by using three other yeast genomes as
reference genomes and identified more than 90% of the known TFBSs in Sac-
charomyces cerevisiae. Using several mammalian genomes as references, Xie et
al. [5] successfully identified a number of transcription regulatory motifs in the
human genome.

A similar phylogenetic footprinting strategy may not be directly applicable
to prokaryotic genomes due to their different genomic structures from the eu-
karyotic ones. Typically about half of the genes in a prokaryotic genome are
polycistronic, i.e., they are organized into multi-gene transcriptional units (or
multi-gene operons), genes of each of which share a common promoter and ter-
minator. Multi-gene operons add a new challenge to the identification problem of
orthologous promoter regions: promoters are associated with operons rather than
individual genes and may not necessarily be conserved across multiple genomes.
Thus, relationships between operons across genomes are more complex in general
than those between orthologous genes. In addition, the sequence similarity-based
approach cannot correctly characterize orthologous relationships in some cases.
For prokaryotes, the true orthology can be elucidated by deriving conserved
operons across multiple genomes. This is because that homologous genes are
more likely to be orthologous if their neighboring genes within an operon are
also homologous [6].

Numerous computational methods have been developed to predict operons in
prokaryotic genomes, including OFS [7], OPERON [8], OperonDT [9], VIMSS
[10], and UNIPOP (manuscript submitted). The prediction accuracy of the best
programs has reached 90% on several model genomes such as E. coli and Bacil-
lus subtillis [11]. It has been previously observed that “conserved” operons may
only have their gene list conserved but not necessarily the gene order within the
list. In this study, we consider both cases: category-1 for conserved operons with
both conserved gene list and order and category-2 for conserved operons with
only conserved gene list (Figure 1A and 1B). In addition, we also have consid-
ered category-3 for partially conserved operons, which is defined as follows: two
operons from different genomes are partially conserved if they have at least one
pair of orthologous genes (Figure 1C). Clearly, the multiple scenarios of operon
conservation complicate the derivation of orthologous upstream sequences for
the purpose of phylogentic footprinting analysis in prokaryotic species.

Previous work on extracting promoter sequences of orthologous genes for phy-
logenetic footprinting analysis has been done in a simplistic manner. Basically,
orthologous genes are collected using sequence similarity-based approaches, then
the intergenic sequences of individual genes with the upstream region of its
predicted operon are concatenated [12,13,14]. This strategy has also been used
in a recent computational tool ‘microFootPrinter’ [15]. To address the issue of
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Fig. 1. Three categories of operon conservation. Boxes represent genes and consist of an
operon. Lines indicate sequence similarity between two genes. (A) Conserved with both
gene list and order; (B) Conserved with gene list only; and (C) Partially conserved.

including upstream sequences for internal genes in an operon, Jensen et al [16]
considered only the “promoter” regions of genes with upstream intergenic re-
gions longer than 50 bp (called beginning genes of an operon). This approach is
also problematic since it considers only operons that have both conserved gene
list and gene order. There remains a need for more careful and more accurate
treatment of the “corresponding” promoters of orthologous genes in prokaryotes.

In this paper, we derive conserved operons among multiple genomes for phy-
logenetic footprinting analysis and provide a superior treatment of promoter
regions of orthologous genes. To fully consider all operons with different levels of
evolutionary conservation, we designed an algorithm, OPERMAP, to find oper-
ons across reference genomes. By applying this algorithm, we have identified
2,478 E. coli operons that are conserved across multiple (reference) genomes.
In addition, we have developed a pipeline consisting of multiple motif discovery
programs for the prediction of conserved sequence motifs. Performance com-
parison on known binding sites of E. coli suggests that our approach tend to
generate more reliable orthologous promoter regions (i.e., regions containing the
binding sites for orthologous TFs) than previous approaches for motif finding at
the genome scale in prokaryotes.

2 Methods

We divide our procedure of phylogenetic footprinting in prokaryotes into five
steps:

1. Selecting reference genomes for a target genome;
2. Predicting operons of all selected genomes at genome-scale;
3. Predicting conserved operons across selected genomes;
4. Obtaining promoter sequences of conserved operons;
5. Predicting binding sites using our motif-finding pipeline.

Below, we present the details of each step.

Reference Genome Selection. Selecting suitable reference genomes for com-
parison to the target genome of interest is a key step in the phylogenetic foot-
printing process. A candidate reference genome should be phylogenetically close
to the target genome. A large list of candidate genomes is not essential since using
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a large number of genomes for motif discovery does not seem to improve perfor-
mance [17]. This has also been observed in our experiments (data not shown).
Accordingly, our selection strategy is to choose 10-15 reference genomes belong-
ing to the same class with similar genome sizes to that of the target genome.

In this study, E. coli K12 is our target genome and 11 other γ-proteobacteria
were chosen as reference genomes. The names and genome sizes of 12 genomes
are listed as follows: Aeromonas hydrophila ATCC 7966 (4.6 Mb), Erwinia caro-
tovora atroseptica SCRI1043 (4.9 Mb), E. coli K12 (4.5 Mb), Photobacterium
profundum SS9 (6.3 Mb), Photorhabdus luminescens (5.6 Mb), Pseudomonas flu-
orescens Pf-5 (6.9 Mb), Salmonella enterica Choleraesuis (4.9 Mb), Shewanella
ANA 3 (5.2 Mb), Shigella sonnei Ss046 (4.9 Mb), Sodalis glossinidius morsi-
tans (4.2 Mb), Vibrio parahaemolyticus (5.1 Mb) and Yersinia pestis Antiqua
(4.8 Mb).

Operon Prediction. For each of the selected genomes, operon prediction at the
genome scale is performed using our own program UNIPOP (manuscript submit-
ted). We choose UNIPOP because it outperforms other operon prgrams in terms of
prediction accuracy. In addition, unlike most of operon programs, UNIPOP does
not need extra feature information (i.e., gene function annotation), which is not
available for newly sequenced genomes. The key idea of UNIPOP is to predict
operons through identification of conserved gene clusters across multiple genomes.
Briefly, given a target genome and N reference genomes, we predict N versions of
operon maps for the target genome by comparing and deriving conserved gene
clusters between the target genome and each of the reference genomes. We con-
sider two sets of contiguous genes from two genomes to be conserved gene clus-
ters (or operons) if the following conditions are satisfied: a). Each member of a
gene cluster is transcribed in the same direction; b). The total intergenic distance
within each group is less than the maximum allowed distance (MAD); c). The
number of mappings of homologous gene pairs between two groups is at least two.
We then obtain a consensus version of operon map using a voting scheme on N ver-
sions of operon maps. In this study, operon structures for each of the 12 genomes
were predicted by using 348 reference genomes from the NCBI GenBank database
(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi).

Identification of Conserved Operons. Having predicted operon structures
for the 12 species, we need to identify “orthologous” operons among these
prokaryotes. We have developed an algorithm, called OPERMAP, to identify
the corresponding conserved operon in a particular reference genome for a given
query operon in the target genome. We now describe the OPERMAP approach
in detail as follows.

The input to the algorithm consists of

1. a query operon U in the target genome,
2. a collection of all predicted operons [V 1, V 2, . . . , Vk] in the reference

genome, and
3. a threshold for the degree of conservation (TDC ) between two operons.

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
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The output of the program is the operon pair (U, V *) between the query
operon U and the best conserved operon V * from the reference genome. The
algorithm proceeds as follows:

1. Calculate the degree of conservation between query operon U and each can-
didate operon [V 1, V 2, . . . , Vk] in the reference genome.
(a) For each operon Vi ∈ [V 1, V 2, . . . , Vk], construct a bipartite graph

Gi = (U, Vi, Ei), where all the genes in U and all the genes in the
i-th operon Vi are represented as vertices. A pair of genes is considered
to be homologous if their reciprocal BLAST e-values are both < 10−6,
and a homologous relationship between a gene in U and a gene in Vi is
represented by an edge in Ei. The weight of each edge in Ei is set to be
the average of -log(e-value) of the BLAST between the pair of genes.

(b) Calculate the maximum weighted maximum cardinality bipartite match-
ing (mwmcm) Mi on each graph Gi, in a similar fashion to that of [18].
Each matched edge in mwmcm reflects the orthology relationship be-
tween the pair of genes.

(c) Calculate the degree of conservation DCi = |Mi| / max (|U |, |Vi|), where
|X | is the cardinality of the set X.

2. The best conserved operon pair (U, V *) is the operon pair with the highest
degree of conservation DCi. This best operon pair is reported only if the de-
gree of conservation is higher than the predefined threshold TDC ; otherwise,
no conserved operon pair is returned.

The core of this algorithm is to calculate mwmcm. A matching in a graph
G = (V, E ) is a subset M of the edges E such that no edges in M share
a common vertex, and a maximum cardinality matching (mcm) is a matching
with the highest possible cardinality. An mwmcm is a mcm with the maximum
total weight (see Figure 2 for an example). In this study, the edge relationship in
an mwmcm represents the orthology relationship between the two corresponding
operons. Using the scheme of mwmcm to identify the best conserved operon in
OPERMAP has several advantages. First, it is guaranteed to find the maximum
number of homologous gene relationships between two operons. Second, it can
find the true orthogolous gene pair based on sequence similarities in the case
where there are several mcms, provided that an appropriate weighting scheme
is given.

By applying OPERMAP on all reference genomes, we can obtain a set of con-
served operons for a given query operon in the target genome. For each query
operon out of 2,706 predicted operons in E. coli, we have applied OPERMAP
on the 11 reference genomes. In this study, we want to cover not only fully con-
served operons (category-1 and category-2 ), but also partially conserved operons
(category-3 ). Including partial conserved operons has its biological reasoning.
Some large operons can break into multiple smaller operons with some part of
these smaller operons still maintaining the same regulation mechanism. For in-
stance, a Crp-regulated xylFGHR operon in E. coli breaks into xylFGH and
xylR in H. influenzae, with xylFGH maintaining Crp regulation, but xylR not
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Fig. 2. An illustration of a maximum weight maximum cardinality matching
(mwmcm). The resulting matching is shown on the right, with the matching size of 4.
While the weight of the edge gB - g3 is 20, the mwmcm does not choose it. Otherwise,
the matching size will be 3.

[19]. Setting a low value of TDC (i.e., < 0.5) may introduce partial conserved
operons with different regulation mechanisms. On the other hand, setting a high
value of TDC (i.e., > 0.8) will exclude most of partial conserved operons with
category-3 since the sizes of most operons are less than five. We have chosen 0.6
for TDC in this study. Experiments on the determination of TDC will not be
elaborated in this paper due to space limitation.

Collection of regulatory sequences. The gene annotations and the genomic
sequences of the 12 genomes in this study were downloaded from the NCBI Gen-
Bank database (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). For
each operon obtained in the previous step, we extract the upstream sequence
up to 400 base-pairs (bp) from the translation start site, without overlap of the
next upstream gene.

Motif Discovery. The upstream promoter sequences for each conserved operon
are the input for our motif discovery pipeline to identify (possibly multiple) TF-
BSs. The pipeline is similar to our previously developed tool BEST [20], which
contains four motif-finding programs: AlignACE [21], BioProspector [22], CON-
SENSUS [23] and MEME [24], as well as BioOptimizer [25] for optimizing the
predictive power of each program. However, BEST is a graphic tool which makes
it less suitable for the genome scale motif discovery. Our pipeline overcomes this
drawback to produce top-ranked motifs for each sequence dataset in a fully au-
tomatic fashion. We outline our motif discovery pipeline in three stages (also see
Figure 3).

1. Run the four motif-finding programs mentioned above. Since the motif length
in all the four programs must be specified by the user, each program is run
multiple times with different motif lengths ranging from 10 to 20 bp. The
range of motif lengths chosen is based on the fact that most experimentally
verified motifs fall in this range. For each width and each program, the top-
ranked motif is collected, giving a set of 4×11 = 44 top-ranked motifs.

2. The BioOptimizer program is run on each of the 44 motifs. BioOptimizer
takes each predicted motif as the starting point and optimizes it using a local
hill-climbing technique [25].

3. Rank all 44 optimized motifs based on their score values calculated by BioOp-
timizer, and output the top five.

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
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Fig. 3. The workflow of motif discovery. Upstream sequences of conserved operons
among closely related species are generated by OPERMAP. Datasets are fed into mul-
tiple motif-finding programs, and candidate discovered motifs are then optimized by
BioOptimizer. The top-ranked motifs based on the score function of BioOptimizer are
final identified motifs.

Performance Evaluation. We validate our motif predictions with a similar
approach to past motif discovery investigations. We define as true positives (TP)
the predicted binding sites which overlap with the true binding sites by at least
50%; false positives (FP) are the predicted binding sites which have no such
overlap; false negatives (FN ) are the true binding sites that have no overlap
with any of the predicted binding sites. We focus on four validation measures,
sensitivity (Sn), specificity(Sp), performance coefficient (PC ), and F-measuer
(F ), which are defined as follows:

Sn = TP/(TP + FN) (1)

Sp = TP/(TP + FP ) (2)

PC = TP/(TP + FN + FP ) (3)

F = 2 ∗ Sn ∗ Sp/(Sn + Sp) (4)

3 Results

Collection of Conserved Operons. The genome sizes of our 12 genomes
range from 4.2 Mb to 6.9 Mb, and the numbers of predicted operons ranged
from 1596 to 4468. For each of the 2,706 predicted operons in E. coli, we ran
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Fig. 4. The operon conservation histogram for 2706 predicted operons of E. coli. X-axis
indicates the number of conserved operons in 11 other species, and y-axis indicates the
number of conserved operons with the conservation number ranging from 0 to 11.

OPERMAP to identify conserved operons in the 11 reference genomes. The
distribution of the number of conserved operons across the twelve genomes is
shown in Figure 4. Two hundred and thirty-eight operons (8.8%) from E. coli
do not have a corresponding operon match in any of the 11 reference genomes,
which may indicate that those operons are either unique to E. coli or have been
predicted incorrectly by UNIPOP. At the opposite extreme, 280 operons (10.3%)
are conserved across all 11 reference genomes.

Performance of TFBS Predictions. Our evaluation was restricted to pre-
dicted motifs in conserved operon sets in E. coli since experimentally-verified
binding-sites are not available in the 11 reference genomes. We retrieved verified
binding sites of E. coli, grouped by transcription factors, from the PRODORIC
database [26]. We focus on the binding sites regulated by the following ten tran-
scription factors: ArgR, Crp, Fis, Fnr, Fur, IHF, LexA, Lrp, MetJ and SoxS,
totally covering 424 verified binding sites. Table 1 shows individual performance
statistics for each transcription factor. Prediction accuracies vary among 10 TFs.
For example, the prediction sensitivity was 92.6% for LexA, but only 46.7% for
Lrp with the known motif. Further studies have shown that Lrp-associated motif
was quite degenerate, with the pattern of “NNNNNNTTTATTCT”, thus mak-
ing motif-finding quite difficult. In contrast, LexA-associated motif was a 16-bp
palindrome, with a conserved pattern of “CTGTATATATATACAG”. In general,
our motif discovery pipeline has a high sensitivity but low specificity, similar to
other motif prediction results [17]. However, some of this low specificity could be
due to unverified but true sites. As more binding sites are verified and deposited
in the PRODORIC database, some predicted false positives could become true
positives.

Comparison to other approaches. We also compared the performance of our
conserved operon-based approach with two orthologous gene-based (specifically
sequence similarity-based) approaches, which were used in MicroFootprinter [15]
and PHYLOCLUS [16] respectively. In both methods, orthologous genes in other
species were identified using a reciprocal BLAST best-hit procedure, with a
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Table 1. Prediction accuracy of motif-findings on 10 TFBSs of E. coli using the PFP
approach

TFs ArgR Crp Fis Fnr Fur IHF LexA Lrp MetJ SoxS

Sn 0.682 0.64 0.5 0.655 0.761 0.5 0.926 0.467 0.818 0.722
Sp 0.205 0.094 0.113 0.113 0.181 0.066 0.116 0.109 0.138 0.088
PC 0.188 0.089 0.102 0.107 0.172 0.061 0.115 0.097 0.134 0.086
F 0.316 0.163 0.185 0.193 0.293 0.116 0.206 0.177 0.237 0.158

Table 2. Performance comparison between the conserved operon-based (PFP) and
the orthologous gene based approaches. The one used in ‘Microfootprinter’ is named
as OrthM, while the one used in ‘PHYLOCLUS’ is named as OrthB.

Methods Sn Sp PC F

OrthM 0.605 0.109 0.102 0.184
OrthB 0.603 0.105 0.098 0.179
PFP 0.636 0.106 0.100 0.182

Table 3. A list of glnHPQ associated orthologous genes and conserved operons pre-
dicted by OrthM, OrthB and PFP. glnH from E. coli was used as a query gene in
OrthM and OrthB, while glnHPQ from E. coli was used as a query operon in PFP.
The degree of operon conservation was calculated by OPERMAP.

Species OrthM OrthB  PFP Degree of 
Conservation 

E. coli glnH  glnH  glnQ glnP glnHglnQ glnP glnH   

A. hydrophila 117619357   117619722 117620284 117620427117619722 117620284 117620427  0.67 

E. carotovora glnH  glnH  glnH glnP glnQglnH glnP glnQ  1 

P. profundum 54302807     

P. luminescens artI     

P. fluorescens 70728423  70728423  glnH glnP 70733921glnH glnP 70733921  1 

S. enterica glnH  glnH  glnQ glnP glnHglnQ glnP glnH  1 

S. ANA 117919334  117919334  117919332 117919333 117919334117919332 117919333 117919334  1 

S. sonnei  glnH  glnH  glnQ glnP glnHglnQ glnP glnH  1 

V. parahaemolyticus 28900492     

Y. pestis 108807999  108807999  108807999 108808000 108808001108807999 108808000 108808001  1 

 

threshold of 10−6. For each method, we generated sequence data sets, ran our
motif pipeline for TFBSs prediction, and then evaluated predictions based on 424
binding sites from the PRODORIC database. As shown in Table 2, our approach
was more sensitive than the two other ones (63.6% versus 60.5% and 60.3%).
The higher sensitivity of our approach over the other two can be attributed to
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the reliability of our generated orthologous promoter regions. For example, our
approach could detect the true binding-sites of the glutamine permease operon
glnHPQ in E. coli, while the orthologous gene-based couldn’t. An investigation
of the datasets showed that our approach identified 7 conserved operons for
glnHPQ, while ‘OrthM’ identified 10, and ‘OrthB’ identified 6 “orthologous”
genes for glnH (shown in Table 3). Further analysis has shown that three ‘or-
thologous’ genes (e.g., 117619357, artI, 2800492) found by ‘orthM’ were actually
arginine ABC transporters. In addition, both ‘orthB’ and ‘orthM’ considered
‘70728423’ from P. fluorescens to be an ‘orthologous’ gene for glnH, while our
approach did detect a conserved operon glnHP -70733921. All these indicate that
these four identified genes are not true orthologues, and introduction of the se-
quences of these genes in OrthB and OrthM lead to the reduction of information
content for motif finding.

4 Conclusion

We have presented a computational framework of phylogenetic footprinting in
prokaryotes. The major contributions of our work include: a) the introduction
of the conserved operon approach, rather than the orthologous gene approach,
to collect promoter sequence datasets, and b) the development of motif-discovery
pipeline for identifying TFBSs from the sequences we have identified. Performance
omparison of TFBSs prediction between our approach and others has shown that
our approach could identify more experimentally verified binding-sites.

The better performance of our approach over previous ones is mainly due to
the followings: the correct characterization of operon structures in the recent
research efforts, and the correct determination of orthology relationships by re-
lying on multiple homologous gene relationships within an operon. In addition,
our algorithm OPERMAP can nicely incorporate three different categories of
conserved operons that maintain the same regulation mechanism.

In our future work, we will predict TFBSs of prokaryotes at the genome scale
using our computational framework. By clustering these predicted TFBSs, we can
utimately decipher regulons, which is the set of operons whose promoter regions
share the similar bindingmotif patterns regulatedby the same transcription factor.
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Abstract. The complexity of the neighbor joining method is deter-
mined by the complexity of the search for an optimal pair (”neighbors to
join”) performed globally at each iteration. Accelerating the neighbor-
joining method requires performing a smarter search for an optimal pair
of neighbors, avoiding re-evaluation of all possible pairs of points at each
iteration.

We developed an acceleration technique for the neighbor-joining
method that significantly decreases complexity for important applica-
tions without any change in the neighbor-joining method. This technique
utilizes the bucket data structure. The pairs of nodes are arranged in
buckets according to values of the goal function δij = ui +uj −dij . Buck-
ets are adaptively re-arranged after each neighbor-joining step. While the
pairs of nodes in the top bucket are re-evaluated at every iteration, pairs
in lower buckets are accessed more rarely, when the algorithm determines
that the elements of the bucket need to be re-evaluated based on new
values of δij . As a result, only a small portion of candidate pairs of nodes
is examined at each iteration.

The algorithm is cache efficient, since the bucket data structures are
able to exploit locality and adjust to cache properties.

Keywords: neighbor-joining algorithm, bucket data structure, adap-
tive, cache-efficient.

1 Introduction

The neighbor-joining algorithm [1], [2] is one of the most popular distance meth-
ods for the creation of phylogenetic trees. It is a greedy agglomerative algorithm
that constructs a tree in steps [3]. The algorithm is based on the minimum-
evolution criterion for phylogenetic trees. It is well-tested and studied theoret-
ically, provides good results and is statistically consistent under many models
of evolution [4], [5], [6], [7], [8]. Several algorithms have been developed as im-
provements to the classical neighbor-joining method [9], [10]. Since the neighbor-
joining method is much more efficient than other algorithms of comparable
quality, it is widely used for phylogenetic analysis as the tool of choice for pre-
liminary analysis, with results being verified and refined by maximum likelihood
and Baysian methods [11].

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 122–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Accelerating the Neighbor-Joining Algorithm 123

However, the usage of the neighbor-joining method within interactive ex-
ploratory analysis tools makes it desirable to further accelerate the algorithm for
large datasets. This is especially true if the bootstrap analysis is performed and
multiple trees need to be calculated [12], [3]. Since the O(N3) complexity of the
neighbor joining method is determined by the amount of operations per search
step performed globally at each iteration to find an optimal pair (”neighbors
to join”), accelerating the neighbor-joining method requires a smarter search
methodology which avoids brute-force reevaluation of all possible pairs of points.
Our interest in accelerating the neighbor-joining method is motivated by our on-
going efforts to develop and improve NCBI interactive analysis web tools, such as
the NCBI Influenza Virus Resource [13], [14], where the neighbor-joining method
is the default tree method. The goal is to enable bootstrap analysis for mean-
ingful dataset, in a timeframe acceptable for interactive web tools. This paper
describes an ongoing effort toward this goal.

Accelerating strategies for the neighbor-joining method have been proposed
by several authors. The QuickJoin algorithm [15], [16] uses the quad-tree data
structure to accelerate the search for optimal value of the goal function in the
neighbor-joining algorithm, while still constructing the same tree as the original
algorithm. The ClearCut algorithm [17], [18] implements the relaxed neighbor-
joining approach. The algorithm does not search for a globally optimal pair, but
selects a locally optimal pair (i, j) at each step, such that δij = ui + uj − dij is
maximum for both δik and δjk for all other nodes k. In the Fast Neighbor Joining
method [19] the goal function is not optimized globally, but is rather optimized
over a set, called the ”visible set”. The algorithm is guaranteed to produce the
same results as the neighbor-joining methods for an additive input.

In this paper we pursue the same goal as [16]: to accelerate the search for
a pair of nodes to be join while constructing the same tree as the classical
neighbor-joining algorithm. We arrange the candidate pairs of nodes in buckets
according to the value of the NJ goal function (see Figure 1). When number of
nodes is large, the value of the neighbor-joining goal function δij = ui +uj − dij

changes slightly with each iteration for each pair of nodes. As a result, only
elements of the top bucket are re-evaluated at every iteration, while elements
of lower buckets are accessed more rarely, when needed. Only a small portion

Fig. 1. A bucket data structure
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of candidate pairs of nodes is examined at each iteration. O(N) buckets are
retained eliminating the need to evaluate O(N2) pairs per iteration. Instead,
we rearrange O(N) buckets without accessing the content and evaluate pairs in
the top bucket. The proposed bucket-based data structure allows cache-efficient
manipulations [20], [21]. Note that bucket data structures have been used in the
bucket-sort algorithm [22] and shortest path algorithms in [23], [24], [25], [26],
[27].

2 Methodology

Below we first describe the classical neighbor-joining algorithm and then show
how to use the bucket data to perform an efficient search for a pair of nodes to
be joined.

2.1 The Neighbor-Joining Method

Classical NJ algorithm. At each iteration m = 0, ..., N − 2 of the classical
neighbor-joining method [2],[3], average distances

um
i =

1
N −m− 2

∑

j �=i

Dij (1)

are calculated for each node. A global search is performed to find a pair of nodes
(i∗, j∗) such that

(i∗, j∗) = arg max δm
ij , (2)

where
δm
ij = um

i + um
j −Dij . (3)

Nodes i∗ and j∗ are joined in new node k∗.
The branch lengths vi∗ and vj∗ are calculated as

vi∗ =
1
2
(Di∗j∗ + um

i∗ − um
j∗), (4)

vj∗ =
1
2
(Di∗j∗ − um

i∗ + um
j∗), (5)

and distances from node k∗ to the rest of the nodes are determined for each node
p by the formula

Dk∗p =
1
2
(Di∗p + Dj∗p −Di∗j∗). (6)

Preserving non-negativity of branch lengths and distances. For the
implementations used in our web analysis tools [13], we chosen to keep branch
lengths and distances non-negative. We modify formulas (4) and (5) as follows.
Define

γi∗j∗ =
1
2
sign(um

i∗ − um
j∗)min(|um

i∗ − um
j∗ |, Di∗j∗). (7)
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Analogues of equations (4) and (5) are:

vi∗ =
1
2
Di∗j∗ + γi∗j∗ , (8)

vj∗ =
1
2
Di∗j∗ − γi∗j∗ . (9)

A non-negative analogue of equation (6) is

Dk∗p =
1
2

max(Di∗p + Dj∗p −Di∗j∗ , 0). (10)

Recursive formulas. New average distances um
i can be calculated from old

ones um−1
i by formulas:

um+1
i = (1 +

1
N −m− 3

)um
i −

1
((N −m− 3))

(Dii∗ + Dij∗ −Dik∗)). (11)

or, using (10),

um+1
i =(1+

1
N−m−3

)um
i −

1
(N−m−3)

min(Dii∗ +Dij∗ ,
1
2
(Dii∗ +Dij∗ +Di∗j∗)).

(12)

2.2 Upper Bound for Change in the Goal Function Value for a Pair
of Points over a Neighbor-Joining Step

Estimates for growth of average distances ui. From (12), it is easy to
obtain the following inequalities:

um+1
i ≤ (1 +

1
N −m− 3

)um
i . (13)

and
um+1

i ≤ um
i +

1
N −m− 2

um+1
i . (14)

Estimates for growth of δij . From (3), it is easy to see that

δm+1
ij − δm

ij = (um+1
i − um

i ) + (um+1
j − um

j ).

Using the inequalities (13) and (14), we get

δm+1
ij − δm

ij ≤
1

N −m− 3
(um

i + um
j ).

or
δm+1
ij − δm

ij ≤
1

N −m− 2
(um+1

i + um+1
j ).
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Finally, we obtain two growth estimates:

δm+1
ij − δm

ij ≤ Δm
− , (15)

and
δm+1
ij − δm

ij ≤ Δm
+ , (16)

where
Δm

− =
2Um

N −m− 3
,

Δm
+ =

2Um+1

N −m− 2
,

and
Us = max

i
us

i .

The estimates (15) and (16) together can be written as:

δm+1
ij − δm

ij ≤ Δm, (17)

where
Δm = min(Δm

− , Δm
+ ).

Note. These estimates show that when the number of nodes is large, value δm+1
ij

can increase from δm
ij only slightly. For example, when n = N −m is about 103,

the increase is limited by approximately 2·10−3 of the maximal average distance.

2.3 Construction of Buckets and Operating Them

The arrangement of pairs (i, j) in groups is performed according to the values of
the neighbor-joining goal function δij defined by formula (3). Our purpose is to
limit evaluation of the individual pairs only to those that were close to optimal
in the previous iteration and may become optimal at the current step.

First, the treatment of pairs with zero or near zero distances between nodes
is considered. Lets introduce a special bucket for pairs (i, j) such that

Dij < ε max
lp

Dlp,

where ε is a small number (ex., ε = 10−6). We join zero-distance and near-
zero-distance pairs first, as we do in our current implementation of the classical
neighbor joining algorithm [13].

Let us consider regular pairs. Define the bucket intervals as follows:

(+∞, αm
0 ), (αm

0 , αm
1 ), ..., (αm

n−2, αm
n−1), (αm

N−1,−∞), (18)

where
αm

0 > αm
1 > ... > αm

N−2 > αm
N−1.

Our initial idea was to use intervals constant step Δm:

αm
k+1 = αm

k + Δm, k = 0, 1, ..., N − 2. (19)
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If parameter αm
0 satisfies the condition

αm
0 ≤ δm

max −Δm, (20)

where δm
max = maxij δm

ij , only elements of the top bucket can have δm
ij equal

to δm
max. All other buckets contain suboptimal elements. Moreover, because of

the estimate (15), pairs that are currently in the buckets with k ≥ 2 remain
suboptimal in the next iteration.

At each neighbor-joining iteration, a new collection of N buckets is con-
structed according to (19). New pairs appearing at the current iteration are
placed in the buckets accordingly. Contents of most of the existing buckets is
placed into new buckets without being evaluated. First, the new bucket index
knew is determined by formula

knew = [
δm
top + k ·Δm − δm+1

top

Δm+1
], (21)

for each old bucket. If knew ≥ 1, the content of the kth old bucket with k ≥ 1 is
placed into the knewth new bucket without any evaluation. However, if according
to formula (21) knew ≤ 0, then each pair of nodes in the kth old bucket is
evaluated and placed into an appropriate new bucket. The pairs of nodes in
the top bucket are always evaluated for finding the optimal pair. In process of
evaluation, a pair can be removed from the top bucket for two reasons:

- if the bucket contains a node that has already been eliminated, the pair of
nodes is removed;

- if the pair has a low value of δm
ij , it is moved from the top bucket to a

corresponding lower bucket.

Values αm
0 selected in each iteration should satisfy (20). In the initial step, for

m = 0, the value α0
0 = δ0

max is used, since the maximal value is computed when
all pairs of nodes are placed in buckets. In subsequent steps, the maximal δm

ij in
the top bucket is taken as αm

0 .
However, this simple construction (19) would not be efficient if the values δm

ij

are distributed non-homogeneously: many intervals may be empty, while others
overpopulated (In an extreme case, one outlier pair may stay on the top, while
all others are placed in the bottom interval). In order to overcome this problem,
we propose an adaptive construction of buckets.

In the adaptive construction, the intervals for the initial step (m = 0) are
defined as follows:

α0
k+1/2 = α0

k −Δ0; (22)

α0
k+1 = min( α0

k+1/2, max( δ0
ij | δ0

ij ≤ α0
k+1/2 ) ), (23)

for k = 0, 1, 2, ..., N−2. If there are no δ0
s below α0

k+1/2, we stop adding intervals.
The values αm

0 are defined in the same way as before: α0
0 = δ0

max, and subsequent
values αm

0 are set to the maximal δm
ij in the top bucket. The formulas (22)-(23)

guarantee that each bucket at the initial step (m = 0) is not empty. Otherwise,
it has the same useful properties as (19).
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In the subsequent iterations (m = 1, 2, 3, ...) the buckets are operated as
follows:

- The maximal δm
ij in the top bucket is taken as αm

0 . The elements of the top
bucket are evaluated as described above.

- Existing buckets are moved to the top by setting αm
k = αm−1

k +Δm for k > 0.
- If αm

k ≥ αm
0 , the value of αm

k is refreshed by resetting it to the maximal δm
ij

in the bucket.
- If the refreshed value αm

k ≥ αm
0 −Δm/2, the bucket is merged with the top

bucket;
- New pairs (k∗, p) are considered in descenting order and first are attempted

to be placed in an existing bucket. If

min(αm
k |αm

k ≥ δm
k∗p)− δm

k∗p < Δm, (24)

then the pair (k∗, p) is placed in the bucket providing the minimum value.
Otherwise, a bucket is created. The same procedure is applied to the pairs
moved from the top bucket to lower buckets.

- If number of buckets exceeds N , the top N buckets are taken and the re-
maining buckets are merged in the lowest bucket. Empty buckets, if any, are
also removed.

Data structures. Below we briefly describe data structures for a record, a
bucket, and a bucket collection.

Record. For a pair of nodes i and j (i < j), we keep a record consisting of two
indices and the value of the distance between the nodes: R = (i, j, Dij). There
is no reason to save the actual value of the goal function δij since it is changed
at each algorithm step and cannot be reused. However, keeping the Dij value in
the record allows to avoid gathering these values from a large two-dimensional
array and makes the algorithm more cache-optimal [20], [21].

Bucket. Each bucket contains a linked list of records. In our initial imple-
mentation, we use the C++ STL List class. A standard constant-time splice
algorithm [28] is used to combine link lists. Records referring to nodes which
have already have been eliminated are erased using a C++ STL constant-time
List erase() function. Special memory allocation and reallocation can be used
to provide cache-efficient placement of bucket elements [29].

Bucket Collection. Each bucket collection contains two arrays: the first
contains real numbers in decreasing order and describes bucket intervals, while
the second contains pointers to buckets. In our initial implementation, we use
C++ STL vector class for these arrays. As described above, N buckets are
allocated at each neighbor-joining step.

In addition to bucket-based data structures we use arrays implemented as
C++ STL vector objects for um

i , and for describing status of the node (active/
non-active) that is changed when node is eliminated. Since calculating new dis-
tances by formula (6) requires direct access to Dij , we keep this two-dimensional
matrix as vector< vector<double> > in our initial implementation.
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3 Test Results

To evaluate the algorithm, we used the following four data sets containing full-
length Influenza A H3N2 hemagglutinin protein coding sequences obtained from
the NCBI Influenza Virus Resource [13]:

– Dataset containing 44 sequences from 1968-1972;
– Dataset containing 252 sequences from 1971-1996;
– Dataset containing 504 sequences from 1972-2000;
– Dataset containing 1000 sequences from 1972-2005.

Figure 2 illustates the performance of the algorithm for these 4 datasets. The
total number of pair evaluations stays approximately proportional to N2, where
N is the number of sequences in the dataset, with a constant c ≈ 3 for N = 252,
N = 504 and N = 1000, while c ≈ 7.5 for N = 42.

Fig. 2. Number of pair evaluations per cycle divided by N2

Figure 3 shows the initial distribution of δ(i, j) = u(i)+u(j)−d(i, j) for non-
identical pairs of sequences in the largest dataset (e.g., N = 1000). The maximal
value is 0.441. Only 100 pairs of sequences out of 499, 500 (0.02%) have values
of δ(i, j) greater than 0.3, and only about 1,000 pairs of sequences (0.2%) have
values of δ(i, j) above 0.1.

Figure 4 shows the number of pair evaluations in each iteration of the algo-
rithm. The total number of pair evaluations is accumulated from a very small
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Fig. 3. Values of u(i) + u(j) − d(i, j) for pairs of sequences, N = 1000

Table 1. Normalized execution times

Number of sequences NCBI gizmo2 computer NCBI sutils0 computer

252 6.3 · 10−7 1.1 · 10−6

504 9.1 · 10−7 1.61 · 10−6

1000 1.33 · 10−6 2.34 · 10−6

Fig. 4. Number of pair evaluations in each iteration

number of evaluations in the majority of steps and a large number of evaluations
on rare occasions.

Figure 5 shows the execution times for the tests on two NCBI Linux comput-
ers: gizmo2 - a computer having an Intel Xeon E5345 2.33 GHz processor with
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Fig. 5. Execution times

4MB cache size, and sutils0 - a computer having an Intel Xeon 3.20 GHz pro-
cessor with 512 KB cache size. Corresponding execution times divided by N2,
where N is number of sequences in the test, are shown in the table below. Note
that while sutils0 has a faster processor, gizmo2 consistently demonstrates 1.7 -
1.8 times faster execution time, probably because its cache size is much larger.
We believe that the speed of memory access rather than processor speed is crit-
ical for the speed of execution, and the code will greatly benefit from tuning
aimed to minimize cache misses. Comparison of our normalized times 1.33 ·10−6

seconds and 2.34 · 10−6 seconds to 5.64 · 10−6 seconds reported for QuickJoin
(based on Table 1 in [15]), allows us to be very optimistic about the performance
of an optimized version of the code.

4 Discussion

Accelerating the neighbor-joining method is important for enhancing perfor-
mance of the online web analysis tools, where users expect to perform initial
exploratory analysis of the datasets in real time and perform bootstrapping as
fast as possible. In this paper we present an adaptive bucket algorithm able to
significantly reduce the amount of evaluations in search steps by distributing
candidate pairs in buckets and evaluating a small portion of all pairs in each it-
eration. The proposed construction helps to avoid empty buckets and allows the
algorithm to handle the values of the neighbor-joining goal function which are
distributed non-homogeneously, including cases when outliers are present. The
algorithm uses simple data structures that can be further optimized, including
optimizing the cache-efficiency. Our the preliminary test results are shown above,
and we continue optimizing the code and plan to perform comprehensive com-
parisons. While the proposed algorithm is designed to produce the same results
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as classical neighbor-joining, the degree of acceleration it provides is determined
by the distribution of the values of the neighbor-joining goal function that, in
turn, depends on the structure of the dataset.
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Abstract. We present a parametrized definition of gene clusters that
allows us to control the emphasis placed on conserved order within a
cluster. Though motivated by biological rather than mathematical con-
siderations, this parameter turns out to be closely related to the max-
imum bandwidth parameter of a graph. Our focus will be on how this
parameter affects the characteristics of clusters: how numerous they are,
how large they are, how rearranged they are and to what extent they
are preserved from ancestor to descendant in a phylogenetic tree. We
infer the latter property by dynamic programming optimization of the
presence of individual edges at the ancestral nodes of the phylogeny. We
apply our analysis to a set of genomes drawn from the Yeast Gene Order
Browser.

1 Introduction

The definition of synteny blocks, gene clusters or similar constructs from the
comparison of two or more genomes entails a trade-off of great consequence:
if we place emphasis on identical content and order of the genes, segments or
markers in a block or cluster, only relatively small regions of the genome will
satisfy this restrictive condition, giving rise to a plethora of tiny blocks while
missing large regions common to the genomes. On the other hand, by allowing
unrestricted scrambling of genes within blocks (e.g., max-gap [1] or “gene teams”
[7]), we forgo accounting for local genome rearrangement, missing an important
aspect of evolutionary history, or we relinquish the possibility of pinpointing
extensive local conservation, where this exists.

In this paper, we present a parametrized definition of gene clusters that allows
us to control the emphasis placed on conserved order within a cluster. Though
motivated by biological rather than mathematical considerations, this parameter
turns out to be closely related to the maximum bandwidth parameter of a graph.
Our focus will be on how this parameter affects the characteristics of clusters:
how numerous they are, how large they are, how rearranged they are and to
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what extent they are preserved from ancestor to descendant in a phylogenetic
tree. We infer the latter property by dynamic programming optimization of
the presence of individual edges in a generalized adjacency graph abstractly
representing chromosomal gene order. We apply our analysis to a set of genomes
drawn from the Yeast Gene Order Browser (YGOB) [3]. Among the results, we
find strong evidence for setting a certain fixed value to the cluster parameter.
We also find that we can recover almost all the clusters that can be found
without order constraints, i.e., by the max-gap criterion, indicating that local
order conservation is a lot greater than that unconstrained definition would
suggest.

2 Definitions

Our characterization of gene clusters is made up of a general part that identifies
clusters of vertices common to two graphs, and a specific part where a graph is
determined by the proximity of genes on the chromosomes of a genome. This is
illustrated in Figure 1.

Definition 1. Let GS = (VS , ES) and GT = (VT , ET ) be two graphs with a
non-null set of vertices in common V = VS ∩ VT . We say a subset of C ⊆ V is
an ST -cluster if it consists of the vertices of a maximal connected subgraph of
GST = (V, ES ∩ ET ).

Definition 2. For the purposes of genome comparison, we may consider VX to
be the set of genes in the genome X. For genes g and h in VX on the same
chromosome in X, let gh ∈ EX if the number of genes intervening between g
and h in X is less than θ, where θ ≥ 1 is a fixed neighbourhood parameter.

These definitions of edge sets and ST -clusters decompose the genes in the two
genomes into identical sets of disjoint clusters of size greater or equal to 2, and
possibly different sets of singletons belonging to no cluster, either because they
are in V , but not in ES∩ET , or because they are in (VS∪VT \V ). For simplicity,
we do not attempt to deal with duplicate genes in this paper. When θ = 1, a
cluster has exactly the same gene content and order (or reversed order) in both
genomes. When θ =∞, the definition returns simply all the synteny sets, namely
the sets of genes in common between two chromosomes, one in each genome.

Let Π be the set of all orderings of V . Recall that the bandwidth of a graph
G(V, E) is defined to be

B(G) = min
p∈Π

max
uv∈E

|p(u)− p(v)|. (1)

In a genome S each chromosome χ determines a physical order among the
genes it contains.

Proposition 1. Bandwidth B(GS) = θ, as long there are at least 2θ + 1 genes
on some chromosome χ in genome S.
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1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20

9 6 15 8 13 12 11 18 7 10

2 5 4 1 21 19 14 3 17 16

GENOME S (3 chromosomes) GENOME T (2 chromosomes)

ST clusters

= 2 : {2,4,5}, {6,8}, {11, 12 13}, {16, 17}
= 3 : {1,2,4,5}, {6,7,8,9,10, 11, 12 13}, {14, 16, 17}
= 4 : {1,2,3,4,5}, {6,7,8,9,10, 11, 12 13}, {14, 16, 17}

Fig. 1. Graphs constructed from two genomes using parameter θ = 3. Thick edges
determine clusters. ST -clusters listed for θ = 2 and θ = 4 as well.

Proof: By Definition 2, the vertex v corresponding to the gene at position θ +1
on chromosome χ is connected to 2θ other vertices. The most remote of these
are at positions 1 and 2θ+1. Similarly, for a vertex u at any other position on χ,
we can show that the most remote gene connected to u is no farther away than
θ. Thus, for the order p(·) on the vertices defined by the original gene order,
max |p(u)− p(v)| = θ. Hence, B(GS) ≤ θ.

For any other order p(·), consider the 2θ vertices connected to vertex v. For
one such vertex w, |p(v) − p(w)| ≥ θ, since we cannot fit 2θ vertices connected
to v into an interval of size < 2θ + 1, also containing v.

Since the upper and lower bounds coincide, the proposition follows. 	


Proposition 2
B(GST ) = max

C∈C
B(C), (2)

where C is the set of connected components of GST .

Proof: Since EST is the union of the edges in all the C,

max
uv∈EST

|p(u)− p(v)| = max
C∈C

max
uv∈EC

|p̄(u)− p̄(v)|, (3)

where p̄(·) is the order induced on the vertices in C by the order p(·) on EST .
But any set of vertex orders on all the individual C can be jointly extended to
an order on VST . 	

We compare the definition of an ST -cluster with that of a max-gap cluster
[1,7].

Definition 3. Let θ ≥ 1. Let VC ⊆ VS ∩ VT be a set of r vertices corresponding
to genes all on the same chromosome χS in genome S and all on the same
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chromosome χT in genome T . Let g1, g2, . . . , gr be a labelling of these genes
according to their order on χS. Let h1, h2, . . . , hr be a labelling of these same
genes according to their order on χT . Let pS(·) and pT (·) indicate the positions
of genes on χS and χT , respectively. Then if

|pS(gi+1)− pS(gi)| ≤ θ and |pT (hi+1)− pT (hi)| ≤ θ (4)

for all 1 ≤ i ≤ r − 1, then VC satisfies the max-gap criterion. If, in addition VC

is contained in no larger VF also satisfying the criterion, then VC is said to be
a max-gap cluster.

Proposition 3. Every ST -cluster with parameter θ satisfies the max-gap crite-
rion with the same value of θ.

Proof: Consider two successive genes in the ST -cluster in genome S. By Defi-
nition 2, they cannot be separated by more than θ − 1 genes not in the cluster.
Since this holds for all pairs of successive genes, both in S and in T , the max-gap
criterion is met. 	


The converse of Proposition 3 does not hold, however. The max-gap criterion
only limits the number of non-cluster elements intervening, in either genome,
between two cluster elements. Thus in the max-gap definition with θ = 2, we
could have a cluster {a, b, c, d, e, f} with order abcdef in S and fbcdea in T , but
this would not be an ST -cluster (though {b, c, d, e} would be). Also, a ∗ bc in
S and bc ∗ a in GT could define a max-gap cluster {a, b, c}, where the asterisks
represent genes not present, or remote, in S and T , respectively, but this would
not be a ST -cluster (though {b, c} would be).

3 Comparisons of Yeast Genomes

The data. The Yeast Gene Order Browser (YGOB) [3] contains complete gene
orders and orthology identification among the five yeast species depicted in Fig-
ure 2: two descendents of an ancient genome duplication event, Saccharomyces
cerevisiae and Candida glabrata, and three species that diverged before this
event, Ashbya gossypii, Kluyveromyces waltii and Kluyveromyces lactis. For the
ancient tetraploids, YGOB includes a reconstruction of the ancestral genome,
which, with the help of further details supplied by Kevin Byrne and Jonathan
Gordon (personal communication), allows us to identify duplicate genes as be-
longing to one of the two ancestral lineages, indicated by A and B in the figure,
and to find two complete sets of clusters in each of these species, one in each
lineage. For our purposes, then, the duplicate lineage effectively expands the
data set from five to seven genomes.

Notation. With reference to Fig. 2 we will refer to the common ancestor of
Ashbya gossypii and Kluyveromyces lactis as Node D, and to its immediate an-
cestor as Y. Nodes A and B will refer to the two ancestral lineages within both
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S. cerevisiae

C. glabrata

A. gossypii

K. lactis

K. waltii

speciation

genome doubling CGA

CGB

A

B

RY

D

SCA

SCB

Fig. 2. Phylogeny of yeasts in YGOB. Whole genome doubling event at R giving
rise to A and B lineages in S. cerevisiae (SCA, SCB) and C. glabrata (CGA, CGB)
indicated, as is the speciation event at the divergence of these two species. Choice
among the identified ancestor nodes Y, R, D, A or B to be the root is arbitrary in our
mathematical analysis, but historically, the earliest divergence time is represented by
the branching at the left of the phylogeny.

Saccharomyces cerevisiae and Candida glabrata at the time of speciation, while
Node R will designate the tetraploid ancestral to these.

Defining lineage-specific clusters within a tetraploid descendant. The
YGOB indicates the common ancestry, pre-speciation, in Saccharomyces cere-
visiae and Candida glabrata, of two separate gene lineages, labelled A and B, in
both genomes. To apply Definition 2, we first masked the identity of all lineage
B genes without deleting them from their positions, and then applied the crite-
rion to the lineage A genes to produce the edges in GSCA and GCGA. We then
reversed roles of A and B, masking the identity of all lineage A genes without
deleting them from their positions, and then applied the criterion to the lineage
B genes to obtain GSCB and GCGB. Fig. 3 shows plots of the number of clus-
ters detected as a function of θ, decreasing as a result of cluster amalgamation,
featuring a distinct elbow near θ = 3 for all the pairwise comparisons. This
also shows a striking resemblance to the same analysis for max-gap clusters,
suggesting that in these data, the max-gap clusters also satisfy our more strin-
gent generalized adjacency criterion. In other contexts, perhaps in prokaryotes,
more intense processes of local gene rearrangement may result in relatively more
max-gap clusters.

In Fig. 3, we depict how cluster size is distributed and use this to assess the
degree of relatedness of genomes or lineages.

4 Extensions to m Genomes

We can extend the definition of an ST -cluster based on two genomes S and T
to an ST · · ·U -cluster based on the graphs GS , GT , . . . , GU induced by the m
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Fig. 3. Left: Dependence of number of clusters on neighbourhood parameter, showing
that, independent of θ, K. waltii has fewer (larger) clusters when compared with the
other two genomes, as might be expected from the closer phylogenetic relationship of
the latter in Fig. 2. Dashed line indicates that the max-gap criterion returns fewer,
larger clusters for the same value of θ — one max-gap cluster may contain several ST-
clusters. Downward slope of all lines due to the incorporation of smaller clusters into
larger ones as θ increases, demonstrating that almost all max-gap clusters also have
conserved neighbourhood structure. Right: Distribution of size of clusters for θ = 2,
showing larger clusters, i.e., less evolutionary divergence, between same lineage SCA-
CGA and SCB-CGB in different species than between different lineages. Also, the two
different lineages are more diverged in CG than in SC, as confirmed for larger θ (not
shown), consistent with the highly derived nature of the C. glabrata genome. Two
thinner, unlabeled curves indicate SCA-CGB and SCB-CGA.

genomes S, T, . . . , U . We simply extend Definition 1 to involve the intersection
of the edge sets of m graphs instead of 2 graphs,

GST ···U = (VS ∩ VT ∩ · · · ∩ VU , ES ∩ ET ∩ · · · ∩ EU ) (5)

and then retain the set of vertices in each of the connected components of this
graph as the ST · · ·U -clusters.

A more useful generalization turns out to involve the median of the m
genomes MST ···U = (VS ∪ VT ∪ · · · ∪ VU , E), where E minimizes the sum of
the sizes of the symmetric differences between E and the EX . This is rapidly
calculated using a majority rule. This graph may, however, sometimes not corre-
spond to any genome, as we will discuss in Section 7. To verify that it does, we
have to solve the fixed parameter version of the maximum bandwidth problem,
which has a polynomial (but hard to implement) dynamic programming solu-
tion. Otherwise we can try to find the largest subset of E with bandwidth ≤ θ,
which may require exponential search.
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5 Optimizing Ancestral Nodes Minimizing Edge
Appearances/Disappearances

Consider that the data at each terminal node consist of zeroes or ones, repre-
senting the presence or absence of each edge ε in that data genome. We wish to
assign a zero or one for each edge at each ancestral node so as to minimize the
number of times the presence/absence indicator changes value from one endpoint
of an edge to the other, summed over all branches in the tree and summed over
all edges ε. We will discuss this ancestral node optimization for unrooted binary
trees, i.e., where each ancestral node has exactly three adjacent nodes, perhaps
the simplest instance of dynamic programming on a tree [5, Chapter 2]. (This
procedure is easily extended to non-binary trees.)

Fig. 4. Left: Distributions of cluster size, with mean μ, at Node R, for various values
of θ. Smaller clusters amalgamate into larger ones as θ increases. Right: Mean cluster
size at ancestral nodes, for various values of θ.

Dynamic programming requires two passes. In the forward pass, from the termi-
nal nodes towards the root R (chosen arbitrarily from among the ancestor nodes,
without consequences for the results), the value of the variable (the presence or
absence of ε) may be established definitely at some ancestral nodes, while at
other nodes it is left unresolved until the second, “traceback” pass, when any
multiple solutions are also identified. We call those edges that are definitely
present at a node the optimals, while those that are potentially present during
the forward pass, the near-optimals. We need not discuss further those that are
definitely excluded during the forward pass.

Note that the (arbitrary) designation of one ancestor node to be the root R
determines, for each branch, which of its endpoints corresponds to the mother
genome (the one proximal to the root), and which to the daughter (the one distal
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Fig. 5. Left: Total number of genes in clusters is remarkably stable, except for Node
R, which recruits more genes up to θ = 4. Right: As θ increases small clusters are
amalgamated with larger ones, so that the total number of clusters decreases.

to the root). We order the nodes so that no node precedes any of its daughters.
(This is always possible for a rooted tree.)

Suppose ancestral node N (other than the root R) has daughter nodes K
and H . Because of the way we have ordered the nodes, by the time we reach N
during the forward pass, we have already decided, for each daughter, whether ε
is an optimal or near-optimal. Then if ε is optimal for both K and H , then it is
optimal for N . If it is optimal for only one of K and H , it is near-optimal for
N . For the root node R, with three daughters, if ε is optimal for at least two of
the three, then it is optimal for R. We need not consider near-optimals for R.

For the traceback, reversing direction in the same order, starting at R, if ε is
optimal for a mother node and near-optimal for its daughter, then ε is promoted
to optimal status in the daughter. (This operationalizes the “majority rule”
mentioned in Section 4.)

Note that in this method, the presence or absence of genes in the ancestral
genomes derives solely from the presence or absence of at least one edge having
that gene as an endpoint.

6 Gene Clusters at the Ancestral Nodes of the Yeast
Phylogeny

6.1 Cluster Statistics

Introducing the generalized adjacencies through the neighbourhood parameter
allows clusters to be conserved despite local rearrangements. This is seen in
Fig. 4, where the distribution of cluster sizes (number of vertices) at Node R is
seen to spread out to larger values as θ increases.
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The average sizes of clusters is much higher in the other ancestral nodes,
though they follow the same trend, as is seen on the right of Fig. 4.

While the average cluster size increases, the number of genes involved in these
clusters at a given node does not change much, as seen in Fig. 5. Consequently,
as seen on the right of the figure, the number of clusters drops.

6.2 Evolution and Cluster Coherency

From node to node the number of clusters and the genes they contain change. We
can, however, assess to what extent this change is gradual or abrupt. If a cluster
simply gains or loses a few genes, or if a cluster divides in two, or if two merge to
become one, we may consider the resulting configuration a gradual change. We
operationalize this by saying two clusters, one in each of two ancestral genomes,
are in conflict unless one is nested in the other or they are disjoint. In Table 1,
we show what proportion of each ancestor’s clusters are in conflict with their
adjacent nodes’ clusters.

Table 1. Conflicts in clusters beteeen genomes at two ends of each tree branch, as a
function of θ. Percentage conflict out of the total number of clusters in genome in left
hand column.

Neighbourhood
parameter

Node Adjacent Node 1 3 8

A R 20 36 37
B R 23 36 40
R A 10 16 16
R B 11 16 17
R Y 0 0 0
D Y 0 1 1
Y D 0 0 1
Y R 0 1 1

Thus cluster evolution has been exceedingly gradual among the diploid
genomes, but a good proportion of the A and B lineage clusters are seriously
disrupted in their common ancestor.

7 Bandwidth of the Clusters

We have constructed clusters of genes based on adjacencies presumed to have
been present in the ancestral genomes. While these are most parsimonious infer-
ences, they are not sufficient to reconstruct the entire genomes, mainly because
we have tried to compute neither how to partition the clusters among chromo-
somes nor how to impose a linear order within a cluster. Indeed, the dynamic
programming is not even able to ensure that the clusters are compatible with the
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generalized adjacency structure imposed on the data genomes in Definition 2,
for the reasons alluded to in Section 4. In other words, there is no constraint on
the connected components, and hence the entire graph inferred at an ancestral
node, to have maximum bandwidth ≤ θ. If the bandwidth is larger, it means
that we can construct no genome where the vertices in the connected compo-
nent in question can be linearly disposed so that each edge has less than θ genes
intervening between the two endpoints.

On the other hand, there is no compelling reason to insist on this bandwidth
restriction on the ancestral genomes. Our initial goal was to find how clusters of
vertices are preserved or evolve along various evolutionary lineages, and if the
bandwidth is larger at some ancestor, this simply suggests that the cluster was
looser at that time.

Whatever the importance or the interpretation we attach to bandwidth, it is
thus of great importance to see how it is preserved or changed in the ancestral
genomes we are investigating.

The problem of inferring the maximum bandwidth of a graph is, however, not
trivial. Indeed, it is NP-complete [9], though Saxe [10] showed that detecting
whether bandwidth is greater than θ is of polynomial complexity. Unfortunately,
we have no implementation of Saxe’s dauntingly high-level pseudo-code; in any
case we are more interested in knowing the bandwidth than in testing whether
it is greater than θ.

Thus we are led to investigate the many heuristics available for estimating the
bandwidth. For example if there is a vertex of degree > 2ψ, the bandwidth must
be greater than ψ, as is clear from the upper bound discussed in Theorem 1.
Many heuristics emanate from an interest in reducing bandwidth in matrix the-
ory. For sparse matrices, the best-known method is the Cuthill-McKee method [4]
and its modification, the reverse Cuthill-McKee (RCM) algorithm [6,8]. We have
implemented the latter to study the bandwidth of the components we have recon-
structed at the ancestral nodes. Since the results of RCM depend on the input or-
der of the vertices, we ran the algorithm 100 times with different orders to find the
minimum estimate for the bandwidth, as displayed in Table 2. In all but three of
the thirty entries in the table, the value shown was already detected after 10 runs.

As can be seen, the bandwidth exceeds θ in most cases. Inspection of the
graphs show that this is due to a small number of vertices of high degree. If we
wanted to constrain the ancestral genome graphs to have maximum bandwidth
≤ θ, we could:

– After the dynamic programming, test each node for bandwidth and exclude
one or more vertices from the graph. It would not seem appropriate, however,
to exclude the vertices of highest degree, since these are likely to be the most
central to the cluster. Rather we would exclude some vertices of low degree
adjacent to vertices of highest degree.

– As a less ad hoc solution, during the traceback of the dynamic programming,
ensure that the set of edges being constructed never exceeds bandwidth θ.
This may be a complex undertaking, however, since it may require testing
all subsets of the set of near optimal edges eligible to promotion to optimal
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Table 2. Minimum out of 100 runs of the RCM algorithm applied to edge sets produced
by dynamic programming at the ancestral nodes of yeast evolutionary tree for various
values of the neighbourhood parameter θ.

θ Node
A R B Y D

1 1 1 1 1 1
2 3 4 2 3 2
3 4 5 4 5 5
4 5 7 5 7 5
5 6 7 6 8 7
6 9 8 7 8 8
7 9 10 9 9 9
8 9 11 10 11 11
9 13 13 11 10 11
10 13 13 11 16 17

status. Note that this approach potentially interferes with the exactness of
the dynamic programming.

– Intervene directly in the dynamic programming recurrence. To conserve ex-
actness, this approach would require storing and searching over a structure
more complex than just the sets of optimals and near optimals.

8 Conclusions

The generalized adjacencies we have introduced allow us to recognize clusters
even though they have been perturbed by local rearrangements. That the max-
gap criterion gives approximately the same number of clusters means that max-
gap is too weak a criterion in this context in that it doesn’t recognize order
conservation in the clusters.

Our separation of the A and B lineages as separate phylogenetic lineages is
validated by the higher number of within-lineage clusters than within-species
clusters, with the C. glabrata genome appearing highly rearranged.

We have shown the interplay of bandwidth considerations and the dynamic
programming optimization of ancestral nodes in a given phylogeny. There is
scope for improving our estimate of bandwidth, perhaps with approximation
algorithms such as the semi-definite-programming approach in [2].

The neighbourhood parameter allows us to control the distribution of cluster
sizes and the number of clusters. It allows us to explore the trade-off between the
size of clusters and the rate of conflict between clusters in connected ancestral
nodes.
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Abstract. The activities and properties of proteins are the result of interactions 
among their constitutive amino acids. In the course of natural selection, substi-
tutions which tend to destabilize a particular structure may be compensated by 
other substitutions which confer stability to that structure. Patterns of coordi-
nated substitutions were studied in two sets of selected peptides. The first is a 
set of 181 amino acid sequences that were selected in vitro to bind a MHC class 
I molecule (Kb). The second is a set of 114 sequences of the Hypervariable Re-
gion 1 of Hepatitis C virus, which, originating from infected patients, result 
from natural selection in vivo. The patterns of coordinated substitutions in both 
datasets showed many significant structural and functional links between pairs 
of positions and conservation of specific selected physicochemical properties.  

Keywords: physicochemical properties, amino acid, covariation, selection. 

1   Introduction 

Experimental and quantitative analyses of proteins often assume that the protein sites 
are independent, i.e., the presence of a residue at one site is independent of residues at 
other sites. However, the activities and properties of proteins are the result of interac-
tions among their constitutive amino acids (aa) and, therefore, substitutions which tend 
to destabilize a particular structure and/or function are probably compensated by other 
substitutions that confer stability [1]. For example, if a salt bond were important, a 
substitution of the positively-charged residue with a neutral residue would need to be 
compensated by a nearby residue substituting from a neutral to a positive residue (Fig. 
1). Similarly, a substitution involving a reduction of volume in the protein core might 
cause a destabilizing pocket which only one or a few adjacent residues would be capa-
ble of filling. Sites which are structurally or functionally linked will tend to evolve in a 
correlated fashion due to the compensation process [1].There is experimental evidence 
indicating that proteins contain pairs of covariant sites, identified both by analysis of 
families of natural proteins with known structures [2-7] and by site-directed mutagene-
sis whereby individual changes are introduced in proteins [8-10].  

Independent mutations among functionally-linked sites would be disadvantageous, 
but simultaneous or sequential compensating mutations may allow the protein to re-
tain function [11]. Furthermore, there are constraints on aa replacements that arise  
for functional reasons, such as aa bias at recognition sites related to DNA binding in 
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transcriptional regulators. Evolutionarily-related sequences should contain the ves-
tiges of these effects in the form of covariant pairs of sites [12] and these interactions 
can be manifested in covariation between substitutions at pairs of alignment positions 
in a multiple sequence alignment. The analysis of covariation has been used in protein 
engineering [13], sequence-function correlations [14, 15], protein structure prediction 
[5, 12, 16-26] and in finding important motifs in viral proteins [27-30]. Recent  
analyses confirmed that highly coordinated sites are often functionally related and/or  
 

 

Fig. 1. Schematic representation of coordinated substitutions in a pair of aa sites forming a salt 
bond in a protein domain. Sequences that contain residues of the same charge at positions 2 and 
7 are unstable (b and c) and are eliminated during natural selection. Sequences containing resi-
dues of different charges that are stable (o, a and d) can occur in a multiple sequence alignment. 
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spatially coupled, with coevolving positions being frequently located in regions criti-
cal for protein function, such as active sites and surfaces involved in molecular inter-
actions with other proteins   [14, 31-35].  

In this paper, the patterns of coordinated substitutions were studied in two sets of 
selected peptides. The first is a set of 181 aa sequences that had been selected in vitro 
to bind a MHC class I molecule (Kb) [36, 37]. The second is a set of 114 sequences 
from Hypervariable Region 1 (HVR1) of Hepatitis C virus (HCV) generated in vivo 
from infected patients, which was used to understand the effects of natural selection 
on the pattern of coordinated substitutions. In both cases the process of selection over 
the structure and/or function of the peptide constrained the sequence variability and 
we found vestiges of these effects in the form of covariant pairs of sites. 

2   Methods 

2.1   Datasets 

A previously published dataset of 310 peptides [36, 37] was used to investigate the 
effects of in vitro selection on the pattern of coordinated substitutions. This dataset 
gives the peptide aa sequence and corresponding binding to a MHC class I molecule 
(Kb) as a binary (yes/no) outcome. The complete dataset has 310 such observations 
(181 binders and 129 non-binders) and was originally obtained by random sampling 
from a large (>107) library of peptides, so there is no evolutionary history linking the 
peptides. The binding between two proteins generally involves short-range non-
covalent interactions based on electrostatic charge, hydrogen bonding and van der 
Waals interactions. The specificity of the binding depends on the physicochemical 
properties of the constituent aa residues of both molecules and, therefore, the binding 
to the MHC class I molecule must select the conservation of some physicochemical 
properties in this subset of aa sequences. In this paper we wanted to know if the selec-
tion for this known function (binding) could be detected in the form of physicochemi-
cal correlation between aa sites. 

HCV is a major cause of liver disease worldwide. The global prevalence of HCV 
infection is estimated to be 2.2%, representing 130 million people [38]. HCV causes 
chronic infection in 70-85% of infected adults [39]. There is no vaccine against HCV 
and current anti-viral therapy is relatively toxic, being effective in 50–60% of patients 
treated [40]. HCV is a single-stranded RNA virus of approximately 9400 nucleotides 
belonging to the Flaviviridae family [41]. The HVR1, located between positions 384 
to 410 of the structural E2 protein, is the most intensively studied part of the HCV 
genome. However, the understanding of its function remains very limited [42] and it 
is not clear whether its high genetic heterogeneity is an immunological decoy or is 
related to a biologically relevant function [43]. Here, we studied the sequence vari-
ability of HVR1 in order to establish physicochemical correlations between aa sites, 
which could be due to the pressure of an unknown function that selected the conserva-
tion of physicochemical properties.  

2.2   Sequences and Alignment  

The previously published dataset of 310 peptides [36, 37] was obtained from the fol-
lowing web address: http://newfish.mbl.edu/Lab/Resources. All these peptides were 
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created in the same phage display library and had the same length so they were easily 
aligned. Two hundred and eight complete genome HCV sequences were obtained from 
“The Los Alamos HCV Sequence Database” [44] during early 2006. Of these 208 se-
quences, the following were excluded: recombinants, chimeras, patents, non-human 
hosts, a genotype other than 1b, and epidemiologically related sequences. This process 
left 114 different HCV 1b complete genome sequences, which were aligned using 
ClustalW [45]. The viral protein H77 (GenBank Accession Number NC_004102) was 
used as a reference sequence throughout this study.  

2.3   Physicochemical Properties of aa  

A study by Chelvanayagam et al. [31] found that the analysis of covariation involving 
different physicochemical characteristics improves the number of truly covariant pairs. 
However, there are many reported aa properties and the selection of the right ones pre-
sents a difficult choice. Interestingly, Atchley et al. [46] used multivariate statistical 
analyses on 494 aa properties [47] to produce a small set of highly interpretable numeric 
patterns of aa variability that can be used in a wide variety of analyses directed toward 
understanding the evolutionary, structural, and functional aspects of protein variability. 
This transformation summarizes the high level of redundancy in the original physico-
chemical attributes and produces much smaller, statistically independent, and well con-
ditioned variables for subsequent statistical analysis [48]. The resultant factors are linear 
functions of the original data, fewer in number than the original, and reflect clusters of 
covarying traits that describe the underlying structure of the variables [46]. 

Factor analysis of the highly intercorrelated aa attributes resulted in five factors, a 
reduction in dimensionality of two orders of magnitude from the original 494 proper-
ties [46]. POLARF1 reflects polarity and simultaneous covariation in portion of ex-
posed residues versus buried residues, non-bonded energy versus free energy, number 
of hydrogen bond donors, polarity versus non-polarity, and hydrophobicity versus 
hydrophilicity. HELIXF2 is a secondary structure factor. There is an inverse relation-
ship of relative propensity for various aa in various secondary structural configura-
tions, such as a coil, a turn, or a bend versus the frequency in an α-helix. SIZEF3  
relates to molecular size or volume with high factor coefficients for bulkiness, residue 
volume, average volume of a buried residue, side chain volume, and molecular 
weight. CODONF4 reflects relative aa composition in various proteins and the num-
ber of codons for each aa. These attributes vary inversely with refractivity and heat 
capacity. CHARGEF5 refers to electrostatic charge with high coefficients on isoelec-
tric point and net charge. Atchley et al. [48] showed how the transformation into one 
of the five multidimensional factors of physicochemical properties was useful in the 
analysis of Basic Helix-Loop-Helix proteins that bind DNA.  

2.4   Multi-Response Permutation Procedure (MRPP) 

MRPP is a non-parametric permutation test for testing the hypothesis of no difference 
between two or more groups of entities [49]. Permutation tests represent the ideal 
situations where one can derive the exact probabilities associated with a test statistic, 
rather than approximate values obtained from common probability distributions, such 
as t, F and Χ2 [50]. In the majority of studies, the population distribution is unknown 
and assuming a normal distribution is inappropriate for many biological datasets, 
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which often are skewed, discontinuous, and multi-modal. The distance-functions that 
form the basis of the MRPP are used to detect differences in distributions, sensitive to 
both dispersion (variation) and shifts in central tendency (median) [51]. MRPP was 
used to test differences between the physicochemical properties of the two groups of 
MHC-binding peptides, which was performed by the program BLOSSOM [51]. 

2.5   Discriminant Analysis 

Discriminant analysis is a statistical approach that defines the latent structure of between-
groups covariation and determines the subset of attributes that best separate a set of a 
priori defined groups [52]. We used stepwise discriminant analysis (SWDA), as de-
scribed by Atchley et al [48], to rank the 40 transformed variables of the MHC-binding 
peptides (5 physicochemical factors x 8 aa sites) in terms of their ability to discriminate 
between the binding and non-binding peptides. A step-up variable selection procedure 
begins with no variables in the model and then a variable is added that contributes most 
to discriminating power of the model, as measured by Wilks’ lambda likelihood ratio 
criterion [52]. The procedure continues adding the next best discriminating variable until 
the p value of the F statistic was higher than 0.01. Then, we used Canonical variate 
analysis (CVA) to predict the membership of each peptide using the best discriminating 
variables of the SWDA model. A Leave-one-out cross validation procedure was em-
ployed, where each case is classified by the functions derived from all cases other than 
that case. All these procedures were performed with the program SPSS 15.0 [53]. 

2.6   Physicochemical Correlation between aa Sites 

Bioinformatics methods for detecting correlated mutations consist of two main steps: 
(i) alignment of homologous sequences and (ii) identification of pairs of columns in 
the alignment in which there is a statistically significant tendency for mutations in one 
column to be accompanied by corresponding and usually different mutations in the 
other column [54]. In the present study, a modified version of a recent algorithm [55] 
was used to analyze pair-wise relationships between aa sites. The approach is based 
on estimation of the correlation coefficient between the values of a physicochemical 
parameter at a pair of positions of sequence alignment. When the correlation coeffi-
cient between two sites is negative, an increase in the value of a property at position i 
will make more likely a substitution at position j that will result in a decrease in the 
value of the property, which suggests a net value compensatory substitution. When 
the correlation coefficient is positive, it may be assumed that substitutions keep con-
stant the difference between the property values of two residues. All statistical analy-
ses, calculations and randomizations of this study were performed using MATLAB 
[56] unless stated otherwise. 

If the sequences are effectively unrelated, then the pairs of positions with a signifi-
cant covariation must have structural or functional links. Sequences are unrelated  
if the relationships by descent have been lost and there is no longer a significant  
phylogenetic signal or the sequences were obtained by in vitro selection (such as the 
dataset of MHC-binding peptides) [55]. There are three different sources of covaria-
tion in related biological sequences (such as the dataset of HCV sequences): (i) 
chance, (ii) common ancestry, and (iii) structural or functional constraints. Effectively 
discriminating among these underlying causes is a difficult task with many statistical 
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and computational difficulties [57]. There are many methods to test whether a correla-
tion value reflects a significant association (possibly due to structural and functional 
constraints), or results from evolutionary history and stochastic events (background 
covariation) [14] but no single method has demonstrated general utility or achieved 
widespread acceptance [32]. We used the following four criteria to define the pairs of 
significantly correlated pairs of sites.  

(i) Each one of the two sites has an entropy higher than 0.2370, which is 10% of the 
highest entropy found in the HCV polyprotein. Only 448 aa sites of the 3010 aa 
sites of the HCV polyprotein are above this entropy cutoff. This cut-off was cho-
sen because prior modeling of protein coevolution showed that it is difficult to 
identify sites which are coevolving if they are highly conserved [32, 33].   

(ii) A permutation procedure was performed, whereby the aa at each site in the se-
quence alignment was vertically shuffled. Ten thousand random alignments were 
created this way, simulating the distribution of correlation values under the null 
hypothesis that substitutions of aa at two sites are statistically independent. For 
each physicochemical factor, a pair of sites was considered significantly corre-
lated if its correlation value in the observed dataset was higher than the correla-
tion value for those two sites in any of the random datasets (p = 0.0001). We  
addressed the multiple comparisons problem with the False Discovery Rate  
approach, which controls the expected proportion of false positive results [58]. 
The False Discovery Rate in our study has a q-value of 0.00035 for the dataset of 
MHC-binding peptides and 0.00506 for the dataset of viral sequences.  

(iii) Related sequences (such as the dataset of HCV sequences) are part of a hierar-
chically structured phylogeny and, therefore, for statistical purposes, cannot be 
regarded as being drawn independently from the same distribution. We used the 
data weighting approach based on Felsenstein's method [59] in the calculation of 
the correlation values, which is based on the assumption that the lower the time 
of divergence of two sequences from their common ancestor, the higher is the 
covariation between these two sequences. The one-dimensional weights were 
calculated using a distance matrix among sequences built using the synonymous 
sites of the full HCV genome.   

(iv) We used a modified version of the method of Martin et al [32] and Gloor et al 
[33]. This method makes the assumption that each position in a multiple se-
quence alignment is affected equally by background correlation, and that the ma-
jority of positions in the alignment covary only because of common ancestry. On 
the basis of these assumptions, each alignment is used as its own null model for 
the identification of covarying positions. A critical correlation threshold was cal-
culated using the value of the Student’s distribution at a given significance level 
(p = 0.001) with a sample size of 114 sequences, following Afonnikov et al. [23].   

3   Results 

3.1   Dataset of MHC-Binding Peptides 

There are two structurally distinct groups of peptide sequences in the dataset: those 
which bind to a MHC class I Kb molecule and those which do not. The dataset was 
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transformed to the five physicochemical factors and it was found that these two 
groups occupy a significantly different region of the physicochemical space (p = 
0.0001; MRPP). Now that we know that the two classes of peptides have significant 
physicochemical differences, it is important to understand the causes of these differ-
ences. We used SWDA to rank the 40 transformed variables of the MHC-binding 
peptides in terms of their ability to discriminate between binders and non-binders. The 
results indicate that some positions and factors contribute much more strongly than 
others in separating the data (Table 1), positions 5 and 8 being the most important, 
especially regarding the physicochemical properties summarized by POLARF1 and 
HELIXF2. This model includes 8 variables that account for 70.28% of the variability, 
and allow the correct classification of 91.3% of the peptides (90.3 of cross-validated 
cases are correctly classified) (Table 2).  

Table 1. Discriminant analysis (SWDA) of the MHC-binding peptides 

Step Variable Residual Variance Significance of F 
1 SIZEF3_P5 0.6310 2.5751E-06 

2 HELIXF2_P8 0.4851 1.4468E-07 

3 POLARF1_P8 0.4229 1.0112E-06 

4 POLARF1_P5 0.3722 2.3665E-15 

5 CODONF4_P5 0.3298 1.6459E-10 

6 SIZEF2_P1 0.3117 2.2650E-04 

7 SIZEF2_P3 0.3048 3.5888E-03 

8 POLARF1_P2 0.2973 6.6078E-03 

Table 2. Classification results of the CVA 8-variable model 

  Predicted binders 
Predicted 
non-binders 

Observed binders 92.82% 7.18% 

Original 
Observed 
non-binders 10.85% 89.15% 
Observed 
non-binders 92.27% 7.73% 

Cross-
validated 

Observed 
non-binders 12.40% 87.60% 

What physicochemical characteristics are the sequences of binders keeping con-
stant? Which pairs of sites are highly associated in order to conserve affinity? There 
are eight pairs of positions with significant correlations (links) in the set of binders 
(Table 3), but none in the set of non-binders (Fig. 2). Almost all positions in the 
MHC-binding dataset have one or more links, except position 8. However, position 8 
has a link to position 7 with a lower significance (p = 0.0012). Position 3 has the 
highest number of links, followed by positions 1 and 5. The correlated positions in 
binding sequences keep constant factors POLARF1, SIZEF3 and CHARGEF5 of the 
peptide. These results suggest that our simple covariation analysis is useful for finding 
pairs of sites that are crucial to keeping the structural conformation of peptides.  
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Table 3. Significant physicochemical correlations at one or more factors (p = 0.0001) in binders 

i j POLARF1 HELIXF2 SIZEF3 CODONF4 CHARGEF5 
1 3   -0.2823   

1 5 0.2701     

1 6   -0.3889  -0.3520 

2 3 0.4408  0.3357  0.2821 

2 5   -0.3087 -0.3617 -0.3019 

3 5 0.3275 0.4030    

3 7 -0.2822     

4 6    0.3119  

 

Fig. 2. Graph of the relationships between sites in the binders (A) and non-binders (B). Con-
tiguous sites in the sequence are connected (grey lines) and sites with a significant physico-
chemical correlations at one or more factors (p = 0.0001) are also connected (black lines). 
There are eight pairs of positions with significant correlations in the set of binders, but none in 
the set of non-binders. 
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3.2   HVR1 

We found five links involving eight different sites in the middle of HVR1 (Table 4 
and Fig. 3). The site with the highest number of links is 402 (3 links), suggesting an 
important role in keeping HVR1 structure and/or function. Changes in the HVR1 are 
correlated in a way that keeps constant the POLARF1 and SIZEF3 of the segment. 
The results suggest that there are three physicochemical traits or conditions that have  
 

 

Fig. 3. Graph illustrating relationships between sites in the HVR1. Contiguous sites in the se-
quence are connected (grey lines) and sites with a significant physicochemical correlation at 
one or more factors (p = 0.0001) are also connected (black lines). 

Table 4. Significant physicochemical correlations at one or more factors (p = 0.0001) in HVR1 

i j POLARF1 HELIXF2 SIZEF3 CODONF4 CHARGEF5 

390 393     -0.3063     

391 402 0.4090         

394 397 -0.3759         

396 402 0.3522         

402 403       -0.5505   
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been selected in the HVR1: the first in a cluster of sites (391, 396, 402 and 403) re-
lated to POLARF1 where site 402 seems critical; the second (390 and 393) related to 
SIZEF3, and the third (394 and 397) related to POLARF1.  

4   Discussion 

Knowledge about the determinants of binding to MHC molecules is very useful for the 
development of predictive tools that help choose peptides for employment in immu-
nological therapies or inclusion in vaccines intended to elicit T-cell cytotoxic activity. It 
has been shown that some aa residues occur at a high frequency at specific positions in 
the peptide, termed anchor positions [36, 37]. For the MHC class I molecule (Kb) the 
anchor positions are 3, 5 and 8, with preferences for aa tyrosine or phenylalanine in posi-
tions 3 or 5 and a hydrophobic aa in position 8. However, binding is known to be influ-
enced by both the presence of secondary anchor positions and interactions between aa 
within the peptide [37]. Interestingly, we found that positions 3, 5 and 8 are the best posi-
tions in discriminating between binders and non-binders, in agreement with their role as 
anchor positions. We also found that there is a high level of covariation between all posi-
tions in MHC binding peptides but none in the set of non-binding peptides. This observa-
tion clearly suggests that the ability to bind to MHC creates constraints on the sequence 
variability of the binding peptides, where changes at some positions are coordinated with 
changes at other positions in order to maintain binding capacity. The covariation level of 
position 8 is very low, suggesting that its contribution to MHC binding is more inde-
pendent of the other sites, even though it is an anchor position and is the most important 
position discriminating between binders and non-binders. The aa distribution of position 
8 is very different in the binding and non-binding dataset, with significant differences in 
the average POLARF1 (p = 0.0001; MRPP) and HELIXF2 (p = 0.0001; MRPP) of the 
two groups. These results suggest that there are two physicochemical traits or conditions 
affecting binding in these 8-mer peptides: the first is related to positions 1-7 (conserving 
POLARF1, SIZEF3 and CHARGEF5) and the second is related with position 8 (PO-
LARF1 and HELIXF2), which is less dependent of the other positions but very important 
to define the ability to bind.  

We also studied the sequence variability of HVR1 in order to establish if there is a 
mechanism underlying the selection of this subset of aa sequences. The results sug-
gest that the HVR1 segment has to keep a specific structure and/or function and that 
natural selection left a mark in the sequence variability in the form of coordinated 
substitutions. The high number of coordinated substitutions and their contribution to 
the maintenance of some physicochemical values provide additional proof to the con-
servation of conformational motifs in the HVR1, for which there is previous experi-
mental evidence [43]. This conservation is consistent with strong selective constraints 
previously found on HVR1 heterogeneity  [42, 60, 61], suggesting that this segment 
has an important function in virus replication, rather than merely being a variable re-
gion of the genome that acts as an antigenic decoy [42, 60]. The results suggest that 
the physicochemical properties POLARF1 and SIZEF3 have been selected in the 
HVR1. The high number of coordinated substitutions and their contribution to the 
integrity of these physicochemical properties provide an additional proof to conserva-
tion of conformational motifs in the HVR1. Covariation analyses can be important in 
identifying sites that may change the phenotype of a protein, and they could be used 
as a tentative map for researchers to define functional domains in the protein through 
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mutational analysis. For instance, covariant sites could be used as a guide for rational 
selection of sets of sequences for inclusion in a mixture of peptides for vaccine de-
sign. Therefore, by selecting sequences which include pairs of aa that are highly  
predictive of each other, important classes of sequences that are structurally or func-
tionally related may be identified. Thus inclusion of peptides with highly covariant aa 
may be a useful strategy for designing broadly-reactive vaccines [28]. 

The detection of coordinated substitutions among separate aa sites is fundamental 
to understanding protein structure and evolution. The process of selection (whether 
natural or in vitro) creates profound constraints on the sequence variability, keeping 
constant the structure or function of the protein. We found the consequences of these 
constraints in the form of covariant pairs of sites and the conservation of specific 
physicochemical properties. 
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Abstract. Understanding how the genomes of viruses mutate and evolve within
infected individuals is critically important in epidemiology. By exploiting knowl-
edge of the forces that guide viral microevolution, researchers can design drugs
and treatments that are effective against newly evolved strains. Therefore, it is
critical to develop a method for typing the genomes of all of the variants of a
virus (quasispecies) inside an infected individual cell.

In this paper, we focus on sequence assembly of Hepatitis C Virus (HCV)
based on 454 Lifesciences system that produces around 250K reads each 100-
400 base long. We introduce several formulations of the quasispecies assembly
problem and a measure of the assembly quality. We also propose a novel scalable
assembling method for quasispecies based on a novel network flow formulation.
Finally, we report the results of assembling 44 quasispecies from the 1700 bp
long E1E2 region of HCV.

1 Introduction

Many viruses found in nature encode their genomes in RNA rather than DNA. While
the problem of sequencing an organism’s DNA is well-studied, sequencing RNA viruses
presents its own unique set of challenges. Perhaps the biggest challenge associated with
sequencing RNA viruses is that they lack DNA polymerases and are unable to repair
mistakes in their sequences as they reproduce. Over the course of infection, the mistakes
made in replication are passed down to descendants, producing a family of related vari-
ants of the original viral genome referred as a quasispecies.

The allele frequencies across all of the quasispecies in an infected individual may
drift significantly. Among all of the new quasispecies produced, some may be more
virulent than others. Thus, it is of epidemiological interest to identify common charac-
teristics of virulent quasispecies to aid in the design of effective drugs and treatments
for the disease that the virus causes. This paper is devoted to the problem of sequencing
of all quasispecies inside a patient based on 454 Lifesciences system.

454 Lifesciences system is one promising technology that may prove useful for se-
quencing quasispecies. It is a massively-parallel pyrosequencing system developed by
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biotechnology firm 454 Lifesciences for DNA sequencing. Briefly, the system frag-
ments the source genetic material to be sequenced into pieces approximately 100 bp
long called reads. Each read is sequenced and the original genome is reconstructed via
software. Since this system was originally designed to sequence genetic material from a
single organism, the software assembles all of the reads to a single genome. In order to
use it for sequencing quasispecies, new software must be created that can also correctly
distribute reads between multiple quasispecies.

Informally, the Quasispecies Assembly problem can be stated as follows: Given a set
of reads taken from a single specimen, determine how many quasispecies are present
and what are their sequences.

Quasispecies Assembly is related to several well-known problems: DNA fragment
assembly (see e.g., [2,5,6]), haplotype assembly [3], population phasing (see e.g., [7])
and DNA finding in a mixed environment (see e.g., [15]) . Indeed, the fragments (reads)
should be assembled into a long genome sequence although it becomes a lesser chal-
lenge since consensus genome sequence is already available. In [2], a network flow-
based approach is presented which bears similarity to the approach adopted in this
article. A plausible reduction genome sequencing is as follows: place all quasispecies
genomes back-to-back in a long sequence and treat common segments as repeats. Qua-
sispecies Assembly is very close to the haplotype assembly problem where fragments
are given from two different haplotypes of the same diploid organism and the goal is
to correctly attribute segments to one of these two haplotypes. Unfortunately, the pro-
posed solution methods are not scalable with respect to the number of haplotypes per
individual and this is critical since in a specimen there are hundreds or even thousands
of different quasispecies. Therefore, one can find similarity with the population phasing
problem where multiple diplotypes (mixtures of two haplotypes) are given and it is re-
quired to identify underlying common haplotypes and their frequencies. Finally, it can
also be viewed as variant of the newly-arisen problem of finding and distinguishing all
the different species in a given DNA sample – but in our case, the complicating factor
is that the sequencing of different quasispecies are very similar to each other.

Our contributions are the following:

– Several optimization formulations for Quasispecies Assembly and its different
versions.

– Estimation of the probability that two overlapping read belong to the same quasis-
pecies.

– A network flow based method for solving the quasispecies assembly problems.
– An efficient and scalable implementation of the proposed network flow methods.
– Application of the network flow method to the set of simulated reads drawn from

44 quasispecies in the E1E2 region of Hepatitis C Virus.

In the next section we give several optimization formulations for Quasispecies As-
sembly. Then we will construct proposed data structure incorporating information about
given reads and the consensus genome. Section 4 will propose solutions for Quasis-
pecies Assemble problems based on reductions to network flows. Finally, Section 5
will describe validation of network flow approaches on E1E2 region of HCV.
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2 Quasispecies Assembly Models and Optimization Formulations

The ultimate goal of Quasispecies Assembly is to correctly reconstruct genomes of
all quasispecies in a given sample. Since multiple quasispecies have indistinguishable
common segments that are significantly longer than a read, one cannot guarantee to
find even the exact number of quasispecies. Although only cross-validation of proposed
techniques can really tell if their quality are of practical interest, it is important to for-
mulate models and corresponding optimization objectives that do not simply rely on
cross-validation.

We will start with the formal description of the input and output for Quasispecies
Assembly. The output of 454 Lifescience system consists of N ≈ 250K reads, each
read r is a sequence of l nucleotides (l may be about 100 or even 400). The rate of
typing errors is claimed to be 0.04% (see [9]). Also we may usually rely on existence
of a known consensus genome of all quasispecies which is in case of HCV has length
L = 9600 bp. Each reconstructed quasispecies should be covered by given reads and
be close to the consensus genome sequence H .

We first consider the simplest parsimonious model for Quasispecies Assembly. The
corresponding optimization formulation is as follows.

Most Parsimonious Quasispecies Assembly. Given a set of reads R and a consensus
genome sequence H , find the minimum size set of quasispecies Q covering all reads
from R, i.e., such that each read r ∈ R is contained in at least one q ∈ Q.

Although the parsimonious model is worth considering, it is usually oversimplified.
Indeed, it usually predicts less than observed number of quasispecies and cannot dis-
tinguish between numerous different equally good (from parsimonious point of view)
solutions. In order to break ties, we introduce penalties over read overlaps. The penalty
cost(r, r′) over an overlap between reads r, r′ ∈ R should reflect how unsure we are
that these two reads came from the same quasispecies. We set cost(q) to be the sum
of costs of constituting overlaps. For example, cost can be inversely proportional to the
probability that such overlap occurs. Then the overall probability of the quasispecies
q is the product of costs of consecutive overlapping pairs of reads which can be trans-
formed to the sum by replacing costs with their logarithms. In the next section we will
suggest several different cost functions.

Minimum Cost Parsimonious Quasispecies Assembly. Given a set of reads R with
costs on read overlaps and a consensus genome sequence H , find the most parsimonious
set of quasispecies Q that have the total minimum cost.

We may also trade the number of quasispecies for smaller cost or just completely
disregard minimization of the number of quasispecies.

Minimum Cost Quasispecies Assembly. Given a set of reads R with costs on read
overlaps and a consensus genome sequence H , find the set of quasispecies Q covering
all reads that have the total minimum cost.

Besides accurately assembling all quasispecies as a set, it is also important to as-
semble certain frequent individual quasispecies. There is an evidence that the frequency
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distribution of quasispecies in a single cell is usually not uniform. The most frequent
quasispecies may contribute the major part of reads and may also contribute the most to
virus resiliency. Although frequently repeated reads may come from the most frequent
quasispecies, the alternative explanation would be that multiple different quasispecies
have the same common segment. Therefore, we again rely on estimated probability for
overlapping reads. This results in the following problem formulation.

The Most Frequent Quasispecies Assembly. Given a set of reads R with costs on
read overlaps and a consensus genome sequence H , find a single quasispecies q with
the minimum total cost.

3 The Read Graph

In this section we propose the method of incorporating the input information about
reads and genome consensus sequence into a single data structure to which we apply
network flow methods for solving quasispecies assembly problems.

We will first describe how to align reads to the consensus genome and distinguish
single nucleotide polymorphisms (SNP) from typing errors. For every possible starting
position, we align both the read and its reverse compliment to the consensus sequence
and count the number of mismatches. The “true” starting position has the fewest num-
ber of mismatches. In our experiments we have never encountered read misalignments
which can be explained by a lack of sizable repeats in the RNA viral genomes and
the low typing error rate (0.04% [9]). We can distinguish typing errors from infrequent
SNPs if we have at least double coverage of each quasispecies – indeed, the probability
of the same typing error occurring twice is insignificantly small.

Formally, each read r is supplied with its beginning and ending positions in the
consensus sequence br and er, respectively. The read graph G = (V, E, cost) has the
set of vertices V each representing a read and the set of directed edges E, where each
edge (u, v) connects two reads u and v if their alignments overlap (i.e., bu ≤ bv ≤
eu ≤ ev) and if they coincide with each other across the overlapping region.

Obviously, some edges correspond to true overlaps of pairs of reads coming from
the same quasispecies while other correspond to false overlaps that occur between reads
of similar but different quasispecies. The cost function of an edge (u, v) reflects how
unsure we are that u and v correspond to a true overlap.

In the next subsection we describe how we reduce the size of the read graph without
losing any information. Our reduction is based on an efficient algorithm for minimum
transitive reduction. In Subsection 3.2 we estimate the probability for an edge in the
transitively reduced read graph to correspond to a true overlap.

3.1 Transitive Reduction of the Read Graph

In general, the read graph G may be very dense since it contains edges connecting
non-consecutive reads (see Figure 3.1). If there are three reads u, v and w such that
(u, v), (v, w) ∈ E and u overlaps with w (i.e., bw < eu), then (u, w) ∈ E. The path
u− v − w is called closed since there is a single edge (u, w) connecting the beginning
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u

v w

bv
bw eu ev

Fig. 1. The edge (u, w) is logically implied by the edges (u, v) and (v, w). Indeed, the segment
[bw, ew] is the same in the reads u and v since (u, v) ∈ E and [bw, ew] is the same in the reads v
and w since (v, w) ∈ E, therefore, it is the same for u and w.

with the end. The edge (u, w) is logically implied by the other edges and we can safely
remove it without losing any information.

Thus, we wish to remove maximum possible number of edges, or, in other words,
obtain the minimum transitive reduction G′ = (V, E′) of the graph G. The transitive
reduction is a subgraph of G in which if a vertex v is reachable from u, then it should be
reachable in G′. In general, finding minimum transitive reduction is NP-complete but
since G is is a directed acyclic graph, it can be found efficiently [10]. Besides lacking
directed cycles, the read graph G is also partially transitively closed, i.e., all subpaths
of closed paths are closed.

Input: Partially transitively closed directed acyclic graph G = (V, E)
Output: Minimum transitive reduction of G

1. Topologically sort vertices of G
2. For each vertex u ∈ V in topological order do
3. Sort all outgoing edges from u according to left end: v1, . . . , vk

4. Thread set T ← ∅
5. For i = 1, . . . , k do
6. For each x ∈ T do

If edge (x, vi) ∈ E, then E ← E − (u, vi), T ← T − x, break
T ← T ∪ vi

7. Output G

Fig. 2. Minimum transitive reduction for partially transitively closed directed acyclic graph

Claim. A read graph G is partially transitively closed.

Proof. Toward contradiction assume that there exists a closed u − v-path P without
chords. Let (w, v) be the last edge of P , we will show that there exists the edge (u, w).
Indeed, existence of u − w-path and (w, v)-edge implies that bu ≤ bw ≤ bv ≤ eu and,
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therefore, u and w overlap. Since there exists a u − w-path, u and w do not disagree.
These two facts imply there should be an edge u and v.

The following algorithm for finding minimum transitive reduction (see Figure 2) is
more efficient than for general directed acyclic graphs since it relies on G being par-
tially transitively closed. The runtime is O(δ|E|), where δ is the maximum number of
quasispecies containing the same read and |E| is the number of edges in G. This is
significantly faster than O(|V |2) for arbitrary directed acyclic graphs.

From now on, we assume that the read graph G is transitively reduced. Obviously,
an arbitrary quasispecies corresponds to unextendable path of G, although not every
unextendable path corresponds to a quasispecies.

3.2 Estimating Probability of a True Overlap

We first give intuition behind estimation of the true overlap probability and then present
results of the formal analysis of the uniform and non-uniform quasispecies distributions.

Intuitively, given a choice, one would trust a larger read overlap more than a smaller
read overlap. That makes a lot of sense in the standard sequencing when the consensus
genome is unknown. The entire de Bruijn graph approach relies only on sufficiently
long overlaps (see [4]). Indeed, it is quite improbable that a long overlap happens by
chance – only repeats may result in false long read overlaps. But Quasispecies Assem-
bly exactly the case with long and frequent repeats – many segments can be repeated in
very many quasispecies.

Only multiple coverage may give a clue for deciding which overlaps are probably
true. If there are two reads u and v adjacent in the transitively reduced read graph, then
we may try to measure our surprise with the fact that (u, v) ∈ E by the length of the
“overhang” Δ = |bv − bu|. Indeed, assuming that (u, v) represents a true overlap in a
quasispecies q, why there is no other read w that is taken from q and which is between
u and v? If Δ is large, then there great chance that the overlap is false.

Formally, let us consider a simplified model where every read has the same length
and that each quasispecies has the same frequency.

Let bu be the starting position, in sequence H , or read u. After transitive reduction,
the event that two reads u, v from the same quasispecies are connected with an edge
(u, v) is the event that (a) these two reads exist, and (b) no read w from the same
quasispecies satisfies bu < bw < bv.

Let us fix a quasispecies A. Given N reads, L positions in H and q quasispecies,
the probability that a position is bu for some read u of A is N/Lq. Assuming that bu

is such a position, there is a unique true edge (u, v) indicating an overlap with another
read of A. The event that bv − bu > k is the event that bu + 1, bu + 2, . . . , bu + k are
not beginnings of reads of A, and since the reads have uniformly random positions, the
probability of that event is

pk =
(

1− N

Lq

)k

≈ exp(−kN/Lq)

The probability that bv − bu = k is p′k = N
Lqpk−1.
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If bv − bu is much larger than Lq/N then most probably bv is a read from an-
other quasispecies B, and the reason for the difference is not a gap between the po-
sitions of various reads of A, but the fact that in the interval between bu and bv the
sequences of quasispecies A and B are different. Therefore if Δ = bv− bu, the number
1/pΔ ≈= exp(ΔN/Lq) measures the “implausibility” that (u, v) is a true edge. By
“implausibility” we mean a quantity that is low when the edge is plausible and high
when it is not.

If the lengths of the reads are variable and random, then after the cleaning we should
have larger gaps following beginnings of particularly long reads. However, the distri-
butions of lengths of the survivors of the cleaning process is more uniform (it has a
much smaller variance) than the original distribution of read lengths. Thus we have a
reasonable approximation.

If we have different frequencies of reads from different quasispecies, then the proper
formula for quasispecies A would be exp(ΔNfA/L) rather than exp(ΔN/Lq). How-
ever, We cannot use it because a-priori we do not know the frequencies.

What is least clear from our analysis is what function of pΔ would give the best result
if we use it as the cost of edge (bu, bv). We will try to natural candidates: the inverse,
giving formula exp(ΔN/Lq) and minus logarithm, giving formula ΔN/Lq.

4 Quasispecies Assembly Via Network Flows

In this section we show how to modify the read graph G into a flow network so that
Quasispecies Assembly would naturally represented by a network flow through G. We
then reformulate the Quasispecies Assembly problems into the minimum-cost network
flow problems.

As we noticed in Section 3.1, each quasispecies corresponds to a simple path in the
(transitively reduced) read graph G. Each such path can be viewed as a flow originated
in the source corresponding to the first read flowing through intermediate reads and
ending at the sink corresponding to the last read.

Standard network flow formulations associate flow with the edges rather than the
vertices. Therefore, our first modification to the read graph would be replacement of
each vertex corresponding to a read r with the beginning vertex rb and the ending
vertex re connected with the edge (rb, re). Each edges with the head v changes its head
to rb and each edge with the tail v changes it tail to re (see Figure 3).

For simplification of the flow formulation we also introduce universal source and
sink vertices s and t for all flows (see Figure 4). We add an edge from the source s to
each read that does not have any incoming edges and an edge to the sink t from each
read that does not have outgoing edges. These two vertices are also supplied with back
edge (t, s) through which each quasispecies flow should return back thus making our
flow circular.

We now ready to formulate the minimum cost feasible flow problem corresponding
to Most Parsimonious Quasispecies Assembly. Let f : E → R+

0 be a circular flow
defined on all edges. The value of the flow f through a read edge (br, er) represents the
number of quasispecies that contain the read r. The corresponding linear program (1-4)
is as follows:
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r

rerb

Fig. 3. Replacing of a vertex corresponding to a read r with the edge (rb, re). The new vertices
and edges are dashed.

s t

G

Fig. 4. Universal source s and universal sink t with the backward edge (t, s) are added to the read
graph. The new vertices and edges are dashed.

Minimize f(t, s) (1)

subject to

∀v ∈ V
∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u) (2)

∀read r ∈ R f(br, er) ≥ 1 (3)

∀(u, v) ∈ E f(u, v) ≥ 0 (4)

Objective (1) is parsimonious – it asks for minimizing number of quasispecies since
each unit of flow corresponding to a single quasispecies should pass through the edge
(t, s) exactly once. Constraint (2) is the flow conservation – for each vertex v ∈ V , the
total flow entering v equals the total flow exiting v. Constraint (3) requires that each
read to be covered by at least one predicted quasispecies. Constraint (4) forbids the
backward flow so that the flow would really correspond to quasispecies.

The linear program (1-4) does not predict complete quasispecies but rather decides
which pairs of overlapping reads belong to the same quasispecies. In order to obtain
a feasible set of quasispecies one can simply replace each edge e with f(e) copies
and in the resulted graph find f(t, s) edge-disjoint s− t-paths each corresponding to a
quasispecies.
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Although the linear program (1-4) does not require flow to be integer, the optimal in-
teger solution is always fractionally optimal. All linear program solvers (e.g., [13,12])
find optimal integer solutions very efficiently. Alternatively, one can use a faster com-
binatorial min-cost flow solver [11,14].

The next linear program solves Minimum Cost Quasispecies Assembly. Here, we set
to zero the cost of all edges introduced into G while modifying it into the flow network,
i.e., cost(t, s) = 0, cost(s, u) = cost(v, t) = 0 and, for each read r, cost(rb, re) = 0.1

The only difference with the previous formulation is in the objective. Objective (5)
does not pay attention to the number of predicted quasispecies but to the total cost of
all predicted quasispecies.

Minimize
∑

e∈E

cost(e) · f(e) (5)

subject to

∀v ∈ V
∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u)

∀read r ∈ R f(br, er) ≥ 1
∀(u, v) ∈ E f(u, v) ≥ 0

Finally, Minimum Cost Parsimonious Quasispecies Assembly is solved with the
same linear program as Minimum Cost Quasispecies Assembly. The only difference
is that cost(t, s) is set to a very large number. As a result any feasible assembly cannot
be optimal if it uses more than the minimum possible number of quasispecies and as a
secondary criteria the total cost of read overlaps is minimized.

5 Experimental Results

To our knowledge, full-genome quasispecies data for HCV is currently unavailable.
However, previous research has obtained the sequences of individual HCV quasispecies
for several important subregions. [1] obtained quasispecies data for the E1E2 region of
the HCV genome. This data is a contiguous region 1734 bp long over Q = 44 qua-
sispecies. We generated two simulated problem instances based upon the sequences in
this data. The first instance, which we shall refer to as the “uniform” instance, assumed
that the frequencies of each of the sequences in the data set were equal all equal (i.e.
f(qi) = 1/Q for all qi). The second instance, which we refer to as the “nonuniform”
instance, assumed that the frequency of one quasispecies was 1/2, while all other qua-
sispecies had equal frequency of 1/(2(Q− 1)).

We assumed that the 454 Lifesciences system would produce approximately 250K
reads of length 100 across the entire 9.6K bp length of the HCV genome. Since the
E1E2 region is 1.7K bp long, approximately 18% of the 250K reads (approx. 44K) reads
should span the E1E2 region. Reads were generated by iteratively selecting a sequence

1 Alternatively, the cost of the read can be set inversely proportional to the number of copies of
the read. This way the multiplicity of the read participation in assembly should correspond to
its multiplicity among collection of all reads.
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Fig. 5. This table shows the original number of reads, the number of reads after “cleaning” (i.e.
removing subreads), and the number of overlaps (i.e. number of edges in the read graph) for the
two problem instances considered. The “uniform” problem instance consisted of 44 quasispecies
of length 1734 each with equal frequency. The “nonuniform” instance consisted of the same 44
quasispecies, but one quasispecies was selected to have frequency 1/2 and all others were given
frequency 1/(2(Q − 1)).

from E1E2 at random according to that read’s frequency and fragmenting it into reads
which were then accumulated in a collection; the lengths of reads were generated using
a normal distribution with μ = 100, σ2 = 10.

Once a problem instance was generated by the above procedure, we removed reads
that were contained within other reads. The reason we introduce this “cleaning” phase
of our algorithm is two-fold: first, any read that is subread of another cannot possibly
introduce a new quasispecies, and second, the graph formed by the remaining reads
is guaranteed to be acyclic, connected, and has a single global source and sink. Due
to the large degree of homogeneity between quasispecies, a surprisingly large number
of reads are cleaned out of the problem instance. After cleaning the problem instance
of subreads, the read graph is constructed. The table on Figure 5 gives the various
parameters for each of the two problem instances under consideration.

Out of the many possible overlaps between reads in the problem instance, only a
small portion actually belongs to real quasispecies. From the table on Figure 6 one can
see how well our min-cost flow based algorithms for Most Parsimonious Quasispecies
Assembly and Minimum Cost Quasispecies Assembly predict which overlaps are true
overlaps. The most parsimonious solution obtained by setting to 1 the back edge cost
while other edges has cost 0 – in the table the corresponding solution is placed the
row with cost function 1. We run the min-cost flow algorithm for the two problem
instances under the following two different edge-cost functions. The cost function Δ
equals the the difference in genome offsets of edge tail and head reads. This function
is proportional to the logarithm of the estimated probability of the read overlap to be
true overlap. As a result, the total cost of a path is proportional to the probability of
it to be a true quasispecies. The cost function eΔ is the estimated probability of the
corresponding overlap to be true overlap.

The table on Figure 6 gives the total number of true overlaps and the total number
of predicted overlaps. Then we give the number of true and false overlaps among pre-
dicted overlaps as well as the number of true overlaps which are missed by our method.
Our experiments show that Most Parsimonious Assembly is the furthest from the true
quasispecies and that the exponential cost is superior to the Δ-cost.

Similarly to the error measure for diploid organism phasing, we introduce the switch-
ing error, which is computed as follows. For each true quasispecies, we identify the path
in the transitively reduced read graph and count how many times that path switches
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Fig. 6. The number of real, predicted, correctly predicted, incorrectly predicted, and unpredicted
overlaps for the two instances and three network flow methods (cost functions). Minimum Cost
Quasispecies Assembly are denoted by cost Δ and eΔ.

Fig. 7. The runtimes for major subroutines in the program. All runtimes were recorded on a
modern machine with an Intel Core Duo 2 CPU and 2 GB of RAM.

between predicted quasispecies and then average number of switches over all true qua-
sispecies. The lower bound is the average number of unpredicted overlaps that occur
along the path corresponding to a real quasispecies. We split the flow into quasispecies
by walking from the universal source to the universal sink, randomly choosing which
edge of each fork to tranverse, decrementing the flow along each edge as it is traversed.
The column Random Walk in 6 reports the average switching distance over all true
quasispecies for the set of randomly predicted quasispecies. Our results show that the
exponential cost is superior to Δ-cost as well as the most parsimonious solution and
that our method admits only very small fraction of possible errors.

Obviously, randomly predicting quasispecies has an high switching error. By using
a more intelligent path-splitting heuristic, one can possibly reduce the switching error
down to the lower bound.

The table on Figure 7 gives the runtimes for the instance cleaning, transitive reduc-
tion, and linear programming subroutines in the program. As the table indicates, our
method can deliver results in a reasonable amount of time, and is expected to scale well
to the sizes of real problem instances.
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Abstract. In the de novo peptide sequencing problem, output data from
a tandem mass spectrometer are used to determine the peptide whose
fragmentation yielded the output. Candidate peptides can be determined
by finding forbidden-pairs paths in a spectrum graph constructed from
the mass spectrometer data, assigning scores to vertices and/or edges
in order to favor higher-scoring peptides. Chen et al. gave an algorithm
to find the highest-scoring forbidden-pairs path in such a graph. How-
ever, in some scoring models, a vertex’s score may vary depending on
which incident edges are used in the path containing the vertex, rul-
ing out the use of this algorithm. We give an algorithm to solve the
highest-scoring forbidden-pairs paths problem when vertex scores can
vary depending on the incident edges used that runs in O(n2d3) time on
a graph with n forbidden pairs and a maximum vertex degree of d, and
prove its correctness. We are currently working on a Java implementation
of this algorithm that we plan on incorporating into the Illinois Bio-Grid
Desktop.

1 Introduction

In the field of proteomics, the problem of identifying the structure of an unknown
peptide in a sample is central. In particular, one may be given tandem mass spec-
trometer (MS/MS) output and want to determine the structure of the peptide
that yielded that output. There are two commonly used approaches to finding
the original peptide: database matching, where the best match is found from
a database of outputs generated by known peptides; and de novo sequencing,
where the peptide is determined solely from the MS/MS output.

While the databases of known peptides are growing, the database matching
approach still has some drawbacks. First, it requires additional information (e.g.,
the genome from which the peptide came) in order to be able to reliably deter-
mine the input peptide, and this additional information is not always available.
Second, on a peptide that has never been identified before, a database search
is likely to be fruitless. Thus de novo sequencing remains important even when
databases are available. (See, e.g., Bafna and Reinert [1], Lu and Chen [7].)

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 171–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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An output spectrum generated by a tandem mass spectrometer consists of
a list of peaks. Each peak has an intensity representing its abundance in the
output, and a value representing its mass/charge ratio. Such a spectrum is typ-
ically the end result of the application of a series of chemical and mechanical
techniques:

In
te

ns
ity

MS/MS SPECTRUM OF SVR (342.20 DA)
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Fig. 1. A hypothetical MS/MS spectrum for the peptide SVR

First, a protein is digested to yield a collection of peptides. As there may be
many different peptides in the digested sample, some technique for separating
the peptides (such as liquid chromatography) is applied.

The resulting sample is then put through a mass spectrometer, which de-
termines the mass/charge ratio and abundance of each peptide in the sample.
A sufficiently abundant peptide is selected and fragmented further by another
process (such as collisionally-induced dissociation) that often breaks the peptide
molecules between adjacent amino acids. The charge and composition of the
peptide determines where these breakages occur.

There are many types of fragment ions that can occur as a result of the
fragmentation process. When the fragmentation occurs between two amino acids
in the original peptide, prefix and suffix ions of the peptide (called, respectively,
b-ions and y-ions) are created. These are the most common types of fragments,
but there are others, including the products of neutral losses and fragments that
result from breakages that are not at the boundaries between amino acids.

The sample consisting of the various ions resulting from the fragmentation of
the peptide is put through a second mass spectrometer. The output of the sec-
ond mass spectrometer is a tandem mass spectrometer (MS/MS) spectrum. The
MS/MS spectrum, consisting of a set of (mass/charge, intensity) pairs for the
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fragments of the peptide, is used as the input to the de novo peptide sequencing
problem. In addition to the list of pairs, the total mass and charge of the peptide
(as determined by the first mass spectrometer run) are also given.

The de novo sequencing problem is to find the peptide that served as the
input to the first mass spectrometer run, given only the MS/MS spectrum and
the mass and charge of the peptide. The problem is complicated by the fact that
MS/MS spectra are often noisy – that is, they may contain peaks that are not
generated by actual fragments of the peptide but rather have some other cause,
such as a contaminant or machine error – and not all possible fragmentations
between adjacent amino acids may have occurred.

Section 2 will discuss previous work on the de novo sequencing problem and
how the problem of finding the highest-scoring forbidden-pairs path with variable
vertex scores arose from this work. Section 3 will present our dynamic program-
ming algorithm and give a sketch of a proof of its correctness. Section 4 will
briefly discuss our implementation of the algorithm and future work.

2 Previous Work

A common approach to the de novo peptide sequencing problem is to construct
a graph from a subset of the peaks in the spectrum, and find some path in the
graph that corresponds to a peptide. The goal is to find the highest-scoring path,
given some set of vertex and/or edge scores that are chosen so that higher-scoring
paths correspond to more likely peptides.

2.1 Spectrum Graphs

A spectrum graph (see, e.g., Dancik et al. [3]) is constructed by creating a vertex
for each peak in the MS/MS spectrum and for each type in a chosen set of k
fragmentation ion types (e.g., b-ion, y-ion, etc.). For each i ∈ 1, . . . , k, let δi

be the fixed amount by which the mass of an ion of the ith fragmentation type
would differ from the sum of the masses of the amino acids in that fragment.
Then for each peak in the spectrum with mass p, k vertices are created having
masses of p + δi, one for each fragmentation ion type i ∈ 1, . . . , k.

There are two additional vertices in the spectrum graph: one with a mass of 0
and one with the original mass of the peptide. If two or more vertices are created
with the same mass, they can be merged into a single vertex.

A directed edge connects two vertices in the spectrum graph if and only if the
difference between the vertices’ masses is the mass of a single amino acid. (Some
constructions include edges between vertices whose masses differ by the sum of
two or more amino acids.) All edges are directed from a smaller mass to a larger
mass, yielding a directed acyclic graph.

For an example, see Figures 1 and 2, where the construction uses the two
fragmentation ion types of b-ion and y-ion so that the ith peak in the spectrum
generates two vertices xi and yi, and two pairs of vertices have been merged.
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Fig. 2. A spectrum graph constructed from Figure 1

2.2 Forbidden-Pairs Paths

Although each peak in the spectrum graph may produce several vertices, at
most one of these vertices can be included in any path through the spectrum
graph that represents a peptide, since the vertices represent mutually exclusive
interpretations of the peak. These sets of vertices are called forbidden sets, or
in the case where only two fragmentation ion types are used, forbidden pairs. A
path that uses at most one vertex from each forbidden pair is called a forbidden-
pairs path (Dancik et al. [3] called this an antisymmetric path). Each such path
represents a peptide that may have generated the MS/MS spectrum.

Chen et al. [2] gave a dynamic programming algorithm to solve the highest-
scoring forbidden-pairs path problem for a spectrum graph. When constructing
the spectrum graph, they used the two fragmentation ion types of b-ion and
y-ion, yielding forbidden pairs of vertices. Their algorithm is as follows, where
E is the adjacency matrix of the graph and s is the edge scoring function1:

Algorithm Compute-Q(G)
1. Initialize Q(i, j) = 0 for all 0 ≤ i, j ≤ n;
2. For j = 1 to n
3. If E(yj , y0) = 1, then Q(0, j) = max{Q(0, j), s(yj, y0)};
4. If E(x0, xj) = 1, then Q(j, 0) = max{Q(j, 0), s(x0, xj)};
5. For i = 0 to j − 1

(a) For every E(yj , yp)=1 and Q(i, p)>0, Q(i, j)=max{Q(i, j), Q(i, p)+
s(yj , yp)};

(b) For everyE(xp, xj)=1 and Q(p, i)>0, Q(j, i)=max{Q(j, i), Q(p, i)+
s(xp, xj)};

x_0 y_j y_0

Fig. 3. Line 3: Starting a new pair of paths x0 and yj to y0

The algorithm runs in O(V E) time, where V = 2n + 2 is the number of vertices
in the graph (n being the number of forbidden pairs in the graph), and E is the
number of edges in the graph.
1 In Line 5 of the algorithm, Chen et al. start at i = 1, but we believe this to be a

typographical error.
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x_0 x_i

y_p

y_0y_p

y_p

y_j

Fig. 4. Line 5a: Extending an existing pair of paths from x0 . . . xi and yp . . . y0 to
x0 . . . xi and yj . . . y0

2.3 Fixed Scoring and Variable Scoring

Vertex and/or edge scores can be chosen to increase the likelihood of finding
the correct peptide by influencing which forbidden-pairs path will be returned
by an algorithm. In most scoring models, each vertex and/or edge is given a
fixed score, and the scores along a path are added to determine the score of
the path. Dancik et al. [3] gave a scoring function based on observations of the
frequencies of various fragmentation ion types in spectra generated by known
peptides that assigned “a premium for present ions [vertices] and a penalty for
missing ions [vertices].” The algorithm of Chen et al. [2] works for an arbi-
trary scoring function that is supplied as input. (We note that the technique of
scoring candidate peptides is not limited to the spectrum graph approach. Pep-
tides are also assigned scores in database matching algorithms and in de novo
algorithms that do not use spectrum graphs; see, e.g., Fisher et al. [4] and
Mo et al. [8].)

In their paper on the PepNovo system [5], Pevzner and Frank proposed a
scoring model based on conditional probabilities of different types of peptide
fragmentation occurring in observed spectra of known peptides. Their model
yields vertex scores that depend on which of the vertices’ incident edges are
used in the path. For this variable vertex scoring method, neither the algo-
rithm of Dancik et al. nor that of Chen et al. can be applied to the problem.
Pevzner and Frank stated that they used a variant of the Chen et al. algorithm
in PepNovo, but the details were not discussed in the paper nor in the PepNovo
source code.

3 Solving the Problem with Variable Vertex Scores

In this section, we present a new dynamic programming algorithm that finds the
highest-scoring forbidden-pairs path in a spectrum graph with variable vertex
scores, n forbidden pairs, and maximum vertex degree d in O(n2d3) time, and
prove its correctness. This algorithm is the first that has been proved to always
find the highest-scoring forbidden-pairs path when vertices’ scores depend on
the incident edges chosen for each vertex in the path.
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3.1 Transforming the Spectrum Graph

To accommodate variable vertex scores, we replace each vertex of the spec-
trum graph with a super-vertex containing a complete bipartite graph. This
replacement transforms a spectrum graph in which the vertex scores depend on
the incident edges used by a path into one with fixed edge scores (and no vertex
scores). We can construct a highest-scoring forbidden-pairs path in the origi-
nal graph from a highest-scoring forbidden-pairs path in the transformed graph
(where the forbidden pairs are now actually forbidden pairs of super-vertices)
by just taking the sequence of super-vertices visited.

Each bipartite graph consists of a left set of vertices with a vertex for each
incoming edge of the original vertex, and a right set of vertices with a vertex
for each outgoing edge of the original vertex. In the super-vertex for v, we call
these sets L(v) and R(v). L(x0) and R(y0) are each defined to consist of a single
vertex, named s and t, respectively. All edges in the complete bipartite graph
are directed from left to right.

e1

e7 e3

e1

e2

e4

e5

e6

e7

e3

ve2
e5

e6

e4 v

Fig. 5. The transformation of a vertex with a variable score to a super-vertex containing
a bipartite graph

To find the score for the edge from u′ in L(B) to v′ in R(B) within a super-
vertex B: Let A be the super-vertex such that u′ is the lone successor of some
vertex in R(A). Let C be the super-vertex such that v′ is the lone predecessor of
some vertex in L(C). Then the score of (u′, v′), called w(u′, v′), is defined to be
the score of the original vertex B when the incident edges used are (A, B) and
(B, C). For each edge (U, V ) in the original graph with score x, the edge from a
vertex u′ ∈ R(U) to a vertex v′ ∈ L(V ) will be given score w(u′, v′) = x also.

3.2 Our Dynamic Programming Algorithm

Previous algorithms for finding forbidden-pairs paths cannot be applied to solve
the problem on graphs with variable vertex weights. They also cannot be applied
to a transformed spectrum graph, as there are no longer the disjoint forbidden
pairs that these algorithms require – only forbidden pairs of super-vertices.

The following algorithm finds the highest-scoring forbidden-pairs path in the
transformed spectrum graph using dynamic programming, extending the ap-
proach of Chen et al. [2], as follows. We complete a two-dimensional table Q
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Fig. 6. The result of transforming the spectrum graph in Figure 2

of objects Q(i, j), 0 ≤ i, j ≤ n where n is the number of forbidden pairs in the
original spectrum graph. Each Q(i, j) contains:

– maxWeight: the maximum score of all possible pairs of paths from s in L(x0)
to some u in L(xi) and from some v in R(yj) to t in R(y0) that contain at
most one super-vertex from each forbidden pair.

– weights: a map with key set a subset of L(xi) × R(yj), where weights(u, v)
is an object containing three things:
• score: the score of the max-score paths from s to u and from v to t that

contain at most one super-vertex from each forbidden pair.
• backtrackIndices: a pair of indices in Q which will be one of (0, 0), (i, p),

or (p, j). This is used for backtracking.
• backtrackKey: a key into the weights map from Q(0, 0), Q(i, p), or Q(p, j)

depending upon if the pair of indices is (0, 0), (i, p), or (p, j). This is also
used for backtracking.

If no paths from s to u and from v to t that contain at most one super-vertex
from each forbidden pair have been discovered, or none exist, weights(u, v)
is not assigned a value in the map.

The table is constructed as follows:

1. For all i and j between 0 and n
Q(i, j).maxWeight = −∞ (except for Q(0, 0).maxWeight = 0)
Q(i, j).weights = {} (but Q(0, 0).weights = {((s, t), (0, (0, 0), (s, t)))})

2. For j = 1 to n
3. If an edge exists between some vertex u in R(yj) and v in L(y0) and

w(u, v) + w(v, t) > Q(0, j).maxWeight, set
Q(0, j).maxWeight = w(u, v) + w(v, t)
Q(0, j).weights(s, u) = (w(u, v) + w(v, t), (0, 0), (s, t))
(See Figure 7.)

4. If an edge exists between some vertex u in R(x0) and v in L(xj) and
w(s, u) + w(u, v) > Q(j, 0).maxWeight, set

Q(j, 0).maxWeight = w(s, u) + w(u, v)
Q(j, 0).weights(v, t) = (w(s, u) + w(u, v), (0, 0), (s, t))

5. For i = 0 to j − 1
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a. For each u in L(xi) and v in R(yj), compute Q(i, j).weights(u, v) as
follows:

For every super-vertex yp such that there is an edge from v to
some a in L(yp) and such that Q(i, p).maxWeight > −∞, com-
pute the max over all b in R(yp) such that Q(i, p).weights(u, b)
exists of Q(i, p).weights(u, b) + w(v, a) + w(a, b). If there are no
such yp or b, (u, v) is not given a value in the map at this time.
Otherwise, call the resulting maximum uvWeight, and let (u, b∗)
be the key to Q(i, p).weights that produces this maximum value.
Q(i, j).weights(u, v) = (uvWeight,(i, p), (u, b∗)). (See Figure 8.)

If any keys in Q(i, j).weights have a value, then do the following: Let
(u∗, v∗) be the key of the largest value of score in the map Q(i, j).weights.
Set Q(i, j).maxWeight = Q(i, j).weights(u∗, v∗).score.

b. For each u in L(xj) and v in R(yi), compute Q(j, i).weights(u, v) as
follows:

For every super-vertex xp such that there is an edge from some
a in R(xp) to u and such that Q(p, i).maxWeight > −∞, com-
pute the max over all b in L(xp) such that Q(p, i).weights(b, v)
exists of Q(p, i).weights(b, v) + w(b, a) + w(a, u). If there are no
such xp or b, (u, v) is not given a value in the map at this time.
Otherwise, call the resulting maximum uvWeight, and let (b∗, v)
be the key to Q(p, i).weights that produces this maximum value.
Q(j, i).weights(u, v) = (uvWeight,(p, i), (b∗, v)).

If any keys in Q(j, i).weights have a value, then do the following: Let
(u∗, v∗) be the key of the largest value of score in the map Q(j, i).weights.
Set Q(j, i).maxWeight = Q(j, i).weights(u∗, v∗).score.

To get the score of the highest-scoring path from Q, called W (i, j), use the
following algorithm:

6. For i = 0 to n
7. For j = 0 to n
8. If there is an edge (a, b) from vertex a in R(xi) to vertex b in L(yj) and

Q(i, j).weights has more than zero keys, compute
W (i, j).pathWeight = the maximum of

Q(i, j).weights(u, v).score + w(u, a) + w(a, b) + w(b, v) over all keys
(u, v) in L(xi)×R(yj) for which Q(i, j).weights(u, v) exists.

W (i, j).backtrack = (u∗, v∗) where (u∗, v∗) is the key to Q(i, j).weights
that maximized the value of W (i, j).pathWeight.

Otherwise (if there is no (a, b) edge or there are zero keys in Q(i, j).
weights),

W (i, j).pathWeight and W (i, j).backtrack are given no value.
(See Figure 9.)

9. The largest value of W (i, j).pathWeight, found at location (i∗, j∗), is the
score of the highest-scoring forbidden-pairs path from s to t. If no
W (i, j).pathWeight has a value, there are no forbidden-pairs paths.
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Fig. 7. Line 3: Starting a new pair of paths x0 and yj to y0. Similar to Figure 3.

Backtracking to compute the highest-scoring forbidden-pairs path is relatively
straightforward, going from (i∗, j∗) to (0, 0) using W (i∗, j∗).backtrack and the
backtrackIndices and backtrackKey fields of the Q(i, j).weights references. (De-
tails will appear in the full paper.)

3.3 Running Time Analysis and Proof of Correctness

Let d be the maximum vertex degree of the original spectrum graph. Step 1
takes Θ(n2) steps, as there are n2 elements in the table Q. Steps 3 and 4 are
each executed n times, and each execution takes O(d) steps, assuming that the
transformed graph is represented as an adjacency matrix, and that get and put
operations for the weights map take constant time. Steps 5a and 5b are each
executed Θ(n2) times, and each execution takes O(d3) steps, as for each u and v
there are up to d values of b over which we must take the maximum path score.
Finally, Steps 6-9 take a total of O(n2d2) steps, as there are Θ(n2) iterations
each taking O(d2) steps. The dominant term from Steps 5a and 5b yields an
overall running time of O(n2d3).

The correctness of the algorithm follows directly from the following theorem.

Theorem: For any i and j between 0 and n, where i < j, and for (i, j) = (0, 0),
the following eight-part predicate M(i, j) holds:

1. When the object Q(i, j) is computed by the algorithm above, we have that

(a) for every u in L(xi) and v in R(yj), weights(u, v).score is the value of
the maximum possible score of paths from s to u and from v to t that
contain at most one super-vertex from each forbidden pair (if any such
paths exist – otherwise it has no value), and

(b) for every u in L(xi) and v in R(yj), weights(u, v).backtrackIndices is the
pair of indices in Q which is one of (0, 0), (i, p), or (p, j) and results in the
maximum possible value for weights(u, v).score (if weights(u, v).score is
given a value – otherwise it has no value), and
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Fig. 8. Line 5a: Extending an existing pair of paths from x0 . . . xi and yp . . . y0 to
x0 . . . xi and yj . . . y0. Similar to Figure 4.
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Fig. 9. Line 8a: Crossing over from xi to yj
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(c) for every u in L(xi) and v in R(yj), weights(u, v).backtrackKey is the
key into the weights map of Q(weights(u, v).backtrackIndices) which re-
sults in the maximum possible value for Q(i, j).weights(u, v).score (if
weights(u, v).score is given a value – otherwise it has no value), and

(d) maxWeight is the value of the maximum possible score of paths from s
to any vertex in L(xi) and from any vertex in R(yj) to t that contain at
most one super-vertex from each forbidden pair (if any such paths exist
– otherwise it will be 0).

2. When the object Q(j, i) is computed by the algorithm above, we have that
(a) for every u in L(xj) and v in R(yi), weights(u, v).score is the value of

the maximum possible score of paths from s to u and from v to t that
contain at most one super-vertex from each forbidden pair (if any such
paths exist – otherwise it has no value), and

(b) for every u in L(xj) and v in R(yi), weights(u, v).backtrackIndices is the
pair of indices in Q which is one of (0, 0), (i, p), or (p, j) and results in the
maximum possible value for weights(u, v).score (if weights(u, v).score is
given a value – otherwise it has no value), and

(c) for every u in L(xj) and v in R(yi), weights(u, v).backtrackKey is the
key into the weights map of Q(weights(u, v).backtrackIndices) which re-
sults in the maximum possible value for Q(i, j).weights(u, v).score (if
weights(u, v).score is given a value – otherwise it has no value), and

(d) maxWeight is the value of the maximum possible score of paths from s
to any vertex in L(xj) and from any vertex in R(yi) to t that contain at
most one super-vertex from each forbidden pair (if any such paths exist
– otherwise it will be 0).

(While Parts 1 and 2 are nearly identical, they differ in that one addresses the
part of the table above the main diagonal, and the other the part below.)

Sketch of Proof: The proof proceeds by induction on (i, j); the complete proof
will appear in the full paper.

Base Case: The base case follows immediately from the initialization of Q(0, 0).

Inductive Step: Let i and j between 0 and n, i < j, be given. Assume that
M(i, j) holds for all (i′, j′) where either j′ < j or (j′ = j and i′ < i). This as-
sumption covers all objects Q(i′, j′) and Q(j′, i′) that are computed before Q(i, j)
and Q(j, i). 1(a)-(d) and 2(a)-(d) follow directly from the inductive hypothesis
and the descriptions of Steps 3-5 of our algorithm.

Together, the base case and inductive step establish that M(i, j) holds for all
i and j between 0 and n, where i < j, and for (i, j) = (0, 0). This establishes the
theorem.

It follows from the theorem and the description of Step 8 of our algorithm that
the largest of the at most (n+1)2 values of W (i, j).pathWeight must be the high-
est possible score of a forbidden-pairs path. If W (i∗, j∗).pathWeight is the largest
pathWeight in W , backtracking will construct a highest-scoring forbidden-pairs
path from x0 to y0 in the original graph that passes through xi∗ and yj∗ .
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4 Algorithm Implementation and Future Work

We have implemented our algorithm as part of a Java implementation of the
PepNovo system developed by Frank and Pevzner [5], which we hope to even-
tually incorporate into the Illinois Bio-Grid Desktop [9] suite of bioinformatics
tools. Our implementation was reverse-engineered from Frank and Pevzner’s de-
scription of their scoring algorithm and publically available C++ source code.
We have established, by consulting the source code and its authors, that our
algorithm is not the algorithm used in PepNovo. To the best of our knowledge,
the algorithm used in PepNovo has not been published elsewhere nor had its
correctness proved.

Although we have finished the implementation of our algorithm, our incorpo-
ration of it into a full implementation of the PepNovo system is still in progress.
Since our contribution is not the development of a new scoring function, but
rather the description of an algorithm that can be rigorously shown to always
find the highest-scoring forbidden-pairs path when variable vertex scores are al-
lowed, we do not expect our implementation to perform significantly differently
than PepNovo unless there are cases where our algorithm finds a highest-scoring
path that the algorithm implemented by Frank and Pevzner does not.
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The computational demands imposed by the large number of markers consid-
ered in a genome-wide association study (GWAS) have resulted in an extreme
simplification in the types of analyses conducted. While sophisticated methodol-
ogy may be used to adjust for multiple comparisons, most studies are analyzed
one marker at a time using simple tests such as the Cochran-Armitage trend
test. Though computationally simple, a significant limitation of such an analysis
paradigm is its failure to efficiently use the information contained in the GWAS
sample.

Haplotype sharing is a simple concept that attempts to translate between
population genetics and genetic epidemiology. For recent mutations that cause
disease, we would expect that haplotypes of case participants would be more
similar to each other in the immediate region of the mutation than they would
be to the haplotypes of control participants. This analysis is carried out without
specifying the underlying evolutionary history that may have given rise to this
sharing pattern, by using an ad-hoc definition of sharing between two haplotypes
such as the number of loci up- and down-stream from a test locus that are
identical by state.

In this talk, we outline the development of computationally simple asso-
ciation tests based on haplotype sharing that can be easily applied to case-
control studies on the genome-wide scale. We give tests that allow for the
use of fast (but not likelihood-based) haplotyping algorithms such as 2-SNP
(http://alla.cs.gsu.edu/ software/2SNP/), while properly accounting for the sta-
tistical uncertainty introduced by using inferred or imputed haplotypes. Finally,
we also consider the effect of covariates on haplotype sharing analyses, as many
GWAS are analyzed using covariates to adjust for the potentially confounding
effects of population stratification. The methods are illustrated by analyzing a
whole genome association study of Parkinson’s disease. This talk represents joint
work with Glen Satten of the Centers for Disease Control and Prevention.
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Abstract. The reconstruction of gene networks from microarray gene
expression has been a challenging problem in bioinformatics. Various
methods have been proposed for this problem. The incorporation of var-
ious genomic and proteomic data has been shown to enhance the learning
ability in the Bayesian Network (BN) approach. However, the knowledge
embedded in the large body of published literature has not been utilized
in a systematic way. In this work, prior knowledge on gene interaction
was derived based on the statistical analysis of published interactions
between pairs of genes or gene products. This information was used (1)
to construct a structure prior and (2) to reduce the search space in the
BN algorithm. The performance of the two approaches was evaluated
and compared with the BN method without prior knowledge on two
time course microarray gene expression data related to the yeast cell cy-
cle. The results indicate that the proposed algorithms can identify edges
in learned networks with higher biological relevance. Furthermore, the
method using literature knowledge for the reduction of the search space
outperformed the method using a structure prior in the BN framework.

Keywords: Bayesian Network, Likelihood score, Prior probability.

1 Introduction

The Bayesian Network (BN) has been proven to be useful and important in
biomedical applications such as clinical decision support systems, information
retrieval, and discovery of gene regulatory networks [1]. Automatic learning of
BNs from observational data has been an area of intense research for more than
a decade, yielding practical algorithms and tools [2]. The main approach for
learning BNs from data is based on the strategy of search-and-score, which at-
tempts to identify the most probable a posteriori network S given the data D
and prior knowledge ξ. Depending on assumptions, maximizing this probability
P (S|D, ξ) corresponds to maximizing a score function [3]. Algorithms in this
category search the space of all possible networks for the one that maximizes
the score based on greedy, local, or other search strategies. The early work in the
reconstruction of gene networks has been dependent on the use of microarray
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data alone, largely ignoring existing prior biological knowledge [1], [4]-[8]. More
recent work has shown that prior knowledge such as transcription factor binding
data can be complementary to microarray data in a BN framework [9]-[12]. In
the work of Hartemink et al. [9], the transcription factor binding information
is incorporated into a structural prior to model the yeast galactose metabolism
and pheromone response pathways [7],[9]. Tamada et al. [11] integrate the learn-
ing of transcription factor binding sites along with the learning of the genetic
network. In such a framework, it is difficult to isolate the quantitative effects
of increasing amounts of prior knowledge on learning performance, as the mo-
tif finder cannot be forced to learn a specific amount of prior knowledge. In a
closely related work [12], a list of protein-protein interactions is mined and fed
into the structural prior. As this prior knowledge is of a very specific type, the
biological implications of protein-protein interactions are exploited in the learn-
ing scheme by adding nodes representing protein complexes. Other recent work
allows the integration of multiple types of prior knowledge into a BN framework
[13]. Werhli et al. [14] used Bayesian approach to systematically integrate ex-
pression data with multiple sources of prior knowledge. The previous research
mentioned above mostly focused on the integration of high-throughput experi-
mental data in the BN approach. The existing large body of published literature,
however, is ignored. In this study, BN algorithms using a structure prior obtained
from previously published literature are proposed for the inference of gene regu-
latory networks. In order to construct a structure prior, we use the likelihood of
interaction (LOI), presented in our previous work [15], for each pair of genes or
gene products based on a statistical analysis of published interactions with the
Gene Ontology molecular function annotations for the interacting partners in
a specific organism. The effective incorporation of this prior knowledge is then
investigated through two ways. One is using the method of the search-and-score
by imposing the structure prior in the learning algorithm. The other approach
is using the prior knowledge to restrict the search space, which is similar to the
constraint-based algorithm [16]. The difference is that in the constraint-based
approach the constraints are derived from data while the constraints in our al-
gorithm are derived from the published literature. The algorithms based on these
two approaches are evaluated with two microarray datasets and compared with
the BN algorithm without using prior knowledge.

2 Dataset

In this study, two subsets of microarray gene expressions related to cell-cycle
dependent genes in the budding yeast Saccharomyces Cerevisiae microarray ex-
periments [17] were used for the validation of the algorithms. These microarray
experiments were designed to create a comprehensive list of yeast genes whose
transcription levels were expressed periodically within the cell cycle. The first
subset is the time course expression profiles of 102 genes that include 10 known
transcription regulators and their possible regulation targets [18]. The second
subset is comprised of 999 expression profiles of the most cyclically regulated
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genes in the microarray experiments. The gene expressions of cell cycle synchro-
nized yeast cultures were collected over 18 time points taken in 7-minute inter-
vals. This time series covers more than two complete cycles of the cell division.
It is highly enriched for known interacting genes involved in the Saccharomyces
cell cycle. For this study, the true interactions were derived from the database
of PathwayAssist [19] by submitting the list of genes and querying for instances
of published interactions between these genes limited to interaction types ex-
pression and regulation. PathwayAssist is a bioinformatics tool that identifies
possible interactions between gene products through a natural language search
algorithm of all available PubMed published abstracts. Given an input set of
query genes or gene products, PathwayAssist searches the database of published
abstracts, seeking instances in which genes are identified as interacting according
to the information found in available PubMed abstracts. The nature of interac-
tions (expression, regulation, genetic interaction, binding, protein modification,
and chemical modification as defined in that software package) can be used to
screen for specific types of interactions. The software returns the set of interac-
tions with the PubMed references from which those interactions were identified.
The 102-gene set has 171 true interactions and the 999-gene set contains 729
true interactions. Gene expression profiles in both datasets were discretized for
the BN analysis. For each gene, an average of expression values across all time
points was calculated. Each time point was assigned a binary value according to
whether the expression value at that time point was above or below this average
expression value.

3 The Likelihood of Interaction (LOI) Scores

This study utilizes the concept of Likelihood of Interaction (LOI) scores for gene
interaction pairs developed in our previous study [15]. The LOI-score is a mea-
sure of the likelihood that a gene or a gene product with a particular molecular
function influences the expression of another gene or a gene product. This likeli-
hood is derived from the analysis of published gene interactions and their molec-
ular functions. More specifically, if two genes closely resemble by their molecular
functions from previously observed interaction pairs, then they will be considered
likely to interact. For the derivation of LOI-scores, a set of 2457 yeast genes was
selected from the Saccharomyces cerevisiae database of PathwayAssist 3.0 and
used to identify directed gene pairs of interaction types Expression, Regulation,
and Protein Modification as defined in that software package [19]. These gene
interactions are suggested by 4,192 observed interactions from the automated
PubMed literature search. The 23 GO Molecular Function (MF) annotations
specified by the Saccharomyces Genome Database SGD GO Slim Mapper [20]
were considered for the annotation of the regulator and the target genes. The
details of deriving the LOI score for each pair of GO annotations can be found
in [15]. A negative LOI-score indicates that a particular GO MF annotation pair
occurs less frequently than expected by random chance. A positive LOI-score
indicates an interaction between GO MF annotations occurs more frequently
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than expected at random. A score near zero indicates that the frequency occurs
at a level near that expected by random. The calculated LOI-scores for GO MF
annotation pairs was used to generate the LOI-scores for all possible gene inter-
action pairs of in the subsets of the yeast cell cycle microarray data. The 23 GO
MF annotations described previously were applied to the genes in the subsets.
For a possible interaction pair between two genes, their annotations were used
for the assignment of a LOI-score for the likelihood of that interaction from the
previously calculated table of LOI-scores. If a gene possesses multiple annota-
tions, then a LOI-score was averaged between all possible pairs of annotations
for a given potential interaction pair. More details on the LOI-method can be
found in [15].

4 Bayesian Network Learning Algorithms

A BN is a directed acyclic graph, in which the nodes correspond to genes or their
products and the edges correspond to direct probabilistic dependencies, such as
causality, mediation, activation, and inhibition between the genes. Given mi-
croarray gene expression data D, the BN method discovers a network S such
that the posterior probability P (S|D) is maximized. This posterior is propor-
tional to the likelihood P (D|S), i.e., P (S|D) ∝ P (D|S) if there is no prior
assumed. When the prior knowledge ξ is applied, then the posterior is propor-
tional to the product of the likelihood and prior knowledge on the network,
i.e.,P (S|D, ξ) ∝ P (S|ξ)P (D|S, ξ). The term P (S|ξ) denotes the prior proba-
bility of the network S. The main approach developed for the search of highly
scored networks in BNs is to search in the space of direct acyclic graphs (DAGs)
[1],[22]. This task is carried out through operations including edge reversal, edge
addition and edge deletion on a randomly generated network structure. The K2
score [3] was often used to evaluate the networks generated. For a given network
S, this score is defined as the likelihood

P (D|S) =
n∏

i=1

qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk!, (1)

where Nijk is the number of cases in D in which variable ξ has the kth value, qi

is the number of parents for i, and ri the number of possible values of variable
ξ. Thus,

Nij =
ri∑

k=1

Nijk. (2)

When the prior probability is considered, the K2 score can be modified as follows
for a network S.

P (S|ξ)P (D|S, ξ) = P (S|ξ)
n∏

i=1

qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk!. (3)
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The aim of building a prior from the background knowledge is to bias the search
for a BN toward a model that contains the preference expressed in this prior.
Whenever there is not much evidence in the data against the experts’ beliefs,
the search will not be biased.

4.1 The Algorithm BN-NP: Using No Prior Knowledge

This algorithm consists of the following steps. First, generate a fixed number nT

of networks where each edge is included with an equal probability p (p = 0.5).
Next, compute the K2 score for each of the nT networks using formula (1).
Select the one with the highest score and store the corresponding network S∗.
Then generate nT new random networks based on the probability determined as
follows. Each edge in the network S∗ is selected with a probability p1; an edge
not in S∗ is selected with probability p0 = 1 − p1. Then compute the K2 score
for each of the nT networks. Select the one with the highest score. If this score
is higher than the previous best score, then store the corresponding network.
Repeat this process m times. The parameter p1 determines how much confidence
in each edge will go in the next iteration and was empirically determined at 0.8;
we chose m = 50 for the 102-gene set and m = 10 for the 999-gene set.

4.2 The Algorithm BN-P: Using Prior Probability Derived from
LOI-Scores

The structure prior was constructed from the partial knowledge on the under-
lying network structure. We specified our confidence in possible connections be-
tween gene pairs based on the p-values of the LOI-scores. If the p-value of an
LOI-score is significant, then the corresponding interaction is believed to be more
likely. Conversely, if the p-value of an LOI-score is insignificant, then our belief
of the corresponding gene pairs to be interacting should be lower. The detailed
assignment of prior probability for gene pairs is described as follows.

A p-value (pij) is calculated for the LOI-score of a gene interaction pair (ij)
assuming normal distribution of the LOI-score. The structure prior for the edge
from node i to node j is then assigned as:

πij = p(i→ j) = 1− pij , p(i · · · j) = 1− πij = pij , (4)

where i → j and i · · · j mean that there is an edge or no edge from node i to
node j, respectively. Let eij denote the random variable which takes value 1 if
there is an edge from node i to node j and takes value 0 if there is no edge
between the node i and j. Then from the Bernoulli distribution the probability
for random variable eij is:

p(eij |ξ) = π
eij

ij (1− πij)1−(eij). (5)

The structure prior constructed in this way is only an informal prior. A formal
prior for the BN structure S = (E, V ), where E is the set of edges and V is the
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set of vertices such that an acyclic digraph, can be written as follows:

P (S|ξ) = c
∏

i,jεV,i�=j

P (eij |ξ), (6)

where c is a normalizing constant. The normalizing constant c can be fixed at
1, as the actual magnitude of c does not affect structure searching [23]. In this
algorithm, formula (3) is used to compute the K2 score and the nT networks
are generated based on the prior probability assigned to the edges using formula
(6). The procedure for generating networks after the initial step is the same as
that in the algorithm BN-NP.

4.3 The Algorithm BN-RP: Using Restricted Prior Knowledge

Both algorithms BN-NP and BN-P require the consideration of all nodes as
potential candidates of a given node, which leads to expensive computational
time. In the algorithm BN-RP, we restrict the possible candidates to those edges
with significant LOI-score p-values. The set of these edges is called the LOI-
score restricted set. The algorithm BN-RP samples primarily edges from this
restricted set for network generation. However, it also samples edges not in this
set, that is, samples edges that have insignificant p-values for LOI-scores with a
smaller probability. The algorithm can be described as follows. First, generate
nT random networks by sampling edges from the LOI-score restricted set with
probability p1, and sampling edges not in the LOI-score restricted set with a
small probability p0 = 0.2. Then compute the K2 score with formula (1) for
each of the nT networks. Select the one with the highest K2 score and store the
corresponding network S∗. Next, generate nT new random networks based on
the probability determined as follows. An edge in the network S∗ is selected with
a probability p1; an edge not in the network S∗ but in the LOI-score restricted
set is selected with probability (1−p1)p2; and an edge not in either of the above
categories is selected by probability (1−p1)(1−p2). Then compute the K2 score
with formula (1) for each of the nT networks and select the one with the highest
K2 score. Store the corresponding structure S∗ if its score is higher than the
previous best score. Repeat the process m times. The parameters used here are
p0=0.2; p1=0.8; p2=0.6. The p-value thresholds for LOI-scores were 5.12e-17 for
the 102-gene set and 3e-5 for the 999-gene set, respectively.

5 Results

The performances of the three BN algorithms described previously were com-
pared using two datasets mentioned earlier. We set nT = 50 for the 102-gene set
and nT = 10 for the 999-gene set. The results are summarized in Table 1. The
criteria used for performance evaluation include recall, percentage of included
edges (%Incl. edges) and precision (Prec.). Recall is defined as the ratio of the
number of true interactions in the learned network to the number of total pub-
lished interactions. The percentage of included edges is defined as percentage
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of the total interactions found in the learned network to the total edges in a
complete graph, in which there is an edge between every pair of nodes. Precision
is defined as the ratio of the number of previously published edges to the num-
ber of total interactions in the learned network. Note that within this particular
cell-cycle experiment, not all truths can be found, because the literature is the
aggregation of biological findings over different experimental conditions. There-
fore, recall and precision reported in the results should not be interpreted in
the same way when evaluating the performance of a learning method, although
the definitions are the same. To evaluate the novel interactions discovered by the
BN methods, percent of interaction pairs that share at least one GO Biological
Process (BP) annotation (%Sharing GO-BP Annotation) was also considered.
Note that GO-BP annotations are not used in derivation of prior knowledge.
The GO-BP annotations were selected the SGD GO Slim Mapper [21].

For the 102-gene dataset, each algorithm was repeated 50 times and for the
999-gene dataset, each algorithm was repeated 10 times due to the lengthy com-
putation time. The average and the standard deviation (in parentheses) of the
outcomes are reported in Table 1. For the 102-gene dataset, each algorithm was
repeated 50 times and the average and the standard deviation (in parentheses) of
the 50 outcomes are reported in Table 1. The result with the algorithm BN-NP
has a lower accuracy (18.11%) and higher percentage (1.57%) of included edges
in comparison with those of (22.50%) and (1.54%) respectively obtained with
BN-P. The algorithm BN-RP reached the highest accuracy (25.70%) and lowest
percentage (1.46%) of included edges with this dataset. In terms of precision, the
algorithm BN-RP generated the highest (29.02%) compared to those of (19.10%)

Table 1. Performance of the three algorithms

% % Sharing % % Sharing
Methods Incl. Recall Prec GO-BP Incl. Recall Prec GO-BP

Edges % % Annotation Edges % % Annotation

102-gene dataset 999-gene dataset
1.57 18.11 19.10 27.51 1.10 22.81 1.50 9.01

BN-NP
(0.055) (0.004) (0.012) (0.062) (0.0009) (0.0043) (0.0012) (0.0016)
1.54 22.50 24.61 28.20 1.04 25.92 1.80 9.39

BN-P
(0.036) (0.004) (0.016) (0.052) (0.0004) (0.0050) (0.0006) (0.0003)
1.46 25.70 29.02 29.92 1.02 26.20 1.91 9.46

BN-RP
(0.048) (0.003) (0.011) (0.072) (0.0002) (0.0140) (0.0013) (0.0022)

and (24.61%) for the algorithms BN-NP and BN-P respectively. Furthermore,
the shared GO-BP annotations with the algorithm BN-RP also is the highest
(29.92%) in comparison with (27.51%) and (28.20%) obtained from BN-NP and
BN-P respectively. From these comparisons it appears that the algorithm BN-RP
performs much better than the other two methods.
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For the 999-gene dataset, the average and the standard deviation (in parenthe-
ses) of the 10 outcomes are summarized in Table 1. The results indicate a similar
behavior of the algorithms in comparison to that with the 102-gene set. The algo-
rithm BN-RP has the lowest percentage (1.02%) of included edges compared with
(1.10%) and (1.04%) obtained from the algorithms and BN-NP and BN-P respec-
tively. The recall achieved by the algorithm BN-RP is (26.20%) which is higher
than (22.81%) and (25.92%) by the algorithms BN-NP and BN-P respectively.
Similarly, the algorithm BN-RP has the highest precision of (1.91%) compared
to (1.50%) and (1.80%) obtained from the algorithms BN-NP and BN-P respec-
tively. The reduction in the percentage of the total included edges in the case
of BN-RP compared with the case of BN-NP is about (0.08%). This percentage
looks small, however, the reduced number of included edges is 79,760, which is
substantial. The percents of interactions sharing at least one GO-BP annotation
between the regulator and the target in the learning networks are also summa-
rized in Table 1. The pattern observed in the results with the 102-gene dataset
is also in presence in those with the 999-gene dataset. The percent is (9.01%)
with the algorithm BN-NP, increased to (9.39%) with the algorithm BN-P, and
further elevated to (9.46%) with the algorithm BN-RP. From these comparisons
it appears that the algorithm BN-RP performs much better than the other two
methods by these four criteria. Another benefit in using the algorithm BN-RP
is the reduction in computational time. This is because that the algorithm BN-
RP searches mainly among the specified nodes for potential parents based on
the threshold for statistical significance for the LOI-scores, while the other two
algorithms search among the entire set of variables for possible parents.

Consistency of generated networks. Since each run of the algorithm gener-
ates a different network, it is necessary to examine how different these networks
are for repeated calculations. Naturally, if the data support a causal relation-
ship strongly, it is expected that the corresponding edge is more likely to appear
in the result of multiple runs. Therefore, an interaction will be considered in
the final network if it is observed in more than 30 out of the 50 networks. The
algorithm BN-RP again outperforms the other two algorithms in terms of the
criteria used Table 2.

we also compared our methods with the LOI-method proposed in [15] for the
102-gene set. Even though using LOI-score produces higher recall (83.04%) and
higher percentage of sharing GO-BP (36.21%), the percentage of included edges
for the network is also higher (21.70%), which may contain many false positives.
The precision (6.30%) is the lowest compared to the results from the three BN
algorithms.

Biological interpretation. The final interaction network generated by the al-
gorithm BN-RP based on the procedure defined in the previous section was
further analyzed for its potential biological significance. The regulation of chro-
mosome structure relative to progression through cell cycle is highlighted in the
subnetwork in figure 1, in which all of the gene nodes downstream of histone genes
HHT1, HTA1, HTA2, HTB1, and HTB2 in the network can be found. Histones
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Table 2. Results for the final network obtained from the 50 runs on the 102 gene
dataset

Methods % Included Recall Prec % Sharing GO-BP
Edges % % Annotation

BN-NP 1.60 18.8 19.51 26.51

BN-P 1.53 22.4 24.30 27.72

BN-RP 1.51 23.1 25.39 28.65

Fig. 1. Histone regulation In this figure, the subnetwork downstream of histones is
identified. Nodes are colored according to their annotations of cell cycle stage specificity,
except for the histone genes at the center of the figure which are white. Red lines are
regulatory interactions downstream of a node annotated as a transcription factor. All
other regulatory interactions are blue. Solid lines are those interactions identified in
PathwayStudio as previously published, dashed lines are interactions not identified as
previously published.
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Fig. 2. Histograms of LOI-score for edges appeared in the final networks. BN-NP (red),
BN-P (yellow) and BN-RP (blue).

are proteins involved in chromatin assembly or disassembly (GO:0006333). In
the figure 1, nodes are highlighted according to the specific cell cycle stage to
which they have been associated [17]. Histones in this network are shown to reg-
ulate key genes in the cell cycle transcriptional program. Though it is unlikely
that histones directly regulate expression, it is easy to hypothesize that activity
of histones can make genes available for transcription [24]-[27]. As described, the
histones are shown to regulate the transcription factor SWI5. The histones are
also critical for the packing of chromosomes prior to entering mitosis, as might
be the case for HTA1 regulating BUD4 at the juncture of G2 and M stages. The
histone HHT1 is identified to regulate G2 to M phase gene CLB2 along with pre-
viously published observations for regulations by mitosis phase regulating CBF2
and CDC20. This suggests that a change in chromatin structure is similarly cru-
cial to CLB2s regulation of mitosis as the more direct gene expression regulation
interactions. Although our method cannot identify cycles, considering the regu-
lation of histone genes as a functional unit allows the network to be arranged in
a regulatory system that successfully connects all stages of the cell cycle.

Finally, an inspection was also made for the final networks obtained from
BN-P and BN-RP. Ten out of the 26 common edges are previously published
interactions, indicating the similarity between BN-P and BN-RP. This feature
can be further confirmed from the histograms of the LOI-scores of edges appeared
in the final networks Figure 2. The algorithm BN-RP identified more edges with
higher LOI-scores. Considering that structure prior could be ignored if the data
support strongly certain evidence [28], it may be reasonable to conclude that
the prior knowledge derived from published the literature enhances the learning
ability of BN for reconstruction of gene networks from gene expressions. The
algorithm BN-RP seems to be more capable in identifying interactions with
biological relevance than the algorithm BN-NP.
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6 Conclusion

A structure prior has been derived from the published literature for the use in the
Bayesian network approach for the inference of gene networks using microarray
data. Two ways for the incorporation of the prior knowledge have been investi-
gated. Compared with not using any prior knowledge, the proposed algorithms
demonstrated enhanced capability in recovering the underlying network struc-
ture. Furthermore the proposed algorithm in this study is expected to be more
efficient in the reconstruction of network due to its simplicity and efficiency.
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Abstract. Network Component Analysis (NCA) has shown its effectiveness in 
regulator identification by inferring the transcription factor activity (TFA) when 
both microarray data and ChIP-on-chip data are available. However, the NCA 
scheme is not applicable to many biological studies due to the lack of complete 
ChIP-on-chip data. In this paper, we propose an integrative NCA (iNCA) ap-
proach to combine motif information, limited ChIP-on-chip data, and gene  
expression data for regulatory network inference. Specifically, a Bayesian frame-
work is adopted to develop a novel strategy, namely stability analysis with topo-
logical sampling, to infer key TFAs and their downstream gene targets. The 
iNCA approach with stability analysis reduces the computational cost by avoid-
ing a direct estimation of the high-dimensional distribution in a traditional 
Bayesian approach. Stability indices are designed to measure the goodness of the 
estimated TFAs and their connectivity strengths. The approach can also be used 
to evaluate the confidence level of different data sources, considering the inevi-
table inconsistency among the data sources. The iNCA approach has been  
applied to a time course microarray data set of muscle regeneration. The experi-
mental results show that iNCA can effectively integrate motif information, ChIP-
on-chip data and microarray data to identify key regulators and their gene targets 
in muscle regeneration. In particular, several identified TFAs like those of 
MyoD, myogenin and YY1 are well supported by biological experiments. 

Keywords: Network component analysis, gene regulatory networks, microarray 
data analysis, ChIP-on-chip, muscle regeneration. 

1   Introduction 

With recent advances in biotechnology, genome-wide data in different levels provide 
complementary information about molecular mechanisms underlying various diseases. 
                                                           
* Corresponding author. 
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Particularly, high-throughput biological data have enabled us to study genome systems 
from a global perspective that may lead to a better understanding of their underlying 
biological processes [1]. Many computational methods have been proposed to identify 
gene modules, interactions and pathways in biological systems [2-5]. Among them, 
most methods assume that the expression activity of an entire gene population results 
from a much smaller number of latent factors such as transcription factors. This as-
sumption not only coincides with the modular view of biological systems, but it also 
makes the computational task much easier [2].  For gene regulatory network modeling, 
there are two major trends in the literature: the first trend is to use  clustering methods 
to explore the similarity in expression patterns [2], whereas the second trend uses de-
composition methods to infer latent (hidden) factor activities [3-5].  

It is often difficult to interpret the results from pure computational approaches due 
to the lack of supporting biological knowledge support. Biological regulatory systems 
are complex in nature, and key activities may occur simultaneously in the genome, 
transcriptome and proteome. Hence, any computational model based only on mRNA 
measurements may be too simple to describe the entire system. Recently, many re-
searchers have tried to integrate multiple data sources to infer and reconstruct biologi-
cal networks. For example, network component analysis (NCA) is a topological 
knowledge based algorithm that utilizes both protein binding data and gene expres-
sion data to reveal underlying transcription factor activities [6]. NCA has been shown 
to be effective in finding cell cycle regulators in yeast. Despite its success in yeast 
data, some issues prevent NCA to infer regulatory networks other than in yeast. First, 
complete biological connection data, such as high-throughput ChIP-on-chip data, are 
often not (or only partially) available for common species including rodent and hu-
man. Second, when different heterogeneous data sources are integrated for computa-
tional inference, the consistency of different data sources is often not guaranteed. 
Third, since topological knowledge (network connections) also comes from biological 
experiments, this knowledge likely also contains many false-positives/negatives that 
can lead to incorrect network inference.   

In this paper, we propose a Bayesian principled integrative NCA (iNCA) approach 
for regulatory network inference. First, the topology information is augmented by 
combining motif information, ChIP-on-chip data and relevant published data. Second, 
with the awareness of false-positives contained in any given information, calculated 
priori or empirical priori can be given in order to validate the reliability of the final 
estimation. Third, our scheme has remarkable computational efficiency, when com-
pared with its Bayesian counterparts [7, 8], in algorithm implementation. The concept 
comes from topological sampling, but we avoid the burden of the high computation 
cost and the large data requirements of direct distribution estimation. Instead, a stabil-
ity index, pair-wise correlation measurement, is designed to evaluate the goodness of 
the estimated TFAs. A second stability index, a confidence measure by frequency 
count, is utilized to rank the most significant downstream targets of the TFs. More-
over, given the average frequency count from different knowledge sources, the incon-
sistency among different data sources can also be evaluated.  

The iNCA scheme has been applied to a muscle regeneration microarray data set 
for regulatory network inference. With our new scheme, not only several key tran-
scription factors participating in regeneration process were identified, but also their 
activities across the time points were correctly estimated. The downstream genes of 
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MyoD were also identified by ranking the frequency count; the higher ranked gene 
group did show more significant relationship with MyoD. Finally, the averaged fre-
quency count score clearly showed the difference between two ChIP-on-chip sources: 
Myoblast (undifferentiated muscle) and Myotube (differentiated muscle), and the 
difference was consistent with the biological understanding of the muscle regenera-
tion process. 

2   Method 

2.1   Network Component Analysis (NCA) 

Network Component Analysis (NCA) is a computational method to infer latent fac-
tors and the connection relationship of a network, given the initial topology (connec-
tion) information and the measurement of gene expression. In Fig. 1, we illustrate the 
NCA approach with an example from muscle regeneration studies [9]. The mathe-
matical model of NCA can be formulated as 

0

,

. . ,

N M N L L MA

s t A Z

× × ×=

∈

E T
                                               (1) 

where E is the observation, A connection matrix, T latent factors, and Z0 the initial 
topology of the network. L is the number of latent (hidden) factors, M the number of 
experiment conditions, and N the number of genes.  

 

                                         (a)                                                                 (b) 

Fig. 1. An illustrative example for the NCA approach as in muscle regeneration studies. The 
network topology is formed by the connection matrices of the transcription factors (TFs) such 
as YY1 and MyoD to their target genes as shown in (a). The main objective of the NCA ap-
proach is to estimate the transcription factors’ activities (TFAs) and their target genes via the 
estimated connection matrices as shown in (b). 
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As illustrated in Fig. 1, the latent factors are the transcription factors such as YY1 
and MyoD; the network topology is formed by the connection matrices of the TFs to 
their target genes. The main objective of the NCA approach is to estimate the tran-
scription factors’ activities (TFAs) and their target genes. The NCA optimization 
criterion can be simply denoted as [6]:  

2

0

min || || ,

. . .

N M N L L MA

s t A Z

× × ×−

∈

E T
                                        (2) 

The NCA algorithm was originally developed for gene regulatory network recon-
struction. The model (1) can be interpreted in this way:  the N genes’ expression  
pattern under M different conditions can be seen as a combination effect of L tran-
scription factors (TFs). Note that it is well accepted that a linear model only holds 
after log-ratio transform [6]:  

log( ) log( )N M N L L Mr A r× × ×=E T ,                                      (3) 

where ( ) / (0) ( 1,..., ; 1,..., )ij ij ijr E t E i M j N= = =E  and ( ) / (0)kl kl klr T t T=T  

( 1,..., ;k L=  ; 1,..., )l M=  are ratios of gene expression values and transcription factor 

activities (TFAs), respectively. In the original NCA scheme, the topology information 
Z0 is provided by the ChIP-on-chip data [10]. With the ChIP-on-chip data available in 
yeast, NCA has been successfully applied to yeast stress response and cell cycle ex-
periments. Among the estimated TFAs with an oscillation pattern, 75% correspond to 
known cell-cycle regulators [11].  However, this NCA scheme is not readily applica-
ble to many other biological studies due to the lack of topology information.  In the 
next section, we will use motif information as a practical means to obtain the initial 
topology information for NCA. 

2.2   Motif Analysis for Initial Topology Information 

A transcription factor (TF) is a protein that regulates its target gene’s transcription by 
binding to a specific regulatory motif in the DNA of the promoter region(s). Thus, we 
can utilize regulatory motif information to establish the putative topologic relation-
ship between a TF and a downstream target gene. Below we propose a motif analysis 
procedure to obtain the initial topology information for network reconstruction.  

First, the upstream regions of the genes can be extracted from the database Pro-
moSer [12]. Second, Match™ [13] (or its improved version, P-Match [14]) can be 
used to search the transcription factor binding sites (TFBSs) in each upstream region; 
this approach generates the scores of both “core similarity” and “matrix similarity” 
for each matched motif. Third, Match™ searches the TFBS using its position-
weighted matrices (PWMs) that can be extracted from the TRANSFAC 11.1 Profes-
sional Database [15]. Fourth, according to the PWMs, a motif score can be calculated 
for each TF-gene pair where the score is the maximum of the average scores of core 
similarity and matrix similarity. These motif scores provide the initial topology in-
formation for further iNCA analysis as is detailed in the next section.  

Note that each motif is a relative short sequence pattern, thus the topology from 
motif information is merely a rough estimation and will usually include many false 
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positives/negatives. While the topology information is often unreliable for any spe-
cific TF-gene pair, we can still infer some key transcription factor activities from gene 
expression and DNA sequence information using the stability analysis procedure 
developed in the next section. 

2.3   Integrative Network Component Analysis (iNCA) 

If we regard the network topology knowledge (i.e., connection matrices; hereafter 
denoted as K) as priori and expression measurements (E) as observations, the Bayes-
ian interpretation of the NCA learning algorithm can be applied to maximize the pos-
terior probability as following: 

   Pr( , / , )A T E K ,                                                        (4) 

where A and T are defined as in Equation (1). Traditional NCA assumed that K is 
“almost” deterministic and with the identifiable conditions, a solution with posterior 
probability of one can be obtained [6]. However, we know that not only the knowl-
edge itself contains false positives, but different knowledge sources are also prone to 
introducing topology inconsistency. Therefore, the overall posterior probability 
should be formulated as: 

  Pr( , , / ) Pr( , / , )Pr( )A A=T K E T E K K .                                 (5) 

In Equation (5), 
1

Pr( ) Pr( )
S

i
i

K
=

= ∏K approximates a joint priori probability of S differ-

ent knowledge sources (Ki, i=1,…,S). For example, we can calculate the correspond-
ing priori probability from sequence motif’s position-weighted matrix (PWM) score, 
or from ChIP-on-chip data’s p-value [7].  However, it is still a high-dimensional dis-
tribution estimation problem to maximize the posterior probability in Equation (5). In 
the past, some researchers proposed to use Gibbs sampling technique to directly esti-
mate the distribution, which, unfortunately, suffers from a very high computation cost 
and biased parameter estimation when limited data samples are available [8, 11].          

Here, we propose an alternative approach to avoid direct estimation of posterior 
probability for iNCA. The basic idea is to apply a stability analysis together with 
topological sampling. Stability analysis was originally proposed to perform model 
selection for unsupervised learning, where the number of clusters can be correctly 
estimated [16]. The basic idea of stability analysis is that if a small perturbation is 
introduced equally in different model order, the best consistency will only occur when 
the model fits correctly the underlying structure of the data.  

Here we develop a stability analysis procedure to assess the estimation results of 
iNCA. Since true functional data on TFAs are usually unavailable, we must establish 
whether an estimated TFA is a reliable estimate or if this prediction has arisen by 
error or by chance. When the topology information, from motif analysis and/or ChIP-
on-chip data, contains many false positives/negatives, we must also determine which 
TFAs are the reliable estimates of underlying transcription factor activities, or 
whether these are simply random outcomes. 

If we intentionally perturb the network topology, each of the estimated TFAs  
will change. A falsely or poorly estimated TFA tends to be altered easily by small 
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perturbations and will appear to be unstable. On the contrary, a good TFA estimation, 
reflecting the consistency between microarray expression data and topology knowl-
edge, will tend to keep its activity pattern throughout multiple perturbations. There-
fore, random perturbations should be performed multiple times to test the stability of 
each predicted TFA. 

Algorithm 1: 
Sample the topology from knowledge prior distribution Pr( )K for P times. 
For i = 1,…,P         

Maximize Pr( , / , ) Pr( )i i iA A T T E K K K  to obtain iT (via NCA).
End of sampling 

For j = 1,…,L (i.e., the jth TF)
thCompute stability measurements of TFA

{| ( ( ), ( )) | }j j p q

j
CorrCoef TFA p TFA q .          

End of the jth TF 
 

To be concrete, under specific conditions (given the expression observations E), 
not all the regulators or TFs from the literatures play the same role; some of them play 
a key role relevant to the biological study, and some are not relevant at all. Intuitively, 
the relevant ones tend to have a consistent estimation with observations E when mod-
erate perturbations introduced. In other words, moderate perturbations are unlikely to 
destroy the estimate. Alternatively, given the priori distribution of knowledge, the 
posterior distribution of a relevant TF will tend to have a narrow distribution (around 
the true solution).  Therefore, we propose to measure the pair-wise similarity of each 
TF after different topological sampling to the knowledge set K. This stability-based 
algorithm is summarized in Algorithm 1. 

Note that in the stability measurement, p and q correspond to different topological 
samplings, respectively. CorrCoef()  is the Pearson correlation coefficient function. 
When stability measurements of a specific TFA are obtained, we can use several 
statistics including mean and variance estimates to describe a predicted TFA’s robust-
ness with respect to perturbation. In this paper, we use boxplot to visualize the stabil-
ity measurement, simultaneously depicting its minimum, 25% percentile, median, 
75% percentile, and maximum. 

Similarly, we do not need to estimate the distribution of A, but to rank A according 
to the same TF. That is to find which genes are the most significant downstream tar-
gets of a specific TF. Although A describes the controlling strength from TFs to 
genes, we do not need to estimate the exact value of A. Rather, we try to find out 
whether this connection is the most significant connection, or equivalently, whether 
this connection is kept with a high frequency when different knowledge distribution 
samplings are applied. Hence, we propose a simple stability index (confidence meas-
ure by frequency count) to measure the connection strength in this paper. The stabil-
ity-based approach is summarized in Algorithm 2. 

From the approach above, we can obtain different subsets from different knowl-
edge sources according to the same frequency count threshold. Even above the same 
frequency count threshold, the variability between different knowledge sets will result  
 



202 C. Wang et al. 

Algorithm 2: 
Sample the topology from knowledge prior distribution Pr( )K for P times. 
For i= 1,…,P (in our experiments, we set P = 1000) 

  Maximize Pr( , / , ) Pr( )i i iA A T T E K K K  to obtain iA (via NCA). 
     
     For j = 1,…,L (i.e., the jth TF) 

            

For a specific TF, set a threshold TOP_RANK (e.g., TOP_RANK = 100).  
If the j-th TF’s controlling strength to the l-th gene ( , )iA j l  is among the 
top TOP_RANK of all the ( , )iA j l , l=1,...,N, frequency count is 
incremented by one to the corresponding position: 

                 , , 1j l j lCount Count .
   End of the jth TF  
End of sampling 

 

in different average frequency counts, from which we can evaluate the quality of 
knowledge sources themselves. 

3   Experimental Results 

3.1   Data Set Description 

Staged skeletal muscle degeneration/regeneration was induced by injection of cardio-
toxin (CTX) as previously described [17]. Two mice were injected in gastrocnemius 
muscles of both sides, and then sacrificed at each of the following time points: 0, 
12h(ours), 1d(ay), 2d, 3d, 3.5d, 4d, 4.5d, 5d, 5.5d, 6d, 6.5d, 7d, 7.5d, 8d, 8.5d, 9d, 9.5d, 
10d, 11d, 12d, 13d, 14d, 16d, 20d, 30d, and 40d. The time course microarray data set 
was acquired with Affymetrix’s Murine Genome U74v2 Set from an expression  
profiling study at CNMC. We used Affymetrix's MAS 5.0 probe set interpretation 
algorithm to process the original intensity data for gene expression measurements. 
After the processing, we obtained the expression measurements of 7570 probe sets in 
each sample.   

3.2   Initial Topology Information  

From the TRANSFAC 11.1 Professional Database, 24 mouse muscle related tran-
scription factors were selected for motif analysis (see Fig. 2). According to their posi-
tion weighted matrices (PWMs), possible connection topology was calculated. As 
described in the previous section, each possible connection has a motif score obtained 
from the TRANSFAC database. In this study, the connections from motif analysis 
with score above 0.98 were kept for further analysis. In addition, ChIP-on-chip  
experiments on a specific TF, MyoD, were done in two conditions: Myoblast (MB; 
undifferentiated muscle) and Myotube (MT; differentiated muscle). For MyoD’s 
ChIP-on-chip data, the connections whose binding p-values below 0.01 were kept for 
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further analysis. It is worth noting that for the cells (c2c12) used for the ChIP-on-chip 
data, MyoD is expressed in both MB and MT. But for the in vivo study (the cells used 
for 27 time point microarray data), MyoD expression is barely detectable in MB (re-
siding in non-injected muscles), but increasing greatly during the transition of MB to 
MT (muscle regeneration). 

3.3   Integrative NCA and Stability Analysis 

From Equation (3), we know that a log-ratio operation should be performed on the 
data set to ensure that the linear model holds. We chose the last (27th) time point sam-
ple as the reference for calculating the ratios, because it is at the 40th day, the late 
stage of the muscle regeneration, is considered to provide a normal muscle reference.  

In this experiment, 1000 times of independent topological samplings were carried 
out. The priori of motif knowledge was set to 0.5, and the priori of ChIP-on-chip 
knowledge was set to 0.7. Thus, each motif-based connection has a 50% chance to be 
randomly deleted during the topological sampling, and each ChIP-on-chip based con-
nection has a 30% chance to be randomly deleted during the sampling. The stability 
measurement was calculated; the resulting boxplot is shown in Fig. 2. It can be seen 
from Fig. 2 that some of estimated TFAs are stable during perturbation, including the 
TFAs of YY1, myogenin and MyoD (shown in red in Fig. 2).  In the procedure, for 
each sampling the top 100 connections with MyoD were added with one frequency 
count. The confidence measure by frequency count is shown in Fig. 3 for the down-
stream gene targets of MyoD. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

A
bs

ol
ut

e 
pa

ir 
w
is
e 

co
rr
el
at

io
n

Transcription factor Index

m
yo

ge
ni
n

T
al
-1

al
ph

a:
E
47

N
F
-Y

al
ph

a-
C
P
1

E
2A

N
K
X
25

N
kx

2-
5

T
A
T
A

T
B
X
5

M
yo

D

S
R
F

T
B
P

G
A
T
A
-4

G
A
T
A

E
47 E
12

Y
Y
1

M
E
F
-2

U
S
F

U
S
F
2

T
al
-1

be
ta

:E
47

E
bo

x

S
p1

H
an

d1
:E

47

. 

Fig. 2. Stability measurements using the first perturbation procedure. The boxes with red color 
are the stability measurements of YY1, myogenin and MyoD, respectively. 

Because all the topology information contains false-positives and it is inappropriate 
to fit to specific muscle regeneration data, stability analysis is used to find those tran-
scription factors with stable estimated activities throughout the random sampling 
procedure. Although there are more than ten stable TFAs from the analysis, we focus 
here on three: MyoD, myogenin, and YY1. From the literature, these three TFs are 
key regulators of muscle differentiation [17-19]. In Fig. 4, we show the expression 
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profiles and corresponding TFAs of these three TFs. It can be seen from Fig. 4 that 
these predicted TFAs are biologically relevant to muscle regeneration because the 
TFAs exhibit sudden increases in their log expression ratios after muscle injury and 
these values gradually decrease in the later stages of muscle regeneration when the 
tissue has almost completed regeneration.  

For YY1, a large difference between its measured gene expression level and in-
ferred TFA is evident in Fig. 4(a) and Fig. 4(b). The YY1 gene expression log-ratio is 
relative low when compared with other TFs, and its trend has no obvious relationship 
with muscle regeneration. However, the inferred TFA shows a close relationship with 
the regeneration process. This is supported by a biological study [19] that reported an 
inconsistency between YY1 protein and mRNA expression levels and showed an 
important role for YY1 in mouse muscle differentiation. Specifically, YY1 acts as a 
transcription repressor, down-regulating muscle gene expression in undifferentiated 
muscle cells [20]. During muscle differentiation, YY1’s activity is decreased, which 
leads to the induction of muscle gene expression. The reduction in YY1 activity oc-
curs at the protein rather than mRNA level. YY1 protein is degraded by a protease, 
calpain II (m-calpain), in differentiating muscle cells [19]. Thus, our inferred YY1 
TFA from the muscle regeneration data set is well supported by the biological  
observation of an induction of calpain II and relatively less change of YY1 mRNA 
expression in muscle regeneration. It can also be observed that calpain II’s mRNA 
expression levels have a very similar pattern with our estimated YY1 TFA, with a 
correlation coefficient of r>0.9. 
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Fig. 3. Gene expression patterns of (a) YY1, (b) myogenin, and (c) MyoD, respectively; esti-
mated TFAs of (d) YY1, (e) myogenin, and (f) MyoD, respectively. Note: x-axis – time points; 
y-axis – log expression ratio (a, c and e) or log TFA ratio (b, d, e). 
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Using the frequency count in Fig. 4(a), we fed the top 100 downstream genes into 
the Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com). The most signifi-
cant network involved with MyoD is shown in Fig. 4(b), which is highly related to 
muscle development and differentiation. As we can see from Fig. 4(b), there are 16 
directly related genes with MyoD, and several key muscle regeneration factors (MYC, 
MYOG, and MEF2C) involved. This indicates that MyoD’s regulatory power extends 
beyond its immediate downstream targets, as it may also control other TFs that 
propagate the signals initiated by MyoD. 

Although the two different ChIP-on-chip data sets (76 probe ids from MB and 100 
probe ids from MT) were treated equally in the sampling, from a biological perspec-
tive these come from very different experimental backgrounds. The MB list was  
obtained from undifferentiated muscle cells, and the MT list was obtained from dif-
ferentiated muscle cells. The MT list should be more consistent with muscle regenera-
tion microarray data than the MB list, since muscle regeneration is mainly involved 
with muscle differentiation after injury. From the frequency count obtained by topo-
logical sampling, a threshold of 100 was chosen to calculate the top probe ids’ aver-
age frequency count, that is, only the downstream probe ids which have more than 
100 times appearing in the top 100 were chosen. From these analyses we obtained 14 
probe ids from the MB list with an average frequency count of 245.9 (out of 1000 
independent samplings), and 32 probe ids from the MT list with an average frequency 
count of 333.4 (out of 1000 independent samplings). Therefore, the downstream tar-
gets in the MT list have a larger average frequency count than those in the MB list. 
The difference indicated that there are more downstream targets of MyoD in MT than 
MB, which seems consistent with the biological understanding of the experiments. 
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Fig. 4. (a) The sorted frequency count of MyoD’s target genes; x-axis is the sorted downstream 
targets’ index of MyoD, and y-axis is the corresponding frequency count. (b) The most signifi-
cant network involved with MyoD from the Ingenuity Pathway Analysis. 

4   Conclusions 

In this paper, we propose a Bayesian principled, integrative network component 
analysis (iNCA) approach, to infer underlying regulatory activities by integrating 



206 C. Wang et al. 

motif information, ChIP-on-chip and gene expression data. Since many false posi-
tives/negatives likely exist in both motif information and ChIP-on-chip data, we have 
further developed a stability analysis procedure for iNCA to extract stable TFAs and 
their downstream gene targets. To reduce the computational cost and the amount of 
required for traditional Bayesian approaches, we specifically designed the stability 
indices to measure the goodness of the estimated TFAs and their connectivity 
strengths. The iNCA scheme was applied to a time course microarray data set from a 
muscle regeneration profiling study. The experimental results show that our new 
approach can reveal both key regulators and their target genes, and also discover 
novel regulatory mechanisms potentially involved in muscle regeneration. By further 
incorporating biological knowledge, we hope to extend this approach to analyzing 
muscle dystrophy data for novel pathway discovery and biomarker identification [9]. 

Acknowledgments. This research was supported in part by NIH Grants (NS29525-
13A, EB000830, CA109872 and CA096483) and a DoD/CDMRP grant (BC030280).  

References 

1. Slonim, D.K.: From patterns to pathways: gene expression data analysis comes of age. Nat. 
Genet. 32, 502–508 (2002) 

2. Segal, E., et al.: Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003) 

3. Lee, S.I., Batzoglou, S.: Application of independent component analysis to microarrays. 
Genome. Biol. 4(11), 76 (2003) 

4. Gong, T., et al.: Latent Variable and nICA Modeling of Pathway Gene Module Composite. 
In: Engineering in Medicine and Biology Society, 2006. EMBS 2006. 28th Annual Inter-
national Conference of the IEEE, pp. 5872–5875 (2006) 

5. Pascual-Montano, A., et al.: bioNMF: a versatile tool for non-negative matrix factorization 
in biology. BMC Bioinformatics 7, 366 (2006) 

6. Liao, J.C., et al.: Network component analysis: reconstruction of regulatory signals in bio-
logical systems. Proc. Natl. Acad. Sci. USA 100(26), 15522–15527 (2003) 

7. Chen, G., Jensen, S.T., Stoeckert Jr., C.J.: Clustering of genes into regulons using inte-
grated modeling-COGRIM. Genome. Biol. 8(1), 4 (2007) 

8. Sabatti, C., James, G.M.: Bayesian sparse hidden components analysis for transcription 
regulation networks. Bioinformatics 22(6), 739–746 (2006) 

9. Bakay, M., et al.: Nuclear envelope dystrophies show a transcriptional fingerprint suggest-
ing disruption of Rb-MyoD pathways in muscle regeneration. Brain 129(Pt 4), 996–1013 
(2006) 

10. Lee, T.I., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Sci-
ence 298(5594), 799–804 (2002) 

11. Yang, Y.L., et al.: Inferring yeast cell cycle regulators and interactions using transcription 
factor activities. BMC Genomics 6(1), 90 (2005) 

12. Halees, A.S., Leyfer, D., Weng, Z.: PromoSer: A large-scale mammalian promoter and 
transcription start site identification service. Nucleic. Acids. Res. 31(13), 3554–3559 
(2003) 

13. Kel, A.E., et al.: MATCH: A tool for searching transcription factor binding sites in DNA 
sequences. Nucleic. Acids. Res. 31(13), 3576–3579 (2003) 



 Integrative Network Component Analysis for Regulatory Network Reconstruction 207 

14. Chekmenev, D.S., Haid, C., Kel, A.E.: P-Match: transcription factor binding site search by 
combining patterns and weight matrices. Nucleic Acids. Res. 33(Web Server issue), 432–
437 (2005) 

15. Matys, V., et al.: TRANSFAC and its module TRANSCompel: transcriptional gene regula-
tion in eukaryotes. Nucleic Acids. Res. 34(Database issue), 108–110 (2006) 

16. Lange, T., et al.: Stability-Based Model Selection. In: Advances in Neural Information 
Processing Systems (NIPS 2002) (2002) 

17. Zhao, P., et al.: In vivo filtering of in vitro expression data reveals MyoD targets. C R 
Biol. 326(10-11), 1049–1065 (2003) 

18. Blais, A., et al.: An initial blueprint for myogenic differentiation. Genes. Dev. 19(5), 553–
569 (2005) 

19. Walowitz, J.L., et al.: Proteolytic regulation of the zinc finger transcription factor YY1, a 
repressor of muscle-restricted gene expression. J. Biol. Chem. 273(12), 6656–6661 (1998) 

20. Galvagni, F., et al.: The dystrophin promoter is negatively regulated by YY1 in undifferen-
tiated muscle cells. J. Biol. Chem. 273(50), 33708–33713 (1998) 



A Graph-Theoretic Method for Mining

Overlapping Functional Modules in Protein
Interaction Networks�

Min Li1, Jianxin Wang1,��, and Jianer Chen1,2

1 School of Information Science and Engineering,
Central South University, Changsha 410083, P.R. China

2 Department of Computer Science,
Texas A&M University, College Station, TX 77843, USA

limin@mail.csu.edu.cn,jxwang@mail.csu.edu.cn,chen@cs.tamu.edu
http://netlab.csu.edu.cn

Abstract. Identification of functional modules in large protein interac-
tion networks is crucial to understand principles of cellular organization,
processes and functions. As a protein can perform different functions,
functional modules overlap with each other. In this paper, we presented
a new algorithm OMFinder for mining overlapping functional modules
in protein interaction networks by using graph split and reduction. We
applied algorithm OMFinder to the core protein interaction network of
budding yeast collected from DIP database. The experimental results
showed that algorithm OMFinder detected many significant overlapping
functional modules with various topologies. The significances of identi-
fied modules were evaluated by using functional categories from MIPS
database. Most importantly, our algorithm had very low discard rate
compared to other approaches of detecting overlapping modules.

Keywords: protein interaction network, functional module, graph.

1 Introduction

Proteins are central components of cell machinery and life [1]. Large-scale in-
teraction detection methods have resulted in a large amount of protein-protein
interaction data. Such data can be naturally represented in the form of networks.
System level analysis and understanding of protein interaction networks is one
of the most fundamental challenges in post-genomic era. Accumulating evidence
suggests these protein interaction networks are organized by functional mod-
ules, which are cellular entities performing certain biological functions [2,3,4,5,6].
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Identification of functional modules is crucial in understanding the principles of
cellular organization and unveiling functional and evolutionary mechanisms.

A wide range of graph clustering algorithms have been developed to identify
functional modules from protein interaction networks. All these methods can be
categorized into three groups: partitional clustering, hierarchical clustering and
density-based clustering.

Partitional clustering approaches partition a network into multi separated
sub-networks. As a typical example, the Restricted Neighborhood Search Clus-
tering (RNSC) algorithm [7] explores the best partition of a network using a cost
function. It starts with randomly partitioning a network, and iteratively moves
a node from one cluster to another to decrease the total cost of clusters. It can
get the best partition by running multi-times. However, it needs the number
of clusters as prior knowledge and its results depend heavily on the quality of
initial clustering.

Hierarchical clustering approaches have been applied widely for identifying
functional modules [6,8,9,10,11]. Hartuv and Shamir use minimum cut set to di-
vide network recursively [8]. Girvan and Newman decompose a network based on
the graph theoretical concept of betweenness centrality [9]. Luo and colleagues
also use betweenness and develope an agglomerate algorithm named MoNet [6].
Several approaches have been proposed for weighting protein-protein interac-
tions. Pereira-Leal and colleagues propose an approximate solution to weight a
protein interaction based on the number of experiments that support the inter-
action [10]. Another method is to weight the distance between two proteins by
the length of the shortest path between them [11]. However, the method usually
generates many identical distances and leads to a ”tie in proximity” problem
during hierarchical clustering [6].

As a disadvantage, partitional clustering approaches and hierarchical cluster-
ing approaches can only generate separated functional modules. In fact, func-
tional modules overlap with each other, since a protein can be included in several
different functional modules to perform different functions [12,13].

Density-based clustering approaches focus on detecting highly connected sub-
networks. An extreme example is to identify all fully connected subgraphs [14].
Mining fully connected subgraphs only is too strict to be used in real biological
networks. A variety of alternative methods have been proposed to detect dense
subgraphs by using a density threshold [15,16,17]. Recently, several density-based
clustering approaches have attempted to detect overlapping functional modules
[12,18]. However, such methods of detecting highly connected subnetworks ne-
glect many peripheral proteins that connect to the core protein clusters with
few links, even though these peripheral proteins may represent true interactions.
In addition, biologically meaningful functional modules that do not have highly
connected topologies are ignored by these approaches [6].

To mine overlapping functional modules with various topologies, we present
a new graph-theoretic-based algorithm, named OMFinder. Recent results of an-
alyzing biological networks show that highly connected proteins in the networks
play an important role in evolution and likely participate in multiple biological
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progresses [19,20,21,22,23]. Based on this fact, we divide the proteins into two
classes of high-degree and low-degree nodes and constrain only the high-degree
nodes can belong to multiple functional modules. We split the original graph G
into three subgraph Gh, Gl and Gb, where Gh is a subgraph representing the
relations between high-degree nodes, and Gl is a subgraph representing the rela-
tions between low-degree nodes, and Gb is a subgraph representing the relations
between high-degree nodes and low-degree nodes. Each operation is only in one
separated subgraph, which improves the efficiency of the algorithm effectively.
We apply algorithm OMFinder to the core protein interaction network of bud-
ding yeast in DIP database. The experiment results show that our algorithm
OMFinder can detect many significant functional modules effectively. Most of
the identified modules overlap with each other.

2 Methods

The protein interaction network can be represented as an undirected, un-weighted
graph G(V, E) with proteins as a set of nodes V and interactions as a set of edges
E. As the protein interaction networks are scale-free, and they are dominated
only by a few nodes known as hubs. We proposed a new graph-theoretic-based
algorithm for detecting overlapping functional modules in protein interaction
networks. Distinguishing from other methods, we defined the graph G as a su-
perposition of three subgraph Gh, Gl and Gb. According to the three subgraphs,
we constructed a reduced graph for G. And, we constrained that only the infor-
mative nodes could belong to more than one functional modules. Based on the
graph split and reduction, we developed a new algorithm, named OMFinder.

2.1 Informative Proteins Selection

Recently, the small world effect and scale-free property of protein interaction
networks have been investigated extensively [19,20,21,22]. The small world is
characterized by small average length of the shortest paths and large clustering
coefficient. The scale-free networks follow a power law degree distribution, the
probability of a node in which has a degree k is approximated by P (k) ≈ αk−r

with 1 < r < 3. The scale-free of protein interaction networks shows that only a
few nodes (known as hubs) have very large degrees, while most other nodes have
very few interactions. Genome-wide studies show that deletion of a hub protein
is more likely to be lethal than deletion of a non-hub protein [20,21,23]. Thus,
we select the nodes with large degrees as informative proteins from the protein
interaction networks.

2.2 Graph Split and Reduction

The nodes in the protein interaction networks can be divided into two classes,
namely informative and non-informative proteins. More precisely, we define a
graph G with node set V (G) that is composed of two disjoint subsets Vh ⊂ V (G)
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and Vl ⊂ V (G), where Vh is the set of high-degree nodes, and Vl is the set of low-
degree nodes, and |Vh|+ |Vl| = |V (G)|. Then the edge e(u, v) in the graph G can
be grouped into three classes: eh(u, v ∈ Vh), el(u, v ∈ Vl), and eb(u ∈ Vh,v ∈ Vl

or u ∈ Vl, v ∈ Vh). Let Eh = {eh}, El = {el}, and Eb = {eb}. A graph G
can be viewed as a superposition of three subgraph Gh(Vh, Eh), Gl(Vl, El) and
Gb(Vb, Eb). A simple example is illustrated in Fig. 1. Suppose we select two
nodes of the highest degrees, which are marked in black in the original graph G,
as informative nodes. Then the graph G can be separated into three subgraph
Gh, Gl and Gb. The subgraph Gl is divided into three separated subgraphs S1,
S2, and S3. This is a common phenomenon known as centrality-lethality rule in
protein interaction networks. If the subgraphs of Gl are reduced as nodes, named
S-nodes, then the original graph G can be rebuilt as Fig. 2(a). If four nodes are
selected as informative nodes from the original graph G, then graph G can be
reduced as Fig. 2(b).

Fig. 1. An example for that a graph G is a superposition of three subgraph Gh, Gl

and Gb. Node 1 and node 2 are two informative nodes of graph G, whose degrees are
largest. Graph Gl is divided into three separated sub-graphs S1, S2, and S3.

In Fig.2, the solid edge (eh) connects two high-degree nodes and the dashed
edge connects a high-degree node and a S-node. We construct a dashed edge
between a high-degree node and a S-node, if there is one interaction between the
low-degree nodes (in subgraph S) and the high-degree node in Gb. To measure
how strongly the S-nodes connect to the informative nodes, we define the weight
of the dashed edge as:

whS =
|EhS |
|VS | (1)
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(a)                            (b)

Fig. 2. The reduced graph of G. The arc edge connects two high-degree nodes, and
the dashed edge connects a high-degree node and a S-node. (a) node 1 and node 2 are
informative nodes, S1={3,4,5,6,7}, S2={8,9,10},S3={11,12,13,14,15}; (b) node 1, node
2, node 3 and node 4 are informative nodes, S1={5}, S2={6},S3={7}, S4={8,9,10},
S5={11,12,13,14,15}.

Here, |EhS | is the total number of edges between the high-degree node and the
low-degree nodes in subgraph S, and |VS | is the number of nodes in subgraph S.

In biological networks, the high-degree nodes act as hubs and are essential
to the networks. Jeong and colleagues analyzed the topologies and functions
of 43 metabolic networks of different organisms. They found that all the 43
metabolic networks were scale-free and were dominated by the same highly con-
nected substrates, while less connected substrates preferentially served as the
educts or products of species-specific enzymatic activities [19]. Most of the sub-
strates were only concerned with one or two metabolic reactions, only a few of
substrates were concerned with multiple metabolic reactions. For protein inter-
action network, it is also a scale-free network and its highly connected nodes have
the same property. We obtained protein lethality data from the MIPS database
[24]. For the essential proteins annotated in FunCat [25], more than 80% have
two or more annotations. Most of the highly connected nodes in protein inter-
action networks are essential. Thus, in the protein interaction networks, it is
more likely for the highly connected proteins having multiple functions than the
less connected proteins. In the reduced graph model, we constrained the S-nodes
could only be separated into one module, and the high-degree nodes could be
separated into multiple modules. Since several highly connected proteins may
be concerned with the same biological progress together, we first group them
by enumerating all the fully connected subgraphs in Gh. Then the predigested
graphs in Fig. 2 can be reduced to the bipartite graphs showed in Fig.3.

We define the node reduced from the fully connected subgraph as C-node.
The weight of the relation between a C-node and a S-node is defined as:

WCS =
∑

h∈C

whS (2)

A S-node may be relate to several C-nodes. To constrain each S-node belongs
to one functional module, we only construct an edge between the S-node and a
C-node when the weight of the relation between them is maximum. Then, each
S-node has only one C-node connecting to it. In contrast, a C-node may have
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S1 S2 S3

C1

    

C1 C2

S1 S2 S3 S4 S5

(a)                        (b)

Fig. 3. The bipartite graph H reduced from Fig.2. The high-degree nodes are grouped
by enumerating the fully connected subgraphs in Gh. (a) Node 1 and node 2 are
informative nodes, C1={1,2}; (b) Node 1, node 2, node 3 and node 4 are informative
nodes, C1={1,2}, C2={1,3,4}.

several S-nodes connecting to it. Then, the separated subgraphs in the bipartite
graph H are the functional modules.

3 Experiments and Results

We downloaded the budding yeast core protein interaction network (version
ScereCR20070107) from DIP, the Database of Interacting Proteins [26]. We re-
moved all the self-connecting interactions and the repeated interactions from
the original network. The final core protein interaction network includes 2528
yeast proteins and 5734 interactions. We use a parameter PI (Percentage of
Informative proteins) to control the number of the informative nodes selected.

3.1 Identification of Overlapping Modules

We implemented OMFinder to analyze the core protein interaction network.
By changing the values of parameter PI from 20% to 40%, we achieved five
different output sets of modules from the protein interaction networks. As shown
in Table 1, the number of identified modules with size ≥ 3 was increasing with
the increase of PI. On the contrary, the number of identified modules with
size ≥ 8 was decreasing as PI increased. The average size of the identified
modules and the size of the biggest module were both decreased as PI increased.
This showed the modules identified by OMFinder became more and smaller when
PI increased.

Most of the identified modules shared common proteins. To evaluate their
overlapping rate, we counted the number of the appearances across different
modules for each protein. The average overlapping rates of identified modules
with different values of PI were shown in Table 1. As PI increased, the average
overlapping rate was slightly increased.

Cho, Hwang, and their colleagues showed that discarding the sparsely con-
nected proteins could be a fatal decision which might loose the important bi-
ological information [27,28]. To evaluate how many proteins neglected by the
identified modules, we define the discard rate (Dr), as shown in formula (3).
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Table 1. The effect of parameter PI on clustering

Parameter Number of the identified modules Average Max Overlapping

PI size ≥ 3 size ≥ 5 size ≥ 8 size size rate

PI = 20% 746 319 121 5.68 94 1.58

PI = 25% 886 346 107 5.14 45 1.73

PI = 30% 1024 345 95 4.74 39 1.84

PI = 35% 1143 344 68 4.44 39 2.13

PI = 40% 1263 323 55 4.22 37 2.05

Dr =
|V | − | ∪ Mi|

|V | (3)

where |V | was the total number of proteins in the network, | ∪ Mi| was the
number of proteins included in all the identified modules with size larger than
a given threshold. Since a module with size = 2 only represents one interaction
with little information, a significant functional module should include at least
3 proteins. The discard rates of the identified modules generated by OMFinder
using different values of parameter PI were shown in Fig.4. As shown in Fig.4,
our method OMFinder had a very low discard rate, which was lower than 10%
for the identified modules with size equal or larger than 3. However, CFinder
and Maximal Clique both had a very high discard rate of more than 50%. If
only the modules with size ≥ 5 were considered, there were approximatively
90% proteins neglected by Maximal Clique.

3.2 Statistical Assessment and Functional Annotation

The P-value from hypergeometric distribution was often used to estimate whether
a given set of proteins was accumulated by chance. It has been used as a cri-
teria to assign each identified module a main function [7,16,22]. Here, we also
calculated P-value for each identified module and assigned a function category
to it when the minimum P-value occurred. The computing formula of P-value
[7,16,22] was defined as:

P = 1 −
k−1∑

i=0

(|F |
i

)(|V |−|F |
|M|−i

)

( |V |
|M|

) (4)

where |M | was the number of proteins in an identified module, |F | was the num-
ber of proteins in a reference function, and k was the number of common proteins
between the functional group and the identified module. Low P-value indicated
that the module closely corresponded to the function because the network had
a lower probability to produce the module by chance [13].

The functional classification of proteins used in this paper was collected from
the MIPS Functional Catalog (FunCat) database. FunCat [25] was an annotation
scheme of tree-like structure for the functional description of proteins. There
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Fig. 4. The comparison of discard rates of OMFinder and other two methods: CFinder
and Maximal Clique

were up to 6 levels of increasing specificity and 1360 functional categories in
FunCat. We obtained 215, 219, 205, 181 and 159 modules with size ≥ 6 when
using PI=20%, 25%, 30%, 35%, and 40%. The number of the identified modules
(size ≥ 6) with P < 0.01 and with P < 0.001 generated by different values of
PI was shown in Table 2.

Table 2. The number of modules (size ≥ 6) generated by OMFinder using different
values of PI with P < 0.01 and P < 0.001, respectively

Parameter PI = 20% PI = 25% PI = 30% PI = 35% PI = 40%

Number of all modules 215 219 205 181 159
Number of modules(P < 0.01) 212 214 200 176 153
Number of modules(P < 0.001) 189 195 178 153 113

For all the identified modules generated with different values of PI, there were
more than 96.2% and 83% modules matching well with known functional cate-
gories with P < 0.01 and P < 0.001, respectively. Table 3 showed annotations
for some identified modules (size ≥ 10) with P < 1.0 × 10−10, where PI=25%
was used.

3.3 Accuracy Analysis

Recall and precision are two important aspects to estimate the performance of
algorithms for detecting functional modules. Recall is the fraction of the true-
positive predictions out of all the true predictions, and precision is the fraction of
the true-positive predictions out of all the positive predictions. The calculation
formulae [13] of recall and precision are:
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Table 3. Annotations of the identified modules (size ≥ 10) with P < 1.0 × 10−10. All
the identified modules are generated by using PI = 25%.

ID Size P-value Function Unknown proteins
1 21 < 1.00 × 10−30 mitochondrial transport YJL064W
2 20 < 1.00 × 10−30 rRNA processing -
3 15 < 1.00 × 10−30 electron transport YBR281C;YGR210C
4 11 1.11 × 10−16 chromosome condensation -
5 17 2.22 × 10−16 rRNA synthesis YIL141W;YJR087W
6 25 1.55 × 10−15 general transcription activities YLR123C;YMR102C;YHL023C
7 13 3.33 × 10−15 microtubule cytoskeleton -
8 25 4.44 × 10−15 DNA repair YJL043W; YFL042C
9 16 2.67 × 10−13 enzymatic activity regulation YLR190W

/enzyme regulator
10 16 6.31 × 10−13 proteasomal degradation -

(ubiquitin/proteasomal pathway)
11 13 9.06 × 10−13 metabolism of energy reserves -

(e.g. glycogen, trehalose)
12 11 4.80 × 10−12 cell wall YFR044C
13 17 7.22 × 10−12 regulation of nitrogen utilization YIL152W;YDR078C;YLR376C;

YHL006C
14 21 6.79 × 10−11 splicing YGR021W; YPL105C
15 15 7.28 × 10−11 vacuole or lysosome -
16 10 7.65 × 10−11 perception of nutrients and Q06966

nutritional adaptation

recall =
|M ∩ Fi|

|Fi|
(5)

precision =
|M ∩ Fi|

|M | (6)

Here, Fi is a functional category mapped to module M. The proteins in func-
tional category Fi are considered as true predictions, the proteins in module
M are considered as positive predictions, and the common proteins between Fi

and M are considered as true positive predictions. It is obvious that the larger
module is likely to have higher recall and lower precision. If we generate all the
proteins in one module, then its recall will be equal to 1. In contrast, the module
with smaller size tends to have higher precision and lower recall. As an extreme
case, if we generate a single protein as one module, then we have the maximum
value of precision. In general, f -measure is used as a harmonic mean of precision
and recall. The f -measure [13] is defined as formula (7).

f − measure =
2 ∗ precision ∗ recall

precision + recall
(7)

For each identified module, we calculated its f -measure to assess its accuracy.
As shown in Fig.5, for the same f -measure, the number of the identified modules
generated by OMFinder was all more than that generated by CFinder, the former
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was about five times more than the latter. Though the number of the identified
modules generated by Maximal Clique was close to those generated by OMFinder
for the same f -measure, Maximal Clique discard too many proteins.
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Fig. 5. The number of identified modules with respect to f−meaure ≥ 0.1, 0.2, · · · , 1.0

4 Conclusions

Functional modules play a special role in biological networks, which are rela-
tively independent units performing certain biological functions. Many graph
clustering methods have been developed to detecting functional modules in pro-
tein interaction networks. However, most of the previous methods can not detect
the overlapping functional modules by generating separate subraphs. And, a few
existed methods for identifying overlapping modules focused on detecting highly
connected subgraphs, which neglected many peripheral proteins.

In this paper, we present a new graph-theoretic-based algorithm for identify-
ing overlapping functional modules in protein interaction networks. We divide
the proteins into two classes, namely high-degree and low-degree nodes, respec-
tively. Based on the fact that highly connected proteins in biological networks
play an important role in evolution and likely participate in multiple biological
progresses, we constrain that only the high-degree nodes can belong to multiple
functional modules. We split the original graph G into three subgraph Gh, Gl

and Gb. Each operation is only in one separated subgraph, which improves the
efficiency of the algorithm effectively. Our algorithm OMFinder is implemented
in C++. We applied algorithm OMFinder to the core protein interaction net-
work of budding yeast in DIP database. Many significant functional modules
were detected. Of all the 219 identified modules with size ≥ 6 (PI = 25%),
more than 96.2% corresponded to P < 0.01, and more than 86.8% corresponded
to P < 0.001. We predicted functions for previous unknown proteins by assigning
the identified modules a main function with the lowest P-value. We identified
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more overlapping functional modules with high recall and precision than pre-
vious methods CFinder. Most importantly, our algorithm OMFinder can cover
most of the proteins in the network, which neglect few peripheral proteins. As a
new graph-theoretic method, we think that it will be helpful to detect functional
modules and to analyze the topologies of biological networks.

Acknowledgments. The authors wish to thank Adamcsek B., Palla G., Farkas
I., Derenyi I., and Vicsek T for sharing their program of CFinder.
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Abstract. Many algorithms have been proposed to date for the problem
of finding biologically significant motifs in promoter regions. They can be
classified into two large families: combinatorial methods and probabilistic
methods. Probabilistic methods have been used more extensively, since
their output is easier to interpret. Combinatorial methods have the po-
tential to identify hard to detect motifs, but their output is much harder
to interpret, since it may consist of hundreds or thousands of motifs.
In this work, we propose a method that processes the output of com-
binatorial motif finders in order to find groups of motifs that represent
variations of the same motif, thus reducing the output to a manageable
size. This processing is done by building a graph that represents the co-
occurrences of motifs, and finding communities in this graph. We show
that this innovative approach leads to a method that is as easy to use
as a probabilistic motif finder, and as sensitive to low quorum motifs
as a combinatorial motif finder. The method was integrated with two
combinatorial motif finders, and made available on the Web.

1 Introduction

An important open problem in computational biology is related with the accu-
rate identification of biologically meaningful nucleotide sequences in promoter
regions, that correspond to loci of attachment of transcription factors. These
well conserved regions are usually referred to as consensus sequences or motifs.
Motif finding is the problem of discovering these motifs without prior knowledge
of their characteristics. Motif finding has been the subject of intense research
and literally hundreds of papers have been published on this topic [1].

Currently available methods for motif finding can roughly be classified in two
main classes: probabilistic and combinatorial.

Probabilistic methods have been extensively used, and they identify very well
the strong signals present in the data, i.e., motifs that occur in a large fraction of
the sequences. They have difficulties identifying weaker signals, that correspond
to motifs that are present only in a subset of sequences, possibly superimposed
with stronger signals.

Combinatorial methods, on the other hand, when executed with the right
parameters, can identify both strong and weak signals. They suffer, however,
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c© Springer-Verlag Berlin Heidelberg 2008



Identification of Transcription Factor Binding Sites in Promoter Regions 221

from a significant drawback. When executed with parameters that allow them
to identify motifs that are present in only a small fraction of the sequences,
they will deluge the user with a large, possibly huge, number of motifs, that
correspond to many variations of the motifs of interest. In fact, since motifs are
not perfectly conserved, many variations of the most common motifs will be
reported by a combinatorial motif finder, since these variations will appear in a
significant fraction of the sequences.

In this work, we propose a method for the identification of motifs that com-
bines the advantages of probabilistic motif finders (easy to use, no parameters
required) and combinatorial motif finders (ability to identify even the weaker
signals) while avoiding the disadvantages of both.

We achieve this by post-processing the results of combinatorial motif finders,
and identifying the motifs that are variations of the same signal. These motifs
are then combined into a composed representation, and a position weight matrix
(PWM) is generated for that set of motifs. The identification of the motifs that
are, in reality, variations of the same motif, is done by computing the modules
(or communities) in a graph. This graph has one node for each motif found, and
one edge between two motifs if they have significant occurrence overlap.

2 Basic Concepts and Related Work

2.1 Motif Finders

The most used probabilistic algorithms for motif finding are based on the applica-
tion of the Expectation-Maximization [2] method (EM) like PROJECTION [3]
and MEME [4] or its stochastic counterpart, Gibbs sampling [5]used by Alig-
nACE [6], BioProspector [7] and GibbsDNA [5]. These methods use a two-
phase iterative procedure where, in the first step the likeliest occurrences of the
motif are identified, based on a model computed in the previous iteration. The
second step adjusts the model for the motif (usually a position weight matrix)
based on the occurrences determined in the previous step. In the first iteration
the parameters of the initial model are usually set randomly. This iterative pro-
cedure converges usually in a rapid way to motifs that are present, possibly with
mutations, in a large fraction of input sequences. They report their results in
the form of PWMs, that represent directly the obtained model.

Combinatorial methods, which extract motifs consisting of plain nucleotide
sequences work by enumerating the possible patterns, either explicitly or implic-
itly [8,9],and counting their quorum. Consider a set of sequences under analysis,
S = {S1, S2, . . . , St}. The objective is to find motifs within a range of lengths
lmin, . . . , lmax, which occur on q ≤ t of the sequences in S with at most e mis-
matches, i.e., having at most e nucleotide substitutions. Algorithms that look
for complex motifs have also been proposed [10,11]. Complex motifs are built
of two or more simple motifs, spaced by a number of bases that falls within a
specific range.

For this work we selected the combinatorial motif finders MUSA [12] and
RISO [10]. MUSA is an algorithm that does not require the user to specify
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parameters (such as box lengths and distances between boxes) in order to extract
motifs. This method relies on a biclustering algorithm that operates on a matrix
of co-occurrences of small motifs. Requiring as input a list of gene promoter
sequences, MUSA returns the list of structured or simple motifs found, ordered
by their p-value, and their quorum. RISO is a complex motif extraction tool.
It searches for complex motifs with certain characteristics specified by the user,
through the assignment of a set of parameters such as the number and sizes
of the boxes that form the structured motif, the distances between them and
the minimum quorum expected. RISO returns the list of motifs found and their
corresponding quorums.

2.2 Motif Clustering

The idea of finding groups, or clusters, of motifs, in order to simplify the binding
site studies and reduce the redundancy of the patterns found by motif finders is
not new, and, indeed, has been proposed independently. Examples of tools that
perform this clustering are MatAlign [13] and Stamp [14].

Although there are differences in the implementation, these and other existing
methods work by defining a distance between two motifs and applying standard
clustering methods to find motifs with similar patterns. The distance is typically
obtained using dynamic programming to compute the best alignment between
two motifs.

While this approach works well in some cases, it has some strong limitations.
In particular, this approach is not able to identify that two motifs are part of the
same pattern if they are poorly aligned, even if they represent different parts of
the same, larger, motif. For instance, motifs ACCGTG and TGATTT may be
frequent because the larger motif ACCGTGATTT is frequent, but no significant
alignment will be found between motifs ACCGTG and TGATTT, specially if,
for some reason, the larger motif is not identified.

The approach we propose avoids this difficulty by ignoring the actual pattern
of the motifs, and considering only the sequences and positions where they occur.
A significant amount of co-occurrence means that two motifs are linked, even
though they may not be very similar.

For this, we need a method that finds communities in graphs of motifs, i.e.,
groups of motifs that are tightly linked by many co-occurrences.

2.3 Finding Communities in Graphs

Many algorithms have been developed to tackle the problem of finding communi-
ties in graphs [15,16,17,18].Probably the best-known is the one proposed by Gir-
van and Newman [15] based on the betweenness centrality measure which runs in
O(|E|2|V |) time, or O(|V |3) time for sparse graphs. However, it is no longer the
most efficient and effective clustering algorithm. More recently Newman [17] has
proposed a faster algorithm based on the greedy optimization of the modularity
[16] which is substantially faster. It runs in O((|E| + |V |)|V |), or O(|V |2) on
sparse graphs. However, the running time of this algorithm can be improved by
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exploiting some properties of the optimization problem and using more sophis-
ticated data structures. Thus, Clauset et al. [18] proposed a greedy algorithm
which runs in O(|E|d log |V |), where d is the depth of the “dendrogram” which
describes the community structure. On sparse graphs with a hierarchical com-
munity structure this algorithm runs on average in O(|V | log2 |V |) time. In what
follows, we name this algorithm as CNM (Clauset-Newman-Moore) algorithm.

The concept of modularity is central to this problem [16]. Modularity is a
property of the graph and of a specific division of the graph into communities.
It measures the quality of the division by evaluating the number of edges within
communities and the number of edges that connect vertices in different commu-
nities. Suppose the vertices are divided into k communities and let 1 ≤ cm ≤ k
denote the community where vertex m ∈ V belongs. The adjacency matrix A of
G and the degree dm of a vertex m ∈ V are respectively defined as

Amn =
{

1 if (m, n) ∈ E,
0 otherwise and dm =

∑

n∈V

Amn. (1)

We define the modularity Q of G with respect to the given division as

Q =
1

2|E|
∑

m,n∈V

[

Amn −
dmdn

2|E|

]

δ(cm, cn), (2)

where the δ-function is such that δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise.
We note that the above sum runs over all possible pairs of vertices. Therefore,
each edge is summed twice. If we split the sum in two terms,

1
2|E|

∑

m,n∈V

Amnδ(cm, cn) and
1

2|E|
∑

m,n∈V

dmdn

2|E| δ(cm, cn), (3)

then the first term is the fraction of edges that fall within the communities, and
the second term is the expected fraction of edges within the communities if the
edges were randomly distributed respecting the vertices degrees. In particular,
if the edges were randomly placed as mentioned, dmdn/|E| is the probability of
the existence of an edge between vertices m and n.

Thus, modularity measures the fraction of edges that connect vertices in the
same component minus the expected value of the same quantity in a graph with
the same components but random connections between the vertices [16]. Values
near 1, the maximum value of Q, indicate strong community structure. Typically,
values for graphs underlying common networks with known community structure
are in the range from 0.3 to 0.7.

The CNM algorithm operates by finding the changes in Q which result from
merging each pair of communities. It chooses the largest of such possible changes
in a greedy way and performs the merging. Let ΔQij be the change in Q that
results from merging the communities i and j. Initially each vertex m ∈ V is a
community, by equation 2,

Q = − 1
2|E|

∑

m∈V

dmdm

2|E| . (4)
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And, for each community i and for each pair of communities i, j, we set

Ai =
dm

2|E| , and ΔQij =
{ 1

|E| − 2AiAj if i, j are connected ,
0 otherwise.

(5)

where m is the unique vertex in the community i. Thus, the main loop of the
CNM algorithm consists in

1. select the largest ΔQij and increment Q accordingly,
2. join the corresponding communities and, assuming that community i is

merged into community j, update the ΔQ and the A values as follows:

ΔQjk =

⎧
⎨

⎩

ΔQik + ΔQjk if k is connected to i and j,
ΔQik − 2AjAk if k is connected to i but not to j ,
ΔQjk − 2AiAk if k is connected to j but not to i;

(6)

Aj = Aj + Ai. (7)

3 Finding Co-occurring Motifs

As described, our method builds a motif relation graph and finds communities
of motifs, i.e., subgraphs such that the density of edges within it is greater than
the density of edges between its vertices and those outside it. Each community is
then processed in order to obtain the associated Position Weight Matrix (PWM).

3.1 Building the Relation Graph

Let S be the set of sequences and M be the set of motifs found in S. For each
m ∈ M and s ∈ S, let l(m, s) be the list of positions in s where m occurs. We
say that m, n ∈ M overlap in a sequence s ∈ S if x ∈ l(m, s) and y ∈ l(n, s)
exist such that one of the following two conditions verifies:

x < y < x + |m|; y ≤ x < y + |n|. (8)

In such case we say that motifs m and n overlap in s with a shift σ equal to
y − x.

In our method, we assume that a minimum overlap 0 < αo ≤ 1 and a minimum
quorum 0 < αq ≤ 1 are given as parameters. The quorum represents the fraction
of the number of common sequences in which a given pair of overlapping motifs
must occur to be considered. Therefore, given two motifs m, n ∈ M we define
the minimum shift and the maximum shift, for m and n, respectively, as

σmin = αo min{|m|, |n|} − |n| and σmax = |m| − αo min{|m|, |n|}. (9)

To ensure that m and n overlap in a given sequence s ∈ S with at least
αo min{|m|, |n|} common characters, we must check that such overlap occurs
with a shift σ such that σmin ≤ σ ≤ σmax.

The relation graph G is a tuple 〈V, E〉 where V and E are defined as follows.
The set of vertices V is the set of motifs found, i.e., V = M. The set of edges
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E contains every pair (m, n) ∈ M × M for which exists σ ∈ IN such that
σmin ≤ σ ≤ σmax and

αq|S′| ≤ |{s ∈ S′ : m, n overlap in s with shift σ}|, (10)

where S′ ⊆ S is the set of sequences in which both m and n occur.

3.2 Implementation of the CNM Algorithm

In its original version, the CNM algorithm iterates until a negative ΔQij is
selected, and stops when all vertices belong to the same community. However,
in our case, the relation graph G may not be connected, and the selection of
a negative value is an admissible stop condition because after that Q can only
decrease.

The bound O(|E|d log |V |) in the running time can only be achieved if ad-
vanced data structures are used [18]. In our implementation, we store the ΔQij

values in a red-black tree for each community. Additionally, we maintain these
values in binary heaps. Therefore the insertion, the selection and the maximum
extraction can be done in O(log |V |) [19]. We also use the well known union-find
data structure [19] to track the vertices in each community. Because the relation
graph G is, in general, sparse, the CNM algorithm complexity is almost linear
in the number of motifs.

3.3 Computing and Ranking the PWM of a Community of Motifs

By applying the CNM algorithm to the motif relation graph and choosing the
partition which grants maximum modularity, we obtain a set of communities of
motifs. The third and final step of our method consists in processing each of
these communities and computing the PWM for each one.

Thus, let C ⊆ M be a community of motifs found in the graph G. First, we
align the motifs in C, which is simple because we already know the relative shift
from the graph construction, and we compute the length of the PWM for this
community. Second, for each edge (n, m) ∈ E and using the best shift for equa-
tion 10, i.e., the shift which maximizes the right side of equation 10, we update
the corresponding columns of the PWM by checking the symbols in the sequences
where the pair of motifs occur, i.e, the sequences in the set S′ in equation 10.

Each community gets assigned a p-value that correspond to the lowest p-value
of the motifs in that community. This p-value is used to rank the communities
and corresponding PWMs. For each community a quorum is also computed. This
quorum corresponds to the average number of sequences that support each edge
in the community structure.

The method developed was implemented in C, including the CNM algorithm
and all data structures. The resultant tool was integrated with two motif finders,
MUSA and RISO , and made available through the DISCOVERER platform
in the YEASTRACT database [20]. Given that the complexity of the CNM
algorithm is almost linear for sparse graphs, the computation of the relation
graph is the most computational demanding step of our method, taking Ω(|M |2)
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time. For all test examples, which have at most 3000 statistically significant
motifs, we were able to compute motif communities and corresponding PWMs
in less than one minute in a common workstation.

4 Results

In this section we only present the results obtained, with the motif finder MUSA,
for the first two datasets described in Table 1. More detailed results for both
motif finders and for all datasets are available, as supplementary material, at
http://kdbio.inesc-id.pt/mat/isbra08.

To test the ability of the proposed method to find relevant motif communities,
four real biological datasets were used. These datasets correspond to different
sets of promoter sequences of Sacharomyces cerevisiae genes.

For all datasets the MUSA algorithm was executed with the default parameter
values: λ = 4, ε = 1 and the quorum equal to 30%. The motifs reported were
ranked in accordance with their statistical significance. Motifs that have a p-
value smaller than 10−3 were considered statistically significant and selected
for further processing. To build the relation graph, for these motifs, the default
values of αo, the minimum overlap, and αq, the minimum quorum, were 0.4 and
0.7, respectively.

Table 1 summarizes the results obtained. For each dataset it shows the num-
ber of sequences (N. seq), that were used to search for over-represented motifs,
the total number of motifs found by the motif finder (T. mot), the number of
motifs considered for processing (N. mot), the total number of edges in the re-
lation graph (N. edg), the number of communities identified (N. com) and the
modularity value achieved (Modul). It is clear from this table that the method

Table 1. Datasets content and results statistics

Datasets N.seq T.mot N.mot N.edg N.com Modul

DeRisi [21] 25 1647 204 299 89 0.80
Aft2p [22] 193 2176 2026 3397 202 0.84
Yap1p [23] 225 2150 2065 3541 168 0.84
2,4D [24] 486 2088 2045 3143 271 0.86

effectively reduces the number of motifs that need to be analyzed, by up to one
order of magnitude.

The first dataset, identified as the DeRisi set, corresponds to a list of 25 genes
that were up-regulated in response to the expression of a point mutation in the
PDR1 gene, that encodes a transcription factor (TF) involved in Pleiotropic
Drug Resistance in yeast [21]. Due to the experimental procedure used, this set
correspond to a small and very well characterized set of genes where the Pdr1p
binding site can be easily identified.

For this set, using the default input parameters and considering both strands,
the MUSA algorithm identified 1647 over-represented motifs. From these, only
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Table 2. The top 15 motifs reported by MUSA for the DeRisi dataset

ID Motif Quorum P − value

1 TCCGTGGA 12 of 25 2.79106e-17
2 TCCACGGA 12 of 25 2.79106e-17
3 AAGA (17,19) TTTC 18 of 25 3.57327e-16
4 GAAA (17,19) TCTT 18 of 25 3.57327e-16
5 CCGT (1,3) GAAA 13 of 25 7.22785e-15
6 TTTC (1,3) ACGG 13 of 25 7.22785e-15
7 CCACGGA 14 of 25 8.57847e-15
8 TCCGTGG 14 of 25 8.57847e-15
9 AAAA (4,6) AAAT 25 of 25 1.31737e-14
10 ATTT (4,6) TTTT 25 of 25 1.31737e-14
11 CCACGGAA 11 of 25 1.45924e-14
12 TTCCGTGG 11 of 25 1.45924e-14
13 AACA (43,45) CCTC 11 of 25 2.40999e-12
14 GAGG (43,45) TGTT 11 of 25 2.40999e-12
15 CAAAAG (3,5) AAAT 9 of 25 4.18278e-12

204 motifs were classified as statistically significant and considered for further
processing. Table 2 presents the first 15 motifs reported by MUSA. In this list,
motifs 1 and 7 correspond to instances of the TF binding site of interest. Al-
though these motifs are well positioned in the motifs list, it is possible to verify
that they are only present in at most half of the input sequences. This low quo-
rum hides the real importance of this binding site, something that is not expected
in this particular dataset where all the genes were up-regulated by Pdr1p.

By inspecting Table 2 it is also possible to note that there is a large number
of complex motifs in the top 15 motifs reported. For space reasons, we will not
describe, in this article, the way complex motifs are handled, although a trivial
extension of the method exists and has been implemented.

Figure 1 shows the 14 motifs which contribute to the most significant com-
munity obtained. The PWM description of this community is also presented. By
inspecting this figure it is possible to see that the quorum of this community is
97%. This value is very important since it reflects the real importance of this
binding site in this set. The community quorum is also an important feature in
the evaluation of the community importance. Figure 2 shows the PWMs logos
for the two most significant motif communities identified.

If a search for documented TFs binding sites is performed in YEASTRACT
database using the PWM of the first community, the best match will be one of the
documented Pdr1p-binding sites. If this search is also performed for the second
most important community, shown in Figure 2, again one of the documented
Pdr1p-binding sites will be found. This second motif is similar to the first one
but not included in the same community because of the difference in the central
nucleotides: an GT switched for a AC. In fact, since MUSA searched for motifs in
both strands, this second community roughly contains the reverse complement of
the motifs contained in the first community. This community could be trivially



228 A.P. Francisco, A.L. Oliveira, and A.T. Freitas

Community 1 (14 motifs) (quorum stat: min 0.71 avg 0.97 max 1.00)

---TCCGTGGA- 0 14 8 2.79106e-17

---TCCGTGG-- 1 17 9 8.57847e-15

--TTCCGTGG-- 2 12 9 1.45924e-14

----CCGTGG-- 3 26 10 2.03787e-09

---TCCGTG--- 4 18 9 2.16867e-07

--TTCCGT---- 5 28 13 4.31347e-07

-----CGTGG-- 6 45 16 1.13802e-05

-----CGTGGA- 7 23 10 5.08829e-05

----CCGTG--- 8 33 13 0.000103709

-GTTCCG----- 9 15 8 0.000258935

---TCCGTC--- 10 16 5 0.00026753

CCCTC------- 11 36 14 0.000360318

------GTGGA- 12 48 17 0.000506259

------GTGGAA 13 21 8 0.000797191

A: 0.26 0.11 0.12 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.63

C: 0.12 0.28 0.10 0.04 0.97 1.00 0.00 0.00 0.01 0.00 0.03 0.03

G: 0.18 0.36 0.07 0.03 0.01 0.00 1.00 0.00 0.99 0.99 0.06 0.17

T: 0.44 0.25 0.71 0.88 0.01 0.00 0.00 1.00 0.00 0.01 0.01 0.17

Fig. 1. Depiction of the most significant community found for the DeRisi dataset:
motifs alignment and PWM description

Fig. 2. Depiction of the PWM logos for the first and second most important commu-
nities identified

merged with the first one, however when reporting only one of the communities
we have found out that some users do not recognize the motif they were looking
for. Thus, we decided to report both.

The second dataset, identified as Aft2p, includes 193 promoter sequences of
Aft2p-target genes. This TF is involved in the regulation of iron homeostasis and
associated oxidative stress [25]. There is evidence supporting the direct binding
of Aft2p to the promoter region of many of these 193 target-genes [26]. However,
for some of them, evidence of a regulatory association is indirect, coming from
the comparison of gene transcript levels in the wild type and in a mutant devoid
of AFT2 [22]. In this test case the list of genes considered includes direct and
indirect targets of Aft2p and, due to this fact, this TF binding site is not expected
to be a strong signal in the sequences.

From a total of 2176 motifs extracted by the motif finder, only 2026 were
classified as statistically significant and considered for further processing. For
this set, 202 communities were identified. Table 3 presents the top 15 motifs
extracted by MUSA.
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Table 3. The top 15 motifs reported by MUSA for the Aft2p dataset

ID Motif Quorum P − value

1 TTTT (13,15)CACC 64 of 193 6.54141e-34
2 ACATAT 139 of 193 1.63126e-31
3 ATATGT 139 of 193 1.63126e-31
4 CACCC 165 of 193 6.43219e-31
5 GGGTG 165 of 193 6.43219e-31
6 GAAGAA 149 of 193 6.3155e-30
7 TTCTTC 149 of 193 6.3155e-30
8 GTATAT 124 of 193 1.36158e-29
9 CATATA 130 of 193 3.35912e-29
10 AAGAAG 145 of 193 1.04215e-28
11 TATTCT 145 of 193 1.31282e-28
12 CAAGAA 148 of 193 5.27289e-28
13 TTCTTG 148 of 193 5.27289e-28
14 GCACC 155 of 193 4.69138e-27
15 GGTGC 155 of 193 4.69138e-27

Fig. 3. Depiction of the PWM logo for the Aft2p-target genes binding site

Figure 3 shows the PWM logo of the fourth most significant community found,
that corresponds precisely to the documented Aft2p-binding site [22].The bind-
ing site previously described for this TF allows some variability in the peripheral
nucleotides. It is interesting to note that the identified community also exhibits
a central conserved core region, the motif CACCC, flanked by less conserved
peripheral nucleotides. This core motif, that correspond to motif 4 in Table 3,
is statistically significant and is present in 85% of the input sequences. The
correspondent community still presents a better quorum, 91%.

The first three most significant communities found for this dataset were com-
pared with the documented TF binding sites described in the YEASTRACT
database. The third most significant community was also associated with the
documented Aft2p-binding site. The second most significant community matched
the TATA-box, a well characterized core promoter element also expected to be
a strong signal in this dataset.

For the first community found, the alignments obtained were very poor, sug-
gesting that there is no documented TF binding site with such characteristics.
To further investigate the existence of a similar TF binding site, the original
PWM was trimmed. In this case, the best match was with the binding site of
the Rap1p transcription factor. This TF is described as a DNA-binding protein
involved in either activation or repression of transcription, depending on binding
site context. However, the trimmed PWM aligned only with a short part of the
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Rap1p TF binding site.Although presumably not related with the documented
Aft2p binding site or other documented TF binding site, this motif can have an
important biological meaning.

5 Discussion

In this paper we proposed a methodology that assembles a list of individual
simple motifs into communities of motifs, leading to a simplified analysis of the
motif finders results.

For the test-cases presented, the results show that this method is able to iden-
tify the most important motif communities. In fact this approach is very useful
in reducing the number of motifs to be inspected, leading to a more tractable
output, easier to interpret by humans. The PWM representation of the commu-
nity highlights the motifs degeneracy, being more informative than the consensus
representation usually reported by combinatorial motif finders. The quorum of
the community reveals the real importance of the motifs in the dataset.

Compared to the first test-case, the results obtained for the second test-case
seem less precise. However the results achieved are still remarkably important. The
post-processing of the motif finder results allowed the identification of the Aft2p
binding site and suggested new putative binding sites. The third and fourth test-
cases show that even for more noisy datasets this approach can provide interesting
clues on how transcription factors interact with their target genes.
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database: a tool for the analysis of transcription regulatory associations in sac-
charomyces cerevisiae. Nucleic Acids Research 34, D446–D451 (2006)

21. DeRisi, J., van den Hazel, B., Marc, P., Balzi, E., Brown, P., Jack, C., Goffeau, A.:
Genome microarray analysis of transcriptional activation in multidrug resistance
yeast mutants. FEBS Letters 470, 156–160 (2000)

22. Courel, M., Lallet, S., Camadro, J.M., Blaiseau, P.L.: Direct activation of genes
involved in intracellular iron use by the yeast iron-responsive transcription factor
Aft2 without its paralog Aft1. Molecular Cell Biology 25(15), 6760–6771 (2005)

23. Cohen, B.A., Pilpel, Y., Mitra, R.D., Church, G.M.: Discrimination between par-
alogs using microarray analysis: application to the Yap1p and Yap2p transcrip-
tional networks. Molecular Biology of the Cell 13(7), 1608–1614 (2002)

24. Teixeira, M.C., Fernandes, A.R., Mira, N.P., Becker, J.D., Sá-Correia, I.: Early
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Abstract. The availability of large microarray data has brought along many chal-
lenges for biological data mining. Following Cheng and Church [4], many differ-
ent biclustering methods have been widely used to find appropriate subsets of
experimental conditions. Still no paper directly optimizes or bounds the Mean
Squared Residue (MSR) originally suggested by Cheng and Church. Their al-
gorithm, for a given expression matrix A and an upper bound on MSR, finds k
almost non overlapping biclusters whose sizes are not predefined thus making it
difficult to compare with other methods.

In this paper, we propose two new Mean Squared Residue (MSR) based bi-
clustering methods. The first method is a dual biclustering algorithm which finds
(k × l)-bicluster with MSR using a greedy approach. The second method com-
bines dual biclustering algorithm with quadratic programming. The dual biclus-
tering algorithm reduces the size of the matrix, so that the quadratic program
can find an optimal bicluster reasonably fast. We control bicluster overlapping
by changing the penalty for reusing cells in biclusters. The average MSR in [4]
biclusterings for yeast is almost the same as for the proposed dual biclustering
while the median MSR is 1.5 times larger thus implying that the quadratic pro-
gram finds much better smaller biclusters.

1 Introduction

The availability of large microarray data has brought along many challenges for bio-
logical data mining because measurements are taken in multiple biological conditions
which are not related to the biological questions being asked. To overcome this problem,
a method called biclustering has been widely used to find appropriate subsets of exper-
imental conditions and many algorithms have been proposed [1],[5],[7],[10],[12],[13]
and [14].

Gene expression data generated by DNA chips and other microarray techniques are
often presented as matrices of expression levels of genes under different conditions (in-
cluding environments, individuals, and tissues) [2]. One of the usual goals in expression
data analysis is to group genes according to their expression under multiple conditions,
or to group conditions based on the expression of a number of genes. This may lead to
discovery of regulatory patterns or condition similarities. The current practice is often
the application of some agglomerative or divisive clustering algorithm that partitions
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the genes or conditions into mutually exclusive groups or hierarchies. The basis for
clustering is often the similarity between genes or conditions as a function of the rows
or columns in the expression matrix.

Biclustering was introduced by Cheng and Church [4] and their algorithm is based
on a simple uniformity goal which is the mean squared residue. However, this algorithm
tends to generate large biclusters that often represent gene groups with unchanged ex-
pression levels. Therefore interesting patterns in terms of co-regulation are not neces-
sarily contained [7].

To overcome this problem, we propose two new MSR based biclustering methods in
this paper. The first method is a dual biclustering algorithm which finds (k×l)-bicluster
with MSR using a greedy approach. The second method combines dual biclustering al-
gorithm with quadratic programming (QP). The dual biclustering algorithm reduces the
size of the matrix, so that the quadratic program can find optimal bicluster reasonably
fast. We control bicluster overlapping by changing the penalty for reusing cells in bi-
clusters. The average MSR in [4] biclusterings for yeast is almost the same as for the
proposed dual biclustering while the median MSR is 1.5 times larger thus implying
that the quadratic program finds much better smaller biclusters, which are functionally
enriched and indicate a strong correspondence with known pathways.

The reminder of this paper is organized as follows. Section 2 gives the formal defi-
nition of mean squared residue. Cheng and Church’s algorithm [4] is briefly described
in Section 3. Section 4 defines dual biclustering problem, describes the algorithm and
bicluster overlapping control method. Section 5 defines Dual Biclustering as an opti-
mization problem and describes the quadratic program. The analysis and validation of
experimental study is given in Section 6. Finally, we draw conclusions in Section 7.

2 Mean Squared Residue

Mean squared residue problem has been defined before by Cheng and Church [4] and
Zhou and Khokhar [14]. In this paper, we use the same terminology as in [14]. Our input
is an (N ×M)-data matrix A, with R rows and C columns, where a cell aij is a real
value that represents the expression level of gene i(row i), under condition j(column j).
Matrix A is defined by its set of rows, R = {r1, r2, ..., rN} and its set of columns
C = {c1, c2, ..., cM}.

Given a matrix, biclustering finds sub-matrices, that are subgroups of rows (genes)
and subgroups of columns, where the genes exhibit highly correlated behavior for every
condition. Given a data matrix A, the goal is to find a set of biclusters such that each
bicluster exhibits some similar characteristic. Let AIJ = (I, J) represent a submatrix
of A (I ∈ R and J ∈ C). AIJ contains only the elements aij belonging to the sub-
matrix with set of rows I and set of columns J. A bicluster AIJ = (I, J) can be defined
as a k by l sub-matrix of the data matrix where k and l are the number of rows and the
number of columns in the submatrix AIJ . The concept of bicluster was introduced by
[4] to find correlated subsets of genes and a subset of conditions.

Let aiJ denote the mean of the i-th row of the bicluster (I, J), aIj the mean of the
j-th column of (I, J), and aIJ the mean of all the elements in the bicluster. As given
in [4], more formally,
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aiJ =
1
|J |

∑

j∈J

aij , aIj =
1
|I|

∑

i∈I

aij and aIJ =
1
|I||J |

∑

i∈I,j∈J

aij

According to [4], the residue of an element aij in a submatrix AIJ equals

rij = (aij − aiJ − aI j + aIJ)

The difference between the actual value of aij and its expected value predicted from
its row, column, and bicluster mean is given by the residue of an element. It also reveals
its degree of coherence with the other entries of the bicluster it belongs to. The quality
of a bicluster can be evaluated by computing the mean squared residue H , i.e. the sum
of all the squared residues of its elements[4]:

H(I, J) =
1
|I||J |

∑

i∈I,j∈J

(aij − aiJ − aI j + aIJ)2

A submatrix AIJ is called a δ − bicluster if H(I, J) ≤ δ for some given threshold
δ ≥ 0.

In general, we can formulate biclustering problem bilaterally – maximize the size
(area) of the biclusters and minimize MSR. But, these two objectives above contradict
each other because smaller biclusters have smaller MSR and vice versa. Therefore, there
are two optimization problem formulations. Cheng and church considered the following
formulation: Maximize the bicluster size (area) subject to an upper bound on MSR. In
section 4, we consider the dual formulation minimize MSR subject to lower bound on
size (area) of biclusters.

3 Cheng and Church’s Algorithm

In this section, we briefly describe Cheng and Church’s algorithm [4][9]. The algorithm
proposed by Cheng and Church in [4] is based on a simple uniformity goal which is
the mean squared residue [9]. It also uses a greedy approach to find one bicluster that
is combined iteratively to find more biclusters. The biclustering algorithm searches for
a δ-bicluster assuming that the parameter δ was chosen appropriately to avoid random
signal identification. The optimization problem of identifying the the largest δ-bicluster
is NP hard. Thus, a heuristics is needed for finding a large δ-bicluster in reasonable
time.

A naive greedy algorithm for finding δ-bicluster starts with the given data matrix and
in a brute force manner tries all single rows (columns) addition (deletion), applying the
best operation if it improves the score and terminates when no such operation exists
or when the bicluster score is below a certain δ threshold value. However, for large
matrices this calculation is very time consuming. To accelerate steps in the greedy al-
gorithm, Cheng and Church proposed a method uses the structure of the mean residue.
The underlying idea is based on lemma 1 [4]:
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Lemma 1. The set of rows (columns) that can be completely or partially removed with
the net effect of decreasing the mean residue score of a bicluster AIJ is:

R = {i ∈ I;
1
|J |

∑

j∈J

RSIJ(i, j) > H(I, J)}

Lemma 1 states that any row (column) can be removed if their average contribution
to the score is grater than its relative share. This argument gives rise to the following
greedy algorithm that iteratively removes rows (columns) with the maximal average
residue score (Figure 1)[9].

Lemma 2. The set of rows (columns) that can be completely or partially added with the
net effect of decreasing the mean squared residue score of a bicluster AIJ is (Figure 2)
[9]:

R = {i /∈ I;
1
|J |

∑

j∈J

RSIJ(i, j) ≤ H(I, J)}

Input: Expression matrix A on genes S, conditions C and a parameter δ.
Output: AI,J a δ-bicluster.

Initialize: I = S, J = C.
Iteration:

1. Calculate aiJ , aIj and H(I, J). If H(I, J) < δ output I, J .
2. For each row calculate d(i) = 1

|J|
∑

j∈J RSIJ(i, j)

3. For each column calculate e(j) = 1
|I|

∑
i∈I RSIJ(i, j)

4. Take the best row or column and remove it from I or J .

Fig. 1. Single node deletion algorithm

Input: Expression matrix A, parameter δ, I , J specifying a δ-bicluster.
Output: AI′,J′ a δ-bicluster with I ′ ⊆ I and J ′ ⊆ J .

Iteration:
1. Calculate aiJ , aIj and H(I, J).
2. Add the columns with 1

|I|
∑

i∈I RSIJ (i, j) ≤ H(I, J)

3. Calculate aiJ , aIj and H(I, J).
4. Add the rows with 1

|J|
∑

j∈J RSIJ (i, j) ≤ H(I, J)

5. If nothing was added, halt.

Fig. 2. Node addition algorithm

Cheng and Church also suggest two improvements to their basic deletion/addition al-
gorithm. The first improvement is for large data sets where multiple node deletion can
be done by removing at each deletion iteration all rows (columns) for which d(i) >
αH(I, J) for some choice of α. The second improvement is to add inverse rows to the
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matrix which makes it easier to find biclusters which contains co-regulation and inverse
co-regulation. Cheng and Church’s algorithm uses the δ-bicluster algorithm as a sub-
routine and repeatedly applies it to the matrix. In this method, one problem would be to
find the same bicluster over and over again. However, in Cheng and Church’s algorithm
the discovered bicluster is masked by replacing the values of its submatrix with random
values. The general biclustering scheme is outlined in Figure 3 [9].

Input: Expression matrix A, parameter δ and k-the number of biclusters to report.
Output: k δ-biclusters in matrix A.

Iteration:
1. Apply multiple node deletion on A giving I ′ and J ′.
2. Apply node addition on I ′ and J ′ giving I” and J”.
3. Store I”, J” and replace AI”J” values by random numbers.

Fig. 3. Cheng and Church’s biclustering algorithm

4 Dual Biclustering

In this section, we first define dual biclustering problem, describe the algorithm and
bicluster overlapping control method.

As we mentioned in Section 2, we can formulate biclustering problem bilaterally –
maximize the size (area) of the biclusters and minimize MSR. These two objectives
above contradict each other because smaller biclusters have smaller MSR and vice
versa. We formulate the dual biclustering problem as follows: given expression matrix
A, find k× l bicluster with the smallest mean squared residue H . For a set of biclusters,
we have:

Given: matrix An×m, set of bicluster sizes S, total overlapping V .
Find: |S| biclusters with total overlapping at most V and total minimum sum of

scores H .

4.1 Dual Biclustering Algorithm

The greedy algorithm for finding a bicluster may start with the entire matrix and at
each step try all single rows (columns) addition (deletion), applying the best operation
if it improves the score and terminating when it reaches the bicluster size k × l. The
output bicluster will have the smaller MSR for the given size. Like in [4], the algorithm
uses the structure of the mean residue score to enable faster greedy steps: for a given
threshold α, at each deletion iteration all rows (columns) for which d(i) > αH(I, J)
are removed. Also, the algorithm implements the addition of inverse rows to the matrix,
allowing the identification of the biclusters which contains co-regulation and inverse
co-regulation.

This algorithm is used as a subroutine and repeatedly applied to the matrix. We are
using bicluster overlapping control (BOC) to avoid finding the same bicluster over and
over again. The penalty is applied for using the cells present in biclusters found before.
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Input: Expression matrix A on genes n, conditions m and bicluster size (k, l).
Output: Bicluster AI,J with the smallest MSR.

Initialize: I = n, J = m, ∀w(i, j) = 0, i ∈ n, j ∈ m.
Iteration:

1. Calculate aiJ , aIj and H(I, J). If |I | = k, |J | = l output I, J .
2. For each row calculate d(i) = 1

|J|
∑

j∈J RS′
IJ(i, j)

3. For each column calculate e(j) = 1
|I|

∑
i∈I RS′

IJ(i, j)

4. Take the best row or column and remove it from I or J .

Fig. 4. Single node deletion algorithm

Input: Expression matrix A and bicluster size (k, l).
Output: Bicluster AI′,J′ with I ′ ⊆ I and J ′ ⊆ J .

Iteration:
1. Calculate aiJ , aIj and H(I, J).
2. Add the columns with 1

|I|
∑

i∈I RS′
IJ(i, j) ≤ H(I, J)

3. Calculate aiJ , aIj and H(I, J).
4. Add the rows with 1

|J|
∑

j∈J RS′
IJ(i, j) ≤ H(I, J)

5. If nothing was added or |I ′| = k, |J ′| = l, halt.

Fig. 5. Single node addition algorithm

By using BOC, we can preserve the original data from losing information it carries be-
cause we do not mask biclusters with random numbers. The general biclustering scheme
is outlined in Figure 6.

4.2 Bicluster Overlapping Control

It was noted in [4] that we need to find almost non overlapping biclusters. Therefore
we introduce the measure of bicluster overlapping V which is one’s complement of the
ratio of number of distinct cells used in all found biclusters divided by the total area of
all biclusters. In order to control the bicluster overlapping, we remove columns and rows
based on the number of cells that have been used in previously extracted biclusters. We
can achieve the given bicluster overlapping by giving more or less penalty for reusing
cells.

Let An×m be the input matrix, Wn×m the weight matrix where wij ∈ {0, 1} and
a bicluster AIJ . The weight matrix Wn×m is initialized to 0. When a bicluster AIJ is
found, the weight matrix elements WIJ are set to 1. The average row (column) contri-
bution to the mean squared residue is given by the following formula:

RS′
IJ(i, j) =

1
|J |

∑

j∈J

(aij − aiJ − aI j + aIJ)2 + wijϑH(I, J)

where ϑ is an overlapping parameter. If a cell is used before in some bicluster, then
wij = 1, which enables the penalty for reusing this cell.
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Input: Expression matrix A, parameter α and a set of bicluster sizes S.
Output: |S| biclusters in matrix A.

Iteration:
1. ∀w(i, j) = 0, i ∈ n, j ∈ m.
2. while S not empty do
3. (k, l) = get first element from S
4. S = S − {(k, l)}
5. Apply multiple node deletion on A giving (k, l).
6. Apply node addition on A′ giving (k, l).
7. Store A” and update W .
8. end.

Fig. 6. Dual biclustering algorithm

5 Mean Squared Residue Minimization Via Quadratic Program

We first define the Dual Biclustering as an optimization problem [6], [3]. Then, we
define the quadratic program for biclustering and show how to write its objective and
constraints. We conclude with QP results interpretation.

Although greedy algorithms run fast and give a solution to the problem, it happens
that in many cases this solution is not optimal. Quadratic Program (QP) is one of the
optimization methods and is known for always providing optimal solution for the prob-
lem it solves. It has an objective which is a quadratic function of the decision variables,
and constraints which are all linear functions of the variables.

We give the the Dual Biclustering formulation as an optimization problem: for a
given matrix An×m, find the bicluster with bounded size (area) k × l with minimal
mean squared residue.

It can be easily seen that if MSR has to be defined as QP objective, it will be of a
cubic form. Since QP’s objective can be contain only squared variables, the following
constraint needs to be satisfied: define QP objective in such a way that only quadratic
variables are present. To meet this requirement, we simulated variable multiplication by
addition. Next subsection describes multiplication simulation.

5.1 Linear Representation of Multiplication

For every element aij from matrix A we introduce a variable xij . This variable equals
to 1 if and only if both rowi ∈ I and columnj ∈ J , otherwise it equals to 0. In
other words, xij = rowi · columnj . Assuming that xij , rowi andcolumnj are binary
variables, i.e. can be only 0 or 1, we define a rule that substitutes the multiplication with
addition:

xij ≥ rowi + columnj − 1
xij ≤ rowi

xij ≤ columnj
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Indeed, if rowi = 0 or columnj = 0 then the second and the third inequality
guarantee that xij = 0. If both rowi = 1 and columnj = 1 then all three inequalities
guarantee that xij = 1.

All variable multiplications can be simulated by addition by using similar constraints.
For that, we need to normalize the original matrix An×m so all its entries are from [0, 1]
interval. Data normalization is made as follows:

aij
′ =

1
2

+
aij −min(An×m)

2(max(An×m)−min(An×m))

Additional inverted rows are added to the normalized matrix. Quadratic program will
search for inverted gene expression profiles like dual algorithm does. The final matrix
A′

2n×m will have twice more rows than the original matrix An×m. Section 5.1 presents
the quadratic program for biclustering.

5.2 Integer Quadratic Program

For a given normalized matrix An×m and bicluster size k × l, the Integer Quadratic
Program is defined as follows:

Objective
Minimize : 1

|I||J|
∑

i∈n,j∈m(residueij)2

Subject to
I = k
J = l
residueij = aijxij − aiJxij − aI jxij + aIJxij

aiJ = 1
|J|

∑
j∈m aij, aI j = 1

|I|
∑

i∈n aij and aIJ = 1
|I||J|

∑
i∈n, j∈m aij

xij ≥ rowi + columnj − 1
xij ≤ rowi

xij ≤ columnj∑
i∈n rowi = k

∑
j∈m columnj = l

xij , rowi, columnj ∈ {0, 1}
End

The QP is used as a subroutine and repeatedly applied to the matrix. For each biclus-
ter size, we generate a separate QP. In order to avoid finding the same bicluster over and
over again, the discovered bicluster is masked by replacing the values of its submatrix
with random values.

5.3 Rounding of Fractional Relaxation

The integer QP is too slow and its not scalable enough. Fractional relaxation of QP is
much faster [8]. If we allow the variables xij , rowi, and columnj to take values from
[0, 1] interval, we will obtain a fractional quadratic program. This chance can speed
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up the time required by solver to give the solution to the QP. The drawback of the
fractional QP is how to interpret the solution. This section gives a description of QP
results interpretation.

The output values for variables of the relaxed quadratic program belong to the (0, 1) -
interval, which makes the selection decision not obvious. We propose two ways of inter-
preting results from quadratic program: greedy rounding and random interval rounding.

Greedy Rounding method sorts values of all variables obtained in descending order.
It returns the first k rows and l columns. The assumption in this method is that if a node
has a value close or equal to 1, then there is a high probability that this node belongs to
the final solution set.

In random interval rounding selection, we build an interval for each variable from
the output file of the quadratic program: higher the value, larger the interval. The node
is selected by generating a random number which is checked in which interval it falls.
When all k rows and l columns are selected, the algorithm computes the mean squared
residue. This procedure is repeated 100 times and the final solution will contain the set
of nodes with the smallest MSR value.

5.4 Combining Dual Biclustering with Rounded QP

In this section, we propose a combined Dual Biclustering and Rounded QP algorithm.
The main idea is to reduce the instance size to speed up the QP. First, we apply Dual
Algorithm to input matrix A to reduce the instance size. New size is specified by two
parameters: ratiok and ratiol. Then we run Rounded QP on the output obtained from
Dual Biclustering algorithm. This combination improves the running time of the QP
and increases the quality of the final bicluster since an optimization method is applied.
The general algorithm scheme is outlined in Figure 7.

6 Experimental Results

In this section, we analyse results obtained from Dual Biclustering and Quadratic Pro-
gram algorithms. We describe comparison criteria, define the swap rule model and an-
alyze the p value of the biclusters.

We tested our biclustering algorithms on data from [11] and compared our results
with [4]. For a fair comparison, we used bicluster sizes published in [4]. The average
mean squared residue of [4] biclusters for yeast is 204.29 with overlap 18%, while our
method finds biclusters with average MSR value equal to 205.76 with overlap 17%.
Medians are 196.30 and 123.27, respectively. Thus, implying that our algorithm finds
much better smaller biclusters. In case of QP, it found 45 from 100 biclusters with much
smaller MSR than in [4]. Most of biclusters where QP won have all l columns. Results
are summarized in Figure 8.

According to [7], Cheng and Church’s algorithm tends to generate large biclusters
that often represent gene groups with unchanged expression levels and therefore not
necessarily contain interesting patterns in terms of, e.g. co-regulation. Instead, small
biclusters are functionally enriched and indicate a strong correspondence with known
pathways. We have selected a set containing 66 biclusters with sizes not exceeding 400
rows and 17 columns. The results are summarized in Figure 9.
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Input: Expression matrix A, parameters α, ratiok, ratiol and a set of bicluster sizes S.
Output: |S| biclusters in matrix A.

1. while S not empty do
2. (k, l) = get first element from S
3. S = S − {(k, l)}
4. k′ = k · ratiok

5. l′ = l · ratiol

6. Apply multiple node deletion on A giving (k′, l′).
7. Apply node addition on A′ giving (k′, l′).
8. Update W .
9. Run QP on A” giving (k′, l′).

10. Round Fractional Relaxation and store A”.
11. end.

Fig. 7. Combined Dual Biclustering with Rounded QP algorithm

Algorithms

Cheng and 

Church
Dual Biclustering Dual and QP

OC parameter n/a 1.6 1.8 1.8

Overlapping 39945 39577 40548 41119

Average MSR 204.29323 190.82 205.77 171.19

(%) 100 93.4 100.72 83.79

Median MSR 196.3095 117.96 123.27 102.56

(%) 100 60.1 62.79 52.24

Fig. 8. Results from running on [11] dataset and 100 biclusters published by [4]

Algorithms

Cheng and 

Church
Dual Biclustering Dual and QP

OC parameter n/a 1.6 1.8 1.8

Average MSR 208.81 170.32 182.96 157.77

(%) 100 81.57 87.62 75.55

Median MSR 205.15 100.1 101.13 84.12

(%) 100 48.78 49.3 41

Fig. 9. Results from running on [11] dataset and 85 biclusters published by [4], with sizes not
exceeding 400 rows and 17 columns
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We measure the statistical significance of biclusters obtained by our algorithms us-
ing p value. P value is computed by running Dual Problem algorithm on 100 random
generated input data sets. The random data is obtained from matrix A by randomly se-
lecting two cells in the matrix (aij , dkl) and taking their diagonal elements (bkj , cil). If
aij > bkj and cil < dkl, algorithm swaps aij with cil and bkj with dkl. It is called a
hit. If not, two elements aij and dkl are randomly chosen again. The matrix is consid-
ered randomized if there are nm

2 hits. In our case, p value is smaller than 0.001, which
indicates that the results are not random and are statistically significant.

7 Conclusions

Biclustering was introduced by [4] and their algorithm is based on a simple uniformity
goal which is the mean squared residue. But this algorithm tends to generate large bi-
clusters that often represent gene groups with unchanged expression levels and therefore
not necessarily contain interesting patterns in terms of co-regulation [7].

To overcome this problem, we propose two new MSR based biclustering methods.
The first method is a dual biclustering algorithm which finds (k × l)-bicluster with
MSR using a greedy approach. The second method combines dual biclustering algo-
rithm with quadratic programming. The dual biclustering algorithm reduces the size
of the matrix, so that the quadratic program can find optimal bicluster reasonably fast.
Proposed algorithms can find smaller size biclusters with MSR almost 3 times smaller
than MSR values reported in [4]. According to [7], this is a great advantage because
small biclusters indicate a strong correspondence with known biclusters. The average
MSR for all biclusters in [4] is almost the same as for the proposed dual biclustering
while the median MSR is 1.5 times larger thus implying that proposed algorithms find
much better smaller biclusters.

We also have introduced a method for controlling bicluster overlapping, which en-
ables a fair comparison between different biclustering algorithms proposed in literature.

References

1. Angiulli, F., Pizzuti, C.: Gene Expression Biclustering using Random Walk Strategies. In:
Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, Springer, Heidelberg (2005)

2. Baldi, P., Hatfield, G.W.: DNA Microarrays and Gene Expression. From Experiments to Data
Analysis and Modelling. Cambridge Univ. Press, Cambridge (2002)

3. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scientific (1997)
4. Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: Proceedings of the Eighth

International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI
Press, Menlo Park (2000)

5. Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Sur-
vey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

6. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Inc, Upper Saddle River, NJ (1982)

7. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L.,
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Abstract. An important topic in computational biology is to identify transcrip-
tional modules through sequence analysis and gene expression profiling. A 
transcriptional module is formed by a group of genes under control of one or 
several transcription factors (TFs) that bind to cis-regulatory elements in the 
promoter regions of those genes. In this paper, we develop an integrative ap-
proach, namely motif-guided sparse decomposition (mSD), to uncover tran-
scriptional modules by combining motif information and gene expression data. 
The method exploits the interplay of co-expression and co-regulation to find 
regulated gene patterns guided by TF binding information. Specifically, a mo-
tif-guided clustering method is first developed to estimate transcription factor 
binding activities (TFBAs); sparse component analysis is then followed to fur-
ther identify TFs’ target genes. The experimental results show that the mSD ap-
proach can successfully help uncover condition-specific transcriptional modules 
that may have important implications in endocrine therapy of breast cancer. 

Keywords: Motif analysis, sparse component analysis, transcriptional modules, 
gene regulatory networks, estrogen receptor binding. 

1   Introduction 

Exacting clear and coherent hypothesis from genome-wide expression data remains  
a challenging problem. Many computational tools have been developed to facilitate 
the identification of differentially expressed genes and their significance in a variety  
of experimental designs [1]. Recent research has discovered that the production of 
transcripts of a given gene is governed by a complex combinational interplay of  
                                                           
* Corresponding author. 
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cis-regulatory elements (henceforth referred to as motifs) [2]. Associated transcription 
factors (TFs) act alone or in combination on target promoters to control gene expres-
sion. Transcription factor’s regulatory activity is controlled by higher level cellular 
functions, such as signaling pathways to reflect cellular physiology and environment. 
Therefore many efforts have been made in exploring the clustering of genes into tran-
scriptional modules - a collection of genes under (perhaps combinational) control of a 
set of transcription factors that bind to regulatory elements in the promoter regions for 
those genes. 

One such strategy is to use motif discovery algorithms to search for recurring pat-
terns in a given set of related sequences such as AlignACE [3] or to search for known 
binding sites based on a predefined library of all previously characterized motifs or 
position weight matrices (PWMs). Unfortunately, using a strictly bioinformatics-
based approach to identify target genes of transcription factors is still extremely chal-
lenging because most transcription factor binding sites (TFBSs) are degenerate  
sequences that occur quite frequently in the mammalian genome [4]. Other strategies 
have been used in combination with expression data and ChIP-on-chip data. Although 
many tools such as MarsMotifs [5] have aided experimental biologists in the discov-
ery of regulatory information, a large false-positive prediction rate is still a major 
problem. 

A computational approach, network component analysis (NCA), has been recently 
developed to reconstruct the profiles of TFs faithfully [6]. However it relies heavily 
on the availability of connectivity information from ChIP-on-chip data. Therefore, 
NCA scheme is not applicable to many biological studies where adequate connec-
tivity information is unavailable, due to lack of complete ChIP-on-chip data. It is 
often the case that both the connectivity structure of the TFs and their targets and the 
activity profiles of the TFs have to be reconstructed.  

In this paper, we focus on the problem of transcriptional module identification, 
which essentially requires finding sets of transcription factor binding sites that co-
occur in promoter regions of genes with a common expression pattern. In order to 
learn the membership of transcriptional modules, we propose to combine motif in-
formation and expression data in a novel way: (1) using motif information to guide 
finding regulated gene patterns, and (2) using a sparse component analysis (SCA) 
method [7] to further decompose the regulated gene patterns hence to recover the TF-
gene connectivity information. This two-step approach will be termed as motif-guided 
sparse decomposition (mSD) method in this paper. We have applied the mSD ap-
proach to a breast cancer data set to identify estrogen-dependent transcriptional mod-
ules. The experimental results demonstrated that with the help of the proposed mSD 
method, we can successfully identify condition-specific transcriptional modules that 
may have important implications in anti-estrogen therapy of breast cancer. 

The paper is organized as follows. In Section 2, we give a detailed description of 
our motif-guided sparse decomposition (mSD) method for transcriptional module 
identification. In Section 3, we present the experimental results on an estrogen-
dependent profiling study of breast cancer, focusing on condition-specific transcrip-
tional modules recovered by our mSD approach. Finally, in Section 4, we give the 
conclusion of this paper. 
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2   Method 

In this paper, we make a simplified yet biologically plausible assumption that the 
overlap of influences of TFBSs is additive: 

( , )sg t
X X s g t=∑ , (1) 

where Xsg is defined as the logarithm of the expression ratio of gene g between the 
current data sample s (or a particular time point) and the control vehicle, while X(s, 
g|t) is the expression level of g in s due to transcription factor binding site t. We also 
assume that X(s, g|t) is multiplicatively decomposable into the activity level (Ast) of 
TFBS t in sample s and the regulation strength (Stg) of t onto gene g: 

( , ) st tgX s g t A S= • . (2) 

Combing (1) and (2) leads to a reformulation of canonical matrix form as: 

sg st tgt
X A S= •∑ . (3) 

The log ratios of gene expression , ( 1)m NX N  are expressed as a linear combina-

tion of log ratios of TFBS activity (TFBSA) level ( m nA ×∈ℜ ) weighted by their regu-

lation strength ( n NS ×∈ℜ ). Note that m is the number of samples, N the number of 
genes and n the number of TFBSs. 

We notice that the number of TFBSs is much smaller than the number of tran-
scribed genes and most genes are regulated only by a small number of TFBSs. Hence, 
the matrix S that describes the connections between the TFBSs and their regulated 
genes is sparse. Further, we should point out that we do not perform motif discovery 
as part of our learning procedure, but rather assume that we have a list of motifs for 
putative transcription factor binding sites by searching a database of regulatory ele-
ments such as TRANSFAC [8]. Since we are using motif profiles with respect to a 
known set of motifs as a source of data, usually the number of TFBSs (n) or motifs is 
greater than our sample number (m). That is to say, generally, n m> , which is equiva-
lent to say that Equation (3) is an underdetermined linear system (ULS).  Considering 
the sparse property of S and ULS property of Equation (3), we propose to employ a 
sparse component analysis (SCA) method [7] to estimate S for regulatory module 
identification. However, the SCA method requires having the TFBSA matrix (A) 
known beforehand, which in our case needs to be estimated as well.  

To fully solve this problem, we propose to develop a motif-guided sparse decom-
position (mSD) method for transcriptional module identification. The mSD method is 
composed of two steps described as follows. In the first step, we will develop a motif-
guided clustering algorithm to find regulated gene expression patterns to facilitate the 
estimation of A; in the second step, we will employ the SCA method to iteratively 
detect active TFBSs and estimate regulation strength matrix S. In the following sub-
sections, we present the two algorithms in our proposed mSD approach: (1) TFBSA 
matrix (A) identification algorithm and (2) regulation strength matrix (S) recovery 
algorithm. 
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2.1   Inferring TFBS Activity Matrix by Motif-Guided Clustering  

In order to reliably estimate the TFBSA A matrix from Equation (3), the sparsity 
property of the regulation strength matrix S is very important. In fact, the following 
theorem is the key to obtaining a reliable estimation of A [7]. 

Theorem 1: (Identifiability Conditions - Locally Very Sparse Representation): As-
sume that the number of TFBSs is unknown and the following: 1) Each TFBS has at 
least two strictly well-grounded points, which means that for each index 1, ,i n= , 
there are at least two columns of S: S(:, j1) and S(:, j2) which have nonzero elements 
only in position i (so each TFBS is uniquely present at least twice); 2) 

(:, ) (:, )X k cX q≠ for any c ∈ℜ , any 1, ,k N=  and any 1, ,q N= , k q≠ for 

which S(:, k) has more than one nonzero element. Then A is uniquely determined by X 
except for left multiplication with a permutation and scaling matrix. 

For proofs of the theorem we refer to [7]. An algorithm to obtain A can be summa-
rized as follows [7]: 

1) Remove all zero columns of X (if any) and obtain a matrix 1
1

m NX ×∈ℜ . 

2) Normalize the columns xi, 11, ,i N= of X1: i
i

i

=
x

y
x

. Multiply each column 

yi by -1 if the first element of yi is negative. 
3) Cluster yi, 11, ,i N=  in l groups: 1, lG G…  such that for 

any 1, ,j l= , , , jGε− < ∀ ∈x y x y  and ε− ≥x y for any x, y belonging to 

different groups. 
4) Chose any i iG∈y and put ai = yi. 

In the above algorithm, Step (3) requires a clustering method to find representative 
columns of X to estimate A. There have been many clustering techniques proposed for 
clustering gene expression data, such as k-means clustering [9] and self-organizing 
maps [10], which are designed to find gene expression patterns by grouping the genes 
with similar expression profiles.  Very recently, an affinity propagation (AP) algo-
rithm has been proposed for data clustering that showing an improved performance 
[11]. Based on an ad hoc pairwise similarity function between data points, AP seeks 
to identify each cluster by one of its elements, the so-called exemplar. AP takes as 
input a collection of real-valued similarities between data points, where the similarity 
s(i, k) indicates how well the data point with index k is suited to be the exemplar for 
data point i. When the goal is to minimize squared error, each similarity is set to a 

negative squared error (Euclidean distance): For points xi and xk, 
2

( , ) i ks i k x x= − −  

[11].  
However, direct application of the AP technique will only give rise to co-expressed 

gene clusters. In order to infer biologically plausible gene modules, we need a cluster-
ing technique to incorporate motif information and expression data to extract regu-
lated gene expression patterns. In this paper, we propose to modify the AP clustering 
technique to find co-regulated gene expression patterns. In particular, we will define a 
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new similarity measure for AP to find a group of genes that not only is of similar 
expression pattern but also shares some same binding sites. 

From motifs’ position-weighted matrices (PWMs), we start with a matrix consist-
ing of weights of n TFBSs in N genes. When the dataset is represented by a set of n of 
TFBSs, { }1 2, , , nT t t t=  and a set of N genes, { }1 2, , , NG g g g=  it can be viewed as 

a gene-TFBS matrix, [ ( , )]r jGT w t g= . Here ( , )r jw t g  denotes the weight of the r-th 

TFBS in the j-th gene. Each weight indicates the measure that the r-th TFBS affects j-
th gene. Given that the weight of TFBS r with gi is ( , )r iw t g  and the weight of TFBS 

r with gk is ( , )r kw t g , our assumption is that these two events are independent, so the 

pairwise joint weight of TFBS r with gi and gk is ( , )* ( , )r i r kw t g w t g . The total pair-

wise joint weight of TFBS r with gi and gk can be expressed as: 

1

( , ) * ( , )
n

r i r k
r

W w t g w t g
=

= ∑ . (4) 

In the algorithm of AP, we modify the pairwise similarity measure between gi and gk 
to be: 

2

, 1

( , ) ( ) ( , ) * ( , )
n

i k r i r k
i k r

s i k g g w t g w t gλ
=

= − − +∑ ∑ , (5) 

where λ is a trade-off parameter (note that we set 0.05λ =  in our experiments). The 
first term in (5) is to help find a group of genes with similar expression pattern while the 
second term to enforce them sharing some same binding sites. Ideally, the clustering 
result will give us some clues about that this group of genes may indeed be regulated by 
one of the common TFBSs and therefore shows the same pattern as the corresponding 
TFBS activity level (i.e., corresponding to one particular columns of A).  

2.2   Inferring Regulation Strength Matrix by Sparse Component Analysis (SCA) 

In this section, we will employ the SCA approach to estimate the regulation strength 
matrix S, describing the relationships between TFBSs and gene populations. Here, we 
describe a regulation strength recovery algorithm based on Iterative Detection-
Estimation [12]. An outline of the algorithm is described as follows: 

Regulation Strength Recovery Algorithm 

Loop  

1. Detection Step: Starting with a previous estimate (or the initialization) of the 
regulation strength vectors s, roughly detect which TFBSs are “active”; 

2. Estimation Step: Having the indices of “active” TFBSs, obtain a new estimate of 
s by finding a solution of x = As whose active indices better coincide with those 
predicted by the detection step. 

Until converged 
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The term “active” is used to refer to the TFBSs having “considerably large” strengths. 
In the detection step, let 0π  be the probability of is  being inactive ( 0 1π  to insure 

sparsity). Then we use Gaussians to model the values of an inactive TFBS and an ac-

tive TFBS respectively by 2 2
0 1(0, ), (0, )N Nσ σ , where 2 2

0 1σ σ . We may formulate the 

problem in terms of a binary hypothesis testing. The vector 1 1 2

n

i ii
s s

=
= +∑x a a is 

observed, and we need to detect which of the following two hypotheses have occurred; 
2

0 1 0

2
1 1 1

: (0, )

: (0, )

H s N

H s N

σ
σ

∼
∼

. (6) 

Defining 12

n T
i ii

sμ
=∑ a a , we will have 1 1

Tt s μ= +a x = . The equivalent test in terms 

of the sufficient statistics, t, may be stated as 2: ( , )i iH t N μ σ∼  for 0,1i = .  

However, it appears that implementing the optimal test for activity of s1 requires 
the knowledge of all the other TFBSs. Since they are also unknown parameters, we 
have to replace them with their estimates. Therefore, the resulting sub-optimal test is 
obtained as follows: 

1 1
2

ˆ
n

T T
i i

i

s ε
=

− >∑a x a a . (7) 

This test is conducted for n TFBSs. After determining the activity status, we try to 
determine the actual values of the TFBSs. For the sake of the discussion, assume that 

the first k TFBSs, 1{ }k
i is = , have been detected to be inactive. Then the approximation 

of the regulation strength vectors can be obtained by the following optimization  
problem [7]: 

2

1

min   subject to  
k

i
i

s A
=

=∑ x s . (8) 

3   Experimental Results 

In this section, we will report the experimental results on an estrogen dependent pro-
filing study of breast cancer. In particular, we will describe the data set used to test 
our two-step mSD approach, the extracted motifs related to estrogen receptor (ER) 
and their PWMs obtained, and the transcription modules recovered by our method.  

3.1   Dataset Description 

Estrogen has a profound impact on human physiology and affects numerous genes. 
The classical estrogen reaction is mediated by its receptors (ERs), which bind to the 
estrogen response elements (EREs) in target gene’s promoter region. In [13], the 
authors utilized an integrated genome-wide molecular and computational approach to 
characterize the interaction between the activated estrogen receptor and the regulatory 
elements of candidate target genes. 

The authors treated the estrogen-dependent T-47D ER+ breast cancer cell line with 
17β-estradiol (E2) and with E2 in combination with either the pure anti-estrogen ICI 
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182,780 (ICI) or the protein synthesis inhibitor CHX and performed high-resolution 
time-course gene-expression analyses using spotted oligonucleotide (60-mers) mi-
croarrays containing probes representing around 19,000 human genes. Samples were 
harvested on an hourly basis for the first 8 hours (0-8 hours) following hormone 
treatment and bi-hourly for the next 16 hours (10-24 hours) for a total of 16 time 
points surveyed [13]. We will compare the results from the 16 time points E2-treated 
samples with 16 time points E2+ICI-treated samples. 

The overall objective of this analysis is to search for the relationships of putative or 
potential target genes and the likely TFBSs that are functionally associated with tran-
scriptional regulatory networks regulated by ER. We collected not only genes that 
identified by [13] as putative ER target genes, but also some other gene sets. For ex-
ample, in [14], a subclass of estrogen response genes that are computed by matching 
ERE frames of a test set of 60 known estrogen responsive genes to the collection of 
over 18,000 human promoters. We also included gene sets that were collected by 
pathway database (Biocarta, KEGG, etc) and related to breast cancer signaling path-
way. Finally, we formed a time course data set consisting 1288 human genes in two 
treatment conditions (E2 and E2+ICI). 

3.2   Motif Analysis for Binding Information  

From TRANSFAC database and ChIP-on-chip experiments [15], 44 breast cancer and 
ER-related transcription factors were selected for motif analysis (shown in Table 1). 
First, the upstream regions of the genes can be extracted from the database PromoSer 
[16]. Secondly, Match™ [17] can be used to search the transcription factor binding site 
(TFBS) in each upstream region, which outputs the core similarity and matrix similarity 
for each matched motif. Third, Match™ searches the TFBS by its position-weighted 
matrices (PWMs), which can be extracted from TRANSFAC 11.1 Professional database 
[8]. In the last step, according to the PWMs, a motif-score will be calculated for each 
TF-gene pair, which can be regarded as connection strength information.  

Note that motif is a relative short sequence pattern, thus the topology from motif 
information is just a rough estimation, possibly with many false positives and false 
negatives. Although the motif information is not reliable according to one specific 
gene with one specific transcription factor, we can still infer some key transcription 
factor activities from the whole genome population, with the initialization of regula-
tion strength S in our method by PWM. 

Table 1. 44 breast cancer and ER-related transcription factors from TRANSFAC database 

V$OCT1_03 V$ER_Q6 V$BRCA_01 V$STAT3_01 V$HOX13_01 
V$HMGIY_Q3 V$VDR_Q3 V$HMGIY_Q6 V$OCT1_01 V$HNF1_Q6 
V$OCT1_02 V$FOXO1_02 V$FOXO1_01 V$OCT1_04 V$OCT1_Q6 
V$USF2_Q6 V$NF1_Q6_01 V$STAT1_03 V$VDR_Q6 V$DR3_Q4 
V$ER_Q6_02 V$STAT1_02 V$ETS_Q4 V$ETS_Q6 V$STAT3_02 
V$AP2GAMMA_01 V$OCT1_Q5_01 V$OCT1_B  V$OCT1_06 V$P53_01 
V$OCT1_07 V$OCT1_05 V$PPARG_01 V$P53_02 V$STAT1_01 
V$PR_02 V$ZBRK1_01 V$PPARG_02 V$HNF1_01 V$HNF3ALPHA_Q6 
V$ETS1_B V$ERR1_Q2 V$HNF1_C V$PR_01  
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3.3   Results on Estrogen Receptor-Related Transcriptional Modules 

We have applied our two-step mSD approach to the E2/E2+ICI data set to identify 
active ER-related TFBSs and their downstream target genes. In the first step, we ap-
plied motif information guided AP clustering technique to estimate the TFBS activity 
matrix A. In the second step, we applied the SCA approach to iteratively estimate the 
regulation strength matrix S that defines the transcriptional modules.  

 
(a) 

 
(b) 

Fig. 1. Heatmaps of the TFs and their putative targets. (a) the TF (IL2RA) searched from 
TRANSFAC which has the binding site V$STAT3_01 and the cluster which has been mapped 
to be the predictor of the profile of TFBS V$STAT3_01; (b) TFs (NDGR1; CDKN1A) 
searched from TRANSFAC which have the binding site V$P53_02 and the cluster which has 
been mapped to be the predictor of the profile of TFBS V$P53_02. 

After clustering, we map the TFBSs to the inferred clusters based on previous 
knowledge about their activity profiles. To infer the columns of A (TFBS’s activity), 
we assume that the activity levels of transcription factors are proportional to their 
mRNA levels. Thus, from PWMs, we extracted the gene set which has the high 
weights to be regulated by one specific TFBS, and we checked the intersection with 
every cluster. If one of the clusters and the gene set from PWMs have the largest 
overlap, we mapped the “centroid” of the cluster as the corresponding TFBS’s activ-
ity. The results are shown in Fig. 1. In Fig. 1(a), the upper panel presents the expres-
sion profile of a TF (extracted from TRANSFAC database) that has the particular 
binding site (V$STAT3_01 in this case). And the lower panel of the figure shows the 
representative expression profiles of the cluster which has been mapped to mimic 
V$STAT3_01’s activity level. From the heatmaps, we can see that the patterns of the 
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predicators (shown in the lower part of the figure) and the predicted one (shown in the 
upper part of the figure) are very similar. Another example is also given in Fig. 1(b) 
with the binding site V$P53_02. These results confirm that the expression levels of 
target genes are indeed good predictors of the corresponding TFBSs when we incor-
porate prior motif information into our modified AP clustering method. 

After the TFBS activity matrix A has been recovered in the first step, the SCA ap-
proach is followed to iteratively estimate the active TFBSs and their regulation 
strength matrix S. In this study, we have detected about 20 active TFBSs in both E2 
and E2+ICI conditions on T-47D ER+ breast cancer cell line. Comparing the tran-
scriptional modules defined by the estimated S in two conditions, we can divide them 
into two categories: (1) condition-independent transcriptional modules and (2) condi-
tion-specific transcriptional modules. Below, we focus on one of the condition-
specific modules recovered by our mSD approach for a detailed discussion. 
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(b) 

Fig. 2. TFBS V$FOXO1_02’s activity levels in (a) E2 and (b) E2+ICI, respectively 

We observed that one of the active TFBSs, $FOXO1_02, is of interesting TFBS 
activities in two conditions. Its patterns in two different conditions are nearly com-
plementary, as shown in Fig. 2. As we know, genes with promoter regions [-2kb, 2kb] 
around transcription start site containing the motif GNNTTGTTTACNTT, which 
matches annotation for FOXO1A: forkhead box O1A (rhabdomyosarcoma). It has 
been reported [15] that the primary interaction of estrogen receptor with chromatin  
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(a) 
 

 
(b) 

 
Fig. 3. Two networks of target genes of TFBS V$FOXO1_02 in two different conditions: 
E2/E2+ICI 
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can occur either through direct interaction with an ERE or through a tethering mecha-
nism involving AP-1 factors with C/EBP, Oct and Forkhead motifs functioning as 
adjacent binding sites for cooperating factors. Furthermore, we extracted the target 
genes of V$FOXO1_02 inferred by our mSD method and fed them into Ingenuity 
Pathway Analysis (IPA; http://www.ingenuity.com/). Fig. 3 illustrates the two gene 
networks in which those target genes are involved in two different conditions. It can 
be clearly seen that in the E2 condition, the top associated network functions are: cell 
cycle and gene expression, in which ESR1-estrogen complex is involved. However, in 
the E2+ICI condition, the top associated network function has change to cellular  
movement, in which ESR1-estrogen complex is not involved. This is consistent to 
that ICI is an anti-estrogen drug that blocks the involvement of ESR1-estrogen  
complex [13]. 

4   Conclusions 

In this paper, we have developed a new approach, namely motif-guided sparse de-
composition (mSD), for transcriptional module identification. The mSD approach 
combines the motif information and gene expression data with an emphasis on the 
interplay of co-expression and co-regulation. Motif information is first used to guide a 
clustering technique to find regulated gene expression patterns; sparse component 
analysis is then used to identify active transcription factor binding sites (TFBSs) and 
their regulation strengths on the target genes. Experimental results on an estrogen 
receptor profiling study have demonstrated that the mSD approach can help identify 
condition-specific transcriptional modules that showing distinct TFBS activities and 
target genes in different conditions.  
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Abstract. As a high dimensional problem, analysis of microarray data
sets is a hard task, where many weakly relevant but redundant features
hurt generalization performance of classifiers. There are previous works
to handle this problem by using linear or nonlinear filters, but these
filters do not consider discriminative contribution of each feature by uti-
lizing the label information. Here we propose a novel metric based on
discriminative contribution to perform redundant feature elimination.
By the new metric, complementary features are likely to be reserved,
which is beneficial for the final classification. Experimental results on
several microarray data sets show our proposed metric for redundant
feature elimination based on discriminative contribution is better than
the previous state-of-arts linear or nonlinear metrics on the problem of
analysis of microarray data sets.

1 Introduction

The rapid advances in gene expression microarray technology enable simultane-
ously measuring the expression levels for thousands or tens of thousands of genes
in a single experiment [1]. Analysis of microarray data presents unprecedented
opportunities and challenges for data mining in areas such as gene clustering,
class discovery, and sample classification [2,3,4]. In sample classification, a mi-
croarray data set is provided as a training set of labeled samples. The task is to
build a classifier that accurately predicts the classes of novel unlabeled samples.
A typical data set has thousands of genes but only a small number of samples
(often less than a hundred). The number of samples is likely to remain small at
least for the near future due to the expense of collecting microarray samples [5].
The nature of relatively high dimensionality but small sample size in microarray
data cause the known problem of ”curse of dimensionality”. Therefore, selecting
a small number of discriminative genes from thousands of genes is essential for
successful sample classification.
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Feature selection, a process of choosing a subset of features from the original
ones, is frequently used as a preprocessing technique in data mining. It has been
proved effective in reducing dimensionality, improving mining efficiency, increas-
ing mining accuracy, and enhancing result comprehensibility [6]. In the field of
bioinformatics, the most commonly used procedures of feature selection (gene
selection) are based on a score which is calculated for all genes individually and
genes with the best scores are selected [7]. Feature selection procedures output a
list of relevant genes which may be experimentally analyzed by biologists. This
method is often denoted as univariate feature selection (filter methods), whose
advantages are its simplicity and interpretability.

As to analysis of microarray data sets, whose speciality is the huge amount of
genes with few samples, it is believed that there are many weakly relevant but
redundant genes among thousands of genes. Preserving the most discriminative
genes and reducing other irrelevant and redundant ones is the target of feature
selection. However, because the interactions and correlations among genes are
omitted, filter methods fail to remove redundant genes. The scores they assign to
correlated genes are too similar, and none of the genes are strongly preferred over
others. Redundancy among selected genes results in two problems. One problem
is that redundant features in the selected subset reduce the comprehensive rep-
resentation of target labels. The other one is that redundant genes increase the
dimensionality of the selected gene set, which affect the mining performance on
the small sample [5].

The issue of redundancy among genes is recently raised in the literatures of
gene selection [8,9]. Researchers have proposed several methods to reduce the
redundancy among genes. Ding and Peng proposed the minimum Redundancy-
Maximum Relevance (mRMR) method [8,10], which requires that selected
discriminative features are maximally dissimilar to each other. Ding and Peng
define the feature redundancy by the metric of mutual information. Yu and Liu
proposed the Fast Correlation-Based Filter (FCBF) method [11,12,9], which is
based on approximate Markov blanket. FCBF eliminates redundant features by
iteratively selecting predominant features from relevant ones where the feature
redundancy is measured by symmetrical uncertainty.

However, the feature redundancy metrics used by these methods can not esti-
mate the redundancy properly, because without consideration of the label infor-
mation, the pair-wise redundancy scores solely calculated by the given two features
do not faithfully reflect the discriminative ability similarity between them. For ex-
ample, two highly correlated features, whose differences are minor but happen to
be different critical discriminative ability, maybe be considered as a pair of redun-
dant features by normal metrics. Hence, reducing any one of them will decrease
classification accuracy. The fact is that the existing methods only directly com-
pare the similarity of the numerical values between two features, but not compare
the similarity of discriminative ability between two features, i.e. the distribution
of correctly predicted examples by using two single features.

In order to solve this problem, we propose a novel metric of redundancy based on
DIScriminative Contribution (DISC), which directly compares the classification
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distribution between two features. By measuring the discriminated examples on
each single feature, DISC defines redundant genes which have few discriminative
ability contribution to a given one. We also compare our metric with state-of-arts
feature redundancy metrics, including linear [13] and non-linear ones [12]. Exper-
iments on several real world microarray data sets demonstrate the outstanding
performance of our metric.

This paper is organized as follows. Section 2 discusses the metrics of discrim-
inative ability and usual metrics of redundancy. In section 3, a novel metric is
presented in detail. Then, data sets, experiment settings and evaluation meth-
ods are described in section 4. We show the results and discussions in section 5.
Finally, conclusions are given in section 6.

2 The Previous Metrics

Discriminative ability (predictive ability) is a general notion which can be mea-
sured in various ways and be used to select significant features for classification.
Many effective metrics had been proposed such as t-statistic, information gain,
χ2 statistic, odds ratio etc. [14,15]. These metrics have also often been used as
indicative scores in filter feature selection methods to sort features, and then
some top ranked features are retained which are supposed to be the essential
ones for classification.

However, most of these discriminative metrics only give a discriminative score
to each individual feature, which can not be used to compare the similarity
between two features. Because most discriminative information are missed when
only one numerical score is retained for each feature. So, when feature ranking
is not the only application, discriminative metric should preserve much more
information than before.

For the task of feature selection, we want to eliminate the redundant features
and only retain the complement ones. But there exist many redundant features
in the top ranked feature set produced by the filter methods. The redundant fea-
tures increase the dimensionality and contribute little for the final classification.
In order to eliminate redundant features, some powerful discriminative metrics
which can be used to measure the feauture redundancy directly are needed.

In normal cases, notions of feature redundancy are in terms of feature cor-
relation. It is widely accepted that two features are redundant to each other if
their values are completely correlated. But in fact, it may not be so straightfor-
ward to determine feature redundancy when a feature is correlated with a set of
features. The widely used way is approximate the redundancy of feature set by
only considering the pair-wise feature redundancy, i.e. Yu and Liu [11] used the
pair-wise symmetrical uncertainty to measure the feature redundancy.

2.1 Linear Correlation Metrics

For linear cases, the most well known pair-wise redundancy metric is the linear
correlation coefficient. Given a pair of features (x, y), the definition of the linear
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correlation coefficient cor(x, y) is:

cor(x, y) =
∑

i(xi − x)(yi − y)
√∑

i(xi − x)2
√∑

i(yi − y)2
(1)

where x and y are the mean of x and y respectively. The value of cor(x, y) lies
between -1 and 1. If x and y are completely correlated, cor(x, y) takes the value
of 1 or -1; if x and y are independent, cor(x, y) is zero. It is a symmetrical metric.

The linear correlation coefficient has the advantage of its efficiency and sim-
plicity, but it is not suitable for redundant feature elimination when classifica-
tion is the final target, since it does not use any label information. For example,
two highly correlated features, whose differences are minor but happen to caus-
ing different critical discriminative ability, may be considered as a pair of re-
dundancy features. Reducing any one of them will decrease the classification
accuracy. Guyon has also pointed out that very high variable correlation (or
anti-correlation) does not mean absence of variable complementarity [14]. The
problem of the linear correlation coefficient is that it measures the similarity of
the numerical values between two features, but not that of discriminative ability.

2.2 Non-Linear Correlation Metrics

Many non-linear correlation metrics are based on the information-theoretical
concept of entropy, a metric of the uncertainty of random variables. Entropy of
a variable x is defined as:

H(x) = −
∑

i

p(xi) log2 P (xi) (2)

and the entropy of x after observing values of another variable y is defined as:

H(x|y) = −
∑

j

P (yj)
∑

i

p(xi|yj) log2 P (xi|yj) (3)

where P (xi) is the prior probabilities for all values of x, and P (xi|yj) is the
posterior probabilities of x given the values of y. The amount by which the
entropy of x decreases reflects additional information about x provided by y and
is called mutual information [16], given by

I(x|y) = H(x) − H(x|y) (4)

According to this metric, feature y is regarded more correlated to feature x
than to feature z, if I(x|y) > I(z|y). It is easy to prove that mutual information
is a symmetrical metric.

Since mutual information tends to favor features with higher values, it should
be normalized with their corresponding entropy. One of the most widely used
normalized mutual information is Symmetrical Uncertainty (SU) ([17]), which
is defined as:

SU(x|y) = 2
[

I(x|y)
H(x) + H(y)

]

(5)
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SU compensates for mutual information bias toward features with higher val-
ues and restricts its values to the range [0,1]. A value of 1 indicates that knowing
the values of either feature completely predicts the values of the other; a value
of 0 indicates that x and y are independent. In addition, it also treats a pair of
features symmetrically. Entropy-based metrics only handle nominal or discrete
features, and therefore continuous features need to be discretized beforehand.

Normal entropy-based metrics also do not take the label information into
consideration either. Hence, the problem of non-linear methods is similar to that
of linear ones. Previously proposed redundancy metrics estimate the similarity
between two features only by the numerical values. But what is more important,
we do not know whether the dissimilarly parts between them are essential for
the final classification.

To overcome this problem, the discriminative contribution of the dissimilar
parts should be examined in a measurable way. In other words, the discrimi-
native abilities of features should be recorded in a comparable manner. Then,
the similarity of discriminative abilities between features can be used as a good
estimation of feature redundancy.

3 The Proposed Novel Metric

Since tumor classification by using microarray data sets is a supervised problem,
DIScriminative Contribution (DISC) of each genes is critical to performance
of classifiers. If we perform redundant gene elimination, we should remove the
features with little DISC. Here we define DISC based on training accuracy of
single features , i.e. one classifier is built on each feature. From the classifier,
we can precisely record which examples are correctly distinguished by the given
feature. Both linear and non-linear classifiers can be used, here in simplification,
we only consider a linear binary classifier here.

The classification function on feature x is defined as:

ŷ = sgn((x+ − x−)(x − n+x+ + n−x−
n+ + n−

)) (6)

where ŷ is the predicted label, x+ and n+ are the mean value (centroid) and
the number of positive samples, x− and n− have the similar means of negative
samples. A new example is predicted as the class whose centroid is closer to the
given example. The computation complexity of this linear classifier is O(n), (n =
n+ + n−).

Similar with normal discriminative metrics, training accuracy by testing on
the training examples is used to represent the discriminative ability. High train-
ing accuracy means the corresponding feature has great discriminative ability.
In most cases, only a part of the training samples can be correctly separated by
this simple classifier.

But dissimilar with normal discriminative metrics, we have a predicted vector
for each feature, which is supposed to be the approximation of classification
distribution. Furthermore, the discriminative contribution can be estimated by
comparing the corresponding classification distribution.
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Table 1. Discriminative Cross Table

�����C1

C2
true false

true a b

false c d

Given two features x1 and x2, two classifiers C1 and C2 are constructed. Feed-
ing the whole training set back to the classifiers, the differences of the correctly
classified samples of C1 and C2 are recorded in Table 1.

In Table 1, a + b + c + d equals to the size of the training set n. The values
of a+b

n and a+c
n are training accuracy of C1 and C2 respectively. The score of

a+ d measures the similarity of the features, and the score of b+ c measures the
dissimilarity. When both b and c equals with zero, the two features x1 and x2

are considered having exactly the same discriminative abilities.
In order to eliminate redundant features, we examine whether the contribution

of the additional feature is significant to the given one. The additional feature
is considered as redundant one only when its contribution is tiny. Based on the
pair-wise discriminative contribution, we propose a novel metric of redundancy
based on discriminative Contribution (DISC). The DISC value of x1 to x2, which
represents the x2’s redundancy to x1, is defined as follows:

DISC(x1, x2) =
1
2

× (
a

a + c
+

d

b + d
) (7)

where a + c is the samples which can be discriminated by C2, within it, a is
the samples which can also be discriminated by C1. So the proportion of a

a+c
measures how much discriminative abilities of C2 are covered by C1. b + d is
the samples which could not be discriminated by C2, within it, d is the samples
which could not be rightly classified even by the collaboration of C1 and C2. So
the proportion of d

b+d represents the useless extents of C2 which are same with
that of C1.

Based on the idea of discriminative contribution, DISC measures the x2’s
redundancy to x1 , which gives the same weights to the discriminative ability

a
a+c and the discriminative useless extent d

b+d .
The DISC score varies from 0 to 1, and takes 1 only when both b and c are 0.

In this case, we consider x2 is completely redundant to x1. On the other hand,
when the DISC value is 0, both a and d are 0, we suppose the discriminative
ability of x2 is complementary to that of x1.

The pair-wise DISC metric is asymmetrical, so it is not suitable to be used
as a distance metric. The computation complexity of DISC between two single
features is O(n), which is same with the normal linear correlation coefficient.
Furthermore, the classifiers are needed to be built only once in the whole feature
selection algorithms.

DISC is proposed in a linear way, which shows in two respects, one is the
linear classifier, another is the linear way of counting the cross discriminative
abilities. The microarray problems meet the assumption, since most microarray
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data sets are binary classification problems, where each gene has equal position to
perform classification. As for the non-linear cases, it is much more complicated.
Because directly comparing predicted vectors is maybe not suitable for non-linear
classifiers. We will examine the non-linear problem in future works.

4 Experiments

4.1 Data Sets

Four microarray data sets used in our study are listed in Table 2. They are briefly
described as below, and the corresponding C4.5 format versions are available at
[18].

Breast Cancer. Van’t Veer et al. used DNA microarray analysis on primary
breast tumours and applied supervised classification to identify the significant
genes for the disease [19]. The data contains 97 patient samples, 46 of which are
from patients who had developed distance metastases within 5 years (labeled
as ”relapse”), the rest 51 samples are from patients who remained healthy from
the disease after their initial diagnosis for interval of at least 5 years (labeled as
”non-relapse”). The number of genes is 24,481 and the missing values of ”NaN”
are replaced with 100.

Colon. Alon et al. used Affymetrix oligonucleotide arrays to monitor expressions
of over 6,500 human genes with samples of 40 tumor and 22 normal colon tissues
[3]. Expression of the 2,000 genes with the highest minimal intensity across the
62 tissues were used in the analysis.

DLBCL. [20] used gene expression data to analysis distinct types of diffuse
large B-cell lymphoma (DLBCL). DLBCL is the most common subtype of non-
Hodgkin’s lymphoma. There are 47 samples, 24 of them are from ”germinal
centre B-like” group and 23 are ”activated B-like” group. Each sample is de-
scribed by 4,026 genes. The missing values in the data set are replaced by the
corresponding averaged column values.

Leukemia. [2] consists of 72 bone marrow samples with 47 ALL and 25 AML.
The gene expression intensities are obtained from Affymetrix high-density
oligonucleotide microarrays containing probes for 7,129 genes.

Table 2. Experimental Data Sets

Data Sets Samples Class Ratio Features

Breast Cancer 97 46/51 24,481
Colon 62 22/40 2,000
DLBCL 47 23/24 4,026
Leukemia 72 25/47 7,129
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4.2 Experimental Settings

We use the stratified 10-fold cross-validation procedure, where each data set was
split into ten subsets of equal size. Each subset is used as a test set once, and
the corresponding left subsets are merged together and used as the training set.
Within each cross-validation fold, the data are standardized. The expressions
of the training set are transformed to zero mean with unit standard deviation
across examples, and the test set are transformed according to the means and
standard deviations of the corresponding training set.

The classifiers, i.e. linear Support Vector Machine (SVM) with c = 1, Näıve
Bayes (NB) and k Nearest Neighbor (kNN) with k = 1 are used, which are
trained on the training set to predict the label of the test examples. The cross-
validation procedure is repeated ten times, and the mean classification accuracy
(ACC)

ACC =
number of correctly pedicted examples

total number of test examples

is used to measure the performance.

5 Results and Discussions

5.1 Results

In order to examine performance of different redundancy metrics, the famous
redundant feature selection framework of FCBF [11,12] is used in our exper-
iments. Under the unified framework, we compare our proposed redundancy
metric with LInear Correlation (LIC) and Symmetrical Uncertainty (SU). Fi-
nally, three widely used classifiers i.e. SVM, NB and kNN are applied to exam-
ine the performance. The comparative results are showed in Tables 3∼5, where
ACC±std are the statistical mean values with its standard deviation, since the
cross-validation procedure is performed ten times.

From Tables 3∼5, we can see that:

(1) DISC is the best one among the three redundancy metrics in average. Of
four data sets, DISC is always the best one on two data sets, only in three

Table 3. Comparative results of different redundancy metrics by using SVM

LIC SU DISC Full set

Data Sets ACC±std Dim. ACC±std Dim. ACC±std Dim. ACC±std Dim.

BreastCancer 0.5267±0.00 293.00 0.6671±0.03 97.79 0.6880±0.03 166.99 0.6784±0.01 24,481
Colon 0.6493±0.01 3.60 0.8333±0.02 14.04 0.8560±0.01 30.26 0.8493±0.02 2,000
DLBCL 0.8930±0.03 18.59 0.9170±0.03 48.92 0.9480±0.02 212.70 0.9325±0.03 4,026
Leukemia 0.8648±0.05 28.35 0.9461±0.01 45.34 0.9621±0.01 256.90 0.9791±0.01 7,129

Average 0.7334±0.02 85.89 0.8409±0.02 51.52 0.8635±0.02 166.71 0.8598±0.02 9,409
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Table 4. Comparative results of different redundancy metrics by using Näıve Bayes

LIC SU DISC Full set

Data Sets ACC±std Dim. ACC±std Dim. ACC±std Dim. ACC±std Dim.

BreastCancer 0.5267±0.00 293.00 0.5363±0.02 97.79 0.6703±0.02 166.99 0.5551±0.01 24,481
Colon 0.6912±0.06 3.60 0.7990±0.03 14.04 0.7702±0.03 30.26 0.5745±0.02 2,000
DLBCL 0.9585±0.03 18.59 0.9535±0.02 48.92 0.9660±0.02 212.70 0.9425±0.03 4,026
Leukemia 0.9198±0.02 28.35 0.9593±0.01 45.34 0.9705±0.01 256.90 0.9789±0.01 7,129

Average 0.7740±0.03 85.89 0.8120±0.02 51.52 0.8443±0.02 166.71 0.7628±0.02 9,409

Table 5. Comparative results of different redundancy metrics by using kNN

LIC SU DISC Full set

Data Sets ACC±std Dim. ACC±std Dim. ACC±std Dim. ACC±std Dim.

BreastCancer 0.4787±0.02 293.00 0.6471±0.04 97.79 0.6871±0.04 166.99 0.5932±0.02 24,481
Colon 0.6757±0.06 3.60 0.7652±0.04 14.04 0.7676±0.04 30.26 0.7529±0.02 2,000
DLBCL 0.8585±0.03 18.59 0.8840±0.04 48.92 0.9010±0.03 212.70 0.7575±0.03 4,026
Leukemia 0.8334±0.04 28.35 0.9532±0.03 45.34 0.9550±0.02 256.90 0.8725±0.01 7,129

Average 0.7116±0.04 85.89 0.8124±0.04 51.52 0.8277±0.03 166.71 0.7440±0.02 9,409

cases, DISC performs slightly worse than others, i.e. on the Leukemia data
set DISC performs slightly worse than the full set by using SVM and NB,
and on the Colon data set DISC performs slightly worse than SU does by
using NB.

(2) Linear correlation (LIC) is the worst one among all the metrics in average.
The results of LIC are only better than those without any feature selection
in case of using NB and kNN on the Colon and DLBCL data sets.

(3) Results of symmetrical uncertainty (SU) are worse than those of full data
sets without feature selection.

(4) As for the number of selected features, LIC obtains the least size on three
data sets, it is in tens, and SU also obtains feature subsets in tens, while DISC
selects one to two hundreds of features. Sizes of the whole data sets are in
two to twenty-four hundreds, so all metrics succeed compress the features.

5.2 Discussions

Experimental results has shown DISC not only improves generalization perfor-
mance of classifiers on original data sets but also greatly reduce the number of
used genes. We have such considerations:

(1) The fact that performance of linear correlation coefficient is much worse than
the other two metrics indicates that taking the concrete separable examples
between different features into consideration is important to estimate the
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pair-wise redundancy. For linear correlation, when the absolute value is not
1, we can not make out whether the different parts between two features are
useless for classification of the test sample.

(2) Although the novel metric is proposed by using linear classifiers. its perfor-
mance is better than that of non-linear metrics i.e. SU in our experiments.
One reason is that DISC can find the complimentary features for the exist-
ing strong relevant features. Another possible reason is the characteristic of
microarray data sets, whose features are rather more than the examples.

(3) From the Table3, it can also be seen that the ACC score of the full set is
very close to the best one of DISC in average. This is because the SVM
classifier is good at handling high dimensional problems and redundant fea-
tures, where feature selection is hard to improve the performance of SVM.
But DISC still improves generalization performance of SVM on three out of
four data sets. As for the NB and kNN classifiers, high dimensionality ob-
scures the procedures of classification and feature selection is rather helpful
for them.

(4) From the results we know, if we want to analyze the genes, we may use
the symmetrical uncertainty metric, which obtain similar prediction perfor-
mance with less features, i.e. one percent of total features. If we want to
obtain a higher prediction performance, our proposed novel metric DISC
may be used, the results are obviously improved by using Näıve Bayes and
kNN, and even slightly improved by using SVM.

6 Conclusions

Redundant gene elimination is an important topic in the field of bioinformatics.
However, the measurement of feature redundancy is still an open problem. Exist-
ing metrics including linear and non-linear metrics calculate the redundancy only
by the feature’s numerical values not considering the label information. Although
label information is vital to supervised learning techniques, i.e. classification, the
previous works did not use label information to estimate the discriminative con-
tribution of features. Here we propose a novel metric of redundancy based on
Discriminative Contribution (DISC) to perform redundant feature elimination.
By the new metric, complementary features are likely to be reserved, which is
beneficial for the final classification. Experimental results on several microarray
data sets show the DISC metric performs better than the commonly used met-
rics. Redundancy metrics considering the label information are more powerful
than those not considering the label information.

This paper only concerns of comparing DISC with the relative redundancy
metrics like linear correlation and symmetrical uncertainty in the framework
proposed by Yu and Liu [12]. Due to the layout, detailed results of novel al-
gorithms based on the novel metric and their comparison with general feature
selection algorithms like Relief and SVM-RFE will be reported in the expanded
version.
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Abstract. Cancer cells exhibit a common phenotype of uncontrolled
cell growth, but this phenotype may arise from many different combina-
tions of mutations. By inferring how cells evolve in individual tumors, a
process called cancer progression, we may be able to identify important
mutational events for different tumor types, potentially leading to new
therapeutics and diagnostics. Prior work has shown that it is possible
to infer frequent progression pathways by using gene expression pro-
files to estimate “distances” between tumors. Individual mutations can,
however, result in large shifts in expression levels, making it difficult to
accurately identify evolutionary distance from differences in expression.
Here, we apply gene network models in order to improve our ability to
estimate evolutionary distances from expression data by controlling for
correlations among co-regulated genes. We test two variants of this ap-
proach, one using full regulatory networks inferred from a candidate gene
set and the other using simplified modular networks inferred from clus-
ters of similarly expressed genes. Application to a set of E2F-responsive
genes from a lung cancer microarray data set shows a small improvement
in phylogenies when correcting from the full network but a more sub-
stantial improvement when correcting from the modular network. These
results suggest that a network correction approach can lead to better
identification of tumor similarity, but that sophisticated network mod-
els are needed to control for the large hypothesis space and sparse data
currently available.

1 Introduction

One of the most significant insights into cancer biology in recent years has been
the discovery that cancers that appear indistinguishable in the clinic may in fact
be very different entities at the molecular level [6] with consequently different
prognoses and responses to treatment [19,23]. While many possible combinations
of genetic abnormalities could theoretically cause the common phenotype of
tumor growth, in reality most tumors seem to fall into a limited number of
“sub-types” sharing common genetic profiles [13]. Ideally, we would like to know
the sequence of mutations responsible for the cancer developing and acquiring
increasing aggressiveness in each patient [12,18]. The combination of all such
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sequences of mutations, or “progression pathways,” across a population can be
summarized in a phylogeny describing the different evolutionary pathways a
tumor cell might take in that population. By learning this cancer phylogeny, we
hope to better identify common mutational events in tumor formation that can
help us develop new diagnostics or therapeutics targeted to specific sub-types.

Desper et al. [3] showed that gene expression measurements can be used to
identify progression pathways. The Desper approach assumes that each tumor
sample in a population represents one possible progression state, with some
tumors likely representing ancestral states of others in the population. By using
distances between expression vectors as estimates of evolutionary distance, we
can apply standard phylogeny inference algorithms to infer how different tumor
states may have evolved in the population. While this phylogenetic approach
showed great promise in establishing progression pathways, we would expect it
to be partially confounded by the fact that large differences in gene expression
profiles need not closely correspond to a large distance in mutational events.
Because genes are generally coupled with one another by complicated regulatory
networks, a mutation directly altering expression of a gene might affect just that
one gene or might indirectly affect a large fraction of expressed genes.

In this paper, we seek to improve our ability to infer progression pathways
from microarray data by interpreting expression data in the context of genetic
regulatory networks. Our intention is to “correct” for the effects of common reg-
ulation when computing expression distances between samples in order to more
accurately estimate evolutionary distances between tumors. We accomplish this
by inferring Bayesian networks (BNs) describing possible regulatory relation-
ships among genes [5] and using regression models to separate expression changes
corresponding to the direct influence of accumulated mutations from indirect ex-
pression changes due to regulation by upstream genes. We test two variants of
this method, one inferring a full regulatory network from a candidate gene set
and the other inferring a simplified modular network structure by first clustering
genes with similar expression profiles. We applied both methods to phylogeny
inference using a set of E2F-responsive genes extracted from a lung cancer data
set. The full network correction generally led to a relatively small improvement
in grouping of known clinical sub-types in phylogenies, while the modular net-
work led to a substantially greater improvement. The work establishes that a
network correction approach can improve tumor phylogeny inferences, but sug-
gests that care must be taken to deal with sparse and noisy microarray data for
these corrections to be reliable.

2 Methods

The input to all of our methods is a microarray data set containing expression
levels of a set of genes in a set of samples of tumor cells or healthy tissues.
We examine three methods for this inference: a full network method, which fits a
complete model of a regulatory network to a gene set; a modular network method,
which collapses genes into a few modules of approximately co-expressed genes
prior to network correction; and an uncorrected method, which makes inferences
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from raw phylogeny data as in Desper et al. [3]. In the uncorrected method, we
use Euclidean distances between columns (tumor samples) on the microarray as
a distance measure and treat phylogeny inference as a minimum spanning tree
(MST) problem. The two correction methods can be regarded as preprocessing
filters applied to the raw microarray data in the hope of improving the phylogeny
inference.

2.1 Full Network Correction

For the full network method, we begin by inferring a regulatory network among
the genes without any prior assumptions about network topology. We perform
network inference with a heuristic global optimizer combining Order search ([21])
with conventional local greedy hill climbing. We perform local optimization us-
ing the L1-regularized Markov Blanket ([16]) method (L1MB), a technique for
pruning uninformative edges from an initial candidate edge set. We assume we
are given a set of nodes V and a set of expression measurements X , where for
any vi ∈ V , Xvi is the vector of expression values of node vi across genes or
modules. The method learns a BN G = (V, E) with edges ∀i, (vpa(i), vi) ∈ E by
fitting a set of regression equations of the form

Xvi = wT
i,pa(i)Xvpa(i) + ε

with ε ∼ N (0, Σ). Fitting the model involves learning a set of weight values of
the form wi,pa(i), each corresponding to the strength of the inferred regulatory
influence of some parent node pa(i) on a child node vi by the linear Gaussian
model. These weights, and thus the connectivity of the network, can be found
by solving the following quadratic programming problem:

argmin
w

∑

x

(Xvi − wT
i,pa(i)Xvpa(i))

2 subject to ||w||1 < t (1)

The full global optimizer was run for 50 random restarts for each data set. For
each regularization step, we computed the Bayesian Information Criterion (BIC)
score and selected the one best model at the conclusion of the heuristic global
optimization. The result of this stage is a network defining parent-child regu-
latory relationships among genes and a set of regression coefficients estimating
the strength of each such relationship.

Once we have learned a network, we can use that network to produce a cor-
rected set of expression data. For each row of our input matrix Xvi , correspond-
ing to uncorrected expression of gene i across samples, we produce a corrected
row Yvi as follows:

Yvi =
∑

pa(i)∈V

Xvi − wi,pa(i)Xvpa(i)

That is, we subtract from each expression value of vi the portion of that value
attributed to each parent pa(i) by the regression model learned above. The
corrected matrix Y then becomes the input to the phylogeny inference step.
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2.2 Modular Network Correction

With the modular network method, our first step is identifying modules (clus-
ters) of approximately co-expressed genes within the data. We use a Dirichlet
process mixture (DPM) [1,11,15], a non-parametric mixture model chosen be-
cause it does not require prior knowledge of the number of modules to be dis-
covered. We can understand how the model works by considering how a single
gene might be assigned to a module. Suppose we have so far assigned M∗ − 1
genes to K∗ modules. The probability of M∗-th gene belonging to one of the K∗

currently known modules is given by

p(ck
M∗ = 1|c1:M∗−1) =

∑M∗−1
m ck

m

M∗ − 1 + α
, (2)

where cm ∼ DP (α). Alternatively, the M∗-th gene could be the first member of
a newly generated K∗ + 1-th module. The probability of this event is given by

p(∀m ∈ [1..M∗ − 1], ck
M∗ �= ck

m|c1:M∗−1) =
α

m∗ − 1 + α
. (3)

This module assignment prior probability (Eq. 2, 3) can be weighted by each
component’s marginal data likelihood. These probability formulas multiplied
over all gene assignments define the probability of any possible assignment of
genes to modules. Using the collapsed Gibbs sampling scheme, we can exactly
sample all the module assignments (reviewed in [11]). For this work, we utilized
an implementation of the Chinese Restaurant process [14], one possible realiza-
tion of the Dirichlet process model, which considers each microarray experiment
as one Gaussian distribution.

Once we learn gene modules, we infer a Bayesian network across the modules
using a regression method similar to that used for the full network correction
model. We begin, however, with a restricted network topology defined by the
module structure. We tested several possible methods for restricting network
topologies, developing reduced representations of network expression, and learn-
ing regulation between modules, with the results reported here reflecting what
we judged to be the best balance of accuracy and robustness observed. Our cho-
sen method assumes an initial candidate edge set that ignores regulation within
co-expression modules but allows full connections between modules. Let x

(n)
i,m de-

note nth observation of ith gene in mth module. Then we can learn relationships
from all the genes in m′th module toward this gene by posing a regression model
similar to that of the full network method:

Xvi∈m =
∑

j∈m′
wjXvj + ε (4)

where wj is a weight coefficient and ε is an additive error term. To optimize edge
coefficients, we perform a lasso regression where we optimize weight vectors by
the following formula:

w ← argmin
w

N∑

n

⎛

⎝X
(n)
vi∈m −

∑

j

wjx
(n)
vj∈m′

⎞

⎠

2

subject to
∑

j

|wj | < λ (5)
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using the BIC metric to select the best λ. This lasso regression approach provides
a way of enforcing sparsity of the final model.

Once the network model is inferred, the modular network method corrects
expression values exactly as does the full network model, converting the raw
expression matrix X into a corrected matrix Y using the previously inferred
weight coefficients for the correction.

2.3 Phylogeny Inference

All three methods end with a common phylogeny inference step, with this step
constituting the entirety of the uncorrected method. We construct tumor phy-
logenies using a simple variant of the method of Desper et al. [3]. The input to
this stage is a matrix of expression values in which columns correspond to tu-
mor samples and rows correspond to genes. We first compute pairwise distances
between samples using Euclidean distances between the expression vectors of
the two samples. The set of pairwise distances establishes a complete, weighted
graph whose nodes are the samples. We define the most plausible phylogeny on
the tumors to be the minimum spanning tree (MST) on the graph. We find the
MST using a subroutine in the Bayes Net Toolbox for Matlab [10]. Note that
we do not infer Steiner nodes (unobserved nodes that allow for reduced phy-
logeny cost relative to the MST). Optimally solving the Steiner node inference
problem is computationally intractable, and experiments with heuristic Steiner
node inferences, omitted here due to space limitations, produced only marginal
improvements in quality over the MST solutions.

2.4 Validation

We compared the three methods using a set of microarray expression data
from 72 lung cancer samples and 19 healthy controls [7]. We retrieved the data
from the Entrez Gene Expression Omnibus database (http://www.ncbi.nlm.
nih.gov/projects/geo/) entry GSE1037. Each sample was labeled by the sub-
mitters with one of seven clinical sub-types: normal cell, adenocarcinoma, pri-
mary typical carcinoid, large cell neuroendocrine carcinoma, primary large cell
lung carcinoma, primary small cell lung carcinoma, and primary combined small
cell lung carcinoma-adenocarcinoma. We grouped combined small cell lung
carcinoma-adenocarcima with primary small cell carcinomas but otherwise
treated these submitter labels as the true class labels in our subsequent val-
idation. We restricted our analysis to a set of candidates genes likely to be
significant to multiple tumor cell types. For this purpose, we chose a set of genes
believed to be downstream of E2F-family transcription factors, because of the
importance of the E2F regulatory network to a broad set of cancers [22,4]. We
manually selected a subset of 325 genes reported in the literature to be E2F-
responsive, excluding those reports based only on a single microarray result.
The resulting set consisted of genes identified by PCR, Northern blot analysis,
or at least two independent microarray studies. Of these 325 candidate genes,
278 were present on the Jones et al. microarray and were used in this study.

http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/
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Each of the methods described above — uncorrected, full network, and modular
network — was applied to the resulting set of 278 genes in 91 samples.

We measured overall phylogeny quality by assuming that the clinical sub-
type labels assigned by Jones et al. correspond to true evolutionary classes of
tumors and that tumor samples with the same labels should therefore be near
one another in the phylogeny. We quantified the ability of the phylogeny to
group samples with a given label by the mean square number of edges separating
pairs of samples with that label in the phylogeny. To better quantify differences
between the trees, we further analyzed the network topologies by using the ratio
of that value to the mean square number of edges separating pairs of samples
with distinct labels in the phylogeny. These values were computed in Matlab by
the Floyd-Warshall algorithm [2].

In addition to testing accuracy in grouping class assignments in the phyloge-
nies, we were interested in robustness of phylogeny inferences to missing data.
Robustness gives us a measure of the reliability of specific edges in the phyloge-
nies. We assessed robustness by the presence or absence of edges between specific
pairs of samples for inferences from the full data set versus inferences based on a
randomly selected subset of the genes. We use these edge comparisons to identify
false positive and false negative error rates for each method as follows:

errFP =

∑
e∈(i,j)(1 − δ(e))δ̂(e)

∑
e∈(i,j) δ̂(e)

and errFN =

∑
e∈(i,j) δ(e)(1 − δ̂(e))
∑

e∈(i,j)(1 − δ̂(e))
, (6)

where δ ∈ {0, 1} denotes true edge indicator and δ̂ denotes inferred edge indica-
tor. This test was repeated for each method for inferences using 10%-90% of the
full gene set, in increments of 10%, with 100 random replicates for each fraction.

3 Results

We ran each of the three methods on our full data set, producing one phylogeny
per method. Fig. 1(a) shows the inferred phylogeny for the uncorrected method,
Fig. 1(b) the phylogeny produced by the full network method, and Fig. 1(c) the
phylogeny produced by the modular network method. All three share some com-
mon features, although there are also significant rearrangements among them.
All three trees predominantly place the adenocarcinomas in a cluster adjacent
the normal cells, suggesting that the adenocarcinomas may be similar to an early
progression state. The three trees differ on the children of the adenocarcinomas,
though. The uncorrected tree links neuroendocrine tumors below adenocarci-
nomas. The fully corrected tree, however, places the carcinoid tumors below
the adenocarcinomas. In the modular tree, the adenocarcinomas form a leaf
sub-tree, not leading to any other large group. All three trees have a subtree
containing neuroendocrine tumors above small-cell tumors. In the uncorrected
and full network trees, large cell tumors also for the most part branch off of the
neuroendocrines in this sub-tree while in the modular tree, the large cell tumors
are not well grouped into a single sub-tree. The carcinoid tumors largely form
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(a)

(b)

(c)

Fig. 1. Cancer phylogenies inferred from E2F-responsive genes in lung cancer. Each
node in the graph corresponds to a single tumor sample and each edge to an inferred
phylogenetic relationship between two tumors. Nodes are labeled with IDs from the
Entrez GEO database and colored to identify different tumor sub-types: normal cells
(white), large cell (red), large cell neuroendocrine (yellow), small cell (green), typi-
cal carcinoid (blue), and adenocarcinoma (purple). (a) Uncorrected method; (b) Full
network method; (c) Modular network method.
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a tightly packed, nearly linear chain, yet the placement of this chain is differ-
ent for each method. The uncorrected tree places the carcinoids as a separate
progression pathway off of normal cells, the full network tree places them as a
child sub-tree of adenocarcinomas, and the modular network tree places them
as a child sub-tree of neuroendocrine tumors.

We assessed the quality of the trees by their ability to closely group samples
with common labels. On a visual examination, none of the trees is obviously
superior to the others by this criterion. We therefore performed a quantitative
assessment using mean square distances between samples with common class
assignments. Fig. 2(a) shows the results for each of the labels. The full network
method shows generally somewhat improved clustering relative to the uncor-
rected data, with better clustering of some labels at the expense of others. The
modular network method overall shows approximately twice as much improve-
ment as the full network method relative to the uncorrected method, although it
too exhibits poorer performance on some classes than the uncorrected method.
Relative to the uncorrected method, the full network method performs most
poorly on classes 1 (adenocarcinoma) and 4 (neuroendocrine), with slightly worse
performance on class 2 (normal cells). It achieves overall better performance pre-
dominantly by large improvements on classes 3 (small cell) and 6 (large cell).
The modular tree also has difficulty with class 4 (neuroendocrine), but does sim-
ilarly to the uncorrected method on 2 (normal cells) and 3 (small cell) and much
better on 1 (adenocarcinoma), 4 (neuroendocrine), and 6 (large cell).

A visual examination of the phylogenies suggested that the modular method
may do better by this metric in part because it tends to produce a more com-
pact graph, with a larger number of high-degree hubs predicted to be common
ancestors of many independent branches. To test that intuition, we also exam-
ined the ratio of mean square distance within each tumor class to mean square
distance between classes. Fig. 2(b) confirms that when normalized for mean dis-
tance between classes, all three measures show similar results. There are very
slight differences between the trees when assessed with this normalization, with
the uncorrected tree marginally superior to the full network tree, and the full
network tree marginally superior to the modular network tree. The relative per-
formances of the different methods on the individual tumor classes are largely
unchanged relative to the unnormalized data in Fig. 2(a), but the advantages
of both correction methods on some sub-classes are significantly reduced. This
result confirms the hypothesis that the modular method, and to a lesser degree
the full correction method, produce good clustering of clinical sub-types in part
by biasing the overall graph more towards a compact “hub-and-spoke” topology.

We then further examined robustness of the three methods in order to assess
how much each method suffers from the limited data available. Fig. 3 shows false
positive and false negative rates for specific inferred edges in the phylogenies as
we reduce the number of genes available to the inferences. The plot shows that
the robustness of the methods, as measured by their ability to reliably reproduce
the same tree in the presence of reduced data sets, decreases with the correction
methods despite the increase in tree quality with the correction methods. The
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Fig. 2. Assessment of phylogeny quality based on clustering of common labels. (a)
Mean square distance on the phylogeny for tumors sharing each label for each of the
three methods. (b) Ratio of mean square distance for tumors sharing each label to
mean square distance for tumors with distinct labels for each of the three methods.
The legends provide accumulated scores across all labels for each method. The labels
are (1) adenocarcinoma, (2) normal, (3) small cell, (4) large cell neuroendocrine, (5)
carcinoid, and (6) large cell.

modular method shows the least robustness of the three, with the full network
model slightly better, and the uncorrected the best of all. Absolute robustness is
similar for all three methods, though, suggesting that the corrections have only
a modest negative impact on sensitivity to sparse data.

We can gain some understanding of where the methods might be improved
by examining the results of the network inferences themselves. Fig. 4 shows the
inferred network topology for the full network model. The obvious question we
wish to ask about such a network is whether it actually corresponds to regu-
latory relationships among the E2F-responsive genes. To answer this question,
we used BiNGO [9], an open-source Java tool for evaluating the significance of
gene clusters based on common Gene Ontology categories. BiNGO identified a
meaningful relationship for only one component of Fig. 4, highlighted in red
and yellow. This component is overrepresented for several GO categories related
to the cell cycle, most significantly the M phase (GO:0000279) with p-value
0.00025. We can conclude that the while the network is not random, it does not
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Fig. 3. Robustness of phylogeny inferences. The plots show false positive and false
negative rates for edge assignments relative to the full-data inferences as a function of
fraction of genes examined.
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Fig. 4. Inferred E2F-responsive network topology from the full-network model. Genes
that were inferred to have no neighbors in the model were omitted from the diagram.
A sub-network enriched for cell cycle-related genes is highlighted in yellow and red.

for the most part correspond well with known regulatory relationships among
these genes. This result suggests that a major reason the full network method
does not perform better is that the network inference step is unable to learn the
true network reliably, an issue we consider further in the Discussion.

4 Discussion

We have examined the utility of network-based correction methods for improv-
ing our ability to infer evolutionary relationships between tumor types based
on expression data. A simple correction based on a full inferred gene network
appears to provide a small improvement in phylogeny inference relative to the
uncorrected approach. A modular network approach that simplifies the network
inference problem by clustering genes prior to network inference leads to a sub-
stantially greater improvement in phylogeny accuracy. It therefore does appear
that a network-based correction method can improve our ability to infer evolu-
tionary relationships between tumor types, but some sophistication is needed in
the method to ensure that the network can be learned from the available data.
These improvements in quality paradoxically come at the cost of some loss in
robustness, suggesting that further care may be needed to avoid increasing noise
sensitivity when reducing the confounding effects of gene regulation.

We believe that the full network method performs comparatively poorly pri-
marily because its network inferences are insufficiently accurate. Network infer-
ence from raw expression data is well known to be a difficult problem. Exploiting
the modular structure of expression networks may reduce the solution space lead-
ing to more accurate inferences from limited data, as suggested by the results of
Segal et al. [17]. A common approach for dealing with sparse expression data in
practice is to use many heterogeneous data sources — such as predicted tran-
scription factor binding motifs or direct measurements of transcription factor
binding — in order to improve accuracy (see, for example, Tavazoie et al. [20]).
Our full network approach might similarly benefit from additional data sources.
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Alternatively, we might use literature-derived networks in place of automated
network inferences. It is also possible that the linear regression method used for
correction within the method is inadequate for describing non-linear relation-
ships between genes and that a more versatile non-linear regression model, such
as that of Kim et al. [8], might alleviate this problem. Our conclusions about
network correction may also be overly pessimistic because of our decision to use
a small, curated gene set rather than uncurated whole-genome expression data
that would likely benefit more from correction.

While the goal of this study was to learn about progression among cancers,
it is difficult to identify specific features of the inferred tree topologies in which
we can have high confidence. Some features are highly robust to the method
chosen and may therefore be more reliable, such as the inferences that the ade-
nocarcinomas resemble an early progression stage off of normal cells and that the
neuroendocrine tumors resemble an ancestral state of small cell tumors. There
remains at present no independent method to verify such predictions, though,
and these conclusions are for the moment merely speculative. An important di-
rection in future work will be determining whether inferred tree topologies are
robust to different data sets and whether a more detailed study of the molecular
profiles of these tumor types supports our predicted tumor progression pathways.
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Abstract. Breast cancer is the second leading cause of death in women
in the United States. Breast Magnetic Resonance Imaging (BMRI) is an
emerging tool in breast cancer diagnostics and research, and it is becom-
ing routine in clinical practice. Recently, the American Cancer Society
(ACS) recommended that women at very high risk of developing breast
cancer have annual BMRI exams, in addition to annual mammograms, to
increase the likelihood of early detection. (Saslow et al. [20]). Many med-
ical images demonstrate a certain degree of self-similarity over a range
of scales. The multifractal spectrum (MFS) summarizes possibly vari-
able degrees of scaling in one dimensional signals and has been widely
used in fractal analysis. In this work, we develop a generalization of MFS
to three dimensions and use dynamics of the scaling as discriminatory
descriptors for the classification of BMRI images to benign and malig-
nant. Methodology we propose was tested using breast MRI images for
four anonymous subjects (two cancer, and two cancer-free cases). The
dataset consists of BMRI scans obtained on a 1.5T GE Signa MR (with
VIBRANT) scanner at Emory University. We demonstrate that mean-
ingful descriptors show potential for classifying inference.

1 Introduction

In the United States, breast cancer is the second leading cause of death in women
(after lung cancer), and is the most common cancer among women. One out of
eight women will develop breast cancer in their lifetime. The American Cancer
Society (ACS) estimated that about 40,460 women would die from the disease
in 2007 (Jemal et al. [10]). Studies have indicated that early detection and treat-
ment improve the chances of survival for breast cancer patients (Curpen et al.
[6], Smart et al. [21]). Breast imaging plays a vital role in screening for and
diagnosis of breast cancer and in monitoring the impact of treatment. In this
study, we target the development of analytical techniques to improve diagnostic
capabilities of BMRI.
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While mammography and breast ultrasound are considered “gold standard”
for breast cancer screening, an increasing body of research has shown BMRI to
be an effective diagnostic and interventional tool. BMRI has been approved by
the U.S. Food and Drug Administration since 1991 for use as a supplemental
tool to mammography for breast cancer diagnostics. It is also useful in breast
cancer staging, in treatment and preoperative planning, and for patient follow-
up after breast cancer treatment. Since 1999, there has been a 40% per year
increase in the number of BMRI examinations in the United States. Recently,
ACS recommended that women at very high risk of developing breast cancer
have annual BMRI exams, in addition to annual mammograms, to increase the
likelihood of early detection (Saslow et al. (2007) [20]).

Based on the principles of nuclear magnetic resonance (NMR), a technique
that is highly sensitive to physical, chemical and biological characteristics of
tissues and fluids, BMRI enables a 3-D examination of breast tissue and pro-
vides a noninvasive assessment of the microcirculatory characteristics of tis-
sues, in addition to traditional anatomical information. The 3-D anatomical
structure, is insufficient for distinguishing between benign and malignant tis-
sues, and functional imaging is typically incorporated. In this setting, func-
tional imaging utilizes contrast agents for MRI, which enables the visualiza-
tion of functional changes when serial MRI scans are acquired. The typical
contrast agent for BMRI is Gadolinium (GAD) diethylenetriamine penta-acetic
acid (DTPA).

Evaluating BMRI accurately and efficiently is essential, but it is very challeng-
ing in practice. BMRI produces massive 4-dimensional (three spatial dimensions
plus a time dimension) data, posing challenges for analysis and detection. At
present, BMRI cannot always distinguish between cancerous and non-cancerous
functional dynamics, prompting the investigation into improved methods.

Wavelet techniques have become indispensable for image processing, in par-
ticular when dealing with medical images. Mallat’s multiresolution analysis (see
Vidakovic [22]) decomposes an image into a set of approximation coefficients
(low frequency components) and the scale dependent hierarchy of detail co-
efficients (high frequency components). A standard tensor product orthogonal
wavelet transformation of an image results in three sets of generated detail coef-
ficients: diagonal, horizontal and vertical. Numerous references can be found in
the literature in which wavelets are applied to mammogram images. For exam-
ple, in Yoshida et al. [23], a wavelet transform was applied to detect clustered
microcalcifications. In Zheng et al. [24] and Derado et al. [5], a wavelet-based
image-enhancement method is employed to enhance microcalcification clusters
for improved detection. Recently there has been an increase in the use of wavelet-
based methodology in the analysis of BMRI data. Alterson and Plewes (2003)[1]
used a multiresolution non-orthogonal wavelet representation as a measure of
similarity to detect natural biological symmetries in breast MRI scans. Mainardi
et al. (2007) [13] present a nonrigid registration algorithm of dynamic MR breast
images based on a multiresolution motion estimation of the breast using complex
discrete wavelet transform. To the best of our knowledge, however, approaches
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using scaling methodology in BMRI data can not be found in the published
literature.

Fractality is a concept pervasive in medical research. Many medical signals
and images demonstrate a certain degree of self-similarity over a range of scales,
lending to the development of algorithms based on fractal analysis of those ob-
jects (see Chen et al. [4] and Kuklinski [12]). For example, fractality was used
to detect breast cancer in Priebe et al. [16], Kestener et al. [11], and Bocchi et
al. [2]. Chen et al. [4] developed a pattern recognition technique based on fea-
tures derived from the fractal description of mammograms. Kuklinski [12] used a
wavelet transform modulus maxima method generalized to the two dimensional
case. They combined this approach with a multifractal analysis, enabling the
detection of tumors as well as microcalcifications. Kestener et al. [11] used long
range correlations and wavelet-based multifractality for tissue classification in
digitized mammograms to support clinical diagnosis. In Moloney et al. [14], the
MFS is used to analyze the pupillary behavior of older adults and to discriminate
between patients with various ocular acuity.

Processes with fractal characteristics that exhibit rich scaling behavior are
often referred to as multifractals. The fractional Brownian motion (fBm), a theo-
retical model for mono-fractality, is a non-stationary process whose sample paths
exhibit a homogeneous degree of regularity. For many applications, this homo-
geneous regularity may be too restrictive. In particular, one may want models
that account for differing degrees of regularity. Multifractal analysis is concerned
with describing the local singular behavior of functions in a geometrical and sta-
tistical fashion. It was first introduced in the context of turbulence and applied
in many other contexts such as Diffusion Limited Aggregation (DLA) patterns
research, earth quake distribution analysis, signal processing and internet data
traffic modeling. For an introduction to multifractals, see Riedi [18]. Multifrac-
tal models exhibit patterns of locally varying scaling behavior similar to that
encountered in medical and biological data (among others). They usually ex-
hibit a prevalent scaling behavior, but a multitude of other scalings may also
be present although occurring much less frequently. Since multifractal models
are in general non-stationary, standard tools in time series analysis such as the
Fourier transform are not appropriate because the Fourier transform is not lo-
calized in time. Evaluating the varying local properties of multifractal processes
requires analytical methods that are able to localize information in time and fre-
quency. Given that wavelets are local in both frequency/scale (via dilations) and
in time (via translations), the wavelet defined multiscale analysis is convenient
in assessing multitude scalings intrinsic for BMRI scans. For a detailed study of
multifractals, we refer the reader to Riedi [17] and Morales [15].

The multifractal spectrum (MFS) summarizes possibly variable degrees of
scaling in signals. In the case of fractals, scaling refers to the propagation of
energy when the signals or images are inspected at various resolutions. The
dynamics of the scaling can be used as discriminatory descriptors; thus, multi-
fractality provides an additional window through which to look at the data and
renders standard statistical approaches insufficient.
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In this work, we generalize the concept of multifractal spectrum as it was
defined in Gonçalves et al. [9] to the three dimensional case and use some of its
low-dimensional descriptors to classify BMRI scans as either benign or malig-
nant. Although the number of subjects analyzed is small (two cases and two
controls), our findings are consistent with empirical evidence that healthy re-
sponses are characterized by irregularity and that increased regularity may sug-
gest pathologies.

The paper is organized as follows. Section 2 gives a description of the data to
which we apply our proposed method. In Section 3, we provide a brief review
of the theoretical background of wavelets. In addition, the three dimensional
multifractal spectrum is defined and some of its properties are illustrated on
the example of 3-D fractional Brownian motion MFS. Section 4 deals with the
application of our proposed methodology to cancer detection via the classifica-
tion of BMRI. In Section 5 we provide conclusions and delineate some possible
directions for future research.

2 Description of the Data

The data consist of serial BMRI scans from each of four women: 2 cancer and
2 cancer-free cases. The scan series includes one pre-contrast image and four
post-contrast images acquired at 1, 3, 5, and 7 minutes after the contrast is ad-
ministered. The discriminatory pattern of contrast enhancement, characterized
by rapid accumulation in the malignant mass and rapid wash out, occurs in the
first few minutes following injection. By 7 minutes or later, the contrast uptake
in most breast tissue is enhancing. Each 3-D scan contains 104 sagittal slices
comprised of an array of 256× 256 pixels and slice thickness of 3mm. The scans
were obtained on a 1.5T GE Signa MR (with VIBRANT) scanner at Emory
University.

Fig. 1. Illustration of the data structure and acquisition
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3 Methodology

In this work we present a conceptual description of MFS in three dimension
and demonstrate its utility in the classification of BMRI images. Our approach
consists of two main steps. First, we estimate the multifractal spectra and extract
a number of low dimensional summaries (such as slopes, tangents, broadness and
spectral mode). Then, we use these summaries as discriminatory measures for
BRMI images.

3.1 Background on Wavelets

The 3-D wavelet basis functions are constructed via translations and dilations
of a tensor product of univariate wavelets and scaling functions. For technical
reasons, we consider L1-normalization of wavelets instead of standard L2 nor-
malization, of which expression for ψj,k, φj,k is,

φj,k(x) = 23jφ(2jx1 − k1, 2jx2 − k2, 2jx3 − k3)
ψi

j,k(x) = 23jψi(2jx1 − k1, 2jx2 − k2, 2jx3 − k3)

where i = h, l, v, hl, hv, lv, hlv denote the different directions on a cube (see Fig.
2, left), x = (x1, x2, x3) ∈ R3, and k = (k1, k2, k3) ∈ Z3. Then, any function
f ∈ L2(R3) can be represented as

f(x) =
∑

k

cj0,kφj0,k(x) +
∑

j≥j0

∑

k

∑

i

di
j,kψi

j,k(x) (1)

where the wavelet coefficients are given by

di
j,k = 23j

∫

f(x)ψi(2jx− k)dx (2)

The 3-D multifractal wavelet spectra will be defined using the wavelet coefficients
di

j,k, along the scale index j. We assume that the mother wavelet ψ has R van-
ishing moments, that is,

∫
xrψ(x)dx = 0, r = 0, . . . ,R, because the decorrelation

property of wavelet coefficients depends upon this assumption.
Although the wavelet analysis of n-dimensional structures is conceptually

straightforward, it is not routinely implemented in standard wavelet software
and for this project we developed and implemented the three dimensional trans-
formation in MATLAB’s freely available package Wavelab [3].

3.2 3-D Multifractal Spectrum

In Gonçalves et al. [9], it is shown how the oscillatory or scaling behavior of a
process carries over into the local scaling properties of its wavelet coefficients di

j,k

in (2), under assumption that the wavelet is more regular than the process. The
following local singularity strength measure in 3-D can be defined using wavelets

αi(t) := lim
k2−j→t

− 1
j log2 |d i

j ,k| (3)
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Fig. 2. Seven directions on a cube corresponding to detail level hierarchies in a 3-D
wavelet transforms (left); Summary measures (descriptors) from a schematic multifrac-
tal spectrum (right)

where k2−j → t means that t = (t1, t2, t3) ∈ [2−jk1, 2−j(k1 + 1))× [2−jk2, 2−j

(k2 + 1)) × [2−jk3, 2−j(k3 + 1)) for k = (k1, k2, k3) and j → ∞. Smaller α(t)
corresponds to larger oscillations in x and thus to more singularity at time t.
The index i in (3) corresponds to one of seven directions in detail spaces of 3-D
wavelet transform, horizontal (h), vertical (v) or diagonal (l) up to horizontal,
vertical, diagonal (hlv). Typically, a process will possess many different singular-
ity strengths. The frequency (in t) of occurrence of a given singularity strength
α is measured by the 3D multifractal spectrum, defined for each direction i as

f i(α) := lim
ε→0

lim
j→∞

1
j log2 M i

j

M i
j := 2−j#{k : 2−j(α+ε) ≤ |d i

j ,k| ≤ 2−j(α+ε)}.
(4)

For k ∈ {0, . . . , 2j − 1} × {0, . . . , 2j − 1}, f i takes values between −1 and 0.
Smaller f i(α) means that “fewer” points t behave with strength α(t) � α.

The 3-D multifractal spectrum f i defined in (4) is very hard to calculate. A
simpler approach makes use of the theory of large deviations (see Ellis, [8]), where
f i would be interpreted as the rate function of a Large Deviation Principle: f i

measures how frequently (in k) the observed (−1/j) log2 |di
j,k| deviate from the

“expected value” α0 in scale j. In our 3-D context, it corresponds to studying
the scaling behavior of the moments of the wavelets coefficients (2). For every
direction i, the partition function is defined as follows

T i(q) := lim
j→∞

(−1/j) log2 E|di
j,k|q. (5)

It describes the limiting behavior of qth moment of a typical wavelet coefficient
di

j,k from the level j and direction i. The multifractal formalism posits that the
multifractal spectrum can be calculated by taking the Legendre transform of the
corresponding log moment generating function (Riedi et al. [19])
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f i(α) = f i
L(α) := inf

q
[qα− T i(q)]. (6)

It can be shown that f i
L(α) = qα− T i(q) at αi = T

′i(q) provided T
′′i(q) < 0.

3.3 Wavelet-Based Estimator

We discuss in this section wavelet-based estimation of the 3-D multifractal spec-
trum (4). Given a realization of the 3-D fBm of size 2J × 2J × 2J , and using the
stationarity of the wavelet coefficients {di

j,(k1,k2,k3), i = h, l, v, hl, hv, lv, hlv; j =
J0, . . . , J − 1, k1, k2, k3 = 0, . . . , 2j − 1}, the sample counterpart of E|di

j,k|q is

Ŝi
j(q) :=

1
23j

⎛

⎝
2j−1∑

k1=0

2j−1∑

k2=0

2j−1∑

k3=0

|di
j,(k1,k2,k3)|q

⎞

⎠ (7)

for q > −1. The partition function can then be estimated as the power-law expo-
nent of the variation of Ŝi

j(q) versus scale 2−j. By linear regression of log2 Ŝi
j(q)

on j between scales j1 and j2 we get

T̂ i(q) :=
j2∑

j=j1

aj log2 Ŝi
j(q), (8)

where the regression weights aj must satisfy the two conditions
∑

j aj = 0 and
∑

j jaj = 1 (Delbeke and Abry [7]). Thus, we can estimate f i(α) though a local
slope of T̂ i(q) at values

α̂i(ql) = [T̂ i(ql+1)− T̂ i(ql)]/q0, ql = lq0

as
f̂ i(αi(ql)) = qlα

i(ql)− T̂ i(ql).

Multifractal spectra can be found even for monofractal processes; the spectra
generated from monofractal processes are ramp-like with a dominant (modal)
irregularity corresponding to the theoretical Hurst exponent (see Riedi [17]).

Rather than operating with multifractal spectra as functions (densities), we
summarize them by a small number of meaningful descriptors. Each multifractal
spectrum (in each direction) can be approximately described by 3 canonical
descriptors without loss of the discriminant information, which are (1) Spectral
Mode (Hurst exponent, H), (2) left slope (LS) or left tangent (LT ) and (3) width
spread (Broadness, B) or right slope (RS) or right tangent (RT ). A typical
multifractal spectrum can be quantitatively described as shown in Figure 3.
Understanding the H and LS (or LT ) is straightforward. H represents the apex
of the spectrum or the Hurst exponent, and LS (or LT ) represents the slope
of the distribution produced by the collection of Hurst exponents with smaller
values of the mode (H). However, broadness (B) is a more intricate descriptor
of the multifractal spectrum. Broadness (B) is believed to be more meaningful
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Fig. 3. 3D MFS associated to a 3D fBm with H = 0.3 (left) and H = 0.7 (right),
respectively

than right slope (RS) or right tangent (RT ) because it is a compound measure
representing the overall nature of the multifractal spectra, taking into account
the overall variability among the Hurst exponents. In addition, broadness (B)
partially accounts for right slope (RS) or right tangent (RT ) in calculation, as
the resultant value of B is based on the relative values of RS and LS. Both slopes
(or both tangents) can be obtained easily using the interpolation technique, while
it is not straightforward to define the broadness (B) automatically. The location
of the start and end points of the width spread has been set to the roots α1 and
α2 which satisfy the equation f(α)+0.2 = 0 as in [25]. Figure 3 depicts the MFS
of a simulated 3-D fBm with H = 0.3 and H = 0.7. Notice how the maximum
of every f i(α) is attained close to α = 0.3 and α = 0.7, and deviations from
the exact values can be attributed to discretization or small number of dyadic
levels.

4 Application in Analysis of BMRI Images

In this section, we provide an application of the previously defined 3-D wavelet-
based multifractal spectrum to the classification of BMRI images. We classify
images as benign or malignant, by analyzing the fractal properties of the back-
ground of the image. Each image was divided in non-overlapping subimages,
each of size 256 × 256 × 256. Each 3-D image contains 104 slices of 256 × 256
scans that are boundary mirror extended to obtain “wavelet friendly” dimension
of 256.

Figure 4 displays 256 × 256 BMRI slices (cross-sections) from a cancer case
and from a control (non-cancerous) subject.

Figure 5 shows particular multifractal descriptors (see also Fig. 2 and its
caption) in selected directions for the BMRI data containing two cases and two
controls. Fig. 5 (a) displays two selected descriptors, namely H and LS, since
they are easily interpretable and appear to distinguish features of cases and
controls reasonably well. The descriptor H measures the global irregularity of a
scan, while LS describes the deviation from mono-fractality. Images with higher
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LS values exhibit greater mono-fractality, and a pure monofractal theoretically
has an infinite LS. The direction hlv, corresponding to the main diagonal, is
selected since the hierarchy of wavelet hlv-subspaces contains genuine details.
That is, coefficients are obtained by applying high-pass filters in all 3 dimensions,
while any other hierarchy utilizes at least one low-pass filter. It is evident that the
controls are placed in the region for which H +LS is small – indicating that both
irregularity and multifractality for controls are high. This is consistent with a
popular belief that increased regularity and monofractality are signs of pathology
for many high frequency biometric responses (electrocardiogram (ECG), ocular
responses, etc).

Fig. 5 (c) shows the longitudinal behavior of the broadness descriptor B for
the cases and controls along the direction hv. The hv direction combines h and
v, which are sampled along directions within slices and between the slices, re-
spectively. The descriptor B is conceptually linked to H, RS and LS. Namely,
spectra with low H and small LS tend to have large B. These typical associa-
tions are consistent with our findings depicted in Fig. 5 (a). Even with a small
sample size, Figure 5 illustrates the discriminatory power of the multifractal
descriptors in BMRI applications. In particular, Fig. 5 (b) shows a non-linear
decision boundary generated by a support vector machine (SVM) classifier with
radial basis kernel of width parameter 0.1. In our application, the SVM classifier
achieved 95% accuracy.

5 Conclusions

In this work, we have shown that the extended three dimensional concept of
wavelet-based multifractal spectrum can be utilized in classification of BMRI.
This tool, which describes various degrees of irregularity in the measured ob-
jects, has been widely utilized in several fields (e.g. physics, meteorology, and
medicine), where assessing self-similarity and fractality is critical. Our method-
ology has provided promising results that are consistent with past research. For
example, we observed in our data that normal breast tissue tends to be more
irregular (with a smaller Hurst exponent) than tumor affected tissue.

The findings in our study are based upon a small data set, for which the
applicability of formal classification algorithms is limited. In future research, in-
volving more data, we plan to build and apply a weak classifier based on scaling
of BMRI background, which is a novel concept in cancer screening. We applied
the flexible SVM classifier that allows for non-linear classification boundaries,
and we will consider other state-of-the art methods in future research. Classifi-
cation will become more statistically reliable with a large data set that we are
in the process of obtaining.

Extremely high classification precision will be challenging to attain with a sin-
gle classifier, given the high degree of noise in MRI measurements and numerical
instability of our algorithms due to limited spatial resolution in the images.
However, even moderately accurate classifiers may contribute substantially to
breast cancer screening, and these so-called weak classifiers in our context utilize
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information (BMRI background) that is currently ignored and may combine with
other weak classifiers (via boosting) to produce clinically useful tools.
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Abstract. This paper provides a novel algorithm for invertible non-
rigid image registration. The proposed model minimizes two energy func-
tionals coupled by a natural inverse consistent constraint. Both of the
energy functionals for forward and backward deformation fields consist
a smoothness measure of the deformation field, and a similarity measure
between the deformed image and the one to be matched. In this proposed
model the similarity measure is based on maximum likelihood estimation
of the residue image. To enhance algorithm efficiency, the Additive Oper-
ator Splitting (AOS) scheme is used in solving the minimization problem.
The inverse consistent deformation field can be applied to automatic re-
contouring to get an accurate delineation of Regions Of Interest(ROIs).
The experimental results on synthetic images and 3D prostate data indi-
cate the effectiveness of the proposed method in inverse consistency and
automatic re-contouring.

1 Introduction

Image registration, a very important subject in computer vision and image pro-
cessing, has been increasingly used in image guided surgery, functional brain
mapping, multi-modality fusion etc. The task of image registration is to find a
transformation h that relates points in the source image S to their corresponding
points in the target image T . This transformation can be either rigid or non-rigid
(deformable). Rigid registration is restricted to be a combination of scaling, ro-
tation and translation only, hence, it is not adequate for applications involving
large free deformations, for example, image guided radiation therapy on prostate.
Deformable image registration allows more freedom at each point, it has been
the subject of extensive study in the literature (e.g. [1,20,19,24,14,17,23,10,5]).
In most deformable registration models, a smooth and “natural” deformation
field h is usually driven by intensity based similarity measures such as Sum of
Square Distance(SSD) ([14,16]), Cross Correlation (CC)([6,4]), Mutual Informa-
tion (MI) ([22,21,6,18]) between the deformed source image S(h(x)) and the
target image T (x).
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In certain applications such as imaging guided radiation therapy, it would be
better to have a one-to-one and inverse consistent deformation field, while the
majority of non-rigid registration methods do not guarantee such property. The
inverse consistent means that when the source and target images are switched
in the model, the point correspondence between S and T does not change. An
inverse inconsistent deformation field can generate large errors in the processes
like auto re-contouring([16]), dose calculate ([11,15]) in radiation therapy. A
number of work have attempted to make the registration inverse consistent (e.g.
[3,12,2]). Here we only discuss two of them which are closely related to our work.
In [3], Christensen and Johnson proposed the following coupled minimization
problems:

E(h) = M(S(h), T ) + λR(h)
︸ ︷︷ ︸

E1

+ρ

∫

Ω

|h− g−1|2dx

E(g) = M(S, T (g)) + λR(g)
︸ ︷︷ ︸

E2

+ρ

∫

Ω

|g − h−1|2dx

(1)

where M(·, ·) is a dissimilarity measure between two images, g is the backward
mapping which deforms T such that T (g) is close to S under measure M , and g is
expected to be the inverse of the forward mapping h (i.e. h◦g = g◦h = id, where
id is the identity mapping). R(·) is a regularity measure on deformation fields
h and g, λ > 0 and ρ > 0 are parameters balances the goodness of alignment,
the smoothness of the deformation, and consistence of invertibility. g−1 and h−1

represent numerical inverses of g and h respectively. In [3], h and g were solved
by using gradient descent algorithm.

Since the inverse consistent constraints are accommodated by penalty terms
in the energy functionals, solutions h and g by (1) are not exactly inverse to
each other. How h and g are closely inverse to each other depends on how large
the parameter ρ is, which in practice is hard to choose and needs to be adjusted
case by case. Theoretically, h and g are exactly inverse to each other only when
ρ→ +∞.

In [12], Leow et al. proposed a different approach. They find h and g by the
time marching scheme:

h(n+1) = h(n) + dt(η1 + η2), g(n+1) = g(n) + dt(ξ1 + ξ2), (2)

where dt is the time step, η1 and ξ2 are vector fields representing gradient descent
directions of E1 and E2 in (1) respectively, i.e.

η1(x) = −∇hM(S(h(x)), T (x)) − λ∇hR(h(x))
ξ2(x) = −∇gM(S(x), T (g(x)))− λ∇gR(g(x)).

(3)

To make the model inverse consistent, η1 and ξ2 are chosen by the following
approach.

Suppose h(n) ◦ g(n) = id in the nth iteration, then η2, ξ1 were determined by
taking care of the inverse consistent constraints h(n+1) ◦ g(n+1) = id, i.e.

(h(n) + dt(η1 + η2)) ◦ (g(n) + dt(ξ1 + ξ2)) = id. (4)
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Taking the Taylor’s expansion of (4) with respect to dt at 0, and collecting up
to the first order terms of dt, one gets

η2(x) = −D(h(x))ξ2(h(x)), ξ1(x) = −D(g(x))η1(g(x)) (5)

where D is the Jacobian matrix operator. Relations in (5) make the iterations
in (2) uni-directional, i.e., updating formula for the forward mapping h does not
depend on the backward mapping g, and vise versa.

In this scheme, the driving force for updating h (or g) involves both forward
force from E1 and backward force from E2, so the scheme aligns two images
faster than the models in which the force driving the deformation field depends
on E1 or E2 only([23]).

However, h(n+1) and g(n+1) by (2-5) are not exactly inverse to each other even
h(n) and g(n) are. Since in the derivation of (5), the higher order terms in the
Taylor expansion of the left hand side of (4) have been discarded. This generates
truncation errors, which are accumulated and exaggerated during iterations.
Started with the identity mapping for both h and g, the solutions h and g from
(2-5) are not inverse to each other, as we will show in experimental results.

Regarding the dissimilarity measure M(·, ·), a conventionally used one for
same modality image registration is SSD, which is sensitive to the presence of
noise and outliers (e.g. [7,8]). Moreover, the fixed parameter λ in (1) balancing
the smoothness of the deformation field and goodness of the alignment is always
difficult to select, and affects the robustness of the model to the choice to this
weighting parameter. Small λ results an unstable and discontinuous deformation
field, while large λ leads to inaccurate result, and may yield a nonphysical de-
formation field due to unreasonable restrictions. In our proposed model we will
replace the SSD dissimilarity measure by a likelihood estimation that is based
on the assumption of a Gaussian distribution of the residue image.

The main contribution of this work is on the improvement of inverse consis-
tency, and its application to the radiation therapy, in particular, to get more
accurate auto re-contouring. Our basic idea is minimizing E1 and E2 in (1)
coupled by the inverse consistent constraints defined in the next section. Ap-
plications of these inverse consistent deformations on auto re-contouring will be
discussed in experimental results.

2 Proposed Method

In this section, we will first introduce a ”natural” formulation of inverse con-
sistent constraints, which can be used to correct the truncation errors in (4).
Then we will combine this with the dissimilarity measures based on the likeli-
hood of the residue image into our energy functionals to improve the accuracy,
robustness and inverse consistent of the deformable image registration.

Let u and v be the forward and backward displacement fields related to de-
formation h and g by

h(x) = x + u(x), g(x) = x + v(x). (6)
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Then the inverse consistent constraint h(g(x)) = x can be written in terms of u
and v as

x = h(g(x)) = g(x) + u(g(x)) = x + v(x) + u(x + v(x)). (7)

Therefore,
v(x) = −u(x + v(x)) (8)

Similarly, the constraint g(h(x)) = x can be represented by

u(x) = −v(x + u(x)) (9)

In this work, we will use (8) and (9) as hard constraints in our proposed
energy minimization method.

To accommodate certain degree of variability in the image matching, we con-
sider the residue between the deformed source image and target image S(h(x))−
T (x) at each point as an independent random variable with Gaussian distribution
of mean zero and a variance σ to be optimized. By the independency assump-
tion, the joint pdf of all these random variables, which is the likelihood of the
residual image given parameter σ, becomes

p({S(h(x))− T (x),x ∈ Ω}|T (x), σ) =Πx∈Ωp(S(h(x))− T (x)|T (x), σ)

=Πx∈Ω
1√
2πσ

e−
|S(h(x))−T (x)|2

2σ2 .
(10)

Then the negative log-likelihood function is
∫

Ω

|S(h(x))− T (x)|2
2σ2

dx + |Ω| ln
√

2πσ (11)

Replace M(S(h), T ) in E1 of (1) by (11), and replace M(S, T (g)) in E2 in a
similar manner, E1 and E2 can be rewritten in terms of u and v as:

E1(u) =
∫

Ω

|S(x + u(x))− T (x)|2
2σ1

2
dx + |Ω| ln σ1 + λR(u(x))

E2(v) =
∫

Ω

|S(x)− T (x + v(x))|2
2σ2

2
dx + |Ω| ln σ2 + λR(v(x))

(12)

After choosing R(•) = | � •|2L2(Ω) with boundary and initial conditions:

∂u

∂n
(x, t) = 0,

∂v

∂n
(x, t) = 0, on ∂Ω ×R+

u(x, 0) = 0, v(x, 0) = 0, on Ω,
(13)

ξ1 and η2 in (3) become

η1(x) =
T (x)− S(x + u(x))

σ2
1

∇S(x + u(x)) + λ	u(x)

ξ2(x) =
S(x)− T (x + v(x))

σ2
2

∇T (x + v(x)) + λ	v(x)
(14)
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Taking the first variation of the energy functional (12), we get

σ2
1 =

∫

Ω |S(x + u(x)) − T (x)|2dx

|Ω| , σ2
2 =

∫

Ω |S(x)− T (x + v(x))|2dx

|Ω| . (15)

By using this dissimilarity measure, the residual image no longer needs to be
pointwisely close to zero to make the L2 norm small. Instead, the new measure
only forces the mean of the residue to be zero, and allows the residue having a
variance to accommodate certain variability. This is especially good for aligning
two images whose intensities are not exactly equal or linearly related, and makes
the model more robust to noise and artifacts.

Moreover, the likelihood based approach is less sensitive to the choice of the
parameter λ. In SSD models, λ is prefixed, so the balance of the dissimilarity
measure and regularity measure does not change during iterations. This makes
the selection of λ very difficult and affects registration result. In the proposed
model the balancing factor of these two measures is, in fact, λσ2 rather than
λ alone. Therefore, even λ is prefixed, the weight between these two measures
varies at each iteration as the variance updates. As the iterations gradually
approach to convergence stage, the residue magnitude becomes smaller, hence,
the variance σ reduces, and consequently, the weight on smoothing deformation
field versus matching images automatically decreases.

Combining these ideas, we propose a new model to improve the inverse con-
sistency of (1) by using the hard constraints (8) and (9) to replace the penalty
terms in (1), and to improve the efficiency of alignment by using the proposed
similarity measure. More precisely, we propose to minimize a coupled minimiza-
tion problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minu∈W 1,2(Ω),σ1 E1(u, σ1) and minv∈W 1,2(Ω),σ2E2(v, σ2)
where E1,E2 are defined in (12)

subject to u(x) + v(x + u(x)) = 0 ∀x ∈ Ω

v(x) + u(x + v(x)) = 0 ∀x ∈ Ω

(16)

Note if we only minimize E1(u), the solution u may not be invertible, thus we
may not be able to get its inverse through (8). By choosing η1 and ξ2 as in (14),
the solutions of the constrained coupled minimization problem (16) are obtained
via the following algorithm

Algorithm 1

u(x) = 0; v(x) = 0; iter = 0;
corr = correlation(S, T )
while iter < maxstep and corr < threshhold do

iter + +;
unew = u + dtη1(u)
v← −unew(x + v)
vnew = v + dtξ2(v)
u← −vnew(x + unew)
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v = vnew

corr1 = correlation(S(x + u(x)), T (x))
corr2 = correlation(S(x), T (x + v(x)))
corr = min(corr1, corr2)

end while

By applying the flow equations alternatively with the exact inverse consistent
constraints in Algorithm 1, the forward and backward deformation forces are
related via the constraints. In this manner, images to be registered are aligned
well, meanwhile, the inverse inconsistency errors are controlled by hard con-
straints. The performance on image matching and improvement of accuracy on
the inverse consistency will be shown in the next section.

To enhance the efficiency of the proposed algorithm, the Additive Operator
Splitting scheme([13,9]) is used to speed up our numerical computation. We
present our results based on synthetic images, and 3D prostate MRI data.

3 Experiment Results

In this section, we show our experimental results on 2D synthetic images and 3D
prostate MRI data, which indicate the improvement of the proposed algorithm
in accuracy of inverse consistency and accuracy of auto re-contouring.

Based on (8) and (9), if h and g are inverse to each other, then both of the
inverse inconsistent error fields u(x)+v(x+u(x)) and v(x)+u(x+v(x)) should
be 0. Thus, their components and norms should also be 0. This property will be
used to compare the inverse inconsistency errors between three methods: Scheme
(2), Algorithm 1 and Model (16) without constraints.

The first experiment is aimed to exam and compare the inverse consistency of
these three methods on synthetic data. Fig 1(a) and (b) present the source image
S and target image T , respectively, with the boundaries of the objects superim-
posed. Objects have intensity 1.0 in both images, and their background/holes
have intensity 0. The three methods are applied separately with the same pa-
rameters dt = .05, λ = 5.0 for 800 iterations, and the corresponding results are
shown in Fig 1(c-g). From Fig 1(c), one can see that correlation by all methods
converges to about 1.0 similarly. However in Fig 1(d), the means of norms for
both inverse inconsistent error fields u(x) + v(x + u(x)) and v(x) + u(x + v(x))
by both Scheme (2) and non-constrained Model (16) are increased to about 0.4
pixels in average, i.e., the mean value of their inverse inconsistency errors are
about 0.4 pixels, while those from Algorithms 1 are maintained in a negligible
low level (about 0.01 pixel). We also compare the error field u(x) + v(x + u(x))
in Fig 1(e,f,g) by applying results from Scheme (2), Algorithm 1 and Model (16)
without constraints respectively on a regular grid mesh. Fig 1(f) shows that the
error by Algorithm 1 is 0 almost everywhere(almost no displacement in the regu-
lar grid mesh), while (e) and (g) show errors from other two methods are larger,
especially in the region corresponding to the boundaries of two holes in S and T .
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Fig. 1. Experiment on 2D synthetic images. (a) Source with object contours super-
imposed, (b) target with contours superimposed, (c)correlation Corr(S(h), T ) and
Corr(S, T (g)) during iterations, (d) mean of norms ‖u(x) + v(x + u(x))‖L2(Ω) and
‖v(x) + u(x + v(x))‖L2(Ω) during iterations, (e-g) grid representations of inverse in-
consistent error field u(x) + v(x + u(x)) by Scheme (2), Algorithm 1 with and without
constraints respectively.

To quantitatively validate the improved inverse consistency by the proposed
algorithm, we compare the maximum and mean values of components and norms
of u(x) + v(x + u(x)) and v(x) + u(x + v(x)) in Table 1, where Xmax, Xmean

denote the maximum and mean values of the first component of the error fields
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respectively, and Ymax, Ymean are those of the second components. The quanti-
tative comparisons are performed in two regions: one is in the image domain Ω,
and the other is on the contours which are the boundaries of the objects in the
images shown in Fig 1(a,b) respectively. Table 1 shows the proposed algorithm
yields much smaller errors in all aspects. Particularly, its mean error is about
one fortieth of those from both scheme (2) and non-constrained model (16) in
Ω, and about one thirtieth of theirs at the contour regions.

The second experiment is to validate the improvement in accuracy of the pro-
posed algorithm on 3D prostate data, which consists of 100 phases of 2D images

Table 1. Inverse inconsistency error comparison results for synthetic images: the
components and norms of inverse inconsistency error fields u(x) + v(x + u(x)) and
v(x) + u(x + v(x)). Xmax, Xmean denote the maximum and mean values of the first
component of the error fields respectively, Ymax, Ymean denote that for the second com-
ponent. ‖ • ‖ denotes norms of the error fields at each pixel. Ω is the image domain.

inconsistency error u(x) + v(x + u(x)) on Ω

Method Xmax Xmean Ymax Ymean ‖ • ‖max ‖ • ‖mean

Algorithm 1 0.7396 0.0051 0.7876 0.0059 0.7879 0.0085
Scheme (2) 0.9915 0.2390 1.1055 0.2320 1.2272 0.3526

No constraints 0.9916 0.2300 1.0979 0.2255 1.2202 0.3414

inconsistency error v(x) + u(x + v(x)) on Ω

Algorithm 1 0.4870 0.0047 0.5814 0.0053 0.7287 0.0076
Scheme (2) 0.8705 0.2290 1.2224 0.2240 1.2304 0.3398

No Constraints 0.8303 0.2199 1.2670 0.2174 1.2729 0.3284

inconsistency error u(x) + v(x + u(x)) on contours in S

Algorithm 1 0.2810 0.0431 0.2769 0.0502 0.3742 0.0719
Scheme (2) 0.7237 0.1445 0.8047 0.1878 0.8073 0.2577

No Constraints 0.7403 0.1461 0.8374 0.1908 0.8410 0.2612

inconsistency error v(x) + u(x + v(x)) on contours in T

Algorithm 1 0.3833 0.0412 0.4058 0.0484 0.4059 0.0697
Scheme (2) 0.5937 0.1390 0.9308 0.1661 0.9715 0.2361

No Constraints 0.6180 0.1410 0.9735 0.1695 1.0171 0.2402

Table 2. Inverse inconsistency error comparisons for the 1st and 21st phases of a 3D
prostate MRI data on regions Ω and all the contours in the 1st phase S

Method Xmax Xmean Ymax Ymean ‖ • ‖max ‖ • ‖mean

inconsistency error field u(x) + v(x + u(x)) on Ω

Algorithm 1 0.5155 0.0105 0.4010 0.0082 0.5549 0.0146
Scheme (2) 0.4936 0.0457 0.6750 0.0793 0.7154 0.1020

inconsistency error field v(x) + u(x + v(x)) on Ω

Algorithm 1 0.5937 0.0121 0.4766 0.0087 0.6230 0.0164
Scheme (2) 1.6315 0.0583 1.5860 0.0951 1.9917 0.1231

inconsistency error u(x) + v(x + u(x)) on contours in S

Algorithm 1 1.6165 0.0524 1.9630 0.0459 2.3577 0.0770
Scheme (2) 4.7525 0.1036 6.2510 0.1292 6.3180 0.1843
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Fig. 2. Experiment on 3D prostate MRI data with 100 2D phases. (a) Source image(the
1st phase) with contours of ROIs superimposed, (b) the 21st phase with automatic re-
contouring results by Algorithm 1 superimposed, (c) plots of correlation Corr(S(h), T ),
and Corr(S, T (g)) between the 1st phase and each of other 99 phases, (d) plots of norms
||u(x)+ v(x+u(x))|| and ||v(x)+u(x+ v(x))|| for deformations between the 1st phase
and each of other 99 phases, (c,d) are based on parameters λ = 20, dt = .1 for 200
iterations.

focusing on prostate area, where ROIs have large internal motions. The source
volume S is the first phase, and the boundaries of ROIs in S are delineated by
contours and superimposed in Fig 2(a), and the other 99 phases are targets, and
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methods Scheme (2) and Algorithm 1 are applied to find deformations between
the 1st phase and each of the other 99 phases. The auto re-contouring, that
register the contours in S into the other 99 phases, is achieved by applying the
deformations on these contours. For demonstration purpose, one of the target
image T , the 21st phase, is shown in Fig 2(b), and the auto re-contouring result
by Algorithm 1 is superimposed on it.

Comparison on the convergence and inverse inconsistency by the first two
methods are shown in Fig 2(c,d). Fig 2(c) compares CC between deformed im-
ages and target images by these two models. Both Scheme (2) and Algorithm 1
improve the initial CC between S and each of other 99 phases to a similar level.
However, from Fig 2(d) we can observe that the norm of inverse inconsistency
error by scheme (2) is much higher in average than that of Algorithm 1.

The quantitative comparison on inverse inconsistency errors between the 1st
phase and the 21st phase for this experiment is listed in Table 2 for demonstra-
tion. Beside comparing the error fields on Ω, we also evaluate error v(x)+u(x+v)
at points of all given contours on S. By comparing the corresponding compo-
nents and norms of the inverse inconsistency error fields in Table 2, we find that
errors generated by proposed algorithm is much lower than that by scheme (2),
this indicates that the point correspondence and automatic re-contouring results
are more accurate.

4 Conclusion

In this work, we proposed a coupled energy minimization method with inverse
consistent constraints for deformable image registration. The proposed model
controls the inverse inconsistency errors in a negligibly low level, therefore, it
provides a better correspondence for the ROIs in source and target images. This
makes the auto re-contouring results with data involved in the course of radiation
therapy much more accurate.

The dissimilarity measure used in this work is the negative log-likelihood of
the residual image between the deformed source and target. This dissimilarity
measure is able to accommodate certain variability in the matching. Hence, the
model is more robust to noise than SSD, moreover, it is less sensitive to the
choice of the parameter that balances the smoothness of the deformation field
and goodness of matching.
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Abstract. This paper introduces GlycoBrowser, a dynamic biological pathway 
exploration and visualization tool. Its capabilities include incremental navigation 
of pathways, as well as overlaying relevant experimental data about glycans and 
reactions within a pathway.  The use of ontologies not only allows dynamic con-
struction of pathways, but also facilitates more accurate validation of the infor-
mation retrieved. Pathway exploration is initiated by means of an ontologically 
driven glycan structure building tool, which facilitates glycan structure construc-
tion and searching with minimal user error.  Because of the complex nature of 
glycan structures and the difficulty involved in interpreting the associated data, 
GlycoBrowser is tailored especially to suit the needs of glycobiologists. 

Keywords: GlycoBrowser, pathway browsing, metabolic pathway exploration, 
glycomics, transcriptomics, ontology, semantic web. 

1   Introduction 

The amount of data and knowledge stored in Web-accessible databases and ontologies 
is growing explosively. Making this information widely available in an intuitive form 
is becoming almost as important as creating this information in the first place. Tradi-
tionally, Web 1.0 technology, relying on servlets and Java Server Pages (JSP) to inter-
face with relational databases, has been the preferred way to develop such online  
resources [3]. The approach that we are taking utilizes Web 2.0 as well as Semantic 
Web technology to develop a more agile means for querying and browsing biological 
information at a higher level than most on-line resources. The key component of our 
approach is the pathway exploration and visualization tool, GlycoBrowser. 

GlycoBrowser is multi-faceted, allowing flexible visualization of both glycomic 
pathways and construction of glycan molecules. It leverages the capabilities of  
                                                           
*  GlycoBrowser was developed as part of the Integrated Technology Resource for Biomedical 

Glycomics (P41 RR18502-02), funded by the National Institutes of Health - National Center 
for Research Resources. 
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GlycoVault [18], along with several Web 2.0 and Semantic Web technologies (includ-
ing RDF [14], OWL [16], SPARQL [20], AJAX, Javascript, and BRAHMS [11]) to 
represent structural information in a way that is intuitive for glycobiologists and to  
overlay this information with experimental data (glycomics, proteomics, and tran-
scriptomics analyses). GlycoBrowser provides a graphical display of glycan biosyn-
thetic pathways and associated experimental data. Glycans are rendered "on the fly" 
using the standard representation endorsed by the Consortium for Functional Glycom-
ics (CFG, http://www.functionalglycomics.org), extended to include partonomy rela-
tionships. Relevant experimental data (such as the abundance of a particular glycan in 
a biological sample) can be shown in associated histograms.  

This paper discusses the motivation, design and implementation of GlycoBrowser 
and is organized as follows. Section 2 considers why more agile, flexible and high 
level approaches that feature visualization provide a better means of accessing bio-
logical information. In section 3, we narrow our focus and review the evolution of 
biochemical pathway visualization tools and where GlycoBrowser fits in. An impor-
tant aspect of our approach is that we use knowledge encoded in ontologies, those 
available on the Web as well as ones we are developing, as discussed in section 4. 
Section 5 presents the design and implementation of our pathway browser and its as-
sociated structure builder. Conclusions and future work are given in section 6. 

2   Motivation 

A major challenge of modern biological science is to analyze and interpret the huge 
amount of data that is routinely collected by high-throughput techniques, as in pro-
teomics or glycomics analysis. Due to the complexity of biological systems, it is not 
sufficient to simply facilitate access to specific data in these large sets; it is necessary to 
present these data in the context of what is known about the biological system being 
studied. One approach to address this requirement is to present data (such as proteomics 
or transcriptomics data) in the context of a metabolic or signaling pathway in a process 
called “data overlaying” [23]. In the domain of glycobiology (the study of complex car-
bohydrates and their functional roles in living organisms), such a contextual illustration 
of data is complicated by the fact that the pathways leading to glycan biosynthesis are 
extremely complex, and each of the molecules in the pathway is a complex aggregation 
of smaller “glycosyl residues”. Therefore, graphical representation of the pathway re-
quires a robust internal representation of the structures along with algorithms for render-
ing them in a format that can be intuitively interpreted “at a glance” by the scientist. 

We have developed an ontology (GlycO) that embodies knowledge regarding the 
structures, biosynthesis, and biological functions of complex glycans [22]. GlycO thus 
addresses the challenge of providing a robust internal representation of glycan struc-
tures and the metabolic pathways leading to their synthesis. In addition, GlycO  
comprises a repository of knowledge regarding other aspects of glycobiology, includ-
ing structural and functional relationships between different glycans. GlycoBrowser 
allows this knowledge to be accessed and used as a context for the graphical represen-
tation of experimental data. We initially focus on two types of data: (1) qRT-PCR 
data, revealing the abundances of mRNA transcripts for genes involved in glycan bio-
synthesis and (2) glycomics data, revealing the identities and abundances of specific 
glycans in a biological sample. Ultimately, GlycoBrowser will not only provide a 
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means of overlaying data on metabolic pathways, it will provide an entry point into 
the diverse types of knowledge embedded in GlycO and other ontologies. 

The following example illustrates the need for a tool with the capabilities of Gly-
coBrowser. We are interested in the relationships between the differentiation of stem 
cells (to form more specialized cells) and the expression of specific glycans on their 
surfaces. Our collaborators in the Integrated Technology Resource for Biomedical 
Glycomics (http://glycomics.ccrc.uga.edu) have developed and implemented powerful 
methods for obtaining transcriptomic and glycomic data for this experimental system. 
The transcriptomic data reveals the expression levels of specific enzymes involved in 
the metabolic pathways leading to glycan biosynthesis and the glycomics data reveals 
the amounts of specific glycans that are generated by these complex pathways.  
Manual analysis of this data indicated that specific glycans (sialylated biantennary N-
glycans) are more abundant on the surfaces of differentiated cells than on undifferen-
tiated stem cells. Moreover, some of the enzymes (sialyl transferases, which catalyze 
the addition of a sialic acid residue to the nascent glycan) required for the biosynthe-
sis of these glycans are also upregulated during differentiation. The question thus 
arises, “Are the changes in the abundances of these glycans due solely to an increase 
in sialyl transferase expression, or do changes in the expression of other enzymes con-
tribute significantly to this effect?”  In order to answer this question, a glycobiologist 
might draw all of the relevant pathways and overlay the relevant transcriptomic and 
glycomic data at each step of the pathway. However, rendering this pathway is not 
trivial, as each of the molecules along the pathway is a complex glycan, and the path-
way is highly branched. It would be difficult to find an appropriate entry point into 
the pathway (for drawing) and it would also be difficult to select the appropriate 
branch(es) of the pathway that lead to the glycans of interest. 

Our initial implementation of GlycoBrowser addresses these challenges in several 
ways. It provides a graphical interface that allows an entry point (a specific glycan) to 
be selected from a large collection of structures in the knowledge base. Glycans are 
complex, branched molecules. Therefore, it is much more difficult to select a glycan 
from a collection of glycans than to select a protein sequence from a collection of 
protein sequences. It would be highly impractical to expect scientists to memorize the 
accession numbers of thousands of glycan structures, and thus it is necessary to pro-
vide a graphical tool for selecting specific glycans. Thus, a tool that enables a search 
for specific glycans based on their structural features, but disallows structures not 
found in nature would be quite useful, as it would eliminate time wasted searching for 
physically impossible combinations of structural features. 

GlycoBrowser provides such a tool, and allows the user to define an entry point 
into the metabolic pathway. Complex, branched metabolic pathways are rendered 
using an accepted graphical representation of the glycan structures. GlycoBrowser 
also overlays specific transcriptomic and glycomic data at each step along the path-
way. Analysis of our transcriptomic and glycomic data using GlycoBrowser demon-
strated that increased expression of sialyl transferases in not the only factor leading to 
the increased abundances of sialylated biantennary N-glycans in differentiated cells. 
The abundances of precursor glycans (which are substrates for the sialyl transferases) 
are also elevated, indicating that other steps in the pathway leading to the sialylated 
biantennary N-glycans are modified in the differentiated cells. 
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3   Background 

Dynamic molecule and pathway construction is not a new approach. Multiple re-
search areas impose different requirements for visual representation of pathways. As a 
result, there exist many tools and browsers for visualizing biological structures or 
pathways that can be enhanced with experimental data and other information. Among 
the most popular are KEGG [19], WikiPathways [13], MetaCyc [12], PathwayAssist 
[17], GenMAPP [7], and Cytoscape [24]. Although all these tools are designed to be 
comprehensive, each emphasizes different aspects of data presentation. 

KEGG and WikiPathways offer static pathways visualization, pathway intercon-
nectivity and also allow focus on many levels of granularity such as meta-pathway, 
pathway fragment, or details of a single compound. They serve as referral sites and 
repositories of known pathways. Dynamic pathway browsing is offered by MetaCyc, 
PathwayAssist, GenMAPP, and Cytoscape. These systems allow a user to query for 
pathway fragments. Their search capabilities may include finding pathways between 
specific molecules, gene regulators or specific reactions based on given properties. 
They use a database to find relevant information for visualization and offer multiple 
layouts and presentation schemes to present focused information.  

Information overlay is another important aspect of pathway visualization. Dynamic 
browsers support enhancing pathway elements with accompanying experimental data 
or related information from biological databases and special ontologies, such as the 
Gene Ontology (GO) [10]. Information overlay allows scientists to easily see results 
of their experiments in proper biological context. 

GlycoBrowser is a dynamic visualization tool created specifically to handle com-
plex glycomics data. It supports search for glycans based on their structural features, 
which are selected using a graphical user interface. Contrary to unrestricted graphical 
editing in Glycan Builder [6], our system uses an ontology to guide the building proc-
ess and restricts the user to creating only structures that fit into one of the canonical 
trees that represent all glycan structures in the ontology [22, 25]. A glycan located 
using this process may be used as a starting point for further pathway exploration 
which allows a user to dynamically traverse interesting pathways. Displayed glycans 
and reactions are then overlaid with associated experimental data. This guided ap-
proach to molecule and pathway construction minimizes user error, while also allow-
ing a biologist to explore data, rather than simply sifting through it. 

4   Underlying Ontological Representations 

As mentioned in the introduction, more and more ontologies are becoming available 
on the Web. Along with relational databases, they make up the principal means of 
providing structured information on the Web. Making such information available to 
end users in meaningful and convenient ways has lead to massive software develop-
ment over the last decade. In particular in biosciences, many well developed ontolo-
gies are now available on the Web. For example, at the Open Biomedical Ontologies 
(OBO) Foundry [2], there are now over sixty ontologies registered. Finally, an impor-
tant focus of our glycomics project is the study of glycans and the effect that enzymes  
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have on their biosynthesis. We have therefore built and are in the process of populat-
ing the following two ontologies: GlycO and EnzyO [22, 25]. These ontologies were 
developed with Protege using the Web Ontology Language (OWL) [16]. For effi-
ciency of pathway browsing, export to Resource Description Framework (RDF) [14] 
is also provided. 

The Glycomics Ontology (GlycO) [25] has been preloaded with the residues that 
make up glycans. Then to load any glycan into the knowledge-base, one simply needs 
to add this new instance with links to the existing residues. The canonical approach 
reduces redundancy and increases the reliability of the information stored, since we at 
least know that the preloaded residues are correct. In addition to this information and 
knowledge about structures, GlycO also links structures to reactions that can make 
them. The population of GlycO is facilitated by GlydeII [26] which is an XML based 
data interchange standard for glycan structures. GlydeII facilitates validation and in-
corporation of new glycan structure instances by comparison to knowledge stored in 
GlycO. The Enzyme Ontology (EnzyO) keeps track of enzymes that catalyze the re-
actions which produce the glycan structures. The identities and abundance levels of 
glycans and enzymes are the essential components in the biochemical pathways. The 
ontology keeps track of basic information about enzymes (e.g., their Enzyme Com-
mission (EC) number, their protein structure) as well as associations (e.g., with the 
gene that codes for it and the reactions it participates in). 

5   GlycoBrowser 

GlycoBrowser consists of two submodules, the Canonical Structure Builder and 
Pathway Browser, and utilizes three related subsystems, the GlycoVault [18] reposi-
tory, SPARQL Server, and Image Server. We will describe each of these in detail, 
beginning with the lower level components (GlycoVault, SPARQL Server, and Image 
Server), and concluding with the Glyco Browser functionality and implementation. 

 

Fig. 1. System architecture 

5.1   GlycoVault 

GlycoVault provides a means of storing and retrieving data to support glycomics re-
search at the Complex Carbohydrates Research Center (CCRC) at the University of 
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Georgia. These data include quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) data as well as basic glycomics data, such as biologically relevant pa-
rameters and various types of experimental data, along with the explicit and implicit 
knowledge required to analyze and interpret these data. GlycoVault consists of data-
bases, ontologies (including GlycO and EnzyO), and data files in various formats. 
These datasets and ontologies are accessed by the Pathway Browser via a comprehen-
sive, yet easy to use Application Programming Interface (API). The API facilitates the 
development of methods for querying the knowledge and exporting the results in for-
mats (such as XML, RDF or OWL) that can be readily incorporated by external appli-
cations. GlycoVault provides easy to use query interfaces, including support for the 
SQL and SPARQL query languages. 

5.2   SPARQL Server 

The SPARQL Server acts as an ontology storage and querying facility for the Path-
way Browser. It provides access to any ontological knowledge available, whether it 
be the next possible branch at each step along a pathway, or any additional metadata 
about reactions or molecules. SPARQL was the obvious query language of choice, 
since we are taking an ontology-based approach and require a query language that 
works with RDF (or OWL). Currently, we use Joseki [1], a Jena [5] based HTTP en-
gine that supports the SPARQL Protocol and query language. Joseki allows responses 
to be encoded in either XML or JavaScript Object Notation (JSON) [21]. We have 
chosen JSON because it meshes seamlessly with the Javascript user interface. How-
ever, as an added benefit, JSON, being a lightweight data-interchange format, is much 
less verbose than an XML encoding, meaning less data to transfer over the web and 
less bandwidth consumed. In the near future, we intend to migrate to a high-
performance BRAHMS based server based on the SPARQLeR [15] extension to 
SPARQL. This will allow us to retrieve entire pathway fragments from the ontology, 
allowing fragments to be constructed in their entirety within the Pathway Browser 
instead of incrementally as described later. 

5.3   Image Server 

The Image Server dynamically constructs cartoonist [9] representations of glycan 
molecules, based on the underlying ontological structure. The cartoonist representa-
tion has been widely accepted and endorsed by the Consortium for Functional Gly-
comics. Patterns present in a cartoonist representation (as depicted in Figures 2, 3,  
and 4) are far more readily recognizable at-a-glance than the name of a glycan mole-
cule, or its textual representation, making it the obvious approach for implementing a 
pathway browser whose purpose is to be intuitive. However, the complexity of dy-
namically generating cartoonist models of glycans, in tandem with the desire for 
modular design, necessitated the creation of a separate, dedicated image drawing sub-
system. We felt it was preferable to shift drawing to a dedicated module both for 
speed and for making the client more lightweight. The benefits of having a fast, dy-
namic, and modular image drawing subsystem connected directly to the GlycO ontol-
ogy are readily apparent, as any changes to the underlying structures in the ontology 
will not require the generation of new static images. The resulting images are used in 
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both the Canonical Structure Builder and Pathway Browser, and can also be utilized 
in any future extensions. 

The image construction algorithm itself is implemented in C++, and makes use of 
the BRAHMS API (one of the fastest currently available RDF stores) for storage and 
querying of RDF data, as well as FastCGI [4], which facilitates efficient querying over 
the web. We utilize the GraphViz API [8] to automatically draw glycan molecules. 
However, we have found that carefully tweaking the GraphViz input can provide more 
suitable layouts for glycan molecules. All internal molecule representations are gener-
ated dynamically by recursively traversing the structure of the GlycO ontology, piecing 
together the component residues of a glycan molecule. The resulting graph structure is 
then passed to GraphViz which renders the collected nodes and edges into a cartoonist 
representation of a glycan. We ultimately chose GraphViz because of its easy to use 
API, choice of image formats (SVG, PNG, JPEG, GIF), and straightforward image 
customization options. Our image format of choice is PNG, owing to its non-
proprietary format and improved compression characteristics over GIF. 

5.4   Canonical Structure Builder 

The Canonical Structure Builder serves as an entry point to pathway visualization, as 
well as a convenient search tool to look for glycan structures. The user may graphi-
cally construct a glycan molecule using component residues. However, in our novel 
approach, the construction is guided by the underlying ontological structure, thus re-
ducing the amount of possible user error. The structure can then be matched against 
glycans currently represented in the ontology, either finding larger glycans which 
contain it, or the exact glycan itself. 

             

        Fig. 2. Structure builder scenario                         Fig. 3. All matching glycans 
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Fig. 4. Exact matching glycan 

As a sample scenario (Figure 2), the user is first presented with a list of available 
root residues of the glyco tree to choose from. Once a root is chosen, the residue is 
rendered into the main viewport, with any connected residues branching off from it to 
the left (step 1). The user can then construct a glycan representation by expanding or 
collapsing residues based on the glyco tree until a desired configuration is achieved 
(steps 2-4). Residues are expanded or collapsed through the use of a simple 
“plus/minus” toggle that appears when mousing over the residue, as depicted in step 2. 
Once the final molecule is constructed (step 5), the user can then search for the struc-
ture in the knowledge-base. The “Match Glycans” button is used to search for all gly-
cans which contain the given structure, with the results arranged in a list as presented 
in Figure 3. However, if a user wants to search for only that particular configuration, 
then “Exact Match Glycans” can be used, as shown in figure 4. Selecting a glycan from 
the results initiates pathway exploration starting from the selected glycan. 

5.5   Pathway Browser 

The Pathway Browser allows exploration of a biological pathway beginning from a 
user-selected glycan. In keeping with our desire for maximum usability, the interface 
layout has been kept as simple and intuitive as possible. The pathway is created dy-
namically, with the data that forms the pathway structure itself coming from the 
SPARQL Server, and any related experimental data coming from the GlycoVault. 

 

Fig. 5. Start of pathway exploration 

The pathway is rendered as a series of nodes and edges. Molecules are rendered by 
the Image Server (discussed previously), which makes use of GlycO, the same ontol-
ogy used for constructing the pathway. Reactions which have not yet been expanded 
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are rendered as small squares, while already expanded reactions are rendered as ar-
rows between molecules. Positioning the mouse pointer over a reaction that has not 
been expanded previews the molecules resulting from the reaction beside it, as de-
picted in Fig. 5. Exploring a pathway consists of expanding one potential branch point 
at a time. Potential branch points within a pathway consist of the molecules or reac-
tions themselves, as a molecule can be used as a substrate in multiple reactions, and a 
reaction can have multiple products. 

Related experimental data is rendered into small bar graphs located directly be-
neath molecules and reactions. The data under molecules represent glycan abun-
dances, while the data under reactions represent transcriptome expression levels  
(corresponding to enzyme abundance levels). If experimental data is unavailable, then 
the corresponding graph is left empty. However, if there is more than one set of data 
for a particular node, the graph will present controls allowing the user to cycle 
through them. 

A sample pathway fragment illustrating the described features is depicted in Fig. 6, 
starting from the constructed glycan, as described in the previous section.  This figure 
illustrates the answer to the aforementioned question, “Are the changes in the abun-
dances of these glycans due solely to an increase in sialyl transferase expression, or 
do changes in the expression of other enzymes contribute significantly to this effect?”  
In fact, a glycobiologist will have the relevant pathway with associated overlaid  tran-
scriptomic and glycomic data at each step of the pathway. 

 

Fig. 6. Pathway fragment with corresponding graphs 

Additionally, the pathway traversal direction can be toggled by clicking on the 
Forward/Backward button, with the currently displayed label dictating which way the 
pathway will be traversed. A glycobiologist may navigate forward or backward on a 
pathway to pinpoint where abundance levels significantly change. Backtracking to 
any point in the pathway is also possible by clicking on an already expanded node. 
This allows revisiting prior points along the pathway, as well as exploring other 
branches. 



314 M. Eavenson et al. 

5.6   Implementation Choices 

We are utilizing both Web 2.0 technology as well as Semantic Web technology to 
provide information at a higher level than offered by most on-line resources.  The user 
interfaces for both the Canonical Structure Builder and the Pathway Browser are im-
plemented using Javascript. We chose Javascript because a web accessible pathway 
browsing tool will be most useful for glycobiologists, as it can be used from almost 
any location, and provides platform independence. The decision to favor Javascript as 
opposed to a Java applet was also made to keep the interface lightweight, as 
downloading an applet is time and bandwidth consuming as well as problematic on 
certain web browsers. 

Moreover, the decision to use Javascript allows us to utilize the AJAX framework 
to incrementally download new data as needed. AJAX allows small HTTP requests to 
be sent in the background, thus never requiring a refresh of the webpage which makes 
the interface more responsive, and generally provides a better user experience. Using 
AJAX also helps keep memory demand on the web browser low because it does not 
necessitate the download of an entire data-source at once. The AJAX requests carry 
SPARQL queries to the aforementioned SPARQL server, which then returns rela-
tively small chunks of data to the interface for rendering. Future improvements to the 
Pathway Browser will employ AJAX to incorporate precaching of likely future path-
way selections. 

Query results are returned in JSON to more closely mesh with the Javascript user 
interface. We chose JSON over SPARQL XML because returning results in XML 
required a Javascript based parsing algorithm to make use of them. JSON, on the 
other hand, offers the benefit of not requiring any parsing algorithms when being used 
within Javascript. Javascript can evaluate JSON as a native object and use it as a 
nested array-like structure, which is far simpler to work with. 

As a result of these decisions, the GlycoBrowser client interface is only loosely 
tied with the data services it relies on, thus allowing them to be easily swapped out  
if necessary. Also, the browser retains platform independence by utilizing web tech-
nologies, and achieves greater efficiency through the use of a lightweight client  
application. 

6   Conclusions and Future Work 

Although there are many pathway visualization tools available, GlycoBrowser, a 
metabolic pathway exploration tool, is particularly suitable for glycobiologists. While 
knowledge, structures, and pathways are represented in the form of OWL ontologies, 
the graphical presentation is automatically constructed using molecule representations 
widely accepted by glycobiologists. Experimental data is overlaid in a contextually 
meaningful way. For example, as shown in Fig. 6, GlycoBrowser positions the gly-
comic and transcriptomic data in a way that facilitates the identification of correla-
tions between these datasets as embryonic stem cells differentiate. 

In the near future we plan to expand our toolset to include curation tools, allowing 
us to directly modify the GlycO and EnzyO ontologies to dynamically add new struc-
ture and pathway representations. We plan to further enhance the capabilities of  
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GlycoBrowser to simultaneously explore multiple pathway branches for comparison 
purposes. We also plan to include search capability for entire pathway fragments, in 
addition to currently available incremental exploration. Furthermore, we plan to add 
comprehensive filtering of overlaid experimental data. 
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Abstract. RNA plays key roles in many biological processes, and its function 
depends largely on its three-dimensional structure. We describe a comparative 
approach to learning biologically important RNA structures, including those 
that are not the predicted minimum free energy (MFE) structure. Our approach 
identifies the greatest conserved structure(s) in a set of RNA sequences, even in 
the presence of sequences that have no conserved features. We convert RNA 
structures to a graph representation (XIOS RNA graph) that includes pseudok-
nots, and mutually exclusive structures, thereby simultaneously representing 
ensembles of RNA structures. By modifying existing algorithms for maximal 
subgraph isomorphism, we can identify the similar portions of the graphs and 
integrate this with MFE structure prediction tools to identify biologically rele-
vant near-MFE conserved structures. 

1    Introduction  

RNA molecules perform a variety of important biological functions in addition to 
carrying information from the chromosome to the ribosome, or acting as structural 
scaffolds. Catalytic RNAs play key roles in translation, RNA processing and splicing, 
and gene regulation [1]. Motifs that are important for RNA function are structural and 
correspond to base-paired regions of secondary structure, which in turn, provide the 
scaffold for the three-dimensional fold of the RNA [2, 3]. RNA sequences that have 
the same structural motifs may have sequences that are impossible to align because 
they have no detectable sequence similarity.  

While programs that predict RNA secondary structure have been available since the 
1980s, RNA structure prediction is handicapped by both biochemical and computa-
tional limitations. Firstly, RNA exists as an ensemble of rapidly interconverting struc-
tures. Protein structures (usually) show relatively minor fluctuations from a single 
minimum free-energy state. The case is much different for RNA where there are  
usually many structures with similar free-energies; these structures may be distinctly 
different in terms of base-pairing [4, 5]. Secondly, while we know that pseudoknot 

                                                           
* Corresponding author. Tel.: +1 7654946933; Fax: +1 765-496-1189. 
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structures are very important in RNA structure and catalytic function [6], it remains 
difficult to reliably predict pseudoknotted structures. This is due both to our incomplete 
understanding of the energetics of pseudoknot formation, as well as to the computa-
tional time complexity. The most efficient pseudoknot prediction algorithms, e.g., 
pknotRG, have O(n4) time for certain classes of RNAs[7]), but achieve this by placing 
significant limitations on which structures can be found. Memory complexity of RNA 
structure prediction is O(n2), where n is the length of the RNA sequence, and usually 
ranges from 10,000-100,000 bases for primary RNA transcripts. 

In biology, functionally important features can often be recognized because they 
are conserved over evolutionary time. A common approach is to obtain a set of se-
quences using some biological criterion (such as similarity of regulation), and use 
pattern recognition methods to identify unusually conserved features. Searching for 
sequence motifs (approximately common substrings) in this way has been a powerful 
tool for analysis of DNA and proteins; this approach does not work as effectively with 
RNA because conserved RNA structures may have no detectable sequence similarity. 
And while great progress has been made, it remains difficult to accurately predict 
MFE structures for RNA sequences. To further complicate the picture, RNAs exist as 
ensembles of structures, in addition to the MFE structure, that are constantly inter-
converting and fluctuating. The biologically important structures (those that are  
conserved over evolutionary time) may be present only transiently, or as minor com-
ponents of this structural ensemble. The problem is further complicated by the fact 
that biology is messy; one can rarely get completely clean sets of sequence data in 
which every sequence actually contains the structure of interest. This makes many 
approaches unfeasible. In addition, in biological systems, conservation is only ap-
proximate, no set of structures will exactly match. 

We are building a system that allows one to find the greatest approximately con-
served structure(s) in a set of RNA sequences, in the presence of extraneous se-
quences that do not share a common structure. This conserved common structure can 
then be used as the basis for hypotheses about the importance of the structure in the 
biological functioning of the RNA. These hypotheses can be tested either experimen-
tally or by further computational work.  

We convert RNA structures to a graph representation that specifically includes 
pseudoknots and is capable of representing an ensemble of RNA structures in a single 
graph. Computationally, finding conserved structures corresponds to finding the 
greatest approximately isomorphous subgraphs in a set of graphs, where each graph 
represents a single RNA sequence. We use modifications of existing maximal sub-
graph isomorphism algorithms to identify the similar portions of the graphs, and pro-
pose to combine this with constrained MFE structure prediction tools [8], and a data-
base search capability. 

Graph theoretical approaches have previously been applied to RNA structures [9, 
10], but our approach differs significantly. The XIOS approach introduces the ability 
to represent ensembles of structures, and emphasizes the topology of stems. Our ap-
proach is most similar to that of Gan et al., but focuses on stem topologies rather than  
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the topology of loops and bulges [9]. The XIOS approach also allows structural mo-
tifs to be exactly matched without using heuristics [10]. 

2    XIOS RNA Graphs 

In this section, we describe the graph framework that we have developed to represent 
ensembles of RNA structural topologies. We introduce the XIOS RNA graph repre-
sentation for RNAs, and discuss extensions to existing subgraph isomorphism algo-
rithms as they are apply to XIOS RNA graphs.  

 

Fig. 1. XIOS definition. Relationships (edges) are defined as X (exclusive), I (included), O 
(overlapping), and S (serial). I+ indicates the direction of I edges with respect to the higher 
numbered vertex and I- indicates the opposite. 

2.1    Definition 

XIOS RNA graphs represent ensembles of RNA structural topologies. In XIOS 
graphs, each base-paired stem is represented by a vertex, and the edges connecting the 
vertices indicate the topological relationship between the stems. Topologically, two 
stems can be eXclusive (i.e., both cannot simultaneously form because they use the 
same sequence ranges), Included (i.e., one is nested within the loop of the other), 
Overlapping (i.e., the stems have a pseudoknot relationship) or Serial (i.e., adjacent, 
non-overlapping stem and loop structures) (Fig. 1). Each pair of vertices is related by 
one and only X, I, O or S relationship. 

2.2    Training Data 

We have developed Perl packages that translate Vienna RNA format [11] and the 
MFOLD [12] connect format into XIOS graphs. Because the predicted MFE structure 
is only one structure in a structural ensemble, we enumerate all energetically favor-
able short stems and label the entire set as X, I, O, and S, as described above. The 
graph is therefore an image of the entire structural ensemble. Our test datasets are 
described in Table 1. Highly similar sequences with sequence identity >40% are re-
moved from the dataset to avoid selection bias. 
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Table 1. Brief description of RNA datasets. Formats are: A, alignment; C, MFOLD connect; S, 
sequence; V, Vienna RNA package.  

Type of 
RNA 

Database or Pro-
gram 

Format Link 

microRNA miRNA S http://microrna.sanger.ac.uk/sequences/index.shtml 
5S rRNA Database S http://biobases.ibch.poznan.pl/5SData/ 
rRNA RDP II A, S http://rdp.cme.msu.edu/index.jsp 
RNase P RNase P Database C http://www.mbio.ncsu.edu/RNaseP/ 
snoRNA  snoRNABase S http://www-snorna.biotoul.fr/ 
snoRNA Plant snoRNA 

Database A, S 
http://bioinf.scri.sari.ac.uk/cgi-
bin/plant_snorna/home 

snoRNA Human snoRNA 
Database S 

http://www.trex.uqam.ca/~snorna/Seqs.html 

tRNA GtRNAdb V http://lowelab.ucsc.edu/GtRNAdb/ 
tmRNA tmRNA A, S http://www.indiana.edu/~tmrna/ 
Noncoding 
RNA 

ncRNA Database 
S http://biobases.ibch.poznan.pl/ncRNA/ 

All Pseudobase V http://biology.leidenuniv.nl/~batenburg/PKB.html 
All RNAbase S http://www.rnabase.org/ 
All Rfam A, S http://www.sanger.ac.uk/Software/Rfam/index.shtml 
All RNAfold/MFOLD C, V Installed on local server 

2.3   DFS Lexicographical Ordering 

DFS (Depth-First Search) lexicographical ordering was originally developed by  
Yan et al. [13, 14] in their gSpan algorithm for identifying common chemical struc-
tures in chemical datasets. In the chemical structure case, both the vertices (atoms) 
and edges (bonds: single, double and triple) are labeled, and all edges are undirected. 
gSpan is a powerful search algorithm that reduces the search space for isomorphous 
subgraphs using a clever depth first search (DFS) preordered search tree. 

The traversal order of edges and vertices in the DFS of a graph can be canonically 
ordered. This is called the DFS tree, or when serialized, the DFS code. Yan et al. 
proved that graphs with the same DFS code are, by definition isomorphous. Lexico-
graphic rules provide an unambiguous best order to the canonical DFS code [13].  

The direct path from the first traversed vertex (root) to the most recently added 
vertex (right-most vertex) is the right-most path. The extension of DFS graphs by 
edge growth is restricted to extension from the rightmost path, similarly to the ap-
proach of TreeminerV [15]. Graphs are extended in the following order: edges to ex-
isting vertices (backward edges), edges to new vertices extending from the right-most 
vertex, and extension from internal vertices on the right-most path. An intrinsic prop-
erty of the DFS lexicographical ordering is that it creates a preorder that can be used 
to efficiently explore the search tree when searching for isomorphous subgraphs. Iso-
morphic forms of a graph fall in different positions in the search tree, but the canoni-
cal DFS representation of a particular isomorph is guaranteed to be found first. Hence, 
the lexicographically first instance of an isomorph in the search tree is its minimum 
representation or canonical labeling and other instances can be efficiently pruned. 
Each edge in the DFS code is described by a 3-tuple, (vi, vj, li,j), where vi and vj are 
two connected vertices and li,j is the label of the edge. Fig. 3 shows how the canonical  
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Fig. 2. tRNA 3D structure and corresponding XIOS graph representation. I.A. 3-D struc-
ture of tRNA (PDB ID, 1EHZ). I.B, the simple three-leaf clover shape of tRNA is shown, 
where the acceptor stem, D-arm, anticodon-arm, and T-arm are represented by vertices 0, 3, 2 
and 5 respectively. Vertex 1 represents an interaction between the D-loop and a region between 
the D-arm and acceptor-arm, and vertex 4 represents an interaction between the D-loop region 
and the region between anticodon-arm and T-arm. In the XIOS representation (I.C), vertex 1 is 
included in the acceptor stem and overlaps with the D-arm, vertex 4 overlaps with the D-arm 
and the Anticodon arm is included in vertex 4. II a, b, and c show the sequential extension of 
the DFS graph, and II d shows the minimum DFS tree and corresponding DFS code. At the 
each stage of graph extension, all the possible extensions are shown in dotted lines. For each 
edge extension, only the canonical graph (shown by dotted ellipse) is used in the next stage. 

labeling can easily be identified using lexicographic rules even though many different 
DFS codes are possible. There are two additional rules that prune the search space. 
Firstly, if the initial edge of a minimum DFS code is type e0, then no following edge 
can have a lexically smaller edge label, and secondly, for any backward edge growth  
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to vj, an edge cannot be lexically smaller than any edge that is already connected to vj 
or vrightmost [13]. Each distinct mapping of vertices to a DFS code is the support for 
that potential solution. Since many such mappings are possible, each graph may have 
multiple support for a DFS code. As a simple example, Fig 2 shows the XIOS graph 
for a tRNA, according to the experimentally determined 3-dimensional structure 
(PDB ID: 1EHZ).  

 

Fig. 3. Unique three-stem XIOS graphs, including pseudoknots. Fifteen XIOS graphs with 
three vertices are possible, three of them are not true three-stem topologies (at least one of the 
stems has only S relationships with other stems); the other four three-stem structures are either 
redundant or physically impossible. 

2.4    Enumeration N-stem structures 

Every RNA structure can be represented by a XIOS graph. For n stems, the upper 
bound on the number of possible structures1, N, can be calculated by Equation (1),  

!n2

(2n)!
  N

n ⋅
=  (1) 

For example, there is only one possible one-stem structure, two possible two-stem 
structures, and 10 possible three-stem structures, but only eight unique structures  
 

                                                           
1  For the n-stem case, there are 2n half stems. We assign integer labels to each half stem from 1 

to 2n-1.By definition, the first half stem is labeled 1, and there are 2n-1 possible half stems 
that can pair with the first half stem; the third half stem has only one possible label (2 or 3), 
and there are 2n-3 possible half stems that can pair with this half stem, and so on. The upper 
boundary of the number of possible n-stem structures is therefore: (2n-1)*(2n-3)*(2n-
5)*…*5*3*1. 
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(Table 2). Fig. 3 shows the XIOS graphs for the eight unique structures that can be 
formed from three stems. The other two three-stem structures are either redundant or 
physically impossible.  

Table 2. Number of possible RNA topologies for different numbers of stems, N 

N Total Unique Topologies % Unique 

1 1 1 100 
2 2 2 100 

3 10 8 80.00 

4 78 49 61.25 

5 746 389 52.14 

6 8566 4207 49.11 

7 114834 56227 48.96 

3   Greatest Conserved Structures 

3.1   Extension of the gSpan Algorithm 

XIOS graphs have several differences from the chemical structure graphs considered 
by Yan and Han. XIOS graphs 

• have both directed and undirected edges. I edges are directed because it is 
highly important whether a stem is nested within or outside another stem. X, 
O, and S edges are undirected. 

• do not have vertex labels. Because every vertex is simply an anonymous ele-
mental stem, no labels are available. 

The use of unlabeled vertices with the gSpan algorithm is fairly straightforward, 
but results in a decreased ability to rapidly prune the search tree. Directed edges are a 
little more difficult to accommodate because the direction of the edge depends on the 
vertex from which one looks. The simplest approach is to label the edge as either I+

 or 
I- from the point of view of the lowest numbered vertex. I+

 and I- are treated as lexico-
graphically distinguishable edges. 

In the original application of gSpan to chemical structures, Yan and Han were in-
terested in identifying frequently occurring chemical substructures. In their case, 
structures that occur many times in a single graph are equally interesting. The case of 
RNA differs; motifs that occur in multiple graphs (molecules), rather than many times 
in a single graph (molecule), are considered more important. In addition, the presence 
of incorrectly classified sequences, i.e., sequences that have no common structure, 
means that not all graphs will support the biologically relevant subgraph. For XIOS 
graphs, therefore, support is calculated as the number of graphs that containing a sub-
graph, rather than the total count of matching subgraphs. 
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3.2    Graph Matching Algorithm (Similar to gSpan2) 

begin: 
For a XIOS graph G with edges eG 
I.  Sort edges in eG by edge type eG ∈ {X,I,O,S} 
II. For each edge type E 

1.  Find all lexicographically minimal one edge 
subgraphs, S, from the given XIOS graphs; 

2.  For each edge e in S 
3.  Do Subgraph_mining(G, S, e): 

i.   If the graph is NOT a minimum graph ac-
cording to DFS lexicographical order, return; 
ii.  Generate all potential children with one 
edge growth, enew 
iii. If support for each child is above 
threshold  

Recursively call Subgraph_mining with updated edge 
list (G, S+, enew) 
4.  Remove all edges of edge type E from G after 
all descendents have been searched 
5.  If eG = Ø, break; 

end. 

3.3   Greatest Conserved Structure(s) in a Set of RNAs 

Many computational approaches use pairwise or multiple DNA or protein sequence 
alignments to find conserved motifs, but this approach is generally impossible with 
RNA sequences because of their lack of conserved sequences, and because of the dif-
ficulty of obtaining unambiguously correct alignments. However, secondary and 
higher order structures in RNA are conserved, so matching the topology of two RNA 
structures with a graph matching approach can identify conserved motifs that cannot 
be seen in the sequences. The pre-ordered DFS search approach of gSpan provides an 
effective approach to this problem.  

The time complexity for the worst case of this algorithm is suggested to be O(kn) 
[13, 14], where k is the maximum number of subgraph isomorphisms existing be-
tween the two graphs and n is the size of the greatest common match. Fig. 4 shows the 
application of the XIOS graph approach to the structure of S. cerevisiae and H. 
sapiens RNase P. 

3.4    Characteristics of Biological Graphs 

The graph isomorphism approach is limited by the size of the graphs. We examined 
sequences from snoRNA, 5S rRNA, microRNA, tRNA, and RNase P (See Appendix 
for details) to determine how the number of stems varies with sequence length in bio-
logical RNAs. The sequences were obtained from online databases (Table 1) and their 
predicted MFE structures were obtained using the RNAsubopt program of the Vienna  
 

                                                           
2 Adapted from [13] with minor modification. 
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Fig. 4. Identification of the common structure in S. cerevisiae and H. sapiens RNase P 
RNA. Left panel (top) shows the secondary structure of the S. cerevisiae RNAse P RNA. Each 
stem is labeled with a capital letter A-L. Left panel, bottom, shows the XIOS graph. I edges are 
shown as single lines and O edges as double lines. Right panel shows the secondary structure 
(A-N) and XIOS graphs for a single human RNAse P RNA. In both panels, matching secondary 
structures are enclosed by boxes and the uniquely matching part of the XIOS graphs shown in 
dark lines. Dotted lines in the XIOS graphs indicate where there are multiple mapping between 
stems H and I of the S. cerevisiae structure and the human structure; these multiple mapped 
stems are also indicated by arrows in the secondary structure diagrams. The right panel shows 
two of the mappings as an example. 

RNA package [5]. Predicted MFE structures were also obtained for random sequences 
in a similar fashion. Random sequences were obtained by randomizing the order of 
bases in the corresponding biological sequences, thus preserving the base composition 
and sequence length.  

Fig. 5 indicates the overall trend of linear increase in number of stems as a function 
of sequence length. This rapid increase in the number of stems is due to the intricately 
folded structures of the RNAs. This observation further necessitates the development 
of an efficient system for searching biologically relevant structural patterns in RNA. It 
is notable the biological RNAs and random RNAs have very similar numbers of struc-
tures. As one can see in fig. 6, stem structures in biological RNAs are predominantly 
less than ten base-pairs long. 
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Fig. 5. Correlation between number of stems and sequence length. Number of stems in 
biological (♦) and randomized (×) RNA sequences versus sequence length. The number of 
stems increases roughly linearly with sequence length. Each biological sequence was permuted 
to generate a corresponding random sequence, preserving the sequence length and base compo-
sition of the real sequence. 

4   Future Directions 

The number of stem structures in an RNA MFE structure can be very large (Fig 5); 
the total number of possible stems, however, grows quadratically with the length  
of the sequence. If one assumes that stem-loop structures require on average 24 bases, 
the number of possible stems would be something like (SequenceLength/24)2. For a 
relative short 10kb mRNA sequence this would lead to graphs with over 150,000 ver-
tices. Our ultimate goal is to analyze 10-20 sequences of much longer length (many 
biological RNAs are over 100,000 bases long), a daunting problem. There are a num-
ber of approaches that can be used to reduce the size of the problem. These include 
preprocessing the structure to include only the most interesting stems (rather than all 
possible stems), the application of graph contraction methods, and the introduction of 
vertex labels. 
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Fig. 6. Length of RNA stem structures in biological RNAs 

4.1    Graph Preprocessing 

While the most biologically interesting RNA structure need not be the minimum free 
energy (MFE) structure, it is likely that the important structures are close to the MFE 
[16]. This follows from the Boltzmann relationship, which indicates that the relative 
frequency of a given structure in the structural ensemble depends on its energy. 
Rather than identifying all short energetically favorable stems, we can greatly reduce 
the size of the problem by including only stems that participate in a structure within 
some energy interval, ∂, from the predicted MFE structure. The total number of stems 
can be controlled by altering ∂; ∂=0 produces the MFE structure. 

4.2    Reduction of Graph Complexity 

Graph contraction reduces graph complexity by pruning irrelevant vertices and edges. 
There are a number of different approaches one can take to pruning XIOS graphs. 
Firstly, as we pointed out above, one can simply discard the S edges; since there are 
exactly four edge types and each pair of vertices has exactly one edge, only three edge 
types need be used. Secondly, we can place limits on the construction of edges of 
other types, especially of I edges. One of the advantages of the XIOS representation is 
that nested stems, represented by I edges, have an edge with every other stem in 
which they are included. This embedding can be many levels deep, generating a huge 
number of highly connected vertices. This is a great advantage because it obviates the 
need for introducing gaps [17] which make the matching problem much more  
complex (and ad hoc since there is no way to determine correct gap parameters). We 
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postulate that we would lose little matching power if the depth of I edge nesting was 
limited to a fixed depth such as four. This would still permit extraneous stems to be 
easily omitted but greatly reduce the number of edges in the graphs. Finally, because 
we can enumerate all possible XIOS structures with a fixed number of stems, we can 
create a dictionary of these substructures and condense the graphs to a smaller number 
of vertices based on this dictionary, at the same time converting the unlabelled verti-
ces to labeled vertices (the labels then correspond to the dictionary structures).  

4.3    Adding Labels 

The dictionary strategy, described above, faces difficulties since the isomorphous 
structure of interest is buried in a huge field of random noise. If the dictionary based 
labels are dominated by the non-matching (noise) portion of the graph, the re-encoded 
graph will lose the information needed to match to other graphs (e.g., if the dictionary 
structures overlap but do not exactly correspond to the interesting conserved struc-
tures). A similar strategy, unique to the XIOS graph, is to examine all three vertex 
triangles, of which there are a strictly limited number of types due to the limitations 
both of the graph and of the biochemistry of RNA, and replace each triangle with a 
corresponding labeled vertex. Triangles may share one or two edges which can be 
incorporated as an extended set of edge labels. Such graphs would be modestly 
smaller, but much more heavily labeled, greatly increasing the search speed. At the 
same time, little information is lost since the original graph can be almost completely 
reconstructed from the triangle-condensed graph. 

4.4    Motif Identification Tool 

RNAs that interact with specific molecules, such as proteins, generally have common 
topological motifs. For example, in alternative splicing the donor, acceptor, and 
branch point all have specific conserved structures important in recognition and ca-
talysis. Such conserved structures, when identified in molecules of unknown function, 
immediately generate experimentally testable hypotheses. Once motifs are identified, 
they can be used to search for additional sequences that could form the same struc-
ture. This provides a means for both statistically evaluating the significance of the 
structural motif, as well as for validating matches by examining them for biological 
similarities, e.g., by comparing the GO annotations [18] of the sequences. A number 
of approaches may be suitable for this, including stochastic context free grammars 
(SCFG) [19] which are frequently used to identify RNA structures based on biologi-
cal knowledge [20]. 

4.5    Database Search Tool 

For searching of large databases, SCFGs are likely to be too slow. We are developing 
a fast database search tool for RNA motifs. Since we can enumerate all possible XIOS 
graphs up for structures of up to 7 or 8 stems (hundreds of thousands) we believe that 
we can use the enumerated structures to prescreen graphs in much the same way that 
BLAST [21] uses identically matching words. This is closely related to the dictionary 
concept introduced above. Because matching to the enumerated structures in the  
dictionary can be precalculated, we plan to develop a fast system based on the  
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observation that one need not do the complete isomorphous subgraph search if two 
sequences share no dictionary motifs, and that if they do, the isomorphism search can 
be seeded by the matching motifs. Such a search tool would allow users to both ex-
tend and validate motifs found through subgraph isomorphism matching, and would 
also provide a means to functionally classify unknown RNAs. RNA is still rather 
poorly understood and such an approach will be of great use in identifying novel 
structural and functional motifs. 

Because RNA structures are relatively degenerate, it is likely that a post-processing 
system will be needed to identify the most interesting possible structures out of a 
large number of possibilities. This issue is similar to the problem of relevance ranking 
in web indexing. In sequence comparisons, statistical probability calculations are 
commonly used as a relevance ranking mechanism, and this may be possible in the 
XIOS system; we anticipate that the distribution of maximal matching structures will 
follow an extreme value distribution. Any two large RNAs, however, will have com-
mon structures that are almost completely trivial: they will match as a long series of 
serial stems. This is generally not biologically interesting, suggesting that there is a 
notion of biological complexity which can be used as a relevance ranking function. 
This biological notion of complexity may or may not correspond to mathematical 
notions of graph complexity [22]. Another possible relevance function would be to 
choose only structural motifs that can form near-MFE predicted structures using a 
constrained folding approach (motif stems are constrained to base-pair in the pre-
dicted structure) such as are available in MFOLD and the Vienna RNA package. 

The XIOS graph representation has great promise for identifying biologically in-
teresting structural motifs in RNA based on sequence alone. Constructing a suffi-
ciently fast motif search system will allow RNA studies to take advantage of the same 
bootstrap process that is commonly used for DNA and protein sequences, namely 1) 
identify biologically related sequences, 2) identify statistically significant structural 
motifs, 3) use structural motifs to identify additional candidate sequences (iterating to 
convergence), and 4) use the structural motif as a basis for laboratory experiments. 

Acknowledgments 

This work was supported by National Science Foundation award DBI-0515986. 

References 

1. Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Margulies, 
E.H., Weng, Z., Snyder, M., Dermitzakis, E.T., Thurman, R.E., et al.: Identification and 
analysis of functional elements in 1% of the human genome by the ENCODE pilot project. 
Nature 447(7146), 799–816 (2007) 

2. Zarrinkar, P.P., Williamson, J.R.: The kinetic folding pathway of the Tetrahymena ri-
bozyme reveals possible similarities between RNA and protein folding. Nature structural 
biology 3(5), 432–438 (1996) 

3. Doherty, E.A., Doudna, J.A.: The P4-P6 domain directs higher order folding of the Tetra-
hymena ribozyme core. Biochemistry 36(11), 3159–3169 (1997) 



330 K. Li et al. 

4. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244(4900), 
48–52 (1989) 

5. Wuchty, S., Fontana, W., Hofacker, I.L., Schuster, P.: Complete suboptimal folding of 
RNA and the stability of secondary structures. Biopolymers 49(2), 145–165 (1999) 

6. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS 
biology 3(6), 213 (2005) 

7. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot 
folding algorithm based on thermodynamics. BMC bioinformatics 5, 104 (2004) 

8. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: In-
corporating chemical modification constraints into a dynamic programming algorithm for 
prediction of RNA secondary structure. Proceedings of the National Academy of Sci-
ences 101(19), 7287–7292 (2004) 

9. Gan, H.H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary motifs us-
ing graph theory; implications for RNA design. Nucl. Acids Res. 31(11), 2926–2943 
(2003) 

10. Kim, N., Shiffeldrim, N., Gan, H.H., Schlick, T.: Candidates for Novel RNA Topologies. 
Journal of molecular biology 341(5), 1129–1144 (2004) 

11. Ivo, L.F.H., Peter, F.S., Sebastian, B.L., Manfred, T., Peter, S.: Sebastian, Tacker Manfred, 
and Schuster Peter: Fast Folding and Comparison of RNA Secondary Structures. 
MonatshChem 125, 167–188 (1994) 

12. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermo-
dynamics and auxiliary information. Nucleic acids research 9(1), 133–148 (1981) 

13. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proceedings of the 
2002 IEEE International Conference on Data Mining (ICDM 2002), p. 721. IEEE Com-
puter Society, Los Alamitos (2002) 

14. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Proceedings of 
the ninth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, Washington, D.C. ACM, New York (2003) 

15. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the eighth 
ACM SIGKDD international conference on Knowledge discovery and data mining, Ed-
monton, Alberta, Canada, ACM Press, New York (2002) 

16. Jaeger, J.A., Turner, D.H., Zuker, M.: Improved predictions of secondary structures for 
RNA. Proceedings of the National Academy of Sciences of the United States of Amer-
ica 86(20), 7706–7710 (1989) 

17. Wang, Z., Zhang, K.: Alignment between Two RNA Structures. In: Mathematical Founda-
tions of Computer Science 2001, p. 690 (2001) 

18. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., 
Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: Tool for the unification of 
biology. The Gene Ontology Consortium. Nature genetics 25(1), 25–29 (2000) 

19. Grate, L., Herbster, M., Hughey, R., Haussler, D., Mian, I.S., Noller, H.: RNA modeling 
using Gibbs sampling and stochastic context free grammars. In: Proceedings / International 
Conference on Intelligent Systems for Molecular Biology; ISMB, vol. 2, pp. 138–146 
(1994) 

20. Lowe, T.M., Eddy, S.R.: tRNAscan-SE: A program for improved detection of transfer 
RNA genes in genomic sequence. Nucl. Acids Res. 25(5), 955–964 (1997) 

21. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment 
search tool. Journal of molecular biology 215(3), 403–410 (1990) 

22. Pudlák, P., Rödl, V., Savický, P.: Graph complexity. Acta Informatica 25(5), 515–535 
(1988) 



The Use of a Conformational Alphabet for
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Abstract. A protein conformational alphabet refers to the discretized
states of the three-dimensional segmental structure of protein backbones.
Here a letter corresponds to a cluster of combinations of three angles
formed by Cα pseudobonds of four contiguous residues, and our alpha-
bet consist of 17 letters obtained by clustering based on the probability
distribution of these angles. A substitution matrix called CLESUM has
been derived from an alignment database of representative structures to
measure both evolutionary and geometrical similarity between any two
such letters. A structural fragment is then mapped to a string, and two
strings with their CLESUM score being higher than a preset threshold
form a similar fragment pair (SFP). The search for SFPs by string com-
parison is fast. Furthermore, CLESUM scores reflect the importance of
SFPs to structure alignment, and then the search space can be signif-
icantly reduced. A fast tool for pairwise alignment called CLePAPS is
developed by collecting as many spatially consistent SFPs as possible.
Extending the concept of SFPs to that of similar fragment blocks for
multiple structure alignment leads to a fast tool for multiple structure
alignment called BLOMAPS. Both CLePAPS and BLOMAPS are tested
on ensembles of various structures. They are reliable, and about two or
three orders faster than some well-known algorithms.1

1 Introduction

The comparison of protein structures has been an extremely important problem
in structural and evolutional biology. Protein structure comparison is most often
performed by a protein structure alignment program. Local similarity is a neces-
sary condition for the global structural alignment, but insufficient. Structurally
similar fragments first found in different proteins by seed matches form the basis
objects for further examination of their consistency in the spacial arrangement
required by the global alignment. Consistent pieces then may be joined to obtain
the global alignment.

Biologically important modules have been repeatedly employed in protein
evolution by gene duplication and rearrangement mechanisms. They form com-
ponents of fundamental units of structure and function. The existence of such
1 This work was supported in part by the National Basic Research Program of China
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conservative recurrent segments presents a solid foundation for the local analysis.
Besides coordinates, distances and angles, another way to represent structures
is to use conformational alphabets, which are discretized conformational states
of certain fragment units of protein backbones. The smallest unit possessing
one-to-one correspondence between angles and coordinates is the quadrupeptide
unit, which admits two bending angles and one torsion angle. Our conforma-
tional alphabet of 17 letters is obtained by clustering based on the probability
distribution in the phase space spanned by these three angles (Zheng and Liu,
2005). The description by conformational letters provides a good balance be-
tween accuracy and simplicity, and converts a 3D structure to a 1D sequence.

Without substitution matrices the use of conformational alphabets is very
limited. In order to implement fast structural comparison by means of our con-
formational alphabet, we have derived one of such matrices called CLESUM
from a representative pairwise aligned structure set of the FSSP (families of
structurally similar proteins) database of Holm and Sander (1997). All the pair
alignments of the FSSP for the proteins with a sufficient similarity in the rep-
resentative set are collected for counting aligned pairs of conformational letters.
An entry of the CLESUM is the log-ratio (with the base 2) of the observed
frequency of an aligned letter pair to the expected frequency from a random
alignment simply by chance. A scaling factor of 20 instead of 2 has been used
to show more details. Taking the database statistics into account, CLESUM has
a relatively low score for a match of frequent helix or sheet sites. It has been
verified that CLESUM aptly measures the similarity between the conformational
letter states (Zheng and Liu, 2005). Despite the existence of various methods for
structure alignment, efficient and reliable algorithms for fast alignment are in
ever increasing demand for analyzing the rapidly growing data of protein struc-
tures. Here we report tools developed for fast alignment of protein structures by
fully using our conformational alphabet and its substitution matrix CLESUM.

2 CLePAPS: A Fast Pairwise Structure Alignment Tool

The common goal of all pairwise structure alignment methods is to identify a
set of residue duads from each protein that are structurally similar, or to find
the optimal correspondence between the atoms in the two molecular structures.
An exhaustive search for such atomic correspondence is intractable, and various
heuristics have been developed. For example, to lower the dimensionality of
the problem, DALI identifies interaction patterns of fragment pairs (Holm and
Sander, 1997), VAST describes secondary structure elements (SSEs) as a set of
vectors (Gibrat et al., 1996) while CE designates short similar fragment pairs
(SFPs) of local structural similarities (Shindyalov and Bourne, 1998).

For a given correspondence of two point sets, finding the best rigid trans-
position to superpose the correspondence sets can be easily done by using a
closed-form solution based on the singular value decomposition (Kabsch, 1978).
When the transformation between the two sets is given, the problem to find the
correspondences (of ε-congruence at the maximal or average error tolerance ε)
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is rather straightforward. However, when aligning two protein structures, at the
beginning we know neither the transformation nor the correspondence.

Many methods start with an initial correspondence (seed matches), from
which the optimal transformation for the correspondence is determined. The
transformation is then used to update the correspondence. The procedure of
progressively building up larger correspondence is iterated until the best corre-
spondence is finally found. A typical example is ProSup (Lackner et al., 2000).
Using the 3D segmental structure coding of our conformational alphabet, we
develop a fast tool called CLePAPS for conformational letters based pairwise
alignment of protein structures.

2.1 Similar Fragment Pairs of High Scores

Among various protein properties measuring structural similarity such as inter-
residue distances or chemicophysical environments, CLePAPS uses a coarse-
grained similarity between conformational letters. The kernel of a CLePAPS
alignment consists of as many consistent similar fragment pairs (SFPs) as pos-
sible. CLePAPS regards an SFP as an ungapped string pair with a high sum
of pairwise CLESUM scores. CLePAPS searches for SFPs by simple string com-
parison. Suppose that the pair of structures to be aligned is P and P ′ with P
being the shorter. The coordinates {ri} and {r′j} of Cα atoms of the two proteins
are converted to the sequences S and S′ of conformational letters, respectively.
Since each letter corresponds to a quadrupeptide unit, the length of S (S′) is
shorter than that of P (P ′) by 3. By convention, we assign the first letter to the
third residue, the second to the fourth and so on, until finally the last letter is
assigned to the last residue but one.

Consider two fragments of the same length l, one of which starts at residue
i of P and the other at j of P ′. The local structural similarity of the fragment
pair may be measured by

σ =
l−1∑

k=0

M(si+k, s′j+k), (1)

where M(a, b) is the (a, b)-entry of the CLESUM, and si and s′j are the con-
formational letters of corresponding residues. Setting a threshold T , if the pair
score σ ≥ T , we call the pair an SFP, which defines a correspondence (l residue
duads). The two members of an SFP are referred as neighbors of each other.
Searching for SFPs by string comparison is fast. Furthermore, compared with
the usual definition of SFP by purely geometrical similarity, our definition also
gains specificity.

When an SFP contains residues of SSEs at its ends, shifts of the SFP often
also form SFPs. To remove such redundancy, we keep only the one with the
highest score among the nearby SFPs which are shifts of each other. A width w
is set to restrict the maximum overlap for this ‘shaving’. After shaving we have
a reduced list of the representative SFPs. We sort the list in descending order of
scores. Usually, a small l and a low T will result in a long list of SFPs.
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For a given long enough SFP, we can find a rigid transformation to superpose
its two members and make the spatial deviation of its duad Cα atoms very small.
Since an SFP is determined only by local similarity, a superposition valid for one
SFP need not be valid for another. We define the spatial deviation or separation
between two members of a certain SFP after a transformation by

δ = max
(ri,r′

j)∈SFP
{|xi − x′

j |, |yi − y′
j|, |zi − z′j |}, (2)

where (ri, r′j) is a duad of the SFP after transformation, and (x, y, z) denotes
the 3D coordinates of r. A small separation δ implies a good superposition of
the two SFP members.

2.2 The Greedy ‘Zoom-in’ Strategy

There is no clearly defined unique way to evaluate the quality of protein struc-
ture alignments. We adopt the standard of ProSup: the goal is to maximize the
number Ne of structurally equivalent residues subject to a fixed Euclidean dis-
tance cutoff d0 for judging correspondence between a residue duad and a minimal
aligned segment size ρ. CLePAPS uses d0 = 5 Å and ρ = 4.

To balance speed with accuracy, we generate two lists of SFPs, one for l = 20
with threshold T20 = 350 and overlaping width w = 20, and the other for l = 8
with T8 = 0 and w = 4. Any two helices are locally similar. Length 20 will exclude
many such purely local coincidence. Length 8 is necessary for including most
significant aligned pieces. We denote them as List-20 and List-8, respectively.
The two lists can be generated in a single run. We expect that a significant
alignment should contain at least one SFP of length around 20. Initial primary
correspondences will be taken from the top ten SFPs of the sorted List-20. If the
list size is less than 10, ‘top ten’ means all.

Once an SFP is chosen as an anchor, the transformation optimal to the SFP
may be used to superimpose the two proteins. The separation δ of any SFP can
then be calculated. Some SFPs are consistent with the anchor. That is, they will
have a small separation δ. By thinking in terms of graph theory, the anchor or
center and its consistent SFPs form a star tree or star. We define the size of a
star as the total number of its SFPs.

Taking each of the top ten SFPs as an anchor, we find its consistent SFPs
or neighbors in the top 50 SFPs of the sorted List-20. The stars really used by
CLePAPS are subject to a further restriction: for a given anchor, we search the
sorted List-20 successively from the top for neighbors of the anchor, and add
a new neighbor SFP only when it does not overlap with any existing neighbor
SFPs. In this way, we obtain ten restricted stars. We sort them first by their
sizes, and then by similarity score σ of their centers in descending order. We
remove the stars whose centers are neighbors of the first star. Then, we examine
the next star, and remove the stars associated with its neighbors, and so on, until
all stars are examined. Only the centers of the retained stars will be taken as an
initial alignment seed. The effect of this star removal is twofold: removing seed
redundancy and selecting the seeds which better reflect the global consistency.
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The extension of an initial seed alignment is mainly done by the following
blank-filling of the SFPs from List-8 which are consistent with the given anchor.
Blanks are residue positions not included in an existing correspondence. The
transformation optimal to the anchor SFP need not be globally optimal. We
use a multi-step ‘zoom-in’ strategy, starting with a low precision to avoid local
trapping. We first use a large cutoff d1 = 8 Å as the consistency criterion. That
is, we add only the SFPs with δ < d1 to the existing correspondence. The
procedure of blank-filling is greedy. The SFPs with a higher σ have a priority to
be filled. We examine the top half of the SFPs in the sorted List-8. When blank-
filling is fulfilled, the transformation optimal to the enlarged correspondence is
determined to update the superposition of the two proteins. In the next run of
blank-filling, cutoff d1 is reduced to d2 = 6 Å, and five-sixths of the SFPs in
List-8 are examined. In a third run, d2 is further reduced to d3 = 5 Å, and the
whole list is examined. Usually, three runs of iteration are enough for obtaining
a full alignment.

There are mainly two ways to update the correspondence. One is to keep
the existing duads and add new ones. The other is to re-start with an empty
correspondence and then fill in blanks with SFPs from List-8. The latter strategy
is used in CLePAPS. In the final polishing stage, the SFPs which have only a
limited overlap with the existing correspondence can also be used for blank-
filling. We speed up computation by means of marking. At the beginning, all
SFPs in List-8 are identified as ‘unmarked’. If an SFP has no two contiguous
residue duads whose coordinate differences are both smaller than di, it will be
marked as ‘invalid’, and then would never be examined again.

2.3 Refinement by Elongation and Shrinking

After blank-filling we obtain an alignment usually as disjunct pieces. Due to
the finite size of SFPs and the redundancy removal by shaving, it is possible
that an aligned piece can be elongated near its ends. If the Euclidean distance
of an outer residue duad is smaller than d0 we elongate the aligned piece by
joining the duad to it. More nearby residue pairs can be further examined for
elongation. On the other hand, depending on the relative quantities of d0 and d3,
the Euclidean distance between some residue duads on the aligned pieces would
be greater than d0. We remove such duads from the alignment (as a shrinkage
of the SFPs).

A filter for a minimal aligned segment length ρ is finally applied. A fur-
ther iteration of transformation would additionally improve the quality of the
alignment. Once a global alignment is accomplished, the total number Ne of
equivalent residue duads and the RMSD of the alignment are calculated as qual-
ity indicators. Despite the star removal two alignments generated from two star
centers may still be very similar. We compare entries of the rotation matrices.
If the greatest difference between two corresponding matrix elements is below ε,
say 0.1, the two alignments are regarded as identical. A more careful criterion is
the rotation angle defined for two matrices (Vriend and Sander, 1991).
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Structure comparison often yields several distinct alignments as multiple
solutions. The existence of alternative alignments is mainly due to structure sym-
metry and repeats at different levels ranging from secondary structure, super-
secondary structure to domains. Another source is the domain move. CLePAPS
often reports several alignments and ranks them according to their Ne.

2.4 The Fischer Benchmark Test

A well-known comprehensive test set for assessing the performance of fold recog-
nition methods is the benchmark of Fischer et al. (1996), which contains 68 pairs
of proteins. All pairs of the set are known to be structurally similar, but they
have low sequence identity. This set covers a wide range of protein families. We
test CLePAPS on the benchmark. Ten protein pairs from the Fischer benchmark
set were regarded as ‘difficult’ for fold recognition, and treated as a test set by
CE and ProSup. The comparison of CLePAPS with DALI, CE and ProSup is
shown in Table 1. It is difficult to compare Ne and RMSD directly for differ-
ent methods. To make a close comparison with DALI, we superimpose a given
structure pair according to the DALI alignment, and remove residue duads with
distances greater than d0 and the aligned segments whose lengths are smaller
than ρ. The remaining reduced correspondence is the DALI-core of the original
alignment. The transformation optimal to the core is then determined, and Ne

and RMSD are calculated. Similarly, we also derive the CE-core alignments from
the original CE alignments. Generally, alignments of CLePAPS are comparable
with those of other alignment tools.

Table 1. Comparison of structure alignments obtained by DALI, CE, ProSup and
CLePAPS for 10 ‘difficult’ cases from the Fischer benchmark. Ne: total number of
equivalent residue duads; rmsd: RMSD in the unit of Å; IDA: number of residue duads
which are identical to those of DALI.

CE DALI CE-core DALI-core ProSup CLePAPS
Pair Ne/rmsd Ne/rmsd Ne/rmsd Ne/rmsd Ne/rmsd IDA Ne/rmsd IDA

1fxiA 1ubq 64/2.8 60/2.6 59/2.5 55/2.3 54/2.6 41 55/2.4 42
1ten 3hhrB 87/1.9 86/1.9 85/1.7 84/1.7 85/1.7 79 84/1.7 77
3hlaB 2rhe 85/3.5 75/3.0 71/3.0 63/2.3 71/2.7 37 65/2.3 57
2azaA 1paz 85/2.9 81/2.5 73/2.5 76/2.1 82/2.6 8 78/2.3 72
1cewI 1molA 81/2.3 81/2.3 78/2.0 78/1.9 76/1.9 68 78/2.0 75
1cid 2rhe 98/3.0 97/3.2 79/2.0 82/2.0 84/2.3 70 87/2.2 72
1crl 1ede 220/3.9 211/3.5 155/2.5 168/2.5 161/2.6 147 169/2.7 146
2sim 1nsbA 276/3.0 292/3.3 236/2.5 240/2.5 248/2.6 231 248/2.6 213
1bgeB 2gmfA 109/4.6 94/3.3 62/2.7 79/2.2 87/2.4 0 82/2.4 0
1tie 4fgf 117/3.0 114/3.1 99/2.3 97/2.2 101/2.4 48 100/2.3 94

The CLePAPS alignment for the pair 1bgeB: 2gmfA has nothing in common
with the first of DALI’s three alignments. The List-20 of the protein pair has 31
members, but none coincides with any segment of the first DALI alignment. This
means that the local similarity of the alignment is rather weak. The CLePAPS
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alignment for the pair is very similar to the second DALI alignment of Ne = 94
with RMSD 3.3Å. We take five proteins of different structure classes from the
benchmark as query to be aligned with each of the target structures of the bench-
mark. CLePAPS is able to find the related strucutres as highly similar to the
queries. To be less greedy, CLePAPS generates several alignments from star cen-
ters of highly scored SFPs. Often there is one alignment which has a much higher
Ne than others. There are situations where several meaningful alignments do
exist when structures contain repeats, symmetry, or domain moves. Unlike algo-
rithms using dynamic programming, CLePAPS is able to detect non-topological
structural similarity of domain shuffling.

3 BLOMAPS: A Fast Multiple Structure Alignment Tool

Multiple structure alignment carries significantly more information than pairwise
alignment. Most existing methods of multiple structural alignment combine a
pairwise alignment and some heuristics with a progressive-type layout to merge
pairwise alignments into a multiple alignment (Ye and Janardan, 2004; Guda et
al., 2004; Lupyan et al., 2005). Besides the computational cost, such pairwise-
based methods have the limitation that the alignments that are optimal for
the whole input set might be missed. There are a handful of truly multiple
methods. A way to conduct multiple alignment is to start with sets of structurally
common fragments extracted from as many input proteins as possible, and then
combine them into a global common substructure. For example, in doing this,
MASS (Dror et al., 2003a; 2003b) implements a two-level alignment, using both
secondary structure and atomic representation. we have developed a fast and
reliable tool called BLOMAPS based on our conformational alphabet.

3.1 Highly Similar Fragment Blocks

The correspondence of a multiple alignment defines an equivalence relation of
residues among proteins. This will be called the ‘vertical equivalency’. For any
two structures in the multiple alignment, the transformation to superimpose the
residue duads in a subset of the correspondence will also bring the residue duads
in the complement set of the correspondence spatially close. This is the ‘hor-
izontal consistency’. The requirement of both the equivalency and consistency
increases the difficulty of multiple alignment, but also reduces the chance of
making an irrelevant alignment. The latter gives freedom to greedy algorithms.

The extension of the concept of SFPs to multiple alignment is that of similar
fragment blocks (SFBs). Selecting a structure from the input set as a template,
and taking a string from its conformational sequence as a seed, by string com-
parison we can search for SFPs between the template and any structure in the
set other than the template. An SFB may then be built up by collecting one
SFP from each protein possessing members of SFPs. Usually, more than one
SFP may be found between two proteins, so for a given seed many SFBs can be
constructed. To avoid this ‘combinatorial explosion’, we introduce the concept of
‘highly similar fragment blocks’ (HSFBs). An HSFB of a given seed is the SFB
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formed by the seed and its neighbors which score the highest amongst neighbors
in each structure possessing neighbors. Of course, it could happen that a seed
does not have any neighbor in some structures. The total number of fragments
in an HSFB will be called the depth of the HSFB. Another characteristic of an
HSFB is its total score Σ which is the sum of σ scores. We define the consensus
letter of a set of conformational letters as the letter which belongs to the set
and has the highest sum of CLESUM scores between itself and all letters in the
set. The consensus of an HSFB is then defined as the string which consists of
the consensus letters of columns when we align the ‘row’ strings of the HSFB.
Thus, besides the positions of its member fragments, an HSFB has a width,
depth, score and consensus. Our greedy algorithm uses the shortest protein to
create HSFBs with width l = 12 and T12 = 200. To remove redundancy we sort
the HSFBs first in descending order of depth and then of score, then keep only
the HSFBs which have limited overlap with the already existing HSFBs.

3.2 Scaffold Building-Up

BLOMAPS starts with an HSFB taken from the top five HSFBs as an ‘anchor’. To
choose the most representative structure, we update the template to the protein
whose member in the anchor HSFB is closest to the block consensus. Since HSFBs
are created using the shortest protein it may happen that the updated template,
or the new pivot protein, does not have a fragment in an HSFB. In this case we
use the consensus of the HSFB to search the pivot protein for possible neighbor
fragments, and add the optimal neighbor to the HSFB. All structures will be then
aligned against this pivot protein. After we have superimposed all the structures
which have a fragment in the anchor HSFB against the template, we examine the
horizontal consistency by examining the separations of SFPs in HSFBs with cutoff
d1 = 12Å. We mask inconsistent SFPs from HSFBs. If an HSFB finally contains
less than 3 fragments it will be regarded as inconsistent; if a fragment of the an-
chor HSFB is supported by less than two SFPs it will be removed from the anchor
HSFB. From the top five anchor HSFBs, we select the optimal one to go on to
the next step by inspecting first the total number of consistent HSFBs, and then
the total number of consistent fragments if necessary. The optimal anchor HSFB
is then best supported both horizontally and vertically. Fragments of consistent
HSFBs on the template form a scaffold for multiple alignment.

3.3 Obtaining the Final Alignment

Improving the scaffold. So far the transformation to superimpose two structures
is based on a single SFP. Using the consistent fragments, we may update the
transformation. With the transformation updated, we use a width l′ = 8 and a
more stringent cutoff d2 = 8 Å to examine the consistency and add fragments
by a procedure of ‘recruiting aligned fragment pairs (AFPs)’ for every anchored
protein. We sort SFPs in descending order of scores, examine the separations
of the SFPs in succession to expand alignment. We then obtain an extended
scaffold. The AFPs map residues of proteins other than the pivot to those of
the pivot protein, and define columns of residue correspondence. We construct
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the first average template by averaging transformed coordinates over atoms in
individual columns.

Dealing with unanchored structures. It may happen that the anchor HSFB has
no consistent neighbor in some structures. No transformation can be found based
on the anchor HSFB to superimpose such an ‘unanchored’ protein on the pivot
protein. However, the protein may still have members in other consistent HSFBs.
Any of such members can be used to generate a transformation for superimpos-
ing the protein on the template, and then examining the consistency of other
fragments. If an unanchored protein does not have enough number of consistent
fragments, we have to try to align it pairwise on the template. Being different
from the usual pairwise alignment, the scaffold on the pivot protein now provides
a guide. A procedure similar to, but simpler than, CLePAPS can be used. Af-
ter having succeeded in superimposing unanchored proteins on the template, we
update the average template, and then examine the deviation between residue
duads of AFPs and their flanking sites. We may elongate or shrink fragments
according to the deviation cutoff d3 = 5 Å, and hence update the AFPs. The
modified AFPs lead to an updated average template. This is an iteration, and
its convergence is usually rather fast.

Missing motifs. Due to the greedy nature of the above approach, only patterns
shared by the pivot protein have a chance to be discovered. Some patterns could
be shared by a subset of structures, but be absent from the pivot protein. They
are ‘missing motifs’ to the pivot protein. Their information has to be extracted
from the structures sharing them. A motif must be an SFB. There are many
methods for discovering motifs in a set of sequences. We may use a simple
center-star approach in the sense of strings (Zheng, 2005). An exceptionally
large protein will have a large proportion of blank regions, most of which have
no contribution to missing motifs, which makes the center-star approach rather
inefficient. This inefficiency occurs also when the number of structures is large.
We propose another way to rescue missing motifs. We divide the space occupied
by the structures after superimposition into uniform cubic cells of a finite size,
say 6Å. The number of different proteins which have their residues falling in a
given cell is the depth of the cell. We discard cells of low depths, then sort the
remaining cells in descending order of depth. Picking a cell of a large depth as
a base, in each dimension we select from its two neighboring cells the one with
the higher depth to expand the base cell and double its size into an ‘octad’. A
fragment falling in the octad may be taken as a seed to search for motifs.

In the case when a common core is shared by only a subset of the input set,
we divide the latter into two subsets: one with that core and the other without
it. The algorithm first accomplishes the alignment for the first subset, and then
treats the second subset as a new input set.

Evaluation. The final alignment is given by the complete residue correspondence.
A full column of the correspondence has residues from every protein of the
structure set. The common core of the alignment is rigorously defined by all
full columns. We may also define a ‘partial core’ by introducing a parameter of
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proportion. For example, core-60 is given by columns covering 60% or more of
the proteins of the structure set. Assume that a new motif is found on a protein
other than the pivot. With the help of the common core, we can map the protein
together with the missing motif on the template, and update the template by
averaging coordinates over residues in individual new columns. After having
superimposed structures on the final average template, we can calculate the
total squared deviation of aligned residues with respect to the template for full
or a partial core of the alignment, and then derive the RMSD for evaluation.

3.4 Test of BLOMAPS

BLOMAPS has been tested on 17 protein structure ensembles. These ensem-
bles, covering various challenging cases of structural alignment, are taken from
several references. Some ensembles contain structural homologies at different lev-
els, some exhibit submotifs, symmetry, repetition, or different topologies, while
others contain a large number of proteins. The ensembles are briefly summa-
rized in Table 2. BLOMAPS starts by taking the shortest portein as a pivot for
finding HSFBs. If the shortest one poorly represents the set, BLOMAPS will get

Table 2. Comparison of BLOMAPS alignments with those of CE-MC and
MAMMOTH-mult on 17 ensembles. Size: ensemble size, L: length range; MicrRib: Mi-
crobial ribonucleases, Subtil: Subtilisins, TIM61: a set of 61 TIM barrels, Serin5: a
set of 5 Serine proteinases, Serpin: Serpins, Thior: Thioredoxins, Beta: All beta im-
munoglobulins, Glob10: a set of 10 Globins, Glob16: another set of 16 Globins, Serin68:
another set of 68 Serine proteinases, CaBind: Calcium-binding proteins, CL-GL: Cofilin-
like/Gelsolin-like proteins, PLP: PLP-dependent transferases, C2: C2-domains, AlpBet:
SCOP α/β, TIM7: another set of 7 TIM barrels, HelBun: Helix-Bundles. d: Dror et al.
(2003a), e: Dror et al. (2003b), s: Shatsky et al. (2002), y : Ye and Janardan (2004).

BLOMAPS MAMMOTH CE-MC
Name Size L N1.5 Nc N∗

c N0 + N± Nc N0 + N±
MicrRibe 63 100:104 99 99 – – – –
Subtile 60 263:281 256 257 – – – –
TIM61e 61 384:443 337 342 – – – –
Serin5s 5 274:279 216 249 223 214+ 0 242 224+ 0
Serpins 13 337:420 265 301 226 220+ 1 305 289+ 6
Thiory 10 85:112 67 70 43 38+ 1 79 63+ 6
Betay 6 95:115 58 77 56 53+ 2 79 60+11
Glob10y 10 136:158 97 114 91 89+ 0 114 104+ 2
Glob16y 16 136:158 87 101 46 45+ 0 95 89+ 3

Serin68d 68 181:396 108 110 – – – –
CaBinds 6 75:185 40 49 0 0+ 0 58 25+ 0
CL-GLe 12 96:174 40 63 40 38+ 0 67 56+ 3

PLPd 11 361:730 77 142 – – 211 116+18

C2d 10 123:841 61 66 – – 71 53+ 4
AlpBety 4 81:226 28 44 0 0+ 0 58 0+26
TIM7s 7 247:491 17 97 0 0+ 0 79 0+ 0
HelBuns 10 79:159 8 59 0 0+ 0 44 0+ 0
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warned at the very beginning, and a second protein has to be taken as a new
pivot. However, this does not happen for all the 17 ensembles.

Since various criteria are used it is difficult to define a general comparison be-
tween different aligning methods. A simple way is to look for some identity rate
between the compatible cores of alignments of two methods. Here we take the
BLOMAPS alignment as a reference. Corresponding columns from two cores
of alignment are recognized by counting their identical site indices. When we
compare BLOMAPS with CE-MC (Guda et al., 2004), the identical indices are
summed, after divided by the ensemble size, to give the effective number of
‘identical columns’ N0. To include also small shifts, we count site indices which
deviate at most two sites in the related columns, and the number of counts is
converted to another effective number of columns N±. The number N0+N± may
be then compared with the total length Nc of the common core of alignment.
MAMMOTH-mult provides a ‘strict core’ of alignment which is shared by all
members in an ensemble and has the distance deviation between any aligned
residue duad within 4.0Å after superimposition (Lupyan et al., 2005). The total
length of this strict core is denoted by N∗

c . At a column RMSD cutoff of 1.5Å, we
obtain a stringent core of BLOMAPS, whose size is denoted by N1.5 to compare
with N∗

c . We summarize the comparison of BLOMAPS with MAMMOTH-mult
and CE-MC also in Table 2. The MASS alignment is not as easy to be com-
pared as MAMMOTH-mult and CE-MC, and is then not included in the table.
It is seen that alignments of BLOMAPS generally agree with those of CE-MC
or MAMMOTH-mult. Ensembles CaBind, AlpBet, TIM7 and HelBun contain
members from different superfamilies or even different folds, besides the symme-
try and repetition. Thus, observing some discrepancy among different methods
in these ensembles is not so surprising. It should be mentioned that Nc of a
common core of CE-MC alignment and Nc of BLOMAPS are not directly com-
parable. For example, the value of Nc = 58 is found by CE-MC for ensemble
CaBind although its N1.5 is only 16.

4 Discussion

CLePAPS and BLOMAPS distinguish themselves from other existing algorithms
for structure alignment in the use of conformational letters. The description of
3D segmental structural states by a few conformational letters aptly balances
precision with simplicity. The substitution matrix CLESUM provides us with a
proper measure of the similarity between these discrete states or letters. Such a
description fits the ε-congruent problem very well. Furthermore, CLESUM ex-
tracted from the database FSSP of structure alignments contains information of
structure database statistics. For example, although two frequent helical states
are geometrically very similar, scores between them are relatively low, which
reduces the chance of accidental matching of two irrelevant helices. The conver-
sion of coordinates of a 3D structure to its conformational codes requires little
computation. Once we transform 3D structures to 1D sequences of letters, tools
for analyzing ordinary sequences can be applied with some modification. The



342 W.-M. Zheng

use of conformational letters for fast local similarity search can be integrated
into many existing tools to improve their efficiency.

The CLESUM similarity score can be used to sort the importance of SFPs and
SFBs for greedy algorithms. Guided by CLESUM scores, only the top few SFPs
and HSFBs need to be examined to determine the superposition for alignment,
and hence a reliable greedy strategy becomes possible. Since many computational
steps are conducted on conformational codes instead of 3D coordinates, and the
search space is dramatically reduced by sorting, they run much faster than other
tools. The running time for the 68 pairs of the Fischer benchmark is less than 2
percent of that of the downloaded CE local version. The longest run time among
the tested 17 ensembles is spent for TIM61: 3.7 s for BLOMAPS vs. 2879 s for
MASS.
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Abstract. Most existing algorithms for protein design, including those
in the Rosetta molecular modeling program, precompute energies for ro-
tamer pairs, since these energies can be examined repeatedly. Simulated
annealing algorithms, however, do not examine these energies with the
same frequency; while some are examined many times, others may not be
examined at all. This paper compares strategies for computing these en-
ergies on the fly and caching computed energy values that are likely to be
reused. By avoiding the expense of computing pair energies that are not
examined by simulated annealing, we show that some caching strategies
not only improve running time in design, but also use 90% less memory,
which allows design computations to be performed on memory-limited
machines.

1 Introduction

Protein design programs typically precompute interaction energies between pairs
of rotamers from a rotamer library [1,2]. Since the number of these energies scales
quadratically with the number of possible rotamers per residue, and since recent
work has shown that increasing the sampling of rotamers per residue increases
the likelihood of finding a good design [3,4], memory becomes a principal limi-
tation for design. Although the computer science concept of “virtual memory”
allows a processor to work on data that exceeds the available memory, the excess
is swapped out to disk, whose access times are typically 100–1000 times slower
than physical memory. To avoid this slowdown, designers must perform their
computations on computers with large amounts of physical memory, restricting
the pool of machines that can perform their design simulations.

The simple solution to the memory problem is to eliminate energy storage by
replacing energy look-up with energy calculation. Unfortunately, energy calcu-
lation is often 100–1000 (or more) times slower than energy lookup: if an op-
timization algorithm requests the same interaction energy multiple times, then
relying on on-the-fly calculations costs time. Thus, one might expect this paper
to be a simple exploration of the usual trade-off: speed for memory. Instead, this
paper demonstrates a performance gain in tandem with a memory-use reduction
by exploiting a property of simulated annealing optimization algorithms: they
need not examine all possible pair energies.
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1.1 Previous Work

The task of the optimization algorithm task is to solve the sidechain placement
problem and optimize rotamer placement on a fixed protein backbone:

Sidechain Placement Problem: Given a rotamer library, an energy function, a
fixed protein backbone, and a selected set of residues on that backbone, find
the assignment of rotamers to these selected residues that minimizes the energy
function.

If the given energy function is pairwise decomposable, then this problem can
be expressed as a state assignment in a graph, G = {V, E}, in which each vertex
corresponds to residue, and each edge corresponds to the interaction between
rotamers assigned to a pair of residues positions. The rotamer choice at a selected
residue is expressed as a state assignment to the corresponding vertex v ∈ V , and
the interaction energy between a chosen rotamer and the background is captured
as a one-body energy, Ev(Sv), that is a function of the state Sv assigned to v.
The interaction energies between a pair of rotamers at vertices u and v are
captured as a two-body interaction function, Eu,v, assigned to edge (u, v). The
side chain placement problem becomes finding the state assignment vector, S,
that minimizes ∑

v∈V

Ev(Sv) +
∑

{u,v}∈E

Eu,v(Su, Sv).

The side chain placement problem is NP-Complete [5], and brute force opti-
mization to assign rotamers to n residues, with s rotamers per residue, would
require Θ(sn) time. Exact techniques for solving this problem have appealed to
manyprotein designers; these techniques include dead-end elimination [6,7,8,9,10],
branch and bound [11,12], and dynamic programming [13,14]. None of these tech-
niques, though, can escape the inherent complexity of the problem, and each can
fail to produce an answer in a reasonable amount of time.

Stochastic techniques have proven an attractive alternative since they always
finish, even if they do not guarantee optimality. Such techniques include self-
consistent mean field [15], genetic algorithms [16], simulated annealing [17,18,19],
and recently, the FASTER method [20,21].

Most design software relies on precomputing and tabulating rotamer pair
energies, since most optimization algorithms use each rotamer pair energy re-
peatedly. We use asymptotic analysis to give an idea of table size and number
of energy examinations, even though the specific implementation determines the
constants. For this analysis and the rest of the paper, we assume that we are
working with a short-ranged energy function. With a short ranged energy func-
tion, and a density limit on the number of residues per unit volume, the number
of neighbors with which a single residue interacts is bound by a constant [22].

Assuming a short-ranged energy function, n residues being redesigned (tens),
and s rotamers per residue (thousands to tens of thousands), an algorithm must
tabulate O(ns2) rotamer pair energies. The original dead-end elimination the-
orem [6] examines O(ns3) pair energies; the Goldstein theorem [8] examines
O(ns4) pair energies; the fuzzy-ended theorem for dead-end pairs [7] examines
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O(ns7) pair energies; the k-th generalized theorem [10] examines O(ns2k+1) pair
energies. For the recently described FASTER algorithm, when relaxation is per-
formed only for neighbors of the perturbed residue(s), application of a single
round of sPBR to each rotamer costs O(ns3) time and application of a single
round of dPBR to each rotamer pair costs O(ns5) time. For both dead end elim-
ination and FASTER, precomputing pair energies is readily justified since its
O(ns2) expense is asymptotically smaller than the number of pair-energy exam-
inations. (If the energy function is instead assumed to be long-ranged – as it
would be if a traditional Coulombic electrostatic term were included – then the
exponent on n increases by at least one for all the above techniques and for the
expense of precomputing and storing pair energies.)

In contrast, simulated annealing need not re-examine all rotamer pair ener-
gies. Briefly, simulated annealing considers a series of stochastic rotamer sub-
stitutions, and decides to accept or reject each substitution by applying the
stochastic Metropolis criterion to the change in energy induced. This criterion
depends on a “temperature parameter” that is gradually lowered bias acceptance
toward lower energy assignments. The temperature schedule and the number of
rotamer substitutions considered are at the discretion of the user.

The molecular modeling program Rosetta, developed for protein structure
prediction [23,24] and protein design [19,25,26,27,28], relies on a simulated an-
nealing algorithm for its side chain placement. Even though simulated annealing
offers no guarantee of optimality, independent runs converge to similar energies.
The simulated annealing algorithm within Rosetta considers a linear number
of rotamer substitutions (200 × ns), and therefore examines a linear number of
rotamer pair energies – each rotamer substitution requires examination of O(1)
pair energies. For this reason, precomputing pair energies dominates the run-
ning time: the cost of precomputing all pair energies takes Θ(ns2) time whereas
simulated annealing takes Θ(ns) time. The performance improvement described
here is from replacing Θ(ns2) energy computations before simulated annealing
with Θ(ns) energy computations during simulated annealing.

2 Methods

This paper examines three strategies for on-the-fly (OTF) rotamer pair energy
evaluation, and compares them to precomputing all rotamer pair energies. The
three OTF strategies differ in how much memory they dedicate to caching of
those pair energies they actually compute: At one extreme, the cacheless strat-
egy stores no pair energies and recomputes each pair energy as it is requested.
time. At the other extreme, the full caching strategy caches every pair energy
evaluated. And somewhere in the middle, the partial caching strategy stores some
pair energies but not all. Later, we show that the memory use for both the cache-
less and partial caching strategies scales linearly with the number of rotamers
in the design problem; the differences between the two are the constants that
are hidden by asymptotic analysis. The memory use of the full caching strategy
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that we examined scales quadratically with the number of rotamers per residue,
though it could have been implemented to scale linearly.

2.1 Energy Evaluation

For an assignment of rotamers to all positions, the sum of one-body and two-body
energies is the energy for the structure. Even with OTF strategies, the one-body
energies can be precomputed because they take only linear time and memory;
only the two-body energies need to be computed during simulated annealing.
Thus, we try to partition the energy calculations at a residue position so that
interactions that do not depend upon a rotamer choice are captured by the
one-body energy function.

Rosetta’s full atom scoring function [29] includes four terms that are two-body
interactions: a Lennard-Jones term, a pairwise decomposable implicit solvation
term [30], a hydrogen bonding term [31], and a knowledge-based electrostatics
term [32]. The first three terms sum atom pair interactions, and the last is by
residue pair.

Since Rosetta performs fixed backbone design, it is natural to divide the
atoms of a residue into backbone (bb) and side chain (sc), and to divide the
interaction energies for a pair of residues, i and j, into four groups: E(bbi, bbj),
E(sci, bbj), E(bbi, scj) and E(sci, scj). If we assume that the backbone does not
change as a result of an amino acid or rotameric substitution (an assumption that
may not hold for mutations to or from proline), then the E(bbi, bbj), E(sci, bbj),
and E(bbi, scj) energies may be stored in the one-body energies for rotamers i
and j, leaving only E(sci, scj) in the two body energies. To calculate E(sci, scj)
efficiently, we use a trie ordering of the atoms, pruning atom-pair computations
based on the non-overlap of subtree bounding spheres, in much the same way
that the Trie vs Trie algorithm prunes computations [33]. Proline residues force
a correction term, since their backbone nitrogen has a different covalent bonding
pattern than the other amino acids.

Proline Correction. Because the backbone nitrogen of proline does not form
hydrogen bonds, the implicit solvation and hydrogen bonding terms in Rosetta
treat proline backbone units different than the backbone units of other amino
acids. Thus, if i can mutate to or from proline, the interaction energy E(bbi, bbj)
is not constant and the energy E(bbi, scj) is not a one-body energy for residue j.

One could handle this by computing bb/bb and bb/sc energies as part of the
two-body energy during simulated annealing; this however proved significantly
slower than computing sc/sc energies alone. Instead, when a residue i can mu-
tate to or from proline, we include a corrective term to the one-body energy for
each rotamer on i’s neighbors. Since proline is a single exception, these correc-
tive terms may be precomputed and stored using time and memory that scales
linearly with the number of rotamers in the design. Without distinguishing pro-
line’s backbone from other backbones, the energies of the produced designs were
0.3 energy units worse on average.
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2.2 On-the-Fly Strategies

This section describes the three strategies for evaluating the energy of a specific
pair of rotamers considered by simulated annealing optimization. As described
above, we can think of this as assigning states to vertices of a graph in which
vertices hold one-body energy functions and edges hold two-body energy func-
tions. Because Rosetta’s energy function is short ranged, and because there is a
density limit for residues, the number of neighbors each residue has is limited by
a constant [22], and the corresponding graph representing their interactions is
sparse. The strategies differ by whether they associate memory with these graph
edges to cache values from energy function evaluations. In contrast, Rosetta cur-
rently uses a precompute-and-store strategy that evaluates the energy function
for each edge and stores the value for lookup by the optimizer.

Cacheless. The cacheless strategy is a true on-the-fly (OTF) evaluation for
pair energies: Every time the graph is asked for the change in energy induced by
substituting rotamer s on residue i with a new rotamer, s′, it (re-)computes the
interaction energies of s′ with each rotamer assigned to the neighbors of i.

The memory use for the cacheless graph is Θ(ns); each edge stores proline
corrections and Θ(1) auxiliary data, each vertex stores rotamer coordinates and
Θ(1) auxiliary data. Because the edges do not store any pair energies after they
are computed, the cacheless graph repeats rotamer pair energy computations
between some rotamer pairs; over the course of Θ(ns) rotamer substitutions,
it computes Θ(ns) rotamer pair energies. Asymptotically, the cacheless strat-
egy is preferable to the precompute-and-store strategy for Rosetta’s simulated
annealing optimizer.

Full Caching. The full caching strategy for OTF evaluation of pair energies
stores each rotamer pair energy after it is computed. Each time a pair energy is
required, the graph looks to see if it has already computed that energy – if it
has not, then it computes the energy and stores the energy for later reuse. This
technique ensures that each rotamer pair energy is computed at most once.

One implementation option for full caching that we did not explore is to store
a hash table on the graph edges. This option would store O(ns) pair energies
after O(ns) rotamer substitutions, though we expect the expense of storing the
keys to the hash table to mute its memory efficiency, and the time to index into
the hash table to mute its time savings. Such an implementation may nonetheless
prove interesting.

The implementation option presented in this paper is to allocate the full Θ(s2)
energy table on each edge, and then to mark each element in the table with a
non-physical sentinel value (−1234). During a rotamer substitution, the graph
retrieves a set of values from the edge tables; it then compares each retrieved
value against the sentinel. If a retrieved value equals the sentinel, then the graph
computes the corresponding rotamer pair energy and replaces the sentinel in the
pair energy table. Otherwise, the retrieved value is the correct rotamer pair
energy.
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The memory use for this second implementation is Θ(ns2) – as much memory
as the precompute-and-store strategy. The running time for this strategy has
an asymptotic bound of Θ(ns2), since Θ(ns2) memory must be allocated and
initialized to the sentinel. However, memory allocation and initialization is fast
and the actual running time for this strategy is dominated by the pair energy
calculations during simulated annealing. Here, the full caching strategy computes
O(ns) rotamer pair energies over the course of Θ(ns) rotamer substitutions while
ensuring that no pair energy evaluation is ever repeated.

Partial Caching. The partial caching strategy for OTF pair energy evaluation
is to store some rotamer pair energies after they are computed, but to eventually
discard those stored energies. The key to deciding which pair energies to keep
and which to discard is in the recognition that in mid- to late-stage simulated
annealing, when the temperature is low, most rotamer substitutions are rejected.
If most rotamer substitutions are rejected, then the currently assigned rotamer
r on residue i will stay assigned to i for an extended period of time. If neighbor
j is asked to consider the substitution to state s, the interaction energy between
r and s must be computed. If the substitution is rejected, then neighbor j may
be asked to consider the substitution to state s again in the future. If at that
time, residue i is still assigned rotamer r, then the interaction energy between
r and s will again be needed. The key is to store interaction energies with the
currently assigned rotamers since the interaction energies with those rotamers
are most likely to be needed again in the future.

Indeed, saving the interaction energies with the currently assigned rotamers
can be extended to saving the interaction energies for the k-most recently as-
signed rotamers for some constant k. Intuitively, if a rotamer r was assigned to
residue i and then replaced by rotamer r′, then the rotamer assignment to i’s
neighbors must make r look good, even if not as good as for r′. It remains likely
that i might be substituted back to state r in the near future, at which time
interaction energies with rotamer r will again be needed.

The partial caching strategy is as follows. Each vertex tracks its k most re-
cently assigned states. The edge between vertices i and j stores all computed
interaction energies between any rotamer on vertex i with the k most recently
assigned states on vertex j as well as all computed interaction energies between
any rotamer on vertex j with the k most recently assigned states on vertex i.
Whenever vertex i is assigned a new state that is not among its k most recently
assigned states, each edge incident upon i discards the stored pair energies for
the (k + 1)st most recently assigned state on i.

The edge between vertices i and j stores two tables; if there are si states for
vertex i and sj states for vertex j, then edge {i, j} stores one table of size k × si

and a second table of size k × sj . The edge tracks which energies it has already
computed by setting entries in these tables for energies it has not computed to
a sentinel value. When state r on residue i joins the set of the k most recently
assigned states to i, then the edge {i, j} sets all of the energies in a single row
of the k × sj table to the sentinel value – it wipes clean the values stored in that
row which correspond to the (k + 1)st most recently assigned state on residue i.
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A single row in this table can be wiped in amortized constant time if each edge
also stores two tables (of size k × si and k × sj) to track which energies it has
already computed. Alternatively, the edge can wipe the whole row in Θ(s) time.

The expense of the Θ(s) wipe is most noticeable at high temperatures where
rotamer substitutions are often accepted. At high temperature, the amount of
time a rotamer is likely to remain assigned is short – the benefit of storing ener-
gies for later reuse is slight, and the cost of wiping clean energies stored in edges is
large. For this reason, the partial caching graph behaves like the cacheless graph
when the frequency of rotamer-substitution acceptances is high. To measure
the acceptance frequency, each vertex keeps track of the acceptance/rejection
status of its last 100 considered rotamer substitutions and informs its incident
edges to track energies for its k most recently assigned states only if 5 or fewer
of the last 100 rotamer substitutions were accepted. Maintenance of the accep-
tance/rejection history can be performed in constant time. With this acceptance-
frequency-sensitive behavior switch for the partial caching graph, we have found
that the Θ(s) wipe is faster than the amortized Θ(1) wipe for all values of ns
that we have examined (up to 200K).

The memory use for this partial caching graph scales as Θ(kns), where we
typically use a k of 10. The running time in simulated annealing for Θ(ns)
rotamer substitutions is O(ns) for the amortized constant-time wiping scheme,
and O(ns2) for the linear-time wiping scheme.

3 Results

We compared running times for the three on-the-fly strategies against the run-
ning times for the precompute strategy at complete-protein-redesign tasks of
twelve globular, single-chain proteins. The design tasks designed all residues us-
ing all amino acids except cysteine. Disulfides, however, were kept fixed. For
each protein, we also examined five different schemes, defined in Table 1, for
producing rotamers by additional sampling of torsion angles χ1 and χ2. After
each rotamer was built, its interaction energy with the backbone was calculated;
rotamers colliding the with background were discarded. The number of rotamers
that passed the backbone-collision test and the amount of space required to store
one floating point number for each interacting rotamer pair are reported in Ta-
ble 2. All design calculations were performed on 2.8 GHz Xeon processors with
4 GB of RAM. Table 3 contains the running times.

On a per-RPE (Rotamer Pair Energy) basis, it is faster to use the trie-vs-trie
algorithm [33] to compute all RPEs for a pair of interacting residues than it is
to compute each RPE individually. For this reason, the precompute strategy is
faster than any of the OTF strategies when the number of rotamers in the design
problem is small (as in A), as nearly all RPEs are examined during simulated
annealing. For rotamer sampling schemes B through E, however, the full caching
strategy is the fastest. For strategies C though E, the partial caching strategy
is faster than the precompute strategy in almost all cases. Indeed the partial
caching strategy computes less than one fifth of all possible rotamer pair energies
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Table 1. Five rotamer sampling schemes for our study. Scheme A took rotamer samples
from the centers of the rotamer distributions reported by Dunbrack [1]. The other
schemes expanded the set of allowed rotamers for buried residues by also considering
rotamers placed one standard deviation (σ) away from the distribution centers for
either χ1 or χ2 dihedrals. Schemes D and E also sample at one-half of a standard
deviation from the distribution center. Scheme C is commonly used by the protein
design community. Schemes D and E have been prohibitively expensive until now.

Sampling Scheme Extra χ1 Samples Extra χ2 Samples Samples per starting rotamer

A – – 1

B ± σ – 3

C ± σ ± σ 9

D ±{0.5, 1} σ ± σ 15

E ±{0.5, 1} σ ±{0.5, 1} σ 25

when the number of rotamers exceeds 100K. The cacheless strategy performed
substantially worse ( > 3 times slower) than the partial caching strategy in all
design tasks (data not shown).

To examine the effect of the recent history size on performance, we examined
the behavior of the partial caching strategy for recent history sizes of 1, 2, 3,
4, 5, 7, 10, 15, 20, 25, and 30. We performed design simulations on the same
set of twelve proteins using the same set of rotamer sampling schemes. In each
design simulation, we counted the number of RPEs that the annealer examined,
and the number of RPEs the partial caching strategy had to compute – that is
the number of RPEs that were not already stored in memory at the time the
annealer requested them. Figure 1 shows that the average fraction of requested
RPEs that were computed decreases in response to increasing recent history
sizes. The fractions are the average across all twelve proteins for each rotamer
sampling scheme and each recent history size. The figure shows diminishing
returns as memory is exchanged for speed; recent history sizes much larger than
10 are only marginally faster.

4 Discussion

Protein design remains a computationally demanding task; while the side chain
placement problem on a fixed backbone may be broached in a reasonable amount
of time using stochastic techniques, the number of possible backbone conforma-
tions is vast. In the de novo design of novel protein backbones, for example, it
is unknown whether a hypothetical backbone scaffold is designable until several
rounds of sequence/structure optimization and gradient based minimization have
completed. Hundreds of thousands of hypothetical scaffolds are pushed through
the design algorithm so that a handful of designed sequences can be selected
for synthesis and experimental characterization. Expediting the design process
allows the computational biochemist to explore a larger region of backbone con-
formational space before investing several months on the bench synthesizing
their designs.
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Table 2. Rotamer counts (thousands) and Rotamer Pair Energy (RPE) memory usage.
The rotamer counts exclude all rotamers that collide with the backbone. The memory-
use projection includes space to store RPEs between only those rotamer pairs within
an amino-acid-pair specific Cβ distance cutoff. These cutoffs reflect the short range
nature of Rosetta’s energy function. The actual memory use for the partial caching
strategy is based on a recent-history size of 10 and excludes the expense of storing the
rotamers. The average memory savings of the partial caching scheme in comparison
with the precompute and full caching schemes is A) 62%, B) 81%, C) 92%, D) 95%,
and E) 97%.

# Rotamers (K) MB Needed for All RPEs Partial Caching, MB
PDB A B C D E A B C D E A B C D E

1bx7 5 6 8 11 15 10 18 53 107 214 4 5 8 11 15
1a8o 8 9 14 18 25 28 49 148 305 628 11 14 23 32 44
1g2b 8 12 24 37 55 37 117 602 1486 3494 13 21 44 68 101
1ail 9 12 22 33 47 39 93 408 964 2231 13 18 35 52 77
1aba 11 16 32 48 72 51 156 824 2054 4908 18 29 61 94 141
1bkf 12 21 47 74 111 60 240 1483 3855 9338 24 43 98 154 234
1d4t 13 21 44 68 102 61 224 1337 3434 8403 23 40 90 140 212
1aac 13 23 52 82 125 68 297 1930 5058 12507 26 49 115 182 278
1erv 13 23 54 84 129 71 315 2060 5406 13471 25 48 114 180 278
1bkr 13 23 52 82 124 64 263 1667 4345 10600 26 48 112 177 269
1a62 15 26 59 93 142 77 321 2045 5325 13162 29 54 126 200 306
1bkb 17 27 57 88 132 85 292 1650 4173 10070 30 50 110 170 258

In this paper, we have compared performance and memory use of three on-
the-fly energy-calculation- and caching-strategies – new to the domain of protein
design – against the standard practice of precomputing and storing all energies.
The full-caching strategy uses as much memory as the precompute strategy, but
is 2.6 times faster for typical design problems. Importantly, the partial-caching
strategy has proven itself slightly faster than precomputing all pair energies
while using dramatically less memory. Designers may rely on this technique
when memory limits would otherwise prevent them from harnessing a particular
machine, without having to sacrifice speed.

Recent trends in commodity processors show an increase in the number of
processors per machine. Graphics processors lie at the furthest extreme of this
trend but remain out of reach for the protein design community currently. A more
modest goal would be to fully harness the now commonplace dual-core and quad-
core machines. However, the amount of RAM has not grown proportionally to
the number of processors – in effect, available memory is shrinking. The caching
technique described in this paper will allow designers to run many independent
jobs on multi-core machines without overflowing into virtual memory.

The reduced memory overhead for the partial caching strategy has enabled
us to perform millions of de novo protein-protein interface designs on an IBM
BlueGene/L computer. The particular BlueGene has four-thousand processors,
but each processor has only 512 MB of RAM and no virtual memory. Harnessing
its power required the retooling of our software as described in this paper.



352 A. Leaver-Fay, J. Snoeyink, and B. Kuhlman

Table 3. Running times for the full caching, precomputed, and partial caching strate-
gies, in seconds. Timings include all stages of design; from the start of rotamer creation
to the conclusion of simulated annealing. Bold numbers are minimum in their category.
Cells marked with ‘–’ reflect design tasks that crashed after requesting too much mem-
ory. For rotamer sampling scheme C, the full caching strategy is 2.6 times faster on
average than the precomputed scheme.

Full Caching Precomputed Partial Caching, k = 10

PDB A B C D E A B C D E A B C D E

1bx7 16 14 35 55 47 14 20 38 56 127 27 35 62 94 113
1a8o 44 58 64 158 220 40 60 136 265 530 83 108 184 281 432
1g2b 50 101 209 336 – 50 127 443 927 – 86 149 208 602 1,046
1ail 60 88 190 203 475 48 74 255 449 937 114 174 358 407 622

1aba 76 137 197 520 – 68 122 599 1,485 – 135 227 339 606 1,641
1bkf 101 133 357 – – 83 246 979 – – 170 339 909 1,622 2,839
1d4t 97 192 483 – – 59 244 771 – – 173 206 538 1,506 2,725
1aac 106 227 385 – – 99 251 1,400 – – 179 382 671 1,140 3,439
1erv 120 234 626 – – 101 314 1,237 – – 188 249 1,088 1,915 3,515
1bkr 109 154 609 – – 89 262 1,090 – – 189 247 616 1,935 3,276
1a62 139 263 443 – – 109 334 1,374 – – 233 458 1,269 2,295 2,496
1bkb 132 164 390 – – 119 265 1,320 – – 227 273 1,127 2,043 3,555

Fig. 1. Fraction of rotamer pair energies requested during simulated annealing that
were computed (as opposed to those RPEs that had already been computed and were
simply retrieved from memory). By reducing the recent history size from 30 to 10, the
number of RPEs computed increases only by 9 %(A), 13% (B), 16% (C), 21% (D), and
31% (E).

Acknowledgments

We would like to thank the Renaissance Computing Institute (RENCI) for access
to their BlueGene machine which in part lead toward the development of the



On-the-Fly Rotamer Pair Energy Evaluation in Protein Design 353

algorithms described within. We would also like to thank the reviewers for their
helpful comments and criticisms. This research was funded by DARPA’s PDP
initiative and from NIH Grant GM073960.

References

1. Dunbrack Jr., R.L., Karplus, M.: Backbone dependant rotamer library for proteins:
Application to side chain prediction. Journal of Molecular Biology 230, 543–574
(1993)

2. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate
rotamer library. Proteins: Structure Function and Genetics 40, 389–408 (2000)

3. Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W.: Computational design of
receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)

4. Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y., Baker, D.: Accurate
computer-based design of a new backbone conformation in the second turn of
protein L. Journal of Molecular Biology 315, 471–477 (2002)

5. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Engineering 15, 779–782
(2002)

6. Desmet, J., Maeyer, M.D., Hazes, B., Lasters, I.: The dead-end elimination theorem
and its use in protein side-chain positioning. Nature 356, 539–541 (1992)

7. Lasters, I., Desmet, J.: The fuzzy-ended elimination theorem: Correctly implement-
ing the side chain placement algorithm based on the dead-end elimination theorem.
Protein Engineering 6, 717–722 (1993)

8. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophysical Journal 66, 1335–1340 (1994)

9. Gordon, D.B., Mayo, S.L.: Radical performance enhancements for combinatorial
optimization algorithms based on the dead-end elimination theorem. Journal of
Computational Chemistry 19, 1505–1514 (1998)

10. Looger, L.L., Hellinga, H.W.: Generalized dead-end elimination algorithms make
large-scale protein side-chain structure prediction tractable: Implications for pro-
tein design and structural genomics. Journal of Molecular Biology 307(1), 429–445
(2001)

11. Gordon, D., Mayo, S.: Branch-and-terminate: A combinatorial optimization algo-
rithm for protein design. Structure Fold Des 7, 1089–1098 (1999)

12. Canutescu, A.A., Shelenkov, A.A., Dunbrack Jr., R.: A graph-theory algorithm for
rapid protein side-chain prediction. Protein Science 12, 2001–2014 (2003)

13. Leaver-Fay, A., Liu, Y., Snoeyink, J.: Faster placement of hydrogen atoms in pro-
tein structures by dynamic programming. In: 6th Workshop on Algorithm Engi-
neering and Experiments (ALENEX 2004) (2004)

14. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: An adaptive dynamic programming
algorithm for the side chain placement problem. In: Pacific Symposium on Bio-
computing, The Big Island, HI, pp. 17–28. World Scientific, Singapore (2005)

15. Koehl, P., Delarue, M.: Application of a self-consistent mean field theory to predict
protein side-chains conformation and estimate their conformational entropy. J. Mol.
Biol. 239(2), 249–275 (1994)

16. Desjarlais, J., Handle, T.: De novo design of hydrophobic cores of proteins. Protein
Science 4, 2006–2018 (1995)

17. Holm, L., Sander, C.: Fast and simple Monte Carlo algorithm for side chain opti-
mization in proteins: Application to model building by homology. Proteins 14(2),
213–223 (1992)



354 A. Leaver-Fay, J. Snoeyink, and B. Kuhlman

18. Hellinga, H., Richards, F.: Optimal sequence selection in proteins of known struc-
ture by simulated evolution. Proceedings of the National Academy of Sciences,
USA 91, 5803–5807 (1994)

19. Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their
structures. Proceedings of the National Academy of Sciences, USA 97, 10383–10388
(2000)

20. Desmet, J., Spriet, J., Lasters, I.: Fast and accurate side-chain topology and en-
ergy refinement (FASTER) as a new method for protein structure optimization.
Proteins 48, 31–43 (2002)

21. Allen, B.D., Mayo, S.L.: Dramatic performance enhancements for the faster opti-
mization algorithm. Journal of Computational Chemistry 27, 1071–1075 (2006)

22. Xu, J.: A tree-decompositon based approach to protein structure prediction. In:
Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.)
RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

23. Simons, K.T., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure
prediction of CASP III targets using ROSETTA. Proteins: Structure Function and
Genetics 37, 171–176 (1999)

24. Bradley, P., Chivian, D., Meiler, J., Misura, K., Rohl, C., Schief, W., Wedemeyer,
W., Schueler-Furman, O., Murphy, P., Strauss, J.S.C., Baker, D.: Rosetta pre-
dictions in CASP5: Successes, failures, and prospects for complete automation.
Proteins: Structure Function and Genetics 53, 457–468 (2003)

25. Kuhlman, B., Dantas, G., Ireton, G., Varani, G., Stoddard, B., Baker, D.: Design
of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368
(2003)

26. Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of
computational protein design: Folding and stability of nine completely redesigned
globular proteins. Journal of Molecular Biology 332, 449–460 (2003)

27. Ashworth, J., Havranek, J., Duarte, C., Sussman, D., Monnat, R.J., Monnat, R.J.,
BL, B.S., Baker, D.: Computational redesign of endonuclease dna binding and
cleavage specificity. Nature 441, 656–659 (2006)

28. Sood, V., Baker, D.: Recapitulation and design of protein binding peptide struc-
tures and sequences. Journal of Molecular Biology 357, 917–927 (2006)

29. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using
rosetta. Methods in Enzymology 383, 66–93 (2004)

30. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Pro-
teins: Structure Function and Genetics 35, 133–152 (1999)

31. Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for proteins and
protein-protein complexes. Journal of Molecular Biology 326, 1239–1259 (2003)

32. Simons, K., Ruczinski, I., Kooperberg, C., Fox, B., Bystroff, C., Bystroff, C., D.,
D.B.: Improved recognition of native-like protein structures using a combination
of sequence-dependent and sequence-independent features of proteins. Proteins:
Structure Function and Genetics 34, 82–95 (1999)

33. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: Rotamer-pair energy calculations using
a trie data structure. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI),
vol. 3692, pp. 500–511. Springer, Heidelberg (2005)



 

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 355–366, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Invited Keynote Talk: 
Integrative Viral Molecular Epidemiology: Hepatitis C 

Virus Modeling 

James Lara, Zoya Dimitrova, and Yuri Khudyakov 

Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis,  
Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30333, USA 

{jlara,zdimitrova,ykhudyakov}@cdc.gov 

Abstract. Traditional molecular epidemiology of viral infections is based on 
identifying genetic markers to assist in epidemiological investigation. The limi-
tations of early molecular technologies led to preponderance of analytical 
methodology focused on the viral agent itself. Computational analysis was al-
most exclusively used for phylogenetic inference. Embracing the approaches 
and achievements of the traditional molecular epidemiology, integrative mo-
lecular epidemiology of viral infections expands into a comprehensive analysis 
of all factors involved into defining outcomes of exposure of a person(s) to viral 
infections. The major emphasis of this scientific discipline is on the develop-
ment of predictive models that can be used in different clinical and public 
health settings. The current paper briefly reviews a few examples that illustrate 
a new trend in integrative molecular epidemiology striving to quantitatively de-
fine viral properties and parameters using primary structure of viral genomes.  

1   Introduction 

Significant advances in development of molecular approaches made over the last two 
decades rendered studies on structural variations in genetic systems of various organ-
isms not only conceivable but clearly affordable. These developments spurred an 
avalanche of applications in different fields but almost none benefited as much as 
epidemiologic research for public health. The application of molecular approaches to 
the study, prevention and control of health risks in human populations is frequently 
described as molecular epidemiology [1]. However, such description of molecular 
epidemiology reduces it to the application of molecular markers to epidemiological 
research. The latest progress in molecular and computational technologies challenges 
such description. Molecular epidemiology was recently defined as "a science that 
focuses on the contribution of potential genetic and environmental risk factors, identi-
fied at the molecular level, to the etiology, distribution and prevention of disease 
within families and across populations" (http://www.pitt.edu/~kkr/molepi.html). 

Application of novel molecular and computational approaches to viral research 
transforms molecular epidemiology of viral infections into an integrative research 
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discipline that embraces studies of viral and host genetic systems, molecular evolution, 
phylogeny and population genetics and sets these studies in specific epidemiological 
situations. Although primarily a biological discipline, integrative molecular epidemiol-
ogy is deep-rooted into mathematical and computational modeling. Qualitative or 
modestly accurate quantitative mathematical models are important tools for guiding 
molecular epidemiological research, while sufficiently accurate quantitative or predic-
tive models can be directly used in clinical and public health settings. Currently, mo-
lecular research is still dominated by analytical approaches which attempt to consider 
all components of biological systems separately from each other. Recent advances in 
computational and high throughput molecular technologies afford a rather comprehen-
sive analysis of all components involved in determining the outcome of exposure of a 
person or population of people to certain risk factors, which sets the foundation for 
integrative molecular epidemiology. The important issue to consider is that viral mo-
lecular epidemiology is interested in genetic heterogeneity within species, should it be 
a host or viral agent. At this level, many environmental parameters and circumstances 
of exposure and infection defined by different epidemiological settings are as impor-
tant to consider as biological properties of the pathogen or host. This consideration 
poses a novel challenge to molecular epidemiological research of viral infections to 
quantitatively assess the effect of sequence heterogeneity of a viral genome on its func-
tions, which is frequently defined as a quantitative structure-activity relationship 
(QSAR) problem in computational studies. Among many important trends in the inte-
grative molecular epidemiology of viral infections, this paper will briefly review a few 
QSAR models developed in our laboratory for hepatitis C virus (HCV). 

HCV is the major etiologic agent of blood borne non-A, non-B hepatitis. HCV ge-
nome is a positive-sense single-stranded 9.6 kb RNA. The HCV genome encodes a 
large polyprotein, which is processed into 10 mature proteins. The genome is very 
heterogeneous. Some HCV strains may differ as much as 35% from each other.  Phy-
logenetic analysis of HCV sequences identified 6 genotypes. Clinical studies have 
shown that HCV genotype is an independent prognostic factor in predicting response 
to antiviral therapy [2]. Although it is well documented that sequence heterogeneity of 
HCV genome affects antigenic properties of encoded proteins [3], the degree of geno-
type specific differences in antigenic properties is not known. Due to the characteris-
tic geographical distribution of all HCV genotypes worldwide, current diagnostic kits 
do not always perform equally well in all parts of the world. Therefore, the develop-
ment of affordable HCV diagnostic assays with improved specificity and sensitivity 
continues to be a major public health challenge. 

2   HCV NS3 Cross-Immunoreactivity 

One of the strategies adopted for generating immunoreactive forms of HCV antigens 
for their use in diagnostic assays involves characterization of antigenic determinants 
derived from different HCV strains. However, probing of the entire HCV sequence 
space for the existence of molecules with desired properties is too onerous to be  
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practicable. An alternative approach is to define QSAR between protein structure and 
antigenicity for the development of antigens with improved diagnostic properties. 

The HCV NS3 protein contains diagnostically relevant conformation dependent 
immunodominant B cell epitopes. One of the HCV NS3 conformational antigenic 
regions could be efficiently modeled with recombinant proteins of 103 amino-acids 
(aa) long [4]. The effect of sequence variation on antigenic property of this region was 
studied using a set of 12 recombinant proteins derived from 6 known HCV genotypes. 
The study showed that some changes in primary structure can result in a significant 
variation of antigenic properties. 

2.1   Dataset 

Twelve HCV NS3 protein variants comprising the amino-acid positions 331 – 433 of 
the HCV NS3 helicase domain or positions 1357 – 1459 of the HCV polyprotein have 
been expressed using synthetic genes and tested by enzyme immunoassay (EIA) 
against a panel of anti-HCV positive sera of patients from diverse geographical set-
tings and infected with different HCV genotypes [4]. HCV NS3 sequences were en-
coded using several physicochemical property scales: hydrophobicity [5], volume [6] 
and polarity [6]; secondary structure information [7, 8]; and the first 3 or 5 eigenvec-
tor components derived by principal component analysis from a collection of 143 
amino-acid properties [6]. Variants were tested against 115 anti-HCV positive serum 
specimens. Of these, 107 serum samples were included in the training data set, as 
eight samples did not bind to any of the synthetic NS3 proteins. The strength of serum 
reaction to the NS3 variants was measured as EIA S/Co values. For ANN training, 
S/Co values were normalized to range from 0 to 1. Also, irrelevant proteins (poly-
glycine and poly-alanine), and randomized sequences with equal amino-acid compo-
sition to NS3 variants were included in the training set to provide the ANN with  
negative examples. 

2.2   ANN Model 

An ANN model capable of predicting the antigenic properties of HCV NS3 proteins 
was developed. The ANN architecture used in this work is the fully connected feed 
forward network consisting of three layers of neurons. The number of input units in 
the input layer was set according to the input vector dimensions (103 to 618 inputs), 
and the number of output units in the output layer was set to 107 (the number of 
serum samples in the training set). The final number of hidden units in the hidden 
layer was set to 159 units based on accuracy of simulations. The learning algorithm 
used to train the ANN was back propagation with momentum [9], and the general-
ized delta rule [10] was used as the cost function for updating the weights for error 
minimization. ANN performance was measured by Leave-one-out cross-validation 
(LOOCV). 

The best overall performance from ANN simulations was observed using the phys-
icochemical scales of normalized hydrophobicity, volume and polarity (accuracy of 
89%). To further validate our ANN model, contribution analysis of individual protein  
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positions to antigenic properties was performed by evaluating the relative weights of 
the connections between the first and hidden layer of the neural network from each 
physicochemical attribute along the sequence strand. Positions associated with large 
relative weights in the ANN were mapped on the HCV NS3 protein structure (PDB: 
1cu1). Mapped residues (total of 25 residues) grouped into three major clusters. Addi-
tional predictions for localization of antigenic regions on the surface of the HCV NS3 
protein were obtained using the CEP server [11, 12] and antigenic prediction server 
[13]. The strong concordance between these 3 clusters and predicted antigenic deter-
minants validates the relevance of associations identified with the ANN model. 

The described ANN model allowed for a rapid in silico testing of a large number of 
HCV NS3 sequences of different genotypes collected from GenBank. Figure 1 shows 
that NS3 proteins of different genotypes demonstrate a broad range in predicted 
breadth of immunoreactivity. HCV NS3 protein variants from genotype 1a/1b were 
all immunoreactive with <65% of serum specimens. The variants from genotype 2 
were all predicted to be broadly immunoreactive (>70% of serum specimens). Sig-
nificant disparity in distribution of antigenic properties among different HCV sub-
genotypes suggests significant functional differences between subgenotypes and 
should be taken into consideration during diagnostic, molecular virological and mo-
lecular epidemiological research. The HCV NS3 proteins derived from subgenotypes 
1c, 2a and 2b are among the most suitable targets for assay development. 

 

Fig. 1. Predicted antigenic reactivity of 138 HCV NS3 sequences with anti-HCV positive sera. 
y axis: number of positive reactions (107 samples); x axis: genotype. 

Due to the labor intensive nature of experimental quantitative evaluation of engi-
neered proteins, the data sets generated by these experiments are frequently limited in 
size. This poses a serious challenge to a reliable mathematical modeling of QSAR. 
The ANN model built for this study is most probably overfitted. However, results 
from the HCV NS3 3-D structure mappings, suggests that the described ANN model 
is completely suitable for guiding research or a focused rational design of antigenic 
targets with improved diagnostically relevant properties through a cyclic process of  
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experimental evaluation of predicted antigens and re-training the model for a more 
accurate representation of QSAR in this specific case of the HCV NS3 conforma-
tional antigenic epitope. 

3   HCV HVR1 Cross-Immunoreactivity 

The ANN model described above allowed for discovering an important functional 
disparity between HCV genotypes and subtypes. This model suggests that some  
subtypes in their entirety are inferior targets for antibody binding. Although a very 
important observation, it relates only to the antibody response against a nonstructural 
protein. HCV nonstructural proteins, however, do not elicit any neutralizing humoral 
responses. A known neutralizing epitope(s) is located at the N-terminus of the HCV 
envelope E2 protein, which due to its significant heterogeneity is known as hypervari-
able region 1 (HVR1). This region contains only 27 aa. Currently, a prevailing hy-
pothesis is that a significant variability of the neutralizing antigenic epitope(s) located 
within HVR1 is the major molecular mechanism responsible for the HCV evasion of 
neutralization by antibodies. Therefore, it is crucial to understand quantitative rela-
tionship between HVR1 structure and immunological properties. Such QSAR model 
can be used to guide designing novel vaccine candidates and to study cross-
immunoreactivity of different HCV strains in the course of molecular epidemiological 
investigation. 

3.1   Dataset 

In our study, 5 different HCV HVR1 variants, with amino-acid identities ranging 
from 37.0% to 59.3%, were engineered into the N-terminus of the hepatitis B virus 
surface antigen (HBsAg). All 5 HVR1-HBsAg recombinant proteins were expressed 
in yeast in the form of virus like particles (VLP). After purification, these VLP’s were 
used to immunize mice in order to obtain anti-HVR1 specific antibody. Sera obtained 
from mice immunized with these proteins were tested against a panel of 172 synthetic 
peptides representing major HCV HVR1 variants. Because of a very weak immunore-
activity of sera against 3 constructs, only data obtained from testing antibodies against 
HC3 and HC5 HVR1-HBsAg VLP’s were used for QSAR modeling. 

3.2   SVM Model 

Support Vector Machine (SVM) was used to identify positions and structural  
parameters that determine anti-HVR1 antibody cross-immunoreactivity. Classification 
analysis was conducted to examine the difference between the broadly cross-
immunoreactive HVR1 peptides and peptides showing limited, if any, cross-
immunoreactivity. The results were used to explore the association between the HVR1 
structural parameters and cross-immunoreactivity. We have identified 2 classes among 
all immunoreactive HVR1 peptides used in this study. Class 1 consists of 74 peptides 
that immunoreacted only with sera from mice immunized with HC3 HVR1-HBsAg 
construct (n=14) or immunoreacted only with sera from mice immunized with HC5  
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HVR1-HBsAg construct (n=60). This class defines differences in immunoresponses to 
HC3 and HC5 HVR1-HBsAg constructs. Class 2 consists of 22 peptides that immuno-
reacted with sera from mice immunized with HC3 and sera from mice immunized with 
HC5 constructs. This class defines shared immunoreactivity or cross-immunoreactivity 
for antibodies obtained against HC3 and HC5 HVR1-HBsAg constructs. Peptides that 
did not immunoreact with any of the sera were not considered. 

To determine the best peptide representation, sequences were scanned using a slid-
ing window of length 5, 7 and 9. For each window hydropathy, isoelectric point [14] 
and flexibility [15]were calculated. Three different hydropathy tables were used for 
the representations as described by Hopp [16], Kyte [17] and Eisenberg [18]. 

SVMlight implementation of SVM with polynomial kernel of degree 2 achieved 
the best classification accuracy when a sequence representation using sliding window 
of size 7 and Hopp’s hydropathy table, isoelectric point and flexibility calculated for 
each window was used. Using this model, we have conducted experiments for selec-
tion of peptide properties. The properties whose removal could have improved the 
classification accuracy were excluded from the data set. When removal of more than 
one property leads to the same improvement of the classification rate, the property to 
be removed was selected randomly from the set of the candidates. It was shown that 
the overall One vs. All accuracy calculated as an average for three runs with property 
selection was 92%, the accuracy for class 1 (HC3 or HC5 specific immunoresponses) 
was 95%, and for class 2 (shared immunoreactivity for HC3 and HC5) was 83%. 
Hydropathy and flexibility were the most important properties for accuracy of the 
classifaction. 

3.3   BN Model 

Using same data set as described above, we have developed also Bayesian Network 
(BN) model for the identification of association between the HCV HVR1 structure 
and cross-immunoreactivity. As for SVM, class 1 and class 2 peptide data were used 
for training BN using the same attributes. 

Deriving the BN classifier consists of two tasks. The first task is to select the BN 
structure (i.e. finding the dependency structure that achieves the highest score). The 
K2 algorithm [19] was implemented for learning causal structure. In order to decrease 
the level of complexity, structural constraints were added to the algorithm so as to 
restrict the number of parents that each node could have to three. In addition, forma-
tion of output links from the class node to any other variables of the network was 
restricted. The second task is parameter estimation, which for a directed graph con-
sisted of specifying the conditional probability tables (CPT) at each node. In this case, 
direct estimates of the conditional probabilities were obtained by maximum likelihood 
estimates. Accuracy of the classification was assessed by 10-fold Cross-Validation 
(CV). 

The best BN classifier based on the 5-bin discretization of the Hopp’s hydropathy, 
isoelectric point, and flexibility parameters calculated for a sliding window of 7 had 
an accuracy of 98%. Subsequent analysis of this BN revealed that hydropathy and 
isoelectric point were the most important attributes for the classification. In fact, a BN 
trained on these 8 attributes had the same correctness of classification as the one 
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trained with all attributes. BN’s trained on the amino-acid nominal representation had 
lower accuracies of prediction of ~75% when trained by position. 

The models using properties of individual amino-acid positions in the HVR1 pep-
tides did not identify strong associations between the properties and cross-
immunoreactivity. Strong associations were only obtained when peptide sequences 
were scanned using a sliding window of variable size for calculating such properties. 
Both SVM and BN modeled the association between structural parameters (calculated 
for a window) and cross-immunoreactivity (as defined by class 1 and 2 of peptide 
immunoreactivity data) with greater than 90% accuracy. It was shown that hydropa-
thy and flexibility contribute most significantly in the association. Thus, physico-
chemical properties of the HCV HVR1 peptides are: (1) strongly associated with the 
specificity of immunoreactivity; and (2) HVR1 cross-immunoreactivity can be pre-
dicted using such properties with high accuracy. Similar models can be used for guid-
ing the design of broadly immunoreactive HVR1 variants and for the identification of 
cross-immunoreactivity of HVR1 derived from different HCV strains in the course of 
molecular epidemiological investigation. 

4   Catalytic Efficiency of HCV NS3/4 Protease Variants 

Analysis of the association between enzymatic activity of viral proteins and variabil-
ity of their primary structure is important for accurate measuring of viral fitness and is 
emerging as a very effective tool in molecular epidemiological investigations. The 
whole area of research is still in its infancy. However, a substantial number of enzy-
matic QSAR models have been developed for HIV protease and polymerase as it 
relates to drug response [20]. There are no such QSAR models for HCV specific en-
zymes and data related to this problem are practically unavailable. 

4.1   Dataset 

Data used for this study was obtained from Franco et al. (2007) [21]. Briefly, experi-
mental analysis of HCV NS3/4 protease activity was conducted among HCV quasis-
pecies identified in 3 HCV-infected individuals (A, B, and C). All 3 HCV strains 
belonged to genotype 1b. Individuals A and B were co-infected with HIV type 1 
(HIV-1), whereas individual C was HCV mono-infected. Blood samples were ob-
tained from three patients. Individuals A and B were treated for 48 weeks with PEG-
Interferon α – 2b in combination with ribavirin. Individual A showed a sustained 
response to therapy, whereas individual B did not respond to therapy. A sample ob-
tained from individual C was collected during acute episode of HCV infection;  
afterward this individual resolved HCV infection. A total of 296 NS3/4 protease qua-
sispecies sequences (180 aa long) were recovered from these 3 HCV-infected pa-
tients. 109 sequences were unique. All 109 HCV NS3/4 quasispecies variants were 
tested for their catalytic efficiency by comparing the growth of  lambda phages con-
taining the HCV NS3/4 protease recognition site coexpressed with HCV NS3/4  
protease variants with the growth of the phage coexpressed with the wild-type master 
protease (I389/NS3-3 protease; 100%). Catalytic activity of each was measured rela-
tive (%) to this master protease. Values ranged from 0% to 200%. 
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4.2   ANN Model 

Sequences were transformed into numerical vectors by representing each amino-acid 
through its physicochemical properties of hydrophobicity [5], polarity [6] and volume 
[6]. Numerical values of the relative catalytic efficiency of protease quasispecies were 
normalized between 0 and 1. This dataset was used for regression or function ap-
proximation modeling. A dataset for classification was generated using a binary rep-
resentation of catalytic efficiency. In this case variants were divided into 2 classes: 
active or non-active, relative to the master protease. Also, irrelevant proteins (poly-
glycine and poly-alanine) and randomized sequences with equal amino-acid composi-
tion to NS3/4 protease variants were included in the training. For evaluation of the 
ANN classifier, a dataset with randomly assigned labels (“active” or “non-active”) to 
the quasispecies variants was used. 

The ANN classifier used in this work was the fully connected feed-forward net-
work consisting of two layers of neurons. The number of input units in the input layer 
was set according to the input vector dimensions (540 inputs; 3 properties x 180 aa 
positions), the hidden layer varied from 0 to 20 hidden neurons and the number of 
output units in the output layer was set to 1 (the number of classes in the training set). 
The ANN was trained by using the back-propagation with momentum [9] as learning 
algorithm and the generalized delta rule [10] as the cost function for updating the 
weights of the connections. For function approximation a fully connected feed-
forward ANN consisting of three layers of neurons (a multiple-layered perceptron or 
MLP) was used. In this case, the hidden layer was varied from 0 to 200 hidden neu-
rons. The ANN was trained to approximate the relative catalytic activity values of 
protease NS3/4 protein variants based on their sequence structure using 90% of the 
data and evaluated with the remaining 10%. 

The ANN built as MLP with function approximation was found un-trainable for 
purposes of developing a regression model relating variants structure with catalytic 
activity by the present encoding scheme. Increasing the complexity of the model 
(number of hidden units from 0 to 200) had no improvement on the error (SSE ≥ 
0.37). However, when we used a classification scheme (binary encoding) we obtained 
a trainable ANN. The best solution on this dataset was achieved with a simple percep-
tron. The accuracy of the linear ANN classifier was 72.3%. Adding hidden neurons 
(up to 20) did not decrease the error (SSE = 0.02). This suggests that the dataset used 
for this study is linearly separable. This has been observed in other protease datasets 
as well (exemplified by the HIV-1 protease cleavage site specificity) [22]. Therefore, 
it may be a misuse of non-linear classifiers to apply them to this problem. The linear 
ANN model is simple and may provide a straightforward way to extract rules that 
regulate the catalytic activity of HCV NS3/4 protease. In the case where variants were 
randomly assigned labels, the accuracy of the ANN model predictions was < 55%. 
The purpose of such randomization was to test if the ANN is learning the structure in 
the patterns of the data, as opposed to learning the structure of random patterns in the 
data. A high prediction accuracy on randomized data would have indicated that the 
ANN was learning to explain noise rather than specific patterns. 

This ANN model is a useful tool for the identification of functionally inactive vari-
ants in the mixture of quasispecies found in individual patients and may help evaluate 
replicative fitness of HCV strains. 
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5   HCV Quasispecies and Viral Load 

A major challenge for molecular epidemiological research is establishing integral 
connections between ever growing complex sets of epidemiological, virological and 
molecular data associated with viral infections. HCV infection presents an especially 
challenging task because of diversity of the genome, many routes of transmission, 
variety of clinical outcomes, worldwide distribution and large human population af-
fected by this infection. Traditional statistical approaches allow for the identification 
of important trends in the data but fail to provide mathematical models capable of 
predicting various features of infections and, therefore, are not suitable for evaluation 
of integral dependence between all features of infections. We have developed a set of 
Bayesian network models that established connections between epidemiological, 
demographic, virological, and molecular features associated with HCV infection [23]. 
In this review we would like to comment on one study that was undertaken to develop 
refined models of HCV-infection in the form of BN specifically targeting dependen-
cies between molecular and virological features in a manner that is both integrative 
and intuitive. 

5.1   Dataset 

The National Health and Nutrition Examination Survey III (NHANES III), conducted 
during 1988–1994, provides estimates of the seroprevalence of specific enteric and 
sexually transmitted diseases from a nationally representative sample in the US popu-
lation by various demographic, socioeconomic and behavioral characteristics 
(http://www.cdc.gov/nchs/about/major/nhanes/nh3data.htm). Serum specimens from 
89 HCV-infected patients identified through NHANES III were used for characteriz-
ing HCV quasispecies (QS) by means of HCV HVR1 sequencing, estimation of HCV 
titer and identification of HCV genotype. The data comprised 1,065 HVR1 sequences 
(each 29 aa long), and associated information consisting of: serum viral titer (VT), 
genotype (GT), and number of QS variants (QSv). 

5.2   BN Model 

All attributes collected from the NHANES III study were discretized. A BN was used 
to learn the structure of the data (conditional independence and dependence between 
features) in an unsupervised fashion. Structure learning was performed using the PC 
algorithm [24]. Learning of the conditional probability distributions was done using 
the EM algorithm [25]. 

The learned BN for our data (figure 2) shows that 20 out 29 HVR1 positions are in-
terdependent and linked to virological variables (VT, GT and QSv). HVR1 positions 
1, 3 and 15 have strong direct links to QSv, positions 8, 25 and 27 to genotype, and 
positions 8 and 9 plus genotype to VT. Independence graphs constructed from the BN 
models show that these variables have strong marginal dependencies. The links be-
tween them had marginal p-values <1E-20. 
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Fig. 2. Parent ordering layout of the BN model showing dependencies between HVR1 structure 
and virological features of HCV-infection 

The predictive value of the relations between HVR1 positions to HCV serum VT, 
QSv and GT, as learned by the BN models, was tested by classification modeling as a 
way to validate the structure of our BN models. Model evaluations were performed by 
10-fold CV. After extensive evaluation of the performance of the BN models, we 
found that based on HVR1 sequence profile alone, BN models were able to predict 
serum VT, QSv and GT with accuracies of 99%, 96%, and 99%, respectively. 

Virological features of HCV infection presented herein were found to be strongly 
dependent to specific HVR1 positions. This QSAR model indicates that strain hetero-
geneity as measured by QSv and viral replication fitness as measured by VT are heri-
table traits which can be identified with a rather satisfactory accuracy using a single 
short region of the HCV genome. The interesting fact is that host factors were not 
taken into account. It seems that the HCV genome itself plays a leading role in defin-
ing QSv and VT. Such virological parameter as VT should have a strong effect on 
HCV transmission rate. Thus, the BN model suggests that different HCV strains have 
different propensity for transmission.  QSv is one of important parameters that can 
affect HCV evolvability since it defines the size of sequence space occupied by a 
strain. Thus, evolutionary potential of a strain may be quantitatively estimated using 
QSAR models similar to described in this paper.  It is conceivable that the accuracy of 
this model can be improved by including parameters defining epidemiologic settings 
such as host gender, age and race, host genetics and immunological competence, 
length of infection and mode of transmission. 

6   Conclusion 

Quantitative modeling of various aspects of viral infections is at the core of integra-
tive molecular epidemiology. Unfortunately, there are not many examples of such 
modeling in viral molecular epidemiological research. The HIV research field offers a 
few extraordinary interesting models developed for evaluation of drug resistance  
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[20, 26], coreceptor usage [27-29] and replication fitness [30, 31] of different HIV 
sequence variants. In the field of HCV research, a few available papers describe 
QSAR modeling focused on virological responses to interferon treatment [32, 33]. In 
the present paper, we briefly reviewed HCV models developed in our laboratory for 
molecular epidemiological investigations. These models range from measuring enzy-
matic activity and immunoresponses against different HCV proteins to evaluation of 
virological parameters. Although the work on the HCV quantitative modeling is only 
at its very beginning, we believe that this field offers an exciting opportunity for com-
putational research. 
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Abstract. The cell defense mechanism of RNA interference has applica-
tions in gene function analysis and human disease therapy. To effectively
silence a target gene, it is desirable to select the initiator siRNA molecules
having satisfactory silencing capabilities. Computational prediction for
silencing efficacy of siRNAs can assist this screening process before using
them in biological experiments. String kernel functions, which operate
directly on the string objects representing siRNAs and target mRNAs,
have been applied to support vector regression for the prediction and im-
proved accuracy over numerical kernels in multidimensional vector spaces
constructed from descriptors of siRNA design rules. To fully utilize in-
formation provided by string and numerical kernels, we propose to unify
the two in the kernel feature space by devising a multiple kernel regres-
sion framework where a linear combination of the kernels are used. We
formulate the multiple kernel learning into a quadratically constrained
quadratic programming (QCQP) problem, which although yields global
optimal solution, is computationally inefficient and requires a commercial
solver package. We further propose three heuristics based on the principle
of kernel–target alignment and predictive accuracy. Empirical results on
real biological data demonstrate that multiple kernel regression can im-
prove accuracy and decrease model complexity by reducing the number
of support vectors. In addition, multiple kernel regression gives insights
into the kernel combination, which, for siRNA efficacy prediction, eval-
uates the relative significance of the design rules.

1 Introduction

RNA interference (RNAi) is a cell defense mechanism that represses the expres-
sion of viral genes by recognizing and destroying their mRNAs, preventing them
from being translated into proteins. The gene knockdown in RNAi is induced
by short interfering RNA (siRNA) of ∼21 nucleotides (nt) long, processed from
a double stranded RNA (dsRNA) by the enzyme Dicer, or transfected directly.
Target mRNA transcripts that are hybridized with the siRNA are destroyed by
the RNA-induced silencing complex (RISC) [1], as shown in Figure 1. RNAi has
widespread applications in biology and great potentials in disease therapy [2].
Although a dsRNA of a few hundred nucleotides long is introduced into plants
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Fig. 1. The RNAi mechanism. (1) A dsRNA is introduced to initiate RNAi; (2) Dicer
cleaves the dsRNA into siRNAs; (3) RISC takes up the guide strand; (4) RISC–siRNA
complex recognizes the target; (5) The target mRNA is degraded by RISC.

and insects to initiate RNAi, dsRNAs longer than ∼50 bp activate the interferon
(IFN) pathway in mammalian cells [3]. Therefore, siRNA molecules are directly
transfected in mammals to achieve specific gene knockdown. Due to therapeuti-
cal applications, siRNA silencing efficacy becomes the focus of many biological
and computational research [4].

One goal of a gene knockdown is to maximally silence the target gene. Unfor-
tunately, if not carefully selected, an siRNA may lead to unsatisfactory or even
unobservable target degradation, since siRNAs targeting different sites on the
same mRNA have widely differing effectiveness and more than 70% of arbitrary
siRNAs are not functional [5]. Therefore, it is crucial to predict the silencing
efficacy, which is defined as the percentage of mRNA knockdown caused by an
siRNA sequence, before using it in biological and therapeutical experiments. In
this work, we develop a multiple kernel support vector learning model and apply
it to the silencing efficacy prediction problem.

siRNA design rules characterizing structural and thermodynamic properties
of the sequences have been proposed in the form of multidimensional numerical
descriptors[5,6,7,8,9,10], which lead to input spaces for learning models [11,12].
Vector spaces can also be constructed using nucleic motifs [9] and subsequence
patterns [13,14]. Sparse encoding are often used to represent the sequences in a
vector space [9,15]. Using a threshold on the efficacy, 75% for example, an siRNA
can be categorized into two classes: functional, if its efficacy is at least 75%, and
non-functional otherwise. Then classification algorithms, such as SVM [11,13,14],
decision tree [8], and neural network [10], can be applied. If an SVM is trained in a
vector space, we call the kernel function (e.g Gaussian kernel) a numerical kernel
as distinguished from a string kernel that operates directly on string objects.
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To more accurately predict the efficacy than classification, regression methods
have been used. Huesken et al. employed a neural network and reported predic-
tion correlation coefficient, but error rates were not shown [9]. Moreover, neural
networks are trained by gradient search, which depends on initial values and does
not guarantee global optimality. Vert et al. used a regularized linear regression
to predict the efficacy and selected significant subsequences [15]. However, this
work only used linear models and did not exploit nonlinearity. Since a support
vector machine employs structural risk minimization and its convex program-
ming leads to global optimization, it has better generalization capabilities than
other learning models[16]. Qiu and Lane constructed multidimensional vector
spaces from descriptors of siRNA design rules to employ numerical kernels in
support vector regression and achieved significant accuracies in the efficacy pre-
diction [12,17]. They also developed and applied string kernels to the prediction
and achieved higher accuracies than the numerical kernels [18,19,12,17].

Since the similarities measured by a string kernel and a numerical kernel from
rule descriptors model different aspects of the siRNA samples, they contain dif-
ferent information and may even compliment each other. Conceivably, learning
model can be improved by utilizing information from both the string and the
descriptors. However, the siRNAs are presented as strings, and the descriptors,
vectors in an Euclidean space. There is not a direct way to combine these two
types of data. We propose a multiple kernel regression framework to unify the
information in the kernel feature space, where a linear combination of string and
numerical kernels are used. Multiple kernel SVM classification has been studied
by Lanckriet et al. [20]. Since regression is generally more complicated than clas-
sification and support vector regression has a more complex formulation than its
classification counterpart, a multiple kernel regression model must be developed
separately. Previously, we have formulated the multiple kernel learning into a
quadratically constrained quadratic programming (QCQP) problem [21]. Em-
pirical results demonstrated that multiple kernel regression improved prediction
performance and simplified model complexity by reducing the number of sup-
port vectors. Although the QCQP formulation yields global optimal solution, it
is computationally inefficient and requires a commercial solver. In this work, we
propose heuristics for multiple kernel learning to simplify computation.

We measure the fitness between a kernel and target labels to develop our
heuristics. One of our heuristic is developed from kernel–target alignment, which
was proposed for single kernel classification [22]. We derive the other two heuris-
tics from predictive accuracy. Tests on four biological data sets demonstrate
that multiple kernel regression improves predictive accuracy. Furthermore, it
gives insights into the kernel combination, which provides an additional benefit
of comparing the relative significance of the design rules.

2 Multiple Kernel Support Vector Regression

We summarize the support vector regression and present the multiple kernel
support vector regression formulation.
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Suppose we are given a set {(x1, z1), (x2, z2), ..., (xl, zl)} of l training examples,
where xi (1 ≤ i ≤ l) is a data point in an input space X , zi ∈ R is its target
label. For siRNA sequences, X is a space of strings, and zi ∈ [0, 1] is the silencing
efficacy. For siRNA design rules, X is an Euclidean space. We want to learn a
regression function

f(x) = ωTφ(x) + β, (1)

that can best predict the label of an unseen data point x, where ω is a weight in
the kernel feature space, φ(x), the kernel feature map of x, and β, a threshold
constant.

f can be solved through the following dual optimization problem [16].

max
α+,α−

− 1
2
(α+ − α−)TK(α+ − α−)− ε

l∑

i=1

(α+
i + α−

i ) +
l∑

i=1

zi(α+
i − α−

i ) (2)

s.t.
∑l

i=1(α
+
i − α−

i ) = 0

α+
i , α−

i ∈ [0, C] i = 1, ..., l

where α+ = {α+
1 , ..., α+

l }
T and α− = {α−

1 , ..., α−
l }

T are dual variables, and K ∈
R

l×l is a kernel matrix evaluated from a kernel function k(., .) : X ×X → R with
Kij = k(xi, xj) [23]. Parameter C adjusts the tradeoff between the regression
error and the regularization on f . Solving α+, α−, and β using KKT (Kurash-
Kuhn-Tucker) conditions applied to (2), the regression function of (1) becomes

f(x) =
∑l

i=1(α
+
i − α−

i )k(x, xi) + β, (3)

where f(x) depends only on training examples having nonzero coefficients (sup-
port vectors) through the representation of the kernel function k. In the regres-
sion function in (3), k is usually a single kernel function. Since a combination of
kernels with nonnegative coefficients yields a legitimate kernel, we can combine
them into one kernel.

Suppose we have a set K of kernel matrices, each of which is a linear com-
bination of g kernel matrices generated from different kernels or the same type
of kernel with different parameters. We want to learn the best combination, in
addition to learning the coefficients α+ and α− in (3). Since kernel matrices of
strong diagonal dominance overfit data and decrease generalization capability
[24], we impose a constraint on the trace of the kernel matrices. Therefore,

K = {K|K =
∑g

j=1 μjKj, Kj � 0, μj ≥ 0, trace(K) = d}, (4)

where� denotes positive semidefiniteness, and d is some positive constant. Thus,
the multiple kernel regression can be written as,

f(x) =
∑l

i=1(α
+
i − α−

i )
∑g

j=1μjkj(xi, x) + β. (5)
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To proceed, we define γ = α+−α− ∈ R
l and η = α+ +α− ∈ R

l. Let e denote
the vector of all ones, and z = {z1, ...zl}T ∈ R

l, the target labels. The multiple
kernel support vector regression can be formulated as

min
γ,η,θj,v,s,tj

v − 2zTγ + 2εeTη (6)

s.t. u = 1
at1 − s = 0

eTγ = 0
− C ≤ γ ≤ C

0 ≤ η ≤ 2C

tj − t1 = 0, 2 ≤ j ≤ m

2vu ≥ s2

Hj
Tγ − θj = 0, j = 1, ..., m

tj ≥
√

θj
Tθj , j = 1, ..., m

where a =
√

2d/trace(Kj) when each Kj is normalized and has trace l, and
HjHj

T = Kj [21]. 2vu ≥ s2 is a rotated conic constraint, and the last two
constraints yields t2j ≥ γTKjγ, a conic constraint, resulting in a QCQP problem.
Using an interior point solver, μj can be derived from the dual variable solution
of the conic constraints. Additionally, a component kernel corresponding to a
larger μj is more significant in characterizing the data.

It was demonstrated previously that the benefit of multiple kernel regression
included accuracy increase and support vector reduction [21]. For example, a
three-kernel support vector regressor reduced mean squared error (MSE) by
27.7% using 57% fewer support vectors, compared with a single kernel regressor,
on the Boston housing data set [25].

Since solving (6) requires O(gl3) time, the training process can sometimes be
slow, especially when the kernel matrices are dense. Instead of using the QCQP
formulation, we develop easier heuristics for speedup.

3 Heuristics for Multiple Kernel Learning

Since the best prediction accuracy is generated by a best kernel combination, we
quantify a fitness between a kernel and target labels to develop our heuristics.

The alignment F (Kj, z) between a kernel matrix Kj and a label set z is
defined as [22]

F (Kj , z) = 〈Kj , zzT〉F /
√
〈Kj , Kj〉F 〈zzT, zzT〉F , (7)

where 〈., .〉F is the Frobenius inner product, i.e. 〈A, B〉F =
∑l

i=1

∑l
j=1 aijbij for

matrices A = (aij) ∈ R
l×l and B = (bij) ∈ R

l×l. Intuitively, F (Kj , z) computes a
similarity between two matrices similarly to a normalized inner product between
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two vectors. If a kernel matrix Kj has a larger alignment to z, it should contribute
a larger proportion to the combined kernel. This intuition leads to the following
heuristic, which we call the F -heuristic for simplicity

μj = F (Kj , z)/
∑g

j=1 F (Kj , z). (8)

Additionally, a kernel generating a larger Pearson correlation coefficient R
between the predicted labels and the true labels should contribute more to the
combined kernel. Let Rj be the R generated by the regressor using kernel matrix
Kj. Then, our heuristic based on R, which we call the R-heuristic, is

μj = Rj/
∑g

j=1 Rj . (9)

Finally, a kernel producing a smaller MSE error should contribute more to
the combined kernel. Let Mj be the MSE error generated by the regressor using
kernel matrix Kj. Our heuristic based on MSE (the M -heuristic) is

μj =
∑g

i=1 Mi −Mj
∑g

j=1(
∑g

i=1 Mi −Mj)
=

∑g
i=1 Mi −Mj

(g − 1)
∑g

i=1 Mi
, (10)

where
∑g

i=1 Mi is the total MSE error of all kernels, and
∑g

i=1 Mi −Mj rep-
resents the contribution of Kj. For comparison of the kernel contributions, we
normalize, i.e.,

∑g
j=1 μj = 1. These heuristics may not always yield global opti-

mal solutions, but they improve prediction accuracy.

4 String Kernels and Numerical Kernels

Since we combine the RNA and the randomized string kernels (previously shown
the best) with numerical kernels, we describe these kernels briefly.

The randomized string kernel. The randomized string kernel (RSK) re-
peatedly extracts random subsequences of length q from the input string and
evaluates a similarity based on the subsequences [12]. At the ith repetition, it
generates an index set Ii

q = {ji
1, j

i
2, ..., j

i
q}, where ji

t , 1 ≤ t ≤ q, are uniformly
and uniquely drawn at random from {1, 2, ..., p}. The feature map of a string
s = {s[1], s[2], ..., s[p]} ∈ Ap is the subsequence formed by concatenating the
randomly chosen q characters,

φq,i(s) = {s[ji
1], s[j

i
2], ..., s[j

i
q]}. (11)

A total of V repetitions generates a set of index sets Iq = {I1
q , I2

q , ..., IV
q }, yielding

the feature map Φq(s) = {φq,1(s), φq,2(s), ..., φq,V (s)}. RSK is defined as

krsk
q (s1, s2) = exp{−γ

∑V
i=1 dH(φq,i(s1), φq,i(s2))} (12)

where γ > 0 is a width parameter, and dH(., .) is the Hamming distance. Due to
γ, the exponent can also be viewed as the average Hamming distance.
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The RNA string kernel. The RNA string kernel (RNK) simulates RNA hy-
bridization and is defined through the notion of similarity neighborhood [19]. For
s ∈ Ap, its mismatch neighborhood, Nmis

m,r (s), is defined as all length-p strings δ
that differ from s by at most m contiguous mismatches starting at position r in
s. Only contiguous mismatches are implemented (with G-U wobbles and bulges
ignored), since they are frequently observed in biological experiments. The mis-
match feature map of s is defined as Φmis

m,r(s) = {φδ(s)}δ∈Ap , where φδ(s) = 1 if
δ ∈ Nmis

m,r (s), and φδ(s) = 0, otherwise.
For an m nt long contiguous mismatch starting at position r, the mismatched

indices are Im,r = {r, r + 1, ..., r + m − 1}, whose characters are not compared
by the kernel. The substring indices that the kernel compares are in Jm,r =
{1, 2, ..., p}\Im,r. We use Jm,r[i] to denote the ith element in Jm,r, 1 ≤ i ≤ |Jm,r|.
For each mismatch position r, s is mapped into a space of Ap−m by the following
feature map, φJm,r (s) = {s[Jm,r[1]], s[Jm,r[2]], ..., s[Jm,r[p−m]]}.

Then the feature space induced by the mismatch kernel is spanned by all
mismatch positions, 1 ≤ r ≤ p−m + 1,

Φm(s) = {φJm,1(s), φJm,2 (s), ..., φJm,p−m+1(s)}.

We compute the kernel function between two input strings s1 and s2 as

krnk
m (s1, s2)=〈Φm(s1), Φm(s2)〉=

p−m+1∑

r=1

〈φI(m,r)(s1), φI(m,r)(s2)〉c =
p−m+1∑

r=1

〈s̃1, s̃2〉c,

where s̃1 = φJm,r (s1) and s̃2 = φJm,r (s2) are the maps of s1 and s2. And
we compute 〈., .〉c by counting the number of common characters, 〈s̃1, s̃2〉c =∑p−m

i=1 I(s̃1[i] == s̃2[i]), where I(.) is an indicator function. Thus,

krnk
m (s1, s2) =

∑p−m+1
r=1

∑p−m
i=1 I(s̃1[i] == s̃2[i]), (13)

which is normalized as k̂rnk
m (s1, s2) = krnk

m (s1, s2)/
√

krnk
m (s1, s1)krnk

m (s2, s2).

Table 1. Summary of siRNA design rules and their encoding

Rule Nunber of criterion Vector space dimension Reference

Ui-Tei 4 8 [7]
Amarzguioui 6 9 [5]

Reynolds 8 16 [6]
Jagla (first group) 4 8 [8]
Huesken’s motifs 78 78 [9]

Numerical kernels from siRNA design rules. We found that in all cases,
the Gaussian kernel performed the best. We therefore only need to construct
the vector spaces using the siRNA design rules. For most rules, we use sparse
encoding to map each siRNA sequence into a vector space. For example, the
first condition of Ui-Tei’s rule requires the existence of an A/U residue at the 5’
end of the antisense strand. Using two binary attributes, if that position is an A
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or U base, we generate a pair of (1, 0) for this criterion. Otherwise, a (0, 1). A
summary is displayed in Table 1, while details omitted for space [5,6,7,8,9,17].

5 Empirical Evaluations

We first summarize the data sets. The 73 siRNA sequences targeting firefly
luciferase gene and human cyclophilin B mRNA were originally used to develop
Reynolds’ rule [6]. We use 70 samples from this data source and call it the KR
data set. Sætrom et al. collected 560 data points for training their SVM classifiers
[11]. A small number of this data set may overlap with the KR data set. We call
this data set SA data set. Jagla et al. tested their decision tree algorithm on 600
data points [8]. We call this data set JA data set. Huesken et al. studied more
than 2400 siRNAs targeting 34 human and rodent mRNAs [9]. We call this 2400
siRNAs HU data set. Each data point in the data sets contains a 19-mer siRNA
sequence and its corresponding efficacy score.

To use the heuristics for multiple kernel regression, we first test accuracies of
single kernel regressions using numerical kernels according to the efficacy rules,
the RNA and the RSK string kernels. We next combine the kernels using the
weights generated by our F -heuristic, R-heuristic, and M -heuristic introduced
in Section 3. We report accuracies of 10 fold cross validations on each data set.

Figure 2 (I) shows the results of multiple kernel regressionusing the F -heuristic.
Increase in correlation coefficients is listed in Table 2. The average correlation coef-
ficient (averaged over all data sets and all rules) using numerical kernels was 0.469.
In contrast, the average R using numerical kernels combined with the RNA ker-
nels was 0.538, representing a 14.7% increase over single-numerical kernels. On the
other hand, the average R using numerical kernels combined with the RSK ker-
nels was 0.535, representing a 14.1% increase. These increases were statistically
significant, with p-values of 0.003 and 0.007, respectively. We also noticed that the
standard deviations decreased when combined kernels were used. This increase in
R demonstrates that combining the numerical kernel generated from an efficacy
rule and an RNA string kernel or an RSK kernel using kernel alignment as weight,
significantly improved prediction accuracy over using the numerical kernel alone.
Meanwhile using combined kernels also yielded better accuracies than using the
RSK kernel alone, although RSK performed the best among the string kernels.

In addition, results show that using combined kernels reduced the MSE er-
ror. The average MSE on all data sets using the numerical kernels was 0.0671,
whereas it was 0.0614 using numerical kernels combined with the RNA string
kernels, representing a decrease of 8.5%. The average MSE was 0.0622 using
rule based numerical kernels combined with the RSK kernel, a decrease of 7.3%.
Meanwhile, numerical kernels combined with string kernels decreased MSE er-
rors over using RNA and RSK string kernels alone. The improvements on MSE
errors are not shown in detail.

Using the R-heuristic, the average R using numerical kernels combined with
the RNA kernels was 0.537, a 14.7% increase over single-numerical kernels, as
shown in Figure 2 (II) and Table 2. Additionally, the average R on all data
sets using numerical kernels combined with the RSK kernels was 0.533, a 13.9%
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(I) F -heuristic.

(II) R-heuristic.

(III) M -heuristic.

Fig. 2. Comparison of average R over the data sets of single kernel (blank bar) and
multiple kernel (filled bar) regression. Vertical line represents standard deviation; “A,
C”, R of numerical kernel of rules; “E, G”, RSK kernel; “B, F”, numerical kernel
combined with RNA kernel; “D, H”, numerical kernel combined with RSK kernel.

increase. These increases were statistically significant, with p-values of 0.003
and 0.01, respectively. Meanwhile using combined kernels also yielded better
accuracies than using the RSK kernel alone. Furthermore, results show that
using combined kernels reduced the MSE and standard deviations.

Using the M -heuristic, the average R using numerical kernels combined with
RNK was 0.538, achieving a 14.7% increase over single kernel regressions (Fig-
ure 2 (I) and Table 2). Also, the average R using numerical kernels combined with
RSK was 0.530, a 13.0% increase. These increases were statistically significant,
with p-values of 0.002 and 0.013 respectively. Furthermore, using combined ker-
nels also yielded better accuracies than using the RSK alone. Finally, combined
kernels reduced the MSE error and standard deviations.

Which design rule is better? When performing multikernel regression using
the heuristics, μ1 represents the contributions of the numerical kernels corre-
sponding to the design rules, and μ2, string kernels. We rank the rules according
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Table 2. Percentage increase of R by multiple kernel regression. “A–H” indicate types
of kernel as explained in Figure 2. “p” denotes t-test p-value.

Single vs. multiple kernel F -heuristic R-heuristic M -heuristic

Rules(A) vs. Rules+RNA(B) 14.7% (p: 0.003) 14.7% (p: 0.003) 14.7% (p: 0.002)
Rules(C) vs. Rules+RSK(D) 14.1% (p: 0.007) 13.9% (p: 0.01) 13.0% (p: 0.013)
RSK(E) vs. Rules+RNA(F) 4.7% 4.5% 4.7%
RSK(G) vs. Rules+RSK(H) 4.1% 3.7% 3.1%

Average 9.4% 9.2% 8.9%

Table 3. Comparison of design rule contributions

µ1

F -heuristic R-heuristic M -heuristic µ1 Order

Amarzguioui 0.4970 0.4834 0.5163 0.4988 2
Huesken 0.5001 0.5075 0.5124 0.5067 1
Jagla 0.4984 0.4733 0.4914 0.4877 3
Reynolds 0.4994 0.4003 0.4591 0.4529 5
Ui-Tei 0.4909 0.4684 0.4855 0.4816 4

to μ1, average of μ1 (over heuristics), which is the average of μ1 over data sets
(Table 3). This ranking suggests that Huesken’s motif is most significant, fol-
lowed by Amarzguioui’s rule, Jagla’s first rule, Ui-Tei’s rule, and Reynolds’ rule.

6 Summary and Discussion

The siRNA molecules are intrinsically sequences, which are natively represented
as strings. The design rules, on the other hand, extract numerical descriptors
from the sequences. Previously, we demonstrated that string kernels achieved
better prediction accuracies than design rules. To further improve prediction
performance, we proposed to use multiple kernel support vector regression by
combining the numerical kernels and the string kernels. Our QCQP formula-
tion achieved optimal solutions and achieved better accuracies. But it is slow
in training. For computational efficiency, we introduced three heuristics. In a
typical case, the heuristic using kernel alignment as weights was more than 200
times faster than the QCQP formulation [21]. We experimented our heuristic
framework on the siRNA efficacy data sets.

We found combining numerical kernels computed from efficacy rules and string
kernels significantly increased prediction performances over using the numerical
kernels alone. Using the heuristics, the improvements on the correlation coeffi-
cient were around 14% over the numerical kernels. Based on the performance
enhancement, we found that the heuristics based on kernel alignment and on
correlation coefficient gave rise to best combining weights.

According to the contribution to the combined kernel made by a numerical
kernel generated by an efficacy design rule, we found that the best two rules



Multiple Kernel Support Vector Regression for siRNA Efficacy Prediction 377

are Huesken’s motifs and Amarzguioui’s rule. Huesken’s motifs are based on
statistically significant single nucleotide motifs corresponding to efficient and
inefficient siRNA sequences, and cover a wide range of important occurrences.
Amarzguioui’s rule also covers many descriptions for siRNA sequences. This rule
comparison can help RNAi designers select the appropriate rules.

Although combined kernels improve prediction accuracy over single kernels,
the improvements depend on which kernels are combined. Rules that performed
well, such as Huesken’s motifs and Amarzguioui’s rule, already captured cru-
cial properties in the sequences. Combining their numerical kernels with string
kernels did not improve performance as drastically as combining less well per-
formed rules. For example, a Gaussian kernel using Amarzguioui’s rule yielded
an average (over the four data sets) R of 0.497. An average R of 0.537 was ob-
tained by combining it with RNK using the F -heuristic, and an average R of
0.518, when combined with RSK. These two improvements only increased the
correlation coefficients by 8% and 4%, respectively. In contrast, Reynolds’ rule,
which did not perform so well alone, improved performance dramatically when
combined with a string kernel. For instance, a Gaussian kernel on Reynolds’ rule
yielded an average R of 0.354. And combining it with RNA and RSK yielded
average R of 0.529 and 0.526, increasing R by 47% and 46%, respectively, much
higher than those gained by combining Amarzguioui’s rule.

We believe the multikernel framework is applicable to other applications where
data have heterogeneous components. One example is disease diagnosis, where
microarray, clinical, and SNP data are available yet different. The kernel combi-
nation coefficients are easy to compute and may possibly increase the diagnostic
accuracy.
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Abstract. Using a large national health database, we propose an enhanced SVM-
based model called Hierarchical Clustering Support Vector Machine (HCSVM) 
that utilizes multiple levels of clusters to classify patients diagnosed with type-2 
diabetes. Multiple HCSVMs are trained for clusters at different levels of the hi-
erarchy. Some clusters at certain levels of the hierarchy capture more separable 
sample spaces than the others. As a result, HCSVMs at different levels may de-
velop different classification capabilities. Since the locations of the superior 
SVMs are data dependent, the HCSVM model in this study takes advantage of 
an adaptive strategy to select the most suitable HCSVM for classifying the test-
ing samples. This model solves the large data set problem inherent with the tradi-
tional single SVM model because the entire data set is partitioned into smaller 
and more homogenous clusters. Other approaches also use clustering and multi-
ple SVM to solve the problem of large datasets. These approaches typical em-
ployed only one level of clusters. However, a single level of clusters may not 
provide an optimal partition of the sample space for SVM trainings. On the con-
trary, HCSVMs utilize multiple partitions available in a multilevel tree to capture 
a more separable sample space for SVM trainings. Compared with the traditional 
single SVM model and one-level multiple SVMs model, the HCSVM Model 
markedly improves the accuracy for classifying testing samples. 

Keywords: Hierarchical Clustering, Support Vector Machines, Classification, 
Clustering Algorithm, Type-2 Diabetes. 

1   Introduction 

1.1   Motivations 

The rapid rate of increase in people diagnosed with diabetes warrants immediate at-
tention of policy makers and health care providers alike. According to the American 
                                                           
* Corresponding author. 



380 W. Zhong et al. 

Diabetes Association, an estimated 15 million Americans (more than 1 out of 20) 
have been diagnosed with diabetes. As the fifth leading cause of death, diabetes has 
its greatest effects on the elderly and certain racial/ethnic groups and is a major con-
tributor to the escalating costs of health care that increased from about $8 billion in 
1992 to $132 billion in 2002 [12].  

Classification of patients diagnosed with type-2 diabetes based on the length of 
hospital stay is an important aspect of public health policy. Good understanding about 
how the length of stay is related to patient and hospital profiles will provide relevant 
clinical knowledge for clinicians and health policy experts to identify, evaluate, and 
subsequently predict the predominant variables that affect length of stay [7].  

Current strategies to address problems in health care are based on small and local-
ized data sets. Typically, only local benchmarks are used in these models [4], reduc-
ing their applicability to the larger and more general population. In contrast, this study 
utilizes The Healthcare Cost & Utilization Project (HCUP-3) databases which are the 
largest and most robust U.S. inpatient databases. Classification of patients diagnosed 
with type-2 diabetes based on the length of stay from national databases can provide 
important information for making effective healthcare policies at national, state, and 
local levels. If patients stay in a hospital more than nine days (the sample median), 
these patients are classified as “negative”; otherwise, these patients are classified as 
“positive”.  

Traditional approaches based on Support Vector Machines (SVMs) [14] are used 
to solve similar classification problems as in this study. SVMs are based on the idea 
of mapping data points to a high dimensional feature space where a separating hyper-
plane can be found. SVMs search the optimal separating hyper-plane by solving a 
convex quadratic programming (QP) problem. The typical running time for a convex 
quadratic programming problem is Ω(n3) for a training set with n samples. Convex 
quadratic programming problems are NP-complete in the worst case [15]. Therefore, 
a single SVM are not favorable for large datasets having complex distribution patterns 
[5]. For example, it took several weeks to train SVMs on our dataset containing thirty 
thousand records. SVMs also show difficulties in reaching convergence during the 
training process for datasets with complex distribution patterns. 

1.2   Previous Work 

Many algorithms and implementation techniques have been developed to enhance 
SVMs in order to increase their training performance on large data sets that have 
complex distribution patterns. The most well-known techniques include chunking 
[11], Osuna’s decomposition method [8], and Sequential Minimal Optimization 
(SMO) [10]. The success of these methods depends on dividing the original Quadratic 
Programming (QP) problem into a series of smaller computational sub-problems. 
Although these algorithms accelerate the training process, they do not scale well with 
the size of the training data.  

Another class of SVM enhancing algorithms tries to speed up the training process 
by providing SVMs with high quality training data. For example, data points such as 
the support vectors are more important to determine the optimal solution [1]. Random 
Selection [1][3], Bagging [13], and clustering analysis [2][6][17] are representatives 
of these algorithms. Although these algorithms are highly scalable for large datasets 
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with shorter training time, the accuracy of the trainings still depends greatly on the 
selection of training samples.  

More recently, several one-level multiple SVM approaches are proposed to deal 
with trainings on large datasets [19]. One of approaches is called Clustering Support 
Vector Machines (CSVMs) in which the whole data set is partitioned into multiple 
clusters using a clustering algorithm. Then, individual CSVMs are trained for each of 
the clusters. Finally, during the testing phase, the clustering algorithm chooses one of 
the CSVMs to classify a testing sample. CSVMs use the capabilities of only one level 
of SVMs based on arbitrary partitions of data. Some SVMs trained on clusters ob-
tained from poor partitions may develop poor classification capabilities. As a result, 
the classification capability of the CSVM model is not optimized. 

1.3   New Approach 

To further enhance the performance of one-level CSVMs, we propose a new compu-
tational model called Hierarchical Clustering Support Vector Machines (HCSVMs) 
that utilizes multiple levels of SVMs in a clustering tree. Using the hierarchical clus-
tering technique, the whole dataset is first partitioned into multiple clusters at multiple 
levels of a tree-structure. This tree-structure represents multiple levels of partitions 
with widely different sizes, shapes, and densities. Each level of partitions can capture 
different data distribution patterns for a particular subspace of the data. In the second 
step, SVMs are built on clusters at each level so that they can perform classifications 
in different sample subspaces. Some partitions at some levels in the tree may provide 
more separable sample subspaces that enhance SVM trainings for certain sub-
problems. However, some partitions in the tree may not be as effective in capturing 
the right subspaces. One of the SVMs in the tree is most suitable for classifying test-
ing samples of a given subspace. Such a SVM is found by adaptively searching 
through the tree. In this paper, we demonstrate the multi-level HCSVM approach has 
a superior classification performance as compared to the traditional single SVM 
model and the one-level CSVM model. 

Our paper is organized as follows. In Section 2, background and details of two-
class Support Vector Machines, Clustering Support Vector Machines, and Hierarchi-
cal Clustering Support Vector Machines are explained. In Section 3, the training data 
set and the testing data set are discussed. Experimental results and analysis are exam-
ined. Conclusions are presented in the last section. 

2   Method 

2.1   Support Vector Machines (SVMs)  

The SVM is a promising computing model for solving classification and regression 
problems, based on convex Quadratic Programming [14]. Since SVMs are not favor-
able for a large dataset training with complex distribution patterns [5], One-level 
Clustering Support Vector Machines were proposed to enhance SVM training effi-
ciency for large datasets [19].  
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2.2   One-Level Clustering Support Vector Machines (CSVMs)  

In the one-level CSVM based approach, the training dataset is first divided into mul-
tiple clusters. A SVM is trained for each of the clusters to model the nonlinear rela-
tionships between the procedural and diagnostic profiles and the length of stay for 
Type-2 diabetes patients. Each SVM can focus on learning the distribution pattern of 
one homogenous cluster for effective knowledge discovery.  

After the SVMs are trained, a new testing sample is assigned to a cluster based on the 
minimum sample-cluster distance defined below as the average distance between that 
sample and each sample in a given cluster. All samples in this study are encoded as 
binary vectors. The sample-cluster distance between a sample x and a given cluster is: 
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where Ci is the cluster i, x is the given data sample, q is one of the samples in Ci, ni is 
the number of samples in cluster Ci, and ),( qxdist  is the distance between sample x 

and sample q. Since all features of sample x and sample q are coded as binary num-
bers, ),( qxdist is formulated as: 
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where Match11 is the number of features where sample x is 1 and sample q is 1, 
Match01 is the number of features where sample x is 0 and sample q is 1 and match10 
is the number of features where sample x is 1 and sample q is 0 [9]. Hence, the func-
tion for assigning a testing sample x to a selected cluster Cj is formulated as: 
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The SVM classification function for the selected cluster Cj to classify the samples x is 
formulated as: 
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where sv is the number of support vectors and ( )ijsvm xxK ,_
 is the kernel function 

from svm_j trained for cluster Cj.  
Although Clustering Support Vector Machines have produced some promising re-

sults [19], they focus on only one level of clusters produced by an arbitrary partition-
ing process in which the cluster sizes and cluster level are determined arbitrarily. As a 
result, some clusters may hinder SVM trainings because samples in these clusters 
could be non-separable. In the following section, we propose an enhanced SVM-
based model called Hierarchical Clustering Support Vector Machine (HCSVM) that 
utilizes multiple levels of clusters to represent different abstractions of data. The ad-
vantage of multi-level clusters is that some clusters at the lower levels provide more 
suitable sample subspaces for SVM training than clusters at the upper levels and vice  
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versa. As a result the clusters in the lower levels and upper levels of the tree structure 
may produce SVMs with different classification capabilities. Consequently, the most 
suitable SVM is selected from the group of SVMs to generate the best classification 
response for a given sample as described in the following sections.  

2.3   Hierarchical Clustering Support Vector Machines (HCSVMs)  

In the first step of building the HCSVMs model, a large dataset is partitioned into 
multi-level clusters in a tree-structure using agglomerative hierarchical clustering 
techniques [9]. Second, a HCSVM is trained for each of the clusters. Finally, the 
HCSVMs at multiple levels work cooperatively to classify the samples. 

2.3.1   Data Partitioning Using Hierarchical Clustering       
In the first step of the agglomerative hierarchical clustering technique, each sample is 
considered as an individual cluster. At each step, the closest pair of clusters with the 
shortest distance defined by equation 5 is merged to form a bigger cluster. The proc-
ess is repeated until the distance between two nearest clusters exceeds a specified 
threshold. The average distance between two clusters Ci and Cj, dist(Ci, Cj), is defined 
as the average pair-wise distance of all pairs of samples from two clusters [9]: 
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where dist(p, q) is the distance between samples p and q as defined in equation 2, ni is 
the number of samples in cluster Ci, and nj is the number of samples in cluster Cj. 
Such a distance measure is less susceptible to noise and outliers [9].  

After the clustering process is complete, multiple clusters are located at different 
levels of the tree. Unlike the K-mean clustering algorithm, the hierarchical clustering 
algorithm does not assume a fixed number of clusters; instead, the hierarchical clus-
tering algorithm generates appropriate numbers of clusters at different levels based on 
the underlying distribution patterns. Clusters at different levels are capable of captur-
ing different levels of abstractions of the sample space.  

2.3.2   HCSVM Training 
SVMs are trained for clusters at different levels of the cluster tree. Some sample sub-
spaces in the tree may enhance SVM trainings whereas some sample subspaces may 
worsen SVM trainings. As a result, SVMs at different levels may develop different 
classification capabilities because they are trained for different sample subspaces.  

The time complexity for SVM training is Ω(n3), where n is the number of samples 
in the training data set. In this approach, a SVM model is trained for each of the clus-
ters at different levels of the tree-structure. During the training process, the parame-
ters for a SVM model are optimized using grid search techniques [19]. Since the size 
of a typical cluster is much smaller than the size of the original data set and the train-
ings for different clusters can be performed in parallel, the overall training time is 
reduced substantially. For example, the original data set has about 5,000 samples and 
the largest cluster has about 500 samples.  
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2.3.3   Collaborative Classification Using HCSVM 
After SVM trainings, individual SVMs are specialized to solve classification sub-
problems in their own subspace. Given a set of test samples, an adaptive algorithm is 
used to select the most suitable SVMs in the tree to perform robust and effective  
classifications.     

The classification value, fsvm_j(x), of a SVM, svm_j, is normalized using the z-score 
for fair comparison of classification values from different SVMs since classification 
values from different SVMs have different means and standard deviations. The deci-
sion value of svm_j for a sample x is defined as the z-score of svm_j’s classification 
value for a sample x:  
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where meansvm_j is the mean classification values for svm_j in the training set and 

jsvm_σ  is the standard deviation of classification values for svm_j in the training set [9].  

The higher the magnitude of the decision value of a SVM_j, |Decsion_valuesvm_j(x)|, 
will be the higher the SVM’s confidence level for classifying a sample x. For exam-
ple, if Decison_valuesvm_j(x) = -4.5 and Decision_valuesvm_k(x) = 3.2, then svm_j has a 
higher confidence level for its decision than svm_k. Hence, svm_j should be selected 
as the classifier to classify sample x as negative. The HCSVM model uses this confi-
dence based selection strategy to select the best SVMs from the entire tree structure to 
produce the most confident classification results.  

The HCSVM classification process may be described as a recursive, bottom-up 
process that operates on tree structures. Recall that the clusters are organized in a tree 
structure as shown in Figure 1. The classification process treats a subtree of clusters as 
a computing group with a root cluster, Croot, and its children clusters, Ci’s. In turn, each 
of the children clusters is the root for its own subtree or computing group (Fig. 1). 

…… … …

Croot

C2 Ck
C1 Cj Ci

…
…

nearestClusters set

…

 

Fig. 1. Tree Structure for HCSVM Classification  
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When a cluster Croot that has no children receives a sample x to be classified, it 
simply reports to its parent cluster that its own decision value, decision_valuesvm_root, 
as the decision value for its subtree. However, if Croot has some children clusters, Croot 
will first compare the distance between x and its children clusters and select a set of 
clusters that are nearest to x, denoted as the nearestClusters set in Figure 1. The near-
estClusters set consists of clusters that are highly relevant for classifying the sample 
x. Croot then asks the children clusters to report the decision values of their subtrees. 
Suppose the subtree decision value of cluster Ck is the most confident decision value 
among all clusters in the nearestClusters set. The final decision value of Croot’s sub-
tree is determined as either decision_valuesvm_root(x) or the subtree decision value of 
Ck, whichever is more confident. This process is recursive because the children clus-
ters generate decision values for their own subtrees using the same steps. The whole 
process terminates when the topmost cluster generates the final decision value. The 
whole classification algorithm is shown in Figure 2. 

The following notations are used in the pseudo codes as shown in Figure 2.  Given 
a sample x, the SVM decision value for the root cluster is defined as deci-
sion_valuesvm_root (x). The term, dist(Ci, x), is the distance between a sample x and clus-
ter Ci as defined previously. The magnitude of the most confident SVM decision 
value for the sub_treek is defined as│subtree_Decisionk│. The input parameters of the 
recursive function tree_Decison() is the root cluster, Croot, and a sample x whereas the 
output of this function is the most confident SVMs’ decision value. 

svm_Decision tree_Decision(TreeNode Croot , Sample x)

{

if(Croot has no children)

return Decision_valuesvm_root (x);

else

{

for each of the children cluster Ci of Croot

compute dist(Ci , x);

Let nearestClusters be the set, {Cj | dist(Cj , x)

for each of the cluster Cj ∈ nearestClusters
subtree_Decisionj = tree_Decision(Cj , x);

Select subtree_Decisionk s.t. )_(max_ j
j

k DecisionsubtreeDecisionsubtree =

if ( ))(__ _ xvaluedecisionDecisionsubtree rootsvmk ≥
return subtree_Decisionk ;

else

return decision_valuesvm_root(x);

}

}
 

Fig. 2. Recursive Function to Classify Sample Based on Cluster Tree Structure 
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3   Experimental Setup and Result Analysis 

3.1   Comparisons of Three SVM Based Models 

Experiments are set up to compare the performance of three SVM based models. The 
first model is the HCSVM model that uses multiple SVMs and multilevel clustering. 
The second model is CSVM that utilizes multiple SVMs with only one level of clus-
ters. The third model is the single SVM model without any clustering. For the 
HCSVM trainings, hierarchical clustering is performed on the training dataset to cre-
ate a tree of clusters. The HCSVM trainings involve SVM trainings for clusters at 
different levels throughout the entire tree. A total of 36 HCSVMs are trained in this 
experiment. In the control experiment, the CSVM trainings use only a single level of 
11 clusters; hence, only 11 SVMs are trained. 

3.2   Training Set and Independent Test Set 

This study uses the Healthcare Cost & Utilization Project (HCUP-3) database pro-
vided by the Agency for Healthcare Research and Quality (US department of Health 
and Human Service). HCUP-3 is the largest and most robust U.S. inpatient database 
with more than 600 clinical and non-clinical variables for each hospital record. The 
training set consists of 5,000 samples for diabetes patients with at least two proce-
dural codes and the independent test set has 1,500 samples for diabetes patients with 
at least two procedural codes.  

3.3   Selected Feature for SVM Training and Testing 

Features of each sample are grouped into four major categories including patient 
profiles, hospital profiles, diagnostic profiles and procedure profiles. A patient profile 
consists of demographic and insurance information. A hospital profile includes hospi-
tal type, teaching status, and location. A diagnostic profile consists of a set of diag-
nostic codes for patients. The procedure profile consists of a set of treatment codes for 
patients. Our initial experiment shows that the combination of diagnostic and proce-
dural profiles gives the most reliable HCSVM prediction results. As a result, only 
diagnostic and procedural codes of each sample are used for SVM trainings. 

3.4   Results and Analysis 

Figure 3 compares average accuracy of the HCSVM model, the CSVM model and the 
single SVM model. Average accuracy for the HCSVM has improved from 63% to 
73% compared to the CSVMs model.  

Based on the difficulty of classifying the data, the independent testing set is sepa-
rated into three groups. The “bad data group” includes data that CSVM classifies with 
testing accuracy below 60%. The “average data group” includes data that CSVM clas-
sifies with testing accuracy between 60% and 70%. The “good data group” includes 
data that CSVM classifies with testing accuracy over 70%. In other words, the bad data 
group is the portion of data poorly classified by CSVM in the testing set. The good 
data group is the portion of data accurately classified by CSVM in the testing set. 
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Figure 4 compares the performance of the HCSVM model, the CSVM model and 
the single SVM model for the bad data group, average data group and good data group. 
For the bad data group, accuracy improves from 50% to 63% when the HCSVM 
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Fig. 3. Average Accuracy of SVM, CSVMs and HCSVM for Entire Testing Set 
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Fig. 4. Accuracy of SVM, CSVMs and HCSVM for Different Data Groups 
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model is used. For the good data group, accuracy increases by 4%. The performances 
of both CSVM and HCSVM for the three data groups are better than the performance 
of the single SVM model. This indicates that the strategy of building multiple SVMs 
in the training set worked. In the tree structure, all HCSVMs at different levels coop-
erate to make intelligent and robust classification decisions. Our algorithm chooses 
the most confident HCSVM in the tree structure for the final classification decision. 
This strategy of fully utilizing the capability of all SVMs at every level of the tree 
structure is demonstrated to be highly effective for classifying samples than both the 
single SVM model and the one-level CSVMs model. 

4   Conclusion 

In this study, a new computational model called HCSVM converts a complex classifi-
cation problem into a series of computational subproblems for large datasets. Each 
HCSVM is customized to learn the different nonlinear relationships between diagnos-
tic and procedural profiles and the length of stay for patients in each cluster. The 
HCSVM model uses a confidence-based selection strategy to select the most suitable 
SVM to produce the most accurate response.  

With the CSVM model, only one level of SVMs is used to classify samples. Clus-
ters produced by poor partitions may not help SVMs find a good separating hyper-
plane in the CSVM model. In contrast, the HCSVM model uses an adaptive strategy 
to select the most confident SVMs that uses more optimal partitions to find a better 
hyperplane for effective classifications. Experimental results indicate that the per-
formance of the multi-level HCSVM model is superior to the one-level CSVM model 
for the classification problem.  
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Abstract. A computational mutagenesis methodology that utilizes a four-body, 
knowledge-based, statistical contact potential is applied toward quantifying 
relative changes (residual scores) to sequence-structure compatibility in E. coli 
lac repressor due to single amino acid residue substitutions. We show that these 
residual scores correlate well with experimentally measured relative changes in 
protein activity caused by the mutations. The approach also yields a measure of 
environmental perturbation at every residue position in the protein caused by 
the mutation (residual profile). Supervised learning with a decision tree algo-
rithm, utilizing the residual profiles of over 4000 experimentally evaluated mu-
tants for training, classifies the mutants based on activity with nearly 79% accu-
racy while achieving 0.80 area under the receiver operating characteristic curve. 
A trained decision tree model is subsequently used to infer the levels of activity 
for all remaining unexplored lac repressor mutants.  

Keywords: lac repressor Delaunay tessellation, statistical potential, computa-
tional mutagenesis, supervised learning. 

1   Introduction 

The lac repressor of Escherichia coli is a well-studied DNA-binding protein, and the 
results of laborious biochemical experiments have been summarized thoroughly with 
several review articles in the literature [1-5]. While lac repressor possesses the helix-
turn-helix motif common to bacterial repressors, it diverges from many of its counter-
parts in that it is functional as a homotetramer rather than a dimer [6]. Full blockage 
of transcription initiation requires binding of the nearly perfect palindromic operator 
sequence O1, centered at position +11 in the lac operon, accompanied by binding of 
operators O2 and O3, located within 401 and 92 base-pairs from O1 [7]. The DNA-
binding domain of the lac repressor, known as the headpiece, consists of amino acids 
1-59 (Fig. 1A). The core, which covers residues 61-329 and includes structurally 
similar N- and C-terminal subdomains, contains sites for inducer binding [8, 9] as 
well as dimer formation [10]. Amino acids 61-160 and 293-320 form the N-terminal 
core domain; the remaining residues constitute the C-terminal core domain. Lastly, 
amino acids 330-360 contain a leucine minizipper required for tetramerization of the 
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dimers through formation of a four-helical bundle [11, 12]. In the presence of induc-
ers such as allolactose or isopropyl-β-D-thiogalactoside (IPTG), lac repressor under-
goes a conformational change upon inducer binding and no longer binds operator 
DNA, allowing lac gene transcription. 

 

Fig. 1. (A) Ribbon diagram of a single chain of the lac repressor homotetramer. (B) Delaunay 
tessellation of the same monomer of lac repressor, subject to a 12 angstrom edge-length filter. 
PDB accession file: 1efa, chain B. 

A wealth of structural and functional information about lac repressor has been dis-
covered through the analysis of experimental data obtained from large-scale 
mutagenesis studies [13-15]. In particular, each wild-type (wt) amino acid located at 
positions 2-329 was individually replaced with 13 of the 20 amino acids naturally 
occurring in proteins. The physicochemical properties of each of the seven amino 
acids excluded as replacements from the experimental mutagenesis was accounted for 
by the existence of a similar residue from among the 13 substitutions. Although this 
approach led to 328 positions × 13 substitutions/position = 4264 substitutions, the wt 
amino acids at 223 positions in lac repressor were identical to one of the 13 residues 
chosen as replacements; hence, a total of 4041 non-degenerate single site mutants 
were experimentally synthesized for the studies. The phenotypic effects associated 
with each mutant were measured, and all 328 lac repressor residue positions were 
clustered into 15 groups based on their structural locations, functional roles, and level 
of tolerance to mutations [13, 14].  

Here we characterize the single site mutants of lac repressor based on an application 
of a four-body statistical potential derived by means of Delaunay tessellation of protein 
structures [16, 17]. Using the method, a scalar residual score that quantifies the relative 
change in overall sequence-structure compatibility from wt was calculated for every 
such mutant. Focusing exclusively on the 4041 mutants of lac repressor for which 
there exists phenotypic data describing the effects of the residue replacements on activ-
ity, we illustrate how the residual scores of these mutants can be used to elucidate the 
structure-function relationship inherent in the protein. This approach has been success-
fully applied to other large systems of single site protein mutants, including HIV-1 
protease (536 mutants) and reverse transcriptase (366 mutants), as well as bacterio-
phage T4 lysozyme (2015 mutants) [18]. Unlike the prior studies, which exclusively 
targeted enzymes, here we investigate a DNA-binding protein for the first time. 
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The computational mutagenesis that we developed also generated a vector residual 
profile representation for each mutant, where the vector components quantify the 
environmental perturbations from wt that occur at every residue position due to the 
mutation. Recent reports have described training sets of mutant protein feature vec-
tors, produced for the purposes of supervised classification and inference [19-21]. The 
vector components in those studies represent information readily available from the 
sequence (e.g., physicochemical classes of wt and replacement residues, hydrophobic-
ity difference, and mutated position conservation score), and information predicted 
from protein structure (e.g., secondary structure, buried charge, and solvent accessi-
bility). As will be detailed in this manuscript, our residual profiles implicitly incorpo-
rate both sequence and structure information about each mutant. Analysis of the  
residual profiles for the 4041 experimental mutants of lac repressor via decision tree 
supervised learning suggests that they encode signals capable of being used to reliably 
distinguish between mutants belonging to distinct activity classes. As such, a model 
trained with these mutants was used to infer activity classes for the remaining unchar-
acterized lac repressor mutants based their respective residual profiles. 

2   Materials and Methods 

2.1   Experimental Data 

The 4041 lac repressor mutants described in the literature were generated via suppres-
sion of amber mutations that were independently introduced into the lacI gene at each 
of 328 sites, corresponding to residue positions 2-329 in the lac repressor protein [14]. 
The level of activity of each mutant protein was measured by its ability to repress the 
synthesis of β-galactosidase, one of the gene products encoded by the lac operon. The 
investigators used four activity classes as a way to categorize the phenotypes: full 
activity (greater than 200 fold repression of β-galactosidase, i.e., no significant altera-
tion), moderate activity (20-200 fold repression), low activity (4-20 fold repression), 
and inactive (less than 4 fold repression) [13-15]. These categories were chosen arbi-
trarily as a rough guide, and the same team of researchers suggested combining the 
moderate and low activity classes into a single intermediate class [15]. We utilized for 
our studies a preformatted tabulation of the lac repressor mutants and their corre-
sponding phenotypes, available as one of the training sets for the SIFT algorithm [22]. 

2.2   Delaunay Tessellation and the Four-Body Statistical Potential 

A non-homologous training set of over 1400 high-resolution crystallographic protein 
structures with low primary sequence identity was selected from the Protein Data 
Bank (PDB) [23]. Each structure was represented as a discrete set of points in 3-
dimensional (3D) space, corresponding to the Cα atomic coordinates of each of the 
constituent amino acid residues. Delaunay tessellation was performed on each protein 
structure, whereby these points were utilized as vertices to generate an aggregate of 
non-overlapping, space-filling, irregular tetrahedral simplices (Fig. 1B) [16, 17]. The 
Quickhull algorithm [24] was used to tessellate each protein, and an in-house suite of 
Java and Perl programs were developed for data processing and analyses. 
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Each simplex in a protein structure tessellation objectively defines a quadruplet of 
nearest-neighbor residues. For added assurance of biochemically feasible quadruplet 
interactions, we only considered simplices in protein tessellations for which the 
lengths of all six edges were less than 12 angstroms. Assuming order independence, 
there are 8855 distinct quadruplets that can be formed from the 20 amino acids natu-
rally occurring in proteins [16, 17]. For each quadruplet, we determined the observed 
proportion of simplices among all the protein tessellations whose vertices represented 
the four amino acids. We also computed a rate expected by chance for each quadru-
plet based on a multinomial reference distribution that utilized the frequency of each 
amino acid among the training set proteins. Modeled after the inverse Boltzmann law, 
an empirical potential of quadruplet interaction (log-likelihood score) was calculated 
as a logarithm of the ratio of observed to expected values. The four-body statistical 
potential is defined as the collection of 8855 quadruplet types along with each of their 
respective log-likelihood scores [16, 17]. 

Using the four-body statistical potential, a log-likelihood score was assigned to 
each simplex in the tessellation of lac repressor subject to a 12 angstrom edge-length 
filter. We performed the tessellation on a single chain of the lac repressor tetramer 
obtained from the PDB accession file 1efa, chain B, which includes atomic coordi-
nates for amino acids 2-331 [25]. The topological score of lac repressor, defined by 
adding up the log-likelihood scores of all simplices in the tessellated structure, repre-
sents an overall measure of sequence-structure compatibility. A residue environment 
score was also calculated for each amino acid position by locally adding up only log-
likelihood scores of simplices that utilize the corresponding Cα coordinate as a vertex. 
A vector of residue environment scores, ordered by primary sequence position, is 
referred to as a 3D-1D potential profile (Fig. 2A) [18, 26]. 

2.3   Computational Mutagenesis 

A topological score was also obtained for each single site mutant of lac repressor, by 
utilizing the tessellation of the wt protein structure as a template, substituting the 
amino acid identity at a point representing the position of interest, and recalculating. 
Such an approach results in changes to the log-likelihood scores of all simplices that 
use the point as a vertex. The residual score of a lac repressor mutant is defined as the 
difference in topological scores between the mutant and wt protein, and provides a 
measure of the relative change in sequence-structure compatibility caused by the 
amino acid replacement [18]. A comprehensive mutational profile (CMP) is defined 
by calculating, at each position in the protein, the mean of the residual scores associ-
ated with all possible amino acid replacements (Fig. 2B) [18, 26]. Each CMP profile 
component is referred to as the CMP score of the given position. 

Replacing the amino acid identity at a vertex in the wt protein tessellation leads to 
altered residue environment scores at the mutated position as well as at all positions 
that participate with it in nearest-neighbor simplices [18, 26]. The residual profile of a 
lac repressor mutant is defined as the difference in 3D-1D potential profiles between 
the mutant and wt protein, and the value of each residual profile component is re-
ferred to as an environmental change (EC) score. Residual profiles contain implicit 
structural information, since the only non-zero EC scores occur at components corre-
sponding to the mutated position and all its nearest neighbors. In particular, the EC 
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score at the component corresponding to the mutated position is precisely the residual 
score of the mutant. Additionally, residual profiles of mutants defined by alternative 
amino acid substitutions at the same position have identical arrangements of zero and 
non-zero components. However, the EC scores differ at the non-zero components of 
these residual profiles, implicitly reflecting the type of substitution. Hence structure 
and sequence information is encoded in mutant residual profiles. 

 

Fig. 2. Lac repressor (A) 3D-1D potential profile and (B) CMP profile 

2.4   Supervised Learning for Class Discrimination and Prediction 

The supervised classification scheme that we employed for this study is an implemen-
tation of Ross Quinlan’s C4.5 decision tree algorithm [27], available as part of the 
Weka (Waikato environment for knowledge analysis) suite of machine learning tools 
[28]. Each of the experimental mutants in the training set was represented by a vector 
whose components consisted of the residual profile, the activity class to which the 
mutant belonged, and three additional components identifying the mutant (wt residue, 
position number, and replacement residue). Algorithm performance on the training set 
was evaluated by using stratified tenfold cross-validation (10 CV). 

Given a generic two-class training set consisting of “positive” (P) and “negative” 
(N) examples, Q = accuracy = (TP + TN) / (TP + FN + FP + TN) provides a simple 
measure of 10 CV performance which is meaningful so long as the class distribution 
is not highly skewed. Here, TP and TN represent the number of correct positive and 
negative predictions, respectively, and FP and FN are misclassifications. The bal-
anced error rate (BER), calculated as BER = 0.5 × [FN / (FN + TP) + FP / (FP + 
TN)], Matthew’s correlation coefficient (MCC), given by 

FP)FN)(TNFP)(TNFN)(TP(TP

FNFP-TNTP
  MCC

++++
××= , 
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and area (AUC) under the receiver operating characteristic (ROC) curve provide al-
ternative measures that are especially useful for highly unbalanced classes. The ROC 
curve is a plot of the true positive rate (sensitivity) versus the false positive rate (1 - 
specificity), where sensitivity = TP / (TP + FN) and specificity = TN / (TN + FP), and 
the AUC is equivalent to the non-parametric Wilcoxon-Mann-Whitney test of ranks 
[29]. An AUC value near 0.5 suggests that the trained model will perform no better 
than random guessing, while a value of 1.0 is indicative of a perfect classifier. We 
utilize a conservative estimate for the standard error (SE) of the AUC that was de-
rived by Hanley and McNeil [30]. For a training set consisting of examples that be-
long to more than two classes, a reference class is selected, and all examples not in 
this class are relabeled as belonging to the non-reference class. A two-class ROC 
analysis is then performed as described above, and the procedure is repeated so that 
each class serves as a reference. An overall AUC measure is calculated as a weighted 
average of the AUC values associated with each of the reference class ROC curves, 
where the AUC weights correspond to the proportion of examples that belong to the 
respective reference classes [31]. 

3   Results and Discussion 

3.1   Structure-Function Correlation 

Utilizing the 330 amino acids (positions 2-331) for which atomic coordinate data exists 
in the lac repressor PDB structure file 1efaB, theoretically there are 330 positions × 19 
substitutions/position = 6270 possible single site mutants that can be generated. Al-
though we computed the residual scores and residual profiles for all of them, here we 
consider only the 4041 experimental mutants for which the phenotypic effects of the 
substitutions are known. The distribution of the mutants among the four original activ-
ity classes is 2267 fully active, 253 moderate activity, 355 low activity, and 1166 inac-
tive. As described earlier, we followed researcher suggestions by combining moderate 
and low activity groups into a single intermediate activity class, and we computed a 
mean residual score for the mutants in each class (Fig. 3, “All” category). A clear trend 
emerges, whereby increasingly detrimental effects on sequence-structure compatibility 
due to mutation are associated with higher levels of functional impairment. Further-
more, t-tests revealed statistically significant differences between mean residual scores 
for each pair of classes (fully active – intermediate, p = 4.64×10-7; intermediate – inac-
tive, p = 6.57×10-10; fully active – inactive, p = 1.95×10-36). Within each class, mutants 
were also clustered based on whether they represented conservative (C) or non-
conservative (NC) substitutions of the wt residue, and we computed mean residual 
scores for each of these subgroups [32]. Note that the overall trend is driven by NC 
substitutions, since C substitutions minimally impact sequence-structure compatibility 
regardless of phenotype. 

Recently published computational studies investigating this dataset of experimental 
lac repressor mutants have focused specifically on whether an amino acid replace-
ment has no effect (fully active class) or any detrimental effect (intermediate and 
inactive classes combined) on protein function [19-22, 33]. Similar trends are clearly 
maintained for this two-class system, and the difference in mean residual scores  
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between the unaffected and affected activity classes is statistically significant (p = 
8.67×10-37). As mentioned earlier, such structure-function correlations based on mu-
tant activity were observed for other proteins, and we hypothesized that the trend 
applied to all proteins [18]. These lac repressor findings bolster our prior claim. 

  

Fig. 3. Lac repressor structure-function corre-
lation (see text for C/NC subsets) 

Fig. 4. Lac repressor CMP-potential profile 
correlation 

3.2   Classification of Residue Positions 

A strong inverse correlation (R2 = 0.81) exists between the CMP profile of lac repres-
sor, obtained by averaging the residual scores of all amino acid replacements at each 
position, and the 3D-1D potential profile of the protein, which provides an environ-
ment score for each position (Figs. 2 and 4). By averaging residual scores of  
non-conservative and conservative substitutions separately at each position, modified 
NC-CMP and C-CMP profiles showed that the correlation is driven primarily by the 
NC substitutions (R2 = 0.81), with no contribution from the C substitutions (R2 = 
0.09). Similar observations have been made for HIV-1 protease [18, 26] and have 
been easily generated in silico for a number of other proteins (unpublished). 

In particular for proteins with annotated residues, a majority of the buried hydro-
phobic amino acids tend to be located in the fourth quadrant (Q4) of plots analogous 
to Fig. 4, while many of the residues that make direct contacts with ligand (DNA-
binding proteins) or are catalytic (enzymes) cluster in Q2. Additionally, other residues 
that are important for stability or that play functional roles (e.g. dimer interface or 
non-catalytic active site residues) are located between those extremes in the plot: 
stability residues tend to be found closer to those that are buried and hydrophobic, 
while functional residues are generally located near those that are ligand binding or 
catalytic. Catalytic residues generally tend to exhibit more extreme behavior (further 
away from the origin and toward upper left corner of Q2) than DNA-binding residues. 
Finally, remaining surface residues without these critical roles (mostly polar) tend to 
cluster near the origin. Q1 and Q3 typically contain relatively fewer positions than Q2 
and Q4, and they are generally located closer to the origin. 

Based on the extensive experimental work on lac repressor, all 328 residues com-
prising positions 2-329 were annotated and assigned to one of 15 groups according to 
structural locations and functional considerations [13]. It sufficed for us to work with a 
reduced set of seven groups, formed by pooling groups that shared similar properties. 
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Table 1 provides a breakdown of the distribution of residue positions by group and 
quadrant location. Application of a chi-square test on this table led us to reject the null 
hypothesis that no association exists between the structural / functional groups and the 
quadrant locations (p < 0.0001). We also characterized each group based on both the 
mean of the residue environment scores (M.R.E.S) of the positions in the group, as 
well as the mean of the mutant residual scores (All, C, NC) for all 19 residue replace-
ments at all positions in the group combined (Fig. 5A). It is clear from Fig. 5A that our 
computational characterization of these groups effectively discriminates DNA- and 
IPTG-binding residues from buried and stability positions. Another noteworthy obser-
vation is the fact that we can clearly distinguish between dimer interface residue posi-
tions and other surface residues that are not as structurally or functionally important. 

Table 1. Distribution of lac repressor residue positions 

 Residue Groups  

Graph 
Quadrants

Surface Buried 
DNA 

binding
IPTG 

binding
Stability Interface Spacers Total 

Q1 8 10 0 2 1 6 4 31 

Q2 49 12 9 9 8 15 20 122 

Q3 13 5 4 2 2 5 6 37 

Q4 31 46 5 4 25 17 10 138 

Total 101 73 18 17 36 43 40 328 

 

Fig. 5. Characterization of (A) lac repressor and (B) HIV-1 reverse transcriptase (RT) residue 
positions based on structure and function 

Motivation for such residue characterizations is due to earlier work with the en-
zyme HIV-1 reverse transcriptase (RT). Published mutagenesis experiments examined 
the effects of 366 single amino acid replacements among residues 95-203 (the fingers 
and palm subdomains) in the 66 kDa subunit of the RT heterodimer [34]. Based on 
the observations, a majority of the residues were annotated as being members of one 
of the following groups: catalytic, functional, STABILITY (strict), stability (liberal), 
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or external [34]. We implemented a computational mutagenesis procedure similar to 
that described above for lac repressor, which led to the graph for RT in Fig. 5B. Clear 
similarities exist between the RT and lac repressor graphs with respect to the func-
tional/interface, stability, and external/surface categories; also noticeable are the much 
less extreme values for the DNA- and IPTG-binding residue groups in lac repressor 
compared to those for the catalytic residue group in RT. 

 

Fig. 6. ROC curves obtained using (A) three activity classes and (B) two classes 

3.3   Inferential Models of Mutant Activity 

Beginning with a training set consisting of the modified residual profiles (wt and new 
residues as well as mutated position number included, see Materials and Methods) for 
the 4041 experimental single site mutants, each belonging to one of three activity 
classes (fully active, intermediate, inactive), application of decision tree learning in 
conjunction with a 10 CV testing procedure led to Q = 73.0% and overall AUC = 0.78 
(Fig. 6A). By relabeling the class of each mutant as either unaffected (fully active) or 
affected (intermediate and inactive) and applying 10 CV, we obtained Q = 78.7% and 
AUC = 0.80 ± 0.01 for this two-class system (Fig. 6B). Although the mutants are 
close to being equally distributed between the classes (2267 unaffected and 1774 
affected), for completeness we also calculated BER = 0.22 and MCC = 0.57. A ran-
dom shuffling of the activity class labels among the mutants in the two-class system 
prior to implementing 10 CV yields AUC = 0.50 and suggests that a decision tree 
model trained with this “shuffled classes” control is not expected to perform any bet-
ter than random guessing (Fig. 6B). Additionally, with Q = 51.1%, BER = 0.51, and 
MCC = – 0.01, this random control highlights the strength of the embedded signals in 
the residual profiles forming the original training set. 

Continuing with the two-class mutant system, our next aim was to measure the in-
fluence of the training set size on model accuracy. We began by applying decision 
tree learning and 10 CV to each of 10 stratified random samples of 100 training set 
mutants, where each subset was selected from among all 4041 experimental lac rep-
ressor mutants, and a mean accuracy and standard deviation (std. dev.) was calcu-
lated. Subsequent iterations involved incrementing by 100 mutants the size of the 
sampled training sets. Given the observed plateau in the learning curve generated  
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Fig. 7. Learning curve for the lac repressor training set with two class labels. Error bars repre-
sent ± 1 std. dev. from the mean. 

 

Fig. 8. Lac repressor mutational array. Columns – amino acid positions 2-331, Rows – twenty 
amino acid substitutions; Red – unaffected, green – affected, white – substitution identical to 
wt; darker colors – experimental, lighter colors – predicted. 

from the data (Fig. 7), it was not necessary to increment the training set size beyond 
2000 mutants. In fact, as suggested by Fig. 7, a decision tree model achieving optimal 
accuracy can be learned from approximately 1200 mutants. 

To illustrate an important practical application, we employed a decision tree model 
learned from the entire training set of 4041 mutants in order to predict the unaf-
fected/affected class memberships of all remaining uncharacterized single site lac 
repressor mutants. In particular, since we already calculated the residual profiles for 
all 6270 mutants, generated by the 19 single amino acid replacements at residue posi-
tions 2-331, there remained 2229 uncharacterized mutants whose residual profiles 



400 M. Masso et al. 

were used to form a separate test set. Based on the signals encoded in their residual 
profiles, the decision tree model generated a class prediction for every test set mutant. 
We pooled all experimental and predicted lac repressor mutants at positions 2-331 
into the array shown in Fig. 8, which summarizes overall mutational patterns in the 
protein. Columns represent residue positions in wt lac repressor; and rows represent 
the 20 possible amino acid replacements, arranged from top to bottom in order of 
increasing hydrophobicity [35]. Notably, at positions already determined to be either 
highly tolerant or intolerant of residue substitutions, our predictions for the uncharac-
terized residue replacements are well in line with the experimental findings. 

Finally, 30% of the lac repressor mutants (slightly over 1200) were randomly se-
lected to train a decision tree model, which is a minimally optimal training set as 
suggested by the learning curve (Fig. 7). All the remaining mutants formed a separate 
test set, and the model was used to predict their class memberships. Out of 1586 unaf-
fected mutants in the test set, 1316 were correctly predicted; similarly, out of 1243 
affected mutants in the test set, 873 were correctly predicted. Based on these results, 
we obtained Q = 77.4%, BER = 0.23, MCC = 0.54, and AUC = 0.78. 
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Abstract. In silico protein-ligand docking is a basic problem in pharma-
ceutics and bio-informatics research. One of the very few protein-ligand
docking software with available source is the Autodock 3.05 of the Scripps
Research Institute. Autodock 3.05 uses a Lamarckian genetic algorithm
for global optimization with a Solis-Wets local search strategy. In this
work we evaluate the convergence speed and the deviation properties of
the solution produced by Autodock with diverse parameter settings. We
conclude that the docking energies found by the genetic algorithm have
uncomfortably large deviations. We also suggest a method for consider-
ably decreasing the deviation while the number of evaluations will not
be increased.

1 Introduction

In silico protein-ligand docking methods are becoming more and more important
in searching for new drug candidate molecules because of their speed, economy
and increasing reliability. Acquiring one compound (or ligand) for wet-laboratory
testing from compound manufacturers costs around $ 100, consequently, without
counting the costs of labor, the additional reagents and the protein production,
in vitro verifying of the binding of one million compounds against one protein
may cost $ 100 million. In silico simulation of the binding by docking methods
costs only a small fraction of that amount, and can be completed in 1-2 weeks on
a computer cluster of moderate size. The key ingredient of the in silico docking is
the docking algorithm. Each docking algorithm optimizes some scoring function
for finding the best location and conformation of the ligand molecule near to
the surface of the protein. As an input, one must use the three-dimensional
coordinates of the protein (usually taken from the Protein Data Bank) and the
ligand molecule. As the output, a docking algorithm returns one or more docked
conformation of the ligand and the protein, and the corresponding values of the
scoring function.

1.1 The AutoDock Docking Software

One of the most widely known docking software with acquirable source code is
the AutoDock 3.05 of the Scripps Research Institute [1]. Note, that the source
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code of such popular docking software as Dock[2], Gold[3], Fred[4], FlexX[5] and
many others are not available at all. In AutoDock 3.05 the scoring function is
the estimated docking energy of the ligand to the protein. The best docking is
the one with the smallest energy. The derivation of the empirical binding free
energy function is described in [1], along with a brief historical review of the
topic. It is easy to see that the three-dimensional position of any rigid molecule
can be described by 6 real variables (three Euler angles plus the position of one
of its atoms). If � torsion axes are also allowed, then the scoring function should
be optimized in a real space of dimension 6 + �.

To speed up evaluation of the energy function AutoDock uses a grid-based
approach. First, the protein is preprocessed by a program called AutoGrid: probe
atoms and charges are placed at grid points around the protein, and the energy
function is calculated and stored for latter use. After that AutoDock uses trilinear
interpolation between grid-points to determine energy terms for each the atoms
of the ligand separately, and then sums them up to calculate the energy of the
conformation. The strategy is to minimize the energy function above in the
6 + � dimensional real space, where each point of the space corresponds to a
conformation of the ligand. The optimization procedure clearly distinguishes
a local optimization and a global optimization strategy. The aim of the local
minimization strategies (local search) is to find a local minimum of the function
in the neighborhood of the starting point. The aim of the global minimization
strategy is to find the minimum of the function on the whole domain.

We need to mention that although there exist a good number of local search
techniques finding local optima reliably for any continuous function, the No free
lunch theorem [6] states that it is impossible to find a general purpose algorithm
for global optimization, that performs equally well on all functions. Hence it is
not trivial – if possible at all – to choose a global strategy, that suits a class of
functions well. In order to circumvent this problem, one need to utilize as much
information about the function as possible.

The first versions of AutoDock were using Simulated Annealing (SA) as global
optimization strategy [1]. Further investigations [7] showed, that Genetic Algo-
rithms with Local Search (GA-LS) – discussed in the next section – outperform
the SA strategy. AutoDock Version 3 and later has both SA and GA-LS imple-
mented. Neither for SA nor for GA-LS convergence results are known in the case
of the energy function above.

1.2 Genetic Algorithms

Algorithms - performing function optimization - based on the principles of Dar-
winian Evolution, are called Evolutionary Algorithms. These algorithms main-
tain a collection of possible solutions (individuals) and select certain individuals
for further processing depending on their fitness, i.e., the function value at the
point represented by the individual. The most widely used of these algorithms
are the Genetic Algorithms. In this section we sketch the basic properties of
Genetic Algorithms. A more detailed description is given by Whitley [8].
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An Individual is a point in the search space, and its Genotype is the string
of numbers (or vector) that describes it. The Phenotype is the collection of
attributes of the individual, and its Fitness is the function value corresponding to
the individual. A Population is simply a collection of individuals. The algorithm
first selects a population of (usually random) individuals that form the first
Generation, then enters a cycle of deriving the nth generation of individuals
from the preceding. Every generation has the same fixed size. A cycle of the
algorithm performs a selection, and applies variation operators to the individuals
in the current population. We perform a selection by randomly choosing each
individual of the

Genetic Algorithms with Local Search. (GA-LS) introduce a further unary vari-
ation operator, that is usually not considered a mutation operator, and are typ-
ically applied at the end of a cycle. This variation operator is a type of Local
Search, typically Solis & Wets random local search.

The GA-LS implementation in AutoDock. To initialize the first genera-
tion, AutoDock chooses a population randomly. Population size is a parameter
that is set to 50 as default. Then it enters the generation-deriving process, and
starts the global strategy. Selection is either proportional, or a probabilistic bi-
nary tournament. We applied proportional choices for our experiments. Before
the crossover step, individuals are being permuted, and then subsequent 2ith

and (2i + 1)th individuals are being applied the crossover operator with a given
probability, that is 4

5 by default. AutoDock is using either one or two point
block crossover (latter being our choice) where the blocks are real values for
translation, rotation, and torsions. Cauchy mutation is being applied with de-
fault parameters mean 0, variance 1, and probability of applying the mutation
operator is 1

50 . Elitism was set to keep the best individual alive. As a default
every individual of a generation is applied a local search with the probability
2
3 , maximal number of steps is 300. All further parameters are left as default in
AutoDock.

1.3 Previous Work

Thomsen’s remarkable paper [9] analyzes genetic algorithm parameterization in
the AutoDock 3.05 software. Six protein-ligand complexes were chosen for the
experiments, and the effect of different population sizes, mutation operators,
recombination operators, different local search strategies were tested for these
six complexes. Based on the findings, in [9] a new algorithm, called DockEA
was introduced and compared with the original AutoDock solutions. The results
were quite different for different complexes: for some of the complexes it was
not too difficult to find the near-optimum solutions, and for some others it
was a more challenging task. Note also, that the resolution of the complexes
examined were in the range 1.63-3.1 Å. The termination criterion was set to
250,000 evaluations and each experiments were repeated with 30 random seeds.
We, in contrast, docked 48 randomly chosen ligands to the same protein: the
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Mycobacterium tuberculosis dUTPase protein with PDB code of 2PY4, and each
docking was repeated 100 times with different random seeds. The main point of
our analysis was to find the number of evaluations which already gives reliable
results, but it is as low as possible to facilitate screening large ligand libraries.
Consequently, we perform our experiments with higher evaluations upper bound
than 250,000; in some cases the upper bound was set to 2 million.

1.4 Concept of Our Analysis

Clearly, an “idealistic” randomized algorithm that performs automated dock-
ing need to satisfy some natural requirements. Our main motive was to opti-
mize a database screening task with a single protein against two million ligand
molecules, without changing the energy function of AutoDock. In what follows
we list our requirements and give methods to quantitatively evaluate them.

Capability of finding optimum: This requirement means that with high enough
probability the algorithm approximates the minimum of the function with a
small enough error. Evaluating this requirement is difficult, since we do not have
reliable measurement data on the values of the energy-minima for multiple lig-
ands in question. To circumvent these difficulties, we compared different variants
of the GA algorithm based on a fixed number of runs each with the same energy
function.

Mean approximates best run - (Low deviation). It is reasonable to expect that
a result, yielded by a given run of the algorithm is generally close to the optimum.

Consistency of the above quantities means that if the number of evaluations
is increased, then the discovered optima get ever closer to the real optimum, and
the deviation drops as well.

Order of hits. When thousands or millions of different ligands are docked
against the same protein, identifying the order of the ligands, sorted by the
docking energies, is sometimes much more important than the absolute values
of the docking energies themselves.

To see the progress made by different algorithms we created run logs similar to
the ones in Hart’s thesis [7]. After every evaluation we checked if a new optimum
was discovered, and recorded the number of evaluations and the new optima. On
plots like the one on Figure 1 we can see number of evaluations on the horizontal
axes, and the approximation of minimal energy in kcal/mol calculated after the
given number of evaluations by different runs of the algorithm. Note that the
most time-consuming step is the evaluation of the energy function, so the number
of evaluations is proportional to the running time of the algorithm.

2 Methods

Our test-runs were performed on a cluster of 48 PC’s equipped with 2.40GHz
Intel CeleronTM processors and 256 MB RAM. We have randomly chosen 48
molecules from the ZINC database [10], and docked them to the same Mycobac-
terium tuberculosis dUTPase molecule, with PDB code 2PY4, as a protein target.
The algorithm ran with 100 different random seeds for every ligand to determine
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deviation and seed dependency. The diagrams derived from the run logs by the
procedure described at the end of the previous section were similar to Figure 1,
and in what follows we will describe the common properties we have found:
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Fig. 1. Evolution of discovered minima over 100 runs with different seeds for ligand
with ZINC code ZINC01208228

– One should note that near to the beginning the algorithm comes across
unreasonably high positive energies due to collisions, but in several thousand
steps it reaches negative values.

– Shortly after reaching negative energies, the best of the 100 runs finds values
close to the minimum. For example, on Figure 1, the minimal run changes
less than 0.5 kcal/mol after 250,000 steps. For the 71% of the 48 ligands we
were testing this changed less than 0.5 kcal/mol after 250,000 evaluations,
and 88% changed less than 1 kcal/mol. The worst case was 2 kcal/mol.

– As a generalization of the above observation one can see on Figure 1, that
even after 10,000,000 evaluations, most of the runs stay close to the value
reached after 250,000 evaluations. Note, however, that there are seeds pro-
ducing large jumps at random positions (e.g., on Figure 1, just after 400,000
evaluations, where one descends from -10 kcal/mol to -12 kcal/mol.)

Figure 3 shows 4,800 different runs (100 for each ligands), ordered by the
amount of decrease of the docking energy found in kcal/mol from evaluation
250,000 to evaluation 10,000,000. The 50% of all runs to change less than
0.5 kcal/mol, and only 25% of the runs decreased more than 1 kcal/mol in
this interval.

– Motivated from our analysis above, we define the ”high confidence” interval
of energies by the following properties:
• Every discovered minimum is located in this interval independently of

seed.
• It is the smallest interval that satisfies the above.
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Fig. 2. Evolution of discovered minima with a seed for ligand with ZINC code
ZINC01208228. Notice the sudden fall just before 350 000 evaluations.
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Fig. 3. 4,800 different runs ordered by amount of decreasing in kcal/mol from the
250,000th evaluation to the 10,000,000th evaluation

– It is worth mentioning that high confidence intervals can be approximated
by considering only a small number of runs, as it can be seen on Figure 1.
Figure 5 represents the ”high confidence” intervals for different ligands with
vertical bars, and the mean of 100 runs with a dot on the corresponding bar.

– Based on our 100 run approximations:
• Usually the minima gained in 100 runs cover the high confidence interval

almost uniformly. Figure 1 is a counterexample of this phenomenon, since
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it has a gap between -10 and -12 kcal/mol. From the 48 ligands another
3 ligand also have similar gaps.

• After 250,000 evaluations the endpoints of the high confidence intervals
will not be changed much. More exactly, for the 71% of the 48 ligands
we were testing the interval changed less than 0.5 kcal/mol after 250,000
evaluations, and for 88% it changed less than 1 kcal/mol. The worst case
was 4 kcal/mol, but the second worst was only 1.5 kcal/mol.

• The approximate size of the high confidence intervals is between 2 and
5 kcal/mol. (For example the energies for the ligand with ZINC code
ZINC02958278 were between −11 and −7 kcal/mol.)

– Neither the standard deviation, nor the mean of 100 runs show consistent
decrease after 250,000 evaluations. (See Figure 4.)

Fig. 4. Increasing deviation of different runs on the ligand with ZINC code
ZINC01106466

One of the main conclusions of ours is that if ligands are characterized by the
minimal energies discovered over 100 different runs, the difference between the
best and worst ligands was less than 6.5 kcal/mol for this 48 random choices, i.e.,
we have got values between -13.5 and -7. Note that the length of that interval is
clearly comparable with the lengths of high confidence intervals.

On Figure 5 the dots on the intervals indicate the average of runs. One can see
that they are usually in the middle of the confidence interval, hence we can not
expect a single randomly chosen run to be at least near to the optimum. What’s
more disturbing, if we accept the rather optimistic assumption of having chosen
the ”average run” for all the ligands by luck, we are still far from a relevant
order, as — due to the large variance in the size of intervals — there seems to
be no relationship between the minimal and average runs.

Another surprising result was, that deviation sometimes was increased after
a number of evaluations instead of the anticipated decreasing. (See figure 4.)
This pathological behavior arises when there is an easy to discover optimum,
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Fig. 5. High confidence intervals for 48 ligand molecules after 2,000,000 evaluations

and most of the runs find it within the first few thousand steps, and afterward
they start to explore better solutions at random positions in time.

3 Results and Discussion

3.1 Multi-run Tests

In the case of high deviation it is a quite common approach to take the average,
or the minimum of multiple samples. As we pointed out in the previous section
averages are not relevant, consequently we tried multi-run algorithms with com-
mon minima, i.e., an n-run strategy with k evaluations would run the algorithm
k times through k

n evaluations, and take the minimum of the results. Our test
described below showed that optimal n for a given k is highly protein-ligand de-
pendent, though we believe that for a group of similar ligands and fixed protein
it might be possible to find a common n. If ligand classes would be large enough
it might be possible to save time by preprocessing ligand classes for every protein
in order to identify the optimal n. The question whether is this possible remains
open.

Our tests were performed as follows: we ran the algorithm 100 times, and
divided it into 10 equal-sized group. For the average n run strategy the minimum
of the first n out of every group was taken, and after that the mean of them to
get an average n run strategy.

It is obvious, that for small number of evaluations any multi-run strategy is
no match for the one-run strategy, and for significantly large number of evalu-
ations in multi-run strategies will overcome the one-run strategy. (The latter is
obvious considering the results of the previous Section, i.e., most runs get stuck
at a point.) The question remains when does an n run strategy overcome an
k run strategy, and more importantly which is the best for a given number of
evaluations.

On Figure 6 the average of the n-run strategies plotted for ZINC entry
ZINC00342090. In this example, the 3-run strategy is the first to overcome the
one-run strategy at approximately 700,000 evaluations, but there is not enough
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Fig. 6. Different multi run strategies for ZINC entry ZINC00342090

difference between them to ensure that the 3 run strategy is definitely better.
Other ligand showed examples where the 1 run strategy turned out to be far
better than any other strategy even at 2,000,000 evaluations, and there were ex-
amples, where the 2 and 3 run strategies overcame the single run version pretty
well.

3.2 Modified GA-LS Algorithms

The choice of the initial population is an important phase of Genetic Algorithms.
Its optimization seems to be neglected by the literature. This is not surprising in
a certain sense, as the algorithm usually leaves those individuals behind at a quite
early stage, hence a possible bad initial choice seems to have only a negligible
effect on later generations. Our investigations show that this intuition is far from
being correct. In the case of a function with such high complexity as our energy
function, the choice of initial population can have strong positive effect on the
speed of convergence to the actual optimum, by more or less restricting the
search to interesting areas.

On figure 7 one can observe the average of 100 runs with different initialization
strategies, for ZINC entry ZINC01208228. Again horizontal axes is number of
evaluations, while vertical axes is energy in kcal/mol. Different strategies are
described below:

Rigid start. In the ZINC database [10], ligands are stored in a conformation
with minimal internal energy. Hence it is a natural idea to fix the torsions when
choosing the individuals randomly. Our aim was to reduce the first ”many colli-
sions” phase of the algorithm, but the diversity of the population - as we expected
- turned out to be too small, and that slowed down the algorithm significantly.

First population selected from a larger random population is another natural
idea. To understand the behavior of random individuals we have created plots
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Fig. 7. Comparing the modified algorithms (x-axis) by average run and confidence
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Fig. 8. Energies of random individuals, and of the nearest local optima found by local
search

like the one on Figure 8 that show the energies (horizontal axes) for 5, 000 random
individuals, and the energies for the nearest local optimum found by local search
(vertical axes). One can see that points form 3 classes, formed by low energy
individuals, high energy individuals near low local optimum, and high energy
individuals near high local optimum.

Selecting the best 50 individuals out of 200, 000 turns out to perform more or
less the same way as the unchanged algorithm. Depending on the ligand it can
perform better or worse just as many times.

Selecting the best after local search with 20, 000 being the number of local
searched random individuals, and 50 the population size. As one can check on
the example Figure 7, this approach turns out to be the best from the ones
inspected by us. First it works its way through the local search phase, and then
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Fig. 9. Comparing the modified algorithms by high confidence interval after 2, 000, 000
evaluations for ZINC entry ZINC00342090

soon after starting the genetic algorithm the average of the runs makes a sudden
fall. At this point it outperforms all other approaches for most of the ligands.

Individuals changed by local search most dramatically seemed to be interesting,
partly because they form a separate cluster (Figure 8), and partly because ac-
cording to our notion optimal bindings are situated on the surface of the protein,
hence changing it a little causes collisions, i.e., high energy conformations.

Non-initialization based modifications included higher population size of 500,
modified mutation

(
4
5

)
and crossover

(
1
5

)
rates, and a modified version of pro-

portional selection. The last modification aimed to exploit the remark mentioned
earlier about optima being near to high energy conformations.

4 Conclusions

We performed an in-depth analysis of the settings of the GA-LS algorithm imple-
mented in AutoDock 3.05, and concluded, that they tend to have high deviations
when applied to energy functions of docking problems. The results were obtained
using one single protein as a docking target; this fact yields consistency in the
results, but may also bound the the generality of our results.

Consequently, one can not expect to reach exact energy bounds with this
technique, nor to find a relevant order of ligands according to their bonding
energies within a low number of evaluations. Multi-run strategies can help, but
they are highly dependent on the protein-ligand pair in question.

Initialization can have a major effect on the speed of convergence. The best
algorithm examined in this article was choosing the best 50 out of 20, 000 local
searched individuals. The first phase of this algorithm is actually a random start
local search, but after the genetic algorithm is started the average of runs makes
a sudden fall, and outperforms all other variants we have examined. Figure 9
shows that this variant performs better than others in average.
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Abstract. The mRNA transcript changes detected by Gene Expression Profiling 
(GEP) have been found to be correlated with corresponding DNA copy number 
variations detected by Comparative Genomic Hybridization (CGH). This corre-
lation, together with the availability of genome-wide, high-density GEP arrays, 
supports that it is possible to predict genomic alterations from GEP data in tu-
mors. In this paper, we proposed a hidden Markov model-based CGH predictor, 
HMM_CGH, which was trained in the light of the paired experimental GEP and 
CGH data on a sufficient number of cases, and then applied to new cases for the 
prediction of chromosomal gains and losses from their GEP data. The 
HMM_CGH predictor, taking advantage of the rich GEP data already available 
to derive genomic alterations, could enhance the detection of genetic abnormali-
ties in tumors. The results from the analysis of lymphoid malignancies validated 
the model with 80% sensitivity, 90% specificity and 90% accuracy in predicting 
both gains and losses. 

Keywords: Gene Expression Profiling (GEP), Comparative Genomic Hybridi-
zation (CGH), Hidden Markov Model (HMM), Genomic Alterations. 

1   Introduction 

Gene expression profiling (GEP) and comparative genomic hybridization (CGH) are 
two important genome-wide microarray techniques to study tumorigenesis. Specifi-
cally, GEP measures mRNA expression levels, which has been widely used to iden-
tify genes differentially expressed between tumor and normal samples or between 
cancer subtypes [1, 2]. CGH is a molecular cytogenetic technique to detect DNA copy 
number variations, having been widely used in defining the putative chromosomal 
regions involved in tumor progression [3-6]. Both CGH and GEP rely on hybridiza-
tion of tumor samples to chips and image extraction through high resolution scanners.  

Genetic alterations are key causes of tumorigenesis. The identification of genetic 
alterations (usually through CGH experiments) would provide important insights into 
the mechanisms of tumorogenesis. But in the post-genomic era, the majority of the 
studies in tumor biology focus on GEP but not CGH due to limitations in resolution. 
As a result, a substantial amount of GEP data have been accumulated in the last  
decade and made publicly available, but few CGH studies have been done with a 
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large series of cases. Therefore, it is advantageous to derive genomic alterations from 
GEP data, which are already available, but not performing actual CGH experiments. 
In addition, high resolution array CGH is expensive and labor intensive. It requires a 
separate DNA extraction from tumor biopsies. It is usually very difficult, if not im-
possible, for an investigative group to collect a large series of tumor specimens, which 
have GEP performed by other groups, for a new CGH study. 

The advanced array techniques of genome-wide GEP and high-resolution array 
CGH enabled the direct correlation of gene expression changes and copy number 
variations on gene level throughout the genome. It has been shown by many studies 
that the mRNA transcript changes detected by GEP correlate to the corresponding 
DNA copy number variations detected by CGH, as in breast cancer [7-12], prostate 
cancer [13], leukemia [14], gastric cancer [15], sarcoma [16] and yeast mutants [17]. 
Our recent studies have also revealed the substantial correlation of GEP and CGH in 
lymphoid malignancies, such as diffuse large B-cell lymphoma [18], mantle cell lym-
phoma [19] and natural killer-cell lymphoma [20]. From the above studies, the ex-
pression of 30-50% of the genes present in the aberrant regions showed an association 
with the corresponding gains or losses. The association between GEP and CGH laid 
the biological foundation for predicting genomic alterations from GEP.  

On the other hand, the advances in GEP arrays provide the technical foundation for 
the prediction. For example, Affymetrix Human Genome U133 (HG-U133) Set (A 
and B) contains about 45,000 probesets interrogating short regions of the human ge-
nome, representing more than 39,000 transcripts. The upgraded HG-U133 Plus 2.0 
contains even more probesets (over 54,000). With about 19,000 genes measured on 
the HG-U133 arrays, the majority of the predicted 20,000 to 25,000 human genes are 
covered [21]. In addition, the concerns about reliability issues of microarray meas-
urements has been recently addressed by the MicroArray Quality Control (MAQC) 
projects, which finds that microarray data is reasonably reproducible within and 
across different microarray platforms, that consensus on data analysis appears to be 
attainable, and that microarray technologies are sufficiently reliable to be used for 
clinical and regulatory purposes [22].  

In this study, we proposed a novel computational method using hidden Markov 
models (HMM) to predict chromosomal gains and losses based on GEP data, called 
HMM_CGH predictor. It takes advantage of rich GEP data and could significantly 
improve the identification of genomic abnormalities from both scientific and eco-
nomical point of view. The rest of the paper is organized as follows. In section 2, we 
describe the HMM_CGH model, including model structure, training procedure and 
prediction procedure. In section 3, we illustrate the flowchart of the overall process 
performing HMM_CGH model on real tumor datasets and introduce methods and 
criteria to validate HMM_CGH at both gene and cytoband level. In section 4, we 
provide the model performance by applying it to the analysis of lymphoid malignan-
cies. In section 5, we conclude that HMM_CGH predictor is a powerful tool that may 
significantly enhance the data analysis of GEP in cancer research.  

2   Methodology of HMM_CGH Predictor 

HMMs are well developed statistical models. They have been widely and successfully 
used in capturing information buried in biological sequences, such as in finding  
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protein secondary structure, CpG islands and families of related DNA or protein se-
quences. The common problem formulation using HMM in biological sequences is, 
“Given a sequence of symbols as observations, predict the hidden state for each sym-
bol along the sequence.” Applying to our HMM_CGH problem, the observations are 
a sequence of symbols from GEP— H, L and M for high, low and medium expres-
sion, respectively; the labels for a hidden state are CGH status— “+”, “-” and “o” for 
gain, loss and normal (unchanged) of chromosomal regions, respectively.  

2.1   HMM_CGH Model Structure  

A HMM describes a doubly-embedded stochastic process with one observable proc-
ess {Oi} and one hidden process {Hi}. In our HMM_CGH problem, the observable 
process is a sequence of symbols {xi} (xi = H, L or M), and the hidden process is the 
underlying state path {πi} (πi = “+”, “-” or “o”). In a HMM, the state is not directly 
visible, but variables influenced by the state are visible. The model parameters for a 
HMM come from two categories: 1) state transition probabilities, 

1( | )kl i ia P l kπ π −= = = , which is a probability from state k to state l; 2) emission 

probabilities, ( ) ( | )l i ie b P x b lπ= = = , which is a probability distribution over all the 

possible output symbols b for each state l.  
Fig. 1 illustrates the HMM_CGH model in a Bayesian network representation, 

where the shaded S1, S2, …, Sn represent hidden state variables and the visible E1, E2, 
…, En represent the observations for the variables. The observable emission space 
consists of three symbols {H, L, M} and the hidden state space consists of nine states 
{H+, L+, M+, H-, L-, M- , Ho, Lo, Mo} , where H+, L+ and M+ emit H, L and M in “+” 
region, H-, L- and M- emit H, L and M in “-” region, and Ho, Lo, Mo emit H, L and M in 
“o” region.  

S1 … …Chromosome … S2 Sn

E1 E2 En

S1 … …Chromosome … S2 Sn

E1 E2 En  

Fig. 1. HMM_CGH model presented as a Bayesian network. The hidden states variables are 
shaded as S1, S2, …, Sn. The observations for the variables are E1, E2, …, En. The observable 
emission space is {H, L, M}. The hidden states space is {H+, L+, M+, H-, L-, M-, Ho, Lo, Mo}.  

Fig. 2 shows the HMM_CGH model presented by the state transition diagram. The 
model is a single chain that incorporates three Markov chains: sub-chain (+), sub-
chain (-) and sub-chain (o). In each sub-chain, there is a complete set of transitions. 
The transitions among the three sub-chains are also allowed. This design makes it 
possible to identify gain and loss regions of variable length along a chromosome 
automatically by screening the entire chromosome without the fixed-window-size 
problem. It’s obvious from the transition diagram that the transition probability pa-
rameters are composed of a 9x9 matrix (a combination of the pairing of nine states) 
and the emission probability parameters are composed of a 3x9 matrix (a combination 
of the pairing of nine states and three symbols).  



 A HMM Approach for Prediction of Genomic Alterations from GEP 417 

H+

M+

L+ H-

M-

L-

Ho

Mo

Lo

sub-chain (+)

sub-chain (o)

sub-chain (-)

H+

M+

L+H+

M+

L+ H-

M-

L-H-

M-

L-

Ho

Mo

LoHo

Mo

Lo

sub-chain (+)

sub-chain (o)

sub-chain (-)  

Fig. 2. State transition diagram of HMM_CGH model. The model is a single HMM chain 
integrating three Markov sub-chains: “+”, “-” and “o”. Each Markov sub-chain is presented as 
a collection of states with arrows between them representing the state transition. The state 
transitions among the three sub-chains are also allowed, as shown by the big arrows. 

Fig. 3 shows the input and output of HMM_CGH. The input includes a fully speci-
fied HMM_CGH model, which would be obtained by model training, and a sequence 
of GEP observations. The output is a sequence of hidden states representing 
gain/loss/normal states, which is done through prediction. 

• Input
– A HMM

• transition probabilities 
• emission probabilities

– A sequence of GEP observations

• Output

– Highest probability path of gain/loss.

Training:
estimate model parameters

Prediction:
find hidden CGH state

• Input
– A HMM

• transition probabilities 
• emission probabilities

– A sequence of GEP observations

• Output

– Highest probability path of gain/loss.

Training:
estimate model parameters

Prediction:
find hidden CGH state

 

Fig. 3. Input and output of HMM_CGH. The model has two major parts: training and  
prediction. 

2.2   HMM_CGH Training 

In our model, emission parameters are deterministic, independent of training data, as 
shown in Eq. 1. Transition parameters can be estimated by Maximum Likelihood 
Estimation (MLE) as shown in Eq. 2, where akl are the transition probability and Akl is 
the number of times that the state transition (k to l) happens in training data. 
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2.3   HMM_CGH Prediction 

Having the model parameters estimated, we can now use the fully specified model to 
estimate the hidden state paths for a new sequence of GEP observations. Viterbi algo-
rithm [23] is used to decode hidden states. Viterbi algorithm is a dynamic program-
ming algorithm. It estimates the state path by finding out the most likely one, 

* arg max ( , )P x
π

π π= . Suppose the probability vk(i-1) of the most probable path ending 

in state k with observation xi-1 is known for all the states k, then the probability corre-
sponding to the observation xi with the state l can be calculated as: 

( ) ( ) max( ( 1) )l l i k klk
v i e x v i a= − . The entire path π* can be found recursively. 

 
Viterbi Algorithm 
Initialization(i=0): 0 (0) 1, (0) 0 for 0.kv v k= = >  

Recursion(i=1…L): ( ) ( ) max( ( 1) ); ( ) arg max( ( 1) ).l l i k kl k kl
k k

v i e x v i a ptr l v i a= − = −  

Termination: * *
0 0( , ) max( ( ) ); arg max( ( ) ).k k L k k

k k

P x v L a v L aπ π= =  

Traceback(i=1…L): * *
1 ( ).i i iptrπ π− =  

3   Validation of HMM_CGH Predictor 

We tested the performance of HMM_CGH model using cross validation on real  
tumor cases. The scheme is shown in Fig. 4 with the following steps. (1) Case split-
ting. All the cases, associated with the paired GEP and CGH data, are split into two  
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Fig. 4. The flowchart of performing and evaluating HMM_CGH model 
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sets— training and testing. In the training set, coupled GEP and CGH data are used 
for model construction; in the testing set, GEP are used for prediction while the  
corresponding CGH are used for validation. (2) Parameter estimation. The model 
parameters are estimated using both CGH and GEP data from the training dataset. (3) 
Prediction. The GEP data from the testing dataset are applied to the model to predict 
chromosomal gain and loss. (4) Validation. The predicted gain/loss regions are com-
pared with those identified by experimental CGH on the same cases to evaluate  
prediction performance. (5) Repeating. The whole process is repeated by different 
splitting of training and testing cases. If leave-one-out cross validation (LOOCV) is 
used, which is the case in this study, the repeated splitting is performed n times (n is 
the size of the dataset), each time leaving one case out for validation. (6) Overall 
performance. After testing all the cases, we sum up the results of individual cases and 
calculate the overall model performance.  

3.1   Gene-Level Validation 

We first do probeset-by-probeset comparisons of the predicted outcome 
(HMM_CGH) with the “gold” standard (experimental CGH). Specifically, we count 
the number of probesets in each category of, true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN), for each testing case. Then summing up 
those numbers for all the cases from LOOCV, we calculate sensitivity, specificity and 
accuracy (Eq. 3) for the overall model performance. 

Sensitivity = TP / (TP + FN) 
Specificity = TN / (TN + FP) 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

(3) 

3.2   Cytoband-Level Validation 

Since our CGH data used for validation is the conventional CGH, which has the reso-
lution on cytobands, we further extend the comparison from probeset level to cyto-
band level by applying a smoothing algorithm after HMM_CGH prediction. Basi-
cally, we use a multinomial model to estimate the likelihood of a cytoband being a 
gain or loss as a whole, based on the probesets located in that cytoband. 

Suppose a cytoband contains n probesets. We count the occurrences of probesets in 
gain, loss and normal states predicted by HMM_CGH, denoted by n+, n- and no (obvi-
ously, n++n-+no = n). The likelihood of observing n+, n- and no under certain hypothe-
sis H is computed from the multinomial distribution as in Eq. 4. The null hypothesis 
H0 is “the cytoband does not belong to a DNA gain/loss region”. The alternative hy-
pothesis H1 is “the cytoband does belong to a DNA gain/loss region”. The parameters 
under H0 can be estimated from the whole genome as the background, and the pa-
rameters under H1 can be estimated from that particular cytoband, as shown in Eq. 5. 
Finally, we give a probability score, the log-of-odd (LOD), to measure the likelihood 
of a cytoband being a gain or loss. LOD score is defined as the log base 10 of the 
likelihood ratio under the hypotheses of H1 and H0 in Eq. 6. The higher the LOD 
score, the more likely this cytoband is a genomic gain or loss.   
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4   Results 

We tested the performance of HMM_CGH model with lymphoid malignancies as an 
application. The data was provided by the LLMPP and SPECS projects [24, 25]. We 
used a total of 190 cases of diffuse large B-cell lymphoma (DLBCL) with GEP per-
formed on Affymetrix HG-U133 Set arrays (Santa Clara, CA) and CGH performed by 
Vysis conventional CGH kits (Downers Grove, IL) which detects gain/loss with the 
resolution of cytobands. Due to the technical limitation, our conventional CGH ex-
periments could not precisely detect signals for small-sized chromosomes, such as 
chromosomes 19, 20, 21, 22 and Y. Those five chromosomes were excluded from this 
study. 

We handle chromosomes individually since each chromosome is a well-organized, 
condensed structure both physically and functionally. The spatial order of the genes 
on each chromosome was preserved according to the NCBI Human Genome database 
Build 36.2 [26]. The paired GEP and CGH data are preprocessed separately before 
integrating them into the model. The software packages BRB-Array Tool [27] were 
used to analyze the GEP data. We used 1.5-fold change as the threshold to determine 
over- or under-expression of genes in tumors as compared to “normal” samples. For a 
large series of tumor cases, the median expression of them can be used as a good 
approximation of the expression in normal samples. For CGH data, signal ratios 
greater than 1.25 or less than 0.75 were considered as chromosomal gains or losses, 
respectively. So GEP and CGH data were translated into symbolic format which can 
be directly fed into HMM_CGH model—H, L or M for high (> 1.5), low (< 0.5) or 
medium (between 0.5 and 1.5) expression, and “+”, “-” or “o” for gain (>1.25) , loss 
(<0.75) or normal (between 0.75 and 1.25) chromosomal alteration state.  

Applying the 190 DLBCL cases to the HMM_CGH model, we evaluate the model 
in the following three subsections. 

4.1   Gain/Loss Pattern Comparison of HMM_CGH, CGH and GEP  

We compared chromosomal gain/loss patterns from HMM_CGH prediction, experi-
mental CGH and GEP observations for each chromosome, case by case. Fig. 5 
showed an example of the comparison on a few cases randomly selected from the 
cases which showed chromosomal alterations on chromosome 1 based on CGH. Good 
concordance of gains/losses was observed between HMM_CGH and CGH, while  
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GEP observation showed three straight lines, shuffling gain, loss and normal regions. 
The pattern comparison shown in Fig. 5 is typical of the compositions for all tumor 
cases and all chromosomes. This suggested that GEP raw observations alone couldn’t 
gave good indications on chromosomal gain/loss, while HMM_CGH could be able to 
capture more information buried in the GEP data. 

 

Fig. 5. Comparison of chromosomal gains/losses from HMM_CGH (red), CGH (blue) and 
GEP observations (pink) of a few randomly selected cases on chromosome 1. It is typical of the 
comparisons for all cases and chromosomes. For each case, the chromosome is oriented from 
pter (left) to qter (right). The dotted lines are the baselines indicating “o”, and the solid lines 
above and below indicate “+” and “-” regions, respectively.  

4.2   Gain/Loss Prediction Comparison on Probeset of HMM_CGH and GEP 

In Fig. 6, we showed how HMM_CGH improved the gain/loss prediction from the 
GEP raw observations in terms of sensitivity, specificity and accuracy for each  
chromosome, using the method described in 3.1. Table 1 showed the statistics of 
sensitivity, specificity and accuracy for all chromosomes. In general, sensitivity was 
improved from 30% in GEP to 80% in HMM_CGH, specificity from 80% to 90% and 
accuracy from 80% to 90%, for both gain and loss prediction, and sensitivity from 
60% to 85%, specificity from 40% to 80% and accuracy from 60% to 85%, for nor-
mal region prediction.  

We noticed that the prediction on some chromosomes was not good, such as chro-
mosomes 4 and 17 for gain, and chromosomes 5, 9, 11, 12 and 16 for loss. We looked 
at the CGH data to check how gains and losses were distribution over tumor cases for 
each chromosome. We found that some chromosomes have very small number of 
cases having gain or loss on them— gain: chr 4 (7 cases) and chr 17 (10 cases); loss: 
chr 5 (1 case), chr 9 (10 cases), chr 11 (1 case), chr 12 (2 cases) and chr 16 (3 cases), 
out of a total of 190 DLBCL cases. Hence, it is anticipated that without a sufficient 
number of cases to train some particular chromosomes, the model couldn’t predict 
well on those chromosomes. 
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Fig. 6. Sensitivity (left) and specificity (right) in predicting gain (upper), loss (middle) and 
normal (lower) regions by HMM_CGH (red) and GEP observations (green). The accuracy 
figures are not shown here— they are similar to the specificity figures for gain and loss and 
similar to the sensitivity figures for normal. 

Table 1. Statistics of sensitivity, specificity and accuracy for all chromosomes in HMM_CGH 
and GEP observations 

  Sensitivity Specificity Accuracy 
GEP  29.22±2.28% 79.33±0.85% 76.53±1.75% 

Gain HMM_CGH 67.34±16.39% 87.51±4.45% 86.73±4.26% 
GEP  27.50±2.63% 82.55±0.84% 81.41±1.75% 

Loss HMM_CGH 55.26±29.25% 92.96±6.08% 92.51±6.18% 
GEP  61.64±1.74% 44.08±2.39% 60.36±1.93% 

Normal HMM_CGH 79.96±8.86% 72.65±8.15% 79.62±7.72% 

4.3   Gain/Loss Comparison on Cytoband of HMM_CGH and CGH 

After applying the smoothing algorithm as described in 3.2, we show in Fig. 7 the 
gain and loss comparison on cytoband from HMM_CGH prediction and actual CGH 
experiments. A good agreement was observed on most of the chromosomes. Table 2 
listed the high-frequency gain/loss regions which are concordant between 
HMM_CGH and CGH from Fig. 7. In addition, Fisher’s Exact was used to determine 
the nonrandom association of gains/losses between HMM_CGH and CGH. In 
Fisher’s Exact, the sums of the gains and losses for HMM_CGH and CGH are com-
pared on a band-by-band basis and 90% or 80% of the cytobands are similar in the 
two groups if p-value was set at <1% or <5%, respectively.  
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From the prediction, we realized that there are some cytobands showing no gains 
or losses at all for all the cases in HMM_CGH, while a considerable number of cases 
were observed with gain or loss in those regions in CGH, such as 1q11, 4p11, 4q11, 
5p11, 6q11, 9q11, 12q11, 13p, 14p and 15p. Then we looked into the detail of  
the probeset distribution on HG-U133 chips and found that there were no probesets  
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Fig. 7. Gain (upper) and loss (lower) comparison on the cytobands between HMM_CGH 
(green) and CGH (red). Cytobands are ordered from pter to qter for each chromosome.  
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Fig. 8. Distribution of probesets on Affymetrix HG-U133 chips. Cytobands are ordered from 
pter to qter for each chromosome. The bottom bars stand for the HG-U133 Set and the top bars 
with the dark color indicate the number of probesets added in HG-U133 Plus 2. 

Table 2. Consensus gain/loss regions from HMM_CGH and CGH 

 Consensus regions from HMM_CGH and CGH 
Gain 1q, 2p16-p14, 3q27-q29, 5p, 6p25-p21, 7q11-q22, 8q23-q24, 10p, 11q, 12q11-q15, 

13q31-q34, 18q21, X 
Loss 1p, 2p25-p24, 2q21-q24, 4q13-q26, 6q, 7p, 8p23-p21, 9p24-p21, 9q21-q22, 13q, 

14q31-q32, 17p13, 18q11, X 
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selected from those regions in the array design from Affymetrix because no annotated 
genes were described from public databases for those regions (Fig. 8). Those regions 
are considered as “gene deserts” and out of scope of our prediction.  

5   Conclusions 

In this paper, we developed a novel computational model, HMM_CGH, to derive 
genomic alterations from GEP data in tumors. HMM_CGH was constructed on a 
hidden Markov model, which was trained in the light of the paired experimental GEP 
and CGH data on a sufficient number of cases, and then applied to new cases for the 
prediction of chromosomal gains/losses from their GEP data. The prediction perform-
ance of HMM_CGH predictor was tested on 190 cases of diffuse large B-cell lym-
phoma using cross validation. The results showed that HMM_CGH predictor reached 
80% sensitivity, 90% specificity and 90% accuracy in predicting both gains and 
losses. HMM_CGH can be generally applied to other types of tumors to enhance the 
detection of genomic alterations.  
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Abstract. Feature subset selection for outcome prediction is a critical issue in 
large scale microarray experiments in cancer research. This paper introduces an 
integrative approach that combines significant gene expression analysis, the ge-
netic algorithm and machine learning for selecting informative gene markers 
and for predicting tumor outcomes including survival outcomes. In case of sur-
vival data, full use of individual’s survival information (both censored and  
uncensored) is made in selecting informative genes for survival outcome pre-
diction. Applications of our method to published microarray data on epithelial 
ovarian cancer survival and breast cancer metastasis have identified prognostic 
genes that predict individual survival and metastatic outcomes with improved 
power while basing on considerably shorter gene lists.  

1    Introduction 

Feature subset selection for outcome prediction is a critical issue in large scale mi-
croarray experiments in cancer research (Saeys et al. 2007). The development of  
a powerful prognostic profile requires selecting informative features or markers from a 
large pool of candidate genes that are present on the arrays. It is well known that a 
major challenge in microarray analysis is the large number of variable (genes) and the 
small number of samples which creates the problem of multiple testing (Chen 2007). 
As a result, simply picking up the significant genes to use as prognostic signatures can 
result in poor performance of the classifier due to inclusion of false positive genes or 
significant genes with low impact on classification (Wei and Billings 2007). In addi-
tion to the large number of genes, survival analysis of microarray gene expression data 
is further complicated by issues concerning time-to-event data such as censoring which 
is a unique feature of survival data. In this case, making efficient use of the observed 
survival information is crucial in building a good performance prediction model.  

In this paper, we introduce an integrative approach that combines significant 
gene expression analysis, the genetic algorithm and machine learning for selecting 
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informative gene markers and for predicting outcomes including survival outcomes. 
In predicting tumor survival, full use of individual’s survival information (both 
censored and uncensored) is made in selecting informative genes. The method is 
applied to published datasets from microarray studies on epithelial ovarian cancer 
survival (Spentzos et al. 2004) and on breast cancer metastasis (van’t Veer et al. 
2002). Results from our analysis will be compared with that from the original studies. 

2   Methods 

2.1   Preliminary Gene Filtering 

We start our analysis with preliminary gene filtering. Gene filtering is necessary be-
cause (1) a prognostic gene should be a significant gene that is associated with the 
outcome phenotype (Baker and Kramer 2006) and (2) gene filtering can help to re-
move redundant or uninformative genes from subsequent analysis. To do that, expres-
sion for each of the genes is tested for its statistical significance on the outcome under 
interest using differential gene expression analysis methods such as t-test, ANOVA. 
For survival data, we apply the univariate Cox regression model to assess the mar-
ginal association between the expression of each gene and survival time. Insignificant 
genes are filtered out using a predefined type I error rate. Note that, in order to avoid 
“information leak” due to involvement of testing set in gene selection, gene filtering 
is based on the training set only.  

2.2   The Genetic Algorithm  

The genetic algorithm (GA) is an adaptive searching method that mimics the natural 
selection process in evolutionary genetics (Stifanini and Camussi 2000). It is based on 
a population of competing solutions evolved over time by recombination /cross-over, 
mutation and selection to converge to an optimal solution for a defined fitness func-
tion. Instead of a single solution, multiple solutions are computed and compared to 
search for the optimum. GA is further featured by its robustness to the size of search 
space and the underlying multivariate distribution assumption. During evolution, we 
retain half of the chromosomes that give the highest fitness values without mutation 
and cross-over and produce the other half of the new chromosomes by recombination 
and mutation (Li et al. 2005). The retained and the new chromosomes are combined 
to enter a new generation or iteration. For each feature subset g, we set GA to maxi-
mize the fitness function defined as the inverse of the following function 

)()1()](/1[ gswgcwZ −+=  

Here s(g) is the number of selected genes in the feature subset; c(g) is the total accu-
racy calculated from cross-validation; w is the weight to be chosen for balancing the 
validation accuracy and number of genes in the chromosome. By choosing a proper w, 
maximizing the fitness function is equivalent to maximizing the prediction accuracy 
while limiting the number of genes to be selected. 
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2.3   Classification Model Building Using SVM 

The support vector machines (SVM) is a popular supervised machine learning algorithm 
widely in use in microarray studies (Brown et al. 2000). SVM builds a hyper plane that 
separates the training set with maximal discriminative margin. This plane is used to 
classify new samples in the testing set. Based on the genes selected by GA from the 
training data, a classification model or classifier is trained using the training data and 
then applied to the testing data to classify the testing samples. Here, we choose exactly 
the same samples for training and testing as in the original studies of the published data. 
This is to enable a fair comparison of our method to the original studies. The whole 
process from feature selection to model training and testing is illustrated in Figure 1. 

 

Fig. 1. Flow chart showing the whole data analysis process. Depending on the data, different 
statistical tests can be applied for filtering the genes.  

All calculations are done under the free R programming environment for statistical 
computing using the free R packages survival for Cox regression, genalg for GA and 
e1071 for SVM.  

3   Applications 

3.1   Ovarian Cancer Survival Data 

We first apply our approach to microarray data on cancer survival from Spentzos et 
al. (2004) who reported prognostic significance of gene expression profiling in sur-
vival of epithelial ovarian cancer in a sample of 68 patients using Affymetrix U95A2 
array containing approximately 12,000 genes. Their study identified a 115-gene  
signature that predicted patients with unfavorable and favorable survival outcomes  
at a significance level of p=0.004. In our analysis, we follow exactly their way of  
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dividing the samples for training and testing, i.e. 34 samples for training and 34 for 
testing using exactly the same samples in each group as did in the original study. 
Moreover, we also adopt the step-wised strategy by Spentzos et al. (2004) for fine 
tuning in training the model. That is we first train a classifier based on 14 extreme 
samples (7 shortest survivors without censoring and 7 longest survivors) to classify 
the remaining training samples in the middle into favorable and unfavorable groups. 
Then the whole training set together with their group membership is used to train the 
final model. In feature selection, we set w to 0.99 to give very high weight to maxi-
mize the cross-validation accuracy calculated using 5 folds cross-validation. Genes 
are first filtered according to their significance level in affecting individual survival 
by applying the univariate Cox regression model to the expression data in the training 
set. We set the criterion for gene filtering to p<0.03 (226 genes) for limiting the num-
ber of genes in the genetic algorithm while taking into account of multiple testing. 
Based on the 226 filtered significant genes which constitutes the feature space, our 
GA feature selection procedure (population size=200; generation size=100; mutation 
rate=0.2) identified a 5-gene signature that classifies our testing samples into favor-
able (15 individuals) and unfavorable (19 individuals) groups (Figure 2). The Affy-
metrix probe IDs and gene names for the 5 prognostic genes are shown in Table 1. 

The mean survival time for the unfavorable group is 30 months while that for the 
favorable is not yet reached in the observation time (Figure 3). Statistical test on dif-
ferential survival between the two groups has a log rank χ2=9.834 with 1 degree of 
freedom and a p-value of 0.0017. Note that this higher statistical significance is 
achieved by a 5-gene signature instead of 115. 

 

Fig. 2. SVM probability for favorable survival. Each sample is labeled by its ID followed by 
censoring status and follow-up time. Some censored samples with short observation time are 
predicted as favorable survivors. 
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Fig. 3. Kaplan-Meier survival curves for the favorable (upper) and unfavorable (lower) groups. 
Most of the longest survivors are predicted as favorable. 

3.2   Breast Cancer Metastasis Data 

Using gene expression profiling, van’t Veer et al. (2002) developed a 70-gene signa-
ture that predicts breast cancer metastasis within 5 years with high accuracy. The 
same data was re-analyzed by Thomassen et al. (2006) using similar training (61 
samples: 31 metastasis and 30 non-metastasis) and testing (180 samples: 42 metasta-
sis and 138 non-metastasis) sets as in original study but using SVM as classifier. 
Their analysis produced a sensitivity of 83% and a specificity of 60%. Following our 
procedure described in Figure 1, we first filtered the 24,496 genes by dropping genes 
with p>0.001 leaving 261 significant genes (feature space) for submitting to GA 
(population size=1000; generation size=100; mutation rate=0.25). By setting w to 
0.999, a 9-gene signature was developed by GA using the 61 training samples. A final 
classifier was trained using the 9-gene signature and 61 training sample. This classi-
fier predicts metastatic outcomes of the 180 testing samples with a sensitivity of 60% 
and specificity of 74% when the cut-off for SVM probability is set to 0.5. Table 1 has 
the probe IDs for the 9-gene signature from the raw data together with their gene 
names. Figure 4 displays the SVM probability for the 180 testing samples from which 
a clear trend of separation of metastasis and non-metastasis can be seen.    

Based on the 9-gene profile and using a cut-off for SVM probability of 0.5, the re-
sult from Figure 4 has a higher specificity (74%) but a lower sensitivity (60%) as 
compared to Thomassen et al. (2006) (sensitivity 83%, specificity 60%) using a much 
larger 70-gene signature. However, the total accuracies are all 71% in both analyses. 
Similar to van’t Veer et al. (2002), one can easily move the cut-off downward to 
achieve a high sensitivity above 80% while still having most of the non-metastasis 
samples correctly classified.  



 Evolutionary Algorithm for Feature Subset Selection 431 

 

Fig. 4. SVM probability for the 180 testing samples. A clear separation of metastasis and non-
metastasis patients can be seen. 

Table 1. Probe IDs and gene names for the selected prognostic features 

Probe ID Gene name 
Ovarian cancer  
34955_at ABCC4 
40307_at ATAD2B 
38750_at NOTCH3 
413_at HOXD9 
285_g_at HIST1H2AG 
 
Breast cancer  
Contig29682_RC CDK3 
NM_003293 TPS1 
NM_003403 YY1 
Contig23188_RC MS4A7 
AF161414 MED11 
Contig32739 ZNF117 
NM_017855 FLJ20513 
NM_001446 FABP7 
Contig32087_RC AK125443* 

                                      *A cluster of ESTs. 
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4   Discussion 

Through example applications, we have shown that the evolutionary method can be 
used for feature subset selection for prognostic analysis of tumor outcome using mi-
croarray gene expression data. Very informative subset of genes can be identified by 
GA when applied to significant genes filtered by applying conventional statistical 
models for differential gene expression analysis. Application of our method to pub-
lished data on epithelial ovarian cancer has captured a subset of statistically signifi-
cant genes (5 genes) that discriminates cancer patients with unfavorable and favorable 
survival outcomes (p=0.002) which outperforms the original result (p=0.004) from a 
115-gene signature developed by Spentzos et al. (2004). It is interesting to compare 
our Figure 3 with the result from the original analysis in Figure 3A by Spentzos et al. 
(2004). In both figures, the mean survival for the unfavorable group is 30 months. 
However, one censored sample with short observation time originally clustered as 
unfavorable is now predicted as favorable. Two samples with long observation time 
grouped as unfavorable are now predicted as long survivors. Our prediction is more 
meaningful as the longest survivor is put into the favorable group by our short signa-
ture genes while it was put in the unfavorable group by the original analysis in Spent-
zos et al. (2004). Note that the use of Cox regression model on gene expression data 
makes full use of individual survival information (both censored and uncensored) in 
the process of gene filtering. 

A good classification signature should be a minimal subset of genes that is not only 
differentially expressed but also contains most relevant genes without redundancy 
(Baker and Kramer 2006). Filtering the significant genes using statistical tests for 
differential gene expression analysis on the training samples can largely reduce the 
searching space for the genetic algorithm to converge the optimal solution. Our ex-
perience with GA showed that, without the weighting scheme in the fitness function, 
the larger the number of genes submitted the more genes can be selected by GA. With 
the weighting scheme, the number of selected genes can be controlled when a proper 
weight is assigned. Empirical applications indicate that our strategy enables good 
prediction for the testing samples by a subset of genes that contains much lower num-
ber of genes as compared with the original study.  

It is interesting that none of our selected genes overlap with the gene lists selected 
from the original studies. Ein-Dor et al.(2005) reported that the set of out-come pre-
dictive genes is not unique due to the existence of multiple genes that are correlated 
with the outcomes and some of them may have only small differences in their correla-
tions. Results from our study showed that GA can be a useful tool for finding the 
subset of predictive genes that are both informative and most representative. 
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Abstract. Reconstruction of biological interaction networks from high-
throughput experimental data is one of the most challenging problems in bioin-
formatics. These networks have specific topologies, whose characteristics are 
defined by evolutionary relationships between proteins and the physical limita-
tions imposed on proteins interacting in three-dimensional space. In this study, 
a method is proposed applying the topology of known biological networks to 
the analysis of microarray data for protein-protein binding interactions. In this 
method, genomic biological networks are derived from the body of published 
scientific literature. The numbers of interacting neighbors for proteins of spe-
cific molecular functions are observed.  That information is used in the analysis 
of microarray expression data to regenerate biological networks using a rank-
based algorithm, Gene Ontology Restricted Value Neighborhood (GRV-N). 
The results of this analysis demonstrate that incorporating knowledge of net-
work topology improves the ability of expression analysis to reconstruct inter-
action networks with a high degree of biological relevance. 

Keywords: Rank-based algorithm, Gene Ontology, Gene expression, Co-
expression network, Network topology. 

1   Introduction 

The reconstruction of genetic networks based on microarray gene expression data is 
one of the most challenging tasks in bioinformatics. The type of interactions consid-
ered in this study is protein-protein binding interactions and it is assumed that proteins 
that interact are also likely to be co-expressed as observed by microarray expression 
analysis. The typical approach to co-expression analysis is through the computation of 
correlation coefficient between a pair of gene expression profiles. The networks re-
constructed based on these methods are called reference networks [1-3].  
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As pointed out in [4-6], large scale networks, such as the Internet and the scientific 
collaboration network, show the scale-free property, i.e., the connections or edges in 
the networks follow the power law distribution. The analyses of many biological 
networks, including transcription regulatory networks and protein interaction net-
works revealed that these networks are not random and resemble some scale-free 
property. Although it is still controversial whether these networks are scale-free, the 
existence of highly connected nodes in the biological networks is evident.    

So far there is little research that has explicitly explored this important property to 
facilitate the learning of genetic networks from gene expression data. One recent 
study imposed the scale-free constraint on structure in network inference based on the 
S-system model [5]. They investigated the performance with a simulated small-scale 
time-course data. On the other hand, different mechanisms have been employed to 
explain the formation of the scale-free property in large-scale networks other than 
biological networks. Most of the suggested models relate to Preferential Attachment 
[3]. In contrast to modeling network growing, a model with fixed number of nodes 
and links was proposed recently [5]. By applying local rewiring moves, the network 
can reach equilibrium states that have the power law degree distribution. Different 
mechanisms were also proposed to explain specific properties of different types of 
networks, such as genetic regulatory networks and the World Wide Web [6].  

In our previous study [7], we proposed a rank-based network reconstruction algo-
rithm that takes into account the scale-free network topology. The algorithm, named 
Asymmetric-N, is based on a modification of the Symmetric-N algorithm [8], in 
which no distinctions are made for nodes in the network. In Asymmetric-N, a network 
was considered to consist of two types of nodes: Core and Peripheral. The expected 
neighborhood size of a Core node is far larger than that of a Peripheral node. Use of 
this distinction permitted Asymmetric-N to recover networks that were not only scale-
free but, when applied to the analysis of microarray data, yield networks of greater 
biological significance compared to the algorithm Symmetric-N. However, Asymmet-
ric-N requires the specification of Core and Peripheral nodes and pre-subscribed 
neighborhood sizes. The first requirement is relatively easy to be met in the context of 
reconstruction of transcription regulatory networks as the transcription regulators can 
be considered as Core nodes and the rest as peripheral nodes. However, the determi-
nation of neighborhood sizes is challenging.   

The method proposed in this work removes the above requirements through the 
analysis of functional aspects of known biological networks. Each protein is anno-
tated to several of the 23 yeast GO-Slim Molecular Function (MF) annotations as 
provided by the Saccharomyces Genome Database (SGD) [9]. A large body of known 
biological interactions has been collected from the databases of Ariadne Genomic 
Inc.’s ‘PathwayStudio’ software tool [10]. The neighborhood size of each protein will 
be determined by the analysis of known interactions in the database of known interac-
tions. With the specified neighborhood sizes of proteins, the GRV-N algorithm is 
applied.  

For the purpose of this study, we restrict protein interactions to those considered to 
be binding interactions. These are direct, physical relationships in which the molecu-
lar nature of the proteins involved should be informative. 
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We demonstrate that the reconstructed network based on this approach has greater 
biological relevance compared to methods that do not use any prior biological knowl-
edge. A biologically relevant interaction network is considered to be the one in which 
a significant proportion of identified interaction occur between protein of the same 
biological process or in the same sub-cellular location. Such an interaction network is 
also likely to contain many previously observed interactions. For this study, the SGD 
GO-Slim Biological Process and Cellular Compartment annotations are considered. 

2   Method 

The method proposed here requires a database of known protein-protein interactions, 
an ontology of specific annotations that can be applied to the proteins in these interac-
tions, and a microarray dataset on which the proposed method can be tested.   

2.1   Database of Published Protein Binding Interactions  

‘PathwayStudio’ [10] is a bioinformatics tool that identifies possible interactions 
between gene products through a natural language search algorithm of all available 
PubMed published abstracts. Given an input set of query genes or gene products, 
‘PathwayStudio’ searches the database of published abstracts, seeking instances in 
which genes are identified as interacting according to the information found in avail-
able PubMed abstracts. The nature of interactions (‘expression’, ‘regulation’, ‘genetic 
interaction’, ‘binding’, ‘protein modification’, and ‘chemical modification’ as defined 
in that software package) can be used to screen for specific types of interactions. The 
software returns the set of interactions with the PubMed references from which those 
interactions were identified. For this study, the entire Sachcaromyces genome was 
submitted and interactions of type ‘binding’ were collected for all proteins. 

2.2   Gene Ontology  

To impose biological knowledge on the set of gene products analyzed, annotation 
descriptions from the Gene Ontology (GO) [11] were used. There are three ontolo-
gies: Molecular Function, Biological Process, and Cellular Component.  Molecular 
Function (MF) annotation describes what gene product does at the molecular level, 
without specifying where or when the activity takes place in the broader context. 
Biological Process refers to a biological objective to which a gene product contrib-
utes, though GO Biological Process (BP) annotations are not the equivalent of a bio-
logical pathway. Cellular Component (CC) annotation refers to the place in the cell 
where a gene product is found. GO annotations, at their finest level do not describe 
specific gene products and a given gene product may have multiple GO annotations 
from each ontology. 

The specific GO ontologies considered in this study are the GO-Slim annotations 
as provided by the Saccharomyces Genome Database (SGD) [9], an expert currated 
selection of high-level annotations from the Biological Process, Molecular Function, 
and Cellular Component ontologies. 
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2.3   Microarray Dataset 

In this study, a subset of microarray data of cell cycle regulated genes in the budding 
yeast Saccharomyces cerevisiae microarray experiments [12] were used for the vali-
dation of the algorithms. These microarray experiments were designed to create a 
comprehensive list of yeast genes whose transcription levels were expressed periodi-
cally within the cell cycle. The gene expressions of cell cycle synchronized yeast 
cultures were collected over 18 time points taken in 7-minute intervals. This time 
series covers more than two complete cycles of the cell division. The subset used here 
is comprised of 998 of the most cyclically regulated genes in the microarray experi-
ments as identified by Cyclic Correlation Coefficients (CCC) [13]. 

2.4   Gene Ontology Restricted Value Neighborhood Method (GRV-N) 

GRV-N is a modification of the algorithm Asymmetric-N [7]. One of the issues with 
Asymmetric-N algorithm is the need for the specification of neighborhood sizes for 
core and peripheral nodes. In their work, the determination of these values was empiri-
cal. In the present study, we propose a method of assigning neighborhood size for each 
node in the network based on the information derived from the existing interactions    

From the database of all yeast proteins from ‘PathwayStudio’, 14,345 binding in-
teractions were obtained between 1951 proteins. Each protein is then annotated by its 
GO-Slim MF annotations. For each annotation, the average number and standard 
deviation of interacting proteins with this annotation in the 14,345 interactions are 
calculated (Table 1). The average of all neighborhood sizes is 18.   

An individual protein’s neighborhood size is then determined by considering its 
GO-Slim MF annotations and finding its neighborhood size from Table 1. More spe-
cifically, the neighborhood size of the protein is determined to be equal to the average 
neighborhood size for its GO-MF annotation plus k times the standard deviation. Here 
k is a parameter of integer. If a protein has multiple GO-Slim MF annotations, then 
the largest possible neighborhood size for that protein is used. 

The algorithm for GRV-N follows. Let NumNodes represent the total number of 
nodes in the network; N the vector of size NumNodes with each entry representing 
neighborhood size for node i; and CorrelationMatrix the pre-computed values of the 
correlation coefficients of gene expression profiles for all pairs of nodes. PCCThresh 
is the threshold below which potential interactions will not be considered. The func-
tion mySort() returns the other nodes in the sorted order in terms of their ‘closeness’ 
or correlation with the selected node. 

Algorithm GRV-N 

ConstructedNet = GRV-N(NumNodes, CorrelationMatrix, PCCthresh) 
  Step 1: for i = 1 to NumNodes 
     SortedNeighbor[i, 1:NumNodes - 1] = mySort(i, CorrelationMatrix);  
  Step 2: for i = 2 to NumNodes 
     for j = 1 to i – 1 
        if (j is in SortedNeighbor[i, 1:Ni]  and  i is in SortedNeighbor[j, 1:Nj]  and  
            CorrelationMatrix[i, j] > PCCthresh) 
        then ConstructedNet[i, j] = ConstructedNet[j, i] = 1; 
        otherwise ConstructedNet[i, j] = ConstructedNet[j, i] = 0; 
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Table 1. The average and standard deviations for number of neighbors of proteins grouped by 
GO-Slim Molecular Function annotation was derived from a database of published interactions 
from the Ariadne Genomics, ’PathayStudio’ database. 14,345 Binding interactions were 
obtained between 1951 proteins. 

GO Molecular Function 
Annotation 

Ave SD GO Molecular Function 
Annotation 

Ave SD 

DNA binding  18.1 19.4 Phosphoprotein phosphatase   12.5 13.5 

Enzyme regulator activity  15.9 19.1 Protein binding  16.1 19.4 

Helicase activity  23.2 28.9 Protein kinase activity  11.8 12.2 

Hydrolase activity  16.2 19.1 RNA binding  33.6 26.1 

Isomerase activity  28.3 30.5 Signal transducer activity  10.8 13.5 

Ligase activity  21.9 21.4 Structural molecule activity  20.6 17.7 

Lyase activity  14.7 17.0 Transcription regulator   13.3 16.1 

Molecular function unknown  10.4 16.5 Transferase activity  13.8 18.6 

Motor activity  12.9 20.2 Translation regulator activity  32.9 26.3 

Nucleotidyltransferase activity  23.8 24.5 Transporter activity  9.7 14.0 

Oxidoreductase activity  13.5 19.6 Other  10.0 15.7 

Peptidase activity  21.4 22.9     

3   Results 

To demonstrate the utility of the proposed GRV-N algorithm for construction biologi-
cally relevant protein interaction networks, three methods for making interaction 
networks were compared. The first is GRV-N using a PCC threshold of 0.9.  To test 
that any improvement in network quality is solely due to a restriction on neighbor-
hood size and not the GO annotation-specific neighborhood size, interaction network 
using a fixed neighborhood size of 18 (N-18) was tested. The method is denoted as 
Fixed-N(18). PCC alone at thresholds of 0.9, 0.9085, and 0.95 were also tested. The 
threshold of 0.9085 was selected because it produces an interaction network of nearly 
the same size as GRV-N and was used to determine if any observed improvement by 
GRV-N is not solely due to the size of the network. The proportions of identified 
interactions that share a GO-Slim BP or CC annotations determine the quality of cal-
culated interaction networks. 

3.1   Compare GRV-N to PCC and Fixed-N(18) 

Results of different methods for determining interaction networks from microarray 
expression data (Table 2) indicate that there are substantial differences between the 
methods. 

GRV-N has the highest percent of interactions that share a GO-CC annatation,  
followed by Fixed-N(18)  PCC (0.95) has the worst percent interactions that share a 
GO-CC annotation. Though it is a very small set of interactions, PCC (0.95) has the 
highest percent interactions that share a GO-BP annotation, followed by GRV-N. All 
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methods show some improvement over PCC (0.9). It is important to note that all other 
identified networks are actually a subset of interactions identified by PCC (0.9). 

To best understand these results, it is useful to assign a statistical relevance to the 
observations.  Hypergeometric distribution was used to calculate the probability that 
the number of edges in an interaction network that share a GO annotation out of the 
total number of interactions identified from the set of interactions in PCC (0.9) could 
occur by random chance.  By that criterion, GRV-N, with pVal-GO-BP=4.85E-5 and 
pVal-GO-CC=5.44E-08, is far more significantly enriched for interactions sharing a 
GO annotation than expected by chance than any other method tested.  Even for the 
small network identified by high stringency PCC (0.95), though it had the highest 
percent of shared GO-BP annotations, is not as statistically significant (pVal-GO-
BP=1.97-E2 and pVal-GO-CC=8.67-E2) as the larger GRV-N identified interaction 
network. 

Table 2. Results from several methods for identifying protein-protein interaction networks 
from cyclically expressed, cell cycle microarray data are summarized here. The methods used 
are “GRV-N” for GRV-N using a neighborhood size equal to the average of neighbors by GO-
Slim MF annotation, “GRV-N(+1SD)” for GRV-N using a neighborhood size equal to the 
average of neighbors plus one standard deviation by GO-Slim MF annotation, “Fix-N(18)” uses 
a rank-based method and a maximum neighborhood size of 18, and “PCC (#)” uses Pearson 
Correlation Coefficient alone and a threshold of (#). “pVal GO-BP” and “pVal-GO-CC” are 
probabilities of finding the number of interactions that share a GO annotation by selecting from 
PCC (0.9) interactions at random, as calculated by hypergeometric distribution. 

Method # Interactions %Same 
GO-BP 

%Same GO-
CC 

pVal       
GO-BP 

pVal       
GO-CC 

PCC (0.9) 695 26.3 30.6   

GRV-N 539 29.7 35.4 4.85E-05 5.44E-08 

GRV-N (+ 1 SD) 684 26.8 31.1 3.37E-02 1.72E-02 

Fix-N(18) 608 26.8 32.1 8.02E-02 9.36E-03 

PCC (0.9085) 538 27.3 31.0 4.58E-02 7.25E-02 

PCC (0.95) 119 32.8 30.3 1.97E-02 8.67E-02 

3.2   Effect of Neighborhood Sizes 

To determine if the improvement seen in GRV-N method is due to the relevance of 
the neighborhood sizes used, GRV-N was compared to one thousand networks using 
randomly selected neighborhood sizes. For the randomly selected neighborhood sizes, 
each GO-MF annotation was assigned a random value between the minimum and 
maximum neighborhood sizes from Table 1, ten to thirty four.  Significance of GRV-
N results was considered to be the frequency at which a network generated with ran-
dom neighborhood sizes had a better percent of GO-BP or GO-CC shared annotations 
in the final network. 

The average number of interactions in the 1000 random neighborhood networks 
was 1,251.9 with a standard deviation of 76.1.  The frequency at which higher percent 
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of shared GO annotations were observed in the random neighborhood networks was 
0.046 and 0.016 for GO-BP and GO-CC respectively. This indicates that specific 
neighborhood sizes calculated have a significant effect on deriving a network with 
biological relevance. 

3.3   Shared GO-BP and GO-CC Annotations 

Though GRV-N and the specific neighborhood sizes used in calculations have been 
determined to be statistically significant improvement over other methods tested by 
considering proportion of identified interactions that share a GO annotation, the final 
test of an interaction network is its biological utility. Though GRV-N is best at find-
ing interactions that share GO annotation, Table 3 lists the specific GO annotations 
that are shared and present at greater than 2.5% of total shared interactions in at least 
one method’s network. Though overall differences are slight between methods, the 
overall set of GO annotations that are shared between interacting proteins are very 
logical for an experiment investigation cell cycle; the most frequently occurring 
shared GO annotations are “DNA metabolism”, “Cell cycle”, and “Response to 
stress”. GRV-N has slightly higher proportions of “Response to stress”, “Translation”, 
“RNA metabolic process”, and “Protein modification process” annotations. 

Table 3. For those protein interactions that share a GO-Slim Biological Process or GO-Slim 
Cellular Component annotation and are present in at least 2.5% in at least one method’s results, 
the distribution of GO annotation shared are presented here. Four specific networks are 
considered. “GRV-N” is for GRV-N using a neighborhood size equal to the average of 
neighbors by GO-Slim MF annotation at a PCC threshold of 0.9. “Fixed-N(18)” uses a 
maximum neighborhood size of 18 at a PCC threshold of 0.9.  PCC(0.9) and PCC(0.95) are for 
PCC alone at PCC threshold of 0.9 and 0.95 respectively. “GRV-N” Values are highlighted 
when they are the highest for an annotation. 

 
% GO-Slim Annotation PCC     

(0.9) GRV-N N-18 PCC 
(0.95) 

  Cell wall organization and biogenesis 1.1 1.3 1.2 2.6 
  Protein modification process 2.7 3.1 3.1 2.6 
  RNA metabolic process 2.7 3.1 3.1 0.0 
  Translation 4.9 5.6 5.5 2.6 
  Organelle organization and biogenesis 7.7 7.5 8.0 2.6 
  Response to stress 9.3 10.6 10.4 7.7 
  Cell cycle 30.6 26.9 28.2 20.5 
  DNA metabolic process 36.6 36.9 35.6 61.5 

  Cellular bud 1.9 2.1 2.1 2.8 
  Cell wall 1.9 2.1 2.1 2.8 
  Ribosome 4.2 4.7 4.6 2.8 
  Cytoplasm 18.3 19.4 19.5 5.6 
  Chromosome 27.7 28.8 27.7 75.0 

  Nucleus 40.8 37.2 38.5 11.1 
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Fig. 1. The largest connected set of proteins identified by GRV-N from analysis of microarray 
data with interactions that share GO-BP annotations “Response to stress” (white), “RNA meta-
bolic process” (gray), and “Protein modification process” (black).  Protein ‘RAD27’ is anno-
tated with all three GO-BP annotations.  Solid lines are interactions identified by GRV-N and 
previously published, dashed lines are identified by GRV-N but not previously published, and 
curved, dotted lines are published interactions that were not identified by GRV-N. 

The protein interactions in these four enriched specific GO-BP annotations were 
selected from the set of interactions identified by GRV-N.  The largest interconnected 
set of proteins from these interactions is pictured in Figure 1. This sub-network com-
bines genes involved in DNA replication, base excision repair, and maintenance of 
genome stability, linked together through the multifunctional nuclease RAD27 [14]. 
In this figure, 33% of identified interactions correspond to previously published inter-
actions as identified in the database of ‘PathwayStudio’, suggesting a high degree of 
biological relevance. The identified set of interacting proteins is further connected by 
known interactions that were not specifically uncovered by this analysis. This sug-
gests that the identified interactions are indeed portions of larger protein complex. 
There are a number of reasons that this method might fail to identify previously pub-
lished interactions. The interactions may be true, but not present in the specific system 
of the microarray study. They may be true and present in the microarray study, but do 
not meet the expectation that interacting proteins are necessarily co-expressed. GRV-
N identified interactions that are not previously identified in the published literature 
might also represent useful, biological observations. Although some might be false 
positives, others might be potentially novel interactions, true and known interactions 
that are not well represented in ‘PathwayStudio’, or true protein interactions via some 
larger protein complex whose elements are not all present in the 998 cyclically ex-
pressed genes used in this analysis. 
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4   Conclusions 

In this study, a method, Gene Ontology Restricted Value Neighborhood, GRV-N, was 
proposed to incorporate knowledge of biological network topology into the analysis 
of microarray data to construct protein-protein interaction networks. 

The results of this study indicate that GRV-N performs better than PCC alone or 
Fixed-N in its ability to recover interaction networks with interaction pairs that share 
GO-Slim annotations. The improvements in interaction networks were statistically 
significant and independent of variables such as network size. The GO-MF annota-
tion-specific neighborhood sizes were significant and informative as demonstrated by 
a comparison to one thousand networks generated using randomized neighborhood 
sizes. The interactions identified and the specific GO-Slim ontology annotations 
shared suggest significant biological relevance of the GRV-N identified networks.  

The method proposed here uses a database of protein-protein binding interactions 
derived from published data and GO-Slim Molecular Function annotations to describe 
network topology. Certainly, identifying the characteristic topology of additional 
types of interactions, derived from any of the numerous alternative databases, may 
provide additional insight into biological interaction networks and utility for analyz-
ing microarray data using GRV-N. Although GO-Slim Molecular Function annotation 
was used here, there are many possible ways to select ontology annotation to describe 
proteins that might prove even better at describing protein-protein binding or any 
additional type of interactions that could be considered such as phosphorylation, me-
thylation, or enzyme regulation. 
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Abstract. Deoxyribonucleic acid (DNA) microarrays are part of a promising 
class of biotechnologies that allow the simultaneous monitoring of expression 
levels in cells for thousands of genes. One of important issues in microarray ex-
periments is the classification of biological samples and predicting clinical or 
other outcomes using gene expression data. A closely related issue is the identi-
fication of marker genes that have good predictive power for an outcome of in-
terest. Although classification is not a new subject in the statistical literature, 
the large number of genes with relatively small sample size generated by mi-
croarray experiments raises new computational challenges. In this study, the 
gene expressions of breast cancer tumors are investigated and the performance 
of several popular classification methods, including decision tree, logistic re-
gression, linear discriminant analysis, and k-nearest neighbor are compared. 
The results show that certain genes are significantly differentially expressed 
across groups of patients, and k-nearest neighbor method achieves better per-
formance in class prediction than the other classification methods.  

In addition to reviewing and illustrating the implementation of standard sta-
tistical tests and classification methods in modeling genome data, we will also 
address some important issues in the study, such as the role of experimental de-
sign (e.g., split-plot experimental design and analysis), the impact of correlation 
(within plate, between plates, between probe, etc.), the sampling issue in cross 
validation and training-testing splitting.  While these issues have been discussed 
in simple statistical problems, they have not been well understood by bioinfor-
matics researchers in modeling complex microarray data.  In this talk, we will 
address these issues and their impact on various standard testing and classifica-
tion methods and illustrate the potential problems through the cancer tumor mi-
croarray experiments. 
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Abstract. This paper shows how the agility provided by the Bio-jETI
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oping seven variations on a multiple sequence alignment workflow.
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1 Introduction

Bioinformatics algorithms, tools, and databases have been developed for several
years now, assisting researchers in different phases of their data analyses. How-
ever, working with a large set of different tools, distributed throughout the world,
is a cumbersome and error-prone undertaking when the single steps are carried
out manually. Challenging bioinformatics tasks like microarray and proteomic
data analyses require complex processes, and specific care in combining, mon-
itoring, and documenting the single analysis steps. Therefore, frameworks that
provide the means for automating complex bioinformatics analyses involving a
number of heterogeneous services have begun to enjoy great popularity.

With Bio-jETI [1] we provide a comprehensive, nevertheless intuitive, graph-
ical framework that helps biologists to integrate services, build processes (in the
form of directed graphs) from the emerging components, analyze and execute
them, and finally deploy and provision them as applications or services. Inter-
nally Bio-jETI uses a multi-purpose domain-independent modeling framework,
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the Java Application Building Center (jABC ) [2], for the process definition and
management, and the Java Electronic Tool Integration framework (jETI ) [3] for
dealing with the integration and execution of remote services. Both are based
on well-established software technology and have been applied successfully to
different application domains.

Several workflow systems have been used in the biological domain: Taverna
[4,5] and Kepler [6], but also the Bio-SPICE Dashboard [7], Triana [8,9], Pega-
sus [10] and VIEW [11]. Taverna and Kepler are born on top of fine-granular
Grid projects: Kepler, for example, features a component for workflow definition,
but at the grid-management level. As grid-based systems, Kepler and Taverna
are inherently data-flow-oriented workflow systems.

Through the underlying jABC, Bio-jETI is on the contrary clearly a control-
flow-oriented environment for service design and analysis. In our opinion, this is
an evolution step: bioinformatics processes become increasingly networked, par-
allel, conditional, event-driven, recursive, and asynchronous: this is the kind of
complexity sources whose control is at the core of jABCs strengths. Additionally,
clear formal semantics is the precondition for a formal analysis and verification
of properties of the designed workflows based on automatic mathematical proofs.
The jABC has been built with this formal capability in focus, as well as with
the ability to scale for large models.

The objective of this paper is to illustrate how Bio-jETI enables end users
(biologists, statisticians, biochemists) that are not IT experts to define, analyze,
execute, modify, and interactively develop bioinformatics analysis processes in
an agile way. For convenience the examples are woven around a multiple se-
quence alignment, since it is commonly known and part of many analyses in
genomics, proteomics, and transcriptomics. Bear in mind, however, that the
presented methods are neither limited to the alignment example nor to the men-
tioned fields, but rather applicable whenever a service for a subtask of a complex
analysis is available.

After a brief introduction of Bio-jETI’s use (Sect. 2), we interactively develop
a variety of processes involving a multiple sequence alignment (Sect. 3), then
we elaborate on the analysis and further capabilities of Bio-jETI (Sect. 4), and
finally we conclude in Sect. 5.

2 Using Bio-jETI for Service-Oriented Process
Development

Bio-jETI is a sophisticated platform for integrating, orchestrating, and provid-
ing bioinformatics services [1]. Workflows in Bio-jETI are built by constructing
service compositions (called Service Logic Graphs, or SLGs) that orchestrate
basic services (in the form of SIBs - Service-Independent Building Blocks) along
the flow of control.

All the user interaction happens within an intuitive graphical environment,
hardly requiring any classical programming skills. Figure 1 shows the GUI: the
available SIBs are listed in a browser (upper left), from where they can be
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Fig. 1. The graphical user interface of Bio-jETI

dragged onto the drawing area (right), where the SLG construction takes place.
Different inspectors (lower left) can be used for the detailed configuration of
components and models.

The advantages of the tool are manifold: being a control-flow-oriented service
definition environment, it is adequate to support complex control structures as
primitives. For example, iterations over lists or matrices are provided as SIBs in
the environment. At the same time the data dependencies (which are secondary
to the control flow) do not clog the representation: even large processes with
complex dataflows are still easily readable.

Moreover, SLGs are at the same time mathematically analyzable objects: they
are directed graphs, whose nodes (the SIBs) represent basic services and whose
edges (their branches) define the flow of control. They are thus amenable to the
sophisticated analyses provided by modern Computer Science (see Sect. 4). We
show all these features on a simple example of sequence alignment.

3 Seven Variations of an Alignment Workflow

Sequence alignments try to find correspondences between the bases or codons
of DNA, RNA, or amino acid sequences. The aim is to establish similarities
between sequences which result from the existence of a common ancestor [12].
One of the most popular alignment algorithms is ClustalW [13]. It computes
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Fig. 2. Simple alignment process, using BiBiServ’s ClustalW web service

fast pairwise alignments of the input sequences in order to establish a so-called
guide-tree, which is then used to settle the order in which the multiple alignment
is assembled from the sequences.

In the following we show along a typical workflow design session how the
capabilities of Bio-jETI help discovering, testing, modifying, adapting, and cus-
tomizing processes that center on two ClustalW implementations which can be
accessed via web services provided by the Bielefeld University Bioinformatics
Server (BiBiServ) [14] and the DNA Data Bank of Japan (DDBJ) [15], respec-
tively. Accessing these algorithms as local Bio-jETI resources, e.g. via a local
copy of a ClustalW implementation, is a simpler special case.

3.1 The Simple Alignment Process

In our first example (figure 2) the web service call to CustalW is encapsulated
by the SIB with the BiBiServ icon (third from left). The surrounding process
realizes some simple data management: the initial SIB (with the underlined
name) selects a file from the local file system, its content is then read into the
execution context, the data is sent to the web service, and finally the result is
displayed to user. If an error occurs during the remote call, an appropriate error
message is displayed. Due to the process surrounding the pure computation
it is also possible to refine the error handling in a proactive fashion: we can,
e.g., introduce fault tolerance or at least enforce a graceful termination of the
computation, providing the possibility of resuming the process execution at the
failed step at a later date.

3.2 Fetching the Input Sequences from a Database

The input data for the alignment is often not initially available at the local
filesystem. If the desired data is, for instance, stored in the EMBL sequence
database, the DBFetch web service [16,17,18] of the European Bioinformatics
Institute (EBI) can be used to retrieve a set of sequences. For our example
process, this means that the SIBs that read the sequences from a file must be
replaced by SIBs that fetch the sequences via a web service and put them into
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Fig. 3. Additional remote service retrieving data from a public repository

the execution context in the required format. This is done by drag and drop
in the Bio-jETI GUI (figure 3). Here we need also data mediation: the SIB
StringArray2String performs the necessary conversion between the two different
formats. In order to facilitate reading we will omit error branches from now on.

3.3 Using a Different Alignment Service

Although the ClustalW algorithm itself is generally the same, different imple-
mentations have different characteristics, especially regarding accepted input
formats, parameters, and structure of the output. While the result obtained by
BiBiServ’s ClustalW implementation is the pure alignment, the output of the
ClustalW web service of the DDBJ is more elaborate, providing detailed statis-
tics and a description of the implied phylogenetic tree, which may be useful for
some analyses. Replacing the SIB calling BiBiServ by one that calls the DDBJ
analogon yields the process displayed in figure 4. The process is immediately
executable.

Fig. 4. Alternative alignment service: using DDBJ instead of BiBiServ

3.4 Interaction: Letting the User Chose the Service

If it is not known at process modeling time whether the pure BiBiServ alignment
or the elaborate DDBJ output is wanted, it is useful to leave the choice to the
user. For this purpose, an interactive SIB displays a customized message dialog
at runtime, asking the user to take a decision. In this case the user can choose
between DDBJ and BiBiServ (figure 5, center). The subsequent SIB checks which
service has been chosen and directs the flow of control accordingly.

Fig. 5. User interaction and conditional branching
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3.5 Visualization: The Implied Phylogenetic Tree

As mentioned before, the result of the DDBJ’s alignment web service contains a
description of the implied phylogenetic tree. This can be extracted via a regular
expression (SIB extract tree, figure 6), written into a file and then displayed by
a specific viewer, in this case ATV (A Tree Viewer [19]). Furthermore, since this
visualization workflow is a quite widely reusable step, this sequence of SIBs is
exported as a subprocess on its own, as shown in the bottom part of the figure.

Fig. 6. Invocation of specific viewers and definition of a subprocess

3.6 Comparing Two Alignments

The biological truth is usually not known, therefore bioinformatics algorithms
approximate a set of researcher-defined criteria in order to establish some hy-
pothesis that subsequently has to be validated in further experiments.
ClustalW’s computations, like those of many other algorithms, can be fine-tuned
by means of a number of parameters, for instance the value for the gap-open and
gap-extension penalties. To find out whether our input sequences produce a sta-
ble alignment hypothesis, we can, e.g., run one instance of ClustalW with low
and another with high gap penalties, and compare the results. Figure 7 shows a
process that starts two parallel threads, each executing ClustalW with different
parameters, and finally calls a tool which visualizes possible differences between
the results, here TkDiff, a visualizer for the Unix diff command.

Fig. 7. Parallel threads and invocation of specific services
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Fig. 8. Loops and result aggregation

3.7 Comparing Several Alignments

To evaluate the impact of more than two different parameters on the result a
pairwise diff-viewing of all results is not a feasible method. Since alignments have
a score, i.e. a number indicating how ”good” the alignment is (low scores usually
imply many matches, while high scores result from mismatches and gaps), this
indicator can be used to obtain a survey of the results’ diversity. The process
pictured in figure 8 iterates over a list of substitution matrices (for instance
PAM, BLOSUM, GONNET, and ID), and executes ClustalW with a different
matrix parameter in each iteration. The score of each alignment is parsed out
and added to a result pattern that is finally displayed.

4 Exploiting More of Bio-jETI’s Potential

The processes presented in the previous sections do not, of course, cover all
the modelling capabilities of Bio-jETI. The features shown in the different ver-
sions of the example can be combined, and the processes can be extended with
whatever functionality is available in Bio-jETI (and encapsulated in a SIB). Our
GeneFisher-P [20] gives an example of a more complex process realized with
Bio-jETI: PCR primer design comprises an alignment step in case the input
consists of multiple nucleic or amino acid sequences. Depending on the kind of
the acutal input, services for consensus calculation, backtranslation, and finally
for the primer design itself are invoked by the process.

Basic services as SIBs
The atomic actions from which Bio-jETI workflows are assembled are provided
by the process building blocks, hence the potential for the processes is defined
by the collection of available SIBs. The jABC provides rich SIB collections for
commonly occurring tasks: SIBs that realize control-flow constructs like condi-
tional branching, loops, and parallelism, but also libraries for working with lists
and matrices and libraries for incorporating GUI elements.

What is more, any SIB available in the underlying jABC platform is reusable
inside Bio-jETI. For example, messaging and telecommunication services ex-
posed as Parlay-X web services can enhance the Bio-jETI processes: an SMS
notification in case of termination or exception handling is easily added. This
interdisciplinary synergy via reusal is one of the key strengths of the underlying
technology.
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If new building blocks are required, there are several ways to obtain new SIBs.
Clients for remote services can, e.g., be generated from their WSDL descriptions
by the jETI plugin. The SIB-Creator plugin generates buildings blocks that
invoke methods of a specific API, like, e.g., the BioDOM [21] libraries or Bio-
Java [22].

Orchestration without programming
Together with the sophisticated execution context and hierarchy concepts, the
graphical process definition in the jABC is in fact as powerful as application
development in a classical programming language. It is, however, directly acces-
sible by non-IT experts, unlike the scripting or programming-based approaches
still most common today.

Execution and compilation
Process models consisting of completely implemented SIBs are directly exe-
cutable. The Tracer plugin allows for the overall or step-wise execution of the
workflow. Figure 9 illustrates the execution of a process similar to that of fig-
ure 6. Additionally, the Tracer provides detailed information on the execution
history, the objects in the context, and running threads, and is thus useful for
experimenting, testing and debugging purposes.

The GeneSys code generator can be used to compile any of the shown exe-
cutable process models into a separately deployable piece of code that can be
run independently of Bio-jETI and the jABC.

4.1 Compliance to Policies

More plugins are available in order to support or enhance process development.
The LocalChecker and the ModelChecker verify constraints on single SIBs and on
the whole model, respectively. Users can in fact specify rules that express policies,

Fig. 9. Process execution with the Tracer plugin
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Fig. 10. Results of model checking alignment processes against policies

or best practices, or constraints. A possible policy is that the alignment location is
always chosen by the user, i.e. that an alignment computation is always preceded
by a location selection. In a user-friendly variant of Computation Tree Logic
(CTL), a possible input language for the model checker, this is expressed as

”alignment” implies (previously ”location-selection”).
Figure 10 shows the result of model-checking two previous realizations against

this formula. As we see, the workflow from figure 5 respects this policy (all SIBs
are framed in green), while that from figure 7 does not: it does not provide any
user interaction step before launching the algorithms and thus does not fulfill
this requirement. The SIBs at which we detect the violation (the two algorithm
executions) are marked by a red frame.

4.2 jETI

The jETI platform [3] is used within Bio-jETI to accomplish the communica-
tion with remote tools. This includes acting as a client for (SOAP and REST)
web services, CORBA IDL or other RPC standards. This way the provision of
appropriate SIBs happens as far as possible by generation based on a standard-
ized service description, for instance WSDL (see figure 11). We have already
successfully imported in the past entire SIB palettes for, e.g., FASTA or Muscle
services. The complete deployment of applications into new web services can be
realized by jETI as well.

jETI provides also a specific technology for making file-based Java or com-
mand line applications accessible via the internet. In jETI, the application
provider maintains a server that accesses (a collection of) applications on the one
side, and on the other it provides an interface to the internet. At runtime, the
server receives service requests from a client (the Bio-jETI SLG) and forwards
them to the actual applications, then collects the results and builds adequate
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Fig. 11. Service Integration via the jETI Technology

response messages for Bio-jETI. Similar to the web services’s WSDL descrip-
tions, relevant request parameters as well as the actual calls used by the jETI
server to execute the applications are defined in an XML file. This information is
used by jETI to automatically generate appropriate SIBs (figure 11). Integration
of services by means of jETI is convenient especially in the case of legacy appli-
cation, REST services, and whenever else the setup of a classical web service is
not adequate or feasible.

5 Conclusion and Perspectives

We have illustrated on a well known example, a multiple sequence alignment
workflow, how Bio-jETI enables an agile way of working with analysis processes.
We also showed the potential for automated analysis that the platform provides
on the example of a policy rule. A flash demo, available at our web site1, in-
volves processes similar to those presented in this paper and illustrates more
lively the interaction, the agility of the orchestration process, and the execution
behaviour.

The shown alignment workflows are only one simple example. Since the un-
derlying technologies, the jABC and jETI, have been designed in a domain-
independent fashion, any algorithm, tool, or database can be integrated,
provided that there is a way of accessing it programmatically. In fact, previous
and current Bio-jETI projects address diverse life science disciplines, including
complex database searches, sequence-based processes like PCR primer design
[23] or retrieval of orthologous IDs [24] as well as statistical analysis of LC/MS
experimental data using GNU R statistics packages [25] and network analysis
and visualization with Cytoscape [26].

Current work on Bio-jETI comprises, among others, a comprehensive inte-
gration mechanism for GNU R statistics packages and a plugin for automated
service discovery based on the Bio-MOBY ontologies in order to increase the
range of services that can be integrated into the platform in a fully automated
fashion. Furthermore, we plan to enhance Bio-jETI with workflow synthesis tech-
niques [27] that we have already successfully applied within other projects, such
as the Semantic Web Service Challenge [28].

1 http://jeti.cs.uni-dortmund.de/biojeti/downloads/biojeti wink.html

http://jeti.cs.uni-dortmund.de/biojeti/downloads/biojeti_wink.html
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Abstract. We show how Aspect-Oriented Programming (AOP) and its main 
concept – the aspect – can be used to effectively construct interoperating collec-
tions of scientific tools and models.  Such collections, termed “federations”, 
naturally arise in computational frameworks for bioinformatics problems. Pro-
gramming modern scientific simulations and models require more domain ex-
pertise than can be found in one researcher; often the many researchers needed 
to create the various computational components of a full solution cannot be 
gathered to work as a single controlled software development team.  Our ap-
proach allows individuals to construct their own components and tools, and 
then have them assembled without alteration (and without coordination of the 
original programmers) into a federation for the larger final computational solu-
tions. We illustrate the methods with two SNP and haplotype analysis tools 
written in Python. 

1   Systems Science and Model Federations 

This paper demonstrates how a new programming technology -- aspect-oriented pro-
gramming -- can assist in the creation of modern scientific software, the kind needed 
for systems science.  In this first section we discuss the nature of modern scientific 
software. In the next section, we give a brief overview of aspect-oriented program-
ming. Following that, we introduce our driving problem in systems toxicology, and 
show how AOP allows a good solution to our needs. We conclude with a comparison 
of our work with prior related research projects. 

Software Construction by Multiple Independent Researchers 

Unlike the past, where a single science researcher could construct a model represent-
ing the physical aspects of some phenomenon under study, modern scientific software 
is becoming a collective effort of many different scientists working in different 
knowledge domains with different bodies of expertise.  Though the goal is to produce 
a single system that simulates, explains, or characterizes some physical phenomenon, 
the knowledge needed to complete the model is more than can be obtained from sin-
gle researchers. 

Moreover, from a purely software point of view, different researchers will work indi-
vidually in different programming languages, using different domain or community  
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libraries, on different computing platforms. All these technical factors confound efforts 
to assemble the individual efforts of several scientists into a cohesive explanatory and 
predictive model of some large complex system. 
 

 
Fig. 1. Model federation, with mismatched component models 

Module Mismatch in Federations 

We use the term federation for a collection of programs developed by individual sci-
entists, and assembled to function interoperably as a cohesive scientific model. Model 
federations are how future scientific software systems will function, to overcome the 
inherent complexity of the encoded knowledge needed for large-scale modeling, as 
well as to allow individuals to work semi-independently in their own domains while 
contributing to a purposive whole (the federation). Scientists must collaborate to get 
their individual contributions assembled correctly; this collaboration is often difficult, 
over distance. Therefore a solution to assembling federations that minimizes this co-
ordination is desirable. 

Individual models that are to execute together will mismatch in several ways, in-
hibiting their assembly for interoperation.  First, they may be developed over different 
spatial frameworks and the divisions or units of space may mismatch in size, granu-
larity, locations, etc. Next, the model simulations may operate on different time 
scales, giving temporal mismatch.  One simulation may proceed in iteration steps that 
represent hours, and the output of this simulation may be needed as input to one that 
has an iterative time step representing seconds. Thirdly, models may exhibit mathe-
matical mismatch in that each may employ different solution techniques… regular 
grids, finite element meshes, Markov chains… it may not be clear how the results of 
one technique can be applied to another. Moreover, error will accumulate in any 
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model and interconnecting models presents the problem of tracking errors accumula-
tions across these mismatch boundaries. Figure 1 illustrates this idea of module mis-
match in a federated model. 

Models may also mismatch in technical ways related only to the computational 
platform they are constructed for. One may read and write data files and may save re-
sults internally to be emitted as a lump when the entire simulation is complete. An-
other may be using operating system streams and emitting data on each iteration of a 
simulation loop. Yet another may be using message passing in an object-oriented ar-
chitecture with persistence, or saving data in a database. Interconnection of models 
with technical mismatches requires the intervention of a programmer for each connec-
tion, or an interconnection system which has been developed to automatically handle 
the common types of mismatches that occur by setting up pre-written filters. Our ap-
proach leans to the former (programmer intervention) but use of aspects means the 
connection code can be developed externally without altering the source code of the 
individual tools and models. 

 

 
Fig. 2. Altering tool source code is a less attractive approach 

Figure 2 shows one part of the model federation from Figure 1. Here, however, 
module mismanagement is handled with custom code that has been added to the 
source code of the component tools. Under this approach, federations are constructed 
by rewriting sections of each tool that wishes to import or export data so that format 
transformations are properly done. We consider this approach inferior to the aspect-
based approach show in Figure 1 for several reasons. First, tool source code has to be 
available for alteration (the aspect-based approach requires only knowledge of 
method names -- information that is often available in API documentation). Secondly, 
this approach may require rewriting a tool differently for each different combination 
in which the tool is needed.  Using aspects means writing different aspects for differ-
ent federations, but these aspects are separate code modules and no change is needed 
to the tool source code itself. 

 
 
 
Air model 
Time step 2 minute 
 

 
 
 
 
Water model 
Time step 1 hour 
 

Placement of mismatch 
management code 

 inside tools… 
 

Means altering source 
code 

Integer 
out 

Change text out to in-
teger out 

Integer in 

Change data formats 
as needed 



460 D. Stotts, K. Lee, and I. Rusyn 

Systems Science: Computational Infrastructure for Large Problems 

Model federations are one example of what is becoming known as systems science. A 
computational systems approach to large-scale scientific problems is currently viewed 
as necessary for success in domains where many different experts are needed to as-
semble the sum total of the information that problems require; for example, computa-
tional systems biology seeks to model biological entities from molecular interactions, 
up through cellular processes, up to macro-scale structure like muscles, organs, sys-
tems, and entire organisms [11]. Inter-connecting the many component models and 
simulations is a very challenging computing research problem. Waters and Fostel 
have described similar needs and similar potential solutions for the field of systems 
toxicology [12]. 

We have studied this problem in the past in the context of environmental models 
for the US EPA. Our solution was based on a custom-designed framework called 
Deco [3], and required programming model components into the base functional pro-
gramming language of Deco (Haskell).  While we were able to successfully combine 
several models into a federation modeling the hydrology of the Neuse River [3], we 
found the need to change the source code of each component model a serious problem 
for constructing federations from the work of independent scientists working in dif-
ferent programming languages. We now find Aspect oriented programming to be 
more promising as a means of generating federated systems science solutions. 

Driving Problem: Mouse Liver Toxicology Studies 

Our driving problem aims at integration of genetics, toxicogenomics and conventional 
toxicity endpoints into a systems biology approach using mouse models for improved 
characterization of toxicity pathways, discovery of new molecular and cellular indica-
tors of exposure and outcome, better dose-response assessment and more accurate in-
ter-individual/cross-species extrapolations. Acetaminophen (APAP) was selected as a 
model toxicant because, despite the existence of a large amount of information re-
garding the mechanisms of action, conventional clinical biomarkers largely fail to 
connect toxicity with clinical outcomes. Furthermore, no biomarkers exist for predict-
ing toxicity before standard signs of toxicity are observed, or for determining individ-
ual susceptibility to APAP overdose. The conventional toxicology and the new -omics 
data from this study are being correlated with knowledge of genetic differences be-
tween mouse inbred strains with an underlying goal to identify predictors of genetic 
predisposition to toxicant-induced organ damage. 

We have designed and built computational approaches that improve the linkage in 
the source-to-outcome paradigm by automating and streamlining the data flow from 
each of these methods that contribute to the definition of parts of the metabolic and 
gene expression control networks that predict the toxicity outcomes and define the 
susceptible genotypes. Figure 3 shows how these analyses require multiple data 
streams and sources to be fed as input to numerous tools, and the output of tools used 
respectively as input to tools further down the line. In many cases, the data must be 
transformed, edited, altered, or enhanced for it to match the input requirements for the 
tools being used. This process has been done manually in the past, and is both time 
consuming and error prone.   
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Fig. 3. Workflow among tools required for mouse tox studies 

Our AOP-based solution is a framework that creates filters to arbitrate data flow 
among the various tools. Automating this currently-manual construction makes it far 
less error prone and more easily repeatable. The framework effectively allows the 
tools to interoperate, producing and consuming data that is massaged correctly by the 
filters into the required formats and structure. These “filters” are in reality aspects 
written in AOP-enhanced languages such as AspectJ [7] for Java, and the SpringPy-
thon system [3] for Python. We have successfully integrated several of the tools in the 
workflow, and are currently working to complete the suite. Our work so far has been 
to prove the principle of using aspects for weaving together federations, and we the 
results are encouraging. 

Several of the tools in our workflow are not written in Java or Python. Or next step 
in integration will be to move to an AOP that is meant to handle multiple different 
source languages. There are several research efforts underway on AOP notations for 
weaving together multiple source languages, but none is yet as production ready as 
AspectJ or SpringPython.   

In the following sections we first give a more through explanation of aspect ori-
ented programming, and then we illustrate the aspect-based method for creating tool 
federations with a specific example using two SNP analysis tools written in Python. 

2   Aspect Oriented Programming 

Aspect oriented programming (AOP) [4,5] is a fairly recent development in the field 
of software engineering, and it offers a solution to the problem just described. The 
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concepts are not specific to any one language; several aspect languages are in wide 
use, including the AspectJ and Spring Python implementations that we use.  

AOP mainly deals with cross-cutting concerns that don’t fit well with the tradi-
tional programming paradigm. Typically there are levels of separation and encapsula-
tion within a program hierarchy. Cross-cutting concerns touch multiple and varying 
modules within an application, often dealing with an aspect of the program that can-
not be concisely captured through traditional programming means. A classic example 
is logging; this is a concept used by all modules and objects yet owned by none. Fur-
thermore, making a change in logging code would mean touching many pieces of 
software which are otherwise unrelated. 

 

Fig. 4. Traditional programming (L) vs. Aspect oriented programming (R) 

Figure 4 shows how aspects relate to traditional programming. An aspect is a sepa-
rately written code module that describes several things: (1) what points in execution 
of the host program are the “breakpoints” at which the aspect needs to awaken and 
take action (2) what are the computational behaviors to be executed when the host 
program reaches one of the breakpoints. When the needed aspects have been written, 
a compiler “weaves” the aspect source code into the host source code, producing a 
new system for compiling and execution. Thus the host source code is not re-written 
by the software developer… instead, the aspect code is inserted into it automatically. 

Aspects can execute before or after method calls. They can intercept the parameters 
that are being sent to a method, and can keep copies for other use, or pass them on to 
the method unchanged, or change the parameters before passing them. 

Aspects as mismatch management modules in federations 

Our use of aspects, however, is not for crosscutting concerns that the concept was 
originally developed for. Rather, we see aspects as a natural “glue” that allows data 
being manipulated in one program to be intercepted, drawn out, and sent (perhaps fil-
tered and transformed) to another program, and vice versa. In some sense, our use of 
aspects is a small subset of the potential uses they have in overall programming. 

We use aspects to look for input/output statements in the tools and models of a 
federation.  Most scientific models operate by reading data files, and writing data files 
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of results. We key on these I/O points in order to capture the data being generated by 
one component model, and send that data to another model that needs it as input. The 
aspect, being a small program filter, can also massage the data it has captured. An as-
pect can transform data formats before sending it on; it can buffer data for simulations 
that are running at different cycle times; it can interpolate data values in order to feed 
an output model that needs more data than its input model is generating; an aspect can 
act as a data sink for an output model that is producing more data than needs to be 
passed on. In this sense, aspects are the mismatch management modules shown in 
Figure 1.  

Aspects essentially become custom filters, able to be generated for the specifics of 
a particular federation without alteration of the base tools. Aspects can work on an en-
tire data set as a batch, thus matching the capabilities of sequential techniques. Alter-
nately, aspects can work in real-time as data is generated, filtering data generated by 
source tools before it is processed by sink tools. Aspects used in this fashion are a 
glue binding independent tools together without their knowledge. It allows the tools to 
remain independent. As the bridge technology the aspect contains and combines the 
information to handle data communication between data sources and data sinks. As-
pects can be passive, active and reactive. Aspects work with multiple dependency 
path tools chains, and thus are not limited by a restrictive linear dependency chain. 

3   Example: Aspects for Python SNP Tools 

We can now illustrate these ideas with a combination of two existing bioinformatics 
applications analyzing single nucleotide polymorphisms (SNPs). The first application 
is called Genome SNP Interval Analyzer (GSIA); the second is SNP Evolutionary 
Tree Analyzer (SETA). Both were written in Python by researchers at UNC Chapel 
Hill, but at different times. SETA was designed to analyze the kind of data that GSIA 
produces, but users have been manually editing GSIA output files to make then com-
patible with SETA input expectations. This repetitive and error-prone practice makes 
these two tools ideal for AOP-based interconnection. 

Between any two individual DNA sequences within a species, approximately 
99.9% of the sequence is identical. The remaining 0.1% of variations accounts for the 
differences between all individuals. Evolutionary forces such as mutation and recom-
bination work to create these differences. Scientists analyze the haplotype (sequence 
of SNPs from a single specimen) to determine relatedness between the sequences and 
thus which variations are due to random changes (mutation) and which are due to re-
production (recombination). Typically, an m2 pair-wise compatibility matrix (m = 
number of SNPs) is created to do this analysis. With haplotypes stacked on each other 
as rows, the columns become SNPs (see Figure 5). The compatibility matrix is the 
pairing of these SNP columns, such that pairs that differ through recombination are 
marked accordingly. With large genome datasets in the gigabyte range due to dense 
sampling of the genome, fast algorithms are needed to produce these analyses. 

(1) GSIA. The compatibility matrix is used to find regions within the genome 
where there is no evidence of recombination; there are many such regions within a 
matrix. A non-optimal linear algorithm for finding a region is to scan left-to-right. 
Starting with the first SNP, maintain a queue of SNPs. Moving left-to-right, compare 
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the next SNP with all SNPs in the queue. If there is an incompatibility due to recom-
bination, close the interval, clear the queue, and begin the queue with the SNP that 
just created the incompatibility. Visually, this can be seen as a triangle starting the far 
left-hand corner. The triangle grows until it touches a marked block. The SNPs under 
this triangle are an interval. The left vertex of the next triangle begins at the column 
next to the right vertex of the previous triangle. This solution is not unique, since the 
same process can also be done right-to-left. The solution is not optimal either, as it 
merely finds a minimal set of non-overlapping intervals. Even though left-right and 
right-left are not maximal, they both have k intervals. The main goal is to find the 
minimal set of k maximally sized intervals.  

An O(N2) algorithm would find and combine the maximum left-right and right-left 
intervals for each SNP. GSIA finds this set of all intervals of maximum size with lin-
ear runtime. It then uses this to find the minimal sized set of maximal intervals. Since 
searching through all such sets is exponential, GSIA uses an algorithm to find a set 
(not necessarily unique) in expected linear time, O(k). 

Compatibility 
Matrix 

SNPs 

Haps 

 

Fig. 5. Data structure analyzed by combining GSIA and SETA 

(2) SETA. SETA uses SNP data to generate a phylogenetic tree of the data. A phy-
logenetic tree is a way to represent relatedness between sequences. Vertices within the 
tree are haplotypes, and the edges connecting trees represent mutations. A phyloge-
netic tree represents an evolutionary history of the haplotypes. It is a representation of 
the common ancestry betweens individuals within a species. By using the output of 
GSIA as the input for SETA, the data and ancestry can be represented using the few-
est possible number of trees. 
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(3) GSIA  SETA federation. There is a simple and natural combination of these 
two applications. GSIA writes its results of a minimal set of k maximally sized inter-
vals to a data file, which is consumed as input by SETA. However, as the tools were 
independently written, the data formats mismatch. GSIA writes to comma separated 
value files (csv); SETA expects input as text. The conversion is fairly simple (as 
noted above, the researchers were doing it manually with an editor): for each line, 
copy the first two comma-separated columns then append seven comma-separated ze-
ros, omitting the column titles/labels. GSIA produces many csv output files, but 
SETA needs only a single specific one of these. 

We federate these two tools by writing an aspect in SpringPython [3].  The aspect 
is a separate code module which SpringPython will execute concurrently with the 
tools; this approach does not require altering any source code in either tool. There are 
several strategies one can take in writing these aspects. The approach we prefer is to 
intercept the output actions in the data producing tool (GSIA here). Once one triggers, 
the aspect intercepts the data and copy/converts it to pass on to SETA (via invocation 
of corresponding SETA input methods). Here is the Python code for the interceptor 
and the action taken on interception: 

#     ASPECT TRIGGER SPECIFICATION 
# 
from springpython.aop import * 
 
# intercept the function Chromosome.printInterval() 
# that writes data to csv files  
pointcutAdvisor = RegexpMethodPointcutAdvisor (  
   advice = [AspectOutputStreamIntercept()],  
   patterns = [".printInterval.*"] 
   ) 
service = ProxyFactoryComponent (  
   target = Chromosome(), interceptors = pointcutAdvisor 
   ) 
 
#     INTERCEPTOR METHOD DEFINITION 
# 

  from springpython.aop import * 
 

class AspectOutputStreamIntercept(MethodInterceptor): 
  def invoke(self, invocation): 
    #let function proceed as usual 
    results = invocation.proceed() 
 
    #determine if this is the file we are interested in 
    #the following assumes that argument order is fixed 
    if(invocation.args[-1].name.endswith("min_intervals.csv")): 
      textFilename = invocation.args[-1].replace(".csv", ".txt") 
      #filter some of the data intended for csv file into text file 
      textFile = file(textFilename, "w") 
      #use the data values a & b (args a & b are the second and 
      #third argument respectively), followed by seven 0s 
      textFile.write(args[1] + "," + args[2] + ",0,0,0,0,0,0,0") 
      textFile.close() 
 
    #return the original function 
    return results 
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This aspect targets the function printInterval() called in GSIA that actually does 
the csv file writing. printInterval is passed values and a file, and writes those values to 
the file. We designed the class AspectOutputStreamIntercept to run on the trigger. 
This interceptor determines if this is the file we are interested in, and if so copies the 
target data to the text file in the format that SETA uses.   

This strategy for writing the aspect makes data available to SETA line by line, 
which can be useful if the target tool can work effectively with input data coming in 
piecemeal.  Given the code structure of GSIA, we could also have written an aspect to 
key on a different method call – specifically, the enclosing one that generates the en-
tire output file.  Under this strategy, no data would be made available to SETA until 
all data was produced in GSIA. The net computational results would be the same, but 
the runtimes would vary due to forced sequential tool executions. The piecemeal ap-
proach will be most useful when tool execution times are very lengthy. Creating fed-
erations via aspects does require design thinking like producing any software. 

Another strategy entirely for writing federating aspects is to key on method execu-
tions in the receiving tool (SETA here). We have produced examples where execution 
of the data input functions in SETA cause an aspect to trigger; the aspect then seeks 
the output data produced by GSIA and converts it from csv to text. Which strategy to 
use (aspect pushes data vs. aspect pulls) is a design issue that has to be determined by 
tool synchronization needs, access to source code (we don’t alter source code, but we 
do have to know the method names to define triggers), etc. 

Another interesting and useful feature with aspects is the ability to decide in the 
aspect code whether to allow the triggering method call (such as the file write in 
GSIA) to complete normally or not. In our example, this means we could allow the 
producing tool (GSIA) to write its output data as normal (which we did) or we could 
shunt execution back to the tool without completing the file write (after the data was 
copy/converted out to the receiving tool SETA). All these options are achieved in the 
aspect code without any alteration of the tool source code. 

4   Related Prior Research 

Software researchers have been developing methods for “programming in the large” 
for years, allowing different programs written in different languages to be combined 
into cohesive computational engines. The area is collectively known as middleware. 
The literature is too large to survey here, but it is distinct from the AOP approach we 
have described in that middleware is usually dependent on a custom-built framework 
or software platform that requires custom programming of each component module. 
The AOP approach allows independent model development and assembly without co-
ordination of the various researchers contributing to a federation. 

By thinking of model observation as a cross-cutting concern, aspects can be used to 
create observers and allow the models to be created independent [1]. They note that 
the computer simulation language MAML, designed to help scientists in a domain 
outside of computer science develop computer simulations, has some AOP functional-
ity already built-in. Model observers created as aspects are simpler to code and more 
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intuitive to understand. A modeling language supporting AOP further simplifies  
understanding and development of both model and observer. Adding more AOP fea-
tures to MAML can improve and enhance construction of computer simulations. 

AOP has been proposed as a way to separate the two core concerns of high per-
formance scientific computing; the mathematical model and its parallel execution [2]. 
There are various obstacles of varying difficulty to achieving this goal. Current tech-
niques for parallelization such as for-loop iteration and compiler directives are not as-
pect friendly, plus code may not follow good software design technique. Re-factoring 
models to improve the base code design and support use of aspects is possible, but a 
more solid underlying base code design introduced early in the life cycle will best ex-
ploit the benefits of AOP. More study is also needed on higher dimension tasks. 

Adaptation of middleware technology has increased as such systems can be used 
for wide general use, or for optimized specific use. As their functionality and com-
plexity increase, middleware following traditional software methodologies has be-
come harder to use and configure. Aspects can be factored out of legacy middleware 
systems to reduce complexity and improve both performance and configurability [8]. 
This allows them to be general use without a large footprint or specialized without 
multiple code versions. 

In earlier work addressing how to handle the complexity and footprint issues with 
feature rich middleware, aspects are used to incrementally add features [9]. To get 
flexible and extensible middleware, features are conceptualized as combinations of 
aspects. The code base contains the common core features. With the user selecting the 
feature they need, there is a level of separation between the user and the interdepen-
dency of its aspects. Aspect consistency is important; feature selection must account 
for things like missing dependencies and conflicting features. With this large number 
of possible aspect configurations, automated testing becomes even more critical. As-
pects can also be used to create simple yet thorough unit testing. 

Increased flexibility and simplified programming are not the only benefits of using 
aspects in middleware; consistency across product-lines and improved scalability are 
also sighted as benefits [10]. One group of concerns, homogenous concerns across 
product-lines, include tracing and logging, first failure data capture for error analysis 
and reporting, plus capturing monitoring and statistics data. With those concerns im-
plemented fairly consistently in all applications, large teams using them through as-
pects can reduce policy and implementation costs. Heterogeneous concerns, with  
behavior changing depending on its location in the code, need aspect-oriented re-
factoring to provide the best benefit. The aspects can be easily integrated into the 
build of large scale applications with minimal overhead on the compilation time. 
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Abstract. We present BIODQ, a model for estimating and managing the quality 
of biological data in genomics repositories. BIODQ uses our Quality Estimation 
Model (QEM) which has been implemented as part of the Quality Management 
Architecture (QMA). The QEM consists of a set of quality dimensions and their 
quantitative measures. The QMA combines a series of software components 
that enable the integration of QEM with existing genomics repositories. The 
basis of our experimental evaluation is a research study conducted among 
biologists. Evaluation results show that the QEM dimensions and estimations 
are biologically-relevant and useful for discriminating high quality from low 
quality data. The most relevant capabilities of the QMA are also presented.  

Keywords: Data Quality, Genomics Databases, GenBank, RefSeq, quality 
dimension, measure, estimation, management, classification, architecture. 

1   Introduction 

The rapid accumulation of biological information as well as their widespread usage 
by scientists to carry out research is posing new challenges to determine and help 
manage the quality of data in public genomics repositories. Genbank [1], RefSeq [2], 
and Swissprot [3] are prominent examples of public repositories extensively used by 
genomics researchers and practitioners, and biologists in general.  Analysis and 
processing of low-quality data may result in wasted time and resources, or may lead 
scientists to false conclusions, thus hampering scientific progress. 

Several quality models and assessment methodologies have been proposed in the 
literature, but most were developed in the context of enterprise data warehousing and 
addressed quality problems existing in the business domain. These methodologies do 
not fit naturally into the genomics context because biological data is more complex 
and less structured than typical business data. In addition, the increasing data 
generation and usage rates limit the kind of quality assessments that can realistically 
be performed. We therefore believe that there is a need for automated quality 
assessment techniques that provide users of genomics data sources with objective and 
quantitative estimates of the quality of available data. 
                                                           
* The author's current affiliation and address is: Microsoft Corp., One Microsoft Way, 

Redmond, WA 98052. Email: alexandm@microsoft.com 
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1.1   How Do Genomics Data Sources Currently Manage Quality? 

To discover how public repositories of genomics data manage quality, we focused our 
study on the databases of the National Center for Biotechnology Information (NCBI) 
[4] because of their widespread use by the scientific community. The three major 
problems found related to quality are described next. 

First, genomics data sources currently provide minimal information about the 
quality of the stored data. Some repositories offer base-calling scores, which are 
quality indicators of the sequence data solely. Typically, however, genomic records 
contain a significant amount of annotations about the sequence data, which should be 
accounted for if a comprehensive evaluation of the records is sought. 

Second, the curation process that public genomics repositories have in place 
(which consists of cleaning, standardizing, and annotating the submitted data to 
improve its value and quality) is partially automated but still requires a significant 
amount of human effort. This, together with the increasing amount of data submitted 
by multiple sequencing centers on a daily basis, causes an increasing ratio of data 
generation to data curation. For this reason, most genomics sources publish their 
newly acquired data before it undergoes full curation, thus raising concern over the 
quality of available data. 

Third, current query interfaces of genomics data sources do not support quality-
driven queries. Without such capability, the identification of high-quality records 
from the query results becomes a time-consuming task for the users. While 
experienced users can generally glance at a record and roughly estimate its quality 
level, when a query retrieves a large number of records examining each record 
individually is not practical. New users would need to become familiar with the 
implicit quality indicators of the repository before they can properly interpret and use 
them. Hence, an automated way to present the query results ranked by quality score 
would be preferred. 

1.2   Benefits of Quality Augmentation in Genomics Data Sources 

Augmenting existing genomics repositories with quality information would have 
multiple benefits. First, the value and utility of existing repositories would be 
enhanced by providing users with quality information about the retrieved data, which 
would in turn help the users decide what data best fits their specific needs. Second, 
biologists and other users of current repositories would be able to work more 
effectively when using a quality-aware interface that allows them to filter out query 
results below a certain quality threshold, and to rank the retrieved data based on 
different quality scores. This would aid users to quickly discriminate high quality 
records from query results. Third, the data curation process would be facilitated by 
providing preliminary estimates for the quality of records submitted to the database, 
which can in turn help curators prioritize records for further revision. 

2   Related Work 

Numerous models, evaluation methodologies, and improvement techniques have been 
developed in the area of Information Quality (IQ). Particularly, Lee et al. developed 
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AIMQ [5], a methodology for IQ assessments and benchmarks based on a set of IQ 
dimensions important to information consumers. Naumann and Rolker [6] proposed 
an assessment-oriented classification of IQ criteria based on three sources of IQ: the 
user, the source, and the query process. These works represent valuable contributions 
for modeling and understanding data quality and its challenges, but they fail to 
provide quantitative measures that support the quality dimensions or indicators 
proposed. 

Data Quality has also been studied in the context of Cooperative Information 
Systems.  Mecella et al. [7] describe a service-based framework for managing data 
quality in cooperative information systems, based on an XML model for representing 
and exchanging data and data quality. Scannapieco et al. [8] developed the 
DaQuinCIS architecture and the Data and Data Quality model for managing data 
quality in cooperative information systems. Naumann et al. [9] presented a model for 
determining the completeness of a source or combination of sources. All of these 
works address quality issues that arise in the presence of multiple sources, in 
particular problems related to the exchange and integration of quality information 
among the sources. Most such issues, however, are not applicable to our model since 
we are primarily concerned with the quality of data within a single source.  

A few works have been proposed in the context of data quality for biology and the 
life sciences. The research by Müller et al. [10] identifies the main errors involved in 
the process of genome data production as well as their corresponding data cleansing 
challenges. A thorough examination of the quality of the human genome DNA 
sequence is described by Schmutz et al. [11]. Both focus on assessing the quality of 
the sequenced data only, whereas our approach is also concerned with the annotations 
about the sequenced data. Missier et al. [12] proposed the Qurator system, which 
allows the specification of user’s personal quality functions into quality views that are 
compiled into Web services. Preece et al. [13] describe a framework for managing 
information quality in e-Science, which allows scientists to define the quality 
characteristics that are of importance in their particular domain. Our approach differs 
from these works in that it aims to define general and objective quality dimensions 
that can be computed in an automated way, i.e., does not require user’s input. 

3   Quality Estimation Model 

We present QEM, a new model for estimating the quality of biological data in 
genomics repositories. The model comprises a set of measurable quality dimensions, 
and a set of quantitative measures that can be systematically computed to provide a 
score for each quality dimension. 

We define Data Quality as a measure of the value of the data. Since value is a 
rather intangible concept, we decompose it along five different quantifiable 
dimensions. Quality dimensions are aspects of the quality of data which either the 
user or the data provider is interested in measuring. Since we aim for quality 
dimensions that can be quantified, we need to specify how the quality dimensions will 
be measured. The particular formula or algorithm by which each dimension is 
assigned a score is called a measure. The set of quality scores (one per dimension) of 
a data item is referred as its quality metadata, and represented as a vector where each 
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entry contains the data item’s score for a dimension, e.g., Q = [d1,d2,…, dn] with 
d1,d2,…, dn being the scores for the n quality dimensions. 

3.1   Quality Dimensions and Measures 

In order to identify suitable quality dimensions for our model, we looked for 
dimensions that met the following criteria. First, the dimension could be objectively 
measured, meaning that no subjective appraisal or interpretation was needed to assess 
a score for the dimension. Second, the measure for the dimension could be efficiently 
computed, meaning that initialization and update of the dimension’s score was fast 
enough to allow its use in a real scenario. Third, the dimension was biologically 
relevant, meaning that it effectively captured criteria directly or indirectly used by 
biologists when assessing the quality of data. The biological relevance was initially 
judged by the authors and later validated experimentally. 

Using these criteria, a set of seven quality dimensions was selected, namely 
Density, Freshness, Age, Stability, Uncertainty, Linkage, and Redundancy. The first 
five of these dimensions are per-record dimensions and the last two are cross-record 
dimensions. Per-record dimensions are dimensions that consider quality aspects of a 
single record (i.e., they assess records on an individual basis). Cross-record 
dimensions are dimensions that consider quality aspects across a set of records (i.e., 
they asses the interactions among records).  

Underlying Data Model. Before formulating measures for the quality dimensions, 
we describe the data model in which the underlying biological data is represented: the 
semistructured data model. Semistructured data is commonly described as 
“schemaless” or “self-describing” data [14] because the schema is contained within 
the data. A semistructured data model generally represents data hierarchically (i.e., in 
a tree-like structure), with actual data represented at the leaf nodes and schema 
information encoded in upper layers of the tree (i.e., internal nodes). In this work, leaf 
nodes store atomic data items, which are either strings or numbers, and internal nodes 
represent complex data items, which are collections of data items. The Abstract 
Syntax Notation number One (ASN.1) [15] and the Extensible Markup Language 
(XML) [16] are two examples of semistructured data models.  

Density Dimension and Measure. This spatial dimension assesses the amount of 
information conveyed by a data item d. The amount of information can be measured 
as the number of (possibly nested) data items within d. We include two density sub-
dimensions that are relevant for biologists, Features and Publications. The former 
considers features annotated in the Feature Table [17] of a genomic record, which 
describe regions of biological significance in the sequence. The latter considers the 
references of a genomic record, i.e., publications in a journal article, book chapter, 
book, thesis, monograph, proceedings chapter, proceedings from a meeting, or patent. 

The density score of an atomic data item d is defined as 1 for any d, hence each 
atomic data item has the same contribution to the total amount of information. Based 
on the density score of atomic data items, we recursively compute the density score of 
complex data items. If n is the number of components (i.e., direct descendants) of a 
complex data item d, and Di is the density score of the ith component of d in the data 
tree, the density score of d is defined as 
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The density score can take on values from the interval [1, ∞[, where 1 represents the 
minimum density value, and there is no upper limit on the density value. 

Freshness Dimension and Measure. This temporal dimension indicates how up to 
date the contents of a data item d are. It can be measured as a function of the time 
elapsed since the last update of the data item d, using an exponential decay. The 
freshness score of an atomic data item d is given by 
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where t is the current time, u is the time when d was last updated, f is the frequency of 
update of the database, and σ is a parameter that controls the decay rate of the 
freshness score. The role of f is to scale the time elapsed since last update to units that 
reflect the rate at which the database gets updated. The exponential decay gives more 
weight to recent past than to distant past, and also ensures that the freshness score 
takes values between 0 and 1. 

For a complex data item d, the freshness score is defined as the average of the 
freshness scores of its components. The freshness score can take on values from the 
interval [0, 1], where 0 and 1 denote the minimum and maximum freshness values, 
respectively. 

Age Dimension and Measure. This temporal dimension indicates how old the 
contents of a data item d are. It can be measured as a function of the time elapsed 
since the creation of the data item d. The age score of an atomic data item d is 
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where t is the current time, c is the time when d was created, f is the frequency of 
update of the database, and β is a parameter that controls the decay rate of the age 
score. The role of f is to scale the time elapsed since creation to units that are in 
accordance to the database update rate. The transformation applied to this scaled time 
produces large increases in age at the beginning and then slows down as time passes 
by. This also ensures that the age score is between 0 and 1. 

For a complex data item d, the age score is defined as the average over the age 
score of its components. The age score can take on values from the interval [0, 1], 
where 0 and 1 denote the minimum and maximum age values, respectively. 

Stability Dimension and Measure. This temporal and provenance dimension 
captures information about changes in the contents of a data item d through time. 
Stability can be measured as the magnitude of the changes undergone by the data item 
relative to its size, and weighted by a function of the time elapsed since the change 
occurred. This weighting function diminishes the influence of older updates in favor 
of recent ones. The stability score of an atomic data item d is given by 
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where n is the number of intervals at which we measure the stability of d, ti is the time 
elapsed since the ith interval (with t0 ≡ ∞), d(i) is the state of d at interval i, and λ > 0 
is a free parameter. The Δ function measures the fraction of d that changed between 
two consecutive intervals. The integral of the exponential function applies a time-
decaying weight to the changes undergone by d, effectively giving more weight to 
recent changes than to old ones. We define Δ(d1,d2) for atomic data items d1 and d2 as 
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Note that 0 ≤ Δ(d1, d2) ≤ 1 for any pair (d1, d2). If d1 and d2 are numbers, Equation 7 
assumes that they are positive. An approximation to the Edit Distance function can be 
used if efficiency is a major concern. 

The equivalent incremental formulation for the stability measure is 
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with Equation 6 being an exponential moving average with memory depth 1−− kte λ . 
The stability score of a complex data item d is defined as the average over the 

stability score of its components. The stability score can only assume values from the 
range [0,1], where 0 and 1 represents minimum and maximum stability, respectively. 

Uncertainty Dimension and Measure. This spatial dimension is an indicator of the 
lack of evidence for the contents of a data item d, normally linked to the inherent 
imprecision of the experimental procedure used to obtain the data. The Uncertainty 
dimension can be measured as the fraction of ambiguous values contained in the data 
item. In genomics databases, ambiguous or uncertain values mainly come from the 
sequence data and are expressed as degenerate bases. The uncertainty score of an 
atomic data item d representing a sequence string is 
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where degenerateCount(d) is a function that counts the total number of degenerate  
bases in d, and length(d) is the size of the string represented by d (i.e., the total 
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number of bases in the sequence). Atomic values other than sequence strings do not 
have an uncertainty score. The uncertainty score can only take values in the range 
[0,1], where 0 and 1 represent minimum and maximum uncertainty, respectively. 

Linkage Dimension and Measure. This spatial cross-record dimension provides 
information about the incoming and outgoing links of a data item d (a record, in this 
case). In genomics databases, records can be linked to other relevant records, 
published articles, etc. Such information is generally represented as an interaction 
graph consisting of a set of nodes that represent records and a set of directed edges (or 
links) between nodes that represent relationships between records.  

We split the Linkage dimension into four mutually exclusive sub-dimensions, 
namely Literature Links, Gene Links, Structure Links, and Other Links. The Literature 
Links dimension comprises links to or from literature databases, specifically NCBI’s 
PubMed, Online Mendelian Inheritance in Man (OMIM), and Online Mendelian 
Inheritance in Animals (OMIA). The Gene Links dimension accounts for links  
to or from gene and genome databases, in particular NCBI’s Gene, HomoloGene,  
and Genomes. The Structure Links dimension contains links to or from structure and 
domain databases, specifically NCBI’s Structure (MMDB), 3D Domains, and 
Conserved Domains (CDD). Lastly, the Other Links dimension covers all other links 
not included in any of the previous dimensions. This linkage division was devised 
with the help of expert collaborators at our university. All linkage sub-dimensions can 
be measured as a link count over the respective target databases. Each link contributes 
with one unit to the link count. In the NCBI’s databases all links are two-way, so 
linkage scores effectively reflect both the number of outgoing and incoming links 
to/from record r. The score for each linkage dimension can take on values from the 
interval [0, ∞[, where 0 means that no link exists, and there is no upper limit on the 
value of the linkage score. 

Redundancy Dimension and Measure. This spatial and cross-record dimension 
captures information about the number of redundant data items with respect to a given 
data item d (a record). In genomics databases, two records are considered redundant if 
their sequence similarity is significantly high. Annotations about the sequence data 
could also be incorporated into a general measure of redundancy, but this would lead 
to expensive string comparisons among records in the database, which turns 
impractical. Even measuring the redundancy at the sequence level would be 
computationally expensive if no extra information is provided by the data source. 
Luckily, our target NCBI databases run BLAST periodically over the stored records 
to pre-compute the “neighbors” (i.e., related sequences) of every record. Using this 
information, redundancy can be measured as the number of neighbors of a record. 

The Redundancy score of a complex data item d representing record r is defined as 
the number of links from r to distinct entries in the same database as r (e.g., 
nucleotide-nucleotide or protein-protein relationships). This link count effectively 
counts the neighbors of r. The redundancy score can take on values from the interval 
[0, ∞[, where 0 means that no redundant data items exist, and there is no upper limit 
on the value of the redundancy score. 
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4   Quality Management Architecture 

The Quality Management Architecture (QMA) enables the integration of the QEM 
with an existing genomics repository. The key design constraint for the QMA was to 
minimize the changes that needed to be made to the existing repository. Figure 1 
shows our reference QMA. Its main components are the External Data Source (EDS) 
and the Quality Metadata Engine (QM-engine). The EDS is an existing genomics 
repository with limited access (e.g., administrators may impose restrictions in query 
time and frequency). The QM-engine is separately managed, and contains a cache of 
the EDS and a metadata source. At the core of the QM-engine is the Quality Layer, 
which handles data and metadata loading, maintenance, and querying. 

 

Fig. 1. Reference Quality Metadata Architecture 

4.1   Implementation of the QMA and Operations 

We implemented a QMA prototype system using the NCBI’s Nucleotide and Protein 
databases as our EDS. Both the Entrez Programming Utilities [4] and the NCBI FTP 
site (ftp://ftp.ncbi.nih.gov/) were used to retrieve data from these databases. A 
modified version of the INSDSeq XML format (the official supported XML format of 
the International Nucleotide Sequence Database Collaboration [18]) was used to store 
data in the Local Cache. Oracle XML DB 10g [47] served as the DBMS for the Local 
Cache, while Oracle Database 10g [14] served as the DBMS for the Metadata Source. 
Further implementation details can be found in [19]. Next we outline the key macro 
operations that are part of the QMA: Bulk-loading, Maintenance, and Querying.  

Bulk-loading takes an input data set from the EDS and loads it into the QM-engine. 
Bulk-loading involves the computation of all quality scores for the input data, the 
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storage of these quality scores in the local Metadata Source, and the replication of the 
biological data in the Local Cache. 

Maintenance refers to the process of keeping the contents of the QMA updated 
with respect to changes in the EDS. Maintenance involves the detection of data 
changes in the EDS, the update of the Local Cache contents to enforce consistency 
with respect to the external database, and the update of the corresponding quality 
scores in the Metadata Source. 

Querying refers to the processing of user requests to retrieve specific data and 
metadata. Basic query handling in the QMA involves queries that i) retrieve only data, 
ii) retrieve data plus quality metadata, and iii) retrieve a subset of the quality metadata 
(user indicates what dimensions to retrieve). Advanced queries would support user-
specified filtering conditions on one or more quality scores, and sorting (ranking) of 
results based on a specified quality dimension. 

5   Evaluation 

The purpose of this evaluation was to determine the significance and usefulness of the 
chosen quality dimensions and measures in assessing the quality of genomic data. In 
particular, we tested the ability of our (individual and combined) quality estimates to 
discriminate high versus low quality data. A 2-point scale was used both to facilitate 
the quality assessment process for the domain experts and to prevent bias resulting 
from finer scales. The domain experts who participated in our research study [19] 
provided the data set used here, which consists of 187 “high quality” records (HQ set) 
and 184 “low quality” records (LQ set), selected from the NCBI’s Nucleotide and 
Protein databases. The size of this data set was limited due to practical restrictions in 
both the number of experts we recruited for our study, and the number of records that 
each expert could reasonably evaluate. To address this limitation, further experiments 
were conducted over a larger data set sampled from different databases whose overall 
quality was rated by experts (results not shown here for space reasons but can be 
found in [19]). 

The data set was loaded into the QMA prototype to obtain the quality metadata of 
each record. Then a logarithmic transformation was applied to the scores representing 
counts, and finally all scores were standardized. In the first experiment, we performed 
a Wilcoxon rank sum test (at the 5% significance level) over the standardized scores 
of the HQ and LQ sets for each quality dimension. Table 1 shows the results. In this 
table we can see that the test rejected the null hypothesis for five dimensions: Density, 
Features, Freshness, Publications, and Stability; which indicates that each of these 
dimensions is able to differentiate the HQ from the LQ set. Yet, considerable overlap 
between the distributions exists (boxplots not shown here for space reasons), making 
it difficult to find good classification thresholds based solely on one dimension.  

In the second experiment, we built a decision tree classifier for the HQ and LQ sets 
using the joint quality scores of all dimensions. This classifier (built with C4.5 [20]) 
allowed us to find suitable thresholds (given by the decision rules), key predictive 
dimensions, and a single score combining all dimensions (given by the predicted 
posterior probabilities of each class). An analysis of the dimensions chosen as the top-
most split-attributes across various classification trees (details in [19]) yielded the 
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following six key dimensions for classification: Uncertainty, Density, Age, Features, 
Literature-Links, and Publications. We observe that the Density, Features, and 
Publications dimensions were also found discriminating by our first experiment. The 
Uncertainty dimension also obtained a low p-value in the first experiment (although 
not small enough to reject the test), which confirms its relevancy for classification. 
We also note that at least one of the temporal dimensions (Age, Freshness, and 
Stability) was found relevant by either experiment. Differences in the sets of key/ 
discriminating dimensions obtained from our two experiments are expected since the 
first experiment considered how well each dimension differentiated the two quality 
classes given the entire data space, whereas the second experiment considered how 
well each dimension classified a small subset of the data space (since each node in the 
classification tree partitions the data space in subsequently smaller subsets).  

Table 1. Results of the Wilcoxon rank sum test over standardized quality scores for the HQ and 
LQ sets. The medians of the HQ and LQ sets are shown as reference. The last two columns 
contain the test’s p-value and outcome (i.e., null hypothesis H0 rejected or not). 

Dimension HQ median LQ median P-value H0 rejected 

Density -0.171 -0.429 0.000 Yes 

Features -0.301 -0.321 0.000 Yes 

Freshness -0.407 -0.420 0.030 Yes 

Publications -0.205 -0.217 0.032 Yes 

Stability 0.520 0.741 0.035 Yes 

Uncertainty -0.167 -0.167 0.052 No 

Age -0.430 0.128 0.100 No 

Redundancy -0.356 -0.356 0.476 No 

Other Links -0.326 -0.326 0.660 No 

Gene Links -0.276 -0.276 0.892 No 

Literature Links -0.236 -0.236 0.920 No 

Structure Links -0.273 -0.273 0.998 No 

Table 2. Classifier performance when using all versus key-only dimensions 

Dimensions Generalization error (%) 

All 31.3 

Key 32.9 

Table 2 shows the average generalization error (over a 10-fold cross-validation) of 
the classifier built using all and key-only dimensions. The average generalization 
error obtained when using all twelve dimensions (31.3%) and when using only the six 
key dimensions (32.9%) are comparable, which shows that the selected key 
dimensions are relevant for classifying high versus low quality data. 

Although a detailed evaluation of the QMA is out of the scope of this work,  
we close this section by highlighting two of its most relevant capabilities: 1) the  
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non-intrusive augmentation of existing genomics repositories with quality metadata, 
which would enable a smooth transition from current to quality-aware data sources, 
and 2) the support for quality-aware queries, which would enable users to obtain the 
most valuable data for the task at hand. 

6   Conclusions and Future Work 

We developed a new model, QEM, for estimating the quality of data in genomics 
databases. Unlike previous related works, our model is based on quality dimensions 
that can be quantitatively measured using data already stored in the repositories. We 
also developed a quality management architecture, QMA, that enables the integration 
of QEM with existing genomics databases. The usefulness and biological significance 
of the QEM was evaluated using expert-feedback, gathered through a research study. 
Results of this evaluation show that it is possible to build a classifier, based on our 
quality estimates, that discriminates high from low quality data with a prediction 
accuracy of 69%. The usefulness of the QMA was highlighted based on its most 
relevant features. 

This is the first work (to the best of our knowledge) that has addressed the use of 
metrics for understanding the quality of genomic datasets. We showed that the chosen 
metrics are useful; however, we would like to note that these metrics are preliminary 
in nature. Once a full-fledged QMA system is deployed and used widely, the set of 
metrics can be refined. Hence, improvements to the measures (e.g., with respect to 
efficiency) and/or extensions of the set of quality dimensions can be explored in the 
future. Another area for future work is the development of benchmarks for genomics 
data quality. We believe that more studies like the one we conducted among domain 
experts are needed so that future researchers benefit from larger and broader data sets. 

References 

1. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. 
Nucleic Acids Res. 35(Database issue), D21–D25 (2007) 

2. Pruitt, K.D., Tatusova, T., Maglott, D.: NCBI reference sequences (RefSeq): A curated 
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids 
Res. 35(Database issue), D61–D65 (2007) 

3. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., 
Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The 
SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids 
Res. 31(1), 365–370 (2003) 

4. Wheeler, D.L., Barret, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, 
D.M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L.Y., Kapustin, Y., Khovayko, O., 
Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Ostell, J., Miller, V., Pruitt, 
K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Sirotkin, K., Souvorov, A., Starchenko, G., 
Tatusov, R.L., Tatusova, T.A., Wagner, L., Yaschenko, E.: Database resources of the 
National Center for Biotechnology Information. Nucleic Acids Res. 35(Database issue), 
D5–D12 (2007) 



480 A. Martinez, J. Hammer, and S. Ranka 

5. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: A Methodology for 
Information Quality Assessment. Information and Management 40(2), 133–146 (2002) 

6. Naumann, F., Rolker, C.: Assessment Methods for Information Quality Criteria. In: 
Proceedings of the International Conference on Information Quality, pp. 148–162 (2000) 

7. Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.: Managing 
Data Quality in Cooperative Information Systems. In: Spaccapietra, S., March, S., Aberer, 
K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 208–232. Springer, 
Heidelberg (2003) 

8. Scannapieco, M., Virgillito, A., Marchetti, M., Mecella, M., Baldoni, R.: The DaQuinCIS 
Architecture: A Platform for Exchanging and Improving Data Quality in Cooperative 
Information Systems. Information Systems 29(7), 551–582 (2004) 

9. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. 
Information Systems 29(7), 583–615 (2004) 

10. Müller, H., Naumann, F., Freytag, J.C.: Data Quality in Genome Databases. In: 
Proceedings of the International Conference on Information Quality, pp. 269–284 (2003) 

11. Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., Bajorek, E., 
Black, S., Chan, Y.M., Denys, M., Escobar, J., Flowers, D., Fotopulos, D., Garcia, C., 
Gomez, M., Gonzales, E., Haydu, L., Lopez, F., Ramirez, L., Retterer, J., Rodriguez, A., 
Rogers, S., Salazar, A., Tsai, M., Myers, R.M.: Quality assessment of the human genome 
sequence. Nature 429(6990), 365–368 (2004) 

12. Missier, P., Embury, S., Greenwood, M., Preece, A., Jin, B.: Quality views: Capturing and 
exploiting the user perspective on data quality. In: Proceedings of the VLDB, pp. 977–988 
(2006) 

13. Preece, A.D., Jin, B., Pignotti, E., Missier, P., Embury, S.M., Stead, D., Brown, A.: 
Managing Information Quality in e-Science Using Semantic Web Technology. In: Sure, 
Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 472–486. Springer, Heidelberg 
(2006) 

14. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured 
Data and XML. Morgan Kaufmann Publishers, San Francisco, CA (2000) 

15. Introduction to ASN.1, http://asn1.elibel.tm.fr/en/introduction/  
16. Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 

(October 2000), http://www.w3.org/TR/2000/REC-xml-20001006 
17. INSDC Feature Table Definition Document, http://www.insdc.org/files/feature_table.html  
18. International Nucleotide Sequence Database Collaboration, 

http://www.insdc.org/ 
19. Martinez, A., Hammer, J.: BIODQ: A Model for Data Quality Estimation and 

Management in Biological Databases. Doctoral Thesis, University of Florida (2007) 
20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San 

Francisco, CA (1993) 
 



I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 481–491, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Stepped Linear Regression to Accurately Assess 
Statistical Significance in Batch Confounded Differential 

Expression Analysis 

Juntao Li1, Jianhua Liu2, and R. Krishna Murthy Karuturi1,* 

1 Computational and Mathematical Biology, 2 Systems Biology,  
Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 

Biopolis ST, S138672, Republic of Singapore 
{lij9,liujh,karuturikm}@gis.a-star.edu.sg  

Abstract. Batch effects in microarray experiments may lead to systematic shift 
in expression measurements from one batch to another. It poses great challenge 
if batches are confounded with the biological groups of interest especially in the 
estimation of statistical significance, FDR. Even the widely used well-tailored 
methods such as SAM are not immune to the effects of batch confounding of 
groups. We propose a stepped linear regression (SLR) method in the context of 
SAM to re-estimate the expected statistics and FDR in two class analysis to nul-
lify batch effects and get really significant genes. SLR is equally applicable to 
the other similar methods and multi-group differential expression analysis. 

Keywords: Differential expression, SAM, Microarray, Batch effect. 

1   Introduction 

Batch effects [7] are commonly observed across multiple batches of microarray ex-
periments, There are many different kinds of effects, for example, RNA batch effect 
(experimenter, time of day, temperature), array effect (scanning level, pre/post-
washing), location effect (chip, coverslip, washing), dye effect (dye, unequal mixing 
of mixtures, labeling, intensity), print pin effect, spot effect (amount of DNA in the 
spot printed on slide) [9] and or even the atmospheric ozone level [1]. Local batch 
effects (such as location, print pin, dye effect and spot effect) may be removed by 
using one of many local normalization methods available in the literature [6]. But 
global batch effects are too complicated and not easy to detect and eliminate in all 
circumstances. 

The problem may be solved using linear model with batch as a factor or by empiri-
cal Bayes methods [5] if the experimental batches are not confounded with the bio-
logical groups i.e. each batch contains a mix of samples from different biological 
groups. Whereas the problem is not amenable to analysis if the biological groups are 
confounded with that of the batches i.e. the samples from one biological group belong 
to one batch and the other belongs to the other batch. The situation is unavoidable 
                                                           
* Corresponding author. 
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several times as one wants to compare the data from one experiment or lab to the data 
from another experiment or lab which essentially means batch confounded biological 
groups. The batch confounding is unavoidable in huge experiments even though all 
groups were generated in the same experiment. Batch confounding has severe influ-
ence on differential expression analysis as the biologically differentially expressed 
genes are mixed up with large number of mere batch affected genes. It may lead to 
underestimation of FDR (false discovery rate), to an intolerable limit, as several batch 
affected biologically irrelevant genes will also have significantly lower p-values. FDR 
is to be accurately estimated as it is an important parameter that complements the 
absence of gold standard positive and negative test gene set in genome-wide expres-
sion studies.  

In this paper, we present and evaluate a method called stepped linear regression 
(SLR) to re-estimate the differential expression statistics in two class analysis under 
the assumption that the expression difference due to batch variation is smaller than 
that of the biological variation. And then we can adjust FDR based on the new ex-
pected statistics and get real biologically significant genes. We present our SLR in the 
context of SAM (Significance Analysis of Microarrays) [2]. SAM is a statistical tech-
nique for finding significantly differentially expressed genes in microarray experi-
ments. SAM assigns a score to each gene on the basis of change in gene expression 
relative to the standard deviation of repeated measurements. For genes with scores 
greater than an adjustable threshold, SAM uses permutations of the repeated meas-
urements to estimate the percentage of genes identified by chance, the false discovery 
rate (FDR). Using FDR, we can get the differentially expressed gene list by certain 
FDR threshold, those genes will be the significant genes according the data, but those 
are all not real biologically significant they may include several batch affected differ-
entially expressed genes. 

Though SLR is presented in the context of SAM two-group differential expression 
analysis for simplicity, the method is equally applicable to multiple-group studies 
affected by batch confounding and for any reasonable statistical procedure used. Our 
results show that SLR is effective in evaluating FDR accurately both in simulated as 
well as real data. 

The remaining part of the paper is organized as follows: Section 2 to presents SLR 
in the context of SAM two-class analysis; section 3 presents evaluation of SLR on 
simulated and real data; and, section 4 presents discussion on SLR, the results and 
presents future directions. 

2   Stepped Linear Regression (SLR) 

The stepped linear regression (SLR) is based on the following assumptions: (1) there 
will be a systematic, but random, shift in expression measurements from one batch to 
another; (2) biological influence is greater than that of the batch effects’ influence on 
biologically relevant genes; (3) the batch effect is independent of biological effect; 
and, (4) the proportion of biologically non-differentially expressed genes (π0) is more 
than 0.5. 
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2.1   Re-estimate the Expected Statistics 

In SAM two class analysis [3], we first get the SAM statistic di for each gene gi (i = 
1,2,..,n), and then get the order statistics d(1) ≤ d(2) ≤  ... ≤ d(n). To get FDR, we do 
permutations and get the expected order average statistics đ(1) ≤ đ (2) ≤  ... ≤ đ (n). 

The linear model between SAM statistic d(i) and expected statistics đ(i) will be the 
following, 

d(i) = a * đ(i) + b + ci + ei. (1) 

a and b are the batch effect factors, ci is the biological effect factor and ei is the error. 
If there are no batch effects, a will be 1 and b will be 0, and if gene gi has no biologi-
cal difference between two class experiments, ci will be 0. 

Then, we do the stepped linear regression to get the batch effect factors a and b as 
following procedure, 

Step 1. Do the linear regression for d(i) and đ(i) (i = 1,2,..,n) to get the slope a1 and 
intercept b1. 
Step 2. Remove the gene gk whose (đ(k), d(i)) is maximally distant to the regression line 
and do linear regression for the rest of the genes and then get the new slope a2 and 
new intercept b2. 
Step 3. If |a2 - a1| < δ and |b2 - b1| < δ, let a = a2 and b = b2; otherwise, let a1 = a2, b1 
= b2 and repeat step 2. 

After estimating the batch effect factors a and b, we can do the transformation for 
expected statistics as following, 

đ*
(i) = a * đ(i) + b. (2) 

and then (1) will be 

d(i) = đ*
(i) + ci + ei. (3) 

2.2   π0 Estimate and FDR Adjustment 

We assumed that the genes, which used to do linear regression at last to get the batch 
effect factor a and b, do not have biological difference, so we can set π0, the propor-
tion of true null (not biological effect) genes in the data set, as the proportion of those 
genes in the data. 

The False Discovery Rate (FDR) is computed as ratio of median of the number of 
falsely called significant genes and the number of genes called significant. 

3   Result 

We show the effects of batch confounding on FDR estimation and the efficacy of 
SLR in alleviating it using both simulated data as well as real data. On simulated data, 
we show that SLR does not introduce artifacts in FDR estimation using data without 
batch effect confounding and show that it corrects the influence of batch effect  
confounding. 
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3.1   Simulation 

A two-group data was simulated using the following rule 

xijk = zijk + ηik + μik (4) 

where xijk is an expression measurement of gene gi (i = 1, 2…, N = 10000) in sample 
Sj (j=1, 2…10) in group Gk (k = 1, 2).  zijk ~ N(0, 1) is stand normal noise. The global 
batch effect ηik and biological difference μik are defined as follows: 

ηi1 = 0 for 1 ≤ i ≤ N 

ηi2 = θiη ~ N(0, σ1
2) for 1 ≤ i ≤ N  

         (5) 

µi1 = 0 for 1 ≤ i ≤ N 
µi2 = θiµ ~ N(0, σ2

2) for i ≤ n< N  
µi2 = 0 for n < i ≤ N . 

Where n is number of differentially expressed genes and N is the total number of 
genes. The model parameters signify that the batch effect and biological effect are 
different on different genes and the differential expression also varies from gene to 
gene. The fraction {1-(n/N)} is denoted by π0, the fraction of non-differentially ex-
pressed genes or genes not affected by biological treatment. We simulated 4 different 
datasets of N=10000 genes using two different settings for each of σ1 and π0 as shown 
in table 1 while keeping σ2=4. 

Table 1. Parameters used to simulate the 4 different datasets A, B, C and D. δ = 0.0001. 

Dataset Simulation Parameters  
Dataset σ1 σ2 π0  (n) Batch Effect 

New expected statistic (đ*
(i)) 

A 0 4 0.95 (500) NO 1.10415 * đ(i) -0.005924029 
B 2 4 0.95 (500) YES 3.889039 * đ(i) -0.005366175 
C 0 4 0.70 (3000) NO 1.426328 * đ(i) -0.004212276 
D 2 4 0.70 (3000) YES 4.148797 * đ(i) -0.03025515 

The datasets A and C are simulated without batch effects and analyzed with our 
procedure to show that our procedure does not introduce artifacts in the resultant FDR 
estimation i.e. difference between FDR estimates before correction and after correc-
tion should be close to zero for non-batch affected data. The datasets B and D are 
batch effect confounded data with reasonably different values of π0 whose FDR esti-
mates before correction are expected to be far from reality while the FDR estimates 
after adjustment are expected to be close to reality.  

We used SAM on each of the four datasets to obtain d-statistics for original as well 
as permuted data. We applied our procedure on each pair of d-statistic sets with the 
model parameter δ to be 0.0001.  
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Table 2 shows the results for dataset A using SAM estimates and estimates after 
adjustment using our SLR procedure. The estimates of π0 before (0.957) and after 
(0.954) adjustment are very close to each other and to the true value of 0.95. For dif-
ferent values of delta (a SAM parameter) threshold, table 2 shows the number of 
genes called significant and the respective FDR for original SAM and SAM followed 
by our procedure. The FDR estimates are very much close to each other while the 
number of genes called significant is different for delta close to 0 and 0.1 as the small 
change in FDR may result in huge change in number of genes called significant at 
very low values of delta.  

Table 2. Significant gene table for dataset A 

  

Table 3 shows the results of applying dataset B, similar to dataset A but with batch 
effect. The estimate of π0 obtained from SAM (~0.264) is far below the true value of 
0.95 while the same is much better estimated using our SLR adjustment procedure 
(~0.936) which close to the true value (0.95). Similar behavior is observed in the FDR 
estimates also for different values of delta thresholds as shown in table 3: the FDR 
estimates and number of genes called significant are very much different while the 
FDR before adjustment is unrealistically low (<0.27) at delta=0 and 0.1 whereas it is 
realistic (>0.65) after adjustment which can be mostly explained by the difference in 
estimates of π0. Further, figure 1 shows the plots of estimated FDR and true FDR at 
each position of the gene ranking for both before and after SLR adjustment. Ideally, 
the curve should be diagonal from (0,0) to (1,1); however, closer the better. Both plots 
for dataset A are similar and close to diagonal for most part of the range of FDR ex-
cept towards FDR=1 which is not so important anyway. Whereas, FDR plots for 
original SAM and SLR adjusted are quite different for dataset B, a batch affected 
data. Plot for SAM is almost close to x-axis shows how badly the FDR was 
 

Table 3. Significant gene table for dataset B 
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Fig. 1. FDR comparison for simulation data sets A and B. Circle and plus curves indicate FDR 
comparison before and after SLR adjustment respectively for data set A. They are, as required 
close to each other as well as close to the diagonal of the graph. It shows that blind application 
of SLR does not introduce any serious artifacts in to FDR estimation. Triangle and fork curves 
indicate FDR comparison before and after SLR adjustment respectively for data set B. FDR 
before SLR application is intolerably underestimated while the FDR after SLR application is, 
though underestimated, is much closer to the diagonal. 

underestimated; whereas, FDR after SLR adjustment is much closer to diagonal than 
to x-axis, though still underestimated owing to the influence of batch effect on the 
permutation procedure [10]. 

Similar results are shown for datasets C and D in tables 4 and 5 respectively. The 
estimates of π0 are consistently close to the true value of 0.7 irrespective of the pres-
ence of batch effect. But it is severely affected by batch effect in the original SAM 
application in the presence of batch effect. Similar differences exist even for FDR 
estimations for various values of delta. Figure 2 shows the plots of estimated FDR and 
true FDR at each position of the gene ranking for both before and after SLR 
 

Table 4. Significant gene table for dataset C 
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adjustment. Both plots for dataset C are similar and close to the diagonal for most part 
of the range of FDR except towards FDR=1 which is not critical in differential ex-
pression analysis. Whereas, FDR plots for original SAM and SLR adjusted are quite 
different for the batch affected dataset D. Plot for SAM is almost close to X-axis 
shows how bad the FDR estimation was; whereas, FDR after SLR adjustment is very 
much close to diagonal as required than to x-axis. 

Table 5. Significant gene table for dataset D 

 

 

Fig. 2. FDR comparison for simulation data sets C and D. Circle and plus curves indicate FDR 
comparison before and after SLR adjustment respectively for data set C. They are, as required 
close to each other as well as close to the diagonal of the graph. It shows that blind application 
of SLR does not introduce any serious artifacts in to FDR estimation. Triangle and fork curves 
indicate FDR comparison before and after SLR adjustment respectively for data set D. FDR 
before SLR application is intolerably underestimated while the FDR after SLR application is, 
though underestimated, is much closer to the diagonal. 
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3.2   The S. pombe Data 

At the next step, we show the utility of our approach on real gene expression data, 
mip1 mutant (Δmip1) differential expression in S. pombe compared to its wild-type. 
The data was obtained from [4] containing 28 wt/wt spotted 2-color array data and 6 
Δmip1/wt data with ~5000 Open Reading Frames (ORFs). The purpose is to find the 
genes influenced by mip1 mutant (Δmip1) cells. The wt/wt data contains two batches 
of equal number of arrays which we call wt1/wt1 (or wt_rep1) and wt2/wt2 (or 
wt_rep2). The application of SAM on wt1/wt1 vs. wt2/wt2 data are shown in table 6 
where it estimates π0 to be 0.25 while it is supposed to be 1 as the both wt1 and wt2 
samples are same except that they were hybridized onto two different batches of ar-
rays at two different times. The corresponding SAM plot is shown in top-left of  
figure 3. After application of our SLR procedure, we obtained π0 to be ~0.996 which 
is amazingly close to 1 as required and the respective SAM plot was shown in top-
right of figure 3.  

Table 6. Significant gene table for S. pombe wt1/wt1 vs. wt2/wt2. đ*
(i) = 3.844653 * đ(i) -

0.2140583, δ = 0.0001. 

 

We analyzed wt/wt (combine wt1/wt1 and wt2/wt2) vs. Δmip1/wt using SAM to 
identify the differentially expressed genes, the results are shown in table 7 and the 
corresponding SAM plot is shown in bottom-left of figure 3. Δmip1/wt was hybrid-
ized on altogether a different batch of arrays at completely different time resulted in 
batch effects again and the underestimation of π0 (0.195) and FDR as shown in table 7 
and bottom-left of figure 3. We applied our SLR procedure on this results as the cor-
responding estimates of π0 and FDR are as shown in table 7 and bottom-right figure 3. 
π0 estimate is more realistic (0.54) than the otherwise unrealistically estimated by 
SAM alone (0.195). 

Table 7. Significant gene table for S. pombe wt/wt vs. Δmip1/wt. đ*
(i) = 4.877984 * đ(i) + 

0.01776157, δ = 0.0001.  
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Fig. 3. SAM plot (before and after SLR adjustment) for S. pombe data set. Figure in top left (a) 
shows the SAM plot before SLR adjustment for wt1/wt1 vs. wt2/wt2 dataset, figure in top right 
(b) shows the SAM plot after adjustment for wt1/wt1 vs. wt2/wt2 dataset, figure in bottom left 
(c) shows the SAM plot before adjustment for wt/wt vs. Δmip1/wt dataset, figure in bottom 
right (d) shows the SAM plot after adjustment for wt/wt vs. Δmip1/wt dataset. The results are 
encouraging and SLR is a practically useful technique. 

4   Discussion 

We have proposed a stepped linear regression to correct for the FDR estimation arti-
facts introduced by batch confounding of treatment and control groups of samples. 
The problem is critical in several gene expression studies where one wants to com-
pares the data obtained from different labs or from the same lab but at different times. 
Following several assumptions including the batch effects are small and influences all 
spots on the array in unexpected but definite manner in one batch but different in 
another batch. The influence is mainly on the estimation of FDR via badly underesti-
mated proportion of non-differentially expressed genes and by the inevitable influ-
ence of change of mean value on permutation procedure, if adopted to estimate FDR. 
The SAM manual sites this behavior as one that could be biologically meaningful and 
the decision should be left to biologists. But, we feel that, in almost all gene expres-
sion studies π0 is expected to be reasonably more than 0.5. Hence, we proposed SLR 
method, under the realistic assumptions of low batch effects, attempts to resolve this 
problem. SLR procedure is equally general for any differential expression analysis 
procedure for any number classes though it was described and evaluated in the  
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context of SAM, a popularly used method for differential expression analysis, for the 
sake of simplicity.  

We have shown the efficacy of our SLR method on both simulated as well as real 
data. The results demonstrate that SLR combined with SAM is robust to batch con-
founding effects of treatments. They may be weakly demonstrating that SLR gives 
better estimate of π0 than SAM alone in the absence of batch effects as shown in ta-
bles 2 and 4. To prove this point, we have to conduct an extensive set of experiments. 
Further, we feel that there is a lot more scope to improve SLR as shown in figure 1 
that FDR after adjustment deviates from diagonal near FDR=1 for dataset A and it is 
considerably away from diagonal for dataset B. However the method in the current 
form is still useful in making right choice of differential expression threshold in the 
wake of better and meaningful FDR estimation. 

Similar problem has been addressed in the evaluation of enrichment of gene sets in 
a list of genes [11], the GSA algorithm. GSA handles the problem by making the 
mean and standard deviations of the distributions of both observed statistics and per-
mutation statistics. The idea is simple and effective for GSA as π0 is close to 1. But it 
may not work as π0 is reasonably less than 1 in several gene expression studies lead-
ing to severe overestimation of standard deviation making the idea ineffective for this 
purpose. Hence the utility of SLR plays an important role. 
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Abstract. Bagging and subagging procedures are put forth with the
purpose of improving the discovery power in the context of large-scale
simultaneous hypothesis testing. Bagging and subagging significantly im-
prove discovery power at the cost of a small increase in false discovery
rate with ‘maximum contrast’ subagging having an edge over bagging,
i.e., yielding similar power but significantly smaller false discovery rates.
The proposed procedures are implemented in a situation involving a well
known dataset on gene expressions related to prostate cancer.

1 Introduction

The problem of simultaneous statistical inference is not new; see Miller (1981)
for an early treatment. In the last decade, however, the statistical community
has been faced with huge amounts of data and a subsequent need to address
large-scale simultaneous hypothesis testing problems.

The prototypical such dataset involves gene expression data but different ap-
plications, such as functional Magnetic Resonance Imaging, flight spectroscopy,
flow cytometry, etc., all give rise to similar problems from a statistician’s per-
spective. The microarray set-up is described below in the context of the gene
expression example with the understanding that the same ideas are applicable
to a host of other two-sample, multiple comparison problems.

A typical experiment may entail data on nX normal subjects, and nY patients.
An array of N measurements is obtained from each subject. Therefore, the data
can be organized as a N × nX data matrix X (control group), and a N × nY

data matrix Y (patient group); the (i, j) entry of X is denoted Xij , and that of
Y is denoted Yij . Column i from X has the data from the ith normal subject,
and column j from Y has the data from the jth patient.

The X data are assumed independent of the Y data. A general model for this
set-up is to assume that, for each k,

Xk,1, Xk,2, . . . , Xk,nX ∼ i.i.d. F
(k)
X and Yk,1, Yk,2, . . . , Yk,nY ∼ i.i.d. F

(k)
Y (1)

where F
(k)
X , F

(k)
Y are some distribution functions. For each k = 1, . . . , N , the issue

is to test H0 : F
(k)
X = F

(k)
Y vs. not; this is the set-up of multiple comparisons.

I. Măndoiu, R. Sunderraman, and A. Zelikovsky (Eds.): ISBRA 2008, LNBI 4983, pp. 492–503, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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More often than not, the testing focuses on a potential difference in the means
of the X and Y data. In that case, practitioners typically assume

Xk,1, Xk,2, . . . , Xk,nX ∼ i.i.d. N(μk, σ2
k) (2)

and
Yk,1, Yk,2, . . . , Yk,nY ∼ i.i.d. N(νk, σ2

k). (3)

The multiple comparisons now boil down to testing H0 : μk = νk vs. not,
for k = 1, . . . , N . From the kth row, the familiar t-statistic t(k) = (Ȳk· −
X̄k·)/(σ̂

√

n−1
Y + n−1

X ) can be calculated where Ȳk· = n−1
Y

∑nY

j=1 Ykj , X̄k· =

n−1
X

∑nX

i=1 Xki, and σ̂2 = (nX +nY −2)−1{
∑nX

i=1(Xki−X̄k·)2+
∑nY

j=1(Ykj−Ȳk·)2}
is the pooled variance.1 A typical testing procedure then rejects H0 from the kth
row when t(k) is too large in absolute value.

Suppose that exactly n0 rows (genes) conform to H0, i.e., they are “null”, and
so N−n0 rows (genes) do not, i.e., they are “non-null”. Collect the indices of the
truly non-null rows in a list denoted by TRUELIST; similarly, collect the row
indices corresponding to the rejected t-statistics in the LIST of genes declared
to be non-null. Then we can define the multiple comparisons achieved discovery
power as

ADP =
#{LIST ∩ TRUELIST }

#{TRUELIST }
and the achieved false discovery rate as

AFDR =
#{LIST ∩ TRUELIST}

#{LIST }

where #{A} denotes number of elements in set A, and Ā is the complement of
A. The breakthrough method of Benjamini and Hochberg (1995) was designed
to control the expected value of the AFDR; this expected value is usually called
simply the false discovery rate (FDR).

2 Motivation

Suppose that two different groups perform the same scientific experiment and
come up with two different lists of genes declared non-null, say LIST1 and
LIST2. Let AFDR1 and AFDR2 denote the false discovery rates in the two
experiments; recall that (the expected values of) AFDR1 and AFDR2 are con-
trolled, i.e., bounded, in a typical multiple comparisons experiment.

How can the two lists, LIST1 and LIST2, be combined for better inference?
The natural answer is to ‘heed’ the evidence from both experiments and declare
1 The normality assumption is not crucial in practice, especially if the sample sizes

nX and nY are relatively large. Assuming common variance on the kth row of X
and Y is more important; if in doubt, a slightly different form of the t-statistic must
be used. In any case, the flavor of the testing problem remains unchanged.
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as non-null all elements in the BIGLIST = LIST1∪LIST2. Since the BIGLIST
is bigger than either LIST1 or LIST2, the combined experiment will have more
power; but what is the AFDR associated with the BIGLIST?

To proceed with the analysis, let us make the simplifying assumption that
genes declared non-null in both studies are very likely truly non-null, i.e., that
SMALLLIST ⊂ TRUELIST with high probability where SMALLLIST ≡
LIST1 ∩ LIST2. Also let FALSE1 denote the subset of LIST1 that consists
of false discoveries, i.e., genes falsely declared non-null; similarly for FALSE2.
Therefore, we have

AFDR1 =
#{FALSE1}
#{LIST1}

and AFDR2 =
#{FALSE2}
#{LIST2}

(4)

from which the numbers #{FALSE1} and #{FALSE2} can be calculated as
functions of AFDR1 and AFDR2.

Consequently, the AFDR associated with BIGLIST is given by:

AFDRBIG =
#{FALSE1}+ #{FALSE2}

#{LIST1}+ #{LIST1} −#{SMALLLIST}

=
AFDR1 ×#{LIST1}+ AFDR2 ×#{LIST2}
#{LIST1}+ #{LIST1} −#{SMALLLIST} . (5)

Taking expectations in the above2 we see that eq. (5) is satisfied with the ex-
pected false discovery rates (FDR) in place of the AFDRs, i.e., that:

FDRBIG =
FDR1 ×#{LIST1}+ FDR2 ×#{LIST2}

#{LIST1}+ #{LIST1} −#{SMALLLIST}. (6)

In experiments with low power it is not uncommon to have LIST1 and LIST2

be totally disjoint; see Efron (2006) for a discussion. Suppose we are in such a
low-power set-up, and also suppose—for the sake of argument—that the two
experiments have similar design, i.e., that FDR1 = FDR2. Then, the above
equations show that FDRBIG = FDR1 = FDR2. So, in this case, the combined
experiment has more power with the same FDR, i.e., a win-win situation.

In general, however, LIST1 and LIST2 might not be disjoint, and the increase
in power associated with BIGLIST will come at the price of an increase in FDR.
However, it is the thesis of this paper that the increase in power may be well
worth a small increase in FDR.

Before proceeding further, let us momentarily consider the generalization to
the case of having M different groups perform the same experiment and com-
ing up with their respective non-null lists, say LIST1, LIST2, . . ., LISTM ; let
AFDR1, AFDR2 . . ., AFDRM denote the respective AFDRs. Under the same
simplifying assumption, namely that genes declared non-null in at least two
studies are very likely truly non-null, a similar calculation as before yields:

2 Strictly speaking, this is a conditional expectation treating the size variables
#{LIST1}, #{LIST2} and #{SMALLLIST} as given.



Bagging Multiple Comparisons from Microarray Data 495

FDRBIG =
∑M

i=1 FDRi ×#{LISTi}
#{BIGLIST} (7)

where FDRBIG is the expected false discovery rate associated with BIGLIST =
∪M

i=1LISTi. Finally, note that the number of elements in BIGLIST can be
calculated as: #{BIGLIST} =

∑
i #{LISTi} −

∑
i�=j #{LISTi ∩ LISTj}

+
∑

i�=j �=k �=i

#{LISTi ∩ LISTj ∩ LISTk}+ . . . + (−1)M−1 ×#{∩M
i=1LISTi}.

3 Bootstrap and Bagging

In Section 2, having multiple experiments (with their associated rejection LISTs)
was discussed. In practice, however, the statistician is faced with a single dataset.
Nonetheless, resampling and subsampling methods can be utilised in order to
create additional (pseudo)samples.

Efron’s (1979) bootstrap is one of the most prominent resampling methods.
For i.i.d. data Z1, . . . , Zn, the bootstrap amounts to sampling randomly with
replacement from the set {Z1, . . . , Zn} to create the (pseudo)sample Z∗

1 , . . . , Z∗
n;

see Efron and Tibshirani (1993) for a review. The bootstrap is closely related to
Tukey’s (1958) ‘delete-1’ jackknife which was generalized to a ‘delete-d’ jackknife
by Shao and Wu (1989). For i.i.d. data Z1, . . . , Zn, the delete-d jackknife is
equivalent to subsampling with sample size b = n − d, i.e., sampling randomly
without replacement from the set {Z1, . . . , Zn} to create the (pseudo)sample
Z∗

1 , . . . , Z∗
b ; see Politis, Romano and Wolf (1999).

‘Bagging’, i.e., bootstrap aggregation, was put forth by Breiman (1996) in
order to improve the accuracy of statistical predictors. The idea is to evaluate
the predictor in question on a number of bootstrap (pseudo)datasets, and to
combine the resulting predictors in an aggregate predictor. It has been shown
that bagging indeed helps improve predictor accuracy in particular when the
predictor is relatively unstable, i.e., when small changes in the data result in
greatly perturbed predictions; see Bühlmann and Yu (2002). Bagging can al-
ternatively be implemented in conjunction with subsampling in which case it is
termed ‘subagging’; see Bühlmann and Yu (2002), and Bühlmann (2003).

4 Balanced Bagging and Subagging for Microarrays

As discussed in Section 2, it is possible to have two different low-power experi-
ments produce disjoint or almost disjoint rejection lists; this is evidence of insta-
bility. Thus, bagging and/or subagging may be helpful for multiple comparisons
as they have been shown to be helpful in prediction and classification.

We now elaborate on how to perform bagging and subagging in the multiple
comparisons, microarray set-up of Section 1; the main idea is to re/sub-sample
subjects, i.e., columns of the matrices X and Y . Throughout this section it
is assumed that the practitioner is using a fixed multiple hypothesis testing
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procedure, e.g., the procedure of Benjamini and Hochberg (1995) or Efron (2005),
for any dataset that he/she may encounter.

The bagging and subagging algorithms described below are termed ‘balanced’;
the reason for this term will become more apparent in Section 6. Let x1, . . . , xnX

and y
1
, . . . , y

nY
denote the columns of X and Y respectively; B is an integer

denoting the number of (pseudo)samples generated.

– Balanced Bagging. For k = 1, . . . , B, construct the kth bootstrap (pseudo)
sample X(k) and Y (k); the columns of X(k) and Y (k) respectively are given
as xI1 , . . . , xInX

and y
J1

, . . . , y
JnY

where I1, . . . , InX are numbers drawn ran-

domly with replacement from the index set {1, . . . , nX} and J1, . . . , JnY are
numbers drawn randomly with replacement from the index set {1, . . . , nY }
and independently of I1, . . . , InX . From this kth (pseudo)sample, the rejec-
tion list LISTk is created.

To define subagging, subsample sizes bX and bY must be specified. Note that
there is no reason here to have the subsample sizes be of smaller order of magni-
tude as compared to the original sample sizes; this is only required for estimation
consistency which is not the objective here—see e.g. Politis et al. (1999). So, the
subsample sizes for subagging could (and should) be taken relatively large; fur-
thermore, it is intuitive that a choice satisfying bX/bY � nX/nY might be fruitful
as being more representative of the original dataset. Thus, a good rule-of-thumb
may be to let bX � a nX and bY � a nY where the constant a is close to (but
less than) one.

– Balanced Subagging—Random Version. For k = 1, . . . , B, construct
the kth subagging (pseudo)sample X(k) and Y (k); the columns of X(k)

and Y (k) respectively are given as xI1 , . . . , xIbX
and y

J1
, . . . , y

JbY

where
I1, . . . , IbX are numbers drawn randomly without replacement from the in-
dex set {1, . . . , nX} and J1, . . . , JbY are numbers drawn randomly without
replacement from the index set {1, . . . , nY } and independently of I1, . . . , IbX .
As before, from this kth (pseudo)sample, the rejection list LISTk is created.

– Balanced Subagging—Nonrandom Version. Let SX denote the set of
all size bX subsets of the index set {1, . . . , nX}, and SY denote the set of all
size bY subsets of the index set {1, . . . , nY } where bX and bY are as above.
A subagging (pseudo)sample is given by X(k1) and Y (k2) where the columns
of X(k1) are the columns of X with indices given by the k1th element of set
SX , and the columns of Y (k2) are the columns of Y with indices given by
the k2th element of set SX . Since the set SX contains

(
nX

bX

)
elements and the

set SY contains
(
nY

bY

)
elements, it is apparent that there are B =

(
nX

bX

)
·
(
nY

bY

)

possible (pseudo)samples.

Of course,
(
nX

bX

)
·
(
nY

bY

)
can be a prohibitively large number, so considering all

possible (pseudo)samples seems out of the question. The aforementioned ran-
dom subagging procedure side-steps this difficulty but so does the following
scheme that has the additional benefit of nonrandom selection of ‘maximum
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contrast’ subsamples, i.e., subsamples that are ‘most’ different from one another
in their composition. ‘Maximum contrast’ subsampling is somewhat reminiscent
of subsampling for time series when partial block-overlap is used; see Politis et al.
(1999, Ch. 9.2) and the references therein. To describe this notion we may equiv-
alently use the ‘delete-d’ framework (with d = n − b) as opposed to ‘choose-b’;
of course, now the game is delete-d columns from one of our data matrices.

– ‘Maximum Contrast’ Nonrandom Subagging. Let mX , mY be two pos-
itive integers, and divide the index set {1, . . . , nX} into the m′

X subsets
S

(1)
X , . . . , S

(m′
X)

X where S
(1)
X = {1, . . . , dX}, S(2)

X = {dX +1, . . . , 2dX}, . . ., etc.
where dX = �nX/mX	 and m′

X = �nX/dX	; here �a	 is the smallest integer
that is bigger or equal to a. The last set, i.e., S

(m′
X)

X , may have size less
than dX if mX does not divide nX but that poses no problem. Similarly,
divide the index set {1, . . . , nY } into the m′

Y subsets S
(1)
Y , . . . , S

(m′
Y )

Y where
S

(1)
Y = {1, . . . , dY }, S

(2)
Y = {dY + 1, . . . , 2dY }, . . ., etc. A subagging (pseudo)

sample is now given by X(k1) and Y (k2) where the columns of X(k1) are
the columns of X with indices given by the set {1, . . . , nX} − S

(k1)
X , and

the columns of Y (k2) are the columns of Y with indices given by the set
{1, . . . , nY } − S

(k2)
Y . Since the possible values of k1 are {1, . . . , m′

X}, and
those for k2 are {1, . . . , m′

Y }, it is apparent that there are m′
X ·m′

Y possible
such (pseudo)samples; thus rejection lists LIST1, . . . , LISTB can be created
with B = m′

X ·m′
Y .

5 Combining the Rejection Lists

Let LIST denote the rejection list of the original dataset X and Y , and LIST1,
. . . , LISTB the rejections lists corresponding to B (pseudo)samples from one
of the algorithms of Section 4. As in Section 2, the simplest suggestion is to
combine the lists by a union, i.e., to define the aggregate/combined list as:

LIST.AGG = LIST ∪ LIST 1∪ LIST 2∪ · · · ∪ LISTB. (8)

However, other alternatives exist; their description is facilitated by the notion of
‘voting’ where a list is said to ‘vote’ that the ith gene is non-null when the ith
gene is an element of the list.

Let V (i) denote the number of votes the ith gene received from the ‘voting’
lists LIST , LIST1, . . . , LISTB. With this terminology, rejecting every gene in
LIST.AGG corresponds to the formula:

(i) declare the ith gene as non-null if V (i) ≥ 1, i.e., it got at least one vote.

A more conservative approach might require to ‘second’ a vote, i.e., it would

(ii) declare the ith gene as non-null if V (i) ≥ 2, i.e., it got at least two votes.

One might even raise the rejection threshold at a level higher than two although
we will not consider that here. However, it is informative to see which genes
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received more votes than others in the sense that getting more votes corresponds
to more evidence for being truly non-null. Thus, a plot of V (i) vs. i may be a
helpful diagnostic tool.

As a further diagnostic, we may define N(h) as the number of genes that
received at least h votes, i.e., N(h) is the size of the non-null list obtained from
a criterion of the type: reject gene i if V (i) ≥ h. A plot of N(h) vs. h is another
way to quantify the ‘strength of evidence’ towards proclaiming each gene on
LIST.AGG as non-null.

Note that formula (ii) treats LIST as ‘equal’ to LIST1, . . . , LISTB, and car-
ries the implicit risk that not all of the genes found in LIST will be finally
rejected. To remedy this, we may give the original LIST more weight in the
aggregation. The easiest way of doing this is giving the original LIST a double
vote, i.e., defining V ∗(i) to equal the number of votes the ith gene got from
LIST1, . . . , LISTB plus a double vote from the original LIST (if indeed LIST
gave it a vote), and then

(ii∗) declaring the ith gene as non-null if V ∗(i) ≥ 2.

As above, we can define N∗(h) as the number of genes that received at least h
votes from formula (ii∗) above, i.e., N∗(h) is the size of the non-null list obtained
from a criterion of the type: reject gene i if V ∗(i) ≥ h. A plot of N∗(h) vs. h has
an interpretation similar to that of plot of N(h) vs. h.

6 Comparison to Bagging for Classification

Microarray data, such as the ones arising in gene expression data, lend themselves
to analysis with the objective of classifying future observations; in other words,
using the data to decide if a future observation belongs to the control or the
patient group—the decision being based on the new observation’s ‘features’ (i.e.
gene expressions) only. Since Breiman’s (1996) original bagging was aimed at
improving predictors and classifiers, it is of no surprise that there is already
a body of literature on bagging and subagging microarrays with the purpose
of classification; a partial list includes Dettling (2004), Dudoit and Fridlyand
(2003), and Dudoit, Fridlyand and Speed (2002).

Although related at the outset, classification is a very different problem than
hypothesis testing; their objectives are quite different, and so are the methods
involved. To illustrate this point, we now give a brief description of the bag-
ging/subagging procedures as used for microarray classification.

To start with, concatenate the X and Y matrices into a big N × n matrix
denoted by W where n = nX + nY . Let w1, . . . , wn denote the columns of W ,
and define new variables U1, . . . , Un such that Ui = 0 for i ≤ nX , and Ui = 1 for
i > nX ; in this sense, the variable Ui is an indicator of which group (normal or
patient) the ith subject belongs to. Finally, define Zi = (wi, Ui) for i = 1, . . . , n.
The Zi data are multivariate but they constitute a single sample that can
be bootstrapped—by sampling with replacement from the set {Z1, . . . , Zn}, or
subsampled—by sampling without replacement from the same set {Z1, . . . , Zn},
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in order to create (pseudo)samples. In all the above-referenced works, bag-
ging/subagging for microarray classification follows the above paradigm.

Note, however, that the above single-sample bootstrap scheme can generate
(pseudo)samples that are unbalanced in terms of the two groups (normal/patient).
To elaborate, let Z∗

i = (w∗
i , U

∗
i ) for i = 1, . . . , n be the bootstrap (pseudo)sample.

Then, it is not unlikely that
∑n

i=1 U∗
i turns out quite different from its expected

value of nY ; in fact, it is even possible (although very unlikely) that
∑n

i=1 U∗
i is 0

or n, i.e., the (pseudo)sample consisting of data from one group only.
The above discussion refers to bootstrap and bagging but similar ideas hold

for single-sample subagging. Let us define a (pseudo)sample to be balanced if
the proportion of patients to control subjects within the (pseudo) sample is
equal to that found in the original sample, i.e., nY /nX . If we let Z∗

i = (w∗
i , U

∗
i )

for i = 1, . . . , b be the subsampling (pseudo)sample, then it is still possible to
have

∑n
i=1 U∗

i = 0 provided of course that b ≤ nX . But even barring such
extreme events, it is clear that there is no guarantee that the above subsampling
(pseudo)sample would be balanced.

In conclusion, the possibility of unbalanced (pseudo)samples might not ad-
versely influence the properties of bagging/subagging for classification purposes
but it is problematic in our hypothesis testing setting. The balanced bagging
and subagging procedures of Section 4 are devoid of this deficiency, since they
yield—by design—exactly balanced (pseudo)samples.

Finally, note that different resampling methods have been used in connection
with multiple comparisons—the most popular of which involving permutation
tests; see e.g. Westfall and Young (1993), Ge, Dudoit and Speed (2003), or
Romano and Wolf (2004). In addition, the re-calculation of rejection lists over
subsamples was considered by Newton et al. (2004) for the purpose of validating
the stability of a particular list-forming method. Nevertheless, the approach of
Section 4 constitutes the first—to our knowledge—application of the notion of
bagging/subagging for the purpose of increasing detection power in multiple
comparisons.

7 Some Concluding Remarks and a Real Data Example

In this paper, bagging and subagging procedures are proposed for improving
an experiment’s discovery power at the cost of a somewhat increased FDR. If
it is required to exactly control the FDR of the bagged/subagged experiment
to a certain level α, say, then the target FDR of each (pseudo)sample exper-
iment must be chosen to be less than α; this choice of a smaller FDR for the
(pseudo)sample experiments could be found as a result of a calibration procedure
for which simulation experiments are helpful. An example of such a simulation is
given in: www.math.ucsd.edu/∼politis/PAPER/Bagging.pdf where, in addi-
tion, bagging is compared to subagging for efficacy. As intuited in the discussion
of Section 4, ‘maximum contrast’ subagging is found to generally have an edge
over bagging, yielding similar power increases but significantly less FDR.
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Table 1. Numbers of non-null genes as found by applying Efron’s locfdr method (first
column), and ‘maximum contrast’ subagging using locfdr on each (pseudo)sample;
‘thr’ indicates the locfdr threshold

data subag (i) subag (ii∗)

thr=0.2 34 113 101

thr=0.3 51 142 123
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Fig. 1. Plot of function V ∗(i) vs. i in subagging the prostate data

To conclude, we now apply subagging to the well-known prostate cancer
dataset of Singh et al. (2002) that has been analyzed extensively by Efron (2006);
this is a ‘low power’ experiment, and thus could potentially benefit most from
subagging. In the prostate dataset, there are nX = 50 normal subjects, and
nY = 52 patients; on each subject expression levels for N = 6033 are recorded.

To apply ‘maximum contrast’ subagging, the simple choices mX = 10 and
mY = 13 were used mostly for divisibility purposes; they correspond to delete-d
with dX = 5 and dY = 4. The data were pre-processed via a cube-root trasnfor-
mation as in, for example, Tusher, Tibshirani and Chu (2001). Efron’s (2005)
locfdr method was used to perform the multiple comparisons using two differ-
ent thresholds, thr=0.2 and thr=0.3. The rejection lists for the original data, and
formula (i) and (ii∗) ‘maximum contrast’ subagging were compiled and given in
the Appendix; their sizes are given in Table 1 where it is seen that subagging
roughly triples the number of genes declared non-null.

Because of the potential increase in FDR that comes with bagging, the lower
threshold thr=0.2 might be recommended—which is also locfdr’s default. Of
the subagging formulas, one might prefer formula (ii∗) subagging for reasons
of being conservative. The plot of function V ∗(i) corresponding to the default
threshold is given in Figure 1 where it is apparent that there are many genes
that got an enormous number of votes; in fact, there are seven genes that were
voted by the original list as well as every subagging list.

This phenomenon is shown clearly in the plot of function N∗(h) of Figure 2.
The left hand side end of the plot (where h equals one or two) corresponds to
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Fig. 2. Plot of function N∗(h) vs. h in subagging the prostate data

the respective sizes (113 and 101) of the formula (i) and (ii∗) lists mentioned
above. The right hand side end of the plot corresponds to the case N∗(132) = 7,
i.e., the seven genes voted by every list.
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APPENDIX

The full rejection lists are given below, i.e., the gene (row) numbers declared
non-null corresponding to the methods reported in Table 1.

Case thr= 0.2:

Data LIST: 2 11 298 332 341 364 377 579 610 702 805 905 914 1068 1077 1089 1113
1314 1346 1557 1588 1589 1620 1720 2370 3647 3665 3940 4331 4518 4546 4549 5158
5159

Subag (i) LIST: 2 11 35 73 212 292 298 332 341 364 377 423 452 478 518 579 594
610 611 637 642 660 684 692 694 698 702 709 718 721 731 735 739 758 805 813 905
914 921 987 1003 1018 1019 1068 1077 1082 1089 1090 1097 1113 1130 1254 1314 1329
1345 1346 1458 1476 1507 1557 1572 1588 1589 1620 1628 1659 1720 1966 2370 2385
2391 2852 2856 2912 2945 2968 3200 3269 3282 3375 3585 3600 3647 3665 3746 3930
3940 3991 4013 4040 4088 4104 4154 4163 4282 4316 4331 4396 4492 4496 4500 4515
4518 4546 4549 4552 4554 4671 4981 5158 5159 5305 5697

Subag (ii∗) LIST: 2 11 35 73 298 332 341 364 377 423 452 478 518 579 594 610 611
637 642 660 684 692 694 698 702 709 718 721 731 735 739 758 805 813 905 914 921
1018 1068 1077 1089 1090 1113 1130 1254 1314 1329 1345 1346 1458 1476 1507 1557
1588 1589 1620 1628 1720 1966 2370 2385 2391 2852 2856 2912 2945 2968 3200 3269
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3375 3585 3600 3647 3665 3746 3930 3940 3991 4013 4040 4088 4154 4163 4282 4316
4331 4396 4492 4496 4500 4515 4518 4546 4549 4552 4671 4981 5158 5159 5305 5697

Case thr= 0.3:

Data LIST: 2 11 298 332 341 364 377 579 610 611 637 702 735 805 813 905 914 1068
1077 1089 1113 1130 1314 1345 1346 1458 1507 1557 1588 1589 1620 1628 1720 2370
2856 2912 3647 3665 3940 3991 4088 4316 4331 4396 4492 4515 4518 4546 4549 5158
5159

Subag (i) LIST: 2 11 35 44 73 78 212 249 263 270 292 298 332 341 364 377 423 452
478 493 518 579 594 610 611 626 637 642 660 684 692 694 698 702 709 718 721 731 735
739 742 758 805 813 832 844 905 913 914 921 987 1003 1018 1019 1068 1077 1082 1089
1090 1097 1113 1130 1132 1254 1314 1329 1345 1346 1362 1458 1476 1491 1507 1508
1557 1566 1572 1588 1589 1620 1628 1643 1659 1702 1720 1872 1966 2370 2385 2391
2785 2852 2856 2912 2945 2968 3200 3208 3260 3269 3282 3375 3585 3600 3647 3665
3746 3930 3940 3961 3991 4013 4040 4057 4073 4088 4104 4154 4163 4282 4316 4331
4386 4396 4492 4496 4500 4510 4515 4518 4546 4549 4552 4554 4671 4981 5158 5159
5305 5547 5647 5697

Subag (ii∗) LIST: 2 11 35 73 212 292 298 332 341 364 377 423 452 478 493 518 579
594 610 611 637 642 660 684 692 694 698 702 709 718 721 731 735 739 742 758 805
813 844 905 913 914 921 987 1003 1018 1019 1068 1077 1082 1089 1090 1097 1113 1130
1254 1314 1329 1345 1346 1362 1458 1476 1507 1508 1557 1588 1589 1620 1628 1659
1720 1966 2370 2385 2391 2852 2856 2912 2945 2968 3200 3208 3260 3269 3282 3375
3585 3600 3647 3665 3746 3930 3940 3991 4013 4040 4073 4088 4104 4154 4163 4282
4316 4331 4396 4492 4496 4500 4515 4518 4546 4549 4552 4554 4671 4981 5158 5159
5305 5547 5647 5697
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Abstract. Differential gene expression in different tissues is largely consid-
ered to be the specific property of individual genes. In this work a relationship 
between overall dipeptide composition of proteins encoded by genes on the 
one hand and the difference in their expression level in two of the most im-
portant human organs i. e. blood and brain have been studied. Study is de-
signed by developing a neural network that tries to predict the difference 
between expression of a gene in blood and brain from a 400-dimensional 
relative dipeptide composition vector. These vectors are derived from the 
amino acid sequence obtained by translating the corresponding gene. In a 
holdout validation scheme, such a model can predict gene expression from 
dipeptide composition with a significant Pearson's correlation of 0.49 with a 
classification capacity between (expression wise) blood favored and brain 
favored genes reaching 68 to 70% accuracy. Results indicate that despite di-
verse biological function of each expressed gene within a tissue, some simi-
larities in gene products do exist. 

1   Introduction 

Gene expression is one of the most vigorously pursued area of research in Bioin-
formatics today. There has been a keen interest in understanding the mechanism of 
gene expression and for that purpose DNA-sequences, expressing in different en-
vironments have been studied. Prediction of gene expression from DNA-sequence 
attributes has been attempted recently [1]. Thus, it is important to know what de-
termines gene expression at a chemical and physical level. In this work, an analysis 
of dipeptide composition of gene products i. e. proteins coded by expressed genes 
has been carried out. To determine if these features contribute to gene expression, a 
non-redundant set of 3761genes with known expression levels in human blood and 
brain have been analyzed by developing a neural network that would predict the 
difference in their expression levels in the two tissues. Test data sets are kept aside 
from training to assess true predictive role of dipeptide composition. Results on 
independent test sets show that about 68% genes can be correctly classified between 
those favoring to express in blood over brain or vice versa. 
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2   Methods 

2.1   Data Sets 

A dataset of human gene expression in different tissues has been compiled by Haverty 
et al. [2]. This so called HugeIndex database contains expression levels of genes in 
various tissues derived from human organs. Blood and brain are two of those most 
important organs, which have been used to carry out this study. Protein sequences 
encoded by these genes were obtained from EBI web server using their EMBLFETCH 
tool (http://www.ebi.ac.uk/cgi-bin/emblfetch?..). First a list of successfully completed 
queries was obtained. It was observed that some of the genes encoded for proteins with 
some sequence similarity. To avoid any bias caused by this, clustering of protein se-
quences was carried out using BLASTCLUST [8] to finally obtain a set of 3761 genes, 
such that no two members of the final data set were similar by more than 25%.  

2.2   Differential Gene Expression 

Gene expression level of a gene in brain was subtracted from that in blood and the 
difference of expression levels was normalized by a sigmoidal function as follows: 

y(i) =1/[1+exp( x1(i) -x2(i) )] (1) 

where x1(i) and x2(i) are the expression levels of gene i, in brain and blood respec-
tively. This leaves behind a distribution of differential expression values between 0  
and 1. A value close to 0 indicates higher expression in brain and closer to 1 indicates 
the same for blood. At y(i)=0.5, the two genes are expected to be equally expressed in 
the two systems.  

2.3   Relative Amino Acid Composition 

Using 20 amino acids, there are 20x20=400 possible dipeptide in a protein. Dipeptide 
amino-acid composition was calculated by using an obvious expression as follows: 

d(ij) = N(ij)/N  (2) 

where d(ij) is the relative frequency of occurrence of a dipeptide type j, in gene i and 
N(ij) is its absolute number. N is the total number of dipeptides encoded by the gene. 
Terminal positions from the sequence were not included.  

2.4   Neural Network 

Dipeptide composition of each gene product has been used as the inputs to a neural 
network. It is defined as follows: 

D(i) = d(ij){j=1,..400} (3) 

The target function is the expression level given by y(i) in (1). A hidden layer with two 
nodes was used to incorporate any non-linear or cumulative effect of input vectors. 
Number of training parameters would increase rapidly with the addition of every node 
in the hidden layer and therefore the number was kept at 2. To further limit the number 
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of trainable parameters, neural network biases in the nodes were turned off and set to 
zero for the entrie training and testing process.  Detailed scheme of a neural network 
inputs and transformations of the training data has been shown in Figure 1.  

The neural network was designed and trained using SNNS software [3], in quite a 
way similar to our other applications of neural networks (e.g. [4-5]). 

 

Fig. 1. Prediction scheme to estimate the relationship between differential gene expression and 
dipeptide composition of gene products 

2.5   Cross Validation 

There are less than 4000 genes and about 800 parameters to train and there is always a 
risk of over fitting in this system. To avoid this, the whole data was divided into five 
parts. In one training cycle, data from four of these parts is combined for training for a 
fixed number of training epochs (no information was used from the fifth left out data set, 
even to stop training, which is allowed to proceed for a maximum number of 100 cycles 
irrespective of over fitting the training data). Once the training is finished neural network 
is tested on the left out data and performance scores for this data are considered to be free 
from over fitting and are the ones being reported. Thus five cycles of training were per-
formed by selecting each of the five parts of the data sets for evaluating true performance.  
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2.6   Performance Evaluation 

Performance of a neural network is evaluated using standard scores such as Pearsons's 
correlation coefficient, sensitivity and specificity and net prediction (average of  
sensitivity and specificity, which is a good estimate of the area under the ROC curve). 
Net prediction (NP) was found to approximate the total number of correctly classified 
genes relative to the total number of classified genes (called accuracy). These scores 
have been repeatedly defined in literature [e.g. 4-5] and are not reproduced here as-
suming that they are obvious.  

3   Results and Discussion 

As stated in methods, five independent neural networks were trained to extensively 
examine the real predictive value of dipeptide compositions. Five pairs of training and 
test data sets were prepared and in each case training data was used to train the neural 
network, allowing over fitting but not letting any information from the test data enter 
the neural network. Neural network performance on the test data sets is finally reported 
in Table 1. As seen neural network could identify about 67 to 70% genes correctly to be 
over expressed in brain compared to blood or vice versa. It may be noted that the data 
contains many examples in which genes are not expressed at all in either of the two 
tissues and if we were to exclude them performance would improve. However, in this 
work all data was used so that all possible information could be extracted from com-
position vectors. Further, sensitivity is seen to be higher in the table, but the balance 
between sensitivity can be easily adjusted because the neural network actually returns a  
 

Table 1. Neural network performance on test data sets over five independent cycles 

Data CorrelationSensitivity 

(%) 

Specificity 

(%) 

Net  
Prediction
(%) 

Accuracy 
(% correct 
prediction) 

Data1 0.46 67% 73% 70% 70% 

Data2 0.47 96% 36% 67% 66% 

Data3 0.49 91% 48% 70% 67% 

Data4 0.52 85% 48% 66% 67% 

Data5 0.49 62% 72% 67% 67% 

Average 0.49 80% 55% 68% 68% 
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real value, which can be transformed into two-class predictions at different thresholds. 
Thus a balance between sensitivity and specificity can be manually selected with the 
constraint imposed by the maximum net prediction value.  

Differential gene expression between two organs or tissues has not been studied in 
the current context before. However, some studies trying to predict gene expression 
from DNA sequence have used a large number of descriptors and also obtained a 
somewhat better prediction than the performance reported here [1,6,7]. Role of dipep-
tide composition in predicting overall gene expression has also been demonstrated [7]. 
It is expected that the use of more descriptors to estimate gene expression from se-
quence alone will further improve the prediction of tissue-specific gene expression. 
However, the goal of this work is to elucidate the extent to which dipeptide amio acid 
composition can estimate gene expression levels in two key human tissues. Work is in 
progress to achieve the best possible predictions using sequence-derived descriptors as 
well as to expand current analysis to the whole set of tissues for which data is available.  

4   Conclusion 

Tissue-specific gene expression has been analyzed by developing a neural network 
based prediction system. It is shown that the genes expressing in blood and brain do 
differ in terms of dipeptide composition of their translated proteins. Further im-
provements in prediction using additional descriptors of sequence as well as extension 
to other expression data are the works in progress. 
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