

Carlos Cotta, Marc Sevaux, and Kenneth Sörensen (Eds.)

Adaptive and Multilevel Metaheuristics

Studies in Computational Intelligence,Volume 136

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 117. Da Ruan, Frank Hardeman
and Klaas van der Meer (Eds.)
Intelligent Decision and Policy Making Support Systems, 2008
ISBN 978-3-540-78306-0

Vol. 118. Tsau Young Lin,Ying Xie,Anita Wasilewska
and Churn-Jung Liau (Eds.)
Data Mining: Foundations and Practice, 2008
ISBN 978-3-540-78487-6

Vol. 119. Slawomir Wiak,Andrzej Krawczyk
and Ivo Dolezel (Eds.)
Intelligent Computer Techniques in Applied Electromagnetics,
2008
ISBN 978-3-540-78489-0

Vol. 120. George A. Tsihrintzis and Lakhmi C. Jain (Eds.)
Multimedia Interactive Services in Intelligent Environments,
2008
ISBN 978-3-540-78491-3

Vol. 121. Nadia Nedjah, Leandro dos Santos Coelho
and Luiza de Macedo Mourelle (Eds.)
Quantum Inspired Intelligent Systems, 2008
ISBN 978-3-540-78531-6

Vol. 122. Tomasz G. Smolinski, Mariofanna G. Milanova
and Aboul-Ella Hassanien (Eds.)
Applications of Computational Intelligence in Biology, 2008
ISBN 978-3-540-78533-0

Vol. 123. Shuichi Iwata,Yukio Ohsawa, Shusaku Tsumoto, Ning
Zhong,Yong Shi and Lorenzo Magnani (Eds.)
Communications and Discoveries from MultidisciplinaryData,
2008
ISBN 978-3-540-78732-7

Vol. 124. Ricardo Zavala Yoe
Modelling and Control of Dynamical Systems: Numerical
Implementation in a Behavioral Framework, 2008
ISBN 978-3-540-78734-1

Vol. 125. Larry Bull, Bernadó-Mansilla Ester
and John Holmes (Eds.)
Learning Classifier Systems in Data Mining, 2008
ISBN 978-3-540-78978-9

Vol. 126. Oleg Okun and Giorgio Valentini (Eds.)
Supervised and Unsupervised Ensemble Methods
and their Applications, 2008
ISBN 978-3-540-78980-2

Vol. 127. Régie Gras, Einoshin Suzuki, Fabrice Guillet
and Filippo Spagnolo (Eds.)
Statistical Implicative Analysis, 2008
ISBN 978-3-540-78982-6

Vol. 128. Fatos Xhafa and Ajith Abraham (Eds.)
Metaheuristics for Scheduling in Industrial and Manufacturing
Applications, 2008
ISBN 978-3-540-78984-0

Vol. 129. Natalio Krasnogor, Giuseppe Nicosia, Mario Pavone
and David Pelta (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2007), 2008
ISBN 978-3-540-78986-4

Vol. 130. Richi Nayak, Nikhil Ichalkaranje
and Lakhmi C. Jain (Eds.)
Evolution of the Web in Artificial Intelligence Environments,
2008
ISBN 978-3-540-79139-3

Vol. 131. Roger Lee and Haeng-Kon Kim (Eds.)
Computer and Information Science, 2008
ISBN 978-3-540-79186-7

Vol. 132. Danil Prokhorov (Ed.)
Computational Intelligence in Automotive Applications, 2008
ISBN 978-3-540-79256-7

Vol. 133. Manuel Graña and Richard J. Duro (Eds.)
Computational Intelligence for Remote Sensing, 2008
ISBN 978-3-540-79352-6

Vol. 134. Ngoc Thanh Nguyen and Radoslaw Katarzyniak (Eds.)
New Challenges in Applied Intelligence Technologies, 2008
ISBN 978-3-540-79354-0

Vol. 135. Hsinchun Chen and Christopher C.Yang (Eds.)
Intelligence and Security Informatics, 2008
ISBN 978-3-540-69207-2

Vol. 136. Carlos Cotta, Marc Sevaux
and Kenneth Sörensen (Eds.)
Adaptive and Multilevel Metaheuristics, 2008
ISBN 978-3-540-79437-0

Carlos Cotta
Marc Sevaux
Kenneth Sörensen
(Eds.)

Adaptive and Multilevel
Metaheuristics

123

Carlos Cotta
ETSI Informatica (3.2.49)
Campus de Teatinos
Universidad de Malaga
29071, Malaga
Spain
E-mail: ccottap@lcc.uma.es

Marc Sevaux
University of South-Brittany
CNRS, FRE 2734, LESTER
Centre de Recherche - BP 92116
F-56321 Lorient cedex
France
E-mail: marc.sevaux@univ-ubs.fr

Kenneth Sörensen
Fellow of the Flemish Fund for Scientific Research
Centre for Industrial Management
Katholieke Universiteit Leuven
Celestijnenlaan 300a
3001 Leuven
Belgium
E-mail: kenneth.sorensen@cib.kuleuven.be

ISBN 978-3-540-79437-0 e-ISBN 978-3-540-79438-7

DOI 10.1007/978-3-540-79438-7

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008925773

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks.Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer.Violations are liable to prosecution under the German
Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1
springer.com

Adapt or Perish, now as ever, is nature’s inexorable imperative
— H.G. Wells (1866-1946)

Preface

The last decades have witnessed a profound change in search and optimization
technologies. In those problem domains where complexity results deemed exact
techniques unaffordable, the use of metaheuristics has steadily gained popularity
and usage. Nowadays, these techniques exhibit a remarkable success record, and
are considered cutting-edge methods for solving hard optimization problems.
Thus, whenever new problem domains arise metaheuristics are one of the primary
weapons in our solving arsenal.

One of the keystones in practical metaheuristic problem-solving is the fact
–repeatedly shown in both theory and practice– that tuning the optimization
technique to the problem under consideration is crucial for achieving top per-
formance. This tuning/customization is usually on the hands of the algorithm
designer, and despite some methodological attempts, it largely remains an scien-
tific art. Needless to say, there exist a number of very useful guidelines available
in the literature for algorithmic parameterization, operator design, etc, but these
guidelines are in general heuristic in nature.

A longly pursued goal in the field of metaheuristics has been transferring a
part of this customization effort to the algorithm itself, endowing it with smart
mechanisms for self-adapting to the problem. These mechanisms can involve
different aspects of the algorithm, such as for example, self-adjusting the pa-
rameters, self-adapting the functioning of internal components, evolving search
strategies, etc. While some theoretical results set out limitations on the general
robustness of such mechanisms, their usefulness in specific problem classes has
been verified. This volume presents recent advances in the area of self-adaptation
in metaheuristic optimization. Most articles in this collection arose from a dedi-
cated workshop held in Málaga, Spain, in November 2006 under the auspices of
the European Chapter on Metaheuristics (EU/ME).

The volume is organized in two blocks. The first one comprises two review
articles that survey the major aspects in the area of self-adaptive metaheuris-
tics, namely hyperheuristics and self-adaptation in evolutionary heuristics. The
first paper is authored by K. Chakhlevitch and P. Cowling, and overviews hy-
perheuristics, a multi-level metaheuristic approach in which an upper heuristic

VIII Preface

layer controls the application of some underlying heuristics depending upon the
characteristics of the region of the solution space currently under exploration.
Different strategies for designing hyperheuristics are discussed, providing point-
ers to applications along the way. The second paper is authored by J.E. Smith,
and focuses on how self-adaptation mechanisms in evolutionary algorithms may
be used to control the parameters defining crossover and mutation, as well as
the very definition of local search operators used within hybrid evolutionary
algorithms.

The second block contains novel techniques involving self-adaptation, or novel
applications of these. Araya, Neveu and Riff consider hyperheuristics for strip
packing problems. Their hyperheuristic performs hill-climbing on a sequence of
greedy low-level heuristics for the mentioned problem, obtaining results that of-
ten outperform other heuristics for the strip packing problem. Boutillon, Roland
and Sevaux consider a simulated annealing approach to a hardware problem
(the optimization of a finite impulse response filter). They focus on the accep-
tance schedule of the algorithm, and propose a probability-driven schedule that
is shown to be competitive with temperature-driven strategies. Brunato and
Battiti present an adaptive random search scheme termed reactive affine shaker
that adapts the search region via affine transformations. The modifications are
done on the basis of information gathered from trial points, and as shown by
the experimental results they result in a promising approach for continuous
optimization.

Geiger and Wenger consider an adaptive multi-objective vehicle routing prob-
lem in which different interacting vehicle agent place bids for orders that are
offered in a marketplace. A decider agent communicates with a human user to
build a preference model of her preferences. Landa-Silva and Le also consider
a multi-objective problem, in this case in the area of nurse scheduling. Their
approach uses a decoder mechanisms that incorporates a self-mutation muta-
tion operator for repairing hard-constraint violations. Olague, Dunn and Lutton
consider a problem in the area of computer vision, and approach it with an adap-
tive strategy based on the evolution of interacting co-adapted subcomponents
for the problem at hand. They consider issues such as the computation and re-
distribution of fitness values, the preservation of diversity, and the aggregation
of individuals to form composite solutions.

Santana, Larrañaga and Lozano study the issue of adaptation within the
framework of estimation of distribution algorithms (EDAs). They consider a
framework in which the underlying probabilistic model can change during evo-
lution, and show how such a dynamic EDA can outperform a static EDA on
the satisfiability problem. Sierra Urrechu and Santibáñez Koref also consider an
EDA approach, applied in this case to search directions within the search space
rather than to solutions as usual. This approach can effectively self-adapt the tra-
jectory of a local-searcher on continuous optimization problems. Cooren, Clerk
and Siarry propose a parameter-free particle swarm algorithm that adapts its
parameters according to information collected during the optimization process.

Preface IX

It is shown that this approach is competitive with respect to other swarm-based
and evolution-based methods.

Sörensen, Sevaux and Schittekat contribute a position paper in which they ex-
amine commercial vehicle routing packages and identify multiple-neighborhood
search as the key feature for adaptation. They present the thesis that this conver-
gent feature is essential to the flexibility and adaptability of these approaches to
different problems, and outline the need for adaptive hyperheuristics to supple-
ment –and eventually, substitute– the role of the human user as designer. Finally,
Souffriau, Vansteenwegen, Vanden Berghe and Van Oudheusden consider a hy-
perheuristic approach based on ant-colony optimization (ACO) with application
to a routing problem. A genetic algorithm tunes the parameters of the ACO
algorithm on a training set of problems, and the so-adapted algorithm is then
tested on a different set of problems providing results very close to optimality.

Overall, this volume is intended both as a reference work for novel researchers
in the area of self-adaptation in metaheuristics, and as an inspiring collection of
state-of-the-art articles for researchers actively working in the field. We would
like to thank all the people who made this volume possible, starting by the
authors who contributed the technical content of the book. We also thank Dr.
Antonio J. Fernández and Dr. José E. Gallardo from the University of Málaga
for their invaluable participation in the organization of the seminal workshop
held on this topic in Málaga on 2006. The financial help of the University of
Málaga and the European Chapter on Metaheuristics is acknowledged too. Last
but not least, thanks are due to Prof. Janusz Kacprzyk for his support to the
development of this project, and to Dr. Thomas Ditzinger and the editorial staff
of Springer for their kind attention and help.

Málaga (Spain), Lorient (France), Leuven (Belgium) Carlos Cotta
February 2008 Marc Sevaux

Kenneth Sörensen

Contents

Part I: Reviews of the Field

Hyperheuristics: Recent Developments
Konstantin Chakhlevitch, Peter Cowling . 3

Self-Adaptation in Evolutionary Algorithms for Combinatorial
Optimisation
James E. Smith . 31

Part II: New Techniques and Applications

An Efficient Hyperheuristic for Strip-Packing Problems
Ignacio Araya, Bertrand Neveu, Maŕıa-Cristina Riff 61

Probability-Driven Simulated Annealing for Optimizing
Digital FIR Filters
Emmanuel Boutillon, Christian Roland, Marc Sevaux 77

RASH: A Self-adaptive Random Search Method
Mauro Brunato, Roberto Battiti . 95

Market Based Allocation of Transportation Orders to Vehicles
in Adaptive Multi-objective Vehicle Routing
Martin Josef Geiger, Wolf Wenger . 119

A Simple Evolutionary Algorithm with Self-adaptation for
Multi-objective Nurse Scheduling
Dario Landa-silva, Khoi N. Le . 133

Individual Evolution as an Adaptive Strategy for
Photogrammetric Network Design
Gustavo Olague, Enrique Dunn, Evelyne Lutton . 157

XII Contents

Adaptive Estimation of Distribution Algorithms
Roberto Santana, Pedro Larrañaga, José A. Lozano 177

Initialization and Displacement of the Particles in TRIBES,
a Parameter-Free Particle Swarm Optimization Algorithm
Yann Cooren, Maurice Clerc, Patrick Siarry . 199

Evolution of Descent Directions
Alejandro Sierra Urrecho, Iván Santibáñez Koref . 221

“Multiple Neighbourhood” Search in Commercial VRP
Packages: Evolving Towards Self-Adaptive Methods
Kenneth Sörensen, Marc Sevaux, Patrick Schittekat 239

Automated Parameterisation of a Metaheuristic for the
Orienteering Problem
Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe,
Dirk Van Oudheusden . 255

Index . 271

Author Index . 275

List of Contributors

Ignacio Araya
Project COPRIN, INRIA, Sophia-
Antipolis, France
ignacio.araya@sophia.inria.fr

Roberto Battiti
Dipartimento di Ingegneria e Scienza
dell’Informazione, Università di
Trento, via Sommarive 14, I-38100
Trento, Italy
battiti@dit.unitn.it

Emmanuel Boutillon
Université Européenne de Bretagne,
UBS - Lab-STICC - Centre de
Recherche, F-56321 Lorient France
emmanuel.boutillon@univ-ubs.fr

Mauro Brunato
Dipartimento di Ingegneria e Scienza
dell’Informazione, Università di
Trento, via Sommarive 14, I-38100
Trento, Italy
brunato@dit.unitn.it

Konstantin Chakhlevitch
CASS Business School, City Univer-
sity, London EC1Y 8TZ, UK
konstantin.chakhlevitch.1@
city.ac.uk

Maurice Clerc
LiSSi, E.A. 3956 Université de Paris
XII, 61 avenue du Général de Gaulle,
94010 Créteil, France
maurice.clerc@writeme.com

Yann Cooren
LiSSi, E.A. 3956 Université de Paris
XII, 61 avenue du Général de Gaulle,
94010 Créteil, France
cooren@univ-paris12.fr

Peter Cowling
Department of Computing, University
of Bradford, Bradford BD7 1DP, UK
P.I.Cowling@Bradford.ac

Enrique Dunn
CICESE, Km. 107 carretera Tij-Eda,
22860 Ensenada, México
edunn@cicese.mx

Martin Josef Geiger
Lehrstuhl für Industriebetriebslehre,
Universität Hohenheim, 70593
Stuttgart, Germany
mjgeiger@uni-hohenheim.de

Dario Landa-silva
School of Computer Science, The
University of Nottingham, UK
jds@cs.nott.ac.uk

XIV List of Contributors

Pedro Larrañaga
Intelligent Systems Group, Depart-
ment of Computer Science and
Artificial Intelligence, University of
the Basque Country, Paseo Manuel de
Lardizabal 1, 20080 Donostia - San
Sebastian, Spain
pedro.larranaga@ehu.es

Khoi N. Le
School of Computer Science, The
University of Nottingham, UK
kxl@cs.nott.ac.uk

Jose A. Lozano
Intelligent Systems Group, Depart-
ment of Computer Science and
Artificial Intelligence, University of
the Basque Country, Paseo Manuel de
Lardizabal 1, 20080 Donostia - San
Sebastian, Spain
ja.lozano@ehu.es

Evelyne Lutton
INRIA Rocquencourt, Le Chesnay
Cedex, France
evelyne.lutton@inria.fr

Bertrand Neveu
Project COPRIN, INRIA, Sophia-
Antipolis, France
bertrand.neveu@sophia.inria.fr

Gustavo Olague
CICESE, Km. 107 carretera Tij-Eda,
22860 Ensenada, México
olague@cicese.mx

Maŕıa-Cristina Riff
Department of Computer Science,
Universidad Técnica Federico Santa
Maŕıa, Valparáıso, Chile
maria-cristina.riff@inf.utfsm.cl

Christian Roland
Université Européenne de Bretagne,
UBS - Lab-STICC - Centre de
Recherche, F-56321 Lorient, France
christian.roland@univ-ubs.fr

Roberto Santana
Intelligent Systems Group, Depart-
ment of Computer Science and
Artificial Intelligence, University of
the Basque Country, Paseo Manuel de
Lardizabal 1, 20080 Donostia - San
Sebastian, Spain
rsantana@si.ehu.es

Iván Santibáñez Koref
Bionics and Evolutionary Techniques
Dept., Technische Universität Berlin,
D-13355 Berlin, Germany
isk@bionik.tu-berlin.de

Patrick Schittekat
University of Antwerp, Faculty of
Applied Economics, Prinsstraat 13,
2000 Antwerp, Belgium
patrick.schittekat@ua.ac.be

Marc Sevaux
Université Européenne de Bretagne,
UBS - Lab-STICC - Centre de
Recherche, F-56321 Lorient, France
marc.sevaux@univ-ubs.fr

Patrick Siarry
Laboratoire Images, Signaux et
Systèmes Intelligents, LiSSi, E.A.
3956 Université de Paris XII, 61
avenue du Général de Gaulle, 94010
Créteil, France
siarry@univ-paris12.fr

James E. Smith
School of Computer Science, Univer-
sity of the West of England at Bristol,
UK
james.smith@uwe.ac.uk

Kenneth Sörensen
Katholieke Universiteit Leuven,
Centre for Industrial Management,
Celestijnenlaan 300A,
3001 Leuven (Heverlee), Belgium
kenneth.sorensen@cib.kuleuven.be

List of Contributors XV

Wouter Souffriau
KaHo Sint–Lieven,
Information Technology,
Gebroeders Desmetstraat 1, 9000
Gent, Belgium
wouter.souffriau@kahosl.be

Alejandro Sierra Urrecho
Department of Computer Engineering,
Universidad Autónoma de Madrid,
28049 Madrid, Spain
alejandro.sierra@uam.es

Greet Vanden Berghe
KaHo Sint–Lieven, Information
Technology, Gebroeders
Desmetstraat
1, 9000 Gent, Belgium
greet.vandenberghe@kahosl.be

Pieter Vansteenwegen
Katholieke Universiteit Leuven,
Centre for Industrial Management,
Celestijnenlaan 300A,
3001 Leuven (Heverlee), Belgium
pieter.vansteenwegen@cib.
kuleuven.be

Dirk Van Oudheusden
Katholieke Universiteit Leuven,
Centre for Industrial Management,
Celestijnenlaan 300A,
3001 Leuven (Heverlee), Belgium
dirk.vanoudheusden@cib.
kuleuven.be

Wolf Wenger
Lehrstuhl für Industriebetriebslehre,
Universität Hohenheim,
70593 Stuttgart, Germany
w-wenger@uni-hohenheim.de

Part I
Reviews of the Field

Hyperheuristics: Recent Developments

Konstantin Chakhlevitch1 and Peter Cowling2

1 CASS Business School, City University, London EC1Y 8TZ, UK
Konstantin.Chakhlevitch.1@city.ac.uk

2 Department of Computing, University of Bradford, Bradford BD7 1DP, UK
P.I.Cowling@Bradford.ac.uk

Keywords: Hyperheuristics, multilevel heuristics, greedy heuristics, learning.

1 Introduction

Given their economic importance, there is continuing research interest in provid-
ing better and better solutions to real-world scheduling problems. The models
for such problems are increasingly complex and exhaustive search for optimal
solutions is usually impractical. Moreover, difficulty in accurately modelling the
problems means that mathematically “optimal” solutions may not actually be
the best possible solutions in practice. Therefore heuristic methods are often
used, which do not guarantee optimal or even near optimal solutions. The main
goal of heuristics is to produce solutions of acceptable quality in reasonable time.
The problem owners often prefer simple, easy to implement heuristic approaches
which do not require significant amount of resources for their development and
implementation [12]. However, such individual heuristics do not always perform
well for the variety of problem instances which may be encountered in practice.
There is a wide range of modern heuristics known from the literature which are
specifically designed and tuned to solve certain classes of optimisation problems.
These methods are based on the partial search of the solution space and often
referred as metaheuristics.

Although tailor-made metaheuristic algorithms have proved to be very effec-
tive for solving various combinatorial optimisation problems, their application
is usually limited to particular problem domains. Metaheuristics incorporate in-
formation specific for the problem and “require extensive knowledge in both
the problem domain and appropriate heuristic techniques” [21]. Therefore such
methods are often quite expensive to implement. Metaheuristic approaches that
perform well on a particular real-world problem, may not work at all or may
produce very poor solutions for other problems or even for other instances of
the same problem. Such limitations can become especially critical in situations
when problem data and business requirements change frequently over time. This
can make a metaheuristic even more expensive because it should be properly
maintained.

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 3–29, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

4 K. Chakhlevitch and P. Cowling

Burke et al. in [12] note that many businesses are interested in “good enough-
soon enough-cheap enough” solutions to their problems provided by easy-to-use
and robust heuristic approaches rather than optimal or near optimal solutions
achieved at the expense of the development of customised problem-specific meth-
ods such as metaheuristics and possibly using greatly simplified models. This is a
primary motivation for development of generalised, domain-independent heuris-
tic search techniques which have recently become known as hyperheuristics and
have received an increased attention in the research community. The purpose
of hyperheuristics is not to compete with state-of-the-art problem-specific ap-
proaches, but to provide a general framework able to deliver solutions of a good
quality for a wide range of optimisation problems.

Another motivation for development of hyperheuristics comes from the fact
that performance of different heuristics may vary significantly depending on the
specific characteristics of the problem and problem instance under consideration.
Moreover, individual heuristics may be particularly effective at certain stages of
the solution process (i.e. when certain areas of the solution space are being
explored) while performing poorly at any other stages. Therefore, it is fair to
expect that several heuristics combined in a proper way may produce better
solutions then if they are applied separately. A hyperheuristic can be defined as
a heuristic which chooses heuristics [61]. In other words, a hyperheuristic oper-
ates in a space of heuristics choosing and applying one low level heuristic from
a given set at each decision point. This is where the fundamental difference be-
tween hyperheuristics and metaheuristics lies since a metaheuristic is a heuristic
which controls the search in a space of solutions performed by a single low level
heuristic..

The term “hyperheuristic” was first introduced by Cowling et al. in [21]. They
defined a hyperheuristic as an “approach that operates at a higher level of ab-
straction than metaheuristics and manages the choice of which low-level heuristic
method should be applied at any given time, depending upon the characteristics
of the region of the solution space currently under exploration”. This means that
the hyperheuristic itself does not search for a better solution to the problem. In-
stead, it selects at each step of the solution process the most promising simple
low-level heuristic (or combination of heuristics) which is potentially able to im-
prove the solution. On the other hand, if there is no improvement, i.e., a locally
optimal solution is found, the hyperheuristic diversifies the search to another
area of the solution space by selecting appropriate heuristics from the given set.
Low-level heuristics usually represent the simple local search neighbourhoods or
the rules used by human experts for constructing solutions. However, it is also
possible that more complex heuristics such as metaheuristics can be considered
at a lower level. All domain-specific information is concentrated in the set of
low-level heuristics and the objective function. Hyperheuristics do not require
knowledge of how each low-level heuristic works or the contents of the objective
function of the problem (other than the value returned). It only needs to know
the direction of the optimisation process (maximising or minimising) and anal-
yses the value of one or more objective functions and, sometimes, the amount of

Hyperheuristics: Recent Developments 5

CPU time required to perturb the solution, which are returned by the low-level
heuristic after its call.

Hyperheuristics have received much attention over the last 5 years or so and
will likely remain a hot research topic for the near future. The first paper on
hyperheuristics was presented by Fisher and Thompson [30] in 1961, but there
was no other work in this area published between then and the 1990’s, when a
few related approaches were developed. The latter methods were mainly based
on genetic algorithms which used indirect chromosome representation so that the
chromosome encoded the method to solve a problem instead of the solution of a
problem. However, the motivation for such methods was rather to overcome the
difficulties related to solution encoding and maintaining the solutions feasibility
than to develop general solution techniques able to tackle different optimisation
problems. Nevertheless, the ideas used in these approaches created the basis
for recent developments in hyperheuristics. We shall discuss them later in this
chapter.

Based on the the original definition introduced by Cowling et al. [21], we shall
use the following criteria to define a hyperheuristic:

1. A hyperheuristic is a higher level heuristic which manages a set of low level
heuristics, of cardinality greater than one.

2. A hyperheuristic searches for a good method to solve the problem rather
than for a good solution.

3. A hyperheuristic uses only limited problem-specific information (ideally this
information includes only the number of low level heuristics for the problem
and objective function(s) to be maximised or minimised).

The third criterion is the most crucial one since it defines the level of generality
of the hyperheuristic approach as well as its potential robustness across different
problem domains. Many techniques considered in this chapter match to the first
two statements and fail to comply to the third one.

From our point of view, hyperheuristic approaches developed so far can be
classified into the following categories: hyperheuristics based on the random
choice of low level heuristics (Section 2), greedy and peckish hyperheuristics
(Section 3), metaheuristic-based hyperheuristics (Section 4) and hyperheuristics
employing learning mechanisms to manage low level heuristics (Section 5). We
will also consider other generic solving methods which are closely related to
hyperheuristics (Section 6).

2 Hyperheuristics Based on Random Selection

Hyperheuristics based on the random choice of low level heuristics from a given
set have been widely represented in the literature. Table 1 provides a list of the
approaches which fall in this class.

The “random” hyperheuristic is the oldest, the simplest, and easiest to imple-
ment of the family of hyperheuristics. It randomly selects one low level heuristic
from a given set at each decision point. The selected low level heuristic is always

6 K. Chakhlevitch and P. Cowling

Table 1. Hyperheuristic methods based on random selection of low level heuristics

Approach Papers Details

Pure random Cowling et al. [21], [23], [24] Uniform selection of LLH∗; either all LLH

Kendall and Mohamad [46] or only improving LLH are accepted

Bai and Kendall [4]

Burke et al. [9]

Cowling and Chakhlevitch [18]

Storer et al. [62]

Random descent Cowling et al. [21], [22] Improving LLH is applied repeatedly until

Soubeiga [61] it does not improve the solution

Unbiased random Fisher and Thompson [30], [31] Multistart process where probabilities of

process LLH selection are adjusted after each run

Monte Carlo Ayob and Kendall [3] Probability of accepting LLH is a function

Bai and Kendall [4] of the difference between old and new

Soubeiga [61] objective values; includes simulated

Chakhlevitch [16] annealing

Random with Kendall and Mohamad [45], [46] Acceptance rules are based on the distance

deterministic between two solutions; includes Great

acceptance Deluge and record-to record-travel methods
∗LLH stands for low level heuristic(s).

applied, even if it does not produce any improvement or worsens the current
solution of the problem.

Pure random hyperheuristics have been tested by many researchers for differ-
ent optimisation problems including the sales summit scheduling problem [21],
the project presentation scheduling problem [23], the nurse rostering prob-
lem [24], the channel assignment problem in mobile communications [46], the
shelf space allocation problem [4], university course timetabling problem [9], the
trainer scheduling problem [18] and job shop scheduling problem [62]. Note that
pure random approach is usually used as a point of comparison for the perfor-
mance of individual low level heuristics (where it is usually better) or other,
more intelligent hyperheuristic methods (where it is usually worse).

The main disadvantage of a purely random approach is that the quality of
the solution obtained depends on the chance of selecting a “good” sequence of
low level heuristics. In order to avoid the search becoming trapped into poor
regions of the solution space, modifications to the pure random approach are
needed. These modifications may concern the rule of accepting non-improving
low level heuristics during the hyperheuristic run or the way of applying low
level heuristic at each decision point. In [21] and [22], Cowling et al. compare
different versions of random hyperheuristics applied to a practical problem of
scheduling meetings for a sales summit. One version of hyperheuristic applies
a randomly selected low level heuristic only once at each iteration (simple ran-
dom hyperheuristic), another one conducts simple local search by applying a

Hyperheuristics: Recent Developments 7

randomly selected low level heuristic in a descent fashion, i.e. the low level heuris-
tic is reapplied as long as it continues to produce an improvement to the current
solution (descent hyperheuristic). The results of experiments show that descent
hyperheuristics perform better than simple versions. In addition, two acceptance
rules are considered: accept all low level heuristics or only improving ones. Note
that the “only improving” strategy may cause the hyperheuristic to get stuck in
a local optimum at the early stages of the search when there is no a single low
level heuristic in the set which is able to improve the current solution. This sit-
uation is likely to happen when the number of low level heuristics used is small.
The natural way to overcome the problems related to both extreme acceptance
strategies is to allow non-improving low level heuristics to be applied with some
probability.

In their seminal work, Fisher and Thompson [30], [31] use the term “unbiased
random process” for their random hyperheuristic. They consider a classical job
shop scheduling problem [7] and just two simple priority rules to select the next
job to be scheduled at each machine. In [31], the sequences of rules constructed
by the unbiased random process, produced better schedules than both rules in
the set applied separately. Fisher and Thompson [31] use reinforcement learning
techniques [63] in order to determine the probabilities of selecting specific deci-
sion rules at any point of the scheduling process. Each time a new sequence of
rules is generated, the resulting schedule produced by this sequence is compared
to the standard schedule (which is usually the best schedule found so far). If
the current schedule is better than the standard, it becomes a new standard,
otherwise the standard schedule remains the same. Then the points of difference
in the sequences of rules for both schedules are determined and the probabilities
of selecting rules at these points are adjusted and used for the next schedule
generation. The results reported in [31] show an improved average performance
of the method with learning if compared to a purely random approach. Fisher
and Thompson conclude that probabilistic learning approach might be more ef-
fective if a larger number of decision rules is combined rather than just two rules
considered in [31].

A number of hyperheuristics recently presented in the literature are based on
Monte Carlo methods. A general Monte Carlo method [33] uses probability for
accepting a new non-improving solution which decreases when the difference δ
in objective values between the new and the current (best) solutions increases
(for minimisation problem). In the context of a hyperheuristic, the probability of
accepting non-improving low level heuristic is considered. This probability can
be computed in different ways. Ayob and Kendall in [3] apply a Monte Carlo
hyperheuristic to optimise electrical component placement on a printed circuit
board. The set of 6 low level heuristics represents different versions of simple
swap moves. The authors consider linear and exponential functions of δ to de-
fine acceptance probabilities for non-improving low level heuristics. The best
results are achieved for an exponential function where time factors are taken
into account for calculating probabilities, i.e. an acceptance probability at any
decision point depends not only on δ, but on the time elapsed since a start of

8 K. Chakhlevitch and P. Cowling

a hyperheuristic and on the number of consecutive non-improving iterations.
Such a method for calculating probabilities is similar to that used in another
approach from the Monte Carlo family, simulated annealing [1], where the accep-
tance probability is a function of δ and control parameter (temperature) which
gradually decreases as the number of iterations grows. Bai and Kendall in [4]
develop a simulated annealing based hyperheuristic to solve a shelf space alloca-
tion problem. Combining 12 low level heuristics, their hyperheuristic approach
outperforms two versions of simulated annealing metaheuristic and produce high
quality results for different problem instances. Strong performance of simulated
annealing based hyperheuristics for a sales summit scheduling problem and for
a trainer scheduling problem are reported by Soubeiga in [61] and Chakhlevitch
in [16], respectively.

Another example of random hyperheuristics are hyperheuristics based on the
variants of Great Deluge algorithm [27], considered by Kendall and Mohamad
in [45] and [46]. A Great Deluge hyperheuristic randomly selects a low level
heuristic at each iteration and applies it if the objective value returned by the
low level heuristic is better than some specified threshold level. The level is ini-
tially set to the objective value of the starting solution and then adjusted after
each iteration, i.e. it decreases (for minimisation problems) at a fixed rate [45].
This strategy allows non-improving moves to be accepted frequently at the early
stages of a hyperheuristic run and very occasionally towards the end. In [46],
another method to control accepting non-improving low level heuristics is used:
a low level heuristic is accepted only if its returned objective value is reasonably
close to the objective value of the current solution. This is implemented by intro-
ducing a parameter which represents the maximum possible distance between
two solutions. Both hyperheuristics produce results of a good quality for the
channel assignment problem (see [45] and [46]).

Random hyperheuristics are simple and fast, and can be easily implemented
and applied to any optimisation problem. The results achieved by basic random
hyperheuristics can be used as benchmarks for evaluating other hyperheuris-
tic approaches. Hybridisation with more advanced techniques for accepting low
level heuristics make random hyperheuristics competitive with other approaches.
This is probably the case since the outcome of applying each low level heuristic
depends on effectively random factors and their behaviour at different decision
points is difficult to predict.

3 Greedy and Peckish Hyperheuristics

A basic greedy hyperheuristic simply selects and applies at each decision point
the low level heuristic which produces the largest improvement to the current
objective value (or the smallest deterioration if no improving low level heuristic
exists at some iteration). Two versions of the greedy strategy can be used: one
accepts only improving low level heuristics and another allows non-improving
low level heuristics to be applied. The second version is advantageous since
it prevents a hyperheuristic from stopping too early when no improving low

Hyperheuristics: Recent Developments 9

level heuristic is available in the set. Note that a greedy hyperheuristic requires
preliminary evaluation of each low level heuristic in the set in order to select
the best one which makes it much slower than a hyperheuristic based on the
random choice. Greedy hyperheuristics are considered by Cowling et al. [21] –
[24] and by Cowling and Chakhlevitch [18], [19] and their results are mainly used
as benchmarks for other methods.

The main disadvantage of a greedy hyperheuristic is its limited ability to ef-
fectively explore the search space leaving many regions with potentially strong
solutions unvisited. To overcome problems associated with local optima, Cowling
and Chakhlevitch [18], [19] develop a group of “peckish” hyperheuristics which
combine greedy and random mechanisms for managing the choice of low level
heuristics. A peckish hyperheuristic randomly selects a low level heuristic from
the candidate list of the “best” (not necessarily improving) ones. The length
of the candidate list may be adjusted in order to achieve a good ratio between
intensification and diversification in the search. The authors consider four ver-
sions of peckish hyperheuristics using both static and dynamic candidate lists
and apply them to the trainer scheduling problem

Note that peckish hyperheuristics may be particularly useful when a large
set of low level heuristics is used since they present a scalable method capable
of handling any number of low level heuristics. In [18] and [19], the authors
present a generic idea for constructing a large set of low level heuristics for com-
plex little-studied optimisation problems. For such problems, there is no obvious
choice of low level heuristics and traditional neighbourhoods (swap, insert or
replace moves) are not easily applicable. Tackling the real-world trainer schedul-
ing problem, Cowling and Chakhlevitch show how a set of low level heuristics
can be formed by combining simple selection rules for events and resources. See
also [16] for more details.

Greedy and peckish hyperheuristics can be readily applied for different opti-
misation problems due to their simplicity and high level of generality. However,
their slow speed makes them unfavourable for the problems where the time to
construct solutions is a crucial factor.

4 Metaheuristic-Based Hyperheuristics

A conventional metaheuristic is a local search based method which operates
in a solution space of the problem and employs some strategy to escape local
optima. Taking into account a proven record of successful applications of meta-
heuristics to solving complex real-world optimisation problems, the question of
how effectively metaheuristics can perform the search over a heuristic space is
of a great research interest. Various metaheuristic approaches and their hybrids
have been tested as a high level heuristic selectors in the last few years and we
refer to them as metaheuristic-based hyperheuristics in this section. We start
with hyperheuristics based on genetic algorithms (GAs) which have created the
foundation for current research in hyperheuristics.

10 K. Chakhlevitch and P. Cowling

Table 2. Hyperheuristics based on genetic algorithms

Papers Details

Fang et al. [28] Indirect GA with a block structure of the chromosome;

Hart et al. [42], [43] each block contains combination of LLH and domain-

specific information

Norenkov and Goodman [55] The length (or dimensions, in case of matrix representation)

Dorndorf and Pesch [25] of a chromosome is determined by the value(s) of problem-

Hart and Ross [41] specific parameter(s)

Terashima-Maŕın et al. [64] LLHs performing different actions are combined

Hart and Ross [41] in the chromosome

Cowling et al. [20] A chromosome determines a sequence of LLHs and the order of

Han et al. [39] their application; the length of the chromosome is either fixed

Han and Kendall [37], [38] or adaptively adjusted

Ross et al. [59] A chromosome encodes characteristics of the problem instances

together with associated LLHs

4.1 GA-Based Hyperheuristics

Early efforts to search for an effective solution method for a problem rather
than for a good solution are related to the development of GAs with indirect
chromosome encoding. A chromosome in a traditional GA encodes a solution to
the problem directly (by means of binary strings, permutations, etc.). However,
the solutions to many real-world problems have a very complex structure which
makes the direct encoding extremely difficult. The other disadvantages of direct
encoding are a large length of the chromosomes for large problems and the need
of specific repair operators to maintain the feasibility of solutions. A number of
indirect GAs developed in 1990s were aimed to overcome these limitations.

In indirect GAs each chromosome represents the way a solution is constructed
rather than the solution itself. In [64], the chromosome represents a sequence of
heuristics to be applied to the initial solution. The ith gene of the chromosome
encodes the heuristic number in the set of possible heuristics and indicates that
this heuristic will be applied at the ith step of generating a new solution. Note
that a chromosome in an indirect GA may also encode the order in which the
(single) heuristic is applied, but we do not consider such an approach in this
review. Table 2 provides a summary of the methods which can be classified as
GA-based hyperheuristics.

The idea of indirect encoding was first implemented by Norenkov [54] for a
scheduling problem connected with the CAD system hardware design and by
Fang et al. [28] for an open shop scheduling problem. Fang et al. [28] use a
set of eight simple dispatching rules as low level heuristics. The chromosome is
organized as a sequence of pairs of genes. The first gene in each pair represents
the heuristic and the second one represents the uncompleted job whose operation
will be scheduled by applying this heuristic. The results produced by the GA

Hyperheuristics: Recent Developments 11

are very close to the best previously found for the most of the benchmark open
shop problems and even better for some instances.

Another successful application of indirect GA is reported by Hart et al. [42],
[43]. They present a GA-based approach to tackle the real-world scheduling
problem of a chicken processing company. The problem is heavily constrained and
required several days of work of a human expert to produce a practical schedule.
The goal is to schedule chicken catching squads and lorries to deliver a set of
orders to the factories to ensure that the factories will be supplied with the birds
continuously throughout the day. The problem is decomposed into two stages and
two separate GAs are implemented in each stage respectively. We mention here
only the first one, an assignment GA, which performs the assignment of tasks
to squads. An assignment GA uses an indirect chromosome representation thus
evolving an assignment strategy and then applying that strategy to construct a
schedule. The strategy incorporates the combinations of two heuristics for each
order: one heuristic for splitting the order into tasks and the second heuristic
for assigning the tasks to squads. The chromosome consists of four sections.
The first section contains problem specific information, expressing certain fixed
criteria which must be satisfied by every solution. Including such information
into the chromosome allows the reduction of the search space. The second section
contains the permutation of the factory orders, i.e. the sequence in which the
orders will be processed by the strategy. The third and the fourth sections of the
chromosome specify for each order the splitting and the assignment heuristics
respectively. The GA uses specially designed crossover and mutation operators
for each section of the chromosome. An assignment GA in [42], [43] produces
practical schedules with almost all constraints satisfied.

Norenkov and Goodman in [55] further develop the approach introduced in
[54] and refer to it as a Heuristic Combination Method (HCM). In [55], HCM is
applied to solve multistage job-shop scheduling problems. The authors consider
two parts of a process of schedule synthesis, specifically job ordering and the
assignment of the jobs to servers, and define a set of simple heuristic rules for
each part. The composition of the rules for both parts forms the set of heuristics,
and the objective is to find the optimal sequence of application of these heuristics.
The chromosome is represented as a matrix of size q ∗ N,where N is the number
of jobs and q is the number of successive service stages each job passes during
its processing. The schedule is constructed consecutively for each service stage
by adding one job in each step. The element (i, j) of the matrix refers to the
heuristic which is applied on the jth step of schedule synthesis at the ith stage
of service. The jth step here means that j − 1 jobs have been already scheduled
and job j is due to be placed into the schedule. Given such a representation,
the authors define specific horizontal and vertical crossover operators (crossover
applied to rows and columns of the matrices respectively). They present several
evolutionary algorithms based on the above chromosome representation which
have been successfully applied to some benchmark job-shop scheduling problems.

A GA developed by Dorndorf and Pesch [25] evolves the sequence of low level
heuristics for minimising makespan in job shop scheduling problems. The set

12 K. Chakhlevitch and P. Cowling

of low level heuristics consists of 12 well-known priority rules. A chromosome
consists of n−1 genes, where n is the number of operations to be scheduled, and
each gene encodes the priority rule to be applied to schedule one operation. The
crossover operator exchanges substrings of priority rules in two chromosomes
and the mutation operator replaces the rule in the randomly selected position of
the chromosome with another, randomly selected rule. Although the indirect GA
loses to other heuristic methods (such as the Shifting Bottleneck heuristic [2], a
conventional GA and simulated annealing) both in solution quality and in speed,
it is easy to implement and it shows robustness to problem changes. Hart and
Ross [41] extend the approach presented in [25] and develop the method they
call HGA (heuristically-guided GA) to solve a dynamic job shop problem. Each
gene of a chromosome in HGA now encodes a pair (Method, Heuristic) where
Method represents one of the two algorithms used to calculate the conflicting
set of operations at each iteration (Dorndorf and Pesch in [25] consider only one
such algorithm) and Heuristic is one of the 12 priority rules used to select an op-
eration from the conflicting set. Hart and Ross show that switching between two
scheduling methods during schedule construction is beneficial and their method
outperforms other heuristics for many instances.

Terashima-Maŕın et al. [64] investigate the effectiveness of an indirect GA ap-
plied to a real-world examination timetabling problem. The authors consider the
performance of Brelaz’s well-known graph-colouring algorithm [6] combined with
heuristics for handling different types of problem constraints. The performance
varies for the different problems from the test set and depends on the heuristics
chosen. Since there is no evidence which combination of heuristics will be the
most suitable for solving any particular problem, Terashima-Maŕın et al. develop
an indirect GA to evolve combinations of heuristics and find the best one for
any instance. They specify three different algorithms for solving graph colouring
problems and two sets of heuristics for decision making. At the first decision
point the nodes of the graph are ordered for the colouring algorithm (variable
ordering) and at the second decision point, the order algorithm will select the
colours for a node (value ordering). The chromosome encoding is the 10-position
array of characters which represent two combinations of graph colouring method
with variable ordering and value ordering heuristics, the condition for switching
from the first combination to the second, the parameter for the specific condition,
and the indicator of the method of handling the constraints. The graph colouring
methods include Brelaz’s algorithm [6] and two procedures which involve back-
tracking and forward checking mechanisms respectively. The purpose of the two
combinations of the methods and the heuristics in the chromosome is to han-
dle the situations when the first combination becomes inefficient (performs too
many backtracking steps, exceeds time limit) or just to mix two combinations
in the hope of obtaining a better solution. The solutions obtained for all tested
problems by applying GA with such chromosome representation are superior to
those produced by Brelaz’s graph colouring algorithm (see [64]).

The GA-based approaches considered so far are rather domain-specific. Indi-
rect GAs are designed to solve different instances of the particular problems and

Hyperheuristics: Recent Developments 13

are shown to be highly efficient. Since some portion of problem-specific infor-
mation is usually injected into a chromosome (which, in turn, leads to problem-
specific genetic operators), such methods can not be used for different problems.
However, the indirect GA approaches described above are generalised in some
recent work.

In [20], Cowling et al. develop a GA-based hyperheuristic approach, called
hyper-GA, and test it on a simple model for a real-world trainer scheduling
problem. An indirect GA operates at a higher level and evolves a sequence of
low-level heuristics from a given set. The low-level heuristics are then applied in
the order they appear in the sequence to find a good solution of the problem in-
stance. The set of low-level heuristics contains twelve problem-specific heuristics
based on combinations of adding, swapping, and deleting events in the schedule.
The chromosome for a hyper-GA represents a sequence of integers corresponding
to low-level heuristics. The length of the chromosome is equal to the number of
low-level heuristics in the set so that each heuristic could be possibly present
exactly once in the chromosome. Thus, each individual in a hyper-GA popula-
tion encodes a sequence of low-level heuristics and indicates which heuristics to
apply and in what order. A hyper-GA uses a one-point crossover operator and a
mutation operator which replaces the low level heuristics in randomly selected
positions of the chromosome by other low level heuristics from the set. The
hyper-GA presented in [20] produces significantly better solutions than individ-
ual low-level heuristics and outperforms the direct GA and memetic algorithm
for all 5 instances of the problem both in the quality of the solutions and CPU
time used. The analysis of the behaviour of hyper-GA reveals that the hyper-
heuristic tends to change the range of low-level heuristics in chromosomes as
the search progresses selecting more often the heuristics which lead to improved
solutions.

Han et al. further improve hyper-GA in [39]. Since the optimal length of
the chromosome for hyper-GA is unknown, they developed a mechanism that
adaptively changes the chromosome length during the search. This mechanism
allows hyper-GA to evolve the best combinations of low-level heuristics which
may contain different number of heuristics. Indeed, in some cases it is reason-
able to remove from the sequence the heuristic (or heuristics) which worsen the
current solution hence making the chromosome shorter. In other situations, in-
sertion of “good” heuristics into the chromosome may be necessary so that the
chromosome becomes longer. The idea of the adaptive length chromosome in
hyper-GA is embodied in [39] by introducing specific crossover and mutation
operators which operate with groups of genes. A similar approach with vari-
able length of the chromosomes is implemented by Han and Kendall in [37],
where they develop a strategy which decides whether to make the chromosome
longer or shorter (by means of applying different mutation operators) in order to
maintain its length consistent with the average length of the chromosomes over
previous generations. Another version of hyper-GA is considered in [38], where
the length of the chromosome is regulated by making poorly performing genes
tabu for a number of generations. Note that all versions of hyper-GA maintain

14 K. Chakhlevitch and P. Cowling

a high level of generality and have the potential to be applicable to a range of
problems with only minor modifications. However, hyper-GA has been applied
only to a simplified version of the trainer scheduling problem and no results have
been reported for other problems.

Ross et al. [59] propose an interesting GA-based hyperheuristic approach
where the fitness of a chromosome is determined by its ability to successfully
solve different instances of the same problem. The approach is implemented
for a one-dimensional bin-packing problem where many benchmark instances
are available from the literature. A chromosome consists of a number of blocks
(genes). Each block contains information about the instance of the problem state
and low level heuristic associated with this instance. For a bin-packing problem,
the information related to the problem state represents the proportions of the
items of different sizes remaining to be packed. The genetic operators perform
crossovers and mutations either at block level or inside blocks. Each chromo-
some from the population is tested on different problems from a training set in
order to calculate its fitness. At every stage of a bin-packing process, the current
state of the problem is compared against the instances encoded in the blocks of
the chromosome, thus determining the block representing the closest instance.
The low level heuristic associated with the latter instance is then applied to the
actual problem state. The fittest chromosome after a specified number of gen-
erations is used to solve problems from a test set. Ross et al. [59] report that
their GA-based approach achieves optimal solutions for most of the problem in-
stances considered and outperforms each low level heuristic applied separately.
Although the idea used in [59] can be applied when considering other problems,
the approach has some significant limitations. First, it requires many problem
instances to be included into training and test sets which are often unavailable
for real-world problems. Second, it can be much more difficult to encode the
problem state instance for problems with complex structures than for a rela-
tively simple bin-packing problem, as well as to define a measure of distance
between different problem states. Finally, the approach might be expected to be
very slow for a range of complex real-world optimisation problems.

4.2 Other Metaheuristic-Based Hyperheuristics

A proven record of successful applications of GA-based hyperheuristics to various
problems has founded an interest in using other metaheuristics as higher level
heuristic selectors. Most of the relevant approaches have been developed over
very recent years. The exception is an early publication of Storer et al. [62]
where the authors study the effects of performing the search in two different
search spaces which are alternatives to the commonly used solution space. The
list of papers discussing hyperheuristics based on popular metaheuristic methods
is given in Table 3.

In [62], Storer et al. consider minimising makespan in a job shop scheduling
environment. They define two search spaces namely problem space and heuristic
space as a basis for local search algorithms. The idea of the search in a problem
space is to apply a base heuristic (for example, simple SPT dispatching rule

Hyperheuristics: Recent Developments 15

Table 3. Hyperheuristic based on non-GA metaheuristics

Approach Papers Details

Simulated Bai and Kendall in [4] Random selection of LLH;

annealing Storer et al. [62] probabilistic acceptance criteria

Soubeiga [61]

Chakhlevitch [16]

Tabu search Storer et al. [62] Basic version

Kendall and Mohd Hussin [47] Basic version

Kendall and Mohd Hussin [48] Hybrids with hill-climbing and great

deluge methods; random tabu durations

Burke et al. [8], [10] Constructive version

Burke and Soubeiga [15] Combines tabu search and reinforcement

Burke et al. [13], [9] learning; variable tabu list size

Dowsland et al. [26]

Cowling and Chakhlevitch [18], [19] Methods with different tabu list

contents; tabu list size is either fixed

or automatically adjusted

VNS Qu and Burke [57] Neighbourhoods of LLH sequences of

different lengths are explored

for job shop problem) to a perturbed versions of the original problem (where
processing times for operations are slightly modified) in order to generate alter-
native sequences of scheduled jobs. These solution sequences are evaluated using
original data and the best solution is recorded. The main point of our interest in
this work, however, is the concept of heuristic space, which is the basis for any
hyperheuristic. In [62], the heuristic space contains strings of dispatching rules
of a specified length, selected from the set of 6 rules commonly used in machine
scheduling. The string of rules defines which rules and in which order should be
called by a base heuristic (schedule generator) in the process of schedule con-
struction when a decision about the operation to be scheduled next is required.
Apart from random, hill-climbing and steepest descent methods, Storer et al. [62]
study the performance of basic versions of popular metaheuristics in heuristic
space. Simulated annealing, tabu search and genetic algorithm are applied for
searching heuristic space and tested on a range of hard job shop scheduling prob-
lems. The authors report the consistency and high quality of results produced
by these metaheuristic-based hyperheuristics and conclude that heuristic space
search can be very “useful in providing fast solutions to very large problems”.

Simulated annealing [1] and tabu search [32] approaches can be used to control
the search in heuristic space in a similar manner as they manage the neighbour-
hoods of problem solutions in conventional Metaheuristics. In the context of a
hyperheuristic, both algorithms decide at each iteration whether to accept or to
reject the application of a particular low level heuristic to the current solution of

16 K. Chakhlevitch and P. Cowling

the problem, depending on the objective value which would result after applying
the low level heuristic.

Chakhlevitch in [16] demonstrates that a simulated annealing hyperheuristic
produces more consistent results across a range of instances of a relatively de-
tailed model of a real-world trainer scheduling problem than a problem-specific
version of a simulated annealing metaheuristic. Additionally, the hyperheuristic
approach is less sensitive to the choice of initial solution for the problem than
its metaheuristic counterpart. Other examples of simulated annealing based hy-
perheuristics can be found in [4] and [61]. We also refer to discussion of these
methods in Section 2.

Hyperheuristics based on the tabu search metaheuristic have received increas-
ing attention in recent publications. Kendall and Mohd Hussin [48] consider a
simple tabu search based hyperheuristic for solving examination timetabling
problem. Their hyperheuristic manages a set of 13 low level heuristics based
on adding, moving, swapping and removing exams in the timetable. A low level
heuristic becomes tabu as soon as it is applied to the current solution irrespective
of whether it improves the solution or not. The tabu duration for each low level
heuristic is short and fixed and there is no aspiration criterion. This means that
a low level heuristic can not be applied while it remains tabu, even if it leads
to the largest improvement among all low level heuristics. The best non-tabu
low level heuristic is applied instead. Although such a simplified approach is
never able to beat the best known results for a range of benchmark timetabling
problems, it consistently produces good quality outcomes provided a sufficient
amount of CPU time is available. In [47], Kendall and Mohd Hussin consider two
more advanced versions of tabu search based hyperheuristic developed in [48]. In
the first version, a low level heuristic which improves the previous best solution
is applied repeatedly and becomes tabu only when it does not produce further
improvements (tabu search hyperheuristic with hill climbing). The second ver-
sion accepts the best non-improving and non-tabu low level heuristic only if it
updates the solution within a certain boundary (the idea used in the great deluge
algorithm, see [27]). In addition, random tabu durations from a given range are
considered for both versions. The authors report further improvements to results
obtained in [48]. Another tabu search based hyperheuristic approach for tack-
ling examination timetabling problems is proposed by Burke et al. [8]. Instead of
starting the search from the previously constructed initial solution, their method
starts from a blank timetable and generates the sequences of low level heuristics
which are used for step-by-step timetable construction. They use only two low
level heuristics which represent two different ordering strategies widely used in
examination timetabling. Tabu search is performed over a space of permutations
of these two heuristics. The hyperheuristic outperforms both low level heuristics
applied separately, losing, however, to problem-specific approaches on bench-
mark timetabling problems. A similar approach with six low level heuristics is
considered in [10].

Burke and Soubeiga [15] employ tabu lists of poorly performing low level
heuristics in a hyperheuristic approach to solving the nurse rostering problem.

Hyperheuristics: Recent Developments 17

In their method, low level heuristics compete against each other using rules based
on the principles of reinforcement learning. There are 9 low level heuristics in the
set which are ranked according to their performance during the hyperheuristic
run. At the beginning of the search each low level heuristic receives zero score
and the scores are dynamically changed as search progresses. Note that similar
idea is used in the hyperheuristic developed by Nareyek [53] and in choice func-
tion hyperheuristics ([21] – [24]) which will be discussed in the next section.
If the applied low level heuristic yields improvement to the current solution,
its score is incremented (positive reinforcement), otherwise it is decreased on
a specified number of points (negative reinforcement). However, such a scheme
has a disadvantage of repetitive calls of the poorly performing low level heuris-
tics with the highest scores (until the scores become low enough). The highest
scores for such low level heuristics have been achieved due to improvements pro-
duced in the earlier stages of the search. In order to overcome this problem,
each applied non-improving low level heuristic immediately becomes tabu and
is released from the tabu list as soon as the current solution is changed by some
other low level heuristic. Therefore, the size of the tabu list is variable and de-
pends on the number of low level heuristics applied before the current solution is
changed. The authors present results of a high quality for different instances of
the nurse scheduling problem. They also claim the robustness of their approach
across a range of instances of different problems. This claim is supported in [13]
where the hyperheuristic is applied to the university course timetabling prob-
lem, outperforming two problem-tailored metaheuristics in terms of feasibility of
solutions and showing competitiveness in terms of solution quality. In [9], tabu
search based hyperheuristic approaches developed in [15] are adapted to solving
multiobjective optimisation problems of space allocation and course timetabling.
Finally, similar approach is used within simulated annealing framework to solve
a complex shipper rationalisation problem (see [26]).

Cowling and Chakhlevitch [18], [19] present different versions of tabu search
based hyperheuristics for the trainer scheduling problem. These hyperheuristics
are designed to manage a large collection of (nearly 100) low level heuristics. The
basic hyperheuristic employs a tabu list of recently called low level heuristics
which have not improved the objective function. The algorithm greedily selects
the best low level heuristic at each iteration of the search. If such a heuristic
leads to an improved objective function value, it is always accepted and released
from the tabu list if present; a non-improving heuristic is chosen only if it is not
in the tabu list and immediately becomes tabu after its application. The authors
test several versions of hyperheuristics with fixed and dynamically changed tabu
list sizes as well as with different contents of tabu list such as recently applied
non-improving low level heuristics and recently modified events. The results
reported for tabu search hyperheuristics are advantageous to those obtained for
other hyperheuristic methods considered in [18] and [19].

Qu and Burke in [57] develop a variable neighbourhood search (VNS) [40]
hyperheuristic for the examination timetabling problem. As in [10], a timetable
is generated by consecutively applying constructive low level heuristics in an

18 K. Chakhlevitch and P. Cowling

order specified by their sequence to schedule exams. The search is performed
over a space of all possible sequences of low level heuristics of a given length.
In [57], the neighbourhoods are defined by random replacement of two, three,
four and five low level heuristics in a sequence. The hyperheuristic explores each
neighbourhood for a specified number of iterations before switching to another
neighbourhood. However, the results of [57] do not demonstrate this approach
to be advantageous when compared to other hyperheuristics which use a single
neighbourhood.

To conclude this section, we note that metaheuristic-based hyperheuristics
have been tested on different real-world problems and shown to be very effec-
tive, even beating state-of-the-art problem-tailored methods on occasion. How-
ever, like traditional metaheuristic approaches, such hyperheuristics require fine
tuning of parameters (temperature for simulated annealing, tabu list length or
tabu tenure for tabu search, crossover and mutation rates for GA, etc.). Although
hyperheuristics are often less sensitive to changes of these parameters, there is
no guarantee that a hyperheuristic will work equally well for different problems
using the same parameter settings. Recall that one of the main goals of a hy-
perheuristic is to provide a general framework for quickly producing solutions
of a good quality for problems from different domains. The ideal hyperheuris-
tic should be parameter-free (or nearly parameter-free) and easily applicable to
a new problem without significant modifications and tuning. A few efforts have
been undertaken to develop such methods by means of embedding learning tech-
niques into hyperheuristics. We review hyperheuristics with learning in the next
section.

5 Hyperheuristics with Learning

Hyperheuristics from this group employ various techniques for learning the his-
torical performance of low level heuristics. A hyperheuristic selects a promising
low level heuristic at each decision point based on the information about the
effectiveness of each low level heuristic accumulated in earlier stages of its run
(or in previous runs). Table 4 provides a list of publications together with a brief
details of of the techniques used in this area.

One popular learning mechanism which has been employed in a hyperheuristic
framework is based on the principles of reinforcement learning [44]. The general
idea of such a technique is to “reward” improving low level heuristics at each
iteration of the search and “punish” poorly performing ones by means of respec-
tively increasing and decreasing their weights (scores) or probabilities of being
selected. The weights of low level heuristics are adaptively changed as the search
progresses and reflect the effectiveness of low level heuristics at any stage of the
search.

Nareyek in [53] presents a weight adaptation method based on reinforcement
learning. He investigates different schemes of selecting the promising heuristics
from the set of alternatives during the search. Each heuristic has a weight as-
signed to it. The weight of a heuristic is changed as soon as a heuristic has

Hyperheuristics: Recent Developments 19

Table 4. Hyperheuristics with learning

Approach Papers Details

Reinforcement Nareyek [53] Weight adaptation methods

learning Burke and Soubeiga [15] LLH score adjustment within a tabu

search framework

Fisher and Thompson [31] Adjustment of LLH selection probabilities

Choice Cowling et al. [21]- [24] Three-component choice functions are used to

function Kendall et al. [49] keep track of the historical performance

Soubeiga [61] of LLHs

Learning Chakhlevitch and Cowling [17] Different learning criteria and strategies are

subsets of LLH Chakhlevitch [16] used to choose effective LLH from a large set

Learning Ross et al. [60] Learning effective combinations of problem

classifier system states and LLHs for their solving

Case based Burke et al. [11] LLHs suitable for modifying partial solutions

reasoning of the problem are retrieved from the case base

been called and its performance has been evaluated. If the choice of the par-
ticular heuristic leads to improvement of the objective function, the weight of
this heuristic increases, otherwise the weight decreases. The weights are bounded
from above and from below. Nareyek considers different schemes for weight adap-
tation during the search and separates these schemes for the cases of improve-
ment and deterioration. The current values of the weights express the informa-
tion about the past experience of using the corresponding heuristics and depend
on the region of the search space under exploration. The author presents two
methods of selection of the heuristics based on their weights. The first one is
the roulette-wheel approach where the heuristic is randomly selected with the
probability proportional to its weight. The second method simply selects the
heuristic with the maximum weight. A learning strategy (i.e. a hyperheuristic)
combines three components: the weight adaptation scheme for the case of im-
provement, the scheme for the case of non-improvement, and heuristic selection
method. The results of applying different strategies to two real-world optimisa-
tion problems (Orc Quest problem and the Logistics Domain) are reported. The
hyperheuristic with the weight adaptation mechanism outperforms the station-
ary expert strategy even when the latter has a carefully selected combination of
weights.

Other examples of hyperheuristics using principles of reinforcement learning
include methods of Fisher and Thompson [31] and Burke and Soubeiga [15] (see
also [13] and [9]) discussed in previous sections. Note that the former approach
employs learning to adjust probabilities of selecting low level heuristics, while
the latter uses the learning schemes similar to those in [53].

Cowling et al. in [21] introduce a hyperheuristic approach based on statistical
ranking of low level heuristics. In this method, historical information about the

20 K. Chakhlevitch and P. Cowling

recent performance of low level heuristics is accumulated in a choice function.
The selection of low level heuristic at each decision point depends on the current
value of the corresponding choice function. They define the choice function as a
“key to capturing the nature of the region of the solution space currently under
exploration and deciding which neighbourhood (low-level heuristic) to call next,
based on the historical performance of each neighbourhood”. In [21], the choice
function represents the weighted sum of the three components which reflect
recent performance of each low-level heuristic, recent effectiveness of consecutive
pairs of low-level heuristics, and the amount of time since the heuristic was
last called, respectively. The first two components provide the intensification of
the search while the third one is included for diversification. A good balance
between intensification and diversification factors allows the hyperheuristic to
explore the search space effectively. The weights of the components (denoted by
α, β, δ respectively) express their relative importance in the choice function. The
choice functions for low-level heuristics are recalculated at each iteration of the
hyperheuristic. The general idea of the choice function is that the choice of an
effective low-level heuristic at any given time may be stipulated by the recent
successful application of the heuristic or by the effectiveness of this heuristic
in combination with another heuristic, or, if the local optimum is reached, by
the opportunity to redirect the search to a new region of the solution space.
Choice function based hyperheuristics produce significantly better results for a
simplified model of a real-world sales summit scheduling problem than those
provided by the currently used scheduling system.

The limitations of the approach mentioned above are that it requires a warm-
up period during which the heuristics should be selected randomly in order to
initialise the values of the choice functions and that the weights α, β,and δ of in-
dividual components in the choice function should be manually tuned to achieve
the best results. To overcome these limitations, Cowling et al. have developed an
adaptive procedure that automatically adjusts the choice function’s parameters
during the search [22]. The method of parameter adjustment is to “reward” the
improving heuristics and to “penalise” the non-improving heuristics ensuring
that the best heuristics will be selected frequently and the worst ones will not be
chosen very often. Such an adaptive procedure of parameter adjustment makes
the hyperheuristic essentially parameter-free. The parameter-free hyperheuristic
approach provides further improvements in the quality of the solutions of the
sales summit scheduling problem (see [22]). The effectiveness and robustness of
the approach are further investigated in [23] and [49] for the project presentation
problem and in [24] for the nurse rostering problem. A detailed discussion and
analysis of the choice function based hyperheuristics can be also found in [61].

Chakhlevitch and Cowling in [17] and Chakhlevitch in [16] consider the trainer
scheduling problem and employ learning strategies embedded into peckish and
tabu search based hyperheuristics in order to identify the subsets of the most
effective low level heuristics in a large set. One of the reasons for introducing
learning techniques is that, given a particular instance of the problem and a large
collection of low level heuristics, it is difficult to predict in advance the behaviour

Hyperheuristics: Recent Developments 21

of different heuristics. Some low level heuristics may be particularly useful while
other ones may bring no or little contribution to the solution process. Moreover,
reducing the number of low level heuristics in the set may significantly speed
up the search for a better solution. The authors consider two learning strate-
gies. According to the first strategy, a hyperheuristic removes a certain number
of the weakest low level heuristics after a fixed number of iterations and then
continues its run with a reduced set. In the second strategy, low level heuristics
with a poor performance are eliminated continuously during the hyperheuris-
tic run until a required number of the best ones remains in the set. In [17]
and [16], several selection criteria for low level heuristic ranking based on their
ability to make changes to the current solution, frequency of calls by a hyper-
heuristic, frequency and magnitude of improvements are tested. The results of
the experiments suggest that hyperheuristics with embedded learning strategies
outperform hyperheuristics without learning given similar CPU time.

In [60], Ross et al. use a learning classifier system [65] to learn a set of rules
for solving one-dimensional bin-packing problems. As in [59], the rule is a combi-
nation of a problem state and an associated low level heuristic (see discussion in
subsection 4.1 of the GA-based method used in [59]). The learning classifier sys-
tem works on binary representation of rules. The set of benchmark bin-packing
problems is divided on two subsets used for training the learning classifier sys-
tem and for testing the learned rules respectively. The method achieves similar
results and has similar disadvantages to the GA-based approach in [59].

Burke et al. in [11] develop a hyperheuristic approach employing case based
reasoning for low level heuristic selection and apply it to the examination
timetabling problem. The approach has similarities to that presented in [60]
which uses the learning classifier system. The timetable is constructed step-by-
step by applying a low level heuristic to the partial solution at each step. The
appropriate low level heuristic is retrieved from a case base. The case base is a
collection of cases where each case describes possible partial solution and sug-
gests a low level heuristic which has been previously found to be effective in
dealing with such a partial solution. The cases in a base are picked up in a pro-
cess of solving the problems from a training set. The partial solution in each
case is represented by a list of features (properties) which is determined earlier
at a knowledge discovery stage by a specific tabu search procedure. After the
case base has been formed, it is tested on another set of problems (test set). At
each step of timetable construction, the hyperheuristic identifies the case which
is the closest to the current partial solution and applies the low level heuristic
recorded in this case. The authors demonstrate in [11] that a hyperheuristic with
case based low level heuristic selection consistently outperforms individual low
level heuristics for a range of timetabling problems.

6 Other Generic Problem Solving Techniques

In this section we consider a range of AI approaches which are closely related to
hyperheuristics. These approaches are aimed to providing a general methodology

22 K. Chakhlevitch and P. Cowling

Table 5. Generic methods related to hyperheuristics

Papers Details

Gratch and Chien [34] A statistical approach used to identify the best strategy

Gratch et al. [35] (combination of LLHs) for solving problems

from a given distribution

Minton [51], [52] Expert system which generates efficient computer programs

to solve constraint satisfaction problems

Fink [29] Various techniques to select a single heuristic from a set

Gupta et al. [36] of possible alternatives

Petrovic and Qu [56]

Burke et al. [14]

Lagoudakis and Littman [50]

Randall and Abramson [58] A generic problem solver based on the linked-list formulation

of the problems

for solving various instances from a selected problem domain. The main goal is
usually either to automatically select a good (ideally, the best) problem solving
method (heuristic) from a list of possible alternatives or to learn a good strategy
(combination of heuristics) which performs well over a distribution of problem
instances. The final choice of the solution method or strategy is based on the
historical performance of the alternatives on a training set of problems. Table 5
summarises recent developments in this area.

Gratch et al. [35] and Gratch and Chien [34] consider a statistical approach to
adaptively solve the real-world problem of scheduling satellite communications.
They develop a machine learning system that performs a hill-climbing search
over a space of possible combinations of heuristic methods (called control strate-
gies) and returns the most effective combination for the given problem domain.
The performance of each control strategy is evaluated by means of statistical
techniques. The heuristic scheduling algorithm makes its control decisions ap-
plying the corresponding heuristic from the control strategy at each decision
point. The authors specify 5 decision points during the process of solving each
problem instance with a set of possible low level heuristics to try at each de-
cision point. The sample of the problems for each run of the system is formed
by random selection of the specified number of problems from the distribution.
The best strategy is determined from several runs of the system since the ran-
dom selection of training problems may result in different learned strategies on
different runs. The selected strategy is then used to solve all the problems from
a given distribution. Gratch and Chien [34] report a significant improvement
in the performance of their adaptive learning approach in comparison to the
system which employs a human expert strategy. The learned control strategies
outperform the expert strategy both in terms of CPU time required to produce
a feasible schedule and the number of problems from the problem distribution
solved within a specified resource bound.

Hyperheuristics: Recent Developments 23

Note that although the idea of the adaptive problem solving used in [35]
and [34] is applicable to other problem domains, the approach may require signif-
icant modifications. Indeed, the adaptive problem solver employs domain-specific
knowledge which is expressed not only in the structure of the control strategy,
but in the method of exploration of the control strategy space as well. Another
limitation of the solver is the problem of the local maxima due to the nature
of the hill-climbing search. Finally, the statistical approach to adaptive prob-
lem solving implemented in [34] is computationally expensive since it requires a
large number of training examples in order to evaluate the performance of the
strategy.

Minton in [52] and [51] describes the expert system, Multi-Tac, for solving
constraint satisfaction problems [5]. The objective of the system is to produce
an efficient Lisp program tailored to particular problem and instance distri-
bution. Since many combinatorial optimisation problems can be formulated as
constraint satisfaction problems, the system can be used for solving problems of
various natures. Multi-Tac specialises a set of generic heuristics for constraint
satisfaction problems for a particular application and performs the search for
the best combination of the domain-specific versions of these heuristics. This
combination is then used to generate the problem-specific program. As for [34],
Minton uses hill-climbing search over the space of heuristic combinations is per-
formed and each combination is evaluated on a set of training instances. The
system is tested on two well-known NP-hard problems and the resulting syn-
thesised programs are shown to be competitive with the programs developed by
human experts.

Fink [29] develops a statistical technique for automatic selection among avail-
able problem solving methods (heuristics) for a given problem instance. This
technique is implemented in the framework of a sophisticated AI planning system
and combines knowledge acquired from the past performance of the methods, for
solving other problem instances from the same distribution, with exploration of
new alternatives. Incremental learning is used for selection of the solving method.
If the past performance data for all methods are available, a weighted random
selection among the methods is performed, where a weight for each method rep-
resents the probability that the method is the best for a given problem instance
(exploitation). If there is no previous data for some method, it is immediately
selected and applied (exploration). The technique is tested on a large set of
transportation problems and proved to be effective.

Several other approaches have been developed to learn a single best heuristic
(strategy) from the set of possible alternatives for solving a range of problems.
For example, Gupta et al. in [36] study the application of neural networks to
selecting the best heuristic algorithm for a flowshop scheduling problem. Petro-
vic and Qu [56] and Burke et al. [14] employ case based reasoning to select a
heuristic solving method for course timetabling problems. An approach based on
reinforcement learning is proposed by Lagoudakis and Littman [50] to select the
most efficient algorithm for solving large instances of simple problems of order
statistic selection and sorting.

24 K. Chakhlevitch and P. Cowling

Randall and Abramson in [58] develop a general problem solver for combina-
torial optimisation problems. Their solver is based on simulated annealing and
tabu search metaheuristics. The crucial point of their system is a modelling rep-
resentation for combinatorial optimisation problems. The authors introduce an
alternative representation based on dynamic data structures, specifically multi-
level linked lists. The linked list representation is well suited for many combi-
natorial optimisation problems. List modelling also allows for the elimination
of many constraints which would typically appear in a traditional integer linear
programming formulation of the problem since the range of possible values can
be defined for the elements of the list. Finally, traditional local search moves like
swapping, adding and repositioning components of the solution can be easily im-
plemented within the list structure in terms of inserting and deleting elements
in the list.

The problem solver has been tested by the authors on many instances of the
benchmark combinatorial optimisation problems. The system has been able to
produce optimal or close to optimal solutions in most occasions in a reasonable
time. However, the approach has been applied only to relatively easy problems,
which require only one level of sublists for their list-based formulation. Note
that the majority of real-world problems are much more complicated and multi-
level list structures may be needed for their representation. There is no evidence
in [58] that the solver would perform well on such problems. Another significant
drawback of the solver is a substantial amount of computer time required for
parameter tuning.

7 Conclusions

Hyperheuristics represent an interesting direction in the development of generic
solving techniques for combinatorial optimisation problems. Although general
problem solving methods have received increased attention among researchers
over the last two decades, most of the approaches presented in the literature
have been designed to solve various instances of a particular problem rather
than to be applied to a range of different problems. One of the main advan-
tages of hyperheuristics over traditional problem-tailored approaches is their
reapplicability and robustness across different problem domains. Development
of problem-independent hyperheuristic approaches is an important and chal-
lenging task and research to date provides only a few promising initial steps in
this direction.

In this chapter we have reviewed a wide spectrum of techniques which can
be classified as hyperheuristics as well as a range of approaches closely related
to them. In our review we have opted for a detailed analysis of the ideas lying
behind different hyperheuristic approaches in order to identify their advantages
and drawbacks. We can mention the following common limitations.

• Some hyperheuristic techniques make use of additional problem specific
knowledge. For example, such knowledge can be used to describe the cur-
rent state of the problem in order to select a suitable low level heuristic in

Hyperheuristics: Recent Developments 25

hyperheuristics employing learning classifier systems. In indirect GAs, a por-
tion of problem-specific information is often injected into the chromosome.

• For many hyperheuristics, a significant amount of parameter tuning is re-
quired in order to find good parameter settings for a given problem.

• A large number of problem instances may be required for training and testing
of the method in order to accumulate enough knowledge to make the right
choice of low level heuristics. However, for many real-world problems the
problem data are not easily available and randomly generated instances may
not adequately represent the real distribution.

• Many hyperheuristic methods are only tested on a relatively simple bench-
mark problems for which the best solutions (often optimal) as well as effective
low level heuristics are known in advance. There is no evidence that such hy-
perheuristics would be effective in more complex real-world situations.

Future research efforts in the area of hyperheuristics should be undertaken in
order to overcome these limitations. Development of effective parameter-free
hyperheuristics, methods for automatic parameter tuning in hyperheuristics,
and creating new techniques with a clear boundaries between the hyperheuristic
(higher level) and problem-specific (lower level) components are important re-
search directions. Hyperheuristics should be tested on a wider range of real-world
optimisation problems of different nature which would be the key to proving their
suitability as a fundamental component of future generic optimisation software.

References

1. Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In:
Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimisation,
pp. 91–120. John Wiley & Sons, Chichester (1997)

2. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34, 391–401 (1988)

3. Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine. In: Proceedings of the
2003 International Conference on Intelligent Technologies (InTech2003), Thailand,
pp. 132–141 (2003)

4. Bai, R., Kendall, G.: An investigation of automated planograms using a simu-
lated annealing based hyper-heuristic. In: Proceedings of the 5th Metaheuristics
International Conference (MIC2003), Kyoto, Japan, August 23-25 (2003)

5. Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: Algorithms
and applications. European Journal of Operational Research 119, 557–581 (1999)

6. Brelaz, D.: New methods to colour the vertices of the graph. Communications of
the ACM 22, 251–256 (1979)

7. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (1995)
8. Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics within a hyper-

heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan,
S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimisation and Decision
Technologies. Conference 9th INFORMS Computing Society Conference, vol. 9,
pp. 79–91. Springer, Heidelberg (2005)

26 K. Chakhlevitch and P. Cowling

9. Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic ap-
proaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yag-
iura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Selected Papers
from the 5th Metaheuristics International Conference (MIC 2003). Operations Re-
search/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, Heidel-
berg (2005)

10. Burke, E., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for
timetabling problems. Technical Report NOTTCS-TR-2004-9, School of Computer
Science and Information Technology, University of Nottingham (2004)

11. Burke, E., Petrovic, S., Qu, R.: Case based heuristic selection for examination
timetabling. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evo-
lution and Learning (SEAL 2002), pp. 277–281. Orchid Country Club, Singapore
(2002)

12. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyperheuris-
tics: an emerging direction in modern search technology. In: Glover, F., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic
Publishers, Dordrecht (2003)

13. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling
and rostering. Journal of Heuristics 9, 451–470 (2003)

14. Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a
hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E.K.,
De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 90–103. Springer,
Heidelberg (2003)

15. Burke, E., Soubeiga, E.: Scheduling nurses using a tabu-search hyperheuristic. In:
Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary
International Conference on Scheduling: Theory and Applications (MISTA 2003),
Nottingham, UK, pp. 197–218 (2003)

16. Chakhlevitch, K.: A hyperheuristic methodology for real-world scheduling. PhD
Thesis, Department of Computing, University of Bradford, UK (2006)

17. Cowling, P.I., Chakhlevitch, K.: Choosing the Fittest Subset of Low Level Heuris-
tics in a Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP
2005. LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)

18. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection
of low level heuristics to schedule personnel. In: Proceedings of the 2003 IEEE
Congress on Evolutionary Computation (CEC 2003), pp. 1214–1221. IEEE Press,
Los Alamitos (2003)

19. Cowling, P., Chakhlevitch, K.: Using a large set of low level heuristics in a hyper-
heuristic approach to personnel scheduling. In: Dahal, K., Tan, K.C., Cowling, P.I.
(eds.) Evolutionary Scheduling. Springer, Heidelberg (to appear, 2007)

20. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algo-
rithm applied to a trainer scheduling problem. In: Proceedings of 2002 Congress on
Evolutionary Computation (CEC 2002), pp. 1185–1190. IEEE Computer Society
Press, Honolulu, USA (2002)

21. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

22. Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for schedul-
ing a sales summit. In: Proceedings of the Third Metaheuristic International Con-
ference (MIC 2001), Porto, Portugal, pp. 127–131 (2001)

Hyperheuristics: Recent Developments 27

23. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyp-
ing in scheduling and optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Midden-
dorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002,
EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Berlin
(2002)

24. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a robust optimisation
method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer,
H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS,
vol. 2439, pp. 851–860. Springer, Heidelberg (2002)

25. Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling envi-
ronment. Computers and Operations Research 22, 25–40 (1995)

26. Dowsland, K., Soubeiga, E., Burke, E.: Solving a shipper rationalisation problem
with a simulated annealing based hyperheuristic. Technical Report NOTTCSTR-
2004-1, School of Computer Science and Information Technology, University of
Nottingham (2004)

27. Dueck, G.: New optimisation heuristics: the great deluge algorithm and the record-
to-record travel. Journal of Computational Physics 104, 86–92 (1993)

28. Fang, H.-L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for
open-shop scheduling problems. In: Cohn, A. (ed.) Proceedings of ECAI 1994: 11th
European Conference on Artificial Intelligence, pp. 590–594. John Wiley, Chich-
ester (1994)

29. Fink, E.: How to solve it automatically: selection among problem-solving methods.
In: Proceedings of the 4th International Conference of AI Planning Systems, pp.
128–136. AAAI Press, Menlo Park (1998)

30. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop
scheduling rules. In: Factory Scheduling Conference, May 10-12, 1961, Carnegie
Institute of Technology (1961)

31. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop
scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp.
225–251. Prentice Hall, Englewood Cliffs (1963)

32. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Norwell (1997)
33. Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Tech-

niques for Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications,
Malden (1993)

34. Gratch, J., Chien, S.: Adaptive problem-solving for large-scale scheduling problems:
a case study. Journal of Artificial Intelligence Research 4, 365–396 (1996)

35. Gratch, J., Chien, S., DeJong, G.: Learning search control knowledge for deep
space network scheduling. In: Proceedings of the 10th International Conference on
Machine Learning, Amherst, USA, pp. 135–142 (1993)

36. Gupta, J.N.D., Sexton, R.S., Tunc, E.A.: Selecting scheduling heuristics using neu-
ral networks. INFORMS Journal on Computing 12, 150–162 (2000)

37. Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In:
Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820.
Springer, Heidelberg (2003)

38. Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic al-
gorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation
(CEC 2003), pp. 2230–2237. IEEE Computer Society Press, Canberra, Australia
(2003)

28 K. Chakhlevitch and P. Cowling

39. Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic
genetic algorithm for a trainer scheduling problem. In: Proceedings of the 4th
Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp.
267–271. Orchid Country Club, Singapore (2002)

40. Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and appli-
cations. European Journal of Operational Research 130, 449–467 (2001)

41. Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling
problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)

42. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation 6, 61–80 (1998)

43. Hart, E., Ross, P., Nelson, J.: Scheduling chicken catching – An investigation into
the success of a genetic algorithm on a real-world scheduling problem. Annals of
Operations Research 92, 363–380 (1999)

44. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

45. Kendall, G., Mohamad, M.: Channel assignment in cellular communication using
a Great Deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International
Conference on Networks (ICON 2004), Singapore, November 16-19 (2004)

46. Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyperheuris-
tic. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent
Systems (CIS 2004), Singapore, December 1-3 (2004)

47. Kendall, G., Mohd Hussin, N.: Tabu search hyper-heuristic approach to the ex-
amination timetabling problem at University of Technology MARA. In: Burke, E.,
Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg
(2005)

48. Kendall, G., Mohd Hussin, N.: An investigation of a tabu search based hyperheuris-
tic for examination timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau,
M. (eds.) Multidisciplinary Scheduling: Theory and Applications, Selected papers
from the 1st Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA 2003), pp. 309–328. Springer, Heidelberg (2005)

49. Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuris-
tics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning (SEAL 2002), pp. 667–671. Orchid Country Club, Singapore (2002)

50. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learn-
ing. In: Proceedings of the 17th International Conference on Machine Learning,
pp. 511–518 (2000)

51. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study.
In: AAAI Proceedings (1993)

52. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings
of the 13th International Joint Conference on Artificial Intelligence (1993)

53. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer decision-making,
pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)

54. Norenkov, I.: Scheduling and allocation for simulation and synthesis of CAD system
hardware. In: Proceedings of EWITD 1994, East-West International Conference,
Moscow, ICSTI, pp. 20–24 (1994)

55. Norenkov, I., Goodman, E.: Solving scheduling problems via evolutionary methods
for rule sequence optimisation. In: Second World Conference on Soft Computing
(WSC2) (June 1997)

Hyperheuristics: Recent Developments 29

56. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyperheuristic
for course timetabling problems. In: Proceedings of the 6th International Confer-
ence on Knowledge-Based Intelligent Information Engineering Systems and Allied
Technologies (KES 2002), Crema, Italy, pp. 336–340 (2002)

57. Qu, R., Burke, E.: Hybrid variable neighbourhood hyperheuristics for exam
timetabling problems. In: Proceedings of the 6th Metaheuristics International Con-
ference (MIC 2005), Vienna, Austria (2005)

58. Randall, M., Abramson, D.: A general meta-heuristic based solver for combinatorial
optimisation problems. Computational Optimisation and Applications 20, 185–210
(2001)

59. Ross, P., Maŕın-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure
that can solve hard bin-packing problems: a new GA-based approach to hyper-
heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-
M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta,
D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish,
R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1295–1306. Springer, Heidelberg
(2003)

60. Ross, P., Schulenburg, S., Maŕın-Bl ázquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 942–948.
Morgan Kaufmann, San Francisco (2002)

61. Soubeiga, E.: Development and application of hyperheuristics to personnel schedul-
ing. PhD Thesis, Department of Computer Science, University of Nottingham, UK
(2003)

62. Storer, R.H., Wu, S.D., Vaccari, R.: Problem and heuristic search space strategies
for job shop scheduling. ORSA Journal on Computing 7, 453–467 (1995)

63. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

64. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan
Kaufmann, San Francisco (1999)

65. Wilson, S.W.: Classifier systems based on accuracy. Evolutionary Computation 3,
149–175 (1995)

Self-Adaptation in Evolutionary Algorithms for
Combinatorial Optimisation

James E. Smith

School of Computer Science, University of the West of England at Bristol, UK
james.smith@uwe.ac.uk

Summary. It is well known that the choice of parameter settings for meta-heuristic
algorithms has a dramatic impact on their search performance and this has lead to
considerable interest in various mechanisms that in some way attempt to automati-
cally adjust the algorithm’s parameters for a given problem. Of course this raises the
spectre of unsuitable parameters arising from a poor choice of learning/adaptation
technique. Within the field of Evolutionary Algorithms, many approaches have been
tried, most notably that of “Self-Adaptation”, whereby the heuristic’s parameters are
encoded alongside the candidate solution, and acted on by the same forces of evolution.
Many successful applications have been reported, particularly in the sub-field of Evo-
lution Strategies for problems in the continuous domain. In this chapter we examine
the motivation and features necessary for successful self-adaptive learning to occur.
Since a number of works have dealt with the continuous domain, this chapter focusses
particularly on its aspects that arise when it is applied to combinatorial problems. We
describe how self-adaptation may be use to control not only the parameters defining
crossover and mutation, but also how it may be used to control the very definition of
local search operators used within hybrid evolutionary algorithms (so-called memetic
algorithms). On this basis we end by drawing some conclusions and suggestions about
how this phenomenon might be translated to work within other search metaheuristics.

Keywords: Self-adaptation, evolutionary algorithms, memetic algorithms, self-
adapted parameters, self-adapted operators.

1 Introduction: What Is Self-Adaptation

It is well known that the performance of most search heuristics is dependent on
an appropriate choice of the parameters governing how new candidate solutions
are generated and used by the algorithm. Details such as the cooling schedule
in Simulate Annealing, or the length of the Tabu List are obvious examples
of this. The idea of a search heuristic that could automatically adjust its pa-
rameters has generated considerable interest amongst researchers. The general
idea is that by reducing the number of predefined parameters, the likelihood
of poor performance arising from an unsuitable choice is reduced, and so more
robust algorithms may be developed. Of course this instead raises the spectre of
unsuitable parameters arising from a poor choice of learning/adaptation tech-
nique instead. Within the field of Evolutionary Algorithms, many approaches

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 31–57, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

32 J.E. Smith

have been tried, most notably that of “Self-Adaptation”, whereby the heuris-
tic’s parameters are encoded alongside the candidate solution, and acted on by
the same forces of evolution. Many successful applications have been reported,
particularly in the sub-field of Evolution Strategies for problems in the continu-
ous domain. In this chapter we examine the motivation and features necessary
for successful self-adaption to occur.

This then raises a first question: What is Self-Adaptation? Informally, and
(deliberately) rather vaguely, it is a property of natural and artificial systems that
allows them to control the way in which they adapt to changing environments.
In order to answer this question more fully, we can pose a number of related
questions such as:

• Why should we be interested?
• When does it happen, and why?
• What might it be able to do?
• Does it only apply to Evolutionary Algorithms?

The rest of this chapter attempts to answer these questions. Since concept of
Self-Adaptation originated within the field of Evolutionary Computation (EC)
the 1970s, and this is where most of the subsequent research has been per-
formed, most of the discussion that follow will be couched in the terminology
of that field. However as we shall see the working definition that we define for
the Self-Adaptation could in principle be applied to many other types of opti-
misation meta-heuristic. Furthermore, since the subject of self-adaptation of the
parameters controlling search in continuous spaces has been extensively tackled
elsewhere (e.g. [15, 51, 60]) we shall concentrate on the self-adaptation of pa-
rameters for combinatorial search problems, since this raises some interesting
additional issues.

The rest of this chapter proceeds as follows: Section 2 answers the first ques-
tion, focussing on why adaptive schemes are needed, building from there to
create a taxonomy of possible adaptation schemes, and finishing with a list of
some features that we consider an algorithm should possess for it to be classed
as self-adaptive. Section 3 begins by describing how self-adaptation was first
introduced by Schwefel and colleagues for adapting the step-sizes controlling
mutation in continuous spaces. It then moves on to describe how these ideas
have further developed for EC algorithms using discrete encodings, and some of
the extra insights that have been derived as a result of this. Section 4 describes
how self-adaptation has been used to control recombination, the other principle
variation operator in EC, and in Section 5 we draw together the conclusions from
these two areas of experimental activity, and place them together with some the-
oretical ideas that have been developed. Having by this stage hopefully answered
the first three of our original questions, we end by turning our attention to the
fourth, and presenting results from a system in which Self-Adaptation is used
to define and generate Local Search operators within the context of a Memetic
Algorithm.

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 33

2 Finding Appropriate Parameter Settings in
Evolutionary Algorithms

Typically the process of designing an Evolutionary algorithm (EA) for a specific
problem begins by considering the space of possible solutions to that problem
and deciding upon a representation for the solutions. This then leads naturally
to the choice of variation operators (e.g. recombination and mutation) that will
be used to generate new solutions from the current population. A choice must
also be made of parent selection operator (to decide how likely members of the
population are to be used as inputs to the variation operators), and survival
scheme (to decide how the next generation is to be created from the current one
and outputs of the variation operators). For instance, for a simple Genetic Algo-
rithm (GA) it might be decided to use binary representation, uniform crossover,
bit-flip mutation, tournament selection, and generational replacement. For a full
specification, however, further details have to be given, for instance, the popula-
tion size, the probability of mutation pm and crossover pc, and the tournament
size. These data – called the algorithm parameters or strategy parameters –
complete the definition of the EA and are necessary to produce an executable
version. The values of these parameters greatly determine whether the algorithm
will find an optimal or near-optimal solution, and whether it will find such a so-
lution efficiently. Choosing the right parameter values is, however, a hard task.

Globally, we distinguish two major forms of setting parameter values: pa-
rameter tuning and parameter control. By parameter tuning we mean the
commonly practised approach of finding good values for the parameters before
the run of the algorithm and then running the algorithm using these values,
which remain fixed during the run. Later on in this section we give arguments
that any static set of parameters having the values fixed during an EA run seems
to be inappropriate. Parameter control forms an alternative, as it amounts to
starting a run with initial parameter values that are changed during the run.

Parameter tuning is a typical approach to algorithm design. Such tuning is
done by experimenting with different values and selecting the ones that give
the best results on the test problems at hand. However, the number of possible
parameters and their different values means that this is a very time-consuming
activity. The technical drawbacks to parameter tuning based on experimentation
can be summarised as follows:

• Parameters are not independent, but trying all different combinations sys-
tematically is practically impossible.

• Since these are stochastic algorithms, it is necessary to perform multiple runs
for each combination in order to properly establish statistically significant
differences.

• Therefore the process of parameter tuning is time consuming, even if param-
eters are optimised one by one, regardless of their interactions.

• For a given problem the selected parameter values are not necessarily optimal,
even if the effort made for setting them was significant.

34 J.E. Smith

This picture becomes even more discouraging if one is after a “generally good”
setup that would perform well on a range of problems or problem instances. Dur-
ing the history of EAs considerable effort has been spent on finding parameter
values (for a given type of EA, such as GAs), that were good for a number of test
problems. A well-known early example is that of [18], determining recommended
values for the probabilities of single-point crossover and bit mutation on what
is now called the De Jong test suite of five functions. About this and similar
attempts [28, 55], it should be noted that genetic algorithms used to be seen as
robust problem solvers that exhibit approximately the same performance over a
wide range of problems [26, page 6]. The contemporary view on EAs, however,
acknowledges that specific problems (problem types) require specific EA setups
for satisfactory performance [10]. Thus, the scope of “optimal” parameter set-
tings is necessarily narrow. There are also theoretical arguments that any quest
for generally good EA, thus generally good parameter settings, is lost a priori,
for example the No Free Lunch theorem [84].

As hinted above, there is a perhaps more fundamental drawback of the pa-
rameter tuning approach. Recall how we defined it: finding good values for the
parameters before the run of the algorithm and then running the algorithm using
these values, which remain fixed during the run. However, a run of an EA is an
intrinsically dynamic, adaptive process. The use of rigid parameters that do not
change their values is thus in contrast to this spirit. Additionally, it is intuitively
obvious, and has been empirically and theoretically demonstrated, that different
values of parameters might be optimal at different stages of the evolutionary
process [4, 5, 6, 17, 33, 36, 56, 60, 62, 73, 74, 79, 81].

This line of reasoning leads us to the realisation that rather than seeking some
(near)-optimal “sweet-spot” within the space of all possible parameter values,
we are actually concerned with finding a trajectory through that space that our
algorithm will follow. Moreover, when we consider that EAs are a population-
based heuristic, and that not all members of the population need have the same
parameter settings, it becomes clear that it is more accurate to describe the
progress of heuristic search as a cloud of points following a trajectory through
space. For many algorithms this cloud will condense to a single point, and for
static algorithms the position will remain fixed,but in general the cloud will
move over time as different combinations of settings are tried or discarded at
various stages in the progress of search. This happens under the influence of what
we will term an update function. Most commonly, the progress of the search is
monitored, e.g., by looking at the performance of operators, the diversity of the
population, and so on. The information gathered by such a monitoring process
is used as feedback for adjusting the parameters.

Various authors have attempted to classify the mechanisms which govern the
trajectory through parameter space e.g. [2,20,75,77]. Here we will use the defini-
tions synthesized from these in [21] and identify the three following approaches.

• Deterministic parameter control. This takes place when the value of a
strategy parameter is altered by some deterministic rule. This rule modifies

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 35

the strategy parameter in a fixed, predetermined (i.e., user-specified) way
without using any feedback from the search. Usually, a time-varying schedule
is used, i.e., the rule is used when a set number of generations have elapsed
since the last time the rule was activated.

• Adaptive parameter control. This takes place when there is some form of
feedback from the search that serves as inputs to a mechanism used to deter-
mine the direction or magnitude of the change to the strategy parameter. The
assignment of the value of the strategy parameter may involve credit assign-
ment, so that the updating mechanism can distinguish between the merits
of competing strategies based on the quality of solutions they produce. Al-
though the subsequent action of the EA may determine whether or not the
new value persists or propagates throughout the population, the important
point to note is that the updating mechanism used to control parameter
values is externally supplied, rather than being part of the “standard” evo-
lutionary cycle.

• Self-adaptive parameter control. The idea of the evolution of evolution
can be used to implement the self-adaptation of parameters (see [8] for a good
review). Here the parameters to be adapted are encoded into the chromo-
somes and undergo mutation and recombination. The better values of these
encoded parameters lead to better individuals, which in turn are more likely
to survive and produce offspring and hence propagate these better parameter
values. This is an important distinction between adaptive and self-adaptive
schemes: in the latter the mechanisms for the credit assignment and updat-
ing of different strategy parameters are entirely implicit, i.e., they are the
selection and variation operators of the evolutionary cycle itself.

This terminology leads to the taxonomy illustrated in Fig. 1.
Building on this categorisation, we can distinguish between two different types

of adaptive algorithm, and further define what we mean by self-adaptation when
we consider the evidence used for determining the change of parameter value
[61, 75]. Most commonly, the progress of the search is monitored, e.g., by look-
ing at the performance of operators, the diversity of the population, and so on.

Fig. 1. Global taxonomy of parameter setting in EAs

36 J.E. Smith

From this perspective, we can make further distinction between the following
two cases:

• We speak of absolute evidence when the value of a strategy parameter
is altered by some rule that is applied when a predefined event occurs. The
difference from deterministic parameter control lies in the fact that in deter-
ministic parameter control a rule fires by a deterministic trigger (e.g., time
elapsed), whereas here feedback from the search is used. For instance, the
rule can be applied when the measure being monitored hits a previously set
threshold – this is the event that forms the evidence. Examples of this type
of parameter adjustment include increasing the mutation rate when the pop-
ulation diversity drops under a given value [50], changing the probability of
applying mutation or crossover according to a fuzzy rule set using a vari-
ety of population statistics [48], and methods for resizing populations based
on estimates of schemata fitness and variance [76]. Such mechanisms require
that the user has a clear intuition about how to steer the given parameter
into a certain direction in cases that can be specified in advance (e.g., they
determine the threshold values for triggering rule activation). This intuition
may be based on the encapsulation of practical experience, data-mining and
empirical analysis of previous runs, or theoretical considerations (in the order
of the three examples above), but all rely on the implicit assumption that
changes that were appropriate to make on another search of another problem
are applicable to this run of the EA on this problem. It is worth noting that
many so-called self-adaptive algorithms in fact rely on this sort of evidence
as inputs to some externally defined updating function, so do not fall into
the definition of self adaptation offered by this article.

• In the case of using relative evidence, parameter values are compared
according to the fitness of the offspring that they produce, and the better
values get rewarded. The direction and/or magnitude of the change of the
strategy parameter is not specified deterministically, but relative to the per-
formance of other values, i.e., it is necessary to have more than one value
present at any given time. Here, the assignment of the value of the strat-
egy parameter involves credit assignment, and the action of the EA may
determine whether or not the new value persists or propagates through-
out the population. As an example, consider an EA using several different
crossovers with crossover probabilities adding up to 1.0 and being reset based
on the their performance measured by the quality of offspring they create.
Such methods may be controlled adaptively, typically using “bookkeeping”
to monitor performance and a user-supplied update procedure [17,37,58], or
self-adaptively [5, 22, 47, 59, 72, 77] with the selection operator acting indi-
rectly on operator or parameter frequencies via their association with “fit”
solutions.

2.1 Features of Self-Adaptation

The rather broad discussion above permits identification of the following features
that algorithm should possess in order to be classed as self-adaptive:

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 37

• The algorithm should exhibit automatic control of operators or their parame-
ters, via the action of the evolutionary processes both in the space of possible
solutions, and in the space of combinations of parameters. This means that
each individual encodes for its own parameters.

• In order for the self-adaptation to be effective, there must be a range of
different parameter sets present, so as to give evolution some diversity to
work with. The range of values present will depend on the action of selection
on the combined genotypes and the action of genetic operators (e.g. mutation)
on those encoded values. This has some implications which will be explored
later in this article.

• Finally, in order for successful evolution to occur there need to be links be-
tween the encoded parameter (which might be stochastic e.g. step sizes) and
the subsequent change in problem encoding (hence some interest in deran-
domised mutations (e.g. [31]). There must also be links between the action
of the operator and a subsequent change in fitness of the encoded solution,
and between the individual fitness and the action of selection.

3 Self Adaptation of Mutation Operators

3.1 The Origins: Self Adaption in Evolution Strategies

Evolution Strategies (ES) are typically used in continuous search spaces where a
solution with l components may be represented as a vector x̄ ∈ Rl. The mutation
operator is based on a normal (Gaussian) distribution requiring two parameters:
the mean ξ and the standard deviation σ. In practice, the mean ξ is always set
to zero, and so the vector x̄ is mutated by setting each x′

i = xi + N(0, σ), where
N(0, σ) denotes a random number drawn from a Gaussian distribution with
zero mean and standard deviation σ and this is done independently for each
component i : 1 ≤ i ≤ l. By using a Gaussian distribution here, small mutations
are more likely than large ones. The overall scale of the most probable mutations
is governed by the value of σ, which is why it is commonly referred to as the “step
size”. It is intuitively obvious that for efficient progress the most beneficial step
size will depend on how far the current solutions are from the global optimum.

The earliest ES used a single solution and offspring (the so-called (1+1)
model) and Rechenberg invented his famous “1:5” heuristic rules for adapting
step sizes according to the relative frequency with which improved solutions are
found. As more sophisticated population models were developed by Schwefel and
co-workers in the 1970’s [59, 60], other mechanisms became possible, and Self-
Adaptation was identified as a successful method. Nowadays the very basis of
self-adaptation in ES is that the step sizes are also included in the chromosomes
and they themselves undergo variation and selection. In the simplest case we
would have one step size that applied to all the components xi and candidate
solutions of the form 〈x1, . . . , xn, σ〉. Mutations are then realised by replacing
〈x1, . . . , xn, σ〉 by 〈x′

1, . . . , x
′
n, σ′〉. To obtain σ′, the mutated value of the step-

size σ, it is multiplied by a random variable drawn each time from a normal

38 J.E. Smith

distribution with mean 0 and standard deviation τ . Since N(0, τ) = τ · N(0, 1),
the full mutation mechanism is:

σ′ = σ · eτ ·N(0,1), (1)
x′

i = xi + σ′ · Ni(0, 1). (2)

In these formulas N(0, 1) denotes a draw from the standard normal distri-
bution, and since step-sizes very close to zero will have on average a negligible
effect, a boundary rule is then applied to maintain σ at or above a small threshold
value. The proportionality constant τ is an external parameter to be set by the
user. It is usually inversely proportional to the square root of the problem size.
It can be interpreted as a kind of learning rate, as in neural networks. Bäck [7]
explains the rationale for this way of adapting σ as follows:

• Smaller modifications should occur more often than large ones.
• Standard deviations have to be greater than 0.
• The median (0.5-quantile) should be 1, since we want to multiply the σ.
• Mutation should be neutral on average. This requires equal likelihood of

drawing a certain value and its reciprocal value, for all values.

The lognormal distribution satisfies all these requirements. What is important
here is that the mutation step sizes are not set by the user; rather the σ is
coevolving with the solutions (the x̄ part). In order to achieve this behaviour it
is essential to modify the value of σ first, and then mutate the xi values with
the new σ value. The rationale behind this is that a new individual 〈x̄′, σ′〉 is
effectively evaluated twice. Primarily, it is evaluated directly for its viability
during survivor selection based on f(x̄′). Second, it is evaluated for its ability
to create good offspring. This happens indirectly: a given step size evaluates
favourably if the offspring generated by using it prove viable (in the first sense).
Thus, an individual 〈x̄′, σ′〉 represents both a good x̄′ that survived selection
and a good σ′ that proved successful in generating this good x̄′ from x̄.

The alert reader may have noticed that there is an important underlying
assumption behind the idea of using varying mutation step sizes. Namely, we
assume that under different circumstances different step sizes will behave dif-
ferently: some will be better than others. These “circumstances” can be given
various interpretations. For instance, we might consider “time” and distinguish
different stages within the evolutionary search process and expect that different
mutation strategies would be appropriate in different stages. Self-adaptation can
then be a mechanism adjusting the mutation strategy as the search is proceed-
ing. Alternatively, we can consider “space” and observe that the local vicinity of
an individual, i.e., the shape of the fitness landscape in its neighbourhood, de-
termines what good mutations are: those that jump into the direction of fitness
increase. Assigning a separate mutation strategy to each individual, which coe-
volves with it, opens the possibility to learn and use a mutation operator suited
for the local topology.As ever-more complicated problems have been considered
it has become apparent that it is often not appropriate to be traversing each
dimension of the search space at the same rate. This can be simply achieved

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 39

by encoding and adapting a separate step-size for each dimension. In fact for
many functions it is useful to be able to identify and exploit search directions
which do not lie parallel to any of the axes (dimensions), and this has lead to
the development of models which include a covariance matrix describing how the
likely moves in different dimensions are coupled to one another. However it must
be borne in mind that although these arguments are plausible for continuous
search space they do not transfer as easily to the combinatorial domain.

The central claim within ES is that self-adaptation works. Over the last
decades much experience has been gained over self-adaptation in ES. The accu-
mulated knowledge has identified necessary conditions for self-adaptation:

1. Population size μ > 1 so that different strategies are present.
2. Generation of an offspring surplus: λ > μ.
3. Not too strong selective pressure (as a heuristic: λ/μ = 7, e.g., (15,100))
4. (μ, λ)-selection, where all parents are discarded are replaced by a subset of

the best offspring, to guarantee extinction of poorly adapted individuals and
strategies.

5. Recombination should also be used on the also on strategy parameters (es-
pecially intermediate recombination).

In addition to a wealth of experimental evidence, showing that an ES with
self-adaptation outperforms the same ES without self-adaptation, there are also
theoretical results backing up this claim. In fact, theoretical and experimental
results can neatly complement each other in this area if for a (simple) objective
function f : Rn → R theoretically optimal mutation step sizes can be calculated.
Note that the problem and the algorithm must be simple to make the system
tractable, since for a complex problem and/or algorithm a theoretical analysis
is infeasible. Optimal mutation step sizes need to be defined in the light of
some performance criteria, e.g., progress rate during a run. If experimentally
obtained data show a good match with the theoretically derived values, then we
can conclude that self-adaptation works in the sense that it is able to find the
near-optimal step sizes. For reasons of tractability, the theoretical analysis of
self-adaptation in Evolution Strategies has concentrated on looking at different
forms of local topology such as hyperspheres and ridges, but this work is now
well advanced and documented. Therefore we will not dwell on it in this chapter
but refer the interested reader to works such as [11, 15, 31, 30, 51].

3.2 Self-Adaptation of Mutation for Discrete Encodings

A self-adaptive mechanism for controlling mutation in a bit-string GA is given by
Bäck [4]. This technique works by extending the chromosomes by an additional
20 bits that together encode the individuals’ own pm. Mutation then works by:

1. Decoding these bits first to pm

2. Mutating the bits that encode pm with mutation probability pm

3. Decoding these (changed) bits to p′m
4. Mutating the bits that encode the solution with mutation probability p′m

40 J.E. Smith

This approach is highly self-adaptive since even the rate of variation of the
search parameters is given by the encoded value, as opposed to the use of an
external parameter like τ in Eq. (1). Bäck’s results showed that truncation selec-
tion was preferable (the equivalent of (μ, λ) selection with μ < λ, but although
he experimented with the use of multiple mutation rates for different encoded
solution variables, the results were less conclusive.

Following Bäck’s seminal work, several authors have experimented with self-
adaptation of mutation rates in GAs (see for example, [12,24,34,49,74]. Design
decisions that must be addressed with this approach are the choice of represen-
tation for the strategy parameter and, related to this, the means by which the
strategy parameter is itself varied to allow adaptation to occur. Bäck’s early work
remained close to the traditional interpretation of a GA and used a binary en-
coding of the strategy parameters with corresponding bitwise mutation. Smith’s
work in the context of steady-state GAs examined a number of possibilities [74],
and more current thinking is that a real-valued representation is preferable. This
then allows the use of lognormal adaptation of strategy parameters as per Eq.(1).

However, subsequent work, both empirical [25, 49] and theoretical [53], has
shown that self-adaptation schemes which adapt too quickly can lead to pre-
mature convergence to low step sizes, with the search getting ’stuck’ at local
optimum. This has lead to an interest in alternative variation schemes. In order
to investigate some of these from a theoretical perspective, Smith introduced a
dynamical systems model of a GA with self-adaptation of mutation rates in [62].
The model is used to predict mean fitness of an evolving population over time.
In order to reduce the algorithm to its bare essentials, with the added benefit
of making the mathematics computationally tractable, there are two key dif-
ferences between the model and the self-adaptive GAs just described. Firstly,
rather than using a binary or real-valued representation, strategy parameters
are represented by a single allele from a fixed, small alphabet of size q (a value
of q = 10 was used in the original paper). A consequence of this is that the mu-
tation rate attached to an individual can only take on one of q possible values,
as opposed to the large or effectively infinite number available with binary or
real-valued representations. Secondly, because of the discrete nature of the strat-
egy parameter representation, the lognormal scheme cannot be used to vary the
strategy parameters. The initial analysis used a scheme where a strategy param-
eter is modified with uniform probability z to one of the q possible alleles, which
means that the behaviour of each of the strategy parameters can be modeled as
a Markov chain, and the transition matrix associated with the mutation of the
parameters has entries of the form:

Pi,i′ =
{

z/q i′ �= i
1 − z/q i′ = i

(3)

The results of this analysis showed that even using a simple GA, with fitness-
proportionate selection (i.e. without the offspring surplus previously thought to
be necessary) it is possible to observe self-adaption even in dynamic environ-
ments. This can be evidenced by one experiment where after a fixed number
of generations the fitness function was inverted from OneMax to ZeroMax. The

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 41

1000 1020 1040 1060 1080 1100 1120

Generations

0

20

40

60

80

100

Me
an f

itne
ss

100
500
1000
5000
10000
Model

Fig. 2. Evolution of Mean Fitness After Environmental Change:Predicted vs. Empir-
ical Results for different sized populations

mathematical model was used to predict both the mean fitness of the population
as a function of time, and the proportions of the population using different mu-
tation rates, and these were compared to experimental results from a GA with
population size 1000.

Figure 2 illustrates the results of these experiments, concentrating on the
period immediately after the transition. As can be seen there is a good match
between the prediction and the observed behaviours, especially in the first thirty
or so generations.

The patterns of (predicted and observed) evolved behaviour starting from a
converged population are very different to those with the initial random popu-
lation. This can be explained by examining the proportions of the population
falling into the different mutation classes as shown in Figures 3 (predicted) and
4 (observed).

Initially after the transition, mutations are on average beneficial, and so once
re-introduced by chance, individuals with the highest mutation rates attached
start to take over the population. Note that under this simple model of self-
adaptation this re-introduction by mutation occurs at a constant rate, which
can happen faster than under a lognormal adaptation scheme (unless τ is set
unusually high. However once the mean fitness has passed 50%, then on average
mutations will be deleterious, and so there is a phase transition, and individuals
with lower mutation rates attached have a selective advantage. Inspection of
Figures 3 and 2 shows that this happens around 25 - 50 generations after the
change. It is notable that the empirical and theoretical results are virtually
identical up to this point for all population sizes over 100. From Figures 3 and
4 it can be seen that with a finite population the lowest mutation class does
not takeover the population as much as is predicted after the phase transition.
It has been suggested above that this is because the model predicts the early
generation of individuals with high fitness, for which low mutation rates are
selective advantageous, whereas the effects of a finite population mean that a
more gradual evolution of fitness occurs, with correspondingly higher mutation
rates.

42 J.E. Smith

0 25 50 75 100 125 150 175 200 225 250
Generations post change

0

20

40

60

80

Pro
por

tion
 of

pop
ula

tion
 in

mu
tati

on
clas

s P(m) = 0.0005
0.001
0.0025
0.005
0.0075
0.01
0.025
0.05
0.075
0.1

Fig. 3. Predicted Evolution of Proportions of Population in Different Mutation Classes
After Environmental Change

1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 1250

Generations

0

20

40

60

80

100

Pro
por

tion
 of

pop
ula

tion
 in

Mu
tati

on
clas

s

Fitness
P(m) = 0.0005
0.001
0.0025
0.005
0.0075
0.01
0.025
0.05
0.075
0.1

Fig. 4. Observed Evolution of Mean Fitness and Mutation Classes After Environmental
Change, Population 1000

These results suggests that there is a limit to the rate of environmental change
which the self adaptive algorithm can respond to, this limit being related to the
time needed for this phase transition to occur. This time will depend on the
selection pressure, but also on the Innovation Rate z, since this determines both
the background proportions of (initially) sub-optimal high mutation rates in the
population prior to the change, and also the rate at which lower mutation rates
are re-introduced into the population.

Following the success of these models to correctly predict self-adaptive be-
haviour even in such a simple system, Stone and Smith compared the optimi-
sation performance of the “discrete” scheme to algorithms using a continuous
(i.e. real-valued) mutation parameter with log-normal schemes [80]. As noted
above, the ES literature suggests that values of τ = c/

√
n, for some constant c is

suitable for a n-dimensional problem, but of course in the case of a GA a more
appropriate measure is the length of the string in bits. It is not apparent that
the rule can be directly mapped from ES to GA representations. Glickman and
Sycara [24] use a value of τ = 0.1 for a string of length 1000. This corresponds
to a value of c = 3.16. In contrast, Hinterding, Michalewicz and Peachey [34] use

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 43

the lower fixed value of τ = 0.013 in their self-adaptive GA. Stone and Smith
tried values for c of 0.5, 1, 2, 3 and fixed rates for τ of 0.013 and 0.02. For the
former values the problem length (in bits) is taken into account when arriving at
the actual rates used, whereas the latter two are fixed rates across all functions.
Table 1 shows the results obtained with (100, 500) GA on a range of problem
with very different characteristics in terms of modality, deception, plateaus, etc.
As can be seen, the discrete scheme is consistently more effective at locating the
global optimum across functions with a wide range of characteristics, although
this comes at some expense of speed. The authors provide an explanation for
this in terms of the diversity of mutation strategies that are present in the pop-
ulation at any time, and how this provides scope for evolution and for escaping
local optima.

Table 1. Comparison of Optimisation Results for discrete self-adaptation of mutation
rates vs. continuous scheme with log-normal adaptation. AES indicates mean time to
locate the global optimum on successful runs, and SR indicates number of runs (out of
50) on which this was achieved. Full experimental details may be found in [80].

Discrete Continuous
Self-Adaptation Self-Adaptation

Function length Max. gens. AES SR z AES SR τ c
OneMax 128 1000 68 50 0.05 66 50 0.063 2.00
Rastrigin’s 64 5000 100 50 1 84 34 0.013 0.10
Deb’s Deceptive 32 2500 1205 21 1 20 8 0.020 0.11
Matching Bits 128 10000 510 49 1 231 40 0.020 0.10
R1 Royal Road 64 10000 326 50 1 159 50 0.013 0.10

More recently Smith [66] extended his theoretical analysis to model different
ways in which the attached mutation rates should be changed. This permitted
him to study schemes where the value of z is not fixed as it is in the simple
“discrete” scheme, but rather depends on the value of the encoded mutation
rate - as it does for Bäck’s approach and also log-normal adaptation schemes.
The theoretical predictions, which were verified experimentally, confirmed that
the scheme proposed by Bäck (see above) gets “stuck” in suboptimal regions of
the search space with a low, or zero, mutation rate attached to each member
of the population. The results confirmed that a more robust problem-solving
mechanism can simply be achieved by ignoring the first step of the algorithm
above, and instead using a fixed learning rate as the probability of applying
bitwise mutation to the encoding of the strategy parameters in the second step.

Elsewhere an alternative theoretical approach has been developed by Stephens
et al. [79]. Their models expanded on concept of neutrality in mapping, and
showed that the optimal mutation rate is not only problem but population
dependant. They were able to show theoretically that beneficial adaptation
of mutation rates can arise from asymmetry in the genotype to phenotype
redundancy.

44 J.E. Smith

3.3 Conclusions from Self-Adaptive Mutation

As we have indicated above, there is now a wealth of evidence illustrating that
in the continuous domain Self-Adaptation is a useful and effective method for
automatically adjusting a vital parameter of the search heuristic. This evidence
is backed up by a sound theoretical understanding and analysis.

When applied to discrete encodings, there are similarly impressive experi-
mental results, and some of the findings transfer well. For example, truncation
selection appears to offer benefits, although self-adaptation can also be observed
even using simple Fitness-Proportionate selection implemented via the roulette-
wheel algorithm. However, some of the arguments regarding adaptation to the
local topology do not translate so well, since the “locality” is purely defined by
the choice of variation operator and its parameters. as Smith points out in [74],
the value of truncation selection is that it creates multiple copies of the same
point in space. When coupled with the adaptation of the mutation strategy first,
this means that multiple strategies are tried out for their value at that point in
space, or to see it another way, many different search neighbourhoods are tried
out for each parent solution.

Several authors have observed that maintaining a diversity of search strategies
is vital in order to permit evolution within the space of different strategies. As
Stone and Smith point out, for combinatorial problems the link between muta-
tion probabilities and the effect of the mutation operator is not straightforward,
since a Bernouilli process is involved to find out how many bits of the solution
encoding are to be changed. Thus an apparent diversity of strategies may in fact
all have near-identical effects on the solution encoding. This suggest a reason
why the use of a smaller set of more widely spread values, with more frequent
and rapid transitions between them, proves advantageous in the discrete scheme.
of course this is also made possible by the knowledge that the mutation proba-
biltiy takes a value between in the range [0, 0.5] for discrete problems, whereas
in principle the step size could take any value for a problem in the continuous
domain.

4 Self-Adapting Crossover

Not only has self-adaptation been used to adapt mutation parameters within
Genetic Algorithms, it has also been used to adapt other operators, such as the
choice of recombination operators [77], and but also their definition [57,64,71,73].

Elsewhere, following in analysis of the effects of self-adaptation recombination
in continuous domains, Deb and Beyer [14] have proposed that Self-adaptation
should have the properties that, children are more likely to be created close to
parents, the mean population fitness is unchanged, and that the variance in pop-
ulation fitness should increase exponentially with time on flat landscapes. They
(and others) showed that for continuous variables appropriately defined crossover
operators such as their SBX operator can demonstrate these properties in what
they term implicit self-adaptation. As noted above, for combinatorial problems
the concept of “nearness” depends very much on the choice of recombination

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 45

or mutation operator, so again some of their arguments do not translate. How-
ever, within the field of combinatorial optimisation, there has been much related
work on linkage evolution, so we will focus here on three main examples which
illustrate the issues and successes of self-adaptive recombination.

4.1 Self-Adapting the Choice of Recombination Operator

In this work self-adaption was used to control the choice of which pre-defined
crossover operator should be employed whenever two parents were mated [77].
Spears achieved this by adding a bit to the end of each candidate solution in-
dicating whether one point or uniform crossover would be used, and subjecting
this to mutation at the same rate as the rest of the genome. He compared two
variants. The “Individual level” model used the crossover encoded by pairs of
parents (breaking ties evenly). In contrast the “Population level” model mea-
sured the proportion of parents encoding for 1X at the start of each generation
and then used this as the probability of using 1x for any pair. Interestingly, al-
though these two are statistically the same (at a coarse level), he observed that
better results were obtained with individual level adaptation. Both, incidentally,
outperformed the algorithms using fixed crossover probabilities.

4.2 Self-Adapting the Definition of Recombination Operator

There has been much interest over the years in the what has been termed “gene-
linkage” – a way of considering how probable it is that combinations of allele val-
ues in genes will be transmitted together during recombination. A long sequence
of works by Goldberg’s group in particular (e.g. [27,32] to name but a few) focused
on re-ordering genes so that the linkage bias of one or two point crossover could
be more effectively applied focussed. In [64] Smith showed how the behaviour of
different operators could be modelled mathematically via the operation of a fairly
simple function on a structure he called a “linkage array” which can be considered
to be attached to each genome. It was shown that both the N-point and Uniform
families of Crossover Operators can be defined in terms of linkage arrays, with
the randomness in each instantiation captured by a random vector x̄. Similarly
other adaptive operators can be defined in terms of linkage arrays,with the random
choice of parents and mutation taking the place of x̄. Independently, other authors
such as Kargupta had come to similar conclusions in the creation of adaptive (but
not self-adaptive) algorithms such as the Gene Expression Messy GA [38] and the
SEARCH framework for describing heuristic search [39]. Smith’s argument was
that one way of specifying an adaptive recombination operator, which can adjust
its arity and linkage arrays to the problem in hand, is to encode the linkage ar-
ray within the genome of each individual and to use self adaptation to govern the
growth of different linkage sets, and hence recombination strategies. A benefit of
using a separate binary linkage array for each individual is that it greatly reduces
the size of the search problem compared to using real values (i.e. a probabilistic ar-
ray). The benefits of evaluating different strategies, which accrue naturally from
a probabilistic array in a population level approach, are achieved via the use of
multiple (μ) binary arrays.

46 J.E. Smith

Punctuated Crossover

In the Punctuated Crossover mechanism [57], self adaptation is used to govern
the evolution of the linkage array. The problem representation is augmented by
the addition of a binary flag between each pair of adjacent loci, which encodes
for a crossover point. Successive genes (and crossover bits) are copied from the
first parent into the offspring until a crossover point is encountered in either
parent. At this point genes start to be copied from the other parent, regardless
of whether it coded for crossover at that point. This continues until a full child
is created, and a second child is created as its complement. Unfortunately this
implementation did not preserve much linkage information from either parent.
It was demonstrated in the original paper that it was possible for two parents
with “medium” numbers of crossover points to create two offspring, such that
the linkage array attached to one child contained all the crossover points from
both parents.

Linkage Evolving Genetic Operator (LEGO)

Based on the analysis of the Punctuated Crossover algorithm, and the concept
of modeling crossover via a linkage array, LEGO [61, 71, 73] was developed as a
means of making explicit the self-adaptation of the linkage array to test the via-
bility of this approach. In brief, the operator works by attaching a linkage array
to each member of the population, which partitions the loci in that member into
a number of linkage sets. The initial implementation of LEGO only permitted
linkage to occur between adjacent loci, i.e. the evolved linkage sets consist of
chains of linked genes. This has an obvious potential weakness in that it cannot
capture tight linkage between two non-adjacent genes unless the entire set of
genes between them is also linked i.e. it places a heavy emphasis on the chosen
representation, unlike some of the schemes described above. The rationale for
this was that as has already been noted that learning linkage is a second or-
der effect, and that there is often a problem with allele convergence preventing
the algorithm from finding good “blocks”. By only considering adjacent linkage,
the size of the problem space is reduced from O(l2) to O(l). Furthermore, when
the practical implementation is considered, problems of conflict resolution are
immediately found with the use of non-adjacent linkage, which require an ar-
bitration process via which would be decided the parts of the accrued linkage
information to be ignored during recombination.

The operator is not restricted to selecting from only two parents, so the
genome can be considered as being comprised of a number of distinct linkage
sets, or blocks. Unlike the case for two–parent recombination, alternate blocks
on the same parent are not linked. When an offspring is created, blocks are cho-
sen sequentially from left to right. In the first locus a parent (denoted X1) is
chosen according to the action of selection operator on the entire population.
This block is then copied whole into the new individual, and provided that the
end of the genome has not been reached, there is now a new competition to
select the next block. Because the whole purpose of the operator is to preserve

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 47

information carried in the linkage array, the selection of partial blocks is for-
bidden. Thus the selection of the next parent is restricted to those with eligible
blocks; i.e. the next block selected must have a left hand edge abutting the
right-most edge of the partially completed offspring. This requires a dynamic
calculation to determine the action of the selection operator on the restricted
set of permissible parents. Having chosen a parent X2 the corresponding block
is copied into the new individual and the process repeats until the offspring is
fully specified. Note that it is guaranteed to be possible to complete an offspring
since succeeding blocks can be chosen from the same parent.

Using Oi to denote the ith offspring produced and Oi,j to denote the jth locus
of that offspring, the full definition of the LEGO recombination operator is given
by:

Oi,j =

⎧⎨
⎩

X1,j j = 1
Xk,j Linked(Xk,j−1, Xk,j)1 ≤ j ≤ l
Xk+1,j ¬Linked(Xk,j−1, Xk,j)

(4)

where Linked() denotes whether the corresponding genes are linked according
to the parents linkage array, and the parents Xk, Xk+1 are selected from the
population as required (i.e. whenever the linkage criterion is not met) using the
modified selection probabilities.

In [61], the effects of iterated recombination and mutation are examined. It
is shown that for an infinite population, in the absence of any selection pres-
sure with respect to linkage, the system will rapidly evolve to a steady state.
This steady state will retain all four combinations of links between two adja-
cent genes, and will thus retain the ability to adapt to changing circumstances.
The proportion of genes linked at the steady state is entirely independent of the
starting conditions, being solely a function of the mutation rate, p, applied.Thus
any deviation from this pattern indicates a selection pressure for or against link-
age. In practice, analysis of the evolved linkage on a number of different problem
types [74] showed that when the “true” linkage pattern was adjacent, then ap-
propriate linkage patterns were observed to form and propagate. In contrast if
the linkage was non-adjacent then highly linked chromosomes tended to evolve,
i.e. the system evolved to avoid disrupting groups of co-adapted genes, at the
expenses of mixing. Note that possible ways of avoiding this problem include
re-ordering prior to chain linkage (as is done in the MIMIC algorithm) or re-
moving the restriction to adjacent linkage by proving a means of block conflict
resolution.

In [64] a series of experiments were made comparing fixed crossover strategies,
3 different variants of Population level LEGO based on statistics of the linkage
arrays(with 3 different variants) and Component level LEGO. These were similar
in spirit to those described above performed by Spears. Results show that LEGO
outperforms 1-point and uniform crossover on most problems, but that getting
the scope right is vital. This is illustrated in Figure 4.2 which shows the success
rate and time to success for different algorithms on progressively longer functions
made by concatenating Deb’s Deceptive function [19]. As can be seen, providing
it is properly formulated, self-adaptation permits the rapid identification and

48 J.E. Smith

0 20 40 60 80 100 120
Problem Length

0

30000

60000

90000

Ev
alu

ati
on

s

Component
Pop. v1
Pop. v2
Pop. v3
1 Point

6

1

19

7
18

1

6

13
22

23

20

22
22
23

Fig. 5. Mean and Standard Deviations of time taken to solve problems as a function
of length. Where not all runs found the global optimum, the number of successful runs
(used to calculate statistics) is shown.

mixing of appropriate blocks of genes within the problem encoding. By contrast
crossover using a single randomly chosen point fails to reliably solve the problem
beyond a moderate size, and uniform crossover failed to solve any of the problems
in the time allowed.

Finally we should point out that diversity plays a perhaps more vital role
when adapting recombiation (or linkage). Thus for example Tuson and Ross
failed to observe any benefits when they tried to use self-adaption to evolve
the probability of applying fixed crossover operator [1]. The reason for this is
simple: since recombination does not introduce new allele values, but simply
shuffles them, once a population has converged in at two adjacent loci, then it
makes no difference whether or not crossover is applied between those genes, as
the offspring will be identical in the two cases.

5 Self-Adapting Multiple Operators

So far we have considered how self-adaptation may be used to successfully search
the space of possible parameter settings or definitions for a single variation op-
erator, while the others are still left for the designer to decide. However, the
rationale for research into adaptive algorithms suggests that it is worth con-
sidering whether this learning approach can be used to control more than one
variation operator, thus further reducing the potential pitfalls of user-set, and
static values. The literature contains many examples of adaptive schemes be-
ing used to control multiple operators (see e.g. [20, 75] for examples) and a few
authors have experimented with self-adaptive schemes.

Smith’s “Adaptively Parameterised Evolutionary Systems” (APES) algorithm
combined the LEGO algorithm described above with self-adaptation of the mu-
tation rates attached to each block of genes [61,72]. Since the blocks are dynam-
ically defined by self-adaption of the linkage array, a separate mutation rate is

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 49

self-adapted for each gene, and when genes are linked in a block, their average
mutation rate is applied to the block. Comparison results were reported on a
range of NK functions with very different characteristics [40] showed that there
was a synergy between the two forms of adaptation that significantly outper-
formed either form of self-adaptation in its own, and dramatically outperformed
a algorithms using different combinations of fixed mutation rates and recombi-
nation operators.

Elsewhere Hinterding et al. added an adaptive population resizing heuristic
and self-adaptation of crossover to that of mutation rates with some success [34].
Mutation, crossover, and population size are all controlled on-the-fly in the GA
“without parameters” of Bäck et al. in [9]. This uses self-adaptive mutation
from [4], a new self-adaptive technique for adapting crossover rates of the indi-
viduals, and Arabas’ GAVaPS lifetime idea [3] for population sizing. This study
differs from those discussed before in that it explicitly compares GA variants
using only one of the (self-)adaptive mechanisms and the GA applying them all.
The experiments show remarkable outcomes: the completely (self-)adaptive GA
wins, closely followed by the one using only the adaptive population size control,
and the GAs with self-adaptive mutation and crossover are significantly worse.
These results suggest that putting effort into adapting the population size could
be more effective than trying to adjust the variation operators. This is truly
surprising considering that traditionally the on-line adjustment of the variation
operators has been pursued and the adjustment of the population size received
relatively little attention. The subject certainly requires more research.

6 Extension to Memetic Algorithms

6.1 Self-Adapting the Choice of Local Search Operators

So far we have attempted to answer the first three questions that were posed in
the introduction. This now leaves the fourth - namely whether the basic ideas
of self-adaptation can be taken into other meta-heuristic settings. This remains
an open question as far as most other algorithms are concerned. However there
have been a number of papers in which the ideas have been incorporated into
the related field of Memetic Algorithms (MAs) and used to control the choice,
or even definition of the local search operator.

In the “Multi-memetic algorithms” [41,42,44,47] an extra gene was added to
each member of the population which encoded the choice of Local Search opera-
tor (meme). The mechanism used was based on Smith’s discrete self-adaptation
scheme for mutation rates described above. Thus local searchers came from a
finite set using different move operators and depths of search, and the choice
was inherited from the parents, and randomly reset with a small mutation prob-
ability. Comparison tests were run with MAs using each of the fixed strategies,
and observations of the performance plots showed that “best” meme - i.e. the
learning strategy that yielded the best solutions, changed as a function of evolu-
tionary time. The results for the self-adaptive multi-memetic algorithm showed
that it was able to track the performance of current best fixed meme, and obtain

50 J.E. Smith

better quality solutions than any of the non-adaptive algorithms over a range of
problem types such as NK landscapes, TSP, Protein Structure prediction and
protein structure comparison. This observation that the choice of “optimal” lo-
cal search strategy depends on the current state if the population is exactly
what has been observed many times before for mutation and recombination, but
had not previously been shown within the context of memetic algorithms. Since
then it has sparked considerable interest and research activity in what have been
called “Adaptive Memetic Algorithms”, and a good review of work in that area
can be found in [52].

6.2 Self-Adapting the Definition of Local Search Operators

Krasnogor and Gustaffson [43,45,46] suggested an approach based on specifying
a grammar for memes describing what local search method should be used,
and when in EA cycle. They have proposed that memes could be self-adapted
as words in this grammar and shown some promising initial results on bio-
informatics problems.

The CO-evolution of Memetic Algorithms (COMA) framework is a general
framework for the coevolution of populations of memes and genes in memetic
algorithms [63, 65, 67, 68, 69, 70]. Here Memes are encoded as tuples of < depth,
pivot, pairing, condition, action>, where Condition and action are patterns
to match and replace in the solution encoding. If the pairing takes the value
linked then memes are inherited, recombined, and mutated with the genes, so
the system is effectively self-adapting the choice of local search method to be
applied to each member of the population.

The reported results show that using self-adaptation within COMA shows fast
scalable optimisation on a range of problems. If there is a problem structure that
can be exploited, then the system rapidly adapts the rule length to the prob-
lem’s structure, and so quickly finds and exploits building blocks. Conversely, if
there is no structure to exploit, and the rules (memes) all have similar fitnesses,
then there is effectively a flat landscape for self-adaptation to explore, and the
population of memes drifts. The effects is that it keeps evolving local search
neighbourhoods, which can provide a means of escape from local optimum.

We can illustrate this phenomena of self-adapting rule learning on different
problems based on multiple copies of Deb’s 4 bit deceptive function. The fitness
of each subproblem i is given by its unitation u(i) (i.e. the number of bits set
to 1):

f(i) =
{

0.6 − 0.2u(i) : u(i) < 4
1 : u(i) = 4 (5)

In addition to a concatenated version (which we will refer to as 4-Trap), a
second “distributed” version (Dist-Trap)was used in which the subproblems were
interleaved i.e. sub-problem i was composed of the genes i, i + 16, i + 32, i + 48.
This separation ensures that even the longest rules allowed in these experiments
would be unable to alter more than one element in any of the subfunctions. A
third variant of this problem (Shifted-Trap) was designed to be more difficult

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 51

than the first for the COMA algorithm to learn a single generalisation, by making
patterns which were optimal in one sub-problem, sub-optimal in all others. This
was achieved by noting that each sub-problem as defined above is a function of
unitation, and therefore can be arbitrarily translated by defining a 4-bit string
and using the Hamming distance from this string in place of the unitation. Since
we have 16 sub-problems, we simply used the binary coding of the sub-problem’s
index as basis for its fitness calculation.

A simple Ga was compared to a simple MA - i.e. one which applied a bit-
flipping hill-climber to each member of the population. Also tested were versions
of COMA with fixed rule lengths, and a version in which the rule length was
encoded and subjected to self-adaptation. All features such as population size,
mutation probability, crossover, selection/replacement strategies and the total
number of calls to the evaluation function permitted to the algorithm were the
same in every case.

Figure 6 shows the results of these experiments as a plot of mean time to
optimum for 4-Trap with three different population sizes. When an algorithm
failed to reach the optimum in all twenty runs, the mean is taken over the
successful runs, and this number is shown. The error bars represent one standard
deviation. It should be noted that the scale on the y-axis is logarithmic. We
can see that the GA and MA,and 1-Coma algorithms fail to find the optimum
as frequently, or when they do as fast, for the smaller population sizes. For
all population sizes there is greater variance in the performance of these three
algorithms than for the other variants. Statitistical analysis confirmed these
results. Note that the 1-COMA algorithm is faster and more reliable than the
simple MA. Inspection shows that this is because it self-adaptation preserves the
rule 0 → 1 but discards the rule 1 → 0, whereas of course the simple bit-flipping
MA uses both.

In short, what we can observe is that for fixed rule lengths of between 3 and
9, and for the adaptive version, the COMA system derives performance benefits
from evolving LS rules. Significantly, and unlike the GA and MA, the COMA
algorithm does not depend on a certain size population before it is able to solve
the problem reliably. This is indicative of a far more scaleable algorithm.

In order to examine the behaviour of the algorithm the population mean
values were observed for the effective rule length (only relevant for A-Coma),
the “specificity” (i.e. the proportion of values in the condition not set to #)
and the “unitation” (the proportion of bits in the action set to 1), and also the
highest fitness in the population (with 100 as the optimum) as a function of the
number of elapsed generations. Figure 7 shows the A-Coma results averaged over
20 runs on each of the three problems, with a population of 250. The evolving
rule bases were manually inspected on a large number of runs for each problem.

For the 4-Trap function (left hand graph), the system rapidly evolves medium
length (3−4), general (specificity < 50%) rules whose action is to set all the bits
to 1 (mean unitation approaches 100%). Note that in the absence of selective
pressure (i.e. the pivot rules meant that the solutions were left unchanged), all
three of these values would be expected to remain at their initial values, so these

52 J.E. Smith

GA MA Ran
d

ad-c
oma 1-co
ma

2-co
ma

3-co
ma

4-co
ma

5-co
ma

6-co
ma

7-co
ma

8-co
ma

9-co
ma

Algorithm

5

10

50

100

500

1000
800

Eva
luat

ions
 /10

00

Pop. 100
Pop. 250
Pop. 500

15
14

1819
18

Fig. 6. Times to optimum for the 4-Trap function. Note logarithmic y-axis.

0 5 10 15 20
0

20

40

60

80

100
4-Trap

0 25 50
Generations

0

20

40

60

80

100
Shifted Trap

0 25 50
0

20

40

60

80

100

Length (x10)
Specificity (%)
Unitation(%)
Best Fitness

Distributed trap

Fig. 7. Analysis of Evolving Rules by Function Type

changes result from beneficial adaptation. Closer inspection of the evolving rule
base confirms that the optimal subproblem string is being learned and applied.

For the Shifted-Trap function, where the optimal sub-blocks are all differ-
ent (middle) the rule length decreases more slowly. The specificity also remains
higher, and the unitation remains at 50%, indicating that different rules are
being maintained. This is borne out by closer examination of the rule sets.

The behaviour on Dist-Trap is similar to that on 4-Trap, albeit over a longer
timescale. Rather than learning specific rules about sub-problems, which cannot
possibly be happening (since no rule is able to affect more than one locus of any
subproblem), the system is apparently learning the general rule of setting all bits
to 1. The rules are generally shorter than for 4-Trap, (although this is slightly
obscured by the averaging) which means that the number of potential neighbours
is higher for any given rule. Equally, the use of wildcard characters, coupled with
the fact that there may be matches in the two parts of the rules, means that
length of the rules used defines a maximum radius in Hamming space for the
neighbourhood, rather than a fixed distance from the original solution. Both
of these observations, when taken in tandem with the longer times to solution,

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 53

suggest that when the system is unable to find a single rule that matches the
problems’ structure, a more diverse search using a more complex neighbourhood
is used, which slowly adapts itself to the state of the current population of
solutions.

These results shows how self-adaptation is able to learn not just which if a
fixed self of local search methods to apply to each individual, but also to adapt
the definition of the local search strategy. Subsequent published results have
confirmed the benefits of this approach across a spread of problem types.

7 Summary and Conclusions

The basic message of this paper is that Self-adaptation works, for a range of
different representations and for a range of different operators, and that it need
not be viewed simply as a means of controlling mutation rates. Hopefully it has
also become apparent that a diversity of strategies is a vital component if evo-
lution is to be used as a learning mechanism within the space of possible search
strategies, and that this has especial implications for combinatorial problems.

In order for self-adaptation to work as a learning mechanism for controlling
search strategies the basic requirement is that a diverse set of strategies is com-
pared and used according to their value when applied to the current set of solu-
tions. Diversity comes from the action of the search operators on an encoding of
the search strategy, and is maintained by the update function. In an EA, these
are mutation and the selection operator respectively, but the range of different
approaches highlighted above suggests that this need not be the case. This sug-
gests that the model could be applied to other population based algorithms such
as Ant Colony Optimisation, Learning Classifier Systems and parallel versions
of Simulated Annealing or Tabu Search. These remain as promising areas for
future research.

Acknowledgement. Jim Smith would like to thank Terry Fogarty, Chris Stone,
Gusz Eiben and Nat Krasnogor for many interesting discussions in this area.

References

1. Adapting operator settings in genetic algorithms. Evolutionary Computation 6(2),
161–184 (1998)

2. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Compu-
tational Intelligence, pp. 152–161. IEEE Press, Los Alamitos (1995)

3. Arabas, J., Michalewicz, Z., Mulawka, J.: Gavaps - a genetic algorithm with varying
population size, pp. 73–78 (1994)

4. Bäck, T.: The interaction of mutation rate, selection and self-adaptation within
a genetic algorithm. In: Männer, R., Manderick, B. (eds.) Proceedings of the 2nd
Conference on Parallel Problem Solving from Nature, pp. 85–94. North-Holland,
Amsterdam (1992)

5. Bäck, T.: Self adaptation in genetic algorithms. In: Varela and Bourgine [82], pp.
263–271

54 J.E. Smith

6. Bäck, T.: Optimal mutation rates in genetic search. In: Forrest [23], pp. 2–8
7. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University

Press, Oxford (1996)
8. Bäck, T.: Self-adaptation. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Evolu-

tionary Computation 2: Advanced Algorithms and Operators, ch. 21, pp. 188–211.
Institute of Physics Publishing, Bristol (2000)

9. Bäck, T., Eiben, A.E., van der Vaart, N.A.L.: Proceedings of the 6th Conference
on Parallel Problem Solving from Nature. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS,
vol. 1917, pp. 315–324. Springer, Heidelberg (2000)

10. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing, Bristol, and Oxford University Press, New
York (1997)

11. Bäck, T., Hofmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Belew
and Booker [13], pp. 2–9

12. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algo-
rithms. In: Ras, Z. (ed.) Proceedings of the Ninth International Symposium on
Methodologies for Intelligent Systems, pp. 158–167. Springer, Heidelberg (1996)

13. Belew, R.K., Booker, L.B. (eds.): Proceedings of the 4th International Conference
on Genetic Algorithms. Morgan Kaufmann, San Francisco (1991)

14. Beyer, H., Deb, K.: On self-adaptive features in real-parameter evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)

15. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Berlin (2001)
16. 2003 Congress on Evolutionary Computation (CEC 2003). IEEE Press, Piscataway

(2003)
17. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Schaffer [54],

pp. 61–69
18. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.

PhD thesis, University of Michigan (1975)
19. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.

(ed.) Foundations of Genetic Algorithms 2, pp. 93–108. Morgan Kaufmann, San
Francisco (1992)

20. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

21. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Springer,
Heidelberg (2003)

22. Fogel, D.B.: Evolutionary Computation. IEEE Press, Los Alamitos (1995)
23. Forrest, S. (ed.): Proceedings of the 5th International Conference on Genetic Al-

gorithms. Morgan Kaufmann, San Francisco (1993)
24. Glickman, M., Sycara, K.: Evolutionary algorithms: Exploring the dynamics of

self-adaptation, pp. 762–769 (1998)
25. Glickman, M., Sycara, K.: Reasons for premature convergence of self-adaptating

mutation rates. In: 2000 Congress on Evolutionary Computation (CEC 2000), pp.
62–69. IEEE Press, Piscataway (2000)

26. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

27. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

28. Grefenstette, J.J.: Optimisation of control parameters for genetic algorithms. IEEE
Transaction on Systems, Man and Cybernetics 16(1), 122–128 (1986)

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 55

29. Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwe-
fel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439. Springer, Heidelberg (2002)

30. Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions.
Evolutionary Computation 14(3), 255–275 (2006)

31. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

32. Harik, G., Goldberg, D.E.: Learning linkage. Technical Report IlliGAL 96006, Illi-
nois Genetic Algorithms Laboratory, University of Illinois (1996)

33. Hesser, J., Manner, R.: Towards an optimal mutation probablity in genetic algo-
rithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp.
23–32. Springer, Heidelberg (1991)

34. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self adaptive genetic algorithm for
numeric functions. In: Voigt et al. [83], pp. 420–429

35. Proceedings of the 1996 IEEE Conference on Evolutionary Computation. IEEE
Press, Piscataway (1996)

36. Jain, A., Fogel, D.B.: Case studies in applying fitness distributions in evolutionary
algorithms. II. Comparing the improvements from crossover and Gaussian muta-
tion on simple neural networks. In: Yao, X., Fogel, D.B. (eds.) Proc. of the 2000
IEEE Symposium on Combinations of Evolutionary Computation and Neural Net-
works, pp. 91–97 (2000)

37. Julstrom, B.A.: What have you done for me lately?: Adapting operator proba-
bilities in a steady-state genetic algorithm. In: Eshelman, L.J. (ed.) Proceedings
of the 6th International Conference on Genetic Algorithms, pp. 81–87. Morgan
Kaufmann, San Francisco (1995)

38. Kargupta, H.: The gene expression messy genetic algorithm. In: ICEC-96 [35], pp.
814–819

39. Kargupta, H., Bandyopadhyay, S.: A perspective on the foundation and evolution of
the linkage learning genetic algorithms. J Computer Methods in Applied Mechanics
and Engineering 2186, 266–294 (2000)

40. Kauffman, S.A.: Origins of Order: Self-organization and Selection in Evolution.
Oxford University Press, New York (1993)

41. Krasnogor, N.: Coevolution of genes and memes in memetic algorithms. In: Wu,
A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Con-
ference Workshop Program (1999)

42. Krasnogor, N.: Studies in the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England (2002)

43. Krasnogor, N.: Self-generating metaheuristics in bioinformatics: The protein struc-
ture comparison case. Genetic Programming and Evolvable Machines 5(2), 181–201
(2004)

44. Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms
for protein structure prediction. In: Guervos et al. [29], pp. 769–778

45. Krasnogor, N., Gustafson, S.: Toward truly “memetic” memetic algorithms: dis-
cussion and proofs of concept. In: Corne, D., Fogel, G., Hart, W., Knowles, J.,
Krasnogor, N., Roy, R., Smith, J., Tiwari, A. (eds.) Advances in Nature-Inspired
Computation: The PPSN VII Workshops, pp. 9–10. University of Reading, Read-
ing, UK (2002); PEDAL (Parallel, Emergent & Distributed Architectures Lab)

46. Krasnogor, N., Gustafson, S.M.: A study on the use of “self-generation” in memetic
algorithms. Natural Computing 3(1), 53–76 (2004)

47. Krasnogor, N., Smith, J.E.: Emergence of profitable search strategies based on a
simple inheritance mechanism. In: Spector et al. [78], pp. 432–439

56 J.E. Smith

48. Lee, M., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic tech-
niques. In: Forrest [23], pp. 76–83

49. Liang, K.-H., Xao, X., Liu, Y., Newton, C., Hoffman, D.: An experimental inves-
tigation of self-adaptation in evolutionary programming (1998)

50. Lis, J.: Parallel genetic algorithm with dynamic control parameter. In: ICEC-96
[35], pp. 324–329

51. Meyer-Nieberg, S., Beyer, H.G.: Self-adaptation in evolutionary algorithms. In:
Parameter Setting in Evolutionary Algorithms, pp. 47–75 (2007)

52. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic
algorithms: A comparative study. IEEE Transactions on Systems Man and Cyber-
netics Part B 36(1) (2006)

53. Rudolph, G.: Self-adaptive mutations lead to premature convergence. IEEE Trans-
actions on Evolutionary Computation 5, 410–414 (2001)

54. Schaffer, J.D. (ed.): Proceedings of the 3rd International Conference on Genetic
Algorithms. Morgan Kaufmann, San Francisco (1989)

55. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control param-
eters affecting online performance of genetic algorithms for function optimisation.
In: Schaffer [54], pp. 51–60

56. Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionarily viable strategy.
In: Belew Booker [13], pp. 61–68

57. Schaffer, J.D., Morishima, A.: An adaptive crossover distribution mechanism for
genetic algorithms. In: Grefenstette, J.J. (ed.) Proceedings of the 2nd International
Conference on Genetic Algorithms and Their Applications, pp. 36–40. Lawrence
Erlbaum, Hillsdale (1987)

58. Schlierkamp-Voosen, D., Mühlenbein, H.: Strategy adaptation by competing sub-
populations. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS,
vol. 866, pp. 199–209. Springer, Heidelberg (1994)

59. Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen Mittels der Evo-
lutionsstrategie. ISR, vol. 26. Birkhaeuser, Basel/Stuttgart (1977)

60. Schwefel, H.-P.: Numerical Optimisation of Computer Models. Wiley, New York
(1981)

61. Smith, J.E.: Self Adaptation in Evolutionary Algorithms. PhD thesis, University
of the West of England, Bristol, UK (1998)

62. Smith, J.E.: Modelling GAs with self-adaptive mutation rates. In: Spector et al.
[78], pp. 599–606

63. Smith, J.E.: Co-evolution of memetic algorithms: Initial investigations. In: Guervos
et al. [29], pp. 537–548

64. Smith, J.E.: On appropriate adaptation levels for the learning of gene linkage. J.
Genetic Programming and Evolvable Machines 3(2), 129–155 (2002)

65. Smith, J.E.: Co-evolving memetic algorithms: A learning approach to robust scal-
able optimisation. In: CEC 2003, [16], pp. 498–505 (2003)

66. Smith, J.E.: Parameter perturbation mechanisms in binary coded gas with self-
adaptive mutation. In: Rowe, P., De Jong, Cotta (eds.) Foundations of Genetic
Algorithms 7, pp. 329–346. Morgan Kaufmann, San Francisco (2003)

67. Smith, J.E.: Protein structure prediction with co-evolving memetic algorithms. In:
CEC 2003 [16], pp. 2346–2353 (2003)

68. Smith, J.E.: The co-evolution of memetic algorithms for protein structure predic-
tion. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic
Algorithms, pp. 105–128. Springer, New York (2004)

69. Smith, J.E.: Co-evolving memetic algorithms: A review and progress report. IEEE
Transactions in Systems, Man and Cybernetics, part B 37(1), 6–17 (2007)

Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation 57

70. Smith, J.E.: Credit assignment in adaptive memetic algorithms. In: Proceedings of
Gecco, the ACM-SIGEVO conference on Evolutionary computation, pp. 1412–1419
(2007)

71. Smith, J.E., Fogarty, T.C.: An adaptive poly-parental recombination strategy. In:
Fogarty, T.C. (ed.) Evolutionary Computing 2, pp. 48–61. Springer, Berlin (1995)

72. Smith, J.E., Fogarty, T.C.: Adaptively parameterised evolutionary systems: Self
adaptive recombination and mutation in a genetic algorithm. In: Voigt et al. [83],
pp. 441–450

73. Smith, J.E., Fogarty, T.C.: Recombination strategy adaptation via evolution of
gene linkage. In: ICEC-96 [35], pp. 826–831 (1996)

74. Smith, J.E., Fogarty, T.C.: Self adaptation of mutation rates in a steady state
genetic algorithm. In: ICEC-96 [35], pp. 318–323 (1996)

75. Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algo-
rithms. Soft Computing 1(2), 81–87 (1997)

76. Smith, R.E., Smuda, E.: Adaptively resizing populations: Algorithm, analysis and
first results. Complex Systems 9(1), 47–72 (1995)

77. Spears, W.M.: Adapting crossover in evolutionary algorithms. In: McDonnell, J.R.,
Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the 4th Annual Conference on
Evolutionary Programming, pp. 367–384. MIT Press, Cambridge (1995)

78. Spector, L., Goodman, E., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S.,
Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.): Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2001). Morgan Kaufmann,
San Francisco (2001)

79. Stephens, C.R., Garcia Olmedo, I., Moro Vargas, J., Waelbroeck, H.: Self-
adaptation in evolving systems. Artificial Life 4, 183–201 (1998)

80. Stone, C., Smith, J.E.: Strategy parameter variety in self-adaption. In: Langdon,
W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan,
K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C.,
Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2002), July 9–13, 2002, pp. 586–593.
Morgan Kaufmann, San Francisco (2002)

81. Syswerda, G.: A study of reproduction in generational and steady state genetic
algorithms. In: Rawlins, G. (ed.) Foundations of Genetic Algorithms, pp. 94–101.
Morgan Kaufmann, San Francisco (1991)

82. Varela, F.J., Bourgine, P. (eds.): Toward a Practice of Autonomous Systems: Pro-
ceedings of the 1st European Conference on Artificial Life. MIT Press, Cambridge
(1992)

83. Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.): Proceedings of
the 4th Conference on Parallel Problem Solving from Nature. PPSN 1996. LNCS,
vol. 1141. Springer, Heidelberg (1996)

84. Wolpert, D.H., Macready, W.G.: No Free Lunch theorems for optimisation. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

Part II
New Techniques and Applications

An Efficient Hyperheuristic for Strip-Packing
Problems�

Ignacio Araya1, Bertrand Neveu1, and Maŕıa-Cristina Riff2

1 Project COPRIN, INRIA, Sophia-Antipolis, France
{Ignacio.Araya,Bertrand.Neveu}@sophia.inria.fr

2 Department of Computer Science, Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile
Maria-Cristina.Riff@inf.utfsm.cl

Summary. In this paper we introduce a hyperheuristic to solve hard strip packing
problems. The hyperheuristic manages a sequence of greedy low-level heuristics, each
element of the sequence placing a given number of objects. A low-level solution is built
by placing the objects following the sequence of low-level heuristics. The hyperheuristic
performs a hill-climbing algorithm on this sequence by testing different moves (adding,
removing, replacing a low-level heuristic). The results we obtained are very encouraging
and improve the results from the single heuristics tests. Thus, we conclude that the
collaboration among heuristics is an interesting approach to solve hard strip packing
problems.

Keywords: Hyperheuristic, strip packing problems, low-level heuristic, hill climbing.

1 Introduction

In this paper we focus our attention on methods to solve the two-dimensional
strip packing problem, where a set of rectangles (objects) must be positioned on a
container (a rectangular space area). This container has a fixed width dimension
and a variable height size. The goal is, when possible, to introduce all the objects
in the container without overlapping, using a minimum height dimension of the
container. This problem is NP-hard and exact approaches [18,15] are in general
limited to small instances. Four variants of this problem exist, depending on the
possibility of rotation of the objects, and on the presence of the guillotine cut
constraint1.

In the literature many heuristic approaches have been proposed. In our under-
standing the most complete review has been presented in E. Hopper’s Thesis [11].
However, in the last few years the interest in this subject has increased, and so
has the interest in the number of research papers presenting new approaches and
improvements to the existing strategies. These approaches are in general single
� This work was partially financed by the Fondecyt Project 1060377.
1 This constraint requires that all objects placed in the container can be reproduced by

a series of guillotine cuts, i.e. edge-to-edge cuts parallel to the edges of the container.

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 61–76, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

62 I. Araya, B. Neveu, and M.-C. Riff

heuristics or heuristics incorporated into metaheuristics methods. Recently, the
concept of hyperheuristic has been introduced and successfully tested in different
problems, [5]. The key idea is to tackle problems using various low-level heuris-
tics and develop a framework that controls the applications of the heuristics.
Using this framework the time consuming task of designing an algorithm with
special components for a specific algorithm is reduced. This kind of approach is
useful to obtain a good solution for a problem in a reasonable amount of time. It
emphasizes a compromise between the quality of the solution and the invested
time for designing the algorithm. Our goal is to show that hyperheuristics can be
applied to solve Strip Packing Problems providing effective solutions in an effi-
cient way. Our hyperheuristic is compared to other approaches using well known
benchmarks. This paper is organized as follows: First we present an overview
of methods based on heuristics to solve the strip packing problem, which are
included in our hyperheuristic approach. Next we introduce our hyperheuristic.
We will then present the results obtained using the benchmarks. Finally, our
conclusions and future trends in this research area are presented.

2 Heuristics Based Methods

In this section, we present a survey of the main heuristics for strip packing
problems and of the most efficient algorithms using them.

2.1 Various Low-Level Heuristics

Baker in [2] introduced Bottom-Left heuristics (BL), which first orders the ob-
jects according to their area. The objects are placed at the top and pushed
down and left as much as possible. This method was improved by Chazelle [8]
and called Bottom Left Fit (BLF) : each object is located at the most bottom
and left possible place. Hopper [12] presented BLD which is an improved ver-
sion of BL, where the objects are ordered using various criteria (height, width,
perimeter, area) and the algorithm selects the best result obtained. Lesh et al.
in [16] focus their research on improving BLD heuristic. They call their new
heuristics BLD∗. In BLD∗ the objects are randomly ordered according to the
Kendall-tau distance from all of the possible fixed orders. This strategy is called
Bubble Search, [17] and can be applied to any constructive algorithm in or-
der to randomize a fixed ordering. As in GRASP, this strategy repeats greedy
placements with this randomized ordering until a time limit is reached.

Another type of heuristics, Best Fit (BF) [6], uses a dynamic ordering for the
rectangles to be located. The algorithm goes through the possible places from
the most bottom left one, and selects for each place the rectangle that best fits
in it (if it exists).

Let us now describe heuristics for problems with guillotine cut constraint.
The heuristics FFDH and NFDH proposed in [14] and BFDH proposed initially
in [19], and modified by [3] as BFDH* are very similar. In each of them, the
objects are oriented such that their width is not lower than their height, and

An Efficient Hyperheuristic for Strip-Packing Problems 63

they are ordered from highest to lowest. Each object is packed in a rectangular
sub-area of the container in the bottom left corner. The width of the sub-area
is given by the container, and the height is given by the first object packed in
this sub-area. When it is possible to include the current object to be placed
into some sub-areas, it is positioned into the sub-area having: the least available
area for BFDH; the bottom available area for FFDH; and the top area, if it is
available, for NFDH. In other cases the algorithm opens a new sub-area above
the existing sub-areas positioning the current object in the bottom left corner
as the first object of this sub-area. BFDH* seeks to improve this heuristic by
allowing object rotations, so that when the algorithm searches to include the
current object into a sub-area it tests both orientations.

Zhang et al. [21] propose a recursive heuristic HR for problems with guillotine
cut constraint. When the first object is positioned in the container (on the bot-
tom left corner) it identifies two remaining areas. It recursively continues placing
the remaining objects. To improve the performance of the heuristic, the authors
present a deterministic algorithm (HRalg) that gives priority to the objects with
bigger areas. Zhang et al. claim that their algorithm quickly obtains good results
on Hoper’s benchmarks.

For our approach we have selected HR, BF, BLF, BFDH* as the low-level
heuristics for problems without guillotine cut constraint, because they have
shown to be individually competitive. For problems with guillotine cut constraint
the selected heuristic are HR and BFDH*.

2.2 Metaheuristic Approaches

These and other low-level heuristics have been used in metaheuristic approaches,
as tabu search, simulated annealing, and genetic algorithms. The first idea is to
build an initial solution by a low level heuristic and to perform a local search on
the layout. Neveu et al. [20] present an incremental move, which allows additions
and removals of rectangles. They also implement a generic metaheuristic using
this move obtaining competitive results.

Other researchers prefer to work on the order of the objects for each position-
ing heuristic. In [12] they present a genetic algorithm and a simulated annealing
algorithm (GA+BLF and SA+BLF), both of which try to find the best order
for the objects to be placed in the container using the BLF strategy.

For the case of fixed orientation problems, the best approach to our knowledge
appears to be the GRASP based approach described in [1]. This approach repeats
the following two-phases algorithm: the rectangles are first placed by a slightly
randomized BF like constructive phase. Then the solution is improved by a
strictly improving Variable Neighborhood Search (VNS).

On the other hand, Bortfeldt [3] introduced a Genetic Algorithm called SP-
GAL and obtained the best results known in the literature for the problems
allowing the rectangles to be rotated. The algorithm generates an initial popu-
lation using a BFDH* heuristic which is an improvement of the BFDH heuris-
tic initially proposed in [19]. This heuristic works with a layer structure, that
takes into account the guillotine cut constraint. The genetic algorithm directly

64 I. Araya, B. Neveu, and M.-C. Riff

performs a search in this layer structure. For problems without the guillotine
cut constraint, a post-optimization procedure breaks this layer structure. The
same genetic algorithm is used in [4] for bigger instances (1000 pieces). It is
divided in GA-1, GA-2, GA-3 and GA-4, each of them initialized with diffe-
rent parameters. The procedure is only applied to problems with the guillotine
cut constraint, because the post-optimization procedure is negligible for large
instances [4].

Burke et al. [7] hybridize the best-fit heuristic with metaheuristic approaches
such as tabu search (BF-TS), simulated annealing (BF-SA) and genetic algo-
rithms (BF-GA). BF-SA obtains the best results.

3 The Hyperheuristic Approach: H-SP

The hyperheuristic framework manages a set of low-level heuristic and tries to
find a way to apply them. There are some genetic inspired hyperheuristics in the
literature to solve combinatorial problems [9,10]. However, in most of the cases,
they use a representation that just corresponds to a simple sequence of low-level
heuristics to be applied.

We have chosen to build a simple hyperheuristic that manages a sequence
of low-level greedy heuristics. From the analysis of the four selected low-level
heuristics we can remark the following:

• Performance changes according to the order of the objects and their rotation.
• The data structure to obtain a good implementation code is not always the

same for all of these heuristics.

Fig. 1. H-SP: Hyperheuristic for Strip Packing

An Efficient Hyperheuristic for Strip-Packing Problems 65

Taking into account these remarks, we have designed a new hyperheuristic
approach which allows us to include a good individual implementation for each
heuristic considering them as black boxes. They communicate following a pro-
tocol for modifying the current state of the search (the floor with the objects
already located by the preceding heuristics and the remaining objects to locate)
as shown in figure 1.

3.1 Representation

The representation structure used is a constructive algorithm formed by the se-
quential composition of constructive heuristics among a set H . A configuration
X is thus a constructive algorithm:

X = h1(p1, n1) ∗ h2(p2, n2) ∗ ... ∗ hk(pk, nk) (1)

Where h1, ..., hk ∈ H are the constructive heuristics, p1, ..., pk ∈ P are parame-
ters to initialize the heuristics and ni is an integer number that represents the
amount of pieces that the heuristic hi must place. ∗ is the sequential composition
operator.

The sets P and H depend on the kind of problem that will be solved (with
or without guillotine constraint, with or without rotation allowed).

Let N be the number of pieces to place inside the container. The next two
constraints must be satisfied:

ni > 0, ∀i = 1...k (2)

k∑
i=0

ni = N (3)

The parameters pi are related to the order and the rotation of the pieces
before the placement. The basic order criteria used are: decreasing heights (DP),
decreasing widths (DW), decreasing areas (DA) and decreasing perimeters (DP).
The rotation criteria used are: width greater or equal than the heights (W ≥ H),
heights greater or equal than the widths (H ≥ W), rotate no object (NR) and
rotate all the objects (All R).

Figure 2 shows a configuration example with 3 heuristics. To translate the
configuration into the problem, the heuristics are evaluated sequentially. The
first is BLF, the parameters p indicate that the rectangles must be ordered by
decreasing weights (DW) and rotated with their widths greater or equal than
their heights (W ≥ H). Just when the process of ordering and rotation has been
realized, the BLF heuristic will begin to place the pieces inside the container
(n = 4 pieces, corresponding to the white rectangles). The rectangle numbers
indicate the placement order of the pieces.

66 I. Araya, B. Neveu, and M.-C. Riff

BLF

n=4

p=DW, W>H

BFDH

n=6

p=DP, NR

Configuration

Translation into the Strip Packing Problem

HR

p=DH, All_R

n=3

1

2

3

4

5

6

7

8

9

10

11 12

13

H

Fig. 2. Configuration example

3.2 Moves

The local search operations that we have defined in our high-level structure
allow heuristics to be added, deleted and replaced from the configuration. These
operations are applied with equal probability.

Let the current configuration:

XC = h1(..) ∗ ... ∗ hi−1(pi−1, ni−1) ∗ hi(pi, ni) ∗ hi+1(pi+1, ni+1) ∗ ... ∗ hk(..) (4)

The add operation selects random values i ∈ {1..k}, hadd ∈ H , padd ∈ P
and nadd ∈ {1..ni}. The return of the operation is a new configuration:

X ′
C = ... ∗ hi−1(..) ∗ hadd(padd, nadd) ∗ hi(pi, ni − nadd)... (5)

If ni − nadd is equal to 0, the heuristic hi is simply eliminated from the config-
uration. The key idea of this operation is to include new heuristics in a different
step of the algorithm in order to obtain a better cooperation among them.

An Efficient Hyperheuristic for Strip-Packing Problems 67

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

i=3

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

BF

p=DA, NR

n’=2 -2=1

k=4

before the operation:

after the operation:

Fig. 3. Example of the add operation

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n’=3

BFDH

n=12

p=DH, H>W

i=3

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

BFDH

n=12

p=DH, H>W

k=4

+3=15

before the operation:

after the operation:

Fig. 4. Example of the remove operation

Figure 3 shows an example. The new heuristic is located in the third position
of the configuration, reducing by n′(2) the next heuristic n value.

The remove operation selects a random value i ∈ {1..k}. The return oper-
ation is a new configuration:

X ′
C = ... ∗ hi−1(pi−1, ni−1) ∗ hi+1(pi+1, ni+1 + ni) ∗ ... (6)

If the random value of i is equal to k, then:

X ′
C = ... ∗ hk−1(pk−1, nk−1 + nk) (7)

The idea here is to allow the algorithm to discard some heuristics obtaining
better results without them.

Figure 4 shows an example. The third heuristic is removed from the configu-
ration and the value of n′(3) is added to the next heuristic n value.

The replace operation selects random values i ∈ {1..k}, hrep ∈ H and
prep ∈ P . The operation returned is a new configuration:

X ′
C = ... ∗ hi−1(..) ∗ hrep(prep, ni) ∗ hi+1(..) ∗ ... (8)

68 I. Araya, B. Neveu, and M.-C. Riff

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

i=3

k=4

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

BLF

p=DA, H>W

n=3

BFDH

n=12

p=DH, H>W

before the operation:

after the operation:

Fig. 5. Example of the replace operation

The idea of this operation is to give more exploration capability to the
algorithm.

Figure 5 shows an example. The third heuristic in the configuration is replaced
by a new one, with new parameters p and the same value of n.

All these operations maintain the constraints (2) and (3) satisfied. The repre-
sentation and the defined operations allow the hyperheuristic algorithm to reach
a wider combination between low-level heuristics.

3.3 Evaluation Function

Our approach uses the traditional fitness function for strip-packing [12], which is
to minimize the container’s height used. It is supposed that the container’s width
is fixed. The quality of a constructive algorithm or configuration is evaluated
according to the quality of the solution that it obtains.

3.4 Procedure

The hyperheuristic explores the space of constructive algorithms (Xs) by starting
from an initial and random generated configuration (X0). To do that, our approach
follows a Hill-climbing procedure, thus in each iteration it is applied one random
operation to the algorithm and if the new algorithm X ′

C is better or equal than
the current one (XC), then X ′

C will be the new algorithm for the next iteration.
In order to escape local minima, we have performed for each H-SP test 10

restarts. It means that one execution of H-SP of 100 seconds corresponds to 10
hill-climbing procedures of 10s each.

The initial algorithm is X0 = h1(p1, n1) ∗ h2(p2, n2) ∗ ... ∗ hm(pm, nm), with
h1 �= h2 �= ... �= hm and m = #H , in other words, all the heuristics are used
once to construct X0. The values of pi are selected at random from the set P ,
and the values of ni are fixed satisfying the equation (9):

ni =
i × N

m
−

i−1∑
j=1

nj (9)

An Efficient Hyperheuristic for Strip-Packing Problems 69

Algorithm 1. H-SP(T ime Limit)
for i = 1 to 10 do

restart time()
X0 ← RandomAlgorithm(H,P, N)
Best Algorithm ← X0

XC ← X0

while time()< Time Limit/10 do
select RandomNumberFrom(1..3)

case 1: X ′
C ← Add(XC)

case 2: X ′
C ← Remove(XC)

case 3: X ′
C ← Replace(XC)

end select

if Evaluate(X ′
C) ≥ Evaluate(XC) then

XC ← X ′
C

end if
end while

if Evaluate(XC) ≥ Evaluate(Best Algorithm) then
Best Algorithm = XC

end if
return Best Algorithm

end for

For example, if m = 4 (#H is also 4) and the amount of pieces N is 47, the
four heuristics in set H will be selected in some order, the parameters pi will be
randomly selected from P and the values of n1, n2, n3 and n4 will be respectively
11, 12, 12 and 12.

Algorithm 1 shows the procedure. RandomAlgorithm function generates the
initial constructive algorithm. Add, Remove and Replace functions, perform the
operations described in 3.2. Evaluate function executes the generated algorithms
and obtains their fitness. Finally the best solution can be obtained executing the
Best Algorithm.

4 Tests

We have performed two kinds of tests. The first one compares the results obtained
using low-level heuristics with the results of our hyperheuristic approach. We
report the quality of the solution found and the percentage used of each single
low-level heuristic in the hyperheuristic. The second test compares H-SP with
the best reported results from the strip-packing state of the art.

4.1 Benchmarks

For these tests we use the 21 Hopper’s instances classified in 7 classes C1, . . . , C7,
according to their size. The optimal solution of each instance is known, [12]. We

70 I. Araya, B. Neveu, and M.-C. Riff

Table 1. Gap to the solution for low-level heuristics and H-SP

Class Low-level heuristics H-SP20s
BLF HR BFDH* BF Average Best

C1 6.6 6.6 6.6 5 0 0
C2 13.3 8.8 8.8 8.8 0.89 0
C3 11.1 6.6 6.6 6.6 2.22 2.22
C4 4.4 3.8 3.8 3.3 1.67 1.67
C5 2.6 2.6 2.6 2.6 1.26 1.11
C6 3.1 2.7 2.7 2.5 1.28 0.83
C7 2.6 2.6 2.6 2.2 1.17 0.97

Average 6.24 4.81 4.81 4.42 1.21 0.97

also report the results obtained using Bortfeldt’s problems that have been re-
cently proposed in [3]. He has defined 360 instances of strip-packing problems
with 1000 rectangles and unknown optimal solutions. There are 12 sets of prob-
lems and 30 instances belonging to each set. They differ in four factors related
to the objects to be placed: width, area, heterogeneity and maximum dimension
ratio.

The hardware platform for the experiments was a PC Pentium IV, 2.66Ghz
with 1024 MB RAM under Debian operating system. The algorithm has been
implemented in C++.

4.2 Comparison with Low-Level Heuristics

The Table 1 shows the results, using Hopper’s instances and allowing rotation,
found by each single heuristic and the average and the best results obtained
by our H-SP algorithm over 10 runs. In order to compare H-SP with low-level
heuristics, we limited the running time of H-SP to 20 seconds.

The set H , in this test, is composed of the heuristics BLF,HR,BFDH*,BF,
in their original versions 2. And the set of parameters P is composed of all
combinations of types of ordering (7) and types of rotation (4) for the remaining
objects.

Each low-level heuristic is evaluated with each parameter in P (7 × 4 = 28)
and the best solution is shown, the time for each instance is not superior to 1
second. The results are calculated as the percentage from the optimal solution
(gap(%) = solution−opt

opt).
The quality of the solution found by the low-level heuristics has been strongly

improved by the final constructive algorithm XF given by our framework. The
execution time of XF is comparable to the execution time of low-level heuristics
2 Originally each heuristic can decide when rotate or not an object, for the case of no

rotation allowed instances, this functionality is not used.

An Efficient Hyperheuristic for Strip-Packing Problems 71

Table 2. Average use of low-level heuristics in H-SP

Class Low-level heuristics
BLF HR BFDH* BF

C1 9.24 30.00 54.45 6.27
C2 11.14 27.17 11.95 49.72
C3 29.71 15.80 0.23 54.24
C4 34.46 24.41 8.52 32.59
C5 40.19 10.76 3.70 45.33
C6 15.82 10.97 1.95 71.25
C7 99.68 0.31 0 0

Average 34.48 13.07 5.49 46.94

Table 3. Gap to the solution for Hopper’s instances with rotation allowed (RF)

Class GA+ SA+ HRalg SPGAL H-SP100s H-SP1000s
BLF BLF Average Best Average Best Average Best

C1 4 4 8.33 1.7 1.7 0 0 0 0
C2 7 6 4.45 0.9 0 0 0 0 0
C3 5 5 6.67 2.2 2.2 2.22 2.22 1.78 1.11
C4 3 3 2.22 1.4 0 1.67 1.67 1.67 1.67
C5 4 3 1.85 0 0 1.11 1.11 1.11 1.11
C6 4 3 2.5 0.7 0.3 1 0.83 0.83 0.83
C7 5 4 1.8 0.5 0.3 1.03 0.97 0.69 0.56

Average 4.57 4 3.97 1.06 0.64 1 0.97 0.87 0.75

(in C7 instances, XF and BLF take 0.0045s and 0.0035s, respectively, to construct
a solution).

In Table 2, we report the average percentage of pieces that each heuristic of
the set H places in the final constructive algorithm XF for each kind of problem.

We can remark that each problem requires a different combination of the low-
level heuristics. This is the advantage of the implicit natural adaptation of the
hyperheuristic framework. We remark that BFDH* tends to be less applied as
the size of the problem increases, while BLF shows the exact contrary behavior.
A pattern cannot be identified for both BF and HR heuristics. Note however
that BF has been used more frequently than HR. In addition, HR is more useful
in solving smaller problem categories. Thus, the application percentage of the
low-level heuristics depends on the problem instance to be solved. Furthermore,
the algorithm is able to self-adapt to the problem at hand.

Figure 6 shows a typical final constructive algorithm and its solution for a
class C7 instance (especifically the C72 instance).

72 I. Araya, B. Neveu, and M.-C. Riff

BF

n=6

p=DH, W>H

BLF

n=1

p=DA, W>H

HR

p=DA, H>W

n=41

BLF

p=DH, NR

n=148

BFDH

p=DP, H>W

n=1

Fig. 6. Solution for instance C72

An Efficient Hyperheuristic for Strip-Packing Problems 73

Table 4. Gap to the solution for Hopper’s instances without rotation (OF)

Class Iori BF+ SPGAL GRASP H-SP100s H-SP1000s
algorithm SA Best Average Best Average Best Average Best

C1 1.67 0 1.67 0 0 1.33 0 1 0
C2 2.22 6.25 2.22 0 0 0 0 0 0
C3 2.22 3.33 3.33 1.11 1.11 2.22 2.22 2.22 2.22
C4 4.75 1.67 2.78 1.67 1.67 2.11 1.67 1.67 1.67
C5 3.93 1.48 1.48 1.11 1.11 1.18 1.11 1.26 1.11
C6 4.00 1.39 1.67 1.58 1 1.39 1.11 1.22 0.83
C7 — 1.77 1.25 1.39 1.25 1.08 0.97 1 0.97

Average 3.13 2.27 2.06 0.98 0.88 1.33 1.01 1.2 0.97

4.3 Comparison with State-of-the-Art Algorithms

Tables 3 and 4 summarize the best results found in the literature [1, 3, 4, 12,
13, 16, 18, 21], and the results obtained by our hyperheuristic for the Hopper’s
instances. The results are calculated as the percentage from the optimal solution
(gap(%) = solution−opt

opt).

Tests with rotation allowed (RF)

We have first studied the problems where the rotation of the rectangles is allowed.
Table 3 shows the results found in the literature for some algorithms compared
with H-SP. The algorithms GA+BLF and SA+BLF [12], were run on a Pentium
Pro 200 MHz with an average time per run of 674 minutes for SA+BLF and
136 minutes for GA+BLF. The deterministic algorithm HRalg [21], was run on
a 2.4GHz CPU, with an average time per run of 5.59 seconds (0 seconds for C1
instances, 36 seconds for C7). SPGAL [4] reports an average time per run of
159 seconds on a 2GHz Pentium and the algorithm was run 10 times for each
instance. The H-SP algorithm have been run 10 times with execution times of
100 and 1000 seconds for each instance. The set H is composed of the heuristics
BLF, HR, BFDH* and BF, in their original versions.

Results in Table 3 show that H-SP gives good quality solutions and even
better solutions than various other algorithms for the problem (metaheuristics
and heuristics) except for the SPGAL algorithm. This algorithm is especially
designed for these benchmarks and evaluates all possible rotations for each object
to be positioned.

Tests without Rotation (OF)

We have also tested the algorithms considering the same benchmarks, but with-
out allowing object rotations. To this test, the set H is composed of the heuristics
BLF, HR, BFDH* and BF, in their no-rotation-allowed versions. The set P is
reduced to only order parameters (rotation have no sense).

74 I. Araya, B. Neveu, and M.-C. Riff

Table 5. Gap to the solution for Bortfeldt’s instances

Set of Type RG Type OG Type RF
Problems GA4 H-SP GA4 H-SP H-SP H-SP

100s 100s 100s 1000s

1 2.44 3.39 4.43 4.89 1.44 1.01
2 1.86 1.92 3.79 3.70 0.99 0.74
3 2.61 1.54 3.07 2.32 1.26 1.07
4 2.34 1.04 2.85 1.64 0.75 0.62
5 1.27 3.11 2.08 4.12 1.07 0.82
6 1.04 1.67 1.68 2.38 0.76 0.61
7 1.87 1.59 2.39 2.13 1.60 1.46
8 1.18 1.51 1.62 1.92 1.08 0.92
9 3.03 2.12 4.34 3.45 1.25 0.76
10 1.78 1.27 1.67 1.52 0.52 0.38
11 1.87 1.46 2.45 1.97 1.32 1.12
12 1.83 1.58 2.12 2.03 0.61 0.54

Average 1.93 1.85 2.71 2.67 1.05 0.84

Table 4 shows the results found by some algorithms compared with H-SP.
The GRASP algorithm has been run 10 times on a 2GHz Pentium, the stopping
criterion is of 60 seconds. BF+SA [7] has been run 10 times on a 2GHz Pentium
with a limit of 60 seconds per run. Iori et al. [13] algorithm was run 300 seconds
on a Pentium III at 800Mhz. SPGAL [4] reports an average time per run of
160 seconds on a 2GHz Pentium and the algorithm was run 10 times for each
instance. The H-SP algorithm have been run 10 times with execution times of
100 and 1000 seconds for each instance.

Up to now, GRASP was the best approach. We obtained better average results
than GRASP in the two biggest classes (C6 and C7).

4.4 Tests with Bortfeldt’s Instances

We performed three series of tests with the 360 large new random instances
proposed by Bortfeldt and Gehring [4], subdivided in 12 sets of 30 instances. For
all these instances, the optimal solution is not known. We use as performance
index the gap with the continuous lower bound clb [4] (gap(%) = (bestfound−clb)

clb).
In Table 5 we have compared the Bortfeldt’s algorithm GA4 (based on SP-

GAL) with H-SP. In the second and third columns we consider the problems type
RG, that requires guillotine cuttings and allows objects to be rotated. For these
set of problems the average execution time of algorithm GA4 is 895 seconds on a
2GHz Pentium. For these guillotinable instances, the set H is composed of low-
level heuristics that respect that guillotine constraint. The heuristics are only
two: HR and BFDH* (Section 2.1). For each problem instance the hyperheuristic
is run once with a maximum execution time of 100 seconds.

An Efficient Hyperheuristic for Strip-Packing Problems 75

In the fourth and fifth columns we consider the problems type OG, that
requires guillotine cuttings and where the orientation of the objects is fixed. We
used the same low-level heuristics as for RG instances. The average execution
time for Bortfeldt’s algorithm is 717 seconds on a 2GHz Pentium. For each
problem instance the hyperheuristic is run once with a maximum execution
time of 100 seconds and the average results are shown.

We also considered the problems type RF shown in the last column, where
guillotine cutting is not required and the objects may be rotated. The set H
is composed of the heuristics: BLF, HR, BFDH* and BF, in their original ver-
sions. For each problem instance the hyperheuristic is run once with maximum
execution times of 100 and 1000 seconds.

We can remark that we are competitive for all these RG and OG bench-
marks with Bortfeldt’s algorithm. Moreover with the type RF we can see that
we reduced the gap obtained for the RG and OG problems. This behavior was
expected, since RF problems are less constrained, nevertheless, Bortfeldt and
Gehring say that their algorithms (GA-4 is the best of them) obtain negligible
improvements when they are applied with the post-optimization process [4], in
other words, when they are applied to RF problems.

Our framework is flexible: we only had to change the set of low-level heuristics
in each case, and the framework gives us competitive results.

5 Conclusions

This research allows us to conclude that using a hyperheuristic approach can
improve the performance of single greedy heuristics. Moreover, the hyperheuris-
tic is able to adapt itself to the problem by selecting a good combination of
these low-level heuristics. This framework is quite general: we have shown that
it could solve different strip packing problems (RF, OF, RG, OG). For solving
a new problem type, the major task is the selection of suitable and efficient
low-level heuristics. The hyperheuristic framework will allow cooperation among
them, hopefully improving their single behaviors.

For future works, we believe that adding new operations and low-level heuris-
tics can obtain configurations that explore in a better way the search space.

Acknowledgments

This work was carried out in the context of the Chile-France INRIA/CONICYT
collaboration project.

References

1. Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: Reactive grasp for the strip packing
problem. In: Proceedings Metaheuristic Conference MIC (2005)

2. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9, 846–855 (1980)

76 I. Araya, B. Neveu, and M.-C. Riff

3. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research 172, 814–837
(2006)

4. Bortfeldt, A., Gehring, H.: New large benchmarks for the two-dimensional strip
packing problem with rectangular pieces. In: IEEE Proceedings of the 39th Hawaii
International Conference on Systems Sciences (2006)

5. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. Handbook of Meta-
heuristics 16, 457–474 (2003)

6. Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal
stock-cutting problem. Operations Research 52, 697–707 (2004)

7. Burke, E., Kendall, G., Whitwell, G.: Metaheuristic enhancements of the best-
fit heuristic for the orthogonal stock cutting problem. Technical report, Univ. of
Nottingham, Computer Science Technical Report No. NOTTCS-TR-2006-3 (2006)

8. Chazelle, B.: The bottom left bin packing heuristic: an efficient implementation.
IEEE Transactions on Computers 32, 697–707 (1983)

9. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling problem. In: Congress on Evolutionary
Computation, CEC 2002, pp. 1185–1190 (2002)

10. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: A robust optimisation
method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer,
H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS,
vol. 2439, pp. 7–11. Springer, Heidelberg (2002)

11. Hopper, E.: Two-Dimensional Packing Utilising Evolutionary Algorithms and other
Meta-Heuristic Methods. PhD. Thesis Cardiff University (2000)

12. Hopper, E., Turton, B.C.H.: An empirical investigation on metaheuristic and
heuristic algorithms for a 2d packing problem. European Journal of Operational
Research 128, 34–57 (2001)

13. Iori, M., Martello, S., Monaci, M.: Metaheuristic algorithms for the strip packing
problem, pp. 159–179. Kluwer Academic Publishers, Dordrecht (2003)

14. Coffmann Jr., E., Garey, D., Tarjan, R.: Performance bounds for level oriented
two-dimensional packing algorithms. SIAM Journal on Computing 9(1), 808–826
(1980)

15. Lesh, N., Marks, J., Mahon, A.Mc., Mitzenmacher, M.: Exhaustive approaches to
2d rectangular perfect packings. Information Processing Letters 90, 7–14 (2004)

16. Lesh, N., Marks, J., Mahon, A.M., Mitzenmacher, M.: New heuristic and inter-
active approaches to 2d rectangular strip packing. ACM Journal of Experimental
Algorithmics 10, 1–18 (2005)

17. Lesh, N., Mitzenmacher, M.: Bubble search: A simple heuristic for improving
priority-based greedy algorithms. Information Processing Letters 97, 161–169
(2006)

18. Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip-packing problem.
INFORMS Journal of Computing 15, 310–319 (2003)

19. Mumford-Valenzuela, C., Vick, J., Wang, P.Y.: Heuristics for large strip packing
problems with guillotine patterns:An empirical study, pp. 501–522. Kluwer Aca-
demic Publishers, Dordrecht (2003)

20. Neveu, B., Trombettoni, G., Araya, I.: Incremental move for strip-packing. In:
Proceedings of ICTAI 2007, Patras, Greece (2007)

21. Zhang, D., Kang, Y., Deng, A.: A new heuristic recursive algorithm for the strip
rectangular packing problem. Computers and Operations Research 33, 2209–2217
(2006)

Probability-Driven Simulated Annealing for
Optimizing Digital FIR Filters

Emmanuel Boutillon, Christian Roland, and Marc Sevaux

Université Européenne de Bretagne
UBS - Lab-STICC - Centre de Recherche
F-56321 Lorient – France
marc.sevaux@univ-ubs.fr

Summary. In this paper, we propose to mimic some well-known methods of control
theory to automatically fix the parameters of a multi-objective Simulated Annealing
(SA) method. Our objective is to allow a decision maker to efficiently use advanced
operation research techniques without a deep knowledge of this domain. Classical SA
controls the probability of acceptance using an a priori temperature scheduling (Tem-
perature Driven SA, or TD-SA). In this paper, we simply propose to control the tem-
perature using an a priori probability of acceptance scheduling (Probability Driven SA,
or PD-SA). As an example, we present an application of signal processing and partic-
ularly the design of digital Finite Impulse Response (FIR) filters for very high speed
applications. The optimization process of a FIR filter generally trades-off two metrics.
The first metric is the quality of its spectral response (measured as a distance between
the ideal filter and the real one). The second metric is the hardware cost of the filter.
Thus, a Pareto-based approach obtained by a multi-objective simulated annealing is
well suited for the decision maker. In this context, TD-SA and PD-SA method are
compared. They show no significant differences in terms of performance. But, while
TD-SA requires numerous attempts to set an efficient temperature scheduling, PD-SA
leads directly to a good solution.

Keywords: Filter design, FIR, simulated annealing, multiobjective optimization, tem-
perature regulation, feedback loop.

1 Introduction

Implementing a Simulated Annealing (SA) algorithm is quite an easy task and
should be done in a few hours. But tuning the parameters for having good
and interesting results is much more difficult. Most of the time, based on a set
of instances (sometimes with known results), the parameters, one by one, are
changed and set to their best values. Of course, interaction between the different
parameters complicates the task.

What motivates this work is to let a decision maker (who often is not a
specialist in optimization, and even less in tuning SA parameters) use the solver
with a minimum number of comprehensive parameters. To achieve this goal, we
try to translate the classical SA parameters to what could be easily understood

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 77–93, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

marc.sevaux@univ-ubs.fr

78 E. Boutillon, C. Roland, and M. Sevaux

by the decision maker: a probability function and a number of iterations (a total
running time).

In this paper, we consider that the temperature is controlled by a feedback
loop. The feedback is given by the difference between the estimated probability of
acceptance at a given iteration number and the desire probability of acceptance
at this moment. This technique is applied on a signal processing problem: the
joint optimization (i.e. multiobjective function) of the performance of a numer-
ical Finite Impulse Response (FIR) filter and its related hardware complexity.
Related work is presented in [4]. Note that the FIR filter is one of the key tools
of the signal processing domain. The domain of application of FIR filter is thus
very large (radar, sonar, communication, sysmography, ...).

The rest of the paper is divided in five sections. Section 2 describes the prob-
lem of FIR filter design and the relative metrics associated to the FIR filter
performances and its hardware cost. Section 3 proposes a literature review of
known works in the same area, followed by the proposed approach in section 4.
Numerical experiments are conducted in section 5 before a conclusion in the last
section.

2 The Digital FIR Filter Problem Design

This section presents the problem of digital FIR filter design for a high speed
dedicated architecture. After recalling the definition of a FIR filter, the classical
design flow is given. Then, an alternative method is proposed and the cost func-
tion of performances and complexity are presented. General information can be
found in [8, 12, 13].

2.1 Definition of a FIR Filter

A FIR filter is a common tool in signal processing. The input signal of a FIR
filter is a numerical series (typically, the samples of a captor) x(n) indexed by
an integer n. Generally, the signal of interest is corrupted by noise or other non
significant signals. The FIR filter processes the input signal x(n) and generates
a filtered output signal y(n) that rejects part of the jamming signal and noise.
A FIR filter of order N is characterized by its finite impulse response (FIR) of
length N given by H = (h(0), h(1), ..., h(N − 1) 1. The output y(n) at time n of
the filter H is given by the equation:

y(n) =
N−1∑
k=0

h(k)x(n − k) (1)

This operation is noted y(n) = h(n) ∗ x(n), where ∗ stands for convolution.
The coefficients H of the filter are invariant over time and identical to the

impulse response of the filter (see Figure 1-a).
In signal processing theory, filters are characterized by their frequency re-

sponse. The frequency response H(f) is obtained with the Fourier Transform

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 79

0 5 10 15 20 25 30 35
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

M
ag

ni
tu

de

a) Finite impulse response: h(k)

0 0.1 0.2 0.3 0.4 0.5
−120

−115

−110

−105

−100

−95

−90

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

b) Filter power spectrum: H(f)

Fig. 1. Representation of a FIR filter

(FT) of the finite impulse response (see Figure 1-b). In the sequels, the phase
response will not be considered and we only get focused on the amplitude re-
sponse (i.e. |H(f)|) of the FIR filter (the majority of FIR application in signal
processing).

2.2 The Problem of FIR Filter Synthesis

The classical process of FIR synthesis is divided in 3 stpdf: first, the ideal filter is
defined according to the spectral characteristic of the signal and the target of the
application. In general, this filter has cliff transition and this results in an infinite
impulse response. In order to obtain an implementable filter, the filter constraints
are relaxed and the template of an acceptable filter is defined. For example, a
template of band-pass filter is defined by several parameters: the bounds of the
passband frequencies (fi1, f i2), the absolute value of the maximum gain in the
passband frequencies, the size of the transition bands (f1, f i1 and f2, f i2) and
the rejection factor in the rejection band. V a2 (resp. V a3) is the maximum (resp.
minimum) level for the passband. V a1 is the maximum level for the rejection
band (see Figure 2).

Given a template, the generation of H can be obtained by several methods:
the Hamming method, the Hanning method, the Remez method, the Kaiser
method and the window method to cite some of the most popular1 [8].

All those methods provide real values of H . The next step is then to repre-
sent the real value in a fix precision format for the implementation. This task
can be tricky because quantization impacts on both performance and hardware
complexity. Some papers work research an optimal design of FIR with only one
constraint. The effort is concentrated on the quantization of the filter coeffi-
cients to obtain Hq, the quantized impulse response (the value of Hq are then
integer). In the general case, the authors have one objective: how to limit the
degradation of the frequency performance between the real and the quantized
FIR filter.
1 These methods are all available in Matlab.

80 E. Boutillon, C. Roland, and M. Sevaux

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency

M
ag

ni
tu

de
 (

dB
)

Rejection band

Transition band

Pass band

Rejection Factor

Va1

Va2

Va3

f1 fi1 fi2 f2

Fig. 2. Template of a FIR filter

2.3 Proposed FIR Designs

In this paper, we propose to proceed in a different way than the straightforward
method defined above. The idea is to start from a classical method to generate H ,
then quantize H to obtain Hinit

q and then, directly optimize Hinit
q by considering

jointly the performance and the complexity of the filter. This approach is quite
new and few recent papers proposed to perform FIR design in a similar way
[2, 7, 10, 11, 14]. Note that except for [14], all those papers are single objective
optimization methods, and the bi-objective proposal concerns different criteria
using genetic algorithms.

Those techniques require two types of metrics: a measure of the performance
of the filter and a measure of the hardware complexity of the filter. Since the
details of FIR design problem is out of the scope of the paper, the next two
sections describe briefly the algorithm that will be used to compute those two
metrics.

2.4 Performance Measures

The cost function C between the template G(f) and the actual filter Hq(f)
defines the “quality” of the design. Ideally, when C(Hq, G) = 0, then Hq(f)
is inside the template for all frequencies of the application. In the following,
we will consider that, for a given frequency f , if H(f) is inside the template,
then C(Hq(f), G(f)) = 0, otherwise, C(Hq(f), G(f)) is equal to a weighted
distance of the actual response Hq(f) and the closest limit of the template for
the frequency f .

In practice, the cost function of the template is given by the summation of
C(Hq(fk), G(fk)), fk = k/Nfft for f = 0 · · ·Nfft − 1. The Nfft value of Hq(fk)

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 81

Algorithm 1. Template cost function
initialization step:1

fix parameters cost function (N , Nfft, V a1, V a2 and V a3)2

fix band-limited and stop-band frequencies (f1, f2, fi1 and fi2) // (see3

Figure 2 for some of these parameters)
find a new solution hi with SA algorithm4

calculate: H = log|fft(hi)|5

d1 = d2 = d3 = d4 = 06

i = 17

repeat8

if H(i) > V a1 then9

d1 = d1 + (H(i) − V a1)α10

endif11

i = i+112

until i < f113

repeat14

if H(i) > V a2 then15

d2 = d2 + (H(i) − V a2)α16

endif17

if i > fi1 and i < fi2 and H(i) < V a3 then18

d3 = d3 + (V a3 − H(i))α19

endif20

i = i+121

until i < f222

repeat23

if H(i) > V a1 then24

d4 = d4 + (H(i) − V a1)α25

endif26

i = i+127

until i < fft size/228

d = d1 + d2 + d3 + d429

are obtained by a Fast Fourier Transform of Hq on Nfft points. The details on
the computation of the distance is provided in Algorithm 1.

2.5 Hardware Complexity of a Filter Hq(z)

In this paper, we assume that the hardware is dedicated to the filter and that
the input rate of the filter is equal to the clock frequency of the hardware. In
other words, an output sample is computed every clock cycle. The architecture
requires N hardware multipliers, each one dedicated to a specific multiplication
with a fix constant (i.e. hq(k) for the kth multiplier). The architecture of the
FIR filter is presented Figure 3.

Roughly speaking, the complexity of the architecture is composed of three
terms, the first cost is related to the register required to store the N previous
received input samples (x(n − k))k=0,...,N−1, the second term is the total cost
of the N multipliers and the last term is the cost of the final adder to sum

82 E. Boutillon, C. Roland, and M. Sevaux

h (1)qh (0)q h (2)q h (N−2)q qh (N−1)

Final adder

x(n−2)x(n−1) x(n−N+1)x(n−N+2)

y(n)

x(n)
−1 z−1 z−1z

Fig. 3. Architecture of a FIR filter

the N partial results (hq(k)xn−k)k=0,...,N−1. The first and third terms can be
assumed independent of the implementation (it is a constant cost). The second
term depends on the implementation choice and on the value of the coefficient
hq(k)k=0,...,N−1 (variable term). This third term alone will be used as a metric
for the hardware complexity of the design. The hardware cost depends on the
binary representation of the coefficients. The exact formulation of the hardware
cost is out of the scope of then paper but is non-linear. To give a brief idea, a
multiplication by 31, 32, 33 has a complexity of 5, 1, and 2 respectively, i.e. the
number of non-zero elements in the binary representation. Using the Canonical
Signed Digit representation (a more efficient representation of number, where, for
example, 31 is coded as 32− 1 [7]), the hardware cost function can be computed
by Algorithm 2.

In the following sections, we consider the cost function Ccsd, defined as Ccsd =∑N−1
k=0 Ccsd

hq(k), where Ccsd
hq(k) is the number of non zero value of the coefficient

hq(k) in the CSD representation. This number is given by Algorithm 2 where C
is the CSD decomposition of x and Ccsd

x the number of non-zero values of C.

3 Description of the Proposed Approach

The method itself is rather simple. Everything is based on the multiobjective
simulated annealing scheme where the temperature is controlled by a feedback
loop.

3.1 Multiobjective Optimization by Temperature Driven Simulated
Annealing (TD-SA)

We briefly recall in this section the multiobjective optimization framework using
a simulated annealing algorithm.

When m objectives fi, i ∈ [1, m] are simultaneously considered for minimiza-
tion, we need to define the concept of Pareto dominance. Instead of giving an

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 83

Algorithm 2. Complexity (CSD decomposition of hq)

initialization step:1

Ccsd = 02

Nb = 12 // Number of bits for quantization3

for i = 1 to length(hq) do4

c = 05

x = |hq(i)|6

for k = Nb-1 to 1 (step -1) do7

M = 2k−18

if x > M/2 then9

x = M − x10

c = c + 111

endif12

endfor13

Ccsd = Ccsd + c14

endfor15

return Ccsd16

absolute value for a solution, a partial order is defined based on dominance. A
solution is said to dominate another solution when it is better on one objective,
and not worse on the other objectives. Thus a solution x dominates a solution y
if and only if ∃i ∈ [1, m] : fi(x) < fi(y) and ∀j ∈ [1, m], j �= i : fj(x) ≤ fj(y). A
solution is said to be non-dominated if no solution can be found that dominates
it.

The definition of the dominance relation gives rise to the definition of the
Pareto optimal set, also called the set of non-dominated solutions. This set con-
tains all solutions that balance the objectives in a unique and optimal way. The
aim of multi-objective optimization is to induce this entire set. Picking a sin-
gle solution from this set is then an a posteriori judgement, which can be done
in terms of concrete solutions with concrete trade-offs, rather than in terms of
possible weightings of objectives. The question for multiobjective optimization
is now how to find this Pareto optimal set.

We recall here that our objective is not to design the best possible multiob-
jective algorithm for solving the filter design problem but to propose an easy
implementable solution.

Based on previous assumptions, we use the work of Nam and Park [9] and the
multiobjective algorithm will be based on simulated annealing. The literature
on this topic is important. A good introduction on evolutionary algorithms for
multiobjective optimization can be found in [3, 5].

Algorithm 3 presents a basic multiobjective simulated annealing framework.
In the initialization step, as in all neighborhood search metaheuristics, an initial
solution should be provided. Fixing the annealing schedule (Alg 3, line 3) and
setting the initial temperature (Alg 3, line 4) are two empiric tasks that partially
motivate the work presented in this paper. For general explanations on standard
settings, we refer the reader to the original paper [9].

84 E. Boutillon, C. Roland, and M. Sevaux

Algorithm 3. Basic multiobjective simulated annealing
initialization step:1

find an initial solution x2

fix an annealing schedule T3

set initial temperature T = T04

repeat5

neighborhood search:6

find a solution x′ ∈ N (x)7

if x does not dominates x′ then8

x′ ← x9

else10

determine ΔC (the variation of the cost function)11

draw p ∼ U(0, 1)12

if e−ΔC/T > p then13

x′ ← x14

endif15

endif16

update temperature T according to T17

until stopping criterion satisfied18

The general loop (Alg 3, lines 3-3), as in all metaheuristic algorithms, does not
differ much from a single objective simulated annealing. First a neighbor solution
x′ of current solution x is randomly generated. In single objective optimization,
if the new solution x′ is better than x, it is accepted as the new current solution.
In the multiobjective case, it is accepted if x′ is not dominated by x (Alg 3, line
8), which means if it is not worse than the current solution.

Now, when x′ is dominated by x, as in the classical simulated annealing algo-
rithm, x′ can become the new current solution (in order to escape local optima)
under a probability condition. In [9], the authors call it probability transition
and expose six different criteria. We use the random cost criterion. ΔC (Alg 3,
line 11) is computed by Equation 2.

ΔC =
m∑

j=1

βj(fj(x′) − fj(x)) (2)

where βj is a random variable with uniform probability distribution. Acceptance
probability is given by the so-called Boltzmann’s equation (see [1] for more in-
formation).

At the end of the loop iteration, the temperature is updated according to
the cooling schedule. Classical cooling schedules refer to geometric evolution of
the temperature Tk = αkT0, where Tk is the temperature at iteration k, α is the
cooling rate (0 < α < 1) and T0 the initial temperature.

3.2 Parameter Reduction in SA – from TD-SA to PD-SA

In the description of the TD-SA (Algorithm 3), the following parameters have
to be set by the decision maker or by the end-user of the solver:

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 85

• the initial solution x
• the annealing schedule T
• the initial temperature T0
• the stopping conditions

The initial solution x can be generated randomly or provided by the decision
maker (from previous runs of the solver, or from experience). If the annealing
schedule follows the description of the geometric evolution of the previous sec-
tion, parameter α should be provided, as well as the initial temperature T0 and
the stopping conditions of the algorithm.

The stopping conditions are easy to set. Usually, a running time is wished
by the decision maker and is converted into a maximum number of iterations.
But the initial temperature T0 and the cooling rate α requires several attempts
for a good setting. Moreover, this setting should be done again when the set of
instances changes.

To avoid this, we propose to replace the annealing schedule by a function repre-
senting at each iteration the probability of accepting a non-improving move. This
new method will be called Probability-Driven Simulated Annealing (PD-SA).

Figure 4 draws such a simple potential function. In a solver with a graphical
user interface, the function could be chosen from a library. In our case, we use
p(x) = P0 × (1 − 5/ItMax)x as a sample function. P0 is the probability of ac-
cepting a non-improving solution at the beginning of the search. P0 and ItMax
are incorporated into the library (in Figure 4, P0 = 0.3, and ItMax = 100). Note
that the value of P0 = 0.3 can be fixed for once, thus, the only parameter of the
system simply becomes ItMax.

0

0.15

0.30

0 25 50 75 100

P0

ItMax

p(x)

it.

Fig. 4. A potential probability function

A decision maker is able to fully understand the purpose of this function and
its two parameters. In order not to change the simulated annealing algorithm,
we will transform the current probability (the one at the current iteration) into
a temperature for the SA algorithm (see next section). For the classical SA
algorithm, T0 can be reversely computed from P0 with the first non-improving
move of the algorithm (P0 = e−ΔC/T0 ⇔ T0 = −ΔC/ln(P0)).

86 E. Boutillon, C. Roland, and M. Sevaux

3.3 Controlling the Temperature Parameter in PD-SA

With the probability scheme proposed in the previous section, the major ques-
tion coming is “why keeping a temperature-based system if we know in advance
the probability for accepting non-improving moves?”. First, removing the tem-
perature will remove a degree of freedom in the SA approach, second, removing
the temperature will change the SA scheme and will need partial re-writing of
the program. Instead, we will use a feedback loop as in automatic control to
keep a temperature as close as possible of the desired temperature (i.e., of the
probability value provided by the probability function).

In a classical TD-SA scheme, each time a new generated solution has an
objective function value worse than the current solution (i.e. a cost function
C > 0), this degrading solution is accepted if the value of e−ΔC/T is greater than
an uniform random value between 0 and 1. The event of accepting a degrading
solution as exactly a probability of p̃ = e−ΔC/T to occur.

In the new PD-SA approach, we keep the same process to accept or not a
degrading solution. The main difference is that, instead of cooling blindly the
temperature in a deterministic way (T (i + 1) = α · T (i)), we try to control the
temperature Tc so that p̃(i) = e−ΔC/Tc equals exactly p(i) the desire probability
of acceptance at iteration number i. Thus, each time a non-improving solution
is generated, 3 cases can occur:

1. p̃(i) > p(i), than the probability of acceptance is too high and Tc should be
decreased.

2. p̃(i) = p(i), than the probability of acceptance is good and Tc is correct.
3. p̃(i) < p(i), than the probability of acceptance is too low and Tc should be

increased.

To perform such an update, the temperature is adjusted using a feedback loop
as:

Tc = Tc + Tcε(p(i) − p̃(i)) (3)

where ε is a parameter of the feedback loop that weights the correction factor (ε
is set to 1 in our simulation).

One can note that this feedback loop is similar to the Proportional Integral
(PI) corrector [6] if we consider Tc in the log domain. In fact:

log(Tc) = log(Tc) + log(1 + ε(p(i) − p̃(i)) (4)

and thus:
log(Tc) ≈ log(Tc) + ε(p(i) − p̃(i)) (5)

The PI corrector is well known in automatic control system to be a very
robust corrector, with no bias and generally stable for a large range of values
of ε. Performing this kind of feedback loop in unusual in metaheuristics but its
efficiency has been proved in automatic control systems since a very long time.

One can note an advantage of this type of feedback control compared to the
classical cooling temperature scheme. In fact, if the local solution is a local

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 87

minima and if the current temperature is too low, then the SA algorithm is
trapped in this local minima until the end of the SA process. On the contrary,
with the feedback loop, in such a situation, the temperature will increase in a
geometrical way so that, at one moment, it will escape this local minima and
restart a worthwhile research process.

Numerical experiments will show the difference between PD-SA and TD-SA.

4 Numerical Experiments

This section presents the comparison between TD-SA and PD-SA. The param-
eters of the SA algorithms are first presented (coding, neighborhood and initial
solution). Then computational results are presented and discussed.

4.1 Coding, Neighborhood and Initial Solution

A solution is represented by 33 integer values (stored in an array, s[i], i =
1, . . . , 33). Each value belongs to the range [−1023, +1023], corresponding to
the physical size of the component (a power of 2). These values are the coeffi-
cients of the filter i.e., the impulse response of the filter. To obtain the frequency
response of the filter, it is necessary to use a FFT. The impulse response is sym-
metric so the values in the array are also symmetric (s[i] = s[33− i+1]) and the
sum of coefficients should be constant (the square root of the energy remains
the same along the search).

The neighborhood is defined so that we respect the constraints on the encod-
ing. To move from one solution to a neighbor, one of the coefficients is either
increased by one or two or decreased. The symmetric value is changed accord-
ingly. To keep the constant sum property, another symmetric pair of coefficients
is inversely modified.

An initial solution for the proposed method is obtained from classical design
filters, e.g. Hanning window multiply iFFT of ideal filter. This solution is usually
blindly used by practitioners for designing filters. By doing so, we ensure the
designer to have at least a feasible and “classical” solution.

4.2 Computational Results

Numerical experiments have been conducted in order to assert that the proposed
method is at least as good as a classical simulated annealing algorithm. To do
so, several figures are presented and commented below.

Even if the general purpose of the algorithm is to reduce the number of param-
eters, some of them are necessary. First, the number of coefficients of the filter
–sometimes considered as a meta-parameter– is left to the decision maker. For
the experiments, we set it to the most commonly used value, i.e. 33 coefficients
(e.g. like for a standard FIR1 function). Second, the size of the FFT is usu-
ally set to 2048 values. Then, several parameters presented in the cost function

88 E. Boutillon, C. Roland, and M. Sevaux

(see parameters V a1, V a2, V a3 in Algorithm 1) and in the design of the template
(see parameters f1, f2, f i1, f i2 in Figure 2) have to be chosen by the decision
maker. In figure 2, some of them depend on the final application. We propose in
the future to develop a graphical user interface that will help the designer to set
these parameters. When it is not explicitly mentioned, the maximum number of
iterations is 50 000 corresponding to a reasonable amount of time (5 minutes).

For all the experiments, we try to compare the execution of the standard sim-
ulated annealing algorithm and the version with automatic temperature setting.
On one hand, simulation operates with an initial temperature T0, and on the
other hand, the parameter used at the beginning of the search is P0, the initial
probability of accepting non-improving moves. As an example, we auto-magically
set T0 = 30 and arbitrarily set P0 = 0.3.

First we compare the influence of the maximum number of iterations. Figure 5
compares the Pareto solutions of the two approaches obtained after different
maximum number of iterations. These Pareto solutions are the best solutions
over 250 different runs for each approach.

In these figures, Pareto solutions are presented for the two solution techniques,
TD-SA and PD-SA when T0 = 30. The initial solution blindly used by decision
makers is also noted as “Initial”.

Figure 5 shows just 3 particular cases of the Pareto sets obtained with the
TD-SA and the proposed PD-SA. It did not give any insight of which technique
is more efficient. In order to obtain an objective comparison between the two
methods, we perform a series of “match racing” between TD-SA and PD-SA.
Each match racing starts from the same initial condition and process the same
number of iteration. Once the two Pareto function are obtained, they are merge
to create a new Pareto function. Let NPD−SA (respectively NTD−SA) be the
number of point of the PD-SA Pareto curve (respectively TD-SA Pareto curve)
that are not dominated by a point of the TD-SA Pareto curve (respectively
TD-SA Pareto curve). Then the result of the match racing is given by:

Q =
NPD−SA

NPD−SA + NTD−SA
(6)

Thus Q is a number between 0 and 1. Q = 0 means that TD-SA dominates
PD-SA, Q = 1 means that PD-SA dominates TD-SA. Note also that is the
Pareto curve of PD-SA and TD-SA are identical, then NPD−SA = NTD−SA and
thus Q = 0.5. We perform each time 250 match racing to obtain an estimation
of the expectation of E[Q] and the standard deviation σQ of Q. The values of
E[Q] are obtain with an marginal error of ± σE [Q] = σQ√

250
= 0.025 for T0 = 30

and 0.01 for T0 = 1. Table 1 gives the results of the match racing for 5000,
10000 and 25000 iterations. Tests have been conducted for two different values
of the initial temperature T0 (30 or 1) in TD-SA. It appears clearly that tunning
correctly the temperature can lead to better results in TD-SA than in PD-SA.
As already mentioned, an end-user has to manually tune the temperature and
this might be long and difficult.

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 89

55 60 65 70 75 80 85 90 95 100 105
200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 5000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

55 60 65 70 75 80 85 90 95 100 105
0

200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 10000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

50 60 70 80 90 100 110
0

200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 25000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

Fig. 5. Solutions after 5 000 it. (up), 10 000 it. (middle) and 25 000 it. (bottom).

90 E. Boutillon, C. Roland, and M. Sevaux

Table 1. Dominance ratio (Q) of PD-SA over TD-SA

Iterations 5 000 10 000 25 000
T0 = 30
Average 0.60 0.65 0.63
St.Dev. 0.40 0.37 0.36
T0 = 1
Average 0.33 0.34 0.33
St.Dev. 0.13 0.13 0.12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency

M
ag

ni
tu

de
 (

dB
)

Power Spectrum

Initial

Pareto

Fig. 6. Power spectrum

To be sure that the produced Pareto solutions are of good quality in terms
of distance to template, we plot the initial solution and some Pareto solutions
represented as power spectrum. Hence it is possible to draw the template on the
same figure. In Figure 6 dashed lines represent these solutions whereas the solid
line corresponds to the initial solution. It is clear in the figure that the Pareto
solutions are largely better than the initial solution, especially the part of the
response of the filter outside the transition band is much smaller for all Pareto
solutions represented here.

We now compare the resolution of the TD-SA approach and the new PD-
SA method (see Figure 7) after 50 000 iterations. Note that the constraints for
the template have been tightened. For this figure, it is clear that none of the
approaches is better than the other. But from the decision maker point of view,
the PD-SA gives the same results without the parameter setting phase (to find
the best values of the parameters needed in the TD-SA, more than 10 different
attempts were necessary).

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 91

55 60 65 70 75 80 85 90 95 100 105
200

400

600

800

1000

1200

1400

1600

1800

2000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

Fig. 7. Comparison of solutions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

10

20

30

40

50

60

70

Iterations

te
m

pe
ra

tu
re

Theoritical
Practical

Fig. 8. Comparison of the temperature evolution in PD-SA

To show how the feedback loop influences the temperature, we draw in
Figure 8 the theoretical temperature and the temperature computed afterwards
in PD-SA. Since the practical temperature is computed not at every iteration,
it results a stepwise curve that oscillate around the theoretical temperature.

92 E. Boutillon, C. Roland, and M. Sevaux

5 Conclusion

In this paper, we have presented an alternative approach for the design of a
digital FIR filter minimizing two objectives, namely the distance to a template
and the complexity of the filter. We have to mentioned here that, to our best
knowledge, it is the first time that these two objectives are dealt simultaneously
in a approximate Pareto-based approach using simulated annealing.

In the field of the filter design, it is of course much better to present several
solutions to the decision maker which finally can choose the most appropriate
alternative for his application.

Numerical experiments do not show any advantage in terms of performances
to the probability-driven simulated annealing method but no clear drawbacks
either. Of course, the proposed approach contains less parameters that have to be
set and represents a progress for non-specialist people in the field of optimization
and for end-users.

Through this paper, the reader can notice that several other parameters need
to be set, even in the new method, and are not always explicitly mentioned
here. The reason is that a graphical user interface might help the decision maker
to set these parameters by choosing general templates from libraries with best
known values and/or experimented designer knowledge. Several templates will
be also included in the library. For example, the number of coefficients of the
filter (here set to 33) can become a “meta” parameter. In that case, a dedicated
neighborhood procedure will be designed for finding the most adapted number
of coefficients.

We believe that the proposed probability-driven simulated annealing approach
can be extended with success in many other application domains and that this
approach will help the spreading of advanced SA techniques in the engineering
community.

References

1. Aarts, E.H.L., Korst, J.: Simulated Annealing and Boltzmann Machines. John
Wiley, Chichester (1989)

2. Cen, L., Lian, Y.: Complexity reduction of high-speed fir filters using micro-genetic
algorithm. In: First International Symposium on Control, Communications and
Signal Processing, pp. 419–422 (2004)

3. Coello, C.: EMOO web pages, http://www.lania.mx/∼ccoello/EMOO/
4. Damera-Venkata, N., Evans, B.L.: An automated framework for multicriteria op-

timization of analog filter designs. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing 46(8), 981–990 (1999)

5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & sons, New York (2001)

6. Johnson, M.A., Moradi, M.H. (eds.): PID Control. Springer, London (2005)
7. Kilambi, S.M., Nowrouzian, B.: A genetic algorithm employing correlative roulette

selection for optimization of FRM digital filters over CSD multiplier coefficient
space. In: IEEE Asia Pacific Conference on Circuits and Systems, 2006. APCCAS
2006, December 2006, pp. 732–735 (2006)

http://www.lania.mx/~ccoello/EMOO/

Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters 93

8. Mou, Z., Duhamel, P.: Fast FIR filtering: Algorithms and implementations. Signal
Processing 13(4), 377–384 (1987)

9. Nam, D., Park, C.H.: Multiobjective simulated annealing: A comparative study
to evolutionary algorithms. International Journal of Fuzzy Systems 2(2), 87–97
(2000)

10. Oner, M.: A genetic algorithm for optimisation of linear phase fir filter coefficients.
In: Conference Record of the Thirty-Second Asilomar Conference on Signals, Sys-
tems & Computers, November 1998, vol. 2, pp. 1397–1400 (1998)

11. Qiao, J., Fu, P., Meng, S.: A combined optimization method of finite wordlength
fir filters. In: First International Conference on Innovative Computing, Information
and Control, 2006. ICICIC 2006, August 2006, vol. 3, pp. 103–106 (2006)

12. Siohan, P., Benslimane, A.: Synthèse des filtres numériques non récursifs à phase
linéaire et coefficients de longueur finie. Annales des Télécommunications 39(7-8),
307–322 (1984)

13. Siohan, P., Benslimane, A.: Finite precision design of optimal linear phase 2-D FIR
digital filters. IEEE Transactions on Circuits and Systems 36(1), 11–22 (1989)

14. Thomson, R., Arslan, T.: An evolutionary algorithm for the multi-objective opti-
misation of VLSI primitive operator filters. In: Proceedings of the 2002 Congress
on Evolutionary Computation, 2002. CEC 2002, vol. 1, pp. 37–42 (2002)

RASH: A Self-adaptive Random Search Method

Mauro Brunato and Roberto Battiti

Dipartimento di Ingegneria e Scienza dell’Informazione
Università di Trento, via Sommarive 14, I-38100 Trento — Italy
{battiti,brunato}@dit.unitn.it

Summary. A variation of an adaptive random search algorithm for the optimization
of functions of continuous variables is presented. The scheme does not require any as-
sumptions about the function to be optimized, apart from the availability of evaluations
at selected test points. The main design criterion of the Reactive Affine Shaker (RASH)
scheme consists of the adaptation of a search region by an affine transformation. The
modification takes into account the local knowledge derived from trial points generated
with a uniform probability in the search region. The aim is to scout for local minima in
the attraction basin where the initial point falls, by adapting the step size and direction
to maintain heuristically the largest possible movement per function evaluation. The
design is complemented by the analysis of some strategic choices, like the double-shot
strategy and the initialization, and by experimental results showing that, in spite of
its simplicity, RASH is a promising building block to consider for the development of
more complex optimization algorithms.

Keywords: Stochastic search, adaptive random search, mathematical programming.

1 Introduction

Finding the global minimum of a function of continuous variables f(x) is a
well known problem for which substantial effort has been dedicated in the last
decades, see for example the bibliography in [12]. Apparently, no general-purpose
panacea method exists which can guarantee its solution at a desired accuracy
within finite and predictable computing times. In fact, the different versions of
the so called “no free lunch theorems” imply that “for any algorithm any elevated
performance over one class of problems is paid for in performance over another
class” [16].

On the other hand, most real-world optimization tasks are characterized by
a rich correlation structure between candidate solutions which are close, in a
suitable metric defined over the independent variables. Local search techniques
capitalize on this local structure by postulating that a better solution can usually
be found in the neighborhood of the current tentative solution. In this manner,
after starting from an initial configuration of the independent variables x(0), a
search trajectory of a discrete dynamical system is generated, in which point
x(t+1) is chosen in the neighborhood of point x(t). Under suitable conditions
(e.g., lower-bounded function, decreasing values of f(x(t)) during the search

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 95–117, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

96 M. Brunato and R. Battiti

with a sufficiently fast rate of decrease) the trajectory will converge at a local
minimizer. The set of initial points which are mapped to a specific local mini-
mizer by the local search dynamical system is called the basin of attraction of
the minimizer.

Many recent global optimization techniques deal with ways to use a local
search technique without being trapped by local minimizers, notably the Simu-
lated Annealing technique based on Markov chains, see for example [5] and [13].

Because of the growing awareness that no single general-purpose method can
be efficiently applied to different problems, recent research considers the appro-
priate integration of basic algorithmic building blocks, like various stochastic
local search techniques [11], the so-called meta-heuristic techniques [7], the var-
ious combinations of genetic operators [8], the algorithm portfolio proposals [9].
The crucial issue is that of tailoring the appropriate combination of components
and values of critical parameters, a process that implies an expensive learning
phase by the user and that can be partially automated by machine learning
techniques, as it is advocated in the reactive search framework [2], see also the
web site www.reactive-search.org.

Research and applications demand a careful design of each component, which
should be studied in isolation before considering integration in more complex
schemes. In this manner, the added value of the combination w.r.t. the compo-
nents can be judged in a statistically sound manner.

In this paper we focus on a “direct method” for optimization [10] which con-
siders only function evaluations. We furthermore assume no a priori knowledge
about f , the knowledge will be only that acquired during evaluations f(x) at
different values of the independent parameters. In particular we develop an al-
gorithm based on the stochastic (or random) local search framework originally
proposed in [14]. We state the main design criteria and study some critical choices
in the development of this method, in particular the initial phase and the adapta-
tion of the search neighborhood based on the local structure of a given attraction
basin, leading to a version which we term “Reactive Affine Shaker” (RASH) for
reasons explained later. We present experimental results on a widely used set of
benchmark functions.

This paper is structured as follows. In Section 2 the RASH technique is de-
scribed and motivated. In Section 3 some crucial aspects of the technique are
mathematically analyzed. In Section 4 the experimental results are shown, to-
gether with the comparison with other published algorithms.

2 The Reactive Affine Shaker Algorithm

The Reactive Affine Shaker algorithm (or RASH for short) is an adaptive random
search algorithm based on function evaluations. The seminal idea of the scheme
was presented for a specific application in neural computation in [1]. The current
work presents a detailed analysis of the specific form of search executed (called
“double shot”), and it proposes a more effective strategy during the initial part of

RASH: A Self-adaptive Random Search Method 97

the search by analyzing the evolution of the search direction in the first iterations,
when the search succeeds with probability close to one.

2.1 Motivation and Analysis

The algorithm starts by choosing at random, in the absence of prior knowledge,
an initial point x in the configuration space. This point is surrounded by an
initial search region R where the next point along the trajectory is searched for.

In order to keep a low computation overhead, the search region is identified
by n vectors, b1, . . . , bn ∈ R

n which define a “box” around the point x:

R =

{
x +

n∑
i=1

αibi, α1, . . . , αn ∈ [−1, 1]

}
.

The search occurs by generating points in a stochastic manner, with a uniform
probability in the search region. For a reason which will become clear in the
following description, a single displacement Δ is generated and two specular
points x(t) + Δ and x(t) − Δ are considered in the region for evaluation (double
shot, see also [3]). An evaluation is “successful” if the f value at at least one of
the two trial points is better than the value at the current point.

By design, RASH is an aggressive local minima searcher : it aims at converging
rapidly to the local minimizer in the attraction basin where the initial point falls.

We assume that most computational effort during the search is spent by cal-
culating function values f(x) at tentative points. Because of the algorithm sim-
plicity, the assumption is valid for non-trivial real-world problems.

The search speed is related to the average size of the steps ‖x(t+1) − x(t)‖
executed along the search trajectory. Let’s consider two extreme cases. If the
search region is very small and the function is smooth, the “double shot” strategy
will produce a new successful point with probability close to one, see Section 3.1,
but the step will be very small. Vice versa, if the search region is very large and
it coincides with the initial range of interest, the search strategy will become
that of näıf random search: points are generated at random in the entire search
space. The step can be large, but the locality assumption is lost and, unless the
problem is very simple, a potentially very large number of points will have to
be evaluated before finding a successful one. Ideally, to maximize the usage of
the information derived from the costly f(x) computations, one should aim at
the largest possible step per function evaluation. This optimal criterion cannot
in general be fulfilled, in particular if the analytic form of the function is not
known and values f(x) are obtained by simulation.

RASH aims at maintaining the search region size as large as possible, while
still ensuring that the probability of a success per evaluation will be reasonably
close to one. Success probabilities in the range 0.3 - 0.5 are considered acceptable.
Now, the success probability is related both to the area of the search region, and
to its form. For example, if the attractor basin consists of an elongated and
narrow valley leading to a local minimizer, for a fixed area, a search region

98 M. Brunato and R. Battiti

elongated along the bottom of the valley will guarantee a higher success rate of
the double shot strategy, and therefore longer average step sizes.

RASH obtains both design objectives: (i) success probability per sample close
to one and (ii) largest possible step size per successful sample, through a “reac-
tive” determination of the search area during the search. For objective (i) the
area is enlarged if the search is successful, reduced if unsuccessful, for objective
(ii) the area is elongated along the last successful direction. Of course, “largest
possible” has a heuristic meaning: given the partial knowledge about f and the
lack of constraints about its functional form we are satisfied if a reasonably large
step is determined by a simple reactive scheme.

With more detail, the algorithm proceeds by iterating the following steps:

1. A new tentative point is generated by sampling the local search region R with
a uniform probability distribution and by using the “double shot” strategy.
The second specular shot is only evaluated if the first one does not succeed.

2. The search region is modified according to outcome of the tentative point.
It is compressed if the new function value is greater than the current one
(unsuccessful sample), it is expanded otherwise (successful sample). The re-
gion is modified by taking into account the direction of the last tentative
step. In RASH, the search area defined by vectors bi undergoes an affine
transformation, see equations (1) and (2) below.

3. If the sample is successful, the new point becomes the current point, and the
search region R is translated so that it becomes centered around the new
point.

A last design decision concerns the initial size of the search area, in the absence
of initial information about the local attraction basin of f . Two simple options,
which do not require critical parameters to be tuned, are to start with a search
area corresponding to the initial search range, which will be rapidly compressed
in the following iterations until it leads to a success, or, on the contrary, to start
with a very small search area, which will be rapidly expanded. The first option is
in conflict with the requirement that RASH should scout for the local minimizer
corresponding to the basin of attraction of the initial point. If arbitrarily large
jumps are permitted at the beginning, all attraction basins could be reachable,
with a probability depending on their sizes. Therefore we adopted the second
option.

As it is demonstrated in Section 3.1, when the function is smooth and the
search region area goes to zero, the probability of success of the “double shot”
strategy tends to one, no matter what the initial direction is. This fact creates an
undesired effect: after picking the first tentative direction, one will have an unin-
terrupted sequence of successes. At each step, the search area will be expanded
along the last direction, which in turn will be generated with uniform probabil-
ity in an already elongated region. Through this self-reinforcing mechanism one
may easily get an extremely elongated search region, where the elongation tends
to be collinear with the first random direction, with no influence from the form
of the current basin. To avoid this spurious effect, the expansion of the search

RASH: A Self-adaptive Random Search Method 99

region is isotropic in the initial part of the search, until the first unsuccessful
direction is encountered, i.e., all box vectors are expanded by the same factor.

The details about the evolution of directions during the initial phase of the
search, as well as the experiments related to the correlation between initial search
directions, are explained in Section 3.2.

After explaining the design choices, let’s now comment on the name (Re-
active Affine Shaker). The solver’s movements try to minimize the number of
jumps towards the minimum region, and this is achieved by constantly changing
the movement direction and size. Search region and therefore step adjustments
are implemented by a feedback loop guided by the evolution of the search it-
self, therefore implementing a “reactive” self-tuning mechanism. The constant
change in step size and direction creates a “shaky” trajectory, with abrupt leaps
and turns. Last, modifications of the search parameters are through an affine
transformation on the shape of the search region.

2.2 RASH Pseudo-code

Details of the RASH algorithm are shown in Figure 1. At every iteration, a
displacement Δ is generated so that the point x +Δ is uniformly distributed in
the local search region R (line 4). To this end, the basis vectors are multiplied
by different random numbers in the real range [−1, 1] and added:

Δ =
∑

j

Rand(−1, 1)bj .

Rand(−1, 1) represents a call of the random-number generator. If one of the two
points x+Δ or x−Δ improves the function value, then it is chosen as the next
point. Let us call x′ the improving point. In order to enlarge the box along the
promising direction, the box vectors bi are modified as follows.
The direction of improvement is Δ. Let us call Δ′ the corresponding vector
normalized to unit length:

Δ′ =
Δ

‖Δ‖ .

Then the projection of vector bi along the direction of Δ is

bi|Δ = Δ′(Δ′ · bi) = Δ′Δ′T bi.

To obtain the desired effect, this component is enlarged by a coefficient ρ > 1,
so the expression for the new vector b′i is

b′i = bi + (ρ − 1)bi|Δ (1)
= bi + (ρ − 1)Δ′Δ′T bi

= bi + (ρ − 1)
ΔΔT

‖Δ‖2 bi

= Pbi

100 M. Brunato and R. Battiti

Variable Scope Meaning

f (input) Function to minimize
x (input) Initial point
b1, . . . , bd (input) Vectors defining search region R around x
ρ (input) Box expansion factor

t (internal) Iteration counter
P (internal) Transformation matrix
x, Δ (internal) Current position, current displacement

1. function AffineShaker (f , x, (bj), ρ)
2. t ← 0;
3. repeat
4. Δ ←

∑
j Rand(−1, 1)bj ;

5. if f(x + Δ) < f(x)
6. x ← x + Δ;

7. P ← I + (ρ − 1)
ΔΔT

‖ Δ ‖2 ;

8. else if f(x - Δ) < f(x)
9. x ← x - Δ;

10. P ← I + (ρ − 1)
ΔΔT

‖ Δ ‖2 ;

11. else

12. P ← I + (ρ−1 − 1)
ΔΔT

‖ Δ ‖2 ;

13. ∀j bj ← P bj ;
14. t ← t+1
15. until convergence criterion;
16. return x;

Fig. 1. The Affine Shaker algorithm

where

P = I + (ρ − 1)
ΔΔT

‖Δ‖2 . (2)

The fact of testing the function improvement on both x + Δ and x − Δ is
called double-shot strategy: if the first sample x + Δ is not successful, the spec-
ular point x − Δ is considered. This choice drastically reduces the probability
of generating two consecutive unsuccessful samples. The motivation is clear if
one considers differentiable functions and small displacements: in this case the
directional derivative along the displacement is proportional to the scalar prod-
uct between displacement and gradient Δ · ∇f . If the first is positive, a change
of sign will trivially cause a negative value, and therefore a decrease in f for
a sufficiently small step size. The empirical validity for general functions, not

RASH: A Self-adaptive Random Search Method 101

C’

A

B

C

A’
B’

Fig. 2. Affine Shaker geometry: two search trajectories leading to two different local
minima. The evolution of the search regions is also illustrated.

necessarily differentiable, is caused by the correlations and structure contained
in most of the functions corresponding to real-world problems. See Section 3.1
for a thorough analysis motivating the double-shot strategy.

If the double-shot strategy fails, then the affine transformation (1) is applied
by replacing the expansion factor ρ with its inverse ρ−1 (line 12 of Figure 1),
causing a compression of the search area.

An illustration of the geometry of the Reactive Affine Shaker algorithm is shown
in Figure 2, where the function to be minimized (in this case the domain is a square
in n = 2 dimensions) is represented by a contour plot showing isolines at fixed val-
ues of f , and two trajectories (ABC and A’B’C’) are plotted. The search regions
are shown for some points along the search trajectory. A couple of independent
vectors define the search region as a parallelogram centered on the point. The de-
sign criteria are given by an aggressive search for local minima: the search speed
is increased when steps are successful (points A and A’ in Figure 2), reduced only
if no better point is found after the double shot. When a point is close to a local
minimum, the repeated reduction of the search frame produces a very fast con-
vergence of the search (point C in Figure 2). Note that another cause of reduction
for the search region can be a narrow descent path (a “canyon”, such as in point
B’ of Figure 2), where only a small subset of all possible directions improves the
function value. However, once an improvement is found, the search region grows
in the promising direction, causing a faster movement along that direction.

2.3 Termination and Repeated Runs

For most continuous optimization problems, an effective estimation of the num-
ber of steps required for identifying a global minimum is clearly impossible.

102 M. Brunato and R. Battiti

Variable Scope Meaning

f (input) Function to minimize
ρ, (input) Box expansion factor
L1, . . . , Ld, U1, . . . , Ud (input) Search range
L′

1, . . . , L
′
d, U ′

1, . . . , U
′
d (input) Initialization range

b1, . . . , bd (internal) Vectors defining search region R
around x

x, x′ (internal) Current position, final position of run

1. function ParallelAffineShaker (f , ρ, (L′
j), (U ′

j), (Lj), (Uj))

2. ∀j bj ← Uj − Lj

4
· ej ;

3. pardo
4. x ← random point ∈ [L′

1, U
′
1] × · · · × [L′

d, U ′
d];

5. x’ ← AffineShaker(f , x, (bj), ρ);
6. return best position found;

Fig. 3. The Repeated RASH algorithm

Even when a local minimum is located, it is generally impossible to determine
whether it is the global one or not, in particular if the knowledge about the
function derives only from evaluations of f(x) at selected points.

Because RASH does not include mechanisms to escape from local minima, it
should be stopped as soon as the trajectory is sufficiently close to a local mini-
mizer. Suitable termination criteria can be derived, for instance a single RASH
run can be terminated if the search region becomes smaller than a threshold
value. In fact, the box tends to reduce its volume in proximity of a local mini-
mum because of repeated failures in improving the function value.

By design, RASH searches for local minimizers and is stopped as soon as one is
found. A simple way to continue the search after a minimizer is found is to restart
from a different initial random point. This approach is equivalent to a “popula-
tion” of RASH searchers where each member of the population is independent,
completely unaware of what other members are doing, see on Figure 3. The par-
allel execution of RASH optimizers is considered in the experimental Section.

3 Analysis and Motivation of the Design Choices

As explained in Section 2, the evolution of the size and the shape of the search
region should lead to a ratio of successes in the double-shot strategy comparable
to 50%. In this manner both successes and failures will occur and the search
area will adapt to the local structure of the function f .

A case in which this assumption is wrong is during the initial phase of the
search, when the search region is very small. In fact, Section 3.1 proves that,
under reasonable assumptions, the success probability of the double-shot strat-
egy tends to 1 as the size of the search region is reduced.

RASH: A Self-adaptive Random Search Method 103

b

b

1

2
P

D

B

hmax

d

Bnr

H’C,

Δ

B

f(P)

h’

H

v

A

B

C

D

d

O

Fig. 4. Left: description of the settings of Theorem 1. Note that HB is a subset of
H ′

C,B. Right: Description of the setting of Lemmata 1 and 2.

An important issue in the RASH strategy, strongly related to a very high
double-shot success ratio, is the dependency between the direction of the initial
step (which is random and with high probability of success) and the direction
of subsequent steps. The average angle between two random directions in R

n

is exactly determined in Section 3.2. In order to experimentally verify such de-
pendency, the relation shall be used in Section 4.2 to discuss experimental data
about this “memory effect”.

The final conclusion of this analysis leads to the choice of isotropic expansions
(b′i = ρbi for all i) of the search region in the initial phase until the first failure
is encountered and the normal affine transformation process (1) starts.

3.1 Double-Shot Success Probability

If the function f is linear, an increase of the function value at the displaced point
x+Δ implies a decrease of the value at the specular point x−Δ, and therefore
the “double shot” strategy is trivially bound to be successful. The intuition
supporting this strategy for a general function is that, if the function f is smooth,
it can be approximated around a given point by a tangent hyperplane with
a good accuracy for small displacements. The “double shot” should therefore
be successful with a high probability if the search region, and therefore the
displacement, becomes very small. The purpose of this section is to analyze in
detail the success probability of the strategy used in RASH.

Without loss of generality, suppose that the current point is 0. Let B be the
current box, shown in light grey in the left side of Figure 4:

B =

{
n∑

i=1

αibi, α1, . . . , αn ∈ [−1, 1]

}
.

104 M. Brunato and R. Battiti

Let us define as rB = max{‖b1‖, . . . , ‖bn‖} the radius of the box. Of course,
the box B is contained in the circle with radius n · rB.

Let HB be the subset of B where the double shot strategy does not succeed:

HB = {h ∈ B : f(P + h) ≥ f(P) ∧ f(P − h) ≥ f(P)}. (3)

In Figure 4 (left side) the set HB is contained in the dark grey area, whose
exact meaning shall be made clear later. We want to show that as the box
becomes smaller and smaller, the probability of failure of the double shot strategy
tends to zero. Since the choice of the vector h ∈ B is uniform, we just need to
show that the ratio between the measure of HB and the measure of B tends to
zero, where by measure we mean the ordinary (Lebesgue) measure in R

n.
More formally, we want to prove the following.

Theorem 1. Let D ⊆ R
n, a point P ∈ D, a function f : D → R continuous in

P with continuous first partial derivatives, a real constant K > 0.
Then, for every ε ∈ R, ε > 0, there exists δ ∈ R such that, for every set of

vectors b1, . . . , bn ∈ R
n, defining the box B (where P + B ⊆ D) with rB < δ and

measure(B) ≥ Krn
B, we have

measure(HB)
measure(B)

< ε.

Note that, in addition to function regularity hypotheses, a constraint on the
measure of B to be greater of Krn

B for some constant K > 0 has been introduced;
this is necessary in order to avoid degenerate cases where two vectors tend to be
arbitrarily aligned.

In order to prove Theorem 1 we need the following lemma (see the right side
of Figure 4 for a visual representation):

Lemma 1. Let C > 0, v ∈ R
n and H = {h : ‖h‖ ≤ 1 ∧ |h · v| ≤ ‖h‖2}. If

h′ ∈ R
n is such that ‖h′‖ = 1 and h′ · v = C‖h‖2 = C, then H lies outside the

cone generated by rotating h′ around v.

In other words, all vectors in H are “more perpendicular” than h′ with respect
to v.

Proof. We just need to show that for every h ∈ H the normalized projection of
h on v, i.e., the cosine of their angle, is smaller than that between h′ and v.
Indeed,

|h · v|
‖h‖‖v‖ ≤ C‖h‖2

‖h‖‖v‖ =
C‖h‖
‖v‖ ≤ C

‖v‖ =
h′ · v

‖h′‖‖v‖
.

This leads to the following corollary (again, see the right side of Figure 4 for a
visual representation):

Lemma 2. Let C > 0, v ∈ R
n, let H = {h : ‖h‖ ≤ 1 ∧ |h · v| ≤ ‖h‖2}. If

h′ ∈ R
n is such that ‖h′‖ = 1 and |h′ · v| = C‖h‖2 = C, then H lies in the

RASH: A Self-adaptive Random Search Method 105

n-dimensional cylinder centered in the origin, with axis along the direction of
vector v, having height 2d, where

d =
|h′ · v|
‖v‖

and (n − 1)-dimensional base of radius 1.

Proof. Such cylinder is the set of vectors w such that the projection of vector
w along the direction of v is less than d, and the norm of the component of w
perpendicular to v is less than 1:

Xv,d =

{
w ∈ R

n :
|w · v|
‖v‖ ≤ d ∧ ‖w‖2 −

(
w · v
‖v‖

)2

≤ 1

}
.

Both conditions are satisfied for all w ∈ H . In fact, by Lemma 1,

w ∈ H ⇒ |w · v|
‖v‖ ≤ |h · v|

‖h‖‖v‖ ≤ |h′ · v|
‖h′‖‖v‖

=
|h′ · v|
‖v‖ = d

and

w ∈ H ⇒ ‖w‖ ≤ 1 ⇒ ‖w‖2 −
(

w · v
‖v‖

)2

≤ 1.

The last lemma enables us to find a convenient upper bound on the measure of
the set HB.

Proof (Proof of Theorem 1). Since f has continuous first derivatives, we have

f(P + h) = f(P) + h · ∇f(P) + σ(h),
f(P − h) = f(P) − h · ∇f(P) + σ(−h),

where

σ(h) = O(‖h‖2). (4)

Let σ′(h) = max{σ(h), σ(−h)}. Then (3) implies:

HB ⊆ H ′
B = {h ∈ B : |h · ∇f(P)| ≤ σ′(h)}. (5)

Equation (4) is still valid for σ′, therefore we can find constants C and r0 such
that σ′(h) ≤ C‖h‖2 as soon as ‖h‖ ≤ r0. Consequently,

∀B, rB ≤ r0, HB ⊆ H ′
C,B =

{
h ∈ B : |h · ∇f(P)| ≤ C‖h‖2} .

The left side of Figure 4 shows the set H ′
C,B in dark grey.

Given a box B having rB ≤ r0 and constrained by the theorem’s hypothesis,
let us choose a vector hmax such that ‖hmax‖ = nrB (so that its “tip” lies on

106 M. Brunato and R. Battiti

the sphere) and hmax · ∇f(P) = C(nrB)2 (so that it lies at the border of the set
H ′

C,B).
As proved in Lemma 2, H ′

C,B is contained in the n-dimensional cylinder P +
nrB · X∇f(P), d

nrB
, i.e. centered in P , with axis directed as ∇f(P) having base

radius nrB and height 2d, where

d =
hmax · ∇f(P)

‖∇f(P)‖ =
C(nrB)2

‖∇f(P)‖

is the projection of hmax along the direction of ∇f(P). Consequently, whenever
rB ≤ r0, as HB ⊆ H ′

C,B ⊆ P + nrB · X∇f(P), d
nrB

,

measure(HB) ≤ M(nrB)n−1 · 2d =
2MCnn+1

‖∇f(P)‖ rn+1
B ,

where M is the measure of the (n − 1)-dimensional sphere with unit radius. It
follows that

measure(HB)
measure(B)

≤ 2MCnn+1

‖∇f(P)‖ rn+1
B · 1

Krn
B

=
2MCnn+1

K‖∇f(P)‖rB,

therefore, given ε > 0, it is sufficient to let

δ = min
{

r0,
K‖∇f(P)‖ε

2MCnn+1

}

to obtain the thesis.

3.2 Angle between Random Directions in R
n

As we mentioned in Section 2, if RASH starts with a very small and isotropic
search region and enjoys an uninterrupted sequence of successes afterwards
(caused by the fact that the search region is very small and not by the fact
that the chosen directions are suited to the local attraction basin), the average
direction obtained after some steps can be very different from a random direction
as it can “remember” the initial step. In fact, the affine transformation will elon-
gate the region along the first direction, and therefore the second directions will
tend to be approximately collinear with the first one, an effect that will continue
for the future iterations. In order to quantify this initial “memory effect”, it is
of interest to compare the probability distribution of directions obtained after a
sequence of affine expansions with a uniform probability.

The problem we are addressing is therefore the following one:

Problem 1. If we draw two random lines in R
n intersecting at the origin (e.g.,

by placing two random points on the unit sphere and connecting them to the
center), what is the average angle between them?

The problem can also be stated as follows.

RASH: A Self-adaptive Random Search Method 107

P

O

z

y

x

POx

O

z

y

x

R

sinR

a

a

Fig. 5. Left: Angle P̂Ox between a random point in the positive-x hemisurface and
the positive x axis. Right: The ring whose integration provides the hemisurface.

Problem 2. Given an n-dimensional hypersphere, consider the positive-x hem-
isphere (the case n = 3 is shown in the left side of Figure 5). Choose a random
point P on the surface, i.e., a point P = (x, y, z, . . .) ∈ R

n such that x ≥ 0 and
‖P‖ = 1. What is the average value for the angle P̂Ox?

An inductive expression for the hemisurface

Let Sn(R) be the value of the hemisurface (half the surface of the sphere) for
a given number n of dimensions and a given radius R of the n-dimensional
hypersphere.

Then, the hemisurface of the (n+1)-dimensional hypersphere of radius R can
be obtained by integrating the grey ring surface of the right side of Figure 5 for
α moving from 0 (the upper point) to π/2 (the equator):

Sn+1(R) =
∫ π

2

0
2Sn(R sin α)R dα. (6)

Consider in fact that the grey ring has radius R sin α, and thus its perimeter
is 2Sn(R sin α) (twice the hemiperimeter) and its “width” — in the (n + 1)-th
dimension — is equal to R dα, since α is expressed in radians.

Notice that the hemisurface of the n-hypersphere is also proportional to the
(n − 1)-th power of R because it is an (n − 1)-dimensional variety:

Sn(R) = CnRn−1 (7)

for some positive real constant Cn. This expression shall be useful in the following.

The average angle

Equation (6) is very helpful in calculating the average value of α, which we are
looking for. In fact, let ᾱn be the average value of α in n dimensions. Then

ᾱn =

∫
S

P̂Ox dS

|S| (8)

108 M. Brunato and R. Battiti

where S is the hemisurface, the point P scans S and |S| is the measure of S.
Consider that angle P̂Ox is precisely the angle α of equation (6), and that it is
constant within the same ring; then, the probability distribution function of the
angle P̂Ox is

fn(α) =
2Sn−1(R sin α)R∫ π

2

0
2Sn−1(R sin α)R dα

, (9)

and equation (8) becomes

ᾱn =
∫ π

2

0
αfn(α) dα =

∫ π
2

0
α · 2Sn−1(R sin α)R dα

∫ π
2

0
2Sn−1(R sin α)R dα

.

Considering the due simplifications and equation (7), we get

ᾱn =
Jn−2

In−2
, (10)

where

In =
∫ π

2

0
sinn α dα, Jn =

∫ π
2

0
α sinn α dα. (11)

With the notation introduced by equations (11), the probability density func-
tion (9) can be written as

fn(α) =
sinn−2 α

In−2
.

Determining In and Jn

The values of In and Jn can be obtained by straightforward calculations (inte-
gration by parts) leading to the following inductive expressions:

In =

⎧⎪⎨
⎪⎩

π
2 if n = 0
1 if n = 1
(n−1)In−2

n if n ≥ 2;
Jn =

⎧⎪⎨
⎪⎩

π2

8 if n = 0
1 if n = 1
(n−1)Jn−2

n + 1
n2 if n ≥ 2.

(12)

Table 1 reports some representative values of ᾱn in obtained from the analyt-
ical expression. Let us note that the average value of the angle tends to become
close to 90 degrees as the number of dimensions increases. In other words, two
random directions in a high-dimensional space tend to be almost perpendicular.

RASH: A Self-adaptive Random Search Method 109

Table 1. Values of ᾱn for increasing dimensions

n ᾱn (radians) ᾱn (degrees)

2 0.785398 45.0000
3 1.000000 57.2958
4 1.103708 63.2378
5 1.166667 66.8451

10 1.302778 74.6437

n ᾱn (radians) ᾱn (degrees)

15 1.356416 77.7169
20 1.387008 79.4697
30 1.422228 81.4877
40 1.442770 82.6646
50 1.456625 83.4584

4 Experimental Results

Several tests have been performed in order to both validate and motivate the
chosen strategy and to compare it with other state-of-the-art techniques. The
proposed RASH algorithm has been tested on various classical test functions,
whose analytical formulation and properties are reported in many optimization
papers, see for example [4]. After some experiments on the success rate of the
double-shot strategy (Section 4.1), a discussion of some spurious effects during
the initial phase of the search which are solved by our version (Section 4.2) and
an experimental analysis of the technique’s robustness to parameter variations
(Section 4.3), we introduce the experimental results on the benchmark suite
(Section 4.4), and an analysis of the effectiveness of the heuristic when compared
with alternative techniques (Section 4.5).

4.1 Success Rate of the Double-Shot Strategy

A measure of the effectiveness of the RASH heuristic can be the double-shot
success rate during the search. In Section 3.1 we show that the success rate must
be very high at the beginning, when the search region is very small; however,
after the initial transient phase, the rate should be reduced because the algorithm
dynamically sets a balance between step size and success rate. Figure 6 shows two
representative cases. In both plots, the x axis (logarithmic) reports the number
of function evaluations, while the y axis reports a simple moving average of the
rate of double-shot successes over the previous 100 steps on a representative
run. After an initial phase when the success rate is very high due to the small
size of the search region (which confirms the analysis of Section 3.1), during a
significant portion of the search the double-shot success ratio varies from 30%
to 55%.

In the first plot, where a local minimum of a Shekel 4,5 function is reached,
we observe a sharp reduction of success rate at the end. This happens when a
local minimum is reached, and further improvement becomes impossible. The
steep reduction of the double-shot success rate can therefore be used as a restart
criterion. In the Rosenbrock case (right plot), the system proceeds slowly towards
better values, by following the very narrow valley leading to the global optimum.
The success rate remains close to 50% during the descent.

110 M. Brunato and R. Battiti

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

D
ou

bl
e

sh
ot

 s
uc

ce
ss

 r
at

e

Function evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

D
ou

bl
e

sh
ot

 s
uc

ce
ss

 r
at

e

Function evaluations

Fig. 6. Success rate of the double-shot strategy for a Shekel 4,5 (left) and a Rosenbrock
10 (right) search

These results confirm the “aggressive” attitude of the RASH heuristic, whose
search region R is continuously adjusted to allow steps as large as possible while
still ensuring a large success probability of each double shot trial.

4.2 Influence of Initial Conditions

An issue that deserves further study is the dependence of the search strategy on
the initial conditions. In particular, the choice of the first displacement vector Δ
may influence the subsequent behavior in an improper way, because on successful
moves the search box will expand along Δ, thus influencing the next choice of
Δ, and so on. At the beginning, with a very small search region, the double-shot
strategy succeeds with probability close to one, and the local characteristics of
the f function do not have a chance of influencing the evolution of the search
region in an effective way. The successes depend on the very small size of the
box more than on the local properties.

In order to study this effect, we simulated the algorithm’s behavior during a
sequence of 10 successful applications of the double-shot procedure, by repeat-
edly generating a Δ vector in the search box R, then updating R according to
equation (1). Finally, the angle between the directions of the first and the tenth
value of Δ is computed.

Figure 7 shows the average and standard error of 100 runs on different problem
dimensions. The continuous plot shows the theoretically calculated average angle
between two random directions, as obtained in Section 3.2. It can be seen how
a memory effect can be detected after the first iterations. The initial and final
directions are correlated, not random. As expected, they tend to be collinear.
Because the box elongation can be very large (the search region becomes “needle-
like”), a potentially large number of successive iterations can be spent to adapt
it to the structure of the local attraction basin.

In order to avoid this spurious effect, as mentioned, in the initial phase of
RASH the box is enlarged in an isotropic manner, by multiplying each basis

RASH: A Self-adaptive Random Search Method 111

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 a
ng

le
 (

ra
di

an
s)

Dimensions

Random vectors (analytical)
Affine Shaker

Fig. 7. Angle between the first and the tenth move. The solid line represents the
theoretical angle if the two directions were random (see Section 3.2), the dashed series
is obtained after 10 subsequent successes of the double shot procedure.

vector bi by the same ρ factor, until the first lack of success is encountered and
the affine transformation (1) is used.

4.3 Robustness w.r.t. Parameter Variations

The RASH technique depends on two parameters: the size of the initial search
region and the box expansion factor ρ. The search region is defined by a set
of vectors, initially having the same length and orthogonal. Tests have been
performed on the statistical dependence of the optimization outcome on the
initial length of box vectors. Results of these tests suggest independence, which
is easily justified by the observation that the search region adjusts to its proper
value after a short transient period, so the overall behavior is affected by different
choices in the initial size only at the beginning of its evolution.

Figure 8 reports the outcome of experiments on the dependence of the opti-
mization outcome versus the box expansion factor. Every point in the graph is
obtained by averaging 100 runs of 500 function evaluations each, with the same
value of ρ, while the error bars represent the 99% confidence interval of the mean.
Note that the horizontal axis actually plots the box reduction factor ρ−1, which
can be represent more regularly, since its useful values lie in the range (0, 1),
where ρ−1 ≈ 0 means a great variability of the search region.

The left plot in Figure 8 shows the average outcome of RASH optimizations
of the 5-dimensional Zakharov function, whose global minimum is 0. The right
plot shows the equivalent results for the 5-dimensional Shekel function, whose
global minimum is below −10.

The two plots report very different behaviors. In particular, all runs locate the
minimum of the Zakharov function, which is unimodal, and different values of

112 M. Brunato and R. Battiti

Fig. 8. Robustness against variations of the reduction factor ρ−1: Zakharov 5 (left),
Shekel 5 (right)

ρ tend to condition the “fine tuning” to the actual minimum; in this particular
case, the optimal value for the reduction parameter is ρ−1 ≈ .5.

The multimodal Shekel function shows a behavior which is far less dependent
on the reduction factor. This depends on the fact that many runs do not locate
the global minimum, and the chance of falling towards a better minimum is not
conditioned by ρ−1.

The conclusion is that the robustness of the RASH heuristic with respect to
the value of the search region expansion factor ρ is confirmed for the localization
of local minima, while the choice of a correct value is important to improve the
precision of the result. In the following, the value ρ = 2 shall be used.

4.4 Benchmarks

This section reports the results obtained by running the RASH algorithm on a
benchmark suite of various classical test functions, see for example [4] for the
definitions.

Every optimization run of RASH begins with a cubic search region defined
by an orthogonal set of vectors of length ‖bi‖ = 10−4. The box expansion factor
is ρ = 2 and the vectors are expanded isotropically until the first double-shot
value fails, after which equation (1) is used as motivated in Section 4.2.

Table 2 shows the results for 100 independent optimization runs for each
function. A run is considered successful if the heuristic finds a point x such that

f(x) − fmin < εrel|fmin| + εabs (13)

where fmin is the known global minimum. Following [4], we have set εrel = 10−4

and εabs = 10−6. Runs are stopped, and lack of success is recorded, if the global
minimum is not located after 5000n function evaluations. In the experiments,
the termination criteria described in Section 2.3 are disabled in order to evalu-
ate the effectiveness of RASH when applied to the known test cases. The only
retained criterion is the maximum number of iterations, while the execution

RASH: A Self-adaptive Random Search Method 113

Table 2. Number of successes, average function evaluations and average minimum
found for 100 optimization runs on the test functions. Numbers in parentheses include
unsuccessful runs.

f n Success Evals CPU time ΔMin

Goldstein-Price 2 76 476 (2762) 0.121 (0.702) 2.85 · 10−3

Hartmann d,4
3 96 2227 (2738) 1.73 (2.12) 4.26 · 10−4

6 63 257 (11262) 0.995 (43.6) 2.24 · 10−3

Shekel 4,5 4 35 170 (13059) 0.338 (26.0) 0.261
Shekel 4,7 4 31 306 (13895) 0.542 (24.6) 0.370
Shekel 4,10 4 30 164 (14049) 0.362 (31.0) 0.438

Zakharov

10 100 2473 13.9 9.46 · 10−7

20 100 12259 464 9.86 · 10−7

50 100 83605 42099 9.95 · 10−7

100 100 260358 1843765 9.86 · 10−7

Rosenbrock
3 100 3595 2.06 7.98 · 10−7

4 65 12085 (14855) 11.0 (13.5) 9.33 · 10−5

5 1 15122 (24901) 28.3 (32.2) 1.54 · 10−3

is artificially interrupted, for the experimenters’ convenience, when the known
global minimum is located with the given degree of accuracy.

The number of successful runs is shown in column Success. The average num-
ber of function evaluations required in successful runs is shown in column Evals,
(figures in parentheses include unsuccessful runs). Column CPU time reports
the average execution time of successful runs (in parentheses, also unsuccessful
runs are accounted for), given in standard CPU time units as defined in [6].

Column ΔMin reports the average value of the differences between the min-
ima achieved by 100 runs (including unsuccessful ones) and the actual global
minimum.

It can be noted that, for some functions like Goldstein-Price, Hartmann, and
Zakharov, the success rate is large and the number of function evaluations is
comparable to, and in some cases better than, the number of function evaluations
used by more complex techniques like Enhanced Simulated Annealing, see for
comparison Table 1 of [13]. These results confirm that the standard behavior
of RASH is to rapidly locate a local minimum in the basin of attraction where
the initial point lies. However, by design, RASH has no mechanism to escape
local minima after they are identified. Therefore it is not surprising that the
percentage of success is lower for other functions, like for example for Shekel.
While the RASH algorithm shows a good performance on most test functions,
a very ill-conditioned problem, such as the Rosenbrock function, is solved in
a satisfactory way only for a small number of dimensions. The effects of high
dimensionality are also apparent on the CPU time column of Table 2. Due to
the relative simplicity of the benchmark functions, the dominating factor for

114 M. Brunato and R. Battiti

Table 3. Number of successes, average function evaluations and average minimum
found for 100 optimization runs on the test functions on 2n parallel threads

f n Threads Success Evals CPU time ΔMin

Goldstein-Price 2 4 99 337 (434) 0.152 (.195) 1.25 · 10−4

Hartmann d,4
3 6 100 856 0.556 2.55 · 10−4

6 12 100 2420 5.38 2.41 · 10−4

Shekel 4,5 4 8 93 1296 (2605) 1.28 (2.57) 1.2 · 10−3

Shekel 4,7 4 8 94 1323 (2444) 1.28 (2.36) 1.03 · 10−3

Shekel 4,10 4 8 85 1336 (4136) 1.34 (4.15) 2.53 · 10−3

a large number of dimensions is the affine transformation of the search region
vectors, amounting to n vector multiplications by an n × n matrix, totaling to
O(n3) time per optimization step. For high-dimensional problems and functions
requiring small computation more specialized techniques like ESA of [13] should
be considered. In any case, let’s note that many functions are extremely costly
to compute, see for example evaluations requiring the simulation of an industrial
plant or a real-world experimentation.

In order to obtain higher success rates, we exploited the fast convergence speed
of the successful runs by parallelizing independent solvers on the same function.
Considering independent repetitions is in fact the simplest way to use the simple
RASH component to obtain a more robust scheme. In this case, an optimiza-
tion session is achieved by instantiating 2n independent solvers, where n is the
dimension of the function’s domain, and by executing one step of each solver in
a round-robin fashion until either one of the solvers finds a value that satisfies
equation (13) or the maximum number of function evaluations is reached. The
total number of evaluations by all independent threads is counted.

The results of interest, where parallelization actually leads to an improvement,
are shown in Table 3. Note that most problem instances benefit from parallel
search. However, highly dimensional problems such as Zakharovare already solved
with a single thread. In this case, a single solver is more effective, and the success
rate for a fixed number of iterations decreases if parallel threads are exploited.

4.5 Comparison with Other Techniques

The RASH algorithm behavior has been compared with other local search heuris-
tics, and results are presented in Table 4. In particular, we focused on two re-
cent proposals, Enhanced Simulated Annealing [13] and Enhanced Continuous
Tabu Search [4], which, like RASH, aim at minimizing functions of continuous
variables. Another classical proposal, the Improved Simulated Annealing algo-
rithm [15] is shown in two different variants (wide and narrow search domain).
Techniques have been selected on the basis of similar hypotheses (continuous
functions, no analytical tools other than evaluation) and on similar criteria for
estimating success and efficiency.

RASH: A Self-adaptive Random Search Method 115

Table 4. Comparison with other techniques — number of successful minimizations;
see text for the description of the techniques

Method G. − P. H3 H6 S4,5 S4,7 S4,10

RASH 99 100 100 93 94 85
ECTS 100 100 100 75 80 75
ESA 100 100 100 54 54 50
ISA 1 n.a. 99 97 7 1 3
ISA 2 n.a. 100 0 19 28 18

Table 5. Comparison with other techniques — number of function evaluations; see
text for the description of the techniques

Method G. − P. H3 H6 S4,5 S4,7 S4,10

RASH 434 856 2420 2605 2444 4136
ECTS 231 548 1520 825 910 898
ESA 783 698 1638 1487 1661 1363
ISA 1 n.a. 6965 21802 6030 2936 3562
ISA 2 n.a. 13758 1116 8568 8631 7824

For comparison purposes, we rely on data provided in [4] and on the original
sources. The definition of “successful” run takes into account the criteria defined
in [4, 13], where the maximum number of allowed evaluations is 5000n, as de-
scribed before. For RASH, we chose to employ the multi-thread results shown on
Table 3. Since the RASH algorithm is targeted at local minimization, while the
other techniques implement global mechanisms, comparison of such techniques
with the parallel version of RASH is more fair.

The results clearly show that the RASH heuristic achieves state-of-the-art
results on various classical problems, ranging from 85% to 100% successful min-
imizations. This result is of interest because of the simplicity of the technique,
which can be an effective building block for more complex heuristic schemes.
Table 5, on the other hand, shows that techniques such as ECTS and ESA re-
quire less evaluations on the average. When confronted with the number of suc-
cessful runs, this result suggests that the termination criteria adopted in ECTS
and ESA could be actually relaxed in order to achieve a better success ratio,
and that a good termination criterion must be devised for the RASH heuristic
to become competitive in terms of function evaluations.

5 Conclusions

We proposed and analyzed the Reactive Affine Shaker adaptive random search
algorithm based on function evaluations. The main algorithmic contribution of
this paper consists of a careful analysis of the double-shot strategy motivating

116 M. Brunato and R. Battiti

and quantifying what was originally proposed based on intuition. Furthermore,
the paper motivates and analyzes a modified initial phase to avoid a dangerous
effect during the initial growth of the search region. Finally, it considers the
evaluation of a simple “portfolio” consisting of independent runs of the local
RASH searcher started from different random initial configurations.

The conclusions of the experiments show a performance which is in some cases
comparable or better w.r.t. competitive techniques. The results are unexpected
given the algorithmic simplicity of RASH, in particular its design based on con-
verging rapidly to the local minimizer in the attraction basin of the initial point.
The effectiveness is caused by the rapid and effective adaptation of the search
region based on feedback from function evaluations at random points. This work
motivates the consideration of this component for more complex meta-heuristic
schemes.

The algorithm has been designed and implemented as a set of reusable
software components to facilitate the experimentation within more advanced
schemes. The package is available for evaluation purposes and scientific research
at http://www.reactive-search.org/

References

1. Battiti, R., Tecchiolli, G.: Learning with first, second and no derivatives: A case
study in high energy physics. Neurocomp. 6, 181–206 (1994)

2. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Comput-
ing 6(2), 126–140 (1994)

3. Brunelli, R., Tecchiolli, G.: On random minimization of functions. Biological Cy-
bernetics 65(6), 501–506 (1991)

4. Chelouah, R., Siarry, P.: Tabu search applied to global optimization. European
Journal of Operational Research 123, 256–270 (2000)

5. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal func-
tions of continuous variables with the “simulated annealing” algorithm. ACM
Trans. Math. Softw. 13(3), 262–280 (1987)

6. Dixon, L.C.W., Szegő, G.P. (eds.): Towards Global Optimization 2. North-Holland,
Amsterdam (1978)

7. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. International Se-
ries in Operations Research and Management Science, vol. 57. Kluwer Academic
Publishers, Norwell (2003)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Kluwer Academic Publishers, Boston (1989)

9. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)
10. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical prob-

lems. J. ACM 8(2), 212–229 (1961)
11. Hoos, H.H., Stützle, T.: Stochastic Local Search Foundations and Applications.

Morgan Kaufmann / Elsevier (2004)
12. Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Applied Optimization. Ox-

ford University Press, NY, USA (2002)
13. Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced simulated annealing for

globally minimizing functions of many-continuous variables. ACM Transactions on
Mathematical Software 23(2), 209–228 (1997)

RASH: A Self-adaptive Random Search Method 117

14. Solis, F.J., Wets, R.J.-B.: Minimization by random search techniques. Mathematics
of Operations Research 6(1), 19–30 (1981)

15. Tsoi, A.C., Lim, M.: Improved simulated annealing technique. In: Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, Piscataway,
NJ (USA), pp. 594–597. IEEE Press, Los Alamitos (1988)

16. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

Market Based Allocation of Transportation
Orders to Vehicles in Adaptive Multi-objective
Vehicle Routing

Martin Josef Geiger and Wolf Wenger

Lehrstuhl für Industriebetriebslehre, Universität Hohenheim,
70593 Stuttgart, Germany
mjgeiger@uni-hohenheim.de, w-wenger@uni-hohenheim.de

Summary. The article describes a study on vehicle routing problems under multiple
objectives. In particular, we investigate the effectiveness of different approaches when
assigning orders to vehicles. The resulting clustering problem is studied within a general
framework for multi-objective vehicle routing problems where different vehicle agents
place bids for orders which are offered on a marketplace. This marketplace gathers
information about the current situation and provides the basis for the resolution of
the allocation problem. By implementing different specialized but interacting software
agents, an adaptation of the concept to various configurations of the studied problem
is possible. Experimental investigations of different assignment logics on benchmark
instances have been carried out and numerical results are reported. In brief, a tendency
towards a particular clustering approach can be observed.

Keywords: Vehicle routing problem, multi-objective, market based allocation, multi-
agent approach.

1 Introduction

The distribution of goods plays an increasingly important role in the modern
supply-chain of companies. On the one hand, the cost-efficiency of delivery and
storage is considered, minimizing occurring costs throughout the supply chain
and as a result creating competitive advantages. On the other hand, the quality
of service has to be addressed as more and more companies tend to store the
smallest possible amount of goods only, following a just-in-time (JIT) delivery
strategy. Consequently, meeting delivery dates becomes increasingly important
for the avoidance of out-of-stock situations. When combining both aspects, multi-
criteria planning problems are derived which take several optimality criteria si-
multaneously into consideration [9]. From a scientific management perspective,
methods, algorithms and systems are needed to support these complex planning
problems. In a practical dynamic environment, this implies that the proposed ap-
proaches are flexible, allowing an adaptation to changing situations, constraints,
optimality criteria, preferences, etc.

The vehicle routing problem (VRP) is one of the main optimization prob-
lems in the context of distribution management, which is faced by numerous

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 119–132, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

120 M.J. Geiger and W. Wenger

companies and organizations each day. Characteristics of a specific practical
problem such as regarded objectives or required constraints are highly variable,
and conditions vary from one real world application to the other. However, most
of them can be defined on a complete directed network G = (V (G), A(G)) with a
node set V (G), and a set of arcs A(G) connecting the nodes. In the most classical
version with a single depot each node i ∈ V (G) \ {0} describes a customer by
using various associated parameters, e. g. a corresponding non-negative demand
qi, a non-negative service time di or a given time window [ei, li] during which
customer i should be or has to be served. Node 0 corresponds to the depot,
where a fleet of vehicles with given capacity and/or route length restrictions is
stationed to serve the costumers. Analog to the nodes, each arc (i, j) ∈ A(G)
possesses several parameters, foremost a travel-distance aij , a travel-time tij or
travel-costs cij occurring by using the connection between i and j.

Several extensions of the classical vehicle routing problem can be found in
practice and in literature. Some of them introduce multiple depots, heteroge-
neous vehicles or the possibility of open routes, where vehicles do not return
to the place they depart from. Others take into consideration the dynamics of
changing environments [5]. This may result in time-dependent travel times tij
which vary from busy rush hours to quiet times, or in dynamically arriving orders
that are either accepted and integrated into the plan or rejected.

Minimizing total travel-distance, total travel-time or overall travel-costs are
commonly used objectives in VRPs. More recent approaches aim to identify
solutions that provide a high quality of delivery service. In these applications
customer satisfaction should be improved, e. g. by integrating specific aspects
like the mentioned time windows as hard constraints [29], as soft constraints
with some sort of penalty that occurs when a time window is violated [30], or
by adding an objective function that minimizes total or maximum tardiness of
the served orders [11]. Other service-oriented aspects are balanced workloads
of drivers [17, 18] or balanced inequities between the best and the least served
costumer [23]. Along with this, VRPs are more and more recognized as multi-
objective optimization problems [11, 16, 17, 20, 21, 27]. In this context decision
support is not provided by calculating a single optimal solution, but needs to
identify a set of Pareto-optimal solutions P and to guide the selection of a most
preferred one x∗ ∈ P .

Unfortunately, most problems of this domain are NP-hard. Given a fixed
fleet size, even finding a feasible solution to the VRP with time windows turns
out to be NP-complete itself [28]. As a result, research has concentrated on
heuristics and more recently on metaheuristics to obtain good quality solutions
in short computing times [14, 25, 26]. Specialized techniques have been used
to improve known results for particular VRPs [2] or to provide upper bounds
for exact algorithms like column generation algorithms or branch-and-cut algo-
rithms. It has to be mentioned however, that with the increasing specialization of
techniques a decrease in generality of the resolution approaches follows. As a re-
sult, heuristic optimization frameworks such as HotFrame [10], EasyLocal++ [8],

Market Based Allocation of Transportation Orders 121

ParadisEO [3, 19] or the MALLBA library [1] try to address this issue by pro-
viding generic libraries for the resolution of optimization problems.

The article is organized as follows. In the following Section 2, a framework
for interactive multi-objective vehicle routing is presented that aims to address
two critical issues. First, the resolution approach has to be able to solve a range
of problems of different characteristics and therefore needs to be of sufficient
generality. Second, multiple objectives are integrated and the decision maker
is allowed to interact with the system by articulating and adapting individual
preferences during the resolution procedure.

An implementation of the framework for multi-objective vehicle routing prob-
lems and experimental investigations are presented in Section 3. The system is
used to solve instances of multi-depot vehicle routing problems under multiple
objectives. In the study presented in this article, we focus in particular on the
clustering problem when assigning orders to vehicles. Conclusions are presented
in Section 4.

2 A Multi-agent Approach for Interactive Multi-objective
Vehicle Routing

Independent from the precise characteristics of the particular VRP, two types of
decisions have to be made when solving the problem.

1. The assignment of customers to vehicles (clustering).
2. The construction of a route for a given set of customers (sequencing).

It is well-known that both types of decisions influence each other to a consid-
erable extent. While the clustering of customers to vehicles is an important input
for the sequencing, the sequencing itself is of relevance when adding customers
to routes as e. g. constraints of maximum travel distances and/or times have to
be respected. The two types of decisions can be made either sequential (cluster
first-route second vs. route first-cluster second) or in parallel.

The intersection of decisions known from bin-packing (clustering of customers)
and the travelling salesman problem (sequencing of customers) results in a prob-
lem structure which is considerable more difficult. Even for the most simplistic
classical vehicle routing problem known from the scientific literature, obtain-
ing an optimal solution is challenging and quickly becomes infeasible even for
medium-sized instances. When considering complex side constraints, this effect
is even more present.

As a consequence, we chose to decompose the different types of decisions
that have to be made in the VRP, and propose a framework that consists of
different agents, each of which addresses a particular aspect of the problem.
While each agent is specialized towards optimizing a certain sub-structure, such
as minimizing the length of a particular route, an overall solution is obtained by
market-based exchange of the gathered information.

Figure 1 gives an overview about the elements of the framework [12].

122 M.J. Geiger and W. Wenger

marketplace

vehicle agent vehicle agent vehicle agent vehicle agent

ontology

human

decision

maker

decider

preferences

GUI

Fig. 1. Illustration of the framework for interactive multi-objective vehicle routing

• The marketplace represents the element where orders are offered for trans-
portation and bids for orders, generated and placed by the vehicles, are gath-
ered. In the initial step of the problem solving procedure, all orders are put
on the marketplace. The marketplace does not posses any computational in-
telligence as such, it only consists of a single agent which gathers information
from agents and makes the obtained information available to other agents.

• Vehicle agents represent the vehicles stationed at the depots. They therefore
store information about the current position of the vehicle, its technical de-
tails (capacity, speed, maximum distance, etc.), and its currently assigned
orders and route. While at the beginning of the optimization procedure the
set of assigned orders is empty, routes are subsequently constructed through-
out the optimization procedure.

During the problem resolution process, the vehicle agents place bids for
the orders on the marketplace. These bids take into consideration the current
routes of the vehicles and the potential change when integrating an additional
order. Integrating additional orders into existing routes leads to an increase
in terms of travelled routes and/or time window violations. This information
is reported back to the marketplace where it can be used to compare bids
from different vehicles, thus leading to an assignment of orders to vehicles.

Market Based Allocation of Transportation Orders 123

In addition to computing bids for orders on the marketplace, the vehicle
agents possess computational intelligence techniques to optimize their trav-
elled routes. The actual implementation of these techniques is based on local
search, resequencing the orders until a sufficient approximation of the opti-
mal route is identified. With respect to the initially mentioned two types of
decision in the VRP, the vehicle agents solve the sequencing problem.

• An ontology describes the possible properties of the vehicles such as their ca-
pacity, availability, current location, technical details, etc. This easily allows
the consideration of different types of vehicles (heterogeneous fleet). It also
helps to model open routes, where vehicles do not necessarily return to the
depot where they depart from.

• A decider agent communicates with the human decision maker via a graph-
ical user interface (GUI) and builds a preference model of the individual
preferences of the human planner. In comparison to generic graphical user
interfaces for multi objective optimization such as GUIMOO [4] we chose an
approach that also visualizes the actual solution on a map [12], not only the
evaluation function value of the currently considered solution. This allows a
close investigation of the current solution.

The decider assigns orders to vehicles, taking into consideration the gath-
ered bids placed for the specific orders. Precisely, this agent represents the
assignment/clustering logic of orders to vehicles.

A solution is constructed by placing the orders on the marketplace, collecting
bids from the vehicle agents, and assigning orders to vehicles while constantly
updating the bids. Route construction by the vehicle agents is done in paral-
lel using local search heuristics so that a route can be identified that optimizes
the preference model of the decision maker. Reviewing the mentioned variants
of solving the clustering/sequencing problems, the presented approach follows
the concept of combining both decisions in parallel. The precise method of con-
structing a solution is given in Algorithm 1.

Algorithm 1. Solution construction procedure
1: place orders on the marketplace
2: repeat
3: for all orders on the marketplace do
4: gather bids for orders from the vehicle agents
5: end for
6: decider agent: select some order from the marketplace
7: decider agent: select some bid for the selected order
8: decider agent: assign order to vehicle which generated the bid
9: vehicle agent: update the route integrating the assigned order

10: until all orders are assigned

It is important to mention that in the proposed framework, the decision maker
is allowed to change his/her preferences during the construction of the solution.
In this case, the decider agent updates the stored preference information and in

124 M.J. Geiger and W. Wenger

consequence, the vehicles resequence their orders such that the routes are again
optimized for the updated preference information.

3 Implementation and Experiments

3.1 System Configuration

The framework has been implemented in a computer system. In the experiments
that have been carried out for this article, two objective functions are considered,
the total travelled distances D and the total tardiness T caused by vehicles ar-
riving after the upper bound li of the time window. It should be noticed however,
that neither the concept presented in Section 2 nor the actual implementation
are restricted to the two objective functions only. The general applicability of the
framework to other objectives, in particular to the minimization of the maximum
tardiness Tmax, has been shown in [13].

The preferences of the decision maker are represented by introducing a
weighted sum of both objective functions. Using the relative importance of the
distances wD, 0 ≤ wD ≤ 1, the overall utility U of a particular solution can be
computed as given in Expression (1).

U = wD D + (1 − wD) T (1)

In our current implementation, the vehicle agents are able to modify the
sequence of their orders using four different local search neighborhoods.

– Inverting the sequence of the orders between positions p1 and p2, p1 �= p2.
While this may be beneficial with respect to the distances, it may pose a
problem for the time windows as usually orders are served in the sequence of
their time windows.

– Exchanging the positions p1 and p2, p1 �= p2 of two orders.
– Moving an order from position p1 and reinserting it at position p2, p1 < p2

(forward shift).
– Moving an order from position p1 and reinserting it at position p2, p1 > p2

(backward shift).

In each step of the vehicles’ local search procedure, a neighborhood is ran-
domly picked from the above given set of neighborhoods. We select each neigh-
borhood with equal probability of 1

4 . Then, a random neighboring solution is
computed based on the chosen neighborhood structure, e. g. by exchanging two
randomly chosen jobs or shifting some job to some other position. The so com-
puted move is accepted if an improvement of the route is obtained, always with
respect to the particular utility function as given in Expression 1. In brief, the
here presented concept implements a reduced Variable Neighborhood Search ap-
proach [15]. This concepts has the advantage of overcoming local optimality with
comparably little effort as a set of different operators is repeatedly used. Having
a whole set of neighborhood operators is particularly beneficial here as the ve-
hicle agents need to be able to construct routes not only minimizing the length

Market Based Allocation of Transportation Orders 125

Algorithm 2. Least cost bid generation of the vehicle agents
Require: current route Rj = {vj1, . . . , vjn}, order vi to be integrated in Rj

1: Set mincost = ∞, Rmin
j = ∅

2: for all insertion points in the current route do
3: insert order, obtaining modified route R′

j

4: if R′
j is feasible then

5: evaluate new route with respect to the preferences of the decision maker
(compute U(R′

j))
6: if U(R′

j) − U(Rj) < mincost then
7: mincost = U(R′

j) − U(Rj)
8: Rmin

j = R′
j

9: end if
10: end if
11: end for

but also the total tardiness. Simply, a single operator appears less likely to be
able to address both aspects at once.

Bids for orders on the marketplace are generated by the vehicle agents, taking
into consideration all possible insertion points in the current route. The sum of
the weighted increase in distance D and total tardiness T gives the prize for the
order. This price reflects the individual preferences articulated by the decision
maker using the wD parameter which expresses the tradeoff between distances
and time window violations. The following Algorithm 2 illustrates the compu-
tational procedure of the vehicles agents for obtaining the least cost insertion
point of a given order.

After all bids have been computed by all vehicle agents and gathered on the
marketplace, the decider agent assigns orders to vehicles following a particular
logic, e. g. myopically minimizing the cost of the next order assignment.

Initial experiments of the framework on benchmark instances investigated
the adaptability of the concept to changing inputs on the decision maker [12].
We have been able to observe that the assignment of customers to routes plays
an important role for the later adaptation of the solutions. As a corollary, a
deeper investigation of the assignment logic, which we are going to present in
the following subsection, appears beneficial.

3.2 Experiments

Two different assignment logics have been investigated for the decider agent.
First, orders have been assigned giving priority to the bid with the minimum
price. Second, the assignment has been done giving priority to the bid with the
minimum alternative cost. This measure is derived by computing the resulting
cost difference when not assigning an order to a particular vehicle, and therefore
having to assign it to some other vehicle, resulting in the payment of another
price. The precise computation of this measure consequently is the minimum
difference of all other prices to the particular price of a vehicle. The minimum
possible numerical value is 0, which is reached when an alternative vehicle exists

126 M.J. Geiger and W. Wenger

Table 1. Problem characteristics of the instances

Instance vehicles orders depots

pr01 2 48 4
pr02 3 96 4
pr03 4 144 4
pr04 5 192 4
pr05 6 240 4
pr06 7 288 4
pr07 2 72 6
pr08 3 144 6
pr09 4 216 6
pr10 5 288 6

with the same price. A maximum value of ∞ has to be assumed when an order
can only be assigned to a single vehicle, making this assignment most critical for
the construction of a feasible solution.

The two assignment logics of the optimization framework have been tested on
ten benchmark instances taken from [6]. The instances range from 48 to 288 cus-
tomers that have to be served from 4 to 6 depots, each of which possesses 2 to 7
vehicles vehicles, and may be obtained e. g. from http://neo.lcc.uma.es/radi-
aeb/WebVRP/. The precise description of the instances is given in [6] and there-
fore not repeated here. Instead, we give the key characteristics of the instances
in the following Table 1.

A full mathematical description of the considered problem has been intro-
duced by [7]. We however modify the precise formulation with respect to the
objective functions and consider a multi-objective case of the VRP as given
above.

We computed for each assignment logic/problem instance-combination a so-
lution while considering different relative importance values of the distances wD.
The values of wD varied from 0.1 to 0.9 in steps of 0.1. Extremal values of 0
and 1 have been excluded in the experiments as we did not aim to compute ex-
tremal solutions for a single objective function only but focus the investigation
to multi-objective vehicle routing. Also, it is important to mention that values
of wD = 0 led to difficulties for the minimum price assignment logic where for
some instances no feasible solution was found. The algorithm here started to
construct routes which initially were optimal with respect to the total tardiness,
however traveling routes of such long distances that is later became infeasible
for the vehicles to accept additional orders.

3.3 Results

The computational results of the experiments are given in Table 2. As the pro-
cedures are deterministic, a single run has been sufficient for each parameter

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/

Market Based Allocation of Transportation Orders 127

setting. We give for each instance and value of wD the rounded values of D, T and
the overall utility U , depending on the assignment logic. In column ‘Diff.’, the
relative difference of the utility value obtained by the minimum price assignment
logic to the utility value obtained by the alternative cost approach is given.
Negative values indicate that minimum price led to a better overall result, while
positive values state the opposite.

For an easier analysis, column ‘Indic.’ gives an indicator which illustrates the
relative differences between the two approaches in a graphical way. Bullets (•)
indicate a better performance of alternative cost, and the amount of the symbols
categorizes the relative difference in steps of ±5%.

Table 2. Results

Alternative cost Minimum price
Inst. wD D T U D T U Diff. Indic.
pr01 0.1 1362 0 136 1390 1 140 2.67% •

0.2 1305 8 267 1390 1 279 4.11% •
0.3 1270 13 390 1390 1 418 6.67% ••
0.4 1334 21 546 1311 24 539 -1.35% ◦
0.5 1342 41 692 1311 24 667 -3.65% ◦
0.6 1306 115 830 1191 75 744 -11.48% ◦ ◦ ◦
0.7 1169 103 849 1164 75 837 -1.37% ◦
0.8 1169 103 955 1102 154 912 -4.74% ◦
0.9 1118 214 1027 1021 256 944 -8.78% ◦◦

pr02 0.1 2391 6 244 2385 1 240 -1.87% ◦
0.2 2331 6 471 2385 1 478 1.57% •
0.3 2206 28 682 2395 1 719 5.22% ••
0.4 2169 52 899 2333 46 961 6.49% ••
0.5 2176 58 1117 2227 116 1172 4.66% •
0.6 2100 63 1285 2226 62 1360 5.54% ••
0.7 2073 78 1475 2160 156 1559 5.42% ••
0.8 2002 408 1683 1979 162 1616 -4.15% ◦
0.9 1743 506 1619 1801 303 1651 1.93% •

pr03 0.1 3455 3 349 3689 3 371 6.14% ••
0.2 3346 27 691 3689 3 740 6.68% ••
0.3 3336 27 1019 3725 35 1142 10.74% • • •
0.4 3213 53 1317 3399 52 1391 5.27% ••
0.5 3152 70 1611 3584 53 1819 11.40% • • •
0.6 3206 98 1963 3183 164 1975 0.63% •
0.7 3034 167 2174 3466 174 2479 12.28% • • •
0.8 3032 277 2481 2983 167 2420 -2.53% ◦
0.9 2804 372 2561 2793 277 2541 -0.77% ◦

pr04 0.1 3970 2 398 4481 0 449 11.19% • • •
0.2 3975 4 798 4109 19 837 4.58% •
0.3 3891 20 1182 4176 34 1277 7.45% ••
0.4 3644 40 1481 4119 138 1730 14.39% • • •

128 M.J. Geiger and W. Wenger

Table 2. (continued)

Alternative cost Minimum price
Inst. wD D T U D T U Diff. Indic.

0.5 3533 138 1836 4206 85 2145 14.43% • • •
0.6 3379 199 2107 3610 181 2239 5.88% ••
0.7 3233 213 2327 3795 184 2711 14.17% • • •
0.8 3059 242 2496 3491 376 2868 12.98% • • •
0.9 2920 349 2663 3123 356 2846 6.44% ••

pr05 0.1 4501 6 455 4624 5 467 2.55% •
0.2 4500 14 911 4204 8 848 -7.49% ◦◦
0.3 4283 21 1300 4116 37 1261 -3.12% ◦
0.4 4451 40 1805 4161 52 1696 -6.42% ◦
0.5 4500 66 2283 4170 86 2128 -7.27% ◦◦
0.6 4408 159 2709 3994 107 2439 -11.05% ◦ ◦ ◦
0.7 4267 112 3020 3835 201 2745 -10.05% ◦ ◦ ◦
0.8 3898 401 3198 4012 153 3240 1.29% •
0.9 3899 482 3557 3494 303 3175 -12.03% ◦ ◦ ◦

pr06 0.1 5540 4 557 5302 1 532 -4.89% ◦
0.2 5297 35 1088 5130 15 1038 -4.79% ◦
0.3 5222 35 1591 5399 26 1638 2.86% •
0.4 5184 40 2098 5376 39 2174 3.49% •
0.5 4989 68 2529 5298 73 2686 5.83% ••
0.6 4866 154 2981 5268 153 3222 7.48% ••
0.7 4715 176 3353 4707 212 3358 0.15% •
0.8 4330 273 3519 4608 231 3732 5.72% ••
0.9 4106 399 3735 4379 434 3985 6.26% ••

pr07 0.1 1864 0 186 1818 0 182 -2.55% ◦
0.2 1864 0 373 1818 0 364 -2.55% ◦
0.3 1828 8 554 1780 7 539 -2.69% ◦
0.4 1834 32 753 1846 15 747 -0.79% ◦
0.5 1801 32 917 1846 15 930 1.43% •
0.6 1737 53 1063 1691 156 1077 1.24% •
0.7 1658 143 1204 1576 156 1150 -4.68% ◦
0.8 1619 220 1339 1596 156 1308 -2.37% ◦
0.9 1408 347 1302 1465 194 1338 2.66% •

pr08 0.1 3375 3 340 3108 0 311 -9.39% ◦◦
0.2 3136 17 641 3065 16 626 -2.40% ◦
0.3 3233 30 991 2892 71 917 -7.99% ◦◦
0.4 3048 30 1237 2847 83 1189 -4.06% ◦
0.5 2959 119 1539 2950 83 1517 -1.47% ◦
0.6 2808 130 1737 2888 215 1819 4.53% •
0.7 2815 233 2041 2494 301 1836 -11.12% ◦ ◦ ◦
0.8 2619 257 2147 2424 180 1976 -8.66% ◦◦
0.9 2239 379 2053 2534 361 2317 11.41% • • •

Market Based Allocation of Transportation Orders 129

Table 2. (continued)

Alternative cost Minimum price
Inst. wD D T U D T U Diff. Indic.
pr09 0.1 4148 1 416 4283 1 429 3.03% •

0.2 4025 45 841 4108 6 826 -1.76% ◦
0.3 3888 45 1198 4062 41 1247 3.99% •
0.4 3817 52 1558 4106 54 1675 6.99% ••
0.5 3760 56 1908 4116 73 2095 8.92% ••
0.6 3581 175 2219 3995 79 2429 8.67% ••
0.7 3620 161 2582 3779 70 2667 3.17% •
0.8 3597 280 2934 3672 146 2967 1.12% •
0.9 3188 370 2907 3495 226 3168 8.26% ••

pr10 0.1 5508 2 552 5669 1 568 2.72% •
0.2 5340 31 1093 5731 2 1148 4.75% •
0.3 5360 40 1636 5484 16 1657 1.24% •
0.4 5465 80 2234 5523 30 2227 -0.29% ◦
0.5 5146 133 2639 5261 73 2667 1.03% •
0.6 4828 271 3005 5318 73 3220 6.67% ••
0.7 4842 269 3470 4983 276 3571 2.82% •
0.8 4516 255 3664 4602 138 3709 1.23% •
0.9 4310 353 3914 4593 324 4166 6.04% ••

When analyzing the investigated assignment logics, it becomes clear that dif-
ferences in the quality of the obtained solutions exist. The alternative cost as-
signment logic led in more cases to superior results compared to the minimum
price approach. This behavior is especially obvious for instances pr03, pr04, pr09
and pr10. Other instances such as pr02 and pr06 show the same tendency, how-
ever with a considerable smaller significance. It is however interesting to see that
there are several counterexamples, namely instances pr01, pr05 and pr08 where
the opposite conclusion is reached.

There does not appear to be an significant influence of the parameter wD on
the relative performance of the two assignment logics. For all values of wD, one
or the other clustering approach led to superior results, always depending on
the particular instance. The recommendation for one or the other assignment
logic appears to be based and depending on the instance as such, and not on the
relative importance of the criteria.

It has to be pointed out, that several observed differences are rather small.
While there are instances in which a particular logic reliably leads to better
results, the are some cases in which the differences do not permit a certain
recommendation of either one of the approaches.

4 Conclusions and Synthesis

A framework for the resolution of multi-objective vehicle routing problems has
been presented. After having previously analyzed the behavior of the approach in

130 M.J. Geiger and W. Wenger

interactive scenarios where the decision maker changes his/her preferences [12],
we have been able to see that the clustering of customers to vehicles plays an
important role in the resolution process, particularly when having to adapt to
changing inputs.

The current investigation therefore compared different clustering approaches
in multi-objective vehicle routing. The experimental investigation have been
based on benchmark instances taken from the literature.

In conclusion, it is possible to state that the alternative cost assignment logic
is preferable to the minimum price approach in most cases. However, as coun-
terexamples can be found, we cannot entirely rule out the applicability of the
otherwise weaker assignment logic. As a synthesis, both approaches could be,
given appropriate time for computations, used in parallel while clearly giving
priority to the alternative cost approach first.

References

1. Alba, E., Almeida, F., Blesa, M., Cotta, C., Diaz, M., Dorta, I., Gabarro, J., Leon,
C., Luque, G., Petit, J., Rodriguez, C., Rojas, A., Xhafa, F.: Efficient parallel
LAN/WAN algorithms for optimization. the MALLBA project. Parallel Comput-
ing 32(5–6), 215–440 (2006)

2. Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal
of the Operational Research Society 41(11), 1069–1072 (1990)

3. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A framework for the reusable design
of parallel and distributed metaheuristics. Journal of Heuristics 10, 357–380 (2004)

4. Cahon, S., Simarik, T., Vironda, T.: A graphical user interface for multi objective
optimization GUIMOO, http://guimoo.gforge.inria.fr/

5. Chitty, D.M., Hernandez, M.L.: A hybrid ant colony optimization technique for
dynamic vehicle routing. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102,
pp. 48–59. Springer, Heidelberg (2004)

6. Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for ve-
hicle routing problems with time windows. Journal of the Operational Research
Society (52), 928–936 (2001)

7. Cordeau, J.-F., Gendrau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks (30), 105–119 (1997)

8. Di Gaspero, L., Schaerf, A.: Easylocal++: an object-oriented framework for the
flexible design of local-search algorithms. Software: Practice & Experience 33(8),
733–765 (2003)

9. Ehrgott, M., Rau, A.: Bicriteria cost versus service analysis of a distribution net-
work – a case study. Journal of Multi-Criteria Decision Analysis 8, 256–267 (1999)

10. Fink, A., Voß, S.: HotFrame: A heuristic optimization framework. In: Voß, S.,
Woodruff, D.L. (eds.) Optimization Software Class Libraries, ch. 4, pp. 81–154.
Kluwer Academic Publishers, Boston (2002)

11. Geiger, M.J.: Genetic algorithms for multiple objective vehicle routing. In: de
Sousa, P. (ed.) [24], pp. 349–353

12. Geiger, M.J., Wenger, W.: On the interactive resolution of multi-objective vehicle
routing problems. In: Obayashi, et al. (eds.) [22], pp. 687–699. ISBN 3-540-70927-4

http://guimoo.gforge.inria.fr/

Market Based Allocation of Transportation Orders 131

13. Geiger, M.J., Wenger, W., Habenicht, W.: Interactive utility maximization in
multi-objective vehicle routing problems: A “decision maker in the loop”-approach.
In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in
Multicriteria Decision Making (MCDM 2007), Hilton Hawaiian Village, Honolulu,
Hawaii, USA, April 2007, pp. 178–184 (2007) ISBN 1-4244-0698-6

14. Gendreau, M., Bräysy, O.: Metaheuristic approaches for the vehicle routing prob-
lem with time windows: A survey. In: MIC 2003: Proceedings of the Fifth
Metaheuristics International Conference, Kyoto, Japan, August 2003, pp. 1–10
(2003)

15. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, ch. 6. International Series in Op-
erations Research & Management Science, vol. 57, pp. 145–184. Kluwer Academic
Publishers, Boston (2003)

16. Jozefowiez, N., Semet, F., Talbi, E.-G.: Parallel and hybrid models for multi-
objective optimization: Application to the vehicle routing problem. In: Guervós,
J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P.
(eds.) PPSN 2002. LNCS, vol. 2439, pp. 271–280. Springer, Heidelberg (2002)

17. Jozefowiez, N., Semet, F., Talbi, E.-G.: Enhancements of NSGA II and its applica-
tion to the vehicle routing problem with route balancing. In: Talbi, E.-G., Liardet,
P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp.
131–142. Springer, Heidelberg (2006)

18. Lee, T.-R., Ueng, J.-H.: A study of vehicle routing problems with load-balancing.
International Journal of Physical Distribution & Logistics Management 29(10),
646–658 (1999)

19. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: A frame-
work for evolutionary multi-objective optimization. In: Obayashi,, et al. (eds.) [22],
pp. 386–400. ISBN 3-540-70927-4

20. Murata, T., Itai, R.: Multi-objective vehicle routing problems using two-fold EMO
algorithms to enhance solution similarity on non-dominated solutions. In: Coello
Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410,
pp. 885–896. Springer, Heidelberg (2005)

21. Murata, T., Itai, R.: Local search in two-fold EMO algorithm to enhance solution
similarity for multi-objective vehicle routing problems. In: Obayashi, et al. (eds.)
[22], pp. 201–215. ISBN 3-540-70927-4

22. Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.): EMO 2007.
LNCS, vol. 4403, pp. 3–540. Springer, Heidelberg (2007)

23. Pacheco, J., Marti, R.: Tabu search for a multi-objective routing problem. Journal
of the Operational Research Society (57), 29–37 (2006)

24. de Sousa, J.P.(ed.): MIC 2001: Proceedings of the Forth Metaheuristics Interna-
tional Conference, Porto, Portugal (2001)

25. Potvin, J.-Y., Bengio, S.: The vehicle routing problem with time windows. Part
II: Genetic search. INFORMS Journal on Computing 8(2), 165–172 (1996)

26. Potvin, J.-Y., Kervahut, T., Garcia, B.-L., Rousseau, J.-M.: The vehicle routing
problem with time windows. Part I: Tabu search. INFORMS Journal on Comput-
ing 8(2), 158–164 (1996)

27. Rahoual, M., Kitoun, B., Mabed, M.-H., Bachelet, V., Benameur, F.: Multicriteria
genetic algorithms for the vehicle routing problem with time windows. In: de Sousa,
P. (ed.) [24], pp. 527–532

132 M.J. Geiger and W. Wenger

28. Savelsbergh, M.W.P.: Local search for routing problems with time windows. Annals
of Operations Research 4(1), 285–305 (1985)

29. Solomon, M.M., Desrosiers, J.: Time window constrained routing and scheduling
problems. Transportation Science 22(1), 1–13 (1988)

30. Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.: A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science 31(2), 170–186 (1997)

A Simple Evolutionary Algorithm with
Self-adaptation for Multi-objective Nurse
Scheduling

Dario Landa-silva1 and Khoi N. Le2

School of Computer Science
The University of Nottingham, UK
1jds@cs.nott.ac.uk,
2kxl@cs.nott.ac.uk

Summary. We present a multi-objective approach to tackle a real-world nurse schedul-
ing problem using an evolutionary algorithm. The aim is to generate a few good quality
non-dominated schedules so that the decision-maker can select the most appropriate
one. Our approach is designed around the premise of ‘satisfying individual nurse pref-
erences’ which is of practical significance in our problem. We use four objectives to
measure the quality of schedules in a way that is meaningful to the decision-maker. One
objective represents staff satisfaction and is set as a target. The other three objectives,
which are subject to optimisation, represent work regulations and workforce demand.
Our algorithm incorporates a self-adaptive decoder to handle hard constraints and a
re-generation strategy to encourage production of new genetic material. Our results
show that our multi-objective approach produces good quality schedules that satisfy
most of the nurses’ preferences and comply with work regulations and workforce de-
mand. The contribution of this paper is in presenting a multi-objective evolutionary
algorithm to nurse scheduling in which increasing overall nurses’ satisfaction is built
into the self-adaptive solution method.

Keywords: Multi-objective, nurse scheduling, evolutionary algorithms, decoder,
constraints.

1 Introduction

Producing good quality nurse schedules helps to provide better healthcare
service, to improve overall job satisfaction and to make more efficient use of
workforce. We are interested in tackling the nurse scheduling problem in a multi-
objective fashion using an evolutionary algorithm. According to Ernst et al., the
tendency in the modern workplace is to focus on individuals rather than on teams
and hence, personnel schedules should cater to individual preferences [1]. This
is particularly true in nurse scheduling because it is common that each nurse
indicates his/her preference schedule. In our multi-objective approach, we set a
target for nurse preference satisfaction and attempt to minimise the violation

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 133–155, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

134 D. Landa-silva and K.N. Le

of soft constraints related to work regulations and workforce demand. We refer
to nurse scheduling as the construction of rosters for a ward of nurses over a
short scheduling period (typically a few weeks). A roster can be defined as an
assignment of personnel to specific shifts and/or duties. Here, a nurse schedule
is a roster in which a line of work, made of shifts and days off, is assigned to each
nurse in the ward over the scheduling period. For a discussion of other phases
in the overall personnel scheduling process (e.g. demand modelling, task assign-
ment, etc.) see [2]. Many healthcare institutions use some kind of software to
aid the construction of nurse schedules but in many other cases this is still done
manually [3]. For problems of considerable size, the non-automated construction
of nurse schedules is time consuming, difficult and prone to errors. As Burke et
al. note, “the automatic generation of high quality nurse schedules can lead to
improvements in hospital resource efficiency, staff and patient safety, staff and
patient satisfaction and administrative workload” [3].

Research into automated nurse scheduling has been very active in the last
three decades or so. Methods applied to nurse scheduling include mathematical
programming, goal programming, constraint programming, knowledge based sys-
tems, heuristics and meta-heuristics including evolutionary algorithms. Cheang
et al. provide a brief literature review on the main models for nurse scheduling
including types of constraints [4]. Burke et al. give a more comprehensive survey
of the literature on automated nurse scheduling and classify papers with respect
to nurse scheduling models and solution approaches [3]. Ernst et at. present
surveys considering a wide range of personnel scheduling problems [1, 2].

Nurse scheduling problems are typically over constrained and tackling them
with exact optimisation methods is difficult because considering all constraints
leads to complex models. Therefore, approximation algorithms have been used
in many of the nurse scheduling papers in the literature. In particular, heuristics
and meta-heuristics have been very popular in recent years [3]. Reasons for this
are that these methods can deal with the great number of existing constraints,
they can be adapted to a wide range of problems and no mathematical mod-
els are required for their implementation. Nurse scheduling is a multi-criteria
problem in which typically, work regulations, workforce demand, staff prefer-
ences and efficiency of service are in some kind of conflict. Most of the research
on automated nurse scheduling has been conducted in the single-objective case
using an aggregating penalty function to assess the quality of schedules. Sev-
eral goal programming approaches in which criteria are prioritised and targets
are set for each criterion, have been reported in the literature (e.g. [5, 6]). Not
many applications of modern multi-objective meta-heuristics to nurse scheduling
can be found in the literature (see surveys on the topic [1, 3, 4, 7]). One of the
few examples is the Pareto simulated annealing algorithm for nurse scheduling
in Polish hospitals [8]. That algorithm is a population-based method in which
neighbourhood exploration is carried out as in the classical simulated anneal-
ing, but the search is guided using a weighted function in order to approach the
trade-off surface [9].

A Simple Evolutionary Algorithm with Self-adaptation 135

In this paper, we apply a multi-objective evolutionary algorithm to tackle the
problem of constructing schedules for a ward of nurses in the ophthalmological
unit of the QMC hospital in Nottingham, UK. Our algorithm incorporates a
re-generation strategy and a self-adaptive schedule decoder. The re-generation
strategy replaces dominated solutions with new offspring in order to maintain
diversity and re-activate the generation of high-quality solutions when the evo-
lutionary process stagnates. The decoder is self-adaptive because it incorporates
a self-mutation operator that adapts itself to the decoding process in order to
repair hard constraint violations. Section 2 describes the QMC nurse schedul-
ing problem and outlines previous work on this problem. Section 3 gives de-
tails of the solution encoding and its relation to the nurse’s preference schedule.
Section 4 describes our multi-objective approach in which nurse’s preferences
play a central role. Section 5 gives details of the self-adaptive schedule decoder
incorporated in our algorithm. Section 6 presents experiments and results while
final remarks are given in Section 7.

2 The QMC Nurse Scheduling Problem

2.1 Problem Description

The problem is to construct schedules for a ward of nurses in the Queens Medical
Centre (QMC) in Nottingham, UK. The scheduling period is 28 days long. A
ward typically consists of 20 to 30 nurses. Cover is required on a 24 hour basis, 7
days a week. Each nurse works either on a part-time or a full-time basis. Nurses
are classified in a hierarchy according to their qualifications. Some nurses receive
special training according to their ward. There are three types of shift: early, late
and night. The early shift is from 07:00 to 14:45 counting for seven and a half
hours (7.5 hours). The late shift is from 13:00 to 21:15 counting for seven and
a half hours (7.5 hours). The night shift is from 21:00 to 07:15 counting for ten
hours (10 hours). Occasionally, nurses indicate in their preference schedules the
starting and finishing time that they prefer to work instead of one of the above
‘normal shifts’. In that case, the ‘unusual shift’ is considered as the ‘normal shift’
(early, late or night shift) that covers most of the hours of the ‘unusual shift’. For
example, an ‘unusual shift’ from 09:00 to 17:00 is considered as an early shift.
If the ‘unusual shift’ is equally spread over two adjacent ‘normal shifts’, one of
these ‘normal shifts’ is uniformly chosen at random. For example, an ‘unusual
shift’ from 17:00 to 01:15 can be considered as a late or as a night shift. The
coverage demand, i.e. the required number of nurses with specific qualifications
and training, is different for each shift. Nurses specify their individual work-
ing preferences (e.g. days off, preferred shifts, etc.) for each scheduling period. A
number of working regulations (including nurses’ annual leave) must be satisfied.
Then, the problem is to construct a schedule that meets the workforce demand,
satisfies all regulations and meets as many individual preferences as possible.
The QMC nurse scheduling problem includes the most common constraints in

136 D. Landa-silva and K.N. Le

nurse scheduling literature as identified in [4]. We formulate this problem as the
ordered pair:

NRP = 〈Nurses, C〉

where Nurses = {Ni : 1 ≤ i ≤ n} is a set of n nurses and C is a set of constraints.
Constraints in C can be hard (must be satisfied) or soft (should be satisfied). A
nurse Ni is defined as follows:

Ni = 〈NurseDetaili,NursePreferencei,NurseSchedulei,GeneSequencei〉
NurseDetaili = 〈Contracti,Qualificationi,Trainedi,Hoursi〉

Contracti ∈ {FullTime,PartTime} nurse Ni is full-time or part-time.
Qualificationi ∈ {RN, EN, AN, SN} nurse Ni belongs to one of four qual-

ification categories: registered (RN), enrolled (EN), auxiliary (AN)
and student (SN). RNs and ENs are classified as qualified (QN) while
QNs and ANs are both employed (PN). Qualified nurses, QNs, can
receive additional training specific to the ward that they work in.

Trainedi ∈ {NoTrained,Trained} in the ophthalmological ward, a nurse
can receive eye-training.

Hoursi ∈ IN+ is the number of contracted hours for nurse Ni, for full-time
nurses Hoursi is 75 hours per fortnight, for part-time nurses Hoursi is
per week and as specified in their individual contract.

NursePreferencei = {pi,j : 1 ≤ j ≤ NoOfDays} is the nurse’s preference
schedule for the scheduling period, where NoOfDays is the length of the
scheduling period, 28 in the QMC problem, and pi,j ∈ {AnnualLeave, Any,
DayOff, Early, Late, Night} is the nurse’s preference for day j, Any indicates
no specific preference.
NurseSchedulei = {si,j : 1 ≤ j ≤ NoOfDays} is an individual nurse’s sched-
ule, i.e. a string containing the assigned shift for each day in the schedul-
ing period, where si,j ∈ {AnnualLeave,DayOff,Early,Late,Night}. A ward
schedule for the QMC problem is a collection of n individual nurse schedules.
GeneSequencei = Permutation{shift : 1 ≤ shift ≤ NoOfShifts} is the gene
representation used in the evolutionary algorithm implemented in this pa-
per, where NoOfShifts = NoOfDays ∗ 3 i.e. the total number of shifts in the
scheduling period. This representation is illustrated in detail in Section 3.

2.2 Hard Constraints

OneShiftADay. A nurse works at most one shift (Late, Early, Night) per day.
MaxHours. Nurses can work a maximum number of hours (given by Hoursi) over

a period of time according to their individual contract.
MaxDaysOn. The maximum number of consecutive days that a nurse can work,

which is 6. This constraint guarantees regular breaks for nurses.
MinDaysOn. The minimum number of consecutive days that a nurse can work.

This value is normally 2 for full time nurses. It is not applicable for most
part time nurses because of the fewer number of shifts that they work.

A Simple Evolutionary Algorithm with Self-adaptation 137

Succession. Defines illegal shift combinations for nurses. A Night shift must not
be followed by an Early shift.

HardRequest. Defines nurses’ requests that must be satisfied. For example, annual
leave requests in the preference schedule are considered hard requests.

2.3 Soft Constraints

SoftRequest. Defines nurses’ requests that are desirable but might be violated. In
the QMC problem, these requests are typically for working on specific shifts
(Early, Late, Night, DayOff and ‘unusual shifts’).

SingleNight. A nurse should not be assigned an individual Night shift. Nurses at
the QMC ward prefer to work night shifts in blocks of two or more. This
applies to all full time nurses and certain types of part time nurses whose
individual contracts are at least 20 hours a week.

WeekendSplit. Nurses prefer to work both days of the weekend or none at all.
WeekendBalance. The maximum number of weekends that nurses may work over

the scheduling period. In the QMC ward, nurses may not work more than 3
out of 4 consecutive weekends.

Coverage. A certain number of nurses with specific qualifications and specific
training should be assigned to particular shifts as shown in Table 1.
It should be noted that it is not necessary to assign 6 different nurses to the
Early shift to meet the Coverage requirements. This demand can be satisfied
with only 4 nurses if all of them are qualified, one of them is registered and
one of them has received eye-training.

CoverageBalance. The number of nurses assigned to each shift over the scheduling
period should be evenly distributed. Any surplus/shortage of nurses over the
scheduling period should be kept to a minimum. This constraint prevents an
excessive number of nurses being assigned to a particular shift while having
a shortage of nurses in other shifts.

Table 1. Coverage demand
of nurses in each shift

Early Late Night
QNs 4 3 2
RNs 1 1 0
ETs 1 1 1

Table 2. Measurement of
CoverageBalance

QNs Early Late Night
Demand 4 3 2
Assigned 4 4 1
Difference 0 1 -1

All hard constraints must be satisfied for a schedule to be feasible. We assess
the quality of a feasible schedule by measuring the violation of the six soft con-
straints but always taking into account the preferences expressed by each nurse.
To measure the satisfaction of soft constraints (with the exception of Cover-
ageBalance), we simply count the number of violations of each soft constraint
type. However, the violation of a soft constraint is not penalised if the shifts
assigned to the nurse’s schedule comply with the nurse’s preferences expressed

138 D. Landa-silva and K.N. Le

in NursePreferencei. More precisely, we measure the violation of soft constraints
as follows.1

SoftRequest(pi,j, si,j) if the assigned shift si,j is not as the nurse’s preferred shift
pi,j , a penalty of 1 is applied. No penalty is applied if a working shift pi,j

(Early, Late, or Night) is requested and a DayOff si,j is assigned.
SingleNight(Ni, D) if a Night shift is assigned to nurse Ni on day D, and shifts

different to Night are assigned on adjacent days (D − 1 and D + 1), and the
assigned shifts are not as in NursePreferencei, a penalty of 1 is applied.

WeekendSplit(Ni, D) if nurse Ni is assigned to work only on one of days D or
D + 1 of a weekend, and the assigned shifts are not as in NursePreferencei,
a penalty of 1 is applied.

WeekendBalance(Ni) if nurse Ni is assigned to work at least one day in each of
the four weekends in the scheduling period, and the assigned shifts are not
as in NursePreferencei, a penalty of 1 is applied.

Coverage(shift) if the number of nurses with specific qualifications and training
assigned to a given shift is less than the coverage demand, a penalty equal
to the deficit in the number of nurses assigned is applied.

CoverageBalance we measure the satisfaction of this constraint using statistical
variation on the difference between the number of qualified nurses assigned
to each shift and the coverage demand for qualified nurses. For example,
for a schedule of 1-day and 3 shifts (Early, Late, Night), the difference be-
tween coverage demand and assigned nurses is calculated as in Table 2.
Then, CoverageBalance is measured as the variation on the Difference set
of 3 ∗ NoOfDays shifts. In this example, the penalty of the CoverageBalance
constraint has a value of 2

3 (0.667).

We split the six soft constraints into four groups and each group corresponds
to an objective function. Group 1 consists of the SoftRequest constraint measur-
ing the level of nurse preferences satisfaction. Group 2 consists of SingleNight,
WeekendBalance, and WeekendSplit constraints measuring satisfaction of work
regulations. Group 3 consists of the Coverage constraint measuring shortfalls
in workforce demand. Group 4 consists of the CoverageBalance constraint mea-
suring the distribution of nurses in the schedule to ensure a balanced coverage
for the whole scheduling period. In the QMC problem, nurses satisfaction is at
the centre of the scheduling process due to the shortfall of staff in hospitals
recently. Therefore, when constructing a schedule with our multi-objective ap-
proach, we pre-set a target value for objective 1 to guarantee a minimum level
of staff satisfaction. Moreover, nurses’ preferences are also taken into account
when dealing with the other three objectives which are subject to optimisation
(this is explained in detail in the following sections). The aim is to produce a
set of schedules in low computational time, all with the required level of staff
satisfaction but representing a set of compromise alternatives with respect to
1 Full description of the QMC nurse scheduling problem, examples of how the viola-

tion of soft constraints is measured and data sets are available at the following url
http://www.cs.nott.ac.uk/∼kxl/research/QMC/qmc.html

A Simple Evolutionary Algorithm with Self-adaptation 139

the other three objectives. Then, the decision-maker (typically a senior nurse)
can select the most appropriate schedule for the given planning period.

2.4 Previous Work on the QMC Problem

The QMC nurse scheduling problem was also tackled by Beddoe and Petrovic
using a combination of case-based reasoning and tabu search concepts [10, 11].
Our results are not easily comparable to those obtained by Beddoe and Petro-
vic because of two reasons. One is that they tackled the QMC problem in a
single-objective manner attempting to find one feasible solution, while we seek
a set of alternative schedules. The other reason is that they tackled a simplified
version of the problem. In their study, Beddoe and Petrovic considered con-
straints OneShiftADay, MaxHours, MaxDaysOn, MinDaysOn Succession, Cov-
erage, HardRequest and SoftRequest only. However, we applied our approach to
the data sets used by Beddoe and Petrovic and results are reported in Section 6.

3 Schedule Encoding and Construction

We represent a solution (ward schedule) to the QMC nurse scheduling prob-
lem as a set of n sub-solutions. Each sub-solution is a list of NoOfShifts shifts
corresponding to an individual nurse’s schedule. In many nurse scheduling pa-
pers, the approach is to start from an empty schedule. Instead, we take the
set of preference schedules into account. Nurses indicate their preferred shifts
in the preference schedule (NursePreferencei) while the constructed schedule
(NurseSchedulei) indicates the actual shifts assigned. Figure 1 illustrates a pref-
erence and a constructed schedule for one nurse on a 7-day scheduling period
where E, L, N, O correspond to Early, Late, Night, and DayOff shifts respec-
tively. An empty cell in the preference schedule indicates no preference for that
day. In the constructed schedule, an empty cell represents a DayOff . In this
example, the nurse has to work in days 1 to 5 and only one of the preferred
shifts (for day 2) was satisfied. We use an indirect representation in our evolu-
tionary algorithm in which a permutation list of integers from 1 to 3∗NoOfDays
is decoded to create an individual nurse schedule. Figure 1 also illustrates a
permutation list for a 7-day scheduling period.

Starting from the left, the decoder reads a shift x from the permutation list
(1 ≤ x ≤ 3∗NoOfDays) and decodes it to the corresponding day and shift (Early,
Late, Night correspond to 0, 1, 2 respectively) in the constructed schedule as

7 3 1 8 13 2 15 4 12 17 18 14 21 5 16 10 19 20 9 6 11

The permutation list of shifts

L N O

6 7

N L E E E

2 3 4 5

Constructed Schedule Preference Schedule

1 2 3 4 5 6 7 1

Fig. 1. Constructed Schedule, Preference Schedule and Permutation List

140 D. Landa-silva and K.N. Le

follows: day D = (x− 1) div3+1, shift S = (x− 1)mod3. For example, x = 7 in
the permutation list represents an Early shift (S = 0) in day 3 (D = 3). When
assigning shifts, the decoder ensures the satisfaction of all hard constraints (see
Section 5). The decoder stops assigning shifts to the nurse’s schedule when the
end of the permutation list is reached or the total number of working hours is
within a threshold τ given by:

MaxHours − MinShiftLength < τ ≤ MaxHours

where MaxHours is as defined in Section 2 and MinShiftLength is the length of
the shortest shift (7.5 hours in the QMC problem).

4 The Proposed SEAMO-R Algorithm

SEAMO, the Simple Evolutionary Algorithm for Multi-Objective Optimisation
was proposed by Valenzuela who also showed that this algorithm
outperforms other state-of-the-art Pareto-based evolutionary algorithms on the
multiple knapsack problem [12] with respect to the size of space covered S and
the coverage of two sets C indicators (S and C are defined in [13]). SEAMO uses
a steady-state population and a simple elitist replacement strategy. The algo-
rithm chooses each member of the population, in turn, to be the first parent and
a second parent is chosen at random. Offspring is produced by applying cycle
crossover [14] on the two parents followed by a single mutation. If the offspring’s
objective vector improves on any best-so-far objective function, it replaces one of
the parents and the objective’s best-so-far is updated. Otherwise, if the offspring
dominates one of the parents, it replaces that parent (unless it is a duplicate,
then the offspring is deleted). SEAMO2, an updated version of SEAMO was
presented later and it was observed that a more elaborate replacement strategy
improved the performance of the algorithm on both combinatorial and contin-
uous multi-objective problems [15]. SEAMO2 is different from SEAMO in that
SEAMO2 allows the offspring to replace an individual in the population that it
dominates if the offspring and both parents are mutually non-dominated while
in SEAMO the offspring was discarded in this case.

We implemented both versions of SEAMO on the QMC problem and observed
that a major drawback was that no good offspring was generated after only few
generations. Therefore, we designed a re-generation strategy that activates the
production of high-quality offspring to tackle this stagnation issue. In this paper,
we exploit the SEAMO’s concept and propose SEAMO-R (simple evolutionary
algorithm for multi-objective with re-generation), a variation of the SEAMO
approach, to tackle the QMC nurse scheduling problem. Figure 2 illustrates the
SEAMO-R algorithm.

The population re-generation strategy (Regenerate population in Figure 2) re-
activates the generation of high-quality offspring when the evolutionary process
stagnates. Improving the population in SEAMO-R relies entirely on the replace-
ment strategy and the re-generation strategy. The purpose of the re-generation
strategy is to maintain diversity in the population and to produce good offspring.

A Simple Evolutionary Algorithm with Self-adaptation 141

Generate a

population
Select

parents

Produce

offspring
Duplicate?

Increase counter

improve

best-so-far

Dominate

a parent

Replace

a parent

Replace

that parent

Reset

counter

counter >

threshold

N

N

Y

Y

N

Y

Regenerate

population
Y

N

Crossover + Self-mutation

update best

so-far

Fig. 2. The SEAMO-R algorithm

This strategy replaces a portion of dominated solutions with new solutions. The
Regeneration-Probability parameter controls the rate of replacing a dominated
solution with a new solution. A probability of 1 means that all dominated so-
lutions will be replaced. A probability of 0 means that no dominated solutions
will be replaced and the re-generation mechanism is deactivated. This replace-
ment process is triggered if after a number of evaluations given by Regeneration-
Rate, there is no replacement of solutions in the population with offspring. The
Regeneration-Rate parameter is important on the performance of SEAMO-R. If
the Regeneration Rate is too high, the population will be frequently re-generated
and the population hardly evolves. If the Regeneration-Rate is too low (or zero as
in SEAMO), the evolutionary process falls into stagnation and is very difficult to
produce offspring to replace solutions in the population. The Regeneration-Rate
is highly dependant on the Population-Size and the Regeneration-Probability (we
describe later how we set these parameters in our experiments). Full details of
SEAMO-R are given in the pseudocode below:

Procedure SEAMO-R
Begin

Regeneration-Rate = 〈pre-defined by user〉
Regeneration-Probability = 〈pre-defined by user〉
Population-Size = P
non-improve-counter = 0
Soft-Request-Probability = 〈pre-defined by user〉
Generate a random population of P schedules
Evaluate the objective vector for each schedule and store it
Record the best-so-far for each objective function
Repeat

For each schedule in the population (1st parent)
Select a second schedule at random (2nd parent)
Apply crossover to produce offspring
Decode permutation list for each nurse’s schedule in the offspring
Evaluate the objective vector for the offspring

142 D. Landa-silva and K.N. Le

If offspring’s objective vector improves on any best-so-far
Then the offspring replaces one of the parents and best-so-far is updated

non-improve-counter = 0
Else If the offspring is not duplicate and dominates 1st parent (or 2nd parent)

Then the offspring replace that parent
non-improve-counter = 0

Else non-improve-counter = non-improve-counter + 1
EndIf

EndIf
If non-improve-counter ≥ Regeneration-Rate (**Re-generation Starts Here**)

Then replace all dominated schedules in the current population
with probability of Regeneration-Probability
by schedules generated uniformly at random

non-improve-counter = 0
EndIf

Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population

End

5 Decoder and the Hard Constraints

5.1 Self-adaptive Schedule Decoder

The performance of SEAMO-R on the QMC nurse scheduling problem is signifi-
cantly better than the performance of SEAMO and SEAMO2 because of our re-
generation strategy. The performance of SEAMO-R on the QMC nurse scheduling
problem is further improved by using a self-adaptive decoder to handle hard con-
straints. SEAMO-R also incorporates a self-mutation operator that works accord-
ing to the current state of the decoding process. The decoder chooses, from either
the preference schedule or the offspring’s genetic material, a shift S’ to assign to
day D. The self-mutation operator swaps the shift S’ with the left-most shift in
the offspring’s gene sequence which is associated to day D. If the shift S’ chosen
from the preference schedule is a DayOff , there is no self-mutation and the decoder
moves to the next shift in the gene sequence. During the decoding process, the Soft-
Request-Probability indicates the rate at which a shift in the preference schedule is
used by the decoder rather than the current shift in the offspring’s genetic mate-
rial. A probability of 0 means that the decoder uses the offspring’s genetic material
without considering the preference schedule. A probability of 1 means that the de-
coder uses the preferred shift first and if this shift is not suitable, the decoder then
uses the offspring’s genetic material. Details of the self-adaptive decoder are shown
in the following pseudocode:

Procedure QMC-Decoder
Begin

Repeat
Select a nurse schedule at random
Assign all hard requests to that nurse’s constructed schedule
For each shift S in the permutation list of this nurse

If the nurse schedule is fully assigned (depended on nurse’s MaxHours constraint)
Then terminate the decoding process (terminate the For loop)

EndIf
If day D associated with this shift S is not yet assigned

Then
If assign(S, D) violates Succession constraint

Then choose shift S’ from Preference Schedule

A Simple Evolutionary Algorithm with Self-adaptation 143

with probability Soft-Request-Probability or from permutation list
(assign(S’, D) does not violates Succession)

If assign(S’, D) does not violate MaxDaysOn, MaxHours, HardRequets
and the Coverage demand for shift S’ of day D is not exceeded
Then assign S’ to D, and apply the self-mutation process on S’

EndIf
Else

If assign(S, D) violates MinDaysOn constraint
Then choose shift S’ from Preference Schedule with

probability Soft-Request-Probability or from permutation list
to assign to day D’ adjacent to day D
(assign(S, D) and assign(S’, D’) does not violates Succession)

If assign(S, D) and assign(S’, D’) do not violate
MaxDaysOn, MaxHours, HardRequets and Coverage demands
for shift S of day D and shift S’ of day D’ is not exceeded
Then assign S to D, S’ to D’

and apply the self-mutation process on S’
EndIf

Else
If the Coverage demand for shift S of day D is not exceeded

Then assign S to D
EndIf

EndIf
EndIf

EndIf
EndFor
Evaluate objective functions

Until all nurse schedules are decoded
End

The adaptive strategy in our decoder aims to guide the construction of sched-
ules taking into account all nurses’ preferences. There is no guarantee that a
given permutation, once decoded, will always produce the same schedule. This
is because our decoder incorporates stochastic elements that help to explore dif-
ferent possibilities. In general, there are two ways to satisfy hard constraints
when constructing a nurse schedule. One is to only accept the assignment of
shifts that maintain feasibility. The other is to repair an infeasible schedule by
changing the shift assigned to day D or changing the shift assigned to an adja-
cent day. In this paper, we use the first approach to deal with the OneShiftADay,
MaxHours, MaxDaysOn and HardRequest hard constraints. We use the second
approach to deal with the Succession and MinDaysOn hard constraints. We re-
pair a violation of the Succession hard constraint by changing the shift assigned
to day D such that a Night shift is not followed by an Early shift. We repair a
violation of the MinDaysOn hard constraint by assigning a working shift to an
adjacent day. We take care to ensure that the Succession hard constraint is not
violated while repairing the MinDaysOn hard constraint.

A number of self-adaptive approaches have been proposed in the context of
evolutionary algorithms. Most approaches focus mainly on adjusting parameter
settings (such as the probability of mutation and recombination) and selecting
the evolutionary operators (from a range of operators available) to be applied at
different times during the search. For example, Meyer-Nieberg and Beyer pro-
posed a self-adaptive punctuated crossover that adapts the number and location
of crossover points [16] while Sereni et al. proposed a self-adaptive recombination
approach in which the crossover operator is chosen at random [17]. For reviews on
adaptation and self-adaption in evolutionary algorithms see [16,18,19,20]. Note

144 D. Landa-silva and K.N. Le

that our self-adaptive mutation operator adjusts its characteristics throughout
the search process by adapting the rate of mutation, the position of mutation
points and the number of mutation points. That is, our mutation strategy ‘learns’
the gene sequence of individuals in order to identify good genes and appropri-
ate positions for those good genes in the gene sequence. The mutation strategy
does this by shifting genes that violate hard constraints to the end of the gene
sequence, and shifting genes that provoke less violations to the beginning of the
gene sequence. As the search progresses, the mutation strategy gradually shifts
‘promising genes’ to the beginning of the gene sequence leading to a quicker de-
coding process and subsequently a reduction in the number of mutation points
and the mutation rate. In the rest of this Section we give more details on how
the self-adaptive mutation operator works.

5.2 Handling Succession

We illustrate how the decoder deals with the Succession hard constraint. The
decoder assigns shifts to the constructed schedule as in Figure 3. The decoder
reads shifts in the permutation list and assigns each shift to the corresponding
day unless that day is already occupied or the Succession hard constraint is
violated. Note that in Figure 3, decoding 4 from the permutation list provokes
a violation of the Succession constraint (a Night shift is followed by an Early
shift). The decoder repairs this violation using the self-mutation process. The
shift to repair this violation can be chosen from the preference schedule or from
the permutation list according to the Soft-Request-Probability.

Figure 4 illustrates the self-mutation process to repair a violation of the Suc-
cession hard constraint using a shift from the preference schedule. After assigning
Early shift to day 3, Night shift to day 1, and Early shift to day 5, the decoder
skips shift 2 and shift 15 in the permutation list because day 1 and day 5 in the
constructed schedule are already occupied. Shift 4 is read from the permutation
list. However, assigning shift 4 (Early shift to day 2) violates the Succession con-
straint. A high Soft-Request-Probability forces the decoder to use the preference
schedule and then a Late shift is assigned to day 2. This corresponds to assigning
shift 5 instead of shift 4 from the permutation list. Therefore, the self-mutation
process is applied to the current permutation list to swap shift 4 and shift 5.
In this case, assigning the shift in the preference schedule does not violate the
Succession constraint. However, if assigning the shift in the preference schedule
violates the Succession constraint, the decoder uses the permutation list as an
alternative to find a suitable shift (though the decoder was forced to consider the
preference schedule first). If the decoder uses a shift DayOff from the preference
schedule, no self-mutation is required and the decoder continues with the next
shift in the permutation list.

Figure 5 illustrates the self-mutation process to repair a violation of the Suc-
cession hard constraint using a shift from the permutation list. The decoder
attempts to assign shift 12 from the permutation list (Night shift to day 4).
However, this violates the Succession constraint by creating a Night -Early shift
combination in day 4 and day 5. A low value of Soft-Request-Probability forces

A Simple Evolutionary Algorithm with Self-adaptation 145

7 3 1 8 13 2 15 4 12 17 18 14 21 5 16 10 19 20 9 6 11

Constructed Schedule Preference Schedule

1 2 3 4 5 6 7 1 2 3 4 5 6 7

N E E

The permutation list of shifts

L N O

Fig. 3. The decoding process

7 3 1 8 13 2 15 4 12 17 18 14 21 5 16 10 19 20 9 6 11 before

7 3 1 8 13 2 15 5 10 17 18 14 21 4 16 12 19 20 9 6 11 after

6

N

Constructed Schedule

E

1 2 3 4 5 7

The permutation list of shifts before and after the decoding process

7

N L E L O

Preference Schedule

1 2 3 4 5 6

Fig. 4. Repairing the violation of the Succession constraint using self-mutation

7 3 1 8 13 2 15 4 12 17 18 14 21 5 16 10 19 20 9 6 11 before

7 3 1 8 13 2 15 5 10 17 18 14 21 4 16 12 19 20 9 6 11 after

O

Preference Schedule

1 2 3 4 5 6 7

The permutation list of shifts before and after the decoding process

7

N L E E L N

Constructed Schedule

E

1 2 3 4 5 6

Fig. 5. Repairing the violation of the Succession constraint using self-mutation

the decoder to use the permutation list. The decoder searches for the first shift
in the permutation list (reading from left to right) that can be assigned to day 4
without violating the Succession constraint. In this case, shift 10 in the permu-
tation list (Early shift in day 4) is selected. The decoder assigns shift 10 and
self-mutation is applied to swap shift 12 and shift 10 in the permutation list.

5.3 Handling MinDaysOn

To handle the MinDaysOn hard constraint, the decoder works on the same prin-
ciple as for the Succession constraint. The difference is that to repair violations
of the Succession constraint, the decoder searches for a suitable shift S’ to assign
to day D and the shifts assigned to adjacent days are already known. However,
to repair violations of the MinDaysOn constraint, the decoder searches for a
shift S’ to assign to day D’ which is adjacent to day D and the shift S assigned
to day D is already known. First, the decoder identifies a list of suitable shifts

146 D. Landa-silva and K.N. Le

which do not create a shift combination that violates the Succession constraint.
These shifts are associated with either day D-1 or day D+1. From this list, the
shift that appears first in the permutation list from left to right, is assigned to
its associated day. The self-mutation process is then triggered. The repair of the
MinDaysOn hard constraint is illustrated in Figure 6. The decoder continues
moving to the right of the permutation list (Figure 7). Shift 12 is then assigned
to the constructed schedule causing a violation of the MinDaysOn constraint.
Therefore, the decoder has to search for an additional shift to repair the viola-
tion. The Night shift is assigned to day 3 in the constructed schedule (shift 9 in
the permutation list). The self-mutation process swaps shift 9 with the left most
shift in the permutation list associated with day 3 (shift 7 in the permutation
list). In this case, we still assume that the Soft-Request-Probability instructs the
decoder to select the additional shift from the permutation list.

Now, assume that the decoder is instructed to select an additional shift from
the preference schedule when repairing violations. In Figure 8 the decoder moves
right on the permutation list and assigns shift 18 (Night shift to day 6). An
additional shift is required to repair the violation of the MinDaysOn constraint.
The decoder searches in the preference schedule for suitable shifts. The only
suitable shift in the preference schedule is the Late shift in day 7 (shift 20 in the
permutation list) because assigning the Early shift to day 5 creates a violation
of the Succession constraint (Night -Early shift combination in day 4 and day 5).
The decoder assigns shift 20 to the constructed schedule and the self-mutation
swaps shift 20 and shift 19 in the permutation list. If the decoder cannot find any
suitable shift in the preference schedule to repair the violation, the decoder will
look at the permutation list to find a suitable shift. For example, if the preferred
shift in day 7 is the Early shift, there is no suitable shift in the preference
schedule. Then, the decoder searches in the permutation list and finds shift 21.
The self-mutation then swaps shift 21 and shift 19 in the permutation list.

Note that in the preference schedule there is a combination DayOff -Night -
DayOff from day 2 to day 4 (Figure 9). If at any point the decoder attempts to
assign Night shift to day 3 while day 2 and day 4 are free, then assigning Night
shift to day 3 is not considered a violation of the MinDaysOn constraint. This is
because the DayOff -Night -DayOff shift combination from day 2 to day 4 is the
one indicated in the preference schedule. That is, violations of the MinDaysOn
and Succession constraint are permitted if the nurse’s preferences indicate so.

Besides repairing the Succession and MinDaysOn hard constraints, the de-
coder also attempts to minimise the number of surplus nurses in each shift. This
is to reduce the number of violations of the Coverage constraint and equally
distribute nurses amongst all shifts. This is achieved by only assigning shifts to
days if the coverage demand has not been exceeded yet. Therefore, the decoder
assigns shifts to days if and only if the above condition is met and the MaxHours,
MaxDaysOn and HardRequest hard constraints are not violated. Satisfaction of
OneShiftADay is ensured by the encoding scheme. As indicated in Section 3,
the decoder assigns shifts until the end of the permutation list is reached or the
total number of working hours is within the threshold τ .

A Simple Evolutionary Algorithm with Self-adaptation 147

6 12 2 11 1 18 17 19 13 21 16 20 7 5 9 3 14 15 4 10 8

The permutation list of shifts

L N

Constructed Schedule

1 2 3 4 5 6 7

Preference Schedule

1 2 3 4 5 6 7

E LN O N O

Fig. 6. Repairing the violation of the MinDaysOn constraint using self-mutation

6 12 2 11 1 18 17 19 13 21 16 20 7 5 9 3 14 15 4 10 8 before

6 12 2 11 1 18 17 19 13 21 16 20 9 5 7 3 14 15 4 10 8 after

L

The permutation list of shifts before and after the decoding process

O N O E

6 7

L N N N N

2 3 4 5

Constructed Schedule Preference Schedule

1 2 3 4 5 6 7 1

Fig. 7. Repairing the violation of the MinDaysOn constraint using self-mutation

6 12 2 11 1 18 17 19 13 21 16 20 9 5 7 3 14 15 4 10 8 before

6 12 2 11 1 18 17 20 13 21 16 19 9 5 7 3 14 15 4 10 8 after

Constructed Schedule Preference Schedule

1 2 3 4 5 6 7 1 2 3 4 5 6 7

L N N N N L N L

The permutation list of shifts before and after the decoding process

O N O E

Fig. 8. Repairing the violation of the MinDaysOn constraint using self-mutation

LO N O E

6 7

N N

2 3 4 5

Constructed Schedule Preference Schedule

1 2 3 4 5 6 7 1

Fig. 9. Repairing the violation of the MinDaysOn constraint using self-mutation

6 Experiments and Results

6.1 Experimental Setting

There are 7 data sets for the QMC nurse scheduling problem, one for each schedul-
ing period from March to September 2001. Our first experiment was to identify
appropriate parameter settings for SEAMO-R. We set RegenerationProbability =
0.75 and SoftRequestProbability = 0.60 using data from March2001 as a train-
ing set. The SoftRequestProbability is set according to the required level of nurses’

148 D. Landa-silva and K.N. Le

preferences satisfaction. We performed 30 independent runs. Each run took be-
tween 4 and 5 minutes on a 2.2GHz AMD Opteron x86 64-bit Processorwith Linux
O/S (SuSe 9.0). We used values ofRegenerationRate set to of 100, 200, 500 and 750.
The PopulationSize was set to values of 100, 200 and 500 with the NumberOfItera-
tions set to 15000, 7500 and 3000 generations respectively. Our preliminary results
suggested that SEAMO-R performs the best when using a PopulationSize = 200,
NumberOfIterations = 7500 and RegenerationRate = 500.

6.2 Performance of SEAMO-R

We carried out 30 runs with the above parameter settings for each of the other
6 data sets (April2001 to September2001). We found around 7 non-dominated
schedules in each run. We calculate the similarity between two ward schedules
as follows. Consider shift s1

i,j in schedule 1 and shift s2
i,j in schedule 2, where

1 ≤ i ≤ n (n is the number of nurses), 1 ≤ j ≤ NoOfDays. Then:

s1
i,j , s

2
i,j ∈ {O, E, L, N} (where O is DayOff)

matched1,2 =
∣∣{(i, j) | s1

i,j = s2
i,j ∧ (s1

i,j �= O ∨ s1
i,j �= O)

}∣∣
unmatched1,2 =

∣∣{(i, j) | s1
i,j �= s2

i,j ∧ (s1
i,j �= O ∨ s1

i,j �= O)
}∣∣

Similarity1,2 =
matched1,2

matched1,2 + unmatched1,2

The average similarity for the whole set of non-dominated solutions in the
final population is calculated as the mean of all similarities between each pair of
non-dominated solutions.

Table 3. Average results produced by SEAMO-R for the QMC problem

Period ND Obj2 Obj3 Obj4 Obj1 AverSimil
March2001 7.367 4.149 6.363 0.274 89.9% 78.4%
April2001 7.700 3.633 10.282 0.276 89.1% 79.3%
May2001 7.033 2.924 17.779 0.249 90.3% 85.2%
June2001 3.933 1.164 40.619 0.259 92.9% 91.5%
July2001 7.900 3.977 41.202 0.300 87.4% 80.1%

August2001 7.200 4.171 10.277 0.246 90.2% 81.8%
September2001 7.467 3.357 21.755 0.267 89.3% 84.0%

To illustrate the overall quality of the schedules generated with our approach,
we show in Table 3 the ‘average results’ for each data set. ND is the average
number of non-dominated solutions in the final population over the 30 indepen-
dent runs. Obj1 is the level of nurses’ preferences satisfaction and is measured
as a percentage as follows:

Obj1 =
Total number of requests - SoftRequest violation

Total number of requests

A Simple Evolutionary Algorithm with Self-adaptation 149

Obj2 is the total number of violations of the SingleNight, WeekendSplit and
WeekendBalance constraints. Obj3 is the number of violations of the Coverage
constraint. Obj4 is the number of violations of the CoverageBalance constraint.
AverSimil is the average similarity over the 30 independent runs for each data
set. Remember that Obj1 is set as target while the other three objectives are
subject to optimisation. We computed these results using the set of all non-
dominated solutions obtained in the 30 runs for each data set. Details of all
constructed non-dominated schedules are available from the authors. We note
that given the highly constrained nature of nurse scheduling problems, it is often
very difficult to find feasible schedules. This was the case in the QMC problem too
and hence the need for the self-adaptive decoder and the re-generation strategy.
Therefore, it was not surprising that relatively few non-dominated solutions were
obtained by the end of each run. However, this number of schedules is adequate
because it would be very difficult for a senior nurse to select a ward schedule
from a larger set of alternatives. It is also important to note that the similarity
between non-dominated schedules is high because our approach seeks to match
the nurse preference schedules according to the Soft-Request-Probability set by
the user.

Table 3 shows that the average nurses’ preference satisfaction is approximately
90% for all 7 data sets. In our results, the preference satisfaction of each non-
dominated solution in the final population is in the range 90% ± 3%. One can
easily realise that the values for Obj3 (violations of the Coverage constraint) are
quite different amongst the 7 data sets. This value is quite low for March2001,
April2000 and August2001 whereas for June2001 and July2001 it is noticeably
high. A close examination of the data sets reveals that this is because the number
of available staff-hours is quite different amongst the 7 instances. We estimate
the number of available staff-hours for each of the data sets as follows: March2001
(2200), April2001 (2100), May2001 (1950), June2001 (1700), July2001 (1700),
August2001 (2100) and September2001 (1930). Taking into account the coverage
demand of qualified nurses (QNs) (see Table 1), it can be estimated that there
must be at least 2030 staff-hours available to fulfill this demand. However, it is
difficult to fulfill this requirement with exact 2030 staff-hours due to the existence
of other constraints and individual requests. We estimate that there should be
about an extra 150 staff-hours in order to minimise the number of violations.
For those months with a shortage in available staff-hours (e.g. June2001 and
July2001), such shortage affects mainly the provision of qualified nurses to the
Night shift and this contributes to violations of the Coverage constraint. This is
because with a limited number of available staff-hours, the coverage demand in
shifts Early and Late is satisfied first as these shifts count for 7.5 hours. However,
the Night shift counts for 10 hours and satisfying the coverage demand in this
shift required extra staff-hours. That explains why with about 400 extra staff-
hours, the number of violations of the Coverage constraint (Obj3) in March2001
is about 35 less than the number of violations in June2001 or July2001. Note that
the number of violations in Obj2 (total violations of SingleNight, WeekendSplit
and WeekendBalance) is very low, only between 2 and 3 violations within a full
schedule.

150 D. Landa-silva and K.N. Le

Table 4. Performance of SEAMO, SEAMO2 and SEAMO-R on the QMC problem

Period SEAMO SEAMO2 SEAMO-R
Obj2 Obj3 Obj4 Obj2 Obj3 Obj4 Obj2 Obj3 Obj4

Mar2001 40.274 27.320 0.734 29.522 22.001 0.619 4.149 6.363 0.274
Apr2001 40.301 33.858 0.778 29.045 28.018 0.666 3.633 10.282 0.276
May2001 32.471 44.083 0.831 22.076 36.695 0.672 2.924 17.779 0.249
Jun2001 25.691 67.312 0.840 8.791 51.145 0.497 1.164 40.619 0.259
Jul2001 27.824 63.776 0.844 15.963 55.121 0.637 3.977 41.202 0.300
Aug2001 38.590 34.849 0.779 26.796 28.996 0.658 4.171 10.277 0.246
Sep2001 35.686 47.760 0.838 21.423 39.126 0.656 3.357 21.755 0.267

6.3 Comparison with SEAMO and SEAMO2

Our next set of experiments was to compare SEAMO-R against SEAMO and
SEAMO2 on the QMC problem in order to assess the contribution of our re-
generation strategy and self-adaptive decoder on the good results obtained. We
incorporated the self-adaptive decoder into SEAMO and SEAMO2 for these ex-
periments. Average results are presented in Table 4 and it is clear that SEAMO-R
outperforms SEAMO and SEAMO2.

We also examined the performance of SEAMO-R, SEAMO and SEAMO2
throughout the search process. We traced the evolution of the average values
for the set of non-dominated solutions at every 50 generations in each of the
30 runs and for all 7 data sets. In Figure 10, we only present graphs for 3
data sets, March2001, June2001, September2001 which are representative of all
our results. The graphs show that SEAMO-R quickly outperforms SEAMO and
SEAMO2 and overall, SEAMO-R improves the quality of the non-dominated
solutions very rapidly. While the replacement strategy in SEAMO2 helped this
algorithm to outperform SEAMO on multi-objective benchmark problems [15],
our experiments show that our re-generation strategy contributes substantially
to the good results obtained on the highly constrained QMC nurse scheduling
problem.

Regarding multi-objective optimisation, we evaluate the Pareto fronts pro-
duced by SEAMO, SEAMO2, SEAMO-R using two metrics, size of the space
covered S and coverage of two sets C, proposed in [13]. The S hypervolume met-
ric is scaled as the percentage of the volume created by the origin and the refer-
ence point (100, 100, 3) with respect to (Obj2, Obj3, Obj4). The reference point
is estimated using the average objective vector’s value of the non-dominated so-
lutions in the initial population. With respect to the coverage metric C, all non-
dominated solutions in the final population of SEAMO-R dominate the ones of
SEAMO and SEAMO2 for all 7 data sets. Figure 11 measure the percentage of
non-dominated objective space. The horizontal axes present SEAMO, SEAMO2,
SEAMO-R. The size of the space covered produced by SEAMO-R is much better
than the one of SEAMO and SEAMO2 for all 7 data sets. As it can be seen, the
results for June2001 and July2001 are not as good as March2001 because of the
shortage of available staff-hours which was explained above.

A Simple Evolutionary Algorithm with Self-adaptation 151

March2001

0

10

20

30

40

50

60

70

80

90

0 30 60 90 120 150Time

N
u

m
b

er
 o

f
V

io
la

ti
o

n
s

SEAMO Obj2 SEAMO Obj3

SEAMO2 Obj2 SEAMO2 Obj3

SEAMO-R Obj2 SEAMO-R Obj3

(a) March2001 Obj2 Obj3

March2001

0.2

0.4

0.6

0.8

1.0

1.2

0 30 60 90 120 150Time

V
ar

ia
ti

o
n

SEAMO Obj4
SEAMO2 Obj4
SEAMO-R Obj4

(b) March2001 Obj4

June2001

0

10

20

30

40

50

60

70

80

90

0 30 60 90 120 150Time

N
u

m
b

er
 o

f
V

io
la

ti
o

n
s

SEAMO Obj2 SEAMO Obj3

SEAMO2 Obj2 SEAMO2 Obj3

SEAMO-R Obj2 SEAMO-R Obj3

(c) June2001 Obj2 Obj3

June2001

0.2

0.4

0.6

0.8

1.0

1.2

0 30 60 90 120 150Time

V
ar

ia
ti

o
n

SEAMO Obj4
SEAMO2 Obj4
SEAMO-R Obj4

(d) June2001 Obj4

September2001

0

10

20

30

40

50

60

70

80

90

0 30 60 90 120 150Time

N
u

m
b

er
 o

f
V

io
la

ti
o

n
s

SEAMO Obj2 SEAMO Obj3

SEAMO2 Obj2 SEAMO2 Obj3

SEAMO-R Obj2 SEAMO-R Obj3

(e) September2001 Obj2 Obj3

September2001

0.2

0.4

0.6

0.8

1.0

1.2

0 30 60 90 120 150Time

V
ar

ia
ti

o
n

SEAMO Obj4
SEAMO2 Obj4
SEAMO-R Obj4

(f) September2001 Obj4

Fig. 10. Performance of SEAMO-R, SEAMO and SEAMO2 on the QMC problem

6.4 Selecting a Ward Schedule

Although we recorded all non-dominated solutions in the final population for
each run, here we simulate the decision-making process of choosing one schedule
from the set of alternatives. We assume that a ‘best schedule’ is chosen based
on the following priority:

1. number of violations of SingleNight, WeekendSplit,WeekendBalance (Obj2)
2. number of violations of Coverage (Obj3)
3. the penalty for CoverageBalance (Obj4)
4. the overall nurses’ preferences satisfaction SoftRequest (Obj1)

152 D. Landa-silva and K.N. Le

0
0
.2

0
.4

0
.6

0
.8

1

SEAMO SEAMO2 SEAMO-R

(a) Mar2001

0
0
.2

0
.4

0
.6

0
.8

1

SEAMO SEAMO2 SEAMO-R

(b) Apr2001

0
0

.2
0

.4
0

.6
0

.8
1

SEAMO SEAMO2 SEAMO-R

(c) May2001

0
0

.2
0

.4
0

.6
0

.8
1

SEAMO SEAMO2 SEAMO-R

(d) Jun2001

0
0
.2

0
.4

0
.6

0
.8

1

SEAMO SEAMO2 SEAMO-R

(e) Mar2001

0
0

.2
0

.4
0

.6
0

.8
1

SEAMO SEAMO2 SEAMO-R

(f) Jul2001

0
0

.2
0

.4
0

.6
0

.8
1

SEAMO SEAMO2 SEAMO-R

(g) Aug2001

0
0
.2

0
.4

0
.6

0
.8

1

SEAMO SEAMO2 SEAMO-R

(h) Sep2001

Fig. 11. Performance of SEAMO-R, SEAMO and SEAMO2 on the QMC problem
based on size of the uncovered space S

However, different decision makers could use different priorities and a different
schedule from the obtained non-dominated set would be chosen. We present the
objective values for these ‘best schedules’ in Table 5.

Table 5. A selected ‘best schedule’ for each data set

Period Obj2 Obj3 Obj4 Obj1
March2001 2.567 5.8 0.271 89.7%
April2001 2.000 9.767 0.275 88.9%
May2001 2.267 16.5 0.231 90.1%
June2001 0.867 39.977 0.261 92.8%
July2001 1.900 39.900 0.318 87.2%

August2001 3.467 8.233 0.217 90.0%
September2001 2.567 20.167 0.253 89.2%

A Simple Evolutionary Algorithm with Self-adaptation 153

Table 6. Average results of SEAMO-R on Beddoe and Petrovic data sets [10,11]

SEAMO-R CABAROST
(CB-OBJ-TL-R10)

Period Obj3 Obj1 Obj3 Obj1
March2001 2.600 88.6% 0.100 90.1%
April2001 4.900 89.3% 0.000 90.7%

6.5 Previous Results on the QMC Problem

As it was mentioned in Subsection 2.4, Beddoe and Petrovic used a simplified
version of the QMC problem and tackled it in a single-objective manner [10,11].
We applied our SEAMO-R approach to the data sets (March2001 and April2001)
used by Beddoe and Petrovic and results are reported in Table 6. We can see
that the results obtained by SEAMO-R are slightly worse than those reported
by Beddoe and Petrovic. However, note that the number of violations of the
Coverage constraint (Obj3) produced by SEAMO-R on the Beddoe and Petrovic
data sets is only slightly better than the number of violations on the data sets
of this paper (Table 3), although the later data sets correspond to much more
constrained instances. Full details of the comparison with the work of Beddoe
and Petrovic are available in [21]. In order to facilitate further research and
comparison with our results, we make the QMC problem instances available in
the web page mentioned in Section 2.

7 Final Remarks

We have presented a multi-objective evolutionary approach to tackle a real-world
nurse scheduling problem in which the satisfaction of staff preferences drives the
search for non-dominated solutions. We described an adaptation of the Simple
Evolutionary Algorithm for Multi-objective Optimisation (SEAMO) to tackle a
nurse scheduling problem with four objectives. One of the objectives is set as a
target while the other three are subject to optimisation. In our multi-objective
approach, we have grouped soft constraints in a manner that is meaningful to
the decision-maker (usually a senior nurse). The target objective is associated
to the satisfaction of nurses’ preferences. The other three objectives are asso-
ciated to 1) meeting work regulations, 2) meeting coverage demand and, 3)
ensuring balanced coverage demand for the whole scheduling period. We devel-
oped a re-generation strategy to aid diversification and a self-adaptive decoder
to repair constraint violations. These two mechanisms are driven by the target
level of nurses’ preferences satisfaction which can be set by the decision-maker.
The resulting algorithm is SEAMO-R, a Simple Evolutionary Algorithm with
Re-generation for Multi-objective Optimisation. The re-generation strategy re-
places dominated solutions with new ones to avoid stagnation. The self-adaptive
decoder uses the nurse preference schedule, a random permutation of shifts and
a self-mutation operator to construct schedules and maintain feasibility. Our

154 D. Landa-silva and K.N. Le

results show that SEAMO-R produces sets of good quality of feasible and non-
dominated ward schedules for the QMC nurse scheduling problem.

References

1. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An annotated
bibliography of personnel scheduling and rostering. Annals of Operations Re-
search 127, 21–144 (2004)

2. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: a review of applications, methods and models. European Journal of Opera-
tional Research 153, 3–27 (2004)

3. Burke, E.K., De Causmaecker, P., Vanden Berghe, G.: The state of the art of nurse
scheduling. Journal of Scheduling 7, 441–499 (2004)

4. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems: a biblio-
graphic survey. European Journal of Operational Research 151, 447–460 (2003)

5. Authur, J.F., Ravindran, A.: A multiple objective nurse scheduling model. AIIE
Transactions 13(1), 55–60 (1981)

6. Berrada, I., Ferland, J.A., Michelon, P.: A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Sci-
ences 30(3), 183–193 (1996)

7. Landa Silva, J.D., Burke, E.K., Petrovic, S.: An introduction to multiobjective
metaheuristics for scheduling and timetabling. In: Gandibleux, X., Sevaux, M.,
Sorensen, K., T’kindt, V. (eds.) Metaheuristic for multiobjective optimisation. Lec-
ture Notes in Economics and Mathematical Systems, vol. 535, pp. 91–129 (2004)

8. Jaszkiewicz, A.: A metaheuristic approach to multiple objective nurse scheduling.
Foundations of Computing and Decision Sciences 22(3), 169–183 (1997)

9. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing - a metaheuristic for
multiple-objective combinatorial optimization. Journal of Multicriteria Decision
Analysis 7(1), 34–47 (1998)

10. Beddoe, G.R., Petrovic, S.: Combining case-based reasoning with tabu search for
personnel rostering problems. Computer Science Technical Report No. NOTTCS-
TR-2004-5, The University of Nottingham (2004)

11. Beddoe, G.R., Petrovic, S.: Enhancing case-based reasoning for personnel roster-
ing with selected tabu search concepts. The Journal of The Operational Research
Society (to appear, 2007)

12. Valenzuela, C.L.: A simple evolutionary algorithm for multi-objective optimization
(seamo). In: IEEE World Congress on Computational Intelligence (WCCI 2002):
Congress on Evolutionary Computation (CEC 2002), pp. 717–722. IEEE press, Los
Alamitos (2002)

13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

14. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-
tors on the traveling salesman problem. In: Genetic Algorithms and their Applica-
tion: Proceedings of the Second International Conference on Genetic Algorithms,
pp. 224–230 (1987)

15. Mumford, C.L.: Simple population replacement strategies for a steady-state multi-
objective evolutionary algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 1389–1400. Springer, Heidelberg (2004)

A Simple Evolutionary Algorithm with Self-adaptation 155

16. Meyer-Nieberg, S., Beyer, H.G.: Self-adaptation in evolutionary algorithms. In:
Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary
Algorithms, vol. 54, pp. 47–76. Springer, Heidelberg (2007)

17. Sareni, B., Regnier, J., Roboam, X.: Recombination and self-adaptation in multi-
objective genetic algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E.,
Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 115–126. Springer, Heidelberg
(2004)

18. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary compu-
tation: a survey. In: 1997 IEEE International Conference on Evolutionary Compu-
tation, pp. 65–69 (1997)

19. Bäck, T.: Self-adaptation in genetic algorithms. In: Varela, F.J., Bourgine, P. (eds.)
Proceedings of the 1st European Conference on Artificial Life (ECAL 1992), pp.
227–235. MIT Press, Cambridge (1992)

20. Angeline, P.J.: Adaptive and aelf-adaptive evolutionary computations. In:
Palaniswami, M., Attikiouzel, Y. (eds.) Computational Intelligence: A Dynamic
Systems Perspective, pp. 152–163. IEEE Press, Los Alamitos (1995)

21. Le, K.N.: An evolutionary algorithm for multi-objective nurse scheduling. Master
Thesis, School of Computer Science and IT, The University of Nottingham (2006)

Individual Evolution as an Adaptive Strategy
for Photogrammetric Network Design

Gustavo Olague1, Enrique Dunn1, and Evelyne Lutton2

1 CICESE, Km. 107 carretera Tij-Eda 22860, Ensenada México
{olague,edunn}@cicese.mx

2 INRIA Rocquencourt, Le Chesnay Cedex France
evelyne.lutton@inria.fr

Summary. This chapter introduces individual evolution as a strategy for problem
solving. This strategy proposes to partition the original problem into a set of homoge-
neous elements, whose individual contribution to the problem solution can be evaluated
separately. A population comprised of these homogeneous elements is evolved with the
goal of creating a single solution by a process of aggregation. The goal of individual
evolution is to locally build better individuals that jointly form better global solu-
tions. The implementation of the proposed approach requires addressing aspects such
as problem decomposition and representation, local and global fitness integration, as
well as diversity preservation mechanisms. The benefit of applying the individual evo-
lution approach for problem solving is a substantial reduction in computational effort
expended in the evolutionary optimization process. This chapter shows an example
from vision metrology where experimental results coincide with previous state of the
art photogrammetric network design methodologies, while incurring in only a fraction
of the computational cost.

Keywords: Individual Evolution, Coevolution, Photogrammetric Network Design.

1 Introduction

Individual evolution is a methodology that simplifies the complexity of an evolu-
tionary algorithm based on the partition of the solution in smaller elements. This
strategy could be seen from the standpoint of coevolution where several solutions
evolve in the form of interacting coadapted subcomponents. To successfully solve
increasingly complex problems, we must develop effective techniques for evolv-
ing cooperative solutions in the form of interacting coadapted subcomponents.
Cooperative coevolution is implemented from the standpoint of individual evo-
lution, which is also known as Parisian evolution. In the Parisian approach each
individual should find only a part of the problem solution; then, a process of ag-
gregation should group a suitable solution. In general, this methodology follows
a strategy where explicit notions of modularity are applied to provide reason-
able opportunities for solutions to evolve in the form of interacting coadapted
subcomponents.

In the cooperative coevolutionary framework [2, 3] two main aspects are
reported by which traditional computational intelligence approaches are not

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 157–176, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

158 G. Olague, E. Dunn, and E. Lutton

entirely adequate for solving complex problems with high interactions between
population members. Firstly, classical evolutionary approaches have a strong
tendency to converge into a single solution in response to an increasing number
of trials being allocated to observed regions of the solution space with above
average fitness. As a result, computational effort is wasted in the search of a
single solution. Secondly, individuals encoded by traditional computational in-
telligence approaches typically represent complete solutions that are evaluated
in isolation. In this way, the interactions between population members are not
modelled; and as a result, there is no evolutionary pressure for coadaptation to
occur.

This work presents a novel photogrammetric network design strategy based on
the individual evolution paradigm in which reasonable subcomponents emerge
rather than being hand designed [4]. Parisian evolution provides the key concepts
to allow an adequate framework to identify and represent such subcomponents,
provide an environment in which they can interact and coadapt, identify local
and global fitness evaluations, and create mechanisms for population diversity
preservation, in which the evolutionary algorithm could be applied to solve the
difficult problem of photogrammetric network design.

1.1 Previous Work

Photogrammetric network design addresses the process of placing cameras in
order to perform photogrammetric tasks. There is a new interest on this topic
from several communities [1, 5, 8, 11, 20, 21]. The choice of an adequate imaging
geometry plays a major role in this process [7, 8]. The process, by which the best
possible configuration can be automatically determined, is still an open research
area [19]. This design problem offers an intricate combination of interactions be-
tween the sensor physical constraints, the mathematical modelling of the prob-
lem, as well as the numerical methods used to solve it [17]. Moreover, the lack of a
widespread utilization of network design inside the photogrammetric community
can be attributed to the inherent design complexity and its expensive computa-
tional requirements. Photogrammetric network design requires complex spatial
reasoning about the geometrical characteristics of an object and the mathemati-
cal modelling of optical triangulation. This reasoning is by no means trivial and
has been the topic of very diverse research. For example, the work of Mason [12]
solves the problem of camera placement by incorporating considerable a priori
knowledge into an expert system. In this way, a set of heuristics based on the
theory of generic networks is used to model the decision making process. On the
other hand, the work of Olague and Mohr [16] uses an evolutionary computation
approach, developing a linear criterion based on the process of error propaga-
tion, which was further extended considering a bundle adjustment [15]. In this
way, the required spatial reasoning is carried out by an adaptive system based
on stochastic meta-heuristics that yield human competitive results. Recently,
the work of Saadatseresht et al. [18] addresses the problem of improving an ex-
isting camera network by positioning additional sensing stations based on what
they term “visibility uncertainty prediction modelling”. All the above works give

Individual Evolution as an Adaptive Strategy 159

special attention to the usefulness of rigorous approaches such as bundle adjust-
ment in order to characterize the quality of the photogrammetric network. In
particular, the works of Fraser [6] and Olague and Mohr [16] have provided in-
sight into how a mathematical modelling could be derived in order to simplify
the network design. The aim of this work is to present a new network design
simplification based on the Parisian approach.

The Parisian approach of individual evolution considers that a single individ-
ual represents a partial solution to the considered problem. Hence, a process of
aggregation of multiple individuals is needed in order to arrive at a solution. We
incorporate such approach to the camera network design problem by evolving a
population of camera subnetworks. As a result, computational requirements are
greatly reduced for individual fitness evaluation due to the reduced size of the
total mathematical model. Parisian evolution is a complex optimization tech-
nique because multiple new aspects need to be considered in the evolutionary
computation framework, such as: problem partitioning and representation, lo-
cal fitness evaluation, global fitness evaluation and redistribution, population
diversity preservation, and finally aggregation of individuals. In this paper, we
attempt to combine widely accepted principals and techniques used in EC re-
search. On the other hand, in the case of radical new concepts we provide a first
solution based on the characteristics of the studied problem.

This paper is organized as follows. First, the paradigm of Parisian evolution
is presented. Then, a solution to the photogrammetric network design in terms
of Parisian evolution is described together with implementation details about
the problem partitioning, solution aggregation, individual fitness evaluation and
diversity preservation techniques. Finally, experimental results are presented fol-
lowed by discussion and conclusions.

2 Parisian Evolution Paradigm

Parisian evolution originally proposed by Collet et al. [2], differs from typical ap-
proaches of evolutionary computation in the idea that a single individual of the
population represents only a part of the solution. It is similar to the Michigan
approach developed for Classifier Systems [10], where a solution is a rule base
obtained from an evolved population of individual rule subsets. In this paradigm
an aggregation of multiple individuals should be considered in order to obtain
a solution to the problem being studied. This aggregation could be explicit or
implicit. The motivation of such approach is to make an efficient use of the
genetic search process. This is achieved from two complementary standpoints.
Firstly, the algorithm discards less computational effort at the end of execution,
while considering more than a single best individual as output. Secondly, the
computational expense of the fitness function evaluation is considerably reduced
for a single individual. The Parisian approach could be stated as cooperative
coevolution with the aim to be applied in the general context of computational
intelligence. The major difference with traditional cooperative coevolution is on
the way of organizing the individuals. In traditional cooperative coevolution the

160 G. Olague, E. Dunn, and E. Lutton

Fig. 1. Outline of our implementation of the Parisian approach. Fitness evaluation is
modified in order to consider the local and global contribution of an individual.

individuals are divided in species that are genetically isolated. In other words,
individuals only mate with other members of their species. Mating restrictions
are enforced simply by evolving the species in separate populations. The only
feedback is through a share domain model which produces a cooperative relation-
ship. Contrary to this way of setting the framework for cooperative coevolution;
the Parisian approach uses the idea of individual evolution to promote the ex-
change of genetic material based on the local and global fitness evaluations. This
allows the coevolution of complex behaviors. Under the Parisian approach, many
of the canonical aspects of evolutionary algorithms are retained, providing great
flexibility in its deployment. From an algorithmic viewpoint, see Fig. 1, Parisian
evolution needs four aspects in their design which are implemented with differ-
ent meta-heuristics. The reader should be aware that as other meta-heuristic
approaches there are not mathematical models, which could yield the optimal
parameter setting in each situation. Therefore, we decide to obtain the best set of
parameters of our algorithm through statistical experimentation. Thus, Parisian
evolution should consider the following aspects:

1. Partial Encoding. This is the fundamental concept that is need in cooper-
ative coevolution. The genetic representation is achieved through a number
of single individuals that encode a partial solution. Therefore an individual
aggregation step is necessary in order to create a complete problem solu-
tion. This process of aggregation could be explicit or implicit according to
the problem being studied. This concept provides the strength to decompose

Individual Evolution as an Adaptive Strategy 161

the problem by determining an appropriate number of subcomponents and
the role that each subcomponent will play. In general the aggregation step
has been defined by the human designer due to the difficulty of providing
mathematical solutions. In the photogrammetric network design each cam-
era network represents a subnetwork. Obviously, a single subnetwork is not
enough to measure a complex object.

2. The Environment. The design of the system should provide an environment
where different partial solutions interact and coadapt in order to allow the
emergence of better aggregate solutions. Obviously, such a design interdicts
the evolution of subcomponents without interdependencies, in order to avoid
the evolution of isolate subcomponents. In the photogrammetric network de-
sign, the complex object being measured constraints the landscape in which
complex interdependencies and interactions emerge.

3. Local and Global Fitness. A meaningful merit function must be designed for
each partial solution. In this way, the worthiness of a single individual can
be evaluated in order to estimate the potential contribution to an aggregate
solution. The evolutionary engine requires a scheme for combining local and
global fitness values. This could be explicit or implicit. In the photogram-
metric network design the worthiness of the final configuration is a product
of the interactions between the local and global evaluations carried out by
an analysis of error propagation over the triangulation stage.

4. Population Diversity Preservation. In contrast to traditional computational
intelligence approaches where diversity needs to be preserved only during
enough time to perform a reasonable exploration of the search space; a co-
operative coevolutionary approach requires that all subcomponents should
be present in the final solution in order to maintain a set of complementary
partial solutions.. In this respect, diversity preservation techniques need to
be implemented. In evolutionary algorithms three different techniques could
be applied: 1) heuristic modification of genetic operators in order to pro-
mote diversity, 2) fitness function penalization for crowded individuals, and
3) incorporation of some higher level algorithmic structure to generate and
manage sub-populations. In this work, we apply the fitness sharing scheme
[9].

In general terms, the Parisian approach makes the following assumptions:

1. A complete problem solution X ∈ S can be decomposed into n components
xi ∈ S′. Moreover, there exists a mapping T : S′ × · · · × S′ → S.

2. There exists a meaningful fitness function flocal : S′ → R for evaluating each
decomposed element.

3. There exists a meaningful fitness function fglobal : S → R for evaluating an
aggregate solution.

4. The fitness landscape defined by flocal and fglobal has sufficient structure to
guide the evolutionary search process.

Under these assumptions, the evolutionary search is carried out over S′ op-
timizing flocal. However, the fitness values of the evolved individuals are sys-
tematically modified in order to promote the emergence of improved composite

162 G. Olague, E. Dunn, and E. Lutton

Fig. 2. Conceptual description of our Parisian approach. Interaction between different
search spaces is based on adjusting the population fitness values in accordance to a
global fitness evaluation.

solutions in S. This is achieved by: (1) periodically sampling the evolving pop-
ulation to form aggregate solutions, (2) evaluating aggregate solutions through
fglobal and (3) adjusting the fitness values of the evolving individuals in S′.
Fig. 2 illustrates this process, as well as the relationship between different search
spaces involved in the Parisian evolutionary approach. In this way, complex pop-
ulation dynamics could emerge based on the interactions between flocal and
fglobal.

3 Individual Evolution for Camera Planning

Camera placement can be viewed as a geometric design problem where the con-
trol variables are the spatial positioning and orientation parameters of a finite
set of cameras. In order to state such design problem in optimization terms a
non-linear criterion is adopted based on the process of error propagation. How-
ever, due to the imaging geometry described by the mathematical modelling of
the problem a strongly constrained optimization problem emerges. In this sec-
tion we will discuss the different implementation issues of the Parisian approach
within the camera placement problem. The reader with interest in understand-
ing the photogrammetric problem is advised to read the given references where
complete explanations are provided.

Individual Evolution as an Adaptive Strategy 163

3.1 Problem Partitioning and Representation

A viewing sphere model for camera placement is adopted in order to reduce the
dimensionality of our search space. Therefore, given a fixed radius, each camera
position is defined by its polar coordinates [ai, bi]. A network of M cameras is
represented by a real valued vector

Ψ ∈ R
2M where αi = Ψ2i−1, βi = Ψ2i for i = 1, . . . , M. (1)

Our design problem allows the decomposition into individual elements since the
complete camera network is formed by a set of homogeneous components. Nev-
ertheless, a decision on the level of granularity of our decomposition is crucial.
Here we have the choice of an individual representing a single camera or a cam-
era subnetwork (i.e., a set of cameras). We have decided for the latter option
since such an individual can be meaningfully evaluated in terms of its imaging
geometry contribution to 3D reconstruction. Hence, each individual in the pop-
ulation represents a fixed size subnetwork of N cameras, denoted by a vector of
the form

ψj ∈ R
2N where αi = ψj

2i−1, βi = ψj
2i for i = 1, . . . , N ; (2)

where j is defined as the subnetwork population index. Accordingly, a complete
camera network specification is given by the aggregation of J subnetworks

Ψ ∈ R
2M =

J⋃
j=1

ψj , where M = J × N. (3)

3.2 Evaluating a Camera Network Configuration

Currently, rigorous bundle adjustment procedures can be performed on a stan-
dard laptop [13]. However, the photogrammetric network design, proposed in our
previous work, requires considerable computational resources due to the evolu-
tionary computation technique [15]. Fraser [6] has shown that a simplified model
called Limiting Error Propagation closely approximates the covariance matrix
generated for the object point XYZ coordinates of the rigorous approach known
as Total Error Propagation. This simplification is valid for strong convergent
multi-station photogrammetric networks in the case of the First Order Design.
The vision metrology algorithms rely on applying a set of non-linear transfor-
mations to the image measurements to compute world measurements. Since the
input quantities and the transformations are uncertain, the output measure-
ments are also uncertain. In order to determine how the uncertainty propagates
from input to output of the computation chain a much faster analytical approach
can be applied to estimate the 3D measurement accuracy [16]. The analytical
method takes account of the fact that the 3D measurement point Pj is related to
the input data pij by an analytical function f (non-linear). This relationship is
approximated with a linear one by means of a first order Taylor series expansion.

164 G. Olague, E. Dunn, and E. Lutton

By assuming noise only on the input data pij and not on the transformation we
obtain the following relationship:

f(p) = f(E[p]) +
∂f(E[p])

∂p
(p − E[p]) + Θ(p) , (4)

from which, ignoring the second order terms, it is easy to compute the mean
value of the output measurements and consequently the covariance of the
measurements:

ΛP � ∂f(E[p])
∂p

Λp
∂f(E[p])

∂p

T

. (5)

Local Fitness Evaluation

This criterion estimates the uncertainty of the measurements that will be ob-
tained by the camera network. In general such approach is applied over a com-
plex object considering all cameras concurrently. Since in our representation we
are working with camera subnetworks, it is unlikely that any single individual
successfully captures the completed 3D object denoted by the whole set of 3D
points Q. Hence, the object is also partitioned into R disjoint regions or subsets
of points, in such a way that Q =

⋃R
i=1 Pi. A single region of the object is consid-

ered visible by a camera network if at least two cameras triangulate it (i.e., there
are no occlusions) and for each of these cameras the incidence angle constraint
for 3D reconstruction is satisfied. Hence, the visibility of a camera subnetwork
ψj is limited to a subset of the whole object, expressed by V(ψj) ⊆ Q. These
values are calculated a priori and stored in a database for on-line query during
the optimization procedure. Accordingly, we define the visibility constraint as
follows:

Cvis(ψj ,Pi) =
{

1 si Pi ⊂ V(ψj)
0 otherwise .

The reasoning of such local fitness formulae is that subnetworks which provide
greater object coverage with higher precision should have higher fitness values.
Hence, the uncertainty for each of the sets Pi is evaluated for a single individual
ψj accordingly to Eq. 5, discarding the portions of the object not sensed by such
a subnetwork. In order to promote camera subnetworks that provide greater
coverage, the local fitness value is proportional to the number of regions Pi

sensed by such subnetwork, which is expressed as #[V(ψj)]. Thus, we define the
local fitness as follows

flocal(ψj) = ws1
#[V(ψj)]

max f1(ψj ,Pi)
+

(1 − w) s2

f2(ψj)
∀Pi : Cvis(ψj ,Pi) = 1, (6)

where s1 and s2 are scale factors applied to each criterion, while the parameter
w controls the weight assigned to each criterion. In this formulae, f1(ψj ,Pi)
represents the 3D reconstruction uncertainty of a given region Pi, under ob-
servation by a subnetwork parameterized by ψj . Note that f1(ψj ,Pi) > 0,
∀Pi : Cvis(ψj ,Pi) = 1. In the cases where an individual network does not
cover any object region, its fitness is simply set to flocal(ψj) = 0.

Individual Evolution as an Adaptive Strategy 165

Global Fitness Evaluation

Once the local fitness of each individual has been evaluated, a process of aggre-
gation is needed to obtain a solution for the camera network design problem.
In order to achieve it, a selection of a group of individuals from the population
must be realized. Accordingly, at each generation t an aggregate solution Ψ(t)
is obtained for global fitness evaluation. This global evaluation uses the same
criterion of local fitness evaluation, which also combines f1 and f2 through the
following expression:

fglobal(Ψ(t)) =
w s1

max f1(Ψ(t),Pi)
+

(1 − w) s2

f2(Ψ(t))
∀Pi : Cvis(Ψ(t),Pi) = 1, (7)

Such value describes the aptitude of the aggregate solution obtained at gen-
eration t. s1, s2 and w are scale factors that control the balance between f1
and f2. Note that here we also have f1(Ψ(t), Pi) > 0. On the other hand, aggre-
gate networks which do not provide complete object coverage are penalized with
fglobal(Ψ) = 1. Obviously the goal of the algorithm is to encourage the improve-
ment of this global fitness along the course of successive generations. However,
another purpose of such evaluation is to be able to reflect on the population
of partial solutions the effect of the evolutionary process along the aggregate
solutions. Individuals participating of the aggregate solution will be rewarded
or penalized based on its global fitness; as well as, on the complete solution
characteristics. On the other hand, promising individuals not selected should
be compensated so they might contribute in latter stages of the evolutionary
process. In this way, the process of redistributing the global fitness plays a key
factor in the strategy of individual evolution.

Global Fitness Redistribution

The best solution to the network design problem is one that reconstructs com-
pletely the object with the highest accuracy. Under the Parisian approach this
solution is created by aggregating multiple individuals from an evolving popu-
lation. In this way, individuals that contribute to attaining and improving valid
solutions should be favored in the evolutionary process. This requires addressing
aspects of function optimization and constraint satisfaction. In this subsection
we shall describe how the global fitness evaluation is used to deal concurrently
with both of these issues. Our approach consists in periodically adjusting the
local fitness values of individuals in the population based on the results of global
fitness evaluations. In particular, the local fitness value of a single individual is
incremented or decremented after considering aspects such as: global fitness value
of the aggregate solution, local fitness values of other individuals, as well as the
individual’s potential for improving the aggregate solution. This is achieved by
defining two different local fitness adjustment functions, one to promote global
fitness optimization and another to promote global constraint satisfaction.

Function optimization will be addressed first. In order to reflect the quality
of an aggregate solution Ψ(t) on each of the individuals ψj that compose it, we

166 G. Olague, E. Dunn, and E. Lutton

use the ratio of improvement in global fitness among successive generations. The
magnitude of the adjustment of an individual’s local fitness is proportional to
this ratio as follows:

g1(ψj) = floc(ψj)
[

fglobal(Ψ(t))
fglobal(Ψ(t − 1))

− 1
]

∀ψj ∈ Ψ(t). (8)

The fitness of each of the individuals composing the solution Ψ(t) will be
multiplied by this ratio, enhancing or degrading its individual local fitness ac-
cordingly. Now we shall consider the constraint satisfaction. It is very likely that
each individual subnetwork will only cover part of the object. It is also possi-
ble that a given aggregation of individuals will not provide full object coverage.
In this respect, when a particular aggregate solution Ψ(t) does not cover some
object region Pi (e.g., Cvis(Ψ(t),Pi) = 0) it would be desirable to enhance the
fitness value of those individuals on the population that indeed cover such re-
gion. The amount of enhancement of those individuals shall be proportional to
their difference in fitness with respect to the best individual in the population.
Hence, we have

g2(ψj) = flocal(ψbest) − flocal(ψj) ∀ψj : V(ψj)
⋂

V(Ψ(t)) �= ∅. (9)

Note that this value is only calculated for those individuals which cover an
object region not sensed by the aggregate solution computed during the current
generation. In other words, it is calculated by those individuals satisfying global
constraints that are not satisfied by the aggregate solution. Once both fitness
adjustment functions are calculated, the global fitness is fed-back to the general
population as follows:

flocal(ψj) =

⎧⎨
⎩

flocal(ψj) + λ1g1(ψj) if ψj ∈ Ψ(t)
flocal(ψj) + λ2g2(ψj) if V(ψj)

⋂
V(Ψ(t)) �= ∅

flocal(ψj) otherwise .

Here, λ1 and λ2 are user defined parameters that reflect the relative importance
given to each of the aspects involved in the global fitness redistribution.

Population Diversity Preservation

Maintaining a diverse set of individual solutions is a prerequisite for our imple-
mentation of the Parisian approach. This is relevant because our search for an
optimal configuration is developed over a highly multi-modal space. In evolution-
ary computing diversity preservation techniques can generally fall into some of
the following categories: (a) heuristic modification of genetic operators in order
to promote diversity, (b) fitness function penalization for crowded individuals,
and (c) incorporation of some higher level algorithmic structure to generate and

Individual Evolution as an Adaptive Strategy 167

manage sub-populations. In this work, the fitness sharing scheme is adopted [9].
In this way, the fitness of an individual is adjusted by

f ′
local(ψj) =

flocal(ψj)∑K
i=1 sh(ψi, ψj)

, where

sh(ψi, ψj) =

{
1 − ‖ψi,ψj‖

σsh
if ‖ψi, ψj‖ < σsh

0 otherwise .

Since our individuals represent sets of spatially distributed cameras, the cho-
sen metric was the Hausdorff distance. This metric is defined for our problem
by the following expression

‖ψi, ψj‖ = h(ψi, ψj) = max
a∈ψi

{min
b∈ψj

{d(a, b)}},

where a, b represent the 3D positions of each camera in a given network and
d(a, b) is the Euclidean distance among points. Geometrically, this metric ex-
presses the maximum distance of a set to the nearest point in the other set.
Based on such geometrical interpretation we can empirically define an appro-
priate sharing radius σsh. A related issue is the choice of a selection operator
during evolution. One choice could be using either ranking based selection or
fitness proportional selection. It has been reported that tournament selection,
is not adequate for fitness sharing approaches to multi-modal optimization due
to the high selection pressure [14]. Hence, in our approach we use a stochastic
remainder selection operator. This choice is also justified by the fact that we use
proportional fitness adjustment during global fitness redistribution.

Aggregation of Individuals

At each generation a set of individuals is selected from the population in order to
form a composite solution by means of aggregation. The approach by which such
selection is carried out reflects directly on the quality of the solutions obtained
by our algorithm. Such procedure can be viewed as taking a sample of individu-
als from the population. A brute force approach which evaluates every possible
combination of individuals is discarded from consideration due to its computa-
tional cost. An alternative would be that of having a procedural mechanism by
which a composite solution is incrementally constructed from the available pop-
ulation. This is in principle similar to incorporating local search in evolutionary
techniques (e.g., memetic algorithms) and is necessarily application dependent.
A more general approach is to use the individual’s fitness values to influence the
aggregation mechanism. In such a case we have the choice of either determin-
istic (i.e., elitist) or stochastic (i.e., roulette, tournament) selection procedures.
In order to make such decision, the characteristics of the diversity preservation
method must be taken into account. Fitness sharing mechanisms attempt to
form and maintain clusters of individuals over each of the multi-modal function
local maxima (or minima as the case may be). The number of elements in each

168 G. Olague, E. Dunn, and E. Lutton

of these maxima should be proportional to its magnitude. Hence, the selection
of the best J individuals from the population is likely to produce very similar
individuals belonging to a cluster, even for a well distributed population. Under
such scenario, a clustering technique would be desirable in order to properly
identify each local maxima for consideration into the aggregate solution [3]. To
avoid such calculations we have implemented the following simple procedure:

for i=1 to J
- Select the Best Individual in the Population
- Eliminate all Individuals within the Sharing Radius

Naturally, special considerations need to be taken for the case where the pop-
ulation does not provide enough diversity for selecting J different individuals.
However, this procedure takes advantage of the fact that distances among in-
dividuals have already been calculated in the fitness sharing stage. Heuristic
provisions can be made to ensure that the selected individuals are maintained
across several generations. This would correspond to elitist selection in typical
genetic algorithms.

4 Experimental Results

The reconstruction of a complex 3D object is considered in our experimentation.
The goal is to determine a viewing configuration that will offer optimal results
in terms of reconstruction accuracy. Here, we shall consider the design of a fixed
size camera network of M = 9 stations. According to our approach, the level
of granularity of our problem decomposition needs to be established. For these
series of experiments we will use camera subnetworks of N = 3 cameras. In this
way, each of the individuals in the population will consist of a vector ψ ∈ R

6.
Hence, a total of J = 3 subnetworks will need to be aggregated in order to form a
complete solution to our network design problem. The convex polyhedral object
under study, depicted in Fig. 3, is partitioned into R = 6 regions. The selection
of individuals for solution aggregation is based on their fitness value. Finally, the
user defined valued λ1 and λ2 are set to λ1 = λ2 = 1.0. For all our experiments,
SBX-crossover is utilized with a probability Pc = 0.95 along with polynomial
mutation subject to Pm = 0.05. A sharing radius of σsh = 0.75 was applied.

4.1 Algorithm Performance

We have used stochastic remainder selection for reproduction under generational
replacement. At the same time, the same global fitness function was optimized by
a typical genetic algorithm (e.g., each individual encodes a complete solution).
This was done in order to have some reference point in the assessment of our
proposed methodology. Using a population of 30 individuals, both evolutionary
algorithms were executed for 100 generations.

Fig. 4 plots population performance measures (best, mean, and worse fit-
ness) for a canonical GA on the left and also for our Parisian approach on the

Individual Evolution as an Adaptive Strategy 169

PP11 PP22

PP33

PP55

PP66

Fig. 3. The 3D object under observation. The concave object is partitioned into dif-
ferent regions in order to facilitate the fitness evaluation of subnetworks of small size.
A photogrammetric network formed by nine cameras is illustrated on the right.

right. While these measures are descriptive of the dynamics of our population,
the importance is on the aggregate solution fitness measure. In this respect,
our approach slightly outperforms a canonical methodology in terms of solu-
tion quality. However, these results are made more relevant when considering
the computational cost involved in fitness evaluation. For our studied object,
evaluation based on criterion (1) of a complete network of nine cameras is over
15 times more costly than that of a three camera subnetwork. Accordingly, by
virtue of our problem decomposition, the total execution time of the algorithm is
reduced 10 times. Clearly, a significant benefit in performance has been achieved.

4.2 Imaging Geometry Configurations

Analysis and comparison among the best configurations found by our algorithm
are comparable with the geometrical distributions reported in [15]. Fig. 5 de-
picts two of the configurations found by our algorithm. Note the geometrical
similarities among both configurations. Each of these networks is composed of
three subnetworks that are integrated by three cameras. Different color schemes
depict the membership of each particular camera to a given subnetwork. These
subnetworks correspond to a single individual in the population. In both config-
urations some of the cameras present mixed colors, indicating the composition
of at least two cameras located in the same position. This corresponds to the
Second Order Design stage in photogrammetric network design. The Parisian
approach found similar geometrically configurations from an aggregation of dis-
tinct individuals in both cases. Nevertheless, the configuration on the right has
an improvement of 4.2% on the fitness value in terms of precision. Such discrep-
ancies illustrate the high non-linearity of our search space.

170 G. Olague, E. Dunn, and E. Lutton

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

Mejor Aptitud Individual

Promedio de Aptitud Individual

Peor Aptitud Individual

titud

Generacion

Best Individual Fitness

Generation

Worst Individual Fitness

Average Individual Fitness

Pr
ec

is
io

n

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

Mejor Aptitud Individual

Promedio de Aptitud Individual

Peor Aptitud Individual

Aptitud Agregada

titud

Generacion

Aggregate Solution Fitness

Best Individual Fitness

Average Individual Fitness

Worse Individual Fitness

Generations

Pr
ec

is
io

n

Fig. 4. Performance comparison. On the left, the population evolution of a typical
genetic algorithm is depicted. On the right, higher fitness values are consistently at-
tained by the aggregate solutions of our proposed methodology. Plotted values reflect
the averages over 20 executions with λ1 = λ2 = 1.0.

Individual Evolution as an Adaptive Strategy 171

4.3 Parameter Setting

The choice of mixing values λ1, λ2 is an important aspect in the performance
of the algorithm, as they determine the magnitude of the global fitness adjust-
ment given to each individual. In order to exemplify such phenomena we have
carried out different experiments varying the ratio and magnitude of these val-
ues. Experiments show a fairly robust behavior for similarly scaled values under
1.0. In general, performance deteriorates with respect to an increment on these
parameters. The right plot of Fig. 6 illustrates the scenario where constraint sat-
isfaction is completely predominant over function optimization. As a result, the
fitness value of aggregate solutions is decreased by weaker configurations that
are unreasonably enhanced by the global fitness evaluations.

4.4 Problem Decomposition Granularity

The level of granularity also plays a major role in the performance of our system.
This is reflected in the quality of our solutions, as well as on the efficiency of
our system. In order to illustrate it, the case of a 12 camera network is studied.
Experiments for sub-networks of 2, 3, 4 and 6 cameras were carried out and re-
sults compared against a canonical evolutionary algorithm. For all experiments
a population of 50 individuals was used. Also, mixing parameters were set to
λ1 = λ2 = 1.0 and the sharing radius set to σsh = 0.75. The performance results
after 20 executions are presented in Table 1. The most accurate configuration
was obtained by the canonical evolutionary approach. Among the results for
different levels of decomposition by our Parisian approach, the results favor the
choice of individual subnetworks of small size, as they give better fitness values
along with the highest computational speed-up. The geometric disposition of

Fig. 5. These images show different imaging geometries obtained by our approach,
which represents the best solutions found at different executions of our algorithm.
Membership to a given subnetwork is depicted by camera color.

172 G. Olague, E. Dunn, and E. Lutton

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

Best Individual Fitness

Average Individual Fitness

Worse Individual Fitness

Aggregate Solution Fitness

Precision

Generation

Best Individual Fitness

Average Individual Fitness

Worse Individual Fitness

Aggregate Solution Fitness

Precision

Generation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Best Individual Fitness

Average Individual Fitness

Worse Individual Fitness

Aggregate Solution Fitness

Precision

Generation

Fig. 6. Dependence on parameters λ1, λ2. The plot on the left corresponds to an
execution with mixing values [λ1 = 0.8, λ2 = 0.2] Performance is slightly deteriorated.
The plot on the right represents an execution with values [λ1 = 0, λ2 = 1.5], which
gives almost random algorithm performance.

Individual Evolution as an Adaptive Strategy 173

2 subnetworks of 6 cameras 6 subnetworks of 2 cameras

3 subnetworks of 4 cameras 4 subnetworks of 3 cameras

Fig. 7. Network configurations of 12 cameras with different levels of decomposition
granularity

these resulting camera networks is depicted in Fig. 7. While, in this scenario,
the Parisian approach attained slightly lower fitness values than a canonical ap-
proach. Note that an almost 30 times reduction in execution time was achieved.
Again, a significant benefit in terms of performance has been achieved.

174 G. Olague, E. Dunn, and E. Lutton

Table 1. Results after 20 executions of our algorithm for different levels of granularity

Subnetwork size Best fitness Computational speed-up

2 1666.43 29.72
3 1630.21 21.41
4 1310.84 11.48
6 1758.68 5.03
12 1702.05 1.0

5 Conclusion

The Parisian approach to evolutionary computation offers an efficient way to
address the problem of automated camera placement, while preserving the va-
lidity of photogrammetric procedures. In fact, by virtue of an adequate prob-
lem partition and decomposition, solution quality is improved with considerable
reductions in computational effort for the considered scenarios. Future work
includes incorporating rigorous bundle adjustment procedures, where the com-
putational savings should be even more dramatic. However, such research lines
require careful considerations regarding Zero Order Design for photogrammetric
networks, due to the need for a common datum in bundle adjustment proce-
dures. This work has developed an efficient optimization technique based on an
original conception of population based evolutionary optimum seeking. In par-
ticular, a novel application for the Parisian approach has been described and
important application related aspects have been addressed. This work incorpo-
rated canonical evolutionary principals in order to achieve the goal of evolving a
solution based on the evolution of its components. While promising experimental
results are obtained, a lack of theoretical principals describing the algorithm be-
havior is still pending as in general evolutionary algorithms. Nevertheless, there
are many specialized evolutionary approaches that could be used in conjunction
with our proposed methodology, such as parallel evolutionary algorithms, other
co-evolution techniques or even multi-objective evolutionary algorithms.

Acknowledgement. This research was funded by CONACyT and INRIA through
the LAFMI project 634-212. Second author supported by scholarship 142987
from CONACyT.

References

1. Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision.
IEEE Trans. Syst., Man Cybernet., Part B 34(1), 393–408 (2004)

2. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Individual GP: an alternative
viewpoint for the resolution of complex problems. In: Banxhaf, E., Daida, J., Eiben,
A.E., Garzon, M.H., Honovar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and
Evolutionary Computation Conf. GECCO 1999. Morgan Kaufmann, San Francisco
(1999)

Individual Evolution as an Adaptive Strategy 175

3. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS + Parisian Genetic
Programming = Efficient IFS Inverse Problem Solving. Genet. Programm. Evolv-
able Mach. J. 1(4), 339–361 (2000)

4. Dunn, E., Olague, G., Lutton, E.: Automated Photogrammetric Network Design
Using the Parisian Approach. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne,
D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D.,
Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 356–365. Springer,
Heidelberg (2005)

5. Firoozfam, P., Negahdaripour, S.: Theoretical Accuracy Analysis of N-Ocular Vi-
sion Systems for Scene Reconstruction, Motion Estimation, and Positioning. In:
2nd Internat. Symp. on 3D Data Processing, Visualization, and Transmission
(3DPVT 2004), September 2004, pp. 888–895 (2004)

6. Fraser, C.S.: Limiting Error Propagation in Network Design. Photogramm. Eng.
Remote Sens. 53(5), 487–493 (1987)

7. Fraser, C.S.: Network Design. In: Atkinson, K.B. (ed.) Close Range Photogram-
metry and Machine Vision, pp. 256–281. Whittles Publishing, Caithness, Scotland
(1996)

8. Fraser, C.S., Woods, A., Brizzi, D.: Hyper Redundancy for Accuracy Enhancement
in Automated Close Range Photogrammetry. Photogramm. Record 20(111), 205–
217 (2005)

9. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. Genetic algorithms and their applications. In: Proc. 2nd
Internat. Conf. on Genetic Algorithms, pp. 41–49 (1987)

10. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

11. Hörster, E., Lienhart, R.: On the Optimal Placement of Multiple Visual Sensors.
Internat. Multimedia Conference. In: Proc. 4th ACM internat. Workshop on Video
Surveillance and Sensor Networks, pp. 111–120 (2006)

12. Mason, S.: Heuristic Reasoning Strategy for Automated Sensor Placement. Pho-
togramm. Eng. Remote Sens. 63(9), 1093–1102 (1997)

13. McGlone, C. (ed.): Manual of Photogrammetry. American Society for Photogram-
metry and Remote Sensing, Bethesda, MD, p. 1151 (2004)

14. Oei, C., Goldberg, D., Chang, S.: Tournament Selection. Niching and the Preser-
vation of Diversit. IlliGAL Report No. 91011. Urbana, IL, university of Illinois at
Urbana-Champaign (1991)

15. Olague, G.: Automated Photogrammetric Network Design Using Genetic Algo-
rithms. Photogramm. Eng. Remote Sens. 68(5), 423–431 (2002); Awarded ”2003
First Honorable Mention for the Talbert Abrams Award”, by ASPRS

16. Olague, G., Mohr, R.: Optimal Camera Placement for Accurate Reconstruction.
Pattern Recognition 35(4), 927–944 (2002)

17. Olague, G., Dunn, E.: Development of a Practical Photogrammetric Network
Design using Evolutionary Computing. Photogramm. Record 22(117), 22–38
(2007)

18. Saadatseresht, M., Fraser, C., Samadzadegan, F., Azizi, A.: Visibility Analysis In
Vision Metrology Network Design. Photogramm. Record 19(107), 219–236 (2004)

19. Saadatseresht, M., Samadzadegan, F., Azizi, A.: Automatic Camera Placement in
Vision Metrology Based On A Fuzzy Inference System. Photogramm. Eng. Remote
Sens. 71(12), 1375–1386 (2005)

176 G. Olague, E. Dunn, and E. Lutton

20. Tsai, M.J., Hung, C.C.: A Fast Evaluation Approach of Geometrical Correspon-
dence Uncertainty for 3-D Vision Measurement System. JSME International Jour-
nal Series C 49(2), 527–534 (2005)

21. Wong, C., Kamel, M.: Comparing Viewpoint Evaluation Functions for Model-
Based Inspectional Coverage. In: 1st Canadian Conf. on Computer and Robot
Vision (CRV 2004), May 2004, pp. 287–294 (2004)

Adaptive Estimation of Distribution
Algorithms

Roberto Santana1, Pedro Larrañaga1, and José A. Lozano1

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
University of the Basque Country
Paseo Manuel de Lardizabal 1, 20080 Donostia - San Sebastian, Spain
rsantana@si.ehu.es, pedro.larranaga@ehu.es, ja.lozano@ehu.es

Summary. Estimation of distribution algorithms (EDAs) are evolutionary methods
that use probabilistic models instead of genetic operators to lead the search. Most
of current proposals on EDAs do not incorporate adaptive techniques. Usually, the
class of probabilistic model employed as well as the learning and sampling methods
are static. In this paper, we present a general framework for introducing adaptation
in EDAs. This framework allows the possibility of changing the class of probabilistic
models during the evolution. We present a number of measures, and techniques that
can be used to evaluate the effect of the EDA components in order to design adaptive
EDAs. As a case of study we present an adaptive EDA that combines different classes of
probabilistic models and sampling methods. The algorithm is evaluated in the solution
of the satisfiability problem.

Keywords: Estimation of distribution algorithm, adaptive probabilistic model, SAT.

1 Introduction

Estimation of distribution algorithms (EDAs) [9] are evolutionary methods that
use probabilistic models to represent relevant information about the search space.
The idea is to capture, in the form of probabilistic dependencies between the
variables, information about promising areas of the search space that can be
used to improve the search for better solutions. Machine learning techniques
are used to learn the probabilistic models and sample new solutions from them.
EDAs have shown to solve problems where genetic algorithms exhibit a poor
performance [9, 12].

A characteristic feature of EDAs is the type of probabilistic model used. Dif-
ferent models come associated with different capacities of representation and the
computational complexity of the algorithms used to learn and sample from them
also changes accordingly. Although probabilistic models provide EDAs with an
important degree of flexibility, usually the class of the models is fixed at the
beginning of the evolution and will not change during the search process. This
fact may compromise the flexibility of the algorithm. More efficient EDAs are

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 177–197, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

178 R. Santana, P. Larrañaga, and J.A. Lozano

expected to exhibit a wider amount of adaptation with more flexible frameworks
for probabilistic modeling.

In this chapter, we present our initial results on the conception of adaptive
EDAs. We identify a number of ways in which adaptation can be added to EDAs
and focus on the use of adaptive probabilistic models and sample algorithms.
Our findings lead to the introduction of an EDA that uses a combination of
probabilistic models and which is evaluated in the optimization of a number of
instances of the satisfiability problem.

The chapter is organized as follows. In the next section, EDAs are presented
and some of their main characteristics are discussed. In Section 3, we accomplish
a brief review of previous work on the design of adaptive genetic algorithms.
Section 4 introduces a general framework for the analysis and design of adaptive
EDAs. In Section 5 we focus on the analysis of feasible ways of incorporating
adaptive probabilistic models to EDAs. Section 6 presents factor graph based
factorizations and Kikuchi approximations as our case of study. The design of
the experiments and the numerical results are presented in Section 7. The paper
ends with Section 8 where the conclusions of our paper are presented.

2 Estimation of Distribution Algorithms

2.1 Notation

Let X be a random variable. A value of X is denoted x. X = (X1, . . . , Xn) will
denote a vector of random variables. We will use x = (x1, . . . , xn) to denote an
assignment to the variables. S will denote a set of indices in N = {1, . . . , n}, and
XS (respectively, xS) a subset of the variables of X (respectively, a subset of
values of x) determined by the indices in S. We will work with discrete variables.

The joint probability mass function of x is represented as p(X = x) or p(x).
p(xS) will denote the marginal probability distribution for XS . We use p(Xi =
xi | Xj = xj) or, in a simplified form, p(xi | xj), to denote the conditional
probability distribution of Xi given Xj = xj .

A graphical model for X = (X1, . . . , Xn) encodes a graphical factorization
of a joint probability distribution. Commonly used graphical models include
Bayesian networks, Markov networks and factor graphs.

2.2 EDAs

Estimation of distribution algorithms (EDAs) [9,13] are evolutionary algorithms
that work with a set (or population) of points. Initially, a random sample of
points is generated. These points are evaluated using the objective function,
and a subset of points is selected based on this evaluation. Hence, points with
better function values have a higher chance to be selected. Then a probabilistic
model of the selected solutions is built, and a new set of points is sampled from
the model. The process is iterated until an optimum has been found or another
termination criterion is fulfilled.

Adaptive Estimation of Distribution Algorithms 179

Algorithm 1. Estimation of distribution algorithm

1 Set t ⇐ 0. Generate M points randomly.
2 do {
3 Evaluate the points using the fitness function.
4 Select a set S of N ≤ M points according to a selection method.
5 Calculate a probabilistic model of S.
6 Generate M new points sampling from the distribution

represented in the model.
7 t ⇐ t + 1
8 } until Termination criteria are met.

The general scheme of the EDA approach is shown in Algorithm 1. There are
a number of selection methods that can be used. In the literature, truncation,
Boltzmann, and tournament selection are commonly used with EDAs.

One essential assumption of these algorithms is that it is possible to build
a probabilistic model of the search space that can be used to guide the search
for the optimum. Thus, a key characteristic and crucial step of EDAs is the
construction of this probabilistic model. If there is available information about
the function (e.g. variable dependencies), this can be exploited by including
parametrical and/or structural prior information in the model. Otherwise, the
model is learned exclusively using the selected population. Several probabilistic
models with different expressive power and complexity can be applied. These
models may differ in the order and number of the probabilistic dependencies
that they represent.

3 Work on Adaptive Genetic Algorithms

In this section, we make a short review of previous work on the design of adaptive
genetic algorithms, emphasizing some of the issues that will be considered in the
presentation of our proposal of adaptive EDAs.

In [24], an analysis of the way adaptation has been used in genetic algorithms
(GAs) is done. Three principles that allow to study the role of adaptation are
presented. These are:

• What is being adapted? (operators, parameters, etc.).
• The scope of the adaptation (i.e. does it apply to all the population, just to

individual members, or just sub-components?).
• Basis for change (externally imposed schedule, fuzzy logic, etc).

One of the most important benefits of adaptive reproductive operators is
that they permit a more flexible tuning between the goals of exploration and
exploitation of the search space. This can be done by modifying the parameters
associated to the operators, or by changing their frequency of application. The
simplest adaptive GAs use a fixed set of operators and adapt the probability

180 R. Santana, P. Larrañaga, and J.A. Lozano

of application of those operators. Another class of adaptive GAs change the
behavior of the operators over time.

Different techniques have been used to extract information from the search in
order to determine adapting schedules of decision rules for adaptive GAs. This
includes the use of fuzzy logic [6], inductive learning [23], and reinforcement
learning [16].

There are important similarities between the study of adaptation in GAs and
EDAs. Research done on those components common to GAs and EDAs can be
applied to the second class of algorithms with minor modifications. This research
comprises, for instance, the use of variable population sizes, adaptive selection
schedules, etc. The techniques employed to extract information about the search
are also of direct application to the conception of adaptive EDAs.

The study of adaptation in EDAs must take into account some main differ-
ences between EDAs and GAs. One of these differences is that reproduction,
as implemented in GAs, can provide more fine grained information about the
effect of the reproduction operator that the way reproduction is accomplished in
EDAs. For instance, the concept of “safety ratios” [22] refers to the probability
that a new point generated by the application of reproductive operators would
be fitter than its parent(s). This probability, that can be used as a measure
of the operators effect, is calculated using information about the fitness of the
parents. Since the influence of the parents in EDAs (the whole selected set) is
mediated by the existence of a probability model, it is not possible to define a
parent-to-offspring correspondence. Instead, macroscopic measures (e.g. average
fitness of the population) must be used to describe the effect of the reproductive
operators.

But even if detailed information about the relationship parent-offsprings will
not be available in EDAs, these algorithms expand both, the sources of statis-
tical information about the search, and the range and variety of applications of
this information. Probabilistic models are the main specific source of statistical
information in EDAs, but also the information collected during the learning of
these models (the model search step) could be used for adaptation.

4 Improving the Search: Adaptive EDAs

Our initial analysis will be led to the identification of the particular features of
EDAs that should be modified for the design of adaptive algorithms.

There are a number of issues that need to be addressed in order to accomplish
the conception of adaptive EDAs. The following questions will help us to guide
our analysis:

• Which EDA components can be adapted to the search?
• How can an EDA adapt its components and parameters by itself?
• How to obtain relevant information from the search for adaptation?
• Which is the available repertoire of possibilities for adapting EDAs?

Among the components of EDAs that can be adaptively modified during the
search are the fitness evaluation, the selection method, the elistism method and

Adaptive Estimation of Distribution Algorithms 181

the parameters (i.e. population size, selection and elitism parameters). Even if
research focused on these components is important we will consider in our anal-
ysis those other components that are specific to EDAs. These include: the class
of probabilistic models, the methods used for learning them and the sampling
methods. In Section 5, we will analyze how these components can be modified
in order to guarantee an adaptive behavior of EDAs.

Once the parts of the algorithms that can adapt to changes during the search
have been identified, it is important to define the ways they can be adapted
to the search and which the requirements to implement the changes are. Two
essential issues have to be considered for the definition of such strategies. They
are: the information about the search history and the general decision rules based
on this information.

The first issue involves the collection, storing and interpretation of the data
generated during the search. Not all the data available from the algorithm be-
havior is relevant to the purpose of taking decisions about the search strategies.
Therefore, it is needed to set the sort of data that will be stored and eventually
used by the algorithm. Furthermore, some data may require a preprocessing step
before being used. The computational cost of this step should be estimated in or-
der to guarantee that the gain due to increasing the algorithm adaptability is not
achieved at the expense of an unbearable computational cost of preprocessing
step.

The second issue, which is very related with information about the search
history, it the strategy conceived for using this information. As in the case of
adaptive GAs, this strategy can be defined using different machine learning tech-
niques that will employ a particular class of the information available. The selec-
tion of the relevant information for adaptive EDAs presupposes that a strategy
that will use this class of information has been determined.

We describe in some detail which the possible sources of information for adap-
tive EDAs and the preprocessing steps needed to use this information are. Main
sources of information are the following:

• Fitness related measures:
1. Measures of convergence.
2. Measures of exploration and exploitation.

• Information about the interactions captured in the graphical model.

Fitness related measures are obtained from the fitness values of the solutions
so far visited by the algorithm. Let f(t) be the fitness function at generation t.
Examples of these measures include:

• Average fitness and variance of the population (f̄(t),σ2(f(t))).
• Response to selection: R(t) = f̄(t + 1) − f̄(t).
• Amount of selection: S(t) = f̄s(t + 1) − f̄(t + 1).
• Realized heritability b(t) = R(t)

S(t) .

The average fitness is used to compute the response to selection which is
a general measure of the improvements obtained in the average fitness of the

182 R. Santana, P. Larrañaga, and J.A. Lozano

population by the application of the learning and sampling steps. However, an
increase of R(t) can hide a loss of diversity in the population. In these cases, the
change in the fitness variance can support additional information about whether
the population is really diverse. The mathematical framework that involves the
use of R(t), S(t) and b(t) was originally proposed in population genetics and
has been applied before to the analysis of the breeder genetic algorithm [14]. We
propose to apply these measures to evaluate the role of different operators (e.g.
different classes of probabilistic models and sampling methods) and parameters
used by EDAs.

Other measures that can be used as a source of information about the search
are the average fitness of individuals in the selected population, the number
of different solutions in the selected population and the number of generations
spent without improvement.

Among the measures related to the probabilistic model that can be used for
adaptation are: the number of edges, the size of the maximum clique, the number
of maximal cliques, and the number of connected components of the graph.

Alternatives for adaptation in EDAs include the following:

• Varying the strength of selection according to the diversity of solutions.
• Choice of the probability model class according to the graph complexity.
• Determination of the sampling algorithm according to the graph topology.
• Increasing the population size to avoid stagnation of the search.

In [10], an adaptive schedule for the Boltzmann selection was introduced and
compared with the truncation selection. Although both methods showed similar
dynamics, EDAs with truncation selection reached better convergence rates and
required less number of fitness evaluations. In [17], adaptive priors that relate the
rate of variation of the population to the quality of the approximation learned by
the model are proposed in the context of the mixture of trees factorized learning
algorithm (MT-FDA) [21]. Better results than when using MT-FDA with static
learning methods are achieved.

There is some recent work on the incorporation of adaptive techniques in
EDAs [2,5,26]. This work has focused on optimization problems with continuous
representation and the mechanisms of adaptation have been constrained to the
change in the parameters governing the learning process for the probabilistic
model of choice. Although some of the general issues we treat in this paper
can be extended to problems with continuous representation, our proposal is
introduced in the context of optimization problems with discrete representation.
On the other hand, the scheme of adaptation we present allows to change the
class of the probabilistic models during the evolution, expanding the class of
components and the scope of actions available to deal with the exploration of
the search space.

In the next section, we will focus on the definition of a framework that allows
to change the class of probabilistic model and the sampling algorithm during
the search.

Adaptive Estimation of Distribution Algorithms 183

5 Adapting the Class of Probabilistic Models in EDAs

In order to explain the ways adaptation can be introduced in EDAs we start
by presenting a generalized EDA that comprises different types of probabilistic
models, learning and sampling algorithms. We constrain our analysis to EDAs
based on undirected graphical models [15, 19, 20]. The pseudocode of the gener-
alized EDA is shown in Algorithm 2.

Algorithm 2. Generalized EDA

1 Set t ⇐ 0. Generate M points randomly.
2 do {
3 Select a set S of N ≤ M points according to a selection method.
4 Learn an undirected-graph-based representation of the dependencies

in S.
5 Using the graph, determine a class of graphical models or

approximation strategy to approximate the distribution
of points in S.

6 Determine an inference algorithm to be applied in the graphical
model.

7 Generate M new points from the model using the inference method.
8 t ⇐ t + 1
9 } until Termination criteria are met.

The most relevant feature of the generalized EDA is that it allows the use of
different classes of graphical models at each generation. The model choice should
be related to the complexity of the data and to the patterns of interaction
between the components of the problem. In situations in which there are few
interactions between the variables, we could choose a simple class of models
and avoid more complex learning algorithms (e.g. those required by Bayesian
networks). Choosing a simpler model can thus lead to an advantage in terms
of computational time. Additionally the marginal probabilities of a probabilistic
model with lower order dependencies could be more accurately estimated from
small data samples.

Using different classes of graphical models during the search will also allow
to incorporate different sampling techniques that determine different ways of
searching for solutions. Therefore, the dynamic change of the probabilistic model
will need an automatic procedure to select among the different types of graphi-
cal models. The topological characteristics of the undirected graphs learned are
plausible information for this decision. The number, size, and cardinality of the
variables (number of values) of each clique are three of the issues that influ-
ence the feasibility of the model for estimating the marginal probabilities and
sampling new solutions.

We will assume that an undirected graph that encodes the (in)dependence
relationships between the variables is given. Given the structure, we face two

184 R. Santana, P. Larrañaga, and J.A. Lozano

problems: 1) To decide which candidate probabilistic models could be used as
approximations, and 2) To define which criteria to take into account to choose
among them.

5.1 Alternatives for Probabilistic Modeling

Table 1 shows a number of alternatives for selecting a probability model accord-
ing to the graph structure. Column 1 (Graphs) describes whether the approxima-
tion comprises all and only those dependencies in the graph (exact), a subgroup
of the dependencies (subgraph) or all the dependencies and additional dependen-
cies (triangulated graph). Column 2 (Graphical models) describes different situ-
ations that could be faced (e.g. univariate –there are not dependencies–, junction
tree –valid factorization–, etc.). Column 3 (Inference) shows different sampling
algorithms that can be used according to the model. They comprise: probabilistic
logic sampling (PLS), Gibbs sampler (GS), most probable configurations (MPC),
most probable configurations with belief propagation (MPC-BP), most probable
configurations with loopy belief propagation (MPC-loopy BP), and most prob-
able configurations with generalized belief propagation (MPC-generalized BP).

Table 1. Approximation strategies, graphical models, and inference methods to be
employed by EDAs based on undirected graphs

Graphs Graphical models Inference
exact graph univariate PLS,MPC

junction tree PLS,MPC-BP
junction graph PLS,MPC-BP
clique-based Kikuchi approximation GS
Bethe approximation MPC-loopy BP
Kikuchi approximation MPC-generalized BP

subgraph univariate PLS,MPC
junction tree PLS,MPC-BP
junction graph PLS,MPC-BP
clique-based Kikuchi approximation GS
Bethe approximation MPC-loopy BP
Kikuchi approximation MPC-generalized BP

triangulated graph junction tree PLS,MPC-BP

5.2 Decision Criteria for Choosing the Model

The second question is the definition of the decision criteria for selecting among
the alternatives. Without considering information about the search state, some-
thing that will be required for adaptive EDAs, the two main criteria to take into
account are the accuracy and the complexity of the approximation. The accu-
racy of the approximation can be roughly estimated by measuring the number of
interactions of the original graph covered by the approximation and the strength
of the interactions covered.

Adaptive Estimation of Distribution Algorithms 185

Complexity is related to the size of the factors involved in the factorization.
One way to choose between the classes of possible approximations according to
their complexity is to constrain the size of the largest marginal table as well as
the number of factors. To do this, a first step is to calculate all the maximal
cliques of the graph and determine the size of the probability tables. To simplify
our analysis, we will assume that all the variables have the same cardinality and,
therefore, the largest marginal table will correspond to the maximum clique of
the graph. The analysis can be generalized to the case where variables have
different number of values.

If the graph is triangulated, and the maximum clique of the graph fulfills the
complexity constraint, any of the alternatives listed in Table 1 as exact graph
could be applied. These alternatives respect all the original dependencies that
exist in the graph. Nevertheless, the chosen sampling method may determine
that only an approximation is achieved.

If the graph is not triangulated, then one possibility is to triangulate it, com-
pute the maximum cliques of the graph, evaluate whether the complexity con-
straint is fulfilled for the triangulated graph, and in that case, apply any of the
alternatives listed in Table 1 as triangulated graph.

If the complexity constraint is not fulfilled in the original or in the triangulated
graph, then other types of approximation must be tried. One possibility is to
simplify the graph by splitting the largest cliques, something that can be done
by removing edges. Another possibility is to make the graph sparser in one step
previous to the calculation of the cliques.

The most common method applied for inference in the context of EDAs is
the PLS. It starts from an order of the variables imposed by the structure of
the graphical model. Each variable is sampled given the values assigned to its
ascendants in the order. PLS can be applied to the junction tree and junction
graph, but it cannot be applied to any other approximation listed in Table 1
because, in the general case it is not possible to find an order of the variables
for these approximations.

For Kikuchi approximations that use clique-based decompositions [19], GS
can be employed. In this case, the conditional probability distributions serve to
determine the transitions in the Markov chain. The drawback of using Gibbs
sampling is that if the most probable configuration has an exponentially small
probability a large number of configurations will need to be visited to hit the
optimum. A partial remedy to this situation is the combination of Kikuchi ap-
proximations with propagation based inference methods [7].

6 A Case Study: Generalized Factorized Distribution
Algorithms

We will focus now on the class of EDAs that explicitly construct a factorization
of the distribution.

186 R. Santana, P. Larrañaga, and J.A. Lozano

6.1 Factorizations

In simple terms, a factorization of a distribution p(x) will be a product of prob-
ability distribution p(xs) each of which will be called a factor. Factorizations
are important because they allow us to obtain a condensed representation of
otherwise very difficult to store probability distributions. Generally, graphical
models serve to define one or more factorizations of p(x).

The structure of a factorization can be directly recovered from a chordal graph
as done in the factorized distribution algorithm (FDA) [12] or learned from
data [15, 19, 20]. Factorizations that satisfy the running intersection property
(RIP) are called valid [12]. In [19], invalid factorization were further classified
in “ordered” and “messy” regarding the number of factors that are part of the
factorization. Most of EDAs employ valid factorizations. EDAs that work with
messy factorizations were presented in [19, 20].

FDA can work with invalid factorizations [12] but in this case, the convergence
properties proved for when valid factorizations are employed do not hold. Valid
factorizations can also be obtained from directed graphs as those used by EDAs
based on Bayesian networks [4].

6.2 Factor Graphs and Factorizations

The analysis of the EDAs presented in this chapter will be based on the use
of factor graphs. One convenient way of representing factorizations are factor
graphs.

Factor graphs

A factor graph [8] is a bipartite graph that can serve to represent the factorized
structure of a distribution. It has two types of nodes: variable nodes (which we
draw as a circle), and factor nodes (which we draw as a square). In the graphs,
factor nodes are named by capital letters starting from A, and variable nodes
by numbers starting from 1. We will index variable nodes with letters starting
with i, and factor nodes with letters starting with a. The existence of an edge
connecting variable node i to factor node a means that xi is an argument of
function fa in the referred factorization. Figure 1 (left) shows a factor graph
with two factor nodes and five variable nodes. The associated undirected graph
(right) have two maximal cliques.

In [1], Gibbs distributions are associated with factor graphs. A factor f with
scope XS is a mapping from xS to R+. A Gibbs distribution p(x) is associated
with a set of factors {fa}m

a=1 with scopes {XSa}m
a=1, such that

pf (x) =
1
Z

m∏
a=1

fa(xSa) (1)

Factorizations commonly used by EDAs can be represented by factor graphs.
For a given function, if its definition sets and the corresponding subfunctions
are known then it is possible to associate a factor to each definition set. The

Adaptive Estimation of Distribution Algorithms 187

A

2

31

4

5

B

2

3

1

4

5

Fig. 1. Factor graph (left) and associated undirected graph with two maximal cliques
(right)

corresponding factor graph distribution would be given by (1). At each genera-
tion of the EDA, a different factor graph distribution can be learned by taking
fa(xSa) = pa(xSa) where pa(xSa) are the marginal probability distributions
learned from the data.

If the factorization is valid then Z = 1, and the factorization given by the
factor graph is exact. But in the general case, a factorization represented by a
factor graph does not have to satisfy the RIP. As a consequence, Z �= 1 and
inference of points from the factorization is not straightforward. One alternative
in these cases is to learn an approximation. One example of such approximations
is the Kikuchi approximation of the distribution.

6.3 Kikuchi Approximation of a Distribution

The Kikuchi approximation of a distribution has three essential components:

1. An initial representation of the interactions of the variables given by a graph-
ical model.

2. A set of regions comprising sets of variables.
3. An overcounting number associated to each region.

In [19], the Kikuchi approximation of a distribution was defined from an
independence graph. Initial regions corresponded to the maximal cliques of the
graph and the rest of regions were found using the cluster variation method [25].
Overcounting numbers cR corresponding to each region R were constrained to
be calculated using the following recursive formula:

cR = 1 −
∑
S∈R
R⊂S

cS , (2)

where cS is the overcounting number of any region S in R such that S is a
superset of R. cR values corresponding to the initial regions are equal to 1.

Given a factor graph, a straightforward generalization of Kikuchi approxima-
tions for factor graphs will associate each factor of the graph with an initial
region of the Kikuchi approximation. From the set of initial regions the Kikuchi
approximation is constructed using the cluster variation method. The overcount-
ing numbers are also calculated using Equation (2).

188 R. Santana, P. Larrañaga, and J.A. Lozano

Given a set of regions R calculated as explained before, the Kikuchi approxi-
mation, k(x), of the probability distribution p(x) is defined as:

k(x) =
∏

R∈R
p(xR)cR (3)

An important property of the Kikuchi approximation is that, if the factor-
ization is valid, the corresponding Kikuchi approximation is exact, i.e. it will
give the original factor graph distribution constructed from the marginal prob-
abilities. On the other hand, a probability function p̃(x) based on the Kikuchi
approximation can be found by normalizing k.

p̃(x) =
k(x)∑
x′ k(x′)

Another alternative to deal with factor graph distributions is the use of
Markov blanket canonical factorizations [1]. In this case, factor graph distri-
butions are parameterized as a product of local probabilities only. These local
probabilities are defined over factor scopes and their Markov blankets [1].

6.4 Learning and Sampling the Kikuchi Approximation from a
Factor Graph Distribution

The complexity of learning a Kikuchi approximation from a factor graph dis-
tribution is related to whether the structure is previously known, or both the
structure and the parameters of the distribution have to be learned. In the first
case, and assuming that the maximum size of the factors is feasible regarding the
cost of computing and storing the parameters, learning is reduced to estimate
the parameters from the data. In the second case, structural learning is required.

The complexity of sampling a factor graph distribution depends on whether
the factorization is valid or invalid. In the first case, probabilistic logic sampling
could be applied. In second case, more costly techniques like Gibbs sampling [19]
and belief propagation [11] could be employed.

To learn the structure of the factor graph we follow the approach described
in Algorithm 3.

Algorithm 3. Algorithm for learning a factor graph representation

1 Learn an independence graph G from the data (the selected set of
solutions).

2 If necessary, refine the graph.
3 Find the set C of all the maximal cliques of G.
4 Associate a factor to each maximal clique of the graph.
5 Find the set of regions R.
6 Find the marginal probabilities for the regions.

Adaptive Estimation of Distribution Algorithms 189

Given an undirected graph G = (V, E), a clique in G is a subset of V for which
there exists an edge between every pair of vertices. A clique is the maximum
clique of the graph if it is a clique with the highest number of vertices. The
choice of taking maximal cliques as factors is related to the properties of the
Kikuchi approximation for clique based decompositions shown in [19].

The independence graph is learned using independence tests. We use the Chi-
square independence test. If two variables Xi and Xj are dependent with a
specified level of significance α, they are joined by an edge. α is a parameter of
the algorithm. The algorithm weights each edge i ∼ j in the independence graph
with a value w(i, j) stressing the pairwise interaction between the variables. We
use the value of the Chi-square test to set w(i, j).

If the independence graph is very dense, the dimension of the cliques will
increase beyond a feasible limit. It is important to impose a limit r to the size
of the maximum clique. An alternative solution to this problem is to make the
graph sparser in one step previous to the calculation of the cliques. This has been
done by allowing a maximum number r − 1 of incident edges to each vertex. If
one vertex has more than r − 1 incident edges, those with the lowest weights are
removed. In this way, the size of the maximum clique will always be smaller or
equal than r. To find all the maximal cliques of the graphs the Bron and Kerbosch
algorithm [3] is used. Junction graphs and junction trees can be constructed using
a subset of these cliques [18].

Since in the general case, the partition function Z is not known, we use GS
to sample points from k(x). V S, Cy, and In are defined as the parameters of
the GS algorithm. V S is the type of visitation scheme, and defines the way
in which the variables are selected for update. Random (V S = 0), or fixed
(V S = 1) visitation schemes can be used. Cy is the number of cycles of the GS
algorithm. One cycle comprises the update of n variables. In is a parameter that
determines the way the initial vector of the GS is constructed. The vector where
the GS starts from can be randomly selected (In = 0), or sampled from an
approximate factorization found using a chordal subgraph of the independence
graph (In = 1). More details about the GS algorithm can be found in [19].

6.5 Probabilistic Operators

From a given independence graph we will define five different classes of factor-
izations. We will call these classes probabilistic operators. To further specify and
control their behavior we will employ parameters r, α, Cy and In. Parameters
r and α are general parameters because they impose constraints to the indepen-
dence graph. These constraints influence the type of factorizations. For instance,
if r = 1 the graph will be disconnected and the only possible factorization is the
univariate, similarly if r = 2, the graph will be a set of isolated nodes, paths
and cycles. Notice that r represents a constraint on the maximum clique of the
graph. Manipulating α the density of the graph can be changed, influencing
the number and size of the factors. Parameters Cy and In will only affect the
Kikuchi approximations. A description of the probabilistic operators follows.

190 R. Santana, P. Larrañaga, and J.A. Lozano

• MK0: A Kikuchi approximation that uses as starting vector for GS a vector
sampled from an invalid junction-graph-based factorization.

• MK1: An invalid junction-graph-based factorization.
• MK2: A Kikuchi approximation that uses as starting vector for GS a random

vector.
• MK3: An invalid junction-tree-based factorization.
• MK4: A Kikuchi approximation that uses as starting vector for GS a vector

sampled a valid junction-tree-based factorization.

7 Experiments

The objectives of our experiments are twofold. The first is to study the influence
of the different probabilistic operators in the dynamics of the search and the way
they interact. Our analysis will be based on the descriptive measures presented in
Section 4. The second goal is to extract from this analysis a number of rules that
can be translated to the definition of adaptive EDAs. To evaluate the algorithms,
we have selected some difficult instances of the satisfiability (SAT) problem.

7.1 SAT Problem

Let U = {u1, · · · , un} be a set of n Boolean variables. A (partial) truth assign-
ment for U is a (partial) function T : U → {true, false}. Corresponding to each
variable u are two literals, u and ¬u. A literal u (resp. ¬u) is true under T if
T (u) = true (resp. T (u) = false). We call a set of literals a clause, and a set or
sequence (tuple) of clauses a formula. Let φ be a formula and C a clause in φ.
We say that a truth assignment T for U satisfies C if at least one literal u ∈ C is
true under T , and T satisfies φ if it satisfies every clause in φ. The satisfiability
problem is the problem of finding a solution for a formula.

In our representation, variable Xi is associated to the Boolean variable ui,
and (ui = true) ⇔ (xi = 1). As the objective function we use the sum of clauses
satisfied by the solution.

As as set of instances, we have used the uniform random-3-SAT, which is a
family of SAT problems distributions obtained by randomly generating 3-CNF
formulae. The test-set uf −75 comprises 1000 instances sampled from the phase
transition region of uniform Random-3-SAT. The instances, as well as a detailed
explanation about the way they were generated, can be found in the SATLIB
benchmark1. Each instance in uf − 75 has 75 variables with 325 clauses.

7.2 Parameters of the Algorithms

In all the experiments, we use truncation selection with parameter T = 0.15. The
population size was N = 500. The best solution in each generation is passed to
1 http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/Benchmarks/

SAT/RND3SAT/descr.html

Adaptive Estimation of Distribution Algorithms 191

the new generated population. The maximum number of generations was set to
250. The algorithm stops when the optimum is found or the maximum number
of generations is reached. We notice that the maximum number of evaluations
is relatively small for reaching the optimum of some of the instances considered.
However, our goal was not optimize the parameters of the algorithms but to
analyze, for these parameters, the effect of the probabilistic operators. Otherwise
noticed, we execute 100 runs of each algorithm.

In the experiments we considered three different scenarios. Random EDA, in
which at each generation, the probabilistic operators and/or the parameters that
will be applied are randomly determined. Otherwise stated, the uniform distri-
bution is used for randomly selecting from the parameter set of possible values.
This random scenario is conceived for collecting information about the role of
the different probabilistic operators. In the static EDA scenario, an EDA with
fixed probabilistic operator and parameters is run. These cases are considered
as a reference for contrasting results. Finally, in the adaptive EDA scenario, an
EDA with varying probabilistic operators and/or parameters is run.

7.3 Numerical Experiments

In the first experiment, we consider a random EDA scenario where, at each
generation, one of the five probabilistic operators presented in Section 6.5 is
randomly selected. Fixed parameters were α = 0.7 and r = 8. Once the operator
has been determined, the parameter Cy is randomly selected. For MK0 and MK4,
Cy ∈ {1, . . . , 6}, for MK2, Cy ∈ {10, 20, 30}. From 100 runs of the algorithm,
information about 88369 generations is collected. For each generation, we have
the operator applied and it is possible to compute the response to selection it
causes. Figure 2 shows the histogram of the number of times that each of the
probabilistic operators causes a positive response to selection (i.e. an increase
in the average fitness of the population is achieved). Two main features can
be noticed from the graph. First, in terms of R(t), the performance of MK2
operator is the worst. On the other hand, the effects operators MK0 and MK4
are very similar. The same fact holds for operators MK1 and MK3. This may
indicate that, for this experiment, a factor graph does not support more relevant
information about the interactions in the graph than that that can be represented
by a junction tree.

In Table 2, the change in R(t) is detailed. We compute the average of R(t)
for each of the probabilistic operators and each of the corresponding Cy values.
The best values of the response to selection are reached for operators MK1
and MK3. For operators MK0 and MK4, R(t) decreases with higher values of
Cy. For MK2, the decrease in the response of selection is slightly slowed down
when Cy is increased. In general, the average results seem to indicate that valid
factorizations guarantee higher values of R(t). However, average results can be
deceptive. Therefore, we have computed a classification tree to determine the
best suited probabilistic operators according to the variance of the population.
To compute the classification tree, the treefit procedure implemented in the
Matlab software has been employed.

192 R. Santana, P. Larrañaga, and J.A. Lozano

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Algorithms

N
um

be
r

of
 g

en
er

at
io

ns

MK0

MK1

MK2

MK3

MK4

Fig. 2. Average response to selection for different probabilistic operators

Table 2. Average response to selection for different probabilistic models of an EDA
with multiple models and sampling algorithms

Cy/EDAs MK0 MK1 MK2 MK3 MK4
mean σ2 mean σ2 mean σ2 mean σ2 mean σ2

1 3.51 9.26 3.68 8.78 3.68 9.00 3.47 9.60
2 3.27 11.62 3.61 8.95 3.65 9.20 3.28 12.67
3 2.75 15.62 3.64 8.79 3.70 9.24 2.91 14.95
4 2.53 18.74 3.75 8.96 3.78 9.39 2.58 18.53
5 2.12 22.50 3.69 8.79 3.78 9.06 2.29 21.10
6 1.92 25.62 3.77 9.26 3.66 9.10 2.06 23.97
10 −12.72 297.0
20 −12.64 327.2
30 −12.23 328.6
all 2.69 17.50 3.69 8.92 −12.53 317.69 3.72 9.18 2.92 15.53

We have taken as predictor variables, the (discretized) variance and a variable
Rs, such that Rs = 0 if R(t) < 0, and Rs = 1 if R(t) > 0. The categorical
dependent class is the type of probabilistic operator, taking into account the
value of Cy. Since only three different values where considered for the operator
MK2, we have grouped the values for MK0 and MK4 in three groups (Cy ≤ 2,
Cy ∈ {3, 4}, and Cy ≥ 5). Similarly, occurrences of MK1 and MK3 have been
equally divided in three groups, but in this case the membership to the group
has no implications for the classification.

Figures 3 and 4 show the computed classification tree. It can be observed
that most, although not all, of the choices of probabilistic operators that cause a
negative value of R(t) (Figure 3) correspond to the MK2 operators. Conversely,

Adaptive Estimation of Distribution Algorithms 193

σ2 < 157.5

σ2 < 17.5

�

MK1-3
σ2 < 52.5

�

MK2-30
σ2 < 122.5

σ2 < 87.5

�

MK2-30
�

MK1-30

�

MK2-30

σ2 < 192.5
�

MK2-10
σ2 < 297.5

σ2 < 227.5

�

MK2-20
σ2 < 260.5

�

MK2-30
�

MK1-2

σ2 < 332.5

�

MK1-3
�

MK4-3

Fig. 3. Classification tree showing the relationship between the variance and the prob-
abilistic operators when the response to selection is negative (Rs < 0.5)

σ2 < 52.5

σ2 < 17.5

�

MK4-3
�

MK4-1

σ2 < 122.5
�

MK3-3
σ2 < 227.5

σ2 < 157.5

�

MK0-2
σ2 < 192.5

�

MK4-1
�

MK4-3

σ2 < 26

�

MK1-3
�

MK1-2

Fig. 4. Classification tree showing the relationship between the variance and the prob-
abilistic operators when the response to selection is positive or zero (Rs > 0.5)

MK2 does not appear associated to any value of the variance in the main right
branch of the tree (Figure 4).

We have also analyzed the effects that the different probabilistic operators
have in the variance of the algorithm. Figure 5 shows the relationship between
the response of selection and the variance for MK1 and MK2 operators. This
figure reveals an important result. Even if the average value of R(t) is negative
for MK2, this operator has a higher variance and may obtain an improvement
in the fitness average superior to operator MK1. In simpler terms, operator
MK1 regularly improves the solutions but this improvement is constrained. On
the other hand, operator MK2 seldom improves solutions but when it does it,
the improvement can be important. Additionally, the improvement achieved by
operator MK1 is achieved at the cost of an important loss of variance. This is
not the case for operator MK2, when the response to selection is improved, also
the variance of the generated solutions is increased.

194 R. Santana, P. Larrañaga, and J.A. Lozano

−10 0 10 20 30
−300

−250

−200

−150

−100

−50

0

50

100

Response to selection

C
ha

ng
e

in
 th

e
va

ria
nc

e

−60 −40 −20 0 20 40 60
−400

−300

−200

−100

0

100

200

300

Response to selection

C
ha

ng
e

in
 th

e
va

ria
nc

e

Fig. 5. Relationship between the response to selection and the variance for probabilistic
operators MK1 (left) and MK2 (right)

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Instances

G
ai

n
in

 th
e

av
er

ag
e

fit
ne

ss

0 5 10 15 20 25 30
−50

0

50

100

150

200

250

300

350

Instances

O
ve

rh
ea

d
tim

e
du

e
to

 s
el

f−
ad

ap
ta

tio
n

Fig. 6. Gain in the average fitness (left) and overhead time (right) due to the self-
adaptation process

We have investigated in our experiments the influence of parameters α and r
(data not shown) and extracted decision rules using classification trees. We have
evaluated EDAs that incorporate these rules but, for the instances considered,
these results are not statistically significant. It turned out, that, at least for
the instances of the SAT problem, adaptation based on a combination of the
exploratory effect of the MK2 operators with the rest of the operators gives the
best results. The resulting algorithm alternates the application of the operators
pursuing the goal of balancing exploration and exploitation.

Three different criteria are used to identify a loss of diversity in the popula-
tion and change the type of probabilistic operator applied. These criteria are:
the fitness variance of the selected population is zero, the number of different
individuals in the selected set is below half the size of the selected set, and if two
consecutive generations have equal average fitness of the selected population.

When one of these criteria is fulfilled, operator MK2 is applied with a ran-
domly selected value of Cy ∈ {1, . . . , 5}. In Table 3, the results for different
static and adaptive EDAs and the four instances considered in our experiments
are presented. In the table, S is the number of times the optimum has been

Adaptive Estimation of Distribution Algorithms 195

Table 3. Success rate and average number for different variants of static and adaptive
EDAs

EDAs scheme α r steps uf001 uf002 uf003 uf004
S f̄ S f̄ S f̄ S f̄

Random 0.70 8 − 39 324.09 40 324.26 0 322.63 1 322.73
MK1 static 0.92 8 − 43 324.11 46 324.29 0 323.03 0 322.09
MK2 static 0.92 8 2 39 324.06 52 324.49 0 323.11 0 322.74

adaptive 0.92 8 67 324.66 87 324.87 0 323.80 0 323.64
adaptive 0.92 6 47 324.40 57 324.53 0 323.39 0 323.16
adaptive 0.92 4 62 324.59 67 324.66 1 323.40 2 323.23
adaptive 0.92 2 62 324.59 59 324.58 0 323.36 2 323.35
adaptive 0.70 1 35 323.90 67 324.63 0 323.27 0 323.00
adaptive 0.70 3 50 324.43 68 324.68 1 323.34 2 323.20
adaptive 0.70 6 45 324.19 50 324.46 0 323.36 0 322.99

found and f̄ the average fitness of the best found solution. Notice, that for in-
stances uf003 and uf004 the optimum is very difficult to find. In these cases,
we take f̄ to evaluate the performance of the algorithms. The random EDA is
the algorithm for which previous results have been presented in this section. The
adaptive EDAs (r = 8) clearly outperforms the other algorithms. The analysis
of the table also reveals that factors α and r can play an important role in the
performance of the algorithms. Finding schedules for adaptively changing these
values during the search should produce more efficient algorithms.

Additional experiments have been conducted for instances from uf005 to
uf030 of the uf-75 benchmark. For these problems, we have compared the per-
formance of the MK1 operator and the adaptive EDA with α = 0.92 and r = 8
parameters. For each problem, 30 experiments has been conducted from which
the average fitness of the best solution found and the overhead time due to the
adaptation process have been computed. The results are shown in Figure 6. The
adaptive EDA improves the results in 15 of the 26 instances. However, in 9 of
the instances worse results are achieved. In 25 of the 26 instances there is a
cost due to the adaptation process. Although, the application of the adaptive
schedule does not always guarantee an improvement of the results, the improve-
ment achieved can be very important for some of the instances, justifying the
additional time spent for the adaptation.

8 Conclusions

In this chapter, we have proposed a general framework for the analysis and de-
sign of adaptive EDAs. We have analyzed the main differences between GAs
and EDAs regarding the ways adaptation can be incorporated to the algo-
rithms. We have focused on feasible ways of adaptively combining different
types probabilistic models in EDAs. Using probabilistic operators based on factor
graph based factorizations and Kikuchi approximations we have introduced an

196 R. Santana, P. Larrañaga, and J.A. Lozano

adaptive schedule and evaluated its performance in the optimization of different
SAT instances. Our preliminary results show that adaptive EDAs can outper-
form static EDAs.

The design of flexible, adaptive EDAs, is a difficult challenge that in order
to be overcome may require the combination of results from different fields (e.g.
data mining, machine learning, automatic control, etc.). However, the benefits
to be obtained from this type of algorithms justify the efforts on this trend. We
consider the work presented in this chapter as an initial step in this direction.

Acknowledgements

The authors thank the reviewers for useful comments on the paper. This work
was supported by the SAIOTEK-Autoinmune (II) 2006 and Etortek research
projects from the Basque Government. It has been also supported by the Spanish
Ministerio de Ciencia y Tecnoloǵıa under grant TIN 2005-03824.

References

1. Abbeel, P., Koller, D., Ng, A.Y.: Learning factor graphs in polynomial time and
sample complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

2. Bosman, P.A., Grahl, J.: Matching inductive search bias and problem structure in
continuous estimation of distribution algorithms. European Journal of Operational
Research (to appear, 2007)

3. Bron, C., Kerbosch, J.: Algorithm 457—finding all cliques of an undirected graph.
Communications of the ACM 16(6), 575–577 (1973)

4. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In:
Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium
on Artificial Intelligence (CIMAF 1999), Havana, Cuba, pp. 151–173 (1999)

5. Grahl, J., Bosman, P.A., Rothlauf, F.: The correlation-triggered adaptive variance
scaling idea. In: Proceedings of the 8th annual conference on Genetic and evolu-
tionary computation. GECCO 2006, pp. 397–404. ACM Press, New York (2006)

6. Herrera, F., Lozano, M.: Adaptive genetic algorithms based on fuzzy techniques.
In: Proceedings of Information Processing and Management of Uncertainty Con-
ference. IPMU 1996, pp. 775–780 (1996)

7. Höns, R., Santana, R., Larrañaga, P., Lozano, J.A.: Optimization by max-
propagation using Kikuchi approximations, (submitted for publication, 2007)

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

9. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

10. Mahnig, T., Mühlenbein, H.: Comparing the adaptive Boltzmann selection sched-
ule SDS to truncation selection. In: Evolutionary Computation and Probabilistic
Graphical Models. Proceedings of the Third Symposium on Adaptive Systems
(ISAS 2001), Havana, Cuba, March 2001, pp. 121–128 (2001)

11. Mühlenbein, H., Höns, R.: The estimation of distributions and the minimum rela-
tive entropy principle. Evolutionary Computation 13(1), 1–27 (2005)

12. Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical
models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)

Adaptive Estimation of Distribution Algorithms 197

13. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996)

14. Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its appli-
cation to the breeder genetic algorithm (BGA). Evolutionary Computation 1(4),
335–360 (1993)

15. Ochoa, A., Soto, M.R., Santana, R., Madera, J.C., Jorge, N.: The Factorized Dis-
tribution Algorithm and the junction tree: A learning perspective. In: Ochoa, A.,
Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF 1999), Havana, Cuba, March 1999, pp. 368–377 (1999)

16. Pettinger, J.E., Everson, R.M.: Controlling genetic algorithms with reinforcement
learning. In: Proceedings of the Genetic and Evolutionary Computation Conference
GECCO 2002, p. 692. Morgan Kaufmann Publishers Inc., San Francisco (2002)

17. Santana, R.: An analysis of the performance of the mixture of trees factorized dis-
tribution algorithm when priors and adaptive learning are used. Technical Report
ICIMAF 2002-180, Institute of Cybernetics, Mathematics and Physics, Havana,
Cuba (March 2002)

18. Santana, R.: A Markov network based factorized distribution algorithm for opti-
mization. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML
2003. LNCS (LNAI), vol. 2837, pp. 337–348. Springer, Heidelberg (2003)

19. Santana, R.: Estimation of distribution algorithms with Kikuchi approximations.
Evolutionary Computation 13(1), 67–97 (2005)

20. Santana, R., Larrañaga, P., Lozano, J.A.: Mixtures of Kikuchi approximations. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 365–376. Springer, Heidelberg (2006)

21. Santana, R., Ochoa, A., Soto, M.R.: The mixture of trees factorized distribution
algorithm. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference GECCO 2001, pp. 543–550. Morgan Kaufmann Publishers, San Francisco
(2001)

22. Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionarily viable strategy. In:
Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference
on Genetic Algorithms, pp. 61–68. Morgan Kaufmann, San Francisco (1991)

23. Sebag, M., Schoenauer, M.: Controlling crossover through inductive learning. In:
Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from
Nature – PPSN III, pp. 209–218. Springer, Berlin (1994)

24. Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algo-
rithms. Soft Computing - A Fusion of Foundations, Methodologies and Applica-
tions 2, 81–87 (1997)

25. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory 51(7), 2282–2312 (2005)

26. Zhou, A., Zhang, Q., Jin, Y., Sendhoff, B.: Adaptive modelling strategy for con-
tinuous multiobjective optimization. In: Proceedings of the 2007 Congress on Evo-
lutionary Computation CEC 2007. IEEE Press, Singapore (2007)

Initialization and Displacement of the Particles
in TRIBES, a Parameter-Free Particle Swarm
Optimization Algorithm

Yann Cooren, Maurice Clerc, and Patrick Siarry

Laboratoire Images, Signaux et Systèmes Intelligents, LiSSi, E.A. 3956 Université de
Paris XII, 61 avenue du Général de Gaulle, 94010 Créteil, France
{cooren,siarry}@univ-paris12.fr, maurice.clerc@writeme.com

Summary. This chapter presents two ways of improvement for TRIBES, a parameter-
free Particle Swarm Optimization (PSO) algorithm. PSO requires the tuning of a set
of parameters, and the performance of the algorithm is strongly linked to the values
given to the parameter set. However, finding the optimal set of parameters is a very
hard and time consuming problem. So, Clerc worked out TRIBES, a totally adaptive
algorithm that avoids parameter fitting. Experimental results are encouraging but are
still worse than many algorithms. The purpose of this chapter is to demonstrate how
TRIBES can be improved by choosing a new way of initialization of the particles and
by hybridizing it with an Estimation of Distribution Algorithm (EDA). These two im-
provements aim at allowing the algorithm to explore as widely as possible the search
space and avoid a premature convergence in a local optimum. Obtained results show
that, compared to other algorithms, the proposed algorithm gives results either equal
or better.

Keywords: Particle swarm optimization, estimation of distribution algorithm,
continuous optimization.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based optimization tech-
nique proposed by Kennedy and Eberhart in 1995 [6]. Like ant colony algorithms
or genetic algorithms, PSO is a biologically-inspired metaheuristic. The method
is inspired from the social behavior of animals evolving in swarms, like birds or
fishes. The principle is to use collaboration among a population of simple search
agents to find the optimum in a function space. More precisely, a simple agent
has basically the knowledge of the characteristics of its surroundings but, by
communicating with other particles of the swarm, it also has a global knowledge
of the search space, as it can be seen in a fish school which tries to find something
to eat. PSO is also a particular case in the metaheuristic field because PSO was
directly designed for solving continuous problems. This point has its importance
because most of the applications deal with continuous problems. A state of the
art of PSO and all the concepts which are linked to it is available in [2].

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 199–219, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

200 Y. Cooren, M. Clerc, and P. Siarry

Like other metaheuristics, PSO shows the drawback of comprising many
parameters which have to be defined. The difficulty is that the performances of
the algorithm are strongly linked to the values given to these parameters. Such a
remark implies that it is difficult and time consuming to find the optimal combi-
nation of parameter values. Moreover, in real problems, the parameters are often
correlated, which makes the choice of parameters harder. So, researches are led to
reduce the number of ”free” parameters. The aim is to design algorithms which
are as efficient as classical algorithms, but with a lower number of parameters.
Such algorithms can be called ”adaptive algorithms”, because information grad-
ually collected during the optimization process are used to compute the values of
the parameters. The algorithm is ”adaptive” in the way that its behavior, char-
acterized by the values given to the parameters, is evolving all along the process.
Several adaptive methods already exist for PSO [15,16,18]. All these algorithms
are adaptive but not completely, i.e. there are still parameters to define, so the
problem is admittedly easier, but still existing. The ideal would be to design a
parameter-free algorithm. A parameter-free algorithm acts as a “black-box” and
the user has just to define his problem and to run the process; no parameter
has to be defined. Such an algorithm exists among genetic algorithms [10]. Clerc
has created a parameter-free algorithm for PSO called TRIBES [3, 4]. In this
chapter, we will describe the rules of adaptation which permit to avoid the defi-
nition of parameters in TRIBES and two ways of improvement will be explored.

Section 2 is dedicated to a brief presentation of the basic PSO algorithm.
TRIBES is described in Section 3. In Section 4, we propose a new method to
initialize TRIBES. A discussion of the strategies of displacement is presented in
Section 5. Some numerical results are shown in Section 6. Finally, we conclude
in Section 7.

2 Basic Particle Swarm Optimization

PSO is easy to be coded and implemented. In addition, its simplicity implies
that the algorithm is inexpensive in terms of memory requirement and CPU
time [4]. All these characteristics have made the popularity of PSO in the field
of metaheuristics.

PSO starts with a random initialization of a swarm of particles in the search
space. Each particle is modelled by its position in the search space and its veloc-
ity. At each time step, all particles adjust their positions and velocities, thus their
trajectories, according to their best locations and the location of the best parti-
cle of the swarm, in the global version of the algorithm, or of their neighbors, in
the local version. Here appears the social behavior of the particles. Indeed, each
individual is influenced not only by its own experience but also by the experience
of other particles.

In a D-dimensional search space, the position and the velocity of the ith
particle can be represented as Xi = [xi,1, · · · , xi,D] and Vi = [vi,1, · · · , vi,D]
respectively. Each particle has its own best location pi = [pi,1, · · · , pi,D], which
corresponds to the best location reached by the ith particle at time t. The

Initialization and Displacement of the Particles in TRIBES 201

global best location is named g = [gi, · · · , gD], which represents the best location
reached by the entire swarm. From time t to time t+1, each velocity is updated
using the following equation:

vi,j(t + 1) = wvi,j(t) + c1r1(pi,j(t) − vi,j(t)) + c2r2(gj(t) − vi,j(t)) (1)

where w is a constant called inertia factor, c1 and c2 are constants called accel-
eration coefficients, r1 and r2 are two independent random numbers uniformly
distributed in [0,1]. Generally, the value of each component in Vi can be clamped
in a range [−Vmax, Vmax] to control excessive roaming of the particles outside the
search space. If the computed velocity leads one particle out of the search space,
two methods can be used:

• the particle goes out of the search space but its fitness is not computed.
• the particle is brought back in the search space either on the nearest bound

or by applying a multiplicative coefficient chosen in]-1,0[.

The computation of the position at time t + 1 is derived from Eq.(1) using:

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

The inertia weight w controls the impact of the previous velocity on the current
one, so it ensures the diversity of the swarm, which is the main means to avoid
the stagnation of particles at local optima. In the same way, c1 controls the
attitude of the particle of searching around its best location and c2 controls
the influence of the swarm on the particle’s behavior. To summarize, we can
say that w controls the diversification feature of the algorithm and c1 and c2
the intensification feature of the algorithm. In [5], Clerc and al show that the
convergence of PSO may be insured by the use of a constriction factor. Using the
constriction factor emancipates us to define Vmax. In this case, Eq (1) becomes:

vi,j(t + 1) = K (vi,j(t) + φ1r1(pi,j(t) − vi,j(t)) + φ2r2(gj(t) − vi,j(t))) (3)

with:
K =

2∣∣∣2 − φ −
√

φ2 − 4φ
∣∣∣ , φ = φ1 + φ2, φ > 4 (4)

The convergence characteristic of the system can be controlled by φ. Namely,
Clerc and al. [5] found that the system behavior can be controlled so that the
system behavior has the following rules:

• the system does not diverge in a real value region and finally can converge,
• the system can search different regions efficiently by avoiding premature con-

vergence.

Unlike other evolutionary computation methods, constricted PSO ensures the
convergence of the search procedure based on the mathematical theory. The
standard PSO procedure can be summarized in the algorithm in Figure 1.

Generally, the stopping criterion is either a predefined acceptable error or a
maximum “reasonable” number of evaluations of the objective function.

202 Y. Cooren, M. Clerc, and P. Siarry

Initialize a population of particles with random positions and velocities.
Evaluate the objective function for each particle and compute g.
For each individual, pi is initialized at Xi.
Do
Update the velocities and the positions of the particles.
Evaluate the objective function for each individual.
Compute the new pi and g.

While the stopping criterion is not met

Fig. 1. Standard PSO procedure

3 TRIBES, a Parameter-Free PSO Algorithm

Like many other metaheuristics, PSO shows the drawback of having too many
parameters which must be set by the user. According to the values given to these
parameters the algorithm is more or less efficient. A first approach to adaptive
PSO was proposed by Ye [16], whose method looks for inactive particles and
replaces them by new particles, more able to explore new areas of the search
space. Zhang et al. [18] proposed to modify swarm’s size, constriction factor or
neighborhood size through the use of an improvement threshold. Yasuda [15]
worked out an algorithm in which parameters are defined according to the ve-
locity information of the swarm. But the first parameter-free algorithm, called
TRIBES, was proposed by Clerc [3]. TRIBES is an adaptive algorithm whose
parameters change according to the swarm behavior. In TRIBES, the user only
has to define the objective function and the stopping criterion. The method in-
corporates rules defining how the structure of the swarm must be modified and
also how a given particle must behave, according to the information gradually
collected during the optimization process.

3.1 Swarm, Tribes and Communication

PSO is based on the social behavior of animals evolving in swarms. Each indi-
vidual of the swarm knows the direction of displacement and the velocity of its
neighbors in the swarm and uses this information to decide its own direction of
displacement and its own velocity. Considering that the swarm is an intercon-
nected network, information collected by one of the individuals is propagated
in the entire swarm. So, all the individuals modify their behavior according to
the new interesting information. This implies a “global” behavior of the swarm,
which allows the swarm to find regions of interest in the search space. These
considerations form the framework of Standard PSO.

However, it can also be observed in real life that a swarm can be divided in
“tribes” of individuals. Here, the behavior of the swarm is different from the one
explained before. Each tribe acts as an independent swarm, i.e. each tribe has its
own “global behavior” and explores a particular region of the search space. In addi-
tion to that, all the tribes exchange information about regions they are exploring.

Initialization and Displacement of the Particles in TRIBES 203

Fig. 2. Intra-tribe and inter-tribes communications

So, the swarm is an interconnected network of tribes, which are themselves inter-
connected networks of individuals. This implies two different types of communi-
cation: intra-tribe communication and inter-tribes communication. These consid-
erations form the framework of TRIBES. In Figure 2, an example of a swarm of 17
particles (white spots) divided in 4 tribes is shown. Arrows symbolize inter-tribes
communications and lines symbolize intra-tribe communications.

In TRIBES, the swarm is structured in different tribes of variable size. The aim
is to simultaneously explore several promising areas, generally local optima, and
to exchange results between all the tribes in view of finding the global optimum.

Each tribe is composed of a variable number of particles. Relations between
particles in a tribe are similar to those defined in basic PSO. More precisely,
each particle of the tribe stores the best location it has met and knows the best
(and the worst) particle of the tribe, i.e. the particle which has met the best
(and the worst) location in the search space. This is intra-tribe communication.

Even if each tribe is able to find a local optimum, a global decision must be
taken to decide which of these optima is the best one. So, each tribe is linked
to all the others to inform them on the best location found by its best particle.
This is inter-tribes communication.

TRIBES is an adaptive algorithm, so the swarm must be generated and mod-
ified automatically, by means of creation, evolution, and removal of the tribes.

3.2 Structural Adaptations

Setting rules to modify the swarm’s structure implies the definition of a quality
qualifier for each particle and likewise for the tribes. In the case of particles,
it is known that each particle has a current position and a best position. So, a
particle is said to be a good particle if it has just improved its best performance,
neutral if not. In addition to this qualitative (because not relative to values,

204 Y. Cooren, M. Clerc, and P. Siarry

Fig. 3. Removal of a particle from a multiparticle tribe

but to improvement) qualification, the best and the worst particles are defined
within the tribe framework.

In addition, good and bad statuses are also defined for the tribes. These sta-
tuses are related to the amount of good particles inside the tribes. It is postulated
that: “The larger the number of good particles in the tribe, the better the tribe
itself”. In practice, a random integer number p between 0 and the swarm’s size
is generated according to a uniform distribution. Then, if the number of good
particles in the tribe is strictly larger than p, the tribe is said good, if not, the
tribe is said bad.

These qualifiers allow us to define the two following rules.

Removal of a Particle

In most common uses of PSO, the most time consuming part of the algorithm
is the objective function evaluation. So, it is interesting to carry out the least
number of evaluations of the objective function. Consequently, it will be tried
to remove a particle of the swarm as soon as possible, on condition that the
removal does not affect the final result. That is why a removal of particle must
occur in a good tribe and the removed particle is obviously the worst. In Figure 3,
the particle P is the worst of its tribe and the tribe was declared good. In this
case P is removed and the redistribution of its external links (here, only one
symmetrical link) is done on M, the best particle of the tribe. The information
links that each particle has with itself are not represented, because they do not
play any role here.

In the case of a monoparticle tribe, the removal is only made if one of the “in-
formers”, i.e. a particle of another tribe by which the inter-tribes communication
is made, has a better performance (see Figure 4). This ensures us to keep the
better quality of information. In Figure 4, the monoparticle tribe was declared
good, thus the single particle P, which is necessarily the worst of the tribe, even
if it is at the same time good, should be removed. But it will be removed only
if its best external informer MP is better than itself. The assumption is indeed
that the information carried by P is then less valuable than that carried by MP .

The removal of a particle implies a change in the information network. All
the particles linked to the removed particle are redirected to the best particle of

Initialization and Displacement of the Particles in TRIBES 205

Fig. 4. Removal of a particle from a multiparticle tribe

the removed particle’s tribe. In the particular case of a monoparticle tribe, all
these links are redirected to the best informer of the removed particle, because
removing the particle implies removing the tribe.

Obviously, these structural adaptations must not occur at each iteration, be-
cause time must be let for the information propagation. In practice, if NL is
information links number at the moment of the last adaptation, the next adap-
tation will occur after NL/2 iterations.

Generation of a Particle

The process of adding a particle is quite similar to the removal. A bad tribe
generates particles which will form a new tribe. The bad tribe will keep the
contact with the new tribe and will try to use it to improve its best location.

Three types of particles are generated:

• Free particle: The particle is randomly generated according to a uniform
distribution in the whole search space, on a side of the search space or on
a vertex of the search space. The idea is to rely on the future course of the
particle to cross a promising area.

• Confined particle: If x is the best particle of the generating tribe and ix the
best informer of x, px and pix are the best locations of x and ix. The new
particle will be generated in the D-sphere of center pix and radius ||px−pix ||.
The idea is here to intensify research inside an interesting area.

• Isolated particle: The particle is generated in the biggest “terra incognita”,
i.e. as far as possible from the existing particles and from the boundaries of
the search space. The idea is to explore areas which have not been explored
yet and, then, to discover new regions of interest. Figure 5 shows an example
of where a “terra incognita” can be located. The * symbolize the particles
and the gray regions indicate possible “terra incognita”.

Swarm Evolution

At the beginning, the swarm is composed of only one particle which represents a
single tribe. If, at the first iteration, this particle does not improve its location,
a new one is created, forming a second tribe. At the second iteration, the same
process is applied and so on.

206 Y. Cooren, M. Clerc, and P. Siarry

Fig. 5. Location of possible “terra incognita”

The swarm’s size will grow up until promising areas are found. The more the
swarm grows, the longer the time between two adaptations will be. By this way,
the swarm’s exploratory capacity will grow up but the adaptations will be more
and more spaced in time. Therefore, the swarm has more and more chances to
find a good solution between two adaptations.

Contrarily, once a promising area is found, each tribe will gradually remove
its worst particle, possibly until it disappears. Ideally, when convergence is con-
firmed, each tribe will be reduced to a single particle.

3.3 Behavioral Adaptations

In the previous section, the first way of adaptation of the algorithm was de-
scribed. The second way in view of adapting the swarm to the results found by
the particles is to choose the strategy of displacement of each particle accord-
ing to its recent past. As in the case of the evolution of tribes, it will enable a
particle with a good behavior to have an exploration of greater scope, with a
special strategy for very good particles, which can be compared to a local search.
According to this postulate, the algorithm will choose to call the best displace-
ment’s strategy in view of moving the particle to the best possible location it
can reach.

There are three possibilities of variation for a particle: deterioration, status
quo and improvement, i.e. the current location of the particle is worse, equal or
better than its last position. These three statuses are denoted by the following
symbols: - for deterioration, = for status quo and + for improvement. The history

Initialization and Displacement of the Particles in TRIBES 207

of a particle includes the two last variations of its performance. For example,
an improvement followed by a deterioration is denoted by (+ -). So, there are
nine possibilities of history. The strategy of displacement of a particle will be
determined by its couple of variations. The different strategies of displacement
will be discussed in Section 5.

To sum up, it can be said that TRIBES is an algorithm which tries to solve one
of the main problems of metaheuristics: the fitting of parameters. By adapting
the swarm’s form and particles’ strategies of displacement, TRIBES frees users
of defining parameters and acts as a “black box”. The particles use their own
history and swarm’s history to decide how they must move and how the swarm
must be organized in view of approaching as efficiently as possible the global
optimum. The algorithm in Figure 6 shows a pseudo-code which summarizes
TRIBES process. g is the best location reached by the swarm and the p’s are
the best locations for each particle. NL is the number of information links at the
last swarm’s adaptation and n is the number of iterations since the last swarm’s
adaptation.

Initialize a population of particles with random positions and velocities.
Evaluate the objective function for each particle and compute g.
For each individual, pi is initialized at Xi.
Do
Determination of statuses for each particle.
Choice of the displacement strategies.
Update the velocities and the positions of the particles.
Evaluate the objective function for each individual.
Compute the new pi and g.
If n < NL

Determination of tribes qualities
Swarm’s adaptations
Computation of NL

End if
While the stopping criterion is not met

Fig. 6. TRIBES procedure

4 Initialization of TRIBES

The efficiency of every PSO-inspired algorithm is linked to the initialization of
the particles. In [1], it is proved that, in basic PSO, the position of a particle at
the time step t can be decomposed in two vectors, one which only depends on the
initial configuration and one which does not depend on the initial configuration.
The trajectory of a given particle is then linearly dependent from its initial
position and its initial velocity. So, it clearly appears here that a good choice of
initial positions and velocities can lead to better results. The ideal case would
be to assess the initial points in the way that the search space is explored as
widely as possible by the trajectories of the particles.

208 Y. Cooren, M. Clerc, and P. Siarry

Fig. 7. Random initialization

Commonly, particles are randomly initialized in the search space. But, such an
initialization can lead to a bad diversity of the particles. On Figure 7, a random
initialization of seven particles in dimension D=2 is shown. It can be seen that
the particles are confined in the lower-right part of the search space and in the
upper-left part. In this way, the particles would first explore the upper-left and
the lower-right corners of the search space and, then, there is a possibility that
they would be trapped in a local optimum situated in this region without having
explored the other regions of the search space.

In view of avoiding this problem, a new way of initialization is proposed. The
idea is to fill as widely as possible the search space. To summarize, the particles
will be initialized so that each particle will be as far as possible from the others
and as far as possible from the boundaries of the search space.

In dimension D, TRIBES will be initialized with D + 1 particles. The initial-
ization is made using a standard particle swarm optimization using the objective
function of Eq.(5):

f =
D+1∑
i=1

∑
j �=i

1
dij

+
D+1∑
i=1

1
mind∈[1..D](d(xi, boundd))

(5)

where dij is the distance between particle i and particle j and d(xi, boundd) is
the distance between particle i and the boundary of the dth dimension.

Figure 8 shows that this new way of initialization leads to a better diversity
of the particles in the search space. The particles fill well the search space and
no region will be preferred to others during the exploration process.

Initialization and Displacement of the Particles in TRIBES 209

Fig. 8. Regular initialization

5 Strategies of Displacement

It was seen in Section 4 that the way of initializing the particles has its im-
portance in view of making PSO as effective as possible. Once the particles are
initialized, it must be decided how they will move. In basic PSO, the strategy of
displacement is the same for each particle. Eqs.(1,2) model this strategy.

In TRIBES, the strategy of displacement is different for each particle and can
be modified at each time step. For a given particle, the choice of its strategy of
displacement is made according to its recent history. In this section, the original
strategies defined by Clerc in [4] are exposed and a new strategy is defined.

5.1 Basic Strategies of TRIBES

It was said in Section 3.3 that the strategy of displacement of a given particle
depends on its two last variations. So, there are nine possibilities of history.
Clerc [4] gathered them in three groups. So, only three strategies are needed.
The three used strategies are the following:

• Pivot strategy: This method is inspired from [11]. Let us denote by p the best
location of the particle, g the best position of the informers of the particle
and f the objective function. The movement is done as follows:

X = c1U(Hp) + c2U(Hg) (6)

with c1 = f(p)/(f(p) + f(g)), c2 = f(g)/(f(p) + f(g)), U(Hp) a point uni-
formly chosen in the hyper-sphere of center p and radius ||p − g|| and U(Hg)
a point uniformly chosen in the hyper-sphere of center g and radius ||p − g||.

210 Y. Cooren, M. Clerc, and P. Siarry

• Disturbed pivot strategy: Here we have

X = c1U(Hp) + c2U(Hg) (7)

b = N(0,
f(p) − f(g)
f(p) + f(g)

(8)

Xj = (1 + b)Xj (9)

• Local strategy by independent gaussians: If g is the best particle of the swarm,
we have

Xj = gj + N(gj − Xj , ||gj − Xj||) (10)

where N(gj − Xj , ||gj − Xj ||) is a point randomly chosen with a monodi-
mensional gaussian distribution of mean gj − Xj and standard deviation
||gj − Xj||.

So, (= +) and (+ +) represent the best particles and it will be chosen for
them a local strategy by “independent gaussians”. (+ =) and (- +) represent the
neither bad nor good particles and it will be chosen a “disturbed pivot strategy”.
At last, (- -), (= -), (+ -), (- =) and (= =) represent feeble particles. A “pivot
strategy” is chosen for them. If the movement implies one particle to go out
the search space, the particle will be brought back to its closest position in the
search space. This is particle’s confinement.

It can be seen that the strategies of displacement defined in this paragraph are
different from the one of Standard PSO, especially because there is no need to
define velocity vectors, but the philosophy is almost the same: a particle moves
according to its own best performance and according to the best performance of
the swarm.

5.2 A New Strategy of Displacement

In the previous paragraph, the three strategies of displacement employed in the
first version of TRIBES were defined. Results obtained with the original algo-
rithm can be found in [19]. In view of evaluating the efficiency of the strategies
of displacement defined above, a study of the behavior of the particles must
be done. No complete theoretical study already exists because the interactions
between particles made the problem very hard to solve although a few theoreti-
cal results about the dynamics of PSO [5, 13, 14] are available in the literature.
In consequence, only experimentation can inform us about the dynamics of the
particles during the process.

Figure 9 shows us examples of “convergence graphs” of TRIBES. Such graph
shows the median performance of the total runs, here 25 runs, as a function of the
number of evaluations of the objective function (Fes). A semilog scale is used.
These graphs are made with Griewank (F7), Rastrigin (F9) and Weierstrass
(F11) functions [12] in dimension D=10. It can be seen that TRIBES converges
quickly at the beginning of the process and seems to stagnate after. It can

Initialization and Displacement of the Particles in TRIBES 211

Fig. 9. Convergence graphs for Griewank (top), Rastrigin (middle) and Weierstrass
(bottom) functions

212 Y. Cooren, M. Clerc, and P. Siarry

Fig. 10. Trajectory of a particle. The cross indicates the optimum.

Initialize the population X0

Build the distribution P 0

Xt = X0

P t = P 0

Do
Select a subgroup Xt

sub of Xt

Build P t+1 according to Xt
sub

Sample P t+1 to create Xt+1
offspring

Replace individuals of Xt by individuals of Xt+1
offspring for creating Xt+1

t = t + 1
While the stopping criterion is not met

Fig. 11. Principle of an EDA

be concluded that the particles converge quickly to a local optimum and do
not manage to escape from it. This fact is a problem common to every PSO-
inspired algorithm. Considering that, in TRIBES, the position of a given particle
is randomly chosen using two hyperspheres of centers g and p, the particle is
attracted towards these two points. This implies that, if g or p is a local optimum,
the particle would be attracted to the “valley” of this optimum, move around
it and, so, it would not be possible for the particle to improve its performance.
Figure 9 shows an example of this behavior. Figure 9 represents the trajectory
of a particle for Weierstrass 2D problem [12]. Arrows are the velocities of the
particle at each time step and the cross symbolizes the location of the global

Initialization and Displacement of the Particles in TRIBES 213

optimum. It is clear that the particle is trapped in a local optimum and moves
around it. The observation of the velocity vectors confirms this remark.

Previous remarks imply that TRIBES is defective in matter of diversification,
i.e. the search space is not widely explored by the particles. The objective of
the new strategy of displacement is to improve the diversification capacity of
TRIBES. To reach this goal, an Estimation of Distribution Algorithm (EDA) is
used [7]. The principle of EDAs is to select a subgroup of a family of solutions,
build a probabilistic model of this subgroup and construct new solutions by
randomly sampling the constructed distribution. First, a family X0 of solutions
is randomly generated and its probabilistic model P 0 is constructed. For a given
time t, the main loop is composed of four steps. First, a subgroup Xt

sub of Xt

is chosen using a predefined criterion. Then, according to the element of Xt
sub,

the probabilistic model P t+1 is constructed. At this moment, P t+1 is sampled
to give the new family of solutions Xt+1 offspring. Finally, individuals of Xt

are replaced by individuals of Xt+1 offspring. The process is iterated until the
predefined stopping criterion is reached. Many different probabilistic models can
be used considering or not that the variables are correlated [7]. Algorithm 11
summarizes this process.

Introducing a new strategy of displacement based on EDA can permit us to
improve the diversification process of TRIBES. Indeed, the displacement of a
given particle will not be driven only by three positions (the current position
of the particle, p and g) but by a sub-family of the swarm. So, premature con-
vergence, caused by the stagnation of p and g, is avoided. Moreover, sampling
a probabilistic model implies that all the positions of the search space can be
reached with a non-zero probability and, then, gives the possibility to a particle
to escape from a local optimum in which it was trapped. By this way, the search
space can be more widely explored.

The problem is now to choose the appropriate family of particles in view
of building the distribution of probability. In a PSO-inspired algorithm like
TRIBES, the most obvious choice is to choose the best position of each par-
ticle i.e. the pi. Dimensions are supposed independent, thus a monodimensional
probabilistic model is computed for each dimension of the search space. If, at
the current time step, the size of the swarm is N and d is the current dimension,
the distribution of probability is supposed normal and is modelled by its average
and its standard deviation according to Eqs.(11, 12).

μd =
1
N

D∑
i=1

pi,D (11)

σ2
d =

1
N − 1

D∑
i=1

(pi,D − μd)2 (12)

Then, the new coordinate of the particle for the dimension d is randomly chosen
according to the normal distribution of average μd and standard deviation σd.

214 Y. Cooren, M. Clerc, and P. Siarry

Fig. 12. Histograms of the distance to all reached positions

In real problems, it is current that the variables are correlated. In this
case, a joint normal distribution is used instead of D monodimensional normal
distributions.

Obviously, this method cannot be employed at any moment for each particle.
It had been said above that there are nine possibilities of history for a particle. In

Initialization and Displacement of the Particles in TRIBES 215

basic TRIBES, histories are gathered in three groups. With the addition of our
new strategy of displacement, a new group is created. The use of the new strategy
of displacement is dedicated to the worst particles. So, particles with a history
(- -), (- =) or (= -) will use the new strategy to compute their displacement.

Figure 12 shows histograms of the distances between all the positions reached
by the particles for the Rastrigin 2D problem [12]. It can be seen that, with
the utilization of the new strategy of displacement, the positions reached by
the particles are less close than in the basic case. This remark implies than
the diversification process is better with the utilization of the new strategy. In
Figure 12(top), it can be seen that the histogram is mainly composed of three
thin peaks. This implies that, at the end of the procedure, the swarm is composed
of three tribes which have explored three different regions of the search space.
The fact that the peaks are very thin implies that all the particles of a same
tribe are concentrated on a local optimum and do not manage to escape from it.
Contrarily, in Figure 9b, the histogram is also composed of three peaks but the
peaks are, in this case, larger. This implies that the particles have explored more
largely the search space and did not stay concentrated around a local optimum.
So, it can be concluded that the diversification process of TRIBES is improved.

6 Numerical Results

The aim of this section is to compare Improved TRIBES, implemented with the
regular initialization and the new strategy of displacement, with a Standard PSO
algorithm [20], a simple continuous EDA [17], a real-coded Memetic Algorithm
[8], a real-coded Differential Evolution Algorithm [9] and with Basic TRIBES.
Tests are made in dimension D=10. For Standard PSO, the number of neighbors
for each particle is 3, the size of the swarm is 20, w = 1/(2 log 2) and c1 = c2 =
1/2+ log 2. The process stops if the error is lower or equal to 10−6 for functions
of Table 1 and 10−2 for functions of Table 2 or if the number of evaluations
of the objective function exceeds 105. Functions used are extracted from the
CEC’2005 benchmark functions set [12]. Table 1 and Table 2 give the mean
error of each algorithm for 25 executions and the mean number of evaluations
of the objective function, in brackets, respectively for unimodal functions and
multimodal functions.

Table 1 and Table 2 show that Improved TRIBES, implemented with the
regular initialization and the new strategy of displacement, gives competitive
results. Ackley bounds function can be excluded from the comparison because
it can be seen in Table 2 that all the algorithms are trapped in the same local
optimum. Improved TRIBES solves 50% of the benchmark, the best algorithm
being Differential Evolution with 60% of the benchmark solved.

Compared to Standard PSO, it can be seen that Improved TRIBES gives
better results on most cases. Indeed, Standard PSO is better only on Schwefel
and Schwefel noise, what can be explained by the simplicity of the function
and by the fact that Standard PSO starts with more particles than Improved
TRIBES. Improved TRIBES is better than TRIBES on 80% of the benchmark.

216 Y. Cooren, M. Clerc, and P. Siarry

Table 1. Comparison between several algorithms for unimodal functions

Sphere Schwefel Elliptic Schwefel
noise

Schwefel
bounds

Standard PSO 0.00
(3375)

0.00
(8300)

71.28e3
(100000)

0.00
(11562)

18.86
(67610)

Simple EDA 0.00
(28732)

0.00
(28916)

0.00
(32922)

0.00
(32636)

233.50
(100000)

Memetic algorithm 0.00
(11737)

0.00
(36598)

4.77e4
(100000)

0.00
(71563)

0.02
(100000)

Differential Evolution 0.00
(7120)

0.00
(21800)

0.00
(8970)

0.00
(26100)

0.00
(25300)

Basic TRIBES 0.00
(1856)

0.00
(10452)

18.77e3
(100000)

0.00
(18966)

1.74
(60409)

Improved TRIBES 0.00
(1521)

0.00
(12011)

13.11e4
(100000)

0.00
(23783)

9.07e-4
(80832)

Table 2. Comparison between several algorithms for multimodal functions

Rosen-
brock

Grie-
wank

Ackley
bounds

Rastrigin Rastrigin
rotated

Weier-
strass

Standard PSO 1.88
(100000)

0.08
(100000)

20.11
(100000)

4.02
(100000)

10.18
(100000)

4.72
(100000)

Simple EDA 0.00
(43500)

0.53
(10000)

20.33
(100000)

32.28
(100000)

32.28
(100000)

8.27
(100000)

Memetic algorithm 1.48
(100000)

0.19
(100000)

20.19
(100000)

0.43
(100000)

5.63
(100000)

4.55
(100000)

Differential Evolution 0.00
(26100)

0.15
(100000)

20.40
(100000)

0.00
(5110)

36.00
(100000)

4.67
(100000)

Basic TRIBES 0.06
(100000)

0.07
(100000)

20.32
(100000)

8.55
(100000)

12.11
(100000)

5.68
(100000)

Improved TRIBES 0.12
(100000)

0.02
(100000)

20.35
(100000)

0.19
(72584)

8.55
(100000)

3.55
(100000)

Compared to Basic TRIBES, Improved TRIBES is better excepted on Schwe-
fel, Schwefel noise and Rosenbrock functions. On Schwefel and Schwefel noise,
it can be deduced that the new strategy of displacement slows a little bit the
algorithm mainly because the diversification process is larger. On Rosenbrock
function, the result is a little better in favor of Basic TRIBES but the difference
is not significant.

Table 1 shows that, on unimodal problems, Improved TRIBES is faster than
non-PSO methods except on Elliptic problem. PSO-inspired methods fail totally
on this problem whereas Simple EDA and Differential Evolution solve it quite
simply. Globally, PSO-inspired methods seem to be more efficient, i.e. quicker,
than the others on simple problems easy to solve (ex: Sphere, Schwefel,...).

Initialization and Displacement of the Particles in TRIBES 217

Table 3. Time comparison between Basic TRIBES and Improved TRIBES for
unimodal functions

Sphere Schwefel Elliptic Schwefel
noise

Schwefel
bounds

Basic TRIBES 12.72 32.12 21.96 24.18 65.7
Improved TRIBES 26.57 25.28 27.72 34.85 74.12

Table 4. Time comparison between Basic TRIBES and Improved TRIBES for
multimodal functions

Rosen-
brock

Grie-
wank

Ackley
bounds

Rastrigin Rastrigin
rotated

Weier-
strass

Basic TRIBES 26.5 24.48 36.6 22.14 32.11 123.55
Improved TRIBES 32.19 32.32 47.2 38.74 46.84 147.66

Table 2 does not permit to make strong conclusions. However, Improved TRIBES
appears to be better than PSO-inspired methods and competitive with non-PSO
methods.

Table 3 and Table 4 present execution times, in seconds, of 105 evaluations
of the objective functions for Basic TRIBES and Improved TRIBES. Table 3
and Table 4 show that Improved TRIBES is slower than Basic TRIBES. This
fact is easily understandable since the new strategy of displacement needs more
computation time than the others. Moreover, the regular initialization process
is also slower than a simple random initialization.

7 Conclusions

This chapter has shown that TRIBES uses structural and behavioral rules to
avoid the fitting of parameters. Having no parameters implies no lost of time to
fit the parameters, which is a very hard problem, but also implies to give more
information to the particles, because the process is not “driven” by the values
of the parameters.

Two methods are proposed to try to help the particles to explore as widely as
possible the search space. The first one is a regular initialization of the particles,
which aims at filling as regularly as possible the search space. The second one is
a new strategy of displacement based on an estimation of distribution algorithm.
This new strategy permits to the particles to have more various displacements,
thus avoiding to be trapped into local optima.

Numerical results show that Improved TRIBES is equivalent or better than
Standard PSO and Basic TRIBES. Improved TRIBES also appears to be com-
petitive with non-PSO methods. Numerous improvements on TRIBES still are
possible. The rules of adaptation are quite simple and use very few information

218 Y. Cooren, M. Clerc, and P. Siarry

compared with all the available information. New rules can be defined to try to
have the best adaptation of the choices made to the specificity of the problem.

References

1. Campana, E.F., Fasano, G., Peri, D., Pinto, A.: Particle Swarm Optimization: Effi-
cient Globally Convergent Modifications. In: III European Conference on Compu-
tational Mechanics, Solids and Coupled Problems in Engineering, Lisbon, Portugal,
June 5-8 (2006)

2. Eberhart, R.C., Kennedy, J., Shi, Y.: Swarm Intelligence. In: Evolutionary Com-
putation. Morgan Kaufmann, San Francisco (2001)

3. Clerc, M.: TRIBES - Un exemple d’optimisation par essaim particulaire sans
paramtres de contrle. In: OEP 2003, Paris, France (2003)

4. Clerc, M.: Particle Swarm Optimization, International Scientific and Technical
Encyclopedia (2006)

5. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence
in multi-dimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6, 58–73 (2002)

6. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimisation. In: Proceedings of the
IEEE International Conference On Neural Networks, WA, Australia, pp. 1942–1948
(1995)

7. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms, a new tool for
evolutionary computation. Kluwer Academic Publishers, Dordrecht (2001)

8. Molina, D., Herrera, F., Lozano, M.: Adaptive Local Search Parameters for Real-
Coded Memetic Algorithms. In: Proceedings of the 2005 Conference on Evolution-
ary Computation, Edinburgh, Scotland, September 2-5, 2005, pp. 888–895 (2005)

9. Rnkknen, J., Kukkonen, S., Price, K.V.: Real-Parameter Optimization with Dif-
ferential Evolution. In: Proceedings of the 2005 Conference on Evolutionary Com-
putation, Edinburgh, Scotland, September 2-5, 2005, pp. 888–895 (2005)

10. Sawai, H., Adachi, S.: Genetic Algorithm Inspired by Gene Duplication. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computing, Washington DC, USA,
July 6-9, 1999, pp. 480–487 (1999)

11. Serra, P., Stanton, A.F., Kais, S.: Method for global optimization. Physical Review,
tome 55, 1162–1165 (1997)

12. Suganthan, P.N., et al.: Problem Definitions and Evaluation Criteria for the CEC
2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang
Technological University, Singapore, May 2005, AND KanGAL Report #2005005,
IIT Kanpur, India (2005), http://www.dcs.ex.ac.uk/∼dwcorne/cec2005/

13. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85, 317–325 (2003)

14. Van Den Bergh, F.: An Analysis of Particle Swarm Optimizers. Department of
Computer Science, University of Pretoria, South Africa (2002)

15. Yasuda, K., Iwasaki, N.: Adaptive particle swarm optimization using velocity infor-
mation of swarm. In: IEEE Conference on System, Man and Cybernetics, October
10-13, 2004, pp. 3475–3481. The Hague, Netherlands (2004)

16. Ye, X.F., Zhang, W.J., Yang, Z.L.: Adaptive Particle Swarm Optimization on In-
dividual Level. In: International Conference on Signal Processing (ICSP), Beijing,
China, August 26-30, 2002, pp. 1215–1218 (2002)

http://www.dcs.ex.ac.uk/~dwcorne/cec2005/

Initialization and Displacement of the Particles in TRIBES 219

17. Yuan, B., Gallagher, M.: Experimental results for the special session on real-
parameter optimization at CEC 2005, a simple continuous EDA. In: Proceedings of
the 2005 Congress on Evolutionary Computation, Edinburgh, Scotland, September
2-5, 2005, pp. 1792–1799 (2005)

18. Zhang, W., Liu, Y., Clerc, M.: An adaptive PSO algorithm for real power opti-
mization. In: APSCOM (Advances in Power System Control Operation and Man-
agement), S6: Application of Artificial Intelligence Technique (part I), Hong Kong,
November 11-14, 2003, pp. 302–307 (2003)

19. http://clerc.maurice.free.fr/pso/
20. http://www.particleswarm.info

http://clerc.maurice.free.fr/pso/
http://www.particleswarm.info

Evolution of Descent Directions

Alejandro Sierra Urrecho1 and Iván Santibáñez Koref2

1 Department of Computer Engineering, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, 28049 Madrid, Spain
Tel.: +34(91)497 2233; fax: +34 (91)4972235
alejandro.sierra@uam.es

2 Bionics and Evolutionary Techniques Dept., Technische Universität Berlin,
D-13355 Berlin, Germany
Tel.: +49(30)314 72663; fax: +49(30)314 72019
isk@bionik.tu-berlin.de

Summary. Estimation of distribution algorithms proceed by sampling new solutions
from a probability distribution learnt in an evolutionary way. This involves keeping
track of a population of candidate solutions and updating distribution parameters from
the best of these candidates. We propose to substitute this population of solutions by
one of descent directions. New solutions will no longer be sampled but interpolated
along each direction in a deterministic way. Even when strong correlations between
dimensions are present, sampling new directions from a product of independent one-
dimensional Gaussian distributions is enough because covariances are captured by the
directions. Despite its simplicity, our algorithm can address problems such as the ro-
tated cigar function with state of the art performance and without any covariance
calculation.

Keywords: descent directions, local search, evolution, estimation of distribution
algorithm, continuous optimization.

1 Introduction

Efficient evolutionary optimization algorithms require the search distribution
to stay within the evolution window [1]. Already early works in evolutionary
computation realized the importance of the adaptation of the distribution from
which new candidate solutions are obtained. The 1/5th success rule introduced
by Rechenberg [2] has the aim to increase the progress rate of the optimiza-
tion by adapting the variance (step size). When the success rate is too high,
the variance increases. By contrast, when the success rate is below the optimal
value, the variance decreases. This is an early example of the many adaptation
strategies now available in the evolution strategy literature [3]. In genetic al-
gorithms, one of the first attempts to skip the recombination operator is the
population based incremental learning algorithm [4]. This algorithm samples
new binary strings from probability distributions estimated for each bit out of
the best individuals of the previous generation. This is one of the members of
a family of algorithms known as estimation of distribution algorithms, in which

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 221–237, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

222 A. Sierra Urrecho and I. Santibáñez Koref

evolution is implemented through learning of and sampling from distribution
probabilities [5]. In this paper we will be focusing on evolution strategies rather
than genetic algorithms because we are interested in continuous minimization
problems.

In evolution strategies, the estimation of distributions can be significantly
simplified when the variables are independent. In this case, we are free to express
the joint probability distribution as a product of one dimensional probability
distributions. Gaussian distributions make things even easier, because all that is
left to estimate is the mean and standard deviation of each dimension. This is
precisely what the univariate marginal distribution algorithm (UMDA) [6] does
for improving its Gaussian distribution. Means and deviations are updated out
of the best solutions drawn from past Gaussian distributions.

Since this algorithm takes full advantage of the independence of the variables,
it fails to work properly when correlations between them are present. When
this is the case, drawing samples from one-dimensional Gaussian distributions
falls short of providing an optimal way of sampling new points. A full fledged
multivariate Gaussian distribution has to be learned in this case. As before,
the most straightforward approach consists of estimating the covariance matrix
out of the best representatives of the population. This is exactly the procedure
carried out by the algorithm called EMNA [7].

Many other approaches are now available in the literature that exploit the
information generated during the optimization process more effectively . For
instance, the evolution strategy with cumulative step size adaptation (CSA-
ES) [8] adapts the global step size by using the path traversed by the parent
population over a number of generations. This algorithm has been extended with
an adaptation of the covariance matrix. The new algorithm is called evolution
strategy with covariance matrix adaptation (CMA-ES) [9]. This approach to
adaptation is probably the most efficient for continuous minimization problems.

Another interesting approach is called IDEA [10] . This framework learns a
graph or factorization of the joint probability distribution by optimizing a cer-
tain given metric. The graph construction is ended when adding new arcs does
not lead to metric improvements. A related approach is called mixed Bayesian
optimization algorithm (MBOA) [11]. This algorithm adapts a Bayesian net-
work with decision trees for the estimation of the distribution probability of the
selected parent population.

In this paper yet another possible approach is introduced. We call it evolution
of descent directions (ED2) . Instead of evolving a population of points in the do-
main of the goal function (solutions), we rather evolve a population of candidate
descent directions along which we search for new points in the domain of the
goal function. Each direction embodies a correlation between variables making
use of only N parameters instead of the N(N − 1)/2 necessary for the repre-
sentation of a covariance matrix. Therefore, in this approach, the estimation of
the covariance matrix is substituted by its evolution. One important question is
how to assign fitness to each descent direction. Our proposal is to assess fitness
by running a line minimization algorithm. In many cases it is enough to fit a

Evolution of Descent Directions 223

second degree polynomial to obtain the minimum on a line. This procedure has
proved able to improve the population of directions and therefore the quality of
the solutions. Broadly speaking, the algorithm works as follows:

1. An initial population of directions is generated randomly. The best point
found so far is initialized at random. The following two points are iterated
until a satisfactory best point is found.

2. Each direction is used to improve the best point by interpolation. Fitness is
equal to the drop in function value.

3. New directions are sampled from a product of one-dimensional Gaussian
distributions whose means and deviations are calculated out of the best
current directions.

The organization of the paper is the following. Our algorithm is described
in detail in section 2. Section 3 analyzes an illustrative experiment which high-
lights how our algorithm can solve correlated problems without the estimation
of covariances. Section 4 reports on the experiments carried out with benchmark
multivariate minimization problems. Although our algorithm requires in general
more function evaluations than the best algorithm currently available, it is ex-
tremely efficient in terms of CPU time, due to its surprising simplicity and lack
of second degree statistics. Our conclusions can be found in the last section of
the paper.

2 The Algorithm: ED2

Let us consider a multidimensional minimization problem, i.e., a real function
f : D ⊂ RN → R dependent on x ∈ D whose minimum has to be found. Let us
first describe the coding mechanism used by ED2 so as to clarify the nature of
the individuals evolved in our approach.

2.1 Coding Scheme

As mentioned above, our algorithm relies on a population of λ directions in-
stead of points. More precisely, our individuals are straight lines in Euclidean
space RN :

Lg
i = {x + βwg

i | β ∈ R}, (1)

where wg
i is an N dimensional vector (i = 1, . . . , λ), and x is the best N dimen-

sional point found so far, i.e., the point with minimum function value found so
far. Notice that this point has no subindex because it is shared by directions as
explained next.

The basic idea behind our algorithm is to take advantage of efficient line
minimization algorithms in order to improve the current best point. By means
of one of these algorithms, each line Lg

i yields a new point x + βiw
(g)
i where

βi = min
β

f(x + βw(g)
i). (2)

224 A. Sierra Urrecho and I. Santibáñez Koref

For quadratic functions, an interpolation procedure around the best point x
is enough and most efficient. After successful interpolations, i.e., when f(x +
βiw

(g)
i) < f(x), the best point is updated

x := x + βiw
(g)
i , (3)

so that next lines can take advantage of the improvement. The fitness of each
line is equal to the descent in the function value it gives rise to, i.e., each line is
worth the function value before interpolation minus the value after interpolation.
The best directions found in this way are used to update the one dimensional
Normal distributions from which next directions will be sampled.

Let us summarize before closing this section. Our individuals are straight lines
composed of directions and points. Only directions are sampled from Normal
distributions, because points are found by interpolation on each line. The next
subsection explains all this in detail.

2.2 The Algorithm

1. The size of the population (μ, λ) is chosen.
2. The initial one-dimensional Normal distributions are generated. Standard

deviations are initialized at 1 (g is the generation number):

σ(g=0) = (1, 1, . . . , 1), (4)

and means are randomly chosen around zero:

m(g=0) = (m(0)
1 , m

(0)
2 , . . . , m(0)

n) ∼ N (0, I). (5)

3. The best point so far is initialized at random:

x = (x1, x2, . . . , xn) ∼ N (0, I). (6)

4. The following steps are repeated until an acceptable solution is achieved:
a) λ new offspring directions are drawn from the current product of Gaus-

sian distributions:

w(g+1)
i ∼ N (m(g), σ(g)1T), i = 1, . . . , λ. (7)

b) The fitness value assigned to line Lg+1
i is the following difference in

function value:

F (L(g+1)
i) = f(x) − f(x + βiw

(g+1)
i), (8)

between the best point so far x and the new one found by interpolation
in its neighborhood (See section 2.3 for a detailed explanation.) Besides,
the best point so far is updated after those interpolations which reduce
function value (this is always the case for quadratic functions):

x := x + βiw
(g+1)
i . (9)

Evolution of Descent Directions 225

c) The current one dimensional Normal distributions are updated from the
μ best directions w(g)

i:λ (i = 1, . . . , μ) out of the λ we have just drawn
from the previous distribution:

m
(g+1)
j =

1
μ

μ∑
i=1

w
(g)
i:λ,j , where j = 1, . . . , N and (10)

σ
(g+1)
j =

1
μ

μ∑
i=1

(w(g)
i:λ,j − m

(g)
j)2, (11)

where w
(g)
i:λ,j is component number j of direction w(g)

i:λ .

One of the most surprising features of ED2 is its sampling mechanism. New
directions are drawn from a product of independent one dimensional Normal
distributions. The means and deviations of these distributions are all we have
to estimate from the best candidate directions of each generation. Let us now
explain in detail how fitness is assigned to each descent direction, a procedure
which is at the heart of our algorithm.

2.3 Fitness Interpolation

At first, finding a means of assigning fitness to lines seems to be quite a com-
plex task. However, it is not, because we only need to assess fitness locally, in
the vicinity of each best point. This can be quickly done by means of a line
minimization algorithm. Moreover, in the case of quadratic functions, a second
degree polynomial interpolation is sufficient because the function is a parabola.

Fig. 1. Interpolation along direction w(g+1)
i

226 A. Sierra Urrecho and I. Santibáñez Koref

This procedure takes four function evaluations at the most. Figure 1 depicts
the interpolation along direction w(g+1)

i around the current best point x, which
leads in general to a better new point x + βiw

(g+1)
i . In fact, it takes just three

function evaluations because the search lines pass through the best point found
so far, whose fitness is already known.

More formally, what we have to find for each line L(g+1)
i (i = 1, . . . , λ) is the

coefficient βi minimizing f(x+βw(g+1)
i) in the vicinity of the best point x found

so far:
βi = min

β
f(x + βw(g+1)

i). (12)

The most reliable way of doing this is using a line minimization algorithm such
as Brent algorithm [12], which is a clever combination of bracketing and in-
terpolation. However, given that any line section of a quadratic function is
quadratic itself, a simple second order polynomial interpolation method is suffi-
cient and fastest. Only three function evaluations are needed in order to have a
second order polynomial passing through three points x, x− = x − w(g+1)

i and
x+ = x + w(g+1)

i . The coefficient of the minimum can be calculated by:

2βi = − f(x−) − f(x+)
2f(x) − f(x−) − f(x+)

(13)

Now, let us describe how to use the interpolated point x+ βiw
(g+1)
i to assign

fitness to line L(g+1)
i (i = 1, . . . , λ). Instead of just using the value of the function

value, we prefer to use the drop in function value along each line:

F (L(g+1)
i) = f(x) − f(x + βiw

(g+1)
i). (14)

This is necessary for the following reason. After each successful interpolation, the
best point is updated as the minimum of the parabola. The next line of the pop-
ulation interpolates around this new best point and, therefore, it automatically
inherits this point’s function value, no matter its quality as a descent direction.
By using differences as we propose in equation 14, better fitness is assigned to
those lines with more descent in function value, as expected.

2.4 Complexity of ED2

One of the most attractive features of the evolution of directions is its simplicity.
In contrast to many state of the art algorithms, the calculation here is domi-
nated by function evaluations. In CMA-ES, the time necessary to compute the
function value is small compared to the decomposition of the covariance matrix.
Correspondingly, the learning sections of MBOA or IDEA also take most of the
calculation time. In contrast, ED2 is structurally similar to UMDA [6] after sub-
stituting points by lines. This means we are making use of the most economical
self adapting mechanism available in the literature: drawing individuals from
a product of independent one dimensional Gaussian distributions. Only means

Evolution of Descent Directions 227

and deviations need to be estimated, and no matrix inversion or covariance cal-
culation is necessary, which burdens most other approaches. The only extra that
has to be done here, in comparison to UMDA; is three function evaluations for
each fitness assignment. In short, ED2 is quite an efficient algorithm as compared
with the state of the art estimation of distribution algorithms.

3 An Illustrative Experiment

In order to appreciate the advantages of our approach best, let us consider the
cigar function in 10 dimensions:

f(x) = x2
1 + 104

10∑
i=2

x2
i , (15)

together with a rotated version:

fR(x) = f(Tx), (16)

where matrix T is a 20o rotation involving coordinates x1 and x2. This sec-
ond function poses serious trouble to evolutionary algorithms that sample from
factorized probability distributions due to the correlation between coordinates.
The point we wish to make clear in this section is that our algorithm, despite of
sampling new descent directions from a product of one dimensional independent
Gaussian distributions, it is still capable of spotting the right descent direction
after solving the initial easiest portion of this minimization problem.

Figure 2 shows the best fitness so far versus the number of function evalua-
tions for the rotated cigar function (N = 10) and three different optimization
approaches: EMNA, UMDA and ED2. This figure shows that sampling from one
dimensional Normal distributions is sufficient when the population is integrated
by descent directions (ED2) instead of points (UMDA). The univariate marginal
distribution algorithm gets trapped in a suboptimal solution because of sampling
from independent Normal distributions. As expected, EMNA approaches the op-
timum in an almost linear way (in logarithmic scale) as a function of the number of
evaluations. Our algorithm is the one which more rapidly solves the easiest part of
this problem and then, after a plateau spent searching for the right descent direc-
tion, is capable of finally approaching the minimum along the rotated privileged
direction.

Figure 3 shows the evolution in ED2 for the rotated cigar function in 10 di-
mensions. Three quantities updated on a generational basis are shown: the norm
of the mean of the μ best directions of each generation, the average norm of
the μ best directions of each generation, and the norm of the variance estimated
from the μ best directions. The proper direction is spotted after around 10000
evaluations in spite of the absence of covariance estimation. The two first ap-
proach each other when the population converges to one representative. This
occurs after about 104 function evaluations, just when the variance begins to
decrease. Although this number of evaluations may seem too high at first, we

228 A. Sierra Urrecho and I. Santibáñez Koref

Fig. 2. Best fitness versus number of function evaluations for three different algorithms
on the rotated cigar function (see text)

Fig. 3. Evolution in ED2 for the rotated cigar function in 10 dimensions (see text)

Evolution of Descent Directions 229

remind the reader of the fact that in our approach no second order statistical
estimation is carried out, thus making the algorithm quite efficient in CPU time.

4 Experimental Comparison

This section is devoted to the comparison of our algorithm with the state of
the art estimation of distribution algorithms on a standard set of quadratic
minimization problems (see Table 1). A lower condition value (a = 100) has
been chosen to facilitate the comparison with a recent review [13]. All of our
experiments are conducted for N = 10 and the results shown in this section
correspond to the mean value of 20 executions for each function. Our initial
population of directions is sampled from a product of Gaussian distributions
centered around 0 and with standard deviations equal to 1. Remember that our
individuals consist of lines (directions plus best point) instead of just points.
The initial best point is set to the unit vector in all our experiments.

Table 1. Test functions and parameter values. The initial best point for all functions
is the unit vector.

Name Function Parameters

Sphere f(x) =
∑N

i=1 x2
i

Cigar f(x) = x2
1 + a2 ∑N

i=2 x2
i a = 102

Ellipsoid f(x) =
∑N

i=1(a
i−1

N−1 xi)2 a = 102

Tablet f(x) = (ax1)2 +
∑N

i=1 x2
i a = 102

From our point of view, one of the nicest features of our algorithm is its
simplicity: The only parameter we need to choose before running the algorithm
is the size of the population. As expected, the behavior depends heavily on μ
and λ. Our experiments show that μ can be chosen to be equal to the number
of dimensions provided that selection pressure is increased significantly: (λ =
10μ). Figure 4 makes this point clear. It shows the mean number of evaluations
of the cigar function in 10 dimensions as a function of μ for three different
values of λ. It is clear that we have to increase λ (λ = 10μ) if we want μ = 10
to give good results. This is quite a surprising result because it corresponds
to only 20 generations, i.e., only 20 adaptations of the direction. Thus, in the
following experiments a population (μ = 30, λ = 300) has been used because its
performance has less variance.

Table 2 compares the performance of our algorithm (μ = 30, λ = 300) with
other state of the art estimation of distribution algorithms. All of these algo-
rithms have been described in the introduction ((1 + 1) − ES is an evolution

230 A. Sierra Urrecho and I. Santibáñez Koref

Fig. 4. Mean number of evaluations of the cigar function in N = 10 as a function of
μ for three different values of λ

Table 2. Performance ratio comparison of some state of the art algorithms on a set
of quadratic minimization problems. The number between parenthesis is the number
of evaluations required by the fastest algorithm. The other numbers are ratios with
respect to the figure in parenthesis.

Function (1+1)-ES CMA-ES IDEA MBOA ED2

Sphere 2 2.6 10 96.4 1 (682)
Ellipsoid 66 1 (4450) 1.6 14 2

Cigar 610 1 (3840) 4.6 12 2.2
Tablet 27 1 (4380) 1.7 14 1.2

Rot. ellipsoid 64 1 (4490) 13 1800 2.1
Rot. cigar 600 1 (3840) 38 2100 3.7

Rot. tablet 25 1 (4400) 6.8 910 2.7

strategy with the 1/5th rule). Surprisingly enough, ED2 outperforms CMA-ES
on the sphere function. MBOA’s bad performance on this function has been at-
tributed to its lack of overall variance estimation [13]. However, our algorithm
performs extremely well on the sphere despite of its lack of overall variance
estimation. The reason must lie in its sampling of directions instead of solution
points.

Our algorithm is specially competitive for the non-rotated functions because
our coordinate wise sampling mechanism is especially suited for non correlated

Evolution of Descent Directions 231

functions. Despite this simple mechanism, line minimization is capable of ad-
dressing all of the rotated functions without a severe increase in the number of
function evaluations as can be checked in Table 2.

5 Scaling Properties of ED2

One of the most attractive features of the evolution of directions is its simplicity.
In fact, ED2 is structurally similar to UMDA [6]: new directions are sampled from
a product of one dimensional Gaussian distributions. Self adaptation amounts
to recalculating means and standard deviations out of the best directions from
previous generations. No covariance estimation procedure is necessary and the
algorithm is extremely simple and fast. This simplicity contrasts with many state
of the art EDAs which have very heavy learning algorithms designed to learn
complex probability distribution functions. For instance, in CMA-ES, the time
necessary to compute the function value is small compared with the decomposi-
tion of the covariance matrix. Correspondingly, the learning sections of MBOA
or IDEA also take most of the calculation time.

The only extra work we have to perform in ED2 as compared with UMDA, is
running a line minimization algorithm. However, as we have discussed in Section
4, we use either parabolic interpolation, which only takes three function calls per

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
x 10

4

Number of dimensions

M
ea

n
nu

m
be

r
of

 fu
nc

tio
n

ev
al

ua
tio

ns

interpolation
Brent

Fig. 5. Mean number of evaluations of the cigar function as a function of the number
of dimensions. Two different line minimization algorithms are used: interpolation and
Brent method.

232 A. Sierra Urrecho and I. Santibáñez Koref

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
x 10

5

Number of dimensions

M
ea

n
nu

m
be

r
of

 fu
nc

tio
n

ev
al

ua
tio

ns

Fig. 6. Mean number of evaluations of the Rosenbrock function as a function of the
number of dimensions

fitness evaluation, or Brent‘s method, with four function calls at most. In short,
ED2 is quite an efficient algorithm as compared with state of the art estimations
of distribution algorithms.

Figure 5 shows how ED2 performance scales with the number of dimensions N .
Two curves are shown, one for each kind of line minimization algorithm: parabolic
interpolation and Brent’smethod. Both curves represent the mean number of func-
tion evaluations as a function of the number of dimensions of the problem. The val-
ues shown are the averages of 20 executions of ED2 with μ and λ set according to
the optimal results for N = 10 obtained in Section 4. This population size depends
on N , as expected, and also on the line minimization algorithm. More precisely, for
N = 10, our experiments show that parabolic interpolation yields best results for
(μ = 32, λ = 160), i.e., (μ = 3N, λ = 15N). Brent’s line minimization algorithm
is optimal for (μ = 51, λ = 306), i.e., (μ = 5N, λ = 30N).

Figure 5 clearly states that the mean number of function evaluations grows
linearly with the number of dimensions as expected for quadratic functions.
Brent’s method is slightly slower than parabolic interpolation. This comes as
no surprise, given that Brent’s method together with the initial bracketing is
more costly in terms of function evaluations than the elementary interpolation
mechanism. Figure 6 represents the mean number of function evaluations of the
Rosenbrock function as the number of dimensions grow. Here the behavior is
quadratic, as corresponds to a non-quadratic function.

Evolution of Descent Directions 233

6 Conclusions

Many traditional minimization algorithms proceed by smart successive line min-
imizations [12]. More precisely, starting from a point x in N dimensions and a
descent direction w, a new point can be found by means of a one-dimensional
minimization method along the line x + βw. Each method characterizes by the
way in which new successive directions are chosen: the original axis, conjugate
directions, etc. As expected, these choices are more efficient if the function’s gra-
dient is properly used. Our approach, which does not take advantage of gradient
information, consists of estimating these directions by means of an evolution-
ary process. This involves keeping track of a population of lines, whose best
representatives are used to sample new candidate search lines.

One of the most surprising features of our algorithm is that new descent
directions are sampled from a product of independent one dimensional Gaus-
sian distributions. This is arguably the most elementary adaptation mechanism
available in the literature. In fact, it is known to fail when correlations between
dimensions are present. However, when applied to the adaptation of lines, it gives
rise to good results because correlated variables turn into independent ones when
the proper direction is considered.

In order to judge which lines are best, a fitness evaluation process has to be
designed. Our method is called fitness interpolation because for each direction
w and current best point x, β is found by having a second order polynomial
pass through f(x), f(x − w) and f(x + w). This procedure is an efficient one
since it requires only three function evaluations. Given that any line section of
a quadratic function is itself a quadratic function, second order interpolation is
expected to perform as well but much faster than more clever line minimization
algorithms. Although our experiments confirm this point, we are currently in-
vestigating other possibilities such as the popular Brent method [12], which is
a rather smart combination of interpolation and bracketing. As expected, this
alternative procedure outperforms simple interpolation for more involved func-
tions such as the Rosenbrock function [13].

Apart from studying different line minimization methods, we are planning to
generalize our algorithm in several ways. For instance, there is no need to restrict
ourselves to linear descent directions. In example a neural network capable of
learning non-linear search directions can be used, along which the algorithm inter-
polate new points. This is likely to outperform line minimization algorithms in the
case of multimodal functions. In this paper we propose to set λ = 10μ. The setting
of λ, μ shall be examined. We expect to report soon on this ongoing project.

Acknowledgments

Alejandro Sierra would like to thank the members of the Bionik und Evolu-
tionstechnik Laboratory of the Technical University of Berlin for their support
during the months that it took to complete this work. This paper has been
sponsored by a fellowship from the Spanish Ministry of Education and by the

234 A. Sierra Urrecho and I. Santibáñez Koref

Spanish Interdepartmental Commission of Science and Technology (CICYT),
project number TIN2004-07676-C02-02.

The work of I. Santibáñez has been supported by the project “Anwendung von
Erkenntnissen der Bionik zur Funktions- und Strukturoptimierung von Schiff-
spropellern und anderen Gusskörpern” (01RW0307) granted by the Federal Min-
istry of Education and Research.

References

1. Rechenberg, I.: Evolutionsstrategie 94. Fromman-Holzboog Verlag, Stuttgart
(1994)

2. Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

3. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

4. Baluja, S., Caruana, R.: Removing the Genetics from the Standard Genetic Algo-
rithm, Technical Report, Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburg, PA, CMU-CS-95-141 (1995)

5. Mühlenbein, H., Paass, G.: From recombination of genes to the estimation of dis-
tributions I. binary parameters. Lecture Notes in Computer Science, vol. 1411, pp.
178–187 (1996)

6. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in continu-
ous domains by learning and simulation of Gaussian networks. In: Proceedings of
the 2000 Genetic and Evolutionary Computation Conference Workshop Program,
pp. 201–204 (2000)

7. Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of distribution algorithms
based on multivariate normal and Gaussian networks. Technical Report KZZA-IK-
1-01, Department of Computer Science and Artificial Intelligence, University of the
Basque Country (2001)

8. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-
local use of selection information. In: Davidor, Y., Schwefel, H.-P., Männer, R.
(eds.) Parallel Problem Solving from Nature - PPSN IV, pp. 189–198. Springer,
Berlin (1994)

9. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

10. Bossman, P.A.N., Thierens, D.: Expanding from discrete to continuous estimation
of distribution algorithms: The IDEA. In: Schoenauer, M., Deb, K., Rudolph, G.,
Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Parallel Problem Solving
from Nature - PPSN VI, pp. 767–776. Springer, Berlin (2000)

11. Ocenasek, J., Schwarz, J.: Estimation of distribution algorithm for mixed
continuous-discrete optimizatino problems. In: Schoenauer, M., Deb, K., Rudolph,
G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Second Euro-
International Symposium on Computational Intelligence, pp. 227–232. IOS Press,
Slowakia (2002)

12. Fletcher, R.: Practical methods of optimization. John Wiley and Sons, New York
(1987)

13. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms - a com-
parative review. Natural Computing 3, 77–112 (2004)

Evolution of Descent Directions 235

Source code of ED2 in Matlab

In order to illustrate the ED2-Algorithm, a sample code is presented in this
section. The the comments refer to the equations in the above text.

1 function [feval,x,x_fit]=ed2(func_name)

2 %ED2 for unconstrained optimization

3 %Input:

4 % func_name - Name of goal function. Included functions in this file:

5 % ’kugel’,’cigar’,’tablette’,’ellipsoid’,’rosenbrock’

6 %Output:

7 % feval - Number of goal function evaluations to meet stopping criteria

8 % x - Best point found so far

9 % x_fit - Goal function value at origin

10 % (c) 2006 A. Sierra and I. Santibaez

11
12 % Definition of constants and strategy variables

13 N = 10; % Dimension of problem

14 MU = 3*N; % Number of individuals to select and recombine

15 LAMBDA = 10*MU; % Number of offspring

16 MAX_FEVALS = 1e5; % Maximal number of goal function evaluations

17 FITNESS_LIMIT = 1.0e-10; % Stop limit for optimization

18
19 % Defintion of goal function and transformation

20 f.func = func_name; % Name of fitness function

21 f.trans = false; % Don’t transformate input

22 f.T = []; % Transformation matrix

23 f.feval = 0; % Counter for number of fitness evaluations

24
25 % Initialization

26 z = zeros (LAMBDA, N); % Perturbations

27 w = randn (LAMBDA, N); % Array of offspring directions

28 w_fit = zeros(1,LAMBDA); % Array of offspring fitness

29 w_point = zeros(1,N); % Best point along offspring search direction

30 F = zeros(1,LAMBDA); % Quality of each direction = drop in funct. value

31 sigma = ones (1, N); % Array of std. dev. of selected directions Eq. 4

32 m = randn (1, N); % Parent direction Eq. 5

33 x = initial(f.func,N); % Origin of line search Eq. 6

34 [x_fit,f] = quali(f,x); % Get fitness of starting point

35
36 % The ED2 algorithm

37 while (f.feval<MAX_FEVALS)

38 z = randn(LAMBDA,N)*diag(sigma); % Generate perturbation

39 w = m(ones(1,LAMBDA),:)+z; % Generate new directions Eq. 7

40 for l=1:LAMBDA % For each offspring

41 [w_point,w_fit(l),f] = line_minimization(... % Line minimization along

42 f,x,x_fit,w(l,:)); % offspring direction Eq. 12

43 F(l) = x_fit-w_fit(l); % Assign quality Eq. 8

44 if F(l) > 0 % If better

236 A. Sierra Urrecho and I. Santibáñez Koref

45 x_fit = w_fit(l); % accept best point

46 x = w_point; % as new origin Eq. 9

47 if (x_fit < FITNESS_LIMIT)

48 feval = f.feval;

49 return

50 end

51 end

52 end

53 [F_s, idx] = sort (-F); % Sort quality of offspring

54 m = mean (w (idx (1:MU), :)); % Recombine best MU offspring Eq. 10

55 sigma = std (z (idx (1:MU), :)); % Deviation of MU selcted

56 % perturbations Eq. 11

57 end

58 feval = f.feval;

59 return

60
61 function [w_point,w_fit,fit] = line_minimization(fit,x,x_fit,w)

62 %Parabolic line search for one dimensional minimization

63 %Input:

64 % fit - Structure containing goal function

65 % x - Origin of line search

66 % x_fit - Goal function value at origin

67 % w - Direction describing the line to search

68 %Output:

69 % w_point - Point found by line minimization

70 % w_fit - Goal function value at w_point

71 % fit - Structure containing goal function

72 left = -0.1; center = 0.0; right = 0.1;

73 [f_left,fit] = quali(fit,x+left*w);

74 f_center = x_fit;

75 [f_right,fit] = quali(fit,x+right*w);

76 denominator = (center-left) * (f_center - f_right) ...

77 - (center - right) * (f_center - f_left);

78 numerator = (center-left)^2 * (f_center - f_right) ...

79 - (center-right)^2 * (f_center - f_left);

80 w_point = x + (center - 0.5 * numerator / denominator) * w;

81 [w_fit,fit] = quali(fit, w_point);

82 return

83
84
85 function [res,fit] = quali(fit,x)

86 %Wrapper for goal function

87 %Input:

88 % fit - Structure containing goal function

89 % x - Evaluation point

90 %Output:

91 % fit - Structure containing goal function

92 % res - Goal function at x

93 if fit.trans

Evolution of Descent Directions 237

94 x = x*fit.T’;

95 end

96 fit.feval = fit.feval+1;

97 res = feval(fit.func,x);

98 return

99
100 function x0 = initial(func,N)

101 %Initial settings for each goal function

102 %Input:

103 % func - Name of goal function

104 % N - Dimension

105 %Output:

106 % x0 - Start point for optimization

107 switch lower(func)

108 case {’kugel’,’ellipsoid’,’cigar’,’tablette’}

109 x0 = ones(1,N)/sqrt(N);

110 case ’rosenbrock’

111 x0 = zeros(1,N);

112 otherwise

113 disp(’Unknown function’);

114 end

115 return

116
117 % Goal functions

118 function res = kugel(x)

119 res = sum(x.^2);

120 return

121
122 function res = cigar(x)

123 a = 100;

124 res = x(1).^2+a.^2*sum(x(2:end).^2);

125 return

126
127 function res = tablette(x)

128 a = 100;

129 res = a.^2*x(1).^2+sum(x(2:end).^2);

130 return

131
132 function res = ellipsoid(x)

133 a = 100;

134 N = size(x,2);

135 fak = a.^((1-N:0) ./(N-1));

136 res = sum((fak.*x).^2);

137 return

138
139 function res = rosenbrock(x)

140 res = sum((1 - x(1:end-1)).^2 + 100*(x(2:end) - x(1:end-1).^2).^2);

141 return

“Multiple Neighbourhood” Search in
Commercial VRP Packages: Evolving Towards
Self-Adaptive Methods

Kenneth Sörensen1,2, Marc Sevaux2, and Patrick Schittekat3,4

1 Fellow of the Flemish Fund for Scientific Research, University of Leuven
Centre for Industrial Management, Celestijnenlaan 300a
3001 Leuven, Belgium
kenneth.sorensen@cib.kuleuven.be

2 University of South Brittany
CNRS, FRE 2734, LESTER Centre de Recherche - BP 92116
F-56321 Lorient cedex, France

3 University of Antwerp, Faculty of Applied Economics
Prinsstraat 13, 2000 Antwerp, Belgium

4 ORTEC Belgium, 3150 Haacht, Belgium

Summary. All commercial packages for vehicle routing that the authors are aware
of use a (meta)heuristic search procedure with several different neighbourhood struc-
tures. This paper attempts to answer the question why this is the case. As we will show,
“multiple neighbourhood” search (MNS) is able to overcome the myopic behaviour of
using only a single neigbourhood and is therefore more powerful. Also, MNS can be
considered to be a very adaptable metaheuristic, which makes it especially suitable
for the practical problems encountered in real life. We also point out that there is a
need for the MNS applications used in commercial packages to evolve towards more
self-adaptive systems.

Keywords: “Multiple neighbourhood” search, VRP, vehicle routing, commercial
software.

1 Introduction

Vehicle routing — determining the order in which to visit a spatially distributed
set of customers with a fleet of vehicles — is arguably one of the most useful
and successful fields of operations research. As logistics and transportation gen-
erally constitute a sizeable proportion of the total cost of any company, it is
not surprising that the efficient design of routes to visit customers for pickup or
delivery can result in large savings. As a result, several companies have started
to develop and market software packages for vehicle routing.

Although usually a closely guarded secret, we have through frequent infor-
mal contacts with several software developers gained some insight into the in-
ner workings of the optimization engines of several commercial vehicle routing

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 239–253, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

240 K. Sörensen, M. Sevaux, and P. Schittekat

packages.1 From these contacts, we have learned several interesting facts. First,
commercial software for vehicle routing is able to tackle problems that are an
order of magnitude more complex than its academic counterpart. Second, all
software packages for vehicle routing use heuristic search, based on (what would
be called in academic circles) a systematic changing of neighbourhood structures
during the search. In this paper, we will refer to such heuristic search as “mul-
tiple neighbourhood” search or MNS. MNS is not a new metaheuristic (hence
the quotes, which we will drop from now on), but rather a concept underlying
several optimization approaches.

In this paper, we look into some of the differences between vehicle routing
in real life and vehicle routing in the academic world (section 2) and discuss
the complexity of real-life vehicle routing problems (section 3). We look into
the use of the concept of multiple neighbourhood search in the academic world
(section 4) and in industry (section 5) and attempt to find out the reasons for
using MNS in commercial vehicle routing software (section 6). We also argue
that there is a strong need for commercial vehicle routing software to become
more self-adaptive (section 7). In section 8, we draw some conclusions.

2 Academic Versus Real-Life Vehicle Routing

The importance of vehicle routing, as well as its complexity, has forced many
companies to use software packages to manage these problems. In the past,
software for vehicle routing was usually tailor-made for a specific company, but
this has changed and in recent years several companies have started to develop
and market commercial software packages for vehicle routing. These are either
sold as stand-alone packages or integrated into large ERP (Enterprise Resources
Planning) packages such as SAP. Typically, this software is put to work in highly
complex and dynamic environments. Moreover, real-life vehicle routing problems
are generally large (often several thousands of customers) and should be solved
quickly.

Academic research on vehicle routing on the other hand has focused mainly
on problems that greatly simplify the complex reality of real-life vehicle rout-
ing. Research on routing problems builds on research into a number of very
basic problems (most notably the simple capacitated vehicle routing problem,
the mathematical formulation of which can be found in Figure 1) and adds com-
plexity to these simple models. In research on more complex problems, generally
only a very small number of additional features is added. Typical problems that
are investigated can be found for example in the categories of problems with time
windows, pick-up and delivery problems or heterogeneous fleet problems. Often,
1 Given the strategic importance, most companies are understandably reluctant to

share the exact functioning of the optimization engines used in their software. Several
of them indicated that they would be unwilling to supply this information if their
name would end up in the open literature. Therefore, we have opted not to mention
the names of the companies or their products.

“Multiple Neighbourhood” Search in Commercial VRP Packages 241

min
N∑

i=0

N∑
j=0

V∑
v=1

cijxijv (1)

s.t.
V∑

v=1

ziv = 1 ∀i, i �= 0 (2)

V∑
v=1

z0v = V (3)

N∑
i=1

aiziv ≤ bv ∀v (4)

N∑
j=0

xijv =
N∑

j=0

xjiv = ziv ∀v, i (5)

∑
i∈S

∑
j∈S

xijv ≤ |S| − 1 ∀v, S ⊂ N (6)

ziv ∈ {0, 1} ∀i, v (7)

xijv ∈ {0, 1} ∀i, j, v (8)

Symbols: cij : distance between customers i and j; V : number of vehicles; bv: ca-
pacity of vehicle v; aj : demand of customer j; xijv: binary decision variable, 1
if vehicle v travels from customer i to customer j and 0 otherwise; ziv: binary
decision variable, 1 if customer i is visited by vehicle v

Fig. 1. Capacitated vehicle routing formulation [8]

problems are relatively small, generally not exceeding a few hundred customers
and large computing times are allowed.

The difference between academic and real-life vehicle routing is illustrated
in Figures 2 and 3, that show a graphical representation of the solution to an
academic vehicle routing problem (the capacitated vehicle routing problem) and
a screen shot of a commercial software package displaying the solution to a real-
life routing problem. It is clear that real-life routing problems are several orders
of magnitude more complex than their academic counterparts. Although there is
an increasing academic focus on so-called “rich” vehicle routing problems (that
incorporate more complex constraints and objectives), they have not in any way
caught up with the whole complexity of real-life routing problems.

Another interesting difference between academic and real-life vehicle routing
is that academic vehicle routing models are usually relatively easily expressed
as a mathematical programming problem. In most cases, a relatively concise
mixed-integer linear programming formulation can be given, similar to the one
shown in Figure 1. This is not the case for real-life vehicle routing problems:
mathematical programming formulations for such problems are generally not
explicitly developed as the cost of doing would not outweigh the benefits. This

242 K. Sörensen, M. Sevaux, and P. Schittekat

Fig. 2. A typical “academic” VRP solution

Fig. 3. A real-life VRP solution

limits the usefulness of black-box integer programming solvers, such as CPLEX
[6] in real-life vehicle routing (although such libraries may of course be used as
part of a more complex solution process).

“Multiple Neighbourhood” Search in Commercial VRP Packages 243

3 The Complexity of Real-Life Vehicle Routing

One of the most important characteristics of commercial vehicle routing software
is that it needs to be able to model virtually all types of difficult characteristics
that any problem might have. Otherwise, the software runs the risk of using
much of its usefulness. For example: if some of the orders have to be picked up
at one location and delivered at another, then the software needs to be able to
model this. If customers require service to take place within certain time limits,
the software needs to cater for time windows. In Figure 4, a non-exhaustive list
is shown of different characteristics that a real-life vehicle routing problem may
exhibit. We have divided them into five categories: customer characteristic, driver
characteristics, vehicle characteristics, route characteristics, and other/general
characteristics.

Real-life vehicle routing problems are not stand-alone problems, but have an
impact on other decisions taken in the company’s supply chain. Vehicle routing
packages should therefore seamlessly integrate with the company’s ERP system.
Ideally, it should be able to assist in taking such decisions as determination
of drop size in a vendor-managed inventory (VMI) environment, trailer drop-
off location, driver assignment, etc. Currently, commercial VRP packages rarely
provide the necessary tools for making these decisions.

Another difference between commercial and academic vehicle routing software
is the need for a functional graphical user interface, allowing the dispatcher
to easily interact with the system. This includes making changes to the final
solution while leaving some parts untouched, adding/deleting orders at the last
moment, changing drivers from one vehicle to another, etc. Commercial vehicle
routing software also needs to be able to get its distance and time estimates
from a reliable source, e.g. a map provided by a digital cartographer such as
Navteq or Teleatlas. Preferably, the software should provide interfaces to several
of such data sources, as the company might already own one of them and may
be unwilling to change. Also, interfacing to in-vehicle communication systems is
a much desired feature.

In June 2006, ORMS Today ran a survey of 20 packages for vehicle routing
from 17 companies [9]. It should be mentioned that this survey presents informa-
tion provided by the companies themselves and should therefore be interpreted
with some caution. The survey underlines the fact that commercial vehicle rout-
ing software is used in a large variety of environments and traditionally fulfils a
number of different functions: sequencing stops, scheduling stops and assigning
stops to drivers. It also discusses several recent developments in commercial VRP
software, such as the integration with the company’s ERP package and the abil-
ity to communicate with the drivers in order to be able to perform last-minute
route changes. Unsurprisingly, a conclusion of the survey is that specialization,
i.e. gathering experience in a certain sector, may give the software a competitive
advantage. Another conclusion of the ORMS Today survey is that the size and
complexity of real-life routing problems have rendered them intractable to solve
using exact methods. Designers of commercial routing packages have therefore
resorted to using heuristics.

244 K. Sörensen, M. Sevaux, and P. Schittekat

• Customer characteristics
– time windows (soft/hard)
– pick-up/delivery/both
– special requirements with respect to driver or vehicle visiting
– product type(s) and quantity demanded
– . . .

• Driver characteristics
– hours available
– required resting times
– ability to drive some vehicles and others not
– legal regulations
– . . .

• Vehicle characteristics
– heterogeneous fleet (different types/sizes of vehicles)
– some vehicles may have multiple compartments for different products
– special equipment (some vehicles may have cranes or loading equipment,

others not, . . .)
– not all vehicles start and/or end at the depot
– special licence required to drive a certain type of vehicle
– different cost structures
– . . .

• Route characteristics
– travel time between two points may change over time (e.g. longer during

rush hours)
– some vehicles may not be able to traverse certain routes or make certain

turns, as a consequence sometimes extra decisions have to be made, for
example where to drop off a trailer in order to be able to visit less accessible
clients

– . . .
• Other/general characteristics

– completely different routing problems (buses, taxis, garbage collector cars,
transport of disabled people, . . .)

– multiple heterogeneous depots (e.g. carrying different products and having
different stock levels for each product)

– stochasticity
– dynamic information
– different/multiple objectives (cost, balance between route lengths)
– . . .

Fig. 4. Real-life vehicle routing problems possibly exhibit many different characteristics

A remarkable result of our contacts with developers of vehicle routing software
is that a large number of commercial VRP packages (all packages that the authors
are aware of), attempt to improve upon solutions (obtained by initial heuristics)
by using a relatively large arsenal of local search improvement heuristics, based

“Multiple Neighbourhood” Search in Commercial VRP Packages 245

around different neighbourhoods. As mentioned, we will use the term multiple
neighbourhood search (MNS) to describe these types of metaheuristics.

4 MNS in Academic Vehicle Routing

All metaheuristics use mechanisms for intensification (focussing the search on a
specific region of the search space) and diversification (directing the search to-
wards previously unexplored regions of the search space). As mentioned, multiple
neighbourhood search is not a metaheuristic in itself, but rather a property of
metaheuristics that are based on the principle of systematically exploring more
than one type of neighbourhood. MNS is a concept that is prevalent in a number
of metaheuristics, most notably variable neighbourhood search (VNS).

VNS, a metaheuristic technique proposed some years ago by [14, 10, 11], has
quickly gained a widespread success and a large number of successful applica-
tions have been reported [12, 13]. Several variants of VNS have been described,
such as variable neighbourhood descent, reduced variable neighbourhood search,
etc., all of which have a slightly different way of performing the search. Most
implementations of VNS use a sequence of nested neighbourhoods, N1 to Nkmax ,
in which each neighbourhood in the sequence is “larger” than its predecessor,
i.e. Nk ⊂ Nk+1.

Pseudo-code for a basic version of VNS is given in algorithm 1.

Algorithm 1. Basic variable neighbourhood search
initialise: find an initial solution x, k ← 1;1

repeat2

shake: generate a random solution x′ ∈ Nk(x);3

local search: x′ → x′′;4

if x′′ is better than x then5

x ← x′′ and k ← 1 (centre the search around x′′ and search again with a6

small neighbourhood);
else7

k ← k + 1 (enlarge the neighbourhood);8

endif9

until k = kmax ;10

Several researchers have applied some form of variable neighbourhood search
to (more or less academic) vehicle routing problems. Two examples are [3], in
which a variable neighbourhood search algorithm for the vehicle routing problem
with time windows is developed, and [7], who present a VNS approach to the
vehicle routing problem with backhauls.

It is important however to note that the concept of multiple neighbourhood
search is broader than that of variable neighbourhood search and that a large
number of non-VNS approaches use different neighbourhood types. On the con-
trary, multiple neighbourhood search is overwhelmingly present in the list of

246 K. Sörensen, M. Sevaux, and P. Schittekat

best-performing approaches for any vehicle routing problem. In their survey
article on metaheuristics for the vehicle routing with time windows, [1] list the
neighbourhoods used by different methods. Of the 14 tabu search methods listed,
10 use more than one neighbourhood type. More surprisingly, out of 17 genetic
algorithms — a method not traditionally associated with the use of neighbour-
hoods — a majority (11) use more than one neighbourhood type to improve
upon the solutions generated by crossover. Some approaches even use a very
large number of neighbourhoods, such as the evolutionary algorithm by [15] for
the capacitated VRP, that uses nine different neighbourhood types.

5 MNS in Commercial VRP Software

Although most academic software for vehicle routing uses more than one neigh-
bourhood type, the use of several neighbourhood types is usually not considered
to be the main mechanism that ensures intensification and diversification. A large
majority of the academic software for vehicle routing, uses other mechanisms to
achieve this, such as memory structures (tabu search algorithm) or evolutionary
operators such as crossover and random mutation (genetic algorithms).

A surprising fact therefore, when viewed from a scientific viewpoint, is that
none of the programs in our survey used any of the more complicated techniques
that are commonplace in present-day metaheuristics. These techniques, such as
memory structures and random perturbations, are hardly ever used, let alone
complicated operators like crossover or mutation. In other words, the use of
multiple neighbourhood search is not only prevalent in commercial vehicle rout-
ing software, it constitutes the main search mechanism to supply intensification
and diversification. In the next sections, we attempt to explain the reasons for
the popularity of the multiple neighbourhood concept and the lack of advanced
metaheuristics techniques in commercial software packages.

Several types of heuristic search strategies can be found in commercial soft-
ware packages:

• Construction heuristics (savings, clustering,...). The savings-based construc-
tion heuristic by [2] still seems to be very popular, probably due to the fact
that it is easy to understand and implement and can be adapted to take
many different constraints into account.

• Manipulate one or more stops within one route
• Manipulate one or more stops between routes.
• Replace/swap one route or more between vehicles.
• Equalize route lengths.
• . . .

Most of the optimization work is done in so-called local improvement heuris-
tics, that operate by manipulating stops within or between routes. Basically,
such heuristics attempt to improve a solution by making one atomic change
(called a move) at a time. In Figure 5, we show several types of such moves. We
should be careful to distinguish between a move type and a specific move ap-
plied to specific location in a specific solution. Similarly, we distinguish between

“Multiple Neighbourhood” Search in Commercial VRP Packages 247

a neighbourhood, i.e. the set of all solutions that can be reached in a single move
starting from a given solution and a neighbourhood structure, which is essentially
the same as a move type.

The remove–insert move type removes one stop from a route and inserts it at
another location in the same route or in a different route. The 2-opt move type

i − 1 i + 1

i

j j + 1

i − 1 i + 1

i

j j + 1
(a) Remove–insert

i j

j + 1 i + 1

i j

j + 1 i + 1
(b) 2-opt

i − 1 i + 1

i

j − 1

j

j + 1

i − 1 i + 1

i

j − 1

j

j + 1
(c) Swap

i j + 1

k

k + 1 j

i + 1

i j + 1

k

k + 1 j

i + 1

(d) Or-opt

Fig. 5. Different move types

248 K. Sörensen, M. Sevaux, and P. Schittekat

removes two edges from a solution and reconnects the solution in a different
way. This move type is the simplest of a family of move types called k-opt,
where k is the number of edges to remove. As k increases, so does the number of
possible ways to reconnect and hence the complexity of this move type. A swap
exchanges the location of two customers in a route. Or-opt is a specific case of
3-opt, in which, three edges are removed and reconnected in such a way that the
orientation of the middle part of the route remains the same. It can be easily
seen that this is not the case in 2-opt, where the orientation of a part of the
route changes.

6 Reasons for Using MNS

In this section, we investigate why MNS is so popular in commercial VRP pack-
ages, as opposed to more complicated metaheuristic strategies. We see two main
reasons for this. Firstly, due to its large arsenal of neighbourhoods, MNS is able
to easily overcome the myopic behaviour of an approach that uses a single neigh-
bourhood. Secondly, the neighbourhood operators used in a MNS approach can
be easily rearranged as the problem size and complexity requires.

The use of MNS in commercial routing software has generally not been a delib-
erate decision. Rather, most of the software packages that we have encountered
seem to have organically developed into the powerful tools that they are at this
moment, adding neighbourhood structures and operators as this was required
by the different problems that needed to be solved.

6.1 Overcoming the Myopic Behaviour of a Single Neighbourhood

When watching a local search approach improve upon a VRP solution, it is often
remarkable to see how an improving move that is obvious to a human observer, is
not discovered by the metaheuristic or only after several (often random) pertur-
bation moves. Such behaviour is clearly unacceptable for expensive commercial
VRP packages: if a dispatcher notices upon first inspection of the solution that
the software has missed several important opportunities for improving the so-
lution, confidence in the software will drop considerably. The reason for this
myopic behaviour is quite often the fact that the metaheuristic is stuck in a
so-called local optimum: the move required to improve the solution cannot be
performed, because it does not belong to the move type that is used, and each
of the moves in the neighbourhood would lead to a deterioration of the qual-
ity. Metaheuristic optimization strategies can be seen as essentially strategies
to allow the metaheuristic to escape from such local optima. Instead of relying
on advanced metaheuristic mechanisms such as random perturbations (iterated
local search) or memory structures (tabu search), or crossover and mutation
(evolutionary algorithms) however, multiple neighbourhood search proceeds in
this case by using a different type of neighbourhood, which might contain the
required improving move.

One of the basic principles behind the multiple (and variable) neighbourhood
search technique is exactly the fact that a local optimum in one neighbourhood

“Multiple Neighbourhood” Search in Commercial VRP Packages 249

is not necessarily a local optimum in another. In other words, when the search
is stuck in a local optimum, it may suffice to switch to another neighbourhood
type to be able to escape from it. Besides the advantage of finding a better
solution, this strategy has the additional advantage of not (or with a much
smaller probability) leaving obvious chances for improvement.

This is illustrated in Figure 6. Suppose we are optimizing this simple VRP
tour using a local search algorithm that uses a remove–insert move (i.e. move
a customer to another location in the solution). Some investigation shows that
this solution cannot be improved by the remove–insert move type. Any solution
in the neighbourhood of this one is worse, and therefore the search is stuck in a
local optimum. A 2-opt move however (remove two edges and reconnect the so-
lution) has no problems with this solution and will find the much better solution
depicted in Figure 6(b) in one move. Although the possibility for improvement
of the solution in Figure 6(a) is immediately obvious, it is far from certain that
metaheuristic techniques such as memory structures or random perturbations
will help to find this solution. Only the presence of the “right move” is certain
to help.

(a) Part of a solution
unimprovable by a remove-
insert move type

(b) The solution improved
with a 2-opt move

Fig. 6. Myopic behaviour of the move neighbourhood that the 2-opt neighbourhood
is able to overcome

6.2 Flexibility and Adaptability to Different Problems

Vendors of commercial VRP packages face a number of challenges that are dif-
ferent from the ones faced by academic researchers. One of these is the inability
to develop completely new methods each time a new problem is encountered.
This would generally require rewriting large portions of the code base of the
algorithms used in the software packages for every single customer and would
quickly render the operations far less profitable. On the other hand, a black box
optimizer that does not take the problem structure into account at all, does not
provide the solution quality required.

We believe that it is for these reasons that designers of commercial routing
packages have opted for an approach that supplies a (relatively large) set of
components. These components can generally be divided into two categories:

250 K. Sörensen, M. Sevaux, and P. Schittekat

constructive heuristics and improvement heuristics. Whereas the former con-
struct a good initial solution using a heuristic construction rule, the latter use
local search to improve upon a solution.

Consultants of the software vendor can then use these components to quickly
and often effectively create a solution method partially tailored to the specific
needs of the company using the software. The way in which these components are
combined and exactly how they work is of course specific to the software package,
but it can be stated that they all use different neighbourhood structures to search
for better solutions and can hence be considered to be multiple neighbourhood
search.

Having a large library of search modules and being able to combine them
to suit the needs of the specific client, allows the routing software vendor to
adapt to the different environments in which the software may be installed. This
includes adapting it to specific constraints or objectives (e.g. some heuristics
may perform well if the problem has time windows and otherwise not), but also
adapting it to completely different problems, such as school bus routing problems
or dynamic routing of ambulances. It is through this process that the program is
adapted to the computational resources and required solution times imposed by
the customers. Some companies may require their solutions after a few seconds,
whereas others require them only after one night of calculation time.

The drawback of this approach, however, is that it requires a lot of manual
intervention from the part of the software vendor. Adapting the software to the
specific requirements of a customer can only be done by skilled consultants, that
know both the software and the clients’ environment very well.

7 Towards Adaptive MNS for Real-Life Vehicle Routing

One of the main problems with the approach described above is that the
implementation of a commercial routing package typically requires quite a lot
of manual work to be done. In some areas, this situation has dramatically im-
proved over the last few years. Data import and export, for example, are typical
areas in which customized modules would be written in order for the routing
package to be able to communicate with the clients’ data warehouse. Recently,
however, through increased standardization and the use of XML technologies,
data integration has become less of a problem and requires less and less manual
intervention.

An area where there is far less progress is exactly in the mentioned manual
tuning of the optimization approach. To date, this step in the roll-out of the soft-
ware package still needs to be done by expensive consultants. There is a strong
need for far more automation in this field, which naturally would require the
algorithms to be self-adaptive. It can be envisaged that future implementations
of commercial routing packages would include some kind of “hyper”-algorithm
that would tune the configuration of the software before or during the actual
optimization. This can be done off-line (using e.g. a set of test data) or on-line
(while optimization is going on, using the actual data that is being processed).

“Multiple Neighbourhood” Search in Commercial VRP Packages 251

Ideally, an off-line algorithm that determines the configuration should be able to
do this based only on a number of historical data sets, perhaps updated with a
prediction of future changes to the data (e.g. expected growth of problem size),
and some maximum solution time. Based on this information, the configuration
module should be able to determine the ideal configuration to produce a good
solution to a problem similar to those in the test set, in a computation time
that is within the bounds set by the decision maker. An on-line algorithm can
do the same, but should also be capable of updating the configuration while
the optimization is running. One can expect on-line algorithms to be useful for
settings in which the allowed computation time is rather large (e.g. 12 hours)
and off-line algorithms when the allowed computation time is rather small (e.g.
a few minutes).

We expect that an adaptive hyper-algorithm will use the lower-level heuristics
based on the different neighbourhoods as “building blocks”. For each specific
problem it will construct an appropriate solution method by changing:

• the order in which the heuristics are used;
• the frequency with which the heuristics are used;
• the amount of time each heuristic is allotted.

Ideally, the hyper-algorithm should be able to automatically tune the software
package without any user intervention. This has the advantage of making in-
stallation considerably faster, and moreover, the VRP package will be able to
adapt itself to changing requirements (e.g. larger data sets as a result of company
expansion) without requiring manual intervention.

Research into such hyper-algorithms is rather scarce at the moment. A promis-
ing trend is a new type of heuristic coined hyperheuristic, that has been pro-
posed [4, 5] recently. A hyperheuristic can be informally defined as a heuristic
that selects heuristics. Contrary to an ordinary or a metaheuristic, a hyperheuris-
tic does not search in a space of solutions, but rather in a space of heuristics.
Ideally, a metaheuristic controls a set of (more or less problem-specific) low-level
heuristics, without using any problem-specific information. The hyperheuris-
tic, in other words, is completely unaware of the problem that is being solved
under its supervision and only uses information reported to it by the underly-
ing heuristics such as the CPU time required, and the objective function value
improvement obtained by a certain heuristic.

It is claimed that a hyperheuristic may approach the speed and solution qual-
ity of an approach that uses problem-specific information while only using cheap
and easy-to-implement low-level heuristics. The full potential of hyperheuristics
has yet to be established, but they certainly provide a valuable direction for
future research in this area. However, hyperheuristics are at this moment not
without their drawbacks. For many hyperheuristics, a significant amount of pa-
rameter tuning is required in order for them to perform adequately. It might
seem tempting to regard this as a motivation for the development of procedures
to automatically determine the parameters of the hyperheuristics. However, such
hyper-hyperheuristics might be susceptible to the same problem, i.e. they might
themselves require parameter tuning. It is clear that an infinite loop of ever

252 K. Sörensen, M. Sevaux, and P. Schittekat

higher-lever heuristics tuning the parameters of a lower-level heuristic is not a
desirable thing. Instead, the quest for good hyperheuristics should probably be
aimed at developing methods that have little or no parameters and hence require
no tuning.

The current state of the art in hyperheuristics is such that a large number of
approaches exist, using different methods to select lower level heuristics. Many of
these approaches include a large amount of randomness, but intelligent strategies
are common too. A disadvantage of most approaches is that they have not been
tested in real-life situations, and that the performance of these approaches under
the full complexity of reality still remains a question.

It is the authors’ belief that a high-level approach to determine the configura-
tion of the optimization algorithm must make use of the relationship between the
problem structure and the quality of a heuristics optimization strategy. In other
words, a hyper-approach can only work well if there is an understanding of why
a certain heuristic works better on a certain problem type than on another one.
Armed with this knowledge, a hyperheuristic can then efficiently and effectively
determine the optimal configuration of the underlying search heuristics. It can be
argued that research into heuristics has always been a rather empirical domain
and that the quality of a metaheuristic approach has only been judged based on
its actual performance on a set of test problems. Recently, some research into the
mechanisms that determine the effectiveness of a (meta)heuristic optimization
approach, have been undertaken (see e.g. [16]), but a lot more research is needed
in this domain, especially with respect to more complex problems.

8 Conclusions

In this paper, we have argued that the fact that all commercial packages for
vehicle routing use some form of multiple neighbourhood search is due to two
factors, both related to the complexity of real-life problems. On the one hand, an
approach that uses many neighbourhoods simultaneously may overcome the my-
opic behaviour of one that uses only a single neighbourhood. Secondly, supplying
a large arsenal of local search strategies based on different neighbourhoods allows
the consultants of the routing software vendor to flexibly adapt the software to
the specific requirements of each client. We have further argued that there is a
strong trend towards more self-adaptive approaches, that overcome the need for
manual parametrization of the software package. A promising research domain
is that of hyperheuristics, but a lot more research is needed in this area.

References

1. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part II:
Metaheuristics. Transportation Science 39, 119–139 (2005)

2. Clark, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research 12, 568–581 (1964)

3. Cordone, R., Wolfer-Calvo, R.: A heuristic for the vehicle routing problem with
time windows. Journal of Heuristics 7, 107–129 (2001)

“Multiple Neighbourhood” Search in Commercial VRP Packages 253

4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling
a sales summit. In: Burke, E., Erben, W. (eds.) Selected Papers of the Third
International Conference on the Practice And Theory of Automated Timetabling
PATAT 2000. LNCS, pp. 176–190. Springer, Heidelberg (2001)

5. Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for schedul-
ing a sales summit. In: MIC 2001 – Proceedings of the Metaheuristics International
Conference, Porto, pp. 127–131 (2001)

6. CPLEX Optimization, Inc., Suite 279, 930 Tahoe Blvd., Bldg, 802, Incline Village,
NV 89451-9436. Using the CPLEX Callable Library (1995)

7. Crispim, J., Brandao, J.: Reactive tabu search and variable neighborhood descent
applied to the vehicle routing problem with backhauls. In: MIC 2001 – Proceedings
of the Metaheuristics International Conference, Porto, pp. 631–636 (2001)

8. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for solving the vrp.
Networks 11, 109–124 (1981)

9. Hall, R.: The 2006 vehicle routing survey. ORMS Today 33(3) (June 2006)
10. Hansen, P., Mladenović, N.: Variable neighborhood search for the p-median. Loca-

tion Science 5, 207–226 (1997)
11. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In:

Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.) Metaheuristics: Advances and
Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer, Boston
(1999)

12. Hansen, P., Mladenović, N.: Industrial applications of the variable neighbourhood
search metaheuristic. In: Decisions and Control in Management Science, pp. 261–
274. Kluwer, Boston (2001)

13. Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and appli-
cations. European Journal of Operational Research 130, 449–467 (2001)

14. Mladenović, N.: A variable neighborhood algorithm – a new metaheuristic for
combinatorial optimization. In: Optimization Days, p. 112 (1995)

15. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research 31, 1985–2002 (2004)

16. Watson, J.P., Howe, A.E., Whitley, L.D.: Deconstructing Nowicki and Smutnicki’s
i-TSAB tabu search algorithm for the job-shop scheduling problem. Computers
and Operations Research 33, 2623–2644 (2006)

Automated Parameterisation of a Metaheuristic
for the Orienteering Problem

Wouter Souffriau1,2, Pieter Vansteenwegen2, Greet Vanden Berghe1,
and Dirk Van Oudheusden2

1 KaHo Sint–Lieven
Information Technology
Gebroeders Desmetstraat 1, 9000 Gent, Belgium
{Wouter.Souffriau,Greet.VandenBerghe}@kahosl.be

2 Katholieke Universiteit Leuven
Centre for Industrial Management
Celestijnenlaan 300A, 3001 Leuven (Heverlee), Belgium
{Pieter.Vansteenwegen,Dirk.Vanoudheusden}@cib.kuleuven.be

Summary. Developing metaheuristics requires in general a lot of work tuning differ-
ent parameters. This paper presents a two–level algorithm to tackle this problem: an
upper–level algorithm is used to determine the most appropriate set of parameters for
a lower–level metaheuristic. This approach is applied to an Ant Colony Optimisation
(ACO) metaheuristic that was designed to solve the Orienteering Problem (OP). That
is a particular routing problem in which a score is earned for visiting a location. The
objective is to maximise the sum of the scores, while not exceeding a given time bud-
get. The ACO algorithm uses a set of ants that communicate through the environment
by means of a pheromone trail. The transition rule and pheromone updating rules are
influenced by a large number of parameters. These parameters are fine–tuned by a Ge-
netic Algorithm (GA), which trains the ACO using test problems from the literature.
The resulting ACO algorithm is compared with an exact algorithm by applying it to
another set of problems. The scores obtained by the resulting algorithm are very near
the optimal scores for the test problems.

Keywords: Orienteering problem, ant colony optimization, genetic algorithm, param-
eter tuning.

1 Introduction

The Orienteering Problem (OP) originated as a sport in which players get a
map, a set of coordinates and a limited time budget. The purpose of the sport
is to collect a maximum worth of prizes that are located at the coordinates,
within the given time span. During the last twenty years a number of algorithms
have been developed to tackle this problem, ranging from exact approaches over
heuristics to metaheuristics. Feillet et al [10] present an overview of the best
algorithms and more details will be discussed in Sect. 3.

This paper proposes a multi–level metaheuristic for solving the OP: an upper–
level algorithm trains a lower–level algorithm that actually solves the problem.

C. Cotta et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI 136, pp. 255–269, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

256 W. Souffriau et al.

In this paper, the lower–level uses an Ant Colony Optimisation (ACO) approach
to tackle the OP. Obviously, this approach can be applied to other metaheuristics
and other optimisation problems as well.

ACO techniques have been successfully applied to a number of combinatorial
optimisation problems, such as the travelling salesman problem (TSP) [9], the
quadratic assignment problem [11], the graph colouring problem [7] and the
vehicle routing problem [4]. Metaheuristic approaches, like ACO, usually require
a lot of work tuning the different parameters [9].

In nature, ants evolved and learned to cooperate in order to efficiently solve
complex problems: they gather food, build nests, defend themselves from large
predators, etc. We simulate this natural evolution using an upper–level genetic
algorithm (GA), in order to train a general ACO algorithm in solving the OP.
Instead of manually experimenting with numerous combinations of different tran-
sition rules, different pheromone updating rules and a wide variety of parameter
settings, we let the GA decide on the internal fine–tuning of the ACO algorithm.

This paper is structured as follows: Sect. 2 formulates the OP as a mixed
integer problem. Section 3 provides an overview of previous approaches, focussing
on heuristic methods. Section 4 overviews the lower–level ACO approach. Section
5 explains how the upper–level GA is used in order to select well performing
parameters from a huge parameter space. Section 6 compares the performance
of the trained algorithm on a set of test problems from the literature. Finally,
Sect. 7 concludes the paper.

2 The Orienteering Problem

The OP can be seen as a variant of the TSP. In the TSP, a collection of locations
is given and the shortest route visiting them all has to be determined [8]. In
the OP each location has a score and the total travelling time is limited. As
a consequence not all locations can be visited. [13]. An important difference
between the two is the objective function. The objective of the TSP is to limit
the distance travelled, whereas in the OP the objective is to maximise the total
score.

The standard OP can be formulated mathematically as follows: given are n+1
locations; the variable xij is equal to 1 if the solution contains an arc between
the locations i and j, 0 otherwise; each location i has a score Si ≥ 0; location 0
is the starting location, location n is the end location; the shortest path between
location i and location j requires time tij , the Euclidean distance between them;
the total score has to be maximised, without exceeding a given time Tmax.

Max

n−1∑
i=1

n∑
j=1

Sixij (1)

n−1∑
j=1

x0j =
n−1∑
i=1

xin = 1 (2)

Automated Parameterisation of a Metaheuristic 257

n−1∑
i=0

xik =
n∑

j=1

xkj ≤ 1; ∀k = 1, . . . , n − 1 (3)

1 ≤ ui ≤ n; ∀i �= 0 (4)

ui − uj + 1 ≤ (n − 1)(1 − xij); ∀i �= 0, ∀j �= 0 (5)

n−1∑
i=0

n∑
j=1

tijxij ≤ Tmax (6)

xij ∈ {0, 1}, ∀i, j = 0, . . . , n (7)

Constraint (2) states that a tour has to start at location 0 and has to end at
location n. Constraint (3) states that no location should be visited more than
once. Constraints (4) and (5) state that a single tour has to be constructed
i.e. no subtours are allowed. These subtour elimination constraints use an extra
variable ui to order the locations in the tour, according to the MTZ formulation
of the TSP [21]. Constraint (6) limits the available time i.e. the budget.

3 Previous Approaches to Solve the Orienteering
Problem

This section provides a brief literature overview on the OP, concentrating on
heuristic approaches. Ideas from these approaches will be used to develop the
transition and pheromone updating rules of the ACO algorithm.

Tsiligirides [24] is the first to develop heuristic approaches for the OP. His
first approach, based on a Monte Carlo technique, stochastically generates a
large number of solutions. Paths are constructed using the following desirability
measure for each location i: Ai = (Si

ti,last
)4, where Si is the score of location i and

ti,last is the time from the current location of the tour to location i. A roulette
wheel selection is used to select a location from the set of four locations with
the largest desirability measures, which is then added to the current path.

Golden, Levy and Vohra [13] introduce a procedure that consists of three
steps. In the first step a route is constructed, according to an insertion heuristic
that assigns a weight to each location i: Wi = a.Si + b.Ti + c.Ei, where Ti is the
time from location i to the centre of gravity, Ei is the sum of the times from
location i to the begin and end locations, and a+ b+ c = 1. In the second step, a
2–opt procedure [20] is performed and locations in the tour are exchanged with
locations outside the tour in order to decrease the total tour length. In the third
step, the centre of gravity is recomputed.

Golden, Wang and Liu [14] introduce a learning factor. They develop a new
insertion heuristic, with the randomisation of Tsiligirides [24] and the centre of
gravity concept [13]. The insertion heuristic now assigns weights to each location
i, according to: Wi = α.S′

i +β.T ′
i +γ.E′

i, where S′
i is a score based on the score of

258 W. Souffriau et al.

the location i, the scores of its neighbours, time to its neighbours and a learning
component related to previous solutions, T ′

i and E′
i are scaled versions of Ti and

Ei, and α + β + γ = 1.
Chao, Golden and Wasil [5] develop a method which does not focus on one

tour, but keeps track of a number of feasible tours. First an ellipse is drawn,
with the length of the main axis equal to the time budget of the problem and the
starting and end location of the tour as foci. Only locations from this ellipse are
considered in order to construct routes. The first step of the algorithm initialises
a number of feasible tours. Next, the tour with the highest score is improved by
a two–location exchange procedure, a one–location movement procedure and a
clean up procedure. During this step the best tour may change. Finally, the best
tour is saved, a reinitialisation procedure removes locations from that tour and
the improvement step is repeated.

Liang and Smith [19] introduce an ACO approach, combined with a vari-
able neighbourhood search. The following section will use the ideas from these
heuristics to develop the transition rule of a standard ACO algorithm. All these
heuristics have also been applied to the benchmark problem of Tsiligirides [24].

A recent literature overview on the OP can be found in [10].

4 Ant Colony Optimisation

ACO systems keep track of a number of possible tours through different ants,
while using a learning component called pheromone to improve previous solutions
[9]. The link with the learning component of Golden [14] and the method of
Chao [5] is easy to make.

First the general ACO framework is discussed, then the solution components
are discussed in more detail and finally a representation of the evaluation of the
algorithm is presented.

4.1 Framework

Ants build solutions to the OP by moving probabilistically from one location
to another, according to a transition rule, which decides which location the ant
should go to next. The considered locations are in the candidate list. Initially
the candidate list is calculated by drawing an ellipse, with the length of the
main axis equal to the budget and the starting and end location of the tour as
foci of the ellipse, as described in [5]. Ants choose their move probabilistically
according to a transition function, which is based on local observations, such
as the length of the arc to traverse and the amount of pheromone on it. After
adding a location to the solution, the available budget is reduced by the time
needed for the movement and a certain amount of pheromone evaporates. The
evaporation of pheromone is also known as local pheromone update. At each
step the locations that cannot be reached anymore within the current budget
are removed from the candidate list. During an iteration of the algorithm k ants
are placed in the k locations of the initial candidate list and each constructs a

Automated Parameterisation of a Metaheuristic 259

tour. After each iteration, the best ant is allowed to drop pheromone on its path.
This process is called global pheromone update. The number of iterations r is
limited: when r is larger than a user–set maximum number, Rmax, the algorithm
stops. This paper uses Rmax = 20.

4.2 Solution Components

This subsection discusses the solution components of the general framework in
detail.

Initialise Pheromone Trail

Communication between different ants is performed through the environment, by
means of a pheromone trail. Ants take the pheromone level of an arc into account
when considering a transition to a next location. The amount of pheromone
between location i and location j is given by τi,j . When the algorithm starts,
the pheromone trail is initialised using a number of components as follows:

τ0 = tx1
inits

x2
initT

x3
maxnx4

reachtx5
maxsx6

max (8)

where tinit and sinit are respectively the time and the score of the tour of a
single ant that traversed the problem with τ0 = 1; Tmax is the available budget,
nreach is the number of locations that can be reached within the current budget,
i.e. the number of locations contained in the ellipse; tmax is the longest time in
the problem and smax is the maximal score in the problem, out of which the
unreachable locations are filtered. The behaviour of this function depends on the
values of parameters x1 − x6.

Transition Rule

When an ant needs to choose a next location to visit, it uses the transition rule.
The transition rule determines the probability for ant k to move from location i to
location j. The transition probability is the product of a number of components.
In order to construct the transition rule, a number of components can be used.
The following components are based on the literature review of Sect. 3:

- the time–based component ti,j is the time of moving from location i to loca-
tion j;

- the score–based component sj is the score received for visiting location j;
- the centre–of–gravity–time–based component tj,cog is the time for moving

from location j to the centre of gravity;
- the time–to–begin–and–end–location–based component tbegin,j,end = tbegin,j+

tj,end is the time for moving from the starting location to location j plus the
time for moving from location j to the end location.

Apart from components based on heuristics found in the literature, the
following components are used:

260 W. Souffriau et al.

- time–to–previous–location–based component tprev,j is the time for moving
between the previously visited location (i − 1) to location j; The motivation
for this component is that it could be better for the ants to make circular
tours, i.e. moving as far as possible from the previously visited location.

- pheromone–based component τi,j , the concentration of pheromone between
location i and location j.

All these components are considered in the transition function T:

Ti,j = tx7
i,js

x8
j tx9

j,cogt
x10
begin,j,endtx11

prev,jτ
x12
i,j (9)

Parameters x7 to x12 determine the interaction of the different components in
the transition function. At each step, the ant calculates the transition function
from its current location i to each possible location j, that does not belong to
its current tour. When the transition values are known for the locations under
consideration, the ant chooses its next move according to the following formula:

s =

{
ArgMaxj /∈Tour(Ti,j) if q ≤ q0

S otherwise
(10)

where q is a randomly chosen value with uniform probability in [0, 1] and q0
(0 ≤ q0 ≤ 1) is a parameter. In case q > q0 diversification is applied, by means
of a roulette wheel: S is a random variable selected according to the following
probability distribution [9]:

pij =

{
Ti,j∑

j /∈T our Ti,j
if j /∈ Tour

0 otherwise
(11)

Parameter q0 influences the behaviour of the transition choice.

Local Pheromone Update

After an ant has made a transition from location i to location j, the pheromone
level on this arc is updated. This is often called local updating and it is used
in this case to avoid getting trapped in a local optimum. To avoid that all ants
keep using the same arc, the pheromone level τi,j is brought towards its initial
level τ0 according to the following formula:

τi,j = (1 − ρ)τi,j + ρτ0 (12)

Parameter ρ influences the behaviour of the local pheromone updating function.

Global Pheromone Update

After each iteration, when all ants have constructed a solution, the ant with
the best tour is allowed to leave pheromone on its tour. This is called global
pheromone updating, given by

τi,j = (1 − ρ)τi,j + ρΔτi,j (13)

Automated Parameterisation of a Metaheuristic 261

where 0 ≤ ρ ≤ 1. The global updating should reflect the quality of the best
solution. In order to calculate Δτi,j , this paper uses the following formula:

Δτi,j = tx13
inits

x14
initn

x15
reachtx16

maxsx17
maxtx18

bests
x19
best (14)

where tinit and sinit are respectively the time and the score of the tour of a single
ant who traversed the problem with τ0 = 1; nreach is the number of locations
that can be reached within the current budget; tmax is the longest time in the
problem and smax is the maximal score in the problem; tbest and sbest are the
time and the score of the ant that is allowed to release pheromone. The behaviour
of this function depends on the values of the parameters x13 to x19.

4.3 Solution Quality

When the ACO finishes after a number of iterations, it presents its best solution
found for the problem at hand. The Solution Quality (SQ) for a given problem
is defined as follows:

SQ =
sbest

sUB
(15)

where sbest is the score of the best solution found for the problem and sUB is
the theoretical upper bound for the score according to Leifer [17].

The SQ statistic will be used in the following section, to evaluate the ACO at
hand.

5 Multi–level Structure

Based on the actual setting of the parameters, an ACO algorithm will perform
differently. To determine the best set of parameters, an upper–level GA is used.
This algorithm will simulate, evaluate and evolve different combinations of the
parameters of the ACO algorithm, relieving the algorithm developer from the
tedious task of manual parameterisation.

An upper–level GA is used to simulate the evolution of lower–level meta-
heuristics, i.e. ACO’s. Each member of the population of the GA encodes solu-
tion components. These components are used in order to create an instance from
a general ACO framework. A set of test problems is used to evaluate the instan-
tiated ACO. The SQ is calculated after the run of the ACO on the test set. This
SQ is used as an evaluation value for the chromosome. After each chromosome
of the population of the GA is evaluated, selection, crossover and mutation are
used to breed a new population of ACO algorithms.

Figure 1 illustrates the structure of the multi–level approach. The multi–level
structure is used to train ants. Test sets 1 and 2 from Tsiligirides [24] are used
as a training set. Test set 3 is used to verify that the resulting ACO algorithm
is not over–fitted by means of the training set. First is explained how GAs work
in general and the rest of this section explains how a GA is used to set the
parameters of an ACO algorithm to solve the OP.

262 W. Souffriau et al.

Fig. 1. Multi Level Structure

5.1 Genetic Algorithm

A GA is a search technique used to find approximate solutions for search and
optimisation problems. A GA operates by iteratively updating a population of
individuals, which are candidate solutions to the problem. The individuals are
encoded as binary strings, called chromosomes, and are assigned a fitness value
according to their evaluation. The algorithm starts by evaluating an initial, ran-
dom population. Next the population is evolved by stochastically choosing par-
ent individuals on which genetic operators are applied in order to recombine the
parents and create new individuals, which are also evaluated. The process of
selection, recombination and evaluation is called a generation or an epoch. As
individuals with a higher fitness have a higher probability to be selected as a
parent, the population evolves towards better solutions [12].

5.2 Chromosome Representation

Parameters x1, x2, . . . , x19, q0, ρ are to be optimised by the genetic algorithm.
These parameters are encoded as real numbers. The domain of parameters
x1, x2, . . . , x19 is [−100, 100]. The domain of parameters q0 and ρ is [0, 1]. Each
individual is encoded as a concatenation of these parameters and randomly ini-
tialised, e.g.

The motivation for this representation can be found in the building block
hypothesis of Goldberg [12] which states “instead of building high–performance

Table 1. Example Chromosome Representation

x1 x2 x3 x4 x5 . . . x18 x19 q0 ρ

Individual 1 31.42 97.08 −21.05 36.34 −76.59 . . . 34.93 −59.26 0.54 0.38
Individual 2 22.94 −63.92 −54.18 −37.93 8.32 . . . 37.92 52.49 0.95 0.04

Automated Parameterisation of a Metaheuristic 263

strings by trying every conceivable combination, we construct better and better
strings from the best partial solutions of past samplings”. By using a concate-
nation of real numbers, instead of a concatenation of bits, individuals are not
disrupted by genetic operators at illogical positions, which would otherwise lead
to a waste of valuable computational resources.

5.3 Selection and Population Replacement

During each generation, a set of the existing individuals is selected as parents
and is allowed to produce offspring. In this paper we use the stochastic universal
selection algorithm, according to Baker [3]. In this selection method, the prob-
ability of selecting an individual is based on its fitness, like in roulette wheel
selection. Reeves [23] compares this method to an “equally spaced multi–armed
spinner”.

This paper uses a steady–state population replacement approach: the top 2%
of the old population automatically migrates to the next generation. A popula-
tion size of 100 is used.

5.4 Genetic Operators

The generation of successors in a GA is determined by a set of operators that
recombine and mutate selected members of the current population [22]. A uni-
form crossover operator is used with a probability Pc = 0.9. This operator ran-
domly generates a crossover mask: a binary string with the same length as the
chromosomes. The value of the bits in the crossover mask determine how the
chromosome information of the parents is interchanged in order to create two
offsprings. If the value of a bit is 1, chromosome information is copied from the
first parent, if the value is 0, information from the second parent is used and
vice–versa for the second offspring, as illustrated here:

Table 2. Example Uniform Crossover Operator

x1 x2 x3 x4 x5 . . . x18 x19 q0 ρ

Individual 1 31.42 97.08 −21.05 36.34 −76.59 . . . 34.93 −59.26 0.54 0.38
Individual 2 22.94 −63.92 −54.18 −37.93 8.32 . . . 37.92 52.49 0.95 0.04
Crossover mask 1 0 0 0 1 . . . 0 1 1 1
Offspring 1 31.42 −63.92 −54.18 −37.93 −76.59 . . . 37.92 −59.26 0.54 0.38
Offspring 2 22.94 97.08 −21.05 36.34 8.32 . . . 34.93 52.49 0.95 0.04

The mutation operator is applied with a probability Pm = 0.001 and replaces
the value of the parameter under consideration with a value drawn uniformly
from its domain.

264 W. Souffriau et al.

5.5 Evaluation

Each individual is evaluated against test set 1 and 2 from Tsiligirides [24] which
consists of a total of 29 OP instances. The third test set, containing 20 instances,
will be used later as an unseen test, for validation purposes, in order to examine
the generality of the learned solution.

The Solution Quality described in Sect. 4.3 is the base for calculating the
evaluation value of a chromosome. The evaluation function averages the SQ over
the evaluated n problem instances:

E = 100
∑

i=1→n SQi

n
(16)

where i is the index of the test problem, n is the total number of test problems,
SQi is the Solution Quality for test problem i. This evaluation value will be used
by the GA to update and improve the population.

6 Computational Experience

The lower–level ACO is implemented in J2SDK 1.5.0 from Sun [1]. The upper–
level GA is implemented in C, by means of the Parallel Genetic Algorithm
Library [18]. The communication between the two levels is carried out by ex-
changing temporary files. The experiment is run on a linux cluster, intercon-
nected by an Infiniband network. The experiment is allowed to run four hours
on ten computational nodes, for a total of forty hours.

The experiment tries to optimise the SQ of test sets 1 and 2 from Tsiligirides
[24]. Figure 2 illustrates a single run of the GA: for each generation, the fitness
of the best and the worst individual are shown, and also the average fitness of
the total population.

In the first generation, the best parameter combination has been found with
a SQ = 81.99. In generation 163, the best parameter combination has been
found with a SQ = 93.56. The relatively good result in the first generation
can probably be explained by stating that the ratio between the parameters is
important, next to the absolute value of the parameters. When initialising the
population, a relatively good ratio is randomly generated.

Table 3 contains the values of the parameters of the best chromosome. x11,
the parameter which influences tprev,j in the transition function, is equal to
20.14417. This gives an indication that it is useful to take the distance to the
previous location into account when considering a probabilistic transition to a
next location. As the value is positive, locations which are further away from
the previous location are more likely to be visited. x15, the parameter which
influences nreach in the calculation of Δτi,j , is nearly equal to 0. It leads to the
conclusion that it would be better not to take nreach into account.

Tables 4 to 6 compare three instances of the ACO algorithm: ACOuntrained
Rmax=20

is not trained by the GA and is allowed to run for 20 iterations; ACOuntrained
Rmax=40

is not trained by the GA and is allowed to run for 40 iterations; ACOtrained
Rmax=20

Automated Parameterisation of a Metaheuristic 265

Fig. 2. GA Evolution

Table 3. Parameter values from best chromosome

Param. Value Param. Value Param. Value Param. Value
x1 -41.07874 x7 -56.25024 x12 14.03927 x17 63.44217
x2 -38.11543 x8 26.87057 x13 60.7474 x18 69.67535
x3 69.59213 x9 17.36928 x14 95.1037 x19 84.78181
x4 -85.22636 x10 -1.676184 x15 -0.073423 q0 0.2356631
x5 24.03524 x11 20.14417 x16 83.67101 ρ 0.6423123
x6 87.27342

is trained by GA and is allowed to run for 20 iterations. The scores of the three
algorithms are compared with the optimal solutions on all the test sets from
Tsiligirides [24], including the third test set, which was not used for training.
The untrained ACOs use parameter settings from the best chromosome of the
initial population of the GA, while the trained ACO uses parameter settings
of the best chromosome of the evolved GA. ILOG CPLEX is used to solve the
model introduced in Sect. 2 to optimality. The last line of the table contains
the percentage comparison between the ACOs and the optimal solutions. It
is interesting to note that the application of the trained ACO to the unseen
test set 3, scores equally high (98.21%) as test set 1 (98.20%) and better than
test set 2 (95.22%). For the total 49 test problems, the results of the trained
ACO algorithm differ on average only 2.47% from the optimal score. It can be
concluded that the parameter settings of the best individual can now be used to
solve other instances of the OP. The results of untrained ACO (ACOuntrained

Rmax=20),

266 W. Souffriau et al.

Table 4. Comparison on Tsiligirides’ test set 1

Budget Optimal ACOuntrained
Rmax=20 ACOuntrained

Rmax=40 ACOtrained
Rmax=20

5 10 10 10 10
10 15 15 15 15
15 45 35 35 45
20 65 45 45 65
25 90 55 65 90
30 110 85 85 110
35 135 110 110 130
40 155 125 125 150
46 175 150 150 165
50 190 155 155 180
55 205 175 175 195
60 225 190 190 220
65 240 205 205 240
70 260 220 220 255
73 265 225 225 260
75 270 235 235 265
80 280 250 250 275
85 285 255 255 285

%Optimal 83.63% 84.25% 98.20%

Table 5. Comparison on Tsiligirides’ test set 2

Budget Optimal ACOuntrained
Rmax=20 ACOuntrained

Rmax=40 ACOtrained
Rmax=20

15 120 90 90 120
20 200 140 140 200
23 210 180 180 200
25 230 200 200 210
27 230 200 200 230
30 265 205 205 260
32 300 230 230 260
35 320 230 230 305
38 360 250 250 350
40 395 265 285 365
45 450 300 340 410

%Optimal 75.79% 77.06% 95.22%

which was allowed to run for an equal number of iterations, differ on average
18.15% from the optimal score. This illustrates the usefulness of the training by
the parallel GA. The average runtime of the untrained ACO allowed to run for 20
iterations (ACOuntrained

Rmax=20) is 720 ms and its results differ on average 18.15% from
the optimal score, while the average runtime of the untrained ACO allowed to
run for 40 iterations (ACOuntrained

Rmax=40) is 989 ms and its results differ on average
17.19% from the optimal score. It can be concluded that parameter learning
across short runs of the low–level heuristic is worthwile, as increasing the runtime

Automated Parameterisation of a Metaheuristic 267

Table 6. Comparison on Tsiligirides’ test set 3

Budget Optimal ACOuntrained
Rmax=20 ACOuntrained

Rmax=40 ACOtrained
Rmax=20

15 170 110 120 170
20 200 160 160 180
25 260 190 190 260
30 320 230 230 320
35 390 280 280 380
40 430 360 360 430
45 470 390 430 460
50 520 440 440 520
55 550 500 500 550
60 580 520 520 560
65 610 570 570 600
70 640 570 570 630
75 670 610 610 660
80 710 640 640 700
85 740 640 640 720
90 770 650 670 750
95 790 660 700 750

100 800 670 670 790
105 800 700 700 800
110 800 710 710 800

%Optimal 83.57% 84.68% 98.21%

of the stand–alone untrained ACO does not significantly improve the quality of
the results in comparison with the results of the trained ACO.

To check the sensitivity of the approach, three GA runs were performed,
which gave similar results. As expected, only one run would have been enough
to determine the parameters of the lower–level metaheuristic.

The results published by Chao [5] are equal to the optimal solution. The ACO
alone is not capable of finding these optimal solutions for every test problem.
A local search method on top of the best ant of each iteration can improve the
solution of the ACO algorithm [19].

7 Conclusions and Future Research

The contribution of this paper is the introduction of a metaheuristic approach
that deals with fine–tuning its own parameters and that successfully solves test
instances of the OP almost to optimality (98%). The metaheuristic approach
consists of a lower–level ACO and a upper–level GA. No preliminary testing to
determine a good value for a series of parameters is necessary.

The promising results of the experiments open up opportunities for further
research, i.e. more advanced GA techniques and multi–objective optimisation.

268 W. Souffriau et al.

The training could be improved by applying more advanced GA techniques,
from the field of continuous optimisation. Specialised genetic operators for real–
coded GAs should be considered in order to increase the efficiency of the search
[6, 15, 16]. Also, advanced parallel approaches could be considered in order to
guard the balance between exploration and exploitation of the parameter space
during the training [2, 15] and to avoid wasting CPU resources by intelligently
reducing the size of the population [6].

The training approach could be extended by using a multi–objective approach
to design the lower–level heuristic, in order to take multiple conflicting objectives
into account, such as speed of the algorithm and its simplicity. The speed can
be denoted by the number of iterations required to find the best solution. As
simplicity, parameter values closer to zero can be given a higher evaluation value.
The radix of a parameter value close to zero can be omitted from the algorithm.

GAs appear to be very useful for parameter selection and automated tuning of
different kinds of metaheuristics with parameters. The results of the paper sug-
gest that applying the multi–level approach to different optimisation problems
is very likely to be successful.

Acknowledgements

The authors gratefully acknowledge Argonne’s Center for Computational Science
and Technology for providing the PGAPack Parallel Genetic Algorithm Library
[18].

References

1. http://java.sun.com/j2se/1.5.0/
2. Alba, E., Luna, F., Nebro, A.: Advances in parallel heterogeneous genetic algo-

rithms for continuous optimization. International Journal of Applied Mathematics
and Computer Science 14(3), 317–333 (2004)

3. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceed-
ings of the 2nd International Conference on Genetic Algorithms, Hillsdale, New
Jersey, pp. 14–21. Lawrence Erlbaum Associates, Mahwah (1987)

4. Bullnheimer, B.: Ant Colony Optimization in Vehicle Routing. PhD thesis, Uni-
versity of Vienna (1999)

5. Chao, I.-M., Golden, B., Wasil, E.: A fast and effective heuristic for the orienteering
problem. European Journal of Operational Research 88(3), 475–489 (1996)

6. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global
optimization of multimodal functions. Journal of Heuristics 6, 191–213 (2000)

7. Costa, D., Hertz, A.: Ants can colour graphs. J. Oper. Res. Soc. 48, 295–305 (1997)
8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman

problem. Operations Research 2, 393–410 (1954)
9. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-

proach to the traveling salesman problem. IEEE Trans. Evol. Comp. 1, 53–66
(1997)

10. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits.
Transportation Science 39, 188–205 (2005)

http://java.sun.com/j2se/1.5.0/

Automated Parameterisation of a Metaheuristic 269

11. Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the qap. J. Oper.
Res. Soc. 50(2), 167–176 (1999)

12. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Kluwer Academic Publishers, Dordrecht (1989)

13. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logis-
tics 34, 307–318 (1987)

14. Golden, B., Wang, Q., Liu, L.: A multifaceted heuristic for the orienteering prob-
lem. Naval Research Logistics 35, 359–366 (1988)

15. Herrera, F., Lozano, M.: Gradual distributed real-coded genetic algorithms. IEEE
Transactions on Evolutionary Computation 4(1), 43–63 (2000)

16. Herrera, F., Lozano, M., Verdegay, J.: Tackling real-coded genetic algorithms: Op-
erators and tools for behavioural analysis. Artificial Intelligence Review 12(4),
265–319 (1998)

17. Leifer, A.C., Rosenwein, M.S.: Strong linear programming relaxations for the ori-
enteering problem. Bell System Technical Journal 44, 2245–2269 (1994)

18. Levine, D.: Parallel genetic algorithm library, http://www-fp.mcs.anl.gov/CCST/
research/reports pre1998/comp bio/stalk/pgapack.html

19. Liang, Y.-C., Smith, A.E.: An ant colony approach to the orienteering problem.
Technical report, Department of Industrial and Systems Engineering, Auburn Uni-
versity, Auburn, AL (2001)

20. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Tech-
nical Journal 44, 2245–2269 (1965)

21. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulations and
traveling salesman problems. J. ACM 7, 326–329 (1960)

22. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
23. Reeves, C.: Handbook of Metaheuristics, chapter Genetic Algorithms, pp. 55–82.

Kluwer Academic Publishers, Dordrecht (2003)
24. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9),

797–809 (1984)

http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html

Index

1/5th success rule, 221

acceptance probability, 7
agent

multi-agent, 121
vehicle agents, 123

aggregation of individuals, 167
angle between random directions, 106
ant colony optimization, 255, 258

as low-level heuristic, 261
pheromone update, 260

camera planning, 162
CMA, 222, 231
coevolution, 157, 159
commercial software, 246
continuous optimization, 95, 199, 215,

221, 229
benchmark, 215

decider agent, 123
decoder, 139, 142

self-adaptive, 135
descent directions, 221
descent hyperheuristic, 7
double-shot strategy, 97

ED2, 222, 231
algorithm, 224
coding scheme, 223
complexity, 226

EDA, 177, 199, 221
EMNA, 222
estimation of distribution algorithm, 177,

178, 199, 221

adaptive, 180
adaptive probabilistic model, 177
continuous optimization, 229
distribution factorization, 186
gaussian distribution, 222
Kikuchi approximation, 187
probabilistic model, 183

evolution of descent directions, 222
evolutionary algorithm, 31, 133, 157

evolution strategy, 37, 221
genetic algorithm, 255, 261

factorization, 185
filter design, 77
fitness

assignment, 225
global fitness evaluation, 165
global redistribution, 165
local fitness evaluation, 164

genetic algorithm
adaptive genetic algorithm, 179

GRASP, 63
great deluge algorithm, 8
greedy heuristic, 3

heuristic optimization library, 121
heuristic space, 15
hill climbing, 61
hyperheuristic, 3, 61, 251

criteria, 5
definition, 4
descent hyperheuristic, 7
GA-based, 10
greedy, 8

272 Index

learning, 18
metaheuristic-based, 9
motivation, 4
peckish, 8
random selection, 5
simulated annealing, 8

IDEA, 222, 231
imaging geometry, 169
individual evolution, 157

learning, 3
LEGO, 46
linkage evolving genetic operator, 46
local search, 221
low-level heuristic, 4, 61, 261

marketplace, 122
mathematical programming, 95
MBOA, 222, 231
memetic algorithm, 31, 49, 167, 215

coevolving memetic algorithm, 50
multi-memetic algorithms, 49

Michigan approach, 159
MNS, 245
Monte Carlo method, 7
multi-agent approach, 121
multi-objective

algorithms, 140
nurse scheduling, 140
optimization, 77, 82

multilevel heuristic, 3, 255
multiple neighbourhood search, 245

adaptability, 249
commercial software, 246
flexibility, 249
motivation, 248
overcoming myopic behaviour, 248
vehicle routing, 245

nurse scheduling, 134, 135
automated, 134
hard constraints, 136
multi-objective, 134, 138
preference, 139
problem description, 135
QMC problem, 135, 139
soft constraints, 137

ontology, 123
operator

probabilistic operator, 189
replacement, 263
reproduction, 263
selection, 263

orienteering problem, 255, 256

parameter control, 33
adaptive, 35
deterministic, 34
self-adaptive, 35

parameter tuning, 33, 255
Parisian evolution, 159
particle swarm optimization, 199

hybridized with an EDA, 213
swarm structure, 202

PBIL, 221
photogrammetric network design, 157
population diversity, 161, 166
probabilistic learning, 7
problem decomposition granularity, 171
PSO, 199
punctuated crossover, 46

RASH, 96
benchmarks, 112
robustness, 111

re-generation strategy, 140
reactive affine shaker, 96
reinforcement learning, 7
representation, 65, 136, 139, 262

constraints, 142
decoder, 139
indirect, 139
partial encoding, 161

SAT problem, 190
SEAMO-R, 140
self-adaptation, 31

evolution strategies, 37
features, 36
mutation, 37, 39

self-adapted operators, 31
self-adapted parameters, 31
self-adapting

choice of local search operators, 49
choice of recombination operator, 45
crossover, 44
definition of local search operators, 50
definition of recombination operator,

45
multiple operators, 48

Index 273

self-adaptive, 143
decoder, 142
mutation, 142, 144, 146

signal processing, 78
simple random hyperheuristic, 6
simulated annealing, 77, 82

cooling schedule, 84
hyperheuristic, 8
temperature parameter, 86

stochastic search, 95
strip packing problem, 61

definition, 61
fitness, 68
heuristics, 62
hyperheuristic, 64
low-level heuristics, 62
metaheuristics, 63

swarm
evolution, 205
structure, 202

travelling salesman problem, 256
TRIBES, 199, 202

basic strategies, 209
initialization, 207

UMDA, 222

variable neighbourhood search, 245
vehicle routing, 119

academic, 240, 243
definition, 119
interactive, 121
market based allocation of transporta-

tion orders, 119
move types, 247
multi-objective, 119, 120
real-life, 240, 250
vehicle agents, 123

VNS, 245

Author Index

Araya, Ignacio 61

Battiti, Roberto 95
Boutillon, Emmanuel 77
Brunato, Mauro 95

Chakhlevitch, Konstantin 3
Clerc, Maurice 199
Cooren, Yann 199
Cowling, Peter 3

Dunn, Enrique 157

Geiger, Martin Josef 119

Landa-silva, Dario 133
Larrañaga, Pedro 177
Le, Khoi N. 133
Lozano, José A. 177
Lutton, Evelyne 157

Neveu, Bertrand 61

Olague, Gustavo 157

Riff, Maŕıa-Cristina 61
Roland, Christian 77

Santana, Roberto 177
Santibáñez Koref, Iván 221
Schittekat, Patrick 239
Sevaux, Marc 77, 239
Siarry, Patrick 199
Sierra Urrecho, Alejandro 221
Smith, James E. 31
Sörensen, Kenneth 239
Souffriau, Wouter 255

Van Oudheusden, Dirk 255
Vanden Berghe, Greet 255
Vansteenwegen, Pieter 255

Wenger, Wolf 119

	Title Page
	Preface
	Contents
	Part I Reviews of the Field
	Hyperheuristics: Recent Developments
	Introduction
	Hyperheuristics Based on Random Selection
	Greedy and Peckish Hyperheuristics
	Metaheuristic-Based Hyperheuristics
	GA-Based Hyperheuristics
	Other Metaheuristic-Based Hyperheuristics

	Hyperheuristics with Learning
	Other Generic Problem Solving Techniques
	Conclusions
	References

	Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation
	Introduction: What Is Self-Adaptation
	Finding Appropriate Parameter Settings in Evolutionary Algorithms
	Features of Self-Adaptation

	Self Adaptation of Mutation Operators
	The Origins: Self Adaption in Evolution Strategies
	 Self-Adaptation of Mutation for Discrete Encodings
	Conclusions from Self-Adaptive Mutation

	Self-Adapting Crossover
	Self-Adapting the Choice of Recombination Operator
	Self-Adapting the Definition of Recombination Operator

	Self-Adapting Multiple Operators
	Extension to Memetic Algorithms
	Self-Adapting the Choice of Local Search Operators
	Self-Adapting the Definition of Local Search Operators

	Summary and Conclusions
	References

	Part II New Techniques and Applications
	An Efficient Hyperheuristic for Strip-Packing Problems
	Introduction
	Heuristics Based Methods
	Various Low-Level Heuristics
	Metaheuristic Approaches

	The Hyperheuristic Approach: H-SP
	Representation
	Moves
	Evaluation Function
	Procedure

	Tests
	Benchmarks
	Comparison with Low-Level Heuristics
	Comparison with State-of-the-Art Algorithms
	Tests with Bortfeldt's Instances

	Conclusions
	References

	Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters
	Introduction
	The Digital FIR Filter Problem Design
	Definition of a FIR Filter
	The Problem of FIR Filter Synthesis
	Proposed FIR Designs
	Performance Measures
	Hardware Complexity of a Filter Hq(z)

	Description of the Proposed Approach
	Multiobjective Optimization by Temperature Driven Simulated Annealing (TD-SA)
	Parameter Reduction in SA -- from TD-SA to PD-SA
	Controlling the Temperature Parameter in PD-SA

	Numerical Experiments
	Coding, Neighborhood and Initial Solution
	Computational Results

	Conclusion
	References

	RASH: A Self-adaptive Random Search Method
	Introduction
	The Reactive Affine Shaker Algorithm
	Motivation and Analysis
	RASH Pseudo-code
	Termination and Repeated Runs

	Analysis and Motivation of the Design Choices
	Double-Shot Success Probability
	Angle between Random Directions in Rn

	Experimental Results
	Success Rate of the Double-Shot Strategy
	Influence of Initial Conditions
	Robustness w.r.t. Parameter Variations
	Benchmarks
	Comparison with Other Techniques

	Conclusions
	References

	Market Based Allocation of Transportation Orders to Vehicles in Adaptive Multi-objective Vehicle Routing
	Introduction
	A Multi-agent Approach for Interactive Multi-objective Vehicle Routing
	Implementation and Experiments
	System Configuration
	Experiments
	Results

	Conclusions and Synthesis
	References

	A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling
	Introduction
	The QMC Nurse Scheduling Problem
	Problem Description
	Hard Constraints
	Soft Constraints
	Previous Work on the QMC Problem

	Schedule Encoding and Construction
	The Proposed SEAMO-R Algorithm
	Decoder and the Hard Constraints
	Self-adaptive Schedule Decoder
	Handling Succession
	Handling MinDaysOn

	Experiments and Results
	Experimental Setting
	Performance of SEAMO-R
	Comparison with SEAMO and SEAMO2
	Selecting a Ward Schedule
	Previous Results on the QMC Problem

	Final Remarks
	References

	Individual Evolution as an Adaptive Strategy for Photogrammetric Network Design
	Introduction
	Previous Work

	Parisian Evolution Paradigm
	Individual Evolution for Camera Planning
	Problem Partitioning and Representation
	Evaluating a Camera Network Configuration

	Experimental Results
	Algorithm Performance
	Imaging Geometry Configurations
	Parameter Setting
	Problem Decomposition Granularity

	Conclusion
	References

	Adaptive Estimation of Distribution Algorithms
	Introduction
	Estimation of Distribution Algorithms
	Notation
	EDAs

	Work on Adaptive Genetic Algorithms
	Improving the Search: Adaptive EDAs
	Adapting the Class of Probabilistic Models in EDAs
	Alternatives for Probabilistic Modeling
	Decision Criteria for Choosing the Model

	A Case Study: Generalized Factorized Distribution Algorithms
	Factorizations
	Factor Graphs and Factorizations
	Kikuchi Approximation of a Distribution
	Learning and Sampling the Kikuchi Approximation from a Factor Graph Distribution
	Probabilistic Operators

	Experiments
	SAT Problem
	Parameters of the Algorithms
	Numerical Experiments

	Conclusions
	References

	Initialization and Displacement of the Particles in TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm
	Introduction
	Basic Particle Swarm Optimization
	TRIBES, a Parameter-Free PSO Algorithm
	Swarm, Tribes and Communication
	Structural Adaptations
	Behavioral Adaptations

	Initialization of TRIBES
	Strategies of Displacement
	Basic Strategies of TRIBES
	A New Strategy of Displacement

	Numerical Results
	Conclusions
	References

	Evolution of Descent Directions
	Introduction
	The Algorithm: $\rm ED^{2}$
	Coding Scheme
	The Algorithm
	Fitness Interpolation
	Complexity of $\rm ED^{2}$

	An Illustrative Experiment
	Experimental Comparison
	Scaling Properties of $\rm ED^{2}$
	Conclusions
	References

	“Multiple Neighbourhood” Search in Commercial VRP Packages: Evolving Towards Self-Adaptive Methods
	Introduction
	Academic Versus Real-Life Vehicle Routing
	The Complexity of Real-Life Vehicle Routing
	MNS in Academic Vehicle Routing
	MNS in Commercial VRP Software
	Reasons for Using MNS
	Overcoming the Myopic Behaviour of a Single Neighbourhood
	Flexibility and Adaptability to Different Problems

	Towards Adaptive MNS for Real-Life Vehicle Routing
	Conclusions
	References

	Automated Parameterisation of a Metaheuristic for the Orienteering Problem
	Introduction
	The Orienteering Problem
	Previous Approaches to Solve the Orienteering Problem
	Ant Colony Optimisation
	Framework
	Solution Components
	Solution Quality

	Multi--level Structure
	Genetic Algorithm
	Chromosome Representation
	Selection and Population Replacement
	Genetic Operators
	Evaluation

	Computational Experience
	Conclusions and Future Research
	References

	Index
	Author Index

