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Preface

This volume contains the papers presented at the First International Symposium
on Algorithmic Game Theory (SAGT 2008) held from April 30 to May 2 in
Paderborn, Germany.

The purpose of SAGT is to bring together researchers from computer
science, economics and mathematics to present and discuss original research
at the intersection of algorithms and game theory. It is intended to cover all
important areas of algorithmic game theory, such as: solution concepts in game
theory; game classes (e.g., bimatrix, potential, Bayesian); exact and approxi-
mate computation of equilibria; convergence and learning in games; complexity
classes in game theory; algorithmic aspects of fixed-point theorems; mechanisms,
incentives and coalitions; cost-sharing algorithms and analysis; computational
aspects of market equilibria; computational problems in economics, finance, de-
cision theory and pricing; auction algorithms and analysis; price of anarchy and
its relatives; representations of games and their complexity; economic aspects
of distributed computing and the Internet; network formation on the Internet;
congestion, routing and network design games; game-theoretic approaches to
networking problems; Byzantine game theory.

There were 60 submissions. Each submission was reviewed by three Pro-
gramme Committee members. The committee decided to accept 28 papers.
The programme also included three invited talks from outstanding researchers
Christos Papadimitriou, Nobel Memorial Prize winner Reinhard Selten and Paul
Spirakis.

We would like to thank all the Programme Committee members and the
external reviewers who assisted them in their work.

The members of the Organizing Committee as well as the developer of the
EasyChair conference system deserve our gratitude for their contributions
throughout the preparations.

We gratefully acknowledge support from the European Association for Theo-
retical Computer Science (EATCS), Integrated Project AEOLUS (IST-015964)
of the European Union, University of Paderborn, and the City of Paderborn.

February 2008 Burkhard Monien
Ulf-Peter Schroeder
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Markus Bläser and Elias Vicari

Session 5: Potpourri of Games

The Price of Anarchy of a Network Creation Game with Exponential
Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Nadine Baumann and Sebastian Stiller

A Hierarchical Model for Cooperative Games . . . . . . . . . . . . . . . . . . . . . . . . 230
Ulrich Faigle and Britta Peis

Strategic Characterization of the Index of an Equilibrium . . . . . . . . . . . . . 242
Arndt von Schemde and Bernhard von Stengel

The Local and Global Price of Anarchy of Graphical Games . . . . . . . . . . . 255
Oren Ben-Zwi and Amir Ronen

Session 6: Solution Concepts

Approximate Nash Equilibria for Multi-player Games . . . . . . . . . . . . . . . . . 267
Sébastien Hémon, Michel de Rougemont, and Miklos Santha

Subjective vs. Objective Reality—The Risk of Running Late . . . . . . . . . . 279
Amos Fiat and Hila Pochter



Table of Contents XI

On the Hardness and Existence of Quasi-Strict Equilibria . . . . . . . . . . . . 291
Felix Brandt and Felix Fischer

The Price of Stochastic Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Christine Chung, Katrina Ligett, Kirk Pruhs, and Aaron Roth

Session 7: Cost Sharing

Singleton Acyclic Mechanisms and Their Applications to Scheduling
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Janina Brenner and Guido Schäfer
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The Search for Equilibrium Concepts�

Christos H. Papadimitriou

Computer Science Division,
University of California at Berkeley, Berkeley, USA

christos@cs.berkeley.edu

Abstract. Game Theory is about predicting the behavior of groups of
rational agents whose decisions affect each other’s welfare, and such pre-
dictions are most often in the form of equilibrium concepts. There are
several desiderata one might expect from an equilibrium concept: First
and foremost it should be natural and convincing as a prediction of agent
behavior. Then it should be universal — all games should have it, be-
cause otherwise it is an incomplete prediction. Since computer scientists
became interested in Game Theory over the past decade, prompted by
the advent of the Internet and its complex socioeconomic platform, an-
other important question has been asked of an equilibrium concept: Can
it be computed efficiently? Intractability makes an equilibrium concept
problematic.

How do the major equilibrium concepts compare with respect to this battery of
criteria (convincing, universal, efficient)? The pure Nash equilibrium is certainly
natural and convincing, and can be computed efficiently, but is certainly non-
universal (not just matching pennies: a random n × n game will fail to have a
pure Nash equilibrium with probability asymptotic to 1

e ). In contrast, the mixed
Nash equilibrium is famously universal by Nash’s theorem [13], but was recently
shown to be PPAD-complete, and thus presumably intractable [5]. (Whether it
is convincing that agents will engage in precise randomization among equivalent
alternatives just to keep others on their toes is an interesting question.) The
correlated equilibrium is both efficient and universal, but assumes too much ma-
chinery to be truly convincing. Incidentally, the above account of the efficiency
of equilibrium concepts applies to the normal form representation of games, and
this form is inadequate for describing multiplayer games. In succinctly repre-
sentable games, the situation is quite a bit different: Pure Nash equilibria can be
NP-complete (graphical games) or PLS-complete (congestion games[10]), while
for most succinct representations mixed Nash equilibria remain PPAD-complete
[4] and correlated equilibria remain tractable [14]).

The recent proof of the intractability of finding a mixed Nash equilibrium has
prompted researchers to look for new alternatives. The question of approximate
mixed Nash equilibria was, naturally, one of the first to be pursued. We now

� Research supported by an NSF grant, a MICRO grant, and by a gift from Yahoo! Re-
search.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 C.H. Papadimitriou

know that finding a FPTAS for this problem is also intractable [3] (but there
is a PTAS for the very broad case of anonymous games with few strategies per
player [8]), and that there are pseudopolynomial time approximation schemes
when there are few players [12] or few strategies per player. However, progress
towards better polynomial-time approximation algorithms has been rather slow
[6,7,15], and this remains an interesting frontier.

In our search for novel equilibrium concepts we might as well consider ones
that are a little more compelling in the context of the Internet, and this has led
researchers to revisiting various sorts of repeated games. If agents react to each
other’s decisions by utility-optimizing (or just -improving) moves, the resulting
dynamics ends up trapped in one of the sink strongly connected components of
the directed graph of responses, and this has been called a sink equilibrium [11].
Or one can postulate that agents engage in arbitrary interactions by respond-
ing in consistent ways to what others are currently doing; this leads to a game
in which pure strategies are finite state automata with the player’s strategies
as states, and the other players’ current choices as input alphabet. Once such
a choice of automata has been made, the play will quickly converge to a pe-
riodic behavior, whose average payoff then determines the players’ utilities for
this choice of automata. Now, if the automaton chosen by each player is the
best possible response to the automata chosen by the others, then we have an
interesting kind of equilibrium, which is called unit recall equilibrium. It turns
out that, for a random game, such an equilibrium exists (and is in fact returned
by an efficient algorithm) with probability asymptotic to one [9].

Nash equilibria had always been thought easier to find in the case of repeated
games, because of a result known as the Folk Theorem [1] predicting a wealth
of accessible equilibria based on a combination of periodic play and threats. It
was recently shown [2] that the method for finding these equilibria suggested by
the Folk Theorem is problematic from the complexity point of view, and that, in
fact, finding a Nash equilibrium in a repeated game with three or more players
is PPAD-complete — that is, no easier than finding one in the one-shot game.
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Experimental Results on the Process of

Goal Formation and Aspiration Adaptation

Reinhard Selten

Department of Economics,
Institute for Empirical Research in Economics,

University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany
rselten@uni-bonn.de

Abstract. We experimentally investigate how subjects deal with a
multi-period planning and decision problem. The context is a profit max-
imization task in a computer-simulated monopoly market over fifty time
periods. The subjects are provided with a computerized short-run plan-
ning tool allowing them to check feasibility of any aspiration level for any
set of feedback variables of the respective planning period. Our results
fall into two categories, first, regarding the selection of goal variables and,
second, regarding the process of aspiration adaptation. As to the former
category, we find that subjects with at least median success change their
goal variables less frequently than those below median success. Relat-
edly, goal persistence, a measure of a subject’s tendency to stick to the
current goal system, is strongly positively correlated with success. As to
the latter category, we find that aspiration levels tend to be changed in
strong agreement with basic principles of Aspiration Adaptation The-
ory (Sauermann and Selten 1962, Selten 1998, 2001). In addition, we
find that in many cases the process of aspiration adaptation leads into a
nearly stationary situation in which the aspiration level does not signif-
icantly change over several periods. Those subjects who reach a nearly
stationary situation tend to be more successful and more goal persistent
than those who do not. Some subjects who reach a nearly stationary
situation deviate from Aspiration Adaptation Theory in order to find a
more profitable nearly stationary situation.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Approximate Equilibria for Strategic Two

Person Games�

Paul G. Spirakis

Research Academic Computer Technology Institute, N. Kazantzaki Str., Patra
University Campus, 26500 Rio-Patra, Greece

spirakis@cti.gr

Abstract. In view of the apparent intractability of constructing Nash
Equilibria (NE in short) in polynomial time, even for bimatrix games,
understanding the limitations of the approximability of the problem is an
important challenge. The purpose of this document is to review a set of
results, which have contributed significantly, and currently are the state-
of-art with respect to the polynomial time construction of approximate
Nash equilibria in bimatrix games. Most of the results discussed here are
joint work of the author and of the union of his coauthors in various
papers, namely S. Kontogiannis, P. Panagopoulou and H. Tsaknakis.

1 Introduction

One of the most appealing concepts in game theory is the notion of a Nash
equilibrium: A collection of strategies for the players from which no player has an
incentive to unilaterally deviate from its own strategy. The extremely nice thing
about Nash equibria is that they always exist in any finite k−person game in
normal form [20]. This is one of the most important reasons why Nash equilibria
are considered to be the prevailing solution concept for finite games in normal
form. The problem with Nash equilibria is that there can be exponentially many
of them, of quite different characteristics, even for bimatrix games. Additionally,
we do not know yet how to construct them in subexponential time. Therefore,
k−NASH, the problem of computing an arbitrary Nash equilibrium of a finite
k−person game in normal form, is a fundamental problem in algorithmic game
theory and perhaps one of the most outstanding problems at the boundary
of P [22]. Its complexity has been a long standing open problem, since the
introduction of the pioneering (pivoting) algorithm of Lemke and Howson [18].
Unfortunately, it was recently shown by Savani and von Stengel [24] that this
algorithm requires an exponential number of steps; moreover, it is also known
that the smoothed complexity of the algorithm is likely to be superpolynomial
[6]. Moreover, it is quite interesting that many (quite natural) refinements of
k−NASH are known to be NP−complete problems [13,8].

� This work was partially supported by the 6th Framework Programme under contract
001907 (DELIS).

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 5–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



6 P.G. Spirakis

A flurry of results in the last years has proved that k−NASH is indeed complete
problem for the complexity class PPAD (introduced by Papadimitriou [21]),
even for four players [9], three players [12], and two players [5]. In particular,
the result of Chen and Deng [5], complemented by that of Abbott, Kane and
Valiant [1], shows that 2−NASH is PPAD−complete even for win lose games.

Due to the apparent hardness even of 2−NASH, approximate solutions to
Nash equilibria have lately attracted the attention of the research community.
There are two different notions of approximate Nash equilibria: Those which
require that each player gets the maximum possible payoff, within some additive
constant ε (denoted here by ApproxNE), and those which require that each
player is allowed to adopt wpp1 only actions that are approximate best responses
to the opponent’s strategy, within an additive term ε (denoted here by SuppNE).
ApproxNE seem to be the dominant notion of approximate equilibria in the
literature, while SuppNE is a rather new notion (eg, see [6,7,10]).

1.1 Preliminaries

Mathematical Notation. For any integer k ∈ N, let [k] ≡ {1, 2, . . . , k}. We
denote by M ∈ Fm×n any m×n matrix whose elements have values in some set
F . We also denote by (A, B) ∈ (F × F )m×n any m × n matrix whose elements
are ordered pairs of values from F . Equivalently, this structure can be seen as an
ordered pair of m × n matrices A, B ∈ Fm×n. Such a pair of matrices is called
a bimatrix. A k × 1 matrix is also considered to be an k-vector. Vectors are
denoted by bold small letters (eg, x,y). A vector having a 1 in the i-th position
and 0 everywhere else is denoted by ei. We denote by 1k (0k) the k-vector
having 1s (0s) in all its coordinates. The k × k matrix E = 1k · 1k

T ∈ {1}k×k

has value 1 in all its elements. For a pair of vectors x,y ∈ R
n, we denote the

component–wise comparison by x ≥ y: ∀i ∈ [n], xi ≥ yi. Matrices are denoted
by capital letters (eg, A, B, C, . . .), and bimatrices are denoted by ordered pairs
of capital letters (eg, (A, B), (R, C), . . .). For any m × n (bi)matrix M , Mj is
its j-th column (as an m × 1 vector), M i is the i-th row (as a (transposed)
1 × n vector) and Mi,j is the (i, j)-th element. For any integer k ≥ 1, we denote
by Δk ≡ {z ∈ R

k : z ≥ 0; (1k)T z = 1} the (k − 1)-simplex. For any point
z ∈ Δk, its support supp(z) is the subset of coordinates with positive value:
supp(z) ≡ {i ∈ [k] : zi > 0}. Also, let suppmax(z) ≡ {i ∈ [k] : zi ≥ zj ∀j ∈ [k]}
be the subset of coordinates with maximum value, and denote by max(z) the
value of the maximum entry of z. For a subset of coordinates S ⊆ [k], let maxS(z)
be the value of the maximum entry of vector v within the subset S. We denote
by S the complement of a subset of coordinates S, i.e. S = {i ∈ [k], i /∈ S}.
For an arbitrary logical expression E , we denote by P {E} the probability of
this expression being true, while I{E} is the indicator variable of whether this
expression is true or false. For any random variable x, E {x} is its expected value
(with respect to some probability measure).

1 With positive probability.
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Game Theoretic Definitions and Notation. An m × n bimatrix game
〈A, B〉 is a 2−person game in normal form, that is determined by the bimatrix
(A, B) ∈ (R×R)m×n as follows: The first player (called the row player) has an
m−element action set [m], and the second player (called the column player)
has an n−element action set [n]. Each row (column) of the bimatrix corresponds
to a different action of the row (column) player. The row and the column player’s
payoffs are determined by the m × n real matrices A and B respectively. In the
special case that the payoff matrices have only rational entries, we refer to a
rational bimatrix game. If both payoff matrices belong to [0, 1]m×n then we
have a [0, 1]−bimatrix (or else normalized) game. The special case of bimatrix
games in which all elements of the bimatrix belong to {0, 1} × {0, 1}, is called
a {0, 1}−bimatrix (or else, win lose) game. A bimatrix game 〈A, B〉 is called
zero sum, if it happens that B = −A. In that case the game is solvable in
polynomial time, since the two players’ optimization problems form a primal–
dual linear programming pair. In all cases of bimatrix games we assume wlog2

that 2 ≤ m ≤ n.
Any probability distribution on the action set [m] of the row player, ie, any

point x ∈ Δm, is a mixed strategy for her. Ie, the row player determines
her action independently from the column player, according to the probability
distribution determined by x. Similarly, any point y ∈ Δn is a mixed strategy
for the column player. Each extreme point ei ∈ Δm (ej ∈ Δn) that enforces the
use of the i-th row (j-th column) by the row (column) player, is called a pure
strategy for her. Any element (x,y) ∈ Δm×Δn is a (mixed in general) strategy
profile for the players. We now define the set of approximate best responses for
the two players, that will help us simplify the forthcoming definitions:

Definition 1 (Approximate Best Response). Fix arbitrary constant ε > 0.
Given that the column player adopts a strategy y ∈ Δn and the payoff ma-
trix of the row player is A, the row player’s set of ε−approximate (pure)
best responses is: BR(ε, A,y) ≡

{
x ∈ Δm : xT Ay ≥ zT Ay − ε, ∀z ∈ Δm

}

and PBR(ε, A,y) ≡
{
i ∈ [m] : Aiy ≥ Ary − ε, ∀r ∈ [m]

}
. Similarly we

define the column player’s set of ε−approximate (pure) best re-
sponses: BR(ε, BT ,x) ≡

{
y ∈ Δn : yT BT x ≥ zT BT x − ε, ∀z ∈ Δn

}
and

PBR(ε, BT ,x) ≡
{
j ∈ [n] : BT

j x ≥ BT
r x − ε, ∀r ∈ [n]

}
.

For the notion of Nash equilibria, originally introduced by Nash [20], we give the
definition wrt3 bimatrix games:

Definition 2 (Nash Equilibrium). A strategy profile (x,y) is a Nash equilib-
rium for a bimatrix game 〈A, B〉 iff no player can improve her payoff by deviat-
ing (changing her strategy) unilaterally. More formally: For any bimatrix game
〈A, B〉, a profile (x,y) ∈ Δm × Δn is a Nash Equilibrium (NE in short) iff
x ∈ BR(0, A,y) and y ∈ BR(0, BT ,x) . Equivalently, (x,y) ∈ Δm × Δn is a
NE of 〈A, B〉 iff supp(x) ⊆ PBR(0, A,y) and supp(y) ⊆ PBR(0, BT ,x) . The
set of profiles that are NE of 〈A, B〉 is denoted by NE(A, B).
2 Without loss of generality.
3 With respect to.
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Due to the apparent difficulty in computing NE for arbitrary bimatrix games, the
recent trend is to look for approximate equilibria. Two definitions of approximate
equilibria that concern this paper are the following:

Definition 3 (Approximate Nash Equilibria). For any ε > 0 and any bi-
matrix game 〈A, B〉, (x,y) ∈ Δm × Δn is an ε−approximate Nash Equi-
librium (ε−ApproxNE) iff each player chooses an ε−approximate best re-
sponse against the opponent: [x ∈ BR(ε, A,y)] ∧

[
y ∈ BR(ε, BT ,x)

]
(x,y) is

an ε−well–supported Nash Equilibrium (ε−SuppNE) iff each player as-
signs positive probability only to ε−approximate pure best responses against
the strategy of the opponent: ∀i ∈ [m], xi > 0 ⇒ i ∈ PBR(ε, A,y) and
∀j ∈ [n], yj > 0 ⇒ j ∈ PBR(ε, BT ,x)

It is not hard to see that any NE is both a 0−ApproxNE and a 0−SuppNE.
Observe also that any ε−SuppNE is an ε−ApproxNE, but not necessarily vice
versa. Indeed, the only thing we currently know towards this direction is that
from an arbitrary ε2

8n−ApproxNE one can construct an ε−SuppNE in polynomial
time [6]. Note that both notions of approximate equilibria are defined wrt an
additive error term ε. Although (exact) NE are known not to be affected by any
positive scaling, it is important to mention that approximate notions of NE are
indeed affected. Therefore, from now on we adopt the commonly used assumption
in the literature (eg, [19,10,15,5,6]) that, when referring to ε−ApproxNE or
ε−SuppNE, the bimatrix game is considered to be a [0, 1]−bimatrix game. This
is mainly done for sake of comparison of the results on approximate equilibria.
Of particular importance are the uniform points of the (k − 1)−simplex Δk:

Definition 4 (Uniform Profiles). A point x ∈ Δr is called a k−uniform
strategy iff x ∈ Δr ∩

{
0, 1

k , 2
k , . . . , k−1

k , 1
}r ≡ Δr(k) . Ie, x assigns to each

action a probability mass that is some multiple of 1
k . In the special case that

the only possibility for an action is to get either zero probability or 1
k , we refer

to a strict k−uniform strategy. We denote the space of strict k−uniform
strategies by Δ̂r(k) ≡ Δr ∩

{
0, 1

k

}r. A profile (x,y) ∈ Δm × Δn for which x is
a (strict) k−uniform strategy and y is a (strict) �−uniform strategy, is called a
(strict) (k, �)−uniform profile.

We shall finally denote by k−NASH the problem of constructing an arbitrary
NE for a finite k−player game in normal form.

1.2 Related Work and the Contribution of Our Team

The computability of NE in bimatrix games has been a long standing open prob-
lem for many years. The most popular algorithm of Lemke and Howson [18] for
computing NE in these games, is an adaptation of Lemke’s algorithm for finding
solutions (if such exist) for arbitrary instances of the Linear Complementarity
Problem (LCP). Unfortunately, it has been recently proved by Savani and von
Stengel [24] that this pivoting algorithm may require an exponential number of
steps before finding a NE, no matter which starting point is chosen. Moreover,
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even though the complexity of 2−NASH was unknown, it was well known that
various (quite natural) restrictions of the problem (eg, uniqueness, bounds on
support sizes, etc) lead to NP−hard problems [13,8].

A very recent series of research papers deal with the complexity of k−NASH.
Initially [9,14] introduced a novel reduction technique and proved that 4−NASH
is PPAD−complete. Consequently this result was extended to 3−player games
[12]. Surprisingly, Chen and Deng [5] proved the same complexity result even
2−NASH. In view of all these hardness results for the k−NASH, understanding
the limitations of the (in)approximability of the problem is quite important. To
our knowledge, the first result that provides ε−ApproxNE within subexponential
time, is the work of Lipton et al. [19]. In particular, for any constant ε > 0, they
prove the existence of an ε−ApproxNE for arbitrary n×n bimatrix games, which
additionally is a uniform profile that has supports of size at most

⌈
log n/ε2

⌉
. This

leads to a rather simple subexponential algorithm for constructing ε−ApproxNE
for [0, 1]−bimatrix games, simply by checking all possible profiles with support
sizes at most

⌈
log n/ε2

⌉
for each strategy. This still remains the fastest strategy

to date, for the general problem of providing ε−ApproxNE for any constant ε >
0. With respect to the tractability of a Fully Polynomial Time Approximation
Scheme (FPTAS) for NE, [6] proved that providing a FPTAS for 2−NASH is
also PPAD−complete. Namely, they proved that unless PPAD ⊆ P, there is no
algorithm that constructs ε−ApproxNE in time poly(n, 1/ε), for any ε = n−Θ(1).
Moreover, they proved that unless PPAD ⊆ RP, there is no algorithm that
constructs a NE in time poly(n, 1/σ), where σ is the size of the deviation of
the elements of the bimatrix. This latter result essentially states that even the
smoothed complexity of the algorithm of Lemke and Howson is not polynomial.

Two independent results [10,15] initiated the discussion of providing in
polynomial time ε−ApproxNE for [0, 1]−bimatrix games and some constant
1 > ε > 0. In particular, [10] gave a simple 1

2−ApproxNE for [0, 1]−bimatrix
games, involving only two strategies per player. In [15] our group presented a
simple algorithm for computing a 3

4−ApproxNE equilibrium for any bimatrix
game in strongly polynomial time and we next showed how to extend this al-
gorithm so as to obtain a (potentially stronger) parameterized approximation.
Namely, we presented an algorithm that computes a 2+λ

4 −ApproxNE, where λ
is the minimum, among all Nash equilibria, expected payoff of either player.
The suggested algorithm runs in time polynomial in the number of strategies
available to the players. Last year there was a series of results improving the
constant for polynomial time constructions of ApproxNE. First [11] proposed
an efficient construction of a 0.38−ApproxNE, and consequently [3] proposed
a 0.36392−ApproxNE based on the solvability of zero sum bimatrix games (an
idea that was borrowed by our group’s work [16] for the efficient construction of
SuppNE). Finally, [25] our group proposed a new methodology for determining
ApproxNE of bimatrix games and based on that, we provided a polynomial time
algorithm for computing 0.3393-ApproxNE. To our knowledge this is currently
the best result for ApproxNE in bimatrix games.



10 P.G. Spirakis

As for the efficient approximation of SuppNE, [10] introduced the problem
and proposed a quite simple algorithm, which, under a quite interesting graph
theoretic conjecture, constructs in polynomial time some non–trivial SuppNE.
Unfortunately, the status of this conjecture is still unkown (it is false for some
small instances of graphs). [10] made also a quite interesting connection of the
problem of constructing 1+ε

2 −SuppNE in an arbitrary [0, 1]−bimatrix game, to
that of constructing ε−SuppNE for a properly chosen win lose game of the
same size. Our group continued this line of research and in [17] we studied
the tractability of the more requiring notion of SuppNE. We demonstrated the
existence of SuppNE with small supports and at the same time good quality.
This directly implies a subexponential time algorithm for constructing SuppNE
of arbitrary (constant) precision. An analogous result but for ApproxNE, was
already known in [19]. We proved a much simpler, and slightly stronger result,
as a corollary of Althöfer’s approximation lemma [2]. We then proposed various
algorithms for constructing SuppNE in win lose and normalized bimatrix games
(ie, whose payoff matrices take values from {0, 1} and [0, 1] respectively). Our
methodology for attacking the problem was based on two different approaches:
The first [17] was graph theoretic, and we provided SuppNE whose quality is
dependent on the girth of the Nash Dynamics graph in the win lose game, or a
proper win lose image of the normalized game. In our second approach [16], based
on the solvability of zero sum bimatrix games, we provided a 0.5−SuppNE for
win lose games and a 0.658−SuppNE for normalized games. These are currently
the best results for the stronger notion of SuppNE in bimatrix games.

Finally, concerning random [0, 1]−bimatrix games, Bárány, Vempala and
Vetta [4] considered the case where all the payoff values are (either uniform,
or normal) iid4 random variables in [0, 1]. They analyzed a simple Las Ve-
gas algorithm for finding a NE in such a game, by brute force on the sup-
port sizes, starting from smaller ones. The running time of their algorithm
is O

(
m2n log log n + n2m log log m

)
, whp5. In [17] we also studied random in-

stances of bimatrix games and provided evidence for the efficient construction
of SuppNE both in random normalized games and win lose games.

2 A First Remark

In this section we present one of the first very simple polynomial time algorithms
for ε−ApproxNE, where ε is an absolute constant. For further details and more
results we refer the interested reader to [15] and [10].

We will present a straightforward method for computing a 3
4−ApproxNE for

any positively normalized bimatrix game.

Lemma 1. Consider any positively normalized m×n bimatrix game Γ = 〈A, B〉
and let Ai1,j1 = maxi,j Ai,j and Bi2,j2 = maxi,j Bi,j. Then the pair of strategies
(x̂, ŷ) where x̂ = 1

2ei1 + 1
2ei2 and ŷ = 1

2ej1 + 1
2ej2 is a 3

4−ApproxNE for Γ .

4 Independent, identically distributed.
5 With high probability, ie, with probability 1 − m−c, for some constant c > 0.
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Proof. First observe that x̂T Aŷ =
∑m

i=1
∑n

j=1 x̂iŷjAi,j =
1
4 (Ai1,j1 + Ai1,j2 + Ai2,j1 + Ai2,j2) ≥ 1

4Ai1,j1 . Similarly, x̂T Bŷ =∑m
i=1

∑n
j=1 x̂iŷjBi,j = 1

4 (Bi1,j1 + Bi1,j2 + Bi2,j1 + Bi2,j2) ≥ 1
4Bi2,j2 . Now

observe that, for any (mixed) strategies x and y of the row and column player
respectively, xT Aŷ ≤ Ai1,j1 and x̂T By ≤ Bi2,j2 and recall that Ai,j , Bi,j ∈ [0, 1]
for all i ∈ [m], j ∈ [n]. Hence xT Aŷ ≤ Ai1,j1 = 1

4Ai1,j1 + 3
4Ai1,j1 ≤ x̂T Aŷ + 3

4
and x̂T By ≤ Bi2,j2 = 1

4Bi2,j2 + 3
4Bi2,j2 ≤ x̂T Bŷ + 3

4 . Thus (x̂, ŷ) is a
3
4−ApproxNE equilibrium for Γ .

3 An Optimization Approach for ApproxNE

In this section we present an efficient algorithm that computes a
0.3393−ApproxNE for any [0, 1]−bimatrix game, the best approximation till
now. The methodology is based on the formulation of an appropriate function of
pairs of mixed strategies reflecting the maximum deviation of the players’ pay-
offs from the best payoff each player could achieve given the strategy chosen by
the other. We then seek to minimize such a function using descent procedures.
For further details we refer the interested reader to [25].

Optimization formulation. Let Γ = 〈A, B〉 be an m × n positively
normalized bimatrix game. Key to our approach is the definition of the
following continuous function mapping Δm × Δn into [0, 1]: f(x,y) =
max

{
max(Ay) − xT Ay, max(BT x) − xT By

}
. It is evident that f(x,y) ≥ 0

for all (x,y) ∈ Δm × Δn and that exact Nash equilibria of 〈A, B〉 correspond to
pairs of strategies such that f(x,y) = 0. Furthermore, ε−ApproxNE correspond
to strategy pairs that satisfy f(x,y) ≤ ε. This function represents the maxi-
mum deviation of the players’ payoffs from the best payoff each player could
achieve given the strategy chosen by the other. An optimization formulation
based on mixed integer programming methods was suggested in [23]. However,
no approximation results were obtained there.

Remark: If each of A, BT have at most δn nonzero entries then the fully mixed
pair of strategies x = (1/m · · · 1/m)T , y = (1/n · · · 1/n)T gives f(x,y) ≤ δ.

The function f(x,y) is not jointly convex with respect to both x and y.
However, it is convex in x alone, if y is kept fixed and vice versa. Let us define the
two ingredients of the function f(x,y) as follows: fA(x,y) = max(Ay) − xT Ay
and fB(x,y) = max(BT x) − xT By . From any point in (x,y) ∈ Δm × Δn we
consider variations of f(x,y) along feasible directions in both players’ strategy
spaces of the following form:

(1 − ε)
[
x
y

]
+ ε

[
x′

y′

]

where 0 ≤ ε ≤ 1 and (x′,y′) ∈ Δm × Δn (the vectors in brackets are (m + n)–
dimensional column vectors). The variation of the function along such a feasible
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direction is defined by the following relationship: Df(x,y,x′,y′, ε) = f(x +
ε(x′ − x),y + ε(y′ − y)) − f(x,y) .

We have been able to derive an explicit formula for Df(x,y,x′,y′, ε) which is
a piecewise quadratic function of ε and the number of switches of the linear terms
of the function is at most m + n. Therefore, for fixed (x′,y′) this function can
be minimized with respect to ε in polynomial time. Furthermore, there always
exists a positive number, say ε�, such that for any ε ≤ ε� the coefficient of the
linear term of this function of ε coincides with the gradient, as defined below.
The number ε� generally depends on both (x,y) and (x′,y′). We define the
gradient of f at the point (x,y) along an arbitrary feasible direction specified by
another point (x′,y′) as follows: Df(x,y,x′,y′) = limε→0

1
εDf(x,y,x′,y′, ε) .

The gradient Df(x,y,x′,y′) of f at any point (x,y) ∈ Δm × Δn along a
feasible direction (determined by another point (x′,y′) ∈ Δm × Δn) provides
the rate of decrease (or increase) of the function along that direction. For fixed
(x,y), Df(x,y,x′,y′) is a convex polyhedral function in (x′,y′). In fact we have
derived the explicit form of Df(x,y,x′,y′) as the maximum of two linear forms
in the (x′,y′) space (see the derivations below). At any point (x,y) we wish
to minimize the gradient function with respect to (x′,y′) to find the steepest
possible descent direction, or to determine that no such descent is possible.

Let us define the following subsets of coordinates: SA(y) = suppmax(Ay) and
SB(x) = suppmax(BT x). By definition, SA(y) ⊂ [m] and SB(x) ⊂ [n]. There
are three cases:

(a) If fA(x,y) = fB(x,y) then
Df(x,y,x′,y′) = max(T1(x,y,x′,y′), T2(x,y,x′,y′)) − f(x,y)

where m1(y′) = max(Ay′) over the subset SA(y), m2(x′) = max(BT x′)
over the subset SB(x), T1(x,y,x′,y′) = m1(y′)−xT Ay′− (x′)T Ay+xT Ay
and T2(x,y,x′,y′) = m2(x′) − xT By′ − (x′)T By + xT By.

(b) If fA(x,y) > fB(x,y) then Df(x,y,x′,y′) = T1(x,y,x′,y′) − f(x,y) .
(c) If fA(x,y) < fB(x,y) then Df(x,y,x′,y′) = T2(x,y,x′,y′) − f(x,y) .

The problem of finding Df(x,y) as the minimum over all (x′,y′) ∈ Δm ×Δn of
the function Df(x,y,x′,y′), is a linear programming problem.

This problem can be equivalently expressed as the following minmax prob-
lem by introducing appropriate dual variables (we derive it for (x,y) such that
fA(x,y) = fB(x,y) since this is the most interesting case and the cases where
the two terms are different can be reduced to this by solving an LP, as we shall
see below) as follows:

minimize(x′,y′)∈Δm×Δn

{
max
w,z,ρ

{
[ρwT , (1 − ρ)zT ]G(x,y)

[
y′

x′

]}}

where:

(a) the maximum is taken with respect to dual variables w, z, ρ such that w ∈
Δm, supp(w) ⊂ SA(y) and z ∈ Δn, supp(z) ⊂ SB(x) and ρ ∈ [0, 1].
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(b) The minimum is taken with respect to (x′,y′) ∈ Δm × Δn.
(c) The matrix G(x,y) is the following (m + n) × (m + n) matrix:

G(x,y) =
[

A − 1mxT A −1myT AT + 1m1m
T xT Ay

−1nxT B + 1n1n
T xT By BT − 1nyT BT

]

The probability vectors w and z play the role of price vectors (or penalty vec-
tors) for penalizing deviations from the support sets SA(y) and SB(x), and the
parameter ρ plays the role of a trade-off parameter between the two parts of the
function f(x,y). In fact, w, z and ρ are not independent variables but they are
taken all together to represent a single (m + n)−dimensional probability vector
on the left hand side (the maximizing term) of the linear minmax problem.

Solving the above minmax problem we obtain w, z, ρ,x′ and y′ that are all
functions of the point (x,y) and take values in their respective domains of defin-
ition. Let us denote by V (x,y) the value of the solution of the minmax problem
at the point (x,y). The solution of this problem yields a feasible descent direc-
tion (as a matter of fact the steepest feasible descent direction) for the function
f(x,y) if Df(x,y) = V (x,y) − f(x,y) < 0. Following such a descent direction
we can perform an appropriate line search with respect to the parameter ε and
find a new point that gives a lower value of the function f(x,y). Applying re-
peatedly such a descent procedure we will eventually reach a point where no
further reduction is possible. Such a point is a stationary point that satisfies
Df(x,y) ≥ 0. In the next subsection we examine the approximation properties
of stationary points. In fact, we prove that given any stationary point we can de-
termine pairs of strategies such that at least one of them is a 0.3393-approximate
Nash equilibrium.

Approximation properties of stationary points. Let us assume that
we have a stationary point (x�,y�) of the function f(x,y). Then, based on
the above analysis and notation, the following relationship should be true:
Df(x�,y�) = V (x�,y�) − f(x�,y�) ≥ 0 . Let (w�, z�) ∈ Δm × Δn, ρ� ∈ [0, 1]
be a solution of the linear minmax problem (with matrix G(x�,y�)) with re-
spect to the dual variables corresponding to the pair (x�,y�). Such a solution
should satisfy the relations supp(w�) ⊂ SA(y�) and supp(z�) ⊂ SB(x�). Let us
define the following quantities: λ = miny′:supp(y′)⊂SB(x�){(w� − x�)T Ay′} and
μ = minx′:supp(x′)⊂SA(y�){x′T B(z� − y�)}. From the fact that A, B are posi-
tively normalized it follows that both λ and μ are less than or equal to 1. At any
point (x�,y�) these quantities basically define the rates of decrease (or increase)
of the function f along directions of the form (1 − ε)(x�,y�) + ε(x�,y′) and
(1 − ε)(x�,y�) + ε(x′,y�), i.e. the rates of decrease that are obtained when we
keep one player’s strategy fixed and move probability mass of the other player
into his own maximum support, towards decreasing his own deviation from the
maximum payoff he can achieve.

From the stationarity property of the point (x�,y�) it follows that both λ
and μ are nonnegative. Indeed, in the opposite case there would be a descent
direction, which contradicts the stationarity condition. Let us define a pair of
strategies (x̂, ŷ) ∈ Δm × Δn as follows:
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(x̂, ŷ) =
{

(x�,y�) if f(x�,y�) ≤ f(x̃, ỹ)
(x̃, ỹ) otherwise

where

(x̃, ỹ) =

⎧
⎨

⎩

(
1

1+λ−μw� + λ−μ
1+λ−μx�, z�

)
if λ ≥ μ

(
w�, 1

1+μ−λz� + μ−λ
1+μ−λy�

)
if λ < μ.

.

We now express the main result of this section in the following theorem:

Theorem 1. The pair of strategies (x̂, ŷ) defined above, is a 0.3393-approximate
Nash equilibrium.

Proof. From the definition of (x̂, ŷ) we have:

f(x̂, ŷ) ≤ min{f(x�,y�), f(x̃, ỹ)} . (1)

Using the stationarity condition for (x�,y�) we obtain that f(x�,y�) ≤
V (x�,y�). But V (x�,y�) is less than or equal to ρ�E1 + (1 − ρ�)E2 where
E1 = (w�T Ay′−x�T Ay′−x′T Ay� +x�T Ay�) and E2 = (z�T BT x′−x�T By′−
x′T By� + x�T By�) and this holds ∀(x′,y′) ∈ Δm × Δn.

Setting x′ = x� and y′ : supp(y′) ⊂ SB(x�) in the above inequality we get:

f(x�,y�) ≤ ρ�λ . (2)

Next, setting y′ = y� and x′ : supp(x′) ⊂ SA(y�) in the same inequality, we get:

f(x�,y�) ≤ (1 − ρ�)μ . (3)

Now using the definition of the strategy pair (x̃, ỹ) above and exploiting the
inequalities (w� −x�)T Az� ≥ λ, since supp(z�) ⊂ SB(x�), and w∗T B(z� −y�) ≥
μ, since supp(w�) ⊂ SA(y�), we obtain (assume λ ≥ μ):

fA(x̃, ỹ) = max(Aỹ) − x̃T Aỹ = max(Az�)−
(

1
1 + λ − μ

w� +
λ − μ

1 + λ − μ
x�

)T

Az�

= max(Az�) − 1
1 + λ − μ

w∗T Az� − λ − μ

1 + λ − μ
x∗T Az�

≤ max(Az�) − x∗T Az� − λ

1 + λ − μ
≤ 1 − μ

1 + λ − μ
.

Similarly, it can be shown that fB(x̃, ỹ) ≤ 1−μ
1+λ−μ . From the above relationships

we obtain:
f(x̃, ỹ) ≤ 1 − μ

1 + λ − μ
for λ ≥ μ (4)

A similar inequality can be obtained if λ < μ and we interchange λ and μ. In
all cases, combining inequalities (2), (3), (4) and using the definition of (x̂, ŷ)
above, we get the following:

f(x̂, ŷ) ≤ min
{

ρ�λ, (1 − ρ�)μ,
1 − min{λ, μ}

1 + max{λ, μ} − min{λ, μ}

}
. (5)
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We can prove that the quantity in (5) cannot exceed the number 0.3393 for any
ρ�, λ, μ ∈ [0, 1], and this concludes the proof of the theorem.

A stationary point of any general Linear Complementarity problem can be ap-
proximated arbitrarily close in polynomial time via the method of Ye [26]. In [25]
we give an alternative approach, directly applicable to our problem; our method
is an FPTAS with respect to approximating a stationary point and hence an
approximate equilibrium of the stated quality.

Important Remarks

1. Our method can also derive the (simpler) inequality

f(x̂, ŷ) ≤ min {ρ�λ, (1 − ρ�)μ, 1 − min{λ, μ}} (6)

which leads to the bound of [11].
2. For win-lose games, our descent procedure described in [25] leads actually

to ε = 0.25.
3. For arbitrary imitation games (R, I) we get ε = 4/13, and for imitation

games of the form ([
0 CT

R 0

]
, I

)

we get ε = 1/6, by the same Optimization Approach.
4. Any stationary point is an exact equilibrium in constant sum games.

4 Existence of Uniform SuppNE

In this section we prove existence of SuppNE of arbitrary (constant) precision,
with logarithmic (in the numbers of players’ actions) support sizes. We also pro-
vide (to our knowledge) the first polynomial time algorithms for the construction
of SuppNE in normalized and win lose bimatrix games, for some constant that
is clearly away from the trivial bound of 1. For further details we refer the
interested reader to [17].

The existence of uniform ε−ApproxNE with small support sizes is already
known from [19]. In this section we prove a similar result but for SuppNE, based
solely on the Approximation Lemma of Althöfer [2]:

Theorem 2 (Approximation Lemma [2]). Assume any m × n real ma-
trix C ∈ [0, 1]m×n, any probability vector p ∈ Δm, and any constant ε > 0.
Then, there exists another probability vector p̂ ∈ Δm with |supp(p̂)| ≤ k ≡⌈
log(2n)/(2ε2)

⌉
, such that |pT Cj − p̂T Cj | ≤ ε, ∀j ∈ [n] . Moreover, p̂ is a

k−uniform strategy, ie, p̂ ∈ Δr(k).

The following simple observation will be quite useful in our discussion:

Proposition 1. For any real matrix C ∈ [0, 1]m×n and any p ∈ Δm, for the em-
pirical distribution p̂ ∈ Δm produced by the Approximation Lemma it holds that
positive probabilities only to rows whose indices belong to supp(p̂) ⊆ supp(p).
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We now demonstrate how the Approximation Lemma, along with the previ-
ous observation, guarantees the existence of a uniform profile which is also a
(2ε)−SuppNE with support sizes at most

⌈
log(2n)/(2ε2)

⌉
, for any ε > 0:

Theorem 3. Fix any positive constant ε > 0 and any [0, 1]−bimatrix game
〈A, B〉. There is at least one (k, �)−uniform profile which is also a (2ε)−SuppNE
for this game, where k ≤

⌈
log(2n)/(2ε2)

⌉
and � ≤

⌈
log(2m)/(2ε2)

⌉
.

Proof. Assume any profile (p,q) ∈ NE(A, B), which we of course know to exist
for any finite game in normal form [20]. We use the Approximation Lemma to
assure the existence of some k−uniform strategy p̂ ∈ Δm with |supp(p̂)| ≤
k ≡

⌈
log(2n)/(2ε2)

⌉
, such that |pT Bj − p̂T Bj | ≤ ε, ∀j ∈ [n]. Similarly, we

assume the existence of some �−uniform strategy q̂ ∈ Δn with |supp(q̂)| ≤ � ≡⌈
log(2m)/(2ε2)

⌉
, such that |Aiq − Aiq̂| ≤ ε, ∀i ∈ [m].

Observe now that, trivially, p̂T B − 1T · ε ≤ pT B ≤ p̂T B + 1T · ε . Similarly,
A · q̂− 1 · ε ≤ A · q ≤ A · q̂ + 1 · ε . Therefore (also exploiting the Nash Property
of (p,q) and the fact that supp(p̂) ⊆ supp(p)) we have: ∀i ∈ [m],

p̂i > 0
/∗ Sampling ∗/

=⇒ pi > 0
/∗ Nash Prop. ∗/

=⇒ Aiq ≥ Arq, ∀r ∈ [m]
/∗ Thm.2 ∗/

=⇒ Aiq̂ + ε ≥ Arq̂ − ε, ∀r ∈ [m] =⇒ Aiq̂ ≥ Arq̂ − 2ε, ∀r ∈ [m]

The argument for the column player is identical. Therefore, we conclude that
(p̂, q̂) is a (k, �)−uniform profile that is also a (2ε)−SuppNE for 〈A, B〉.

5 A Linear Programming Approach for Constructing
SuppNE

From now on we shall follow another line of attack, which exploits the efficiency
of solving linear programs, plus the connection of zero sum games to linear
programming. We start with a 0.5−SuppNE for arbitrary win lose games and
we consequently provide a

(√
11
2 − 1

)
−SuppNE for any normalized game. For

further details we refer the interested reader to [16].

5.1 Construction of a 1
2−SuppNE for Win Lose Games

In this subsection we provide a 0.5−SuppNE for win lose games, which directly
translates to a 0.75−SuppNE for arbitrary normalized games, if one exploits the
nice observation of [10]. First, it can be shown that additive transformations (ie,
shiftings) have no effect on well supported equilibria:

Lemma 2. Fix arbitrary [0, 1]−bimatrix game 〈A, B〉 and any real matrices
R, C ∈ R

m×n, such that ∀i ∈ [m], Ri = rT ∈ R
n and ∀j ∈ [n], Cj = c ∈ R

m.
Then, ∀1 > ε > 0, ∀(x,y) ∈ Δm ×Δn, if (x,y) is an ε−SuppNE for 〈A, B〉 then
it is also an ε−SuppNE for 〈A + R, B + C〉.
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Our next theorem tries to construct the “right” zero sum game that would stand
between the two extreme zero sum games 〈R, −R〉 and 〈−C, C〉, wrt an arbitrary
win lose bimatrix game 〈R, C〉.

Theorem 4. For arbitrary win lose bimatrix game 〈A, B〉, there is a polynomial
time constructible profile that is a 0.5−SuppNE of the game.

Proof. Consider arbitrary win lose game 〈A, B〉 ∈ {(0, 0), (0, 1), (1, 0)}m×n. We
have excluded the (1, 1)−elements because, as we already know, these are trivial
PNE of the game. We transform the bimatrix (A, B) into a bimatrix (R, C) by
subtracting 1/2 from all the possible payoffs in the bimatrix: R = A − 1

2E and
C = B − 1

2E, where E = 1 · 1T . We already know that this transformation does
not affect the quality of a SuppNE (cf. Lemma 2).

We observe that the row player would never accept a payoff less than the
one achieved by the (exact) Nash equilibrium (x̂, ŷ) of the (zero sum) game
〈R, −R〉. This is because strategy x̂ is a maximin strategy for the row player,
and thus the row player can achieve a payoff of at least V̂I ≡ x̂T Rŷ by adopting
x̂, for any possible column that the column player chooses wpp. Similarly, the
column player would never accept a profile (x,y) with payoff for her less than
ṼII ≡ x̃T Cỹ, where (x̃, ỹ) is the (exact) NE of the zero sum game 〈−C, C〉. So,
we already know that any 0−SuppNE for 〈R, C〉 should assure payoffs at least
V̂I and at least ṼII for the row and the column player respectively. Clearly, (x̂, ỹ)
is a max

{
1
2 − V̂I ,

1
2 − ṼII

}
−ApproxNE of the game, but we cannot assure that

it is a nontrivial SuppNE of 〈R, C〉. Nevertheless, inspired by this observation,
we attempt to set up the right zero sum game that is somehow connected to
〈R, C〉, whose (exact) NE would provide a good SuppNE for 〈R, C〉. Therefore,
we consider an arbitrary zero sum game 〈D, −D〉, for which it holds that D =
R + X ⇔ X = D − R and −D = C + Y ⇔ Y = −(D + C) for some m × n
bimatrix (X, Y ). Let again (x̄, ȳ) ∈ NE(D, −D). Then clearly, by the definition
of NE we have:

(x̄, ȳ) ∈ NE(D, −D) = NE(R + X, C + Y ) ⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ (R + X)iȳ ≥ (R + X)rȳ ⇒ Riȳ ≥ Rrȳ − [X i − Xr]ȳ
∀j, s ∈ [n], ȳj >0 ⇒ (C + Y )T

j x̄ ≥ (C + Y )T
s x̄ ⇒ CT

j x̄ ≥ CT
s x̄ − [Yj − Ys]T x̄

Since D = R + X = −(−D) = −(C + Y ) ⇔ −Z ≡ R + C = −(X + Y ), we can
simply set X = Y = 1

2Z, and then we conclude that:

(x̄, ȳ) ∈ NE(D, −D) ⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ Riȳ ≥ Rrȳ − 1
2 · [Zi − Zr]ȳ

∀j, s ∈ [n], ȳj > 0 ⇒ CT
j x̄ ≥ CT

s x̄ − 1
2 · [Zj − Zs]T x̄

Observe now that, since R, C ∈
{(

− 1
2 , − 1

2

)
,
(
− 1

2 , 1
2

)
,
( 1

2 , − 1
2

)}m×n, any row of
Z = −(R+C) is a vector in {0, 1}n, and any column of Z is a vector in {0, 1}m.
But it holds that ∀ẑ, z̃ ∈ {0, 1}k, ∀w ∈ Δk, (ẑ − z̃)T w ≤ 1T w = 1. So we
conclude that ∀i, r ∈ [m], ∀y ∈ Δn, [Zi − Zr]y ≤ 1T y = 1, and ∀j, s ∈ [n], ∀x ∈
Δm, [Zj − Zs]T x ≤ 1T x = 1. Therefore we conclude that:
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(x̄, ȳ) ∈ NE

(
R +

1
2
Z, C +

1
2
Z

)
⇒

{
∀i, r ∈ [m], x̄i > 0 ⇒ Riȳ ≥ Rrȳ − 1

2
∀j, s ∈ [n], ȳj > 0 ⇒ CT

j x̄ ≥ CT
s x̄ − 1

2

⇒ (x̄, ȳ) ∈ 1
2−SuppNE(R, C) .

5.2 SuppNE for [0, 1]−Bimatrix Games

Given our result on win lose games, applying a lemma of Daskalakis et al. [10,
Lemma 4.6] for constructing 1+ε

2 −SuppNE of a [0, 1]−bimatrix game 〈A, B〉 by
any ε−SuppNE of a properly chosen win lose game of the same size, we could
directly generalize our result on SuppNE for win lose games to SuppNE for any
[0, 1]−bimatrix game:

Corollary 1. For any [0, 1]−bimatrix game 〈A, B〉, there is a 0.75−SuppNE
that can be computed in polynomial time.

The question is whether we can do better than that. Indeed we can, but we
first have to modify the rationale of the proof of Theorem 5. This way we shall
get a weaker SuppNE for win lose games, which we can nevertheless extend
to [0, 1]−bimatrix games with only a small deterioration. The next theorem
demonstrates the parameterized method for win lose games, which assures a
φ−SuppNE, where φ is the golden ratio.

Theorem 5. For any win lose bimatrix game, there is a polynomial–time con-
structible ε(δ)−SuppNE for any 0 < δ < 1, where ε(δ) ≤ max

{
δ, 1−δ

δ

}
.

Proof. Again we try to find a zero sum game that lies somehow between 〈R, −R〉
and 〈−C, C〉 and indeed provides a guaranteed SuppNE for 〈R, C〉. Therefore,
we fix a constant δ ∈ (0, 1) (to be determined later). Consequently, we consider
the matrix Z = −(R + C) ∈ {0, 1}m×n, indicating (with 1s) the elements of the
bimatrix (R, C) that are (− 1

2 , − 1
2 )−elements (ie, the (0, 0)−elements of initial

bimatrix (A, B)). All the other elements are 0s. We now consider the zero sum
bimatrix game 〈R+δZ, −(R+δZ)〉, which is solvable in polynomial time (by use
of linear programming). We denote with (x̄, ȳ) the (exact) NE of this game. By
the definition of NE, the row and the column player assign positive probability
mass only to maximizing elements of the vectors (R + δZ)ȳ and (−R − δZ)T x̄
respectively. That is:

(x̄, ȳ) ∈ NE(R + δZ, −(R + δZ))

⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ (R + δZ)iȳ ≥ (R + δZ)rȳ
∀j, s ∈ [n], ȳj > 0 ⇒ (−R − δZ)T

j x̄ ≥ (−R − δZ)T
s x̄

⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ Riȳ + δZiȳ ≥ Rrȳ + δZrȳ
∀j, s∈ [n], ȳj >0⇒(1 − δ)RT

j x̄ + δ(R + Z)T
j x̄ ≤ (1 − δ)RT

s + δ(R + Z)T
s x̄

⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ Riȳ + δZiȳ ≥ Rrȳ + δZrȳ
∀j, s ∈ [n], ȳj > 0 ⇒ (1 − δ)RT

j x̄ − δCT
j x̄ ≤ (1 − δ)RT

s x̄ − δCT
s x̄

⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ Riȳ ≥ Rrȳ − δ[Zi − Zr]ȳ ≥ Rrȳ − ε(δ)
∀j, s ∈ [n], ȳj > 0 ⇒ CT

j x̄ ≥ CT
s x̄ − 1−δ

δ · [RT
s − RT

j ]x̄ ≥ CT
s x̄ − ε(δ)
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where,

ε(δ) ≡ max
i,r∈[m],j,s∈[n],x∈Δm,y∈Δn

{
δ ·

[
Zi − Zr

]
y,

1 − δ

δ
·
[
RT

s − RT
j

]
x
}

(7)

Obviously, for any δ ∈ (0, 1] it holds that (x̄, ȳ) is an ε(δ)−SuppNE for 〈R, C〉.
We already proved that ∀i, r ∈ [m], ∀y ∈ Δn, [Zi−Zr]y ≤ 1T y = 1. Similarly,

every column of R is a vector from
{
− 1

2 , 1
2

}m. But the difference û − ũ of
any vectors û, ũ ∈

{
− 1

2 , 1
2

}m is a vector from {−1, 0, 1}m. Therefore, ∀û, ũ ∈{
− 1

2 , 1
2

}m
, ∀x ∈ Δm, (û − ũ)T x ≤ 1T x = 1. Therefore, we conclude that ∀δ ∈

(0, 1], ε(δ) ≤ max
{
δ, 1−δ

δ

}
.

Remark: If we simply set δ = 1−δ
δ =

√
5−1
2 , we conclude that (x̄, ȳ) is a(√

5−1
2

)
−SuppNE for 〈R, C〉, and therefore for 〈A, B〉. Of course, this golden

ratio SuppNE is inferior to the previously constructed 0.5−SuppNE for win lose
games. But all we need is actually the bound of equation (7).

Now we can extend our technique for win lose games to a technique for arbitrary
[0, 1]−bimatrix games:

Theorem 6. For any [0, 1]−bimatrix game, a
(√

11
2 − 1

)
−SuppNE is con-

structible in polynomial time.

See [16] for a proof of the above theorem.

Remark: It is worth mentioning that if we had applied our technique to the first
algorithm for computing 0.5−SuppNE in win lose games, then this would lead to
a 2

3−SuppNE for the [0, 1]−bimatrix game 〈A, B〉 which is strictly worse than our
current result. Ie, equidistribution (between the two players) of the divergence
from the zero sum game is not the right choice for the general algorithm.

6 Open Problems

In this work we have studied the tractability of ApproxNE and SuppNE, as well
as the existence of SuppNE with small supports, both in normalized and win
lose bimatrix games.

The important questions whether there exist polynomial time approximation
schemes (PTAS) for the construction of ε−SuppNE or ε−ApproxNE, for any
positive constant 1 > ε > 0, still remain open. We only know that the construc-
tion of fully polynomial time approximation schemes (FPTAS) for the weaker
notion of ApproxNE is as hard as the exact problem.

It would also be interesting to find polynomial time algorithms for con-
structing ε−SuppNE, for some constant 0 < ε < 0.5 for win lose games and
0 < ε < 0.658 for the general case. Similarly, for the case of other notion of
approximate equilibria (ApproxNE), we do not currently know how to construct
ε−ApproxNE for some precision 0 < ε < 1

3 , or whether there is a matching lower
bound on the approximability of ApproxNE.
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Abstract. In this paper we consider the influence of link restrictions
on the price of anarchy for several social cost functions in the following
model of selfish routing. Each of n players in a network game seeks
to send a message with a certain length by choosing one of m parallel
links. Each player is restricted to transmit over a certain subset of links
and desires to minimize his own transmission-time (latency). We study
Nash equilibria of the game, in which no player can decrease his latency
by unilaterally changing his link. Our analysis of this game captures
two important aspects of network traffic: the dependency of the overall
network performance on the total traffic t and fluctuations in the length
of the respective message-lengths. For the latter we use a probabilistic
model in which message lengths are random variables.

We evaluate the (expected) price of anarchy of the game for two so-
cial cost functions. For total latency cost, we show the tight result that
the price of anarchy is essentially Θ (n

√
m/t). Hence, even for congested

networks, when the traffic is linear in the number of players, Nash equi-
libria approximate the social optimum only by a factor of Θ (

√
m). This

efficiency loss is caused by link restrictions and remains stable even un-
der message fluctuations, which contrasts the unrestricted case where
Nash equilibria achieve a constant factor approximation. For maximum
latency the price of anarchy is at most 1+m2/t. In this case Nash equilib-
ria can be (almost) optimal solutions for congested networks depending
on the values for m and t. In addition, our analyses yield average-case
analyses of a polynomial time algorithm for computing Nash equilibria
in this model.

1 Introduction

Recently, there has been a lot of interest in considering network users as non-
cooperative selfish players that unilaterally seek to optimize their experienced
network latency. This serves to quantify the deterioration of the total system per-
formance, and it builds a foundation to derive protocols taking possible selfish
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defection into account. In their seminal work [13], Koutsoupias and Papadim-
itriou initiated this research direction by introducing the KP-model for selfish
routing. Each of n players seeks to send a message with respective length tj
across a network consisting of m parallel capacitated links. The cost of a player
j, called his latency �j , is the total length of messages on his chosen link i,
scaled with the respective capacity. The latency corresponds to the duration of
the transmission when the channel is shared by a set of players. Now each player
strives to optimize his personally experienced latency by changing the chosen
link for his message. He is satisfied with his link choice (also referred to as his
strategy) if by unilaterally changing his link he cannot decrease his cost. If all
players are satisfied, then the system is said to be in a stable state, called a Nash
equilibrium.

In order to relate selfishly obtained stable solutions with those of an (imag-
inary) central authority, it is necessary to distinguish between the cost of the
individual players and the social cost of the whole system caused by the commu-
nity of all players. Naturally, depending on the choice of a social cost function
selfish behavior is not always optimal. Consequently, the question arises how
much worse a Nash equilibrium can be than the optimum. Koutsoupias and Pa-
padimitriou [13] introduced the price of anarchy which is the ratio of the social
cost of the worst Nash equilibrium and the optimum social cost, and proved
initial bounds for special cases of the KP-model with maximum latency cost.
Subsequently, generalized models with different latency functions, social cost
functions and network topologies were considered for instance in [6,5,8,9,1,4].
For a recent survey on results related to network congestion games see [12].

In this paper we treat a generalization of the KP-model in which the link
set a player i can choose from is a restricted subset of all links available. This
model was treated before with maximum latency and polynomial load social
cost. For maximum latency computing the social optimum solution is a special
case of generalized assignment problems and the single source unsplittable flow
problem [14,11]. Gairing et al. [7] gave a (2 − 1/tmax)-approximation algorithm
for optimizing the social cost. They also showed how to compute in polynomial
time a Nash equilibrium from any given starting solution without deteriorating
the social cost, so the price of stability is 1. In [2] the price of anarchy for
maximum latency was shown to be O(log m/ log log m) and to decrease with the
ratio r = cost(s∗)/tmax. In particular, for r = Ω(log m/ε2) it is 1 + ε. Quadratic
load social cost was recently studied in [3,18]. Suri et al. [18] show that the price
of anarchy for identical machines is at least 2.012067, and Caragiannis et al. [3]
provide a matching upper bound.

In contrast to previous work, we capture two important aspects of network
traffic: the dependency of the overall network performance on the total traffic
t =

∑
j tj and fluctuations in the length of the respective message-lengths tj . In

our model of fluctuation, the message-lengths are random variables Tj and the
quality of equilibria is judged with the expected value of the price of anarchy,
respectively stability. This idea of an expected price of anarchy was recently in-
troduced by Mavronicolas et al. [15] (under the name diffuse price of anarchy)



24 M. Hoefer and A. Souza

in the context the unrestricted KP-model with a cost-sharing mechanism. We
considered the expected price of anarchy in [10], in which we were mostly con-
cerned with the pure Nash equilibria of the unrestricted KP-model and the total
latency

∑
j �j of all players. One main conclusion therein was that for highly

congested networks, i.e., t being linear in n, Nash equilibria approximate the
optimum solution within a constant factor.

In this paper, we characterize the loss of performance of Nash equilibria due
to the presence of link restrictions. We show that the prices of stability and
anarchy are essentially Θ (n

√
m/t) for total latency. Perhaps surprisingly this

behaviour remains stable even in the stochastic counterpart. This means that –
in contrast to other related average-case analyses, e.g., [17,16] – the averaging
effects of fluctuations do not necessarily yield improved expected prices of the
game.

Our results foster an interesting new research direction connecting game the-
ory and average-case analysis in the context of traffic allocation and schedul-
ing. We consider efficiency measures including randomness by presenting tight
bounds on the (expected) price of anarchy. By capturing a notion of fluctuation,
we bring a network game closer to practice. Secondly, our analysis yields an
average-case analysis on the expected performance of a generic approximation
algorithm for various scheduling problems. Most notably, our analysis holds un-
der weak probabilistic assumptions. This extends previous work, e.g. [10,17,16]
on average-case analyses of scheduling on identical unrestricted machines.

1.1 Model and Notation

We formulate the KP-model with scheduling terminology, where each link corre-
sponds to one of m identical parallel machines. There are n players in the game,
and each player seeks to assign a task to one of the machines. Each task j has
a certain finite length tj . We scale all task lengths by a positive factor without
changing the approximation factors, i.e., we assume normalization tj ∈ [0, 1],
and w.l.o.g. n ≥ m throughout. With each player j we associate a set Aj �= ∅ of
allowed machines, and each player is restricted to assignment only to machines in
the set Aj . The strategy of a player is the choice of one of the allowed machines.
A schedule is a function s that maps each task j to a machine i obeying the
restrictions Aj . The total length on machine i is its load wi =

∑
k on i tk. Each

machine i executes its assigned tasks in parallel and hence the finishing-time of
a task j is proportional to the total length on the chosen link i, i.e., its latency
is �j =

∑
k on i tk = wi. The disutility of each player is the latency of its task,

i.e., the selfish incentive of every player is to minimize the individual latency.
A schedule s is said to be in a (pure) Nash equilibrium if no player can decrease

his latency by unilaterally changing the machine his task is processed on. More
formally, the schedule s has the property that for each task j

wi + tj ≥ ws(j) holds for every i ∈ Aj . (1)

This game is known to always admit pure Nash equilibria, see e.g. [7].
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Schedules are valued with a certain (social) cost function cost : Σ → R+,
where Σ denotes the set of all schedules. A Nash equilibrium is simply a schedule
that satisfies the stability criterion (1), whereas an optimum schedule minimizes
the cost function over all possible schedules. Hence, it is natural to consider
how much worse Nash equilibria can be compared to the optimum. The price
of anarchy [13] relates the Nash equilibrium with highest social cost to the
optimum, i.e, it compares the “worst” Nash equilibrium with the best possible
solution. In contrast, the price of stability relates the Nash equilibrium with
lowest social cost to the optimum, i.e, it compares the “best” Nash equilibrium
with the best possible solution.

1.2 Our Concepts and Results

The main matter of this paper is to investigate the influence of link restrictions
on Nash equilibria. We consider two different social cost functions: total latency∑

j∈J �j and maximum latency maxj∈J �j .
Our focus lies on two important aspects of network traffic: the influence of the

total traffic upon the quality of Nash equilibria and the question if fluctuations
in the task-lengths have an positive averaging effect. In terms of fluctuations,
we consider the following natural stochastic model. Throughout, upper-case let-
ters denote random variables, lower-case letters their realisations, respectively
constants.

Let the task-length Tj of a task j be a random variable over a bounded interval
with expectation E [Tj]. As before, a schedule is a Nash equilibrium if (1) holds,
i.e., if the concrete realisations tj of the random variables Tj satisfy the stability
criterion. Consequently, the set of schedules that are Nash equilibria is a random
variable itself. We define the expected price of anarchy

EPoA(Σ) = E

[
max

{
cost(S)
cost(S∗)

: S ∈ Σ is a Nash equilibrium
}]

.

The expected price of stability is obtained by replacing the maximum by the
minimum in straightforward manner. Notice that each expected value is taken
with respect to the random task-lengths Tj . This means that the expectation is
accumulated by evaluating the prices for each outcome tj of the random variables
Tj and weighting with the respective probability.

In Section 2 we consider total latency
∑

j �j, for which [10] shows that prices
of stability and anarchy are Θ (n/t), i.e., they are both decreasing with t. Theo-
rem 1, respectively Theorem 2, provide tight lower and upper bounds for the case
with link restrictions: we show that the prices of anarchy, respectively stability
are Θ (n

√
m/t). The question arises whether fluctuations in task-lengths help

reducing this bound. Unfortunately, we show that the bounds remains stable.
The expected prices of anarchy and stability are Θ (n

√
m/E [T ]) under relatively

weak assumptions on the probability distributions of the Tj .
For maximum latency maxj �j, it is already known (see [2]) that the price of

stability is 1 and that the price of anarchy follows a tradeoff depending on the
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largest task length and the cost of the social optimum. We show a similar tradeoff
in Theorem 4: the price of anarchy is at most 1+m2/t and even in expectation it
is at most 1+m2/E [T ]. Hence, Nash equilibria are almost optimal for congested
networks even with link restrictions.

Moreover, there is an algorithm due to Gairing et al. [7] which computes pure
Nash equilibria for our game in polynomial time. Our analyses of the expected
prices of anarchy of these social cost functions provide average-case analyses of
that algorithm, see, e.g. Theorem 3.

2 Total Latency Cost

In this section, we consider the social cost function total latency cost(s) =
∑

j �j .
Throughout, let pi denote the number of players that use machine i, let wi =∑

j on i tj be the load of machine i. Observe that we have the equality cost(s) =∑
j �j =

∑
i piwi for every feasible solution s. It will be convenient to denote

t =
∑

j tj and n =
∑

i pi throughout. Recall that we normalize to tj ∈ [0, 1].
Before considering the general case, we restrict ourselves to games with so-called
clustered restrictions.

Clustered Restrictions. We speak of clustered restrictions in the game if the
set A of allowed machines can is characterized as follows. Let J denote the set
of tasks and let J1, . . . , Jk be a disjoint partition of the tasks in non-empty sets.
Let M denote the set of machines and let M1, . . . , Mk be a disjoint partition of
the machines in non-empty sets. Let j ∈ Ji for some i ∈ {1, . . . , k} then, the set
of allowed machines for task j is Aj = Mi. This means that j is allowed to use
exactly those machines in the class Mi, but no others.

Theorem 1. For clustered restrictions A={A1, A2, . . . , An} with task-partition
J1, . . . , Jk and machine-partition M1, . . . , Mk we have:

(1) Define ε1 = ε1(n, m, t) = 2nm/t2. The prices of stability and anarchy of the
game are

n
√

m

4t
(1 − o (1)) ≤ PoS(Σ) ≤ PoA(Σ) ≤ n

√
m

t
+ ε1. (2)

The lower bound holds for t ≥ m; the upper for t ≥ 2.
(2) Define ε2 = ε2(n, m, E [T ]) = 2nm/E [T ]2. Suppose T =

∑
j Tj with E [T ] =

ω
(√

n log n
)
, where the Tj are independent. Then the expected prices of sta-

bilty and anarchy of the game are

n
√

m

4E [T ]
(1 − o (1)) ≤ EPoS(Σ) ≤ EPoA(Σ) ≤

(
n
√

m

E [T ]
+ ε2

)
(1 + o (1)). (3)

The lower bound holds with the additional assumption that E [T ] ≥ m.



The Influence of Link Restrictions on (Random) Selfish Routing 27

For the proof of an upper bound notice that the clustered restrictions divide the
problem into a set of unrestricted problems corresponding to the aforementioned
partition into task sets J1, . . . , Jk and the machine sets M1, . . . , Mk. Define ci =∑

j∈Ji
tj as the load of a cluster. Further let mi = |Mi| and ni = |Ji|. For

the next lemma define the vectors n = (n1, . . . , nk), c = (c1, . . . , ck) and m =
(m1, . . . , mk). Furthermore, let F(n, t, m) ⊂ N

k × R
k × N

k denote the subspace
of feasible (n, c, m), which simultaneously satisfy all the following constraints:

ni ≥ ci ci > 0 mi ≥ 1
∑

i ni = n
∑

i ci = t
∑

i mi = m.

Lemma 1. Define the function f(n, c, m) = (
∑k

i=1
nici

mi
)/(

∑k
i=1

c2
i

mi
). We have

that f(n, c, m) ≤ n
√

m/t for (n, c, m) ∈ F(n, t, m).

Proof. For a geometric interpretation and intuition of the function f notice that
for fixed ni, the numerator is a hyperplane and the denominator is an elliptic
paraboloid in the ci. Therefore, f has a unique maximum, which can not be
“very far” from the extremum of the elliptic paraboloid.

Without loss of generality, let c1
m1

≥ ci

mi
. Then for the numerator it is easy

to see
∑k

i=1
nici

mi
≤ n c1

m1
. This gives f(n, c, m) ≤ (nc1

m1
)/(

∑
i

c2
i

mi
). We strive to

find the maximum value that this upper bound can attain. Hence, we try to
maximize f1(c, m) = ( c1

m1
)/(

∑
i

c2
i

mi
) subject to c1

m1
≥ ci

mi
, ci > 0, t =

∑
i ci,

mi ≥ 1 and m =
∑

i mi for all i ≤ k.
How large can f1 be? Let us fix values for m1 and c1. Then the denominator

is minimized with the choice of ci = mi(t − c1)/(
∑

�≥2 m�) for the variables
c2, . . . , ck. Thus, we incorporate this assumption and get the remaining problem
depending only on c1 and m1, which is to maximize f2(c1, m1) = ( c1

m1
)/( c2

1
m1

+
(t−c1)2

m−m1
) subject to 0 ≤ c1 ≤ t and 1 ≤ m1 < m.

Now assuming a fixed value for m1, the best choice for c1 is c1 = t
√

m1
m .

Substitution and simplification reduces the problem to optimize only w.r.t. m1,

i.e. to maximize f3(m1) = ( 1√
mm1

)/( t
m + (1−

√
m1/m)2t

m−m1
) subject to 1 ≤ m1 < m.

It is a technical, but straightforward, exercise to show that for the first derivative
f ′3(m1) ≤ 0 for all 1 ≤ m1 < m. Hence, f3(m1) is monotonic decreasing and the
maximum obtained with m1 = 1:

f3(m1) ≤ 1/
√

m

t/m + (1 −
√

1/m)2t/(m − 1)
≤ 1/

√
m

t/m
=

√
m

t
.

We independently reduced the number of variables and finally derived m1 = 1. A
retrospective inspection shows that with our choices the constraints for f1(c, m)
and c1

m1
≥ ci

mi
are satisfied. Thus, the upper bound for f3 results in an upper

bound for f1, and finally in f(n, c, m) ≤ n
√

m/t. This proves the lemma. 
�

Finally, we need the following simple lemma, which is an adjustment from [10]
to identical machines.
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Lemma 2. For every Nash equilibrium s for the selfish scheduling game without
restrictions on identical machines cost(s) ≤ n(t + 2m)/m. For an optimum
schedule s∗ for such a game we have that cost(s∗) ≥ t2/m.

Proof (Proof of Theorem 1.). For the upper bound in (2) we may apply Lemma 2
to the unrestricted problems given by task sets J1, . . . , Jk and the machine sets
M1, . . . , Mk. With Lemma 1 we obtain

cost(s)
cost(s∗)

≤
∑k

i=1
ni(ci+2mi)

mi

∑k
i=1

c2
i

mi

≤ n
√

m

t
+

2n
∑k

i=1
c2

i

mi

≤ n
√

m

t
+

2mn

t2

To prove (3) we consider the probability that T deviates “much” from its
expected value. Recall that T =

∑
j Tj is a random variable. Let the random

variables S0 = E [T1]+ · · ·+E [Tn] and Si = T1 + · · ·+Ti +E [Ti+1]+ · · ·+E [Tn]
for i = 1, . . . , n. The sequence S0, S1, . . . , Sn is a martingale, and differences are
bounded by one: |Si − Si−1| ≤ 1. Therefore we may apply the Azuma-Hoeffding
inequality: Pr [|Sn − S0| ≥ λ] ≤ 2 exp(−λ2/2n). With the choice λ =

√
4n logn

we have Pr
[
|T − E [T ] | ≥

√
4n logn

]
≤ 2/n2. Clearly PoA(Σ) ≤ n always holds

because each task is counted at least once but at most n times. With E [T ] =
ω

(√
n logn

)
we find

EPoA(Σ) ≤ E

[
min

{
n,

n
√

m

T
+

nm

T 2

}]

≤ n
√

m

E [T ] −
√

4n logn
+

nm

(E [T ] −
√

4n log n)2
+ n

2
n2

=

(
n
√

m

E [T ]
+

nm

E [T ]2

)

(1 + o (1)).

This proves the upper bounds. For the lower bounds we construct a deterministic
task distribution and restrict the tasks to two sets of machines. We restrict the
majority of tasks to a set of 2 machines, which creates a high price of stability
similarly to the unrestricted case [10]. The remaining tasks on the remaining
m−2 machines are used to account for the total load, and their presence reduces
the price of stability to essentially Θ (n

√
m/t). Details appear in the full version.


�
General Restrictions. We continue with general restrictions, i.e., the sets
Aj �= ∅ are not constrained in any further way. Our main result states that
the price of anarchy for general restrictions behaves similarly as for clustered
restrictions.

Theorem 2. Under the assumptions of Theorem 1, the bounds stated therein
remain valid if ε1 and ε2 are replaced by ε1 = 2nm2

t2 and ε2 = 2nm2

E[T ]2 .

We relate the price of anarchy with clustered restrictions to general restrictions.
This requires an additional concept, which is closely related to clusters. Thus we
use similar notation.
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Definition 1. For a Nash equilibrium, label machines in order of their loads
w1 ≥ w2 ≥ · · · ≥ wm. A partition of the set of machines into groups M1, . . . , Mk

has the property that for every group Mi = {ri−1 + 1, . . . , ri} the loads of ma-
chines wri −wri+1 > tmax and w� −w�+1 ≤ tmax for all � ∈ {ri−1 +1, . . . , ri −1}.

We denote by Ji the set of tasks that are on any of the machines in Mi, and by
ci =

∑
�∈Mi

w� =
∑

j∈Ji
tj the load of group Mi. Intuitively, the groups have

the shape of stairs. The load difference between two consecutive steps is at most
tmax, but the step between two consecutive groups is more than tmax high. In the
chosen Nash equilibrium every task in a group would like to switch to a group
with lower load. The reason it does not do so must be that the restrictions forbid
the change.

Now consider the machines with their optimum loads w∗1 , . . . , w∗m.
Let M1, . . . , Mk be the groups induced by any chosen Nash equilibrium. The
above observation implies that also in the optimum solution no task on any of
the machines Mi can be on any of the machines in Mi+1, . . . , Mk, because the
restrictions forbid it. However, it is possible that certain tasks of Mi change
to the groups M1, . . . , Mi−1. The following lemma quantifies the effect of such
changes.

Lemma 3. Let s∗ be an optimum schedule for an instance of the restricted
selfish scheduling game with arbitrary restrictions. Let s be a Nash equilibrium
that induces groups M1, . . . , Mk with m1, . . . , mk machines and loads c1, . . . , ck.
Then cost(s∗) ≥

∑
i c2

i /mi.

Proof. Consider the optimum solution s∗ with p∗i players and w∗i load on machine
i = 1, . . . , m. Group the machines into M1, . . . , Mk as in the Nash equilibrium
s. Define c∗i =

∑
�∈Mi

w∗� as the optimum load of the group Mi. Notice that
p∗i ≥ w∗i because tj ≤ 1 for every task j. Clearly, the optimum cost of the group
Mi is

∑
�∈Mi

p∗�w
∗
� ≥

∑
�∈Mi

(w∗� )2 ≥ (c∗i )
2/mi. In order to prove the lower

bound cost(s∗) ≥
∑

i c2
i /mi, we transform the profile of the Nash equilibrium

c1, . . . , ck into the optimum profile c∗1, . . . , c
∗
k without decreasing its cost. Let

x1, . . . , xk denote the current load, which is initially x1 = c1, . . . , xk = ck and
finally x∗1 = c∗1, . . . , x

∗
k = c∗k. We say that a group i is currently underloaded if

xi < c∗i , overloaded if xi > c∗i , and saturated if xi = c∗i .
Observe that – by the restrictions – load is only allowed to move from a

group M� with index � to a group Mj with smaller index j. Hence, if there is
an overloaded group (at all), then there must be an underloaded group with
smaller index. Conversely, if there is an underloaded group (at all), there must
be an overloaded group with larger index, due to the same reason. This property
suggests an intuitive algorithm to transform the load profiles with the invariant
that whenever there is an overloaded group, there is also an underloaded group
with smaller index (and vice versa).

We repeatedly find the overloaded group with largest index (denoted �) and
the underloaded group with largest index (denoted j). Due to the invariant we
know that j < �, i.e., there is an overloaded machine with larger index than
any underloaded machine. We decrease x� and increase xj by the same amount
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until one of the groups becomes saturated. This transformation preserves the
invariant. The procedure eventually terminates, since we saturate at least one
group in each iteration.

We determine the change in cost in one iteration as follows. Consider the
initial situation, i.e., the Nash equilibrium with machine-loads w1 ≥ · · · ≥ wm

and group-loads c1 ≥ · · · ≥ ck. Let wmin
i , respectively wmax

i denote the minimum,
respectively maximum load of any machine in group Mi. Let j < �, note that
wmin

j > wmax
� , and observe that

cj

mj
≥

mjw
min
j

mj
= wmin

j > wmax
� =

m�w
max
�

m�
≥ c�

m�
.

Thus, initially, not only the group-loads ci are in decreasing order, but also the
relative loads ci/mi. Now consider a transformation in which load is moved from
group M� to Mj. As every iteration increases xj over cj and decreases x� under
c�, the inequality continues to hold for the values of x during the execution of
our algorithm: xj

mj
≥ cj

mj
> c�

m�
≥ x�

m�
. Now suppose that Mj receives load δ > 0

from M�. The change of the cost is δ2( 1
mj

+ 1
m�

)+2δ( xj

mj
− x�

m�
). Since xj

mj
> x�

m�
,

in every iteration our algorithm increases the cost. Hence, it transforms the Nash
profile c1, . . . , ck into the optimum profile c∗1, . . . , c∗k without decreasing the cost.
This yields cost(s∗) ≥

∑
i

c2
i

mi
and the proof is complete. 
�

For the proof of Theorem 2 we assemble the lower bound for s∗ and a simple
upper bound for any Nash equilibrium s. Then with a similar Azuma-Hoeffding
argument as in the proof of Theorem 1 the result follows.

2.1 Average-Case Analysis of an Optimization Algorithm

In this short section, we point out that Theorem 2 also has an algorithmic
perspective. By proving upper bounds on the expected price of anarchy of re-
stricted selfish scheduling, we obtain an average-case analysis for an algorithm for
the non-economical latency optimization problem (e.g. the standard scheduling
variant of the game) as a byproduct. We consider the algorithm, which we call
Nashify, due to Gairing et al. [7] introduced for maximum latency social cost.
The algorithm begins with an arbitrary assignment and uses the idea of blocking
flows to compute a Nash equilibrium. It has running time O

(
nmA(log t + m2)

)

with A =
∑

i |Ai|. It is remarkable that the algorithm also performs well for
total latency minimization for restricted scheduling, see Theorem 3 below. In
the scheduling problem, the objective is to minimize

∑
j �j , regardless if it is a

Nash equilibrium or not. Let cost(s) and cost(s∗) denote the objective values
of a schedule obtained by Nashify and by an (potentially exponential time)
optimum algorithm Opt. While cost(s)/cost(s∗) is called the performance ra-
tio, for random task-lengths Tj the expectation E [cost(S)/cost(S∗)] is called the
expected performance ratio of the algorithm Nashify. Here S and S∗ are the
associated random variables of s and s∗. The result below follows directly from
[7] and Theorem 2.
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Theorem 3. Under the assumptions of Theorem 2, the bounds stated therein
are upper bounds for the expected performance ratio of the algorithm Nashify.

3 Maximum Latency Cost

Here we consider the social cost function cost(s) = �max = maxj �j . Define the
parameter r = cost(s∗)/tmax of the game. Awerbuch et al. [2] showed a bound
of Θ

(
log m/(r log(1 + log m

r ))
)

on the price of anarchy. This gives 1 + ε price

of anarchy for r = Ω(log m/ε2). We contribute the following alternative bound,
where the total traffic t is the parameter.

Theorem 4. For our game with general restrictions and maximum latency so-
cial cost, we have the following:

(1) For every t =
∑

j tj > 0, it holds that PoA(Σ) ≤ 1 + m2

t .
(2) For T =

∑
j Tj with E [T ] = ω

(√
n logn

)
and independent Tj we have

EPoA(Σ) ≤ 1 + m2

E[T ] (1 + o (1)).

Both bounds also hold for the (expected) performance of the algorithm Nashify.
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Abstract. We investigate the effect of linear independence in the strategies of
congestion games on the convergence time of best response dynamics and on the
pure Price of Anarchy. In particular, we consider symmetric congestion games
on extension-parallel networks, an interesting class of networks with linearly in-
dependent paths, and establish two remarkable properties previously known only
for parallel-link games. More precisely, we show that for arbitrary non-negative
and non-decreasing latency functions, any best improvement sequence converges
to a pure Nash equilibrium in at most n steps, and that for latency functions in
class D, the pure Price of Anarchy is at most ρ(D).

1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in
large-scale communication networks and have been the subject of intensive research in
algorithmic game theory. In a congestion game, a finite set of non-cooperative players,
each controlling an unsplittable unit of load, compete over a finite set of resources. All
players using a resource experience a latency (or cost) given by a non-negative and
non-decreasing function of the resource’s load (or congestion). Among a given set of
resource subsets (or strategies), each player selects one selfishly trying to minimize her
individual cost, that is the sum of the latencies on the resources in the chosen strategy.
A natural solution concept is that of a pure Nash equilibrium, a configuration where no
player can decrease her individual cost by unilaterally changing her strategy.

The prevailing questions in recent work on congestion games have to do with quanti-
fying the inefficiency due to the players’ selfish behaviour (see e.g. [19,20,14,5,7,4,6]),
and bounding the convergence time to pure Nash equilibria if the players select their
strategies in a selfish and decentralized fashion (see e.g. [11,18,1]). In this work, we in-
vestigate the effect of linear independence in the strategies of congestion games on the
convergence time of best improvement sequences and on the inefficiency of pure Nash
equilibria. In particular, we consider symmetric congestion games on extension-parallel
networks, an interesting class of networks whose paths are linearly independent, in the
sense that every path contains an edge not included in any other path. For this class of
congestion games, which comprises a natural and non-trivial generalization of the ex-
tensively studied class of parallel-link games (see e.g. [19,20,14,11,18,6]), we provide
best possible answers to both research questions above.
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Convergence Time to Pure Nash Equilibria. Rosenthal [23] proved that the pure Nash
equilibria of congestion games correspond to the local optima of a natural potential
function. Hence Rosenthal established that every congestion game admits at least one
pure Nash equilibrium (PNE) reached in a natural way when players iteratively se-
lect strategies that minimize their individual cost given the strategies of other players.
Nevertheless, this may take an exponential number of steps, since computing a PNE is
PLS-complete even for asymmetric network congestion games as shown by Fabricant
et al. [12]. In fact, the proof of Fabricant et al. establishes the existence of instances
where any best improvement sequence is exponentially long. Even for symmetric net-
work congestion games, where a PNE can be found efficiently by a min-cost flow com-
putation [12], Ackermann et al. [1] presented instances where any best improvement
sequence is exponentially long.

A natural approach to circumvent the negative results of [12,1] is to identify large
classes of congestion games for which best improvement sequences reach a PNE in a
polynomial number of steps. For instance, it is well known that for symmetric singleton
congestion games (aka parallel-link games), any best improvement sequence converges
to a PNE in at most n steps, where n denotes the number of players. Ieong et al. [18]
proved that even for asymmetric singleton games with non-monotonic latencies, best
improvement sequences reach a PNE in polynomial time. Subsequently, Ackermann et
al. [1] generalized this result to matroid congestion games, where the strategy space of
each player consists of the bases of a matroid over the set of resources. Furthermore,
Ackermann et al. proved that the matroid property on the players’ strategy spaces is nec-
essary for guaranteeing polynomial-time convergence of best improvement sequences
if one does not take into account the global structure of the game.

Contribution. The negative results of [12,1] leave open the possibility that some par-
ticular classes of symmetric network congestion games can guarantee fast convergence
of best improvement sequences. We prove that for symmetric congestion games on
extension-parallel networks with arbitrary non-negative and non-decreasing latency
functions, any best improvement sequence converges to a PNE in at most n steps1.
In particular, we show that in a best improvement sequence, every player moves at
most once. This result is best possible, since there are instances where reaching a PNE
requires that every player moves at least once.

Price of Anarchy. Having reached a PNE, selfish players enjoy a minimum individual
cost given the strategies of other players. However, the public benefit is usually mea-
sured by the total cost incurred by all players. Since a PNE does not need to minimize
the total cost, one seeks to quantify the inefficiency due to the players’ non-cooperative
and selfish behaviour. The Price of Anarchy was introduced by Koutsoupias and Pa-
padimitriou [19] and has become a widely accepted measure of the performance degra-

1 We highlight that matroid games and games on extension-parallel networks have a differ-
ent combinatorial structure and may have quite different properties. For example, a network
consisting of two pairs of parallel links connected in series is not extension-parallel, but the
corresponding network congestion game is a symmetric matroid game. For another example,
Milchtaich [22, Example 4] proved that weighted congestion games on extension-parallel net-
works may not admit a PNE. On the other hand, Ackermann et al. [2, Theorem 2] proved that
every weighted matroid congestion game admits a PNE.
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dation due to the players’ selfish behaviour. The (pure) Price of Anarchy is the worst-
case ratio of the total cost of a (pure) Nash equilibrium to the optimal total cost. Many
recent contributions have provided strong upper and lower bounds on the pure Price of
Anarchy (PoA) for several classes of congestion games, mostly congestion games with
affine and polynomial latency functions and congestion games on parallel links2.

For the special case of parallel links with linear latency functions, Lücking et al.
[20] proved that the PoA is 4/3. For parallel links with polynomial latency functions of
degree d, Gairing et al. [14] proved the PoA is at most d + 1. Awerbuch et al. [5] and
Christodoulou and Koutsoupias [7] proved independently that the PoA of congestion
games is 5/2 for affine latency functions and dΘ(d) for polynomial latency functions
of degree d. Subsequently, Aland et al. [4] obtained exact bounds on the PoA of con-
gestion games with polynomial latency functions. In the non-atomic setting, where the
number of players is infinite and each player controls an infinitesimal amount of load,
Roughgarden [24] proved that the PoA is independent of the strategy space and equal to
ρ(D), where ρ depends on the class of latency functions D only (e.g. ρ is equal to 4/3
for affine and 1.626 for quadratic functions). Subsequently, Correa et al. [8] introduced
β(D) = 1 − 1

ρ(D) and gave a simple proof of the same bound. Recently Fotakis [13]
and independently Caragiannis et al. [6, Theorem 23] proved that the PoA of (atomic)
congestion games on parallel links with latency functions in class D is also ρ(D).
Contribution. Despite the considerable interest in the PoA of congestion games, it re-
mains open whether some better upper bounds close to ρ are possible for symmetric
congestion games on simple networks other than parallel links (e.g. extension-parallel
networks, series-parallel networks), or strong lower bounds similar to the lower bounds
of [5,7,4] also apply to them. As a first step in this direction, we prove that the PoA of
symmetric congestion games on extension-parallel networks with latency functions in
class D is at most ρ(D). On the negative side, we show that this result cannot be further
generalized to series-parallel networks.

Related Work on Congestion Games with Linearly Independent Strategies. There
has been a significant volume of previous work investigating the impact of linear in-
dependent strategies on properties of congestion games. Holzman and Law-Yone [16]
proved that a symmetric strategy space admits a strong equilibrium3 for any selection of
non-negative and non-decreasing latency functions iff it consists of linearly independent
strategies. Furthermore, Holzman and Law-Yone showed that for symmetric congestion
games with linearly independent strategies, every PNE is a strong equilibrium and also
a minimizer of Rosenthal’s potential function. Subsequently, Holzman and Law-Yone
[17] proved that the class of congestion games on extension-parallel networks is the
network equivalent of congestion games with linearly independent strategies.

Milchtaich [21] was the first to consider networks with linearly independent paths
(under this name). Milchtaich proved that an undirected network has linearly indepen-
dent paths iff it is extension-parallel. Furthermore, Milchtaich showed that extension-
parallel networks is the only class of networks where for any selection of non-negative

2 Here we cite only the most relevant results on the pure PoA for the objective of total cost. For
a survey on the PoA of congestion games , see e.g. [15].

3 A configuration is a strong equilibrium if no coalition of players can deviate in a way profitable
for all its members.
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and increasing (resp. non-decreasing) latency functions, all equilibria in the non-atomic
setting are (resp. weakly) Pareto efficient.

Recently Epstein et al. [10,9] considered fair connection games and congestion
games on extension-parallel networks. In [10], they proved that fair connection games
on extension-parallel networks admit a strong equilibrium. In [9], they showed that
extension-parallel networks is the only class of networks where for all non-negative
and non-decreasing latencies, any PNE minimize the maximum players’ cost.

2 Model and Preliminaries

For any integer k ≥ 1, we let [k] ≡ {1, . . . , k}. For a vector x = (x1, . . . , xn), we let
x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Congestion Games. A congestion game is a tuple Γ (N, E, (Σi)i∈N , (de)e∈E), where
N denotes the set of players, E denotes the set of resources, Σi ⊆ 2E \ {∅} de-
notes the strategy space of each player i, and de : IN �→ IR≥0 is a non-negative and
non-decreasing latency function associated with each resource e. A congestion game is
symmetric if all players have a common strategy space.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈ Σi for
each player i. For every resource e, we let σe = |{i ∈ N : e ∈ σi}| denote the
congestion induced on e by σ. The individual cost of player i in the configuration σ
is ci(σ) =

∑
e∈σi

de(σe). A configuration σ is a pure Nash equilibrium (PNE) if no
player can improve her individual cost by unilaterally changing her strategy. Formally,
σ is a PNE if for every player i and every strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si).

In the following, we let n denote the number of players. We focus on symmetric
network congestion games, where the players’ strategies are determined by a directed
network G(V, E) with a distinguished source s and sink t (aka s − t network). The
network edges play the role of resources and the common strategy space of the players
is the set of (simple) s − t paths in G, denoted P . For any s − t path p and any pair of
vertices v1, v2 appearing in p, we let p[v1, v2] denote the segment of p between v1 and
v2 (p[v1, v2] is empty if v1 appears after v2 in p). For consistency with the definition of
strategies as resource subsets, we usually regard paths as sets of edges.

Flows and Configurations. Let G(V, E) be a s − t network. A s − t flow f is a vector
(fe)e∈E ∈ IRm

≥0 that satisfies the flow conservation at all vertices other than s and t. The
volume of f is the total flow leaving s. A flow is acyclic if there is no directed cycle in G
with positive flow on all its edges. For a flow f and a path p, we let fmin

p = mine∈p{fe}.
Given a configuration σ for a symmetric network congestion game Γ , we refer to the

congestion vector (σe)e∈E as the flow induced by σ. We say that a flow σ is feasible if
there is a configuration inducing congestion σe on every edge e. Hence any configura-
tion of Γ corresponds to a feasible flow. We always let the same symbol denote both a
configuration and the feasible flow induced by it.

Best Improvement Sequences. A strategy si ∈ Σi is a best response of player i to a
configuration σ (or equivalently to σ−i) if for every strategy s′i ∈ Σi, ci(σ−i, si) ≤
ci(σ−i, s

′
i). If i’s current strategy σi is not a best response to the current configuration

σ, a best response of i to σ is a best improvement of i. We consider best improvement
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sequences, where in each step, a player i whose strategy σi is not a best response to the
current configuration σ switches to her best improvement. Using a potential function,
Rosenthal [23] proved that any such sequence reaches a PNE in a finite number of steps.

Social Cost and the Price of Anarchy. To quantify the inefficiency of PNE, we evalu-
ate configurations using the objective of total cost. The total cost C(σ) of a configura-
tion σ is the sum of players’ costs in σ : C(σ) =

∑n
i=1 ci(σ) =

∑
e∈E σede(σe). The

optimal configuration, usually denoted o, minimizes the total cost among all configura-
tions in Pn. The pure Price of Anarchy (PoA) of a congestion game Γ is the maximum
ratio C(σ)/C(o) over all PNE σ of Γ .

Extension-Parallel Networks. Let G1(V1, E1) and G2(V2, E2) be two networks with
sources s1 and s2 and sinks t1 and t2 respectively, and let G′(V1 ∪ V2, E1 ∪ E2) be the
union network of G1 and G2. The parallel composition of G1 and G2 results in a s − t
network obtained from G′ by identifying s1 and s2 to the source s and t1 and t2 to the
sink t. The series composition of G1 and G2 results in a s − t network obtained from
G′ by letting s1 be the source s, letting t2 be the sink t, and identifying t1 with s2.

A directed s−t network is series-parallel if it consists of either a single edge (s, t) or
two series-parallel networks composed either in series or in parallel. A directed s−t net-
work is extension-parallel if it consists of either: (i) a single edge (s, t), (ii) a single edge
and an extension-parallel network composed in series, or (iii) two extension-parallel
networks composed in parallel. Every extension-parallel network is series-parallel, but
the converse is true only if in every series composition, at least one component is a
single edge.

A s−t network has linearly independent paths if every s−t path contains at least one
edge not belonging to any other s − t path4. Milchtaich [21, Proposition 5] proved that
an undirected s − t network has linearly independent paths iff it is extension-parallel.
Therefore, every (directed) extension-parallel network has linearly independent paths
(see also [17, Theorem 1]). Furthermore, [21, Propositions 3, 5] imply that a (directed)
series-parallel network has linearly independent paths iff it is extension-parallel.

An interesting property of extension-parallel networks is that for any two s − t paths
p, p′, the segments p \ p′ and p′ \ p where p and p′ deviate from each other form
two internally disjoint paths with common endpoints (see also [21, Proposition 4]). In
addition, every s−t path having an edge in common with p\p′ does not intersect p′\p at
any vertex other than its endpoints. The following proposition gives another interesting
property of networks with linearly independent paths (and thus of extension-parallel
networks).

Proposition 1. Let Γ be a symmetric congestion game on a s − t network G with
linearly independent paths, let f be any configuration of Γ , and let π be any (simple)
path with fmin

π > 0. Then there exists a player i whose strategy in f includes π.

Every configuration of a symmetric congestion game on a series-parallel (and thus on an
extension-parallel) network corresponds to a feasible acyclic flow of volume n. Propo-
sition 1 implies that for any congestion game Γ on an extension-parallel network, every

4 The name is motivated by the fact that in such a network, it is not possible to express any path
as the symmetric difference of some other paths [21, Proposition 6].
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feasible acyclic s − t flow corresponds to a unique Γ ’s configuration (uniqueness is up
to players’ permutation, see also [16, Section 6]). Therefore, for symmetric congestion
games on extension-parallel networks, there is a correspondence between configura-
tions and feasible acyclic flows.

3 Convergence Time to Pure Nash Equilibria

Next we show that for symmetric congestion games on extension-parallel networks, any
best improvement sequence reaches a PNE after each player moves at most once.

Lemma 1. Let Γ be a congestion game on an extension-parallel network, let σ be the
current configuration, and let i be a player switching from her current strategy σi to
her best improvement σ′i. Then for every player j whose current strategy σj is a best
response to σ, σj remains a best response of j to the new configuration σ′ = (σ−i, σ

′
i).

Proof. For sake of contradiction, we assume that there is a player j whose current
strategy σj is a best response to σ but not to σ′. Let σ′j be a best response of j to
σ′, and let p = σj \ σ′j and p′ = σ′j \ σj be the segments where σj and σ′j deviate
from each other. Due to the extension-parallel structure of the network, p and p′ are
internally disjoint paths with common endpoints, denoted u and w. Since p and p′ are
edge-disjoint and player j improves her individual cost in σ′ by switching from p to p′,

∑

e∈p

de(σ′e) >
∑

e∈p′

de(σ′e + 1) (1)

Using (1) and the fact that σ′i is a best improvement of player i to σ, and exploiting the
extension-parallel structure of the network, we establish that if player j prefers σ′j to
σj in the new configuration σ′, then σj is not a best response of j to σ. In particular,
we show that player j can also improve her individual cost in σ by switching from an
appropriate segment of σj to the corresponding segment of σ′i. Clearly, this contradicts
the hypothesis that σj is a best response of j to σ and implies the lemma. The technical
part of the proof proceeds by case analysis.

Case I, u, w ∈ σ′i : We first consider the case where σ′i contains u and w and thus
σ′i[u, w] can serve as an alternative to p. We further distinguish between two subcases:

Case I.a, p ∩ σ′i = ∅ : We start with the case where σ′i and p are edge-disjoint. We first
consider the case where σ′i[u, w] \ p′ does not contain any edges of σi (Fig. 1.a). Then,

∑

e∈p′

de(σ′e + 1) ≥
∑

e∈p′∩σ′
i

de(σe + 1) +
∑

e∈(p′∩σi)\σ′
i

de(σe) +
∑

e∈(p′\σi)\σ′
i

de(σe + 1)

≥
∑

e∈p′∩σ′
i

de(σe + 1) +
∑

e∈σ′
i[u,w]\p′

de(σe + 1) (2)

For the first inequality, we use that when player i switches from σi to σ′i: (i) the con-
gestion of any edge e in σ′i does not decrease (i.e. σ′e ≥ σe), (ii) the congestion of any
edge e decreases by at most 1 (i.e. σ′e ≥ σe − 1), and (iii) the congestion of any edge
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Fig. 1. The different cases considered in the proof of Lemma 1. In each case, the solid black
path labeled p represents the best response of player j to σ between vertices u and v, the solid
grey path labeled σi represents the strategy of player i in σ, and the dotted grey path labeled σ′

i

represents the best improvement of player i. We assume that the best response of player j changes
from p to the dotted black path labeled p′ when player i switches from σi to σ′

i and establish a
contradiction in all cases.

e not in σi ∪ σ′i does not change (i.e. σ′e = σe). For the second inequality, we observe
that

∑
e∈(p′∩σi)\σ′

i
de(σe) +

∑
e∈(p′\σi)\σ′

i
de(σe + 1) is the individual cost of player

i on p′ \ σ′i in σ (i.e. when the configuration of the remaining players is σ−i) and that∑
e∈σ′

i[u,w]\p′ de(σe + 1) is the individual cost of i on σ′i[u, w] \ p′ in σ (recall that
σ′i[u, w] \ p′ does not contain any edges of σi). Since σ′i is a best response of i to σ−i,
the former cost is no less than the latter.

Using (2), we conclude that player j can improve her individual cost in σ by changing
her path between u and w from p to σ′i[u, w], which contradicts the hypothesis that σj

is a best response of player j to σ. Formally,

∑

e∈p

de(σe) ≥
∑

e∈p

de(σ′e) >
∑

e∈p′

de(σ′e + 1) ≥
∑

e∈σ′
i[u,w]

de(σe + 1)

The first inequality holds because p ∩σ′i = ∅, and the congestion of the edges in p does
not increase when player i switches from σi to σ′i. The second inequality is (1) and the
third inequality follows from (2).

If σ′i[u, w] \ p′ contains some edges of σi, we can show that due to the extension-
parallel structure of the network, the congestion of the edges in p ∪ p′ does not change
when player i switches from σi to σ′i (see Fig. 1.b). This contradicts the hypothesis that
the best response of player j changes from σj to σ′j when player i moves from σi to σ′i.
Case I.b, p ∩ σ′i �= ∅ : We proceed with the case where σ′i and p are not edge-disjoint.
Then, due to the extension-parallel structure of the network, σ′i does not have any edges
in common with p′ and does not intersect p′ at any vertex other than u and w. We first
consider the case where σ′i[u, w] \ p does not contain any edges of σi (Fig. 1.c). Then,
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∑

e∈p∩σ′
i

de(σ′e) +
∑

e∈p\σ′
i

de(σe) ≥
∑

e∈p

de(σ′e) >
∑

e∈p′

de(σ′e + 1)

≥
∑

e∈p′∩σi

de(σe) +
∑

e∈p′\σi

de(σe + 1)

≥
∑

e∈σ′
i[u,w]

de(σ′e)

=
∑

e∈p∩σ′
i

de(σ′e) +
∑

e∈σ′
i[u,w]\p

de(σe + 1)

The first inequality holds because the congestion of any edge e not in σ′i does not in-
crease when player i switches from σi to σ′i (i.e. σe ≥ σ′e). The second inequality is (1).
The third inequality holds because when player i switches from σi to σ′i: (i) the con-
gestion of any edge e decreases by at most 1 (i.e. σ′e ≥ σe − 1), and (ii) the congestion
of any edge e not in σi does not decrease (i.e. σ′e ≥ σe). For the fourth inequality, we
observe that the left-hand side is equal to the individual cost of player i on p′ in σ, and
that the right-hand side is equal to the cost of player i on σ′i[u, w] in σ. Since σ′i is a
best response of player i to σ−i, the former cost is not less than the latter. The equality
holds because σ′i[u, w] \ p does not contain any edges of σi and thus the congestion of
every edge e ∈ σ′i[u, w] \ p increases by 1 when player i switches from σi to σ′i.

Therefore,
∑

e∈p\σ′
i
de(σe) >

∑
e∈σ′

i[u,w]\p de(σe + 1), and player j can improve
her individual cost in σ by switching from p \ σ′i to σ′i[u, w] \ p. This contradicts the
hypothesis that σj is a best response of player j to σ.

If σ′i[u, w] \ p contains some edges of σi, we can show that due to the extension-
parallel structure of the network, the congestion of the edges in p ∪ p′ does not change
when player i switches from σi to σ′i (see Fig. 1.d). This contradicts the hypothesis that
the best response of player j changes from σj to σ′j when player i moves from σi to σ′i.

Case II, either u �∈ σ′i or w �∈ σ′i : We proceed with the case where σ′i does not contain
either u or w. Then, σ′i does not have any edges in common with p and p′.

If σi too does not contain either u or w, then σi does not have any edges in common
with p and p′. Since (σi ∪ σ′i) ∩ (p ∪ p′) = ∅, the congestion of the edges in p ∪ p′ does
not change when player i switches from σi to σ′i. This contradicts the hypothesis that
the best response of player j changes from σj to σ′j when player i moves from σi to σ′i.

Therefore, we can restrict our attention to the case where σi contains both u and w.
Let σ′i \ σi and σi \ σ′i be the segments where σi and σ′i deviate from each other. Due to
the extension-parallel structure of the network, and since σ′i does not contain either u or
w and σi contains both u and w, σ′i \ σi and σi \ σ′i are (non-empty) internally disjoint
paths with common endpoints, denoted u′ and w′. Their first endpoint u′ appears no
later than u and their last endpoint w′ appears no sooner than w in σi. Furthermore,
either u is different from u′ or w is different from w′ (or both). Due to the extension-
parallel structure of the network, and since σi deviates from at least one of p and p′

between u and w, there is a unique path σi[u′, u] between u and u′ and a unique path
σi[w, w′] between w and w′ (see Fig. 1.e). Let z = σi[u′, u] ∪ σi[w, w′]. We highlight
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that both σi[u′, u] and σi[w, w′] are included in σj and σ′j . In particular, σj [u′, w′] =
z ∪ p. Using the previous observations, we obtain that:

∑

e∈σj [u′,w′]

de(σe) ≥
∑

e∈z

de(σe) +
∑

e∈p

de(σ′e)

>
∑

e∈z

de(σe) +
∑

e∈p′

de(σ′e + 1)

≥
∑

e∈z

de(σe) +
∑

e∈p′∩σi

de(σe) +
∑

e∈p′\σi

de(σe + 1)

≥
∑

e∈σ′
i[u′,w′]

de(σe + 1)

The first inequality holds because the edges of p do not belong to σ′i and the congestion
of any edge e �∈ σ′i does not increase when player i moves from σi to σ′i (i.e. σe ≥ σ′e).
The second inequality follows from (1). The third inequality holds because when player
i switches from σi to σ′i: (i) the congestion of any edge e decreases by at most 1 (i.e.
σ′e ≥ σe − 1), and (ii) the congestion of any edge e not in σi does not decrease (i.e.
σ′e ≥ σe). For the fourth inequality, we observe that the left-hand side is equal to the
individual cost of player i on σi[u′, u] ∪ p′ ∪σi[w, w′] in σ, and that the right-hand side
is equal to the individual cost of player i on σ′i[u

′, w′] in σ (recall that σ′i[u
′, w′] and

σi[u′, w′] are edge disjoint). Since σ′i is a best response of player i to σ−i, the former
cost is not less than the latter.

Therefore, player j can decrease her individual cost in σ by switching from σj [u′, w′]
to σ′i[u

′, w′]. This contradicts the hypothesis that σj is a best response of player j to σ.
Since we have reached a contradiction in all different cases, this concludes the proof of
the lemma. �

By Lemma 1, once a player moves to her best improvement strategy, she will not have an
incentive to deviate as long as the subsequent players switch to their best improvement
strategies. Hence we obtain the main result of this section:

Theorem 1. For any n-player symmetric congestion game on an extension-parallel
network, every best improvement sequence reaches a PNE in at most n steps.

4 Bounding the Price of Anarchy

For a latency function d(x), let ρ(d) = supx≥y≥0
xd(x)

yd(y)+(x−y)d(x) , and let β(d) =

supx≥y≥0
y(d(x)−d(y))

xd(x) . For a class of latency functions D, let ρ(D) = supd∈D ρ(d)
and β(D) = supd∈D β(d). We note that (1 − β(D))−1 = ρ(D). In [24,8], it was
shown that the PoA of non-atomic congestion games with latencies in class D is ρ(D).
Next we establish the same upper bound on the PoA of symmetric congestion games on
extension-parallel networks. The proof is based on the following lemma.
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Lemma 2. Let Γ be a symmetric congestion game on an extension-parallel network
G(V, E), and let f be a PNE and g be any configuration of Γ . Then,

Δ(f, g) ≡
∑

e:fe>ge

(fe − ge)de(fe) −
∑

e:fe<ge

(ge − fe)de(fe + 1) ≤ 0

Proof. We assume wlog. that the configurations f and g are not identical and consider
the corresponding feasible flows f and g. Let Ĝ(V, Ê) be the graph of the flow f − g.
In particular, for each edge (u, w) ∈ E, Ê contains a forward edge (u, w) with flow
f(u,w) − g(u,w) if f(u,w) > g(u,w), a backward edge (w, u) with flow g(u,w) − f(u,w) if
f(u,w) < g(u,w), and no edge between u and w if f(u,w) = g(u,w). For every cycle C

of Ĝ, let C+ = {(u, w) ∈ E : (u, w) ∈ C and f(u,w) > g(u,w)} be the set of forward
edges in C, and let C− = {(u, w) ∈ E : (w, u) ∈ C and f(u,w) < g(u,w)} be the set of
backward edges in C with their directions reversed (i.e. their directions are as in E).

Since f and g are feasible acyclic s − t flows of the same volume, a flow decompo-
sition of f − g yields only cycles and no paths of Ĝ. Let {C1, . . . , Ck} be the set of
(simple) cycles of Ĝ produced by the standard flow decomposition of f −g (see e.g. the
algorithm described in [3, Theorem 3.5]), and let si denote the amount of flow carried
by each cycle Ci in that decomposition of f −g. Since f and g are feasible acyclic s− t
flows, every cycle Ci contains at least one forward and at least one backward edge.

By the properties of the standard flow decomposition algorithm, ∪i∈[k]C
+
i is equal

to {e ∈ E : fe > ge}, and ∪i∈[k]C
−
i is equal to {e ∈ E : fe < ge}. Moreover, for every

forward edge (u, w) ∈ Ê,
∑

i:(u,w)∈C+
i

si = f(u,w) − g(u,w), and for every backward

edge (w, u) ∈ Ê,
∑

i:(u,w)∈C−
i

si = g(u,w) − f(u,w). Therefore,

Δ(f, g) =
k∑

i=1

si

⎛

⎝
∑

e∈C+
i

de(fe) −
∑

e∈C−
i

de(fe + 1)

⎞

⎠ (3)

The following proposition shows that for every cycle Ci in the decomposition of
f − g (in fact, for every simple cycle of Ĝ),

∑
e∈C+

i
de(fe) −

∑
e∈C−

i
de(fe + 1) ≤ 0.

Proposition 2. Let Γ be a symmetric congestion game on an extension-parallel net-
work G, let f be a PNE and g be any configuration of Γ , and let Ĝ be the graph of the
flow f − g. For every simple cycle C of Ĝ,

∑

e∈C+

de(fe) −
∑

e∈C−

de(fe + 1) ≤ 0

Proof sketch. Using induction on the extension-parallel structure of G, we prove that
for every simple cycle C of Ĝ, there are vertices u, w on C such that C+ and C− are
two internally disjoint u − w paths in G. Since C+ consists of forward edges only, for
every e ∈ C+, fe > 0. Hence by Proposition 1, there is a player i whose strategy in f
includes C+. Therefore,

∑
e∈C+ de(fe) ≤

∑
e∈C− de(fe +1), since otherwise player i

could switch from C+ to C− between u and w and improve her individual cost, which
contradicts the hypothesis that f is a PNE. �
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Fig. 2. A symmetric congestion game on a series-parallel network with linear latencies and PoA
greater than 4/3

Combining (3) and Proposition 2, we obtain that Δ(f, g) ≤ 0. �

Now we are ready to establish the main result of this section. The following theorem
follows easily from Lemma 2 and the definition of ρ(D).

Theorem 2. For any symmetric congestion game on an extension-parallel network with
latency functions in class D, the PoA is at most ρ(D).

Proof. We consider a symmetric congestion game Γ on an extension-parallel network
G(V, E). The latency functions of Γ are such that {de(x)}e∈E ⊆ D. Let o be the
optimal configuration, and let f be Γ ’s PNE of maximum total cost.

For every edge e with fe > oe,

fede(fe) = oede(fe) + (fe − oe)de(fe)
≤ oede(oe) + β(D)fede(fe) + (fe − oe)de(fe) , (4)

where the inequality follows by applying the definition of β(D) to the term oede(fe).
On the other hand, for every edge e with fe < oe,

fede(fe) = oede(oe) − oede(oe) + fede(fe)
≤ oede(oe) − (oe − fe)de(fe + 1) (5)

The inequality follows from de(fe) ≤ de(fe +1) and de(fe +1) ≤ de(oe), because the
latency functions are non-decreasing and fe+1 ≤ oe (recall that oe and fe are integral).

Using (4), (5), and Lemma 2, we obtain that:

C(f) ≤
∑

e∈E

oede(oe) + β(D)
∑

e:fe>oe

fede(fe) + Δ(f, o)

≤ C(o) + β(D)C(f) ,

which implies that C(f) ≤ (1 − β(D))−1C(o) = ρ(D)C(o). For the first inequality,
we apply (4) to every edge e with fe > oe and (5) to every edge e with fe < oe. The
last inequality follows from Lemma 2, which implies that Δ(f, o) ≤ 0. �
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Remark 1. The PoA may be greater than ρ(D) even for series-parallel networks with
linear latencies. For example, let us consider the 3-player game in Fig 2. Since the
latency functions are linear, ρ = 4/3. In the optimal configuration o, every edge has
congestion 1 and the total cost is C(o) = 11. On the other hand, there is a PNE f where
the first player is assigned to (e1, e3, e6), the second player to (e1, e4, e5), and the third
player to (e2, e3, e5). Each player incurs an individual cost of 5 and does not have an
incentive to deviate to e7. The total cost is C(f) = 15 and the PoA is 15/11 > 4/3. In
this example, Lemma 2 fails because Proposition 1 does not hold.
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Abstract. Recent interest in Nash equilibria led to a study of the price
of anarchy (poa) and the strong price of anarchy (spoa) for scheduling
problems. The two measures express the worst case ratio between the cost
of an equilibrium (a pure Nash equilibrium, and a strong equilibrium,
respectively) to the cost of a social optimum.

We consider scheduling on uniformly related machines. Here the
atomic players are the jobs, and the delay of a job is the completion
time of the machine running it, also called the load of this machine. The
social goal is to minimize the maximum delay of any job, while the selfish
goal of each job is to minimize its own delay, that is, the delay of the
machine running it.

While previous studies either consider identical speed machines or an
arbitrary number of speeds, focusing on the number of machines as a
parameter, we consider the situation in which the number of different
speeds is small. We reveal a linear dependence between the number of
speeds and the poa. For a set of machines of at most p speeds, the poa

turns out to be exactly p + 1. The growth of the poa for large numbers
of related machines is therefore a direct result of the large number of po-
tential speeds. We further consider a well known structure of processors,
where all machines are of the same speed except for one possibly faster
machine. We investigate the poa as a function of both the speed of the
fastest machine and the number of slow machines, and give tight bounds
for nearly all cases.

1 Introduction

Scheduling on uniformly related machines is a basic assignment problem. In
such problems, a set of jobs J = {j1, j2, . . . , jn} is to be assigned to a set of
m machines M = {M1, . . . , Mm}, where machine Mi has a speed si. The size
of job jk is denoted by pk and it is equal to its running time on a unit speed
machine. Moreover, the running time of this job on a machine of speed s is pk

s .
An assignment or schedule is a function S : J → M . The completion time of
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machine Mi, which is also called the delay of this machine, is
∑

k:S(jk)=Mi

pk

sk
.

The cost, or the social cost of a schedule is the maximum delay of any machine,
i.e., the makespan.

Following recent interest of computer scientists in game theory [19,14,22], we
study pure Nash equilibria and strong equilibria for this scheduling problem, and
in particular the cost (makespan) of such equilibria compared to the cost of an
optimal schedule. However, in contrast to previous work, we focus on the number
of speeds of the machines as a parameter, and show tight bounds depending on
this parameter. Our results show that the number of available speeds is an
important parameter which is by itself enough to give tight bounds. In many
practical settings, only few different speeds will be available. For instance, each
speed could represent a different available technology.

We next define pure equilibria for scheduling problems. We see jobs as atomic
players, thus we use terms such as choice and benefit for these players. A sched-
ule is a Nash equilibrium if there exists no job that can decrease its delay by
migrating to a different machine unilaterally. More precisely, consider an assign-
ment S : J → {M1, . . . , Mm}. The class of schedules S contains all schedules
S′ that differ from S only in the assignment of a single job. That is S′ ∈ S if
there exists a job k such that S′(j�) = S(j�) for all � �= k and S′(jk) �= S(jk).
We say that S is a (pure) Nash equilibrium if for any job jk, the delay of jk in
any schedule S′ ∈ S, for which S′(jk) �= S(jk), is no smaller than its delay in S.
Pure Nash equilibria do not necessary exist for all games (as opposed to mixed
Nash equilibria). It is known that for scheduling games of this type, a pure Nash
equilibrium always exists [10,6].

A schedule is a strong equilibrium if there exists no (non-empty) subset of
jobs, such that if all jobs in this set migrate to different machines of their choice
simultaneously, this results in a smaller delay for each and every one of them.
More precisely, given a schedule S, we can define a class of schedules S which
contains all sets of schedules SK , where K ⊆ J , K �= ∅. For any S′ ∈ SK , and
� /∈ K, we have S′(j�) = S(j�) whereas for � ∈ K, we have S′(j�) �= S(j�). S is
a strong equilibrium if for any K �= ∅, and any S′ ∈ SK , there exists at least
of job jk ∈ K whose delay in SK is no smaller than its delay in S. A strong
equilibrium is always a pure Nash equilibrium (by definition). Strong equilibria
do not necessarily exist. Andelman, Feldman and Mansour [1] were the first to
study strong equilibria in the context of scheduling and proved that scheduling
games (of a more general form) admit strong equilibria. More general studies of
the classes of congestion games which admit strong equilibria were studied in
[12,24].

In this paper, we study the price of anarchy (poa) and the strong price of
anarchy (spoa) for scheduling on uniformly related machines.

In our scheduling model, the coordination ratio, or price of anarchy (poa)
(see [21]) is the worst case ratio between the cost of a pure Nash equilibrium
and the cost (i.e., maximum delay or makespan) of an optimal schedule. Such
an optimal schedule as well as its cost are denoted by opt. The strong price of
anarchy (spoa) is defined similarly, but only strong equilibria are considered.
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Therefore we refer to the pure price of anarchy by poa and when we discuss the
mixed price of anarchy we call it the mixed poa. Note that a pure equilibrium
is a special case of mixed equilibria.

It is noted an a series of papers (e.g., [14,18,20,4,3]) the model we study is a
simplification of problems arising in real networks, that seems appropriate for
describing basic problems in networks.

A number of papers studied equilibria for scheduling on uniformly related ma-
chines [14,18,4,7,8]. Chumaj and Vöcking [4] showed that the poa is Θ( log m

log log m)
(and Θ( log m

log log log m ) for mixed strategies). Feldmann et al. [7] proved that the

poa for m = 2 and m = 3 is
√

4m−3+1
2 which equals φ =

√
5+1
2 for two machines

and 2 for three machines. In [5], the exact poa and spoa for two machines is
found as a function of the machine speeds. The two measures given different
results for the interval (1.618, 2.247) of speeds ratios between the two machines,
and identical results otherwise. As for the mixed poa, it was shown in [14] that
it is at least 1+ s

s+1 for s ≤ φ. Recently, Fiat et al. [8] showed that the spoa for
this model is Θ( log m

(log log m)2 ).
For m identical machines, the poa is 2m

m+1 which can be deduced from the
results of [9] (the upper bound) and [23] (the lower bound). It was shown in
[1] that the spoa has the same value as the poa for every m. Note, however,
that the mixed poa is non-constant already in this case, and equals Θ( log m

log log m),
where the lower bound was shown by Koutsoupias and Papadimitriou [14] and
the upper bound by Chumaj and Vöcking [4] and independently by Koutsoupias,
Mavronicolas and Spirakis [13]. Tight bounds of 3

2 on the mixed poa for two
identical machines were shown by [14].

It can be seen that the poa and spoa were studied mainly as a function of the
number of machines. Another relevant parameter for uniformly related machines
is the number of different speeds. A natural question is whether the poa and
spoa grow as the number of machines increases even if the number of different
speeds is constant, or whether it is actually the number of speeds that needs
to increase. Previous results, and in particular, the poa for identical machines
already hints that the second option is the right one. We prove this property
formally, specifically, we show that the poa for inputs with at most p different
speeds is exactly p + 1. We note that it can be deduced from [8] that the spoa

for inputs with at most p different speeds is Ω( p
log p ) (and O(p) by our result),

therefore the spoa is quite close to the poa and is influenced by the number
of different speeds as well. By the results mentioned above [4,14,13], the mixed
poa can not be bounded as a function of p, since it can be arbitrarily large even
for p = 1.

We further focus on a well known configuration of machines, which consists of
a single “fast machine” of speed s ≥ 1 together with m−1 unit speeds machines.
Such a structure, where one processor is fast and all others are identical, is
natural and was studied in [17,11,2,16,15]. We give a nearly complete analysis of
the exact poa as a function of the speed of the faster machines s and the number
of identical machines m′ = m − 1. We believe that our analysis contributes to
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a deeper understanding of the poa as a function of several parameters, rather
than as a function of the number of machines as a single parameter. Our results
imply that the worst case poa (the supremum poa over all values of s and m)
for this special case of two different speeds is already 3. We conclude the paper
by showing that the worst case spoa for this variant is strictly smaller than the
poa, already in this special case, but it is still strictly larger than the spoa for
m identical machines.

2 A Tight Bound on the Poa for p Speeds

In this section, we consider the general case of a machine set with a fixed number
of different speeds, and show that the poa is linearly dependent on the number
of speeds, namely, it is p + 1 if there are p different speeds. We use ingredients
of the proofs in [4], focusing on the load in different groups of machines. We
assume p > 1 otherwise we get the case of identical machines, for which a tight
bound is known [9,23,1].

Theorem 1. The price of anarchy on m related machines that have at most p
different speeds is exactly p + 1.

Proof. We first show the upper bound. Consider a job assignment to machines,
denoted by S, that satisfies the conditions of a Nash equilibrium. Let σ1 ≥
. . . ≥ σp be a sorted list of the speeds. We define the speed class � as the
subset of machines with speed σ�. We assume that machines are numbered by
1, . . . , m, and their speeds s1, . . . , sm are sorted by non-increasing speed (i.e.,
s1 ≥ s2 ≥ . . . ≥ sm). Moreover, we assume that the machines of each speed
class are sorted by non-increasing load in S. Let T be the maximum load over
all machines and scale the instance so that opt = 1. Assume T > 1, otherwise
we are done. Note that since some machine has load that exceeds 1, there must
exist at least one machine whose load is strictly smaller than 1.

Let C be the load of the least loaded machine of speed class 1, by the order
defined above, that is, a machine r of speed sr = σ1 such that sr+1 = σ2. We
claim that C ≥ T − 1. If the maximum load is achieved on this machine, then
we have C = T and we are done. Otherwise, let k be a machine of load T . For
every job j of the instance, an optimal solution (which has makepsan 1) runs j
on one of the machines, which we denote by i. Therefore we have that its size
satisfies wj ≤ si ≤ σ1 and thus wj

σ1
≤ 1. Since moving a job from machine k to

machine r is not beneficial, for such a job we have T ≤ C + wj

σ1
≤ C + 1. This

proves the claim. If C ≤ 1 then T ≤ 2 < p + 1. Therefore we assume C > 1.
We introduce additional notations. Let C′ = 	C
 ≥ 2, and let J1, . . . , JC′−1

and I1, . . . , IC′−1 be indices of machines. We let Ii be the first machine with
load strictly less than C′ − i, and Ji = Ii − 1. We show that the values Ji are
actual indices of machines (i.e., Ji ≥ 1 for i ≥ 1). Since machine r has load C
and by definition C′ < C + 1, we have that machine r has load C > C′ − 1. By
the ordering of machines, machines 1, . . . , r − 1 have a load of at least C′ − 1 as
well. By the definition of the indices Ii, we have I1 ≥ r +1 and thus J1 ≥ r ≥ 1.
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Moreover, Ii ≥ Ii−1 for all 2 ≤ i ≤ C′ − 1, thus we actually have Ji ≥ 1 for all
i ≥ 1.

Thus the load of machines 1, . . . , Ji is at least C′ − i. Note that IC′−1 is the
first machine with load less than C′ + 1 − C′ = 1, so this last index must exist,
since some machine must have load less than 1. However IC′ cannot exist since
this would imply a machine of load less than 0.

We now claim that the speed of Ii is no larger than σi+1 for i = 1, . . . , C′.
We prove this by induction. For i = 1 we showed that I1 ≥ r + 1, so its speed
is at most σ2. For other values of i, we prove that the speed of Ii is strictly
smaller than the speed of Ii−1. Let s′ be the speed of Ii−1. All machines up to
Ji−1 have load of at least C′ − (i − 1) = C′ + 1 − i > 1 since i ≤ C′ − 1. Recall
that Ii ≥ r + 1 for i ≥ 1. We showed that in S, machines 1, . . . , Ji−1 are loaded
by more than 1. Thus in this schedule they must have a job that opt schedules
on one of the machines Ii−1, . . . , m. Denote such a job and its size by a. The
machine that runs it in S has load of at least C′ + 1 − i. Let y be the machine
to which a is assigned in opt. We have a ≤ sy ≤ s′ and Ji−1 < Ii−1 ≤ Ii. If the
speed of machine Ii is s′ as well, moving job a to Ii will result in load of less
than (C′− i)+1, which would be a contradiction to S being a Nash equilibrium,
since the load of the machine running a in S is larger.

From this claim it follows that the speed of IC′−1 is at most σC′ , i.e., C′ ≤ p
(since σp is the smallest speed). We conclude that T ≤ C + 1 ≤ C′ + 1 ≤ p + 1.

We now show a matching lower bound. Let ε > 0 be such that 1/ε ∈ N. We
consider a set of machines with speeds in the set {2p−1, 2p−2, . . . , 1} for some
integer p ≥ 2. There are Ni machines of speed 2i, where Ni will be determined
later. In opt, each machine of speed 2i has a job of size (1− ε)2i, for i ≥ 1. 4N1
of the machines of speed 1 have a single job of size 1 − ε and the rest have sand
(jobs of size ε) of total size 1. We will define N0 to be large enough to ensure
N0 ≥ 4N1. Therefore opt = 1.

In the Nash equilibrium that we define, there is one machine of speed 2p−1

which contains p + 1 jobs of size (1 − ε)2p−1. We let Np−1 = p + 1. Each one
of the other machines of speed 2p−1 contains 2p jobs of size (1 − ε)2p−2. We let
Np−2 = 2p(Np−1 − 1) = 2p2. For 1 ≤ i ≤ p − 2, each machine of speed 2i in the
Nash equilibrium contains 2(i + 1) jobs of size (1 − ε)2i−1. Therefore, for these
values of i (except for i = 1), Ni−1 = 2(i + 1)Ni. We let N0 = 4N1/ε. Thus if
in the Nash equilibrium, each machine of speed 1 has a total of 1 − ε of sand,
and in opt, each machine except 4N1 machines have a total of 1 of sand, we get
that the amount of sand is constant; 4N1/ε − 4N1 = (1 − ε)4N1/ε.

Moreover, the load of a machine of speed 2i is (1 − ε)(i + 1), except for one
machine of speed 2p−1 which has a load of (1 − ε)(p + 1).

To show that this is indeed a Nash equilibrium. We do not need to consider
cases in which jobs move to faster machines, since they are more loaded. We first
consider the case where a job of size (1−ε)2p−1 moves from the machine of speed
2p−1 that contains all jobs of this size, to a machine of some speed 2j (j ≤ p−1).
It increases the load of the target machine by (1 − ε)2p−1−j . The load of this
machine was (1−ε)(j+1), so we need to show (1−ε)(j+1+2p−1−j) ≥ (1−ε)(p+1)
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or 2p−1−j ≥ p − j. It is enough to show 2t−1 ≥ t for t ≥ 1. This is easily shown
by induction.

We now consider a job of size (1−ε)2i moving from a machine of speed 2i+1 to
a machine of speed 2j , where j ≤ i. The load of the target machine increases by
(1−ε)2i−j. The load there was (1−ε)(j+1) so we need to show 2i−j+j+1 ≥ i+2
for i − j ≥ 0. Taking t = i − j + 1, we again get 2t−1 ≥ t. �

Note that the spoa increases rapidly as a function of the number of speeds as
well. The lower bound construction of Fiat et al. [8] uses a parameter �, such
that the spoa is Ω(�) and the number of speeds is Θ(� log �). This implies a lower
bound of Ω( p

log p ) on the spoa for instances with at most p different speeds.

3 One Fast Machine

Recall that the architecture of processors that we consider there consists of
m′ = m − 1 identical slow machines of speed 1 (where m′ ≥ 2, since the case
m′ = 1 is fully covered in [5]) and one fast machine of speed s. We scale all sizes
of jobs in the instances we consider so that opt = 1. We can therefore assume
that the sum of jobs sizes is at most s+m′. Moreover, all slow machines contain
in an optimal schedule only jobs that are no larger than 1, and the largest job
of any instance is no larger than s. Denote the load on the fast machine by x,
and the number of jobs there by t. If x > 1 then the total size of jobs on the fast
machine is xs > s and therefore this machine must contain at least one job that
is of size no larger than 1.

The price of anarchy is determined by the highest possible load of any machine.
Obviously, if there is a machine with load above 1, there must also be a machine
with load less than 1. To prove upper bounds we consider two basic cases; the
price of anarchy is either determined by the fast machine, or by some other
machine. We assume that we are given a specific schedule with is a pure Nash
equilibrium and study its properties.

3.1 Tight Bounds for 1 ≤ s ≤ 2 and All m′ ≥ 2

We define

FastMax =
2m′ + s

m′ + s
= 2 − s

m′ + s

SmallJobs(t) =
1 + s

m′

1 + s
m′ − s

t

=
t(m′ + s)

t(m′ + s) − m′s

We prove in the following lemma that SmallJobs(t) is an upper bound for the
load on the fast machine in case there are t jobs on the fast machine, and t ≥ xs
(thus, the jobs have average size of at most 1).

Some of the lemmas hold not only for s ≤ 2, and are used in other sections
as well. When this is the case, we state it explicitly. Otherwise we may assume
s ≤ 2.
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Lemma 1. If x > 1, then x ≤ FastMax. If in addition t ≥ xs, then x ≤
SmallJobs(t). This holds for any s ≥ 1.

Proof. The average load on the slow machines is at most

s + m′ − xs

m′
= 1 − (x − 1)

s

m′
. (1)

Since x > 1, and the optimal makespan is 1, there exists a job of size at most
1 on the fast machine. This job does not reduce its delay by moving to the
least loaded slow machine. If it moves, the load on the machine that it moves to
becomes at most 2 − (x − 1) s

m′ . Therefore, this value must be at least x. This
implies x(1 + s

m′ ) ≤ 2 + s
m′ , and therefore x ≤ FastMax.

If there are t jobs on the fast machine, the average size of jobs there is xs/t,
so among these jobs there is at least one job of size at most xs/t. This constraint
does not add new information unless t > xs, we therefore assume t ≥ xs, and
therefore t ≥ s. Once again, since this job does not benefit from moving to the
least loaded slow machine, using (1), we find x ≤ 1−(x−1) s

m′ + xs
t which implies

x(1 + s
m′ − s

t ) ≤ 1 + s
m′ , and therefore x ≤ SmallJobs(t) (since by t ≥ s, we

have t(m′ + s) − m′s ≥ ts > 0). �
Lemma 2. Assume that t(m′ + s) − m′s > 0. We have SmallJobs(t) ≤
FastMax if and only if s

t FastMax ≤ 1.

Lemma 3. If there are t jobs on the fast machine, we have x ≤ min(FastMax,
SmallJobs(t)).

Proof. We assume x > 1, otherwise the claim holds trivially. The first term
is an upper bound by Lemma 1. If SmallJobs(t) ≤ FastMax, then we have
s
t FastMax ≤ 1 by Lemma 2. Since x ≤ FastMax, Lemma 1 implies that
x ≤ SmallJobs(t). �
Definition 1. Let y be the highest load of any slow machine. Let My be a slow
machine with this load. Let z be the smallest load of any slow machine.

Lemma 4. If there is only one job on My, then y ≤ s. If there are at least two
jobs, then y ≤ 2z and y ≤ 2(m′+s)

m′+2s . This holds for any s ≥ 1.

Proof. The first bound follows as there cannot be a job larger than s if the
optimal makespan is 1.

Suppose there are at least two jobs and y > 2z. The smallest job on My has
size at most y/2 and (using m′ ≥ 2) it can improve by moving to a machine
with load z where the load will be at most z + y/2 < y. Thus this is not an
equilibrium, a contradiction.

Therefore z ≥ y/2. Since none of the jobs on My can improve by moving to
the fast machine, we find y ≤ x + y/(2s) or x ≥ 2s−1

2s y. Since the total size of
jobs is at most m′ + s, this implies (m′ − 1)y

2 + 2s−1
2 y + y ≤ m′ + s, which gives

y

(
m′ − 1

2
+

2s − 1
2

+ 1
)

=
y

2
(m′ − 1 + 2s − 1 + 2)) =

y

2
(m′ + 2s) ≤ m′ + s,

which implies the desired bound. �
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Theorem 2. For s ≤ 2 and m′ ≥ 2, we have

poa = max
(

min
(
SmallJobs(2),FastMax, 1 +

1
s

)
,

min (SmallJobs(3),FastMax) ,
2(m′ + s)
m′ + 2s

, s

)
.

Proof. The four terms represent the following situations in order: two jobs on
the fast machine, at least three jobs on the fast machine, at least two jobs on
My, one job of size s on My.

It is easy to see that this covers all the relevant possibilities: if there is only one
job on the fast machine, then the poa is achieved on My since x ≤ 1. Therefore
the upper bound will follow from showing the relevant upper bound in each one
of the cases, according to the term which achieves the maximum.

In the examples for the lower bound, if the poa is achieved on the fast machine,
all other machines will contain sand, that is, jobs of very small size. In such a
case, each machine will receive the same amount of sand, which in all cases would
be less than 1. This already ensures that none of these jobs can improve their
delay moving to the fast machine (where the load will be more than 1). Thus
we only need to check that the jobs on the fast machine cannot benefit from
moving.

Due to space constraints, we only discuss one case here: the poa is achieved
on the fast machine, where there are two jobs, and SmallJobs(2) ≤ min(1 + 1

s ,
FastMax). To prove the upper bound, we note that the first two terms in the
minimum are implied by Lemma 3. The last term follows because the total size of
any two jobs is at most s+1 if the optimal makespan is 1. We now show matching
lower bounds using suitable instances for all three terms in the minimum.

We use SmallJobs(2) ≤ FastMax to show that it is possible to enforce
x = SmallJobs(2). We have s

2SmallJobs(2) ≤ s
2FastMax ≤ 1 by Lemma 2.

Consider the following instance. There are two jobs of size SmallJobs(2) · s
2 ≤ 1

which are running on the fast machine, i.e., t = 2. The total amount of sand is
m′+s−s·SmallJobs(t). Each slow machine has sand, where the amount of sand
on each slow machine is 1− s2

t(m′+s)−m′s . The optimal makespan is 1, by putting
each large job on one machine, and adding sand to achieve an equal load on the
machines. This schedule is an equilibrium since by moving a large job to a slow
machine we get a delay of 1 − s2

t(m′+s)−m′s + t(m′+s)
t(m′+s)−m′s · s

t = t(m′+s)
t(m′+s)−m′s = x.

The other cases are treated similarly. �

Corollary 1. For s = 2, poa = 2 for all m′ ≥ 2. For 1 ≤ s < 2, poa < 2 for
all m′ ≥ 2.

Proof. All the upper bounds in Theorem 2 are at most 2 for s = 2 and any
m′ ≥ 2, and the bound s is equal to 2. The second claim follows immediately
from Lemma 3 and Lemma 4 (if y > s, then y ≤ 2m′+2s

m′+2s < 2). �



54 L. Epstein and R. van Stee

3.2 Global Upper and Lower Bounds for the Poa for s > 2

Theorem 3. For 2 ≤ s < 3 and large enough m′ , poa = s. For all s ≥ 2 and
m′ ≥ 2, poa ≤ s.

Proof. Fix ε ∈ (0, 1]. We will show a lower bound of s on the poa for s = 3 − ε
and m′ large enough. Consider the following schedule.

There is one job of size s which is scheduled on a dedicated machine. There
are six jobs of size s(s − 1)/6 which are on the fast machine, so its load is s − 1.
The remaining m′ − 1 machines have sand, specifically, each machine has an
amount of (s − 1) · (1 − s

6 ) which is less than 1 for s < 3. The amount of sand
per machine ensures that none of the six jobs on the fast machine improves by
moving to a slow machine: if such a job moves there, it adds s(s − 1)/6 to the
load, making the total load exactly s − 1. We need to make sure that the total
size of all the jobs we use is not more than m′ + s. This implies

m′ + s ≥ s + s(s − 1) + (m′ − 1)(s − 1)
(
1 − s

6

)

⇒ m′ ≥ 7s2 − 13s + 6
s2 − 7s + 12

=
(7s − 6)(s − 1)
(3 − s)(4 − s)

=
(15 − 7ε)(2 − ε)

ε(1 + ε)
.

For any ε > 0, this value is bounded from above. Since x < 2 by Lemma 1 and
y ≤ s by Lemma 4 (the second bound there is at most 2 ≤ s), this proves the
theorem. �

Lemma 5. For any equilibrium instance, there exists an instance that is an
equilibrium with the same loads on all machines, such that the fast machine has
at most one job which is on the fast machine in the optimal solution. Specifically,
it has at most one job larger than 1.

Proof. If there are multiple such jobs, we can merge them into one job with size
the total size of these jobs. This does not affect the optimal makespan, or the
makespan of the schedule. Larger jobs can only benefit less from moving, thus the
schedule is still an equilibrium if it was before. Regarding the second statement,
clearly all jobs larger than 1 must be on the fast machine in an optimal solution
with makespan 1. �

Lemma 6. Any schedule that is in equilibrium satisfies

y ≤ xs

s − 1
. (2)

Moreover, if My has a single job, this is a sufficient condition for this job not to
benefit from moving.

Proof. Consider My. This machine has a job of size at most y, which does not
benefit from moving to the fast machine. Therefore y ≤ x+ y

s , which implies the
upper bound. If there is a single job of size y, then this is not only a necessary
condition but also a sufficient condition. �
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Lemma 7. For s ≥ 2 and m′ ≥ 2, if there exists an an equilibrium schedule
where the poa is achieved on a slow machine, then the poa is achieved in an
instance with t ≥ 2.

Note: this holds even after possibly merging jobs as in the proof of Lemma 5.

Proof. Suppose there is at most one job on the fast machine. The total size of
the jobs on the fast machine and My (together) is then at most s+1. This means
that xs + y ≤ s + 1, or xs ≤ s + 1 − y. But then Lemma 6 implies y ≤ s+1−y

s−1 ,
and therefore y(1 + 1

s−1 ) ≤ s+1
s−1 , or y ≤ s+1

s . But this value is smaller than
2 − s/(m′ + s) for s ≥ 2 and m′ ≥ 2. To prove this we note that 2 − s/(m′ + s)
is increasing in m′. For m′ = 2, it is equal to 2 − s/(2 + s) = 1 + 2

2+s . However
2

2+s ≥ 1
s for s ≥ 2. �

Definition 2. Let

GlobMax =
s + 2m′ − 1

s + (m′ − 1)(s − 1)/s
. (3)

Lemma 8. We have FastMax < GlobMax for all s ≥ 1, m′ ≥ 2.

Theorem 4. For s ≥ 2, poa ≤ GlobMax.

Proof. By Lemma 8, the lemma holds if the poa is achieved on the fast machine.
Therefore, suppose it is achieved on a slow machine My in some schedule. Denote
the load there by y > 1. Then by Lemma 6, the load on the fast machine is at
least x = y · s−1

s , so the work there is y(s − 1). By Lemma 5, the fast machine
has at most one job larger than 1. By Lemma 7, the fast machine has at least
two jobs, such at at least one of them is scheduled on a slow machine in an
optimal schedule. Therefore, there is at least one job of size at most 1 on the
fast machine. If this instance is in equilibrium, the load on each slow machine
must then be at least x−1. Finally, the total size of all the jobs must be at most
m′ + s. This implies

y

(
1 + (s − 1) + (m′ − 1)

s − 1
s

)
− (m′ − 1) ≤ s + m′ (4)

which holds if y ≤ s+2m′−1
s+(m′−1)(s−1)/s = GlobMax. This proves the lemma. �

Let m′ ≥ 2 and s ≥ 2. For this case, we show in the full paper that

(s − 1)GlobMax − 	s(GlobMax − 1)
 ≥ 1 (5)

implies that poa = GlobMax, and that this condition is satisfied as long as
s ≥ 5+

√
17

2 ≈ 4.562. In the following table, for several values of m′ the minimum
value of s is given such that we can be certain that poa = GlobMax for all
speeds of at least s, rounded to two decimal places.

m′ 2 3 4 5 6 7 8
s 2.77 3.25 3.78 3.56 3.41 3.29 3.89

(6)
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In all of these cases, (5) holds. Indeed, as m′ grows large relative to s, GlobMax

tends to 2/((s−1)/s) = 2s/(s−1). Then s(GlobMax−1) = s(2s− s+1)/(s−
1) = s(s+1)/(s−1) and (s−1)GlobMax = 2s. For these values, inequality (5)
holds for s ≥ 4, so for large m′, the bound for s above which poa = GlobMax

tends to 4.
Using a computer program, it can be found that in fact poa = GlobMax

for s ≥ 4.365 for all m′, and that the value of m′ for which the bound on s is
maximized is 31.

3.3 SPOA for One Fast Machine

In the full paper, we demonstrate the fact that the spoa is strictly smaller than
the poa. We consider the overall bounds (i.e., the supremum bounds over all
values of s and m′) and compare them. The overall bound on the poa as implied
by the previous sections is 3.

Theorem 5. The spoa is 2 for m′ ≤ 5. For any m′, spoa ≤ 3+
√

5
2 . For m′ ≥

16, spoa ≥ 1+
√

13
2 ≈ 2.3027756.

4 Conclusions

In this paper, we have shown the following results. The price of anarchy on uni-
formly related machines with at most p different speeds is p+1. For two speeds,
this upper bound is approachable even with only one fast machine. However, the
poa is only 2 (rather than 3) if the fast machine is twice as fast as the other
machines, and it is less than 2 if the machine is slower than that. In the same
setting, the spoa is 2 if there are only few machines, but is between 2.3 and 2.6
for any fixed, sufficiently large m.
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Abstract. A Nash Equilibriun (NE) is a strategy profile that is resilient
to unilateral deviations, and is predominantly used in analysis of compet-
itive games. A downside of NE is that it is not necessarily stable against
deviations by coalitions. Yet, as we show in this paper, in some cases,
NE does exhibit stability against coalitional deviations, in that the ben-
efits from a joint deviation are bounded. In this sense, NE approximates
strong equilibrium (SE) [6].

We provide a framework for quantifying the stability and the perfor-
mance of various assignment policies and solution concept in the face
of coalitional deviations. Within this framework we evaluate a given
configuration according to three measurements: (i) IRmin: the maximal
number α, such that there exists a coalition in which the minimum im-
provement ratio among the coalition members is α (ii) IRmax: the max-
imum improvement ratio among the coalition’s members. (iii) DRmax:
the maximum possible damage ratio of an agent outside the coalition.

This framework can be used to study the proximity between different
solution concepts, as well as to study the existence of approximate SE in
settings that do not possess any such equilibrium. We analyze these mea-
surements in job scheduling games on identical machines. In particular,
we provide upper and lower bounds for the above three measurements for
both NE and the well-known assignment rule Longest Processing Time
(LPT) (which is known to yield a NE). Most of our bounds are tight for
any number of machines, while some are tight only for three machines.
We show that both NE and LPT configurations yield small constant
bounds for IRmin and DRmax. As for IRmax, it can be arbitrarily large
for NE configurations, while a small bound is guaranteed for LPT config-
urations. For all three measurements, LPT performs strictly better than
NE.

With respect to computational complexity aspects, we show that given
a NE on m ≥ 3 identical machines and a coalition, it is NP-hard to deter-
mine whether the coalition can deviate such that every member decreases
its cost. For the unrelated machines settings, the above hardness result
holds already for m ≥ 2 machines.
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1 Introduction

We consider job scheduling problems, in which n jobs are assigned to m identical
machines and incur a cost which is equal to the total load on the machine they
are assigned to1. These problems have been widely studied in recent years from a
game theoretic perspective [21,3,10,11,15]. In contrast to the traditional setting,
where a central designer determines the allocation of jobs into machines and
all the participating entities are assumed to obey the protocol, in distributed
settings, the situation may be different. Different machines and jobs may be
owned by different strategic entities, who will typically attempt to optimize their
own objective rather than the global objective. Game theoretic analysis provides
us with the mathematical tools to study such situations, and indeed has been
extensively used in recent years by computer scientists. This trend is motivated in
part by the emergence of the Internet, which is composed of distributed computer
networks managed by multiple administrative authorities and shared by users
with competing interests [24].

Most game theoretic models applied to job scheduling problems, as well as
other network games (e.g., [13,2,25,4]), use the solution concept of Nash equilib-
rium (NE), in which the strategy of each agent is a best response to the strate-
gies of all other agents. While NE is a powerful tool for predicting outcomes in
competitive environments, its notion of stability applies only to unilateral devi-
ations. However, even when no single agent can profit by a unilateral deviation,
NE might still not be stable against a group of agents coordinating a joint devia-
tion, which is profitable to all the members of the group. This stronger notion of
stability is exemplified in the strong equilibrium (SE) solution concept, coined by
Aumann (1959). In a strong equilibrium, no coalition can deviate and improve
the utility of every member of the coalition.

As an example, consider the configuration depicted in Figure 1(a). It is a NE
since no job can reduce its cost through a unilateral deviation (recall that the cost
of each job is defined to be the load on the machine it is assigned to, as assumed in
many job scheduling models). One may think that a NE on identical machines is
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Fig. 1. An example of a configuration (a) that is a Nash equilibrium but is not resilient
against coordinated deviations, since the jobs of load {5, 5, 2, 2} all profit from the
deviation demonstrated in (b)
1 This cost function characterizes systems in which jobs are processed in parallel, or

when all jobs on a particular machine have the same single pick-up time, or need to
share some resource simultaneously.
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also sustainable against joint deviations. Yet, as was already observed in [3], this
may not be true2. For example, the configuration above is not resilient against a
coordinated deviation of the coalition Γ = {5, 5, 2, 2} deviating to configuration
(b), where the jobs of load 5 decrease their costs from 10 to 8, and the jobs of
load 2 improve from 5 to 4. Note that the cost of the two jobs of load 3 (which
are not members of the coalition) increases.

In the example above, every member of the coalition improves its cost by a
(multiplicative) factor of 5

4 . By how much more can a coalition improve? Is there
a bound on the improvement ratio? As it will turn out, this example is in fact
the most extreme one in a sense that will be clarified below. Thus, while NE is
not completely stable against coordinated deviations, in some settings, it does
provide us with some notion of approximate stability to coalitional deviations
(or approximate strong equilibrium).

In this paper we provide a framework for studying the notion of approximate
stability to coalitional deviations. In our analysis, we consider three different
measurements. The first two measure the stability of a configuration, and the
third measures the worst possible effect on the non-deviating jobs.

1. Minimum Improvement Ratio: This notion is discussed in Section 3,
and refers to configurations from which no coalition of agents can deviate such
that every member of the coalition improves by a large factor 3 . Formally, the
improvement ratio of a job in the coalition is the ratio between its pre- and
post-deviation cost. We say that a configuration s forms an α-SE if there is no
coalition in which each agent can improve by a factor of more than α. This
notion was also studied by [1] in the context of SE existence. There, the author
showed that for a sufficiently large α, an α-SE always exists. The justification
behind this concept is that agents may be willing to deviate only if they improve
by a sufficiently high factor (due to, for example, some overhead associated with
the migration).

For three machines, we show that every NE is a 5
4 -SE. That is, there is no

coalition that can deviate such that every member improves by a factor larger
than 5

4 . For this case, we also provide a matching lower bound (recall Figure
1 above), that holds for any m ≥ 3. For arbitrary m, we show that every NE
is a (2 − 2

m+1 )-SE. Our proof technique draws a connection between makespan
approximation4 and approximate stability.

We also consider a subclass of NE, produced by the Longest Processing Time
(LPT) rule [18]. The LPT rule sorts the jobs in a non-increasing order of their
loads and greedily assigns each job to the least loaded machine. It is easy to

2 This statement holds for m ≥ 3. For 2 identical machines, every NE is also a SE [3].
3 Throughout this paper, we define approximation by a multiplicative factor. Since

the improvement and damage ratios for all the three measurements presented below
are constants greater than one (as will be shown below), the additive ratios are
unbounded. Formally, for any value a it is possible to construct instances (by scaling
the instances we provide for the multiplicative ratio) in which the cost of all jobs is
reduced, or the cost of some jobs is increased, by at least an additive factor of a.

4 makespan is defined as the maximum load on any machine in the configuration.
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verify that every configuration produced by LPT is a NE [17]. Is it also a SE?
Note that for the instance depicted in Figure 1, LPT would have produced a SE.
However, as we show, this is not always the case. Yet, for m = 3, every LPT-
based configuration is a 2√

34−4
-SE (≈ 1.092), and we also provide a matching

lower bound, that holds for any m ≥ 3. For arbitrary m, we show an upper
bound of 4

3 − 1
3m . These results indicate that LPT is more stable than NE with

respect to coalitional deviations.

2. Maximum Improvement Ratio: In Section 4 we study an alternative
notion of approximate stability, in which there is no coalition such that some
agent improves by a factor of more than α. This notion is similar in spirit to
stability against a large total improvement. Interestingly, we find out that given a
NE configuration, the improvement ratio of a single agent may not be bounded,
for any m ≥ 3. In contrast, for LPT-based configurations on three machines,
no agent can improve by a factor of 5

3 or more and this bound is tight. Thus,
with respect to maximum IR, the relative stability of LPT compared to NE is
significant. For arbitrary m, we provide a lower bound of 2− 1

m , which we believe
to be tight.

3. Maximum Damage Ratio: As is the case for the jobs of load 3 in Figure 1,
some jobs might be hurt from a coalitional deviation. The third measurement
that we consider is the worst possible effect of a deviation on these naive jobs.
Formally, the maximum damage ratio is the maximal ratio between the pre- and
post-deviation cost of a job. Note that it does not measure the stability of a
configuration – we assume that an agent’s motivation to deviate is not influ-
enced by the potential damage it will cause others. However, this measurement
is important since it guarantees a bound on the maximal damage that any agent
can experience. In Section 5, we prove that the maximum damage ratio is less
than 2 for any NE configuration, and less than 3

2 for any LPT-based configura-
tion. Both bounds hold for any m ≥ 3, and for both we provide matching lower
bounds. Note that the minimum damage ratio is of no practical interest.

In summary, our results in Sections 3-5 (see Table 1) indicate that NE-based
configurations are approximately stable with respect to the IRmin measurement.
Moreover, the performance of jobs outside the coalition would not be hurt by
much as a result of a coalitional deviation. It would be interesting to study
in what families of games NE are guaranteed to provide approximate SE. As
for IRmax, our results provide an additional benefit of the LPT rule, which is
already known to possess attractive properties (with respect to, e.g., makespan
approximation and stability against unilateral deviations).

In Section 6, we study computational complexity aspects of coalitional devi-
ations. We find that it is NP-hard to determine whether a NE configuration on
m ≥ 3 identical machines is a SE. Moreover, given a particular configuration
and a set of jobs, it is NP-hard to determine whether this set of jobs can engage
in a coalitional deviation. For unrelated machines (i.e., where each job incurs
a different load on each machine), the above hardness results hold already for
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Table 1. Our results for the three measurements. Unless specified otherwise, the results
hold for arbitrary m.

IRmin IRmax DRmax

upper bound lower upper lower upper lower
m = 3 m ≥ 3 bound bound bound bound bound

NE 5
4 2 − 2

m+1
5
4 unbounded 2 2

LPT 2√
34−4

4
3 − 1

3m
2√

34−4
5
3 (m=3) 2 − 1

m
3
2

3
2

m = 2 machines. These results might have implications on coalitional deviations
with computationally restricted agents.

Related work: NE is shown in this paper to provide approximate stability
against coalitional deviations. A related body of work studies how well NE ap-
proximates the optimal outcome of competitive games. The Price of Anarchy
was defined in [24,21] as the ratio between the worst-case NE and the opti-
mum solution, and has been extensively studied in various settings, including
job scheduling [21,10,11], network design [2,4,5,13], network routing [25,7,9], and
more.

The notion of strong equilibrium (SE) [6] expresses stability against coordi-
nated deviations. The downside of SE is that most games do not admit any
SE, in contrast to NE which always exists (in mixed strategies). Various recent
works have studied the existence of SE in particular families of games. [3] showed
that in every job scheduling game and (almost) every network creation game, a
SE exists. In addition, [12,19,20,26] provided a topological characterization for
the existence of SE in different congestion games, including routing and cost-
sharing connection games. The vast literature on SE [19,20,23,8] concentrate on
pure strategies and pure deviations, as is the case in our paper. In job scheduling
settings, [3] showed that if mixed deviations are allowed, it is often the case that
no SE exists. When a SE exists, aside from its robustness, it has other appealing
preoperties. For example, in many cases, the price of anarchy with respect to SE
(denoted the strong price of anarchy in [3]) is significantly better than the price
of anarchy with respect to NE [3,15,22].

2 Model and Preliminaries

In our job scheduling setting there is a set of m identical machines, M =
{M1, . . . , Mm}, and n jobs, N = {1, . . . , n}, where job j has load pj , and is
controlled by a single agent (in the remainder of the paper, we use agents and
jobs interchangeably). A schedule s ∈ S : N → M (also denoted a configuration)
is an assignment of jobs into machines. The load of a machine Mi in a config-
uration s ∈ S, denoted Ci(s), is the sum of the loads of the jobs assigned to
Mi, that is Ci(s) =

∑
{j|s(j)=Mi} pj . In our model, the individual cost of player

j ∈ N , denoted cj(s), is the total load on the machine job j is assigned to, i.e.,
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cj(s) = Ci(s), where s(j) = Mi. Note that the internal order of the jobs on a
particular machine does not affect the jobs’ individual costs.

A configuration s ∈ S is a pure Nash Equilibrium if no player j ∈ N can
benefit from unilaterally migrating to another machine. A configuration s ∈ S
is a pure Strong Equilibrium if no coalition Γ ⊆ N can form a coordinated
deviation in a way that every member of the coalition reduces its cost.

Recall that Ci(s) denotes the load on machine i in configuration s. Let s′ de-
note the post-deviation configuration. Then, Ci(s′) denotes the load on machine
i after the deviation. When clear in the context, we abuse notation and denote
the load on machine i before and after the deviation by Ci and C′i, respectively.
In addition, we let Pi1,i2 be a binary indicator whose value is 1 if some job in the
coalition migrates from Mi1 to Mi2 , and 0 otherwise. Since jobs in the coalition
improve their cost by definition, Pi1,i2 = 1 implies that C′i2 < Ci1 . The improve-
ment ratio of a job j ∈ Γ , migrating from machine Mi1 (with initial load Ci1)
to machine Mi2 (with post-deviation load C′i2 ), is IR(j) = Ci1/C′i2 . Clearly, for
any job j in the coalition, IR(j) > 1. The damage ratio of a job j �∈ Γ , assigned
on machine Mi is DR(j) = C′i/Ci. Clearly, for any job j not in the coalition,
IR(j) ≤ 1 (else j is part of the coalition). Finally, we refer to coalitions deviat-
ing from NE or LPT-based configurations as NE-based and LPT-based coalitions,
respectively.

Definition 1. A configuration s is an α-strong equilibrium (α-SE) if for any
deviation and any coalition Γ , it holds that minj∈Γ IR(j) ≤ α. We also say that
for any Γ , IRmin(s, Γ ) ≤ α.

For the maximum improvement ratio, we say that IRmax(s, Γ ) ≤ α if for any
deviation of a coalition Γ , it holds that maxj∈Γ IR(j) ≤ α.

For the maximum damage ratio, we say that DRmax(s, Γ ) ≤ α if for any
deviation of a coalition Γ , it holds that maxj �∈Γ DR(j) ≤ α.

We next provide several useful observations and claims that prove useful in
our analysis below. All missing proofs (from this section as well as other sections)
are given in the full version of this paper [14].

Observation 1 At least one job leaves any machine participating in an NE-
based coalition.

Proof: Suppose that there exists a machine to which a job migrates but no job
leaves. Then, the job that migrates to it would also migrate alone, contradicting
the original schedule is a NE. 	


Definition 2. Assume w.l.o.g that M1 is the most loaded machine in a given
configuration. We say that a coalition obeys the flower structure if for all i > 1,
P1,i = Pi,1 = 1 and for all i, j > 1, Pi,j = 0.

In particular, for m = 3, a coalition obeys the flower structure if P1,2 = P2,1 =
P1,3 = P3,1 = 1 and P2,3 = P3,2 = 0.

Claim. Any NE-based coalition on three machines obeys the flower structure.
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It is known [3] that any NE-schedule on two identical machines is also a SE.
By the above claim, at least four jobs participate in any coalition on three ma-
chines. Clearly, at least four jobs participate in any coalition on m > 3 machines.
Therefore,

Corollary 1. For every NE-based coalition Γ , it holds that |Γ | ≥ 4.

3 α-Strong Equilibrium

In this section, the stability of configurations is measured by minj∈Γ IR(j). We
first provide a complete analysis (i.e. matching upper and lower bounds) for
m = 3 for both NE and LPT. For arbitrary m, we provide an upper bound for
NE and LPT, and show that the lower bounds for m = 3 hold for any m.

Theorem 2. Any NE schedule on three machines is a 5
4 -SE. 	


The above analysis is tight as shown in Figure 1. Moreover, this lower bound
can be extended to any m > 3 by adding m − 3 machines and m − 3 heavy jobs
assigned to these machines. Thus,

Theorem 3. For m ≥ 3, there exists a NE schedule s and a coalition Γ s.t.
IRmin(s, Γ ) = 5

4 . 	


For LPT-based configurations, the bound on the minimum improvement ratio is
lower:

Theorem 4. Any LPT-based schedule on three machines is a ( 2√
34−4

≈ 1.0924)-
SE. 	
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Fig. 2. An LPT-based coalition on 3 machines in which all migrating jobs improve by
2√

34−4

The above analysis is tight as shown in Figure 2. Moreover, as for NE, this
lower bound can be extended to any m > 3 by adding dummy jobs and machines.
Thus,

Theorem 5. For any m ≥ 3, there exists an LPT schedule s and a coalition Γ
s.t. IRmin(s, Γ ) = 2√

34−4
. 	


We next provide upper bounds for arbitrary m.
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Theorem 6. Any schedule produced by LPT on m identical machines is a (4
3 −

1
3m ) − SE. 	


Theorem 7. Any NE schedule on m identical machines is a (2 − 2
m+1 ) − SE.

	


4 Maximum Improvement Ratio

In this section, the stability of a configuration is measured by maxj∈Γ IR(j). We
provide a complete analysis for NE configurations and any m ≥ 3, and for LPT
configurations on three machines. The lower bound for LPT on three machines
can be extended to arbitrary m. Our results show a significant difference between
NE in general and LPT. While the improvement ratio of NE-based coalition can
be arbitrarily high, for LPT-based coalition, the highest possible improvement
ratio of any participating job is less than 5

3 .

Theorem 8. For any m ≥ 3 machines, the maximum improvement ratio of a
NE-based coalition on m machines is not bounded. 	


Proof: Given r, consider the NE-schedule on 3 machines given in 3(a). The
coalition consists of {1, 1, 2r, 2r}. Their improved schedule is given in Figure
3(b). The improvement ratio of the jobs of load 1 is 2r/2 = r. For m > 3,
dummy machines and jobs can be added. 	
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Fig. 3. An NE-based coalition in which the jobs of load 1 have improvement ratio r

In contrast to NE-based deviations, for LPT-based deviations we are able to
bound the maximum improvement ratio by a small constant:

Theorem 9. For any LPT schedule on three machines, the maximum improve-
ment ratio of any coalition is less than 5

3 . 	


The above analysis is tight, as demonstrated in Figure 4 for m = 3 (where the
improvement ratio is 2 − 1

m = 5
3 ). Moreover, this figure shows that this lower

bound can be generalized for any m ≥ 3. The job of load 1 + ε that remains
on M1 improves its cost from 2m − 1 + ε to m(1 + ε), that is, for this job, j,
IR(j) = 2m−1+ε

m(1+ε) = 2 − 1
m − δ. Formally,

Theorem 10. For any m ≥ 3, there exists an LPT-based configuration s and a
coalition Γ such that IRmax(s, Γ ) = 2 − 1

m − δ for an arbitrarily small δ > 0.
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Fig. 4. An LPT-based coalition on m machines in which the job of load 1 + ε assigned
to M1 has improvement ratio arbitrarily close to 2 − 1

m

Note that the coalitional deviation in Figure 4 obeys the flower structure. We
conjecture that the upper bound of 5

3 for m = 3 can be generalized for any m,
i.e., that for any LPT-based configuration s, and coalition Γ it holds that which
IRmax(s, Γ ) < 2 − 1

m .

5 Maximum Damage Ratio

In this section, the quality of a configuration is measured by maxj �∈Γ DR(j).
Recall that DR(j) = C′

i

Ci
, where i is the machine on which j is scheduled. For

non-deviating jobs, this ratio might be larger than 1, and we would like to bound
its maximal possible value. We provide a complete analysis for NE and LPT-
based configurations and any m ≥ 3. Once again, we find out that LPT provides
a better performance guarantee compared to general NE: the cost of any job in
an LPT schedule cannot increase by a factor 3

2 or larger, while it can increase
by a factor arbitrarily close to 2 for NE schedules.

Theorem 11. For any m, the damage ratio caused by any NE-based coalition
is less than 2. 	


The above analysis is tight as shown in Figure 3: The damage ratio of the jobs
of load 2r − 1 is (4r − 1)/(2r), which can be arbitrarily close to 2. Formally,

Theorem 12. For any m ≥ 3, there exists a NE-based configuration s and a
coalition Γ such that DRmax(s, Γ ) = 2 − δ for an arbitrarily small δ > 0. 	


For LPT-based coalitions we obtain a smaller bound:

Theorem 13. For any m, the damage ratio caused by any LPT-based coalition
is less than 3

2 .

Proof: Let M1 be the most loaded machine in the coalition. M1 must have at
least 2 jobs. Let x be the load of the last job assigned to M1, and let � = C1 −x.
For every machine in the coalition, it must hold that Ci ≥ � (since else, x would
not have been assigned to M1), and C′i < � + x (since all jobs must improve).
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case (a): � ≥ 2x, and then for any machine Mi,
C′

i

Ci
< �+x

� ≤ 3
2 .

case (b): � < 2x. We show that no coalition exists in this case. If � < 2x, then
(by LPT) M1 has exactly 2 jobs, of loads � and x. By LPT, every other machine
must have (i) one job of load at least � (and possibly other small jobs), or (ii)
two jobs of load at least x (and possible other small jobs). Let k and k′ be the
number of machines of type (i) and (ii), respectively (excluding M1). Thus, there
is a total of k + 1 jobs of load � and 2k′ + 1 jobs of load x. After the deviation,
no machine can have jobs of load � and x together, nor can it have three jobs
of load x. The k + 1 machines assigned with the k + 1 jobs of load � after the
deviation cannot be assigned any other job of load x. So, we end up with 2k′+1
jobs of load x that should be assigned to k′ machines. Thus, there must be a
machine with at least three jobs of load x. Contradiction. 	
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Fig. 5. An LPT-based coalition, in which the damage ratio of the job of load 1 + 2ε
on M3 is arbitrarily close to 3

2

The above analysis is tight as shown in Figure 5. Moreover, by adding dummy
machines and jobs it can be extended to any m ≥ 3. Formally,

Theorem 14. For any m ≥ 3, there exists an LPT-based configuration s and a
coalition Γ such that DRmax(s, Γ ) = 3

2 − δ for an arbitrarily small δ > 0. 	


6 Computational Complexity

It is easy to see that one can determine whether a given configuration is a NE
in polynomial time. Yet, for SE, this task is more involved. In this section, we
provide some hardness results about coalitional deviations.

Theorem 15. Given a NE schedule on m ≥ 3 identical machines, it is NP-hard
to determine if it is a SE.

Proof: We give a reduction from Partition. Given a set A of n integers a1, . . . , an

with total size 2B, and the question whether there is a subset of total size B,
construct the schedule in Figure 6(a). In this schedule on three machines there
are n + 4 jobs of loads a1, . . . , an, B − 2, B − 2, B − 1, B − 1. We assume w.l.o.g.
that miniai ≥ 3, else the whole instance can be scaled. Thus, schedule 6(a) is a
NE. For m ≥ 3, add m − 3 machines each with a single job of load 2B.
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Fig. 6. Partition induces a coalition in a schedule on identical machines

Claim. The NE schedule in Figure 6(a) is a SE if and only if there is no partition.
	


A direct corollary of the above proof is the following:

Corollary 2. Given a NE schedule and a coalition, it is NP-hard to determine
whether the coalition can deviate.

Theorem 15 holds for any m ≥ 3 identical machines. For m ≤ 2, a configuration is
a NE if and only if it is a SE [3], and therefore it is possible to determine whether a
given configuration is SE in polynomial time. Yet, the following theorem shows
that for the case of unrelated machines, the problem is NP-hard already for
m = 2.

Theorem 16. Given a NE schedule on m ≥ 2 unrelated machines, it is NP-
hard to determine if it is a SE. 	


A direct corollary of the above proof is the following:

Corollary 3. Given an NE schedule on unrelated machines and a coalition, it
is NP-hard to determine whether the coalition can deviate.

It remains an open problem whether there exists a polynomial time approxima-
tion scheme that provides a (1 + ε)-SE.
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2007. LNCS, vol. 4596, pp. 583–594. Springer, Heidelberg (2007)

16. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT Numerical Mathematics 19(3), 312–320 (1979)

17. Fotakis, D., Kontogiannis, S., Mavronicolas, M., Spiraklis, P.: The Structure and
Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 510–519. Springer, Heidelberg (2002)

18. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM J. Appl.
Math. 17, 263–269 (1969)

19. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and
Economic Behavior 21, 85–101 (1997)

20. Holzman, R., Law-Yone, N.: Network structure and strong equilibrium in route
selection games. Mathematical Social Sciences 46, 193–205 (2003)

21. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

22. Leonardi, S., Sankowski, P.: Network Formation Games with Local Coalitions. In:
PODC (2007)

23. Milchtaich, I.: Crowding games are sequentially solvable. International Journal of
Game Theory 27, 501–509 (1998)

24. Papadimitriou, C.H.: Algorithms, games, and the internet. In: proceedings of the
33rd Annual ACM Symposium on Theory of Computing, pp. 749–753 (2001)

25. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

26. Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in
monotone congestion games. In: working paper, Technion, Israel (2006)

27. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multi-
processor scheduling. INFORMS Journal on Computing (to appear)

http://www.faculty.idc.ac.il/tami/Papers/approxSE.pdf


Bertrand Competition in Networks

Shuchi Chawla1,� and Tim Roughgarden2,��

1 Computer Sciences Dept., University of Wisconsin - Madison
shuchi@cs.wisc.edu

2 Department of Computer Science, Stanford University
tim@cs.stanford.edu

Abstract. We study price-of-anarchy type questions in two-sided mar-
kets with combinatorial consumers and limited supply sellers. Sellers own
edges in a network and sell bandwidth at fixed prices subject to capacity
constraints; consumers buy bandwidth between their sources and sinks so
as to maximize their value from sending traffic minus the prices they pay
to edges. We characterize the price of anarchy and price of stability in
these “network pricing” games with respect to two objectives—the social
value (social welfare) of the consumers, and the total profit obtained by
all the sellers. In single-source single-sink networks we give tight bounds
on these quantities based on the degree of competition, specifically the
number of monopolistic edges, in the network. In multiple-source single-
sink networks, we show that equilibria perform well only under additional
assumptions on the network and demand structure.

1 Introduction

The Internet is a unique modern artifact given its sheer size, and the number
of its users. Given its (continuing) distributed and ad-hoc evolution, as well as
emerging applications, there have been growing concerns about the effective-
ness of its current routing protocols in finding good routes and ensuring quality
of service. Congestion and QoS based pricing has been suggested as a way of
combating the ills of this distributed growth and selfish use of resources (see,
e.g., [5,7,8,10,12]). Unfortunately, the effectiveness of such approaches relies on
the cooperation of the multiple entities implementing them, namely the owners
of resources on the Internet, or the ISPs. The ISPs’ goals do not necessarily
align with the social objectives of efficiency and quality of service; their primary
objective is to maximize their own market share and profit.

In this paper we consider the following question: given a large combinatorial
market such as the Internet, suppose that the owners of resources selfishly price
their product so as to maximize their profit, and consumers selfishly purchase
bundles of products to maximize their utility, how does this effect the functioning
of the market as a whole?
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We consider a simple model where each edge of the network is owned by a
distinct selfish entity, and is subject to capacity constraints. Each consumer is
interested in buying bandwidth along a path from its source to its destination,
and obtains a fixed value per unit of flow that it can send along this path; con-
sumers are therefore single-parameter agents. The game proceeds by the sellers
first picking (per-unit-bandwidth) prices for their edges, and the consumers buy-
ing their most-desirable paths (or nothing if all the paths are too expensive). An
outcome of the game (a collection of prices and the paths bought by consumers)
is called a Nash equilibrium if no seller can improve her profit by changing her
price single-handedly. Note that the consumers already play a best-response to
the prices. We compare the performance of equilibria in this game to that of the
best state achievable through coordination, under two metrics—the social value
(efficiency) of the system, and the total profit earned by all the edges.

Economists have traditionally studied the properties of equilibria that emerge
in pricing games with competing firms in single-item markets (see, e.g., [15,16]
and references therein). It is well known [11], e.g., that in a single-good free
market, oligopolies (two or a few competing firms) lead to a socially-optimal
equilibrium1. On the other hand, a monopoly can cause an inefficient allocation
by selfishly maximizing its own profit. Fortunately the extent of this inefficiency
is bounded by a logarithmic factor in the (multiplicative) disparity between
consumer values, as well as by a logarithmic factor in the number of consumers.

These classical economic models ignore the combinatorial aspects of network
pricing, namely that consumers have different geographic sources and destina-
tions for their traffic, and goods (i.e., edges) are not pure substitutes, but rather
are a complex mix of substitutes and complements, as defined by the network
topology. So a timely and basic research question is: which properties of stan-
dard price equilbrium models carry over to network/combinatorial settings? For
example, are equilibria still guaranteed to exist? Are equilibria fully efficient?
Does the answer depend in an interesting way on the network/demand struc-
ture? The network model captures the classical single-item setting in the form of
a single-source single-sink network with a single edge (modeling a monopoly), or
multiple parallel edges (modeling an oligopoly). In addition, we investigate these
questions in general single-source single-sink networks, as well as multiple-source
single-sink networks. Our work can we viewed as a non-trivial first step toward
understanding price competition in general combinatorial markets.

Our results. We study the price of anarchy, or the ratio of the performance of
the worst Nash equilibrium to that of an optimal state, for the network pricing
game with respect to social value and profit. We give matching upper and lower
bounds, as a function of the degree of competition in the network, and the
ratio L of the maximum and minimum customer valuations. For instances with
1 To be precise, there are two models of competition in an oligopolistic market—

Bertrand competition, where the firms compete on prices, and Cournot competition,
where they compete on quantity. The former always leads to a socially-optimal
equilibrium; the latter may not. In this paper we will focus on the Bertrand model.
See the full version [4] of this paper for a brief discussion of the Cournot model.
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a high price of anarchy, a natural question is whether there exist any good
equilibria for the instance. We provide a negative answer in most such cases,
giving strong lower bounds on the price of stability, which quantifies the ratio
of the performance of the best Nash equilibrium to that of an optimal solution.

For single-source single-sink networks, we provide tight upper and lower
bounds on the prices of anarchy and stability (see Section 3). Although in a
network with a single monopolistic edge, these quantities are O(log L) for social
value, both become worse as the number of monopolies increases. The price of
stability, for example, increases exponentially with the number k of monopo-
lies, as Θ(Lk−1) for k > 1. The equilibrium prices in these instances are closely
related to the min-cut structure of the instances.

With respect to profit, as is expected, networks that contain no monopolies
display a large price of anarchy and stability because competition hurts the prof-
its of all the firms, while networks with a single monopoly perform very well.
One may suspect that as competition decreases further (the number of monop-
olies gets larger), collective profit improves. We show instead that the price of
stability for profit also increases exponentially with the number of monopolies.

In multiple-source single-sink networks, the behavior of Nash equilibria
changes considerably (see Section 4). In particular, equilibria do not always exist
even in very simple directed acyclic networks. When they do exist, some instances
display a high price of stability (polynomial in L) despite strong competition in
the network. In addition to the presence of monopolies, we identify other prop-
erties of instances that cause such poor behavior: (1) an uneven distribution of
demand across different sources, and (2) congested subnetworks (congestion in
one part of the network can get “carried over” to a different part of the network
in the form of high prices due to the selfishness of the edges). We show that in a
certain class of directed acyclic networks with no monopolies, in which equilibria
are guaranteed to exist, the absence of the above two conditions leads to good
equilibria. Specifically, the price of stability for social value in such networks
is at most 1/α where α is the sparsity of the network. Once again, we use the
sparse-cut structure of the network to explicitly construct good equilibria.

Related work. The literature on quantifying the inefficiency of equilibria is too
large to survey here; see [14] and the references therein for an introduction.

Recently, several researchers have studied the existence and inefficiency of
equilibria in network pricing models where consumers face congestion costs from
other traffic sharing the same bandwidth [9,1,2,13,17]. In these other works, the
routing cost faced by each consumer has two components: the price charged by
each edge on the path, and the latency faced by the consumer’s flow owing to
congestion on the path. In addition to selfish pricing, this congestion-based exter-
nality among consumers leads to highly inefficient outcomes even in very simple
networks (such as single-source single-sink series-parallel networks [2]). The cost
model considered by us is a special case of this latency-based cost function, in
which the latency faced by a flow is 0 as long as all capacity constraints along the
path are satisfied, and ∞ otherwise. Furthermore, in our model, latency (con-
gestion) costs are paid by edges, rather than by consumers, and therefore force
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the edges to raise their prices just enough for the capacity constraints to be met.
Owing to the generality of the latency functions they consider, these other papers
study extremely simple network models. Acemoglu and Ozdaglar [1,2], for exam-
ple, consider single-source single-sink networks with parallel links and assume
that all consumers are identical and have unbounded values (i.e. they simply
minimize their total routing cost). Hayrapetyan et al. [9] consider the same class
of networks but in addition allow different values for different consumers. In
contrast, we consider general single-source single-sink as well as multiple-source
single-sink topologies with the simpler capacity-based cost model. In effect, our
work isolates the impact of selfish pricing on the efficiency of the network in
the absence of congestion effects. Although capacity constraints in our model
mimic some congestion effects, we see interesting behavior even in the absence
of capacity constraints when the market contains monopolies.

Another recent work closely related to ours is a network formation model
introduced by Anshelevich et al. [3] in which neighboring agents form bilateral
agreements to both buy and sell bandwidth simultaneously. The game studied in
[3] can be thought of as a meta-level game played by agents when they first enter
the network and install capacities based on anticipated demand. Furthermore,
in their model there are no latencies or capacity constraints, instead there is a
fixed cost for routing each additional unit of flow.

2 Model and Notation

A network pricing game (NPG) is characterized by a directed graph G = (V, E)
with edge capacities {ce}e∈E, and a set of users (traffic matrix) endowed with
values. Each edge is owned by a distinct ISP. (Many of our results can be easily
extended to the case where a single ISP owns multiple edges.) The value as-
sociated with each chunk of traffic represents the per-unit monetary value that
the owner of that chunk obtains upon sending this traffic from its source to its
destination. User values are represented in the form of demand curves2, D(s,t),
for every source-destination pair (s, t), where for every �, D(s,t)(�) represents the
amount of traffic with value at least �. When the network has a single source-sink
pair, we drop the subscript (s, t). We use D to denote the “demand suite”, or
the collection of these demand curves, one for each source-sink pair. Without
loss of generality, the minimum value is 1, that is, D(s,t)(1) = Ftot

s,t for all pairs
(s, t), and we use L to denote the maximum value—L = sup{�|D(s,t)(�) > 0}.

We extend the classic Bertrand model of competition to network pricing. The
NPG has two stages. In the first stage, each ISP (edge) e picks a price πe. In the
second stage each user picks paths between its source and destination to send
its traffic. We assume that users can split their traffic into infinitesimally small
chunks, and spread it across multiple paths, or send fractional amounts of traffic.
Each user picks paths to maximize her utility, u = v −minP

∑
e∈P πe, where the

minimum is over all paths P from the user’s source to its destination, and v is
its value (or sends no flow if the minimum total price is larger than its value v).
2 We aggregate these curves over all users with the same source and destination pairs.
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This selection of paths determines the amount of traffic fe on each edge. ISP e’s
utility is given by feπe if fe ≤ ce, and −∞ otherwise. ISPs are selfish and set
prices to maximize their utility.

A given state in a game (in this case consisting of a set of prices and flow) is
called a Nash equilibrium if no agent wants to deviate from it unilaterally so as
to improve its own utility. Note that in the NPG, users are price-takers, that is,
they merely follow a best response to the prices set by ISPs, and the responses
of different users are decoupled from each other. Therefore, given the first stage
strategies, the second stage strategies always form a Nash equilibrium, and the
dynamics of the system is determined primarily by the first stage game.

Note that by sending fractional flow, or splitting their traffic across multiple
paths, users effectively mimick randomized strategies. ISPs, on the other hand,
always pick a deterministic strategy (committing to a fixed price). Therefore,
(pure strategy) equilibria do not always exist in these games (indeed in the full
version of this paper [4] we present an example that admits no pure strategy
equilibria). Nevertheless we identify some cases in which equilibria do exist, and
characterize their performance in those cases.

Note also that if the flow f resulting from the users’ strategies in the second
stage is such that the capacity constraint on an edge e is violated, users using
e still obtain their value from routing their flow, while e incurs a large penalty.
Intuitively, the edge e is forced to compensate those users that are denied service
due to capacity constraints, for not honoring its commitment to serve them at
its declared price. This situation cannot arise at an equilibrium – any edge with
a violated capacity can improve its profit by increasing the price charged by it.

We evaluate the Nash equilibria of these games with respect to two objectives—
social value and profit. The social value of a state S of the network, Val(S), is
defined to be the total utility of all the agents in the system, specifically, the total
value obtained by all the users, minus the prices paid by the users, plus the profits
(prices) earned by all the ISPs. Since prices are endogenous to the game, this is
equivalent to the total value obtained by all the users, and we will use this latter
expression to evaluate it throughout the paper. The worst such value over all Nash
equilibria is captured by the price of anarchy: the price of anarchy of the NPG
with respect to social value, POAVal, is defined to be the minimum over all Nash
equilibria S ∈ N of the ratio of the social value of the equilibrium to the optimal
achievable value Val∗:

POAVal(G, D) =
minS∈N (G,D) Val(S)

Val∗

Here, Val∗ is the maximum total value achievable while satisfying all the capacity
constraints in the network (this can be computed by a simple flow LP). Likewise,
POAPro denotes the price of anarchy with respect to profit:

POAPro(G, D) =
minS∈N (G,D) Pro(S)

Pro∗

Here Pro(S) is the total utility of all the ISPs, or the total payment made by
all users. The optimal profit Pro∗ is defined to be the maximum profit over all
states in which users are at equilibrium, and capacity constraints are satisfied.
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In instances with a large price of anarchy, we also study the performance of
the best Nash equilibria and provide lower bounds for it. The price of stability
of a game is defined to be the maximum over all Nash equilbria in the game
of the ratio of the value of the equilibrium to the optimal achievable value. We
use POSVal and POSPro to denote the price of stability with respect to social
value and profit respectively.

3 The Network Pricing Game in Single-Source
Single-Sink Networks

In this section we study the network pricing game in single commodity networks,
that is, instances in which every customer has the same source and sink. As
the single-item case suggests, the equilibrium behavior of the NPG depends
on whether or not there is competition in the network. However, the extent
of competition, specifically the number of monopolies, also plays an important
role. In the context of a network (or a general combinatorial market), an edge
monopolizes over a consumer if all the paths (bundles of items) desired by the
customer contain the edge.

Definition 1. An edge in a given network is called a monopoly if its removal
causes the source of a commodity to be disconnected from its sink.

No monopoly. In the absence of monopolies, the behavior of the network is
analogous to competition in single-item markets. Specifically, competition drives
down prices and enables higher usage of the network, thereby obtaining good
social value but poor profit.

Theorem 1. In a single commodity network with no monopolies, POAVal = 1.
Furthermore, there exist instances with POSPro = Θ(L).

Proof. We first note that an equilibrium supporting the optimal flow (w.r.t.
social value) always exists: consider an optimal flow of amount, say, f in the
network; let p = D−1(f) if the flow saturates the network, and 0 otherwise; pick
an arbitrary min-cut, and assign a price of p to every edge in the min-cut. These
prices, along with the flow f form an equilibrium: edges cannot improve their
profits by increasing prices unilaterally, because their customers can switch to a
different cheaper path, and, edges with non-zero prices are saturated and cannot
gain customers by lowering their price.

For a bound on the price of anarchy, consider any equilibrium in the given
instance, and suppose that the network is not saturated. If all the traffic is
admitted, then POAVal = 1. Otherwise, there exists an unsaturated edge, say
e, with non-zero price that does not carry all of the admitted flow (if there exists
a zero-price unsaturated path, then some users are playing suboptimally). Then
there is a source-sink path P carrying flow with e �∈ P . Edge e can then improve
its profit by lowering its price infinitesimally and grabbing some of the flow on
path P which is not among the cheapest paths any more. This contradicts the
fact that the network is in equilibrium.
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For the second part, we consider a network with unbounded capacity. Our
argument above (that POAVal = 1) implies that in any equilibrium all the
traffic is admitted. Therefore the price charged to each user is at most 1 (the
minimum value), and the total profit of the network is Ftot

s,t . On the other hand,
suppose that all but an infinitessimal fraction of the users have value L, then a
solution admitting only the high-value set of users (and charging a price of L to
each user) has net profit almost LFtot

s,t .

Single monopoly. As we show below, the best-case and worst-case performance
of single monopoly networks is identical to that of single-link networks.

Theorem 2. In a single commodity network with 1 monopoly, POAPro = 1 and
POAVal = O(log L). Moreover, there exist instances with POSVal = Θ(log L).

Proof. The second part follows by considering the 1/x demand curve from 1 to
L in a single link unbounded capacity network. The single link then behaves like
a monopolist, and w.l.o.g. charges a price of L, resulting in a social value of 1.
Adding an infinitesimal point mass in the demand curve at L breaks ties among
prices and ensures that this is the only equilibrium. The optimal social value,
on the other hand, is the total value of all users

∫ L
1 1/xdx = log L.

For the first part of the theorem, we first note that in a single-link network (i.e.
a single-item market), the above example is essentially the worst. Specifically,
if at equilibrium an x amount of flow is admitted, and each user pays a price
of p, then for each value q < p, D(s,t)(q) ≤ px/q. Therefore, the total value
foregone from not routing flow with value less than p is at most

∫ p

1 (px/q−x)dq <
px log p < px log L. With respect to profit, a single-link network is optimal by
definition. We omit the straightforward extension to general single commodity
networks (see [4]).

Multiple monopolies. The performance of the game with multiple monopolies
degrades significantly – the price of anarchy can be unbounded even with 2
monopolies. As we show below, the best Nash equilibrium behaves slightly better
but is still a polynomial factor worse than an optimal solution.

Theorem 3. For every B, there exists a single-source single-sink instance of
the NPG containing 2 monopolies, with L = 2, and POAVal,POAPro = Ω(B).

Proof. Consider a network with a single source s, a single sink t, an intermediate
node v, and two unit-capacity edges (s, v) and (v, t). Ftot

s,t = 1; all but a 1/B
fraction of the traffic has a value of 1; the rest has a value of 2. We claim
that πe = 1 for each of the edges is an equilibrium: there is no incentive to
increase price (and lose all customers), and, in order to get more customers,
unilaterally any edge must decrease its price to 0. The social value and profit of
this equilibrium are both 2/B, whereas the optimal social value (with πe = 1/2
for both the edges) is 1 + 1/B and the optimal profit is 1.

Theorem 4. There exists a family of single-commodity instances with POSVal,
POSPro = Ω(Lk−1), where k is the number of monopolies. Moreover, in all
single-commodity graphs with k > 1 monopolies, POSVal,POSPro = O(Lk−1).
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Proof. For the first part of the theorem, we consider a graph containing a single
source-sink path with k edges and unbounded capacities. There are n users,
each endowed with a unit flow. The ith user has value vi with vi recursively
defined: v1 = 2, v2 = (1 − 1

n ) 2k
2k+1 , vi+1 = (1 − 1

n ) ik
ik+1vi for i ∈ [3, n]. (That is,

vi+1 = (1− 1
n )i

∏
j≤i

kj
kj+1 for i > 1.) This network contains a single equilibrium,

one at which each edge charges a price of v1/k = 2/k, and admits a single user.
Since the network has unbounded capacity, the optimal solution (for social

value) admits the entire flow. Some algebra shows that vn = Θ(n−1/k). So, the
social value of the optimum is

∑
i vi = Ω(n1−1/k) = Ω(Lk−1), as L = v1/vn =

Θ(n1/k). The total achievable profit is also at least nvn = Ω(n1−1/k) = Ω(Lk−1).
On the other hand, the social value of the equilibrium, as well as its profit, is
v1 · 1 = 2. This concludes the proof of the first part of the theorem.

For the second part, let D denote the inverse-demand curve for the network,
i.e., for every x, an x amount of flow has value at least D(x). Without loss of
generality, D(0) = L, D(F ) = 1, where F = Ftot

s,t is the total optimal amount
of flow. Let x∗ = argmaxx≤F {x1/kD(x)}. We claim that the following is an
equilibrium: each monopoly charges a price of p∗ = D(x∗)/k, and each non-
monopoly charges 0. It is obvious that the non-monopolies have no incentive to
increase their price. So, for the rest of the proof, we focus on the monopolies.

Suppose that a monopoly wants to deviate and change its price to p′ = p∗ −
D(x∗)+ D(x′) ≥ 0, for some x′ ∈ [0, F ]. Then, the total price of any source-sink
path is D(x′), and the total amount of flow admitted is no more than x′. The
profit of the monopoly goes from p∗x∗ to at most p′x′, which can be simplified
as follows:

p′x′ =
(

D(x∗)
k

− D(x∗) + D(x′)
)

x′ ≤ D(x∗)x∗

k

(
x′

x∗
(1 − k) + k

(
x′

x∗

)1−1/k
)

<
D(x∗)x∗

k

(
x′

x∗
(1 − k) + k + (k − 1)

x′

x∗
− (k − 1)

)
= p∗x∗

Here we used (1 + ε)α < 1 + αε for all ε > −1 and for all α ∈ (0, 1). This proves
that the agent has no incentive to deviate. It remains to show that this equi-
librium achieves good social welfare. First note that D(F )F 1/k ≤ D(x∗)(x∗)1/k.
Therefore, F ≤ x∗(D(x∗))k. Likewise, ∀y ∈ [0, F ], D(y) ≤ D(x∗)(x∗/y)1/k. So
the total value of flow not admitted by the equilibrium is
∫ y=F

y=x∗
D(y)dy ≤

∫ y=F

y=x∗
D(x∗)(x∗/y)1/kdy =

D(x∗)(x∗)1/k

(1 − 1/k)
(F 1−1/k − (x∗)1−1/k)

≤ (1 − 1/k)−1(D(x∗)kx∗ − D(x∗)x∗) < 2(D(x∗))kx∗

So, the maximum social welfare achievable is strictly less than 2(D(x∗))kx∗ plus
the social value of the above equilibrium, while the equilibrium achieves at least
D(x∗)x∗. The price of stability is therefore no more than 2(D(x∗))k−1 + 1 ≤
3Lk−1. It is easy to see that the same bound holds for profit as well.
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4 Networks with Multiple Sources

Next we study the NPG in graphs with more general traffic matrix. Specifically
different users have different sources, but a common sink. We assume that the
network is a DAG with a single sink, and focus on instances that contain no
monopolies3. Theorem 1 already shows that the price of stability with respect
to profit can be quite large in this case. The main question we address here
is whether competition drives down prices and enables a near socially optimal
equilibrium just as in the single-commodity case.

The results are surprisingly pessimistic. We find that there are networks with
no pure equilibria. (See [4] for proofs of the next two theorems.)

Theorem 5. There exists a multi-source single-sink instance of the NPG with
no monopolies that does not admit any pure Nash equilibria.

In networks that admit pure equilibria, the price of stability for social value can
be polynomial in L. This can happen (Theorem 6 below) even when the network
in question satisfies a certain strong-competition condition, specifically, (1) there
is sufficient path-choice – from every node in the graph, there are at least two
edge-disjoint paths to the sink, and (2) no edge dominates over a specific user in
terms of the capacity available to that user – removing any single edge reduces
the amount of traffic that any user or group of users can route by only a constant
fraction. We therefore attempt to isolate conditions that lead to a high price of
stability, and find two culprits:

1. Variations in demand curves across users—a very high value low traffic user
can pre-empt a low value high traffic user.

2. Congestion in the network—congestion in one part of the network (owing to
low capacity), can get “carried over” to a different part of the network (in
the form of high prices) due to the ISPs’ selfishness.

Each condition alone can cause the network to have a high price of stability.

Theorem 6. There exists a family of multiple-source single-sink instances sat-
isfying strong competition and containing uniform demand such that POSVal =
Ω(poly L, poly N), where N is the size of the network. There exists a family
of multiple-source single-sink instances satisfying strong competition and with
sparsity 1 such that POSVal = Ω(poly L, poly N).

Here uniformity of demand and sparsity defined as follows.

Definition 2. An instance of the NPG, (G, D), with multiple commodities and
a single sink t is said to contain uniform demand if there exists a demand curve
D such that for all s, D(s,t) is either zero, or equal to a scalar Fs,t times D.

Definition 3. Given a capacitated graph and a demand matrix, the sparsity of
a cut in the graph with respect to the demand is the ratio of the total capacity
of the cut to the total demand between all pairs (s, t) separated by the cut. The
sparsity of the graph is the minimum of these sparsities over all cuts in the graph.
3 We mainly give strong lower bounds on the price of stability. Naturally, the same

bounds hold for instances containing monopolies.
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Fortunately, in the absence of the two conditions above, the network behaves
well. In particular, we consider a certain class of DAGs called traffic-spreaders
in which equilibria are guaranteed to exist, and show that when demand is
uniform, the price of stability with respect to the social value is at most 1/α,
where α is the sparsity of the network. We conjecture that this bound on the
price of stability holds for all DAGs that admit pure equilibria.

Definition 4. A DAG with sink t is said to be a traffic spreader if for every
node v in the graph, and every two distinct paths P1 and P2 from v to t, any
maximal common subpath of P1 and P2 is a prefix of both the paths.

Theorem 7. Let (G, D) be a uniform-demand instance of the NPG where G
is a traffic spreader and contains no monopolies, and all sources in the graph
are leaves, that is, their in-degree is 0. Then (G, D) always admits a pure Nash
equilibrium, and POSVal ≤ 1/α, where α is the sparsity of G with respect to D.

We remark that for Theorem 7, we do not require the instance to satisfy strong
competition. This indicates that the amount of competition in the network has
lesser influence on its performance compared to its traffic distribution.

Proof of Theorem 7. We begin with some notation. Given a graph G and a flow
f in G satisfying capacity constraints, G[f ] is the residual graph with capacities
c′e = ce − fe. For a graph G = (V, E), set S of nodes, and set E′ of edges, we use
G \ S to denote (V \ S, E[V \ S]), and G \ E′ to denote (V, E \ E′).

Given an instance (G, D), G = (V, E), satisfying the conditions in the theo-
rem, we construct an equilibrium using the algorithm below. Let Fv denote the
total traffic at source v, and D be a demand curve defined such that Dv,t = FvD
for all v. The algorithm crucially exploits the sparse-cut structure of the network.
In particular, we use as subroutine a procedure for computing the maximum con-
current flow in a graph with some “mandatory” demand. We call this procedure
MCFMD (for Maximum Concurrent Flow with Mandatory Demand).

MCFMD takes as input a DAG G with single sink t, a set of sources A with
demands Fv at v ∈ A, and a set of mandatory-demand sources B with demands
Mv at v ∈ B. It returns a cut C and a flow f . Let VC denote the set of nodes
from which t is not reachable in G \ C. The cut C minimizes “sparsity with
mandatory demand” defined as follows:

αM (C) =

∑
e∈C ce −

∑
v∈B∩VC

Mv∑
v∈A∩VC

Fv

The flow f routes the entire demand Mv of sources v ∈ B to t, and an αM (C)
fraction of demands Fv at sources v ∈ A to t. The next lemma asserts the
correctness of this procedure (see [4] for a proof): sparsity is equal to maximum
concurrent flow in DAGs with a single sink, even with mandatory demands.

Lemma 1. Let (G, A, B) be an instance for MCFMD, and α = αM (C) be the
sparsity of the cut C produced by the procedure. Then, there exists a flow in G
that satisfies all capacity constraints, routes an Mv amount of flow from every
v ∈ B to t, an αFv amount of flow from every v ∈ A to t, and saturates C.
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Armed with this procedure, our algorithm for constructing an equilibrium is as
follows. (Note that we do not care about computational efficiency here.)

1. Set G1 = G, V1 = V , C = ∅, B1 = ∅, i = 1. Let A1 = A be the set of
all sources in the instance. Let f denote a partial flow in the graph at any
instant; initialize f to 0 at each edge.

2. Repeat until Ai is empty:
(a) Run the procedure MCFMD on Gi with demands Ai and mandatory

demands Bi. Let Ci be the resulting cut and f ′i be the resulting flow.
Let αi = αM (Ci), Xi = Ai ∩VCi , Yi = Bi ∩VCi , and C = C ∪Ci. Define
Vi+1 to be the set of nodes with paths to t in G \ C, and Si to be the
subset of V \ Vi+1 reachable from Xi or Yi in G.

(b) Construct a partial flow from f ′i as follows. Let B′ = {v : ∃u with (u →
v) ∈ Ci}, and for all v ∈ B′ let Mv =

∑
u:(u→v)∈Ci

c(u,v). Let fi be a
partial flow of amount αiFv from each v ∈ Xi, and amount Mv from each
v ∈ Yi to B′, given by the prefices of some of the flow paths in f ′i . Let
f = f + fi, Ai+1 = Ai \ Xi, and Bi+1 = (B \ Yi) ∪ B′. Set �i = D−1(αi).

(c) Let Gi+1 = Gi \ Si; repeat for i = i + 1.
3. Route all the flow from Bi to t in Gi satisfying capacity constraints. Call

this flow fi, and set f = f + fi.
4. Assign a “height” to every node v in the graph as follows: if there exists an

i such that v ∈ Si, then h(v) = mini:v∈Si{�i}; if there is no such i, then
h(v) = 0. Furthermore, h(t) = 0 for the sink t.

5. For every edge e = (u → v), let πe = max{h(u) − h(v), 0}.

Let I be the final value of the index i. Recall that VI is the set of nodes that can
reach t in GI . We will show that (π, f) is a Nash equilibrium. This immediately
implies the result, because as we argue below, f admits an αi ≥ α fraction of the
most valuable traffic from all sources in Xi. We first state some facts regarding
the heights h(v) and the flow f (see [4] for the proofs of these lemmas).

Lemma 2. f is a valid flow and routes an αi fraction of the traffic from all
v ∈ Xi to t. Furthermore, for every i, 1 < i < I, in the above construction,
αi ≥ αi−1, and α1 > α, where α is the sparsity of the graph G.

Lemma 3. V (Gi) = Vi for all i ≤ I, and h(v) = 0 if and only if v ∈ VI . For
any source v with v ∈ Xi, h(v) = �i.

Lemma 4. For every pair of nodes u and v with h(u), h(v) > 0 such that there
is a directed path from u to v in G, h(u) ≥ h(v). Furthermore, for every node v
with h(v) > 0, every path from v to t is fully saturated under the flow f .

Lemma 5. For every source v with v ∈ Xi, every path from v to t has total
price at least �i. Furthermore, there exist at least two edge-disjoint paths P1 and
P2 from v to t such that

∑
e∈P1

πe =
∑

e∈P2
πe = �i.
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Lemma 6. Let P be a flow carrying path from v ∈ Xi to t. Then
∑

e∈P πe = �i.

Finally, we claim that (π, f) is an equilibrium. First observe that we route an
αiFv amount of flow for every v in Xi. Each chunk of traffic originating at v
that gets routed has value at least D−1(αi) = �i. Therefore, Lemmas 5 and 6
imply that users follow best response. Next, consider any edge e = (u → v).
Note that e has no incentive to increase its price – Lemma 5 ensures that all the
traffic on this edge has an alternate path of equal total price. Finally, if the edge
has non-zero price, it can gain from lowering its price only if this increases the
traffic through it. Let C′ be the mincut between u and t. Note that h(u) > 0.
Lemma 4 implies that the cut C′ is saturated. Suppose that e has non-zero
residual capacity (i.e. e �∈ C′) and by lowering its price, the edge gains extra
traffic without violating the capacity of the cut C′. This means that the extra
traffic on e was previously getting routed along a path that crosses the cut C′,
and furthermore shares a source with the edge e. This contradicts the fact that
the network is a traffic spreader. Therefore, no edge has an incentive to deviate.

5 Discussion and Open Questions

We consider a simplistic model for network pricing. A more realistic model should
take into account quality of service requirements of the users, which may be
manifested in the form of different values for different paths between the same
source-destination pairs. In general combinatorial markets it would also be in-
teresting to consider the effect of production costs on the pricing game, and
this may change the behavior of the market considerably. Finally, an alternate
model of competition in two-sided markets is for the sellers to commit to produc-
ing certain quantities of their product, and allowing market forces to determine
the demand and prices. This two-stage game, known as “Cournot competition”,
may lead to better or worse equilibria compared to Bertrand competition. We
include a brief discussion of these extensions in the full version of this paper [4].
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Abstract. In a combinatorial exchange the goal is to find a feasible
trade between potential buyers and sellers requesting and offering bun-
dles of indivisible goods. We investigate the approximability of several
optimization objectives in this setting and show that the problems of
surplus and trade volume maximization are inapproximable even with
free disposal and even if each agent’s bundle is of size at most 3. In light
of the negative results for surplus maximization we consider the comple-
mentary goal of social cost minimization and present tight approximation
results for this scenario. Considering the more general supply chain prob-
lem, in which each agent can be a seller and buyer simultaneously, we
prove that social cost minimization remains inapproximable even with
bundles of size 3, yet becomes polynomial time solvable for agents trad-
ing bundles of size 1 or 2. This yields a complete characterization of
the approximability of supply chain and combinatorial exchange prob-
lems based on the size of traded bundles. We finally briefly address the
problem of exchanges in strategic settings.

1 Introduction

Following the emergence of the Internet as the world’s foremost market place,
much interest has been paid to problems naturally arising in a context where
large scale economic problems need to be solved efficiently by computers. Many
of these problems’ essential difficulties can be captured by the class of combi-
natorial auction problems, which have in turn received a lot of attention from
both practitioners and theoreticians in computer science. A major drawback of
this model of abstraction, however, is the fact that it implicitly assumes a mo-
nopolistic market structure. While practitioners have therefore turned to more
general (and more complex) supply chain models, these have not been subject
to a rigorous theoretical investigation.

In this paper we consider computational aspects of combinatorial exchanges
(CE’s) and their extension to general supply chain problems. The CE model is
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a generalization of combinatorial auctions, which departs from the assumption
that a monopolist seller holds a set of products which are of no actual value to
him, as the welfare of the outcome depends only on buyers’ valuations. Instead,
it is assumed that apart from the set of buyers interested in purchasing bundles
of items from the auctioneer, he also has access to a number of sellers offering
to supply different bundles of products at a certain price. Thus, the problem
we are faced with is to simultaneously run both a forward and reverse auction,
which should return a feasible trade leaving a reasonable profit margin for the
auctioneer. In the more general supply chain model, we drop the assumption
that each trader is either a seller or a buyer, but may in fact offer some bundle
of products under the condition that he is supplied with a different bundle and
some appropriate side payment in return.

Combinatorial auctions have drawn much recent research attention (see for
example the book by Cramton, Shoham and Steinberg [5]), and their computa-
tional and communication hardness are well understood. Lehmann, O’Callaghan
and Shoham [7] and Sandholm [15] have shown that combinatorial auctions are
hard to approximate within min(m1/2−ε, n1−ε) for any ε > 0, unless P=NP,
where m and n denote the numbers of products and bidders, respectively. Nisan
and Segal [10] present communication lower bounds for combinatorial auctions.
They show that if 2 buyers have general valuations exponential communication
(in m) is required to find an allocation with maximum surplus, or even a 21−ε-
approximation. Additionally, Nisan [9] shows that for n buyers distinguishing the
case that the surplus is 1 and the case that the surplus is n requires exponential
communication in m, assuming that m1/2−ε > n. Clearly, all these hardness re-
sults carry to the CE case, as has been observed before. It turns out, however,
that exchanges are even essentially more difficult than combinatorial auctions
even in quite restricted cases. On the other hand, they nevertheless allow for a
number of positive results when the problem formulation is chosen carefully.

1.1 Preliminaries

We first describe the CE scenario, which most of the paper will be focused
on. After that, we briefly explain the more general supply chain (SC) scenario.
Assume that we are given a set of agents A = S ∪ B, where the collections
S, B are disjoint sets of sellers and buyers, respectively, with |A| = n. We are
interested in trades that include indivisible products U , where |U| = m. Each
seller i is offering a bundle qi = (q1

i , . . . , qm
i ) of products at some price vi ∈ R+.

Buyer j is requesting to buy the bundle qj ∈ N
m at price vj ∈ R+. By qe

i , q
e
j ∈ N

we refer to the number of copies of product e ∈ U offered by seller i or requested
by buyer j. For agent k ∈ A, her bundle is a set if for all e ∈ U , qe

k ∈ {0, 1}.
A feasible trade T = (S, B), S ⊆ S and B ⊆ B, is a selection of sellers and

buyers, such that ∑

i∈S

qe
i ≥

∑

j∈B

qe
j for all e ∈ U ,

i.e., for every product e ∈ U the supply provided by sellers in S is sufficient
to satisfy the requests of all buyers in B. Note, that we assume free disposal
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here, i.e., supply and demand do not have to match exactly. We say that trade
T = (S, B) has surplus [volume]

sur(T ) =
∑

j∈B

vj −
∑

i∈S

vi vol(T ) =
∑

e∈U

∑

j∈B

qe
j .

The CE surplus problem is the problem of finding a trade which maximizes the
surplus. The CE volume problem is the problem of finding a trade which max-
imizes the volume, subject to positive surplus. By CE positive surplus problem
we refer to the problem variation in which we simply want to find any feasible
trade with strictly positive surplus.

Following [14], as another objective we define the social cost of trade T as

cost(T ) =
∑

j /∈B

vj +
∑

i∈S

vi,

i.e., the cost is the sum of valuations of the trading sellers and non-trading
buyers. Note that for every instance, the sum of the social cost and the surplus
is constant, cost(T )+ sur(T ) =

∑
j∈B vj . Thus, a trade maximizes the surplus if

and only if it minimizes the social cost. We consider the problem of minimizing
the social cost subject to non-negative surplus, which we call the CE social
cost problem. From a computational perspective, the social cost objective is
preferable, because it allows us to derive approximation algorithms and express
their approximation ratio in terms of a multiplicative factor, which is generally
difficult if we are faced with any mixed sign objective and in fact turns out to
be impossible in the case of CE’s.

A natural generalization of the CE problem is obtained if we allow agents that
are both sellers and buyers simultaneously and confront our algorithm with offers
of the form “given bundle A I will supply bundle B for an additional payment of
x”. Formally, in the supply chain (SC) problem we are given a set A of n agents.
Agent k is represented by ({δe

k}e∈U , vk), where δe
k ∈ Z denotes the number of

copies of product e requested or supplied by agent k (modelled as δe
k ≥ 0 or

δe
k < 0) and vk ∈ R is the additional payment offered or requested (modelled as

vk ≥ 0 or vk < 0). The objectives of surplus or volume maximization generalize
naturally to the supply chain scenario. However, we need to adapt the notion of
social cost to fit our generalized type of agents. We let A+ = {k | vk > 0} and
A− = A\A+. Thus, A+ is the set of agents that have a positive utility for being
included in the trade, agents in A− incur a cost when included for which they
need to be repaid. We can then naturally define the social cost of a trade T ⊆ A
as

cost(T ) =
∑

k∈A+\T
vk −

∑

k∈T∩A−

vk.

Finally, let us introduce some more notation that will come in handy. For
a given instance I = (S, B, v) of the CE problem we let T �sur(I) refer to the
surplus maximizing trade. The trade computed by some algorithm A on the
same instance is denoted as A(I). Analogous notation is used in the context of
volume maximization or cost minimization, respectively.
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1.2 Our Results

To our knowledge, the only previous results regarding approximability of CE’s
are the observations that exchanges are as hard to approximate as combinatorial
auctions, of which they are a generalization, and are inapproximable1 in the
special case of no free disposal [17].

We remove the restrictive assumption of no free disposal and show that the
CE surplus and volume maximization problems are nevertheless inapproximable,
unless P = NP . They remain inapproximable even on instances in which each
agent’s bundle is a set of size at most 3, and when restricting to multi-unit ex-
changes, in which only a single type of product is traded. Our inapproximability
result for bounded size sets is based on a reduction to a family of CE instances
with sets of size at most 3 that has an interesting property. Once the quantity in
which each product is bought is decided upon, the packing and covering problems
defined by these quantities (finding the trading buyers and sellers, respectively)
are polynomial time solvable. This implies that CE has inherent hardness that
does not stem from the hardness of packing and covering alone. Finally, we
prove that the problem remains inapproximable even when we restrict ourselves
to instances with large packing to covering factor, i.e., in cases where there is
a large gain from the optimal trade, and derive complementary inapproxima-
bility results for exchanges with sub-exponential communication based on the
communication lower bounds of [9,10].

Sandholm and Suri [16] present an anytime algorithm for combinatorial auc-
tions which also extends to CE’s. Parkes et al. [11] have recently presented ICE,
an iterative CE. Our hardness results have implications for the worst case perfor-
mance of these algorithms and emphasize the need for algorithms with provable
performance guarantees. We show that, focusing on the social cost objective
rather than surplus or trade volume maximization, such algorithmic results can
be obtained. More formally, we show that the social cost can be approximated
within a factor of Hk, where k is the maximal size of any bundle and that this is
essentially tight when agents are bidding for sets, as it is hard to achieve approx-
imation guarantee (1 − o(1))Hm, unless NP ⊆ DTIME(nO(log log n)). Similarly,
for the relevant case of a single type of product (multi-unit exchange) we show
that social cost minimization is NP-hard yet allows for an FPTAS.

In light of these positive results, we ask whether the more general supply
chain social cost problem allows approximate social cost minimization, as well.
It turns out that this is not the case and, in fact, social cost minimization in the
supply chain scenario is inapproximable, even with bundles of size at most 3.
This is interesting, as it is the first formal result separating CE’s from the more
general supply chain scenario. We then consider the special case in which agents
are restricted to sets of size 1 or 2. While this case is polynomially solvable for
combinatorial auctions, it was unknown whether this is true for CE’s. We prove
here that it holds, in fact, even for the supply chain scenario. Our algorithm works
1 Inapproximable within any factor that is a polynomially computable function of n

and m, and even if we allow for an additive term that is a polynomially computable
function of n and m.
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by reducing the problem to a weighted b-matching problem through a number
of transformations and reformulation in terms of the social cost objective. This
also shows that our hardness result for supply chains with sets of size 3 is tight.

Finally, although the computational problem of social cost minimization is
much easier than surplus maximization, we show that there is another problem
that arises in strategic settings, even when computation is not a problem at all.
We move to consider the case that agents have privately known values for their
bundles and we need to elicit this information from them via a truthful mecha-
nism. A classical result by Myerson and Satterthwaite [8] shows that for bilateral
trade, any mechanism that is truthful, individually rational and budget-balanced
must sometimes be inefficient. This implies that a truthful, individually rational
and budget-balanced mechanism cannot always minimize the social cost. We ex-
tend this result and show that for any constant α ≥ 1, α-approximation for social
cost is impossible. Circumventing the Myerson and Satterthwaite impossibility
result [8] for exchanges has been the subject of several papers. Parkes et al. [12]
enforce budget-balance as a hard constraint, and explore payment rules that are
fairly efficient and fairly truthful. On the other hand, Babaioff and Walsh [2] con-
sider the problem of supply chains and present a truthful and budget-balanced
mechanism with efficiency which depends on the size of the efficient trade.

The rest of the paper is organized as follows. Section 2 presents our inap-
proximability results for surplus and volume maximization. Section 3 presents
approximation algorithms as well as inapproximability results for social cost
minimization. Section 4 deals with supply chain problems. Finally, Section 5
shows that economic considerations prevent mechanisms that achieve social cost
approximation. Most of the proofs are omitted from this extended abstract due
to space limitations.

2 Surplus and Volume Inapproximability

We start by showing a number of strong inapproximability results for both sur-
plus and volume maximization in CE’s. Section 2.1 derives results for the single-
minded setting under standard complexity theoretic assumptions. Section 2.2
presents results for general agents in terms of communication complexity.

2.1 Computational Hardness

We show that both the CE surplus and volume problems do not allow polynomial
time approximation algorithms with any reasonable approximation guarantee.
This is formalized in the following definition.

Definition 1. Let α, β : N × N → N be any polynomial-time computable func-
tions. The CE surplus problem is approximable (for family of instances F) if
for some α, β there exists a poly-time approximation algorithm A, such that
sur(T �

sur(I)) ≤ α(n, m) · sur(A(I)) + β(n, m) holds on every problem instance
I ∈ F . The CE surplus problem is inapproximable if it is not approximable.
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Approximability in the volume maximization and social cost minimization case
is defined analogously. We are interested in a very natural restricted class of
families of instances.

Definition 2. The family of instances F is rational, if all values vi are rational
numbers. F is scalable if it is closed under scaling of agents’ valuations, i.e., if
instance I = (S, B, v) ∈ F then I ′ = (S, B, γ · v) ∈ F for any rational γ > 0.

It turns out that for the families of instances defined above inapproximability
can be derived from the fact that detecting any trade with positive surplus or
volume is hard in itself.

Lemma 1. If the CE positive surplus problem for a rational and scalable fam-
ily F is NP-hard then the CE surplus (volume) problem for the family F is
inapproximable, unless P = NP .

Theorem 1. The CE surplus (volume) problem is inapproximable, unless P =
NP . It remains inapproximable under this assumption even for families F of
instances with (1) only sets (qe

k ∈ {0, 1}) of size at most 3 (
∑

e∈U qe
k ≤ 3 for

every agent k) or (2) only one type of product (multi-unit exchange, |U| = 1).

Lemma 2. The CE positive surplus problem for the family F of instances with
only sets (qe

k ∈ {0, 1} ∀k ∈ A, e ∈ U) of size at most 3 (
∑

e∈U qe
k ≤ 3 ∀k ∈ A) is

NP-hard.
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Fig. 1. Reduction from
the proof of Lemma 2

Sketch of Proof. We show a reduction from the set
packing problem, which is known to be NP-hard [6]
even for sets of size at most 3. Let an unweighted set
packing instance S1, . . . , Sn ⊆ U , |U| = m, be given
and assume that |Sj | ≤ 3 for all j. We ask whether a
collection P ⊆ {1, . . . , n} of sets with Si ∩ Sj = ∅ for
all i, j ∈ P and

⋃
i∈P Si = U exists.

Figure 1 illustrates the construction of the resulting
CE instance. Points represent goods, ellipses represent
sets of sellers and buyers. Sellers’ sets are shaded. The
ground set U ′ consists of two independent sets of goods
each of which corresponds to the set packing ground
set U and is supplied by sellers of type s (see Fig. 1),
plus some additional goods corresponding to each set
in the set packing instance. For a set Sj of size 3 we
define 3 special goods supplied by a designated seller sj . Three buyers b1

j , b2
j and

b3
j request one of these special products plus both products corresponding to one

of the elements in set Sj each. For sets of size 1 or 2 the number of special goods
is reduced accordingly.

Let now |U ′| = τ denote the number of products in the CE instance and define
all valuations, such that every seller charges a price per item of 1, while buyers
offer τ/(τ−1) per product they request. The result follows from the following two
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observations. First, by the choice of valuations it holds that in every trade with
positive surplus supply and demand for each product match exactly. Second, by
the way buyers and sellers are entangled in the construction (see Fig. 1), any
such trade must involve all products corresponding to the ground set of the set
packing instance. �

Lemma 3. The CE positive surplus problem for the family F of instances with
only a single type of good (multi-unit exchange problem) is NP-hard.

Finally, we consider cases where there are relatively large gains from the trade.
Formally, we prove inapproximability for cases with a packing to covering factor
as large as the known set packing lower bound.

Definition 3. For instance I we define the packing to covering factor f(I) as
the maximum value of

∑
i∈B∗ vi/

∑
j∈S∗ vj over all surplus maximizing trades

T �sur(I) = (S∗, B∗).

Theorem 2. There exists a function γ(n, m) = Ω(min{n1−ε, m1/2−ε}) such
that the CE surplus (volume) problem is inapproximable for the family F of
instances which satisfy f(I) ≥ γ(n, m) ∀I ∈ F , unless P=NP.

2.2 Communication Lower Bounds

We next consider the problem of achieving approximation to the CE surplus
(volume) problem when agents have general valuations (buyers are not single-
minded). We show that the two goals cannot be approximated unless exponential
communication in m is used. The inapproximability results hold even in the case
of a single seller holding a set, and buyers that have general monotone valuations
over sets (not multi-sets).

Let G = (1, . . . , 1) be the bundle with one item of each product. Assume
that buyer i has a monotone valuation function vi : 2m → R+. As we assume
that a single seller offers G, the goal of a communication protocol P is to find a
partition of the items to the buyers such that the surplus (volume) is maximized.
We define inapproximability of a communication protocol similar to Definition 1
(with α, β using only m as their argument). Based on a result from Nisan and
Segal [10] we show the following.

Theorem 3. The CE surplus (volume) problem is not approximable in less than(
m

m/2

)
bits. This holds even with only a single seller and two buyers which have

valuations over sets.

Moreover, even if there is a large gain from the surplus maximzing trade the
problem remains inapproximable. Based on a lower bound of Nisan [9] we prove
that when f(I) ≥ n and n < m1/2−ε, any approximation requires exponential
communication in m.

Theorem 4. The CE surplus (volume) problem for instances with packing to
covering factor at least n is not approximable with less than em/(2n2)−5log n bits.
The lower bound holds for randomized and nondeterministic protocols.
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3 Approximating Social Cost

In the following section we present an algorithm that achieves a logarithmic
approximation ratio for the objective of minimizing social cost of the trade. We
additionally present a matching lower bound for the case without multi-sets.
Our algorithm is based on the well known greedy approximation algorithm for
the multi-set multi-cover problem [13]. For the remainder of this section, let
ki =

∑
e∈U qe

i for all i ∈ S, B and define k = maxi ki.
It is known that the greedy approximation algorithm approximates the cov-

ering integer program (CIP) in Figure 2 within Hk, where Hk denotes the k’th
harmonic number. Essentially, Theorem 5 follows from the observation that this
CIP is an exact formulation of the problem of finding a trade of minimal social
cost. We briefly mention that the greedy approximation algorithm we apply is
inherently monotone and, thus, yields a truthful exchange mechanism if com-
bined with an appropriate (critical value based) payment scheme. However, we
point out in Section 5 that there are other reasons that prevent us from obtaining
reasonable truthful mechanisms.

Theorem 5. Algorithm Cover is a Hk-approximation algorithm for the CE
social cost problem.

Proof. We can write the social cost minimization problem as the following integer
linear program, where variables xi, xj ∈ {0, 1} indicate selected sellers and buyers
and constraints (2) ensure feasibility of the trade:

min.
∑

j∈B
vj(1 − xj) +

∑

i∈S
vixi (1)

s.t.
∑

i∈S
qe
i xi ≥

∑

j∈B
qe
jxj ∀e ∈ U (2)

Defining Δe =
∑

j∈B qe
j as in the algorithm we can rewrite

∑
j∈B qe

jxj as Δe −∑
j∈B qe

j (1−xj). Thus, constraints (2) become
∑

i∈S qe
i xi ≥ Δe−

∑
j∈B qe

j (1−xj).
Substituting a new variable yj for 1 − xj for all buyers j ∈ B we obtain exactly
the covering integer program defined in algorithm Cover. By the fact that the
greedy algorithm for multi-set multi-covering [13] has approximation ratio Hk we
immediately obtain that cost(T ) ≤ Hk · cost(T �

cost(I)). If trade T has negative
surplus, we return the empty trade, which has even smaller cost in this case,
instead. �

The following theorem states that the approximation ratio of algorithm Cover

is essentially best possible, as parameter k is trivially upper bounded by the
number m of distinct goods whenever we do not allow multi-sets.

Theorem 6. The CE social cost problem cannot be approximated in polynomial
time better than within (1 − o(1)) ln m, unless NP ⊆ DTIME(nO(log log n)). 2

2 Note that we can replace this assumption by P �= NP if we relax the lower bound
to Ω(lnm) by [1].
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We finally mention that algorithm Cover can in fact be viewed as a generic
reduction of social cost minimization in CE’s to social cost minimization in
reverse combinatorial auctions. Loosely speaking, we first allocate to all buyers
in the exchange scenario their desired bundles at their offered price and then
run a reverse auction algorithm considering all exchange participants as sellers.
If one of the original sellers is selected, we buy her offered bundle. If one of
the original buyers is selected, we buy the previously allocated bundle back from
her. Setting demand for every product as done above, we ensure that the auction
algorithm achieves sufficient supply for all buyers not returning their bundles.

1. Let Δe =
�

j∈B qe
j for all products e ∈ U .

2. Apply the greedy approximation algorithm to the following multi-set
multi-cover problem:

min.
�

i∈S
vixi +

�

j∈B
vjyj

s.t.
�

i∈S
qe

i xi +
�

j∈B
qe

j yj ≥ Δe ∀e ∈ U

xi, yj ∈ {0, 1}

3. Let S = {i | xi = 1}, B = {j | yj = 0}. If
�

j∈B vj ≥
�

i∈S vi return trade
T = (S,B), else return T = (∅, ∅).

Fig. 2. Approximating optimal social cost by algorithm Cover

In the case of multi-unit exchanges (MUs) with only a single type of product,
social cost minimization reduces to solving the min-knapsack (or reverse multi-
unit auction) problem. Similarly to algorithm Cover, we can define algorithm
MinKnapsack by applying the known monotone FPTAS [3] for min-knapsack
to the covering formulation of multi-unit CE’s. Similar to the proof of Theorem
6 a simple reduction from the partition problem (which is known to be NP-hard
[6]) yields optimality of our algorithm’s approximation guarantee.

Theorem 7. Algorithm MinKnapsack is an FPTAS for the MU social cost
problem. Furthermore, the MU social cost problem is NP-hard.

4 The Supply Chain Problem

The objectives of surplus or volume maximization generalize naturally to the
supply chain (SC) scenario. Thus, all the hardness results presented in Section
2.1 hold for this more general model, as well. However, we proceed by showing
that the situation is even worse and that for the supply chain scenario even
(approximate) social cost minimization is out of reach.
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Theorem 8. The SC social cost problem is inapproximable, unless P=NP.

Sketch of Proof. We show a reduction from the decision version of the set packing
problem, which is known to be NP-hard [6]. Let sets S1, . . . , Sn over ground set
U , |U| = m, and integer r be given. We want to decide whether there exist r
non-intersecting sets. We define our supply chain social cost instance over ground
set U ∪ {e∗} as follows. For each set Sj we create a corresponding agent j who
requests set Sj , supplies one copy of e∗ and has valuation vj = −1. Additionally,
we define agent n + 1 who supplies U , requests r copies of e∗ and offers to pay
vn+1 = α(n, m)r+β(n, m)+1. It is then not difficult to check that a non-empty
trade of cost r exists iff the set packing instance has r non-intersecting sets.
Furthermore, the empty trade has cost vn+1 = α(n, m)r + β(n, m) + 1, which
yields the claim. �

r copies of e*

e *

U S

Fig. 3. Gadgets for the proof of Theorem 9. Agents are depicted as rectangles. Shaded
areas indicate supplied products, lines connect products of identical type. Again,
every feasible non-empty trade must contain agents corresponding to at least r non-
intersecting sets.

A natural question to ask is whether similar hardness can be shown for supply
chain instances with bounded size bundles, where we define the size of agent j’s
bundle as

∑
e∈U |δe

j |.

Theorem 9. The SC social cost problem with bundles of size at most 3 is in-
approximable, unless P=NP.

The proof of Theorem 9 is based on the idea of simulating the construction from
the proof of Theorem 8 by agents with bundles of bounded size, as illustrated in
Fig. 3. This hardness result is tight, as we will see below that bundles of size 2
allow exact polynomial time algorithms.

It is well known that combinatorial auctions become solvable in polynomial
time when the participating bidders are restricted to bid on sets of size at most 2,
since in this case the problem can be formulated in terms of a weighted matching
problem. For CE’s or even supply chains, on the other hand, it is not immediate
whether the problem reduces to matching in this case. As we shall see, the social
cost objective turns out to be the key in obtaining such a problem formulation.

Theorem 10. The SC surplus problem with sets of size 1 and 2 can be solved
in polynomial time.
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Theorem 10 is a direct consequence of Lemmas 4, 5 and 6, which describe the
reduction of the supply chain surplus problem to weighted b-matching.

Lemma 4. The SC surplus problem with bundles of size at most k reduces to
the CE surplus problem with bundles of size at most k.

Sketch of Proof. Let an instance of the supply chain surplus problem with agents
A be given and let α =

∑
k∈A+ vk + 1, thus, sur(T �) < α. An agent j that both

offers and requests products at price vj is simulated by seller sj supplying the
same products as j and some new product ej at price α and a buyer bj who
requests ej and the products requested by j at price α + vj . �

Lemma 5. The CE surplus problem with sets of size 1 and 2 reduces to the CE
surplus problem with sets of size 2.

Lemma 5 follows easily by adding some dummy products and traders. Lemma 6
follows by reformulating the social cost minimization problem similar to Theorem
5. Since all sets are of size exactly 2, the resulting ILP formulation is equivalent
to a weighted matching problem, which can be solved in polynomial time [4].

Lemma 6. The CE surplus problem with sets of size 2 can be solved in polyno-
mial time.

5 Non-existence of Mechanisms for Social Cost
Approximation

In this section we discuss the existence of truthful mechanisms for the CE prob-
lem. A mechanism consists of some algorithm A that outputs a trade T = (S, B)
and additional payments (ps

i )i∈S , (pb
j)j∈B determining the payments given to

sellers and collected from buyers, respectively. A mechanism is normalized and
satisfies voluntary participation (VP), if selected buyers never pay more than
their declared valuation, selected sellers are never paid less than their valuation
and payments to and from non-selected agents are 0. Furthermore, a mecha-
nism is budget-balanced (BB) if the sum of payments is always non-negative
(
∑

i∈S ps
i ≤

∑
j∈B pb

j), α-approximately cost-efficient if it computes trades that
are α-approximate with respect to social cost and truthful if it is a dominant
strategy for every agent to declare their true valuations. A classical result by
Myerson and Satterthwaite [8] shows that no truthful 1-approximately cost-
efficient mechanism can satisfy both (VP) and (BB). This result extends to
approximately cost-efficient mechanisms.

Theorem 11. Fix some α ≥ 1 and let M = (A, ps, pb) be a truthful and α-
approximately cost-efficient CE mechanism satisfying VP. Then M is not budget-
balanced.
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Abstract. We consider network congestion problems between TCP
flows and define a new game, the Window-game, which models the prob-
lem of network congestion caused by the competing flows. Analytical
and experimental results show the relevance of the Window-game to the
real TCP game and provide interesting insight on Nash equilibria of the
respective network games. Furthermore, we propose a new algorithmic
queue mechanism, called Prince, which at congestion makes a scape-
goat of the most greedy flow. Preliminary evidence shows that Prince
achieves efficient Nash equilibria while requiring only limited computa-
tional resources.

1 Introduction

Algorithmic problems of networks can be studied from a game-theoretic point
of view. In this context, the flows are considered independent players who seek
to optimize personal utility functions, like the goodput. The mechanism of the
game is determined by the network infrastructure and the policies implemented
at regulating network nodes, like routers and switches. The above described
game theoretic approach has been used for example in [24] and in several recent
works like [3,21].

In this work, we consider congestion problems of competing TCP flows, a
problem that has been addressed in [13,3]. The novelty of our approach lies in
the fact that we focus on the congestion window, a parameter that is in the
core of modern AIMD (Additive-Increase Multiplicative-Decrease) based net-
work algorithms. The size of the congestion window, to a large degree, controls
the speed of transmission [12]. We define the following game, which we call the
Window-game, as an abstraction of the congestion problem. The game is played
synchronously, in one or more rounds. Every flow is a player that selects in each
round the size of its congestion window. The router (the mechanism of the game)
receives the actions of all flows and decides how the capacity is allocated. Based
on how much of the requested window has been satisfied, each flow decides the
size of its congestion window for the next round. The utility of each flow is the
capacity that it obtains from the router in each round.

The motivation for this work is the following question, posed in [13,21]: Of
which game or optimization problem is TCP/IP congestion control the Nash
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equilibrium or optimal solution? The first contribution of this work is the defin-
ition of the Window-game, a natural model that is simple enough to be studied
from an algorithmic and game-theoretic point of view, while at the same time
it captures essential aspects of the real TCP game. In particular, the Window-
game aims to capture the interaction of the window sizes of competing TCP
flows. Compared to the model used in [3], the Window-game approach is sim-
pler and more abstract, but still sufficiently realistic to model real TCP games.
We use the Window-game to study characteristic network congestion games.
Furthermore, the plain structure of the Window-game allows us to study also
one-shot versions of the game.

The second contribution is a new queue policy, called Prince (of Machiavelli),
which aggressively drops packets from the most greedy flow. Under normal con-
ditions, Prince rewards flows that do not exceed their fair share, while it punishes
exemplarily the most greedy flow. Consequently, it drives the network towards
efficient Nash equilibria. It is noteworthy that Prince is simple and efficient
enough to be deployable in the demanding environment of network routers. We
provide preliminary theoretical evidence and experimental results to support the
above claims.

Outline. The rest of the paper is organized as follows: The Window-game is
described in Section 2. An overview of TCP congestion control concepts is given
in Section 3. We consider Window-games where the players are AIMD flows in
Section 4 and Window-games with general flows in Section 5. Finally, a discus-
sion of the results is given in Section 6. Due to lack of space some proofs are
omitted.

2 The Window Game

The main entities of a Window-game is a router with capacity C and a set of
N ≤ C flows, as depicted in Figure 2. The router uses a queue policy to serve
in each round up to C workload. The N flows are the independent players of
the game. Unless otherwise specified, the number N is considered unknown to
the players and to the router. The game consists of one or more rounds. In each
round, every player selects a size w ≤ C for its congestion window and submits
it to the router. The router collects all requests and applies the queue policy to
allocate the capacity to the flows. The common resource is the router’s capacity,
an abstract concept that corresponds to how much load the router can handle
in each round1.

Each round of the game is executed independently; no work is pending at the
start of a round and no work is inherited to a following round. An important
restriction is that the entities (the router and the flows) may use only limited
computational resources like memory and processing power. In particular, the
queue policy of the router should be stateless or use as little state information as
1 To keep the window game simple, we intentionally avoid using the concept of queue-

ing delay, even though it is considered to be a critical parameter of TCP networking.
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Fig. 1. The network model
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Router/MechanismFlows/Players

Fig. 2. One round of the window game

possible. This requirement is imposed by the real time conditions that a router2

must work in. We consider several variations of the Window-game:

AIMD flows. First we consider Window-games where the players are AIMD
flows. This class of Window-games is strongly related to the game(s) cur-
rently played by real TCP flows and exists implicitly in the analysis of [13,3].
Each AIMD flow selects the parameters (α, β) once, for the whole duration
of the game. The utility for each flow is its average goodput (number of
useful packets that are successfully delivered in each round) at steady state.

General flows. Then we consider Window-games where the flows can use ar-
bitrary algorithms to choose their congestion window. We distinguish the
following categories (in order of increasing complexity):
– One-shot game with complete information.
– One-shot game with incomplete information.
– Repeated game with incomplete information.

The action of a general flow is to choose the size of its congestion window for
every round. The utility of the flow is the goodput in one-shot games and
the average goodput at steady state for repeated games.

Assumptions. We make a set of simplifying assumptions similar to the assump-
tions of [3]. The window game is symmetric: All flows use the same network
algorithms and parameters like Round Trip Time (RTT), loss recovery etc. All
packets are of the same size and packet losses are caused only by congestion.

Solution concept. The solution concept for the Window-games is the Nash
Equilibrium (NE) and in particular the Symmetric Nash Equilibrium (SNE).
A good reason to start with SNE is that the analysis appears to be simpler
compared to general NE. It is noteworthy, that the preliminary analytical results
and the experiments show that in many cases there are only symmetric (or
almost symmetric) NE. For each Window-game we study its SNE and discuss
how efficient the network operates at it or them. In certain cases, we search
experimentally for general, not necessarily symmetric, NE.
2 In particular for the router: Stateful network architectures are designed to achieve

fair bandwidth allocation and high utilization, but need to maintain state, manage
buffers, and perform packet scheduling on a per flow basis. Hence, the algorithms
used to support these mechanisms are less scalable and robust than those used in
stateless routers. The stateless substance of nowadays IP networks allows Internet
to scale with both the size of the network and heterogeneous applications and tech-
nologies [25,26].
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3 Congestion Control in TCP

TCP (Transmission Control Protocol) is a window-based transport protocol.
Every TCP-flow has an adjustable window, which is called congestion window,
and uses it to control its transmission rate [12].

Congestion Window. The congestion window defines the maximum number
of outstanding packets that the flow has not yet received acknowledgements
for [14]. Essentially, the congestion window represents the sender’s estimate of
the amount of traffic that the network can absorb without becoming congested.
The most common algorithm to increase or decrease the congestion window of
a TCP-flow is AIMD.

AIMD. AIMD [6] can be considered as a probing algorithm designed to find the
maximal rate at which flows can send packets under current conditions without
incurring packet drops [13]. AIMD flows have two parameters α and β; upon suc-
cess, the window is increased additively by α (in each round), and upon failure,
the window is decreased multiplicatively by a factor β. AIMD is so far considered
to be the optimal choice in the traditional setting of TCP Reno congestion con-
trol and FIFO drop-tail routers. If, however, we consider the developments like
TCP SACK and active queue management, AIMD may no longer be superior [2].

Packet loss. When congestion occurs, packets are dropped. TCP variants use
different loss recovery schemes to recover from packet losses. These schemes incur
costs to the flow and can be thought of as a penalty on the flows which suspend
their normal transmission rate until lost packets are retransmitted. We formed
a penalty-based model, which is similar to the model of [13,3], to define a flow’s
behavior when losses occur.

Penalty Model. Assume that a flow with current window size w has lost L ≥ 1
packets in the last round. Let γ be a small constant (eg. γ = 1). Then:

– Gentle penalty (resembles TCP SACK): The flow reduces its window to
β · w − γ · L in the next round.

– Severe penalty (TCP Tahoe): The flow timeouts for τs rounds and then
continues with a window w = β · w.

– Hybrid penalty (TCP Reno): If L = 1 the flow applies gentle penalty. If
L > 1 a progressive severe penalty is applied. After a timeout of min{2 +
L, 15} rounds, the flow restarts with a window equal to w/L. This penalty
is justified by the experimental results of [7,19].

Router Policies. The router, and in particular the queue algorithm deployed
by the router to allocate the capacity to the flows, defines the mechanism of
the Window-game. We examine the common policies DropTail, RED, MaxMin,
CHOKe and CHOKe+, as well as two variants of the proposed Prince policy
and study their influence on the NE of the Window-game.
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– Drop-tail. In each round, if the sum of the requested windows does not
exceed the capacity C, all packets are served. Otherwise, the router drops a
random sample of packets of size equal to the overflow.

– RED (Random Early Detection) [8]. At overflow RED behaves like
Drop-tail. However, for loads between min threshold minth = 70% and a
max threshold maxth = 100% of the capacity, packets are dropped with
a probability p. In this case we simulate the behavior of the real RED: A
random sample of packets is selected. The selected packets correspond to
positions higher then minth in a supposed queue. Each chosen packet is
dropped with a probability proportional to the router’s load.

– MaxMin. MaxMin is a stateful, fair queue policy [5] that conceptually cor-
responds to applying round-robin [11] for allocating the capacity.

– CHOKe. A stateless algorithm presented in [20]. We implement it in a
way similar to RED. Every chosen packet that is above the min threshold, is
compared to a packet chosen randomly from the packets below the threshold.
The lower threshold, the upper threshold and the dropping probability are
the same as in RED.

– CHOKe+. A variant of CHOKe presented in [3].
– Prince. Prince is an almost stateless queue policy. At congestion, packets

are dropped from the flow with the largest congestion window. If the over-
flow is larger than the window of the most greedy flow, the extra packets
are dropped from the remaining flows with drop-tail. For reasonable over-
flows, flows that do not exceed their fair share do not experience packet loss.
Hence a greedy flow cannot plunder the goodput of other flows. We define
a basic version of Prince that drops packets only in case of overflow and
a RED-inspired version of Prince, called Prince-R, which applies its policy
progressively starting from minth = 70%.

4 Window-Games with AIMD Flows

We discuss three characteristic Window-games between AIMD flows with gentle
penalty, where the flows can choose the value of the α parameter3. We use in
our analysis machinery from [3]. Assume N flows. Each flow i has parameters
(αi, βi). At steady state, let Ni denote the window size after a packet loss, τi the
number of rounds between two packet losses and Li the number of packets lost
at packet loss, for flow i. Then, as in [3],

Ni = β(Ni + (αi · τi − γLi)) ≈ 1/2 · (Ni + (αi · τi)) (1)

3 Experiments with parameter β show that in almost all cases selfish flows will use
for β a value close to 1. The same conclusion can be made from the results in [3].
A simple argument for this behavior is that parameter β is very important when
the flow has to quickly reduce its window size when the network conditions change.
The TCP games examined in this work are rather static: Static bandwidth, static
number of flows, static behavior of all flows during a game and hence there is no real
reason for a flow to be adaptive.



100 P.S. Efraimidis and L. Tsavlidis

and this gives
Ni = αi · τi. (2)

Hence, the goodput of flow i is

Gi = 3/2 · αi · τi. (3)

Drop-tail router with synchronized packet losses and gentle penalty
flows. All flows experience packet loss each time congestion occurs. Hence τ1 =
τ2 = . . . = τn. Let N =

∑n
1 Ni and A =

∑n
i=1 αi. Then N = β(N + A · τ) ⇒

N = A · τ . Since N = β · C = C/2 we get τ = C/(2A). The goodput of flow i is

Gi =
3 · αi

4 · A · C . (4)

Gi of flow i is an increasing function of αi, regardless of the parameters α of the
other flows. Hence, at Nash equilibrium all flows use the maximum possible value
for their parameter α. This is an inefficient SNE, that resembles a ”tragedy of the
commons” situation where N players overuse a common resource, the network.
The above claim is in agreement with the results in [3].

Drop-tail router with non-synchronized packet losses and gentle
penalty flows. When congestion occurs, a random set of packets is dropped.
A flow may or may not experience packet loss. The expected number of pack-
ets that it will lose is proportional to its window size. This case has not been
studied analytically before. The fact that packet loss in not synchronized makes
the analysis harder. Experimental results show that at SNE selfish flows will use
large values for α (Figure 9). An explanation is that since Gi = 3/2 · αi · τi, an
increased value for αi, for example αi = 2, increases the factor αi of Gi. Even
though flow i will experience packet loss more frequently (i.e., τi will decrease)
the overall product αi · τi will still increase. Intuitively, if the product would not
increase then τ2 = 2 · τ1 which cannot be true because in this case flow 2 must
have on average a much larger window than flow 1. Consequently, they cannot
have the same goodput.

We provide a proof for the case of 2 flows. Assume a router with capacity C
and N = 2 flows with parameters α1 = 1, α2 = z · α1 = z and β1 = β2 = 1/2.
We will show that flow 2 achieves a higher goodput by increasing its parameter
α2. At steady state, we know from Equations 2 and 3 that Ni = αi · τi and
Gi = 3/2 · αi · τi, for i = 1, 2. A congestion round, is a round in which a
packet loss occurs. A loss round for flow i is a congestion round in which flow
i experiences packet loss. Simplification: We assume that at congestion only 1
packet is randomly selected and dropped. Hence only one flow will experience
packet loss.

Assume x such that G2 = x · G1. Let wc,i be the average window size of flow
i at congestion rounds. Then wc,1 + wc,2 ≈ C.

Claim. Assume y such that wc,2 = y · wc,1. Then τ1 = y · τ2.

Proof. Let wc,i(k) be the window size of flow i at congestion round k. The proba-
bility that flow 1 experiences packet loss in congestion round k is wc,1(k)/C. Hence
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we can assume a binary random variable X1(k) with mean value wc,1(k)/C. The
total number Ψ1 of loss rounds of flow 1 is Ψ1 =

∑
k X1(k) and the expected total

number of loss rounds after K congestion rounds is S1 = E[Ψ1] = w1/C · K. Us-
ing an appropriate Hoeffding-Chernoff bound of [10, Page 200, Theorem 2.3] we
can show (proof omitted) that with high probability S1 ∈ [(1 − ε)w1/C · K, (1 +
ε)w1/C · K] for some positive constant ε. A sufficient number of rounds K can
make the constant ε arbitrary small. Since we consider steady state, we can ap-
proximate S1 ≈ w1/C · K for large K. We will assume S1 = w1/C · K. Similarly
S2 = w2/C · K and so S2 = y · S1. This gives τ1 = y · τ2.

Since G1 = 3/2 · α1 · τ1 = 3/2 · α1 · τ2
y = 3/2 · α2τ2 · α1

α2y = α1
α2

yG2 ⇒

x =
α2

α1
· 1
y

=
z

y
. (5)

Assuming that congestion rounds occur periodically, every τ +1 rounds, gives
that G2 = w2 − 1/2 · α2 · τ = y · w1 − 1/2 · α2 · τ . Also G1 = w1 − 1/2 · α1 · τ and
G2 = x · G1 = x(w1 − 1/2 · α1 · τ). Combining the above relations gives

y · w1 − 1/2 · α2τ = x · w1 − 1/2 · xα1τ. (6)

Substituting w1 = C/(y + 1) and τ = τ1/(y + 1) and solving for τ1 we get:

τ1 =
2zC/y − 2yC

zα1/y − zα1
. (7)

The goodput of flow 1 can also be calculated from (proof omitted):

G1 =
1

τ + 1

(

(τ + 1) · w1 +
τ∑

i=0

i · αi − (τ + 1)
w1

C

w1

2

)

, (8)

where (τ +1)·w1 is the number of packets in τ +1 rounds starting at a congestion
round,

∑τ
i=0 i·αi is the number of packets due to the increment of the congestion

window and (τ + 1)w1
C are the average packets lost due to a possible loss round.

From this we get :

G1 = w1 − (w1)2

2C
+

α1τ

2
. (9)

Substituting w1 and τ and solving for τ1 gives:

τ1 =
C

y+1 − C
2(y+1)2

3/2 · α1 − α1
4(y+1)

. (10)

We combine equation 7 and 10 to eliminate τ1 and solve for y. The outcome
is the following polynomial:

12y4 + 22y3 + (10 − 16z)y2 + (−20z)y + (−8z) = 0. (11)

We use Mathematica [22] to solve the polynomial. Only one of the four solu-
tions of y is a non-negative real number. The result is a complicated expression



102 P.S. Efraimidis and L. Tsavlidis

10 20 30 40 50
1

2

3

4

5

6

7

8

Fig. 3. y as a function of z

10 20 30 40 50
1

2

3

4

5

6

Fig. 4. x as a function of z

of z [17]. From y and Equation 5 we calculate x. The plots of y and x (Figures 3
and 4) show that both are increasing functions of z.

Since G2 = x · G1, the previous results show that flow 2 will achieve a higher
goodput then flow 1 if z > 1. The total goodput G is G = G1 + G2. Hence,
G2 = (x/(x + 1))G, an increasing function of x. The total goodput G variates
slowly as z increases. Overall, the goodput of flow 2 increases, when parameter
α2 is increased4.

Prince router with gentle penalty flows. We present a preliminary argu-
ment for the effectiveness of Prince. Assume a router with capacity C and N flows
i = 1, . . . , N with parameters (αi, βi = 1/2). At steady state, from Equation 2
we know that: Ni = αi · τi. Let wLi be the average window size of flow i at loss
rounds (of flow i). Then Gi = 3/4 · wLi . At congestion,

∑N
i=1 wi > C. Clearly,

maxi=1,...,N wi > C/N . Consequently, wLi ≥ C/N . Assume that flow i would
have exclusive use of a router with capacity C/N . Then, by playing AIMD its
average lost window wL would be wL ≤ C/N and its goodput 3/4 ·C/N . Hence,
with Prince the AIMD flow achieves a goodput at least as good as in the above
(reasonably fair) case. A flow that does exceed its fair share does not loose any
packet, unless a very large overflow (> maxwi) occurs. Interestingly, the fair
share of flow i is ensured, regardless of the strategies of the competing flows.
This is strong evidence that with Prince, the network operates at an efficient
state.

Experimental Results. We performed an extensive set of experiments with
the network model of Figure 1, with N = 10 AIMD flows, a router with capacity
C = 100, several queue policies and both the gentle and the hybrid penalty
models. Parameter α takes values from the set {1, 2, .., 50} and β from the set
{0.5, 0.51, .., 0.99}. We focus on the results for varying parameter α when β is
the fixed β = 0.5. First, we applied the iterative methodology of [3], we call it
M1, to find SNE of the Window-game. Second, thanks to the simplicity of the
4 The experiments showed that G started below 7/8 · C for balanced flows (z = 1)

and decreased slowly to above 6/8 · C for completely unbalanced flows. An intuitive
argument is that the more unbalanced the flows are, the larger (on average) the
window of the flow that experiences packet loss is, and the larger the reduction
on the overall goodput is. If wL is the window of the flow that loses packet at a
congestion round, then (extreme cases): If w = 1/2 · C at all loss rounds, then
G = 7/8 · C, and if w = C, then G = 6/8 · C.
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window game, we could perform a brute force search on all symmetric profiles to
discover all possible SNE (M2). Finally, we used random non-symmetric starting
points along with a generalization of the procedure of [3] to check if the network
converges to non-symmetric NE (methodology M3). The experiments where
performed with a simulator for the Window-game, which is called NetKnack[17].
NetKnack is implemented in Java and can perform from a simple experiment to
massive series of experiments.

The methodology M1 is executed in iterations. In the first iteration, α1 = 1
for flows F1, . . . , Fn−1 and we search for the best response of flow Fn. Let α1,best

be the value α, with which Fn achieves the best goodput. By convention, a flow
switches to a better value for α only if the average improvement of its utility is
at least 2%. In the next iteration, flows F1, . . . , Fn−1 play with α2 = α1,best and
we search for the best αn in this profile. If at iteration k, αk,best = αk then this
value, denoted by αE , is the SNE of the game.

Every experiment consists of 2200 rounds. The first 200 rounds are used to
allow the flows to reach steady state. To avoid synchronization of flows’ windows
the capacity C is variable and changes randomly, with plus 1 or minus 1 steps,
in the region 100 ± 5 with an average of 100 packets. Finally, the measurements
are averaged over 30 independent executions of each experiment.

We present graphs with the results of experiments where flows i = 1, . . . , 9 use
α = 1 and flow 10 tries all possible values for α10 ∈ {1, . . . , 50}. Figures 5 and 6
show the results for gentle penalty flows and several queue policies. We separated
the graphs into 2 figures for more clarity. From the above figures (gentle penalty)
we see that Prince and MaxMin induce efficient Nash equilibria with small values
for parameter α, while DropTail, RED, CHOKe and CHOKe+ actuate flow 10
to use large values for α. Figures 7 and 8 show that with Prince and MaxMin
the deviator player 10 has clearly suboptimal performance for α10 > 1. Hence,
the profile αi of the first iteration is a NE.

Figures 9 and 10 show the SNE that have been found with the methodol-
ogy M1. We would like to note that depending on experiment parameters, like
capacity C and number of players N, the value α for the NE may differ signifi-
cantly. However, the NE for MaxMin and Prince are more efficient than the NE
of the other policies. For flows with gentle penalty (Figure 9) the results show
that the Nash Equilibria of Prince’s variants are efficient but their per flow loss
rate is not low under current game parameters, while all other policies result in
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Fig. 8. Flows with hybrid penalty (part 2)

parameter   parameter  

Queue Policy goodput 
packets/round

loss 
rate 
(%)

goodput 
packets/round

loss 
rate 
(%)

DropTail 3=50 5,499 78,8 2=0,97 9,841 3,9 
RED 2=49 5,485 78,5 2=0,97 8,309 4,4 

CHOKe 3=49 3,363 86,8 2=0,94 7,761 5,4 
CHOKe+ 3=50 5,431 79,1 2=0,96 8,118 4,5 
Prince-R 2=2 9,987 7,4 3=0,94 9,995 7,3 

Prince 2=4 9,111 13,9 2=0,94 9,993 7,3 
MaxMin 2=0,92 9,998 4,2 

Fig. 9. SNE for gentle penalty

parameter   parameter  
Queue 
Policy goodput 

packets/round

loss 
rate 
(%)

goodput 
packets/round

loss 
rate 
(%)

DropTail 5=6 5,863 6,4 2=0,92 7,999 2,4 
RED 2=4 6,427 4,4 2=0,96 7,591 3,0 

CHOKe 2=2 6,182 3,6 4=0,78 6,674 2,6 
CHOKe+ 2=3 6,650 3,8 2=0,93 7,687 2,9 
Prince-R 1=1 8,693 1,1 2=0,72 8,759 1,6 

Prince 1=1 9,573 2,1 1=0,50 9,617 2,1 
MaxMin 1=1 8,547 1,8 1=0,50 8,503 1,9 

Fig. 10. SNE for hybrid penalty

an extremely undesirable NE. The results for hybrid penalty flows in Figure 10,
show Prince and MaxMin to be preeminent over all other policies. The NE for
DropTail, RED and CHOKe are inefficient and their loss rates are high.

Finally, the brute force search method M2 on Drop-tail and RED with gentle
and hybrid flows revealed more SNE only for Drop-tail with hybrid penalty flows.
The additional SNE use values of parameter α higher than the SNE found with
the methodology M1 and are less efficient. The search with methodology M3
for non-symmetric NE for all queue policies and with both gentle and hybrid
penalty flows, did not reveal any additional NE.

5 Window-Games with Non-AIMD Flows

We relax the restriction that the flows must be AIMD flows and consider the
more general class of games where the flows can use an arbitrary strategy to
choose their congestion window. We discuss the following strategic games:

– One-shot game with complete information.
– One-shot game with incomplete information.
– Repeated game with incomplete information.

One-shot game with complete information. There is one common resource,
every player can request an arbitrary part of this resource and the payoff of every
player depends on the moves of all players. Note that even though this game
bears some similarity with congestion games [23], it does not fit into the class of
(weighted) congestion games (See for example [23,16,15,9]). In the one-shot game
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the cost cannot be a timeout since there is only one round. Assume N flows with
window sizes wi, for i = 1, . . . , N . Let W =

∑
i wi. Let each successful packet

give a profit of 1 and each packet loss cost g ≥ 0.

DropTail. If g = 0 then

utility(N) =
{

wN , if W < C
C·wN

W , if W ≥ C

In both cases, the utility of flow N is an increasing function of wN . There is a
unique SNE, where all flows request the maximum possible value wi = C. The
SNE is very inefficient.

If g > 0, then a SNE can be calculated as follows: Assume the N −1 flows use
wi = y and flow N uses wN = x. The utility for flow N is the average number of
successful packets minus g times the average number of lost packets (we assume
y ≥ C/(N − 1)):

utility(y, x) = x · C

(N − 1)y + x
− g · x · (1 − C

(N − 1)y + x
) (12)

Solving the partial derivative of utility(y, x) with respect to x we get one positive
(and one negative) solution x = y(1 − N) +

√
2Cy(N − 1). Using x = y we get

y = 2C(N−1)
N2 . For example, if C = 100 and N = 10 then the SNE is at w = 18.

Experimental results are presented in Figure 11.

MaxMin. In MaxMin there is a SNE where all flows play wi = C/N . This SNE
is the optimal solution for the Window-game problem. If g > 0, then this is the
only NE of the game. As already discussed, the disadvantage of MaxMin is that
it is a stateful policy.

Prince. If a flow i plays at most its fair share wi ≤ C/N then it will experience
no packet loss. Clearly, the profile where all flows play wi = C/N is a SNE. If
the cost for packet loss is g > 0 then this is the only NE of the game.

One-shot game with incomplete information. If the players do not know
the total number of players N then we get a one-shot game with incomplete
information. We have to distinguish two different cases: If the players have no
prior probabilities on the number of players, or else they have no distribution
information for the unknown number N, then we get a game with no prior
probability or a pre-Bayesian game [4,1].

utility function Queue 
Policy Passed 

packets 
Passed-

0.1*dropped 
Passed- 

0.5*dropped
Passed-
dropped 

DropTail 100 〉 60 26-30 17,18 
RED 100 〉 70 26-28 20 

CHOKe ≈44 ≈ 35  21-22 14-16 
CHOKe+ 100 〉 70 29 17-18 
Prince-R 10,11 10,11 10 10 

Prince  10,11 10,11 10 10 
MaxMin ≥10 10 10 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 11. Window sizes of NE for the one-shot game with complete information
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In a pre-Bayesian game, we can apply ex-post equilibrium or safety-level equi-
librium or robust equilibrium or other related equilibrium concepts. The common
characteristic of these equilibrium concepts is that the player selects a very con-
servative action. In this case the players have to assume that the number of
players N is the maximum possible number N = C. Hence, the players will play
as in the game with complete information with N = C. For strategies like Prince
and MaxMin, the choice of each player would be w = 1. Interestingly, common
TCP implementations, like Reno or Tahoe, use a very conservative initial window
w = 1 when starting a new flow.

However, in practice the flows are likely to have some prior information on the
number N . Note that the TCP-game is a repeated game, which means that the
flow would essentially in most cases5 have an estimation on its fair share (except of
the first round or a round after some serious network change). If the flow has prior
information on the distribution of the unknown parameter N , we get a Bayesian
game. We leave the analysis of this and the following case as future work.

Repeated game with incomplete information. The actual game that a
TCP flow has to play is a repeated game with incomplete information. The
problem has been addressed from an optimization and an on-line algorithm point
of view in [13]. One other approach would be to consider this as a learning game:
There are N = C players and each player chooses either to participate in the
game or to stay idle. The goal of each player is to ”learn” the unknown number
N of players who decide to participate. Each player may change its decision with
a predetermined probability.

6 Discussion

We present a game-theoretic model for the interplay between the congestion
windows of competing TCP flows. Preliminary theoretical and experimental re-
sults show that the model is relevant to the ”real” TCP game. Furthermore we
propose a simple queue policy, called Prince, with a sufficiently small state, and
show that it achieves efficient SNE despite the presence of selfish flows.

Future work includes extending the analysis of the Window-game to the cases
of the game with incomplete information. We also consider the proposed Prince
policy of independent interest and intend to study further possible applications.
We intend to investigate a realistic adaptation and implementation of Prince,
possibly with streaming algorithms, on real TCP networking conditions or with
the network simulator[18].
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Abstract. We analyze the variation of prices in a model of an exchange
market introduced by Kakade et al. [11], in which buyers and sellers
are represented by vertices of a bipartite graph and trade is allowed only
between neighbors. In this model the graph is generated probabilistically,
and each buyer is connected via preferential attachment to v sellers. We
show that even though the tail of the degree distribution of the sellers gets
heavier as v increases, the prices at equilibrium decrease exponentially
with v. This strengthens the intuition that as the number of vendors
available to buyers increases, the prices of goods decrease.

1 Introduction

This paper deals with an economic model of Kakade, Kearns, Ortiz, Pemantle,
and Suri [11], in which goods are exchanged over a social network. As this model
combines two parallel topics – economic models of exchange and social network
theory – we begin by briefly describing each one separately, and then proceed to
examine their union.

Mathematical models of exchange have a long history in economics, starting
with the works of Walras [14] and Fisher [6]. One of the primary notions in
these models is that of a market equilibrium, in which all agents maximize their
utilities subject to budget constraints, and in addition the market clears (i.e.
supply equals demand). In their landmark paper, Arrow and Debreu [1] proved
that such an equilibrium exists under very general conditions.

More recently, research in economics has incorporated networks as models of
interaction in exchange markets (see Jackson [9,8] for overviews of current litera-
ture). Of particular relevance to the current work’s line of research are the papers
of Kranton and Minehart [12] and Corominas-Bosch [4] – both analyze network
effects on an economy in a setting in which agents bargain with neighboring
agents. An additional related paper is that of Kakade et al. [10], in which the
authors present a model that generalizes the frameworks of Walras and Fisher
to include a network of interaction. In their model, each agent is represented by
a vertex on some graph, and two agents are allowed to communicate and trade
only if their respective vertices are connected in the graph.

� This research was supported by grant 1300/05 from the Israel Science Foundation.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 109–120, 2008.
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One particular type of graph that has received significant attention in recent
literature was inspired by an attempt to analyze social networks. Empirical stud-
ies of various social networks, such as the Internet or the World Wide Web, have
shown that such networks have various common properties, most notably a small
diameter and a power-law degree distribution. There are numerous mathemati-
cal processes that model such networks – see the survey of Bollobás and Riordan
[2] or the book of Chung and Lu [3]. Perhaps the simplest process that is com-
monly analyzed is preferential attachment, in which the graph is “grown”, and
each new vertex attaches to some random set of present vertices with probability
proportional to their degree.

Kakade et al. [11] examine the marriage of a simple exchange market and a
social network generated by preferential attachment. They superimpose a buyer-
seller market on a bipartite social network, and examine the effects of the net-
work’s statistical properties on the distribution of prices in the market. They
show, for example, that if the network contains a perfect matching, then there is
no price variation in the network. Furthermore, they show that the degree of a
seller is an upper bound on his price at equilibrium, and so the price distribution
can be bounded above by the power-law distribution of the degrees.

Our Results. In the bipartite buyer-seller network of Kakade et al. [11], each new
buyer enters the network with v neighbors (chosen by preferential attachment).
As v increases, the tail of the degree distribution gets heavier. Thus, their upper
bound on the price distribution increases. The intuition provided by proponents
of a free market, however, suggests that when buyers have more options, the
prices should go down, not up. In this work we prove that this intuition is
correct in the model of [11] by showing that the price distribution decreases
exponentially with v. More specifically, we show that the fraction of sellers with
price greater than w is roughly 1/wv+1.

Organization. The rest of the paper is organized as follows. Sections 2 and 3
respectively describe the exchange market and the bipartite network in greater
detail, and Section 4 contains our main theorems and most proofs.

2 The Market

The market we consider is the bipartite exchange economy formalized by Kakade
et al. [11] (see also Even-Dar et al. [5] and Suri [13]). In this model there is a
bipartite graph G = (B, S, E) representing buyers and sellers. Each buyer has
1 infinitely divisible unit of cash and each seller has 1 infinitely divisible unit
of wheat. Buyers have monotone increasing utility for wheat and sellers have
monotone increasing utility for cash. Neither type of player has any utility for
the commodity with which they are endowed.

For each seller j, let ws
j be the price per unit wheat offered by seller j. Sim-

ilarly, for each buyer b, let wb
j be the price buyer j will pay per unit wheat.

Finally, denote by xij the amount of wheat buyer i purchases from seller j.
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Then exchange rates {ws
j} and {wb

j} and consumption plans {xij} are a market
equilibrium in G if the following conditions hold (see [11]):

– The market clears: For every seller j,
∑

i∈Γ (j) xij = 1, where Γ (j) = {i :
(j, i) ∈ E} is the set of neighbors of j in the graph G.

– Every buyer i maximizes his utility. Formally, this means that xij > 0 only
if seller j has the cheapest price of all of i’s neighbors:

wb
i = min

k∈Γ (i)
ws

k.

If for every seller j, Γ (j) �= ∅, then there exists a market equilibrium. Further-
more, the prices {ws

j} of the equilibrium are unique, although the consumption
plans are not [7]. For further discussion of the properties of this bipartite ex-
change economy, as well as a comparison with more general models, see [13].

3 The Network

The network on which our market takes place is generated as follows. We begin
with one buyer and one seller with v + 1 edges between them. At step i, we add
a new buyer and a new seller. The buyer chooses v sellers out of the previously
added i − 1 at random, with probability proportional to their degrees, and con-
nects to them. The seller chooses 1 buyer with probability proportional to his
degree, and connects to him. This is repeated until there are n buyers and n
sellers in the graph.

There are two differences between this model and the one considered by
Kakade et al. [11]. First, our buyer chooses the sellers with replacement – that
is, we allow the possibility that a buyer chooses the same seller more than once,
in which case there will be multiple edges between the players. We sample with
replacement solely for technical simplicity; this does not significantly affect the
degree distribution of the resulting graph. The second difference is that the model
of [11] is more general, as they have an additional parameter α. In their network,
each buyer/seller samples a neighbor uniformly at random with probability α,
and via preferential attachment with probability 1 − α. Here we only consider
the special case α = 0, as we are interested in the second parameter v.

The parameter v, which we think of as some arbitrary constant (independent
of n), has a strong impact on the statistical properties of G. In what follows, we
denote by Gv the graph sampled as above with parameter v, in which |B| = |S| =
n. The following is essentially a theorem of [11] (except for the slight difference
in the model mentioned above). The proof is analogous to that of Lemma 5.

Theorem 1. Let D(i) be a random variable that denotes the degree of the i’th
seller in Gv, when Gv is randomly generated as above. Then

E [D(i)] = O

((n

i

) v
v+1

)
.
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Kakade et al. [11] show that the degrees of the sellers constitute an upper bound
on the price distribution, yielding the following theorem.

Theorem 2 ([11]). When the network is sampled according to Gv, the propor-
tion of sellers j with price ws

j > w is at most O(w−(v+1)/v).

4 Price Distribution in the Network

Note that as v increases, w−(v+1)/v increases as well, since (v +1)/v approaches
1 from above. Thus, the tail of the price distribution in the upper bound gets
heavier with v. In this paper we prove the following theorem, which states that
the opposite is in fact true.

Theorem 3 (Upper Bound). Let α > 0 and ε > 0 be arbitrarily small con-
stants, let v be some positive integer constant, let q be an arbitrarily large con-
stant, and fix w = nα. Let P (w) be a random variable that denotes the proportion
of sellers j with price ws

j > w in a random network Gv. Then

Pr
[
P (w) <

1
wv+1−ε

]
> 1 − 1

nq
.

Theorem 3 states that when w is large enough (nα), the fraction of sellers with
price at least w is at most roughly w−(v+1). Note that this fraction decreases
exponentially as v increases. We also prove a matching lower bound. Unfortu-
nately, we are only able to prove the lower bound in expectation, and not with
high probability.

Theorem 4 (Lower Bound). Let α, ε, v, and w be as above. Then

E[P (w)] >
1

wv+1+ε
.

The proofs of the theorems proceed in several stages. The lower bound on P (w)
follows from the upper bound, and so we first focus on the latter. Instead of
directly analyzing the distribution of prices at equilibrium, we begin by analyzing
the prices generated by a different process, which we call the most-recently added
commitment (MRAC) process: Each buyer commits to purchasing from the most
recently added seller to which he is connected (ignoring incoming edges from
sellers), generating the following prices. If k buyers committed to purchasing
from some seller, then his price will be k. The reason this seems reasonable (at
least on an intuitive level) is that the most recently added sellers will probably
have smaller degrees, and then hopefully they should have lower prices. In any
case, the final step is to bound the prices at market equilibrium in Gv by those
generated by the MRAC process. The following subsections contain the various
parts of the proof.
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4.1 Most-Recently Added Commitment Process

We begin by sampling a graph according to Gv, but for now restricting attention
to edges chosen by buyers (and not by sellers connecting to buyers). Suppose
sellers do not connect to buyers, but only vice versa. Buyers sample sellers with
probability proportional to their degrees plus 1. When we sample such a graph,
the resulting degrees and prices in the MRAC process are random variables that
are determined by the graph that is eventually chosen. Since the graph Gv is
sampled in stages, it seems reasonable to also analyze the degrees and prices in
an iterative manner, as in [11].

Denote by W (s, t) the weight (degree plus 1) of the s’th seller after stage t
in the generation of the graph (i.e. after t buyer-seller pairs have been added).
Note that W (s, t) = 0 for t < s, W (s, s) = 1, and W (s, t) is nondecreasing with
t. It will also be useful to denote by W (≤ s, t) =

∑s
i=1 W (s, t).

Additionally, denote by C(s, t) the price of the s’th seller after stage t in the
MRAC process. Recall that this price is simply the number of buyers who have
committed to the s’th seller, which occurs whenever the s’th seller is the most-
recently added seller connected to those buyers. Note that C(s, t) = 0 for t ≤ s
and that C(s, t) is nondecreasing with t.

Our first lemma bounds the expected MRAC price of a seller in Gv.

Lemma 1. Let v be some positive constant integer. Then in Gv, for all n and
s ∈ [n],

E[C(s, n)] ≤ O

((n

s

) 1
v+1

)
.

Note that the expected MRAC prices given in Lemma 1 are “correct” in the
following sense: If w = (n/s)1/(v+1), then s = n/wv+1. Hence, the fraction of
sellers with expected MRAC prices greater than w is 1/wv+1, which is close to
what we wish to prove.

Proof: We will sample a graph Gv in stages, and denote by Fm the σ-field of
information up to stage m. Fm includes information such as the current degrees
of vertices and which edges were chosen. We have

E[C(s, m + 1)|Fm] = C(s, m)
+ Pr [(m + 1)’th seller connects to buyer s and other older buyers |Fm]

≤ C(s, m) + v · W (s, m)
(v + 1)m

·
(

W (≤ s, m)
(v + 1)m

)v−1

≤ C(s, m) + O

(
W (s, m) · W (≤ s, m)v−1

mv

)
,

where the second inequality holds since v is constant. We now take expectations
on both sides, yielding
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E[C(s, m + 1)] ≤ E[C(s, m)] + O

(
E

[
W (s, m) · W (≤ s, m)v−1

]

mv

)

≤ E[C(s, m)] + O

(
E [W (s, m)] · E [W (≤ s, m)]v−1

mv

)

(1)

≤ E[C(s, m)] + O

(
1

mv
·
(m

s

) v
v+1 ·

(
m

v
v+1 s

1
v+1

)v−1
)

≤ E[C(s, m)] + O
(
s−

1
v+1 · m−

v
v+1

)
,

where (1) follows from Lemma 2 (see the end of this section). Hence,

E[C(s, n)] ≤
n∑

m=s+1

O
(
s−

1
v+1 · m−

v
v+1

)

≤ O

(
1

s1/(v+1)

∫ n

s

m−v/(v+1)dm

)

≤ O

((n

s

) 1
v+1

)
.

The proof of Lemma 1 utilizes the following lemma, which we will also use later
to show some sort of measure concentration on the MRAC prices.

Lemma 2. For all n, s ∈ [n], and nonnegative integer constants i, j, and k,
there exists a constant c = c(i, j, k, v) such that in Gv,

E[W (s, n)i · W (≤ s, n)j · C(s, n)k] ≤ c E[W (s, n)]i · E[W (≤ s, n)]j · E[C(s, n)]k.

In order to prove Lemma 2 we need the following lemma, whose proof is deferred
to the full version of the paper du to space constraints.

Lemma 3. If for constants b and d,

xn ≤ xn−1

(
1 +

b

n
+

d

n2

)
+ cn,

then for all i ∈ [n],

xn = O

(

xi

(n

i

)b

+
n∑

k=i

ck

(n

k

)b
)

.

We now sketch the proof of Lemma 2.

Proof Sketch: The proof is by induction on i, j, and k. The initial base cases
are when j = k = 0 and when i = k = 0. Given these cases, we then prove the
lemma with only one of i, j, k equal to 0. Due to space constraints, we defer the
proof of the base cases to the full version of the paper.
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We now use induction on k, where for each k, we assume the statement has
been proven with k−1 and all i and j, as well as the same k but smaller i and j.
In what follows, we have i, j and k fixed, and assume the statement is true for
i′, j′, and k, where either i′ < i and j′ ≤ j or j′ < j and i′ ≤ i. Furthermore, we
assume the statement is true for i′, j′ and k − 1, where i′ and j′ are arbitrarily
large constant integers.

For ease of notation, let C = C(s, n), X = W (s, n), and Z = W (≤ s, n), and
let Fm be the σ-field of information up to stage m. We show that

E[W (s, n + 1)i · W (≤ s, n + 1)j · C(s, n + 1)k|Fn]

= X iZjCk

(
1 +

v(i + j)
(v + 1)n

)
+ O

(
X i−1ZjCk

n
+

X i+1Zj+v−1Ck−1

nv

)

(again the proof is deferred to the full version). Taking expectation on both sides
and using the inductive hypothesis yields

E[W (s, n + 1)i · W (≤ s, n + 1)j · C(s, n + 1)k]

= E
[
X iZjCk

]
(

1 +
v(i + j)
(v + 1)n

)

+ O

(
E[X ]i−1 E[Z]j E[C]k

n
+ E[X ]i+1 E[Z]j+v−1 E[C]k−1

nv

)

≤ E
[
X iZjCk

](
1 +

v(i + j)
(v + 1)n

)
+ O

((
nv(i+j)+k−v−1

svi+k−j

) 1
v+1

)

.

Using Lemma 3, we get that

E[W (s, n)i · W (≤ s, n)j · C(s, n)k]

≤ O

(

sj
(n

s

) v(i+j)
v+1

+
n∑

x=s

(
xv(i+j)+k−v−1

svi+k−j

) 1
v+1 (n

x

) v(i+j)
v+1

)

≤ O

(
n

v(i+j)
v+1

s
vi−j
v+1

+
n

v(i+j)
v+1

s
vi−j+k

v+1

·
∫ n

s

x
k−v−1

v+1 dx

)

≤ O

(
n

v(i+j)+k
v+1

s
vi−j+k

v+1

)

≤ O
(
E[W (s, n)]i · E[W (≤ s, n)]j · E[C(s, n)]k

)
.

4.2 Upper Bound on Prices at Equilibrium

In this section we relate the MRAC prices obtained in the previous section to the
prices at market equilibrium, and thus prove Theorem 3. We begin by discussing
the bottleneck decomposition of a bipartite graph and its relation to equilibrium
prices. The decomposition proceeds iteratively, where G = G1 = (B1, S1, E). In
the i’th iteration:

– Let Ui = maxU⊆Bi |U |/|Γi(U)|, where Γi(U) denotes the set of all neighbors
of vertices in U that are in the graph Gi.



116 R. Gradwohl

– Fix Gi+1 = (Bi \ Ui, Si \ Γi(Ui), E).
– Denote by wi = |Ui|/|Γi(Ui)|.

Even-Dar et al. [5] and Wu and Zhang [15] relate the bottleneck decomposition
of a graph to the equilibrium prices. In particular, they show that w1 ≥ w2 ≥ . . .,
and that the sellers that are in Γi(Ui) have equilibrium price wi. We prove the
following related lemma.

Lemma 4. Let G = (B, S, E) be some fixed bipartite graph, and let V = {i ∈
S : ws

i > w}, where ws
i is the equilibrium price of seller i. Then the average

MRAC price of sellers in V is greater than w.

Proof: Consider the bottleneck decomposition of G, and let a=max{i : wi >w}.
That is, the sellers in the first a stages of the decomposition are precisely the
ones with equilibrium price greater than w. Note that V =

⋃a
i=1 Si, and let

U =
⋃a

i=1 Bi. By the properties of the bottleneck decomposition, |U | > w · |V |.
Now, the average MRAC price of vertices in V is equal to the number of

buyers whose most-recently added neighbor is in V , divided by |V |. But the
number of such buyers is at least |U |, since buyers in U have all neighbors in V ,
and in particular the most-recently added one. Hence, the average MRAC price
of vertices in V is at least |U |/|V | > w.

To use this lemma, we first need to show that the MRAC prices of a random
Gv graph are close to their expectations. Fix some vertex s, and recall that
E[C(s, n)] ≤ O

(
(n/s)1/(v+1)

)
. For any positive λ and constant positive integer k,

Pr [C(s, n) > λ · E[C(s, n)]] = Pr
[
C(s, n)k > λk · E[C(s, n)]k

]

≤ E[C(s, n)k]
λk · E[C(s, n)k]

(2)

≤ O

(
E[C(s, n)]k

λk · E[C(s, n)k]

)
(3)

= O

(
1
λk

)
,

where (2) is a Markov bound and (3) follows from Lemma 2, with i = j = 0.
If λ = nβ for some positive constant β, then we can take a union bound:

Pr [∀s, C(s, n) ≤ λ · E[C(s, n)]] ≥ 1 − n

λk
= 1 − n1−βk.

For any constant β we can take k large enough so that βk > q + 1, where q is
the constant from Theorem 3.

Now suppose we sample a graph according to Gv, and that ∀s, C(s, n) ≤
λ · E[C(s, n)]. Fix some set V ⊆ S, |V | = t, and consider the average MRAC
price of vertices in V . Since all sellers are within λ = nβ of their expectations,
this is maximal when V consists of the first t sellers, and their price is exactly λ
times their expected price. In this case, their average MRAC price is at most
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1
t

t∑

i=1

λE[C(i, n)] =
nβ

t

t∑

i=1

(n

i

) 1
v+1

= O

(
nβ

(n

t

) 1
v+1

)
.

Thus, by Lemma 4, if the number of sellers with equilibrium price greater than
w is t, then

w ≤ O

(
nβ

(n

t

) 1
v+1

)
.

Turning things around, we get that (with probability 1 − n−q) the number
of sellers with equilibrium price greater than w is at most O(n1+β(v+1)/wv+1).
When w = nα, the upper bound of Theorem 3 follows, since β can be made an
arbitrarily small positive constant.

4.3 Lower Bound on Prices at Equilibrium

Throughout this section, we assume that w = nα is fixed. Since we are interested
in a lower bound on the number of sellers with price greater than w, we will show,
roughly, that the first s sellers added to the graph all have such high prices. We
choose s = n/wv+1, which will yield the claimed bound. First, however, we
bound from below the expected number players whose outgoing edges all fall in
the first s sellers. This follows from the following two lemmas.

Lemma 5. In Gv, for all n and s ∈ [n],

E[W (≤ s, n)] = Ω
(
n

v
v+1 s

1
v+1

)
.

Proof: For ease of notation, let W (n) = W (≤ s, n) and W = W (n). Then

E[W (n + 1)|Fn] = W +

v�
i=1

�
v

i

��
W

(v + 1)n

�i�
1 − W

(v + 1)n

�v−i

· i

= W +
v�

i=1

v ·
�

v − 1

i − 1

��
W

(v + 1)n

�i�
1 − W

(v + 1)n

�v−i

= W +
vW

(v+1)n

v−1�
j=0

�
v − 1

j

��
W

(v + 1)n

�j �
1 − W

(v + 1)n

�v−j−1

= W

�
1 +

v

(v + 1)n

�
.

Taking expectations implies that E[W (n + 1)] = E[W (n)](1 + v/(v + 1)n).
Now, suppose that for all n,

E[W (n)] = (v + 1) · n v
v+1 s

1
v+1

as desired. Then

E[W (n + 1)]
E[W (n)]

=
(

1 +
1
n

)v/(v+1)

≤
(

1 +
v

(v + 1)n

)
.
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This implies that E[W (n + 1)] = E[W (n)](1 + v/(v + 1)n) ≥ E[W (n)](1 +
1/n)v/(v+1), which is the recurrence generated by the closed formula E[W (n)] =
(v + 1) · nv/(v+1)s1/(v+1). Thus, this closed formula is a lower bound on our
recurrence, completing the proof of the claim.

Lemma 6. Let s = n/wv+1, and let Q(s) be a random variable that denotes the
number of buyers b in Gv such that Γ (b) ∈ [s]. Then

E[Q(s)] = Ω
( n

wv

)
.

Proof: From the previous lemma we know that

E[W (≤ s, n/2)] = Ω
( n

w

)
.

For a buyer that entered after the n/2’th stage, what is the probability that all
of his v outgoing edges lie in [s]? Fix W = W (≤ s, n/2). Then for every such
buyer b,

Pr
[
b connects only to [s]|Fn/2

]
≥

(
W

(v + 1)n

)v

= P,

where P is the random variable that denotes the probability of hitting [s]. Now,

E[P ] = E
[(

W

(v + 1)n

)v]

= E [W v]
((v + 1)n)v

≥ E [W ]v

((v + 1)n)v

= Ω

(
1

wv

)
,

where the inequality follows from Jensen’s inequality. For each buyer i ∈
{n/2, . . . , n}, let Yi be an indicator random variable such Yi = 1 if i’s v outgoing
edges hit [s]. Note that Pr [Yi] ≥ P . Thus, we have that

E[Q(s)] =
n∑

i=n/2+1

E[Yi] = Ω(n E[P ]) = Ω
( n

wv

)
.

Recall that in addition to each buyer’s v outgoing edges, some may also have
incoming edges that the sellers chose. As is argued in [13], however, this only
decreases the above expectation by a constant factor, completing the proof of
the lemma.

Putting the above lemmas together and recalling that s = n/wv+1, we get that
the expected total price of the first s vertices is n/wv, which means that the
expected average price is w, as desired. This does not yet complete the proof of
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the lower bound, however, since it is still possible that few sellers have very high
price, while the majority have low price. Recall that we are trying to show that
many sellers have high price. This is where we use the stronger upper bound –
we will show that high priced sellers do not contribute too much to the total
price of the s sellers.

Lemma 7. Let β > 0 and ε > 0 be arbitrarily small constants, and let r be an
arbitrarily large constant. Let C(i) be a random variable that denotes the price
of seller i in Gv. Then, with probability 1 − 1/nr,

∑

i:C(i)>w1+β

C(i) <
n

wv+ε
.

Proof: Consider the contribution of sellers i such that C(i)∈[w1+kβ , w1+(k+1)β ],
for a positive integer k. By Theorem 3, we know that with high probability, the
number of such vertices is at most n/w(1+kβ)(v+1−ε), for an arbitrarily small
ε. The contribution of each such seller is at most w1+(k+1)β , and so the total
contribution of all these sellers is at most

nw1+(k+1)β

w(1+kβ)(v+1−ε) =
n

wv+β(kv−kε−1)−ε
.

Note that this contribution decreases as k increases, and so the total contribution

∑

i:C(i)>w1+β

C(i) <
1

αβ
· n

wv+β(v−ε−1)−ε

(with probability 1 −n−q/αβ), where α is the constant such that w = nα. Since
v > 1 and using the fact that both α and β are constants, we can choose ε small
enough so that β(v − ε − 1) > 3ε, implying the claim of the lemma.

We are now ready to complete the proof of Theorem 4. With high probability,
∑

i:C(i)>w1+β

C(i) <
n

wv+ε
,

so the contribution of sellers i ∈ [s] with C(i) < w1+β is at least n/wv−n/wv+ε =
Ω(n/wv) (in expectation). Hence, the expected number of sellers in [s] with
C(i) > w is at least

Ω

(
n

wv
· 1
w1+β

)
≥ n

wv+1+2β
.

Since β > 0 is an arbitrarily small constant, the lower bound of Theorem 4
follows.
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Abstract. We study here the effect of concurrent greedy moves of players in
atomic congestion games where n selfish agents (players) wish to select a re-
source each (out of m resources) so that her selfish delay there is not much. The
problem of “maintaining” global progress while allowing concurrent play is ex-
actly what is examined and answered here. We examine two orthogonal settings :
(i) A game where the players decide their moves without global information, each
acting “freely” by sampling resources randomly and locally deciding to migrate
(if the new resource is better) via a random experiment. Here, the resources can
have quite arbitrary latency that is load dependent. (ii) An “organised” setting
where the players are pre-partitioned into selfish groups (coalitions) and where
each coalition does an improving coalitional move. Our work considers concur-
rent selfish play for arbitrary latencies for the first time. Also, this is the first time
where fast coalitional convergence to an approximate equilibrium is shown.

1 Introduction

Congestion games (CG) provide a natural model for non-cooperative resource allo-
cation and have been the subject of intensive research in algorithmic game theory. A
congestion game is a non-cooperative game where selfish players compete over a set of
resources. The players’ strategies are subsets of resources. The cost of each player from
selecting a particular resource is given by a non-negative and non-decreasing latency
function of the load (or congestion) of the resource. The individual cost of a player is
equal to the total cost for the resources in her strategy. A natural solution concept is that
of a pure Nash equilibrium (NE), a state where no player can decrease his individual
cost by unilaterally changing his strategy. In a classical paper, Rosenthal [27] showed
that pure Nash equilibria on atomic congestion games correspond to local minima of
a natural potential function. Twenty years later, Monderer and Shapley [24] proved
that congestion games are equivalent to potential games. Many recent contributions
have provided considerable insight into the structure and efficiency (e.g. [14,3,7,17])
and tractability [12,1] of NE in congestion games. Given the non-cooperative nature
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of congestion games, a natural question is whether the players trying to improve their
cost converge to a pure NE in a reasonable number of steps. The potential function of
Rosenthal [27] decreases every time a single player changes her strategy and improves
her individual cost, while this is not true when concurrent selfish moves are performed.
Hence every sequence of improving moves will eventually converge to a pure Nash
equilibrium. However, this may require an exponential number of steps, since the prob-
lem is PLS-complete [12]. A pure Nash equilibrium of a symmetric network atomic
congestion game can be found by a min-cost flow computation [12]. Even better, for
singleton CG (aka CG on parallel links), for CG with independent resources, and for
matroid CG, every sequence of improving moves reaches a pure Nash equilbrium in
a polynomial number of steps [21,1]. An alternative approach to circumvent the PLS-
completeness of computing a pure Nash equilibrium is to seek an approximate NE.
[6] considers symmetric congestion games with a weak restriction on latency functions
and proves that several natural families of ε-moves converge to an ε-NE in time poly-
nomial in n and ε−1. However, sequential moves take Ω(n) steps in the worst case
to reach an (approximate) NE and requires central coordination. A natural question is
whether concurrent and autonomous play can convergence to an approximate pure Nash
equilibrium. In this work, we investigate the effect of concurrent moves on the rate of
convergence to approximate pure Nash equilibria.

1.1 Singleton Games with Myopic Players

Related Work and Motivation. The Elementary Step System hypothesis, under which
at most one user performs an improving move in each round, greatly facilitates the
analysis of [8,11,17,18,22,23,26]. This is not an appealing scenario to modern network-
ing, where simple decentralized distributed protocols can reflect better the essence of
net’s liberal nature on decision making. All the above manifest the importance of dis-
tributed protocols that allow an arbitrary number of users to reroute per round, on the
basis of selfish migration criteria. This is an Evolutionary Game Theory [31] perspec-
tive, see also [28] with a current treatment of both nonatomic games and of evolutionary
dynamics. In this setting, the main concern is on studying the replicator-dynamics, that
is to model the way that users revise their strategies throughout the process.

Discrete setting. The work in [10] considers n players concurrently sample for a bet-
ter link amongst m parallel links per round (singleton CG). Link j has linear latency
sjxj , where xj is the number of players and sj is the constant speed of the link j. This
migration protocol uses global info: only users with latency exceeding the overall av-
erage link latency Lt at round t are allowed with an appropriate probability to sample
for a new link j. Also global info is used to amplify favorable links: link j is sampled
proportionally to dt(j) = nt(j) − sjLt, where nt(j) is the number of users on link
j, and reaches in expectedly O(log log n + log m) rounds a NE. In [4] it was given
the analysis of a concurrent protocol on identical links and players. On parallel during
round t, each user b on resource ib with load Xib

(t) selects a random resource jb and if
Xib

(t) > Xjb
(t) then b migrates to jb with probability 1 − Xjb

(t)/Xib
(t). It reaches

an ε-NE in O(log log n), or an exact NE in O(log log n + m4) rounds, in expectation.
Continuous setting. The work in [29] gives a general definition of nonatomic potential
games, and shows convergence to Nash equilibrium in these games, under a very broad
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class of evolutionary dynamics. A series of papers [5,13] on the Wardrop model give
strong intuition on this subject. In [13] the significance of the relative slope parameter
d is shown. A latency function � has relative slope d if x�′(x) ≤ d�(x). Each user on
path P in commodity i, either with probability β selects a uniformly random path Q in
i, or with probability 1−β selects a path Q with probability proportional to its flow fQ.
If �Q < �P user migrates to sampled Q with probability �P−�Q

d(�P +α) , where parameter α is
arbitrary. In [5] it was shown that as along as all players concurrently employ arbitrary
no-regret policies, they will eventually achieve convergence.

Contribution. We study a simple distributed protocol for congestion games on parallel
links under very general assumptions on the latency functions. In parallel each player
selects a link uniformly at random in each round and checks whether she can signifi-
cantly decrease her latency by moving to the chosen link. If this is the case, the player
becomes a potential migrant. The protocol selects at most one potential migrant to de-
fect from each link. This is a local decision amongst users on the same link, allowing a
realistic amount of parallelism amongst entities on different resources. Details on this,
falling in the context of dimension-exchange protocols on load balancing, can be found
in [2,9,16,20]. We prove that if the number of players is Θ(m), the protocol reaches an
almost-NE in O(log(Φ0/Φ∗)) time, where Φ0 is Rosental’s potential value as the game
starts and Φ∗ is the corresponding value at a NE. The proof of convergence is techni-
cally involved and interesting and comprises the main technical merit of this work. Our
notion of approximate pure Nash equilibrium, see Definition 2, is a bit different from
similar approximate notions considered in previous work [6,10] in an atomic setting,
while it is close in nature to the stable state defined in [13, Def. 4] for the Wardrop
model. An almost-Nash equilibrium is a state where at most o(m) links have latency
either considerably larger or considerably smaller than the current average latency. This
definition relaxes the notion of exact pure NE and introduces a meaningful notion of
approximate (bicriteria) NE for our fully myopic model of migration described above.
In particular, an almost-NE guarantees that unless a player uses an overloaded link (i.e.
a link with latency considerably larger than the average latency), the probability that
she finds (by uniform sampling) a link to migrate and significantly improve her latency
is at most o(1). Furthermore, it is unlikely that the almost-NE reached by our protocol
assigns any number of players to overloaded an almost-NE). As it will become clear
from the analysis, the reason that users do not accumulate on overloaded links, is that
the number of players on such links is a strong super-martingale. In addition, by the fact
that any bin initially has O(log n) load we get that in O(log n) rounds the overloaded
bins will drain from users.

Our results extend the results in [4,10] in the sense that (i) we consider arbitrary
and unknown latency functions subject only to the α-bounded jump condition [6, Sec-
tion 2], (ii) it requires no other global info. Also, the strategy space of player i may be
extended to all subsets of resources of cardinality ki such that

∑
i ki = O(m), see also

independent resource CG [21].

1.2 Congestion Games with Coalitions

In many practical situations however, the competition for resources takes place among
coalitions of players instead of individuals. For a typical example, one may consider
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a telecommunication network where antagonistic service providers seek to minimize
their operational costs while meeting their customers’ demands. In this and many other
natural examples, the number of coalitions (e.g. service providers) is rather small and
essentially independent of the number of players (e.g. users). In addition, the coalitions
can be regarded as having a quite accurate picture of the current state of the game and
moving greedily and sequentially. In such settings, it is important to know how the
competition among coalitions affects the rate of convergence to an (approximate) pure
Nash equilibrium. Motivated by similar considerations, [19,15] proposed congestion
games with coalitions as a natural model for investigating the effects of non-cooperative
resource allocation among static coalitions. In congestion games with coalitions, the
coalitions are static and the selfish cost of each coalition is the total delay of its play-
ers. [19] mostly considers congestion games on parallel links with identical users and
convex delays. For this class of games, [19] establishes the existence and tractability
of pure NE, presents examples where coalition formation deteriorates the efficiency of
NE, and bounds the efficiency loss due to coalition formation. [15] presents a potential
function for linear congestion games with coalitions.

Contribution. In this setting, we present an upper bound on the rate of convergence
to approximate pure Nash equiliria in single-commodity linear congestion games with
static coalitions. The restriction to linear latencies is necessary because this is the only
class of latency functions for which congestion games with static coalitions is known
to admit a potential function and a pure Nash equilibrium. We consider ε-moves, i.e.
deviations that improve the coalition’s total delay by a factor more than ε. Combin-
ing the approach of [6] with the potential function of [15, Theorem 6], we show that
if the coalition with the largest improvement moves in every round, an approximate
NE is reached in a small number of steps. More precisely, we prove that for any ini-
tial configuration s0, every sequence of largest improvement ε-moves reaches an ap-
proximate NE in at most kr(r+1)

ε(1−ε) log Φ(s0) steps, where k is the number of coalitions,

r =
⌈
maxj∈[k]{nj}/ minj∈[k]{nj}

⌉
denotes the ratio between the size of the largest

coalition and the size of the smallest coalition, and Φ(s0) is the initial potential. This
bound holds even for coalitions of different size, in which case the game is not sym-
metric. Since the recent results of [6] hold for symmetric games only, this is the first
non-trivial upper bound on the convergence rate to approximate NE for a natural class
of asymmetric congestion games. This bound implies that in network congestion games,
where a coalition’s best response can be computed in polynomial times by a min-cost
flow computation [12, Theorem 2], an ε-Nash equilibrium can be computed in polyno-
mial time. Moreover, in the special case that the number of coalitions is constant and the
coalitions are almost equisized (i.e. k = Θ(1) and r = Θ(1)), the number of ε-moves
to reach an approximate NE is logarithmic in the initial potential.

2 Concurrent Atomic Congestion Games

Model. There is a finite set of players {1, . . . , n} and a set of edges (or resources)
E = {e1, . . . , em}. The strategy space Si of player i is E. It is assumed that n = O(m).
The game consists of a sequence of rounds t = 0, . . . , t∗. It starts at round t = 0,
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where each player i selects myopically strategy si(0) ∈ Si. In each subsequent round
t = 1, . . . , t∗, concurrently and independently, each player updates his current strategy
si(t) to si(t + 1) according to the simple, oblivious and distributed protocol Greedy
presented in Section 2.1. That is, at round t the state s(t) = 〈s1(t), . . . , sn(t)〉 ∈
S1 × . . . × Sn of the game is a combination of strategies over players. The num-
ber fe(t) of players on edge e ∈ E is fe(t) = |{j : e ∈ sj(t)}|. Edge e has
a latency �e(fe(t)) measuring the common delay of players on it at state s(t). The
cost ci(t) of player i equals the sum of latencies of all edges belonging in his cur-
rent strategy si(t), that is ci(t) =

∑
e∈si(t) �e(fe(t)). Let the average delay of the

resources be �(t) = 1
m

∑
e∈E �e(fe(t)). Consider the value of Rosenthal’s potential

Φ(t) =
∑

e∈E

∑fe(t)
x=1 �e(x). We assume no latency-info other than the α-bounded jump

condition:

Definition 1. [6] Consider a set of m resources E each e ∈ E incurring latency
�e(x) when x players use it, x ∈ {0, . . . , n}. Let α = mina{a| ∀x = 0, . . . , n, ∀e ∈
E it holds �e(x + 1) ≤ a�e(x)}. Then each e ∈ E satisfies the α-bounded jump condi-
tion.

This condition imposes a minor restriction on the increase-rate of the latency function
�e() of any resource e ∈ E. For example �e(x) = αx is α-bounded, which is also true
for polynomials of degree d ≤ α. Our bicriterial equilibria (see [13, Def. 4]) follow.

Definition 2. An almost-NE is a state where o(m) used edges have latency > α�(t)
and ∀ε > 0, � ∃S ⊆ E : |S| ≥ εm with used edges in S of latency < 1

αS
�(t), where αS

is the jump-parameter with respect to edges in S.

Target. We establish the following for protocol Greedy presented in Section 2.1.

Theorem 1. The expected number of rounds until Greedy reaches an almost-NE is at
most 2

⌈
p−1 ln(2Φmax/Φmin)

⌉
.

Constant p = Θ(1) is defined in Theorem 2, intuitively it provides a bound on the ex-
pected potential’s drop caused by Greedy within all consecutive rounds which are not
on an almost-NE. Theorem 1 follows easily (see the proof in the full version of the paper
in [30]) from Theorem 2, see in turn its proof plan in Section 2.2. Here Φmax, (Φmin)
denote the initial (final) value of the potential (value of the potential at an exact NE).

Taking into account the very limited info that our protocol extracts per round, our
analysis suggests that an almost-NE of this kind is a meaningful notion of a stable state
that can be reached quickly. In particular, the almost-NE reached by our protocol is a
relaxation of an exact NE where the probability that a significant number of players can
find (by uniform sampling) links to migrate and significantly improve their cost is small.

More precisely, in an exact NE, no used link has latency greater than α�(t) and no
link with positive load has latency less than �(t)/α, while the definition of an almost-NE
imposes the same requirements on all but o(m) links. Hence the notion of an almost-
NE is a relaxation of the notion of an exact NE. In addition, a player not assigned to an
overloaded link (i.e. a link with latency greater than α�(t)) can significantly decrease
her cost (i.e. by a factor greater than α2) only if she samples an underloaded link (i.e.
a link with latency less than �(t)/α). Therefore, in an almost-NE, the probability that



126 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

a player not assigned to an overloaded link samples a link where she can migrate and
significantly decrease her cost is o(1). Furthermore, it is unlikely that the almost-NE
reached by our protocol assigns a large number of players to overloaded links 1.

Theorem 2. If round t is not an almost-NE then IE[Φ(t + 1)] ≤ (1 − p)IE[Φ(t)], with
p bounded bellow by a positive constant.

The proof plan of this theorem is presented in Section 2.2. Its proof will be given in
Section 2.6 which combines results proved in Section 2.3, 2.4 and 2.5.

2.1 Concurrent Protocol Greedy

Initialization: ∀i ∈ {1, . . . , n} select a random e ∈ {1, . . . , m}.

During round t, do in parallel ∀e ∈ E:

1. Select 1 player i from e at random.
2. Let player i sample for a destination edge e′ u.a.r. over E.
3. If �e′(fe′(t))(α+δϑ) < �e(fe(t)) then allow player i migrate to e′ with probability

ϑ = Ω(1).

For ϑ, δϑ see Section 2.3 Lemma 2, Corollary 1, and Section 2.5 Case 1 and 2.

2.2 Convergence of Greedy - Overview

The idea behind main Theorem 1 is to show that, starting from Φ(0) = Φmax, per
round t of Greedy not in an almost-NE, the expected IE[ΔΦ(t)] potential drop is a
positive portion of the potential Φ(t) at hand. Since the minimum potential Φmin is a
positive value, the total number of round is at most logarithmic in Φmax

Φmin
. We present

below how Sections 2.3, 2.4 and 2.5 will be combined together towards showing that
Greedy gives a large “bite” to the potential IE[Φ(t)] at hand, per round not in an
almost-NE, and prove key Theorem 2. Section 2.3 shows that IE[ΔΦ(t)] is at most the
total expected cost-drop

∑
i IE[Δci(t)] of users allowed by Greedy to migrate and

proves that
∑

i IE[Δci(t)] < 0, i.e. super-martingale [25, Def. 4.7]. Hence, showing
large potential drop per round not in an almost-NE reduces to showing

∑
i IE[Δci(t)]

equals a positive number times −IE[Φ(t)]. This is achieved in Sections 2.4 and 2.5
which show that |

∑
i IE[Δci(t)]| and IE[Φ(t)] are both closely related to IE[�(t)] × m,

i.e. both are a corresponding positive number times IE[�(t)] × m. First, Section 2.4
shows that IE[Φ(t)] is a portion of IE[�(t)] × m. Having this, fast convergence reduces
to showing

∑
i IE[Δci(t)] equals a positive number times −IE[�(t)] × m which is left

to Section 2.5 & 2.6. At the end, Section 2.6 puts together Sections 2.3, 2.4 and 2.5 and
completes the proof of our key Theorem 2.

1 Due to the initial random allocation of the players to the links, the overloaded links (if any)
receive O(log n) players with high probability. Lemma 3 and Corollary 2 show that the number
of players on any overloaded link is a strong super-martingale during each round. Thus, such
overloaded links will drain from users in expectedly O(log n) rounds.
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2.3 Showing That
∑

i∈A(t)

IE[Δci(t)] Upper Bounds IE[ΔΦ(t)]

Let A(t) the migrants allowed in step (3) of Greedy in Section 2.1. Linearity of expec-
tation by Lemma 1 yields

∑
i∈A(t) IE[Δci(t)] ≥ IE[ΔΦ(t)].

∑
i∈A(t) IE[Δci(t)] < 0

follows by Lemma 2 and Corollary 1 below: user i ∈ A(t), by selfish criterion in
step (3) of Greedy, decreases expectedly its cost if the latency on i’s departure link is
> (α + δϑ) times the latency on its destination. Here ϑ is the migration probability in
step (3) of Greedy.

Lemma 1.
∑

i∈A(t)

Δ[ci(t)] ≥ Δ[Φ(t)]. Equality holds if Δ[fe(t)] ≤ 1, ∀e ∈ E.

Proof. See the proof in the full version of the paper in [30]. ��
Lemma 2. For every positive constant δ, if migration probability ϑ of Greedy is at
most min{ δ

α(α−1) , 1}, the expected latency of a destination link e in the next round t+1
is:

IE[�e(fe(t + 1))] ≤ (1 + δ/α)�e(fe(t) + 1) ≤ (α + δ)�e(fe(t))

Proof. See the proof in the full version of the paper in [30]. ��
Corollary 1. IE[Δci(t)| ci(t)] ≤ �e′(fe′(t))(α+ δϑ)− ci(t) < 0, ∀i ∈ A(t) migrating
e → e′.

Proof. See the proof in the full version of the paper in [30]. ��

2.4 Showing That IE[Φ(t)] Is at Most a Portion of IE[�(t)] × m

By Greedy’s initialization the load is Binomially distributed, thus at round t = 0 we
easily get (see the full version in [30]):

IE[�(0)] ≤ eα n
m−1 e−

n
m = O(1), and IE[Φ(0)] = O(IE[�(0)] × m), (1)

However, Greedy may affect badly the initial distribution of bins, thus making (1) in-
valid for each t > 0. We shall show that similar to round 0 strong tails will make (1)
true for each round t > 0. To see this, consider the concurrent random process Blind
(a simplification of Greedy in Section 2.1). At t = 0 throw randomly n = O(m) balls
to m bins (Blind’s and Greedy’s initializations are identical). Initially, the load dis-
tribution has Binomial tails from deviating from expectation O(n/m) = O(1). During
round t > 0, Blind draws exactly 1 random ball from each loaded bin (as Step 1 of
Greedy). Let n(t) the subset of drawn balls during round t. Round t ends by throw-
ing at random these |n(t)| drawn balls back into the m bins (then |n(t)| allowed by
Blind to migrate is at least the migrants allowed by Greedy, since no selfish crite-
rion is required). Any bin is equally likely to receive any ball, thus, Blind preserves
per round t > 0 strong Binomial tails from deviating from the constant expectation
O(n/m) = O(1) reminiscent to ones for t = 0. The above make true (1) for each
round t > 0 of Blind.

Towards showing that Greedy also behaves, on a proper subset of bins, similarly
to Blind it is useful the following lemma. Lemma 3 and Corollary 2 prove a super-
martingale property on the load of bins with latency greater than a critical constant.
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This will help us to identify this subset of critical bins that will preserve similar bounds
to (1) for each round t > 0 of Greedy.

Lemma 3. Let ν be any integer no less than �2n/m�+1. For any round t ≥ 0, every
link e with �e(fe(t)) ≥ αν has IE[fe(t + 1)] ≤ fe(t).

Proof. See the proof in the full version of the paper in [30]. ��

Corollary 2. Consider the corresponding numbers ν’s defined in Lemma 3. We can find
a constant L∗ : ∀t ≥ 0 on each edge with latency ≥ L∗ the load is super-martingale.

Let the constant L∗ be as in Corollary 2 and define AL∗(t) = {e ∈ E : �e(fe(t)) < L∗}
and BL∗

t = E \ AL∗(t). The target of Lemma 4 is to show that BL∗

t is the subset of
critical bins that will preserve similar bounds to (1) for each round t > 0 of Greedy.

Lemma 4.
∑

e∈BL∗
t

IE[�e(fe(t))]
m

= O(1),
∑

e∈BL∗
t

IE[fe(t)�e(fe(t))]
m

= O(IE[�(t)])

Proof. See the full version of the paper in [30]. ��

Now, Fact 3 proves that IE[Φ(t)] is at most a portion of IE[�(t)] × m.

Fact 3. If round t is not an almost-NE then IE[�(t)]m ≥ IE[Φ(t)]
r(1+yt)+1+xt

, r = n/m and
r, yt, xt = Θ(1).

Proof. See the proof in the full version of the paper in [30]. ��

2.5 Showing That
∑

i∈A(t)

IE[Δci(t)] Is a Portion of −�(t) × m

Sketch of Case 1 and 2 below. According to Definition 2, a round is not at an almost-NE
if ≥ εm links are either overloaded (of latency ≥ α × �(t)) or underloaded (of latency
≤ 1

α × �(t)) ones. We study separately each of these options in Cases 1 and 2 below. In
both cases we relate

∑
i∈A(t) IE[Δci(t)] to −�(t)×m. The idea beyond both Case 1 and

2 is simple: each migrant from O(t) to U(t) will contribute to
∑

i∈A(t) IE[Δci(t)] her

little portion of −�(t) at hand (by the martingale property on the expected gain per user
i ∈ A(t) proved in Corollary 1 Section 2.3). It remains to show that such migrations
have as high impact as to boost the tiny atomic gain of order �(t), when considered in
the overall population of migrants A(t), up to a portion of �(t)×m . Towards this, Fact
4 and 5 below show that, as long as the state is not an almost-NE, it induces imbalance
amongst link-costs, which in turn influences a sufficient amount of migrations as to get
cost-drop of order −�(t) × m.

Case 1. Here we define underloaded links in round t be U(t) = {e ∈ E : �e(fe(t)) <
(1 − δ)�(t)}, while overloaded ones are O(t) = {e ∈ E : �e(fe(t)) ≥ α�(t)}. Let us
assume that we are not at an almost-NE because |O(t)| ≥ εm, with constant ε ∈ (0, 1).

Fact 4. For every α > 1 if |O(t)| ≥ εm, then |U(t)| ≥ δm, with δ = ε
2 (α − 1).

Proof. See the proof in the full version of the paper in [30]. ��
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Therefore, for every e ∈ O(t), a player migrates from e to a link in U(t) with probability
at least ϑδ (see step (3) of Greedy, Section 2.1). Using Lemma 2 with ϑ = ε/4, we
obtain that the expected decrease in its cost is at least δ

2α�(t) (see the proof in the full
version in [30]).

Given that k migrants switch from a link in O(t) to a link in U(t) we obtain that their
expected cost-drop is at least δ

2α�(t) times their number k. Let pO→U (k) the probability
to have k such migrants. The expected number

∑
k kpO→U (k) of such migrants is at

least εϑδm, since for every e ∈ O(t) with |O(t)| ≥ εm, exactly 1 player migrates
from e to a link in U(t) with probability at least ϑδ (see Fact 4 and step (3) of Greedy,
Section 2.1). Now, the unconditional on k expected cost-drop due to migrants switching
from links in O(t) to links in U(t) is at least

∑

k

(
δ
2α�(t)k × pO→U (k)

)
≥ δ

2α�(t) × εϑδm = εϑ δ2

2 αm�(t) (2)

By (2) we finally prove (for Case 1) the result of this section:
∑

i∈A(t)

IE[Δci(t)] ≤ −εϑ δ2

2 α × �(t)m (3)

Case 2. Here we define as underloaded links in round t be U(t) = {e ∈ E : �e(fe(t)) <
1
α�(t)} and overloaded ones in O(t) = {e ∈ E : �e(fe(t)) ≥ (1 + δ)�(t)}. Let us
assume that we are not at an almost-NE because |U(t)| ≥ εm.

Fact 5. If |U(t)| ≥ εm, then
∑

e∈O(t)

�e(fe(t)) > δ�(t)m, with δ = ε(α−1)
2α .

Proof. See the proof in the full version of the paper in [30]. ��

Since |U(t)| ≥ εm, a player migrates from each e ∈ O(t) to a link in U(t) with
probability at least ϑε (see step (3) of Greedy, Section 2.1). Using Lemma 2 with
ϑ = ε

4α , we obtain that the expected decrease in the cost of such a player is at least
δ

2(1+δ)�e(fe(t)) ≥ δ
4�e(fe(t)) (see the proof in the full version in [30]). Using Fact 5,

we obtain that the expected cost-drop due to migrants leaving overloaded links O(t)
and entering U(t) in round t is at least:

ϑε × δ

4

∑

e∈O(t)

�e(fe(t)) > ϑε × δ

4
× δ �(t)m >

ϑεδ2

4
�(t)m (4)

By (4) we finally prove (for Case 2) the result of this section:
∑

i∈A(t)

IE[Δci(t)] ≤ −ϑεδ2

4 × m�(t) (5)

2.6 Proof of Key Theorem 2

Here we combine the results in Section 2.3, 2.4 and 2.5 and prove Theorem 2. From
Section 2.3 we get IE[ΔΦ(t)] ≤

∑
i∈A(t) IE[Δci(t)] < 0. As long as Greedy does



130 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

not reach an almost-NE because: (i) The overloaded links, with respect to the real-
ization �(t), are |O(t)| ≥ εm. Then, we get from Expression (3) in Section 2.5 that
IE[ΔΦ(t)|�(t)] ≤

∑
i∈A(t) IE[Δci(t)|�(t)] < −εϑ δ2

2 α × �(t)m. (ii) The underloaded

links, with respect to the realization �(t), are |U(t)| ≥ εm. Then, we get from Expres-
sion (5) in Section 2.5 that IE[ΔΦ(t)|�(t)] ≤

∑
i∈A(t) IE[Δci(t)|�(t)] < −ϑεδ2

4 ×�(t)m
In either Case 1 or 2 such that an almost-NE is not reached by realization �(t), we con-
clude from the above:

IE[ΔΦ(t)|�(t)] ≤
∑

i∈A(t)

IE[Δci(t)|�(t)] < −ϑεδ2

4 × �(t)m (6)

Consider the space of all realizations �(t) not in an almost-NE due to ≥ εm overloaded
or underloaded links in round t. Let p�(t) the probability to obtain a realization �(t) in
this space. Removing the conditional on �(t), Expression (6) becomes:

IE[ΔΦ(t)] =
∑

�(t)

IE[ΔΦ(t)|�(t)]p�(t) ≤
∑

�(t)

⎡

⎣
∑

i∈A(t)

IE[Δci(t)|�(t)]

⎤

⎦ p�(t)

≤
∑

�(t)

[
−ϑεδ2

4 × �(t)m
]
p�(t) = −ϑεδ2

4 × IE[�(t)]m

From Fact 3 the above becomes: IE[ΔΦ(t)] ≤ −ϑεδ2

4 × IE[Φ(t)]
r(1+yt)+1+xt

, r = n/m and
r, xt, yt = Θ(1).

3 Approximate Equilibria in Congestion Games with Coalitions

3.1 Model and Preliminaries

A congestion game with coalitions consists of a set of identical players N = [n]
([n] ≡ {1, . . . , n}) partitioned into k coalitions {C1, . . . , Ck}, a set of resources E =
{e1, . . . , em}, a strategy space Σi ⊆ 2E for each player i ∈ N , and a non-negative
and non-decreasing latency function �e : IN �→ IN associated with every resource
e. In the following, we restrict our attention to games with linear latencies of the
form �e(x) = aex + be, ae, be ≥ 0, and symmetric strategies (or single-commodity
congestion games), where all players share the same strategy space, denoted Σ. The
congestion game is played among the coalitions instead of the individual players. We
let nj denote the number of players in coalition Cj . The strategy space of coalition
Cj is Σnj and the strategy space of the game is Σn1 × · · · × Σnk . A pure strategy
sj ∈ Σnj determines a (pure) strategy si

j ∈ Σ for every player i ∈ Cj . We should
highlight that if the coalitions have different sizes, the game is not symmetric. We let
r ≡

⌈
maxj∈[k]{|Cj |}/ minj∈[k]{|Cj |}

⌉
denote the ratio between the size of the largest

coalition to the size of the smallest coalition. Clearly, 1 ≤ r < n. For every resource e ∈
E, the load (or congestion) of e due to Cj in sj is fe(sj) = |{i ∈ Cj : e ∈ si

j}|. A tuple
s = (s1, . . . , sk) consisting of a pure strategy sj ∈ Σnj for every coalition Cj is a state

of the game. For every resource e ∈ E, the load of e in s is fe(s) =
∑k

j=1 fe(sj). The
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delay of a strategy α ∈ Σ in state s is �α(s) =
∑

e∈α �e(fe(s)). The selfish cost of each
coalition Cj in state s is given by the total delay of its players, denoted τj(s). Formally,
τj(s) ≡

∑
i∈Cj

�si
j
(s) =

∑
e∈E fe(sj)�e(fe(s)) Computing a coalition’s best response

in a network congestion game can be performed by first applying a transformation sim-
ilar to that in [12, Theorem 2] and then computing a min-cost flow. A state s is a Nash
equilibrium if for every coalition Cj and every strategy s′j ∈ Σnj , τj(s) ≤ τj(s−j , s

′
j),

i.e. the total delay of coalition Cj cannot decrease by Cj’s unilaterally changing its
strategyFor every ε ∈ (0, 1), a state s is an ε-Nash equilibrium if for every coalition Cj

and every strategy s′j ∈ Σnj , (1 − ε)τj(s) ≤ τj(s−j , s
′
j). An ε-move of coalition Cj

is a deviation from sj to s′j that decreases the total delay of Cj by more than ετj(s).
Clearly, a state s is an ε-Nash equilibrium iff no coalition has an ε-move available.

3.2 Convergence to Approximate Equilibria

To bound the convergence time to ε-Nash equilibria, we use the following potential
function: Φ(s) = 1

2

∑
e∈E [fe(s)�e(fe(s))+

∑k
j=1 fe(sj)�e(fe(sj))], where [15, Theo-

rem 6] proves that Φ is an exact potential function for (even multi-commodity)
congestion games with static coalitions and linear latencies. We prove that for single-
commodity linear congestion games with coalitions, the largest improvement ε-Nash
dynamics converges to an ε-Nash equilibrium in a polynomial number of steps. Hence
in network congestion games, where a coalition’s best response can be computed in
polynomial times by a min-cost flow computation, an ε-Nash equilibrium can be com-
puted in polynomial time. If the current strategies profile is not an ε-Nash equilibrium,
there may be many coalitions with ε-moves available. In the largest improvement ε-
Nash dynamics, the coalition that moves is the one whose best response is an ε-move
and results in the largest improvement in its total delay (and consequently in the poten-
tial). In the full version of the paper [30], the following theorem is proven.

Theorem 6. In a single-commodity linear congestion game with n players divided
into k coalitions, the largest improvement ε-Nash dynamics starting from an initial
state s0 reaches an ε-Nash equilibrium in at most kr(r+1)

ε(1−ε) log Φ(s0) steps, where r =
⌈
maxj∈[k]{nj}/ minj∈[k]{nj}

⌉
denotes the ratio between the size of the largest coali-

tion and the size of the smallest coalition.
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13. Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to wardrop equilibria by adaptive sam-
pling methods. In: STOC (2006)

14. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: TCS, vol. 348, pp.
226–239 (2005)

15. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic Congestion Games among Coalitions. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
572–583. Springer, Heidelberg (2006)

16. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing in parallel and distributed networks
by random matchings. In: SPAA (1994)

17. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: FOCS 2005
(2005)

18. Goldberg, P.W.: Bounds for the convergence rate of randomized local search in a multiplayer
load-balancing game. In: PODC (2004)
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Abstract. We study game-theoretic mechanisms for routing in ad-hoc
networks. Game-theoretic mechanisms capture the non-cooperative and
selfish behavior of nodes in a resource-constrained environment. There
have been some recent proposals to use incentive-based mechanisms (in
particular, VCG) for routing in wireless ad-hoc networks, and some
frugality bounds are known when the connectivity graph is essentially
complete. We show frugality bounds for random geometric graphs, a
well-known model for ad-hoc wireless connectivity. Our main result
demonstrates that VCG-based routing in ad-hoc networks exhibits small
frugality ratio (i.e., overpayment) with high probability. In addition, we
study a more realistic generalization where sets of agents can form com-
munities to maximize total profit. We also analyze the performance of
VCG under such a community model and show similar bounds. While
some recent truthful protocols for the traditional (individual) agent
model have improved upon the frugality of VCG by selecting paths to
minimize not only the cost but the overpayment, we show that extend-
ing such protocols to the community model requires solving NP-complete
problems which are provably hard to approximate.

1 Introduction

We study the frugality ratio (FR), a measure of cost-efficiency, of the generalized
VCG mechanism for reliable routing in the presence of non-cooperative behavior
in ad-hoc networks. We model ad-hoc networks by random geometric graphs
(RGG), and show that VCG-based routing exhibits small frugality ratio with
high probability (w.h.p.). We generalize the standard model of agent behavior
by allowing sets of nodes to form communities to maximize the total profit and
demonstrate bounds on the frugality ratio for this model as well. Moreover, while
some recent truthful protocols for the traditional (individual) agent model have
improved upon the frugality of VCG by selecting paths to minimize not only
the cost but the overpayment, we show that extending such protocols to the
community model requires solving NP-complete problems which are provably
hard to approximate.

Reliable and cost-efficient routing in ad-hoc networks is a well-studied prob-
lem, with numerous proposals for routing protocols. Many of these protocols
assume that the nodes in the network behave co-operatively. In resource-scarce
environments, such as ad-hoc networks, this co-operativeness assumption is sus-
pect. Forwarding a packet incurs some cost and in the absence of other incentives,
nodes belonging to one community may refuse to forward packets belonging to

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 133–144, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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another community. Under these assumptions, it is more reasonable to model
a network as a game played between independent selfish agents, and to apply
game theoretic reasoning to develop incentive-based routing protocols [1,2].

In an incentive-based routing protocol, a node is paid monetary compensation
in return for forwarding a packet. The compensation covers the cost incurred by
the node in forwarding the packet. Specifically, in order to route a packet from
node s to node t, each node in the graph demands some payment commensurate
with the cost it incurs to handle the packet. The minimum cost path is chosen
as the route, each node along the path getting the payment it demanded. Un-
fortunately, in most cases, the actual cost incurred is information private to the
community owning the node and the protocol must assume that the community
sets its own price. This can lead to cheating: communities will tend to inflate
their operating costs to maximize the benefits received, leading to instability in
the protocol. Thus, the protocol must be designed so that individual commu-
nities have no incentive to cheat. Such a truthful mechanism [1,3,4] will ensure
that each community will demand a payment equal to its actual cost. The VCG
mechanism [4,5,6,7] implements a truthful mechanism: the chosen route is the
minimum cost according to the demanded payments, and each community gets
paid the maximum amount it could have demanded to still be part of the chosen
route, all other communities’ demands remaining the same.

Since VCG is truthful, the chosen route is indeed the cheapest path with
respect to the true cost. However, the payment made to the communities can be
significantly greater than the solution cost. Hence, one has to analyze the amount
by which the mechanism overpays, called the frugality of the mechanism [8,9,10].
This is measured by the frugality ratio, the maximum over all source-sink pairs
of the ratio of the total payment made to the actual cost of the route.

The VCG mechanism and associated FR have been studied for shortest path
routing on graphs, where each node or edge is considered an independent agent.
We demonstrate in this work that the mechanism extends to the presence of com-
munities. This captures the real-world nature of ad-hoc networks where nodes
are organized into communities acting together, for example mobile users who
group together following common social interests [11,12,13]. While this exten-
sion is simple for the standard VCG mechanism, we show that many natural
extensions to VCG that remain computationally tractable in the usual case be-
come intractable once communities are explicitly added to the model.

Random geometric graphs (RGG) [14] have been well-studied as theoretical
models of ad-hoc networks [15,16,17,18]. Such graphs are constructed by placing
nodes at random in the unit square, and adding an edge between two nodes
if they are closer than the parameter r, which represents the broadcast radius.
We consider various organizations of the nodes into k communities, including
the traditional individual agent model in which each node is its own commu-
nity (and k = n). We consider both the model where each node belongs to a
uniformly at random selected community and the case where the node belongs
to an arbitrary community (with no known underlying distribution). For any
given community we assume that the per node cost is identical for all nodes of
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the community. We take this to be a reasonable simplifying assumption which
reflects the cooperative nature of nodes within a community, including that they
may agree amongst themselves upon a fixed per node price. It may also reflect
other forms of commonality of a given community’s nodes, such as being of the
same provider, being of the same general type, or sharing some locality in the
clustered cases.

For a random geometric graph with k communities populated uniformly at
random, where the costs are chosen uniformly at random from the interval [c, c+
B], we prove that the FR is bounded by 2

√
2(1 + 2B(log log n)2

c log n ) w.h.p. For the
individual node model (where each node is a different community), we show
that the FR is bounded by 2(1 + B

c ) (respectively, 2(1+ B log log n
c log n )) w.h.p. when

costs are chosen arbitrarily (respectively, uniformly at random) from the interval
[c, c + B]. Our proof techniques use the connectivity properties of RGG [15],
together with iterated applications of the coupon collector’s problem [19]. We
also show a logarithmic bound in expectation when the number of communities
in the network is small.

We also performed extensive network model simulations to see how VCG-
based routing behaves in practice. The FR obtained in these simulations were
always lower (better) than the theoretical upper bounds we provide. Our ex-
periments also demonstrate that the FR goes up as the number of communities
increase. This indicates that in the presence of many communities, a mechanism
which minimizes the FR by weighting paths based on the number of communities
may be desirable. In fact this is the intuition behind the result of [10] to improve
over the FR of VCG. Unfortunately, we show that in the community model such
weighting schemes become computationally intractable (NP-hard and even hard
to approximate), implying that these improved mechanisms will be difficult to
implement in practice. Due to space limitations, we have defered the simulation
results and some proofs to an extended version of the paper [20].

2 Related Work

The theory of algorithmic mechanism design was initiated by Nisan and Ronen
in [4,21], in which they considered the generalized Vickrey-Clarke-Groves (VCG)
mechanism [5,6,7] for various computational problems, including shortest path
auctions. Although [4] considers VCG for general set systems, most subsequent
work on truthful mechanisms for path auctions and the frugality thereof is re-
stricted to the case where every edge is owned by an independent agent. Du
et.al. [22] discuss a model where communities can own multiple edges, however
in their model the identity of the community owning an edge is private, and
they show that for such a model no truthful mechanism exists. In our work, we
extend VCG for path auctions in the presence of communities where ownership
is public but costs remain private. With the observation that VCG overpayments
can be quite excessive for path auctions in worst cases, work has been put forth
towards finding more frugal truthful mechanisms [8,9]. Karlin [10] proposed the√

n mechanism, which is within a
√

2 factor of the frugality ratio for the best
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truthful mechanism on any given graph, and in some cases performs up to O(
√

n)
more frugally than VCG. In Section 6 we show that it is NP-hard to generalize
many classes of truthful mechanisms for path auctions in the standard model,
including the

√
n mechanism of [10], to the community model.

As we are interested in path auctions for ad-hoc networks, we study the per-
formance of VCG for RGG [14], a model for the theoretical analysis of ad-hoc
networks [15,16,17,18]. In particular, Gupta and Kumar [15] model ad-hoc net-
works as RGGs in their analysis of the critical radius required for asymptotic
connectivity.

An alternative to the VCG is the first path auction where the agents on
the winning path are paid their bid value. Immorlica et. al. [23] characterized all
strong ε-Nash equilibria of a first path auction and showed that the total payment
of this mechanism is often better than the VCG total payment. However, the
drawback is that there is no guarantee that the bidders will reach an equilibrium,
moreover, unlike the VCG, the preferred bid may depend on the communicating
pair, which might not be known in advance.

VCG and variations thereof have been previously considered for routing
in networks, fitting into a recent body of research tackling the problem of
game-theoretic formalization of routing incentives for various networking do-
mains [2,24,25,26]. Closest to our work in this regard is Anderegg and Eidenbenz
[2] paper in which they propose VCG for routing in ad-hoc networks. Although
our work is nominally similar, there are crucial differences. In particular, while
both consider VCG on ad-hoc networks, in their mechanism they consider nodes
to have unbounded maximum potential radius, paying selected nodes to set
their actual radius as desired according to how many bits they forward for the
source-sink, and take each node to be an independent agent. We, on the other
hand, consider a fixed topology in which radii are already set, and pay nodes to
transmit according to some cost function set by their community.

Finally, we focus on previously unconsidered theoretical aspects of the prob-
lem, leaving the concrete implementation to a large body of work on implemen-
tation of internet currency [27] and other work dealing with the game-theoretic
multi-hop routing [2,24,25,26] implementation.

3 Mechanism Design and the Payment Model

We model an ad-hoc network with k communities as a connected undirected
graph G = (V, E) where the nodes in V are partitioned into k subsets (the
communities). Each community is assumed to be independently profit maximiz-
ing. We assume that there is no monopoly community in the graph, so that by
removing one community from the graph the graph will still remain connected.

Given a k-community ad-hoc network (V, E), and nodes s, t ∈ V , our goal is
to design a protocol that will let s route a packet to t by a cheapest-cost path
from s to t. A community i charges money for any packet that one of its node
transmits. We assume all nodes in a community charge the same price, however,
the exact determination of this cost is information private to the community.
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While nodes can change location and connectivity over time, we assume that
the network is static during the routing phase. We use tools from mechanism
design [4] and define our protocol as follows.

1. We define a game on a k-community ad-hoc network (V, E) with k players,
each corresponding to a community, and two states s, t ∈ V (the source and
the sink for routing). We define the allowed outcomes O of the game to be
the finite set of simple paths between s and t.

2. For each path o ∈ O, each community i has a private cost ti(o) which is
a function of the number of community nodes in path o and the cost of
forwarding a packet by a node belonging to the community. We simplify the
model by assuming that all the nodes belong to the same community have
the same packet transmitting cost. Under this assumption ti(o) = Ci · ni(o),
where Ci is the cost of transmitting one packet by a node of community i,
and ni(o) is the number of i’s nodes lying on path o.

3. Each community defines a valuation function pi(o), which is the price it
charges to transmit a packet on path o.

4. If the path ô is chosen as the route from s to t, then the utility function of
community i will be ui(ô) = pi(ô) − ti(ô) where pi(ô) ≥ 0 is the payment
the community receives from the mechanism. The goal of community i is to
maximize its utility ui(ô).

The payment pi to the communities is used to ensure a truthful implementation,
i.e., an implementation where the dominant strategy of each community is to
set its valuation pi to be equal to ti. We use the following payment in our
mechanism. Let dG|i=∞ be the shortest path that does not contain any node
belongs to community i and let dG|i=0 be the cost of the shortest path where all
nodes on the shortest path that belong to i have a zero cost. Then, the payment
function pi(ô) = 0 if i is not on the shortest path ô, and pi(ô) = dG|i=∞−dG|i=0
measures the maximum amount community i could have charged to still be
part of the chosen route. This is a generalization of the shortest path payment
scheme in [4]. Since shortest paths is a monotone selection rule (i.e., a losing
community cannot become part of the shortest path by raising its valuation),
standard techniques [4,8] show that this payment scheme implements a truthful
mechanism. The frugality ratio is the “over payment” ratio of the mechanism:
FR =

�
i pi(ô)

�
i (ti(ô) .

4 Graph and Cost Model

A random geometric graph (RGG) with n nodes and radius r is constructed by
picking n points (nodes) uniformly at random from the unit square, and putting
an edge between nodes u and v if the distance between u and v is less than or
equal to r.

Following previous theoretical work on ad-hoc networks [15], we represent
ad-hoc networks as random geometric graphs. We choose the radius r at least

on the order of asymptotic connectivity rcon = Ω(
√

log n
n ) [15], i.e., the radius
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that ensures that the graph is connected almost surely. Our models have four
parameters: the number of nodes (n), the radius of the RGG (r), the number
and choice of communities (k), and choice of transmission costs (F ). We shall
assume henceforth that r ≥ rcon.

We consider three types of cost distribution functions F . First, we study
arbitrary bounded cost distributions FA(cmin, B), where community picks an
arbitrary cost from the interval [cmin, cmin + B]. As a special case, we study
the unit cost distribution FC = FA(1, 0) where each community charges unit
cost per edge. Second, we study uniformly-at-random bounded cost distributions
FU (cmin, B), where each community j picks a cost cj uniformly at random from
the interval [cmin, cmin + B]. Third, we study uniformly-at-random unbounded
cost distributions FA,U (ε), where ε > 0, and each community j picks a cost cj

uniformly at random from the interval [ε, 1]. As ε → 0, this model represents the
case where the ratios of costs can be unbounded. Our worst case bounds depend
on B, which becomes unbounded as ε → 0. While this is not a realistic case; it is
interesting to see how bad the practical results can be. We study the following
models:

Individual agent model. In the individual agent model (IAM), each node of
the graph is its own community. This corresponds to the traditionally studied
shortest path VCG mechanism on graphs where each node is an independent
agent. We write NC = (n, r, F ) for an IAM network cost model with n nodes,
radius r, and cost distribution F .

Random graph with communities. Given a number k of communities, each
node in the random graph is assigned a community uniformly at random. We
write NC = (n, r, k, F ) for the network cost model where there are n nodes, the
radius is r, there are k communities (each node selecting its community uniformly
at random), and the costs are determined according to the cost distribution F .

5 Theoretical Results

5.1 Frugality Ratio with High Probability

In many of the bounds, we use the following well known lemma on occupancy.

Lemma 1 (Balls in Bins [19,17]). For a constant c > 1, if one throws
n ≥ cβ log β balls into β bins, then w.h.p. both the minimum and the maxi-
mum number of balls in any bin is Θ(n

β ). Moreover, for c < 1 if one throws
n ≤ cβ log β balls into β bins, then w.h.p. there will exist an empty bin.

Due to the critical nature of the above threshold, we are able to give bounds
w.h.p. for uniform distributions of costs and communities.

As mentioned previously, we consider random geometric graphs with radius
chosen to guarantee connectivity w.h.p. Recall that we assume r ≥ rcon. Al-
though we shall state results for such general radii, we are primarily interested
in small radii r such that r = Θ(rcon). In particular, we will satisfy a slightly
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stronger guarantee of geo-denseness [17], namely that, for any fixed arbitrary
partitioning of the unit square into simple convex Euclidean regions βi of area

r
2
√

2
× r

2
√

2
each, every βi will have the same order of nodes w.h.p. It follows from

Lemma 1 that radius r̂ = (2
√

2+ε)
√

log n
n ≤ 3(rcon,n) satisfies the geo-denseness

property while still being on the same order as the radius for asymptotic con-
nectivity. Henceforth, we will state some results for both general r and for r̂
as defined here. Note further that our following theoretical results hold for geo-
dense geometric graphs in general, not only random geometric graphs. Due to
space limitations, some proofs have been deferred to the full version of the paper

Our first theorem considers the case of arbitrary costs in the Individual Agents
Model (IAM), the standard model for path auctions.

Theorem 1 (IAM with Arbitrary Costs). Given an IAM, NC = (n, r,
FA(cmin, B)), for any r ≥ r̂, the FR of VCG is at most 2(1 + B

cmin
) w.h.p.

In particular, for IAM NC = (n, r, FC) with unit cost distribution, for any r ≥ r̂,
the FR of VCG is at most 2. While unit costs do not seem to be a realistic as-
sumption, and do not require notions of truthfulness, it yields insight into how
the connectivity properties of a graph affect the overpayment. After all, with
arbitrary costs one may obtain arbitrarily bad overpayments for any graph, but
even with unit costs, the graph properties alone may yield bad overpayments.
Therefore, the frugality ratio of VCG in the unit cost model is worthwhile to con-
sider, and one that has been considered for other random graph models, namely
Bernoulli graphs and random scale-free graphs, as well. A notable difference be-
tween random geometric graphs and those other two well-known random graph
models is that while the hop diameter of the latter models is short w.h.p. the
hop diameter of random geometric graphs is long w.h.p.

In standard shortest path auctions [4], unlike our model, costs are assigned
on edges rather than nodes. For an IAM, NC = (n, r, FA(cmin, B)) where edge
costs, we can similarly show that the FR is bounded by 2(1 + B

cmin
) w.h.p.

When costs are distributed uniformly at random (u.a.r.), we may obtain prov-
ably better bounds than in the arbitrary case.

Theorem 2 (IAM with Random Costs). Given NC = (n, r, FU (cmin, B)),

for any r ≥ r̂, the FR is at most 2(1 + B
bcmin

) where b =
nr2
8

2 log( nr2
8 )

w.h.p. In

particular, for r = r̂, if B = O(cmin
log n

log log n ), the FR of VCG for NC is a
constant w.h.p.

Now, we give our results for models with communities. The bounds of arbitrary
costs are almost identical to that of the IAM.

Theorem 3 (Community Model with Arbitrary Costs). Given NCC =
(n, r, k, FA(cmin, B)), for any r ≥ r̂, the FR is at most 2

√
2(1 + B

cmin
) w.h.p.

In particular, for NC = (n, r, k, FC), with unit costs, for any r ≥ r̂, the FR is at
most 2

√
2 w.h.p. Again, for the u.a.r. case, we obtain better guarantees.
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Theorem 4 (Community Model with Random Costs). Let NC =
(n, r, k, FU (cmin, B)) with r ≥ r̂ and k ≤ 8

r2 communities. For b =

min{ k
2 log k ,

nr2
8

2 log nr2
8

} the FR of VCG is at most 2
√

2(1 + 2B
bcmin

) w.h.p. In par-

ticular, for r = r̂ and log n ≤ k ≤ n
log n , if B = O(cmin

log n
(log log n)2 ), the FR is a

constant w.h.p.

Proof. Let s and t be an arbitrary source and sink pair and SP = 〈v0, v1,· · · , vd〉
denote the shortest path between s and t. Since overpayments are made to
communities rather than merely to nodes, partition SP into blocks 〈L1,· · · , Lq〉
where each block belongs to a single community and consecutive blocks do not
belong to the same community. For each community j, let Kj = 〈Lj1 ,· · · , Ljx〉
denote the set of blocks owned by community j. For each community j and
block Lji denote by vji,0 and vji,f the nodes in SP immediately preceding and
succeeding Lji respectively, and let lji be the line between s′ = vji,0 and t′ =
vji,f . Partition lji into r

2
√

2
length intervals (with at most one partial interval at

the end of negligible effect) y ∈ {1, 2,· · · , d(s′,t′)
r

2
√

2
}. Depending on how close lji is

to a boundary of the unit square, it is clear that there must exist a r
2
√

2
×d(s′, t′)

rectangular area Aji with lji as one of the sides lying entirely inside the unit
square. Depending on the orientation of this rectangular area, for each interval
y, let Sy denote the r

2
√

2
× r

2
√

2
square in Aji with interval y as one of the sides.

By Lemma 1 and the choice of r, there are Θ(nr2

8 ) nodes in each Sy w.h.p. Each
node chooses amongst the k communities u.a.r. Each of k communities chooses
its cost u.a.r. from [cmin,· · · , cmin + B]. By the choice of b, w.h.p. the number
of communities in each cost interval of the form [cmin + (α − 1)B

b , cmin + αB
b ]

(for α from 1 to b) is Θ(k
b ). Therefore, since the number of communities in

each cost interval is on the same order, each node in Sy picks amongst the
cost intervals as well up to constant factors. Again, by the choice of b, the
number of cost intervals and re-application of Lemma 1, we have that for each
cost interval α there are Θ(nr2

8b ) nodes of Sy having cost in interval α. Then,
recalling that consecutive bins form a clique, we may route along nodes in the
first two cost intervals in each square bin, depending upon which cost interval
the corresponding community in SP lies. Then, for each Aji , we obtain a path
of cost at most 2

√
2d(vji,0,vji,f )

r (cmin + 2B
b ) other than Lji which has cost at least

d(vji,0, vji,f )rcmin. So, for Lji , the FR is at most 2
√

22B+cmin

bcmin
. Summing over

each Lji , we obtain the same ratio. This characterizes the payment to community
j. Moreover, the argument is the same for any community since the scaling by
distance is lost. Thus, the theorem follows. 	


5.2 Frugality Ratio in Expectation

The bounds so far are all with high probability. However, in the case of fewer
communities we may find significantly improved bounds of VCG with communi-
ties for RGGs in expectation. When the number of communities k is O( log n

log log n )
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(or, for general r, when k is O( nr2

log(nr2) )) we may note once again that every
community occurs in every bin (of r

2
√

2
x r

2
√

2
size). So, due to the aforementioned

bin properties for RGGs, we need only bound the expected ratio of the second
cheapest community to the cheapest community.

Theorem 5. Let NC = (n, r, k, FU (cmin, B)) with radius r ≥ r̂ and k ≤ nr2

log(nr2)

communities. The expected FR of VCG for NC is O(min{log B
cmin

, B
kcmin

}) w.h.p.

Proof. Due to aforementioned geometric bin properties and normalization, it
suffices to show that the expected ratio of the second cheapest to the cheapest
of k costs chosen u.a.r from [1, B] is O(log B). As such, note that the probability
that the cheapest is in [x, x+dx] is k dx

B−1 (B−x
B−1 )k−1, corresponding to the choices

for the cheapest variable and the event that that variable is in [x, x + dx] and
all rest are in (x, B]. Moreover, the expected value of the second cheapest given
that the cheapest is x is the expected value of the cheapest of the k−1 restricted
to interval (x, B], which is easy to check to be B+x(k−1)

xk . Thus,

Ek[ Y
X ] =

∫ B

1
k

B−1 (B−x
B−1 )k−1 1

x
B+x(k−1)

xk dx = B
B−1 ((

∫ B

1 (B−x
B−1 )k−1 dx

x ) + k−1
k )

≤ B
B−1(min{log B, B−1

k } + k−1
k )

	


We may generalize the expected ratio of the second cheapest to the cheapest of
k i.i.d. random costs given cumulative distribution F and density function f as
follows: The probability that the minimum is in [x, x + dx] is, taking over the k
choices of the minimum variable, kf(x)(1 − F (x))k−1. Similarly, the probability
that the second cheapest is in [y, y + dy] given that the cheapest is x is the
probability that the minimum of the remaining k − 1 is in [y, y + dy] given that
all k − 1 have cost greater than x. Thus, the expectation in question is:

Ek[ Y
X ] =

∫∞
1

kf(x)(1−F (x))k−1

x dx
∫∞

x
y(k − 1)f(y)(1−F (y))k−2

(1−F (x))k−1 dy

= k(k − 1)
∫∞
1

f(x)
x dx

∫∞
x

yf(y)(1 − F (y))k−2dy

Substituting, we obtain the following results for some

Corollary 1. Let NCλ = (n, r, k, Fλ, B)) with r ≥ r̂ and k ≤ nr2

log(nr2) commu-
nities and Fλ the exponential distribution translated by +1 with parameter λ.
The expected FR of VCG for NCλ is at most 4

√
2 w.h.p..

For the distribution Frecip obtained by taking reciprocals of random variables
chosen according to the uniform distribution on the unit interval (0, 1], in the
model NCrecip = (n, r, k, Frecip, B)) with radius r ≥ r̂ and k ≤ nr2

log(nr2) com-

munities, we similarly get that the expected FR of VCG for NCrecip is 2
√

2k−1
k−2

w.h.p. In fact, we can say something much stronger for this distribution.

Lemma 2. Let NCrecip = (n, r, k, Frecip, B)) with radius r ≥ r̂ and k ≥ nr2

communities. The FR of VCG for NCrecip is at most 2e3
√

2 w.h.p..
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This holds because, by the geometric bin properties, it suffices to show that
within each bin the probability that the second cheapest in that bin is more than
e3 times the cheapest in that bin is O( 1

nm ), where m = 8
r2 is the number of bins.

Let q denote the number of communities occuring w.h.p. in every bin. By choice
of k and r, we have q = Θ(nr2

8 ) by coupon collection. The event that 1
X ≥ e3 1

Y
implies that q − 1 reciprocals chosen u.a.r. all lay in (0, 1

e3 ), the probability of
which is q

e3(q−1) . Thus, Pr[ Y
X ≥ e3] = Pr[ 1

X ≥ e3 1
Y ] < q

e3(q−1) , where X is the
cheapest and Y is the second cheapest. Moreover, q

e3(q−1) ≤ q
n2 = r2

n by choice
of q, completing the proof.

By noting that, for Fλ, the exponential distribution translated by +1, the
probability that q − 1 costs are higher than A is at most ke−λ(A−1)(q−1), a very
similar argument gives the following.

Lemma 3. Let NCλ = (n, r, k, Fλ, B)) with radius r ≥ r̂ and k ≥ nr2 commu-
nities. The FR of VCG for NCλ is O(1) w.h.p..

6 Hardness of Extensions

NP-Hardness of Extensions. Both simulation results and related work on
the traditional path auction model [8,9,28,10] suggest that a mechanism that
minimizes some weighting of total path costs by the number of communities on
the path may have a lower FR than VCG. For example, the mechanism proposed
in [10] is known to be up to

√
n times more frugal than VCG. Unfortunately,

as we show next, in the presence of communities, the implementation of this
mechanism requires solving intractable problems.

The first step of the
√

n mechanism of [10] is to find the least cost edge-
disjoint cycle through s and t. In the community model, this would correspond
to finding at least some community disjoint cycle through s and t. Note that the
existence of two community disjoint paths is not guaranteed by the no-monopoly
condition. For example, consider k = 3 and a graph consisting of three length
paths P1, P2, P3 from s to t where each path Pi excludes only community i.

By representing each community with a unique color, we color the nodes (or,
alternately, edges, the results apply to both cases) according to their communi-
ties. Finding a community disjoint cycle is the same as finding a color-disjoint
cycle. This problem is NP-Complete by a reduction from 3-SAT. A similar prob-
lem is independently shown to be NP-Complete in [29].

Lemma 4. Consider the problem C: Given a graph G = (V, E) with nodes ar-
bitrarily colored from k colors, and a designated source-sink pair (s, t), find two
color disjoint paths through s and t. C is NP-Complete. The same is true con-
sidering edge colorings instead of node colorings.

APX-Hardness of Natural Extensions. As a second possible extension, we
can study the VCG under other cost models. For example, we could try to
minimize the number of communities along the shortest path in order to try to
reduce the FR. Unfortunately, we have found that many approaches in these
directions turn out to be NP-complete, some even strongly approximation hard.
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Here we show that any natural truthful mechanism with a selection rule in-
corporating some kind of minimization of the number of communities on the
path is strongly approximation-hard to compute. Our reduction is an approx-
imation preserving reduction from the Minimum Monotone Satifying Assign-
ment (MMSA3) problem, which is known to be 2log1−o(1) n hard to approximate
[30,31]. While there are closely related approximation hardness results under
various names [32,33], our result and reduction are both more general and more
direct. First, notice that for all 0 < x < 1, we have 2log1−o(1) n > nx. Now, we
define a natural class of truthful mechanisms for path auctions in the commu-
nity model in the following way. A truthful mechanism for path auctions in the
community model (with per unit costs) is a (f, g) min-agent mechanism if its
monotonic selection rule is of the following form. Given source s and destination
t, select the path P from s to t that minimizes the product f(q)g(p), for some
strictly increasing, efficiently invertible function f and non-decreasing function
g, where q is the number of communities on P and p is the total cost of P . Now,
we proceed to our hardness result.

Theorem 6. For any 0 < x < 1, for any increasing, efficiently invertible func-
tion f and non-decreasing function g, the selection rule of a (f, g) min-agent
mechanism is f(kn

x) hard to approximate, where kn is the total number of com-
munities and n is the number of nodes.

The same proof also implies the approximation-hardness of even computing VCG
for various other cost-functions involving the community model, such as fixed
community-network entrance fees (i.e., a one-time fee Ci for using any number
of community i’s nodes, which may be a more natural model for some service
providers). The following is obtained by taking g to be a constant function in
Theorem 6.

Corollary 2. VCG for the community model under fixed community sub-
network entrance fees is hard to approximate to within kx, for any 0 < x < 1,
given k total communities.
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Abstract. In this work, we continue the study of the many facets of the
Fully Mixed Nash Equilibrium Conjecture, henceforth abbreviated as the
FMNE Conjecture, in selfish routing for the special case of n identical
users over two (identical) parallel links. We introduce a new measure of
Social Cost, defined to be the expectation of the square of the maximum
congestion on a link; we call it Quadratic Maximum Social Cost. A Nash
equilibrium (NE) is a stable state where no user can improve her (ex-
pected) latency by switching her mixed strategy; a worst-case NE is one
that maximizes Quadratic Maximum Social Cost. In the fully mixed NE,
all mixed strategies achieve full support.

Formulated within this framework is yet another facet of the FMNE
Conjecture, which states that the fully mixed Nash equilibrium is the
worst-case NE. We present an extensive proof of the FMNE Conjecture;
the proof employs a mixture of combinatorial arguments and analytical
estimations. Some of these analytical estimations are derived through
some new bounds on generalized medians of the binomial distribution
[22] we obtain, which are of independent interest.

1 Introduction

Motivation and Framework. In this work, we continue the study of the
(multi-faceted) Fully Mixed Nash Equilibrium Conjecture [7], henceforth abbrevi-
ated as the FMNE Conjecture, in selfish routing. Specifically, we look at a special
case of the KP model for selfish routing due to Koutsoupias and Papadimitriou
[15]; here, a collection of n (unweighted) users wish to each transmit one unit of
traffic from source to destination, which are joined through two (identical) par-
allel links. The congestion on a link is the total number of users choosing it; each
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user makes her choice using a mixed strategy, which is a probability distribution
over links. In the special case case of the KP model we look at, the latency on a
link is identified with the congestion on it.

In a Nash equilibrium (NE) [20,21], no user can improve the expected conges-
tion on the link she chooses by switching to a different (mixed) strategy. Orig-
inally considered by Kaplansky back in 1945 [14], fully mixed Nash equilibria
have all their involved probabilities strictly positive; they were recently coined
into the context of selfish routing by Mavronicolas and Spirakis [19]. Clearly,
the fully mixed NE maximizes the randomization used in the mixed strategies
of the players; so, it is a natural candidate to become a vehicle for the study of
the effects of randomization on the quality of NEs.

We introduce a new measure of Social Cost [15] for the evaluation of NEs.
The new measure is taken to be the expectation of the square of the maximum
congestion on a link; call it Quadratic Maximum Social Cost. (The expectation is
taken over all random choices of the users.) Note that the Quadratic Maximum
Social Cost simultaneously generalizes the Maximum Social Cost (expectation of
maximum latency) proposed in the seminal work of Koutsoupias and Papadim-
itriou [15], and the Quadratic Social Cost (expectation of the sum of the squares
of the latencies) proposed in [16].

The motivation to consider the square of the latency comes from the real
application of scheduling transmissions among nodes positioned on the Euclidian
plane. The received power at a receiver is proportional to the power −δ of the
(generalized) Euclidian distance from the sender to the receiver; δ is the path-loss
exponent, for which it has been empirically assumed that δ ≥ 2 (cf. [13]). In many
natural cases, the latency is proportional to the (generalized) Euclidian distance,
and the proportionality constant may have to do with external conditions of
the medium and the transmission power; in those cases, the received power
is proportional to the power −δ of the latency. So, investigating the expected
maximum latency to the power δ for the initial case δ = 2 is expected to give
insights about the optimization of received power in selfish transmissions.

For any particular definition of Social Cost, the FMNE Conjecture states that
the fully mixed NE maximizes the Social Cost among all NEs. The validity of
the FMNE Conjecture implies that computing the worst-case NE (with respect
to the fixed Social Cost) for a given instance is trivial; it may also allow an
approximation to the Price of Anarchy [15] in case where there is a FPRAS for
approximating the Social Cost of the fully mixed NE (cf. [6]).

Contribution. In this proposed framework, we formulate a corresponding facet
of the FMNE Conjecture:

Conjecture 1. The fully mixed NE maximizes the Quadratic Maximum Social
Cost.

We present an extensive proof of this FMNE Conjecture using a wealth of com-
binatorial and analytical tools. The proof amounts to a very sharp comparison
of the Quadratic Maximum Social Cost of an arbitrary NE to that of the fully
mixed NE.
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The proof has required some very sharp analytical estimates of various combi-
natorial functions that entered the analysis; this provides some evidence that the
proved inequality among the two compared Quadratic Maximum Social Costs
is very tight. The employed analytical estimates may be applicable elsewhere;
so, they are interesting on their own right. In more detail, we have provided
some new estimations for some generalizations of the median of the binomial
distribution [11,22], which may be of independent interest.

Related Work. The FMNE Conjecture was first stated in [7]; it was motivated
there by some initial observations in [6]. The FMNE Conjecture has been proved
for the Maximum Social Cost for the cases of (i) two (unweighted) users and non-
identical but related links, and (ii) an arbitrary number of (unweighted) users
and two (identical) links in [17]. In fact, our estimation techniques significantly
extend those for the case (ii) above in [17]; due to the increased complexity of the
Quadratic Maximum Social Cost function (over Maximum Social Cost), far more
involved estimations have been required in the present proof. Counterexamples
to the FMNE Conjecture appeared (i) for the case of unrelated links in [17], and
(ii) for the case of weighted users in [5]. In the context of selfish routing, the
fully mixed NE and the FMNE Conjecture have attracted a lot of interest and

Table 1. The status of the studied facets of the FMNE Conjecture. A symbol
√

(resp.,
×) in the third column indicates that the FMNE Conjecture has been proven (resp.,
refuted) for the corresponding case. A number ρ in the third column indicates that
an approximate version of the FMNE Conjecture has been shown: the Social Cost of
an arbitrary NE is at most ρ times the one of the fully mixed. The symbol h denotes
the factor by which the largest weight deviates from the average weight (in the case of
weighted users).

Model assumptions Social Cost FMNE Conjecture? Reference
n = 2, weighted users & identical links MSC

√
[6]

unweighted users & related links MSC 49.02 [6]

weighted users & identical links MSC 2h(1 + ε) [9]

n = 2, unweighted users & related links MSC
√

[17]

m = 2, unweighted users & identical links MSC
√

[17]

m = 2, n = 2 & unrelated links MSC
√

[17]

m = 2, n = 3 & unrelated links MSC × [17]

unweighted users & identical links QSC
√

[16]

unweighted users & links with
(identical) non-constant and convex ΣICSC

√
[9]

latency functions

unweighted users & identical links PSC
√

[10]

weighted users & player-specific links ΣICSC
√

[12]

weighted users & player-specific links MICSC
√

[12]

weighted users & identical links MSC × [5]

weighted users with types & identical links ΣICSC
√

[10]

weighted users with types & identical links MICSC
√

[10]
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attention; they both have been studied extensively in the last few years for a
wide variety of theoretical models of selfish routing and Social Cost measures -
see, e.g., [2,4,9,10,12,16,18].

The status of the studied facets of the FMNE Conjecture is summarized in
Table 1. In the case of related links, latency is a linear function of congestion on
a link; in the (special) case of identical links, the linear function is identity, while
in the (more general) case of player-specific links, the linear function is specific to
each player. In the (even more general) case of unrelated links, there is an additive
contribution to latency on a link, which is both player-specific and link-specific.
The Quadratic Social Cost [16], denoted as QSC, is the (expectation of the)
sum of the squares of the latencies; more generally, the Polynomial Social Cost,
denoted as PSC, is the (expectation of the) sum of polynomial functions of the
latencies. The Player-Average Social Cost (considered in [9,12] and denoted as
ΣICSC) is the sum of Individual Costs of the players; the Player-Maximum Social
Cost (considered in [9,10] and denoted as MICSC) is the maximum Individual
Cost of a player.

2 Mathematical Tools

Notation. For any integer n ≥ 2, denote [n] = {1, 2, . . . , n}, [n]0 = [n] ∪ {0}.
Denote N the set of integers n ≥ 1, e the base of the natural logarithm. For a
random variable X following the distribution P, denote as EP(X) the expectation
of X ; X ∼ P denotes that X follows the distribution P. For an integer n, the
predicates Even(n) and Odd(n) will be 1 when n is even and odd, respectively,
and 0 otherwise.

Two Combinatorial Facts. The first fact is an extension of Stirling’s approx-
imation n! ≈

√
2πnn+ 1

2 e−n to n!. The extension yields a double inequality for
n! (cf. [3, Chapter 2, Section 9]).

Lemma 1.
√

2πnn+ 1
2 e−n+ 1

12n+1 ≤ n! ≤
√

2πnn+ 1
2 e−n+ 1

12n for all n ∈ N.

Applying Lemma 1 twice in fractional expansions of binomial coefficients yields:

Lemma 2. n
√

n
2π e

1
12n+1− 1

3n ≤ n2

2n+1

(
n
n
2

)
≤ n

√
n
6 for all n ∈ N.

Lemma 3.
√

n
2π e

1
12n+1− 1

3n−3 ≤ n!
2n(( n−1

2 )!)2 ≤
(

n
n−1

)n √
n
6 for all n ∈ N.

The second fact is a maximization property of the Bernstein basis polynomial
of order k and degree n bk,n(x) =

(
n
k

)
xk(1 − x)n−k, which forms a basis of the

vector space of polynomials of degree n [1].

Lemma 4. maxx∈[0,1] bk,n(x) =
(
n
k

)
kkn−n(n − k)n−k, occurring at x = k

n for
all k ∈ [n]0.
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Generalized Medians of the Binomial Distribution. Consider a sequence
of N Bernoulli trials, each succeeding with probability p. The number of suc-
cesses out of these N trials follows the binomial distribution; that is, the proba-
bility of obtaining at most k ≤ N successes is Σk

�=0

(
N
�

)
p�(1 − p)N−�.

Define BN,k(p) : [0, 1] → R with BN,k(p) = Σk
�=0

(
N
�

)
p�(1 − p)N−� to be the bi-

nomial function. Clearly, BN,k(p) is strictly decreasing in (and continuous with)
p, with BN,k(0) = 1 and BN,k(1) = 0. By continuity, it follows that BN,k at-
tains all intermediate values between 0 and 1. For any α ∈ [0, 1], define the
α-median of the binomial distribution, denoted as MN,p(α) with MN,p(α) =
min {k ∈ [0, N ] | BN,k(p) ≥ α}; intuitively, the α-median of the binomial distri-
bution is the least integer k such that the probability of obtaining at most k
successes is at least α. Clearly, BN,k(p) < α for all indices k < MN,p(α). This
definition of α-median generalizes the classical definition of median of the bi-
nomial distribution (which is the 1

2 -median). We will use one known fact about
medians [11, Theorem 2.3]:

Lemma 5. MN, 12

( 1
2

)
=

⌊
N
2

⌋
for p < 1

2 , MN,p

( 1
2

)
≥ (N + 1)p − 1.

Furthermore, we establish in this work some new bounds on generalized medi-
ans, which shall be employed in some later proofs:

Lemma 6 (Generalized Medians). For any ε > 0, the following bounds hold
on generalized medians of the binomial distribution, where p = 1

2 − r
2(n−r−1) :

(1) Mn−r−2, p
( 1

2 + ε
)

>
⌈

n−3
2

⌉
− r − 1, where 1 ≤ r ≤

⌊
n−3

2

⌋
− 4.

(2) Mn−r−2, p
( 3

7 + ε
)

>
⌈

n−3
2

⌉
−r−1, where n ≥ 134 is even and r =

⌊
n−3

2

⌋
−3.

(3) Mn−r−2, p
( 2

5 + ε
)

>
⌈

n−3
2

⌉
−r−1, where n ≥ 134 is even and r =

⌊
n−3

2

⌋
−2.

(4) Mn−r−2, p
( 1

3 + ε
)

>
⌈

n−3
2

⌉
−r−1, where n ≥ 134 is even and r =

⌊
n−3

2

⌋
−1.

(5) Mn−r−2, p
( 1

4 + ε
)

>
⌈

n−3
2

⌉
− r − 1, where n ≥ 134 is even and r =

⌊
n−3

2

⌋
.

(6) Mn−r−2, p
( 3

11 + ε
)

>
⌈

n−3
2

⌉
−r−1, where n ≥ 135 is odd and r =

⌊
n−3

2

⌋
−3.

(7) Mn−r−2, p
( 2

9 + ε
)

>
⌈

n−3
2

⌉
−r−1, where n ≥ 135 is odd and r =

⌊
n−3

2

⌋
−2.

(8) Mn−r−2, p
( 1

7 + ε
)

>
⌈

n−3
2

⌉
− r − 1, where n ≥ 135 is odd and r =

⌊
n−3

2

⌋
− 1

(9) Mn−r−2, p (ε) >
⌈

n−3
2

⌉
− r − 1, where n ≥ 135 is odd and r =

⌊
n−3

2

⌋
.

3 Framework and Preliminaries

Our definitions are based on (and depart from) the standard ones for the KP
model; see, e.g., [17, Section 2].

General. We consider a network consisting of two parallel links 1, 2 from a
source to a destination node. Each of n ≥ 2 users 1, 2, . . . , n wishes to route
one unit of traffic from source to destination.

A pure strategy si for user i ∈ [n] is some specific link; a mixed strategy
σi is a probability distribution over pure strategies— so, σi is a probability
distribution over links. The support of user i in her mixed strategy σi, denoted
as support(σi), is the set of pure strategies to which i assigns strictly positive
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probability. A pure profile is a vector s = 〈s1, . . . , sn〉 of pure strategies, one for
each user; a mixed profile is a vector σ = 〈σ1, . . . , σn〉 of mixed strategies, one
for each user. The mixed profile σ is fully mixed if for each user i ∈ [n] and link
j ∈ [2], σi(j) > 0. Note that a mixed profile σ induces a (product) probability
measure Pσ on the space of pure profiles. A user i is pure in the mixed profile σ if
|support(σi)| = 1; so, a pure profile is the degenerate of a mixed profile where all
users are pure. A user i is fully mixed in the mixed profile σ if |support(σi)| = 2;
so, a fully mixed profile is the special case of a mixed profile where all users are
fully mixed.

Cost measures and Nash equilibria. The congestion on the link � in the
pure profile s, denoted as c(�, s), is the number of users choosing link � in s; so,
c(�, s) = |{i ∈ [n] : si = �}|. The Individual Cost of user i in the profile s,
denoted as ICi(s), is the congestion on her chosen link; so, ICi(s) = c(si, s). The
expected congestion on the link � in the mixed profile σ, denoted as c(�, σ),
is the expectation (according to σ) of the congestion on link �; so, c(�, σ) =
Es∼Pσ(c(�, s)). The Expected Individual Cost of user i in the mixed profile
σ, denoted as ICi(σ), is the expectation (according to σ) of her Individual Cost;
so, ICi(σ) = Es∼Pσ(ICi(s)).

The Maximum Social Cost of the mixed profile σ, denoted as MSC(σ), is
the expectation of the maximum congestion: MSC(σ) = Es∼Pσ

(
max�∈[2] c(�, s)

)
.

The Quadratic Maximum Social Cost of the mixed profile σ, denoted as
QMSC(σ), is the expectation of the square of the maximum congestion; so,

QMSC(σ) = Es∼Pσ

((
max�∈[2] c(�, s)

)2
)

=
∑

s∈S Pσ(s).
(
max�∈[2] c(�, s)

)2

=
∑

s∈S
(∏

k∈[n] σk(sk)
)

.
(
max�∈[2] c(�, s)

)2
.

The mixed profile σ is a (mixed) NE [20,21] if for each user i ∈ [n], for each
mixed strategy σ′i of player i, ICi(σ) ≤ ICi(σ−i �σ′i); so, player i has no incentive
to unilaterally change her mixed strategy. (Note that σ−i�σ′i is the mixed profile
obtained by substituting the mixed strategy σi of player i in σ with the mixed
strategy σi′ .)

The fully mixed Nash equilibrium. We are especially interested in the fully
mixed NE φ which is known to exist uniquely in the setting we consider [19]; it
is also known that for each pair of user i ∈ [n] and a link � ∈ [2], φi(�) = 1

2 , so
that all 2n pure profiles are equiprobable, each occurring with probability 1

2n [19,
Lemma 15]. The Maximum Social Cost of φ is given by MSC(φ) = n

2 + n
2n

(
n−1
�n

2 �−1

)

[17]. We now calculate the Quadratic Maximum Social Cost of the fully mixed
NE φ.

Lemma 7. QMSC(φ) = n
4 + n2

4 + n2

2n

( n−1
n

2 �−1

)
.

The arbitrary Nash equilibrium. Fix now an arbitrary NE σ. It is known
that MSC(φ) ≥ MSC(σ) [17] (for the particular case of unweighted users and
two identical links). We consider three sets:
– The set U1 = {i : support(σi) = {1}} of (pure) users choosing link 1.
– The set U2 = {i : support(σi) = {2}} of (pure) users choosing link 2.
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– The set U12 = {i : support(σi) = {1, 2}} of (fully) mixed users choosing
either link 1 or link 2.

Denote u = min {|U1|, |U2|}. So, there exist 2u (pure) users of which u choose
link 1 and the other u choose link 2 with probability 1. Denote σ̂ the mixed
profile derived from σ by eliminating those 2u users; note that σ̂ is a (mixed)
NE. Also, denote as φ̂ the fully mixed NE with n−2u users. Note that σ̂ has sim-
pler form that σ. Hence, it would be more convenient to compare QMSC(φ̂) and
QMSC(σ̂) (instead of comparing QMSC(φ) and QMSC(σ)). To do so, we need
to prove a relation between QMSC(σ̂) and QMSC(σ), and another relation be-
tween QMSC(φ̂) and QMSC(φ).We first prove a relation between the Quadratic
Maximum Social Costs of σ and σ̂. Note that

QMSC(σ̂) = EPσ

(
(max{c(1, σ), c(2, σ)} − u)2

)

= EPσ

(
(max{c(1, σ), c(2, σ)})2 − 2u max{c(1, σ), c(2, σ)} + u2

)

= EPσ

(
(max{c(1, σ), c(2, σ)})2

)
–2uEPσ (max{c(1, σ), c(2, σ)}) + u2

= QMSC(σ) − 2uMSC(σ) + u2, hence it follows:

Lemma 8. QMSC(σ̂) = QMSC(σ) − 2uMSC(σ) + u2.
We continue to compare the Quadratic Maximum Social Costs of φ and φ̂.
Lemma 7 implies that

QMSC(φ) − QMSC(φ̂)
= n

4 + n2

4 + n2

2n

( n−1
n

2 �−1

)
− n−2u

4 − (n−2u)2

4 − (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)

= −u
(
u − n − 1

2

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)

= −QMSC(σ̂) + QMSC(σ) − 2uMSC(σ)
+u

(
n + 1

2

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)
.

It follows that
QMSC(φ) − QMSC(σ) − (QMSC(φ̂) − QMSC(σ̂))

= −2uMSC(σ) + u
(
n + 1

2

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)

≥ −2uMSC(φ) + u
(
n + 1

2

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)

= −2u
(

n
2 + n

2n

( n−1
n

2 �−1

))
+ u

(
n + 1

2

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)

= u
2 − 2u n

2n

( n−1
n

2 �−1

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)
.

We now prove a technical claim:

Lemma 9. For all pairs of integers n and u such that n ≥ 2u,
−2u n

2n

( n−1
n

2 �−1

)
+ n2

2n

( n−1
n

2 �−1

)
− (n−2u)2

2n−2u

( n−2u−1
n−2u

2 �−1

)
≥ 0.

Lemma 9 implies that (to prove that QMSC(φ) ≥ QMSC(σ)) it suffices to prove
that QMSC(φ̂) ≥ QMSC(σ̂). The rest of the paper is devoted to proving this
inequality. For notational convenience, rename now the variables so that both σ̂
and φ̂ henceforth refer to an instance with n users. All n users are fully mixed
in φ̂; assume that in σ̂, r ≥ 1 (pure) users choose link 1 with prob. 1 and n − r
(mixed) users choose both links with probability > 0. Lücking et al. [17] proved:
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Lemma 10. For the NE σ̂, for each mixed user i ∈ [n], σi(1) = 1
2 − r

2(n−r−1) .
Furthermore, r ≤

⌊
n−3

2

⌋
. (Henceforth, we shall denote, for each user i ∈ [n],

p = σi(1) and q = σi(2), where p + q = 1.)

We now calculate QMSC(σ̂):

Lemma 11. QMSC(σ̂) = Even(n) · n2

4

(
n−r
n
2−r

)
p

n
2−r q

n
2

+
∑n

i=�n
2 �+1 i2

(
n−r
i−r

)
pi−rqn−i +

∑n−r

i=�n
2 �+1 i2

(
n−r

i

)
pn−r−iqi.

The next technical claim expresses QMSC(σ̂) in a different way by adding and
subtracting terms.

Lemma 12. QMSC(σ̂) = A + B − C + Even(n) · n2

4

(
n−r
n
2−r

)
p

n
2−rq

n
2 , where :

A =
∑n

i=n+1
2 �(i − r)

(
n−r
i−r

)
pi−r−1qn+1−i +

∑n−r

i=n+1
2 �(n − r)

(
n−r−1

i−1

)
pn−r−iqi

B =
∑n

i=n+1
2 �(n − r)(i − r − 1)

(
n−r−1
i−r−1

)
pi−r−2qn+2−i

+
∑n−r

i=n+1
2 �(n − r)(n − r − 1)

(
n−r−2

i−2

)
pn−r−iqi

C =
∑n

i=n+1
2 �

(
n−r
i−r

) (
(i − r)pi−r−1qn+1−i + (i − r)2pi−r−2qn+2−i

−(i − r)pi−r−2qn+2−i − i2pi−r qn−i
)
.

We calculate that A = q(n − r) + Odd(n) · q(n − r)
(n−r−1

n−1
2 −r

)
p

n−1
2 −rq

n−1
2 ,

B = q2(n − r)(n − r − 1)
·
(
1 +

( n−r−2
n−2

2 �−r

)
pn−2

2 �−rq�
n−2

2 � + Odd(n) ·
(n−r−2

n−3
2 −r

)
p

n−3
2 −rq

n−1
2

)
,

C = (n − r)
((

(pq − p2) + q(q − p)
) ∑n−r

i= n+3
2 �−r

(
n−r−2

i−2

)
pi−2qn−r−i

+ (q2 − p2)(n − r − 1)
∑n−r

i= n+1
2 �−r

(
n−r−2

i−2

)
pi−2qn−r−i

+ (pq − p2)
( n−r−2
n−3

2 �−r

)
pn−3

2 �−rq�
n−1

2 �
)

> (n − r)
(
(q2 − p2)(n − r − 1)

∑n−r

i=n+1
2 �−r

(
n−r−2

i−2

)
pi−2qn−r−i+

(pq − p2)
( n−r−2
n−3

2 �−r

)
pn−3

2 �−rq�
n−1

2 �
)

.

4 The FMNE Conjecture Is Valid

The proof will use some estimations and technical claims which have been de-
ferred to Sections 5 and 6, respectively. We establish:

Theorem 1. For the fully mixed NE φ̂ and the NEσ̂, QMSC(φ̂) ≥ QMSC(σ̂).

Proof. Assume that n ≥ 134. (For smaller n, the claim is verified directly.)
Lemmas 7 and 12 imply that

QMSC(φ̂) − QMSC(σ̂) ≥ n
4 + n2

4 + n2

2n

( n−1
n

2 �−1

)
− q(n–r) − q2(n–r)(n–r–1)

+(q2–p2)(n–r)(n–r–1)Q + D, where
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D = −q2(n − r)(n − r − 1)
( n−r−2
n−2

2 �−r

)
pn−2

2 �−r q�
n−2

2 �

+(pq − p2)(n − r)
( n−r−2
n−3

2 �−r

)
pn−3

2 �−r q�
n−1

2 �

−Odd(n) · q(n–r)
((n−r−1

n−1
2 −r

)
p

n−1
2 −rq

n−1
2 + q(n–r–1)

(n−r−2
n−3

2 −r

)
p

n−3
2 −rq

n−1
2

)

−Even(n) · n2

4

(
n−r
n
2−r

)
p

n
2−rq

n
2 and

Q =
∑n−r

i=n+1
2 �−r

(
n−r−2

i−2

)
pi−2qn−r−i =

∑n−r−2
i=n−3

2 �−r

(
n−r−2

i

)
piqn−r−2−i

= 1 − Bn−r−2,�n−3
2 �−r−1(p).

Note that Lemma 6 implies lower bounds on Q for various values of r, which
will be used in some later proofs. We proceed by case analysis. We consider
separately the two cases where n is even or odd.

Case 1: n is even By substituting p and q from Lemma 10, we get that

D = − (n−1)2(n−r)
4(n−r−1)

(n−r−2
n−2

2 −r

)
p

n−2
2 −rq

n−2
2

+ r(n−r)(n−2r−1)
2(n−r−1)2

(n−r−2
n−2

2 −r

)
p

n−2
2 −rq

n−2
2 − n2

4

(
n−r
n
2−r

)
p

n
2−rq

n
2

=
(n−r−2

n−2
2 −r

)
p

n−2
2 −rq

n−2
2

(
− (n−1)2(n−r)

4(n−r−1) + r(n−r)(n−2r−1)
2(n−r−1)2 pq n(n−r)(n−r−1)

n−2r

)

≥
(n−r−2

n−2
2 −r

)
p

n−2
2 −rq

n−2
2

(
− (n−1)2(n−r)

4(n−r−1) − n(n−1)(n−2r−1)(n−r)
4(n−r−1)(n−2r)

)

It follows that

QMSC(φ̂) − QMSC(σ̂)
≥ n

4 + n2

4 + n2

2n+1

(
n
n
2

)
− (n−1)(n−r)

2(n−r−1) − (n−1)2(n−r)
4(n−r−1) + r(n − r)Q

−
(n−r−2

n−2
2 −r

)
p

n−2
2 −r q

n−2
2

(
(n−1)2(n−r)

4(n−r−1) + n(n−1)(n−2r−1)(n−r)
4(n−r−1)(n−2r)

)

= n2

2n+1

(
n
n
2

)
+ r(n − r)Q

−
(n−r−2

n−2
2 −r

)
p

n−2
2 −r q

n−2
2

(
(n−1)2(n−r)

4(n−r−1) + n(n−1)(n−2r−1)(n−r)
4(n−r−1)(n−2r)

)
− r(n+1)

4(n−r−1)

> n2

2n+1

(
n
n
2

)
+ r(n − r)Q

−
(n−r−2

n−2
2 −r

)
p

n−2
2 −rq

n−2
2

(
(n−1)2(n−r)

4(n−r−1) + n(n−1)(n−r)
4(n−r−1)

)
− r(n+1)

4(n−r−1)

>
n2

2n+1

(
n
n
2

)
−

(
n − r − 2
n−2

2 − r

)
p

n−2
2 −rq

n−2
2

(
n2(n − r)

2(n − r − 2)

)
+r(n − r)Q

︸ ︷︷ ︸
G

− r(n+1)
4(n−r−1) .

We proceed by case analysis on the range of values of r. For each range, we shall
use the corresponding case(s) of Lemma 6 to infer a lower bound on Q.

1. 1 ≤ r ≤ �(n − 3)/2� − 4 : Note that in this case, Lemma 6 (Case (1)) im-

plies that Q ≥ 1
2 . Hence, substituting p and q from Lemma 10, we get that

G ≥ n2

2n+1

(
n
n
2

)
− n2(n−r)

2(n−r−2)

(n−r−2
n−2

2 −r

) (
n−2r−1

2(n−r−1)

)n−2r−2
2

(
n−1

2(n−r−1)

) n−2
2

+ r(n−r)
2

= n2

2n+1

(
n
n
2

)
(
1– n

n−r−2

�r
i=0(n−2r+2i)�

r
i=1(n−r+i)

(n−1)(n−2r−1)1−r

(n−r−1)3−r

(
n−2r−1
n−r−1

)n−4
2
(

n−1
n−r−1

)n−4
2

)

+ r(n−r)
2 .
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We consider two different subcases:

1.1. 1 ≤ r ≤ 4 : We use Lemma 2 and the estimation in Lemma 13. Clearly,

G (2),(13)
≥ n

√
n
6

(
1– n

n−r−2

�r
i=0(n−2r+2i)
�r

i=1(n−r+i)
(n−1)(n−2r−1)1−r

(n−r−1)3−r

(
n−2r−1
n−r−1

)n−4
2
(

n−1
n−r−1

)n−4
2

)

+ r(n−r)
2

(13)
≥

r(n+1)
4(n−r−1) , and the claim follows.

1.2. 5 ≤ r ≤ �(n − 3)/2� − 4: We use Lemmas 14, 18, and 19. Clearly,

G (2),(14)
≥ n

√
n
2π e

1
12n+1− 1

3n − n2

2
1√
2π

n−r√
(n−r−2)( n

2−1)( n
2−r−1)

e
1

12(n−r−2)− 1
6n−11− 1

6n−12r−11 + r(n−r)
2

= n
√

n
2π e

1
12n+1− 1

3n

·
(
1–

√
n(n−r)2

(n−2)(n−r−2)(n−2r−2)e
1

12(n−r−2)− 1
6n−11− 1

6n−12r−11− 1
12n+1+ 1

3n

)

+ r(n−r)
2

(18)
≥ n

√
n
2π e

1
12n+1− 1

3n

(
1 −

√
n(n−r)2

(n−2)(n−r−2)(n−2r−2)

)
+ r(n−r)

2

≥ n
√

n
6

(
1 −

√
n(n−r)2

(n−2)(n−r−2)(n−2r−2)

)
+ r(n−r)

2

≥ n
√

n
6

(
1 −

√
n(n−r)2

(n−2)(n−r−2)(n−2r−2)

)
+ r(n+1)

4 (since r ≤
⌊

n−3
2

⌋
− 4)

(19)
≥

r(n+1)
4(n−r−1) , and the claim follows.

2.
⌊

n−3
2

⌋
− 3 ≤ r ≤

⌊
n−3

2

⌋
: We shall use the estimation in Lemma 15 (Case

(1)). (Note that this way, we are implicitly using corresponding cases of Lemma
6 to get lower bounds on Q since the proof of Lemma 15 uses such lower bounds
from Lemma 6.) By substituting p and q from Lemma 10, we get that
QMSC(φ̂) − QMSC(σ̂)

≥ n
4 + n2

4 − (n−1)(n−r)
2(n−r−1) − (n−1)2(n−r)

4(n−r−1) + r(n − r)Q

−
(n−r−2

n−2
2 −r

)(
n−2r−1

2(n−r−1)

)n−2
2 −r(

n−1
2(n−r−1)

)n−2
2
(
(n−1)2(n−r)

4(n−r−1) + n(n−1)(n−2r−1)(n−r)
4(n−r−1)(n−2r)

)

= n
4 + n2

4 − (n − r)·(
(n−1)(n+1)
4(n−r−1) –rQ +

�n−2r−4
2

i=0 (n
2 +i)

( n−2
2 −r)!

(
n−2r−1

2(n−r−1)

)n−2r−2
2

(
n−1

2(n−r−1)

)n
2
(

n2−n−2nr+r
n−2r

)
)

≥ n2+n
4 –n−r

2

(
(n−1)(n+1)
2(n−r−1) –2rQ + n(n−2r−1)

n−2
2 −r(n2−n−2nr+r)

2
n−2r−4

2 (n−2
2 −r)!2(n−r−1)(n−2r)

(
n−1

2(n−r−1)

)n
2
)

≥ –n−r
2

(
n2

2(n−r−1)–
n2

2(n−r)–2rQ + n(n−2r−1)
n−2

2 −r(n2−n−2nr+r)

2
n−2r−4

2 (n−2
2 −r)!(n−2r)

(
n−1

2(n−r−1)

)n
2
)

(15)
≥ 0,

and the claim follows. This completes the proof for even n.

Case 2: n is odd Due to space restrictions we skip the proof for odd n.
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5 Estimations

In this section, we collect together all estimations which were used in the proof
of Theorem 1. Some of these estimations refer to the probabilities p and q
introduced in Lemma 10. Some other estimations refer to the quantity Q =∑n−r

i=n+1
2 �−r

(
n−r−2

i−2

)
pi−2qn−r−i introduced in the proof of Theorem 1.

Lemma 13. For all integers n and r such that 1 ≤ r ≤ 4,

(1) n
n−r−2

�r
i=0(n−2r+2i)
�r

i=1(n−r+i)
(n−2r−1)1−r

(n−r−1)2−r

(
n−2r−1
n−r−1

) n−4
2

(
n−1

n−r−1

)n−2
2 ≥ 1.

(2) n
√

n
6

(
1– n

n−r−2

�r
i=0(n−2r+2i)
�

r
i=1(n−r+i)

(n−1)(n−2r−1)1−r

(n−r−1)3−r

(
n−2r−1
n−r−1

)n−4
2
(

n−1
n−r−1

)n−4
2

)

≥ r(n+1)
4(n−r−1) − r(n−r)

2 .

Lemma 14. For all integers n and r such that 5 ≤ r ≤
⌊

n−3
2

⌋
− 4,

(n−r−2
n−2

2 −r

)
p

n−2
2 −rq

n−2
2 ≤

√
n−r−2

2π( n
2−1)( n

2−r−1)e
1

12(n−r−2)− 1
6n−11− 1

6n−12r−11 .

Lemma 15. For all integers r such that
⌊

n−3
2

⌋
− 3 ≤ r ≤

⌊
n−3

2

⌋
:

(1) For all even integers n ≥ 134,
n2

2(n−r−1) − n2

2(n−r) − 2rQ + n(n−2r−1)
n−2

2 −r(n2−n−2nr+r)

2
n−2r−4

2 (n−2
2 −r)!(n−2r)

(
n−1

2(n−r−1)

) n
2 ≤ 0.

(2) For all odd integers n ≥ 135,
n
4 +n2

4 –n−r
2

(
(n−1)(n+1)
2(n−r−1) –2rQ+2(n+1)

(n−r−1
n−1

2 −r

)(
n−2r−1

2(n−r−1)

)n−1
2 −r(

n−1
2(n−r−1)

)n+1
2

)
≥0.

Lemma 16. For all integers n and r such that 1 ≤ r ≤ 4,

(1)
�r

i=0(n−2r+1+2i)
�r

i=0(n−r+i)
(n−2r−1)−r

(n−r−1)−r

(
n−2r−1
n−r−1

) n−1
2

(
n−1

n−r−1

)n+1
2 ≥ 1.

(2)
(

n
n−1

)n√
n
6

(
1–
�r

i=0(n−2r+1+2i)
�r

i=0(n−r+i)
(n−1)(n−r−1)r−1

(n−2r−1)r

(
n−2r−1
n−r−1

)n−1
2
(

n−1
n−r−1

)n−1
2

)

≥ r(n+1)
4(n−r−1)(n−1) − 1

2 .

Lemma 17. For all integers n and r,(n−r−1
n−1

2 −r

)
p

n−1
2 −rq

n+1
2 ≤ n−1√

2π(n−1)(n−r−1)(n−2r−1)
e

1
12(n−r−1)− 1

6n−5− 1
6n−12r−5

6 Technical Claims

In this section, we collect together some simple technical claims which were used
in the proof of Theorem 1.

Lemma 18. For all n ≥ 1, r > 0 : 1
12(n−r−2)–

1
6n−11– 1

6n−12r−11– 1
12n+1+ 1

3n < 0.

Lemma 19. For all even n ∈ N, n≥134 and r ∈ N such that 5≤r≤
⌊

n−3
2

⌋
− 4 :

n
√

n
6

(
1 −

√
n(n−r)2

(n−2)(n−r−2)(n−2r−2)

)
+ r(n+1)

4 ≥ r(n+1)
4(n−r−1) .
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Lemma 20. For all n ≥ 1, r > 3 : 1
12(n−r−1)–

1
6n−5– 1

6n−12r−5– 1
12n+1+ 1

3n−3 < 0.

Lemma 21. For all odd n ∈ N, n≥135 and r ∈ N such that 4≤r≤
⌊

n−3
2

⌋
− 4 :

n
√

n
6

(
1 −

√
(n+1)2(n−r)2

n(n−1)(n−r−1)(n−2r−1)

)
+ r(n+1)

4 ≥ r(n+1)
4(n−r−1) .

7 Conclusions

We have presented an extensive proof for the validity of the FMNE Conjecture for
a special case of the selfish routing model of Koutsoupias and Papadimitriou [15]
where users are unweighted and there are only two identical (related) links. We
adopted a new, well-motivated kind of Social Cost, called Quadratic Maximum
Social Cost. To carry out the proof, we developed some new estimations of
(generalized) medians of the binomial distribution, which are of independent
interest and value. In turn, those estimations were used as tools, together with
a variety of combinatorial arguments and other analytical estimations, in the
main proof.

We believe that our work contributes significantly, both conceptually and
technically, to enriching our knowledge about the many facets of the FMNE
Conjecture. Based on this improved understanding, we extend the FMNE Con-
jecture formulated and proven in this work to an Extended FMNE Conjecture for
the more general case with an arbitrary number of unweighted users, an arbi-
trary number of identical (related) links and Social Cost as the expectation of a
polynomial with non-negative coefficients of the maximum congestion on a link.
Settling this Extended FMNE Conjecture remains a major challenge.

Acknowledgements. We would like to thank Chryssis Georgiou and Burkhard
Monien for helpful discussions.

References
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11. Göb, R.: Bounds for Median and 50 Percentage Point of Binomial and Negative
Binomial Distribution. Metrika 41(1), 43–54 (1994)

12. Georgiou, C., Pavlides, T., Philippou, A.: Uncertainty in Selfish Routing. In: CD-
ROM Proc. of IEEE IPDPS 2006 (2006)

13. Goussevskala, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR.
In: Proc. of ACM-MobiHoc 2007, pp. 100–109 (2007)

14. Kaplansky, I.: A Contribution to von-Neumann’s Theory of Games. Annals of
Mathematics 46(3), 474–479 (1945)

15. Papadimitriou, C.H., Koutsoupias, E.: Worst-Case Equilibria. In: Meinel, C., Ti-
son, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg
(1999)

16. Monien, B., Mavronicolas, M., Lücking, T., Rode, M.: A New Model for Selfish
Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp.
547–558. Springer, Heidelberg (2004)

17. Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which
is the Worst-Case Nash Equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
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Abstract. We study the sensitivity of equilibria in the well-known game
theoretic traffic model due to Wardrop. We mostly consider single-com-
modity networks. Suppose, given a unit demand flow at Wardrop equi-
librium, one increases the demand by ε or removes an edge carrying only
an ε-fraction of flow. We study how the equilibrium responds to such an
ε-change.

Our first surprising finding is that, even for linear latency functions,
for every ε > 0, there are networks in which an ε-change causes every
agent to change its path in order to recover equilibrium. Nevertheless,
we can prove that, for general latency functions, the flow increase or
decrease on every edge is at most ε.

Examining the latency at equilibrium, we concentrate on polynomial
latency functions of degree at most p with nonnegative coefficients. We
show that, even though the relative increase in the latency of an edge
due to an ε-change in the demand can be unbounded, the path latency
at equilibrium increases at most by a factor of (1 + ε)p. The increase of
the price of anarchy is shown to be upper bounded by the same factor.
Both bounds are shown to be tight.

Let us remark that all our bounds are tight. For the multi-commodity
case, we present examples showing that neither the change in edge flows
nor the change in the path latency can be bounded.

1 Introduction

We analyze equilibria in the Wardrop model [15]. In this model we are given a
network with load-dependent latency functions on the edges and a set of com-
modities, which is defined by source-sink pairs. For each commodity some de-
mand (traffic flow) needs to be routed from the commodity’s source to its sink.
A common interpretation of the Wardrop model is that flow is controlled by an
infinite number of selfish agents each of which carries an infinitesimal amount of
flow. Each agent aims at minimizing its path latency. An allocation, in which no
agent can improve its situation by unilaterally deviating from its current path
is called Wardrop equilibrium.

Whereas the notion of equilibrium captures stability in closed systems, traffic
is typically subject to external influences. Thus, from both the practical and the
theoretical perspective it is a natural question, how equilibria respond to slight
modifications of either the network topology or the traffic flow.
� Supported by DFG grant WE 2842/1 and by the DFG GK/1298 “AlgoSyn”.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 158–169, 2008.
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To analyze this issue, we suppose, we are given an equilibrium flow for unit
demand and increase the demand by ε or remove an edge carrying only an ε-
fraction of flow. How does the equilibrium responds to such an ε-change in terms
of change in flow and latency?

Consider the classical network exhibiting Braess’s Paradox [2]. Suppose a
unit demand needs to be routed from node s to node t. At equilibrium all
traffic follows the zig-zag-path. Increasing the demand by 0 < ε ≤ 1, the paths
containing the dashed edges gain an ε-fraction of flow, whereas the zig-zag-path
loses an ε-fraction.

s

x

x

t s

x

x

t

�(x) = x

�(x) = 1

�(x) = 1

�(x) = 0

�(x) = x

1

1

1 − ε

ε

ε

Latency functions ... ... and flow.

Thus, in general, neither path flows nor edge flows at equilibrium are
monotone functions of the demand. This observation is one of the reasons why
studying the effects of changes might be intriguing.

Our findings for single-commodity networks are as follows. Allowing non-
decreasing, continuous latency functions, we show that for every ε > 0,

– there are networks, in which after an ε-change every agent is forced to change
its path in order to recover equilibrium and

– the flow increase or decrease on every edge, however, is at most ε for every
network.

Thus, in contrast to our surprising finding of global instability of equilibrium
flow, we can prove that edge flows are locally stable.

Examining the latency at equilibrium, we concentrate on polynomial latency
functions of degree at most p with nonnegative coefficients. We show that, due
to an ε-change in the demand,

– the path latency at equilibrium increases at most by a factor of (1+ε)p (even
though the relative increase in the latency of an edge can be unbounded).

This result yields the same bound on the increase in the Price of Anarchy, as
well.

All presented bounds are best possible.
For the multi-commodity case, we present examples for every ε > 0, showing

that neither the change in edge flows nor the increase in the path latency can be
bounded. This holds already for networks equipped with linear latency functions.
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1.1 Related Work

The game theoretic traffic model considered in this paper was introduced by
Wardrop [15]. Beckmann, McGuire, and Winston [1] observe that such an equi-
librium flow is an optimal solution to a related convex program. They give exis-
tence and uniqueness results for traffic equilibria (see also [4] and [11]). Dafermos
and Sparrow [4] show that the equilibrium state can be computed efficiently un-
der some assumptions on the latency functions and many subsequent papers
gave increasingly efficient methods for computing equilibria.

Another line of research examines the degradation of performance due to
selfish behavior, called the Price of Anarchy [8, 11] and the inverse, the increase
of the maximum latency incurred to an agent due to optimal routing [12].

Motivated by the discovery of Braess’s Paradox [2] many similarly counter-
intuitive and counterproductive traffic behavior have been discovered. Fisk [5]
shows that considering multi-commodities the increase of one flow demand might
decrease others path latencies at equilibrium. Hall [6] shows that the vector of
path flows and the vector of the path latencies are continuous functions of the
input demand. Furthermore, he proves that for single-commodity networks the
path latency at equilibrium is a monotone function of the input demand. Dafer-
mos and Nagurney [3] show that equilibrium flow pattern depend continuously
upon the demands and (even non-separable) latency functions. More recently,
Patriksson [9] gave a characterization for the existence of a directional deriva-
tive of the equilibrium solution. In [7] Joseffson and Patriksson show that while
equilibrium edge costs are directionally differentiable, this does not hold for edge
flows itself.

1.2 Outline

In Section 2, we introduce Wardrop’s traffic model. In Section 3, we establish
global instability of equilibrium flows and local stability of edge flows at equi-
librium for general latency functions. For polynomial latency functions with
nonnegative coefficients, we give a tight upper bound on the increase of the path
latency at equilibrium due to an ε-change of the demand (Section 4). Subse-
quently, the same bound on the increase of the Price of Anarchy is derived. In
Section 5, we briefly present some negative results for the multi-commodity case.

2 Wardrop’s Traffic Model

We consider Wardrop’s traffic model originally introduced in [15]. We are given
a directed graph G = (V, E) with non-decreasing, continuous latency functions
� = (�e)e with �e : R≥0 → R≥0. Furthermore, we are given a set of commodities
[k] = {1, . . . , k} specified by source-sink pairs (si, ti) ∈ V × V and flow demands
di. The total demand is d =

∑
i∈[k] di. Let Pi denote the admissible paths of

commodity i, i. e., all paths connecting si and ti, and let P =
⋃

i∈[k] Pi. Let
(G, (di), �) denote an instance of the routing problem.
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A non-negative path flow vector (fP )P∈P is feasible if it satisfies the flow de-
mands

∑
P∈Pi

fP = di for all i ∈ [k]. We denote the set of all feasible flow vectors
by F . A path flow vector (fP )P∈P induces an edge flow vector f = (fe,i)e∈E,i∈[k]
with fe,i =

∑
P∈Pi:e∈P fP . The total flow on edge e is fe =

∑
i∈[k] fe,i. The la-

tency of an edge e ∈ E is given by �e(fe) and the latency of a path p is given
by the sum of the edge latencies �P (f) =

∑
e∈P �e(fe). The weighted average

latency of commodity i ∈ [k] is given by Li(f) =
∑

e∈E �e(fe) · fe,i. Finally, the
total cost of a flow is defined as C(f) =

∑
P∈P �P (fP )fP and can be expressed

as C(f) =
∑

e∈E �e(fe)fe. We drop the argument f whenever it is clear from the
context. Whenever we consider a single-commodity network, we further drop the
index i.

A flow vector is considered stable when no fraction of the flow can improve its
sustained latency by moving unilaterally to another path. Such a stable state is
generally known as Nash equilibrium. In our model a flow is stable if and only if
all used paths have the same minimal latency, whereas unused paths may have
larger latency. We call such a flow Wardrop equilibrium.

Definition 1. A feasible flow vector f is at Wardrop equilibrium if for every
commodity i ∈ [k] and paths P1, P2 ∈ Pi with fP1 > 0 it holds that �P1(f) ≤
�P2(f).

It is well-known that Wardrop equilibria are exactly those allocations that min-
imize the following potential function introduced in [1]:

Φ(f) =
∑

e∈E

∫ fe

0
�e(u)du .

The allocations in equilibrium do not only all have the same (optimal) potential
but they also impose the same latencies on all edges. Thus, the path latencies
Li = Li(f) at equilibrium is uniquely determined. In this sense, the Wardrop
equilibrium is essentially unique ([1], [4], [11]).

3 Sensitivity of Equilibrium Flows

For most of the paper we concentrate on the single-commodity case. First, for
any given ε > 0, we present a network with linear latency functions, in which
every agent needs to change its current path to recover equilibrium. Then we
prove, that due to ε-changes the flow on every edge does not change by more
than ε.

3.1 Instability of Equilibria: Every Agent Needs to Move

In [14] Roughgarden uses the generalized Braess graphs to show, that the path
latency at equilibrium can arbitrarily decrease by removing several edges from
a network. Our definition of Bk differs from the definition in [14] in the non-
constant latency functions.
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Fig. 1. Having unit demand, the solid paths in Bk=3 carry 1/3 of flow each and the
dashed edges carry zero flow. After increasing the demand by (1 + ε) = (1 + 1/3), the
solid paths lose all their flow and the paths containing the dashed edges gain flow of
(1 + ε)/(k + 1) = 1/3 each.

Definition 2. For every k ∈ N, let Bk = (Vk, Ek) be the graph with Vk =
{s, v1, . . . , vk, w1, . . . , wk, t} and Ek = {(s, vi), (vi, wi), (wi, t) : 1 ≤ i ≤ k} ∪
{(vi, wi−1) : 2 ≤ i ≤ k} ∪ {(s, wk)} ∪ {(v1, t)}. Let Bk be equipped with the
following latency functions.

– �k
vi,wi

(x) = 0 and �k
s,vk−i+1

(x) = �k
wi,t(x) = i · k · x for 1 ≤ i ≤ k,

– �k
vi,wi−1

(x) = 1 for 2 ≤ i ≤ k and
– �k

s,wk
(x) = �k

v1,t(x) = 1.

Let Bk be called the kth Braess graph.

Let ε > 0 and consider the instance (B�1/ε�, 1, �).
Let (P1, . . . , P2k+1)T=(Ps,wk,t, Ps,vk,wk,t, Ps,vk,wk−1,t, Ps,vk−1,wk−1,t, . . . , Ps,v1,t)T

denote the corresponding path vector. The equilibrium flow is described by the
vector (fPj ) of path flows

fPj =
{

0 for j = 1, 3, . . . , 2k + 1
1/k for j = 2, 4, . . . , 2k

summing up to
∑

P fP =
∑2k+1

j=1 fPj = 1.
All paths have path length �P (f) = k + 1 and since any unilateral deviation

strictly increases the sustained latency, the edge flows in equilibrium are unique
(Figure 1).

Increasing the demand by (1 + ε), the equilibrium flow vector becomes (f ′Pj
)

with

f ′Pj
=

{
(1 + ε)/(k + 1) for j = 1, 3, . . . , 2k + 1

0 for j = 2, 4, . . . , 2k

summing up to
∑

P f ′P =
∑2k+1

j=1 f ′Pj
= 1 + ε. The path latency can easily be

computed to be 1 + k2(1+ε)
k+1 .



Sensitivity of Wardrop Equilibria 163

Note that the path flow decomposition in equilibrium does not need to be
unique. Nevertheless, we have uniqueness in Bk.

Definition 3. An edge e ∈ E carrying flow of at most ε is called ε-edge.

Theorem 1. Let ε > 0 and consider (B� 1ε �, 1, �). Then, increasing the flow by
ε causes the entire demand to be redistributed to recover a Wardrop equilib-
rium, i.e., every agent is forced to change its path. Adding another edge to the
network, one can achieve the same result for the removal of an ε-edge.

Proof. For the path flow vector (fPj ) and (f ′Pj
) it holds, that, fPj = 0 ⇔ f ′Pj

> 0
and fPj > 0 ⇔ f ′Pj

= 0. For the second assertion, simply simulate a demand
increase by directly connecting source s with sink t and choose the latency
function, such that (s, t) carries an ε-fraction of flow. Then remove this edge.

��
Let us remark that under mild conditions on the latency functions Theorem 1
can easily be transferred to optimal flows, i.e., flows minimizing the total cost.
This is since optimal flows are Wardrop equilibria with respect to the so-called
marginal cost functions he(x) = (x · �e(x))′ = �e(x) + x · �′e(x), if x · �e(x) are
differentiable, convex functions for e ∈ E (see [1]). Thus, it is sufficient to change
the linear latency functions in B� 1ε �.

3.2 Edge Flows Are Locally Stable

Let f, f ′ ∈ F be feasible flows for demands d ≤ d′ and let Δ(f, f ′) denote the
difference of f ′ and f ,

(Δ(f, f ′))e = f ′e − fe , ∀e ∈ E .

An edge e is positive (with respect to f ′ and f), if f ′e − fe > 0, and negative
if f ′e − fe < 0. A path is positive (or negative), if all its edges are positive (or
negative). Observe that the flow conservation property holds for the difference
of two network flows.

Definition 4. A closed path consisting of flow carrying edges is called an alter-
nating flow cycle.

Lemma 1. Let f denote an equilibrium flow for an instance (G, 1, �) with non-
decreasing, continuous latency functions. Then there is an equilibrium flow f ′

for (G, 1 + ε, �), such that Δ(f, f ′) does not contain an alternating flow cycle.

Proof. Let f ′ denote an equilibrium flow for (G, 1 + ε, �). Assume there is an
alternating flow cycle C in Δ(f, f ′). Since we can assume both equilibrium flows
to be cycle free, we can assume that the alternating flow cycle C contains posi-
tive and negative edges. C can thus be divided into positive and negative path
segments, C = p1n1p2 . . . nk, where pi denotes a sequence of positive edges and
ni denotes a sequence of negative edges. Let ui be the first node of pi and denote
the last node of ni by vi. Thus, there are two paths from u1 to vk in C (Figure 2).
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u1

v1

u2

v2

ukvk

p1

p2

pk

n1

nk

Fig. 2. An alternating flow cycle in Δ(f, f ′). Solid paths are positive, the dashed paths
are negative. Thus, f certainly uses the dashed paths and possibly the solid paths and
fe > f ′

e. For f ′ the converse holds.

For u, v ∈ V , let �(u, v) denote the minimum path latency from u to v under f .
For u = s, simply write �(v). For f ′, write �′(u, v) and �′(v).

There are two facts we will make consistently use of. Since in equilibrium the
flow routes only on shortest paths, we have

�(v) ≤ �(u) + �(u, v) for any u, v ∈ V , (1)

and
�(v) = �(u) + �(u, v) (2)

if there is a flow carrying path between s and v containing u. We show, that
assuming f and f ′ being at equilibrium yields �′(u1, vk) = �(u1, vk). On one
hand, since nk connects u1 with vk and there is more flow on every edge of nk

under f than under f ′ we have

�′(u1, vk) ≤
∑

e∈nk

�e(f ′e) ≤
∑

e∈nk

�e(fe) = �(u1, vk) .

For the reverse direction, we show �′(vk) ≥ �′(u1)+ �(u1, vk), since then �(u1, vk)
≤ �′(vk) − �′(u1) ≤ �′(u1, vk).

In the following, we repeatedly make use of equations (1) and (2).

�′(vk) = �′(uk) + �′(uk, vk) ≥ �′(vk−1) − �′(uk, vk−1) + �′(uk, vk)
= �′(uk−1) + �′(uk−1, vk−1) − �′(uk, vk−1) + �′(uk, vk)

≥ �′(u1) +
k∑

i=1

�′(ui, vi) −
k∑

i=2

�′(ui, vi−1)

≥ �′(u1) +
k∑

i=1

�(ui, vi) −
k∑

i=2

�(ui, vi−1)

≥ �′(u1) +
k∑

i=1

(�(vi) − �(ui)) −
k∑

i=2

(�(vi−1) − �(ui))

= �′(u1) − �(u1) + �(vk) = �′(u1) + �(u1, vk) .
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The third inequality is valid since f and f ′ route only on shortest paths. Ex-
plicitly, �′(ui, vi) =

∑
e∈pi

�e(f ′e) ≥
∑

e∈pi
�e(fe) ≥ �(ui, vi) for each i ∈ [k] and

�′(ui, vi−1) ≤
∑

e∈ni
�e(f ′e) ≤

∑
e∈ni

�e(fe) = �(ui, vi−1) for each i ∈ {2, . . . , k}.
Thus, �′(u1, vk) = �(u1, vk). We deduce that the latency on every edge e ∈ nk

does not change due to the flow change. Since the same analysis can be conducted
for any path segment pi and ni, the latency of both paths on C connecting two
arbitrary nodes remains unchanged. Therefore, by removing the bottleneck edge
flow in C no edge latency is affected and the alternating flow cycle is eliminated.
We may remove the set of alternating flow cycles in any order. Adding f to the
altered difference, one gets the desired equilibrium flow for demand 1 + ε. ��

Thus, (Δ(f, f ′)) can be assumed a network flow of volume ε, when edges are
allowed to be traversed in both directions. We can now state the following
theorem.

Theorem 2. Let f denote an equilibrium flow for an instance (G, 1, �) with
non-decreasing, continuous latency functions.

– Then there is an equilibrium flow f ′ for (G, 1+ε, �), such that |(Δ(f, f ′))e| ≤
ε for all e ∈ E.

– Consider an ε-edge (u, v) in G. There is an equilibrium flow f ′ for (G′ =
(V, E − {(u, v)}), 1, �), such that |(Δ(f, f ′))e| ≤ ε for all e ∈ E.

Proof. Since the difference of f and f ′ can be assumed alternating flow cycle
free, it constitutes a network flow of volume ε. To show the second assertion, let
a single ε-edge (u, v) be removed. With the same argumentation as in Lemma
1, we can exclude alternating flow cycles in (Δ(f, f ′)) that do not include (u, v).
Due to the flow conservation property for every node u �= w �= v, (Δ(f, f ′)) is a
network flow from u to v of volume ε. ��

Note, that since every edge gains or loses at most ε flow (Theorem 2), with
respect to the number of paths B� 1

ε � is a minimal example exhibiting global
instability.

4 Stability of the Path Latency

The latency increase at equilibrium due to a demand increase clearly depends on
the latency functions. Considering polynomials with nonnegative coefficients, the
maximal degree is the critical parameter. Note, that the results in this section
do not trivially result from Theorem 2, since the relative flow increase on an
edge might be unbounded.

Theorem 3. Let f and f ′ be equilibrium flows for instances (G, 1, �) and (G, 1+
ε, �) with polynomial latency functions of degree at most p with nonnegative co-
efficients. Let L and L′ denote the corresponding path latencies. Then L′ ≤
(1 + ε)p · L.
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Proof. Due to a scaling argument it is sufficient to consider monic monomials as
latency functions. For equilibrium flows f and f ′ we have

L =
∑

P∈P
fP �P (f) =

∑

e

fe�e(fe) and (1 + ε) · L′ =
∑

e

f ′e�e(f ′e) ,

and we want to show that
∑

e f ′pe+1
e ≤ (1 + ε)p+1 ∑

e fpe+1
e , where �e(x) = xpe .

Since equilibrium flows f and f ′ minimize the potential function

Φ(x) =
∑

e

∫ xe

0
�e(u)du

over feasible flows x of volume 1 and (1 + ε), respectively, it holds that

(1 + ε)p+1 · Φ(f) = (1 + ε)p+1 ·
∑

e

1
pe + 1

fpe+1
e ≤

∑

e

(1 + ε)p−pe

pe + 1
f ′pe+1

e , (A)

and similarly,

Φ(f ′) =
∑

e

1
pe + 1

f ′pe+1
e ≤

∑

e

(1 + ε)pe+1

pe + 1
fpe+1

e . (B)

For contradiction, assume

(1 + ε)p+1
∑

e

fpe+1
e <

∑

e

f ′pe+1
e . (C)

Calculating p · (A) + (p + (p + 1)((1 + ε)p − 1)) · (B) + ((1 + ε)p − 1) · (C) yields

p∑

k=0

ck

∑

pe=k

fpe+1
e <

p∑

k=0

c′k
∑

pe=k

f ′pe+1
e , (3)

with

ck = p · (1 + ε)p+1

k + 1
− ((p+1)(1+ ε)p − 1) · (1 + ε)k+1

k + 1
+((1+ ε)p − 1) · (1+ ε)p+1

and

c′k = p · (1 + ε)p−k

k + 1
− ((p + 1)(1 + ε)p − 1) · 1

k + 1
+ ((1 + ε)p − 1) .

In the following we show that c′k ≤ 0 for 0 ≤ k ≤ p. Analogous arguments can
be used to show ck ≥ 0. Hence, we have a contradiction to equation (3).

For any 0 ≤ k ≤ p and ε = 0, we have c′k = 0. We show that c′k is monotonically
decreasing in ε (for ε ≥ 0). The derivative of c′k with respect to (1 + ε) is

∂c′k
∂(1 + ε)

= p · (p − k) · (1 + ε)p−k−1

k + 1
− p · (p + 1)

(1 + ε)p−1

k + 1
+ p · (1 + ε)p−1 .
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Thus, it is sufficient to show that

1
(1 + ε)p−k−1 · ∂c′k

∂(1 + ε)
= p · (p−k) · 1

k + 1
−p · (p+1)

(1 + ε)k

k + 1
+p · (1+ε)k ≤ 0 .

For ε = 0, the left hand side equals 0. It remains to show that 1
(1+ε)p−k−1 · ∂c′

k

∂(1+ε)
is monotonically decreasing in ε (for ε ≥ 0). This is the case since

∂( 1
(1+ε)p−k−1 · ∂c′

k

∂(1+ε) )

∂(1 + ε)
=

(k − p) · p · k

k + 1
· (1 + ε)k−1 ≤ 0

and the proof is complete. ��

The bound is tight, as shown by the network consisting of two nodes connected
by an edge, equipped with the latency function �(x) = xp. Allowing negative
coefficients, the relative increase obviously can be unbounded.

4.1 Increase of the Price of Anarchy

The Price of Anarchy quantifies the degradation of performance due to selfish
behavior.

Definition 5. For an instance (G, d, �) with equilibrium flow f and optimal flow
f∗ the Price of Anarchy is defined as C(f)

C(f∗) .

In [13] the Price of Anarchy is shown to be asymptotically Θ( p
ln p ) for polynomial

latency functions of degree at most p with nonnegative coefficients.

Corollary 4. Let ρ and ρ′ denote the Price of Anarchy for instances (G, 1, �)
and (G, 1 + ε, �) with polynomial latency functions of degree at most p with non-
negative coefficients. Then ρ′ ≤ (1 + ε)p · ρ.

Proof. Let L̄d denote the average path latency for an optimal flow in (G, d, �).
Let Copt, C

′
opt, C

∗ and C′∗ denote the costs of an optimal flow and an equilibrium
flow, respectively. Then ρ = C∗/Copt and ρ′ = C′∗/C′opt. Since Copt = 1 · L̄1 and
C′opt = (1 + ε) · L̄1+ε, we have

(1 + ε) · Copt = (1 + ε) · L̄1 ≤ (1 + ε) · L̄1+ε = C′opt ,

since the average latency is clearly monotone in the demand. Thus, the increase
of the Price of Anarchy can be bounded by

ρ′

ρ
=

C′∗/C′opt

C∗/Copt
=

L′ · (1 + ε) · Copt

L · C′opt
≤ L · (1 + ε)p · (1 + ε) · Copt

L · Copt · (1 + ε)
= (1 + ε)p ,

where the inequality is due to Theorem 3. ��
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This upper bound is tight in the following sense: There is a network family
(G, d, �(p)), such that limp

ρ′/ρ
(1+ε)p = 1 for every ε > 0. This holds for mildly

modified instances of Pigou’s example [10]. Assume two nodes to be connected
via two edges equipped with latency functions �1(x) = xp and �2(x) = (1 + ε)p.
We calculate C∗ = 1, C′∗ = (1+ε)p+1, Copt = (1+ε)p+1

(p+1)(p+1)/p +(1− 1+ε
(p+1)1/p )(1+ε)p,

and C′opt = (1+ε)p+1

(p+1)(p+1)/p + (1 + ε − 1+ε
(p+1)1/p )(1 + ε)p. Thus, we have

ρ′

ρ
= (1 + ε)p · (1 − (p + 1)1/pε p

(p + 1)(p+2)/p − p(p + 1)1/p
) ,

and it holds that limp
ρ′/ρ

(1+ε)p = 1 for every fixed ε > 0.

5 Instability in Multi-commodity Networks

There are no analogous results to Theorem 2 and 3 for the multi-commodity case.
Figure 3 shows a network with two commodities, with both demands being 1, in
which after increasing the demand of the second commodity or both demands
by ε, the entire demand of the first commodity needs to be shifted to a single
edge to recover an equilibrium state. If a single ε-edge is being removed, other
edges might also lose an arbitrary fraction of the commodity’s demand.

s1

s2

t1

t2

1

x

1+ε

1 x

1+ε

1 1 x

1+ε

1 x

1+ε

s

t1

t2

x

k · x

k
2
− 1

Fig. 3. (left) Unlabeled edges cause no latency. Assume there are 2 · � 1
ε
� − 1 many

edges on the unique path connecting s2 with t2. For d1 = d2 = 1, the flow demand
of commodity 1 is uniformly spread over all �1/ε� paths using one edge on the path
connecting s2 and t2. After increasing d2 by ε, we have f(s1,t1) = 1. (right) For d1 = 1
and d2 = k, the path latency of the first commodity multiplicatively increases by 1+k·ε
if both demands are increased by a factor of (1 + ε).

Figure 3 also shows a network with 2 commodities. (Insisting on unit demands,
one can split commodity 2 into k small commodities.) Increasing the demands
by ε the path latency of commodity 1 increases by a factor of 1 + k · ε. Simple
examples exhibit an even higher increase.

6 Open Problems

Suppose, given a unit demand flow at Wardrop equilibrium, one removes an
edge carrying only an ε-fraction of flow. How does the path latency change after
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recovering equilibrium? Considering a network with two parallel edges, one gets
a lower bound of 1

(1−ε)p . Is this bound tight?
Furthermore, we believe that our bound on the increase of the path latency

holds for a broader class of latency functions, namely for latency functions with
bounded elasticity.

What can be said about the sensitivity of equilibria in related models? For
instance, are analogous results possible in atomic games, where every agents
control some non-negligible amount of flow each?
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[11] Roughgarden, T., Tardos, É.: How Bad is Selfish Routing. Journal of the

ACM 49(2), 236–259 (2002)
[12] Roughgarden, T.: How Unfair is Selfish Routing. In: Roughgarden, T. (ed.) Proc.

of th 13th Annual Symposium on Discrete Algorithms (SODA), pp. 203–204
(2002)

[13] Roughgarden, T.: The Price of Anarchy is Independent of the Network Topol-
ogy. In: Proc. of th 34th Annual Symposium on Theory of Computing Discrete
Algorithms (STOC), pp. 428–437 (2002)

[14] Roughgarden, T.: On the Severity of Braess’s Paradox: Designing Networks for
Selfish Users is Hard. Journal of Computer and System Sciences 72(5), 922–953
(2004)

[15] Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proc. of
the Institute of Civil Engineers Pt. II, pp. 325–378 (1952)



Prompt Mechanisms for Online Auctions

Richard Cole1,�, Shahar Dobzinski2,��, and Lisa Fleischer3,� � �

1 Computer Science Department, Courant Institute, New York University
cole@cs.nyu.edu

2 The School of Computer Science and Engineering,
The Hebrew University of Jerusalem

shahard@cs.huji.ac.il
3 Dartmouth College

lkf@cs.dartmouth.edu

Abstract. We study the following online problem: at each time unit,
one of m identical items is offered for sale. Bidders arrive and depart
dynamically, and each bidder is interested in winning one item between
his arrival and departure. Our goal is to design truthful mechanisms that
maximize the welfare, the sum of the utilities of winning bidders.

We first consider this problem under the assumption that the private
information for each bidder is his value for getting an item. In this model
constant-competitive mechanisms are known, but we observe that these
mechanisms suffer from the following disadvantage: a bidder might learn
his payment only when he departs. We argue that these mechanism are
essentially unusable, because they impose several seemingly undesirable
requirements on any implementation of the mechanisms.

To crystalize these issues, we define the notions of prompt and tardy
mechanisms. We present two prompt mechanisms, one deterministic and
the other randomized, that guarantee a constant competitive ratio. We
show that our deterministic mechanism is optimal for this setting.

We then study a model in which both the value and the departure time
are private information. While in the deterministic setting only a trivial
competitive ratio can be guaranteed, we use randomization to obtain a
prompt truthful Θ( 1

log m
)-competitive mechanism. We then show that no

truthful randomized mechanism can achieve a ratio better than 1
2 in this

model.

1 Introduction

1.1 Background

The field of algorithmic mechanism design attempts to handle the strategic be-
havior of selfish agents in a computationally efficient way. To date, most work
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in this field has sought to design truthful mechanisms for static settings, e.g.,
auctions. In reality, however, the setting of many problems is online, meaning
that the mechanism has no prior information regarding the identity of the par-
ticipating players, or that the goods that are for sale are unknown in advance.
Examples include sponsored search auctions [12], single-good auctions [10], and
even pricing WiFi at Starbucks [5].

This paper considers the following online auction problem: at each time unit
exactly one of m identical items is offered for sale. The item at time t is called
item t. There are n bidders, where bidder i arrives at time ai and departs at
time di, both unknown before bidder i’s arrival. The interval [ai, di] will be called
bidder i’s time window, and the set of items offered in i’s time window will be
denoted by Wi. Each bidder is interested in winning at most one of the items
within Wi. Let vi denote the value to the ith bidder of getting an item in Wi.
Our goal is to maximize the social welfare: the sum of the values of the bidders
that get some item within their time window. As usual in online algorithms,
our goal is to optimize the competitive ratio: the worst-case ratio between the
welfare achieved by the algorithm and the optimal welfare.

In the full information setting, this problem is equivalent to the online schedul-
ing of unit-length jobs on a single machine to maximize weighted throughput.
This online problem and its variants have been widely studied (e.g., [1,8,3]). The
best deterministic algorithm to date guarantees a competitive ratio of ≈ 0.547
[4,11], while it is known that no deterministic algorithm can obtain a ratio better
than 2√

5+1
≈ 0.618 [2]. In the randomized setting, a competitive ratio of 1 − 1

e

is achieved by [1], and no algorithm can achieve a ratio better than 0.8 [2].
This problem provides an excellent example of the extra barriers we face when

designing online mechanisms. The only general technique known for designing
truthful mechanisms is the VCG payment scheme. In the offline setting we can
obtain an optimal solution in polynomial time (with bipartite matching), and
then we can apply VCG. In the online setting, however, it is impossible to find
an optimal solution, and thus we cannot use VCG. Yet, truthful competitive
mechanisms do exist. The competitive ratio of these mechanisms depends on the
specific private-information model each mechanism was designed for. This paper
considers two different natural models:

– The Value-Only model: Here, the private information of bidder i consists
of just his value vi, and the arrival time and the departure time are known
to all (but both are unknown prior to the arrival of bidder i).

– The Generalized Model: The private information of bidder i consists
of two numbers: his value vi and his departure time di. The arrival time is
public information (but unknown prior to the arrival of bidder i).

1.2 The Value-Only Model: Is Monotonicity Enough?

The only private information of a bidder in the value-only model is his value,
and thus this model falls under the category of single-parameter environments
– environments in which the private information of each bidder consists of only
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one number. Fortunately, designing truthful mechanisms for single-parameter
environments is quite well understood: an algorithm is truthful if and only if it
is monotone. That is, a winning bidder that raises his bid remains a winner.

Using the above characterization, it is possible to prove that the greedy al-
gorithm is monotone [7] (see Section 2.4 for a description). Since [8] shows that
greedy is 1/2 competitive, this gives a truthful mechanism that is 1

2 competitive.
However, a closer look at this mechanism may make one wonder if it is indeed

applicable. The notions of prompt and tardy mechanisms we define next highlight
the issue.

Definition 1. A mechanism for the online auction problem is prompt if a bid-
der that wins an item always learns his payment immediately after winning the
item. A mechanism is tardy otherwise.

As we show later in the paper, the tardiness in the greedy mechanism [7,8] is
substantial: there are inputs for which a bidder learns his payment only when
he departs. Tardy mechanisms seem very unintuitive for the bidders, and in
addition they suffer from the following disadvantages:

– Uncertainty: A winning bidder does not know the cost of the item that he
won, and thus does not know how much money he still has available. E.g.,
suppose the mechanism is used in a Las Vegas ticket office for selling tickets
to a daily show. A tourist that wins a ticket is uncertain of the price of this
privilege, and thus might not be able to determine how much money he has
left to spend during his Las Vegas vacation.

– Debt Collection: A winning bidder might pay the mechanism long after
he won the item. A bidder that is not honest may try to avoid this payment.
Thus, the auctioneer must have some way of collecting the payment of a
winning bidder.

– Trusted Auctioneer: A winning bidder essentially provides the auctioneer
with a “blank check” in exchange for the item. Consequently, all bidders
must trust the honesty of the auctioneer. Even if the bidders trust the auc-
tioneer, they may still want to verify the exact calculation of the payment,
to avoid over-payments that make winning the item less profitable, or even
unprofitable. In order to verify this calculation, the bids of all bidders have
to be revealed, leading to an undesirable loss of privacy.

Notice that all of these problems are due to the online nature of the setting,
and do not arise in the offline setting. To overcome these problems, we present
prompt mechanisms for the online auction problem. Prompt mechanisms are
very intuitive to the bidders as they (implicitly) correspond to take-it-or-leave-it
offers: a winning bidder is offered a price for one item exactly once before getting
the item, and may reject the offer if it is not beneficial for him. We improve upon
the greedy algorithm of [7,8] by showing a different mechanism that achieves the
same competitive ratio, but is also prompt.

Theorem: There exists a 1
2 -competitive prompt and truthful mechanism for the

online auction problem in the value-only model.
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We show that this is the best possible by proving that no prompt deterministic
mechanism can guarantee a competitive ratio better than 1

2 .
We also present a randomized mechanism that guarantees a constant compet-

itive ratio. The achieved competitive ratio of the latter algorithm is worse than
the competitive ratio of the deterministic algorithm. Yet, the core of the proof
studies a balls-and-bins problem that might be of independent interest.

1.3 The Generalized Model

While truthful mechanisms for single-parameter settings are well characterized
and thus relatively easy to construct, truthful mechanisms for multi-parameter
settings, like the generalized model, are much harder to design. The online setting
considered in this paper only makes the design of truthful mechanisms a more
challenging task.

The online auction problem in the generalized model illustrates this challenge.
Lavi and Nisan [9] introduced the online auction problem to the mechanism
design community. They showed that no truthful deterministic mechanism for
this multi-parameter problem can provide more than a trivial competitive ratio.
As a result, Lavi and Nisan proposed a weaker solution concept, set-nash, and
provided mechanisms with a constant competitive ratio under this notion. We
stress that the set-nash solution concept is much weaker than the dominant-
strategy truthfulness we consider.

By contrast with [9], instead of relaxing the solution concept, we use the well-
known idea that randomization can help in mechanism-design settings [14]. We
provide randomized upper and lower bounds in the generalized model for the
online auction problem.

Theorem: There exists a prompt truthful randomized Θ( 1
log m )-competitive

mechanism for the online auction problem in the generalized model.

The main idea of the mechanism is to extend the randomized mechanism for
the value-only model to the generalized model. Specifically, we use the random-
sampling method introduced in [6] to “guess” the departure time of each bidder,
and then we use the above randomized mechanism with these guessed departures.
This mechanism is also a prompt mechanism. We notice that it is quite easy to
obtain mechanisms with a competitive guarantee of the logarithm of the ratio
between the highest and lowest valuations. However, since this ratio might be
exponential in the number of items or bidders, this guarantee is quite weak.
By contrast, the competitive ratio our mechanism achieves is independent of
the ratio between the highest and lowest valuations, and the mechanism is not
required to know these valuations in advance.

Theorem: No truthful randomized mechanism for the online auction problem
in the generalized model can obtain a competitive ratio better than 1

2 .

The proof of this bound is quite complicated. We start by defining a fam-
ily of recursively-defined distributions on the input, and then show that no
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deterministic mechanism can obtain a competitive ratio better than 1
2 on this

family of distributions. We then use Yao’s principle to derive the theorem.
The main open question left in the generalized model is to determine whether

there is a truthful mechanism with a constant competitive ratio.

Paper Organization. In Section 2 we describe prompt mechanisms for the
value-only case, and prove that no deterministic tardy algorithms can achieve a
ratio better than 1

2 . Due to lack of space, lower and upper bounds for the gener-
alized case are proved only in the full version (see http://www.cs.huji.ac.il/
∼shahard).

2 Prompt Mechanisms and the Value-Only Model

2.1 A Deterministic Prompt 1
2-Competitive Mechanism

The mechanism maintains a candidate bidder cj for each item j. To keep the
presentation simple and without loss of generality, we assume an initialization of
the mechanism in which each item j receives a candidate bidder cj with a value
of 0 for winning an item (i.e., vcj = 0).

The mechanism runs as follows: at each time t we look at all the bidders that
arrived at time t. We consider these bidders one by one in some arbitrary order
(independent of the bids): for each bidder i we look at all the candidates in i’s
time window, and let cj be the candidate bidder with the smallest bid (if there are
several such candidates, we select one arbitrarily). Formally, cj ∈ argmink∈Wi ck.
We say that i competes on item j. Now, if vcj < vi, we make i the candidate
bidder for item j. After all the bidders that arrived at time t have been processed,
we allocate item t to the candidate bidder ct.

The next theorem proves that this algorithm is monotone, i.e., a bidder that
raises his bid is still guaranteed to win. This is also a necessary and sufficient
condition for truthfulness. We are still left with the issue of finding the payments
themselves. First, observe that the payment of each winning bidder must equal
his critical value: the minimum value he can declare and still win. Notice that
this value is indeed well defined if the algorithm is monotone. For each bidder
i this value can be found by using a binary search on the possible values of
vi. Clearly, this procedure takes a polynomial time. See, e.g., [13] for a more
thorough discussion. By the discussion above, it is clear that a mechanism is
prompt if and only if i’s critical value can be found by the time i wins an item.
In this case, the payment can also be calculated in polynomial time.

Theorem 1. The mechanism is prompt and truthful. Its competitive ratio is 1
2 .

Proof. To show that the mechanism is truthful we have to show that it is
monotone: that is, a winning bidder i still wins an item by raising his value vi to
v′i. First, observe that fixing the declarations of the other bidders, i competes on
item j regardless of his value. We now compare two runs of the mechanism, with
i declaring vi and with i declaring v′i, and show that at each time the candidate
for any item j′ is the same in both runs. In particular, it follows that the set of
winners stays the same, and thus the mechanism is monotone.
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First, observe that the two runs are identical until the arrival of i. Look at the
next bidder e that arrives after i. For a contradiction, suppose that the candidate
for some item changes after bidder e arrives. It follows that i declaring v′i causes e
to compete on an item different than the one that e competes on when i declares
vi. This is possible only if e is competing on j if i declares vi, but if i declares v′i,
e competes on h �= j. It follows that if i declares, v′i both i and e compete on j,
and that i wins j. Thus, vi ≥ ve. When i raises his bid e competes on h. Let ch

be the candidate for h at the time that e arrives. We have that v′i > vch
≥ vi, and

thus ve < vch
so e does not become a candidate on h, and the set of candidates

stays the same. To finish the monotonicity proof, look at the rest of the bidders
one by one, and repeat the same arguments.

As for the promptness of the mechanism, observe that the identity of the item
that i competes on is determined only by the information provided by bidders
that had already arrived by the time of i’s arrival. The winner of any item j
is of course completely determined by the information provided by bidders that
arrived by time j. Thus, we can calculate the payment of a winning bidder
immediately after he wins an item.

We now analyze the competitive ratio of the mechanism. Let OPT=(o1, ..., om)
be the optimal solution, and ALG = (p1, ..., pm) be the solution constructed by
the mechanism. That is, oj is the bidder that wins item j in OPT and pj is the
bidder that wins item j in ALG. We will match each bidder i that wins an item
in OPT to exactly one bidder l that wins an item in ALG. Furthermore, we will
make sure that vi ≤ vl, and that each bidder in ALG is associated with at most
two bidders in OPT. This is enough to prove a competitive ratio of 1

2 .
The bidders are matched as follows: for each item j, let oj1 , · · · , ojkj

be the
bidders (ordered by their arrival time) that won an item in the optimal solution
and are competing on j. Now match each ojr to pjr+1 for r < kj . Match ojkj

to
pj , the bidder that wins j in ALG (it is possible that pj = ojkj

).
Observe that bidder pj is associated with at most two bidders that win some

item in OPT: bidder ojkj
, and at most one bidder, oji , that is competing on

an item j, where j is the item that oj (= oji+1) is competing on in ALG. To
finish the proof, we only have to show that vojkj

≤ vpj and voji
≤ vpj . Since ojkj

and pj both compete for slot j (possibly they are the same bidder) and pj wins,
vojkj

≤ vpj . Now we show the second claim. When oji+1 arrives, oji is already

competing on slot j; as oji+1 chooses to compete on slot j rather than slot j′

which is also in its interval, thus the current candidate for slot j has value at
least voji

. But the eventual winner of slot j, pj , can only have a larger value; i.e.
voji

≤ vpj . �	

2.2 A Prompt Randomized Mechanism

We present a randomized prompt O(1)-competitive mechanism for the online
auction problem in the value-only model. The analysis of the competitive ratio
of the mechanism is related to a variant of the following balls-and-bins question:
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Balls and Bins (intervals version): n balls are thrown to n bins, where the
ith ball is thrown uniformly at random to bins in the interval Wi = [ai, di]. We
are given that the balls can be placed in a way such that all bins are filled, and
each ball i is placed in exactly one bin in [ai, di]. What is the expected number
of full bins (bins with at least one ball)?

The theorem below proves that, for every valid selection of the ai’s and di’s, in
expectation at least 1

10 of the bins will be full (notice that in the online auction
problem the “balls” have weights). There is a gap between this ratio and the
worst example we know: in Subsection 2.3 we present an example in which at
most 11

24 of the bins are full in expectation. Improving the analysis of the balls and
bins question will almost immediately imply an improvement in the guaranteed
competitive ratio of the mechanism.

The Mechanism

1. When bidder i arrives, assign it to exactly one item in Wi to compete on
uniformly at random.

2. At time j conduct a second-price auction on item j among all the bidders
that were selected to compete on item j in the first stage.

Theorem 2. The mechanism is prompt and truthful, and guarantees a compet-
itive ratio of 1

10 .

Proof. To see that the mechanism is truthful, recall that in the value-only model
the arrival time and the departure time of each bidder are public information.
It follows that the identity of bidders competing on a certain item is determined
only by the outcome of the random coin flips. It is well known that a second-
price auction is truthful, and thus we conclude that the mechanism is truthful.
Clearly, the mechanism is prompt since the price is determined by the second-
price auction which is conducted before allocating the item to the winning bidder.

We now turn to analyzing the competitive ratio of the mechanism. Instead of
analyzing this ratio directly, we analyze the competitive ratio of the following
process. In addition to the input of the mechanism, the input of the process
consists also of “forbidden” sets S1 ⊆ W1, ..., Sn ⊆ Wn. Later we will see how to
construct these sets in a way that guarantees a constant competitive ratio.

1. For each bidder i that won an item in the optimal solution, select exactly
one item j in Wi to compete on uniformly at random. If j ∈ Si then bidder
i is not competing on any item at all.

2. At time j allocate item j to one bidder i, where bidder i is selected uniformly
at random from the set of all bidders that are competing on item j.

We will compare runs of the mechanism and the process in which the same
random coins are used in Step 1. We argue that the competitive ratio of the
mechanism is at least as good as the competitive ratio of the process. To see
this, observe that in the first step we are restricting ourselves only to bidders
that won an item in the optimal solution. Furthermore, some of these bidders are
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eventually not competing on any item at all. Also, the bidder that is assigned
item j is selected uniformly at random from the set of the bidders that are
competing on item j, while in Step 2 of the mechanism the bidder with the
highest valuation is assigned item j. Obviously, the mechanism does at least as
well as the process. We will need the following technical lemma:

Lemma 1. Let Cj be the random variable that denotes the number of bidders
competing on item j (the congestion of item j). Let Ui,j be the random variable
that gets the value of the utility of bidder i from winning item j (that is, vi if
bidder i wins item j, and 0 otherwise). Then,

E[Ui,j |i is competing on item j] ≥ vi

E[Cj ] + 1

Proof. We start by bounding from above E[Cj |i is competing on item j]. That
is, the expected congestion of item j given that bidder i is competing on j. Notice
that the expected congestion produced by all other bidders apart from bidder
i cannot exceed E[Cj ], since the item chosen for each bidder to compete on is
selected independently. We are given that bidder i is already competing on item
j, and thus we conclude that E[Cj |i is competing on item j] ≤ E[Cj ] + 1.

We now prove the main part of the lemma. Notice that E[Ui,j |i
is competing on item j] = Pr[i won item j|i is competing on item j] · vi. Let E
denote the set of all coin flips in which bidder i is competing on item j (observe
that each event e ∈ E occurs with equal probability). Let nj(e) be the congestion
of item j in e ∈ E.

E[Ui,j |i is competing on item j] = Σe∈E
vi

|E| · nj(e)
≥ vi

E[Cj ] + 1

where the first equality is by the definition of expectation, and the second in-
equality is by the convexity of the function 1

x , and Jensen’s inequality. �	

As is evident from the lemma, if the expected congestion of all items that are
in bidder i’s time window is O(1), then bidder i’s expected utility is Θ(vi).
Unfortunately, it is quite easy to construct instances in which for every i, Si = ∅
and some items face super-constant congestion. Instead, we will specify for each
bidder i a set of items Si, of size at most half of the size of his time window.
We will see that by a proper choice of the Si’s the expected congestion of every
item is bounded by 4.

Then, as each bidder i (that participates in the optimal solution) has a prob-
ability of at least one half of competing on some item, by Lemma 1 bidder i
recovers in expectation at least 1

2 · 1
E[Cj ]+1 of his value; by Lemma 2 this bidder

receives in expectation at least 1
10 of his value. Using the linearity of expectation,

we conclude that the mechanism is 1
10 -competitive.

Lemma 2. There exist sets S1, ..., Sn such that for each bidder i (that wins an
item in the optimal solution), Si ⊆ Wi, and |Si| ≤ |Wi|

2 , and for each item j,
E[Cj ] ≤ 4.
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Proof. The proof of the lemma consists of m stages. In each step we will con-
sider bidders with time windows of length exactly t, where t will take values in
descending order from m to 1. We will show for each bidder i with |Wi| = t how
to construct his set Si. By the end of each step, we will be guaranteed that if
|Wi| ≥ t, then for each item in Wi \ Si, the expected congestion is at most 4.

We start by handling the case where t ≥ m
2 . Fix some bidder i with |Wi| ≥ m

2 .
We are considering only bidders that get an item in the optimal solution, and
since there are m items, we need to take into account at most m bidders. Observe
that since Wi ≥ m

2 , the average expected congestion of an item in Wi cannot
exceed 2. We let Si be the set of all items in Wi for which the expected congestion
is at most 4. By simple Markov arguments, |Si| ≤ |Wi|

2 . We now have that for
every bidder i with |Wi| ≥ m

2 , and for each j ∈ Wi \ Si, E[Cj ] ≤ 4.
Consider now Step t, where t < m

2 . We first consider the congestion due to
bidders with time windows of length at most t. Then we will see that our analysis
remains almost the same when including bidders with larger time windows.

Fix some bidder i with |Wi| = t. We now bound from above the total conges-
tion of the items in Wi. In the optimal solution, there are at most t bidders that
won an item in Wi. Their contribution to the congestion of Wi is bounded from
above by assuming that each one is competing on items in Wi time window with
probability 1. Hence, the total contribution of these bidders is at most t.

Consider the bidders that won one item j, ai − t ≤ j ≤ ai − 1, in the optimal
solution. (Our analysis will only improve if ai − t ≤ 0.) Clearly, if bidder b won
item j in the optimal solution, then that item j is within b’s time window. Since
a bidder is selected to compete on an item uniformly, it is easy to verify that
his contribution to the expected congestion of Wi is maximized when his arrival
time is j and his departure time is j + t−1. (Recall that we are only considering
bidders with time window of size at most t.) In this case, his contribution to
the expected congestion of Wi is j+t−ai

t . Summing over all bidders (with time
windows of size at most t) that won one item j, ai − t ≤ j ≤ ai − 1, we get that
the total contribution of these bidders is at most t

2 .
Similarly, the total contribution of bidders with time windows of size at most

t that won items di +1 to di + t in the optimal solution is at most t
2 . It is easy to

see that all other bidders with time windows of at most t contribute nothing to
the expected congestion of items in Wi. In total, we get that the total expected
congestion of items in Wi (due to bidders with time window of length at most
t) is at most t

2 + t
2 + t = 2t, and thus the average expected congestion due to

these items is at most 2.
As before, we let Si be the set of all items in Wi for which the expected

congestion is at most 4. Again, standard Markov arguments assure that |Si| ≤
|Wi|

2 . We now have that for every bidder i with |Wi| = t, and for each j ∈
Wi \Si, the average expected congestion incurred by bidders with time windows
of size at most t is at most 4. We still need to take into account the congestion
incurred by bidders with time windows larger than t. Here we observe that by
our construction of the Si’s, these bidders can only contribute to the congestion
of items with an expected congestion of at most 4. Therefore, we claim that for
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each bidder i with |Wi| ≥ t, and j ∈ Wi \ Si, we have that E[Cj ] ≤ 4. We finish
the proof of the lemma by considering smaller values of t, down to t = 1. �	

2.3 A Bad Example

The following example shows that the mechanism presented has a competitive
ratio strictly worse than 1

2 . The example is an instance of the balls and bins
question presented earlier. For 1 ≤ i ≤ n

3 , we let Wi = [i, 2n
3 ]. For n

3 < i ≤ n, we
let Wi = [n

3 + 1, i]. The probability that bin i in [1, n
3 ] will be empty is:

Pr[no ball falls in bin i ∈ [1, n
3 ] ] = Πi

t=1 Pr[ball t does not fall to bin i ∈ [1, n
3 ] ]

= Πi
t=1(1 − 1

2n
3 − t + 1

) = Πi
t=1(

2n
3 − t

2n
3 − t + 1

) =
2n
3 − i
2n
3

We now calculate the expected number of empty bins in the range [1, n
3 ]. Observe

that the probability of bin i ∈ [1, n
3 ] to be equal to the probability of bin n−i+1.

Thus, the expected number of empty bins in [1, n
3 ] is equal to the expected

number of empty bins in [2n
3 , n]:

n
3∑

t=1

2n
3 − t

2n
3

=
n
3 (2n

3 − 1 + n
3 )

2 · 2n
3

=
n − 3

4

Next we handle bins in the range [n
3 , 2n

3 ]. By reasoning similar to the previous
calculations, the probability that no ball i, n

3 ≤ i ≤ 2n
3 , falls into bin t in

this range is t−n
3−1
n
3

. The probability that no ball i, 1 ≤ i ≤ n
3 falls in bin

t is Π
n
3

j=1(1 − 1
2n
3 −i+1 ) =

n
3
2n
3

= 1
2 . Similarly, the probability that no ball i,

2n
3 ≤ i ≤ n falls in bin t is 1

2 . Thus, with probability t−n
3

n
3

· 1
4 no ball falls into

bin t, n
3 ≤ t ≤ 2n

3 .
To conclude, the expected number of empty bins in the ranges [1, n

3 ] and [2n
3 , n]

together is ≈ n
2 . The expected number of empty bins in [n

3 , 2n
3 ] is Σ

2n
3

t= n
3

t−n
3

n
3

·
1
4 ≈ 1

8 · n
3 . In total, about 13

24 of the bins are empty in expectation. We note
that this constant can be somewhat increased to 4

7 by recursively applying this
construction on balls in the middle third (and keeping the other balls’ time
windows the same). Details are omitted from this extended abstract.

2.4 Limitations of Deterministic Tardy Mechanisms

Here we show that the prompt mechanism of Section 2.1 is optimal. In order to
develop some intuition about tardy mechanisms, we start by showing that the
greedy mechanism of [7] is tardy.

Recall that the greedy mechanism allocates item t to the bidder with the high-
est valuation that is present at time t (and has not been assigned any item yet).
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Consider the following example: two bidders, red and green, arrive at time 1.
The red bidder has a value of 10 for winning an item, and his departure time is
5. The green bidder has a value of 6 and a departure time of 1. We consider two
scenarios: in the first one, four bidders arrive at time 2, each of them with value
100 and a departure time of 5. In the second scenario, there are no more arrivals.
Observe that the greedy mechanism assigns the red bidder the first item. To see
that the red bidder cannot learn his payment immediately, recall the following
characterization of the payment in single-parameter mechanisms: the payment
of a winning bidder is equal to the minimum value he can bid and still win.

In order to win an item in the first scenario, the red bidder must declare a
value of at least 6, and therefore this is his payment in this scenario. However, in
the second scenario a declaration of 0 will make him win the second item. The
mechanism cannot distinguish between the two scenarios when the red bidder
wins at time 1, and thus cannot determine the payment at time 1. We conclude
that the greedy mechanism is tardy.

The following proposition shows that every prompt deterministic mechanism
for the online auction problem achieves a competitive ratio of no better than 1

2 .

Proposition 1. Every prompt deterministic mechanism for online auctions
(even in the value-only model) has a competitive ratio of no better than 1

2 .

Proof. Consider the following setting: two bidders arrive at time 1, each having
a value of 1, and a departure time of time 2. Suppose there are no more arrivals
of other bidders. Any mechanism that achieves a competitive ratio better than
2 must assign one bidder the first item, and the other item to the second bidder.
Let a be bidder that was assigned the first item, and b be the bidder that was
assigned the second item.

Claim. Let M be a prompt mechanism with a finite competitive ratio. In the
scenario described above, there is no declaration of a value vb that makes bidder
b win the first item.

Proof. Let Pb denote the payment of bidder b for winning the second item with
a declaration of 1. Observe that pb < 11. We consider two cases, one in which b
declares a value of w > 1, and one in which b declares a value of w < 1.

Suppose that bidder b raises his bid from 1 to w, and was assigned the first
item. The mechanism is prompt, so the payment of bidder b is determined imme-
diately. Suppose, for a contradiction, that this payment is higher than pb. In this
case, if bidder b’s true value was w, he could improve his profit by declaring a
value of 1, and be assigned the second item. Hence the payment must be at most
pb. Clearly, the payment can not be strictly less than pb, since otherwise if b’s
true value is 1, he has an incentive to declare a value of w and increase his profit.
Thus the payment must be equal to pb, but now we will see that this cannot be
the case. Consider the following setting: b’s true value is 1, and therefore he does
not win the first item. At time 2 a bidder c with value w′ >> w arrives. Bidder

1 If pi is equal to 1, we add some “noise” to the value to get a strict inequality.
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c is going to depart immediately. In order to maintain a finite competitive ratio
the mechanism must assign bidder c the second item. Thus, if bidder b’s true
value is 1, he has an incentive to declare a value of w (and therefore win the first
item for a payment of pb), and the mechanism is not truthful.

The other case is where b bids a value w, w < 1, and thereby wins the first
item (with payment less than 1). As before, if a bidder c with a departure time
of 2 and a very high value arrives at time 2, then the mechanism must assign c
the second item in order to guarantee a finite competitive ratio. If bidder b’s true
value is 1, he has an incentive to declare w instead, and win the first item. �	

Now alter the scenario described above, and let b’s value be w >> 1. By the
claim, bidder b will not be assigned the first item. However, if at time 2 bidder
c with a departure time of 2 and a value of w arrives, the total welfare the
mechanism achieves is at most 1 + w, while the optimal welfare is 2 · w. �	
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3. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Improved online algorithms for buffer
management in QoS switches. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS,
vol. 3221, pp. 204–215. Springer, Heidelberg (2004)

4. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management. In: SODA 2007 (2007)

5. Friedman, E.J., Parkes, D.C.: Pricing wifi at starbucks: issues in online mechanism
design. In: EC 2003 (2003)

6. Goldberg, A.V., Hartline, J.D., Karlin, A.R., Saks, M., Wright, A.: Competitive
auctions. In: Games and Economic Behavior (2006)

7. Hajiaghayi, M.T., Kleinberg, R., Mahdian, M., Parkes, D.C.: Adaptive limited-
supply online auctions. In: EC 2005 (2005)

8. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. In: STOC, pp. 520–529 (2001)

9. Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring items. In:
SODA 2005 (2005)

10. Lavi, R., Nisan, N.: Competitive analysis of incentive compatible on-line auctions.
In: ACM Conference on Electronic Commerce, pp. 233–241 (2000)

11. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: SODA 2007
(2007)

12. Mahdian, M., Saberi, A.: Multi-unit auctions with unknown supply. In: EC 2006
(2006)

13. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combi-
natorial auctions. In: AAAI 2002 (2002)

14. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: STOC (1999)



A Truthful Mechanism for Offline Ad Slot

Scheduling

Jon Feldman1, S. Muthukrishnan1, Evdokia Nikolova2, and Martin Pál1

1 Google, Inc.
{jonfeld,muthu,mpal}@google.com

2 Massachusetts Institute of Technology�

nikolova@mit.edu

Abstract. We consider the Offline Ad Slot Scheduling problem, where
advertisers must be scheduled to sponsored search slots during a given
period of time. Advertisers specify a budget constraint, as well as a max-
imum cost per click, and may not be assigned to more than one slot for a
particular search. We give a truthful mechanism under the utility model
where bidders try to maximize their clicks, subject to their personal con-
straints. In addition, we show that the revenue-maximizing mechanism
is not truthful, but has a Nash equilibrium whose outcome is identical
to our mechanism. Our mechanism employs a descending-price auction
that maintains a solution to a certain machine scheduling problem whose
job lengths depend on the price, and hence are variable over the auction.

1 Introduction

Sponsored search is an increasingly important advertising medium, attracting
a wide variety of advertisers, large and small. When a user sends a query to a
search engine, the advertisements are placed into slots, usually arranged linearly
down the page. These slots have a varying degree of exposure, often measured
in terms of the probability that the ad will be clicked; a common model is that
the higher ads tend to attract more clicks. The problem of allocating these slots
to bidders has been addressed in various ways. The most common method is to
allocate ads to each search independently via a generalized second price (GSP)
auction, where the ads are ranked by (some function of) their bid, and placed
into the slots in rank order. (See [16] for a survey of this area.)

There are several important aspects of sponsored search not captured by the
original models. Most advertisers are interested in getting many clicks through-
out the day on a variety of searches, not just a specific slot on a particular search
query. Also, many advertisers have daily budget constraints. Finally, search en-
gines may have some knowledge of the distribution of queries that will occur,
and so should be able use that knowledge to make more efficient allocations.

The Offline Ad Slot Scheduling problem is this: given a set of bidders with bids
(per click) and budgets (per day), and a set of slots over the entire day where
we know the expected number of clicks in each slot, find a schedule that places
� This work was done while the author was visiting Google, Inc., New York, NY.
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bidders into slots. The schedule must not place a bidder into two different slots
at the same time. In addition, we must find a price for each bidder that does not
exceed the bidder’s budget constraint, nor their per-click bid. (See below for a
formal statement of the problem.)

A good algorithm for this problem will have high revenue. Also, we would
like the algorithm to be truthful; i.e., each bidder will be incented to report her
true bid and budget. In order to prove something like this, we need a utility
function for the bidder that captures the degree to which she is happy with her
allocation. Natural models in this context (with clicks, bids and budgets) are
click-maximization—where she wishes to maximize her number of clicks subject
to her personal bid and budget constraints, or profit-maximization—where she
wishes to maximize her profit (clicks × profit per click). In this paper we focus
on click-maximization.1

We present an efficient mechanism for Offline Ad Slot Scheduling and prove
that it is truthful. Interpreted another way, truthfulness under click-
maximization says that clicks are monotonic in both declared bids and budgets,
which is an important fact even under other utility functions. We also prove that
the revenue-maximizing mechanism for Offline Ad Slot Scheduling is not truth-
ful, but has a Nash equilibrium (under the same utility model) whose outcome is
equivalent to our mechanism; this result is strong evidence that our mechanism
has desirable revenue properties. Our results generalize to a model where each
bidder has a personal click-through-rate that multiplies her click probability.

As far as we can tell, this is the first treatment of sponsored search that directly
incorporates both multiple positions and budget constraints into an analysis of
incentives (see below for a survey of related work). In its full generality, the prob-
lem of sponsored search is more complex than our model; e.g., since the query
distribution is noisy, good allocation strategies need to be online and adaptive.
Also, our mechanism is designed for a single query type, whereas advertisers are
interested in enforcing their budget across multiple query types. However, the
tools used in this paper may be valuable for deriving more general mechanisms
in the future.

Methods and Results. A natural mechanism for Offline Ad Slot Scheduling is
the following: find a feasible schedule and a set of prices that maximizes rev-
enue, subject to the bidders’ constraints. It is straightforward to derive a linear
program for this optimization problem, but unfortunately this is not a truthful
mechanism (see Example 1 in Section 2). However, there is a direct truthful
mechanism—the price-setting mechanism we present in this paper—that results
in the same outcome as an equilibrium of the revenue-maximizing mechanism.

1 Our choice is motivated by the presence of budgets, which have a natural inter-
pretation in this application: if an overall advertising campaign allocates a fixed
portion of its budget to online media, then the agent responsible for that budget
is incented to spend the entire budget to maximize exposure. Also, our choice of
utility function is out of analytical necessity: Borgs et al. [4] show that under some
reasonable assumptions, truthful mechanisms are impossible under budgets and a
profit-maximizing utility.
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We derive this mechanism by starting with the single-slot case in Section 2,
where two extreme cases have natural, instructive interpretations. With only bids
(and unlimited budgets), a winner-take-all mechanism works; with only budgets
(and unlimited bids) the clicks are simply divided up in proportion to budgets.
Combining these ideas in the right way results in a natural descending-price
mechanism, where the price (per click) stops at the point where the bidders who
can afford that price have enough budget to purchase all of the clicks.

Generalizing to multiple slots requires understanding the structure of feasi-
ble schedules, even in the special budgets-only case. In Section 3 we solve the
budgets-only case by characterizing the allowable schedules in terms of the so-
lution to a classical machine scheduling problem (to be precise, the problem
Q | pmtn | Cmax [11]). The difficulty that arises is that the lengths of the jobs in
the scheduling problem actually depend on the price charged. Thus, we incor-
porate the scheduling algorithm into a descending-price mechanism, where the
price stops at the point where the scheduling constraints are tight; at this point
a block of slots is allocated at a fixed uniform price (dividing the clicks propor-
tionately by budget) and the mechanism iterates. We extend this idea to the full
mechanism by incorporating bids analogously to the single-slot case: the price
descends until the set of bidders that can afford that price has enough budget to
make the scheduling constraints tight. Finally we show that the revenue-optimal
mechanism has a Nash equilibrium whose outcome is identical to our mechanism.

Related Work. There are some papers on sponsored search that analyze the
generalized second-price (GSP) auction, which is the auction currently in use at
Google and Yahoo. The equilibria of this auction are characterized and compared
with VCG [7,15,2,21]. Here the utility function is the profit-maximizing utility
where each bidder attempts to maximize her clicks × profit per click, and budget
constraints are generally not treated.

Borgs et al. [4] consider the problem of budget-constrained bidders for multiple
items of a single type, with a utility function that is profit-maximizing, subject
to being under the budget (being over the budget gives an unbounded negative
utility). Our work is different both because of the different utility function and
the generalization to multiple slots with a scheduling constraint. Using related
methods, Mahdian et al. [18,17] consider an online stochastic setting.

Our mechanism can be seen as a generalization of Kelly’s fair sharing mech-
anism [14,13] to the case of multiple slots with a scheduling constraint. Nguyen
and Tardos [20] give a generalization of [13] to general polyhedral constraints,
and also discuss the application to sponsored search. Both their bidding lan-
guage and utility function differ from ours, and in their words their mechanism
“is not a natural auction mechanism for this case.” It would be interesting to
explore further the connection between their mechanism and ours.

There is some work on algorithms for allocating bidders with budgets to key-
words that arrive online, where the bidders place (possibly different) bids on par-
ticular keywords [19,17]. The application of this work is similar to ours, but their
concern is purely online optimization; they do not consider the game-theoretic
aspects of the allocation. Abrams et al. [1] derive a linear program for the
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offline optimization problem of allocating bidders to queries, and handle multiple
positions by using variables for “slates” of bidders. Their LP is related to ours,
but they do not consider game-theoretic questions.

In our setting one is tempted to apply a Fisher Market model: here m divisible
goods are available to n buyers with money Bi, and uij(x) denotes i’s utility of
receiving x amount of good j. It is known [3,8,5] that under certain conditions
a vector of prices for goods exists (and can be found efficiently [6]) such that
the market clears, in that there is no surplus of goods, and all the money is
spent. The natural way to apply a Fisher model to a slot auction is to regard
the slots as commodities and have the utilities be in proportion to the number
of clicks. However this becomes problematic because there does not seem to be
a way to encode the scheduling constraints in the Fisher model; this constraint
could make an apparently “market-clearing” equilibrium infeasible, and indeed
plays a central role in our investigations.

Our Setting. We define the Offline Ad Slot Scheduling problem as follows. We
have n > 1 bidders interested in clicks. Each bidder i has a budget Bi and a
maximum cost-per-click (max-cpc) mi. Given a number of clicks ci, and a price
per click p, the utility ui of bidder i is ci if both the true max-cpc and the true
budget are satisfied, and −∞ otherwise. In other words, ui = ci if p ≤ mi and
cip ≤ Bi; and ui = −∞ otherwise. We have n′ advertising slots where slot i
receives Di clicks during the time interval [0, 1]. We assume D1 > . . . > Dn′ .

In a schedule, each bidder is assigned to a set of (slot, time interval) pairs
(j, [α, β)), where j ≤ n′ and 0 ≤ α < β ≤ 1. A feasible schedule is one where no
more than one bidder is assigned to a slot at any given time, and no bidder is
assigned to more than one slot at any given time. (Formally, the intervals for a
particular slot do not overlap, and the intervals for a particular bidder do not
overlap.) A feasible schedule can be applied as follows: when a user query comes
at some time α ∈ [0, 1], the schedule for that time instant is used to populate the
ad slots. If we assume that clicks come at a constant rate throughout the interval
[0, 1], the number of clicks a bidder is expected to receive from a schedule is the
sum of (β − α)Dj over all pairs (j, [α, β)) in her schedule.2

A mechanism for Offline Ad Slot Scheduling takes as input a declared budget
Bi and declared max-cpc (the “bid”) bi, and returns a feasible schedule, as well
as a price per click pi ≤ bi for each bidder. The schedule gives some number ci

of clicks to each bidder i that must respect the budget at the given price; i.e., we
have pici ≤ Bi. The revenue of a mechanism is

∑
i pici. A mechanism is truthful

if it is a weakly dominant strategy to declare one’s true budget and max-cpc;
i.e., for any bidder i, given any set of bids and budgets declared by the other
bidders, declaring her true budget Bi and max-cpc mi maximizes ui. A (pure
strategy) Nash equilibrium is a set of declared bids and budgets such that no
bidder wants to change her declaration of bid or budget, given that all other
declarations stay fixed. An ε-Nash equilibrium is a set of bids and budgets where
no bidder can increase her ui by more than ε by changing her bid or budget.
2 All our results generalize to the setting where each bidder i has a “click-through

rate” γi and receives (β −α)γiDj clicks (see Section 4). We leave this out for clarity.
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Throughout the paper we assume some arbitrary lexicographic ordering on
the bidders, that does not necessarily match the subscripts. When we compare
two bids bi and bi′ we say that bi � bi′ iff either bi > bi′ , or bi = bi′ but i occurs
first lexicographically.

2 Special Case: One Slot

In this section we consider the case k = 1, where there is only one advertising
slot, with some number D := D1 of clicks. We will derive a truthful mechanism
for this case by first considering the two extreme cases of infinite bids and infinite
budgets. The proofs of all the theorems in this paper can be found in [9].

Suppose all budgets Bi = ∞. Then, our input amounts to bids b1 � b2 �
. . . � bn. Our mechanism is simply to give all the clicks to the highest bidder.
We charge bidder 1 her full price p1 = b1. We claim that reporting the truth is
a weakly dominant strategy for this mechanism. Clearly all bidders will report
bi ≤ mi, since the price is set to bi if they win. The losing bidders cannot gain
from decreasing bi. The winning bidder can lower her price by lowering bi, but
this will not gain her any more clicks, since she is already getting all D of them.

Now suppose all bids bi = ∞; our input is just a set of budgets B1, . . . , Bn, and
we need to allocate D clicks, with no ceiling on the per-click price. Here we apply
a simple rule known as proportional sharing (see [14,13]): Let B =

∑
i Bi. Now

to each bidder i, allocate (Bi/B)D clicks. Set all prices the same: pi = p = B/D.
The mechanism guarantees that each bidder exactly spends her budget, thus no
bidder will report B′i > Bi. Now suppose some bidder reports B′i = Bi − Δ, for
Δ > 0. Then this bidder is allocated D(Bi − Δ)/(B − Δ) clicks, which is less
than D(Bi/B), since n > 1 and all Bi > 0.

Greedy First-Price Mechanism. A natural mechanism for the general single-slot
case is to solve the associated “fractional knapsack” problem, and charge bid-
ders their bid; i.e., starting with the highest bidder, greedily add bidders to
the allocation, charging them their bid, until all the clicks are allocated. We
refer to this as the greedy first-price (GFP) mechanism. Though natural (and
revenue-maximizing as a function of bids) this is easily seen to be not truthful:

Example 1. Suppose there are two bidders and D = 120 clicks. Bidder 1 has
(m1 = $2, B1 = $100) and bidder 2 has (m2 = $1, B2 = $50). In the GFP
mechanism, if both bidders tell the truth, then bidder 1 gets 50 clicks for $2
each, and 50 of the remaining 70 clicks go to bidder 2 for $1 each. However, if
bidder 1 instead declares b1 = $1 + ε, then she gets (roughly) 100 clicks, and
bidder 2 is left with (roughly) 20 clicks.

The problem here is that the high bidders can get away with bidding lower,
thus getting a lower price. The difference between this and the unlimited-budget
case above is that a lower price now results in more clicks. It turns out that in
equilibrium, this mechanism will result in an allocation where a prefix of the top
bidders are allocated, but their prices equalize to (roughly) the lowest bid in the
prefix (as in the example above).
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The Price-Setting Mechanism. An equilibrium allocation of GFP can be com-
puted directly via the following mechanism, which we refer to as the price-setting
(PS) mechanism. Essentially this is a descending price mechanism: the price
stops descending when the bidders willing to pay at that price have enough bud-
get to purchase all the clicks. We have to be careful at the moment a bidder is
added to the pool of the willing bidders; if this new bidder has a large enough
budget, then suddenly the willing bidders have more than enough budget to pay
for all of the clicks. To compensate, the mechanism decreases this “threshold”
bidder’s effective budget until the clicks are paid for exactly.

Price-Setting (PS) Mechanism (Single Slot)

• Assume wlog that b1 � b2 � . . . � bn ≥ 0.

• Let k be the first bidder such that bk+1 ≤
∑k

i=1 Bi/D. Compute price
p = min{

∑k
i=1 Bi/D, bk}.

• Allocate Bi/p clicks to each i ≤ k − 1. Allocate B̂k/p clicks to bidder k,
where B̂k = pD −

∑k−1
i=1 Bi.

Example 2. Suppose there are three bidders with b1 = $2, b2 = $1, b3 = $0.25
and B1 = $100, B2 = $50, B3 = $80, and D = 300 clicks. Running the PS
mechanism, we get k = 2 since B1/D = 1/3 < b2 = $1, but (B1 + B2)/D =
$0.50 ≥ b3 = $0.25. The price is set to min{$0.50, $1} = $0.50, and bidders 1
and 2 get 200 and 100 clicks at that price, respectively. There is no threshold
bidder.

Example 3. Suppose now bidder 2 changes her bid to b2 = $0.40 (everything else
remains the same as Example 2). We still get k = 2 since B1/D = 1/3 < b2 =
$0.40. But now the price is set to min{$0.50, $0.40} = $0.40, and bidders 1 and
2 get 250 and 50 clicks at that price, respectively. Note that bidder 2 is now a
threshold bidder, does not use her entire budget, and gets fewer clicks.

Theorem 1. The price-setting mechanism (single slot) is truthful.

Price-Setting Mechanism Computes Nash Equilibrium of GFP. Consider the
greedy first-price auction in which the highest bidder receives B1/b1 clicks, the
second B2/b2 clicks and so on, until the supply of D clicks is exhausted. It is
immediate that truthfully reporting budgets is a dominant strategy in this mech-
anism, since when a bidder is considered, her reported budget is exhausted as
much as possible, at a fixed price. However, reporting bi = mi is not a dominant
strategy. Nevertheless, it turns out that GFP has an equilibrium whose outcome
is (roughly) the same as the PS mechanism. One cannot show that there is a
plain Nash equilibrium because of the way ties are resolved lexicographically;
the following example illustrates why.

Example 4. Suppose we have the same instance as example 1: two bidders, D =
120 clicks, (m1 = $2, B1 = $100) and (m2 = $1, B2 = $50). But now suppose
that bidder 2 occurs first lexicographically. In GFP, if bidder 2 tells the truth,
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and bidder 1 declares b1 = $1, then bidder 2 will get chosen first (since she is first
lexicographically), and take 50 clicks. Bidder 2 will end up with the remaining
70 clicks. However, if bidder 1 instead declares b1 = $1 + ε for some ε > 0, then
she gets 100/(1 + ε) clicks. But this is not a best response, since she could bid
1 + ε/2 and get slightly more clicks.

Thus, we prove instead that the bidders reach an ε-Nash equilibrium:

Theorem 2. Suppose the PS mechanism is run on the truthful input, resulting
in price p and clicks c1, . . . , cn for each bidder. Then, for any ε > 0 there is
a pure-strategy ε-Nash equilibrium of the GFP mechanism where each bidder
receives ci ± ε clicks.

3 Multiple Slots

Generalizing to multiple slots makes the scheduling constraint nontrivial. Now
instead of splitting a pool of D clicks arbitrarily, we need to assign clicks that
correspond to a feasible schedule of bidders to slots. The conditions under which
this is possible add a complexity that we need to incorporate into our mechanism.

As in the single-slot case it will be instructive to consider first the cases of
infinite bids or budgets. Suppose all Bi = ∞. In this case, the input consists of
bids only b1 � b2 � . . . � bn. Naturally, what we do here is rank by bid, and
allocate the slots to the bidders in that order. Since each budget is infinite, we
can always set the prices pi equal to the bids bi. By the same logic as in the
single-slot case, this is easily seen to be truthful. In the other case, when bi = ∞,
there is a lot more work to do.

Without loss of generality, we may assume the number of slots equals the
number of bids (i.e., n′ = n); if this is not the case, then we add dummy bidders
with Bi = bi = 0, or dummy slots with Di = 0, as appropriate. We keep this
assumption for the remainder of the paper.

Assigning Slots Using a Classical Scheduling Algorithm. First we give an impor-
tant lemma that characterizes the conditions under which a set of bidders can be
allocated to a set of slots, which turns out to be just a restatement of a classical
result [12] from scheduling theory.

Lemma 1. Suppose we would like to assign an arbitrary set {1, . . . , k} of bidders
to a set of slots {1, . . . , k} with D1 > . . . > Dk. Then, a click allocation c1 ≥
... ≥ ck is feasible iff

c1 + . . . + c� ≤ D1 + . . . + D� for all � = 1, ..., k. (1)

Proof. In scheduling theory, we say a job with service requirement x is a task
that needs x/s units of time to complete on a machine with speed s. The question
of whether there is a feasible allocation is equivalent to the following scheduling
problem: Given k jobs with service requirements xi = ci, and k machines with
speeds si = Di, is there a schedule of jobs to machines (with preemption allowed)
that completes in one unit of time?
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As shown in [12,10], the optimal schedule for this problem (a.k.a.Q|pmtn|Cmax)
can be found efficiently by the level algorithm, and the schedule completes in time
max�≤k{

∑�
i=1 xi/

∑�
i=1 si}. Thus, the conditions of the lemma are exactly the

conditions under which the schedule completes in one unit of time. ��

A Multiple-Slot Budgets-Only Mechanism. Our mechanism will roughly be a
descending-price mechanism where we decrease the price until a prefix of budgets
fits tightly into a prefix of positions at that price, whereupon we allocate that
prefix, and continue to decrease the price for the remaining bidders.

The following subroutine, which will be used in our mechanism (and later
in the general mechanism), takes a set of budgets and determines a prefix of
positions that can be packed tightly with the largest budgets at a uniform price
p. The routine ensures that all the clicks in those positions are sold at price p,
and all the allocated bidders spend their budget exactly.

Routine “Find-Price-Block”

Input: Set of n bidders, set of n slots with D1 > D2 > . . . > Dn.

• If all Di = 0, assign bidders to slots arbitrarily and exit.

• Sort the bidders by budget and assume wlog that B1 ≥ B2 ≥ ... ≥ Bn.

• Define r� =
∑�

i=1 Bi/
∑�

i=1 Di. Set price p = max� r�.

• Let �∗ be the largest � such that r� = p. Allocate slots {1, . . . �∗} to
bidders {1, . . . , �∗} at price p, using all of their budgets; i.e., ci := Bi/p.

Note that in the last step the allocation is always possible since for all � ≤ �∗, we
have p ≥ r� =

∑�
i=1 Bi/

∑�
i=1 Di, which rewritten is

∑�
i=1 ci ≤

∑�
i=1 Di, and so

we can apply Lemma 1. Now we are ready to give the mechanism in terms of
this subroutine; an example run is shown in Figure 1.

Price-Setting Mechanism (Multiple Slots, Budgets Only)

• Run Find-Price-Block on bidders 1, . . . , n, and slots 1, . . . , n. This gives
an allocation of �∗ bidders to the first �∗ slots.

• Repeat on the remaining bidders and slots until all slots are allocated.

Let p1, p2, . . . be the prices used for each successive block assigned by the al-
gorithm. We claim that p1 > p2 > . . .; to see this, note then when p1 is set,
we have p1 = rk and p1 > r� for all � > k, where k is the last bidder in
the block. Thus for all � > k, we have p1

∑
j≤� Dj >

∑
i≤� Bj , which gives

p1
∑

k<j≤� Dj >
∑

k<i≤� Bj using p1 = rk. This implies that when we apply
Find-Price-Block the second time, we get r′� =

∑
k<i≤� Bj/

∑
k<j≤� Dj < p1,

and so p2 < p1. This argument applies to successive blocks to give p1 > p2 > . . ..

Theorem 3. The price-setting mechanism (multi-slot, budgets only) is truthful.

The Price-Setting Mechanism (General Case). The generalization of the PS
mechanism combines the ideas from the bids-and-budgets version of the single
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Bidder Budget

1

2

3

4

$80

$70

$20

$1

3/5

20/21

D1 = 100

D2 = 50

D3 = 25

D4 = 0

p1 = $1.00

p2 = $0.84

Fig. 1. An example of the PS mechanism (multiple slots, budgets only). The first
application of Find-Price-Block computes r1 = B1/D1 = 80/100, r2 = (B1+B2)/(D1+
D2) = 150/150, r3 = (B1 +B2 +B3)/(D1 +D2 +D3) = 170/175, r4 = (B1 +B2 +B3 +
B4)/(D1 +D2 +D3 +D4) = 171/175. Since r2 is largest, the top two slots make up the
first price block with a price p1 = r2 = $1; bidder 1 gets 80 clicks and bidder 2 gets 70
clicks, using the schedule as shown. In the second price block, we get B3/D3 = 20/25
and (B3 + B4)/(D3 + D4) = 21/25. Thus p2 is set to 21/25 = $0.84, bidder 3 gets
500/21 clicks and bidder 4 gets 25/21 clicks, using the schedule as shown.

slot mechanism with the budgets-only version of the multiple-slot mechanism.
As our price descends, we maintain a set of “active” bidders with bids at or
above this price, as in the single-slot mechanism. These active bidders are kept
ranked by budget, and when the price reaches the point where a prefix of bidders
fits into a prefix of slots (as in the budgets-only mechanism) we allocate them
and repeat. As in the single-slot case, we must be careful when a bidder enters
the active set and suddenly causes an over-fit; in this case we again reduce the
budget of this “threshold” bidder until it fits. We formalize this as follows:

Price-Setting Mechanism (General Case)

(i) Assume wlog that b1 � b2 � . . . � bn = 0.

(ii) Let k be the first bidder such that running Find-Price-Block on bidders
1, . . . , k would result in a price p ≥ bk+1.

(iii) Reduce Bk until running Find-Price-Block on bidders 1, . . . , k would
result in a price p ≤ bk. Apply this allocation, which for some �∗ ≤ k gives
the first �∗ slots to the �∗ bidders among 1 . . . k with the largest budgets.

(iv) Repeat on the remaining bidders and slots.

An example run of this mechanism is shown in Figure 2. Since the PS mechanism
sets prices per slot, it is natural to ask if these prices constitute some sort of
“market-clearing” equilibrium in the spirit of a Fisher market. The quick answer
is no: since the price per click increases for higher slots, and each bidder values
clicks at each slot equally, then bidders will always prefer the bottom slot. Note
that by the same logic as the budgets-only mechanism, the prices p1, p2, . . . for
each price block strictly decrease.

Theorem 4. The price-setting mechanism (general case) is truthful.
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BidderBudget Bid
1

2

3

4

$3

$0.75

$1

$0.50

$80

$70

$20

$1

29/45

D1 = 100

D2 = 50

D3 = 25

D4 = 0

p1 = $0.80

p2 = $0.75

p3 = $0

Fig. 2. Consider the same bidders and slots as in Figure 1, but now add bids as shown.
Running Find-Price-Block on only bidder 1 gives a price of r1 = 80/100, which is less
than the next bid of $1. So, we run Find-Price-Block on bidders 1 and 3 (the next-
highest bid), giving r1 = 80/100 and r2 = 100/150. We still get a price of $0.80, but
now this is more than the next-highest bid of $0.75, so we allocate the first bidder to
the first slot at a price of $0.80. We are left with bidders 2-4 and slots 2-4. With just
bidder 3 (the highest bidder) and slot 2, we get a price p = 20/50 which is less than
the next-highest bid of $0.75, so we consider bidders 2 and 3 on slots 2 and 3. This
gives a price of max{70/50, 90/75} = $1.40, which is more than $0.50. Since this is
also more than $0.75, we must lower B2 until the price is exactly $0.75, which makes
B′

2 = $36.25. With this setting of B′
2, Find-Price-Block allocates bidders 2 and 3 to

slots 2 and 3, giving 75(36.25/56.25) and 75(20/56.25) clicks respectively, at a price of
$0.75 per click. Bidder 4 is allocated to slot 4, receiving zero clicks.

Computational Efficiency. We give an O(n2) time algorithm for the PS mech-
anism, using the Gonzalez-Sahni algorithm [10] for scheduling related parallel
machines as a subroutine (see [9] for details).

Greedy First-Price Mechanism for Multiple Slots. In the general case, as in the
single-slot case, there is a natural greedy first-price (GFP) mechanism when
the bidding language includes both bids and budgets: Order the bidders by bid
b1 � b2 � . . . � bn. Starting from the highest bidder, for each bidder i compute
the maximum possible number of clicks ci that one could allocate to bidder i
at price bi, given the budget constraint Bi and the commitments to previous
bidders c1, . . . , ci−1. This reduces to the “fractional knapsack” problem in the
single-slot case, and so one would hope that it maximizes revenue for the given
bids and budgets, as in the single-slot case. This is not immediately clear, but
does turn out to be true, as we will prove in this section.

As in the single-slot case, the GFP mechanism is not a truthful mechanism.
However, we show that it does have a pure-strategy equilibrium, and that equi-
librium has prices and allocation identical to the price setting mechanism.

Greedy is Revenue-Maximizing. Consider a revenue-maximizing schedule that
respects both bids and budgets. We can assume wlog that each bidder i pays
exactly bi per click, since otherwise we can reduce the clicks ci for bidder i
and remain feasible with the same revenue. Thus, by Lemma 1, we can find a
revenue-maximizing schedule c∗ = (c∗1, . . . , c

∗
n) by maximizing

∑
i bici subject to

ci ≤ Bi/bi and c1 + . . . + c� ≤ D1 + . . . + D� for all � = 1, ..., n.

Theorem 5. The GFP auction gives a revenue-maximizing schedule.
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Price-Setting Mechanism is a Nash Equilibrium of the Greedy First Price Mech-
anism. We note that truthfully reporting one’s budget is a weakly dominant
strategy in GFP, since when a bidder is considered for allocation, their budget
is exhausted at a fixed price, subject to a cap on the number of clicks they can
get. Reporting one’s bid truthfully is not a dominant strategy, but we can still
show that there is an ε-Nash equilibrium whose outcome is arbitrarily close to
the PS mechanism.

Theorem 6. Suppose the PS mechanism is run on the truthful input, resulting
in clicks c1, . . . , cn for each bidder. Then, for any ε > 0 there is a pure-strategy
ε-Nash equilibrium of the GFP mechanism where each bidder receives ci±ε clicks.

4 Conclusions

In this paper we have given a truthful mechanism for assigning bidders to click-
generating slots that respects budget and per-click price constraints. The mech-
anism also respects a scheduling constraint on the slots, using a classical result
from scheduling theory to characterize (and compute) the possible allocations.
We have also proved that the revenue-maximizing mechanism has an ε-Nash
equilibrium whose outcome is arbitrarily close to our mechanism. This final re-
sult in some way suggests that our mechanism is the right one for this model. It
would interesting to make this more formal; we conjecture that a general truthful
mechanism cannot do better in terms of revenue.

Extensions. There are several natural generalizations of the Online Ad Slot
Scheduling problem where it would be interesting to extend our results or apply
the knowledge gained in this paper. We mention a few here. (i) Click-through
rates. In sponsored search (e.g. [7]) it is common for each bidder to have a
personal click-through-rate γi; in our model this would mean that a bidder i
assigned to slot j for a time period of length α would receive αγiDj clicks. All
our results can be generalized to this setting by simply scaling the bids using
b′i = biγi. However, our mechanism in this case does not necessarily prefer more
efficient solutions; i.e., ones that generate more overall clicks. It would be in-
teresting to analyze a possible tradeoff between efficiency and revenue in this
setting. (ii) Multiple Keywords. To model multiple keywords in our model, we
could say that each query q had its own set of click totals Dq,1 . . . Dq,n, and each
bidder is interested in a subset of queries. The greedy first-price mechanism is
easily generalized to this case: maximally allocate clicks to bidders in order of
their bid bi (at price bi) while respecting the budgets, the query preferences,
and the click commitments to previous bidders. It would not be surprising if
there was an equilibrium of this extension of the greedy mechanism that could
be computed directly with a generalization of the PS mechanism. (iii) Online
queries, uncertain supply. In sponsored search, allocations must be made online
in response to user queries, and some of the previous literature has focused on
this aspect of the problem (e.g., [19,17]). Perhaps the ideas in this paper could
be used to help make online allocation decisions using (unreliable) estimates of
the supply, a setting considered in [17], with game-theoretic considerations.
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Abstract. The central question in mechanism design is how to imple-
ment a given social choice function. One of the most studied concepts
is that of truthful implementations in which truth-telling is always the
best response of the players. The Revelation Principle says that one can
focus on truthful implementations without loss of generality (if there
is no truthful implementation then there is no implementation at all).
Green and Laffont [1] showed that, in the scenario in which players’ re-
sponses can be partially verified, the revelation principle holds only in
some particular cases.

When the Revelation Principle does not hold, non-truthful implemen-
tations become interesting since they might be the only way to implement
a social choice function of interest. In this work we show that, although
non-truthful implementations may exist, they are hard to find. Namely,
it is NP-hard to decide if a given social choice function can be imple-
mented in a non-truthful manner, or even if it can be implemented at
all. This is in contrast to the fact that truthful implementability can be
recognized efficiently, even when partial verification of the agents is al-
lowed. Our results also show that there is no “simple” characterization of
those social choice functions for which it is worth looking for non-truthful
implementations.

1 Introduction

Social choice theory deals with the fact that individuals (agents) have different
preferences over the set of possible alternatives or outcomes. A social choice
function maps these preferences into a particular outcome, which is not neces-
sarily the one preferred by the agents. The main difficulty in implementing a
social choice function stems from the fact that agents can misreport their prefer-
ences. Intuitively speaking, a social choice function can be implemented if there
is a method for selecting the desired outcome which cannot be manipulated by
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rational agents. By ‘desired outcome’ we mean the one specified by the social
choice function applied to the true agents’ preferences.

More precisely, each agent has a type which specifies the utility he derives
if some outcome is selected. When agents are also endowed with payments, we
consider agents with quasi linear utility: the type specifies the gross utility and
the agent’s utility is the sum of gross utility and payment received. In either
case, a rational agent reports a type so to maximize his own utility and the
reported type must belong to a domain consisting of all possible types. In the
case of partially verifiable information, the true type of an agent further restricts
the set of types that he can possibly report [1].

One of the most studied solution concepts is that of truthful implementations
in which agents always maximize their utilities by truthfully reporting their
types. The Revelation Principle says that one can focus on truthful implementa-
tions without loss of generality: A social choice function is implementable if and
only if it has a truthful implementation. Green and Laffont [1] showed that, in
the case of partially verifiable information, the Revelation Principle holds only
in some particular cases. When the Revelation Principle does not hold, non-
truthful implementations become interesting since they might be the only way
to implement a social choice function of interest. Although a non-truthful imple-
mentation may induce some agent to misreport his type, given that he reports
the type maximizing his utility, it is still possible to compute the desired outcome
“indirectly”. Singh and Wittman [3] observed that the Revelation Principle fails
in several interesting cases and show sufficient conditions for the existence of
non-truthful implementations.

1.1 Our Contribution

In this work, we study the case in which the declaration of an agent can be
partially verified. We adopt the model of Green and Laffont [1] in which the
ability to partially verify the declaration of an agent is encoded by a correspon-
dence function M : M(t) is the set of the possible declarations of an agent of
type t. Green and Laffont [1] characterized the correspondences for which the
Revelation Principle holds; that is, correspondences M for which a social choice
function is either truthfully implementable or not implementable at all.

We show that although non-truthful implementations may exist, they are hard
to find. Namely, it is NP-hard to decide if a given social choice function can be
implemented for a given correspondence in a non-truthful manner. This is in
contrast to the fact that it is possible to efficiently decide whether a social choice
function can be truthfully implemented for a given correspondence. Our results
show that there is no “simple” characterization of those social choice functions
that violate the Revelation Principle. These are the social choice functions for
which it is worth looking for non-truthful implementations since this might be
the only way to implement them.

We prove these negative results for a very restricted scenario in which we have
only one agent and at most two possible outcomes, and the given function does
not have truthful implementations. We give hardness proofs both for the case
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in which payments are not allowed and the case in which payments are allowed
and the agent has quasi linear utility.

In general payments are intended as a tool for enlarging the class of social
choice functions that can be implemented. We find that there is a rich class of
correspondences for which it is NP-hard to decide if a social choice function can
be implemented without payments, while for the same correspondences it is triv-
ial to test truthful implementable with payments via the approach in [3]. Finally,
we complement our negative results by showing a class of correspondences for
which there is an efficient algorithm for deciding whether a social choice function
can be implemented.

We note that the characterization of Green and Laffont [1] has no direct
implication in our results. Indeed, the property characterizing the Revelation
Principle can be tested efficiently. Moreover, when the Revelation Principle does
not hold, we only know that there exists some social choice function which is
only implemented in a non-truthful manner. Hence, we do not know if the social
choice function of interest can be implemented or not. Note that this question
can be answered efficiently when the Revelation Principle holds since testing the
existence of truthful implementations is computationally easy.

Road map. We introduce the model with partial verification by Green and Laffont
[1] in Section 2. The case with no payments is studied in Section 3. Section 4
presents our results for the case in which payments are allowed and the agent
has quasi linear utility. We draw some conclusions in Section 5.

2 The Model

The model considered in this work is the one studied by Green and Laffont [1]
who considered the so called principal-agent scenario. Here there are two players:
the agent, who has a type t belonging to a domain D, and the principal who
wants to compute a social choice function f : D → O, where O is the set of
possible of outcomes. The quantity t(X) denotes the utility that an agent of
type t assigns to outcome X ∈ O.

The agent observes his type t ∈ D and then transmits some message t′ ∈ D
to the principal. The principal applies the outcome function g : D → O to t′

and obtains outcome X = g(t′). We stress that the principal fixes the outcome
function g in advance and then the agent rationally reports t′ so to maximize
his utility t(g(t′)). Even though the principal does not exactly know the type of
the agent, it is reasonable to assume that some partial information on the type
of the agent is available. Thus the agent is restricted to report a type t′ in a set
M(t) ⊆ D, which is specified by a correspondence function M : D → 2D. We will
only consider correspondences M(·) for which truth-telling is always an option;
that is, for all t ∈ D, t ∈ M(t). Notice that the case in which the principal has
no information (no verification is possible) corresponds to setting M(t) = D for
all t.

Definition 1 ([1]). A mechanism (M, g) consists of a correspondence M : D →
2D and an outcome function g : D → O. The outcome function g induces a
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best response rule φg : D → D defined by φg(t) ∈ arg maxt′∈M(t){t(g(t′))}. If
t ∈ arg maxt′∈M(t){t(g(t′))} then we set φg(t) = t.

The correspondence M can be represented by a directed graph GM (which we
call the correspondence graph) defined as follows. Nodes of GM are types in the
domain D and an edge (t, t′), for t �= t′, exists if and only if t′ ∈ M(t). We stress
that the correspondence graph of M does not contain self-loops, even though
we only consider correspondences M such that t ∈ M(t) for all t ∈ D. We will
often identify the correspondence M with its correspondence graph GM and say,
for example, that a correspondence is acyclic meaning that its correspondence
graph is acyclic. Sometimes it is useful to consider a weighted version of graph
GM . Specifically, for a function g : D → O, we define GM,g to be the weighted
version of graph GM where edge (t, t′) has weight t(g(t)) − t(g(t′)).

We study the class of M -implementable social choice functions f : D → O.

Definition 2 ([1]). An outcome function g : D → O M -implements social
choice function f : D → O if for all t ∈ D g(φg(t)) = f(t) where φg(·) is the
best response rule induced by g. A social choice function f : D → O is M -
implementable if and only if there exists an outcome function g : D → O that
M -implements f .

The social choice functions that can be truthfully M -implemented are of partic-
ular interest.

Definition 3 ([1]). An outcome function g : D → O truthfully M -implements
social choice function f : D → O if g M -implements f and φg(t) = t for all
t ∈ D. A social choice function f : D → O is truthfully M -implementable if and
only if there exists an outcome function g : D → O that truthfully M -implements
f .

The classical notions of implementation and of truthful implementation are ob-
tained by setting M(t) = D for all t ∈ D. Actually in this case the two notions
of implementable social choice function and of truthfully implementable social
choice function coincide due to the well-known revelation principle.

Theorem 1 (The Revelation Principle). If no verification is possible (that
is, M(t) = D for all t ∈ D), a social choice function is implementable if and
only if it is truthfully implementable.

The Revelation Principle does not necessarily hold for the notion of M -imple-
mentation and of truthful M -implementation. Green and Laffont [1] indeed give
a necessary and sufficient condition on M for the revelation principle to hold.
More precisely, a correspondence M satisfies the Nested Range Condition if
the following holds: for any t1, t2, t3 ∈ D if t2 ∈ M(t1) and t3 ∈ M(t2) then
t3 ∈ M(t1).

Theorem 2 (Green-Laffont [1]). If M satisfies the NRC condition then a
social choice function f is M -implementable if and only if f is M -truthfully
implementable. If M does not satisfy the NRC condition then there exists an M -
implementable social choice function f that is not truthfully M -implementable.
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Besides its conceptual beauty, the Revelation Principle can also be used in some
cases to decide whether a given social choice function f is M -implementable
for a given correspondence M . Indeed, if the Revelation Principle holds for cor-
respondence M , the problem of deciding M -implementability is equivalent to
the problem of deciding truthful M -implementability which, in turn, can be
efficiently decided.

Theorem 3. There exists an algorithm running in time polynomial in the size
of the domain that, given a social choice function f and a correspondence M ,
decides whether f is truthfully M -implementable.

Proof. To test truthful M -implementability of f we consider graph GM,f where
edge (t, t′) has weight t(f(t)) − t(f(t′)). Then it is obvious that f is M -truthful
implementable if and only if no edge of GM,f has negative weight. ��

3 Hardness of the Implementability Problem

In this section we prove that the following problem is NP-hard.

Problem 1. The Implementability problem is defined as follows.
Input: domain D, outcome set O, social choice function f : D → O and

correspondence M .
Task: decide whether there exists an outcome function g that M -implements

f .

The following lemma, whose proof is immediate, gives sufficient conditions for
an outcome function g to M -implement social choice function f .

Lemma 1. For outcomes O = {T, F}, if the following conditions are satisfied
for all a ∈ D then outcome function g M -implements social choice function f .

1. If f(a) = T and a(T ) < a(F ) then, for all v ∈ M(a), we have g(v) = T .
2. If f(a) = F and a(T ) < a(F ) then, there exists v ∈ M(a) such that g(v) = F .
3. If f(a) = T and a(T ) > a(F ) then, there exists v ∈ M(a) such that g(v) = T .
4. If f(a) = F and a(T ) > a(F ) then, for all v ∈ M(a), we have g(v) = F .

The reduction. We reduce from 3SAT. Let Φ a Boolean formula in 3-CNF over
the variables x1, · · · , xn and let C1, · · · , Cm be the clauses of Φ. We construct
D, O, M and f : D → O such that f is M -implementable if and only if Φ
is satisfiable. We set O = {T, F}. We next construct a correspondence graph
GM representing M . We will use variable gadgets (one per variable) and clause
gadgets (one per clause).

The variable gadget for the variable xi is depicted in Figure 1(a). Each variable
xi of the formula Φ adds six new types to the domain D of the agent, namely,
ti, ui, vi, wi, z1

i and z2
i satisfying the following relations:

ti(F ) > ti(T ), (1)
ui(F ) > ui(T ), (2)
vi(T ) > vi(F ), (3)
wi(T ) > wi(F ). (4)
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(a) The variable gadget

to variable-gadgets

dj cj
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(b) The clause gadget

Fig. 1. Gadgets used in the reduction

The labeling of the vertices defines the social choice function f ; that is, f(ti) =
T, f(vi) = T, f(wi) = T, f(z1

i ) = T, f(z2
i ) = T, and f(ui) = F. Directed edges of

the gadget describe the correspondence M (rather the correspondence graph).
Thus, for example, M(ti) = {ti, ui} and M(ui) = {ui, vi, wi}. Nodes vi and wi

have incoming edges from the clause gadgets. The role of these edges will be
clear in the following.

We observe that (1) implies that the social choice function f is not truthfully
M -implementable. Indeed ti prefers outcome F = f(ui) to T = f(ti) and ui ∈
M(ti). Moreover, by Lemma 1, for any outcome function g implementing f we
must have g(ti) = g(ui) = T . On the other hand, since f(ui) = F it must be
the case that any g that M -implements f assigns outcome F to at least one
node in M(ui) \ {ui}. Intuitively, the fact that every outcome function g that
M -implements f must assign F to at least one between vi and wi corresponds
to assigning “false” to respectively literal xi and x̄i.

The clause gadget for clause Cj of Φ is depicted in Figure 1(b). Each clause
Cj adds types cj and dj to the domain D of the agent such that

cj(T ) > cj(F ), (5)
dj(T ) > dj(F ). (6)

As before the labeling defines the social choice function f and we have f(dj) = T
and f(cj) = F . Moreover, directed edges encode correspondence M . Besides the
directed edge (cj , dj), the correspondence graph contains three edges directed
from dj towards the three variable gadgets corresponding to the variables ap-
pearing in the clause Cj . Specifically, if Cj contains the literal xi then dj has an
outgoing edge to node vi. If Cj contains the literal x̄i then dj has an outgoing
edge to node wi. Similarly to the variable gadget, we observe that (5) implies
that for any g M -implementing f it must be g(dj) = F . Therefore, for g to
M -implement f it must be the case that, for at least one of the neighbors a of
dj from a variable gadget, we have g(a) = T . We will see that this happens if
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and only if the formula Φ is satisfiable. This concludes the description of the
reduction.

We next prove that the reduction is correct. Suppose that Φ is satisfiable, let
τ be a satisfying truth assignment and let g be the outcome function defined as
follows. For the i-th variable gadget we set g(ti) = g(ui) = g(z1

i ) = g(z2
i ) = T .

Moreover, if xi is true in τ , then we set g(vi) = T and g(wi) = F ; otherwise se set
g(vi) = F and g(wi) = T . For the j-th clause gadget, we set g(dj) = g(cj) = F .

Thus, to prove that the outcome function produced by our reduction M -
implements f , it is sufficient to show for each type a the corresponding condition
of Lemma 1 holds. We prove that conditions hold only for a = ui and a = dj ,
the other cases being immediate. For ui we have to verify that Condition 2 of
Lemma 1 holds. Since τ is a truth assignment, for each i vertex ui has a neighbor
vertex for which the outcome function g gives F . For dj we have to verify that
Condition 3 of Lemma 1 holds. Since τ is a satisfying truth assignment, for each
j there exists at least one literal of Cj that is true in τ ; therefore, vertex dj has
a neighbor vertex for which the outcome function g gives T .

Conversely, consider an outcome function g which M -implements the social
choice function f . This means that, for each clause Cj , dj is connected to at
least one node, call it aj , from a variable gadget such that g(aj) = T . Then the
truth assignment that sets to true the literals corresponding to nodes a1, · · · , am

(and gives arbitrary truth value to the other variables) satisfies the formula.
The following theorem follows from the above discussion and from the obser-

vation that the reduction can be carried out in polynomial time and the graph
we constructed is acyclic with maximum outdegree 3.

Theorem 4. The Implementability Problem is NP-hard even for outcome
sets of size 2 and acyclic correspondences of maximum outdegree 3.

3.1 Corrrespondences with Outdegree 1

In this section, we study correspondences of outdegree 1.
We start by reducing the problem of finding g that M -implements f , for the

case in which GM is a line, to the problem of finding a satisfying assignment
for a formula in 2CNF (that is every clause has at most 2 literals). We assume
D = {t1, · · · , tn}, O = {o1, · · · , om} and that, for i = 2, · · · , n, M(ti) = {ti, ti−1}
and M(t1) = {t1}. We construct a formula Φ in 2CNF in the following way. The
formula Φ has the variables xij for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The intended
meaning of variable xij being set to true is that g(ti) = oj . We will construct Φ
so that every truth assignment that satisfies Φ describes g that M -implements
f . We do so by considering the following clauses:

1. Φ contains clauses (xif(ti) ∨ xi−1f(ti)), for i = 2, · · · , n, and clause x1f(t1).
These clauses encode the fact that for g to M -implement f it must be the case
that there exists at least one neighbor a of ti in GM such that g(a) = f(ti).

2. Φ contains clauses (xij → xik), for i = 1, · · · , n and for 1 ≤ k �= j ≤ m.
These clauses encode the fact that g assigns at most one outcome to ti.
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3. Φ contains clauses (xif(ti) → xi−1k) for all i = 2, · · · , n and for all k such
that ti(ok) > ti(f(ti)).
These clauses encode the fact that if g M -implements f and g(ti) = f(ti)
then agent of type ti does not prefer g(ti−1) to g(ti). Therefore, in this case
ti’s best response is ti itself.

4. Φ contains clauses (xi−1f(ti) → xik) for all i = 2, · · · , n and for all k such
that ti(ok) ≥ ti(f(ti)).
These clauses encode the fact that if g M -implements f and g(ti−1) = f(ti)
then agent of type ti does not prefer g(ti) to g(ti−1). Therefore, in this case
ti’s best response is ti−1.

It is easy to see that Φ is satisfiable if and only if f is M -implementable. The
above reasoning can be immediately extended to the case in which each node of
GM has outdegree at most 1 (that is GM is a collection of cycles and paths). We
thus have the following theorem.

Theorem 5. The Implementability Problem can be solved in time polyno-
mial in the sizes of the domain and of the outcome sets for correspondences of
maximum outdegree 1.

4 Implementability with Quasi Linear Utility

In this section we consider mechanisms with payments; that is, the mechanism
picks an outcome and a payment to be transferred to the agent, based on the
reported type of the agent. Therefore a mechanism is now a pair (g, p) where
g is the outcome function and p : D → R is the payment function. We assume
that the agent has quasi linear utility.

Definition 4. A mechanism (M, g, p) for an agent with quasi-linear utility is
a triplet where M : D → 2D is a correspondence, g : D → D is an outcome
function, and p : D → R is a payment function.

The mechanism defines a best-response function φ(g,p) : D → D where φ(g,p)(t)
∈ arg maxt′∈M(t){t(g(t′))+ p(t′)}. If t ∈ argmaxt′∈M(t){t(g(t′))+ p(t′)} then we
set φg(t) = t.

Definition 5. The pair (g, p) M -implements social choice function f : D → O
for an agent with quasi-linear utility if for all t ∈ D, g(φ(g,p)(t)) = f(t).

The pair (g, p) truthfully M -implements social choice function f for an agent
with quasi-linear utility if (g, p) M -implements f and, for all t ∈ D, φ(g,p)(t) = t.

In the rest of this section we will just say that (g, p) M -implements (or truthfully
M -implements) f and mean that M -implementation is for agent with quasi-
linear utility.

Testing truthful M -implementability of a social choice function f can be done
in time polynomial in the size of the domain by using the following theorem that
gives necessary and sufficient conditions. The proof is straightforward from the
proof of [2] (see also [4]).
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Theorem 6. Social choice function f is truthfully M -implementable if and only
if GM,f has no negative weight cycle.

Therefore, as in the previous case when payments were not allowed, if M has the
NRC property then the Revelation Principle holds and the class of
M -implementable social choice functions coincides with the class of truthfully
M -implementable social choice functions. We next ask what happens for corre-
spondences M for which the NRC property does not hold. Our answer is negative
as we show that the following problem is NP-hard.

Problem 2. The Quasi-Linear Implementability problem is defined as fol-
lows.

Input: domain D, outcome set O, social choice function f : D → O and
correspondence M .

Task: decide whether there exists (g, p) that M -implements f .

We start with the following technical lemma.

Lemma 2. Let M be a correspondence and let f be a social choice function for
which correspondence graph has a negative-weight cycle t → t′ → t of length 2.
If (g, p) M -implements f then

{φ(g,p)(t), φ(g,p)(t′)} �⊆ {t, t′}.

Proof. Let us assume for sake of contradiction that (g, p) M -implements f and
that

{φ(g,p)(t), φ(g,p)(t′)} ⊆ {t, t′}. (7)

Since cycle C := t → t′ → t has weight

t(f(t)) − t(f(t′)) + t′(f(t′)) − t′(f(t)) < 0 (8)

then f(t) �= f(t′). Therefore, since (g, p) M -implements f , it holds φ(g,p)(t) �=
φ(g,p)(t′) and thus (7) implies that {φ(g,p)(t), φ(g,p)(t′)} = {t, t′}.

Suppose that φ(g,p)(t) = t′ and thus φ(g,p)(t′) = t. Then for (g, p) to M -
implement f it must be the case that g(t) = f(t′), g(t′) = f(t). But then the
payment function p must satisfy both the following:

p(t′) + t(f(t)) ≥ p(t) + t(f(t′)),
p(t) + t′(f(t′)) ≥ p(t′) + t′(f(t)),

which contradicts (8). The same argument can be used for the case φ(g,p)(t) = t
and φ(g,p)(t′) = t′. ��

The reduction. We are now ready to show our reduction from 3SAT to the
Quasi-Linear Implementability problem. The reduction is similar in spirit to
the one of the previous section. We start from a Boolean formula Φ in conjunctive
normal form whose clauses contain exactly 3 literals and we construct a domain
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Fig. 2. Gadgets used in the reduction

D, a set of outcomes O, a social choice function f , and a correspondence M such
that there exists (g, p) that M -implements f if and only if Φ is satisfiable.

We set O = {T, F} and fix constants 0 < β < δ. Let x1, . . . , xn be the
variables and C1, . . . , Cm be the clauses of Φ. The reduction uses two different
gadgets: variable gadgets and clause gadgets.

We have one variable gadget for each variable; the gadget for xi is depicted
in Figure 2(a) where the depicted edges are edges of GM . Each variable xi of the
formula Φ adds six new types to the domain D: ti, ui, vi, wi, z

1
i , and z2

i satisfying
the following:

ti(T ) − ti(F ) < ui(F ) − ui(T ), (9)
ui(T ) − ui(F ) = β. (10)

Nodes vi and wi have incoming edges from the clause gadgets. The role of these
edges will be clear in the following. The labeling of the nodes describes the
social choice function f to be implemented. More precisely, we have that f(ti) =
f(vi) = f(wi) = f(z1

i ) = f(z2
i ) = T and f(ui) = F .

We observe that, by (9), cycle C := ti → ui → ti has negative weight. More-
over, since φ(g,p)(ti) ∈ M(ti) = {ti, ui}, by Lemma 2, it must be the case that
φ(g,p)(ui) �∈ {ti, ui}. Therefore, if (g, p) M -implements f then g(φ(g,p)(ui)) =
f(ui) = F , and thus g assigns outcome F to at least one of the neighbors of
ui. Intuitively, the fact that the outcome function g assigns F to at least one
between vi and wi corresponds to assigning “false” to literal xi and x̄i.

We have one clause gadget for each clause; the gadget for clause Cj is depicted
in Figure 2(b). Each clause Cj of Φ adds two new types to the domain D: cj and
dj satisfying

cj(F ) − cj(T ) < dj(T ) − dj(F ), (11)
dj(T ) − dj(F ) = δ. (12)
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Node dj has three edges directed towards the three variable gadgets correspond-
ing to the variables appearing in the clause Cj . Specifically, if the clause Cj

contains the literal xi then dj is linked to the node vi. Conversely, if Cj contains
the literal x̄i then dj is connected to the node wi. The social choice function f
is defined by the labeling of the nodes; that is, f(dj) = T and f(cj) = F .

Similarly to the variable gadget, we observe that (11) implies that cj and dj

constitute a cycle of negative weight of length 2. Since φ(g,p)(cj) ∈ {cj, dj}, then,
by Lemma 2, it must be the case that φ(g,p)(dj) �∈ {cj , dj}. Since for any (g, p)
that M -implements f it must be the case that g assigns T to dj ’s best response,
then g assigns outcome T to at least one of the neighbors of dj from a variable
gadget. We will see that this happens for all clauses if and only if the formula Φ
is satisfiable. This concludes the description of the reduction.

We next prove that the reduction described above is correct. Suppose Φ is
satisfiable, let τ be a satisfying assignment for Φ, let γ be a constant such that
β < γ < δ and consider the following pair (g, p). For i = 1, · · · , n, we set g(a) = T
and p(a) = 0 for all nodes a of the variable gadget for xi except for vi and wi.
Then, if τ(xi) = 1, we set g(vi) = T , p(vi) = 0, g(wi) = F and p(wi) = γ. If
instead τ(xi) = 0, we set g(vi) = F , p(vi) = γ, g(wi) = T and p(wi) = 0. For
j = 1, · · · , m, we set g(cj) = g(dj) = F and p(cj) = p(dj) = 0.

We now show that (g, p) M -implements f . We show this only for types ui

from variable gadgets and types dj from clause gadgets, as for the other types
the reasoning is immediate. Notice that by definition, g assigns F to exactly one
of vi and wi and T to the other. Thus, denote by a the vertex a ∈ {vi, wi} such
that g(a) = F and by b the vertex b ∈ {vi, wi} such that g(b) = T . We show that
a is ui’s best response under (g, p). Observe that ui(g(a)) + p(a) = ui(F ) + γ >
ui(F ) = ui(g(ti)) + p(ti). Therefore ti is not ui’s best response. On the other
hand, we have ui(g(b)) + p(b) = ui(T ). But then, since γ > β = ui(T ) − ui(F ),
we have that a is ui’s best response under (g, p).

For dj , we observe that, since τ satisfies clause Cj , there must exists at least
one literal of Cj that is true under τ . By the definition of g, there exists at
least one neighbor, call it aj , of dj from a variable gadget such that g(aj) = T .
We next show that aj is dj ’s best response. Notice that p(aj) = 0. For all
vertices b adjacent to dj for which g(b) = F , we have p(b) ≤ γ. But then, since
γ < δ = dj(T ) − dj(F ) we have that aj is dj ’s best response under (g, p).

Conversely, consider an outcome function (g, p) that implements f and con-
struct truth assignment τ as follows. Observe that, for any clause Cj , dj and cj

constitute a cycle of negative weight and length 2. Moreover, cj ’s best response
is either cj or dj and thus, by Lemma 2, it must be the case that dj ’s best re-
sponse is a vertex, call it aj , from a variable gadget such that g(aj) = T . Then
if aj = vi for some i then we set τ(xi) = 1; if instead aj = wi for some i we set
τ(xi) = 0. Assignment τ (arbitrarily extended to unspecified variables) is easily
seen to satisfy Φ.

The above discussion and the observation that the reduction can be carried
out in polynomial time proves the following theorem.
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Theorem 7. The Quasi-Linear Implementability problem is NP-hard even
for outcome sets of size 2.

5 Conclusions

We have seen that is it NP-hard to decide if a given social choice function can be
implemented even under the premise that the function does not admit a truthful
implementation. Indeed, for these function it is NP-hard to decide if there is
a non-truthful implementation, which in turn is the only way to implement
them. An important factor here is the structure of the domain and the partial
information, which we encode in the correspondence graph. In particular, we
have the following results:

Correspondence Graph No Payments Payments and Quasi-linear Agent
Path Polynomial [Th. 5] Always implementable [3, Th. 4]

Directed acyclic NP-hard [Th. 4] Always implementable [3, Th. 4]
Arbitrary NP-hard [Th. 4] NP-hard [Th. 7]

Note that for directed acyclic graphs, the Quasi Linear Implementability

Problem (where we ask implementability with payments) is trivially polynomial
since all social choice functions are implementable wheras it is NP-hard to decide
if an implementation without payments exists. So, it is also difficult to decide if
payments are necessary or not for implementing a given function. Once again,
this task becomes easy when restricting to truthful implementations [4].

Another interesting fact is that the problem without payments is not difficult
because there are many possible outcomes, but because an agent may have sev-
eral ways of misreporting his type. Indeed, the problem is easy if the agent has
at most one way of lying (Theorem 5), but becomes NP-hard already for three
(Theorem 4). The case of two remains open.

Finally, the fact that we consider the principal-agent model (the same as in
[1]) only makes our negative results stronger since they obviously extend to the
case of several agents (simply add extra agents whose corresponding function is
M(t) = {t}).

On the other hand it remains open whether the positive result for graphs of
outdegree at most 1 can be extended to many agents. Here the difficulty is the
inter-dependance between the best response rules of the agents.
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Abstract. In this paper, we introduce and develop the field of algebraic commu-
nication complexity, the theory dealing with the least number of messages to be
exchanged between two players in order to compute the value of a polynomial or
rational function depending on an input distributed between the two players. We
define a general algebraic model, where the involved functions can be computed
with the natural operations additions, multiplications and divisions and possibly
with comparisons. We provide various lower bound techniques, mainly for fields
of characteristic 0.

We then apply this general theory to problems from distributed mechanism
design, in particular to the multicast cost sharing problem, and study the number
of messages that need to be exchanged to compute the outcome of the mechanism.
This addresses a question raised by Feigenbaum, Papadimitriou, and Shenker [9].

1 Introduction

Distributed algorithmic mechanism design is the art of analyzing, designing, and imple-
menting mechanisms in a distributed setting. Feigenbaum, Papadimitriou, and Shenker
[9] were the first to consider distributed aspects of mechanism design by investigating
mechanisms for the multicast cost sharing problem in a distributed setting. Many mech-
anisms, like marginal costs and Shaply value, can be computed by arithmetic operations
(“+”, “∗”, and “/”), equality tests (“=”), and comparisons (“<”). These are exactly the
operations that are considered in algebraic complexity theory, a well-developed area of
complexity theory. In the multicast cost sharing problem, a provider, the root of a tree,
wants to send a transmission to n players, residing at the nodes of the tree. Each player
has a utility ui for receiving the transmission. The provider has to pay some cost ce

when he uses a particular edge e of the tree for the transmission. The utilities ui are
private information whereas the edge costs ce are public. The nodes are capable of do-
ing multicast, so edges are shared by the users in the tree. A mechanism is sought that
is strategy-proof, fulfills three natural side constraints, and either maximizes welfare
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or is budget-balanced. We assume that there is no centralized authority that knows all
the values. Instead the computation is done at the nodes of the trees and values have to
be sent over the links. The mechanisms maximizing welfare have efficient distributed
implementations with only a constant number of messages per link.

Feigenbaum, Papadimitriou, and Shenker [9] investigate the communication com-
plexity of computing budget balanced mechanisms with linear operations, that is, only
multiplication with scalars but not with variables are allowed. This implies that all the
messages sent are linear combinations of the values held by the players. In this setting,
they show that the computation of any budget balanced mechanism requires a linear
number of messages over a linear number of links, yielding an overall quadratic lower
bound. Any function can be computed by this many messages by sending all inputs to
one player, so this lower bound is optimal. They leave the extension of their results to
non-linear operations, i.e., multiplications and divisions, as an open question.

Later, Feigenbaum et al. [8] used Boolean communication complexity to prove lower
bounds for the bit complexity of distributed algorithms for budget balanced mecha-
nisms. In the Boolean model, all numbers that occur are rational numbers (given as the
quotient of two natural numbers in binary). The messages can be arbitrary bit strings. In
this model, Feigenbaum et al. prove that any distributed Boolean algorithm has to send
at least a linear number of bits over a linear number of links.

While this seems to solve the problem at a first glance, there is a flaw hidden: If we
measure the bit complexity of the messages, we have to relate it to the bit size of the
input. In particular, in order to prove the mentioned lower bound, Feigenbaum et al.
consider the following simple scenario: There is one link from the provider to one node
v at which n/2 players reside and there is one link from v to another node u at which
another n/2 players reside. By instantiating the utilities of the players appropriately, it
turns out that any distributed algorithm that computes a budget-balanced mechanism on
this tree decides whether the sets of utilities at the nodes u and v are disjoint. If we now
consider this to be a game between two players, one at u, the other at v, this becomes
the well-known set disjointness problem, however with a small twist, the universe is
not {1, . . . , n}. It is known that deciding the set disjointness problem in the Boolean
setting where both players hold the characteristic vector of their subset of {1, . . . , n}
requires n bits of communication. The scenario that we get from the multicast cost
sharing problem above is a generalization, so we get the lower bound of n bits as well.
In this example, the utilities of the players are of the form C/i for some constant C
and 1 ≤ i ≤ n. Thus the overall input size � = Θ(n log n), but the lower bound for
the communication is only Ω(n2) = Ω(�2/ log2 �). (Note that we have to send n bits.
If we replace the one link between u and v by a path of length n, we get n messages
over n links, yielding the quadratic lower bound.) While this is still bad enough, it is
not quadratic in the input size.

We will show that in the general algebraic model, we can get a quadratic lower
bound. We provide tools to investigate the communication complexity of distributed
computations in a general algebraic setting. This means, that the player may perform
arbitrary arithmetic operations and not only linear ones, together with comparisons. The
messages are now arbitrary rational functions in the inputs of the players. We will show
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that in this setting, the computation of any budget balanced mechanism needs a linear
number of messages over a linear number of links. This is now a tight lower bound.

The reduction by Feigenbaum et al. to a two-player communcation problem indi-
cates that it is sufficient to understand two-player communication complexity. This
is what we do here: Algebraic communication complexity deals with the problem of
computing a multivariate function, when the input is distributed between different en-
tities referred to as players. In particular, given a field k and a rational function f ∈
k(X1, . . . , Xn, Y1, . . . , Ym), we want to know how many messages have to be ex-
changed between the two players, until one of them has enough information at his/her
disposal to be able to compute the function value. Here, one player is holding the X-
indeterminates and the other one the Y -indeterminates.1

The boolean counterpart, where one deals with boolean functions and bit-strings
as inputs, is well studied, thanks to its successful application in VLSI-design theory.
[12,13] are excellent textbooks on Boolean communication complexity. Compared to
the boolean setting, we work over infinite fields and treat the arising numbers as entities.
So our results do not follow from discrete models with larger (but finite) alphabets.

2 Related Research and New Results

The Boolean model was proposed by Yao [18] and was typically motivated by VLSI
design problems. But it quickly found other applications, see e.g. [12,13]. It is mostly
of combinatoric nature, whereas our model is based on algebraic structures like fields
in which the possible operations are the natural arithmetic operations.

Abelson [1,2] motivated and introduced continuous communication complexity the-
ory over R assuming some differentiability properties of the involved functions. Luo
and Tsitsiklis [16] improved Abelson’s results in certain cases making use of algebraic
tools, but they only consider computional problems and no decision problems. The rea-
son for this is that they only consider smooth messages and smooth problems.

Other than these work, there are also studies leading to more specific directions, like
optimization within an error of a sum of two distributed convex functions, where every
player has access to a single function [15].

Our aim is to develop a model based on an algebraic structure, in order to take ad-
vantage of the powerful tools of algebra and algebraic complexity theory. Even though
this restricts the power of the messages the players can exchange and the family of the
multivariate objective functions, we strongly believe that this model of computation fits
better in the context of possible applications, since the power of the involved messages
is realistically bounded. Moreover, in our setting we can introduce new features in a
natural way. For instance by allowing equality tests and comparisons, we actually can
deal with non-continuous functions. We can speak about decision problems, too, where
the goal is not to compute the function, but decide whether a given input lies in its zero-
set. Or we can introduce nondeterminism in a flavor recalling the usual nondeterminism
of computational complexity.

1 One can define the multi-party case accordingly. Due to space limitations, we solely deal with
the two player case in this paper.
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Feigenbaum, Papadimitriou, and Shenker [9] investigated the multicost cost sharing
problem in a restricted algebraic setting. They only allow messages that are linear forms
in the inputs (i.e. bids) of the players. They leave the proof of lower bounds in a general
model as an open problem. We here prove a quadratic lower bound for the communica-
tion complexity of budget-balanced mechanisms for the multicast cost sharing problem
in such a general model.

In particular, we show the following results:

– We completely solve the one-way case for the computation problem and give a
characterization in terms of the transcendence degree.

– We almost completely solve the one-way case for the decision problem, where
“almost” means up to one message.

– We provide several lower bounds techniques for the two-way case:
• a method that is inspired by the substitution method known from algebraic

complexity theory
• a dimension bound (which is solely suited for homogeneous problems)

– We extend our methods to decision problems with equality tests and with compar-
isons.

– We apply our methods to distributed mechanism design problems, like the multicast
cost sharing problem and auctions with single minded bidders.

In the full version, we also introduce nondeterminism and provide an interesting link to
the decision and the computation problem in the one-way case.

Recently and independently, Grigoriev [11] introduced a model similar to ours, but
he only deals with the one-way communication complexity. His model is actually an
extension of the one-way model presented here: both parties send messages to some
referee who then makes the decisions. We will use one of his results, which can be
readily generalized to the two-way model, to deal with comparisons. Grigoriev allows
randomization, too, but he mainly uses rank-based lower bounds.

3 Model of Computation and Notation

Throughout this paper, k is a field of characteristic zero which we often assume to be
algebraically closed. Our mechanism design problems will be reduced to a two-player
algebraic communication problem; so we define and analyze this setting first. We give
the players names: Alice (A) and Bob (B). Alice usually holds an input denoted by
X = (x1, . . . , xn) and Bob holds Y = (y1, . . . , ym) and their aim is to compute a
rational function f : kn × km → k. Each player may send messages that are rational
functions in his/her inputs and the messages (s)he has received from the other player so
far. In the end, one of them has to be able to compute f(X, Y ) (computation problem),
to decide if the value is zero or not (decision problem), or to prove that indeed the input
lies in the zero-set of f (nondeterminism).

We denote, as usual in the literature, by k[X, Y ] the ring of polynomials with vari-
ables (x1, . . . , xn, y1, . . . , ym) and coefficients in k and by k(X, Y ) the field of rational
functions over the same set of variables. Further, we denote by MA→B and MA←B the
index-set of messages sent by Alice to Bob and vice versa, respectively. The network
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where messages are sent is completely reliable: there is no data loss and transmissions
are error-free. In particular we assume that we can send field-elements as they are,
meaning that every message counts as one, no matters how large the number is (for
example as real number) and how we encode it. What is really important in this frame-
work is the total number of messages sent during a protocol, neglecting the amount of
computation performed by the players. In fact, our model relies on Luo and Tsitsiklis’
model [16], but the assumptions on the involved functions are different: we deal solely
with polynomial/rational functions. Later, we introduce equality tests and comparisons.
In this extended model, we can also compute non-continuous functions and investigate
decision problems, too.

A protocol P for computing a rational function f ∈ k(X, Y ) is a list of instructions
telling the players the form of the messages they have to send and in which order, so to
let a player to be able to compute f(X, Y ).

Definition 1 (Protocol). A two-way protocol P for computing f consists of:

1. Disjoint inputs X, Y distributed between player A and player B, respectively.
2. A collection of messages m1, . . . , mr belonging to some field extensions of k, sent

in this order, with the following property: for each 1 ≤ i ≤ r, we have:
– if i ∈ MA→B , then mi ∈ k(X, m1, . . . , mi−1)
– if i ∈ MA←B , then mi ∈ k(Y, m1, . . . , mi−1)

3. We have either f ∈ k(X, m1, . . . , mr) or f ∈ k(Y, m1, . . . , mr).

P is called one-way if in addition MA←B = ∅ and f ∈ k(Y, m1, . . . , mr).

Definition 2. The two-way communication complexity of f is defined as

C(f) := min
P

r(P)

where the minimum is taken over the set of all protocols P for f and r(P ) is the num-
ber of messages sent in P . Similarly we define the one-way communication complexity
C→(f).

A message m is said to be feasible in step i, if the second property in the definition of a
protocol holds. If a message m is feasible, this exactly means that m can be computed
by additions, multiplications, and divisions from the inputs of the particular player and
all the messages he received so far.

We will also speak about divisionfree protocols. In this case, m is feasible if m ∈
k[X, m1, . . . , mi−1] or m ∈ k[Y, m1, . . . , mi−1], respectively. With such protocols, we
can of course only compute polynomials.

Finally, we can also extend the notion of a protocol and communication complexity
to a set of functions f1, . . . , f�. We just require f1, . . . , f� ∈ k(X, m1, . . . , mr) or
f1, . . . , f� ∈ k(Y, m1, . . . , mr) in the third item of the definition of a protocol.

Example 1. Let

f1(X, Y ) = (y1 +x1y2 +x2
1y3)x1 +(y1 +x1y2 +x2

1y3)2x2 +(y1 +x1y2 +x2
1y3)3x3.

Then C(f1) ≤ 2. Indeed, it is easy to see, that if Alice sends to Bob the value of x1, then
he is able to compute the polynomial y1 + x1y2 + x2

1y3, which, in turn, enables Alice
to compute the whole function. One can easily show with the results of this paper, that
in fact C(f1) = 2 but C→(f1) = 3.
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4 One-Way Communication

In this section we deal exclusively with the one-way communication model. One-way
communication corresponds to distributed one-pass algorithms. For the example of mul-
ticast pricing, this means that the result has to be computed in one sweep over the multi-
cast tree. We provide a technique to compute exactly the value C→(f) for every rational
function f ∈ k(X, Y ).

For such an f ∈ k(X, Y ) we denote by CoeffY f the field extension over k generated
by adding the coefficients of f seen as function of Y . In particular, CoeffY f ⊆ k(X).
Obviously, Bob is able to compute the value of f from the messages m1, . . . , mr re-
ceived from Alice if and only if CoeffY f ⊆ k(m1, . . . , mr).

Theorem 1 (Transcendence degree bound). For every field k and rational function
f ∈ k(X, Y ), we have C→(f) ≥ tr degk CoeffY f where tr deg denotes the transcen-
dence degree of the field extension CoeffY f/k.

Proof. We proceed by induction on q := tr degk CoeffY f . For q = 0, we have
f ∈ k(Y ), since any X-variable cannot be algebraic over k.

For q > 0, let mi be the first message such that tr degk(m1,...,mi−1) k(m1, . . . , mi) =
1. Then we have tr degk(m1,...,mi) CoeffY (f) = tr degk CoeffY (f) − 1 and the induc-
tion hypothesis applies. Hence Alice sends at least q − 1 + i ≥ q messages. 	


It is easy to prove with the Primitive Element Theorem from algebra (see [3]), that
tr degk CoeffY f + 1 is an upper bound for C→(f): Alice simply sends a complete
transcendence basis of CoeffY f over k to Bob using tr degk CoeffY f messages. Fur-
thermore, since fields of characteristic zero are separable, the Primitive Element Theo-
rem for algebraic extensions assures that at most one more message makes the extended
field equal to CoeffY f . The following lemma helps us to strengthen this result.

Lemma 1. Let q = tr degk k(f1, . . . , fr), then there exist g1, . . . , gq ∈ k(f1, . . . , fr)
with the property that k(f1, . . . , fr) ⊆ k(g1, . . . , gq).

This lemma assures that Alice can send a transcendence basis {m1, . . . , mq} with the
property that CoeffY f ⊆ k(m1, . . . , mq), with q = tr degk CoeffY f , so that we do
not need the Primitive Element Theorem anymore. This establishes tr degk CoeffY f
as the correct number of messages for every optimal protocol in the one-way commu-
nication model. It can be easily computed as the rank of the matrix, whose columns are
given by the gradient of the coefficients of f , see [16].

5 Two-Way Communication

Next we study the two-way model. Here, we do not have a tight characterization as
in the one-way case, but we provide several lower bound techniques that show tight
bounds for some specific functions, in particular for the ones arising from our mecha-
nism design problem.
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5.1 Substitution Method

The idea of the substitution method is to make the first message trivial by adjoining it
to the ground field. Since we deal with several ground fields in this section, we write
occasionally C(f; k) instead of C(f) to stress the underlying ground field.

Lemma 2. Let P be some protocol for computing a rational function f over some field
k that uses r messages. Then there is an extension field k′ ⊃ k with tr degk k′ ≤ 1 and
either k′ ⊆ k(X) or k′ ⊆ k(Y ) and there is a protocol P ′ for computing f with r − 1
messages over k′.

Proof. Let m1 be the first message of the protocol. Set k′ = k(m1). Then we do not need
to send the first message, since it is now known to both players in advance. The claim
on the transcendence degree is obvious and also that either k′ ⊆ k(X) or k′ ⊆ k(Y ),
since m1 is the first message. 	


Example 2. Assume that Alice and Bob both hold n and m input values. We want to
know whether they have at least one value in common. This is called the set disjointness
problem. It is modelled by the following function

Disjn,m(X, Y ) =
n∏

i=1

m∏

j=1

(xi − yj).

It is now possible to show the following lower bound by induction.

Theorem 2. For every rational function g = p/q such that q is coprime with Disjn,m,
C(g · Disjn,m) ≥ min{m, n}.

Proof. The proof is by induction on min{m, n}. Since q is coprime with Disjn,m, we
need at least one message. If min{m, n} is 1, then the claim is trivial. Otherwise we
want to apply Lemma 2. We treat the case k′ ⊆ k(X), the other case is symmetric.
By renaming variables, we can assume that x1, . . . , xn−1, m1 are algebraically inde-
pendent, where m1 is the message substituted. x1, . . . , xn−1 and y1, . . . , ym are alge-
braically independent over k′ = k(m1) We can write Disjn,m = g′ · Disjn−1,m where
g′ consists of all terms that contains xn.

By the inductions hypothesis C(gg′ · Disjn−1,m; k′) ≥ min{n − 1, m} and by
Lemma 2, C(g · Disjn,m; k) ≥ C(gg′ · Disjn−1,m; k′) + 1. This proves the claim. 	


5.2 Dimension Bound

In this section, we show lower bounds using methods from algebraic geometry and in
particular, we relate results about the dimension of a variety to our problem.

We here consider only homogeneous polynomials f1, . . . , f� and we want to decide
whether the inputs of Alice and Bob lie in the zero set V (f1, . . . , f�) of all of them. In
this setting, it makes sense to restrict oneself to projective protocols, i.e., protocols in
which all messages are homogeneous polynomials. Now we can work over the projec-
tive space P

2n :=
(
k2n+1 \{0}

)
/ ∼, where a ∼ b iff there exists a 0 = λ ∈ k such that
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a = λb. The inputs of the players are embedded canonically into the projective space
by adding a 1 as the last coordinate. The input (x1, . . . , xn, y1, . . . , yn) is mapped to
the (x1, . . . , xn, y1, . . . , yn, 1). Whenever we speak of the point (0, 0), we mean the
corresponding point (0, . . . , 0, 0, . . . , 0, 1) in P

2n. Since we always work in the affine
subspace of P

2n of points with the last coordinate = 0, we will usually omit the last 1.

Theorem 3. Let k be an algebraically closed field and f : kn × kn → k� be a homo-
geneous polynomial mapping. Assume that dim V (f(0, Y )) = q < n. Then deciding
whether (X, Y ) ∈ V (f) = {(X, Y ) ∈ kn × kn

∣
∣ f(X, Y ) = 0} requires at least n − q

homogeneous messages even in the two-way model.

Proof. Let P be a homogeneous protocol where w.l.o.g. Alice is able to eventually
decide whether f(X, Y ) = 0 for (X, Y ) ∈ k2n. We embed (X, Y ) into P

2n by
adding a component 1 as described above. For contradiction, we assume that n − q − 1
messages are enough for Alice to decide whether f(X, Y ) = 0; we denote them by
m1, . . . , mn−q−1. Since the messages are homogeneous, it follows in particular that
mi(0, 0) = 0, 1 ≤ i ≤ n − q − 1. Also M := V (m1, . . . , mn−q−1) is a projective
variety in P

2n with dimM ≥ n + q + 1.
Consider the variety E := V (x1, . . . , xn) of dimension n. By the properties

of the projective space it follows that dimM ∩ E ≥ q + 1. On the other hand,
dimV (f(0, Y )) = q, so we can find a point (0, b) in the intersection M ∩ E with
f(0, b) = 0. If we run P on the inputs (0, 0) and (0, b), we notice that Alice has the
same input and receives vanishing messages in both instances. Hence she is unable to
distinguish between f(0, 0) = 0 and f(0, b) = 0; this is a contradiction. 	


Example 3. This theorem applies in a straightforward manner to the equality prob-
lem. We want to decide whether the two inputs are identical. The problem is mod-
elled by the n functions f1 = x1 − y1, . . . , fn = xn − yn. Let f(X, Y ) =
(f1(X, Y ), . . . , fn(X, Y )). Of course we have dimV (f(0, Y )) = 0, since only (0, 0)
belongs to it. Thus any homogeneous protocol for deciding whether the two inputs are
the same requires n messages.

Remark 1. This argument is interesting in another important context as well. If the
theorem should extend to the equality problem over every field k of characteristic zero
not necessarily closed, then this would rule out the existence of an injective polynomial
p ∈ k[X, Y ], which is still an open problem for general fields. On the other hand note
that the equality problem can be solved with one message on certain ground sets. For
instance, the polynomial (a, b) �→ 1

2

(
(a + b)2 + 3a + b

)
is a bijection over IN2 → IN.

6 Decision Problems

Now we allow the players to perform equality tests and comparisons, the latter only over
R. In this setting, players do not only compute and send the same messages for every
input, but they are allowed to go through a decision tree, where at every node they check
whether some two functions of their input are equal. Every internal node in the tree has
two successors, one corresponds to the outcome of the fact that the compared functions
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are equal, one to the outcome that they are not equal. Depending on the result of the
test, the players follow the respective branch in the decision tree. When they reach a
leaf, they send a message accordingly. Furthermore, we do not want to compute f but
it is sufficient to decide whether the input of the players lies in the zero set V (f) of f
or not.

If we allow comparisions, then we can also decide semi-algebraic sets. Every test
now has three outcomes, <, =, or >, and every node in the decision tree has three
successors. The formal definitions can be found in the full version of this paper.

The communication complexities C→dec(f) and Cdec(f) are defined in the same way
as C→(f) and C(f), but over the larger class of protocols with equality tests. Therefore,
it is clear that C→dec(f) ≤ C→(f) and Cdec(f) ≤ C(f) for all rational functions f . In
the same way, we define C→dec,<(S) and Cdec,<(S) for semi-algebraic sets S. C→dec,<(f)
and Cdec,<(f) shorthand C→dec,<(V (f)) and Cdec,<(V (f)).

Intuitively, one would expect that these additions would indeed decrease the number
of messages needed between the two players. We will see that often, this decrease is
very modest.

6.1 Equality Tests

Lemma 3. For every irreducible polynomial f ∈ k[X, Y ] over an algebraically closed
field, there is a rational function h = p/q with q and f being coprime, such that
C→dec(f) ≥ C→(hf) and Cdec(f) ≥ C(hf).

Proof. Consider a protocol P , one-way or two-way, deciding the membership of the
inputs in Ω := V (f), the variety defined by f . Since the possible inputs are infinite
(k is closed), almost every input (in the Zariski sense) follows the same path π0. Let
π be the typical path of an element from Ω and let ν be the node where π and π0
separate for the first time. Following the path π0 up to ν, we find rational functions

g
(1)
1 , g

(2)
1 , . . . , g

(1)
r , g

(2)
r such that g

(1)
i

?= g
(2)
i is tested by some player. Obviously gi :=

g
(1)
i − g

(2)
i is not identically zero and because we follow the path taken by most inputs,

g1, . . . , gr−1 do not vanish on the given input when we follow π or π0. Since Ω is a
closed set in the Zariski topology, it follows that the elements of Ω reaching ν lie also in
V (gr). Altogether, for an input (X, Y ), from f(X, Y ) = 0, we necessarily have that at
least one of g1(X, Y ), . . . , gr(X, Y ) vanishes, in other words g := g1 · . . . · gr vanishes
on (X, Y ). Therefore, applying the Nullstellensatz on the numerator of g and noting
that rad(f) = (f) (since f is irreducible), we have g = h · f , for a rational function
h = p/q, q coprime with f . Thus from the protocol P that decides V (f), we get a
protocol of the same type that computes hf . 	

For the one-way case, we get an almost tight characterisation meaning that performing
equality tests does not bring any significant help in the communication task.

Corollary 1. Given an irreducible polynomial f ∈ k[X, Y ] over an algebraically
closed field k, C→dec(f) ≥ tr degk CoeffY f − 1.

Proof. We have tr deg CoeffY g ≥ tr deg CoeffY f − 1, see [6]. 	

We cannot apply Lemma 3 to Disjn,m, since Disjn,m is not irreducible.
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Lemma 4. Let �1, . . . , �t be linear forms such that any two of them are linearly inde-
pendent. Let L = �1 · · · �t. Then there is a rational function h = p/q with L and q
being coprime, such that Cdec(L) ≥ C(hL).

Proof. Consider a protocol P for deciding L and let π0 be the path taken by almost all
inputs. Let πτ be the path taken by almost all inputs in V (�τ ). Let vτ be the node where
these two paths separate for the first time. Let gτ = pτ/qτ be the rational function
tested at vτ . By Gauss’ Lemma, �τ |pτ . Thus g1 · · · gt can be written as hL. 	


Corollary 2. Cdec(Disjn,m) ≥ min{n, m}.

6.2 Comparisons

Consider the lexicographic monomial ordering on yn, . . . , y1, xn, . . . , x1, i.e., a mono-
mal m is smaller than an other one m′ if the exponent vector of m is smaller than that
of m′ in the lexicographic ordering (with variables in the order as above). For a poly-
nomial p, lt(p) denotes the least term with respect to the chosen monomial ordering.
Grigoriev [11] essentially proves the following result.

Lemma 5. Let �1, . . . , �n be linear forms such that x1, . . . , xn, �1, . . . �n are linearly
independent. Let V be the union of some hyperplanes, among them V (�1), . . . , V (�n).
Then there is a polynomial f such that Cdec,<(V ) ≥ C(f) and �1, . . . , �n divide lt(f).
The same holds for the seminalgebraic set S defined by �1 > 0, . . . , �t > 0.

But now the substitution method from Section 5.2 allows us to get rid of one message
for each linear form �i that divides lt(f) and get a bound for C→dec,<(�1, . . . , �n) in this
way. Note that every indeterminate is substituted by a polynomial, so the lt(f) does not
change and we can perform induction.

Corollary 3. Cdec,<(Disjn,m) = min{n, m}.

Proof. Disjn,m is a product of linear forms, among them x1 − y1, . . . , xn − yn. From
the lemma above, we get that these linear forms divide lt(f). Now we can apply the
substitution method to f in the same manner as we did before to Disjn,m. 	

In the same way, we can show that the set defined by x1 > y1, . . . , xn > yn has
communication complexity equal to n. Grigoriev shows the last two bounds using rank
based methods.

7 Applications

Using the reduction by Feigenbaum et al. [8] and applying Corollary 3, we get the
following lower bound for the multicast cost sharing problem.

Theorem 4. There is a tree with n players such that every algebraic algorithm with
comparisons and equality tests that computes a strategyproof and budget-balanced
mechanism for the multicast cost sharing problem sends at least n messages over a
linear number of links.
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As a second example, we consider a distributed version of a combinatorial auction with
single minded bidders, see e.g. [14,4]. We have n players and a collection of objects.
There is a partial order on these objects. Each player bids on exactly one of the objects.
A selection algorithm gets the bids of the players and selects those players that get
an object. Such an algorithm is called monotone if a selected player that now makes
a higher or equal bid on a lesser or equal object still is selected (assuming that all
other players bids are the same). From such an algorithm, one can construct a truthful
mechanism via the critical value scheme, see [14,4] for details. We now assume that
the players are distributed in a network. The players can send their bids along the links
and there has to be one (arbitrary) node at which the selection process takes places.
Consider the following scenario: we have a network of two subgraphs connected by
one link. Each subgraph contains n players. We have n objects and one player of each
subgraph bids on one of them. In particular, such a mechanism can decide whether the
bids in one subgraphs are all larger than the corresponding bids in the other subgraph.
But this is exactly the semialgebraic set defined by x1 > y1, . . . , xn > yn, which has
communication complexity n.

Theorem 5. Any distributed truthful critical value scheme for a combinatorial auction
with single minded bidders needs to send at least n messages over linearly many links
in the worst case.

8 Conclusions and Open Problems

From the point of distributed mechanism design, it would be nice to find more examples
to which our techniques can be applied.

From the point of algebraic complexity theory, the most interesting open problem is
to relate the complexity of f to the complexity of g ·f in the two-way model. This would
directly show that any lower bound for the computation problem is also a lower bound
for the decision problem (Lemma 3). For instance, if the rank bound of Abelson [2]
yields a lower bound of q for the complexity of f , then it yields a lower bound for q − 2
for g ·f , under some strict assumptions on the functions. However, there are cases where
the rank bound is not tight at all. It is not clear to us how to prove the general case. We
conclude with the following conjectures.

Conjecture 1. For all irreducible polynomials f over algebraically closed fields,

1. C(f) ≥ C(gf) − 1 for every coprime polynomial g = 0 and
2. C(f) ≥ C(fj) − 1 for every j ≥ 1.

If both conjectures were true, then the decision complexity and the nondetermistic com-
plexity (see the full version for definitions and results) would be closely related to the
communicitation complexity of computing f . The case f = x1y1 + x2

1x2y2, g = x2
shows that C(f) ≥ C(gf) is in general not true.
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Abstract. We analyze a graph process (or network creation game) where the
vertices as players can establish mutual relations between each other at a fixed
price. Each vertex receives income from every other vertex, exponentially de-
creasing with their distance. To establish an edge, both players have to make a
consent acting selfishly. This process has originially been proposed in economics
to analyse social networks of cooperation. Though the exponential payoff is a de-
sirable principle to model the benefit of distributed systems, it has so far been an
obstacle for analysis.

We show that the process has a positive probability to cycle. We reduce the
creation rule with payoff functions to graph theoretic criteria. Moreover, these
criteria can be evaluated locally. This allows us to thoroughly reveal the structure
of all stable states. In addition, the question for the price of anarchy can be re-
duced to counting the maximum number of edges of a stable graph. This together
with a probabilistic argument allows to determine the price of anarchy exactly.

1 Introduction

A fundamental Graph Process. Graph processes and network creation games help to
understand the structure of real-world networks. Though these tools often fall short of a
detailed modeling, their analysis elates by linking a simple and intuitive, creative prin-
ciple to typical features of huge real-world networks. In this way, e.g., the preferential
attachment model (cf. [6] for details) explains the scale-free structure formed by the
pages of the WWW and their links.

Several such models have been proposed mostly in an economic context. We con-
sider one which seems fundamental among these. The network created is a simple,
undirected graph G(V,E). It is created step by step. In each step a pair of vertices {u,v}
is chosen with no respect to whether their common edge already exists or not. For the
edge to exist at the end of the step both vertices u and v have to benefit from it. In case
at least one of them disapproves, the edge will not be present at the end of the step.
A vertex benefits from an edge e, if the current graph with e gives that vertex a higher
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payoff than the current graph without e. The costs are local, namely every vertex pays
a factor c times its degree, but the vertex enjoys income globally, namely from every
other vertex exponentially declining with the distance to the other vertex. Whether to be
at distance 2 or 3 is a much greater difference than whether to be at distance 100 or 101.
These intuitions are not limited to economics. Think of the network as a means to send
information from any vertex to any other vertex along paths. Unfortunately, at every
edge used a (1 − δ )-portion of the information sent into the edge is lost. (Equivalently,
each edge can have a probability of temporary failure of (1 − δ ).) Hence, every vertex
v will send its deliveries to w via a shortest path and only a portion of δ dist(v,w) of the
total amount sent from v to w and vice versa will reach its destination.

This creation rule can be understood as a game, where the vertices as players create
the edges myopicly, selfishly, and non-cooperatively, though each edge requires both
its end-vertices to agree. Obviously, it depends on the order of steps which networks
are created. One is interested in certain equilibria or stable states, i.e., situations which
every player would leave unchanged, if it was her turn now. The notion of stability
suitable to this model is called pairwise stability (cf. [10]), i.e., a graph is stable, if
it will stay unchanged, no matter which pair of vertices is chosen for the next step.
Alternatively, one can define a probability distribution according to which the next pair
of players is chosen. Then the game becomes a random graph process, i.e., a sequence
of random variables (Gi)i∈N, each one representing a network. Again the same stable
states and the possibility for the process to cycle are of primary interest. For the graph
process, we accept every distribution that assigns a positive probability to every pair of
vertices.

Besides the stable graphs, one is interested in graphs maximizing the sum of the
payoff, i.e., the total throughput of information minus the total edge costs. These graphs
are called efficient graphs or system optima. The smallest ratio between the total payoff
of a stable graph and that of a system optimum is called the price of anarchy of the graph
process and is of high interest in network creation games since its first mentioning by
Koutsoupias and Papadimitriou [12]. The classical notion of Nash-equilibrium (cf. [14])
is not adequate for bilateral games. Note that pairwise stability is a stricter notion of
equilibrium as a player is not allowed to overhaul his whole strategy without the other
players reacting to his steps (cf. also [7]).

Related Results. The huge number of network creation games proposed in the literature
shows the great interest for these explanatory tools. See Jackson [10] for a survey article.
During the previous decade, also the interest in the analysis especially of the price of
anarchy and Nash equilibria of those network creation games increased. The first to treat
the price of anarchy were Koutsoupias and Papadimitriou in their seminal paper [12].
A relevant but simple network creation game is the unilateral game with linear payoff
function as proposed by Fabrikant et al. [9]. Their model is the same as ours except for
two features: For them an edge is used mutually, but only one of its end-vertices pays
for it. Second, the income from other vertices decreases linearly with their distance.
Recently, Albers et al. [1] give the best known upper bound on the price of anarchy for
this model. Moreover, they disprove a structural conjecture for stable states made by
Fabrikant et al. [9] when they show that graphs with cycles can be stable.
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Corbo and Parkes [7] analyzed a bilateral consent-driven variant of the model by
Fabrikant et al. and determined lower and upper bounds of the price of anarchy. Among
other improvements Demaine et al. [8] lifted the lower bound to match the upper bound.
Further, they compared these values with the unilateral model. As already stated by
Corbo and Parkes, Nash equilibria are not appropriate for bilateral games. They there-
fore introduced the alleviated notion of pairwise Nash which is equivalent to pairwise
stability.

The model we consider uses a more elaborate payoff function and the bilateral ap-
proach for sharing the costs of the edge. It was proposed by Jackson and Wolinsky [11]
and interpreted as a graph process by Watts [15]. We state their results in Section 2.
Though in comparison to those of [9] and [1] as well as [7] their results may appear
limited to peculiar cases and immediate from the definition, the model of [11] and [15]
is more convincing for two reasons: They give a consistent interpretation of mutual
relations. And the income decreases exponentially with the distance.

Another model using bilateral cost sharing is given by Melendez-Jiminez [13]. Mod-
els using cost sharing principles are for example Bala and Goyal [5]. Anshelevich et
al. [4] and [3] establish a near optimal solution for selfish players and determine the
price of anarchy in a model with fair costs.

Our Contribution. It would be desirable to achieve the same level of mathematical
insight for the process of Jackson, Wolinsky [11] and Watts [15] as provided for the
process of Fabrikant et al. [9] by Albers et al. [1], namely some structural knowledge of
the stable states and bounds on the price of anarchy. We achieve even more. Our process
depends on two parameters, c and δ . First, we show that this process behaves equally
whenever c is in (δ −δ 2,δ −δ 3). For these cases we show that the process has positive
probability to cycle.

Further, we provide for thorough structural insight to stable states. On the one hand,
this is of interest in its own. On the other hand, it allows for our main theorem: We give
an explicit formula in c,δ , and the number of vertices for the exact price of anarchy for
all c ∈ (δ −δ 2,δ −δ 3). We argue by reducing the creation rule and payoff functions to
local, graph theoretic criteria. In particular, the price of anarchy can be reduced to the
number of edges in a maximum stable graph.

For c > δ −δ 3 we indicate how and to which extent our methods can be carried over.
Further, we point out how an analogon to our main result is linked to extremal graph
theory.

2 Preliminaries

For a graph G as usual V (G) and E(G) stand for its vertex and its edge set. For a pair
of vertices e = {u,v}, we use G + e and G − e, no matter whether e ∈ E(G) or not, to
denote the graph G with or without the edge e. The neighborhood of a vertex v will
be symbolized by N(v), its degree by d(v) (= |N(v)|) and the distance between two
vertices u and v by dist(u,v), i.e., the minimum number of edges of a path connecting u
and v. If there does not exist a path, we say dist(u,v) = ∞.

Formally we define a graph process (or a game) to be a triple of the cost coefficient,
the income basis and the number of vertices, (c,δ ,n) ∈ R× (0,1)×N.
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For every vertex v the income is a function of E(G) given by ∑u∈V\{v} δ dist(u,v). The
costs of a vertex v are c ·d(v), and its payoff is its income minus its costs. The total (or

social) payoff is the sum of all vertices’ payoff: ∑v∈V

(
∑u∈V\{v} δ dist(u,v) − c ·d(v)

)
. A

graph maximizing the total payoff is called system optimum.
A situation is a graph G together with a pair {u,v} of its vertices. Every situation

defines a polynomial in δ for each of the pair’s vertices u and v, expressing the change
in income (not yet in payoff) for that vertex between G− e and G+ e, with e = {u,v}.
In these terms the creation rule reads as follows: When the (possible) edge e = {u,v} is
evaluated given the graph G, the decision will be positive, i.e., G+e will be the resulting
graph, if both polynomials are bigger than c, and negative if at least one is smaller, i.e.,
G− e results. We do not consider cases where a polynomial can equal c, i.e., a vertex is
indifferent about an edge. It would be possible to extend the model and results to these
cases, but it would also be tedious.

Observe that if an edge is inserted by the process, this can only increase the total
payoff. The deletion of an edge by the process can be locally advantageous but decrease
the total payoff.

A graph G is called stable, if G together with any e = {u,v} ∈ E(G) is a situa-
tion with positive decision, and G together with any e = {u,v} /∈ E(G) is a situa-
tion with negative decision. The price of anarchy is defined as the maximum ratio
Total Payoff of a System Optimum

Total Payoff of G over all stable graphs G.
Expressed in these terms, Jackson and Wolinsky [11] and Watts [15] observe that for

c < δ −δ 2 the complete graph is the only stable graph and the unique system optimum,
because, no matter what the graph looks like, every further edge is beneficial. Trees have
the least total cost among all connected graphs. In a star all not directly connected pairs
of vertices are at distance 2. Therefore, if the cost factor c is high enough to draw any
attention to the costs the star is optimal, namely for c ∈ (δ − δ 2,δ + n−2

2 δ 2). Beyond
that limit for the costs, even the star’s payoff becomes negative and the empty graph is
the system optimum. Notably, the star is a stable graph for c ∈ (δ −δ 2,δ ). Beyond that
the empty graph is a stable state (though not the only one).

Our first lemma links stability and the choice of c and δ to a structural property.

Lemma 1. If a graph G is a stable state of a graph process with c < δ − δ k+1,k ∈ N,
then G has diameter less than or equal to k.

Proof. Assume to the contrary that there are two vertices u and v at distance greater
than k. The (non-existing) edge {u,v} would improve the income for u from at least v,
i.e., the increase in income is greater than or equal to δ − δ k+1. As the analogon holds
for v, the edge would be inserted, which is to say, the graph is unstable.

3 The Graph Process for c ∈ (δ −δ 2,δ −δ 3)

In this main section we restrict to the case c ∈ (δ − δ 2,δ − δ 3). The restriction has the
nice property that all graph processes in those cases are identical. We say that a set of
graph processes {(c,δ ,n)} is identical, if and only if for every situation the decision is
the same for all processes in the set.
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Theorem 1. For fixed n the set of graph processes {(c,δ ,n) | c ∈ (δ − δ 2,δ − δ 3)} is
identical.

Proof. Let G be the graph and e = {u,v} be the edge of an arbitrary situation. If
distG−e(u,v) ≥ 3, then the income in G + e is for u and for v at least δ − δ 3 higher
than in G − e, because this is the minimal improvement in income from u for v and
vice versa. As no distance gets longer by inserting an edge this lower bounds the total
increase in income. As c < δ − δ 3 the change in payoff is positive.

Assume now distG−e(u,v) = 2 and the decision to be in favor of e. The gain of the
edge for v from u (and vice versa) is δ −δ 2,i.e., less than its cost. Thus, for both u and v
further vertices must be closer in G+ e than in G− e. For some x �= v any shortest path
from u to x in G+ e must use the edge e, i.e., is of the form: (u,v, . . . ,x). This implies,
that at least for one neighbor y of v all shortest path from u to y in G+ e go via v (and
are shorter than those in G− e). We can conclude that the change in income for u from
y is at least δ 2 − δ 3, as distG−e(u,y) ≥ 3. Therefore, the total change in income for u is
at least that from v plus that from y, so at least δ −δ 3. An analogon holds for v. Thus, a
situation that is positive for one graph process with c < δ − δ 3 is positive for of those.

As all graph processes on n vertices are identical under the restriction c ∈ (δ − δ 2,δ −
δ 3), we also speak of the graph process. The argument of the theorem allows for all
graph processes with c ∈ (δ −δ 2,δ −δ 3) to reduce a decision to a graph theoretical set
of rules. An edge e = {u,v} will be kept or inserted, if and only if at least one of the
following conditions holds in the graph without e.

1. We have distG−e(u,v) > 2.
2. The end-vertex u has a neighbor x with distG−e(v,x) = 3, and the end-vertex v has

a neighbor y with distG−e(u,y) = 3.

Cycling. The price of anarchy is defined with reference to the stable graphs. But there
is an infinite series of pairs of vertices, that never leads to a stable graph. Apply the
graph rules above to the sequence depicted in Figure 1 to check that it cycles. In the
first two situations the dashed edge is inserted because the two marked vertices are too
far from each other. In the third situation the dashed edge is removed, because the two
marked vertices have an alternative short connection.

Theorem 2. The graph process for parameters c and δ with c ∈ (δ − δ 2,δ − δ 3) can
cycle.

The Price of Anarchy In order to determine the price of anarchy, we need to establish
criteria for stable graphs for the considered graph process.

Fig. 1. Cycling sequence of graphs, to be read from the left to the right
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For the graph process Lemma 1 amounts to say that every stable graph must have
diameter exactly 2, as the complete graph obviously is not stable. Consequently, the
star is the only stable tree. Further, we can give a sufficient condition for a graph to be
stable.

Theorem 3. A graph G is stable, if G has diameter 2 and contains no triangles.

Proof. For stability, on the one hand, we have to show that no edge in G will be re-
moved. The graph G contains no triangles. Hence the shortest path between the end-
vertices u and v of a currently present edge e in the graph without that edge, G− e, has
length greater than or equal to 3. Thus, by the same argument as in Lemma 1, the edge
is beneficial for both its endpoints and therefore kept.

On the other hand, no further edge will be inserted as the diameter suitable to the
parameters is already reached: For any edge e = {u,v} not present in G, calculating the
payoff for one of its end-vertices u in G + e, is the same as in G except that the other
end-vertex v will change from distance two to distance one. Consequently, the change
in income by inserting e is exactly δ − δ 2 and therefore it is not beneficial to insert e.

By the above observations, we reduced the decisions of any situation to graph theo-
retic considerations. In fact, we can do the same for the price of anarchy, or equiva-
lently, the total cost of a stable graph. For a stable graph we know all distances to be
less than or equal to 2. Consequently, we can rewrite the total payoff of such a graph

∑u∈V

(
∑v∈V\{u} δ dist(u,v) − d(u)c

)
= ∑{u,v}∈E(δ − c) + ∑{u,v}∈V×V,

dist(u,v)=2

δ 2 = m(δ − c)+
((n

2

)
− m

)
δ 2, where m denotes the number of edges. As δ − c − δ 2 < 0 by the choice

of the parameters, it directly follows that the payoff of a stable graph is the bigger the
less edges it has.

Lemma 2. Let G and G′ be stable graphs. The total payoff of G is greater than that of
G′ if and only if |E(G)| < |E(G′)|.

This together with the description of a stable graph in Theorem 3 provides for a lower
bound on the price of anarchy. Recall that the star is the unique system optimum. It is
well known that the graph K� n

2 �,� n
2 	 maximizes the number of edges in a triangle free

graph. For the lower bound of the price of anarchy as the ratio of this graph to the star,
we need the stability of the graph K� n

2 �,� n
2 	. But as the graph K� n

2 �,� n
2 	 also has diameter

equal to 2, we get from Theorem 3 that the maximum bipartite graph K� n
2 �,� n

2 	 is stable.

Corollary 1. The price of anarchy of the graph process with n vertices is bounded from
below by

(n − 1)(( n
2 − 1)δ 2 + δ − c)

μ(( n2−n
2μ − 1)δ 2 + δ − c)

(1)

where μ := � n
2	� n

2� is the number of edges in K� n
2 �,� n

2 	.

To show that Corollary 1 exactly states the price of anarchy for the graph process, we
need to show that K� n

2 �,� n
2 	 maximizes the number of edges among all stable graphs

with n vertices. That would be easy if the converse of Theorem 3 was true, i.e., all
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stable graphs had no triangles. This is not the case as will be shown in the next part.
There, we analyze the occurrence of triangles in detail. By the end of that part we will
show (Theorem 6) that all stable graphs that contain at least one triangle have less edges
than K� n

2 �,� n
2 	. Therefore, we can conclude our main result:

Theorem 4. For all graph processes with n vertices and c ∈ (δ −δ 2,δ −δ 3), the max-
imum price of anarchy equals (1) and is produced by the maximum bipartite graph
K� n

2 �,� n
2 	 against the star K1,n−1.

For c ↘ (δ −δ 2) the expression (1), i.e., the price of anarchy, tends to 1 for every n and
δ ∈ (0,1), whereas it converges to 2 for c ↗ (δ − δ 3), n ↗ ∞, and δ ↘ 0.

Triangles. We have seen situations where a triangle is closed in the course of the graph
process. There the graph process cycles and therefore does not reach a stable state.
Nonetheless, there are stable graphs containing triangles. The three graphs depicted left
in Figure 2 are stable and contain a triangle. The black vertices in the second graph
form the leftmost graph. The white vertices in the second can be added one by one,
such that for every number of vertices strictly greater than 6 stable graphs with at least
one triangle are possible.

Fig. 2. Stable graphs that contain a triangle and situations with intersecting polynomials

Next, we show a structural result for stable graphs with triangles that is of interest in
itself though not necessary for the proof of Theorem 4.

Theorem 5. If G is a stable state of the graph process and the vertex set {a,b,c} forms
a triangle in G, then there exists at least one v ∈ V (G) with distances dist(a,v) =
dist(b,v) = dist(c,v) = 2.

In order to show Theorem 5, we first need some lemmata.

Lemma 3. Let G be stable and contain a triangle {a,b,c}. Then for every i, j ∈
{a,b,c}, i �= j there is a vertex in N(i)\ {a,b,c} that has no edge to neither any vertex
in N( j) nor j itself.

Proof. Assume the claim of the lemma is false. Then j can reach all neighbors of i via
one of its own neighbors or directly. Moreover, it can reach i itself in two steps via the
two other arcs of the triangle. That is as good as anything i can offer to j. Hence j would
drop the arc {i, j} contradicting the stability of G.

Note that the premises of the following Lemmata 4 and 5 are assumptions to be falsified
to prove Theorem 5. The proofs rest on the fact that without a vertex at distance 2 to all
triangle vertices, those behave totally jealous towards their other neighbors.
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Lemma 4. Let G be stable, contain a triangle {a,b,c}, and have no vertex v with
dist(i,v) = 2, for all i ∈ {a,b,c}. Then the neighborhoods of the triangle vertices form
a disjoint partition of V (G)\ {a,b,c}.

Proof. First, it holds that
⋃

i∈{a,b,c} N(i) = V (G) because there is no vertex at distance
2 to the triangle and every stable graph has diameter less than 3. Assume vertex v to be
in N(i)∩N( j), j, i ∈ {a,b,c}, j �= i,v /∈ {a,b,c}. Remove the arc {i,v}. One figures out
quickly that i can still reach any vertex including v within two steps because even in G
there is no vertex at distance 2 to all of the vertices a,b,c. Therefore, the assumption
contradicts the stability of G.

Lemma 5. Let G be stable, contain a triangle {a,b,c}, and have no vertex v with
dist(i,v) = 2, for all i ∈ {a,b,c}. Then the neighborhoods of the triangle vertices are
independent sets.

Proof. Assume v,w ∈ N(i) \ {a,b,c} for some i ∈ {a,b,c} with {v,w} ∈ E(G). When
removing the edge {i,v}, considerations like in the previous proof show that the triangle
vertex i can still reach every vertex within 2 steps. Hence G was not stable.

Proof (Proof of Theorem 5). Assume the claim of the theorem not to be true for G,
containing a triangle and being stable. Let x be a vertex in N(a) as guaranteed to exist
by Lemma 3 that has neither a connection to b nor to one of its neighbors, and y be a
vertex in N(b) that has neither a connection to c nor to one of its neighbors. As G is
stable, its diameter is 2. Hence, x and y must have a common neighbor, as they cannot
be adjacent by definition of x. By definition of y, such a neighbor is neither c nor one of
c’s neighbors. By Lemma 4 it is neither a nor b and by Lemma 5 it is neither a neighbor
of b nor of a. Thus, we have a contradiction.

Using Theorem 5 and the insights of Lemmata 3-5 we get that every stable graph that
contains a triangle has at least 7 vertices. Further, the number of triangles in a stable
graph does not need to be small, as the middle graph in Figure 2 shows, where the
clique can consist of � n−1

2 	 vertices. One figures out quickly that such a graph features
the biggest clique in a stable graph of n vertices.

In order to determine the price of anarchy exactly, by Lemma 2 one has to look for
the stable graph with the maximum number of edges. Intuitively, stable graphs with
triangles should have more edges than triangle free stable graphs. We show that all
stable graphs with triangles have less edges than some without triangles, namely the
K� n

2 �,� n
2 	.

Theorem 6. For a number n of vertices, the maximum bipartite graph K� n
2 �,� n

2 	 has the
maximum number of edges among all stable graphs on n vertices.

Proof. We need to show that K� n
2 �,� n

2 	 has more edges than any stable graph on n vertices
containing at least one triangle.

For every graph G we define a random variable based on the uniform distribu-
tion over the vertices of G as follows: Pick a vertex uniformly at random and sum
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up the degrees of its neighbors. Denote the expectation of that random variable by
Φ(G) = 1

|V (G)| ∑v∈V (G) ∑u∈N(v) d(u). We denote by μ := � n
2� · � n

2	 the number of edges
in K� n

2 �,� n
2 	. In order to show the statement of the theorem we prove two claims.

Claim 1. Let G be a stable graph with n vertices. Then Φ(G) ≤ Φ(K� n
2 �,� n

2 	).
Claim 2. Let G be a graph with n vertices and μ edges. Then Φ(K� n

2 �,� n
2 	) ≤ Φ(G).

These claims yield the statement of the theorem. Assume a stable graph G on n ver-
tices with more edges than the maximum bipartite graph K� n

2 �,� n
2 	. Arbitrarily remove

edges from G until the resulting graph G′ has exactly as many edges as K� n
2 �,� n

2 	. Ob-
serve that removing an edge reduces the value of Φ by definition. Hence, Φ(G′) <
Φ(G). By the second claim Φ(K� n

2 �,� n
2 	) ≤ Φ(G′). This implies Φ(K� n

2 �,� n
2 	) < Φ(G),

which contradicts the first claim. Hence there is no stable graph with more than μ edges,
which proves the theorem.

It remains to prove Claims 1 and 2. In addition, we will prove an even stronger version
of the first claim, namely that every stable graph containing at least one triangle has
a strictly smaller value of Φ than the complete bipartite graph and consequently less
edges.

Proof of Claim 1: For the maximum bipartite graph we have Φ(K� n
2 �,� n

2 	) = μ . Now,
consider an arbitrary, stable graph G. For a randomly chosen vertex v ∈ V (G) let N(v)
be all neighboring vertices and b := |N(v)|. Partition the edges incident to the vertices
in N(v) into three sets: first the edges incident to v, second those within N(v) and third
the edges to other vertices. The first and the last set together contain at most μ edges,
because of the bipartiteness of the subgraph formed by these edges. Every edge in the
second set belongs to a triangle containing v. Denote the number of vertices in N(v)
that belong to at least one triangle with v by �. Then there are at most �2−�

2 edges in
the second set. As Φ counts the degrees of v’s neighbors, each edge in the second set
counts twice.

Assume a vertex u to be part of a triangle with v. Why will v be interested in the edge
{u,v}? There must be at least one vertex that v can reach within two steps only via u,
or dist(u,v) ≥ 3 if the edge {u,v} was removed. The latter is wrong, as u and v are in
a triangle. Thus there exists a neighbor w �= v of u that is not connected to any vertex
in (N(v)∪{v})\{u}. In other words, u has an exclusive attraction to v in the sense that
no other vertex in N(v)∪{v} is connected to w. Therefore we have to subtract (b − 1)
from the number of possible edges in the third set for each of the vertices in N(v)
that participate in a triangle with v. Altogether, we get that the sum over the degrees
of neighbors of v is at most ∑u∈N(v) d(u) ≤ μ +(�2 − �)− �(b − 1), if � neighbors of
v participate in triangles with v. As � ≤ b and the preceeding inequality holds for all
vertices v ∈ V (G), we get

Φ(G) ≤ μ . (2)

This proves Claim 1 as stated above. Moreover, a graph containing a triangle does not
achieve equality in Inequality (2). To show this, observe that in case of equality for
each vertex the number � must be in the set {0,b}, and if � = b for a vertex v, then
N(v)∪{v} is a clique. In other words, the neighborhood of a vertex v either contains no



The Price of Anarchy of a Network Creation Game 227

triangle with v or forms a clique together with the vertex v. For at least one vertex v with
d(v) > 1 the latter must be true (otherwise G does not contain a triangle). A neighbor u
of such a vertex v is not interested in its edge to v because u has a direct edge to all of v’s
neighbors and can reach v itself via another neighbor of v (d(v) > 1) within two steps.
To report accurately, a graph G can fulfill at most two of the following three properties:

1. G is stable.
2. G achieves equality in Inequality (2).
3. G has a triangle.

Proof of Claim 2: Rewriting the counting function Φ(G) with ∑v∈V (G) ∑u∈N(v) d(u) =
∑{u,v}∈E(G) d(u)+d(v)= ∑v∈V (G) d2(v) gives Φ(G) = 1

|V (G)| ∑v∈V (G) d2(v). It is easy to
see that among all multiset of n natural numbers si,1 ≤ i ≤ n with ∑i si = 2m the degree
sequence di of K� n

2 �,� n
2 	 minimizes ∑i s2

i , which yields the claim.

4 Further Choices of c and δ

The model of Jackson, Wolinsky and Watts is rather a family of different models in
their own right. The methods we used to analyze the case where c ∈ (δ −δ 2,δ −δ 3) to
a certain extent can be carried over to other cases.

Every situation gives rise to two polynomials in δ defined over the (0,1) interval and
mapping to the positive reals determined by the change in income of the two vertices in
question. We can also interpret the set (0,1)×R

+ in which the graphs (here: graphs of
functions) of those polynomials live as the set of all graph processes for a fixed number
of vertices n, because they are defined by a δ coordinate in (0,1) and a c coordinate in
R

+. In this picture a decision is positive for exactly those graph processes that are below
the polynomials of both end-vertices. This visualizes how the polynomials separate the
set of all processes in those for which they are positive and those for which they are
negative. Restricting to c ∈ (δ −δ 2,δ −δ 3) we exploit the nature of δ −δ 2 and δ −δ 3

as threshold functions. We call a function f : (0,1) → R
+ a threshold function if for

every polynomial p that stems from a situation we have ∃x0 ∈ (0,1) : p(x0) < f (x0) ⇒
p(x) < f (x)∀x ∈ (0,1) and ∃x0 ∈ (0,1) : p(x0) > f (x0) ⇒ p(x) > f (x)∀x ∈ (0,1). One
may carry on looking for threshold functions and redo our analyze for these cases. The
next theorem gives the next threshold function.

Theorem 7. For fixed n all graph process with c ∈ (δ − δ 3,δ − δ 4) are identical.

Proof. We show, that a situation is either positive for all graph processes in the inter-
val or for none. Classify all situations by the distance a := dist(u,v) of the considered
pair {u,v}. For a ≥ 4 the increase in income is automatically bigger than δ − δ 4 > c,
thus all decisions positive. For a = 3 the end-vertices u and v must attract each other
with vertices not located on a shortest path between u and v to have a gain greater than
c > δ − δ 3. Therefore they at least have an increase of δ − δ 3 + δ 2 + δ 3. This in turn
always suffices. For a = 2 at least two further vertices outside the shortest paths are
required for a positive decision. All positive situations for c ∈ (δ − δ 3,δ − δ 4) contain
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a = 2:
(a) δ −δ 2 (b) δ −δ 3 (c) δ +δ 2 −2δ 3, δ ≥ 0.5 (d) δ −δ 4

a = 3:
(e) δ −δ 3 (f) δ + δ 2 − δ 3 − δ 4, δ ≥

0.61804

a = 4:
(g) δ +δ 2 −δ 3 −δ 4, δ ≥
0.61804

Fig. 3. Subnetworks that need to be considered in the proof of Theorem 7. The caption determines
the benefit of the dashed edge. The lower bounds on δ in Figures 3(f) and 3(g) guarantee that c <
δ which makes the initial insertion of edges into an empty graph possible.

Figure 3(d) or Figure 3(c) as subgraphs. The increase in income in Figure 3(d) is the
smallest one and bigger than c.

One may suppose that all polynomials stemming from situations are threshold func-
tions. Yet, there are situations yielding polynomials that intersect each other in the open
interval (0,1). Consider the two situations depicted to the right in Figure 2. In both cases
the black end-vertex has so many neighbors that the opposite end-vertex of the dashed
edge will endorse the insertion of the dashed edge. The polynomial for the black vertex
in the left situation minus that of the black vertex to the right gives: δ 3 −δ 5 −(δ 4 −δ 7).
For some values of δ ∈ (0,1) this is negative, and for some it is positive. In other words,
some processes will insert the edge in the left situation but not in the right situation,
whereas other processes will in both situations do the contrary. This implies that for
predicting the process’ behavior it is no longer sufficient to specify one parameter by
bounds of the other.

Nevertheless, general results, e.g., concerning the price of anarchy, might be achiev-
able along the lines of this work. Choose a graph process, where the star is optimal.
Every stable graph will have diameter less than k if c < δ − δ k−1. What can be said
about graphs that have the maximum number of edges among all those containing no
cycle smaller than k −1, i.e., in graph theoretic terms, which have girth k −1? They are
not necessarily stable, but none of their present edges will currently be removed. The
graph of our main result K� n

2 �,� n
2 	 is an extremal graph in the sense that it maximizes the

number of edges for girth 4. We conjecture that in general the graphs with maximum
number of edges for girth k − 1 are a good approximation for those maximizing the
price of anarchy. Most astonishingly the known upper bounds [2] for this long standing
problem of extremal graph theory would imply that the price of anarchy becomes con-
stant. For simplicity account for the price of anarchy as the greatest fraction between
the number of edges in a stable and in an optimal graph. If our conjecture holds that the
maximum graph of girth k − 1 approximates the price of anarchy for graph processes
with δ −δ k−1 < c < δ −δ k, this means that this price of anarchy would drop from worst
(O(n)) to best (O(1)) as k growth. In other words, the users form an optimal network if
the costs are very low (c < δ − δ 2) and an almost optimal network if the costs are very
high. The worst outcome is then caused by costs c ∈ (δ −δ 2,δ −δ 3), which is the case
we have analyzed.
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Abstract. Classically, a cooperative game is given by a normalized real-
valued function v on the collection of all subsets of the set N of players.
Shapley has observed that the core of the game is non-empty if v is
a non-negative convex (a.k.a. supermodular) set function. In particular,
the Shapley value of a convex game is a member of the core. We generalize
the classical model of games such that not all subsets of N need to form
feasible coalitions. We introduce a model for ranking individual players
which yields natural notions of Weber sets and Shapley values in a very
general context. We establish Shapley’s theorem on the nonemptyness
of the core of monotone convex games in this framework. The proof
follows from a greedy algorithm that, in particular, generalizes Edmonds’
polymatroid greedy algorithm.

1 Introduction

A classical cooperative game on a (finite) set N of players is given by a charac-
teristic function v : 2N → R describing the gain v(S) the set S of players can
achieve by cooperating. A solution concept is a mathematical model for a ”fair”
allocation of the value v(N) to the players in N . Among the most attractive
solution concepts in cooperative game theory are the core and the Shapley value
(see below).

However, cooperation is often only feasible for certain subsets F ⊆ N of
players. Collecting these into the family F of feasible coalitions, we call Γ =
(F , v) a cooperative game with restricted cooperation (cf. [10]), where v : F → R

is a given function. The basic question of fair allocations to the individual players
poses itself also in this more general context.

Related results. Many generalizations of classical cooperative games have been
investigated. For example, multi-choice cooperative games were studied in [22]
with respect to the Shapley value. These games are special cases of cooperative
games under precedence constraints on the players in the sense of [11], where not
all coalitions are necessarily feasible (see also [20,4,18,19]). Moreover, the prece-
dence structure suggests a natural approach to the Shapley value based on the
”hierarchical strength” on a player. The latter model was carried over to coali-
tion structures that are even more general and constitute, from a combinatorial
point of view, so-called convex geometries and antimatroids (cf. [1,2,3]).

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 230–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The question whether the core of a cooperative game is non-empty can be
attacked as a problem in combinatorial optimization. In fact, Shapley’s char-
acterization of cores of convex games corresponds to the characterization of
so-called polyhedral matroids by the greedy algorithm (cf. [7,9]). Extending this
approach to cooperative games with precedence structures on the players, a
generalization of Shapley’s theorem was derived in [11,13,14,17,18,19]. A very
general polyhedral model for matroid-type optimization problems is given by
the lattice polyhedra of [21]. While the general algorithmic properties of lattice
polyhedra are unclear, some progress has been obtained in [16] with respect to
a model with certain decreasing supermodular constraint functions, which also
includes Shapley’s convex game model as a special case.

Our results. We introduce hierarchical games, a very far-reaching model for
cooperative games with restricted cooperation. The model is based on formal-
ized selection schemes that allow rankings of players. The previous models of
multi-choice games, games with precedence constraints on the players, antima-
troids etc. are all subsumed under our general framework. Employing a ranking
procedure for the players, we show that the hierarchical strength of a player is
meaningfully defined in our model and yields a notion of a Shapley value, of
which the classical Shapley value is a special case. We furthermore study the
core of hierarchical games. In particular, the appropriate theory of ”hierarchi-
cally convex” games is established and it is shown that the Shapley value of
a general convex hierarchical game lies in the core (cf. Section 5). The proof
follows from a new (poly-)matroid-type greedy algorithm for the constructions
of weighted ranking vectors.

Our results extend the scope of ”Shapley’s theorem for convex cooperative
games” considerably in that there are cooperative games that are convex within
the hierarchical model (and hence have a non-empty core) although none of their
standard extensions to classical cooperative games is convex–so that the classical
Shapley Theorem does not apply (see Ex. 1).

Before going into generalizations, we recall the definition of core and Shapley
value in classical cooperative game theory.

Classical core and Shapley value. Given a classical cooperative game Γ =
(2N , v), an allocation vector x ∈ R

N
+ is said to lie in the core if x does not

allocate more than v(N) in total and each coalition S receives at least its value
v(S), i.e.if x(N) ≤ v(N) and x(S) ≥ v(S) holds for all S ⊆ N , where we use the
standard notation x(S) =

∑
p∈S xp.

A ranking of the players is a linear arrangement (permutation) π = p1 . . . pn

of the elements of N . The marginal contribution of pi w.r.t. π is

xπ(pi) = v({p1, . . . , pi}) − v({p1, . . . , pi−1}).

The individual marginal contributions yield the marginal allocation vector xπ .
Letting Π denote the collection of all linear arrangements of N , the Shapley
value is the average marginal allocation vector Φ(v) = 1

n!

∑
π∈Π xπ .
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While the core may be empty, the Shapley value exists by definition (cf.
Shapley [25]). Shapley [26] observed that a (classical) monotone game is convex,
i.e, satisfies

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N,

if and only if all marginal allocation vectors lie in the core. Since the core is a
convex subset of R

N , one finds that the core of any non-negative convex game
is non-empty and contains the Shapley value of the game.

Cooperative games with restricted cooperation. In the subsequent dis-
cussion of cooperative games Γ = (F , v) with restricted cooperation, we will
always view such games as profit games and thus interpret v(F ) as the gain the
feasible coalition F ∈ F can achieve.

While a classical cooperative profit game is essentially the same as a coop-
erative cost game, this is no longer true for a cooperative game with restricted
cooperation Γ = (F , v). Cost games are briefly discussed in Section 6.

For any subset X ⊆ N , we use the notation

F(X) = {F ∈ F | F ⊆ X}

for the restriction of F to X . For technical convenience, we assume ∅ ∈ F
and thus, in particular, that F is non-empty. Moreover, we assume v to be 0-
normalized in the sense v(∅) = 0. Since N is not necessarily a feasible coalition,
we allow the players to form pairwise disjoint coalitions to generate a total benefit

v∗ = max{
∑

i

v(Fi) | Fi ∈ F , Fi ∩ Fj = ∅ if i 
= j},

which we call the value of the game Γ . A natural extension of the notion of
the core now considers all non-negative allocation vectors x that do not allocate
more than v∗ in total and satisfy all feasible coalitions. So we define

core(Γ ) = {x ∈ R
N
+ | x(N) ≤ v∗, x(F ) ≥ v(F ) for all F ∈ F}

to be the core of the game Γ . (Note that the inequality x(N) ≤ v∗ can be
replaced by the equality x(N) = v∗ in the definition of the core.)

An appropriate extension of the Shapley value to cooperative games with
restricted cooperation is less obvious. Standard approaches extend Γ = (F , v)
first to a classical cooperative game and then compute the corresponding Shapley
value (see the null-extension and the core-extension of Γ below). However, this
approach might lead to a non-convex classical game such that Shapley’s Theo-
rem cannot be applied (see Ex. 1). We propose another approach that is based
on the combinatorial structure of F via rankings (see Section 5) and properly
generalizes the classical model.

Game Extensions. The null-extension of Γ = (F , v) is the cooperative game
Γ 0 = (2N , v0) with v0(S) = 1 if S ∈ F and v0(S) = 0 otherwise.
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The core-extension Γ̃ = (2N , ṽ) assesses the maximal benefit the players in
an arbitrary subset S can secure by forming pairwise disjoint feasible coalitions,
i.e.,

ṽ(S) = max{
∑

i

v(Fi) | Fi ∈ F(S), Fi ∩ Fj = ∅ for i 
= j}.

Thus, v∗ = ṽ(N) is the value of the game Γ . It is straightforward to verify that
ṽ is non-negative, monotone increasing and superadditive on the subsets of N .

Observe that the cores of the game extensions coincide:

core(Γ ) = {x ∈ R
N
+ | x(N) ≤ v∗, x(S) ≥ v0(S) for all S ⊆ N}

= core(Γ̃ ).

2 Selections and Rankings

Generalizing the classical model for choice functions (see, e.g., [24,23,17]), we call
(D, μ) a selection scheme for F if D is a family of subsets of N and μ : D → F
a function such that

(0) N ∈ D,
(i) μ(D) ⊆ D,
(ii) μ(D) 
= ∅ if F(D) 
= {∅},
(iii) D \ {p} ∈ D for all p ∈ μ(D).

Given the selection scheme (D, μ), an ordered selection π = p1 . . . pk of players
is a ranking if the players pk, pk−1, . . . are selected in turn and, in case of ties,
preference is given to players that have been eligible for selection in a previous
turn. In other words, π is constructed according to the following procedure:

(R0) X ← N ; π ← �; w(p) ← 1 for all p ∈ N ;
(R1) Choose p ∈ μ(X) of minimal weight w(p);
(R2) Update w(p′) ← [w(p′) − w(p)] for all p′ ∈ μ(X);

Update X ← X \ {p}; π ← pπ;
(R3) If μ(X) = ∅, stop and output π. Return to (R1) otherwise;

We denote by Mi the set μ(X) from which player pi is selected during the ranking
procedure and thus obtain with π = p1 . . . pk the Monge family

Mπ = {M0, M1, . . . , Mk} (with M0 = ∅).

In the case D = F = 2N , the choice μ(D) = D yields exactly the permutations
of the elements in N as rankings. We give more examples.

Ordered Sets of Players. Let P = (N, ≤) be a partial order. An antichain
of P is a set A ⊆ N of pairwise incomparable elements. An ideal of P is a set
I ⊆ N such that p ∈ I implies q ∈ I for all q ≤ p.
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Let A be the collection of antichains of P . Then (2N , μA) yields a selection
scheme for A when μA(X) denotes the set of maximal elements of X (with
respect to P ). A selection scheme for the collection I of ideals of P is (2N , μI),
where μI(X) denotes the maximal ideal contained in X . Note that the two
selection schemes lead to generally different rankings π of players.

Antimatroids and Convex Geometries. An antimatroid is a union-closed
family I of subsets of N such that ∅, N ∈ I and for each I, J ∈ I one has the
so-called Steinitz augmentation property

(S) |I| < |J | =⇒ I ∪ p ∈ I for some p ∈ J \ I.

A selection scheme for the antimatroid I is (2N , μI) with

μI(X) = the maximal member of I contained in X.

A convex geometry is a family C of subsets of N such that the complementary
family Cc = {N \ C | C ∈ C} is an antimatroid. C is thus intersection-closed and

X =
⋂

{C | X ⊆ C} ∈ C

is well-defined for every X ⊆ N . Using the augmentation property (S) of the
antimatroid Cc, it is not hard to prove:

Lemma 1. Let C be a convex geometry on N and X ⊆ N arbitrary. Then there
exists a unique minimal subset μE(X) ⊆ X such that X = μE(X). 

μE(X) is the set of extreme points of X . Letting E = {μE(C) | C ∈ C}, we thus
obtain the selection scheme (2N , μE) for the family E of extremal sets relative to
an underlying convex geometry.

Strong Hierarchies. The preceding examples can be cast into the following
model. We assume that F can be equipped with a partial order relation (F , �)
such that

(SH1) every restriction (F(X), �) has a unique maximal element μ(X),
(SH2) (2N , μ) is a selection scheme for F .

We refer to (F , �) as a strong hierarchy if (SH1) and (SH2) holds.

Proposition 1. Let π = p1 . . . pk be a ranking of the strong hierarchy (F , �).
Then for each feasible coalition F ∈ F \ ∅, there is some ranked player pi ∈ π
with pi ∈ F .

Proof. Suppose F ∈ F is a counterexample to the Proposition. Letting Mπ =

{M0 � . . . � Mk} be the Monge set of π, choose i minimal such that F � Mi.
So F 
= Mi and F 
� Mi−1 holds by assumption. Consequently, μ(F ∪ Mi−1) is
larger than Mi and satisfies

μ(F ∪ Mi−1) ∩ {pk, pk − 1, . . . , pi} = ∅,

which contradicts the choice of Mi−1 = μ(N \ {pk, pk−1, . . . , pi}) in the ranking
procedure. 
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3 Weber Sets and the Shapley Property

Let (F , v) be a cooperative game with restricted cooperation and (D, μ) a selec-
tion scheme for F . Then we call Γ = (F , v, D, μ) a hierarchical game. We denote
by Π the collection of all rankings of Γ .

3.1 Ranking Vectors

Let π = p1 . . . pk ∈ Π be a ranking of the hierarchical game Γ with Monge set
Mπ = {M0, M1, . . . , Mk}. The key to our analysis is the following observation.

Theorem 1. There is a unique vector hπ ∈ R
N with the properties

(a) hπ(Mi) = v(Mi) for all i.
(b) hπ(p) = 0 for all p ∈ N that do not occur in π.
(c) hπ(N) ≤ v∗.

Proof. The unique existence of hπ is recursively established. We set hπ(p1) =

v(M1) and then iterate

hπ(pi) = v(Mi) −
∑

{pj | j < i, pj ∈ Mi} (i = 2, . . . , k).

We briefly sketch the proof of (c). Let M′ ⊆ Mπ be the collection of all those
feasible coalitions Mi ∈ Mπ such that pi ∈ Mi has weight w(pi) = 1 when it is
selected in the ranking procedure. It is not difficult to see that the members of
M′ must be pairwise disjoint, whence we conclude from (a):

hπ(N) =
k∑

i=1

hπ(pj) =
∑

Mi∈M′

hπ(Mi) =
∑

Mi∈M′

v(Mi) ≤ v∗.


The ranking vectors hπ are the analogues of the marginal contribution vectors
in classical games. The inequality (c) says that hπ is a ”reasonable” allocation
in the sense that it distributes not more to the players than the value ṽ(N) the
players can generate by forming pairwise disjoint feasible coalitions.

The Weber Set. Generalizing the Weber set of classical cooperative games (see
[27]), we define the Weber set of the hierarchical game Γ as the convex hull of
its ranking vectors:

W (Γ ) = conv{hπ | π ∈ Π}.

So W (Γ ) is a convex polytope in R
N . Note that W (Γ ) depends on the particular

selection scheme (D, μ) according to which rankings of players are determined.

The Shapley Value. It is now natural to allocate to each player pi his average
ranking value in the hierarchical game Γ = (F , v, D, μ). So we define the Shapley
value of Γ as the allocation vector

Φ(Γ ) =
1

|Π |
∑

π∈Π

hπ.
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The definition implies Φ(Γ ) ∈ W (Γ ). Moreover, the feasibility of the alloca-
tion Φ(Γ ) is guaranteed:

∑

p∈N

Φ(Γ )p =
∑

p∈N

1
|Π |

∑

π∈Π

hπ(p) ≤ v∗.

3.2 The Shapley Property

The cooperative game Γ = (F , v) with restricted cooperation is said to have the
Shapley property if there exists a selection scheme (D, μ) for Γ with collection
Π of rankings such that W (Γ ) ⊆ core(Γ ) or, equivalently,

hπ ∈ core(Γ ) for all π ∈ Π.

Recall that hπ(N) = v∗ necessarily holds for any ranking vector hπ that satis-
fies hπ ∈ core(Γ ). We will exhibit sufficient conditions for the Shapley property
later and now state a general form of a Shapley-type theorem (cf. [26]):

Theorem 2 (”Shapley’s Theorem”). The cooperative game Γ = (F , v) has
the Shapley property if and only if there exists a selection scheme (D, μ) for F
such that

core(Γ ) = W (Γ )

holds for the associated Weber set.

We prove Theorem 2 via a greedy algorithm (see Section 4 and Theorem 3) for
linearly weighted ranking vectors that actually optimizes a linear function over
core(Γ ) if W (Γ ) = core(Γ ) holds. So also core(Γ ) ⊆ W (v) must be true, which
yields the claim of the Theorem.

We have remarked before that in the classical case the Shapley property is
equivalent with the game to be non-negative convex. The next example shows
that a hierarchical game Γ may possess the Shapley property although neither
of its extensions Γ 0 and Γ̃ are convex.

Example 1. Consider N = {a, b, c} together with the strong hierarchy (F , �) =
{∅ ≺ {a, b} ≺ {b, c}} and let v(a, b) = v(b, c) = 1. It is easy to check that each
ranking vector relative to (F , �) lies in the core of Γ = (F , v). So Γ has the
Shapley property. However, neither the null-extension v0 nor the core-extension
ṽ are convex on the collection of all subsets of N since

2 = v(a, b) + v(b, c) = v0(a, b) + v0(b, c) = ṽ(a, b) + ṽ(b, c)
1 = ṽ(b) + ṽ(a, b, c) > v0(b) + v0(a, b, c) = 0.

4 The Greedy Algorithm

Let c ∈ R
N be an arbitrary vector of weights for the elements in N . Given the

game Γ = (F , v, D, μ) with collection Π of rankings, we are interested in finding
the optimal weighted ranking vector, i.e., the discrete optimization problem
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max
π∈Π

∑

p∈N

cph
π(p). (1)

Passing to the weighting γ = −c, problem (1) becomes equivalent with

min
π∈Π

∑

p∈N

γph
π(p). (2)

We will investigate the problem in its minimization version (2) and consider the
following Greedy Algorithm relative to a weight vector w′:

(G0) X ← N ; π ← �; w(p) ← w′(p) for all p ∈ N ;
(G1) Choose p ∈ μ(X) of minimal weight w(p);
(G2) Update w(p′) ← [w(p′) − w(p)] for all p′ ∈ μ(X);

Update X ← X \ {p}; π ← pπ;
(G3) If μ(X) = ∅, stop and output π. Return to (G1) otherwise;

If we choose the weights w′(p) = 1, the greedy algorithm reduces to the
ranking algorithm (and thus produces a ranking π for Γ ). For general weights
w′(p), however, the greedy algorithm may end with some π that is not a ranking.
We solve this problem, by adding a ”large” weight λ > 0 to each of the original
weights:

Lemma 2. Choose some parameter λ > 3
∑

p∈N |γp| and define w′(p) = γp + λ
for all p ∈ N . Then the greedy algorithm with input w′ will produce a ranking π
for the hierarchical game Γ .

Proof. The greedy algorithm will choose in the first step some pk ∈ Mk = μ(N)

and then reduce all the weights in Mk by the amount γp − λ. Afterwards, all
weights in Mk will be ”small” while all the other weights are still ”large”. When
pk−1 ∈ Mk−1 = μ(N \ pk) is to be selected in the next step, preference will thus
be given to elements from Mk etc., which is exactly the procedure of the ranking
algorithm. 

We call the greedy algorithm for problem (2) with the modified weights w′(p) =
γp+λ the modified greedy algorithm. One of our main results which can be proved
using linear programming duality is

Theorem 3. Let (D, μ) be a selection scheme for the game Γ = (F , v) such
that every ranking vector hπ lies in the core of Γ . Then the modified greedy
algorithm solves problem (2) optimally. Moreover, the greedy vector hπ is an
optimal solution for the problem

max
x∈core(Γ )

cT x =
∑

p∈N

cpxp. (3)

Consequently, the core and the Weber set of Γ coincide.
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5 Convex Hierarchical Games

We now discuss sufficient conditions for the cooperative game Γ = (F , v) to
have the Shapley property. We restrict ourselves to the case where (F , �) is
a strong hierarchy (with associated selection scheme (2N , μ)). We furthermore
assume that (F , �) satisfies the dominant player axiom for all feasible coalitions
F1, F2, F3 ∈ F and players p ∈ F3 \ F2:

(DP) F1 � F2 � F3 =⇒ p /∈ F1 .

We say that a player p ∈ F3 is F2-dominant if F2 � F3 and p /∈ F2. So (DP)
says that any F2-dominant player p is also F1-dominant if F1 � F2. Note that
the examples in Section enjoy property (DP).

For any F ∈ F , we define the excess of the ranking π = p1 . . . pk on F as the
difference between the corresponding π-allocation of F and the value of F :

eπ(F ) =
∑

p∈F

hπ(p) − v(F ).

Where Mπ = {M0 ≺ M1 ≺ . . . ≺ Mk} is the Monge chain of π, the function
eπ : F → R has the property

eπ(Mi) =
∑

p∈Mi

hπ(p) − v(Mi) = 0 (i = 1, . . . , k).

Given the ranking π of (F , �), we call an arbitrary function f : F → R

π-convex if the following holds:

(PC) For all F ∈ F \ Mπ such that F ≺ Mi and F 
� Mi−1, there is some
F ′ ∈ F with the property F ′ � F , F ′ � Mi−1 and

f(F ′) + f(Mi) ≥ f(F ) + f(Mi−1).

Say that Γ = (F , �, v) is π-convex if the excess function eπ is π-convex.

Lemma 3. Let π be a ranking of the hierarchical game Γ = (F , �, v) and as-
sume that Γ is π-convex. Then we have for all F ∈ F ,

eπ(F ) ≥ 0 , i.e. , hπ(F ) ≥ v(F ) .

Proof. Suppose the Lemma is false for the ranking π with associated chain Mπ and

there is some F ∈ F with eπ(F ) < 0. Choose F to be as small as possible relative
to the partial order (F , �). In view of eπ(Mj) = 0 for all Mj ∈ Mπ, F cannot
be a member of Mπ. Because Mπ includes the maximal element of (F , �), there
exists a (unique) coalition Mi ∈ Mπ such that F � Mi and Mi−1 
� F . Then
π-convexity guarantees some F ′ ∈ F with F ′ � F and F ′ � Mi−1 such that

eπ(F ) ≥ eπ(F ′) + eπ(Mi−1) − eπ(Mi) = eπ(F ′).

Note that F ′ � Mi−1 implies F ′ 
= F . So the choice of F as a minimal coun-
terexample yields 0 ≤ eπ(F ′) ≤ eπ(F ). This contradiction establishes the claim
of the Lemma. 
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Since hπ(N) ≤ v∗ holds for every ranking π of (F , �), Lemma 3 immediately
provides sufficient conditions for the non-emptyness of core(v):

Proposition 2. Assume that Γ = (F , �, v) is π-convex. Then

hπ ∈ core(v) ⇐⇒ hπ ≥ 0. 

It follows from the construction and property (DP) that hπ ≥ 0 is satisfied
whenever v is monotone:

Lemma 4. Let Γ = (F , �, v) be a hierarchical game and assume that v is
monotone increasing with respect to (F , �). Then every ranking π yields:

hπ(p) ≥ 0 for all p ∈ N. 

We illustrate the notions of this Section with the following three applications:

Example 2 (”Shapley’s Theorem”). The excess functions of a classical convex
game Γ = (2N , ⊆, v) satisfy the inequality

eπ(S ∪ T ) + eπ(S ∩ T ) ≥ eπ(S) + eπ(T ).

If F ⊆ N is namely such that F ⊆ Mi and F 
⊆ Mi−1 holds, we have Mi =
F ∪Mi. So the choice F ′ = F ∩Mi−1 exhibits Γ as π-convex with respect to any
permutation π of N . hπ is non-negative (and hence lies in core(v)) if and only if
v is monotone on the chain Mπ. It follows that monotone convex games have a
non-empty core (cf. [26]).

Example 3 (Distributive Games). If P = (N, ≤) is a partial order on the players,
the selection scheme (2N , μI+), where μI+(X) contains the elements of maximal
height (with respect to P ) in μI(X) (i.e., the maximal ideal contained in X),
leads to the core and Weber set of distributive games proposed in [18] and [19]
(see also [13]).

Example 4 (Chains). Let F be and v : F → R+ any normalized function. Order
F linearly so that v is monotone and note the resulting chain (F , �) is strong
hierarchy. Hence, if the dominant player property (DP) is satisfied, the core of
the game (F , v) is non-empty.

Example 5 (Lattice Hierarchies). Assume ∧, ∨ : F × F → F are binary opera-
tions with F1 ∧ F2 � F1, F2 � F1 ∨ F2 and

(F1 ∧ F2) ∪ (F1 ∨ F2) ⊆ F1 ∪ F2.

Then (F , �) is a strong hierarchy. (For example, any inclusion-wise ordered
union-closed family (F , ⊆) is a strong hierarchy and satisfies (DP)). Provided
property (DP) holds for (F , �) and the profit function v is monotone increasing
and supermodular with respect to ∧, ∨, one can show that v is π-convex for
every ranking π. So Γ = (F , v) has the Shapley property.
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6 Final Remarks

From a modeling point of view, it is interesting to recall that in the classical
context every cooperative profit game is equivalent to an associated cost game
in the sense that both games have the same core. The present hierarchical games
generalize profit games. It seems less straightforward to exhibit natural cost
games with the same core in the wider model of hierarchies.

It appears reasonable to associate with a cost game Γ = (F , c) the cost
parameter

c∗ = min{
�∑

i=1

c(Si) | N ⊆
�⋃

i=1

Si, Si ∈ F}

and to consider the polyhedron

core(c) = {x ∈ R
N
+ |

∑

p∈N

x(p) ≥ c∗,
∑

p∈S

x(s) ≤ c(S) for all S ∈ F}.

While a Shapley value Φ(c) of the cost game Γ may be formally defined in
complete analogy with the Shapley value of Section 3, it seems to be less clear
to what an extent an analogue of Theorem 2 is true. For some results on greedy
algorithms in this direction, we refer the interested reader to [15].
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Abstract. We prove that an equilibrium of a nondegenerate bimatrix game has
index +1 if and only if it can be made the unique equilibrium of an extended
game with additional strategies of one player. The main tool is the “dual con-
struction”. A simplicial polytope, dual to the common best-response polytope of
one player, has its facets subdivided into best-response regions, so that equilibria
are completely labeled points on the surface of that polytope. That surface has
dimension m − 1 for an m × n game, which is much lower than the dimension
m+n of the polytopes that are classically used.

1 Introduction

The index of a Nash equilibrium is an integer that is related to notions of “stability”
of the equilibrium. In this paper, we only consider nondegenerate bimatrix games;
“generic” (that is, almost all) bimatrix games are nondegenerate. A bimatrix game is
nondegenerate if any mixed strategy with support of size k has at most k pure best re-
sponses [15]; the support of a mixed strategy is the set of pure strategies that are played
positive probability. Nondegeneracy implies that the two strategies of a mixed equilib-
rium have supports of equal size. The index has the following elementary definition due
to Shapley [13].

Definition 1. Let (x,y) be a Nash equilibrium of a nondegenerate bimatrix game (A,B)
with positive payoff matrices A and B, and let L and J be the respective supports of x
and y, with corresponding submatrices ALJ and BLJ of the payoff matrices A and B.
Then the index of (x,y) is defined as

(−1)|L|+1sign (det(ALJ) det(BLJ)). (1)

The index has the following properties, which require that its sign alternates with the
parity of the support size as in (1).

Proposition 2. In a nondegenerate bimatrix game,
(a) the index of an equilibrium is +1 or −1;
(b) any pure-strategy equilibrium has index +1;
(c) the index only depends on the payoffs in the support of the equilibrium strategies;
(d) the index does not depend on the order of a player’s pure strategies;
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(e) the endpoints of any Lemke–Howson path have opposite index;
(f) the sum of the indices over all equilibria is +1;
(g) in a 2 × 2 game with two pure equilibria, the mixed equilibrium has index −1.

Condition (a) holds because payoff-submatrices ALJ or BLJ that do not have full rank
|L| can only occur for degenerate games. The simple property (g) applies to, say, a co-
ordination game and easily follows from (1) or (f). It is one indication that, as suggested
by Hofbauer [7], equilibria of index +1 are in many respects “sustainable” according to
Myerson [10], who discusses ways to refine or select equilibria in “culturally familiar
games”. Hofbauer [7] also shows that only equilibria of index +1 can be stable under
any “Nash dynamics”, that is, a vector field on the set of mixed strategy profiles whose
rest points are the Nash equilibria [6][4]. Such dynamics may represent evolutionary or
learning processes.

The most interesting computational property is (e), proved by Shapley [13]. The
Lemke–Howson (LH) algorithm [9] (for an exposition see [15]) defines a path which
can either start at a trivial “artificial equilibrium” with empty support, or else at any
Nash equilibrium, and which ends at another equilibrium. The equilibria of the game,
plus the artificial equilibrium, are therefore the endpoints of the LH paths. By (1), the
artificial equilibrium has index −1. Consequently, the game has one more equilibrium
of index +1 than of index −1, and (f) holds.

Equilibria as endpoints of LH paths provide a “parity argument” that puts the prob-
lem of finding one Nash equilibrium of a bimatrix game into the complexity class PPAD
[11]. This stands for “polynomial parity argument with direction”, where the direction
of the path is provided by the index (which can also be determined locally at any point
on the path).

The index of an equilibrium can also be defined for general games (which may be
degenerate and have more than two players) as the degree of a topological map that has
the Nash equilibria as fixed points, like the mentioned “Nash dynamics” [6][4].

The index is a relatively complicated topological notion, essentially a geometric ori-
entation of the equilibrium. In this paper, we prove the following theorem, first conjec-
tured in [7], which characterizes the index in much simpler strategic terms.

Theorem 3. A Nash equilibrium of a nondegenerate m × n bimatrix game G has index
+1 if and only if it is the unique equilibrium of a game G′ obtained from G by adding
suitable strategies. It suffices to add 3m strategies for the column player.

The equilibrium of G in Theorem 3 is re-interpreted as an equilibrium of G′, so none
of the added strategies is used in the equilibrium; their purpose is to eliminate all
other equilibria. Unplayed strategies do not matter for the index of an equilibrium by
Prop. 2(c). By (f), a unique equilibrium has index +1, so only equilibria with positive
index can be made unique as stated in Theorem 3; the nontrivial part is therefore to
show that this is always possible.

We prove Theorem 3 using a novel geometric-combinatorial method that we call the
dual construction. It allows to visualize all equilibria of an m × n game in a diagram
of dimension m − 1. For example, all equilibria of a 3 × n game are visualized with
a diagram (essentially, of suitably connected n + 3 points) in the plane. This should
provide new insights into the geometry of Nash equilibria.
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A better understanding of the geometry of Nash equilibria may also be relevant algo-
rithmically, and we think the index is relevant apart from providing the “D” in “PPAD”.
Recent results on the complexity of finding one Nash equilibrium of a bimatrix game
have illustrated the difficulty of the problem: it is PPAD-complete [2], and LH paths
may be exponentially long [12]. Even a sub-exponential algorithm for finding one Nash
equilibrium is not in sight. In designing any such algorithm, for example incremental
or by divide-and-conquer, it is important that the information carried to the next phase
of the algorithm does not describe the entire set of equilibria, because questions about
that set, for example uniqueness of the Nash equilibrium, tend to be NP-hard [5][3].
On the other hand, Nash equilibria with additional properties (for example, a minimum
payoff) may not exist, or give rise to NP-complete decision problems. However, it is
always possible to restrict the search to an equilibrium with index +1; whether this is
of computational use remains speculative.

The dual construction has first been described in the first author’s PhD dissertation,
published in [14]. Some steps of the construction are greatly simplified here, and the
constructive proof outlined in Section 5 is new.

2 Dualizing the First Player’s Best Response Polytope

We use the following notation. All vectors are column vectors. If d ∈ R
k and s ∈ R,

then ds is the vector d scaled with s, as the product of a k × 1 with a 1 × 1 matrix. If
s = 1/t, we write d/t for ds. The vectors 0 and 1 have all components equal to 0 and 1,
respectively. Inequalities like d ≥ 0 between vectors hold for all components. A matrix
C with all entries scaled by s is written as sC. We write C = [c1 · · ·ck] if C is a matrix
with columns c1, . . . ,ck. The transpose of C is C�.

The index of an equilibrium is defined in (1) via the sign of determinants. We recall
some properties of determinants. Exchanging any two rows or any two columns of a
square matrix C = [c1 · · ·ck] changes the sign of det(C), which implies Prop. 2(d). The
determinant is multilinear, so that, for any d ∈ R

k, s ∈ R and 1 ≤ i ≤ k,

det[c1 · · ·ci−1 cis ci+1 · · ·ck] = s det(C),
det[c1 · · ·ci−1 (ci + d) ci+1 · · ·ck] = det(C)+ det[c1 · · ·ci−1 d ci+1 · · ·ck].

(2)

Let s1, . . . ,sk be scalars, which we add to the columns of C. Repeated application of (2)
gives

det(C +[1s1 · · ·1sk]) = det(C)+
k

∑
i=1

si det[c1 · · ·ci−1 1 ci+1 · · ·ck]. (3)

The right-hand side of (3) is linear in (s1, . . . ,sk). In particular, if s1 = · · ·sk = s, then
the expression det(C + s [1 · · ·1]) is linear in s and changes its sign at most once.

We first explain why the matrices A and B are assumed to be positive in Def. 1.
Consider an equilibrium (x,y), and discard for simplicity all pure strategies that are not
in the support of x or y, so that A and B are the matrices called ALJ and BLJ in (1), which
have full rank. Then the equilibrium payoffs to the two players are u and v, respectively,
with Ay = 1u and B�x = 1v. We want that always u > 0 and v > 0; this clearly holds
if A and B have positive entries, although this not a necessary condition. Adding any
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constant t to all payoffs of A does not change the equilibria of the game, but does change
the equilibrium payoff from u to u + t. Consequently, we could achieve Ay = 0 (with
t = −u), or Ay < 0. However, Ay = 0 implies det(A) = 0, and consequently a change of
the sign of u implies a change of the sign of det(A). Because the sign of det(A) changes
only once, that sign is unique whenever A is positive. Similarly, the sign of det(B) is
unique, so (1) defines the index uniquely.

For the rest of the paper, we consider a nondegenerate m × n bimatrix game (A,B)
so that the best-response payoff to any mixed strategy of a player is always positive, for
example by assuming that A and B are positive. The following polytopes can be used to
characterize the equilibria of (A,B) [15]:

P = {x ∈ R
m | x ≥ 0, B�x ≤ 1},

Q = {y ∈ R
n | Ay ≤ 1, y ≥ 0} .

(4)

Any (x,y) ∈ P×Q with x �= 0, y �= 0 represents a mixed strategy pair with best-response
payoffs scaled to one; normalizing x and y as probability vectors re-scales these pay-
offs. The inequalities in P and Q are labeled with the numbers 1, . . . ,m+ n to indicate
the pure strategies of player 1 (labels 1, . . . ,m) and player 2 (labels m + 1, . . . ,m + n).
Given x ∈ P and y ∈ Q, each binding inequality (which holds as an equation) defines
a facet of P or Q (by nondegeneracy, it cannot be a lower-dimensional face [15]). The
corresponding label defines an unplayed own pure strategy or best response of the other
player. An equilibrium of (A,B) corresponds a pair (x,y) of P × Q where each pure
strategy 1, . . . ,m+ n appears as a label of x or y. The artificial equilibrium is given by
(x,y) = (0,0).

The first step of our construction is to dualize the polytope P by considering its polar
polytope [16]. Suppose R is a polytope defined by inequalities that has 0 it its interior,
so that it can be written as R = {z ∈ R

m | c�
i z ≤ 1, 1 ≤ i ≤ k}. Then the polar polytope

is defined as R� = conv{ci | 1 ≤ i ≤ k}, that is, as the convex hull of the normal vectors
ci of the inequalities that define R. The face lattice of R� is that of R upside down, so
R� and R contain the same combinatorial information about the face incidences. More
precisely, assuming that R has full dimension m, any face of R of dimension h given by
{z ∈ R | c�

i z = 1 for i ∈ K} (with maximal set K) corresponds to the face conv{ci | i ∈ K}
of dimension m−1−h. So facets (irredundant inequalities) of R correspond to vertices
of R�, and vertices of R correspond to facets of R�. If R is simple, that is, has no point
that lies on more that m facets, then R� is simplicial, that is, all its facets are simplices.

Because the game is nondegenerate, the polytope P is simple, and any binding in-
equality of P defines either a facet or the empty face, the latter corresponding to a dom-
inated strategy of player 2 that can be omitted from the game. In particular, player 2 has
no weakly dominated strategy, which would define a lower-dimensional face of P.

Because P does not have 0 in its interior, we consider instead the polytope

Pε = {x ∈ R
m | x ≥ −1ε, B�x ≤ 1},

= {x ∈ R
m | −1/ε · Ix ≤ 1, B�x ≤ 1},

(5)

where ε > 0 and I is the m×m identity matrix. For sufficiently small ε , the polytopes P
and Pε are combinatorially equivalent, because the simple polytope P allows small per-
turbations of its facets. Moreover, nondegeneracy crucially forbids weakly dominated
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strategies, which would be “better” than the dominating strategy under the “negative
probabilities” xi allowed in Pε , and hence define facets of Pε but not of P. Then

P�
ε = conv({−ei/ε | 1 ≤ i ≤ m}∪{b j | 1 ≤ j ≤ n}), (6)

where ei is the ith unit vector in R
m and B = [b1 · · ·bn]. That is, P�

ε is the convex hull
of sufficiently largely scaled negative unit vectors and of the columns b j of the payoff
matrix B of player 2. We will later add points, which are just additional payoff columns;
this is the reason why we perturb, rather than translate, P.

Any facet F of P�
ε is a simplex, given as the convex hull of m vertices −ei/ε for

i ∈ K and b j for j ∈ J, where |K|+ |J| = m. We write

F = F(K,J) = conv({−ei/ε | i ∈ K}∪{b j | j ∈ J}). (7)

Then the vertices of the facet F(K,J) define labels i and m+ j which represent unplayed
strategies i ∈ K of player 1 and best responses j ∈ J of player 2. These labels are the
labels of the facets of Pε , and hence of P, that correspond to the vertices of F(K,J).

The facet F(K,J) itself corresponds to a vertex xε of Pε . Namely, because P��
ε = Pε

[16], we have F(K,J) = Pε ∩{z ∈ R
m | x�

ε z = 1}, where x�
ε z ≤ 1 holds for all z ∈ Pε .

The vertex xε of Pε corresponds to a vertex x of P, which is determined from K and J
by the linear equations xi = 0 for i ∈ K and ∑i�∈K bi jxi = 1 for j ∈ J. The corresponding
equations for xε are (xε )i = −ε for i ∈ K and ∑m

i=1 bi j(xε)i = 1 for j ∈ J, so xε → x as
ε → 0.

In summary, the normal vectors of facets F(K,J) of P�
ε correspond to mixed strate-

gies x of player 1. The vertices of such facets represent player 1’s unplayed strategies
i ∈ K and best responses j ∈ J of player 2. A similar representation of mixed strategies
and best responses is considered by Bárány, Vempala and Vetta [1], namely the polyhe-
dron defined as the intersection of the halfspaces with nonnegative normal vectors that
contain the points b1, . . . ,bn. Our polytope P�

ε approximates that polyhedron when it is
intersected with the halfspace with supporting hyperplane through the m points −ei/ε
for 1 ≤ i ≤ m.

The facet F0 = F({1, . . . ,m}, /0) of P�
ε whose vertices are the m points −ei/ε for

1 ≤ i ≤ m corresponds to the vertex 0 of P. The surface of P�
ε can be projected to

F0, giving a so-called Schlegel diagram [16]. A suitable projection point is −1/ε . The
Schlegel diagram is a subdivision of the simplex F0 into simplices that correspond to
the other facets of P�

ε . All these simplices have dimension m − 1, so for m = 3 one
obtains a subdivided triangle. An example is the left picture in Fig. 1 for the matrix B
of the 3 × 4 game

A =

⎡

⎣
0 10 0 10

10 0 0 0
8 0 10 8

⎤

⎦ , B =

⎡

⎣
0 10 0 −10
0 0 10 8
10 0 0 8

⎤

⎦ . (8)

In that picture, the labels i = 1,2,3 correspond to the scaled negative unit vectors −ei/ε ,
the labels m+ j = 4,5,6,7 to the columns b j of B. The nonpositive entries of A and B
are allowed because a player’s best-response payoff is always positive.
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Fig. 1. Left: Schlegel diagram of P�
ε for the example (8). Right: Subdivision into best-response

regions of player 1, which completes the dual construction.

3 Subdividing Simplices into Best-Response Regions

The second step of our construction is the incorporation of player 1’s best responses into
the surface of P�

ε . Let F(K,J) be a facet of P�
ε as in (7). Consider the m× m matrix

[IK AJ] = [ei1 · · ·eik a j1 · · ·a jm−k ] if K = {i1, . . . , ik}, J = { j1, . . . , jm−k}, (9)

that is, the columns of [IK AJ] are the columns ei of the identity matrix I for i ∈ K and
the columns a j of player 1’s payoff matrix A for j ∈ J, where A = [a1 · · ·an]. We write
the unit simplex conv{e1, . . . ,em} in R

m as

Δ(K,J) = {z ∈ R
K ×R

J | z ≥ 0, 1�z = 1}. (10)

Proposition 4. Let (x,y) ∈ P×Q−{(0,0)}. Then (x,y) is a Nash equilibrium of (A,B)
if and only if the vertex x of P corresponds to a facet F(K,J) of P�

ε so that [IK AJ]z = 1u
for some z = (zK ,zJ) ∈ Δ(K,J) and some u > 0, and yJ = zJ/u, where yJ is y restricted
to its support J.

Proof. Because the game is nondegenerate, only vertices x of P can represent equi-
librium strategies. Let F(K,J) be the facet of P�

ε that corresponds to x, where K =
{i | xi = 0} and J is the set of best responses to x. Then y is a best response to x
if and only if the support of y is J; suppose this holds, so that Ay = AJyJ . In turn,
x is a best response to y if and only if (Ay)i = 1 whenever i �∈ K, because Ay ≤ 1.
This is equivalent to IKsK + AJyJ = 1 for a suitable slack vector sK ∈ R

K , sK ≥ 0.
With u = 1/(∑i∈K si + ∑ j∈J y j) and z = (sKu,yJu) this is equivalent to z ∈ Δ(K,J) and
[IK AJ]z = 1u as claimed. �

Given a facet F(K,J) of P�
ε that corresponds to a vertex x of P, Prop. 4 states that x is

part of a Nash equilibrium (x,y) if and only if there is a mixed strategy z = (zK ,zJ) ∈
Δ(K,J) so that all pure strategies of player 1 are best responses against z when the
payoff matrix to player 1 is [IK AJ]. Suitably scaled, zK is a vector of slack variables,
and zJ represents the nonzero part yJ of player 2’s mixed strategy y. Nondegeneracy
implies that z is completely mixed and hence in the interior of Δ(K,J).



248 A. von Schemde and B. von Stengel

The simplex Δ(K,J) has dimension m− 1, like the face F(K,J). The two simplices
are in one-to-one correspondence via the canonical linear map

α : Δ(K,J) → F(K,J), z �→ [MK BJ]z, (11)

where MK = (−1/ε · I)K . This just says that α maps the vertices of Δ(K,J) (which
are the unit vectors in R

m) to the respective vertices of F(K,J), and preserves convex
combinations.

We subdivide Δ(K,J) into polyhedral best response regions Δ(K,J)(i) for the strate-
gies i = 1, . . . ,m of player 1, using the payoff matrix [IK AJ]. That is (see [13] or [15]),
Δ(K,J)(i) is the set of mixed strategies z so that i is a best response to z, so for 1 ≤ i ≤ m,

Δ(K,J)(i) = {z ∈ Δ(K,J) | ([IK AJ]z)i ≥ ([IK AJ]z)k for all k = 1, . . . ,m}. (12)

We say z in Δ(K,J) has label i if z ∈ Δ(K,J)(i), and correspondingly α(z) in F(K,J)
has label i if z has label i.

This dual construction [14] labels every point on the surface of P�
ε . The labeling is

unique because the payoffs to player 1, and the map α , only depend on the vertices of
the respective facets, so the labels agree for points that belong to more than one facet.
For the game in (8), this labeling is shown in the right picture of Fig. 1.

As a consequence of Prop. 4, we obtain that the equilibria of the game correspond
to the points on the surface of P�

ε that have all labels 1, . . . ,m. We call such points
completely labeled. The three equilibria of the game (8) are marked by a small square,
triangle and circle in Fig. 1. Not all facets of P�

ε contain such a completely labeled
point, if the corresponding vertex x of P is not part of a Nash equilibrium.

“Completely labeled” now means “all strategies of player 1 appear as labels”. What
happened to the strategies of player 2? They correspond to the vertices of P�

ε . They are
automatically best responses when considering the facets of P�

ε , and they are the only
strategies that player 2 is allowed to use, apart from the slacks i ∈ K, when subdividing
a facet F(K,J) into the labeled regions α(Δ(K,J)(i)) for the labels i = 1, . . . ,m.

4 Visualizing the Index and the LH Algorithm

The described dual construction, the labeled subdivision of the surface of P�
ε , visualizes

all equilibria of an m × n game in a geometric object of dimension m − 1. Figure 2
also shows the index of an equilibrium as the orientation in which the labels 1, . . . ,m
appear around the point representing the equilibrium, here counterclockwise for index
+1, and clockwise for index −1. The artificial equilibrium is the completely labeled
point M(1/m) (see (11) with J = /0) of the facet F0 of P�

ε , which has negative index.
This facet should be seen as the underside of the “flattened” view of P�

ε given by the
Schlegel diagram, so the dashed border of F0 in Fig. 2 is to be identified with the border
of the large triangle.

Our goal is to formalize the orientation of a completely labeled point in the dual
construction, and to show that it agrees with the index in Def. 1. A nonsingular m× m
matrix C has positive orientation if det(C) > 0, otherwise negative orientation.
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Fig. 2. Indices of equilibria as positive or negative orientations of the labels, and LH paths for
missing label 1. The facet on the left with dashed border indicates the flapped-out “underside” of
the Schlegel diagram, the facet F0 of P�

ε .
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3
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Fig. 3. Points w1,w2,w3 in Δ (K,J), here for K = /0, so that (13) holds

Let α(z) be a completely labeled point of a facet F(K,J) of P�
ε . We first consider

points w1, . . . ,wm so that wi belongs only to the best-response region Δ(K,J)(i) for
1 ≤ i ≤ m. More specifically, we want that for suitable si ≥ 0, ti > 0,

[IK AJ]wi = 1si + eiti, (13)

that is, player 1’s payoff against wi is si + ti for his pure strategy i, and a smaller con-
stant si for all other pure strategies k �= i. Such points wi exist, by extending the line
through the completely labeled point z defined by the m− 1 labels k �= i into the region
Δ(K,J)(i), as shown in Fig. 3. For i ∈ K, we can simply choose wi = ei to obtain (13),
a case that is not shown in Fig. 3.

Let W = [w1 · · ·wm]. We want to show that W has the same orientation as [IK AJ].
Because of (13), [IK AJ ]W = C + [1s1 · · ·1sm] for the diagonal matrix C with entries
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cii = ti > 0 and ci j = 0 for i �= j. By (3), C + [1s1 · · ·1sm] has positive determinant, so
that det[IK AJ] and det(W ) have the same sign, as claimed.

We take the orientation of the matrix D = [α(w1) · · ·α(wm)] as the orientation of the
equilibrium represented by α(z). By (11), that matrix is D = [MK BJ]W . Its orientation
sign(det(D)) is the sign of det[MK BJ]det(W ), so that

sign(det(D)) = sign(det[MK BJ])sign(det[IK AJ]). (14)

Let L = {1, . . . ,m} − K, which is the support of the vertex x of P that corresponds to
the facet F(K,J). We can assume that K = {1, . . . ,k}, because any transposition of
player 1’s strategies alters the signs of both determinants on the right-hand side of (14).
Then

sign(det(D)) = sign((−1/ε)kdet(BLJ)) sign(det(ALJ))

= (−1)m−|L|sign(det(BLJ)) sign(det(ALJ))

= (−1)m−1(−1)|L|+1sign(det(BLJ)) sign(det(ALJ)).

Consequently, sign(det(D)) agrees with the index of the equilibrium when m is odd,
and is the negative of the index when m is even. The artificial equilibrium corresponds
to the center point of F0, which has orientation (−1)m. The orientation of the artificial
equilibrium should always be −1, so it has to be multiplied with −1 when m is even.
Hence, relative to the orientation of the artificial equilibrium, sign(det(D)) is exactly
the index of the equilibrium under consideration, as claimed.

We mention very briefly an interpretation of the LH algorithm with the dual con-
struction, as illustrated in Fig. 2; for details see [14]. This can only be done for missing
labels of player 1, because player 2 is always in equilibrium. For missing labels of
player 2 one has to exchange the roles of the two players (the dual construction works
either way). The original LH path starts from (0,0) in P × Q by dropping a label, say
label 1, in P. This corresponds to dropping label 1 from the artificial equilibrium given
by the center of F0. It also reaches a new vertex of P, which in P�

ε means a change
of facet. This means a change of the normal vector of that facet, which is an invisible
step in the dual construction because the path is at that point on the joint face of the
two facets. Traversal of an edge of Q is represented by traversing the line segment in a
face P�

ε that has all m− 1 labels except for the missing label. That line segment either
ends at an equilibrium, or else reaches a new facet of P�

ε . The path then (invisibly)
changes to that facet, followed by another line segment, and so on. Algorithmically, the
LH pivoting steps are just like for the path on P × Q, so nothing changes.

Figure 2 also illustrates why the endpoints of LH paths have opposite index: Along
the path, the m − 1 labels that are present preserve their orientation around the path,
whereas the missing label is in a different direction at the beginning and at the end of
the path. In Fig. 2, an LH path from a −1 to a +1 equilibrium with missing label 1 has
label 2 on the left and label 3 on the right. This intuition of Shapley’s result Prop. 2(e)
[13] can be given without the dual construction (see [12, Fig. 1]), but here it is provided
with a figure in low dimension.
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5 Proof Sketch of Theorem 3

In this section, we give an outline of the proof of Theorem 3 with the help of the dual
construction. We confine ourselves to an equilibrium (x,y) of index +1 that uses all m
strategies of player 1, which captures the core of the argument. Hence, the facet F(K,J)
of P�

ε that corresponds to the fully mixed strategy x of player 1 has K = /0. The m best
responses of player 2 are j ∈ J, which define the payoff vectors b j as points in R

m, and
an m× m submatrix BJ of B.

For player 1 and player 2, we will construct three m × m matrices A′,A′′,A′′′ and
B′,B′′,B′′′, respectively, so that the extended game G′ in Theorem 3 is defined by the
two m× (n + 3m) payoff matrices [A A′ A′′ A′′′] and [B B′ B′′ B′′′].

+

+

− −
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3

3
2

2 ++

1

1
+

3

2

3
1

2 1

Fig. 4. Left: Dual construction for a 3×3 coordination game, which has four equilibria with index
+1 and three with index −1. Right: Adding three strategies for the column player (small white
squares) so that only the completely mixed equilibrium remains, see (15).

An example is the 3 × 3 coordination game where both players’ payoffs are given
by the identity matrix. The game has seven equilibria: three pure-strategy equilibria
and the completely mixed equilibrium, all of index +1, and three equilibria where each
player mixes two strategies, with index −1. The left picture in Fig. 4 shows the dual
construction for this game. The index of each equilibrium point is indicated by its sign,
given by the orientation of the labels 1,2,3 around the point. The completely mixed
equilibrium is on the central triangle with facet F whose vertices are the three columns
of B. We want to make this equilibrium unique by adding strategies. In this case, we
need only the matrices A′′ and B′′, for example as follows:

[AA′′] =

⎡

⎣
1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

⎤

⎦ , [BB′′] =

⎡

⎣
11 10 10 12 8.9 10
10 11 10 10 12 8.9
10 10 11 8.9 10 12

⎤

⎦ . (15)

The dual construction for the game in (15) is shown on the right in Fig. 4. As desired,
only the original facet F has an equilibrium point, which is now unique. It is also clear
that its index must be +1, because otherwise it would not be possible to “twist” the best
response regions 1,2,3 outwards to meet the labels at the outer vertices.
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In this example, the columns of B′′ span a simplex (with vertices indicated by small
white squares in Fig. 4), whose projection to F0 in the Schlegel diagram contains the
original facet F as a subset. In fact, the columns of B′′ are first constructed as points in
the hyperplane defined by F so that they define a larger simplex than F . Subsequently,
these new points are moved slightly to the origin, so that F re-appears in the convex
hull: Note that in (15), the normal vector for the hyperplane through the columns of B′′

is 1, but its scalar product with these columns is 30.9 and not 31 like for the columns
of B (the matrix B is the identity matrix with 10 added to every entry).

In the general construction, several complications have to be taken care of. First,
the original game may have additional columns that are not played in the considered
equilibrium. The example makes it clear that this is a minor complication: Namely, the
simplex spanned by the columns of B′′ can be magnified, while staying in the hyper-
plane just below F , so that the convex hull of these columns and of the negative unit
vectors contains all unused columns of B in its interior.

A second complication is that the labels 1, . . . ,m of the best-reponse regions given
by A may not correspond to the vertices of F as they do in Fig. 4. For example, two of
the vertices of the triangle in Fig. 3 have label 1, one vertex has label 3, and no vertex
has label 2. The first matrix B′ in the general construction is designed so that each
label 1, . . . ,m appears at exactly one vertex. Namely, consider the simplex spanned
by the points w1, . . . ,wm that are used to represent the best-response regions 1, . . . ,m
around the equilibrium point z (after these points have been mapped into F via α). If
this simplex is “blown up” around z while staying in the same hyperplane, it eventu-
ally contains the original unit simplex. Let v1, . . . ,vm be the vertices of this blown-up
simplex, as shown in Fig. 5. After the mapping α , the corresponding points will be

3w

1v
2v

3v

2w

3

1
w1

z 2

Fig. 5. Points v1, . . . ,vm as expanded points w1, . . . ,wm along the dashed lines around z in the
same hyperplane, so that conv{v1, . . . ,vm} contains the original simplex Δ (K,J)
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in the hyperplane defined by F and define a simplex that contains F as a subset. We
merely move these points α(v1), . . . ,α(vm) slightly towards to the origin, which defines
the matrix B′. The corresponding payoffs A′ to player 1 are given by the diagonal ma-
trix [e1t1 · · ·emtm] with the payoffs t1, . . . ,tm given as in (13). We could add an arbitrary
constant 1si to the ith column of A′ (for each i) without changing the subdivision into
best-response regions of the simplex defined by B′. Hence, if B′ was still in the same
hyperplane as F , that subdivision would coincide with the subdivision of F , which it
still does after moving B′ slightly inwards. From then on, we consider the simplex by
spanned B′ instead of F , which then looks essentially like in the special case of Fig. 15
because the corresponding matrix A′ is a diagonal matrix.

We also use two increasingly larger simplices defined by B′′ and B′′′, with iden-
tity matrices A′′ and A′′′. In the resulting construction, each pair of matrices (M,B′′′),
(B′′′,B′′), (B′′,B′) and (B′,BJ) (where the columns of M and BJ are the vertices of F0

and F , respectively) defines a pair of simplices whose convex hull is a “distorted prism”.
These distorted prisms are stacked on top of each other, with the points of intermediate
layers spread outwards in parallel hyperplanes to maintain a convex set. In the projected
Schlegel diagram, each simplex is contained in the next.

The missing matrices B′′ and B′′′ are constructed using the following theorem of [8]:
Every matrix with positive determinant is the product of three P-matrices. A P-matrix
is a matrix P such that every principal minor PSS of P (where S is an arbitray set of rows
and the same set of columns) has positive determinant. The P-matrices are useful for
“stacking distorted prisms” because of the following property:

Proposition 5. Let P = [p1 · · · pm] be a P-matrix where each column pi is scaled such
that 1�pi = 2. Let X be the convex hull of the vectors pi and the unit vectors ei for
1 ≤ i ≤ m. Assume X is a simplicial polytope, if necessary by slightly perturbing P. Let
a facet of X have label i if it has pi or ei has a vertex. Then the only facets of X that
have all labels 1, . . . ,m are those spanned by p1, . . . , pm and by e1, . . . ,em.

Proposition 5 may be a novel observation about P-matrices. It can be proved using a
parity argument: Additional completely labeled facets would have to come in pairs of
opposite orientation, and a negatively oriented facet contradicts the P-matrix property.

Consequently, a distorted prism X defined by the columns of the identity matrix I and
a P-matrix P (scaled as in Prop. 5) has no completely labeled facet other than its two
“end” facets defined by I and P. If Q is another such P-matrix, the same observation
holds for I and Q, and consequently for P and PQ because it does not change under
affine transformations. Finally, for another P-matrix R, we see that PQ and PQR define
prisms that have no completely labeled “side” facets, either. According to said theorem
of [8], PQR can represent an arbitrary matrix with positive determinant.

The stack of prisms that we want to generate should start at the convex hull M of
the negative unit vectors used in (11). We move these vectors in the direction 1 until it
crosses the origin, so that the resulting matrix, which we call N, has opposite orientation
to M. As shown in Section 4, N has therefore the same orientation as the matrix D in
(14) and hence as B′. Therefore, N−1B′ has positive determinant and can be represented
as a product PQR of three P-matrices, so that NPQR = B′. Then the additional matrices
are given by B′′ = NPQ and B′′′ = NP.
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We have to omit details for reasons of space. We conclude with the following intu-
ition why we use two matrices B′′ and B′′′ rather than just a single one. In Fig. 4, the
columns of B′′, which is the only matrix used, are indicated by the white squares, but
these show only the projection in the Schlegel diagram. Their (invisible) distances from
the origin are very important because they determine the facets spanned by the columns
of B′′ and of B. Essentially, B′′ represents a single intermediate step when “twisting” F
by 180 degrees towards the outer triangle, and A′′ is a matrix of suitably ordered unit
vectors. It is not clear if this can be done in higher dimensions. With two intermediate
sets of points B′′ and B′′′, their exact relative position is not very relevant when using
P-matrices, due to Prop. 5, and one can use identity matrices A′′ and A′′′.
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Abstract. This paper initiates a study of connections between local
and global properties of graphical games. Specifically, we introduce a
concept of local price of anarchy that quantifies how well subsets of
agents respond to their environments. We then show several methods of
bounding the global price of anarchy of a game in terms of the local price
of anarchy. All our bounds are essentially tight.
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1 Introduction

The model of graphical games [10], is a recent representation method of games
in which the dependencies among the agents are represented by a graph. In a
graphical game, each agent is identified by a vertex, and its utility is determined
solely by its own action and the actions of its graph neighbors. Note that every
game can be represented by a graphical game with a complete graph. Yet, often,
a much more succinct representation is possible. While the original motivation of
defining graphical games was computational, we believe that an important prop-
erty of the model is that it enables an investigation of many natural structural
properties of games.

In this work we investigate connections between local and global properties of
graphical games. Specifically, we study the Price of Anarchy (PoA) which is the
ratio between the welfare of a worst Nash equilibrium and the optimal possible
welfare [11].

We introduce a novel notion of a local price of anarchy which quantifies how
well subsets of agents respond to their environments. We then study the relations
between this local measure and the global price of anarchy of the game. We
provide several methods of bounding the global price of anarchy in terms of the
local price of anarchy, and demonstrate the tightness of these methods.

One possible interpretation of our results is as follows: if a decentralized system
is comprised of smaller, well behaved units, with small overlap between them,
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then the whole system behaves well. This holds independently of the size of the
small units, and even when the small units only behave well on average. This
phenomenon may have implications, for example, on organizational theory. From
a computational perspective, the price of anarchy of large games is likely to be
extremely hard to compute. However, computing the local price of anarchy of
small units is relatively easy since they correspond to much smaller games. Once
these are computed, our methods can be invoked to bound the price of anarchy
of the overall game.

1.1 Related Work

The model of graphical games was introduced in [10]. The original motivation for
the model was computational as it permitted a succinct representation of many
games of interest. Moreover, for certain graph families, there are properties that
can be computed efficiently. For example, although computing a Nash equilib-
rium is usually a hard task [5,4], it can be computed efficiently for graphical
games on graphs with maximum degree 2 [6]. Rather surprisingly, the proofs of
the hardness of computing Nash equilibria of normal form games are conducted
via reductions to graphical games [5].

[8] investigates the structure of equilibria of graphical games under some sym-
metry assumptions on the utility of the agents. It shows that in these games,
there always exists a pure strategy equilibrium. For such games of incomplete in-
formation, [8] shows that there is a monotone relationship between the degree of
a vertex and its payoff, and investigates further the connections between the level
of information the game possesses and the monotonicity of the players’ degree
in equilibria. Several works coauthored by Michael Kearns explore economic and
game theoretic properties which are related to structure (e.g. [9]). The questions
addressed in these works are very different from the ones we address here.

The price of anarchy [11] is a natural measure of games. After the discovery
of fundamental results regarding the price of anarchy of congestion games [15,2],
the price of anarchy and the price of stability1 [1] have become almost standard
methods for evaluating games.

[12] investigates deductions that can be made on global properties of graphs
after examining only local neighborhoods. It shows that for any graph G, where
V [G] = n, and a function f : V → �+ ∪ {0}, if the local average of f over every
ball of positive radius less or equal to r in G is greater or equal to α, the global
average of f is at least α

nO(1/ log r) . [12] also demonstrates the tightness of this
bound.

In this work we make an extensive use of graph covers, but we do not introduce
a method for finding them. Algorithms that find good covers can be found, for
example, in [3] and [13]. Due to the game theoretic nature of our setup, these
algorithms cannot be applied to it directly.

In general, the field of property testing in computer science examines the
connections between local and global properties of combinatorial objects (see,
1 The price of stability is the ratio between the best Nash equilibrium and the optimum

of the game.
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for example, [7] for a survey). For many properties it is known that if an object
satisfies a property in a local sense, then it is “not too far” from satisfying it
globally. As we shall see, the additivity of the welfare function, enables even
stronger connections between the local and the global perspectives in our setup.

2 Preliminaries

We denote the utility of a player i ∈ [n] = {1, 2, . . . , n} by ui. In most of this work
we focus on games where the utility of each player is non-negative, i.e. ui ≥ 0.
Every player wishes to maximize its own utility.

Definition 1. [10] (graphical game) An n players graphical game is a pair
(G, M), where G is an undirected graph on n vertices and M is an n players finite
game. Every player i is associated with the node vi and its utility is determined
only by its action and by the actions of its neighbors.

Since we only discuss graphical representations of games in this paper, the terms
game and graphical game are treated as synonyms. We note again that every
game can be represented as a graphical game.

Definition 2. (welfare) Let s be a vector of agent strategies for a game G. The
welfare |s| is the sum of the agents’ utilities resulting from s, i.e. |s| =

∑
i ui(s).

The welfare of a game is a common measure of the aggregation of the agents’
utilities. It is by no means the only aggregation method. In this paper we focus
on maximizing the welfare as the sole criterion of how good a game is. Our
results can immediately be generalized to any measure of the form

∑
i ψi(ui(·))

where ψi : �+ → �+ are non decreasing functions.

Definition 3. [14] (Nash equilibrium) A strategy where no player can uni-
laterally divert from and increase its utility is called a Nash equilibrium.

A Nash equilibrium does not have to be unique. In this work we are only inter-
ested in global worst Nash equilibria, i.e. in equilibria that obtain the minimal
welfare of the whole game. A global worst Nash equilibrium is not necessarily
unique but its value is fixed for a game and we can just pick one such arbitrary
strategy vector to work with. We denote a global worst Nash equilibrium by
GWNE, and its value by |GWNE|. From compactness and continuity consid-
erations, a global worst Nash equilibrium always exists.

We denote by Uopt(G) (or just Uopt when the context is clear) a strategy
vector that achieves the optimal welfare of the game, and by |Uopt| the optimal
welfare.

Definition 4. [11] (price of anarchy) For a game G, the ratio between the
welfare of a worst Nash equilibrium and the optimal welfare is called the price
of anarchy (PoA). That is: PoA = |GWNE|

|Uopt| .
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Note that the price of anarchy is always between 0 and 1. A price of anarchy of
1 means that all Nash equilibria are optimal2. It is natural to define the price
of anarchy of sub-games as well. We thus denote the PoA of the whole game by
GPoA (global price of anarchy).

The following combinatorial definitions are standard.

Definition 5. (cover, disjoint cover) A cover S = {S1, S2, . . . , Sl} of a graph
G is a collection of subsets of V [G] such that for every vertex vj ∈ V [G], there
exists a set Si ∈ S, where vj ∈ Si. We say that S is a disjoint cover if for every
vertex vj ∈ V [G], there exists a distinct set Si ∈ S, such that vj ∈ Si.

Definition 6. (width) Let S be a cover of V [G]. The width of v ∈ V [G] is the
number of sets that contain it. The width of a cover S is β, if β is the maximum
width of a vertex in V [G]. That is: β = maxv∈V [G] |{Si | v ∈ Si}|

For a set S, we let S(−) denote the set S minus its internal boundary (i.e. S(−)

contains only nodes that do not have neighbors outside S). We let S(+) denote
the set S plus its external boundary (its neighbors). For a collection of sets
S = {S1, S2, . . . , Sl}, we let S(−) denote the collection {S

(−)
1 , S

(−)
2 , . . . , S

(−)
l },

and S(+) = {S
(+)
1 , S

(+)
2 , . . . , S

(+)
l }.

Observation 1. Let S be a disjoint cover of a graph G of max degree d, then
S(+) is a cover of width d + 1 at the most.

Next we introduce a basic definition of the local price of anarchy. Note that if
S ⊆ V [G] is a set of players in a graphical game G, the utility of S depends only
on the actions of the players in S and the actions of S’s neighbors. Therefore
every set of strategies of the neighbors of S induces a sub-game on S.

Definition 7. (local price of anarchy) Let G be a graphical game. The local
price of anarchy of a set of players Si is α, if for every set of actions of its
neighbors, the PoA of the induced sub-game is at least α. Let S = {S1, S2, . . . , Sl}
be a cover of V [G]. We say that the local PoA of G with respect to S (LPoAS(G))
is α, if the local price of anarchy of every subset Si ∈ S is at least α.

Intuitively, a high local price of anarchy means that every set Si in the cover
responds well to its neighbors’ actions. The local price of anarchy of the set of
all players, equals the global PoA of the game. Note that we could focus only on
neighbors’ actions which are part of a global Nash equilibrium and still obtain
all the results in this paper.

We denote by û(S) = maxs

∑
i ui(s) the maximum welfare that a set S can

achieve (over all the possible vectors of strategies of S(+)). We let u(S) denote
the sum of utilities of S when the game is in a global worst Nash equilibrium
(the equilibrium is always clear from the context so we suppress it from the
notation). Similarly, we let u(i) denote the utility of player i in this equilibrium.
Note that if the game is in a global Nash equilibrium then all the subsets are
also in local Nash equilibria (i.e. all the induced sub-games are in equilibrium).

2 For utility games, the PoA is sometimes defined by
|Uopt|

|GWNE| , and then the game is
better if the PoA ≥ 1 is smaller.
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3 A Basic Bound on the Price of Anarchy

In this section we introduce a basic lower bound of the global price of anarchy
in terms of the local price of anarchy.

Definition 8. ((α, β)-cover) Let G be a graph. A cover S = {S1, S2, ..., Sl} of
V [G] is called an (α, β)-cover if the following hold:

1. LPoAS(G) ≥ α
2. S is of width at most β
3. The collection of interiors S(−) is also a cover

Intuitively, an (α, β)-cover is good when 0 ≤ α ≤ 1 is high, and β ≥ 1 is low.
It is possible to view an (α, β)-cover in the following manner: every set Si is
well behaved, that is, reacts well to its external conditions, and the interaction
(overlap) between sets is limited. The requirement that S(−) is also a cover, is
crucial. Without it, the next theorem could not be established.

Theorem 2. Let S be an (α, β)-cover for G a graphical game. Then,

GPoA(G) ≥ α/β

Proof. We will see that the fact that the local price of anarchy is α helps us
in achieving an α factor between every Nash equilibrium of Si and the optimal
welfare of S

(−)
i . The requirement for S(−) to be a cover will thus be used to

bound the global optimum, and the width of S will generate the 1/β factor.
Consider a global worst Nash equilibrium.

Claim. Let Si ∈ S be a set in the cover. Then, u(Si) ≥ αû(S(−)
i ).

Proof. The welfare of S
(−)
i only depends on the actions of S

(−)
i and the neighbors

of S
(−)
i , that is, the welfare only depends on Si. Thus, there exists a vector of

actions of Si that gives S
(−)
i a welfare of û(S(−)

i ). Since the utilities are always
non-negative, this vector guarantees Si at least û(S(−)

i ). In other words, the
utility uNash(Sbest

i ), when the neighbors play worst Nash and the set Si plays
the optimum for this induced game, is uNash(Sbest

i ) ≥ û(S(−)
i ). Since the local

price of anarchy of Si is at least α, u(Si)
�u(S(−)

i )
≥ u(Si)

uNash(Sbest
i ) ≥ α.

Summing the former over all the sets in the cover S yields:
∑

Si∈S
u(Si) ≥ α

∑

Si∈S
û(S(−)

i )

Claim.
∑

Si∈S û(S(−)
i ) ≥ |Uopt|
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Proof. Since S(−) is a cover, the subsets H
(−)
i = S

(−)
i −

⋃
j<i S

(−)
j compose a dis-

joined cover H(−) of the graph. Since the utilities are non negative, Uopt(H
(−)
i ) ≤

Uopt(S
(−)
i ) for all i. Since H(−) is a cover we get that

|Uopt| =
∑

i

Uopt(H
(−)
i ) ≤

∑

i

Uopt(S
(−)
i ) ≤

∑

Si∈S
û(S(−)

i )

where the last inequality is due to the optimality of û(S(−)
i ).

Claim.
∑

i∈V u(i) ≥ 1
β

∑
Si∈S u(Si)

Proof. S is of width β at the most. Therefore every element on the left hand
side appears at most β times in the sum on the right hand side.

Putting all together we get:

|GWNE| =
∑

i∈V

u(i) ≥ 1
β

∑

Si∈S
u(Si) ≥ α

β

∑

Si∈S
û(S(−)

i ) ≥ α

β
|Uopt|

Remarks. While the local and global price of anarchies refer to Nash equilibria,
it is possible to obtain a similar bound for many solution concepts (e.g. corre-
lated or strong equilibria). We note that we do not know how to show an analog
of this theorem for the price of stability. The width parameter is purely combina-
torial and can be interpreted as a measure of interaction between the sub-games
(subsets). The α parameter is a measure of how well the small subsets behave.
Later, we will average these parameters and also study the effects of other local
parameters on the global price of anarchy. An interesting algorithmic issue is
how to decompose a large game into small units such that the resulting bound
on the global price of anarchy is as tight as possible, i.e. how to find a good
cover.

3.1 Covers by Balls

One of the most natural ways of obtaining a cover is by taking all balls of a
certain radius.

Definition 9. (r-LPoA) Let G be a game. We say that the r-LPoA of G is at
least α, if every ball B of radius r has a local price of anarchy of at least α.

Corollary 1. Let G be a game with maximum degree d. If the 1-LPoA of G is
at least α, then the GPoA(G) ≥ α

d+1 .

Proof. Consider the cover S of all balls of radius 1. Since this cover is of width
β ≤ d + 1 and S(−) is also a cover, it is an (α, d + 1)-cover. Now we can apply
Theorem 2, and the corollary follows.

Open problem. Interestingly, an r − LPoA ≥ α only guarantees a bound of
O( α

rd+1 ) on the GPoA. On the other hand it is natural to conjecture that the
right bound is Θ(α

d ). We leave this as an interesting open problem. When the
game is relatively balanced, we can show that indeed Θ(α

d ) is the right‘.
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4 Examples

Before refining Theorem 2, let us consider a few simple examples. The star-of-
cliques game demonstrates how to use the theorem, the example of covering a
torus by grids demonstrates the need for refining the basic bound, and the biased
consensus game shows that the theorem is tight, i.e. that in the general case, it
is not possible to improve the α/β bound.

4.1 Star-of-Cliques

The following example demonstrates the use of the theorem.

Definition 10. ((k, l) star-of-cliques graph) A (k, l) star-of-cliques is a graph
G = (V, E), where

V = {w, v1, v2, . . . , vk, x1
1, x

2
1, . . . , x

l−1
1 , x1

2, x
2
2, . . . , x

l−1
2 , x1

3, . . . , x
l−1
k }

E = {{{w, vi}|∀1 ≤ i ≤ k} ∪ {{vi, x
j
i}|∀i, j} ∪ {{xj1

i , xj2
i }|∀i, j1, j2}}

That is, the vertices w, v1, . . . , vk form a star with w in the center, and for each
i, the l vertices vi, x

1
i , x

2
i , . . . , x

l−1
i form a clique.

The game has three types of players, w, v, and x. Each agent has two available
strategies, 0 and 1. For each vertex y we denote by Na(y) the number of y’s
neighbors of type a ∈ {w, v, x} that play the same strategy as y, and by Na(y)
the number of y’s neighbors of type a ∈ {w, v, x} that play the opposite of y.
We denote by Maj(y) the strategy of the majority of y’s neighbors.

Example 1. ((k, l) star-of-cliques game) A (k, l) star-of-cliques game, is an
n-player game, where the graph of the game is a (k, l)-star-of-cliques, and the
utilities of the players are given by:

uy =

⎧
⎪⎪⎨

⎪⎪⎩

Nx(y) + (l − 2)Nv(y) if y is of type x

Nx(y) + (l − 1)Nw(y) if y is of type v
1 if y is of type w and its strategy is Maj(y)
0 if y is of type w and its strategy is not Maj(y)

We discuss this game farther in the full version of this work, where we prove the
following:

Proposition 1. Let G be a (k, l)-star-of-cliques game. Then, GPoA(G)≥ 1
2(k+1) .

4.2 Covering a Torus by Grids

Example 2. Let G be an m × m torus, and let k such that k divides m. We let
S(−) be a disjoint cover of k × k grids.

Consider the case of k > 2. Here, β = 3, ∀i, |Si| = k2+4k, and |S(−)
i | = k2. When

k is large, almost all the vertices have a width of 1. An immediate conclusion of
Theorem 2 is as follows.
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Corollary 2. For the torus example, if LPoAS(G) = α, then α/3 ≤ GPoA.

In other words, an LPoA of α implies a GPoA of about α/3. The example
however demonstrates the need for refining the basic theorem: While the width
of the cover is 3, almost all the vertices have a width of 1 and are therefore
counted only once in

∑
i u(Si). Thus, typically, one should expect a GPoA of

around α and not α/3. This can be addressed by the various refinements of the
basic theorem shown in this paper.

4.3 A Tight Example

Our final example shows that in general, the α/β bound of the basic theorem is
essentially tight. For simplicity we focus on pure Nash equilibria.

Example 3. (biased consensus game) Let γ > 1 be a parameter. In a biased
consensus game the agent strategies are taken from {0, 1}. The utility of each
agent i is defined by:

ui =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i and all its neighbors choose 1
1/γ if i and some of its neighbors choose 1
1/γ if i and all its neighbors choose 0
0 otherwise

In other words, if a player has a neighbor playing 1 it should play 1 as well, if
all its neighbors are playing 0, it should play 0 too. We assume that the graph
of the game is connected.

The following proposition shows the tightness of Theorem 2. We omit the
proof from this extended abstract.

Proposition 2. For every ε > 0, there exists a graphical game G, and an (α, β)-
cover S, where:

α

β
≤ GPoA ≤ (1 + ε)

α

β

Proof. Consider the biased consensus game played on a d-regular graph and the
cover by all balls of radius 1.

By an observation omitted from this abstract, the local PoA of such a ball
S, is obtained when all its neighbors are playing 0. In this case, the worst local
Nash equilibrium occurs when all the players in the ball are playing 0. This
yields a utility of 1/γ to every member of S. In the optimal strategy for S all its
members play 1. This strategy vector results in a utility of 1/γ for each of the d
boundary nodes of S, and a utility of 1 for the inner node. Therefore, the local

price of anarchy of S equals: αS =
1
γ (d+1)
1+d/γ = d+1

d+γ . Since G is d-regular, α = d+1
d+γ

as all the balls have d + 1 nodes. Since β = d + 1, we have that α/β = 1
(d+γ) .

Thus, if we set γ > d/ε, we get that

(1 + ε)
α

β
=

1 + ε

d + γ
>

1 + ε

γε + γ
= 1/γ = GPoA(G)
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5 Refinements of the Basic Bound

5.1 Averaging the Parameters

In the biased consensus game (Example 3), all the induced sub-games of the cover
have the same local price of anarchy. Most games do not possess this property,
and the basic theorem is thus often wasteful (as LPoAS(G) is the minimum
local PoA of the sets in the cover). Similarly, β is the maximum width. For
this purpose we generalize the definitions of the local price of anarchy and the
width to be an average instead of the minimum and maximum, respectively.
We introduce improved bounds on the global price of anarchy using the new
definitions.

Definition 11. (average local price of anarchy) Let G be a graphical game
and let S = {S1, S2, . . . , Sl} be a cover of V [G] such that S(−) is also a cover.
Let αi be the local PoA of Si. The average local price of anarchy of G w.r.t.
S, LPoAS(G), is the average of αi by the maximum utilities of S

(−)
i , that is

LPoAS(G) =
�l

i=1 αiû(S(−)
i )�l

i=1 û(S(−)
i )

.

Theorem 3. Let G be a graphical game and let S = {S1, S2, . . . , Sl} be a cover
of V [G] such that S(−) is also a cover and S is of width β. Let α = LPoAS(G),
then GPoA ≥ α/β.

Proof (sketch): The proof resembles the one of Theorem 2, and we thus only
sketch it.
Let Si ∈ S. If we follow the steps of the proof of Claim 3 in the proof of
Theorem 2, with the new definition of αi, we will get: u(Si) ≥ αiû(S(−)

i ). Now:

l∑

i=1

u(Si) ≥
l∑

i=1

αiû(S(−)
i ) = α

l∑

i=1

û(S(−)
i )

where the 2nd equality is due to the definition of LPoAS(G), and the first is just
a summation of the former.

Like in Claim 3, since S is of width β we have that β
∑n

i=1 u(i) ≥
∑l

i=1 u(Si).
Since S(−) is a cover we have that

∑l
i=1 û(S(−)

i ) ≥ |Uopt| (Similarly to Claim 3
in the proof of Theorem 2).

Putting all together we conclude that:

n∑

i=1

u(i) ≥ 1/β

l∑

i=1

u(Si) ≥ 1/β

l∑

i=1

αiû(S(−)
i ) ≥ α/β

l∑

i=1

û(S(−)
i ) ≥ α

β
|Uopt|

The above refinement is also interesting for the algorithmic task of finding a
good cover. This is because one can look for sub-games with high average PoA
instead of a cover with a high minimum PoA.

Next, we consider a weighted version of the width parameter.
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Theorem 4. Let G be a graphical game and let S = {S1, S2, . . . , Sl} be a cover
for V [G] such that S(−) is a cover, and the width of node i ∈ V [G] in S is βi.
Define β as the average of βi weighted by the agent utilities in a global worst
Nash equilibrium, that is β =

�n
i=1 βiu(i)�

n
i=1 u(i) . Let α = LPoAS(G). Then

GPoA(G) ≥ α/β

Proof (sketch): By definitions β
∑n

i=1 u(i) =
∑n

i=1 βiu(i) =
∑l

i=1 u(Si). We can
then proceed according to the proof of Theorem 3.

Going back to the star-of-cliques (Example 1), one can see now that in this case
β = 1 + ε for a small ε = ε(k, l) whereas β = k + 1 is the non weighted width.
This is because, in the proposed cover, the center w is of width k + 1, the k
vertices of type v are of width 2, and all the k(l − 1) vertices of type x are of
width 1, and the weights are roughly the same. Thus, Theorem 4 yields a bound
of GPoA(G) ≥ 1

2(1+ε) , instead of the much weaker bound of 1
2(k+1) of the basic

theorem. As we noted before, it can be shown that the actual global price of
anarchy is slightly greater than 1/2, so the above bound is tight.

Note that in the last theorem we took the average according to the utilities of
the agents in the global equilibrium. Therefore, averaging the β parameter may
sometimes be less constructive.

5.2 Nash Expansion

We now introduce a different local parameter that sometimes helps analyzing
games which are not well addresses by the previous theorems. This parameter
resembles graph expansion parameters but refers directly to the equilibrium
welfare so it cannot be deduced solely from the graph.

Definition 12. (Nash expansion of a set) Let G be a graphical game and
S ⊆ V [G]. We say that the Nash expansion of S is ξ if, for all sets of strategies
for the neighbors of S, for all Nash equilibria of S

ξ ≤
∑

j∈S(−) uj
∑

j∈S uj

In other words, in every Nash equilibrium, the ratio between the welfare of S(−)

and the welfare of its (external) boundary is bounded by ξ
1−ξ .

Definition 13. (Nash expansion) Let G be a graphical game and S a cover.
We say that the Nash expansion of S is ξ = ξG(S) if for all Si ∈ S the Nash
expansion of the set Si is greater or equal ξ.

Observation 5. Let G be a graphical game and S a cover. If the Nash expansion
of S is at least ξ = ξG(S) then:

∑
Si

u(S(−)
i )

∑
Si

u(Si)
≥ ξ
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Note that ξ is a local parameter that can be obtained by examining each subset
Si in isolation. It is possible to show that if a cover S, where S(−) is disjoint,
has a Nash expansion of ξ, then its weighted width β is bounded by 1/ξ as well.
This yields the following theorem:

Theorem 6. Let G be a graphical game. Let S = {S1, S2, . . . , Sl} be a cover
with α = LPoAS(G) and a Nash expansion ξ, such that S(−) is a disjoint cover.
Then GPoA(G) ≥ αξ


�
It is also possible to average ξ and obtain a similar theorem. In the longer
version of this work we discuss the properties of the expansion parameter further.
Specifically, we show that if we can bound the maximum ratio between pairs of
players’ utilities in a global worst Nash equilibrium, then we can replace the
Nash expansion parameter by a simple combinatorial parameter.

6 Discussion and Future Research

In real life, almost every game is embedded in a larger game and players are likely
to be able to consider only their close vicinity. Thus, we view the investigation of
the relations between local and global properties of games as a basic issue in the
understanding of large games. This paper demonstrates that at least from the
perspective of the price of anarchy, a good local behavior of a game implies a good
global behavior. The converse is not necessarily true, and there are many non-
trivial questions which are related to bounding the price of anarchy of graphical
games. Of course, it is natural to investigate questions, similar to the ones which
are studied here, in the context of other properties of games.

In general, we believe that models like graphical games provide an excellent
opportunity to introduce many structural properties into games. We believe
that such properties arise naturally in many contexts and can give rise to a lot
of fruitful research on the border of game theory, combinatorics, and computer
science.
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menting on a previous draft of this paper.
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Abstract. We consider games of complete information with r ≥ 2 play-
ers, and study approximate Nash equilibria in the additive and multi-
plicative sense, where the number of pure strategies of the players is n.

We establish a lower bound of r−1
�

ln n−2 ln ln n−ln r
ln r

on the size of the

support of strategy profiles which achieve an ε-approximate equilibrium,
for ε < r−1

r
in the additive case, and ε < r − 1 in the multiplicative

case. We exhibit polynomial time algorithms for additive approximation
which respectively compute an r−1

r
-approximate equilibrium with sup-

port sizes at most 2, and which extend the algorithms for 2 players with
better than 1

2 -approximations to compute ε-equilibria with ε < r−1
r

.
Finally, we investigate the sampling based technique for computing ap-
proximate equilibria of Lipton et al.[12] with a new analysis, that instead
of Hoeffding’s bound uses the more general McDiarmid’s inequality. In
the additive case we show that for 0 < ε < 1, an ε-approximate Nash
equilibrium with support size 2r ln(nr+r)

ε2 can be obtained, improving by
a factor of r the support size of [12]. We derive an analogous result in the
multiplicative case where the support size depends also quadratically on
g−1, for any lower bound g on the payoffs of the players at some given
Nash equilibrium.

1 Introduction

Classical games of complete information with r players model situations where
r decision makers interact and pursue well-defined objectives. A Nash equilib-
rium describes strategies for each player such that no player has any incentive
to change her strategy. The algorithmic study of Nash equilibria started with
the work of Lemke and Howson [11] in the 1960’s, for the case of two players.
This classical algorithm is exponential in the number of strategies (see [15]).
Computing a Nash equlibrium is indeed not an easy task. It was proven recently
that this computation is complete for the class PPAD, first for r ≥ 4 in [7], then
for r ≥ 3 in [6] and [2], and finally for r ≥ 2 in [4]. Therefore it is unlikely to be
feasible in polynomial time.

� Research supported by the ANR Blanc AlgoQP grant of the French Research Min-
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Approximate Nash equilibria have been studied both in the additive and the
multiplicative models of approximation. An ε-approximate Nash equilibrium de-
scribes strategies for each player such that by changing her strategy unilater-
ally, no player can improve her gain by more than ε. Lipton et al. [12] studied
additive approximate Nash equilibria for r-player games by considering small-
support strategies, and obtained an approximation scheme which computes an
ε-approximate equilibrium in the additive sense, in time nO( ln n

ε2 ), where n is the
maximum number of pure strategies. It is known that there is no Fully Poly-
nomial Time Approximation Scheme (FPTAS) for this problem [3], but it is
open to decide if there is a PTAS. Daskalakis at al. [8] gave a simple algorithm
for computing an additive 1

2 -approximate equilibirum in 2-player games, using
strategies with support at most 2. Feder et al. [10] showed that the factor 1

2 was
optimal when the size of the support could not exceed log n − 2 log log n. Break-
ing the 1

2 barrier required approximation strategies with larger support size. In
[9] Papadimitriou et al. have exhibited an additive 3−√5

2 -approximate polyno-
mial time algorithm, using linear programming. Further improvements for the
approximation of the equilibrium in 2-player game were obtained by Bosse et
al. [1] and Tsaknakis et al. [16], but the case of polynomial time approximation
in games with more than 2 players was not investigated. The case of the multi-
plicative approximation has been studied by Chien and Sinclair [5] for dynamic
strategies.

Here we study approximate Nash equilibria for r-player games, where the
number of pure strategies of the players is n. First we extend the lower bounds
on the factors of approximations for strategies with small support size. In Theo-
rem 1 we prove that no ε-approximate equilibrium can be achieved with strategy

profiles of support size less than r−1

√
ln n−2 ln ln n−ln r

ln r if ε < r−1
r in the additive

case, and ε < r − 1 in the multiplicative case.
Then we exhibit polynomial time algorithms for additive approximation. Our

results are based on the algorithm of Theorem 2 which extends approximations
for r-player games to approximations for (r+1)-player games. As a consequence,
we design in Corollary 3 a polynomial time algorithm which computes an r−1

r -
approximate equilibrium with support size at most 2, and in Corollary 4 extend
the algorithms breaking the 1

2 -approximation threshold in 2-player games into
algorithms breaking the r−1

r approximation threshold in r-player games.
Finally, we investigate the sampling based technique for computing approxi-

mate additive equilibria of Lipton et al.[12]. We propose a new analysis of this
technique that instead of the Hoeffding’s bound uses the more general McDi-
armid’s inequality [13] which enables us to bound the deviation of a function of
independent random variables from its expectation. In Theorem 4 we show that
for 0 < ε < 1, an ε-approximate Nash equilibrium with support size 2r ln(nr+r)

ε2

can be obtained, improving by a factor r the support size of [12]. We also estab-
lish a result analogous to the additive case in Theorem 5, where we show that for
0 < ε < 1, a multiplicative ε-approximate Nash equilibrium with support size
9r ln(nr+r)

2g2ε2 can be achieved where g is a lower bound on the payoffs of the players
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at some given Nash equilibrium. In Remark 2 we argue that some dependence
on g is necessary if we want the support of the approximate equilibrium to be
included in the support of the given Nash equilibrium.

2 Preliminaries

For a natural number n, we denote by [n] the set {1, . . . , n}. For an integer r ≥ 2,
an r-player game in normal form is specified by a set of pure strategies Sp, and
a utility or payoff function up : S → R, for each player p ∈ [r], where S = S1 ×
· · ·×Sr is the set of pure strategy profiles. For s ∈ S, the value up(s) is the payoff
of player p for pure strategy profile s. Let S−p = S1×· · ·×Sp−1×Sp+1×· · ·×Sr,
the set of all pure strategy profiles of players other than p. For s ∈ S, we set
the partial pure strategy profile s−p to be (s1, . . . sp−1, sp+1, . . . , sr), and for s′

in S−p, and tp ∈ Sp, we denote by (s′−p, tp) the combined pure strategy profile
(s′1, . . . , s′p−1, tp, s

′
p+1, . . . , s

′
r) ∈ S. Let B = {e1, . . . , en} be the canonical basis

of the vector space R
n. We will suppose that each player has n pure strategies

and that Sp = B, for all p ∈ [r], and therefore S = Br.
A mixed strategy for player p is a probability distribution over Sp, that is a

vector xp = (x1
p, . . . x

n
p ) such that xi

p ≥ 0, for all i ∈ [n], and
∑

i∈[n] x
i
p = 1. We

define supp(xp), the support of the mixed strategy xp, as the set of indices i for
which xi

p > 0. Following [12], a mixed strategy xp is called k-uniform, for some
k ∈ [n], if for every i ∈ [n], there is an integer 0 ≤ l ≤ k such that xi

p = l
k .

Obviously, the size of the support of a k-uniform strategy is at most k. We denote
by Δp the set of mixed strategies for p, and we call Δ = Δ1 × · · · × Δr the set
of mixed strategy profiles. For a mixed strategy profile x = (x1, . . . , xr) we set
supp(x) = supp(x1) × · · · × supp(xr), and size(x) = max{|supp(xp)| : p ∈ [r]}.
For a mixed strategy profile x = (x1, . . . , xr) and pure strategy profile s ∈ S, the
product xs = xs1

1 xs2
2 · · · xsr

r denotes the probability of s in x. We will consider
the multilinear extension of the payoff functions from S to Δ defined by up(x) =∑

s∈S xsup(s). The set Δ−p, the partial mixed strategy profile x−p for x ∈ Δ,
and the combined mixed strategy profile (x′, xp) for x′ ∈ Δ−p and xp ∈ Δp are
defined analogously to the pure case. The pure strategy sp is a best response for
player p against the partial mixed strategy profile x−p if it maximizes up(x−p, ·).
We will denote by br(x−p) the set of best responses against x−p.

A Nash equilibrium is a mixed strategy profile x∗ such that for all p ∈ [r], and
for all xp ∈ Δp,

up(x∗−p, xp) ≤ up(x∗).

An equivalent condition is up(x∗−p, sp) ≤ up(x∗) for every sp ∈ br(x∗−p). Nash
has shown [14] that for games with a finite number of players there exists always
an equilibrium. It is immediate that the set of Nash equilibria is invariant by
translation and positive scaling of the utility functions. Therefore we will suppose
that they take values in the interval [0, 1].

Several relaxations of the notion of equilibrium have been considered in the
form of additive and multiplicative approximations. Let ε > 0. An additive
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ε-approximate equlibrium is a mixed strategy profile x∗ such that for all p ∈ [r],
and for all xp ∈ Δp,

up(x∗−p, xp) ≤ up(x∗) + ε.

A multiplicative ε-approximate equlibrium is a mixed strategy profile x∗ such
that for all p ∈ [r], and for all xp ∈ Δp,

up(x∗−p, xp) ≤ (1 + ε)up(x∗).

Since by our convention 0 ≤ up(x∗) ≤ 1, a multiplicative ε-approximate equilib-
rium is always an additive ε-approximate equilibrium, but the converse is not
necessarily true.

The input of an r-player game is given by the description of rnr rational num-
bers. Here we will consider the computational model where arithmetic operations
and comparisons have unit cost.

3 Inapproximability Results for Small Support Size

In [10] Feder, Nazerzadeh and Saberi have shown that there are 2-player games
where for ε < 1, no multiplicative ε-approximation can be achieved with support
size less than lnn−2 ln lnn. We generalize this result for r-player games in both
models of approximation.

Theorem 1. For r ∈ o(n) there exists an r-player game such that no mixed

strategy profile x with size(x) < r−1

√
ln n−2 ln ln n−ln r

ln r can be an additive ε-approxi-

mate equilibrium for ε < r−1
r , or a multiplicative ε-approximate equilibrium for

ε < r − 1.

Proof. We use the probabilistic method and will show that a random game from
an appropriately chosen probabilistic space satisfies the claimed properties with
positive probability. The space is defined as follows: for every pure strategy profile
s = (s1, . . . , sr) ∈ S, choose a uniformly random p ∈ [r] and set up(s) = 1 and
uq(s) = 0 for all q �= p. This defines a random r-player 0/1 game with constant
sum 1.

Fix k < r−1

√
ln n−2 ln ln n−ln r

ln r , and set S≤k = {K1 × · · · × Kr ⊆ S : |Kp| ≤
k for p ∈ [r]}. Clearly size(x) ≤ k exactly when supp(x) ∈ S≤k. We define
S≤k
−p analogously. The event Ep is defined as follows: For all K ∈ S≤k

−p , there
exists a pure strategy tp ∈ B such that for all s′ ∈ K, we have up(s′, tp) = 1.
Let E =

∧
p∈[r] Ep. When E is realized, then for every x with size(x) ≤ k, each

player can increase her payoff to 1 by changing her strategy. Since the total payoff
of the players is 1, at least one player has payoff at most 1/r, and therefore x
is not an additive ε-approximate equilibrium for ε < r−1

r , nor a multiplicative
ε-approximate equilibrium for ε < r − 1.
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We will prove that Pr[Ep] < 1/r for all p ∈ [r], and therefore Pr[E] > 0.
For fixed K ∈ S≤k

−p and tp ∈ B, the probability that there exists s′ ∈ K with
up(s′, tp) = 0 is

1 − Pr[∀s′ ∈ K up(s′, tp) = 1] ≤ 1 − 1
rkr−1 .

Since the payoff functions are set independently, using the union bound we get

Pr[Ep] ≤
(

n
k

)r−1 (
1 − 1

rkr−1

)n

.

To prove the bound on Pr[Ep] as claimed we bound the logarithm of the right
hand side of the above inequality. This is at most

k(r − 1) ln n − n

2rkr−1 ,

which can easily seen to be no more than − ln r for the chosen value of k by
rearranging, and taking logarithms again.

Corollary 1. For r ∈ O(1) there exists an r-player game such that for some
constant c > 0, no mixed strategy profile x with size(x) < c

r−1
√

ln n can be an ad-
ditive ε-approximate equilibrium for ε < r−1

r , or a multiplicative ε-approximate
equilibrium for ε < r − 1.

How essential are the restrictions on r and ε in Theorem 1? As we will show in
the next section, for r fixed, the bound on ε is optimal in the case of additive
approximation. The optimality of the bound for the multiplicative error remains
open, and we don’t know either if the restriction r ∈ o(n) is necessary. Observe,
however, that the case r ≥ n is anyhow of limited interest, since the uniform
distribution on the pure strategies, for each players, is clearly an additive n−1

n -
approximation, and a multiplicative (n − 1)-approximation.

4 Polynomial Time Additive Approximations

We know from the previous section that no strategy profile of constant support
size can achieve a better than r−1

r -approximate additive Nash equilibrium. We
will prove here on the other hand that there exists an additive r−1

r -approximate
Nash equilibrium of constant support size, and that it can be computed in poly-
nomial time. It is also shown that there are polynomial time computable additive
η-approximate equilibria for some η < r−1

r . These results are based on an al-
gorithm which extends any additive approximation for r-player games to an
approximation for (r + 1)-player games.

Theorem 2. Given an algorithm A that computes in time q(r, n) an additive
ε-approximate equilibrium for r-player games, there exists an algorithm A′ that
computes in time q(r, n)+ O(nr+1) an additive 1

2−ε -approximate equilibrium for
(r + 1)-player games. Moreover, in algorithm A′, the support of the last player
is of size at most 2, and the sizes of the supports of the first r players are
respectively the same as in algorithm A.
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Proof. Let sr+1 an arbitrary pure strategy of player r + 1. This induces an
r-player game for the other players, assuming that player p + 1 is restricted
to sr+1. Algorithm A finds for the induced game an additive ε-approximate
equilibrium, say x = (x1, . . . , xr). Compute now in time O(nr+1) a pure strategy
tr+1 for the last player which is in br(x1, . . . , xr). Let us define the mixed strategy
xr+1 = 1

2−εsr+1 + 1−ε
2−ε tr+1. We claim that x∗ = (x, xr+1) is an 1

2−ε -approximate
equilibrium.

Consider any of the first r players. She can earn an additional payoff at most
ε when player r + 1 plays sr+1, and an additional payoff at most 1 when the
chosen strategy is tr+1. Therefore the overall gain by changing strategy is at
most ε

2−ε + 1−ε
2−ε = 1

2−ε .
The last player has no way to increase her payoff when she plays her best

response strategy tr+1. Therefore her overall gain by changing strategy is at
most 1

2−ε .

Corollary 2. Given an algorithm A that computes in time q(n) an additive ε-
approximate equilibrium for 2-player games, there exists an algorithm that com-
putes for any r ≥ 3, in time q(n) + O(nr) an additive (r−2)−(r−3)ε

(r−1)−(r−2)ε-approximate
equilibrium for r-player games. Moreover, the supports of all but the first two
players are of size at most 2, and the support sizes of the first two players are
respectively the same as in algorithm A.

Proof. We apply Theorem 2 inductively. Let εl be the approximation obtained
for l-player games. Then ε2 = ε and εl+1 = 1

2−εl
. Solving the recursion gives the

result.

Corollary 2 never returns a better than r−2
r−1 -approximate Nash equilibrium. And,

the procedure yields for r players an additive ε-approximation with ε ≥ r−2
r−1 only

if the original two-player algorithm A computes an additive η-approximation
with η ≤ (r−2)−(r−1)ε

(r−2)ε−(r−3) .

Corollary 3. There exists an algorithm which computes an additive r−1
r -ap-

proximate equilibrium for r-player games in time O(nr). Moreover the support
of all players is of size at most 2.

Proof. We apply Corollary 2 to the algorithm of [8] which computes in time O(n2)
an additive 1

2 -approximation for 2-player games with support size at most 2.

Let us stress here that though the complexity of the algorithm of Corollary 3 is
exponential in r, it is sublinear in the input size.

Corollary 4. There exist algorithms which in polynomial time compute an ad-
ditive ε-approximate equilibrium for r-player games for some constant ε < r−1

r .

Proof. Apply Corollary 2 to any of the polynomial time algorithms for 2-player
games, such as [9], [1] or [16], which obtain an additive η-approximate equilibrium
for some η < 1

2 .

�
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5 Subexponential Time Additive and Multiplicative
Approximation

In one of the most interesting works on approximate equilibria, Lipton, Markakis
and Mehta [12] have shown that for r-player games, for every 0 < ε < 1,
there exists a k-uniform additive ε-approxima- tion whenever k > 3r2 ln(r2n)

ε2 .
The result is proven by averaging, for all players, independent samples of pure
strategies according to any Nash equilibrium.

Here we improve their bound by a factor r by showing that for 0 < ε < 1,
an additive ε-approximation exists already when k > 2r ln(rn+r)

ε2 . We also estab-
lish an analogous result for multiplicative ε-approximation when k > 9r ln(rn+r)

2g2ε2 ,
where g is a lower bound on the payoffs of the players at the equilibrium.

The proof is based on the probabilistic method and is analogous to the one
given in [12]. The main difference is that instead of the Hoeffding’s bound, we
use the more general Mc Diarmid’s inequality [13] which bounds the deviation
of a function of several independent random variables from its expectation. It
specializes to the Hoeffding’s bound when the function is the sum of the variables.
It is stated as follows:

Theorem 3 (McDiarmid). Let Y1, . . . , Ym be independent random variables
on a finite set A, and let f : Am −→ R be a function with the property that
there exist real numbers c1, . . . , cm such that for all (a1, . . . , am, b) ∈ Am+1 and
1 ≤ l ≤ m:

|f(a1, . . . , al, . . . , am) − f(a1, . . . , b, . . . , am)| ≤ cl .

Then, for every ε > 0,

Pr[f(Y1, . . . Ym) − E[f(Y1, . . . Ym)] > ε] ≤ e
− 2ε2
�

l c2
l .

Theorem 4. For all 0 < ε < 1, and for all k > 2r ln(rn+r)
ε2 , there exists a

k-uniform additive ε-approximate equilibrium.

Proof. For every p ∈ [r], let X1
p , . . .Xk

p be k copies of the random variable that
takes the pure strategy ei ∈ B with probability xi

p. We define Xp = 1
k

∑k
j=1 Xj

p ,
and let X = (X1, . . . , Xr). Observe that E[up(X )] = up(x). For p ∈ [r] and
i ∈ [n], we consider the events

Ep : |up(X ) − up(x)| <
ε

2
,

F i
p : |up(X−p, ei) − up(x−p, ei)| <

ε

2
,

and we define E as the conjunction of all them.
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For every p ∈ [r] and i ∈ [n], the event F i
p, the fact that x is a Nash equilib-

rium, and the event Ep imply that

|up(X−p, ei) − up(X )| < ε.

Therefore, when E is realized, X is an additive ε-approximate Nash equilibrium.
We prove that event E occurs with strictly positive probability. We start by

bounding the probability of Ep. We use McDiarmid’s inequality with m = rk,
when A is the canonical basis B, and the function f is defined as

f(a1
1, . . . , a

k
1 , . . . , a

1
r, . . . , a

k
r) = up

⎛

⎝1
k

k∑

j=1

aj
1, . . . ,

1
k

k∑

j=1

aj
r

⎞

⎠ .

Observe that f(X1
1 , . . . , Xk

1 , . . . , X1
r , . . . , Xk

r ) = up(X1, . . . , Xr) and therefore

E[f(X1
1 , . . . , Xk

1 , . . . , X1
r , . . . , Xk

r )] = up(x) .

We claim that the values cj
p can be chosen as 1/k. Let aj

p for j ∈ [k] and
p ∈ [r] be some pure strategies. Fix j ∈ [k], p ∈ [r] and let bj

p be a pure strategy.
For q �= p, we define the mixed strategies αq = 1

k

∑k
j=1 aj

q. Then, using the
multilinearity of up, we have

f(a1
1, . . . , a

j
p, . . . , a

k
r ) − f(a1

1, . . . , b
j
p, . . . , a

k
r )

=
1
k

(
up(α1, . . . , a

j
p, . . . , αr) − up(α1, . . . , b

j
p, . . . , αr)

)
.

This implies the claim, because up takes values in [0, 1]. Since
∑

j,p(c
j
p) = kr 1

k =
r
k , by McDiarmid’s inequality we have

Pr[Ep] ≤ e−
ε2k
2r .

For bounding from above the probability of F
i

p, just observe that McDiarmid’s
inequality can be applied analogously for a function defined with (r − 1)k vari-
ables. This gives

Pr[F
i

p] ≤ e−
ε2k

2(r−1) ,

and it follows from the union bound that

Pr[E] ≤ r(n + 1)e−
ε2k
2r .

The right side of this inequality is smaller than 1 when k > 2r ln(rn+r)
ε2 .


�

Theorem 5. Let x be a Nash equilibrium for an r-player game and let g > 0
be a lower bound on the payoff of each player at the equilibrium. Then, for all
0 < ε < 1, and for all k > 9r ln(rn+r)

2g2ε2 , there exists a k-uniform multiplicative
ε-approximate equilibrium.
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Proof. The proof is a slight modification of the previous one. The random vari-
able X is defined identically. We set η = 1 − 1√

1+ε
and ζ =

√
1 + ε − 1. The

events Ep and F i
p are defined as

Ep : |up(X ) − up(x)| < η up(x) ,

F i
p : |up(X−p, ei) − up(x−p, ei)| < ζ up(x) ,

and E as the conjunction of all them.
Recursively applying Ep, we get for every integer m > 0,

up(x) < ηmup(x) + up(X )
∑

l<m

ηl .

Therefore, using that 1
1−η = 1 + ζ, we have

up(x) ≤ (1 + ζ)up(X ) .

The event F i
p and the fact that x is a Nash equilibrium imply that

up(X−p, ei) < (1 + ζ)up(x) .

Since (1 + ζ)2 = 1 + ε, it follows from the last two inequalities that X is a
multiplicative ε-approximate Nash equilibrium when E is realized.

Using that g is a lower bound for up(x), by McDiarmid’s inequality we get

Pr[Ep] ≤ e−
2g2η2k

r ,

and

Pr[F
i

p] ≤ e−
2g2ζ2k

r−1 .

As η = ζ
1+ζ we have that η < ζ. Also, it is not hard to see that 0 < ε < 1 implies

ε
3 < η. Therefore

Pr[E] ≤ r(n + 1)e−
2g2ε2k

9r ,

and Pr[E] > 0 when k ≥ 9r ln(rn+r)
2g2ε2 .


�

Remark 1. The condition ε < 1 in Theorem 5 is not a real restriction, since
when ε ≥ 1 then η > 1

4 , and therefore there exists a k-uniform multiplicative
ε-approximate equilibrium for k > 8r ln(rn+r)

g2 .

Remark 2. If we require in Theorem 5 that the support of the approximate
equilibrium is a subset of the support of the Nash equilibrium, the dependence
on g is indeed necessary. Consider the following two players game given in the
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standard bimatrix representation where the number of the pure strategies of the
players is 2n :

M1 =
(

On
1
2In

1
nIn An×n

)
M2 =

(
In On

On In

)
.

Here, On denotes the n × n matrix with everywhere 0’s, In is the n × n identity
matrix, and An×n the is the n × n matrix with everywhere 1/n except on its
diagonal where all entries are 0. The game has a Nash equilibrium x = (x1, x2)
where x1 = x2 = 1

n

∑n
i=1 en+i. The payoffs of the first and second player are

respectively u1(x, y) = 1
n − 1

n and u2(x1, x2) = 1
n and therefore, the minimum of

the payoffs is g = Θ(1/n). Let 0 < ε < 1, and let y = (y1, y2) be a multiplicative
ε-approximate Nash equilibrium. Let k denote the size of supp(y2), we claim that
k ≥ n

2(1+ε) . For this, observe first that u1(y1, y2) ≤ 1/n. Since supp(y2) ⊆ {n +
1, . . . , 2n}, there exists i ∈ [n] such that yn+i

2 ≥ 1/k, and therefore u1(ei, y2) ≥
1
2k . Since y is a multiplicative ε-approximate equilibrium, we have that 1

2k ≤ 1+ε
n

and the statement follows. Observe on the other hand that there exists, for any
ε > 2

n−2 , multiplicative ε-approximate equilibria with support size only 2 if we
let the support be outside this of the Nash equilibrium.

In [12] it was already observed that when the number of players is constant,
the sampling method yields an additive ε-approximation, for all constant ε > 0,
in time nO(ln n). When g = Ω(1), Theorem 5 implies a similar result for the
multiplicative approximation. This condition is satisfied for example if all the
utility functions are bounded from below by a constant.

Corollary 5. If in an r-player game, where r is constant, there exists a Nash-
equilibrium at which all the players payoffs are bounded from below by a constant
then for all constant ε > 0, a multiplicative ε-approximation can be found in
time nO(ln n).

It can be interesting to compare the complexities of the two additive approxima-
tion algorithms based on the Lipton, Markakis and Mehta sampling technique.
Let A(r) be the additive ε-approximation r-player algorithm based on Theorem
4 which searches exhaustively trough all the 2r2 ln(nr+r)

ε2 -uniform strategies. Let
B(r) be the r-player algorithm we obtain by applying the iterative construction
technique of Corollary 2 to A(2). Since by this technique we will never obtain
a better than r−2

r−1 -approximation, let us fix some ε > r−2
r−1 . The overall run-

ning time of A(r) is O(n
2r ln(rn+r)

ε2 ) since the search is applied to the r players

independently. The complexity of algorithm B(r) is O(n8 r ln(rn+r)
ζ2 + nr) where

ζ = (r−2)−(r−1)ε
(r−2)ε−(r−3) . A simple computation shows that for all r ≥ 3, algorithm B(r)

has a smaller complexity.
Obviously, A(r) and B(r) are not the fastest algorithms when Corollary 4

yields a polynomial time procedure for computing an additive approximate Nash
equilibrium. A simple analysis shows that for each two-player polynomial time
η-approximation, when η > 0, Corollary 4 gives a polynomial time algorithm
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computing an additive (r−2
r−1 + η′)-approximate equilibrium in an r-player game,

for some η′ > 0. This means that, at least for the time being, when ε is in
some right neighborhood of r−2

r−1 , the algorithm B(r) is the most efficient known
procedure for computing an additive ε-approximate Nash equilibrium in an r-
player game.

6 Conclusion and Open Problems

In this paper, we have started the study of approximate Nash equilibria for r-
player games when r ≥ 2. The main open problem, just as in the two-player case,
is the existence of a PTAS. We enumerate a few other, possibly much simpler,
problems left also open:

1. Does the lower bound of Theorem 1 on the size of the strategy profiles hold
also in the case when r = cn, for a constant c ≤ 1 ?

2. Can we reduce the gap on the support size between the lower bound of
Theorem 1 and the upper bound of Theorems 4 and 5 ? For example, when
r = Θ(1), the lower bound is Ω( r−1

√
ln n) and the upper bound is O(ln n).

When r = 2, these bounds are tight.
3. Is there a polynomial time algorithm which computes a multiplicative (r−1)-

approximate Nash equilibrium?
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Abstract. We study selfish agents that have a “distorted view” of re-
ality. We introduce a framework of subjective vs. objective reality. This
is very useful to model risk averse behavior. Natural quality of service
issues can be cast as special cases thereof.

In particular, we study two applicable variants of the price of anar-
chy paradigm, the subjective price of anarchy where one compares the
“optimal” subjective outcome to the outcome that arises from selfish
subjective reality agents, and the objective price of anarchy where one
compares the optimal objective outcome to that derived by selfish sub-
jective agents.

1 Introduction

In this paper we consider the problem arising from selfish agents seeking to
minimize server delay1, where agents may have different risk sensitivities and
also possibly different assumptions on the underlying risks.

We introduce a framework of “distorted reality” where we assume some un-
derlying objective reality and where agents have a distorted view of objective
truth, i.e., agents have their own subjective reality. We introduce criteria to
measure the degree of distortion (M , M̃ , hereinafter), and study the impact of
this distortion on the outcome.

This framework of distorted reality allows us to model risk averse behavior and
to study the impact of risk aversion on the price of anarchy, in both subjective
and objective terms. The distortion setting allows us to consider many variants of
the problem, encompassing both agent-specific risk sensitivity and also different
agent-specific assumptions on inherent underlying risks.

More specifically we consider these problems in the context of server delay
and take the social welfare to be the makespan (objective or subjective).

Perhaps not surprisingly, it suffices for little distortion of reality (say 1%)
(analogously recast as a small degree of risk aversion) to result in a dramatic
change in the price of anarchy, super polynomial in the number of servers, at
least for some server models.

1 Note that we use the terminology of congestion games (delay), rather than the
nomenclature of machine load balancing (load).

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 279–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



280 A. Fiat and H. Pochter

1.1 Risk Neutral Server Delay Problems

The problem of minimizing server delay is that of selfish weighted tasks that wish
to assign their task to a server with minimal delay. There are several well studied
versions of this problem, including the equal, related, and unrelated models.

In general, for every task i and server s we have a positive real weight wi,s.
An assignment A is a mapping of n tasks to m servers. Given an assignment A,
the delay of a server s is

∑
i wi,s over all tasks i assigned to server s. The delay

of task i in assignment A is the delay of the server Ai to which it is assigned.
The problem variants (equal, related, unrelated) reflect different assumptions

on the weights wi,s.

1. The most general case, unrelated servers, assumes no restrictions on the
wi,s values. The unrelated server model is applicable in cases where different
servers are suitable for different tasks, to varying degrees.

2. The equal server variant assumes that wi,s = wi,s′ for all servers s, s′, and all
tasks i, i.e., all servers are (inherently) equally suitable for all tasks. Thus,
for equal servers, one can omit the subscript s, and use wi in place of wi,s.

3. For related servers, one associates a positive real value as with every server
s, and requires that wi,s/as = wi,s′/as′ , for all servers s, s′. This can be in-
terpreted as meaning that different servers have different speeds/throughput
which are proportional to 1/as. Thus, by normalizing the minimal as to be
1, we can associate a weight, wi with task i, and a speed, 1/as with server
s, so that wi,s = aswi. 2

The makespan of an assignment is the maximal delay over all servers s. The price
of anarchy (POA) is the ratio between the highest makespan of a Nash equilib-
rium and the optimal makespan (the minimal makespan of any assignment). We
denote the price of anarchy in the risk-free model by POAneut.

Let t be the maximal ratio between task weights (which aren’t infinity) on
any two servers. The price of anarchy for the various server delay problems is
2, Θ(log m/ log log m) [4], and Θ(t+ log m

log(1+log(log m/t)) ) [3], for equal, related and
unrelated servers, respectively.

1.2 Related Work: Agent-Specific Utility Functions

Agent-specific utility functions were first considered by Milchtaich [8] in the
context of congestion games where he showed that unweighed agents with non
decreasing latency functions and singleton congestion games always have a pure
Nash equilibrium. Additional studies on agent specific utilities and conditions
for the existence of pure Nash equilibria are given in [7,6,1].

Most relevant to our work herein is that of [6], in which Gairing, Monien and
Tiemann consider the price of anarchy for linear player-specific utility functions.
They consider what we call herein the subjective price of anarchy, and they take
the social welfare function to be the sum of agent utilities.
2 One can extend the notion of related machines to allow delay of the form asWs + bs

for some bs ≥ 0, bs can be interpreted as a setup delay. It is not hard to extend
previous results (bounds on the price of anarchy for related machines) in this model.
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1.3 Subjective Agents

Whatever the context (equal, related, unrelated), let A be some assignment of
tasks to servers. Let Ai be the server to which agent i is assigned under assign-
ment A and let Ws(A) be the objective delay on server s under assignment A.
I.e., Ws(A) =

∑
i.Ai=s wi,s. Given an assignment A, we define the i-subjective

delay for server s as Ws(A)ri,s. I.e., ri,s, indexed by agent i and server s, deter-
mines how different agents view reality. As noted above, agent subjective delays,
albeit without a corresponding objective delay, have been addressed before un-
der the title of player specific payoff functions in a sequence of papers including
[8] and [6].

However, we seek to distinguish between two different outcome measures :

1. Subjective outcomes (viewing the outcome from the perspective of the risk
averse agents), or

2. Objective outcomes, viewing the outcome from the perspective of a risk
neutral (external) observer.

Thus, for a specific Nash equilibrium Q, where Qi is the server to which task i
is assigned, we consider the following social cost functions:

1. Subjective makespan, denoted SCsub(Q) = maxi WQi(Q)ri,Qi .
2. Objective makespan, denoted SCobj(Q) = maxi WQi(Q).

Similarly, one can define subjective and objective “optimal” solutions. The op-
timal objective makespan, denoted OPTobj, minimizes the objective makespan,
SCobj. The optimal subjective makespan, denoted, OPTsub, minimizes the max-
imal subjective makespan, SCsub.

Next, we consider two versions of the price of anarchy , dealing with objective
and subjective outcomes:

POAobj = sup
Nash equilibria Q

SCobj(Q)

OPTobj
;

POAsub = sup
Nash equilibria Q

SCsub(Q)
OPTsub

;

1.4 Modeling Server Risk: ri,s = 1 + kixi,s

Consider a set of servers S and a set of n agents. Agent i, seeking a quality of
service guarantee, seeks a server of minimal expected delay T , subject to the
restriction that task i completes within time T with probability at least 1 − εi.

Fix an assignment A. To study uncertainty and risk with regard to server
performance we want to recast the notion of server delay, Ws(A), as the expected
(risk-neutral) delay. We do this as follows:

1. Associated with server s and an agent i is a random variable X i
s > 0, with

expectation μ(X i
s) = 1 and standard deviation σ(X i

s), let xi,s = σ(X i
s). We

will refer to xi,s as the risk belief of agent i for server s.
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2. The delay of server s is the random variable X i
sWs(A). Note that the expecta-

tion of X i
sWs(A) is Ws(A). What we’ve done here is identify the uncertainty

with regard to server performance with the properties of the distribution for
X i

s.
3. Associate with every task i, a probability, εi, and let ki = 1/

√
εi. We will

refer to ki as the risk aversion of agent i.

Now, let ri,s = 1+ kixi,s = 1+ 1√
εi

σ(X i
s). Let A be some assignment where task

i is assigned to server s and let A′ be the same as A except that task i is now
assigned to server s′. Assume that agent i chose to use server s′.

Applying the Chernoff bound Pr(|Y −μ(Y )| ≥ tσ(Y ))≤ 1
t2 , to Y =X i

s′Ws′ (A′),
and setting t = 1/

√
εi, we get

Pr
[
|X i

s′Ws′(A′) − μ(X i
s′Ws′(A′))| ≥ 1/

√
εiσ(Xs′Ws′ (A′))

]
< εi,

so
Pr

[
X i

s′Ws′(A) ≥ (1 + kixi,s′)Ws′ (A)
]

< εi,

whichmeans that theprobability to experiencedelay larger then (1+kixi,s′)Ws′ (A)
is less then εi.

This implies that the probability that task i will regret the choice of server
s′ (over server s) is no more than εi, and this is the best result she could have
achieved, having no other apriori knowledge on the distribution of X i

s and X i
s′ .

Thus, we have modelled this problem of quality of service sensitive agents, in
terms of a subjective delay function.

We remark that we could have used other measures besides the standard devi-
ation, and obtain tighter bounds on the probability of not meeting the deadline.
In particular, using the standard deviation penalizes both upside and downside
volatility equally (as does the Sharpe ratio [9] used to measure risk in equities),
and one could alternately emulate the Sortino [10] ratio and penalize only delay
(or equity returns) falling above (below) a user-specified target. For further risk
related reading see [2,5].

1.5 Beliefs and Risk

Agents may have inconsistent vision of the inherent risk of different servers as
well as different risk sensitivity. This gives us 4 different models:

1. II: Individual risk beliefs, Individual risk aversion. This is the most general
model. Every agent may have different beliefs regarding server risk, and the
risk aversion of the agents may vary. In this model ri,s = 1 + kixi,s

2. CI: Common risk beliefs, Individual risk aversion. All agents have the same
beliefs regarding server risk, but the risk aversion of the agents vary. In this
model ri,s = 1 + kixs, since for all 1 ≤ i, j ≤ n, xi,s = xj,s.

3. IC: Individual risk beliefs, Common risk aversion. All agents have the same
risk aversion, but different beliefs regarding server risk. In this model ri,s =
1 + kxi,s, since for all 1 ≤ i, j ≤ n, ki = kj .

4. CC: Common risk beliefs, Common risk aversion.All agents have the same risk
aversion, and the same beliefs regarding server risk. In this model ri,s =1+kxs.
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Obviously, the CI, IC, and CC models are special cases of the II model. In fact,
we can map any instance of II (ki, xi,s), to an instance of IC (k′i = k′j = k′, x′i,s),
choose k′ = 1, and set x′i,s = kixi,s. This implies that insofar as regarding the
price of anarchy, the II and IC models are equivalent.

We define two parameters of the system depending on the risk beliefs of the
agents

M = max
i,s

ri,s/ min
i,s

ri,s, M̃ = max
i

(max
s

ri,s/ min
s

ri,s)

Lemma 1. POAsub/M ≤ POAobj ≤ M · POAsub.

These results holds for all models
(
{II, IC, CI, CC} × {equal servers,related

servers,unrelated servers}
)
.

Notice that if M̃ = 1, the problem is uninteresting, therefore our results are
for M̃ �= 1.

The results for the three models are shown in Figures 1 and 2. Proofs are in
Section 2.

For the risk sensitive agents that hold common risk beliefs, and assuming
related servers, we give significantly better bounds. In this case, the bound on
the objective price of anarchy drops dramatically from being exponential in M̃

Model POAobj POAsub

Equal 2M̃ 2M̃M

Related M̃
O
�√

log m/log M̃
�

MM̃
O
�√

log m/log M̃
�

Unrelated M̃
O
�√

t2+log m/log M̃
� 3

MM̃
O
�√

t2+log m/log M̃
�

Fig. 1. Upper bounds on the price of anarchy for pure Nash equilibria in the II model.
(The same bounds hold for the CI and IC models).

Model POAobj POAsub

Equal 2M̃ Θ( log m
log log m

)

Related Θ
�

log(m)
log log(m)M̃

�
Θ
�

log(m)
log log(m)

�
Unrelated O(tM̃ + log m

log(1+log(log m/tM̃))
)M̃ Θ(tM̃ + log m

log(1+log(log m/tM̃))
)

Fig. 2. Upper Bounds on the price of anarchy for pure Nash equilibria in the CC model.
All bounds are tight up to a constant, except the POAobj for the unrelated model.

3 We also give a lower bound of M̃
Ω
�√

log m/log M̃
�
, see Section 2.1.
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to being linear. We also give better bounds on the subjective price of anarchy.
See Section 3.

2 Bounds on the Price of Anarchy

2.1 Individual Risk Beliefs, Individual Risk Aversion

In this subsection we will present upper bounds in the equal, related and unre-
lated servers models, under the II assumption. Obviously, the results apply to
the IC, CI and CC cases as well. These proofs closely follow the earlier risk free
results [3,4]. We sketch some of these proofs below.

Lemma 2. For equal servers, we have that POAobj ≤ 2M̃ .

Proof (Sketch). This is a minor modification of the proof for risk-free equal
servers. Agents with with a distorted view of reality (ri,s factors) will seek to
place their task on a the server that they view as having minimal latency. This
distortion of reality introduces a factor of M̃ into the price of anarchy.

Theorem 1. The objective price of anarchy for related servers, POAobj ≤

M̃
O
�√

log m/log M̃
�
.

Proof. This proof, too, is a distorted version of the proof of [4], which we sketch
here.

Let the servers be sorted according to their speed ai, so that a1 ≤ a2 ≤
... ≤ am. We denote the maximal objective delay in the Nash equilibrium Q by
Wmax = maxs Ws(Q). We define smax = argmaxsWs(Q). For p ≥ 1, define Zp to
be the smallest index p ∈ {0, 1, ..., m} s.t. WsZp+1(Q) < p·M̃p−1·OPT or Zp = m,
if no such index exists. We define pmax to obey Ws1 (Q) = pmax ·M̃pmax−1 ·OPT .

We now consider two cases:

Case 1: If pmax ≤ 3, then POAobj ≤ 3M̃
3
+ M̃ .

Claim. Wmax ≤ (Ws1 (Q) + OPT) · M̃ .

Proof. Look at an agent i assigned to server smax in Q. Since it is a pure
Nash equilibrium, the agent doesn’t want to switch servers which means that
Wmaxri,smax ≤ (Ws1(Q) + a1wi)ri,s1 . But as s1 is the fastest server available,
a1wi ≤ OPT. So we get that for each agent i assigned to server smax in Q we
have Wmax · ri,smax ≤ (Ws1(Q) + OPT) · ri,s1 . Bounding from above and below
we get that Wmax · mins ri,s ≤ (Ws1 (Q) + OPT) · maxs ri,s. Which means that
Wmax ≤ (Ws1(Q) + OPT)maxs ri,s

mins ri,s
, i.e., Wmax ≤ (Ws1 (Q) + OPT) · M̃ .

According to the definitions, if pmax ≤ 3 then Ws1 (Q) ≤ 3OPT · M̃2. It now
follows that Wmax ≤ (Ws1(Q) + OPT) · M̃ ≤ (3OPT · M̃2 + OPT) · M̃ , which
leads to POAobj ≤ 3M̃

3
+ M̃ .
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Case 2: If pmax > 3, then POAobj ≤ M̃
O
�√

log m/log M̃
�
.

We argue that M̃ (pmax−1)+(pmax−2)+...+1 · pmax! ≤ Z1. Let S be the set of
servers s1...sZp+1 .

Claim. If in a pure Nash equilibrium Q, agent i is assigned to a server in S, an
optimal strategy does not assign i to a server sr such that r > Zp.

Proof omitted. Distorted version of [4].

Claim. If an optimal strategy assigns tasks from group S to servers s1, ..., sZp

then Zp ≥ (p + 1)M̃p · Zp+1.

Proof omitted. Distorted version of [4].
Since Zpmax ≥ 1 we have that pmax! · M (pmax−1)+(pmax−2)+...+1 ≤ Z1 ≤ m.

Solving the equation we get that pmax ≤ O
(√

log m

log M̃

)
. Substituting we get that

POAobj ≤ M̃
O
��

log m

log M̃

�
.

Theorem 2. For unrelated servers POAobj≤O

(
M̃

O
�√

t2+log m/log M̃
�)

, where

t is the maximal ratio between task weights (not including infinity).

Proof (Sketch). Let Q be a pure Nash equilibrium. Without loss of generality, we
assume that the servers are sorted in decreasing order according to their objective
delay Ws(Q). For p ≥ 1, define Zp to be the smallest index p ∈ {0, 1, ..., m} s.t.
WsZp+1(Q) < p · Mp · OPT or Zp = m, if no such index exists. Let S be the set
of servers s1...sZp+1 . The following two claims give us the required result.

1. If in a pure Nash equilibrium Q, agent i is assigned to a server in S, an
optimal strategy does not assign i to a server sr such that r > Zp.

2. For every p ≥ 1, Zp

Zp+1
≥ (p+1)M̃p+1

t .

Lemma 3. For unrelated servers, POAobj = Ω

(
M̃

�
log m

log M̃

)
.

Proof. We prove that for every k and every rmax = maxi,s ri,s and rmin =

mini,s ri,s , we can construct a game in which POAobj = Ω

(
M̃

�
log m

log M̃

)
. Con-

sider p + 1 groups of servers indexed 0...p (p will be defined later). Group j
contains nj servers, where

* nj = nj−1 · M̃p−j

* n0 = 1

Now, consider p sets of tasks indexed 0..p − 1. Set j contains nj · M̃p−1−j tasks.
Let the tasks from set i have weight M̃ on servers from group i, weight 1 on
servers from group i + 1 and infinity on the rest of the servers. The tasks from
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set i have risk adjustment factor rmin on servers from group i and factor rmax
on the rest of the servers.

Let’s look at a pure Nash equilibrium Q, in which all the tasks from set i are
equally divided on the servers of group i. The subjective delay experienced by
the tasks from the i-th set is (M̃ ·M̃p−1−i) · rmin = (M̃p−i) · rmin. Since an agent
from set i can only choose to switch to a server from group i + 1 (otherwise
she will experience a delay of infinity), and the subjective delay after the move
would be (M̃p−i−1 + 1) · rmax > M̃p−i−1 · rmax = M̃p−i · rmin, the agent has no
incentive to switch servers. The objective makespan is achieved on the servers
from group 0, so we have SCobj(Q) = M̃p.

Clearly the objective optimal solution is achieved when every agent from the
l-th set is assigned to a distinct server in the (l + 1)-th group, leading to an
objective makespan of 1. Therefore POAobj ≥ M̃p. m = M̃θ(p2) implies that

p = θ
(√

log m

log M̃

)
and POAobj = Ω

(
M̃

�
log m

log M̃

)
.

2.2 Common Risk Beliefs, Common Risk Aversion

In this subsection we give bounds on the price of anarchy when all agents are
equally risk averse and have common risk beliefs (∀s ∀i, j ri,s = rj,s = rs).

Lemma 4. Under the CC assumption in the equal server model, the subjective
price of anarchy is equal to the price of anarchy in the game without risk with
adjusted weights w′i,s = wi,srs.

From Lemma 4 and Lemma 1 we conclude that

Lemma 5. Under the CC assumption in the related server model,
POAobj = M̃ · POAneut = O

(
log m

log log mM̃
)
.

For unrelated servers, POAobj = O
((

tM̃ + log m

log(1+log(log m/tM̃))

)
M̃

)
.

3 Bounds on the Price of Anarchy for Related Servers,
Common Risk Beliefs, Individual Risk Aversion, and
Equal Weights

In this section we bound the price of anarchy under the CI assumption where all
the tasks have equal weights , wi = 1. For the rest of this section let xs = xi,s

(common for all agents). Let M ′ = maxs
maxi ri,s

mini ri,s
.

Theorem 3. Under the CI assumption with related servers, where ∀i, wi = 1,
it holds that: 1. POAobj ≤ M̃ and 2. POAsub ≤ M ′.

Let G be a game with individual risk aversion and Gmax the corresponding game
with common risk aversion kmax = maxi ki.
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Lemma 6. POAobj is bounded by POAobj in Gmax.

Proof. First we prove that the objective makespan of the worst Nash equilibrium
in G is bounded by the objective makespan of the worst Nash equilibrium in
Gmax. For this we will need the following 2 claims:

Claim (1). Assume that in an assignment A, agent 1 is playing her best response
on server s1. If the risk aversion of agent 1 is changed to k > k1 then her new
best response (server s2) satisfies xs2 ≤ xs1 and Ws2(A′) ≥ Ws1(A), where A′ is
the same as A after the task i was allocated to s2 . Likewise, her new subjective
delay is not lower than the subjective delay before the change of k1.

Proof (of Claim). If the agent does not want to switch servers after we change
her risk aversion then the claim holds with equality. Therefore, we assume that
the agent has switched positions from server s1 to server s2. Since the agent
didn’t want to switch places before the change of k1 but does want to switch
now, we get

Ws1 (A)(1 + k1xs1 ) ≤ (Ws2(A) + as2w1)(1 + k1xs2) = Ws2 (A
′)(1 + k1xs2)

< Ws2(A
′)(1 + kxs2 ) < Ws1(A)(1 + kxs1).

So we get that 1+kxs2
1+kxs1

<
Ws1 (A)
Ws2 (A′) ≤ 1+k1xs2

1+k1xs1
. We see the there is an inverse

correlation between the risk beliefs ri,s and the objective delay. Now let’s de-
fine f(k) = 1+kxs2

1+kxs1
. Under the assumptions we see that f(k) is monotonically

decreasing and f ′(k) = −xs1+xs2
(1+kxs1 )2 < 0. Therefore, xs1 > xs2 , and Ws1 (A)

Ws2 (A′) < 1
which completes our proof. �	

Claim (2). If we start from a given a Nash equilibrium in G and in each step
we change one agent’s risk aversion ki to kmax and let the agent switch servers
according to the best response. Then all the agents with risk aversion kmax have
no new best response.

Corollary 1. The process of changing the risk aversion ki of the agents to kmax,
one agent at a time (in arbitrary order), and re-adjusting that agent’s best re-
sponse, culminates with a Nash equilibrium.

Proof. By induction on the number of steps.
Basis - In step 0, since this is a Nash equilibrium, all the agents which have

risk aversion kmax are in a best response position.
Now we assume that after n steps, each agent j that has kj = kmax is playing

her best response, and prove that this stays true after step n + 1. Let’s change
agent p’s risk aversion kp to kmax, and let her switch to the server which is her
new best response.

Now look at all the other agents with risk aversion kmax. According to the
induction assumption, before the last agent switched servers they were playing
their best response. If the agent does not switch, nothing has changed and the
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induction claim holds. Now assume that agent p switches from server a to server
b. The agent is playing her best response, so we only have to prove that we didn’t
affect the other agents with risk aversion kmax.

Let’s look at the agents using server a. Their subjective delays are lower
(because of the decrease in the objective delay), so if they were playing their
best response before the switch, they are definitely playing their best response
now. Now look at the agents with risk aversion kmax on server b. Their new
subjective delays are not lower than before but the agent that switched to server
b has the same wi and ki (and of course the same risk beliefs xi,s = xs) , which
means that there is no better server for them either. i.e.., they are still playing
their best response. Now look at an agent with kmax that uses server c �= a, b. The
objective delay for using server b just got higher, so the agent doesn’t want to
move there. The objective delay for using server a got lower, but agent p, which
has the same wi and ki preferred to switch to server b, and b was not better
than c in the last stage, (because the agent was playing her best response). This
means that the agent’s current location is still her best response. �	

We now conclude the proof of Lemma 6. We proved that by starting with any
Nash equilibrium and changing the agents’ risk aversion kj to kmax we arrive at
a Nash equilibrium. Now we show an order of changing the agents risk aversion
such that the Nash equilibrium we arrive at, in Gmax, has objective makespan
at least as high as the Nash equilibrium we started with in G. We do this by
successively choosing an agent j, on the server of highest objective delay, with
kj < kmax.

Let’s look at the agents using the server s with the highest objective delay.
When we change one of the agent’s (agent p) risk aversion, the agent can only
switch to a server in which the objective delay will be at least as high as the
objective delay on s (according to Claim 1). Now we treat 2 cases:

1. Case 1. Agent p does not switch servers. This means that we can change the
risk aversion of all the agents using this server to kmax one by one, and their
best response will be to remain on s. By Claim 2, we can continue in any
order and get a Nash equilibrium with at least this server’s objective delay.

2. Case 2. Agent p chooses to switch to another server s′. We look at the best
possible server the agent wants to switch to. If it contains an agent q with
kq < kmax, then if we changed kq first, agent q would remain on this server.
So we return agent p to her original server and only change agent q’s risk
aversion. We do that to all the agents using s′ - they are still in best response
after their risk aversion changed. Now we move agent p to s′ and continue
in any order and get a Nash equilibrium with at least server s′’s objective.

As we can see from the two cases above, an agent from the original server of
highest objective delay, never switches servers, unless the agent wants to switch
to a new server that all the agents that use it, have the maximal risk aversion
kmax. In this case, after the agent switch servers, all the agents that are assigned
to the new server have the maximal risk aversion, and from Claim 1, we can
see that the server’s objective delay is higher or equal to the objective delay of
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the original server of highest objective delay. In any case, we get an objective
makespan higher or equal to the original Nash equilibrium.

This means that the objective makespan of the worst Nash equilibrium in G is
not larger than the one of the worst Nash equilibrium in Gmax. Therefore, since
they share an objective optimum, and the objective makespan of the optimum
is the same in both games, we get that the objective price of anarchy in G is
bounded by the objective price of anarchy in Gmax. (end of Lemma 6). �	
Corollary 2. POAobj ≤ M̃

Proof. In the related server game with common risk aversion, common risk belief
and equal weights, we have that POAobj ≤ M̃ as in this setting we trivially have
that POAsub = 1. The corollary follows immediately.

We would have liked to use the same technique as in Lemma 6 to bound the
general weighted case. The technique will not work as in the weighted case as
there exists a 2 server counter example to the theorem in the weighted setting.

Lemma 7. POAsub in G is bounded by M ′ · POAsub in Gmax.

Proof. First we prove that the subjective makespan of the worst pure Nash
equilibrium in G, is bounded by the one of the worst pure Nash equilibria in
Gmax. Then we prove that OPTmax, the subjective makespan of the optimal
solution in Gmax is bounded by OPT · M ′. Combining the two give use the
required result.

Claim. The subjective makespan of a pure Nash equilibrium in G, is bounded
by the subjective makespan in Gmax

Proof. The proof is similar to the proof of Lemma 6, but we start with the agent
that experience the highest subjective delay. The only thing to notice is that if
agent p switches servers (after raising her risk aversion), she does so to a server
on which her subjective delay is not lower than her original subjective delay.

Let Q∗ be a subjective optimal assignment in G and Q∗max to be a subjective
optimal assignment in Gmax. For an assignment A, denote by SCsub(A) the
subjective makespan of A in G, and by SCk

sub(A) the subjective makespan in
Gmax. Let us look at the assignment Q∗ under Gmax. Obviously SCk

sub(Q∗) ≥
SCk

sub(Q∗max). Now we prove that SCk
sub(Q∗) ≤ M ′ · SCsub(Q∗). Examining

the subjective delay of agent i in Q∗ under G we get WQ∗
i
(Q∗)(1 + kixQ∗

i
) ≤

SCsub(Q∗). Now examine the agent’s subjective delay when ki = kmax

WQ∗
i
(Q∗)(1 + kixQ∗

i
+ (kmax − ki)xQ∗

i
) ≤ SCsub(Q∗) + WQ∗

i
(Q∗)(kmax − ki)xQ∗

i

≤ SCsub(Q∗) +
SC(Q∗)

1 + kixQ∗
i

(kmax − ki)xQ∗
i

≤ SCsub(Q∗)

�
1 +

(kmax − ki)xQ∗
i

1 + kixQ∗
i

�
≤ SCsub(Q∗)

�
1 + kmaxxQ∗

i

1 + kixQ∗
i

�

≤ SCsub(Q∗)

�
1 + maxi ki maxs xs

1 + mini ki maxs xs

�
= SCsub(Q∗)M ′.



290 A. Fiat and H. Pochter

Where the last inequality holds because the function 1+maxi ki·x
1+mini ki·x is monotonically

increasing. Since the subjective makespan is the maximal subjective delay of an
agent we have that M ′ · SCsub(Q∗) ≥ SCk

sub(Q∗) ≥ SCk
sub(Q∗max) which means

that M ′ · OPT ≥ OPTmax. �	

Corollary 3. As POAsub in G is bounded by 1 it follows that POAsub ≤ M ′.
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Abstract. This paper investigates the computational properties of
quasi-strict equilibrium, an attractive equilibrium refinement proposed
by Harsanyi, which was recently shown to always exist in bimatrix games.
We prove that deciding the existence of a quasi-strict equilibrium in
games with more than two players is NP-complete. We further show
that, in contrast to Nash equilibrium, the support of quasi-strict equi-
librium in zero-sum games is unique and propose a linear program to
compute quasi-strict equilibria in these games. Finally, we prove that
every symmetric multi-player game where each player has two actions at
his disposal contains an efficiently computable quasi-strict equilibrium
which may itself be asymmetric.

1 Introduction

Perhaps the most ubiquitous solution concept in non-cooperative game theory is
Nash equilibrium—a strategy profile that does not permit beneficial unilateral
deviation. One of the main drawbacks of this concept is its potential multiplicity:
While Nash equilibria are guaranteed to exist in finite games, there may be
many of them, which causes uncertainty among the players which one to choose.
For this reason, a number of concepts that single out particularly reasonable
Nash equilibria—so-called equilibrium refinements—have been proposed over the
years.

An important result by Norde et al. [23] has cast doubt upon this strand of
research. Norde et al. [23] have shown that Nash equilibrium can be completely
characterized by utility maximization in one-player games, consistency,1 and ex-
istence. As a consequence, all common equilibrium refinements either violate
consistency or existence. In particular, all refinements that are guaranteed to

� This material is based upon work supported by the Deutsche Forschungsgemeinschaft
under grant BR 2312/3-2.

1 Consistency as introduced by Peleg and Tijs [25] is defined as follows. Let S be a
solution of game G and let G′ be a reduced game where a subset of players are
assumed to invariably play the strategies prescribed by S. A solution concept is
consistent if the solution S′ in which all of the remaining players still play according
to S is a solution of G′.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 291–302, 2008.
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exist such as perfect, proper, and persistent equilibria suffer from inconsistency
while other refinements such as quasi-strict, strong, and coalition-proof equilibria
may not exist. Since consistency is a very intuitive and appealing property, its
failure may be considered more severe than possible non-existence. Harsanyi’s
quasi-strict equilibrium, which refines the Nash equilibrium concept by requiring
that every action in the support yields strictly more payoff than actions not in
the support, has been shown to always exist in bimatrix games [22] and generic
n-player games (and thus in “almost every” game) [12]. Furthermore, Squires
[28] has shown that quasi-strict equilibrium is very attractive from an axiomatic
perspective as it satisfies the Cubitt and Sugden axioms [6], a strengthening of
a similar set of axioms by Samuelson. This result can be interpreted so that
the existence of quasi-strict equilibrium is sufficient to justify the assumption of
common knowledge of rationality. In fact, Quesada [26] even poses the question
whether the existence of quasi-strict equilibrium is sufficient for any reason-
able justification theory. Finally, isolated quasi-strict equilibria satisfy almost
all desirable properties defined in the refinements literature. They are essential,
strongly stable, regular, proper, and strictly perfect [see, e.g., 14, 29, 30].2

In recent years, the computational complexity of a number of equilibrium
refinements in various classes of games such as extensive-form games, conges-
tion games, or graphical games has come under increasing scrutiny [see, e.g.,
11, 19, 20, 27]. In this paper, we study the computational properties of quasi-
strict equilibrium in zero-sum games, general normal-form games, and certain
classes of symmetric or anonymous games. The remainder of the paper is struc-
tured as follows. In the next section, we introduce classes of strategic games and
the solution concepts of Nash equilibrium and quasi-strict equilibrium. Section 3
focuses on two-player games. We show that quasi-strict equilibria of zero-sum
games, unlike Nash equilibria, possess a unique support, and propose linear pro-
grams that characterize the quasi-strict equilibria in non-symmetric and sym-
metric zero-sum games. In Section 4 we turn to games with more than two
players. We first distinguish multi-player games where a quasi-strict equilibrium
is guaranteed to exist and can be found efficiently from those where existence is
not guaranteed. An example of the former class are symmetric games where every
player has two actions. We then move on to show that deciding the existence of
a quasi-strict equilibrium in games with more than two players is NP-complete
in general. This is in contrast to the two-player case, where the decision problem
is trivial due to the existence result by Norde [22].

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game [see, e.g., 17].

2 Using the framework of Peleg and Tijs [25] and Norde et al. [23], quasi-strict equi-
libria could easily be axiomatically characterized by consistency and strict utility
maximization in one-player games.
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Definition 1 (normal-form game). A game in normal-form is a tuple Γ =
(N, (Ai)i∈N , (pi)i∈N ) where N = {1, . . . , n} is a set of players and for each
player i ∈ N , Ai is a nonempty set of actions available to player i, and pi :
(�i∈NAi) → R is a function mapping each action profile of the game ( i.e.,
combination of actions) to a real-valued payoff for player i.

A vector s ∈ �i∈NAi of actions is also called a profile of pure strategies. This
concept can be generalized to (mixed) strategy profiles s ∈ S = �i∈NSi by letting
players randomize over their actions. We have Si denote the set of probability
distributions over player i’s actions, or (mixed) strategies available to player i.
We further write si and s−i, respectively, for the strategy of player i and the
strategy profile for all players but i. For a ∈ Ai, we denote by s(a) the probability
with which player i plays a in strategy profile s. A game with two players is often
called a bimatrix game. A bimatrix game is a zero-sum game if p1(a)+p2(a) = 0
for all a ∈ A.

Our results on symmetric and anonymous games will be based on the taxon-
omy introduced by Brandt et al. [4].3 A common aspect of games in all classes
of the taxonomy is that players cannot, or need not, distinguish between the
other players. A lattice of four classes of symmetric games is then defined by
considering two additional properties: identical payoff functions for all players
and the ability to distinguish oneself from the other players.

Definition 2 (symmetries). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a normal-form
game and A a set of actions such that Ai = A for all i ∈ N . For any permutation
π : N → N of the set of players, let π′ : AN → AN be the permutation of the set
of action profiles given by π′((a1, . . . , an)) = (aπ(1), . . . , aπ(n)). Γ is called

– anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N and all π with π(i) = i,
– symmetric if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N and all π with

π(j) = i,
– self-anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N , and
– self-symmetric if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N .

It is easily verified that the class of self-symmetric games equals the intersection
of symmetric and self-anonymous games, and that both of these are strictly con-
tained in the class of anonymous games. Anonymous multi-player games admit
a compact representation when the number of actions is bounded.

One of the best-known solution concepts in game theory is Nash equilib-
rium [21]. In a Nash equilibrium, no player is able to increase his payoff by
unilaterally changing his strategy.

Definition 3 (Nash equilibrium). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a
normal-form game. A strategy profile s ∈ S is called Nash equilibrium if for
all i ∈ N , a ∈ Ai,

pi(s) ≥ pi(s−i, a).

3 However, the terminology has been adjusted to coincide with that of Daskalakis and
Papadimitriou [7].
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The solution concept of quasi-strict equilibrium proposed by Harsanyi [12] refines
the Nash equilibrium concept by requiring that actions played with positive
probability must yield strictly more payoff than actions played with probability
zero.4

Definition 4 (quasi-strict equilibrium). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be
a normal-form game. A Nash equilibrium s ∈ S is called quasi-strict if for all
i ∈ N and all a, b ∈ Ai with si(a) > 0 and si(b) = 0, pi(s−i, a) > pi(s−i, b).

Quasi-strict equilibrium is a very natural concept in that it requires all best
responses to be played with positive probability.

3 Two-Player Zero-Sum Games

It has been shown by a rather elaborate construction using Brouwer’s fixed
point theorem that quasi-strict equilibrium always exists in two-player games
[22]. Since every quasi-strict equilibrium is also a Nash equilibrium, the problem
of finding a quasi-strict equilibrium is intractable unless P = PPAD [5]. The
same is true for symmetric two-player games, because the symmetrization of
Gale et al. [9] preserves quasi-strictness [15]. For the restricted class of zero-
sum games, however, quasi-strict equilibria, like Nash equilibria, can be found
efficiently by linear programming. In contrast to Nash equilibria, the support of
quasi-strict equilibria in zero-sum games turns out to be unique.

Theorem 1. Quasi-strict equilibria in two-player zero-sum games possess a
unique support and can be computed using the linear program given in Figure 2.

Proof. It is known from the work of Jansen [13] that every bimatrix game with
a convex equilibrium set, and thus every two-player zero-sum game, possesses
a quasi-strict equilibrium. We first establish that the support of a quasi-strict
equilibrium must contain every action that is played with positive probability
in some equilibrium of the game. Assume for contradiction that (s1, s2) is a
quasi-strict equilibrium with value v and a ∈ A1 is an action with s1(a) = 0. It
follows from the definition of quasi-strict equilibrium that p1(a, s2) < v. Now,
if a is in the support of some Nash equilibrium, the exchangeability of equilib-
rium strategies in zero-sum games requires that p1(a, s2) = v, a contradiction.
As a consequence, the support of any quasi-strict equilibrium is unique and con-
sists precisely of those actions that are played with positive probability in some
equilibrium.

In order to compute quasi-strict equilibria, consider the two standard linear
programs for finding the minimax strategies for player 1 and 2, respectively,
given in Figure 1 [see, e.g., 17]. It is well-known from the minimax theorem [31],
and also follows from LP duality, that the value v of the game is identical and

4 Harsanyi originally referred to quasi-strict equilibrium as “quasi-strong”. However,
this term has been dropped to distinguish the concept from Aumann’s strong equi-
librium [1].
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maximize v
subject to
�

a∈A1
s1(a) p(a, b) ≥ v ∀b ∈ A2

s1(a) ≥ 0 ∀a ∈ A1�
a∈A1

s1(a) = 1

minimize v
subject to
�

b∈A2
s2(j) p(a, b) ≤ v ∀a ∈ A1

s2(b) ≥ 0 ∀b ∈ A2�
b∈A2

s2(b) = 1

Fig. 1. Primal/dual linear programs for computing minimax strategies in zero-sum
games

maximize ε
subject to
�

b∈A2
s2(b) p(a, b) ≤ v ∀a ∈ A1

s2(b) ≥ 0 ∀b ∈ A2�
b∈A2

s2(b) = 1

s1(a) + v −
�

b∈A2
s2(b) p(a, b) − ε ≥ 0 ∀a ∈ A1

�
a∈A1

s1(a) p(a, b) ≥ v ∀b ∈ A2

s1(a) ≥ 0 ∀a ∈ A1�
a∈A1

s1(a) = 1

s2(b) + v −
�

a∈A1
s1(a) p(a, b) − ε ≥ 0 ∀b ∈ A2

Fig. 2. Linear program for computing quasi-strict equilibria in zero-sum games

unique in both cases. We can thus construct a linear feasibility program that
computes equilibrium strategies for both players by simply merging the sets of
constraints and omitting the minimization and maximization objectives. Now,
quasi-strict equilibrium requires that action a yields strictly more payoff than
action b if and only if a is in the support and b is not. For a zero-sum game
with value v this can be achieved by requiring that for every action a ∈ A1
of player 1, s1(a) + v >

∑
b∈A2

s2(a) p(a, b). If s1(a) = 0 (a is not in the
support), action a yields strictly less payoff than the game’s value. If, on other
hand, s1(a) > 0 (a is in the support), these constraints do not impose any
restrictions if the strategy profile is indeed an equilibrium with value v, which is
ensured by the remaining constraints. Since strict inequalities are not allowed in
linear programs, we introduce another variable ε to be maximized. Due to the
existence of at least one quasi-strict equilibrium, we will always find a solution
with positive ε, turning the weak inequality into a strict one. The resulting linear
program is given in Figure 2. ��

We proceed by showing that every symmetric zero-sum game contains a sym-
metric quasi-strict equilibrium. This result should be contrasted to Theorem 3
in Section 4 which establishes that this is not the case for symmetric two-player
games in general.

Theorem 2. Every symmetric two-player zero-sum game contains a symmetric
quasi-strict equilibrium that can be computed using the linear program given in
Figure 3.
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maximize ε
subject to
�

b∈A2
s(b) p(a, b) ≤ 0 ∀a ∈ A1

s(b) ≥ 0 ∀b ∈ A2�
b∈A2

s(b) = 1

s(a) −
�

b∈A2
s(b) p(a, b) − ε ≥ 0 ∀a ∈ A1

Fig. 3. Linear program for computing quasi-strict equilibria in symmetric zero-sum
games

Proof. According to Theorem 1, the support of any quasi-strict equilibrium con-
tains all actions that are played with positive probability in some equilibrium.
Clearly, in symmetric games, these actions coincide for both players and any min-
imax probability distribution over these actions constitutes a symmetric equilib-
rium. Since both players can enforce their minimax value using the same strategy
in a symmetric zero-sum game, the value of the game has to be zero. Given that
the equilibrium strategies (s, s) have to be symmetric and that the value of the
game is known, the linear program in Figure 2 can be significantly simplified,
resulting in the linear program given in Figure 3. ��

The linear program in Figure 3 can be used to directly compute the essential set
of a dominance graph. The essential set is defined as the set of actions played
with positive probability in some Nash equilibrium of the zero-sum game given
by the (symmetric) adjacency matrix of a directed graph [8]. It follows from
Theorem 1 that this is exactly the unique support of all quasi-strict equilibria.

4 Multi-Player Games

In games with three or more players the existence of a quasi-strict equilibrium is
no longer guaranteed. However, there are very few examples in the literature for
games without quasi-strict equilibria.5. An important question is of course which
natural classes of games always contain a quasi-strict equilibrium. It has already
been shown that this is not the case for the class of single-winner games which
require that all outcomes are permutations of the payoff vector (1, 0, . . . , 0) [3].

In the following, we will analyze whether symmetric and anonymous games
always admit a quasi-strict equilibrium. It turns out that self-anonymous games,
and thus also anonymous games, need not possess a quasi-strict equilibrium. For
this, consider the following three-player single-loser game where players Alice,
Bob, and Charlie independently and simultaneously are to decide whether to
raise their hand or not (for instance, in order to decide who has to take out the
garbage). Alice loses if exactly one player raises his hand, whereas Bob loses if
exactly two players raise their hands, and Charlie loses if either all or no players
raise their hand. The matrix form of this self-anonymous game is depicted in
5 To the best of our knowledge, there are four examples, all of which involve three

players with two actions each [29, 16, 6, 3].
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Figure 4. The game exhibits some peculiar phenomena, some of which may be
attributed to the absence of quasi-strict equilibrium. For example, the security
level of all players is 0.5 and the expected payoff in the only Nash equilibrium
(which has Alice raise her hand and Charlie randomize with equal probability) is
(0.5, 0.5, 1). However, the minimax strategies of Alice and Bob are different from
their equilibrium strategies, i.e., they can guarantee their equilibrium payoff by
not playing their respective equilibrium strategies.6 Furthermore, the unique
equilibrium is not quasi-strict, i.e., Alice and Bob could as well play any other
action without jeopardizing their payoff.

(1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1)

(0, 1, 1) (1, 0, 1) (1, 0, 1) (1, 1, 0)

Fig. 4. Self-anonymous game without a quasi-strict equilibrium. Players 1, 2, and 3
choose rows, columns, and matrices, respectively. In the only Nash equilibrium of the
game player 1 plays his second action, player 2 plays his first action, and player 3
randomizes over both his actions.

For symmetric and self-symmetric games, on the other hand, the picture ap-
pears to be different. Self-symmmetric games are a subclass of common-payoff
games, where the payoff of all players is identical in every outcome. Starting from
an outcome with maximum payoff p for all players, a quasi-strict equilibrium can
be found by iteratively adding actions to the support by which a player, and thus
all players, can obtain the same payoff p. We will extend this result by showing
that the existence of quasi-strict equilibria also holds for symmetric games where
each player has only two actions at his disposal. It follows from a theorem by
Nash [21] that every symmetric game has a symmetric Nash equilibrium, i.e.,
a Nash equilibrium where all players play the same strategy. Perhaps surpris-
ingly, it may be the case that all quasi-strict equilibria of a symmetric game are
asymmetric.

Theorem 3. Every symmetric game with two actions for each player has a
quasi-strict equilibrium. Such an equilibrium can be found in polynomial time.

Proof. Let Γ = (N, {0, 1}N , (pi)i∈N ) be a symmetric game. By Definition 2,
there exist 2(n − 1) numbers pm� ∈ R such that for all i, pi(s) = pm� whenever
si = � and m is the number of players playing action 1 in s−i. We can fur-
ther assume w.l.o.g. that p00 = p01 and pn−1,0 ≥ pn−1,1, and that pm0 �= pm1 for
some m. To see this, observe that Γ must possess a symmetric equilibrium s [21],
which we can assume to be the pure strategy profile where all players play ac-
tion 0 with probability 1. If all players played both of their actions with positive
probability, this would directly imply quasi-strictness of s. Now, if one of the for-
mer two equations was not satisfied, then one of the two symmetric pure strategy

6 Similar phenomena were also observed by Aumann [2].
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profiles would be a quasi-strict equilibrium. If the latter condition were not to
hold, there would exist a quasi-strict equilibrium where all players randomize
between their actions.

We will now distinguish two different cases according to the relationship be-
tween pm0 and pm1 for the different values of m. First assume that there exists m
such that pm0 > pm1 and for all m′ < m, pm′0 = pm′1. We claim that in this case
any strategy profile s in which m − 1 players randomize between both actions
and the remaining n − m + 1 players play action 0 is a quasi-strict equilibrium.
To see this, consider first any player i ∈ N who randomizes between both of his
actions. It is easily verified that for every action profile a which is played with
positive probability in s−i and in which exactly m′ players play action 1, it must
hold that pm′0 = pm′1. On the other hand, consider any player i ∈ N who plays
action 0 with probability 1. Then, for any action profile a which is played with
positive probability in s−i and in which exactly m′ players play action 1, it must
hold that pm′0 ≥ pm′1, and there exists one such action profile for which the
inequality is strict.

Now assume that there exists m such that pm0 < pm1, and choose m′ such
that for all m′′, m < m′′ < m′, pm′′0 = pm′′1, and either pm′0 > pm′1 or m′ = n.
We claim that in this case any strategy profile where n−m′ players play action 0,
m players play action 1, and the remaining m′ − m players randomize between
both of their actions is a quasi-strict equilibrium of Γ . For this, again consider
any player i ∈ N who plays both actions with positive probability. It is easily
verified that for every action profile a which is played with positive probability in
s−i and in which exactly m′ players play action 1, it must hold that pm′0 = pm′1.
On the other hand, for any player i ∈ N who plays action 0 with probability 1
and any action profile a which is played with positive probability in s−i and
in which exactly m′ players play action 1, it must hold that pm′0 ≥ pm′1, and
there exists one such action profile for which the inequality is strict. Finally, for
any player i ∈ N who plays action 1 with probability 1 and any action profile a
which is played with positive probability in s−i and in which exactly m′ players
play action 1, it must hold that pm′0 ≤ pm′1, and there exists one such action
profile for which the inequality is strict.

Since a symmetric equilibrium of a symmetric game with a constant number
of actions can be found in polynomial time [24], and since the proof of the first
part of the theorem is constructive, the second part follows immediately. ��

We leave it as an open problem whether all symmetric games contain a quasi-
strict equilibrium. If the symmetrization procedure due to Gale et al. [9] can be
extended to multi-player games while still preserving quasi-strictness, a counter-
example could be constructed from one of the known examples of games without
quasi-strict equilibria. Of course, in light of Theorem 3, the number of actions
per player in such a counter-example has to be greater than two (and may very
well be substantially greater than that).

We conclude by showing that deciding whether a given normal-form game
contains a quasi-strict equilibrium is NP-complete.
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b1 · · · b|V | b0

a1 (0, 0, 0)

... (mij, eij , mij)i,j∈V

...

a|V | (0, 0, 0)

a0 (0, 0, 0) · · · (0, 0, 0) (0, 1, 0)

c1

b1 · · · b|V | b0

a1 (0, 0, K) · · · (0, 0, K) (0, 0, 0)

...
...

. . .
...

...

a|V | (0, 0, K) · · · (0, 0, K) (0, 0, 0)

a0 (1, 0, 0) · · · (1, 0, 0) (0, 0, 0)

c2

Fig. 5. Three-player game Γ used in the proof of Theorem 4. Players 1, 2, and 3 choose
rows columns, and matrices, respectively.

Theorem 4. Deciding whether a game in normal-form possesses a quasi-strict
equilibrium is NP-complete, even if there are just three players and a constant
number of payoffs.

Proof. Membership in NP is obvious. We can simply guess a strategy profile and
verify that it is an equilibrium and that the payoff is strictly lower for all actions
that are not played.

For hardness, we provide a reduction from the NP-complete problem CLIQUE
[see, e.g., 10] reminiscent to a construction used by McLennan and Tourky [18]
to give simplified NP-hardness proofs for various problems related to Nash equi-
libria in bimatrix games. Given an undirected graph G = (V, E) and a positive
integer k ≤ |E|, CLIQUE asks whether G contains a clique of size at least k, i.e.,
a subset V ′ ⊆ V such that |V ′| ≥ k and for all v, w ∈ V ′, (v, w) ∈ E. Given a par-
ticular CLIQUE instance ((V, E), k) with V = {1, . . . , m}, we construct a game Γ
with three players, actions A1 = { ai | i ∈ V } ∪ {a0}, A2 = { bi | i ∈ V } ∪ {b0}
and A3 = {c1, c2}, and payoffs pi illustrated in Figure 5. If player 3 plays c1 and
players 1 and 2 play ai and bj , respectively, for i, j ∈ V , payoffs are given by a
matrix (mij)i,j∈V defined according to G, and by the identity matrix (eij)i,j∈V ,
where

mij =

⎧
⎪⎨

⎪⎩

1 if (i, j) ∈ E

0 if i = j

−1 otherwise
and eij =

{
1 if i = j

0 otherwise.

If player 3 instead plays c2, he obtains a payoff of K = (2k − 3)/2k. We claim
that Γ possesses a quasi-strict equilibrium if and only if there exists a clique of
size at least k in G.

Assume there exists a clique V ′ ⊆ V , |V ′| ≥ k, and consider the strategy
profile s with s(c1) = 1, and s(ai) = s(bi) = 1/|V ′| if i ∈ V ′ and s(ai) = s(bi) = 0
otherwise. By construction of Γ , for all i ∈ V ∪{0}, p2(s−2, bi) < p2(s) whenever
s(ai) = 0. Furthermore, by maximality of V ′, p1(s−1, ai) < p1(s) for all i /∈ V ′.
Finally, p3(s) = (k − 1)/k > (2k − 3)/2k = p3(s−3, c2). Thus, s is a quasi-strict
equilibrium of Γ .

Now assume for contradiction that there is no clique of size at least k in G,
and that s is a quasi-strict equilibrium of Γ . In equilibrium, for all b, b′ ∈ A2,
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we must have p2(s−2, b) = p2(s−2, b
′) whenever s(b) > 0 and s(b′) > 0, and

thus, for all a, a′ ∈ A1, s(a) = s(a′) whenever s(a) > 0 and s(a′) > 0. As a
consequence, for s to be quasi-strict, s(bi) > 0 whenever s(ai) for all i ∈ V ∪{0}.
First consider the case where s(c1) > 0. If s(a0) = s(b0) = 1, s cannot be quasi-
strict for player 1. If on the other hand s(ai) > 0 or s(bi) > 0 for some i ∈ V ,
then there would have to be a set V ′ ⊆ V , |V ′| ≥ k, such that for all i ∈ V
with s(ai) > 0 and all j ∈ V ′, j �= i, p1(ai, bj , c1) = 1. By construction of Γ , V ′

would be a clique of size at least k in G, a contradiction. Now consider the case
where s(c2) = 1. If s(a0) = 1 or s(b0) = 1, s is not quasi-strict for player 3. If, on
the other hand, s(ai) > 0 and s(bj) > 0 for some i, j ∈ V , then player 1 could
deviate to a0 to get a higher payoff. This completes the proof. ��

It follows that the problem of finding a quasi-strict equilibrium in games with
more than two players is NP-hard (under polynomial-time Turing reductions),
whereas no such statement is known for Nash equilibrium.

5 Conclusion

We investigated the computational properties of an attractive equilibrium refine-
ment known as quasi-strict equilibrium. It turned out that quasi-strict equilibria
in zero-sum games have a unique support and can be computed efficiently via
linear programming. In games with more than two players, finding a quasi-strict
equilibrium is NP-hard.

As pointed out in Section 1, classes of games that always admit a quasi-strict
equilibrium, such as bimatrix games, are of vital importance to justify rational
play based on elementary assumptions. We specifically looked at symmetric and
anonymous games and found that self-anonymous games (and thus also anony-
mous games) may not contain a quasi-strict equilibrium while symmetric games
with two actions for each player always possess a quasi-strict equilibrium. Other
classes of multi-player games for which this question might be of interest include
unilaterally competitive games, potential games, single-winner games where all
players have positive security levels, and graphical games with bounded neigh-
borhood.
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Abstract. We consider the solution concept of stochastic stability, and propose
the price of stochastic anarchy as an alternative to the price of (Nash) anarchy
for quantifying the cost of selfishness and lack of coordination in games. As a
solution concept, the Nash equilibrium has disadvantages that the set of stochas-
tically stable states of a game avoid: unlike Nash equilibria, stochastically stable
states are the result of natural dynamics of computationally bounded and decen-
tralized agents, and are resilient to small perturbations from ideal play. The price
of stochastic anarchy can be viewed as a smoothed analysis of the price of an-
archy, distinguishing equilibria that are resilient to noise from those that are not.
To illustrate the utility of stochastic stability, we study the load balancing game
on unrelated machines. This game has an unboundedly large price of Nash anar-
chy even when restricted to two players and two machines. We show that in the
two player case, the price of stochastic anarchy is 2, and that even in the general
case, the price of stochastic anarchy is bounded. We conjecture that the price of
stochastic anarchy is O(m), matching the price of strong Nash anarchy without
requiring player coordination. We expect that stochastic stability will be useful in
understanding the relative stability of Nash equilibria in other games where the
worst equilibria seem to be inherently brittle.

1 Introduction

Quantifying the price of (Nash) anarchy is one of the major lines of research in algorith-
mic game theory. Indeed, one fourth of the authoritative algorithmic game theory text
edited by Nisan et al. [20] is wholly dedicated to this topic. But the Nash equilibrium
solution concept has been widely criticized [15,4,9,10]. First, it is a solution charac-
terization without a road map for how players might arrive at such a solution. Second,
at Nash equilibria, players are unrealistically assumed to be perfectly rational, fully
informed, and infallible. Third, computing Nash equilibria is PPAD-hard for even 2-
player, n-action games [6], and it is therefore considered very unlikely that there exists
a polynomial time algorithm to compute a Nash equilibrium even in a centralized man-
ner. Thus, it is unrealistic to assume that selfish agents in general games will converge
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precisely to the Nash equilibria of the game, or that they will necessarily converge to
anything at all. In addition, the price of Nash anarchy metric comes with its own weak-
nesses; it blindly uses the worst case over all Nash equilibria, despite the fact that some
equilibria are more resilient than others to perturbations in play.

Considering these drawbacks, computer scientists have paid relatively little attention
to if or how Nash equilibria will in fact be reached, and even less to the question of
which Nash equilibria are more likely to be played in the event players do converge to
Nash equilibria. To address these issues, we employ the stochastic stability framework
from evolutionary game theory to study simple dynamics of computationally efficient,
imperfect agents. Rather than defining a-priori states such as Nash equilibria, which
might not be reachable by natural dynamics, the stochastic stability framework allows
us to define a natural dynamic, and from it derive the stable states. We define the price
of stochastic anarchy to be the ratio of the worst stochastically stable solution to the
optimal solution. The stochastically stable states of a game may, but do not necessar-
ily, contain all Nash equilibria of the game, and so the price of stochastic anarchy may
be strictly better than the price of Nash anarchy. In games for which the stochastically
stable states are a subset of the Nash equilibria, studying the ratio of the worst stochas-
tically stable state to the optimal state can be viewed as a smoothed analysis of the
price of anarchy, distinguishing Nash equilibria that are brittle to small perturbations in
perfect play from those that are resilient to noise.

The evolutionary game theory literature on stochastic stability studies n-player games
that are played repeatedly. In each round, each player observes her action and its out-
come, and then uses simple rules to select her action for the next round based only on
her size-restricted memory of the past rounds. In any round, players have a small prob-
ability of deviating from their prescribed decision rules. The state of the game is the
contents of the memories of all the players. The stochastically stable states in such a
game are the states with non-zero probability in the limit of this random process, as the
probability of error approaches zero. The play dynamics we employ in this paper are
the imitation dynamics studied by Josephson and Matros [16]. Under these dynamics,
each player imitates the strategy that was most successful for her in recent memory.

To illustrate the utility of stochastic stability, we study the price of stochastic anarchy
of the unrelated load balancing game [2,1,11]. To our knowledge, we are the first to
quantify the loss of efficiency in any system when the players are in stochastically
stable equilibria. In the load balancing game on unrelated machines, even with only
two players and two machines, there are Nash equilibria with arbitrarily high cost, and
so the price of Nash anarchy is unbounded. We show that these equilibria are inherently
brittle, and that for two players and two machines, the price of stochastic anarchy is 2.
This result matches the strong price of anarchy [1] without requiring coordination (at
strong Nash equilibria, players have the ability to coordinate by forming coalitions).
We further show that in the general n-player, m-machine game, the price of stochastic
anarchy is bounded. More precisely the price of stochastic anarchy is upper bounded by
the nmth n-step Fibonacci number. We also show that the price of stochastic anarchy
is at least m + 1.

Our work provides new insight into the equilibria of the load balancing game. Un-
like some previous work on dynamics for games, our work does not seek to propose
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practical dynamics with fast convergence; rather, we use simple dynamics as a tool for
understanding the inherent relative stability of equilibria. Instead of relying on player
coordination to avoid the Nash equilibria with unbounded cost (as is done in the study
of strong equilibria), we show that these bad equilibria are inherently unstable in the
face of occasional uncoordinated mistakes. We conjecture that the price of stochastic
anarchy is closer to the linear lower bound, paralleling the price of strong anarchy.

In light of our results, we believe the techniques in this paper will be useful for
understanding the relative stability of Nash equilibria in other games for which the worst
equilibria are brittle. Indeed, for a variety of games in the price of anarchy literature,
the worst Nash equilibria of the lower bound instances are not stochastically stable.

1.1 Related Work

We give a brief survey of related work in three areas: alternatives to Nash equilibria as
a solution concept, stochastic stability, and the unrelated load balancing game.

Recently, several papers have noted that the Nash equilibrium is not always a suitable
solution concept for computationally bounded agents playing in a repeated game, and
have proposed alternatives. Goemans et al. [15] study players who sequentially play
myopic best responses, and quantify the price of sinking that results from such play.
Fabrikant and Papadimitriou [9] propose a model in which agents play restricted finite
automata. Blum et al. [4,3] assume only that players’ action histories satisfy a property
called no regret, and show that for many games, the resulting social costs are no worse
than those guaranteed by price of anarchy results.

Although we believe this to be the first work studying stochastic stability in the com-
puter science literature, computer scientists have recently employed other tools from
evolutionary game theory. Fisher and Vöcking [13] show that under replicator dynam-
ics in the routing game studied by Roughgarden and Tardos [22], players converge to
Nash. Fisher et al. [12] went on to show that using a simultaneous adaptive sampling
method, play converges quickly to a Nash equilibrium. For a thorough survey of algo-
rithmic results that have employed or studied other evolutionary game theory techniques
and concepts, see Suri [23].

Stochastic stability and its adaptive learning model as studied in this paper were first
defined by Foster and Young [14], and differ from the standard game theory solution
concept of evolutionarily stable strategies (ESS). ESS are a refinement of Nash equilib-
ria, and so do not always exist, and are not necessarily associated with a natural play
dynamic. In contrast, a game always has stochastically stable states that result (by con-
struction) from natural dynamics. In addition, ESS are resilient only to single shocks,
whereas stochastically stable states are resilient to persistent noise.

Stochastic stability has been widely studied in the economics literature (see, for ex-
ample, [24,17,19,5,7,21,16]). We discuss in Sect. 2 concepts from this body of literature
that are relevant to our results. We recommend Young [25] for a readable introduction
to stochastic stability, its adaptive learning model, and some related results. Our work
differs from prior work in stochastic stability in that it is the first to quantify the social
utility of stochastically stable states, the price of stochastic anarchy.

We also note a connection between the stochastically stable states of the game and
the sinks of a game, recently introduced by Goemans et al. as another way of studying
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the dynamics of computationally bounded agents. In particular, the stochastically stable
states of a game under the play dynamics we consider correspond to a subset of the
sink equilibria, and so provide a framework for identifying the stable sink equilibria.
In potential games, the stochastically stable states of the play dynamics we consider
correspond to a subset of the Nash equilibria, thus providing a method for identifying
which of these equilibria are stable.

In this paper, we study the price of stochastic anarchy in load balancing. Even-Dar
et al. [8] show that when playing the load balancing game on unrelated machines, any
turn-taking improvement dynamics converge to Nash. Andelman et al. [1] observe that
the price of Nash anarchy in this game is unbounded and they show that the strong price
of anarchy is linear in the number of machines. Fiat et al. [11] tighten their upper bound
to match their lower bound at a strong price of anarchy of exactly m.

2 Model and Background

We now formalize (from Young [24]) the adaptive play model and the definition of
stochastic stability. We then formalize the play dynamics that we consider. We also
provide in this section the results from the stochastic stability literature that we will
later use to obtain our results.

2.1 Adaptive Play and Stochastic Stability

Let G = (X, π) be a game with n players, where X =
∏n

j=1 Xi represents the strategy
sets Xi for each player i, and π =

∏n
j=1 πi represents the payoff functions πi : X → R

for each player. G is played repeatedly for successive time periods t = 1, 2, . . ., and at
each time step t, player i plays some action st

i ∈ Xi. The collection of all players’
actions at time t defines a play profile St = (St

1, S
t
2, . . . , S

t
n). We wish to model com-

putationally efficient agents, and so we imagine that each agent has some finite memory
of size z, and that after time step t, all players remember a history consisting of a se-
quence of play profiles ht = (St−z+1, St−z+2, . . . , St) ∈ (X)z .

We assume that each player i has some efficiently computable function pi : (X)z ×
Xi → R that, given a particular history, induces a sampleable probability distribution
over actions (for all players i and histories h,

∑
a∈Xi

pi(h, a) = 1). We write p for∏
i pi. We wish to model imperfect agents who make mistakes, and so we imagine that

at time t each player i plays according to pi with probability 1− ε, and with probability
ε plays some action in Xi uniformly at random.1 That is, for all players i, for all actions
a ∈ Xi, Pr[st

i = a] = (1 − ε)pi(ht, a) + ε
|Xi| . The dynamics we have described define

a Markov process PG,p,ε with finite state space H = (X)z corresponding to the finite
histories. For notational simplicity, we will write the Markov process as P ε when there
is no ambiguity.

The potential successors of a history can be obtained by observing a new play profile,
and “forgetting” the least recent play profile in the current history.

1 The mistake probabilities need not be uniform random—all that we require is that the distrib-
ution has support on all actions in Xi.
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Definition 2.1. For any S′ ∈ X , A history h′ = (St−z+2, St−z+3, . . . , St, S′) is a
successor of history ht = (St−z+1, St−z+2, . . . , St).

The Markov process P ε has transition probability pε
h,h′ of moving from state h =

(S1, . . . , Sz) to state h′ = (T 1, . . . , T z):

pε
h,h′ =

{∏n
i=1(1 − ε) pi(h, T z

i ) + ε
|Xi| if h′ is a successor of h;

0 otherwise.

We will refer to P 0 as the unperturbed Markov process. Note that for ε > 0, pε
h,h′ >

0 for every history h and successor h′, and that for any two histories h and ĥ not nec-
essarily a successor of h, there is a series of z histories h1, . . . , hz such that h1 = h,
hz = ĥ, and for all 1 < i ≤ z, hi is a successor of hi−1. Thus there is positive proba-
bility of moving between any h and any ĥ in z steps, and so P ε is irreducible. Similarly,
there is a positive probability of moving between any h and any ĥ in z +1 steps, and so
P ε is aperiodic. Therefore, P ε has a unique stationary distribution με.

The stochastically stable states of a particular game and player dynamics are the
states with nonzero probability in the limit of the stationary distribution.

Definition 2.2 (Foster and Young [14]). A state h is stochastically stable relative to
P ε if limε→0 με(h) > 0.

Intuitively, we should expect a process P ε to spend almost all of its time at its stochas-
tically stable states when ε is small.

When a player i plays at random rather than according to pi, we call this a mistake.

Definition 2.3 (Young [24]). Suppose h′ = (St−z+1, . . . , St) is a successor of h. A
mistake in the transition between h and h′ is any element St

i such that pi(h, St
i ) = 0.

Note that mistakes occur with probability ≤ ε.

We can characterize the number of mistakes required to get from one history to another.

Definition 2.4 (Young [24]). For any two states h, h′, the resistance r(h, h′) is the
minimum total number of mistakes involved in the transition h → h′ if h′ is a successor
of h. If h′ is not a successor of h, then r(h, h′) = ∞.

Note that the transitions of zero resistance are exactly those that occur with positive
probability in the unperturbed Markov process P 0.

Definition 2.5. We refer to the sinks of P 0 as recurrent classes. In other words, a recur-
rent class of P 0 is a set of states C ⊆ H such that any state in C is reachable from any
other state in C and no state outside C is accessible from any state inside C.

We may view the state space H as the vertex set of a directed graph, with an edge from
h to h′ if h′ is a successor of h, with edge weight r(h, h′).

Observation 2.6. We observe that the recurrent classes H1, H2, . . ., where each Hi ⊆
H , have the following properties:
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1. From every vertex h ∈ H , there is a path of cost 0 to one of the recurrent classes.
2. For each Hi and for every pair of vertices h, h′ ∈ Hi, there is a path of cost 0

between h and h′.
3. For each Hi, every edge (h, h′) with h ∈ Hi, h

′ �∈ Hi has positive cost.

Let ri,j denote the cost of the shortest path between Hi and Hj in the graph described
above. We now consider the complete directed graph G with vertex set {H1, H2, . . .} in
which the edge (Hi, Hj) has weight ri,j . Let Ti be a directed minimum-weight span-
ning in-tree of G rooted at vertex Hi. (An in-tree is a directed tree where each edge is
oriented toward the root.) The stochastic potential of Hi is defined to be the sum of the
edge weights in Ti.

Young proves the following theorem characterizing stochastically stable states:

Theorem 2.7 (Young [24]). In any n-player game G with finite strategy sets and any
set of action distributions p, the stochastically stable states of PG,p,ε are the recurrent
classes of minimum stochastic potential.

2.2 Imitation Dynamics

In this paper, we study agents who behave according to a slight modification of the
imitation dynamics introduced by Josephson and Matros [16]. (We note that this modi-
fication is of no consequence to the results of Josephson and Matros [16] that we present
below.) Player i using imitation dynamics parameterized by σ ∈ N chooses his action
at time t + 1 according to the following mechanism:

1. Player i selects a set Y of σ play profiles uniformly at random from the z profiles
in history ht.

2. For each play profile S ∈ Y , i recalls the payoff πi(S) he obtained from playing
action Si.

3. Player i plays the action among these that corresponds to his highest payoff; that
is, he plays the ith component of argmaxS∈Y πi(S). In the case of ties, he plays a
highest-payoff action at random.

The value σ is a parameter of the dynamics that is taken to be n ≤ σ ≤ z/2. These
dynamics can be interpreted as modeling a situation in which at each time step, players
are chosen at random from a pool of identical players, who each played in a subset of the
last z rounds. The players are computationally simple, and so do not counterspeculate
the actions of their opponents, instead playing the action that has worked the best for
them in recent memory.

We will say that a history h is monomorphic if the same action profile S has been
repeated for the last z rounds: h = (S, S, . . . , S). Josephson and Matros [16] prove the
following useful fact:

Proposition 2.8. A set of states is a recurrent class of the imitation dynamics if and
only if it is a singleton set consisting of a monomorphic state.

Since the stochastically stable states are a subset of the recurrent classes, we can asso-
ciate with each stochastically stable state h = (S, . . . , S) the unique action profile S it
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contains. This allows us to now define the price of stochastic anarchy with respect to
imitation dynamics. For brevity, we will refer to this throughout the paper as simply the
price of stochastic anarchy.

Definition 2.9. Given a game G = (X, π) with a social cost function γ : X → R, the
price of stochastic anarchy of G is equal to max γ(S)

γ(OPT) , where OPT is the play profile
that minimizes γ and the max is taken over all play profiles S such that h = (S, . . . , S)
is stochastically stable.

Given a game G, we define the better response graph of G: The set of vertices cor-
responds to the set of action profiles of G, and there is an edge between two action
profiles S and S′ if and only if there exists a player i such that S′ differs from S only
in player i’s action, and player i does not decrease his utility by unilaterally deviating
from Si to S′i. Josephson and Matros [16] prove the following relationship between this
better response graph and the stochastically stable states of a game:

Theorem 2.10. If V is the set of stochastically stable states under imitation dynamics,
then V = {S : (S, . . . , S) ∈ V} is either a strongly connected component of the better
response graph of G, or a union of strongly connected components.

Goemans et al. [15] introduce the notion of sink equilibria and a corresponding notion
of the “price of sinking”, which is the ratio of the social welfare of the worst sink equi-
librium to that of the social optimum. We note that the strongly connected components
of the better response graph of G correspond to the sink equilibria (under sequential
better-response play) of G, and so Theorem 2.10 implies that the stochastically sta-
ble states under imitation dynamics correspond to a subset of the sinks of the better
response graph of G, and we get the following corollary:

Corollary 2.11. The price of stochastic anarchy of a game G under imitation dynamics
is at most the price of sinking of G.

2.3 Load Balancing: Game Definition and Price of Nash Anarchy

An instance of the load balancing game on unrelated machines is defined by a set of
n players and m machines M = {M1, . . . , Mm}. The action space for each player
is Xi = M . Each player i has some cost ci,j on machine j. Denote the cost of ma-
chine Mj for action profile S by Cj(S) =

∑
{i|Si=Mj} ci,j . Each player i has util-

ity function πi(S) = −Csi(S). The social cost of an action profile S is γ(S) =
maxj∈M Cj(S). We define OPT to be the action profile that minimizes social cost:
OPT = argminS∈X γ(S). Without loss of generality, we will always normalize so
that γ(OPT) = 1.

The coordination ratio of a game (also known as the price of anarchy) was introduced
by Koutsoupias and Papadimitriou [18], and is intended to quantify the loss of efficiency
due to selfishness and the lack of coordination among rational agents. Given a game G
and a social cost function γ, it is simple to quantify the OPT game state S: OPT =
argminγ(S). It is less clear how to model rational selfish agents. In most prior work
it has been assumed that selfish agents play according to a Nash equilibrium, and the
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price of anarchy has been defined as the ratio of the cost of the worst (pure strategy)
Nash state to OPT. In this paper, we refer to this measure as the price of Nash anarchy,
to distinguish it from the price of stochastic anarchy, which we defined in Sect. 2.2.

Definition 2.12. For a game G with a set of Nash equilibrium states E , the price of
(Nash) anarchy is maxS∈E

γ(S)
γ(OPT) .

We show here that even with only two players and two machines, the load balancing
game on unrelated machines has a price of Nash anarchy that is unbounded by any
function of m and n. Consider the two-player, two-machine game with c1,1 = c2,2 = 1
and c1,2 = c2,1 = 1/δ, for some 0 < δ < 1. Then the play profile OPT = (M1, M2)
is a Nash equilibrium with cost 1. However, observe that the profile S∗ = (M2, M1)
is also a Nash equilibrium, with cost 1/δ (since by deviating, players can only increase
their cost from 1/δ to 1/δ + 1). The price of anarchy of the load balancing game is
therefore 1/δ, which can be unboundedly large, although m = n = 2.

3 Upper Bound on Price of Stochastic Anarchy

The load balancing game is an ordinal potential game [8], and so the sinks of the better-
response graph correspond to the pure strategy Nash equilibria. We therefore have by
Corollary 2.11 that the stochastically stable states are a subset of the pure strategy Nash
equilibria of the game, and the price of stochastic anarchy is at most the price of anarchy.
We have noted that even in the two-person, two-machine load balancing game, the price
of anarchy is unbounded (even for pure strategy equilibria). In this section we give upper
bounds on the price of stochastic anarchy for both the two-player two-machine case and
the general n-player m-machine game.

Theorem 3.1. In the two-player, two-machine load balancing game on unrelated ma-
chines, the price of stochastic anarchy is 2.

The proof of the above theorem can be found in the full version of this paper.

Theorem 3.2. The general load balancing game on unrelated machines has price of
stochastic anarchy bounded by a function Ψ depending only on n and m, and Ψ(n, m)≤
m · F(n)(nm + 1), where F(n)(i) denotes the ith n-step Fibonacci number.2

To prove this upper bound, we show that any solution worse than our upper bound can-
not be stochastically stable. To show this impossibility, we take any arbitrary solution
worse than our upper bound and show that there must always be a minimum cost in-tree
in G rooted at a different solution that has strictly less cost than the minimum cost in-
tree rooted at that solution. We then apply Proposition 2.8 and Theorem 2.7. The proof
proceeds by a series of lemmas.

Definition 3.3. For any monomorphic Nash state h = (S, . . . , S), let the Nash Graph
of h be a directed graph with vertex set M and directed edges (Mi, Mj) if there is some
player i with Si = Mi and OPTi = Mj . Let the closure M̄i of machine Mi, be the set
of states reachable from Mi by following 0 or more edges of the Nash graph.

2 F(n)(i) =

�
1 if i ≤ n;�i

j=i−n F(n)(j) otherwise.
F(n)(i) ∈ o(2i) for any fixed n.
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Lemma 3.4. In any monomorphic Nash state h = (S, . . . , S), if there is a machine Mi

such that Ci(S) > m, then every machine Mj ∈ M̄i has cost Cj(S) > 1.

Proof. Suppose this were not the case, and there exists an Mj ∈ M̄i with Cj(S) ≤ 1.
Since Mj ∈ M̄i, there exists a simple path (Mi = M1, M2, . . . , Mk = Mj) with
k ≤ m. Since S is a Nash equilibrium, it must be the case that Ck−1(S) ≤ 2 because
by the definition of the Nash graph, the directed edge from Mk−1 to Mk implies that
there is some player i with Si = Mk−1, but OPTi = Mk. Since 1 = γ(OPT) ≥
Ck(OPT) ≥ ci,k, if player i deviated from his action in Nash profile S to S′i = Mk,
he would experience cost Ck(S) + ci,k ≤ 1 + 1 = 2. Since he cannot benefit from
deviating (by definition of Nash), it must be that his cost in S, Ck−1(S) ≤ 2. By the
same argument, it must be that Ck−2(S) ≤ 3, and by induction, C1(S) ≤ k ≤ m. 	


Lemma 3.5. For any monomorphic Nash state h = (S, . . . , S) ∈ G with γ(S) > m,
there is an edge from h to some g = (T, . . . , T ) where γ(T ) ≤ m with edge cost ≤ n
in G.

Proof. Let D = {Mj : Ci(S) ≥ m}, and define the closure of D, D̄ =
⋃

Mi∈D M̄i.
Consider the successor state h′ of h that results when every player i such that St

i ∈ D̄
makes a mistake and plays on their OPT machine St+1

i = OPTi, and all other players
do not make a mistake and continue to play St+1

i = St
i . Note that by the definition of

D̄, for Mj ∈ D̄, for all players i playing machine j in S, OPTi ∈ D̄. Let T = St+1.
Then for all j such that Mj ∈ D̄, Cj(T ) ≤ 1, since Cj(T ) ≤ Cj(OPT) ≤ 1. To see
this, note that for every player i such that St

i = Mj ∈ D̄, St+1
i = Mj if and only if

OPTi = Mj . Similarly, for every player i such that St+1
i = Mj ∈ D̄ but St

i �= Mj ,
OPTi = Mj , and so for each machine Mj ∈ D̄, the agents playing on Mj in T are
a subset of those playing on Mj at OPT. Note that by Lemma 3.4, for all Mj ∈ D̄,
Cj(S) > 1. Therefore, for every agent i with St

i ∈ D̄, πi(T ) > πi(S), and so for
h′′ = (S, . . . , S, T, T ) a successor of h′, r(h′, h′′) = 0. Reasoning in this way, there
is a path of zero resistance from h′ to g = (T, . . . , T ). We have therefore exhibited
a path between h and g that involves only |{i : St

i ∈ D̄}| ≤ n mistakes. Finally,
we observe that if Mj ∈ D̄ then Cj(T ) ≤ 1, and by construction, if Mj �∈ D̄, then
Cj(T ) = Cj(S) < m, since as noted above Mj �∈ D̄ implies that the players playing
Mj in S are the same set playing Mj in T . Thus, we have γ(T ) ≤ m, which completes
the proof. 	


Lemma 3.6. Let h = (S, . . . , S) ∈ G be any monomorphic state with γ(S) ≤ m.
Any path in G from h to a monomorphic state h′ = (S′, . . . , S′) ∈ G where γ(h′) >
m · F(n)(mn + 1) must contain an edge with cost ≥ σ, where F(n)(i) denotes the ith

n-step Fibonacci number.

Proof. Suppose there were some directed path P in G (h = h1, h2, . . . , hl = h′)
such that all edge costs were less than σ. We will imagine assigning costs to players
on machines adversarially: for a player i on machine Mj , we will consider ci,j to be
undefined until play reaches a monomorphic state hk in which he occupies machine
j, at which point we will assign ci,j to be the highest value consistent with his path
from hk−1 to hk. Note that since initially γ(S) ≤ m, we must have for all i ∈ N ,
ci,Si ≤ m = mF(n)(n).
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There are mn costs ci,j that we may assign, and we have observed that our first n
assignments have taken values ≤ mF(n)(n) = mF(n)(1). We will assume inductively
that our kth assignment takes value at most mF(n)(k). Let hk = (T, . . . , T ) be the
last monomorphic state in P such that only k cost assignments have been made, and
hk+1 = (T ′, . . . , T ′) be the monomorphic state at which the k + 1st cost assignment
is made for some player i on machine Mj . Since by assumption, fewer than σ mistakes
are made in the transition hk → hk+1, it must be that ci,j ≤ CTi(T ); that is, ci,j can be
no more than player i’s experienced cost in state T . If this were not so, player i would
not have continued playing on machine j in T ′ without additional mistakes, since with
fewer than σ mistakes, any sample of size σ would have contained an instance of T
which would have yielded higher payoff than playing on machine j. Note however that
the cost of any machine Mj in T is at most:

Cj(T ) ≤
∑

i:ci,j �= undefined

ci,j ≤
n−1∑

i=0

mF(n)(k − i) = mF(n)(k + 1)

where the inequality follows by our inductive assumption. We have therefore shown
that the kth cost assigned is at most mF(n)(k), and so the claim follows since there are
at most nm costs ci,j that may be assigned, and the cost on any machine in S′ is at most
the sum of the n highest costs. 	


Proof (of Theorem 3.2). Given any state h = (S, . . . , S) ∈ G where γ(S) > m ·
F(n)(mn+1), we can exhibit a state f = (U, U, . . . , U) with lower stochastic potential
than h such that γ(U) ≤ m · F(n)(nm + 1) as follows.

Consider the minimum weight spanning in-tree Th of G rooted at h. We will use it
to construct a spanning in-tree Tf rooted at a state f as follows: We add an edge of
cost at most n from h to some state g = (T, . . . , T ) such that γ(T ) ≤ m (such an
edge is guaranteed to exist by Lemma 3.5). This induces a cycle through h and g. To
correct this, we remove an edge on the path from g to h in Th of cost ≥ σ (such an
edge is guaranteed to exist by Lemma 3.6). Since this breaks the newly induced cycle,
we now have a spanning in-tree Tf with root f = (U, U, . . . , U) such that γ(U) ≤
m · F(n)(mn + 1). Since the added edge has lower cost than the removed edge, Tf has
lower cost than Th, and so f has lower stochastic potential than h.

Since the stochastically stable states are those with minimum stochastic potential by
Theorem 2.7 and Proposition 2.8, we have proven that h is not stochastically stable. 	


4 Lower Bound on Price of Stochastic Anarchy

In this section, we show that the price of stochastic anarchy for load balancing is at least
m, the price of strong anarchy. All proofs can be found in the full version of this paper.

Theorem 4.1. The price of stochastic anarchy of the load balancing game on unrelated
machines is at least m.

We present the lower bound instance for m = 4 in Fig. 1(a). Here, the entry corre-
sponding to player i and machine Mj represents the cost ci,j . The δs represent some
sufficiently small positive value and the ∞s can be any sufficiently large value.



The Price of Stochastic Anarchy 313

M1 M2 M3 M4

1 1 1 − δ ∞ ∞
2 2 − 2δ 1 2 − 3δ ∞
3 3 − 4δ ∞ 1 3 − 5δ
4 4 − 6δ ∞ ∞ 1

(a)

M1 M2 M3 M4

1 1 1 ∞ 4 − 3δ
2 2 − δ 1 2 − δ ∞
3 3 − 2δ 3 − 2δ 1 3 − 2δ
4 4 − 3δ 5 − 4δ ∞ 1

(b)

Fig. 1.

More complicated examples like Fig. 1(b) show that the price of stochastic anarchy
is at least m + 1, and so our lower bound is not tight.

We note the exponential separation between our upper and lower bounds. We con-
jecture, however, that the true value of the price of stochastic anarchy is O(m). If this
conjecture is correct, then the O(m) bound from the strong price of anarchy [1] can be
achieved without coordination.

5 Conclusion and Open Questions

In this paper, we propose the evolutionary game theory solution concept of stochastic
stability as a tool for quantifying the relative stability of equilibria. We show that in
the load balancing game on unrelated machines, for which the price of Nash anarchy
is unbounded, the “bad” Nash equilibria are not stochastically stable, and so the price
of stochastic anarchy is bounded. We conjecture that the upper bound given in this
paper is not tight and the cost of stochastic stability for load balancing is O(m). If this
conjecture is correct, it implies that the fragility of the “bad” equilibria in this game is
attributable to their instability, not only in the face of player coordination, but also to
minor uncoordinated perturbations in play. We expect that the techniques used in this
paper will also be useful in understanding the relative stability of Nash equilibria in
other games for which the worst equilibria are brittle. This promise is evidenced by the
fact that the worst Nash in the worst-case instances in many games (for example, the
Roughgarden and Tardos [22] lower bound showing an unbounded price of anarchy for
routing unsplittable flow) are not stochastically stable.
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13. Fischer, S., Vöcking, B.: On the evolution of selfish routing. In: Albers, S., Radzik, T. (eds.)
ESA 2004. LNCS, vol. 3221, Springer, Heidelberg (2004)

14. Foster, D., Young, P.: Stochastic evolutionary game dynamics. Theoret. Population Biol. 38,
229–232 (1990)

15. Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: FOCS 2005
(2005)

16. Josephson, J., Matros, A.: Stochastic imitation in finite games. Games and Economic Behav-
ior 49(2), 244–259 (2004)

17. Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games.
Econometrica 61(1), 29–56 (1993)

18. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: 16th Annual Symposium on
Theoretical Aspects of Computer Science, Trier, Germany, March 4–6, 1999, pp. 404–413
(1999)

19. Larry, S.: Stochastic stability in games with alternative best replies. Journal of Economic
Theory 64(1), 35–65 (1994)

20. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.): Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

21. Robson, A.J., Vega-Redondo, F.: Efficient equilibrium selection in evolutionary games with
random matching. Journal of Economic Theory 70(1), 65–92 (1996)
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Abstract. Mehta, Roughgarden, and Sundararajan recently introduced
a new class of cost sharing mechanisms called acyclic mechanisms. These
mechanisms achieve a slightly weaker notion of truthfulness than the
well-known Moulin mechanisms, but provide additional freedom to im-
prove budget balance and social cost approximation guarantees. In this
paper, we investigate the potential of acyclic mechanisms for combinato-
rial optimization problems. In particular, we study a subclass of acyclic
mechanisms which we term singleton acyclic mechanisms. We show that
every ρ-approximate algorithm that is partially increasing can be turned
into a singleton acyclic mechanism that is weakly group-strategyproof
and ρ-budget balanced. Based on this result, we develop singleton acyclic
mechanisms for parallel machine scheduling problems with completion
time objectives, which perform extremely well both with respect to bud-
get balance and social cost.

1 Introduction

We consider the problem of designing truthful mechanisms for binary demand
cost sharing games. We are given a universe U of players that are interested in a
common service, and a cost function C : 2U → R

+ that specifies the cost C(S)
to serve player set S ⊆ U . We require that the cost function C is increasing,
i.e., C(T ) ≤ C(S) for every T ⊆ S ⊆ U , and satisfies C(∅) = 0. In this paper,
we assume that C is given implicitly by the cost of an optimal solution to an
underlying combinatorial optimization problem P . Every player i ∈ U has a
private, non-negative valuation vi and a non-negative bid bi for receiving the
service.

A cost sharing mechanism M takes the bid vector b := (bi)i∈U as input,
and computes a binary allocation vector x := (xi)i∈U and a payment vector
p := (pi)i∈U . Let SM be the subset of players associated with the allocation
vector x, i.e., i ∈ SM iff xi = 1. We say that SM is the player set that re-
ceives service. We require that a cost sharing mechanism complies with the
following two standard assumptions: pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM

(individual rationality) and pi ≥ 0 for all i ∈ SM (no positive transfer). In
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addition, the mechanism has to compute a (potentially suboptimal) feasible so-
lution to the underlying optimization problem P on the player set SM . We
denote the cost of the computed solution by C̄(SM ). M is β-budget balanced
if C̄(SM ) ≤

∑
i∈SM pi ≤ β · C(SM ). The social cost [17] of a set S ⊆ U

is defined as Π(S) := C̄(S) +
∑

i/∈S vi. A mechanism M is said to be α-
approximate if the social cost of the served set SM satisfies Π(SM ) ≤ α · Π∗,
where Π∗ := minS⊆U (C(S) +

∑
i/∈S vi) denotes the optimal social cost.

We assume that players act strategically and each player’s goal is to maximize
his own utility. The utility ui of player i is defined as ui(x, p) := vixi − pi. Since
the outcome (x, p) computed by the mechanism M solely depends on the bids b
of the players, a player may have an incentive to declare a bid bi that differs
from his valuation vi. We say that M is strategyproof if bidding truthfully is a
dominant strategy for every player. In this paper, we consider cooperative cost
sharing games, i.e., players are allowed to form coalitions in order to coordinate
their bids. A mechanism is group-strategyproof if no coordinated bidding of a
coalition S ⊆ U can ever strictly increase the utility of some player in S without
strictly decreasing the utility of another player in S.

In recent years, considerable progress has been made in devising truthful
mechanisms for cost sharing games. Most notably, Moulin [15] proposed a gen-
eral framework for designing so-called Moulin mechanisms that are truthful and
(approximately) budget balanced. The strength of Moulin mechanisms lies in
the fact that they achieve one of the strongest notions of truthfulness, i.e.,
group-strategyproofness. Most of the mechanisms for cooperative cost sharing
games that are currently prevailing in literature are Moulin mechanisms (e.g.,
[1,2,4,9,12,17,18]). However, recent negative results [1,2,10,13,17] show that for
several fundamental cost sharing games, Moulin mechanisms can only achieve a
very poor budget balance factor, and this effect is further amplified if approxi-
mate social cost is desired as additional objective [2,4,17,18].

Very recently, Mehta, Roughgarden, and Sundararajan [14] introduced a more
general framework for designing truthful cost sharing mechanisms, termed acyclic
mechanisms. Acyclic mechanisms implement a slightly weaker notion of truth-
fulness, called weak group-strategyproofness, but therefore leave more flexibility
to improve upon the approximation guarantees with respect to budget balance
and social cost. A mechanism is weakly group-strategyproof [5,14] if no coordi-
nated bidding of a coalition S ⊆ U can ever strictly increase the utility of every
player in S. Mehta, Roughgarden, and Sundararajan [14] showed that primal-
dual approximation algorithms for several combinatorial optimization problems
naturally give rise to acyclic mechanisms.

Our Results. In this paper, we investigate the potential of acyclic mechanisms
for combinatorial optimization problems. Our contribution is twofold:

1. Singleton Acyclic Mechanisms. We study a subclass of acyclic mechanisms
that we call singleton acyclic mechanisms. We show that a ρ-approximation
algorithm for the underlying optimization problem P yields a singleton acyclic
mechanism that is ρ-budget balanced and weakly group-strategyproof if the cost
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function C̄ induced by the approximation algorithm is increasing. In fact, even
a slightly weaker condition suffices, namely that the induced cost function is
partially increasing (definition will be given in Section 3). Our proof is construc-
tive, i.e., we provide a framework that enables to turn any such approximation
algorithm into a corresponding singleton acyclic mechanism. We also provide
a means to prove approximate social cost for singleton mechanisms that fulfill
an additional weak monotonicity property. While previously, most cost sharing
mechanisms were developed in case-by-case studies, this is the first attempt to
provide a general framework for obtaining cost sharing mechanisms from existing
approximation algorithms.

Implications: A direct consequence of this result is that for several problems,
lower bounds on the budget balance factor for Moulin mechanisms can be over-
come by acyclic mechanisms. We mention three examples from the scheduling
context here only: Graham’s largest processing time rule [8] yields a 4/3-budget
balanced acyclic mechanism for P | |Cmax, beating the lower bound of essen-
tially 2 for Moulin mechanisms [1]. Moreover, the shortest remaining process-
ing time algorithm gives rise to a 2-budget balanced acyclic mechanism for
P |ri, pmtn|

∑
Ci [6] and a 1-budget balanced acyclic mechanism for 1|ri, pmtn|∑

Fi [19], both overcoming the lower bounds of Ω(n) for Moulin mechanisms [2].

2. Singleton Acyclic Mechanisms for Completion Time Scheduling. We demon-
strate the applicability of our singleton acyclic mechanism framework, also when
social cost is concerned, by developing acyclic mechanisms for completion time
scheduling with and without release dates and preemption. Namely, we achieve
1-budget balance and 2-approximate social cost for P | |

∑
Ci, 1.21-budget bal-

ance and 2.42-approximate social cost for P | |
∑

wiCi, and 1-budget balance and
4-approximate social cost for 1|ri, pmtn|

∑
Ci. Not only are these the first cost

sharing mechanisms to achieve constant social cost approximation factors, but
we also outperform the strong lower bound of Ω(n) on the budget balance factor
of any Moulin mechanism for all completion time related objectives [2].

Implications: We remark that every cost sharing mechanism that approximates
social cost by a factor of α also is an α-approximation algorithm for the price-
collecting variant of the underlying optimization problem. As a by-product of the
results mentioned above, we therefore obtain constant approximation algorithms
for the respective machine scheduling problems with rejection (see also [7] and
the references therein).

2 Preliminaries

2.1 Acyclic Mechanisms

We briefly review the definition of acyclic mechanisms introduced by Mehta,
Roughgarden, and Sundararajan (see [14] for a more detailed description).

An acyclic mechanism is defined in terms of a cost sharing method ξ and an
offer function τ . A cost sharing method ξ : U × 2U → R

+ specifies for every



318 J. Brenner and G. Schäfer

subset S ⊆ U and every player i ∈ S a non-negative cost share ξi(S); we define
ξi(S) := 0 for all i /∈ S. ξ is β-budget balanced if for every subset S ⊆ U we have
C̄(S) ≤

∑
i∈S ξi(S) ≤ β · C(S). An offer function τ : U × 2U → R

+ defines for
every subset S ⊆ U and every player i ∈ S a non-negative offer time τ(i, S).

The acyclic mechanism M(ξ, τ) induced by ξ and τ receives the bid vector b
as input and proceeds as follows:

1. Initialize S := U .
2. If ξi(S) ≤ bi for every player i ∈ S, then halt. Output the characteristic

vector x of S and payments p := (ξi(S))i∈U .
3. Among all players in S with ξi(S) > bi, let i∗ be one with minimum τ(i, S)

(breaking ties arbitrarily).
4. Set S := S \ {i∗} and return to Step 2.

For a given subset S ⊆ U and a player i ∈ S, we partition the player set S into
three sets with respect to the offer time of i: let L(i, S), E(i, S) and G(i, S) be
the sets of players with offer times τ(·, S) strictly less than, equal to, or strictly
greater than τ(i, S), respectively. The following definition is crucial to achieve
weak group-strategyproofness.

Definition 1. Let ξ and τ be a cost sharing method and an offer function on U .
The offer function τ is valid for ξ if the following two properties hold for every
subset S ⊆ U and player i ∈ S:

(P1) ξi(S \ T ) = ξi(S) for every subset T ⊆ G(i, S);
(P2) ξi(S \ T ) ≥ ξi(S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

We summarize the main result of Mehta, Roughgarden, and Sundararajan [14]
in the following theorem:

Theorem 1 ([14]). Let ξ be a β-budget balanced cost sharing method on U and
let τ be an offer function on U that is valid for ξ. Then, the induced acyclic
mechanism M(ξ, τ) is β-budget balanced and weakly group-strategyproof.

2.2 Parallel Machine Scheduling

In a parallel machine scheduling problem, we are given a set U of n jobs that are
to be scheduled on m identical machines. Every job i ∈ U has a non-negative
release date ri, a positive processing time pi, and a non-negative weight wi. The
release date specifies the time when job i becomes available for execution. The
processing time describes the time needed to execute i on one of the machines.
Every machine can execute at most one job at a time. In the preemptive setting,
the execution of a job can be interrupted at any point of time and resumed later;
in contrast, in the non-preemptive setting, job interruption is not permitted.

Given a scheduling algorithm alg, we denote by Calg

i (S) the completion time
of job i ∈ S in the schedule for the set of jobs S ⊆ U output by alg. We omit
the superscript alg if it is clear from the context to which schedule we refer. De-
pending on the underlying application, there are different objectives for machine
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scheduling problems. Among the most common objectives are the minimization
of the total weighted completion time, i.e.,

∑
i wiCi, and the makespan, i.e.,

maxi Ci, over all feasible schedules.
In our game-theoretic view of scheduling problems, each job is identified with

a player who wants his job to be processed on one of the m machines.

3 Singleton Acyclic Mechanisms

In this section, we describe our general framework for converting an approxima-
tion algorithm into a weakly group-strategyproof acyclic mechanism.

When thinking about acyclic mechanisms and their offer functions, we like to
think of clusters. By a cluster we mean a maximal set of players that have the
same offer time with respect to a set S, i.e., two players i, j ∈ U are in the same
cluster iff τ(i, S) = τ(j, S). With this view, it becomes clear to which extent
acyclic mechanisms generalize Moulin mechanisms: To one end, if there is only
one cluster that contains all players, Definition 1 reduces to cross-monotonicity
(see [15] for a definition), leading to Moulin mechanisms. To the other end, if
all clusters are singletons, i.e., every player has a unique offer time, then (P2)
of Definition 1 reduces to (P1) and once a cost share is announced to a player,
it can never be changed again. Between these two extremes, there is a great
range of other acyclic mechanisms. However, in this paper, we concentrate on
the subclass of acyclic mechanisms that result from singleton offer functions, i.e.,
offer functions that induce singleton clusters. We call these mechanisms singleton
acyclic mechanisms, or simply singleton mechanisms.

Let τ be a singleton offer function. In the following, we assume that the
elements of a subset S ⊆ U are ordered according to non-decreasing offer times,
i.e., S =: {i1, . . . , iq} with τ(il, S) < τ(ik, S) for all 1 ≤ l < k ≤ q. Moreover,
we define Sk := {i1, . . . , ik} ⊆ S as the set of the first 1 ≤ k ≤ q elements in S.
We slightly abuse notation and let for every i ∈ S, Si refer to the set Sk with
ik = i. We are particularly interested in singleton offer functions that satisfy the
following consistency property.

Definition 2. A singleton offer function τ is called consistent if for all subsets
P ⊆ S ⊆ U , ordered as P =: {j1, j2, . . . , jp} and S =: {i1, i2, . . . , iq}, the
following holds: If k is minimal with ik /∈ P , then il = jl for all l < k.

Let alg be a ρ-approximate algorithm for the underlying optimization problem
P and let C̄ denote the cost function induced by alg, i.e., C̄(S) is the cost of
the solution computed by alg for player set S ⊆ U . We say that alg is partially
increasing with respect to a singleton offer function τ if for every S ⊆ U and
i ∈ S, we have C̄(Si) ≥ C̄(Si−1). The main result of this section is the following:

Theorem 2. Let alg be a ρ-approximate algorithm. If there exists a consistent
singleton offer function τ with respect to which alg is partially increasing, then
there is a singleton acyclic mechanism that is weakly group-strategyproof and
ρ-budget balanced.
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A singleton offer function τ together with a partially increasing approximation
algorithm alg naturally induce the following cost sharing method ξ: for every
S ⊆ U and every i ∈ S, define

ξi(S) := C̄(Si) − C̄(Si−1).

Note that these cost shares are non-negative since alg is partially increasing.

Truthfulness and Budget Balance. The following lemma together with The-
orem 1 proves Theorem 2.

Lemma 1. Let τ be a singleton offer function and let alg be a ρ-approximate
algorithm that is partially increasing with respect to τ . Moreover, let ξ be the
cost sharing method induced by alg and τ . Then the following holds:
1. ξ is ρ-budget balanced.
2. If τ is consistent, then τ is valid for ξ.

Proof. By definition of ξ, we have
∑

i∈S ξi(S) =
∑

i∈S(C̄(Si) − C̄(Si−1)) =
C̄(S) − C̄(∅) = C̄(S) for all S ⊆ U , proving that ξ is ρ-budget balanced.

We next show that τ is valid for ξ. Fix S ⊆ U and i ∈ S. Since τ is a singleton
offer function, E(i, S) \ {i} = ∅, and so (P2) of Definition 1 reduces to (P1). To
prove (P1), let P := S \ T for some subset T ⊆ G(i, S) and consider the ordered
sets S =: {i1, i2, . . . , iq} and P =: {j1, j2, . . . , jp}. Let k be minimal with ik /∈ P .
Then, by Definition 2, for all l < k, il = jl and hence Pl = Sl. Since T ⊆ G(i, S),
we have τ(i, S) < τ(ik, S). We conclude that ξi(P ) = C̄(Pi)−C̄(Pi−1) = C̄(Si)−
C̄(Si−1) = ξi(S). 	

From now on, for a consistent singleton offer function τ and an approximation
algorithm alg that is partially increasing with respect to τ , we call the mech-
anism M := M(ξ, τ) the singleton mechanism induced by alg and τ . Given an
approximation algorithm alg, we remark that the budget balance factor of M is
independent of the consistent singleton offer function used. However, the choice
of the singleton offer function may very well influence the social cost of the so-
lution output by the mechanism. Hence, if the cost function C̄ induced by alg

is increasing, i.e., C̄(T ) ≤ C̄(S) for all T ⊆ S ⊆ U , we can choose τ solely to
achieve a good social cost approximation factor. If not, the no positive transfer
property restricts the choice of τ to offer functions with respect to which alg is
partially increasing.

Social Cost. The social cost analysis of singleton mechanisms can be allevi-
ated if the induced cost sharing method has the following property: We call
a cost sharing method ξ weakly monotone if for all subsets T ⊆ S ⊆ U ,∑

i∈T ξi(S) ≥ C̄(T ).

Theorem 3. Let M = M(ξ, τ) be the singleton mechanism induced by alg and
a consistent singleton offer function τ . Suppose that ξ is weakly monotone. Then,
M approximates social cost by a factor of α if

C̄(SM ∪ S∗)
C(S∗) + C(SM \ S∗)

≤ α.
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Proof. We need to upper bound the ratio between the social cost of the set SM

chosen by the mechanism and a set S∗ := argminS⊆U (C(S)+
∑

i/∈S vi). We have

Π(SM )
Π∗

=
C̄(SM ) +

∑
i∈S∗\SM vi +

∑
i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤
C̄(SM ) +

∑
i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ ξi(SM )
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) + C(SM \ S∗)
.

Here, the first inequality follows from the fact that a
b ≤ a−c

b−c for arbitrary real
numbers a ≥ b > c > 0. The second inequality holds because vi ≥ ξi(SM ) for
every player i ∈ SM . The last inequality follows from weak monotonicity of ξ
and the fact that C̄(S) ≥ C(S) for every set S.

Without loss of generality, number the players in S∗\SM in the order in which
they were rejected in the course of the mechanism M , i.e., S∗ \SM =: {1, . . . , 	}.
For every i ∈ S∗ \ SM , let Ri be the subset of players in S∗ ∪ SM that were
remaining in the iteration in which i was removed, i.e., Ri := SM ∪ {i, i +
1, . . . , 	}. Since i rejected, we have vi < ξi(Ri). Moreover, by definition of the
sets Ri and weak monotonicity of ξ, we obtain C̄(Ri) =

∑
j∈Ri ξj(Ri) = ξi(Ri)+

∑
j∈Ri+1 ξj(Ri) ≥ ξi(Ri) + C̄(Ri+1). Summing over all i ∈ {1, . . . , 	} yields

∑

i∈S∗\SM

vi ≤
�∑

i=1

(
C̄(Ri) − C̄(Ri+1)

)
= C̄(SM∪S∗)−C̄(SM ). 	


4 Completion Time Scheduling

In this section, we study the performance of singleton mechanisms for parallel
machine scheduling problems with total completion time objectives. We distin-
guish between the model with weights, in which all jobs arrive at time zero and
no preemption is allowed, and the model in which jobs have release dates and
may be preempted.

4.1 Weighted Completion Time

We consider the problem P | |
∑

wiCi of scheduling a set of jobs U := [n] non-
preemptively on m parallel machines such that the total weighted completion
time is minimized. Lenstra proves that this problem is NP-complete [3]. Even
for the unweighted version, i.e., wi = 1 for all i ∈ U , no Moulin mechanism can
achieve a budget balance factor better than n/2 [2]. However, using singleton
acyclic mechanisms, we can heavily improve upon this.

Let ρsm denote the approximation guarantee achieved by Smith’s rule [20],
which schedules the jobs in non-increasing order of their weight per processing
time ratios wi/pi. For P | |

∑
wiCi, the produced schedule is (1 +

√
2)/2 ≈ 1.21-

approximate [11]. In the single machine case, Smith’s rule produces an optimal
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schedule. In the unweighted setting, Smith’s rule reduces to the shortest process-
ing time policy and also delivers an optimal schedule.

Let Mwct := M(ξ, τ) be the singleton mechanism induced by Smith’s rule and
the offer function τ defined as follows:

Singleton offer function for Smith’s rule: Let σ be a non-increasing
weight per processing time order on U = [n]. If two jobs i, j ∈ U satisfy
wi/pi = wj/pj , we define σ(i) < σ(j) iff i < j. For every subset S ⊆ U , let
τ(·, S) be the order on S induced by σ.

One easily verifies that τ is a consistent singleton offer function. We have ξi(S) =
C̄(Si) − C̄(Si−1) = wiCi(S), where Ci(S) is the completion time of job i in the
schedule computed by Smith’s rule. Since wiCi(S) ≥ 0, Smith’s rule is obviously
partially increasing with respect to τ .

Theorem 4. The singleton mechanism Mwct = M(ξ, τ) induced by Smith’s rule
and τ is weakly group-strategyproof, ρsm-budget balanced, and 2ρsm-approximate.

Proof. It follows from Theorem 2 that Mwct is weakly group-strategyproof and
ρsm-budget balanced. It remains to be shown that Mwct is 2ρsm-approximate with
respect to social cost. To see that the induced cost sharing method ξ is weakly
monotone, note that Ci(S) ≥ Ci(T ) for every i ∈ T ⊆ S. Thus,

∑
i∈T ξi(S) ≥∑

i∈T ξi(T ) = C̄(T ). The social cost approximation factor now follows from
Theorem 3 and Lemma 2 given below. 	


Lemma 2. Let alg be an algorithm for P | |
∑

wiCi with cost function C̄. Let
A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule for
A ∪ B can be bounded by C(A ∪ B) ≤ 2(C̄(A) + C̄(B)).

Proof. We prove the inequality individually for each machine M̂ . Consider the
jobs Â ⊆ A and B̂ ⊆ B scheduled on M̂ in the runs of alg on A and B,
respectively. We denote by ci the completion time of job i in his respective
schedule, i.e. ci := C̄i(A) for all i ∈ Â and ci := C̄i(B) for all i ∈ B̂.

Consider the schedule which processes all jobs in Â ∪ B̂ on M̂ according to
non-decreasing ci. The completion time of a job i ∈ Â in this schedule is ci + ci∗ ,
where i∗ denotes the last job in B̂ that is processed before i. Since i∗ is processed
before i, we have ci + ci∗ ≤ 2ci. By exchanging the roles of A and B, we can
show the same for the completion time of every job i ∈ B̂.

Since the cost of an optimal schedule for A∪B is at most that of the schedule
produced by repeating the above procedure for each machine, we have

C(A ∪ B) ≤
∑

i∈A∪B

wi · 2ci = 2
(∑

i∈A

wici +
∑

i∈B

wici

)
= 2

(
C̄(A) + C̄(B)

)
. 	


We remark that a simple example shows that our social cost analysis is tight,
even in the unweighted case (details will be given in the full version of the paper).
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4.2 Completion Time with Release Dates and Preemption

Now, consider the problem 1|ri, pmtn|
∑

Ci of scheduling a set of jobs U := [n]
on a single machine such that the total completion time is minimized. Each job
i ∈ U has a non-negative release date ri, and preemption of jobs is allowed. The
shortest remaining processing time (srpt) policy delivers an optimal schedule
for this problem [19].

We introduce some more notation in order to give a formal definition of srpt.
Let ei(t) be the amount of time that has been spent on processing job i up to
time t. The remaining processing time xi(t) of job i at time t is xi(t) := pi−ei(t).
We call a job i active at time t if it has been released but not yet completed at
this time, i.e., ri ≤ t < Ci. Let A(t) be the set of jobs that are active at time t.
srpt works as follows: At any time t ≥ 0, srpt schedules an active job i ∈ A(t)
with minimum remaining processing time, i.e. xi(t) ≤ xk(t) for all k ∈ A(t). In
the following, we assume that srpt uses a consistent tie breaking rule, e.g., if
xi(t) = xk(t) for two different jobs i and k, then schedule the one with smaller
index. Throughout this section, let Ci(S) := Csrpt

i (S) for all S ⊆ U .
Let Mpct := M(ξ, τ) be the singleton mechanism induced by srpt and the

following singleton offer function τ :

Singleton offer function for srpt: For a given subset S ⊆ U , let τ(·, S) be
the order induced by increasing completion times of the jobs in S, i.e.,
τ(i, S) < τ(j, S) iff Ci(S) < Cj(S).

The offer function τ is consistent; we defer the proof to the end of this section.
Recall that srpt is an optimal scheduling policy and thus C̄(S) = C(S). We thus
have ξi(S) = C(Si) − C(Si−1) = Ci(S), where the latter follows from Lemma 5.
Note that srpt is partially increasing with respect to τ because Ci(S) ≥ 0.

Theorem 5. The singleton mechanism Mpct = M(ξ, τ) induced by srpt and τ
is weakly group-strategyproof, budget balanced, and 4-approximate.

Proof. It follows from Theorem 2 that Mpct is weakly group-strategyproof and
budget balanced. To prove that Mpct approximates social cost, we first show that
ξ is weakly monotone. Fix some set S and let T ⊆ S. Consider the srpt schedule
for S. If we remove from this schedule all jobs in S \ T , we obtain a feasible
schedule for T of cost at most

∑
i∈S\T Ci(S) ≥ C(T ). Since ξi(S) = Ci(S), we

have weak monotonicity. Now, the bound on the social cost approximation factor
follows from Theorem 3, using Lemma 3 given below. 	


The following lemma is used to prove the social cost approximation factor.

Lemma 3. Let alg be an algorithm for P |ri, pmtn|
∑

Ci with cost function C̄.
Let A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule
for A ∪ B can be bounded by C(A ∪ B) ≤ 4(C̄(A) + C̄(B)).

Proof. Phillips et al. [16] prove that any preemptive schedule for P |ri, pmtn|
∑

Ci

can be turned into a non-preemptive schedule np with at most twice the cost.
With Lemma 2, we obtain C(A∪B)≤2(Cnp(A)+Cnp(B))≤4(C̄(A)+C̄(B)). 	
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Consistency. In order to prove that τ is consistent, we need some more nota-
tion. Consider the srpt schedule for a set S ⊆ U . Let i, j ∈ A(t) be two jobs
that are active at time t. We define i ≺t j iff either xi(t) < xj(t) or xi(t) = xj(t)
and i ≤ j. Note that at any point of time t, srpt schedules the job i ∈ A(t) with
i ≺t j for all j ∈ A(t). Thus, if i ≺t j for some t, then i ≺t′ j for all t′ ∈ [t, Ci).
We therefore simply write i ≺ j iff there exists a time t with i ≺t j. Let σ(t)
denote the job that is executed at time t in the srpt schedule for S; we define
σ(t) = ∅ if A(t) = ∅.

Let j ∈ S be an arbitrary job and consider the time interval [rj , Cj). We define
the set Cj of jobs that are competing with j as Cj := {i ∈ S \ {j} : [ri, Ci) ∩
[rj , Cj) �= ∅}. Note that j /∈ Cj . We partition the jobs in Cj into a set Wj of
winning jobs and a set Lj of losing jobs with respect to j: Wj := {i ∈ Cj : i ≺ j}
and Lj := Cj \Wj . Intuitively, suppose i and j are both active at some time t. If
i is a winning job, then i prevents j from being executed by srpt. On the other
hand, if i is a losing job, then j prevents i from being executed.

We next investigate the effect of removing a job j from S. We use the super-
script T if we refer to the srpt schedule for T := S \ {j}.

Lemma 4. Consider the two srpt schedules on job sets S and T := S \ {j}.
For every job i ∈ Cj that is active at time t ∈ [rj , Cj),

xT
i (t) = xi(t) if i ∈ Wj and xT

i (t) ≥ xj(t) if i ∈ Lj .

Proof. We partition the time interval [rj , Cj) into a sequence of maximal subin-
tervals I1, I2, . . . , If such that the set of active jobs remains the same within
every subinterval I� := [s�, e�). We prove by induction over 	 that the claim
holds for every t ∈ [rj , e�).

Note that both schedules are identical up to time rj = s1. If σ(s1) �= j, then
both schedules process the same job during I1 and the claim follows. Suppose
σ(s1) = j. This implies that A(s1) ∩ Wj = ∅ and thus all jobs in A(s1) \ {j} =
AT (s1) are losing jobs. If AT (s1) = ∅, the claim follows. Otherwise, let k :=
σT (s1) be the job that is processed in the schedule for T . Since k is a losing job,
we have xT

k (s1) = xk(s1) ≥ xj(s1). Since k and j receive the same processing
time during I1 in their respective schedules, the claim holds for all t ∈ [rj , e1).

Now, assume that the claim is true for every t ∈ [rj , e�−1) for some 	 > 1.
We show that it remains true during the time interval I�. By the induction
hypothesis, xT

i (t) = xi(t) for every job i ∈ Wj that is active at time t ∈ [rj , e�−1).
This implies that a job j ∈ Wi is executed at time t ∈ [rj , e�−1) in the schedule
for S iff it is executed at time t in the schedule for T . We thus have AT (s�)∩Wj =
A(s�) ∩ Wj . Moreover, xT

i (t) ≥ xj(t) for every job i ∈ Lj that is active at time
t ∈ [rj , e�−1). Since xj(t) > 0 for every t ∈ [rj , Cj), every job i ∈ Lj that is
active at time t ∈ [rj , e�−1) in the schedule for S must also be active at time t
in the schedule for T . Thus, AT (s�) ∩ Lj = A(s�) ∩ Lj . We now distinguish two
cases:

(i) First, assume σ(s�) =: k ∈ Wj . Job k then has smallest remaining process-
ing time, i.e., xk(s�) ≤ xi(s�) for all i ∈ A(s�). We conclude that
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xT
k (s�) = xk(s�) ≤ xi(s�) = xT

i (s�) ∀i ∈ A(s�) ∩ Wj = AT (s�) ∩ Wj

xT
k (s�) = xk(s�) ≤ xj(s�) ≤ xT

i (s�) ∀i ∈ A(s�) ∩ Lj = AT (s�) ∩ Lj .

Since we assume that srpt uses a consistent tie breaking rule, this implies that
σT (s�) = k and the claim follows.

(ii) Now, suppose σ(s�) = j. (Note that σ(s�) ∈ Lj is impossible.) Then
xj(s�) ≤ xi(s�) for every i ∈ A(s�) and A(s�) ∩ Wj = ∅. But then we also
have AT (s�) ∩ Wj = ∅ and thus AT (s�) ⊆ Lj . If AT (s�) = ∅, the claim follows.
Otherwise, let k := σT (s�) ∈ Lj be the job that is executed at time s� in the
schedule for T . Since xT

k (s�) ≥ xj(s�) and the remaining processing times of k
and j in their respective schedules reduce by the same amount during I�, the
claim follows. 	


We omit the proof of the following lemma due to lack of space.

Lemma 5. Let T ⊆ S ⊆ U and consider the srpt schedule for S \ T . We have:

1. Ci(S \ T ) = Ci(S) for every job i ∈ S \ T with Ci(S) < Cj(S) for all j ∈ T .
2. C�(S \ T ) ≥ minj∈T Cj(S) for every job 	 ∈ S \ T with C�(S) > Cj(S) for

some j ∈ T .

Lemma 6. The singleton offer function τ is consistent.

Proof. Consider two sets P ⊆ S ⊆ U , ordered by τ as P =: {j1, j2, . . . , jp} and
S =: {i1, i2, . . . , iq}. Let k be minimal with ik /∈ P . Then, for all l < k, we
have il ∈ P by minimality of k, and Cil

(S) < Cik
(S) by definition of τ . Also by

minimality of k, for all other i /∈ P , we have Cil
(S) < Cik

(S) < Ci(S). Hence,
Lemma 5 proves that Cil

(S) = Cil
(P ) for all l < k.

For all other jobs j ∈ P , we have Cj(S) > Ck(S) and thus by Lemma 5,
Cj(P ) ≥ Ck(S) > Ck−1(S) = Ck−1(P ). Hence, we have il = jl for all l < k. 	
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Abstract. We study the best guarantees of efficiency approximation
achievable by cost-sharing mechanisms. Our main result is the first quan-
titative lower bound that applies to all truthful cost-sharing mechanisms,
including randomized mechanisms that are only truthful in expectation,
and only β-budget-balanced in expectation. Our lower bound is optimal
up to constant factors and applies even to the simple and central special
case of the public excludable good problem. We also give a stronger lower
bound for a subclass of deterministic cost-sharing mechanisms, which is
driven by a new characterization of the Shapley value mechanism. Finally,
we show a separation between the best-possible efficiency guarantees
achievable by deterministic and randomized cost-sharing mechanisms.

1 Introduction

1.1 Approximation in Algorithmic Mechanism Design

Algorithmic mechanism design studies the possibilities and impossibilities of
optimization with incomplete information by incentive-compatible mechanisms.
The main positive result in the area is, of course, the VCG mechanisms [18,3,8],
a family of truthful, direct-revelation mechanisms that maximize objective func-
tions of the form

max
o∈Ω

∑

i

wivi(o) − C(o), (1)
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where Ω is the outcome space, vi is a valuation private to a self-interested
player i, and the wi’s and C(o)’s are known real-valued constants. In other
words, affine maximization of private data is always possible by compensating
the self-interested participants appropriately.

For many central applications, VCG mechanisms are irrelevant or infeasible,
and research has focused on the design and analysis of truthful approximation
mechanisms (see e.g. [10]). For example, for some optimization problems differ-
ent from affine maximization, no truthful mechanism can achieve full optimality,
even with unbounded computational power (e.g. [15,16]). Another common rea-
son for designing truthful approximation mechanisms is the exponential commu-
nication and/or computation required by the VCG mechanism for some affine
maximization problems, such as welfare maximization in combinatorial auctions
(see e.g. [1]). This paper is motivated by a different flaw with truthful welfare-
maximizing mechanisms: no such mechanism achieves non-trivial worst-case rev-
enue guarantees, even if unbounded computation is allowed. Precisely, when the
outcome-dependent constant C(o) in (1) represents the production costs for out-
come o, then no truthful and individually rational mechanism that maximizes
the welfare

∑
i vi(o) − C(o) guarantees that the revenue obtained is at least

a constant fraction of the incurred cost. This impossibility result applies even
to extremely simple single-parameter settings [6,7,16]. An important research
goal, to which this paper contributes, is to quantify the minimum efficiency loss
required to recover non-trivial budget-balance guarantees.

1.2 Randomization in Algorithmic Mechanism Design

A related issue is quantifying the power of randomization in the design of truthful
approximation mechanisms. Recall that a randomized mechanism is truthful in
expectation if truthful revelation is a dominant strategy for a player that wants to
maximize its expected payoff, and is universally truthful if it is a distribution over
truthful deterministic mechanisms. (The second condition effectively assumes
that players can predict the outcome of the mechanism’s internal randomization
and therefore is stronger than the first.) For non-affine problems, universally
truthful mechanisms are provably more powerful than deterministic ones [15].
We show, for the first time, an analogous separation between the best-possible
performance of deterministic and randomized revenue-constrained mechanisms.

1.3 Our Results

Our main result is the first quantitative lower bound on efficiency loss that ap-
plies to all truthful and budget-balanced mechanisms. Our lower bound applies
even in the special case of a single-parameter public excludable good problem,
where the outcome set Ω is the subsets of the participants (the “winners”) and
the cost C(o) is zero for the empty set and 1 otherwise. The public excludable
good problem occupies a central position in the economic cost-sharing litera-
ture [5,4]. It is also a special case of nearly all of the cost-sharing problems
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that have been studied in the theoretical computer science literature, includ-
ing fixed-tree multicast, uncapacitated facility location, and vertex cover cost-
sharing problems (see [2]). Naturally, our lower bound carries over to all of these
more general classes of cost-sharing problems. Previous lower bounds for ap-
proximate efficiency in cost-sharing mechanisms applied only to subclasses of
deterministic mechanisms (to Moulin mechanisms in [17] and to acyclic mecha-
nisms in [11]).

Precisely, we prove the following. Call a truthful and individually rational
mechanism for a public excludable good problem β-budget-balanced if its revenue
is always at least a 1/β fraction of and no more than the incurred cost. We show
that every β-budget-balanced truthful mechanism is Ω(log k/β)-approximate in
the sense of [17], where k is the number of participants. Our lower bound applies
even to randomized mechanisms that are only truthful in expectation, and only
β-budget-balanced in expectation. Our lower bound is optimal up to constant
factors for all β = O(

√
log k), with the nearly matching upper bound provided by

a scaled version of the Shapley value mechanism [14,17]. All of our lower bounds
apply to both the social cost approximation measure introduced in [17] and to
the additive efficiency loss measure studied earlier by Moulin and Shenker [14].

We also give stronger results for a subclass of deterministic cost-sharing mech-
anisms. Specifically, we show that the Shapley value mechanism is optimal among
all deterministic, symmetric, and budget-balanced cost-sharing mechanisms for
public excludable good problems. (A similar result of Moulin and Shenker [14]
proves only that the Shapley value mechanism is an optimal Moulin mecha-
nism [13].) Here, “symmetric” means that players that submit equal bids are
given the same allocations and prices. This proof is based on a new charac-
terization of the Shapley value mechanism, which improves upon a previous
characterization of Deb and Razzolini [5].

Finally, we give the first separation between the power of deterministic and
randomized cost-sharing mechanisms: we prove a lower bound on the approxi-
mation factor of all deterministic mechanisms for the 2-player public excludable
good problem, and exhibit a universally truthful randomized mechanism that
possesses a strictly better approximation guarantee.

2 Preliminaries

There is a population U of k players and a public cost function C defined on
all subsets of U . We always assume that C(∅) = 0 and that C is nondecreasing
(i.e., S ⊆ T implies that C(S) ≤ C(T )). Player i has a private value vi for
service. We focus on direct revelation mechanisms; such mechanisms accept a
bid bi from each player i and determine an allocation S ⊆ U and payments pi

for the players.
We discuss only mechanisms that satisfy the following standard assumptions:

individual rationality, meaning that pi = 0 if i /∈ S and pi ≤ bi if i ∈ S;
and no positive transfers, meaning that prices are always nonnegative. We also
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assume that players have quasilinear utilities, meaning that each player i aims
to maximize ui(S, pi) = vixi − pi, where xi = 1 if i ∈ S and xi = 0 if i /∈ S.

A mechanism is strategyproof, or truthful, if no player can ever strictly increase
its utility by misreporting its valuation. Formally, truthfulness means that for
every player i, every bid vector b with bi = vi, and every bid vector b′ with bj = b′j
for all j �= i, ui(S, pi) ≥ ui(S′, p′i), where (S, p) and (S′, p′) denote the outputs
of the mechanism for the bid vectors b and b′, respectively. When discussing
truthful mechanisms, we typically assume that players bid their valuations and
conflate the (unknown) valuation profile v with the (known) bid vector b.

In Section 4 we use the following standard fact about truthful mechanisms
(see e.g. [12]).

Proposition 1. Let M be a truthful, individually rational cost-sharing mecha-
nism with the player set U . Then for every i ∈ U and bid vector b−i for players
other than i, there is a threshold ti(b−i) such that: (i) if i bids more than ti(b−i),
then it receives service at price ti(b−i); (ii) if i bids less than ti(b−i), then it does
not receive service.

A randomized mechanism is, by definition, a probability distribution over de-
terministic mechanisms. Such a mechanism is universally truthful if every mech-
anism in its support is truthful. Such a mechanism is truthful in expectation if
no player can ever strictly increase its expected utility by misreporting its valu-
ation. Every universally truthful mechanism is truthful in expectation, but the
converse need not hold.

We study two kinds of objectives for cost-sharing mechanisms, one for the
revenue of the mechanism, and one for its economic efficiency. First, for a pa-
rameter β ≥ 1, a mechanism is β-budget-balanced if it always recovers at least
a 1/β fraction of and at most the cost incurred. We say that a mechanism is
budget-balanced if it is 1-budget-balanced.

We measure the efficiency (loss) achieved by a cost-sharing mechanism via
the social cost objective. The social cost of an outcome S with respect to a cost
function C and valuation profile v is, by definition, the service cost C(S) plus the
excluded value v(U \ S) =

∑
i/∈S vi. This objective function is ordinally equiva-

lent to the more standard welfare objective, which is the difference between the
value served

∑
i∈S vi and the cost C(S). Moreover, it is, in a precise sense, the

“minimal perturbation” of the welfare objective function that admits non-trivial
relative approximation guarantees; see [17] for details and additional justifica-
tion for studying this objective. A cost-sharing mechanism is α-approximate if,
assuming truthful bids, it is an α-approximation algorithm for the social cost
objective. We state all of our lower bounds in terms of this approximation mea-
sure, but our proofs immediately yield comparable lower bounds for the additive
efficiency loss measure adopted by Moulin and Shenker [14].

For a public excludable problem, in which C(S) = 1 for every non-empty S,
the optimal solution is either U (for valuation profiles v with v(U) ≥ 1) or ∅
(otherwise).

We conclude this section by describing a central mechanism [17,5,4,14] for the
public excludable good problem. Following [14], we call this the Shapley value
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mechanism. Given a set of bids, the mechanism serves the largest set S ⊆ U
such that for each player i ∈ S, bi ≥ 1/|S|. (Such sets are closed under union,
and hence there is a unique largest such set.) Every player in S pays 1/|S| and
the other players pay 0; the price that a player in S pays is precisely its Shapley
value in the set S with respect to the function C(·). The mechanism is obviously
budget-balanced; it is also truthful [14] and Hk-approximate [17], where k = |U |
and Hk is the kth harmonic number. (Recall that Hk ≈ ln k.) We recall here the
example that shows that the result is tight.

Example 1. Let ε be a small positive number. Consider the truthful bid vector
1 − ε, 1/2 − ε, 1/3 − ε . . . 1/k − ε. The solution which optimizes social cost serves
all the players and has social cost 1. On the other hand, the Shapley value
mechanism serves no players and has social cost Hk−kε. Since ε can be arbitrarily
small, the Shapley value mechanism is no better than Hk-approximate.

This paper investigates whether or not there are truthful budget-balanced mech-
anisms that outperform the Shapley value mechanism.

3 A Lower Bound on Cost-Sharing Mechanisms

In this section we prove that every O(1)-budget-balanced cost-sharing mecha-
nism for the public excludable good problem is Ω(log k)-approximate. This lower
bound applies even to randomized mechanisms, and even to mechanisms that
are only truthful in expectation.

Theorem 1. Every cost-sharing mechanism for the public excludable good prob-
lem that is truthful in expectation and β-budget-balanced in expectation is
Ω((log k)/β)-approximate, where k is the number of players.

Proof. Fix values for k and β ≥ 1. The plan of the proof is to define a distribution
over valuation profiles such that the sum of the valuations is likely to be large
but every mechanism is likely to produce the empty allocation. Let a1, . . . , ak be
i.i.d. draws from the distribution with density 1/z2 on [1, k] and remaining mass
(1/k) at zero. Set vi = ai/4kβ for each i and V =

∑k
i=1 vi. We first note that V

is likely to be Ω((log k)/β). To see why, we have E[V ] = kE[vi] = (ln k)/4β,
Var[V ] = kVar[vi] ≤ kE[v2

i ] = 1/(16β2), and σ[V ] = 1/4β. By Chebyshev’s
Inequality, V is at least (ln k−2)/4β = Ω(log k/β) with probability at least 3/4.

Let M be a mechanism that is truthful in expectation and β-budget-balanced
in expectation, meaning that for every bid vector, the expected revenue of M is
at least a β fraction of its expected cost. For a public excludable good problem,
the expected cost equals 1 minus the probability that no player is served. We
can finish the proof by showing that the expected revenue of M , over both the
random choice of valuation profile and the internal coin flips of the mechanism,
is at most 1/4β: if true, the expected cost of M is at most 1/4, so no player
is served with probability at least 3/4. By the Union Bound, the probability
that no player is served and also the sum of the valuations is Ω((log k)/β) is at
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least 1/2. Thus, there is a valuation profile for which the optimal social cost is 1
but the expected social cost of M is Ω((log k)/β).

We next apply a transformation of Mehta and Vazirani [12], originally devel-
oped for digital goods auctions, to assist in upper bounding the revenue obtained
by M . Given a bid vector b, a randomized threshold mechanism chooses a random
threshold ti(b−i) for each player i (cf., Proposition 1) from a distribution that
is independent of bi. Such mechanisms are truthful in the universal sense. By
Mehta and Vazirani [12], there is a randomized threshold mechanism M ′ that
has the same expected revenue as M on every bid vector.

To upper bound the expected revenue of M ′, consider a single truthful player i
with (random) valuation vi. Every fixed threshold t extracts expected revenue
t · Pr[vi ≥ t] ≤ 1/4kβ from the player. By the Principle of Deferred Decisions,
a randomized threshold that is independent of vi also obtains expected revenue
at most 1/4kβ from player i. Linearity of expectation implies that the expected
revenue of M ′, and hence of M , is at most 1/4β, completing the proof.

Scaling the prices of the Shapley value mechanism down by a β ≥ 1 factor gives
a β-budget-balanced, O(β + (log k)/β)-approximate mechanism [17]. Thus, the
lower bound in Theorem 1 is optimal up to constant factors for all β = O(

√
log k).

4 Deterministic, Symmetric Mechanisms:
Characterizations and Lower Bounds

In this section we prove a lower bound on the social cost approximation factor of
every deterministic, budget-balanced cost-sharing mechanism that satisfies the
“equal treatment” property. We derive this lower bound from a new characteri-
zation of the Shapley value mechanism, discussed next.

Proposition 1 does not specify the behavior of a truthful mechanism when a
player bids exactly its threshold ti(b−i). There are two valid possibilities, each of
which yields zero utility to a truthful player: the player is not served (at price 0),
or is served and charged its bid. The following technical condition breaks ties in
favor of the second outcome.

Definition 1. A mechanism satisfies upper semi-continuity if and only if the
following condition holds for every player i and bids b−i of the other players: if
player i receives service at every bid larger than bi, then it also receives service
at bid bi.

We stress that while our characterization result (Theorem 2) relies on this con-
dition, our lower bound (Corollary 1) does not depend on it.

Our results concern mechanisms satisfying the following symmetry property.

Definition 2. A mechanism satisfies equal treatment if and only if every two
players i and j that submit the same bid receive the same allocation and price.
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The Shapley value mechanism (Section 2) satisfies equal treatment and upper
semi-continuity. It uses the same threshold function for each player, namely:

∀ b−i : t(b−i) =
1

f(b−i) + 1
. (2)

Here, f(b−i) is the size of the largest subset S of U \{i} such that bj ≥ 1/(|S|+1)
for all j ∈ S. Intuitively, this is precisely the set of other players that the Shapley
value mechanism services if player i pays its share and also receives service.

Our characterization theorem is the following.

Theorem 2. A deterministic and budget-balanced cost-sharing mechanism sat-
isfies equal treatment, consumer sovereignty, and upper-semicontinuity if and
only if it is the Shapley value mechanism.

Proof. Fix such a mechanism M . We first note that all thresholds ti(b−i) induced
by M must lie in [0, 1]: every threshold is finite by consumer sovereignty, and is at
most 1 by the budget-balance condition. We proceed to show that for all players i
and bids b−i by the other players, the threshold function ti has the same value
as that for the Shapley value mechanism. We prove this by downward induction
on the number of coordinates of b−i that are equal to 1.

For the base case, fix i and suppose that b−i is the all-ones vector. Suppose
that bi = 1. Since all thresholds are in [0, 1] and M is upper semi-continuous, all
players are served. By equal treatment and budget-balance, all players pay 1/k.
Thus, ti(b−i) = 1/k when b−i is the all-ones vector, as for the Shapley value
mechanism.

For the inductive step, fix a player i and a bid vector b−i that is not the all-
ones vector. Set bi = 1 and consider the bid vector b = (bi, b−i). Let S denote the
set of players j with bj = 1. Let R ⊇ S denote the output of the Shapley value
mechanism for the bid vector b — the largest set of players such that bj ≥ 1/|R|
for all j ∈ R.

As in the base case, consumer sovereignty, budget-balance, and equal treat-
ment imply that M serves all of the players of S at a common price p. For a
player j outside S, b−j has one more bid of 1 than b−i (corresponding to player i),
and the inductive hypothesis implies that its threshold is that of the Shapley
value mechanism for the same bid vector b. For players of R \ S, this threshold
is 1/|R|. For a player outside R, this threshold is some value strictly greater
than its bid. Since bj ≥ 1/|R| for all j ∈ R and M is upper semicontinuous, it
serves precisely the set R when given the bid vector b. This generates revenue
|S|p + (|R| − |S|)/|R|. Budget-balance dictates that the common threshold p for
all players of S, and in particular the value of ti(b−i), equals 1/|R|. This agrees
with player i’s threshold for the bids b−i in the Shapley value mechanism, and
the proof is complete.

Theorem 2 implies that the Shapley value mechanism is the optimal determin-
istic, budget-balanced mechanism that satisfies the equal treatment property.

Corollary 1. Every deterministic, budget-balanced cost-sharing mechanism that
satisfies equal treatment is at least Hk-approximate.
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We briefly sketch the proof. Let M be such a mechanism. If M fails to satisfy
consumer sovereignty, then we can find a player i and bids b−i such that ti(b−i) =
+∞. Letting the valuation of player i tend to infinity shows that the mechanism
fails to achieve a finite social cost approximation factor.

Suppose that M also satisfies consumer sovereignty. The proof of Theorem 2
shows that the outcome of the mechanism agrees with that of the Shapley value
mechanism except on the measure-zero set of bid vectors for which there is at
least one bid equal to 1/i for some i ∈ {1, . . . , k}. As in Example 1, bid vectors
of the form 1 − ε, 1

2 − ε,. . . , 1
k − ε for small ε > 0 show that M is no better than

Hk-approximate.

Remark 1. Other characterizations of the Shapley value mechanism are known.
See Moulin and Shenker [14] and Immorlica, Mahdian, and Mirrokni [9] for
related characterizations of groupstrategyproof mechanisms that satisfy various
properties. (A groupstrategyproof mechanism is robust to coordinated false bids
when there are no side payments between players. The Shapley value mechanism
satisfies this strong incentive-compatibility condition.) Our Theorem 2 is incom-
parable to these results because we work with the much richer class of truthful,
not necessarily groupstrategyproof, mechanisms. Our characterization is more
similar to that of Deb and Razzolini [5], who also show that the Shapley value
mechanism is the only one that satisfies certain conditions. We weaken their
stand-alone condition to consumer sovereignty and do not require the voluntary
non-participation condition. Also, our proof is arguably simpler.

An interesting research problem is to characterize the class of mechanisms ob-
tained after dropping the (admittedly strong) equal treatment condition. There
are several mechanisms that satisfy the remaining conditions and appear hard
to characterize (e.g. [9, Example 4.1]).

5 The Power of Randomization

Theorem 1 shows that the best-possible approximation guarantee of a random-
ized cost-sharing mechanism cannot be more than a constant factor smaller than
that of the (deterministic) Shapley value mechanism. We now show that ran-
domized mechanisms are in fact strictly more powerful than deterministic ones,
even in the two-player public excludable good problem.

Proposition 2. Let M be a deterministic budget-balanced cost-sharing mecha-
nism for the 2-player public excludable good problem. Then, M is at least 1.5-
approximate.

Proof. Consider the bid vector with b1 = b2 = 1. Every mechanism that provides
an approximation ratio better than 2 must serve both players. Suppose this is the
case and player 1 pays p while player 2 pays 1 − p. Without loss of generality,
assume that p ≤ 0.5. By Proposition 1, player 2’s threshold function satisfies
t2(1) = 1 − p.
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Now suppose b1 = 1 and b2 = 1−p−ε for small ε > 0. The optimal social cost
is 1, with both players served. Since t2(1) = 1 − p, player 2 is not served by M .
Whether or not player 1 is served, the incurred social cost is 1+1−p−ε ≥ 1.5−ε.

There is a randomized mechanism with strictly better approximate efficiency.

Proposition 3.There is a universally truthful, budget-balanced, 1.25-approximate
randomized mechanism for the two-player public excludable good problem.

Proof. The mechanism starts by selecting γ ∈ [0, 1] uniformly at random. Then,
players 1 and 2 are offered service at prices γ and 1 − γ, respectively. A player
who refuses is not served. If both players accept, then both are served at their
respective prices. If exactly one player accepts, it is served (at price 1) if and
only if its bid is at least 1.

The mechanism is clearly universally truthful and budget-balanced with prob-
ability 1. To bound its expected social cost, assume truthful bids with v1 ≥ v2
and define x = v1 + v2 − 1. If x < 0 then, with probability 1, neither player is
served and this is optimal. If v2 ≥ 1, then both players are served with proba-
bility 1, which again is optimal.

The most interesting case is when x, v1, v2 ∈ [0, 1]. The optimal social cost in
this case is 1. The mechanism selects a γ such that v1 ≥ γ and v2 ≥ 1 − γ with
probability x. In this event, both players are served and the incurred social cost
is 1. Otherwise, neither player is served and the social is 1 + x. The expected
approximation ratio obtained by the algorithm for this valuation profile is x ·1+
(1 −x) · (1 + x). Choosing x = 0.5 maximizes this ratio, at which point the ratio
is 1.25.

Finally, if v1 ≥ 1 but v2 < 1, both players are served with probability v2, and
the mechanism serves only player 1 otherwise. The optimal social cost is again 1
and the expected social cost incurred by the mechanism is v2 ·1+(1−v2)(1+v2).
This quantity is maximized when v2 = 0.5, at which point the expected social
cost (and hence the expected approximation ratio) is 1.25.

Unfortunately, universally truthful mechanisms cannot help further.

Proposition 4. Let M be a universally truthful, budget-balanced cost-sharing
mechanism for the two-player public excludable good problem. Then M is no
better than 1.25-approximate.

Proof. By Yao’s Minimax Principle, we only need to exhibit a distribution
over valuation profiles so that the approximate efficiency of every determinis-
tic budget-balanced mechanism is large.

Let M be a deterministic, budget-balanced truthful mechanism. Let t1 and
t2 denote the threshold functions for M in the sense of Proposition 1. Since M
is budget-balanced on the bid vector (1, 1), t1(1) + t2(1) = 1. Fix ε > 0 and
randomize uniformly between the profiles v1 = 1, v2 = (1/2) − ε and v1 =
(1/2) − ε, v2 = 1. The optimal social cost is 1 for both of these profiles. Since
either t1(1) ≥ 1/2 or t2(1) ≥ 1/2, the expected social cost of M is at least
(1/2) · 1 + (1/2) · (1 + (1/2) − ε), which tends to 5/4 as ε → 0.
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Abstract. We consider a cost sharing system where users are selfish and act ac-
cording to their own interest. There is a set of facilities and each facility provides
services to a subset of the users. Each user is interested in purchasing a service,
and will buy it from the facility offering it at the lowest cost. The notion of so-
cial welfare is defined to be the total cost of the facilities chosen by the users.
A central authority can encourage the purchase of services by offering subsidies
that reduce their price, in order to improve the social welfare. The subsidies are
financed by taxes collected from the users. Specifically, we investigate a non-
cooperative game, where users join the system, and act according to their best
response. We model the system as an instance of a set cover game, where each
element is interested in selecting a cover minimizing its payment. The subsidies
are updated dynamically, following the selfish moves of the elements and the
taxes collected due to their payments. Our objective is to design a dynamic sub-
sidy mechanism that improves on the social welfare while collecting as taxes only
a small fraction of the sum of the payments of the users. The performance of such
a subsidy mechanism is thus defined by two different quality parameters: (i) the
price of anarchy, defined as the ratio between the social welfare cost of the Nash
equilibrium obtained and the cost of an optimal solution; and (ii) the taxation
ratio, defined as the fraction of payments collected as taxes from the users.

1 Introduction

Individual self-interest is the basis for the modern market system in which a consumer
acts in its self-interest when buying goods at lowest prices. A government, or any other
central authority, can influence natural market forces in several ways, such as taxation
or regulation. In cases where a government wishes to support and encourage the produc-
tion of a good that is regarded as being in the public interest, it gives out an assistance
called a subsidy (also called negative taxation). Subsidies are thus a way to influence
the state of the market in a world of independent self-interested consumers.

An example where government supervision can be very effective is an urban passen-
ger transportation system. An employee commuting to work in a city usually has many
transportation options. He can use a private car, join a car-pool, or use public trans-
portation, e.g., bus or a train. The common choices as to how to travel to work have
significant environmental impacts and a major influence on road traffic congestion. It is
thus a governmental interest to reduce the number of single occupancy vehicles on the
road and encourage people to use public transport when commuting to and from work.

B. Monien and U.-P. Schroeder (Eds.): SAGT 2008, LNCS 4997, pp. 337–349, 2008.
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Letting the invisible hand of the free market take its course can sometimes be dev-
astating. Consider, for example, a setting in which a new building is being built. Each
new resident can either purchase a private car, or initiate the use of some public trans-
port at a much higher cost. As no bus line is available at the new residence when it
is established, the cheapest way for each new resident to commute is to buy his own
car, and then no public transport will ever be established. Thus, in this case, it is the
role of a central authority to develop public transport by offering subsidies. After public
transportation means are established, it is likely that residents will switch from private
to public transport, since the latter are cheaper.

Central authorities have limited budgets. Therefore, subsidies are financed by taxes
collected from the users. A central authority thus aims to improve on the overall system
performance, while using a policy that collects taxes constituting a bounded fraction of
the total payments made by the users.

Our Model. We investigate a system where facilities provide services to users. Each
user is interested in purchasing a service which is typically provided by only a subset of
the facilities. Users naturally buy the service from the facility offering it at the lowest
cost. A central authority can encourage the purchase of services by offering subsidies
that reduce their price. We investigate settings where users share services and thereby
also share their cost. Back to the public transportation example, each transportation op-
tion corresponds to a different facility having a different cost. The cost of each facility is
essentially the cost of operating the type of transport it represents. The cost of a facility
that provides service to several users is shared amongst them, and can be subsidized by
the central authority in order to shift market share, e.g., from cars to public transport.

We model the system as an instance of the set cover problem. Let N = {1, 2, . . . , n}
be a ground set of n elements (the users), and let S be a family of subsets of N , |S| = m
(the facilities). A cover of N ′ ⊆ N is a collection of sets such that their union contains
N ′. In our public transportation example, a cover is a choice of transport types allowing
all users belonging to N ′ to get to work. The notion of social welfare of a collection of
sets T is defined to be the total cost of the sets belonging to T. Each subset s ∈ S has
a non-negative cost cs associated with it. Each subset is also associated with a subsidy
value (possibly equal to zero, in case no subsidy is offered to the set). The effective cost
of a set s, denoted by ĉs, is defined to be cs minus the subsidy associated with s.

In a feasible cover, each user is assigned to one of the sets in the cover containing
it. Users sharing the same set also share its effective cost. We consider an egalitarian
cost sharing mechanism, which evenly splits the effective cost of a set among its users.
More precisely, if ns users use set s, then each user pays ĉs/ns for this set. This cost
sharing mechanism has an intuitive appeal, and satisfy essential properties such as cross
monotonicity (the cost share of a user for using a set cannot increase when additional
users join the set) and budget balance (the sum of the payments of the users receiving
service from a set is equal to its effective cost).

The Non-Cooperative Game. We consider a set cover game with selfish non-cooperative
players (also called users, or elements). Each player is interested in selecting a cover that
minimizes its payment. Thus, the strategies of the players in the game correspond to the
different sets that can provide service to the players. Each player independently chooses
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a strategy minimizing its payment, i.e., its best response. The best response of a player
in the set cover game is thus defined as the set(s) that can provide service to the player
at minimum cost (with respect to the current state of the system). The mutual influence
of the players is determined by the egalitarian cost sharing mechanism.

We focus on a dynamic setting, where players follow the natural game course in-
duced by best-response dynamics. Each player, in his turn, chooses a cover that min-
imizes his cost. We start the game from an empty configuration; upon arrival, a user
chooses a cover selfishly. As a result, players that have joined the game previously may
change their strategy later on by choosing a cover of lower cost. The central authority
is allowed to increase the subsidies of the sets in every step of the game in order to
improve the social welfare of the final cover. We assume that the game is controlled by
an adversarial scheduler that decides which user plays in each step. The order by which
the users play is not known beforehand (as it is chosen adversarially) as well as the set
of elements (users) N ′ ⊆ N that actually participates in the game. (Note that N ′ may
be a strict subset of N in general.) However, we assume that the set cover instance, i.e.,
N and S, is known in advance.

The natural game course continues until Nash equilibrium is reached. A Nash equi-
librium of the set cover game corresponds to a choice of covers for all users in N ′,
where no user can unilaterally reduce its payment by choosing a different cover. We
note that the set cover game is a special case of the well known class of congestion
games [9]. Rosenthal [9] showed that a potential function can be defined for each con-
gestion game with the property that it decreases in case a player makes a move that
improves his cost, thus establishing convergence to Nash equilibrium. We note that as
the subsidies can only lower the cost of the users, the potential function of the set cover
game decreases in the presence of a subsidy mechanism as well, and convergence to
Nash equilibrium is still guaranteed.

The Nash equilibrium of the set cover game is not unique and the greedy nature of
the users could lead to Nash equilibrium points with a very high price of anarchy, even
when initializing the game from an empty configuration. We use subsidies in order to
guarantee that best-response dynamics will not converge to such bad equilibria. The
following example is instructive as to why subsidies are needed for minimizing the cost
of the final solution when considering an arbitrary set system. Consider n users where
each user can be covered by a unit-cost “private” set containing only herself. There is
also a set containing all the users that costs

√
n. The users appear one by one and the

best response of each user is to pick the private set covering him. Once a user picks his
private set, he will have no incentive to change his strategy. How will the set covering
all the users (the social optimal solution) be chosen without subsidies?

Ideally, we would like our subsidy mechanism to spend on subsidies only a bounded
fraction of the revenue. However, in a non-cooperative game setting, the users’ pay-
ments are dynamic, and can vary significantly during the game course due to strategy
changes. Consider, for example, a set s shared by many users, who decide to leave it at
some point of the game in order to join other subsidized sets. In this case, the revenue
that was accrued from the use of s is now reduced to zero. In order to cope with such dy-
namic scenarios, we propose a natural framework where subsidies are offered via taxes.
A tax is a non-refundable sum paid to the central authority only in case a user purchases



340 N. Buchbinder et al.

a new set. It is equal to a fixed fraction of the effective cost of the purchased set. The
central authority collects as taxes a fraction of the payments made by the users that open
new sets, and later on offers the revenue from the taxes as subsidies. The total amount
of subsidies offered should always be bounded by the amount of taxes collected. The
performance of a subsidy mechanism is a function of two quality parameters:

– The price of anarchy: The ratio between the social welfare cost of a Nash equilib-
rium solution (that is, the sum of the subsidies and the payments of the users) and
the cost of an optimal solution.

– The taxation ratio: The fraction of the payments collected as taxes from the users.

There is a trade-off between the taxation ratio and the price of anarchy achieved
by our subsidy mechanism. The higher the fraction of payments collected as taxes and
spent on subsidies is, the lower the cost of the final solution becomes. The taxation ratio
is determined by a parameter ε ≤ 1 which is given as input to the subsidy mechanism.
Denoting by P the total payments of the user, the objective is to achieve the best price
of anarchy while collecting taxes (and spending on subsidies) at most εP .

Compare the set cover game to the multicast game [3,6] in which users (termi-
nals) connect to a source by making a routing decision that minimizes their payment.
Chuzhoy et al [6] analyze the price of anarchy of a Nash equilibrium resulting from
the best-response dynamics of a game course in which the players first join the game
sequentially beginning from an empty configuration. Their setting is thus a special case
of our model in which there is no central authority intervention. It is shown in [5] that
the price of anarchy of this setting is O(log3 n). In the multicast setting, unlike the set
cover game, an initial empty configuration coupled with best response dynamics does
guarantee a low price of anarchy with no need to offer subsidies.

Results and Techniques. We consider two different models: (i) an integral model in
which sets can only be fully bought (i.e., integrally) and each element is covered by a
single set; and (ii) a fractional model in which a fraction of a set can be bought and each
user can be covered by several sets (provided that their fractions add up to 1). Note that
the fraction of coverage an element gets from a set cannot be greater than the fraction
associated with the set. The subsidies, similarly to the choices of the sets, can be given
either integrally or fractionally, depending on the model. In the fractional model, the
central authority is allowed to subsidize only a fraction of a set.

The importance of the fractional model is two-fold. First, a fractional solution is a
first step towards obtaining an integral solution. Second, it is interesting in its own right
as it captures many practical “fractional” scenarios. In the urban transport system exam-
ple, a fractional solution can correspond to the case where a user uses different transport
options during the week. Then, subsidizing a fraction of a set can be interpreted as sub-
sidizing a transportation mean only during part of the day, or part of the week. Let f
denote the maximum frequency of an element, that is, the maximum number of sets that
an element can belong to. For the fractional model, we prove the following theorem:

Theorem 1 (Fractional Cover). There exists a subsidy policy such that, for any ε ≤ 1,
the price of anarchy is O( log f

ε ) and the taxation ratio is ε.



Non-cooperative Cost Sharing Games Via Subsidies 341

Theorem 1 provides a trade-off between the taxation ratio and the price of anarchy: as
the central authority collects a higher fraction of the payments as taxes (later on invested
in subsidies), the cost of the final solution decreases.

For the integral model, we obtain the following slightly inferior bound.

Theorem 2 (Integral Cover). There exists a subsidy policy such that, for any ε ≤ 1,

the price of anarchy is O(
log f log(n

ε )
ε ) and the taxation ratio is ε.

In order to design mechanisms for both the fractional and integral models, we draw on
ideas from [1,4]. In [1] Alon et al. considered an online version of the set cover problem,
where elements arrive one by one and need to be covered upon arrival. The goal of [1] is
to design an online algorithm achieving the best possible competitive ratio with respect
to the optimal solution, i.e., optimal social welfare. In [1], a O(log m log n)-competitive
algorithm is presented for this online setting.

In our work, we take into consideration not only the overall system performance, but
also the selfish nature of the users who play according to their best response. As the goal
of the users is to minimize the payment for their cover, they may change their strategy
after joining the system until Nash equilibrium is reached. We thus go beyond the online
version of the set cover problem considered in [1], and analyze its non-cooperative game
extension. The model investigated in [1] can be seen as a special case of ours, where
the central authority pays for the full cost of the cover and users pay nothing. (Also,
users join one by one without reaching equilibrium.) Thus, using the algorithm of [1],
a central authority will not be able to finance the subsidies from taxes. Bounding the
taxation ratio while maintaining a low price of anarchy requires a new algorithm and a
different analysis achieved via the primal-dual approach of [4].

We note that for both the integral and fractional models our results are tight, since
our subsidy mechanism applies also to the special case of an online setting where users
join the system one by one and act according to their best response by choosing a cover
of minimum cost. In case ε is a fixed constant, the resulting price of anarchy almost
matches the lower bound of Ω( log m log n

log log m+log log n ) shown in [1] for the online setting.
In the fractional model, our subsidy mechanism keeps a bounded taxation ratio by in-

vesting money in subsidies only when a user purchases a new set (or a fraction thereof),
and pays a tax. The idea is therefore to invest in subsidies in each iteration only a small
fraction of the payment of a user (corresponding to the tax paid). The total cost of the
taxes is bounded by maintaining an (almost) feasible dual solution during the execution
of the algorithm, which also allows us to bound the price of anarchy of the solution. As
in [1], we maintain a fractional primal solution, however, in our case, it is not always
feasible. Rather, the feasibility of the cover is obtained by the best response of the users
joining the system. The primal solution we maintain corresponds to the subsidies given
by the central authority.

Developing an integral subsidy mechanism requires several more ideas. As opposed
to the fractional case, it is no longer possible to offer in each iteration a fraction of
the user’s payment. Instead, the algorithm keeps a bounded taxation ratio by giving
an integral subsidy only after accumulating the taxes paid by the users over several
iterations. In [1], Alon et al. obtained an integral solution for their online setting by
maintaining at each iteration a fractional feasible solution and using a potential function
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that determines which of the sets should be chosen to the integral cover. We design a
new potential function and note that the potential function defined in [1] cannot satisfy
our needs, as it would lead to a high taxation ratio. The analysis we perform is more
delicate and bounds both the price of anarchy and the taxation ratio of the algorithm.

Perspective on Other Approaches that Improve on the Social Welfare. The issue of
improving on the overall system performance even in the face of selfish behavior has
been considered extensively in the game theory literature, and designing mechanisms
to improve the coordination of selfish agents is a well known idea. A central topic in
game theory is the notion of mechanism design in which rules of a game are designed
to achieve a specific outcome. This is done by setting up a structure where players are
paid (or penalized), and thus each player has an incentive to behave as the designer
intends. Planning such a mechanism is based on an assumption that the players have
private information known only to them and which affects their decisions.

Coordination mechanisms [7,8] is another concept that tries to improve the perfor-
mance in systems with independent selfish and non-colluding agents. A coordination
mechanism attempts to redesign the system by selecting policies and rules of the game
(for example, adding delays and priorities to a congestion game [7]). An important
aspect of both mechanism design and coordination mechanisms is that the designer
must design the system once and for all. In contrast, in our setting, the policy of the
central authority is dynamic, changes over time, and is determined by the state of the
system.

Extensions. Our fractional subsidy algorithm can be generalized for the game exten-
sions of the wide range of online graph and network optimization problems considered
in [2] and which concern connectivity and cut problems in graphs. In a general on-
line connectivity problem, there is a communication network known to the algorithm
in advance, where each edge in the network has a nonnegative cost. The connectivity
demands, specifying subsets of vertices to be connected, arrive online. The notion of
social welfare of a subgraph G is defined to be the total cost of the edges belonging to
G. Thus, an optimal solution with respect to the overall system performance consists
of a minimum cost subgraph satisfying all connectivity demands. The algorithm pre-
sented in [2] satisfies each new demand, so as to achieve the best possible competitive
ratio.

In the non-cooperative game version of these problems, a user corresponds to a con-
nectivity demand, and is thus interested in choosing a minimum cost subgraph satisfy-
ing its own demand. The central authority is allowed to subsidize the costs of some of
the edges by collecting taxes, in order to improve on the overall system performance.
The game extensions of this range of problems belong to the class of congestion games
[9], and thus their natural game course induced by best-response dynamics converges
to a Nash equilibrium. Our subsidy algorithm achieves a taxation ratio of ε, while main-
taining a price of anarchy of O( log m

ε ), where m is the number of edges in the graph.
Examples of problems belonging to this class are fractional versions of Steiner trees,
generalized Steiner trees, and the group Steiner problem. It remains an open question
whether an integral solution can be obtained for this set of problems as well.
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2 Formal Definitions

In this section we formally describe our model. Let N = {1, 2, . . . , n} be a ground set
of n elements (the users), and let S be a family of subsets of N , |S| = m (the facilities).
Each s ∈ S has a non-negative cost cs associated with it. Let f be the maximum fre-
quency of an element, i.e., the maximum number of sets that can contain an element. A
cover is a collection of sets such that their union is N . The cost of a cover is the sum of
the costs of the sets that are included in the cover. A fractional cover is an assignment
of weights, ws, to each s ∈ S, such that the total weight of the sets that contain each
element is at least 1. The cost of a fractional cover is

∑
s∈S

wscs. A linear program-
ming formulation of the minimum fractional set cover problem appears in Figure 1. We
have a variable ws for each set s ∈ S indicating the fraction of set s that is taken to the
cover. For each element, we demand that the sum of the fractions of the sets that contain
the element is at least 1. In the dual program (see also Figure 1) we have a variable ye

corresponding to each of the elements. We require that the total sum of variables that
correspond to elements that belong to a set s is at most the cost of the set. The integral
set cover problem corresponds to the special case where ws ∈ {0, 1}.

Primal Dual
Minimize:

�
s∈S

csws Maximize:
�

e∈N ye

Subject to: Subject to:
∀e ∈ N :

�
s|e∈s ws ≥ 1 ∀s ∈ S:

�
e∈s ye ≤ cs

∀s ∈ S|ws ≥ 0 ∀e ∈ N |ye ≥ 0

Fig. 1. A primal-dual pair for the set-cover problem

Cost Shares & Subsidies Structures. We turn to define the set cover game more pre-
cisely. As our subsidy mechanism works under fairly general assumptions, not all the
definitions here are needed for the algorithms and analysis in the next sections. Rather,
any setting where the subsidies offered are fully financed from taxes, is sufficient. We
provide here a precise and natural definition of the game for completeness.

For simplicity, we assume taxes are collected only when a user purchases a new set
(or a fraction thereof). This can happen either when a user joins the system or when it
changes its strategy. The cost cs of a new set s that has not yet been opened (purchased)
is called its opening cost. When a new set is opened by a user, a fraction equal to ε
of its opening cost is collected as tax. The operating cost of a facility is defined to be
its opening cost minus the payment collected as tax. The operating cost of a facility
that provides service to several users is shared amongst them. The tax paid by a user
is non-refundable, while the remaining part of the payment (the operating cost) is a
variable amount which may decrease when additional users join the same set and share
its cost. We note that our mechanism can support other settings where both taxes and
operating costs are shared by the users, as long as taxes are non-refundable, and can
thus cover the subsidies. Each set is associated with a subsidy value (possibly zero, in
case no subsidy is offered to the set). The subsidy can be applied either to the opening
cost, in case the set has not been opened yet, or to the operating cost in case it is used
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opening cost

effective
opening cost

tax
effective

operating cost

subsidy is offered

first user opens
the set

egalitarian cost
sharing mechanism

more users join
the set

(b)

opening cost

effective
operating cost

tax operating cost

subsidy is offered

first user opens
the set

egalitarian cost
sharing mechanism

more users join
the set

(a)

Fig. 2. (a) A user opens a new set that is not subsidized, and pays its opening cost, consisting
of a tax and the operating cost. The subsidy offered lowers the operating cost, changing it to
effective operating cost. In case more users join the set, they share its effective operating cost.
(b) A subsidy is offered to a set that has not been opened yet. The first user joining the set pays
its effective opening cost, consisting of a tax and the effective operating cost. In case more users
join the set, they share its effective operating cost.

by at least one user (see Figure 2). In the latter case, subsidies are given to a set that has
already been purchased so as to lower its cost and encourage more users to join it. The
effective opening cost ĉs of a set s, is defined to be its opening cost minus the subsidy
associated with s. The effective operating cost of s is defined similarly with respect to
the operating cost of the set.

In the integral model, sets are taken integrally and each element is covered by a
single set. The effective opening cost ĉs that a user will have to pay for purchasing
a new set s that is not subsidized, is composed of a non-refundable tax of ε · ĉs, and
a variable payment of (1 − ε)ĉs that is equal to the effective operating cost of the set. In
case a user joins a set s that is not subsidized, and shared by other users, its payment is
equal to (1 − ε)ĉs/ns, where ns is the number of users sharing s.

In the fractional model, each set s is associated with a fraction xs which is fully
subsidized (that is, its effective cost equals zero). The cost of any other fraction of this
set, that is, a fraction λ that is not subsidized, is equal to λ · cs. Each element can be
covered by several fractions of different sets adding up to 1. Denote the fraction of set
s used by user i by λs,i and the number of users using set s by ns. Assume without loss
of generality that λs,1 ≤ λs,2 ≤ . . . ≤ λs,ns ≤ 1. Define λs,0 = xs. The cost of each
fraction of s is as follows: the interval [λs,j−1, λs,j ] is shared by (ns − j + 1) users,
where the variable payment of each user equals (λs,j −λs,j−1)·(1−ε)·cs/(ns−j+1).
The first user who opened the interval [λs,j−1, λs,j ] will also pay a non-refundable tax
equal to (λs,j − λs,j−1) · ε · cs.

Nash Equilibrium Existence & Convergence. For both the fractional and integral mod-
els, the set cover game always converges to a Nash equilibrium. This property is estab-
lished by means of a global potential function Φ on the strategy space. Given a strategy
profile T consisting of the integral cover choices of all players, the potential function
Φ(T ) defined for our integral set cover game is the following:

Φ(T ) =
�
s∈T

ε · ĉs +
�
s∈T

� ns�
j=1

(1 − ε)ĉs

j

�
.
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The potential of the fractional model follows directly, as each fraction λs of set s can be
considered as a different set, with opening cost λs · cs and operating cost λs · (1 − ε)cs.

3 The Fractional Model

In this section we design a fractional subsidy algorithm that is executed by the central
authority. The algorithm receives as input a parameter ε ≤ 1, and generates a solution
with price of anarchy O( log f

ε ), and taxation ratio ε. The subsidy algorithm runs in
iterations, where each iteration corresponds to a new set fraction purchased by some
user. This can be the case either when a new user joins the system, or when an existing
user changes its strategy. In each such case, the user pays as tax an ε fraction of its
payment. The amount of subsidies given in each iteration is bounded by the amount of
collected taxes, thus allowing the subsidies to be fully financed from taxes. The central
authority does not determine which sets are chosen to the cover by the users. The only
guarantee is that the users act according to their best response by choosing a fractional
cover of minimum cost. Each iteration of the algorithm solely consists of an update of
the subsidies. Consider an element (user) e that either joins the system or changes its
strategy. There are four different types of set fractions that can be chosen by e.

1. Fractions that are fully subsidized. These fractions have zero cost.
2. Fractions that are not subsidized, yet are used by other users. A user joining such

fractions does not have to pay any tax. The operating cost of such a fraction is
evenly split between its users.

3. Fractions that are not subsidized and are not used by other users. A user choosing
these fractions will have to pay their full cost (tax and a full operating cost).

4. Fractions that have been previously opened, but are currently not used by any user
(users left them following strategy changes). A user joining such a fraction does
not have to pay any tax (as a tax was paid when opening it for the first time), but
has to pay its full operating cost.

The minimum cost cover chosen by element e consists of the lowest cost combina-
tion of these four types of fractions adding up to one. In case the element chooses a
second-type fraction, its payment will lower the payments of other elements using the
fraction, but will not have any effect on the cost of the solution. In addition, we do not
consider in our analysis fractions that are “deserted” following strategy changes per-
formed by users. As we do not reduce the cost of such fractions once they are unused,
we do not take them into account either when an element chooses a fourth-type fraction.
Moreover, as both fractions of type three and four are chosen from the minimum cost
feasible set that covers e, any user that already opened a new fraction of a set in the past
will always prefer to return to this fourth-type fraction (that requires no tax payment),
before opening new third-type fractions (that require tax payment).

Thus, following the best response of user e, the total cost of the solution increases
only due to third-type fractions. Note that a third-type fraction is chosen by e in order to
“complete” its cover, after choosing all possible first, second, and fourth-type fractions
of lower cost. Let ρ be the third-type fraction chosen by e. User e chooses the fraction ρ
from the minimal cost set that covers it. Let cmin be the opening cost of this minimal set.
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We refer to ρ as the greedy choice, or greedy cover of the user, and to ρ·cmin as its greedy
cost. Let xs be the fraction of set s that is subsidized by the central authority. Initially,
xs = 0 for all sets, and the dual variables ye = 0 for all elements. The algorithm that
updates the subsidies offered by the central authority is the following:

Fractional Subsidy Algorithm (with input ε):
When user e purchases a new (third-type) set fraction:

1. ye ← ye + ε · ρ · cmin

2. For each set s that contains e: xs ← xs ·
(
1 + ε·ρ·cmin

2cs

)
+ ε·ρ·cmin

f ·2cs

The variables ye are the variables of the dual linear program of the fractional set
cover problem (Figure 1). These variables are used to maintain an (almost) feasible
dual solution. The cost of the dual solution allows us to bound both the price of anarchy
and the taxation ratio of the algorithm. Note that the value of the primal variables ws,
indicating the fraction of set s that is taken to the cover (Figure 1), is determined both
by the third-type fractions chosen by the user, and by the subsidized fractions xs.

Let Δxi
s be the change of xs in the ith iteration (i.e., the additional subsidy given

to set s). The amount of subsidies given in the ith iteration is
∑

s∈S
Δxi

scs. We show
that this amount is bounded by ε · ρ · cmin, which is the tax paid by the user. To do so,
we establish a relationship between the fractional greedy cost G, the fractional subsidy
cost F and the total profit D of the dual solution we produce. Note that in each iteration
the amount of taxes collected is exactly the change in the dual cost (ε · ρ · cmin). Let
ΔGi, ΔFi and ΔDi be the change of the fractional greedy cost, the fractional subsidy
cost, and the dual cost, respectively, in the ith iteration.

Lemma 1. In each iteration i, ΔGi = 1
ε ΔDi, and ΔFi ≤ ΔDi. Thus, ΔFi/ΔGi ≤ ε.

Proof. In each iteration the greedy cost ΔGi = ρ · cmin, and ΔDi = ε · ρ · cmin. Thus,
ΔGi = 1

ε · ΔDi. In case
∑

s|e∈s xs > 1, element e is covered by fully subsidized set
fractions and thus ρ = 0. Thus, we get that in each iteration, the subsidy cost, ΔFi, is:

�
s|e∈s

cs
ε · ρ · cmin

2cs

�
xs +

1

f

�
≤ ε · ρ · cmin ≤ ΔDi. (1)

�

As ΔDi equals the amount of new taxes collected in the ith iteration, ΔFi is the subsidy
cost in the ith iteration, and ΔGi is the opening cost of the new set fraction purchased
in the same iteration, the next corollary follows directly.

Corollary 1. The taxation ratio of the fractional subsidy algorithm is ε. Moreover, the
subsidy cost is bounded by the amount of taxes collected.

Lemma 2. The dual solution D produced is feasible up to factor of O(log f).

Theorem 3. The price of anarchy of the final solution is O( log f
ε ), and the taxation

ratio is ε.
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Proof. The taxation ratio follows by Corollary 1. Let D′ be a feasible dual solution
obtained from D by dividing it by O(log f). The total cost of the solution is bounded
by the sum of the subsidies given by the central authority and the total greedy cost. By
Lemmas 1 and 2 we get that the total cost of the solution is then at most:

G+F = O

�
(1 +

1

ε
) log f

�
D′ = O

�
log f

ε
OPT

�
. ��

4 The Integral Model

In this section we show how to obtain a subsidy algorithm for the integral version of
the problem, which requires several more ideas and a careful analysis. The algorithm
receives as input a parameter ε ≤ 1, and generates a solution with price of anarchy
O

( 1
ε log f log

(
n
ε

))
, and taxation ratio ε.

Let OPT be the cost of an optimal integral solution. We design a subsidy algorithm
that computes a solution with the properties stated above, given the value of OPT. Note
that we can assume (using doubling) that the value of OPT is known up to a factor
of 2. The complete subsidy algorithm runs in phases, as follows. We start by guessing
α = mins∈S cs. If it turns out that the total cost of the solution exceeds Θ(α log f log( n

ε )
ε ),

we update the value of α by doubling it, and start a new phase by restarting the algorithm
from the current event. Since the success of our algorithm is guaranteed whenever α ≥
OPT, then it holds in the last phase that α ≤ 2OPT. Therefore, the total cost of the
solution is the sum of a geometric sequence which is at most twice the bound on the cost
of the last phase of our algorithm. Moreover, this does not influence the taxation ratio,
that is ε in each such phase separately. Note that as we guess the value of the optimum
solution, we can ignore all sets with cost greater than α, since these sets cannot belong
to an optimal solution.

The algorithm maintains a variable xs ≥ 0 for each s ∈ S, and updates it as in
the fractional case. Unlike the fractional case, these variables do not denote (fractional)
subsidies. Rather, the value of xs is used in order to determine whether the set s should
be (fully) subsidized. Let xj =

∑
s∈Sj

xs for each element j ∈ N , where Sj denotes the
collection of sets containing element j. We define C to be the family of sets in S that are
chosen to the cover, either by the greedy choices of the users, or by the central authority,
and define C̃ ⊆ C to be the family of sets that are (fully) subsidized. We denote by C
and C̃ the set of all elements covered by the members of C and C̃, respectively. The
following potential function is used throughout the algorithm:

Φ(ε)=
�
j �∈C̃

exp
�
(xj −1) · ln

�e · n

ε

��
+exp

�
1

2α

�
s∈S

�
cs · I

C̃
(s)− 3

2
xscs · ln

�e · n

ε

�	
−ε



.

The function I
C̃

above is the characteristic function of C̃, that is, I
C̃
(s) = 1 if

s ∈ C̃, and I
C̃
(s) = 0 otherwise. The potential function is used to determine whether a

set s should be subsidized. More specifically, after increasing the value xs, the set s is
added to the cover C̃ (that is, s is subsidized), only if as a result the potential function
decreases. Throughout the analysis of the algorithm, the first term of the potential func-
tion ensures that whenever the fraction assigned to an element j is at least 1 (that is,
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xj ≥ 1), then j is covered by a fully subsidized set. The second term is used to bound
the cost of the subsidized sets.

Consider a user e that either joins the system, or performs a best-response move. In
either case, e chooses an integral cover of minimum cost, i.e., it chooses a min cost
set covering it. If this set is either subsidized, or used by users that joined the system
previously, then the total solution cost does not increase and the subsidy algorithm does
nothing. In addition, similarly to the fractional model, we do not consider in our analysis
sets that are “deserted” following strategy changes performed by users. In case the user
chooses a new set, that is, a set that is neither subsidized, “deserted”, nor used by other
users, we implement the following subsidy algorithm:

Integral Subsidy Algorithm (with input ε):
Let ε′′ = 1

16ε and let ε′ = ε

3 ln( e·n
ε′′ ) .

Let s′ be the new set chosen by the user and let cmin be the cost of the set:

1. ye ← ye + ε′ · cmin
2. For each set s that contains e:

(a) xs ← xs ·
(
1 + ε′cmin

2cs

)
+ ε′·cmin

f ·2cs
.

(b) Subsidize the full cost of set s (add it to C̃) if by doing so the value of the
potential function Φ(ε′′) is at most its value before the increment of xs.

The algorithm updates the variables xs each time a user purchases a new set. In
each such iteration the tax collected from the user is εcmin. We will show that the total
subsidy given by the algorithm is at most the amount of tax that was collected until that
time. The analysis of our algorithm’s performance is based on the following lemma.

Lemma 3. For any value ε ≤ 1, Φ(ε) satisfies the following properties:

1. At start Φ(ε) ≤ 1, and at any time during the execution of the algorithm Φ(ε) > 0.
2. Each time the fraction xs of a set s is increased by the algorithm, then either adding

it to C̃, or not adding it, does not increase the value of Φ(ε).

By Lemma 3 the algorithm is well defined throughout the execution of the algorithm,
and it follows that Φ(ε) is monotonically non-increasing. Using Lemma 3, we prove our
main Theorem 4.

Theorem 4. For any ε ≤ 1, the price of anarchy of the solution is O

(
log f log(n

ε )
ε

)
,

and the taxation ratio is ε.
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Abstract. In the context of general demand cost sharing, we present
the first group-strategyproof mechanisms for the metric fault tolerant
uncapacitated facility location problem. They are (3L)-budget-balanced
and (3L · (1 + Hn))-efficient, where L is the maximum service level and
n is the number of agents. These mechanisms generalize the seminal
Moulin mechanisms for binary demand. We also apply this approach to
the generalized Steiner problem in networks.

1 Introduction and Model

Satisfying agents’ connectivity requirements at minimum cost is a major chal-
lenge in network design problems. In many cases, these problems are NP-hard.
The situation gets even more intricate when we consider these problems in the
context of cost sharing.

In cost-sharing scenarios, a service provider offers a common service (e.g., con-
nectivity within a network) to agents. Based on bids that indicate the agents’
willingness to pay, the provider determines a service allocation and payments.
Moreover, he computes a solution to provide the service according to the allo-
cation (e.g., to meet the connectivity requirements).

The decision-making of the provider is governed by a commonly known
cost-sharing mechanism. Essential properties of these mechanisms are group-
strategyproofness, preventing collusion by guaranteeing that rational agents com-
municate bids equal to their true valuations; budget-balance, ensuring recovery of
the provider’s cost as well as competitive prices in that the generated surplus is
always relatively small; and economic efficiency, providing a reasonable trade-off
between the provider’s cost and the valuations of the excluded agents. Finally,
practical applications demand for polynomial-time computability (in the size of
the problem).

Most research assumes binary demand, where agents are “served” or “not
served”. In contrast, we consider the general demand setting, providing service
levels ranging from 0 to some maximum number. This is of particular interest
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when agents require different qualities of service. For connectivity problems, the
service level of an agent is the number of her (distinct) connections. More connec-
tions correspond to a higher quality of service, for reasons including throughput
and resistance to link failure.

1.1 The Model

Notation. For n ∈ N, let [n] := {1, . . . , n} and [n]0 := [n] ∪ {0}. Let Hn :=∑n
i=1

1
i ∈ (log n, 1 + log n). For x, y ∈ Q

n, we write x ≥ y, if for all i ∈ [n],
xi ≥ yi. Let 0,1, ei be the zero, one, and i-th standard basis vector. We say that
x ∈ {0, 1}n indicates X ⊆ [n] if xi = 1 ⇔ i ∈ X .

We consider a finite set [n] of agents. Each agent i ∈ [n] has a maximum level of
service Li ∈ N she can receive. Let Q := [L1]0×. . .×[Ln]0, L := Q

L1 ×. . .×Q
Ln ,

L≥0 := Q
L1
≥0 × . . . × Q

Ln

≥0, and L := maxi∈[n]{Li}.
An allocation is a vector q ∈ Q representing the service level given to each

agent. Given q ∈ Q and l ∈ [L], we define q≤l by q≤l
i := mini{qi, l}, and let

ql ∈ {0, 1}n indicate the set Ql := {i ∈ [n] | qi ≥ l}.
The valuation vector vi ∈ Q

Li of agent i consists of the marginal valuations
vi,l of receiving level l additionally to level l − 1. Agent i’s total valuation for
level m is thus

∑m
l=1 vi,l. We call V = (v1, . . . , vn) ∈ L the valuation matrix;

accordingly, B = (b1, . . . , bn) ∈ L denotes a bid matrix.
Assumption: We assume that vi,1 ≥ . . . ≥ vi,Li for all i ∈ [n].

Definition 1. A cost-sharing mechanism M = (q, x) : L → Q × Q
n
≥0 is a

function that gets as input a bid matrix B ∈ L. It outputs an allocation q(B) ∈ Q
and a vector of cost shares x(B) ∈ Q

n
≥0.

We always require three standard properties of cost-sharing mechanisms:

– No positive transfers (NPT): For all B ∈ L, it is x(B) ≥ 0.
– Voluntary participation (VP): Agents are never charged more than they bid,

i.e., for all B ∈ L and all i ∈ [n], it is xi(B) ≤
∑qi(B)

l=1 bi,l.
– Consumer sovereignty (CS): An agent can always ensure to receive a certain

service level, i.e., for all i ∈ [n] and all l ∈ [Li]0, there is a bid vector
b+l

i ∈ Q
Li such that for all B ∈ L with bi = b+l

i , it is qi(B) = l.

An agent i aims to submit a bid vector bi such that her utility is maximized,
where her utility is given as ui(B) :=

∑qi(B)
l=1 vi,l − xi(B).

Definition 2. A cost-sharing mechanism M = (q, x) is group-strategyproof
(GSP) if for every true valuation matrix V ∈ L and any coalition K ⊆ [n] there
is no bid matrix B ∈ L with bi = vi for all i /∈ K, such that ui(B) ≥ ui(V ) for
all i ∈ K with at least one strict inequality.

Cost shares computed by a GSP mechanism only depend on the computed allo-
cation [Mou99]. This gives rise to the following definition:
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Definition 3. A cost-sharing method ξ : Q → Q
n
≥0 maps each allocation q ∈ Q

to a vector of cost shares. If qi = 0, we require ξi(q) = 0.

For binary demand, cross-monotonic cost-sharing methods ξ : {0, 1}n → Q
n
≥0

are of particular interest for achieving GSP. For all allocations p and all agents
i ∈ [n] and j ∈ [n] \ {i} with pj = 0, they fulfill ξi(p) ≥ ξi(p + ej). Using such a
ξ, the (binary demand) mechanism Moulinξ is GSP [Mou99]:

Algorithm 1 (computing Moulinξ = (q, x)).
Input: B ∈ Q

n � B = (b1,1, . . . , bn,1)
Output: assignment q(B) ∈ {0, 1}n, cost-share vector x(B) ∈ Q

n
≥0

1: p := 1;
2: while p 	= 0 and there exists i with bi,1 < ξi(p) do
3: pj := 0 for an arbitrary j with bj,1 < ξj(p)
4: return (p, ξ(p))

Our general demand mechanisms use marginal cost-sharing methods:

Definition 4. A marginal cost-sharing method is a function χ : Q → L≥0,
where χi,l(q) is the marginal cost-share of agent i for additionally receiving ser-
vice level l to level l − 1. If l > qi, we require χi,l(q) = 0.

We now turn to the service cost. A cost-sharing problem is specified by a cost
function C : Q → Q≥0 mapping each q to the cost of providing each agent
i with service level qi. Typically, costs stem from solutions to a combinatorial
optimization problem and are defined only implicitly. We let C(q) be the value of
a minimum-cost solution for the instance induced by q. This cost can in general
not be recovered exactly due to restrictions placed by the GSP requirement.
Further difficulties arise when problems are hard. We denote the cost of an
approximate solution by C′(q) and require the total charge of a mechanism to
lie within reasonable bounds:

Definition 5. A general demand cost-sharing mechanism M = (q, x) is β-
budget-balanced (β-BB, for β ≥ 1) with respect to C, C′ : Q → Q≥0 if for
all B ∈ L it holds that

C′(q(B)) ≤
n∑

i=1

xi(B) ≤ β · C(q(B)) .

As a quality measure for the computed allocation, we use optimal social costs
SCV (q) := C(q)+

∑n
i=1

∑Li

l=qi+1 max{0, vi,l} and actual social costs SC ′V (q) :=
C′(q) +

∑n
i=1

∑Li

l=qi+1 max{0, vi,l}. The cost incurred and the valuations of the
rejected agents should be traded off as good as possible:

Definition 6. A general demand cost-sharing mechanism M = (q, x) is γ-
efficient (γ-EFF, for γ ≥ 1) with respect to C, C′ : Q → Q≥0 if for all true
valuations V ∈ L it holds that SC ′V (q(V )) ≤ γ · minq∈Q{SCV (q)}.

The efficiency of Moulinξ can be analyzed via the summability of ξ:
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Definition 7. A binary demand cost-sharing method ξ : {0, 1}n → Q
n
≥0 is α-

summable (α-SUM, for α ≥ 1) with respect to C : Q → Q≥0 if for every
s ∈ {0, 1}n and every ordering s1, . . . , s|S| of S := {i ∈ [n] | si = 1}, it is
∑|S|

i=1 ξsi(si) ≤ α · C(s), where si ∈ {0, 1} indicates Si := {s1, . . . , si}.

If ξ is β-BB and α-SUM, then Moulinξ is (α + β)-EFF [RS06].

1.2 The Problems

FaultTolerantFL (Metric Fault Tolerant Uncapacitated Facility Location
Problem): An instance of this problem is given by a set of agents [n], a set
F of facilities, an opening cost of ∈ N for each f ∈ F , and a non-negative cost
function c : ([n]∪F )× ([n]∪F ) → N that satisfies the triangle inequality. Given
q ∈ Q with maxi{qi} ≤ |F |, the aim is to open a set of facilities and connect each
agent i to qi distinct open facilities, such that the total opening and connection
cost is minimized. For k ∈ N, let Fk := {F ′ ⊆ F | |F ′| ≥ k}. For F ′ ∈ Fmaxi{qi},
let F ′i be a set of qi closest facilities in F ′ to i ∈ [n]. Then the optimal cost is
C(q) := minF ′∈Fmaxi{qi}{

∑
f∈F ′ of +

∑
i∈[n]

∑
f∈F ′

i
c(i, f)}.

GeneralizedSteiner (Generalized Steiner Problem in Networks): An instance
of this problem is given by a set of agents [n], an undirected graph G := (V, E)
with edge costs c : E → N, and a pair of nodes (si, ti) for each agent i ∈ [n].
For a requirement vector q, the aim is to determine a minimum-cost subgraph
with cost C(q) that has qi edge-disjoint paths between si and ti. We consider
a simplification allowing to use multiple edge copies. The cost of such an edge
copy is equal to the cost of the edge.

1.3 Related Work

The only general design technique for binary demand GSP mechanisms is apply-
ing Moulinξ [Mou99, JV01]. Particularly, cross-monotonic cost-sharing methods
were designed by Pál et al. [PT03] for metric uncapacitated facility location
and by Könemann et al. [KLS05] for Steiner forests. A non-Moulin and only SP
mechanism for facility location was introduced by Devanur et al. [DMV05].

Prior to this work, incremental cost-sharing mechanisms were the only known
GSP mechanisms for general demand cost sharing. They simply consider an
ordering that specifies which agent’s level is incremented next and make the
agent pay for the corresponding marginal cost. Incremental mechanisms are only
known to be GSP for certain costs, and are essentially the only GSP and 1-BB
mechanisms for these costs [Mou99]. However, for costs induced by FaultTol-
erantFL and GeneralizedSteiner, incremental mechanisms are not GSP.
The interested reader can find examples in the extended version of this paper.

The only other general demand mechanisms we are aware of are acyclic mecha-
nisms introduced by Mehta et al. [MRS07], which were originally designed for bi-
nary demand to overcome the limitations of Moulin mechanisms [IMM05, RS06].
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The main drawback of acyclic mechanisms is that they are only weak GSP,
meaning that coalitions are only assumed to be successful if every agent strictly
improves her utility. Technically, all inequalities in Definition 2 are strict. For
FaultTolerantFL, [MRS07] give a O(L2)-BB and O(L2 · (1 + log n))-EFF
acyclic mechanism. In the full version of their paper, they present a Hn-BB and
(2Hn · (1 + HL))-EFF acyclic mechanism for the non-metric case.1

To the best of our knowledge, the best approximation algorithm for Fault-
TolerantFL yields an appproximation factor of 2.076 [SSL03], while the best
approximation factor for GeneralizedSteiner is 2, with and without the sim-
plification of allowing edge copies [Jai01].

1.4 Contribution

The point of departure for this work is a rather obvious idea for generalizing
Moulin mechanisms: Start with the maximum allocation and iteratively reduce
service levels until every agent can afford her remaining levels. The cost shares
are extracted from marginal cost-sharing methods χ. These mechanisms, termed
MoulinGDχ, are stated in Section 2.

– We identify three properties of marginal cost-sharing methods that are suffi-
cient for MoulinGDχ to be GSP. It comes as no surprise that a generalization
of binary-demand cross-monotonicity is among them.

– We give marginal cost-sharing methods χFL for every instance of Fault-
TolerantFL in Section 3 and show that MoulinGDχF L is GSP, (3L)-BB
and (3L·(1+Hn))-EFF. These are the first GSP mechanisms for this problem.
Method χFL is a natural generalization of the binary demand cost-sharing
method for facility location in [PT03]. In contrast, the generalization used
within acyclic mechanisms in [MRS07] does not guarantee GSP.

– We give the first GSP mechanisms for GeneralizedSteiner in Section 4.

Our work adapts the common assumption that marginal valuations are non-
increasing in the service level. Omitted proofs are given in the extended version.

2 Generalized Moulin Mechanisms

Given a marginal cost-sharing method χ, we propose to generalize Moulin mech-
anisms as in Algorithm 2:

Algorithm 2 (computing MoulinGDχ := (q, x)).
Input: bid matrix B ∈ L
Output: allocation q(B) ∈ Q; cost-share vector x(B) ∈ Q

n
≥0

1: q := (L1, . . . , Ln);
2: while there exists i with bi,qi < χi,qi(q) do
3: qj := qj − 1 for an arbitrary j with bj,qj < χj,qj (q)

4: return (q, x) with xi :=
∑qi

l=1 χi,l(q)

1 Note that these results are adjusted to our notion of β-BB.
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We state three properties of χ that are sufficient for MoulinGDχ to be GSP. The
first is a generalization of binary demand cross-montonicity:

Definition 8. A marginal cost-sharing method is cross-monotonic if for all al-
locations q ∈ Q, all agents i ∈ [n] and j ∈ [n] \ {i} with qj < Lj, and all service
levels l ∈ [Li], it holds that χi,l(q) ≥ χi,l(q + ej).

The second property ensures that the marginal cost-share χi,l(q) of agent i with
qi ≥ l is exactly the marginal cost-share χi,l(q≤l).

Definition 9. A marginal cost-sharing method is level-restricted if for all allo-
cations q ∈ Q, for all agents i ∈ [n], and for all service levels l ∈ [Li], it holds
that χi,l(q) = χi,l(q≤l).

The third property together with cross-monotonicity implies that the marginal
cost-share of an agent is non-decreasing in the number of levels:

Definition 10. A marginal cost-sharing method is non-decreasing if for all al-
locations q ∈ Q, for service level l := maxi{qi}, and for all agents i ∈ [n] with
qi = l < Li, it holds that χi,l(q) ≤ χi,l+1(q +

∑
j∈[n]:qj=l<Lj

ej).

Lemma 1. If χ is non-decreasing and cross-monotonic, it holds for all alloca-
tions q ∈ Q, for all service levels l ∈ [L], and for all agents i ∈ [n] with qi > l
that χi,l(q≤l) ≤ χi,l+1(q≤l+1).

If χ is level restricted, agent i’s utility is the sum over the marginal utili-
ties vi,l − χi,l(q≤l). If χ is additionally cross-monotonic and non-decreasing,
by Lemma 1 and non-increasing marginal valuations, these marginal utilities are
non-increasing in l. The proof of Theorem 1 heavily relies on non-increasing mar-
ginal utilities and uses the main idea from [MS01], which shows that Moulinξ is
GSP if ξ is cross-monotonic.

Theorem 1. MoulinGDχ is GSP given any level-restricted, cross-monotonic,
and non-decreasing marginal cost-sharing method χ. Furthermore, it satisfies
NPT, VP and CS.

Due to space limitations we only show that if exactly one of the three properties
required for χ does not hold, MoulinGDχ is not GSP anymore. It remains an
open problem whether there are cost functions for which all three properties
need to be fulfilled at once in order to obtain GSP.

For all examples, let n = 2, L1 = L2 = 2, and χ2,l(q) := 2 for all l ∈ [2] and
all q ∈ Q with q2 ≥ l. We always assume that v2 = (2, 2).

Example 1. Consider χ with χ1,l(q) := 1 for all l ∈ [2] and all q ∈ Q with q1 ≥ l,
with the only exception that χ1,2(2, 2) := 2. Obviously, χ is level-restricted and
non-decreasing, but not cross-monotonic since χ1,2(2, 1) < χ1,2(2, 2). For the
case that v1 = (2, 2), both agents get service level 2, where u1(v1, v2) = 1 and
u2(v1, v2) = 0. Agent 2 may then bid b2 = (−1, −1) in order to not receive the
service with the result that agent 1 receives level 2 with utility u1(v1, b2) = 2.
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Example 2. Consider χ with χ1,1(q) := 1 for all q ∈ Q with q1 = 1, χ1,1(q) := 2
for all q ∈ Q with q1 = 2 and χ1,2(q) := 3 for all q ∈ Q with q1 = 2. Here,
χ is cross-monotonic and non-decreasing but fails to be level-restricted due to
χ1,1(2, 2) > χ1,1(1, 1). If now v1 = (3, 3), then agent 1 receives level 2 and
u1(v1, v2) = 1. However, for b1 = (2, 2), agent 1 receives only level 1, and
u1(b1, v2) = 2.

On the other hand, we get the situation χ1,1(2, 2) < χ1,1(1, 1) when we change
χ such that χ1,1(q) = 2 for all q ∈ Q with q1 = 1 and χ1,1(q) = 1 for all
q ∈ Q with q1 = 2. If v1 = (3, 3 − ε), then agent 1 receives only one level and
u1(v1, v2) = 1. However, she may bid b1 = (3, 3) to receive both levels such that
u1(b1, v2) = 2 − ε.

Example 3. Consider χ with χ1,1(q) := 2 for all q ∈ Q with q1 ≥ 1 and
χ1,2(q) := 1 for all q ∈ Q with q1 ≥ 2. Now we have the case that χ is
cross-monotonic and level-restricted, but not non-decreasing. For v1 = (1, 1),
agent 1 receives level 2 and has a utility of u1(v1, v2) = −1. However, bidding
b1 = (−1, −1) ensures a utility of zero.

3 Metric Fault Tolerant Uncapacitated Facility Location

We explain how to define χFL : Q → L≥0 and how to construct a solution in
polynomial time. For q ∈ {0, 1}n, both reduces to the method and solution by
Pál and Tardos [PT03] for binary demand facility location.

Fix q ∈ Q and l ∈ [L]. We only need to determine χFL
i,l (q) for all i ∈ Ql :=

{j ∈ [n] | qj ≥ l}. Simultaneously, every agent i in Ql uniformly grows a ball
with i at its center to infinity. This ball, the ghost of i, has radius t at time t. We
say that the ghost of i touches facility f at time t if c(i, f) ≤ t. After the ghost of
i touches f it starts filling f , contributing t−c(i, f) at time t ≥ c(i, f). Facility f
is said to be full if all such contributions sum up to its opening cost of . Let t(f)
denote the time when f becomes full, and Sf := {i ∈ [n] | c(i, f) < t(f)} the set
of agents that contributed to filling f . It holds that

∑
i∈Sf

(t(f) − c(i, f)) = of .
We define χFL

i,l (q) to be the time that it takes for the ghost of i to touch l

full facilities. Note that χFL
∗,l (q) only depends on Ql := {j ∈ [n] | qj ≥ l}. For

ql ∈ {0, 1}n indicating Ql, it is χFL
i,l (q) := χFL

i,l (l ·ql). This is even stronger than
level-restriction.

Lemma 2. χFL is level-restricted, cross-monotonic, and non-decreasing.

We construct a solution with cost C′(q) iteratively by computing χFL
i,l (q) for all

i ∈ Ql for l = 1, . . . , maxi{qi}. Fix an iteration l. Let t(f) and Sf be the values
obtained for all f ∈ F by growing the ghosts of Ql.

Facilities are opened in iteration l according to the following rule: Let Fl−1
be the set of the already opened facilities in iterations 1, . . . , l − 1. If in iteration
l, a facility f /∈ Fl−1 becomes full, we open f if and only if conditions O1 and
O2 hold:
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O1) There is no facility g that was already opened in iteration l and for which
c(g, f) ≤ 2 · t(f).

O2) There are no l distinct facilities g1, . . . , gl ∈ Fl−1 for which c(gk, f) ≤ 2·t(f)
for all k ∈ [l].

In order to simplify the analysis, we connect every agent i ∈ Ql to one (more)
open facility in each iteration l, rather than connecting her with the qi closest
facilities in the final facility set. This is how we do it:

C1) If i ∈ Sf for an f opened in iteration l, we connect i to f . (It can be shown
that for f, g with f 	= g opened in iteration l, Sf ∩ Sg = ∅.)

C2) Otherwise, if at time χFL
i,l (q) the ghost of i touches an arbitrary open facility

f to which i is not connected yet, we connect i to f .
C3) Otherwise, let f be an arbitrary full but closed facility that the ghost of i

touches at time χFL
i,l (q); f was not opened in iteration l, because O1 or O2

do not hold:
a) If O1 does not hold because of facility g, connect i to g.
b) If O2 does not hold because of facilities g1, . . . , gl, connect i to a g ∈

{g1, . . . , gl} to which i is not connected yet.

If there are ties in C3a and C3b, or when facilities become full simultaneously,
break them arbitrarily. It is straightforward to see that for every instance of
FaultTolerantFL, χFL and the solution constructed above can be computed
in polynomial time (in the size of the input). Deleting O2 and C3b, we get
the rules of [PT03]. However, these two rules are crucial for a reasonable BB
approximation. We refer to the extended version for the details.

Example 4. Facilities are illustrated as houses, where the roofs are labeled with
the opening cost. Agents are circles labeled with the agent’s identity. Edges (i, j)
are labeled with c(i, j). If i and j are not directly linked, c(i, j) is defined as the
cost of a shortest path between i and j in the network.

2

f1
1

1

145

2

2

f2

f4
f3

12

1

1

1

3 1
4

We look at allocation q = (2, 2, 2, 1). The marginal cost shares for level 1 are
determined by growing the ghosts of agent set Q1 = {1, 2, 3, 4}, where q1 =
(1, 1, 1, 1). For level 2, we grow the ghosts of agent set Q2 = {1, 2, 3}, where
q2 = (1, 1, 1, 0). We write i◦ f if i touches f , but f is not full yet; f if f becomes
full; i • f if i touches a full facility f . Then for timesteps t:
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t Events for Level 1

1 1 ◦ f1, 2 ◦ f2, 3 ◦ f3, 4 ◦ f3

3
2 f3, 3 • f3, 4 • f3

2 f1, f2, 1 • f1, 2 • f2, 1 ◦ f4, 2 ◦ f4

t Events for Level 2

1 1 ◦ f1, 2 ◦ f2, 3 ◦ f3

2 f1, f2, f3, 1 • f1, 2 • f2, 3 • f3
1 ◦ f4, 2 ◦ f4

3 f4, 1 • f4, 2 • f4

4 3 • f4

Note that i ∈ Sf iff event i ◦ f occurs at a strictly smaller time step than event
i • f . The cost shares are χ∗,1(q) = χ∗,1(1, 1, 1, 1) = (2, 2, 3

2 , 3
2 ) and χ∗,2(q) =

χ∗,2(2, 2, 2, 0) = (3, 3, 4, 0). The final cost shares are thus (5, 5, 11
2 , 3

2 ). For Level
1, we open f3, f1, and f2. Due to C1, we connect agents 3 and 4 to f3, agent 1
to f1, and agent 2 to f2. For Level 2, f4 stays closed due to O2. All agents in
{1, 2, 3} are connected due to C3b; 1 is connected to f2, 2 is connected to f1,
and 3 is connected to f1 or f2.

Theorem 2. For any q ∈ Q, X(q) :=
∑L

l=1
∑

i∈Ql
χFL

i,l (q) ≤ L · C(q). Fur-
thermore, there exists a solution for allocation q with cost C′(q), such that
1
3 · C′(q) ≤ X(q).

Proof. Let χ := χFL. Fix q ∈ Q. We show the upper bound; the lower bound
is obtained by modifying the proof in [PT03]. Consider an arbitrary facility set
F ′ ⊆ Fmaxi{qi}. Fix l ∈ [maxi{qi}] and i ∈ Ql. Let F ′i ⊆ F ′ be a set of qi distinct
closest facilities in F ′ to i. We show:

∃f ∈ F ′i : χi,l(q) ≤
{

t(f) if i ∈ Sf

c(i, f) otherwise .
(1)

Assume that (1) does not hold. Then for all f ∈ F ′i it holds that χi,l(q) >
t(f) > c(i, f) if i ∈ Sf and χi,l(q) > c(i, f) ≥ t(f) otherwise. Thus, at time
t := maxf∈F ′

i
{t(f), c(i, f)}, the ghost of i touches at least qi ≥ l full facilities,

a contradiction to t < χi,l(q). Note that (1) especially holds for F ′ = F ∗, when
F ∗ is an optimal facility set for q. Then,

∑

i∈Ql

χi,l(q) ≤
∑

i∈[n]

⎛

⎝
∑

f∈F ∗
i :i∈Sf

t(f) +
∑

f∈F ∗
i :i/∈Sf

c(i, f)

⎞

⎠

=
∑

f∈F ∗

∑

i∈Sf :f∈F ∗
i

(t(f) − c(i, f)) +
∑

i∈[n]

∑

f∈F ∗
i

c(i, f)

≤
∑

f∈F ∗

of +
∑

i∈[n]

∑

f∈F ∗
i

c(i, f) = C(q) .

Finally, X(q) =
∑L

l=1
∑

i∈Ql
χi,l(q) ≤ L · C(q). ��
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Theorem 3. MoulinGDχF L is (3L · (1 + Hn))-EFF with respect to C and C′.

Whereas we refer to the full version for the proof of Theorem 3, we show a prop-
erty of χFL similar to binary demand summability (see e.g. [RS06]) in Lemma
3, which constitutes the main part of the proof.

Lemma 3. For any q ∈ Q and any ordering s1, . . . , s|S| of the set S := {i ∈
[n] | qi > 0}, where sj ∈ {0, 1}n indicates Sj := {s1, . . . , sj}, it is

|S|∑

j=1

χFL
sj ,qsj

(qsj · sj) ≤ Hn · C(q) .

Proof. Let χ := χFL. Roughly speaking, the main idea of the proof is a “re-
duction” to the summability of a (binary demand) cost-sharing method ξFL :
{0, 1}n → Q

n
≥0 that we define according to Pál and Tardos [PT03] with a new

facility location instance: It has agent set [n], facility set G, and a new cost
function d : ([n]∪G)× ([n]∪G) → Q≥0. Let D := {0, 1}n → Q≥0 be the optimal
cost function for the new instance.

Fix q ∈ Q and an ordering s1, . . . , s|S| of S := {i ∈ [n] | qi > 0}. Fix j ∈ [|S|]
and look at χsj ,qsj

(qsj · sj), computed for the original instance. For all f ∈ F ,
let t(f) and Sf be the corresponding values for growing the ghosts of set Sj .
In the original instance, let F ∗ be an optimal facility set for q, and F ∗sj

be the
facilities that sj is connected to in an optimal solution. It is F ∗ ⊆ Fmaxi{qi}. In
the proof of Theorem 2, we have already shown that there exists fj ∈ F ∗sj

, such
that χsj ,qsj

(qsj · sj) is at most t(fj) if i ∈ Sfj , or c(sj , fj) otherwise.
Let the new facilities be G := {f1, . . . , f|S|}. For a each pair in {(sj , fj)}j∈[|S|],

let d(sj , fj) := c(sj , fj). Furthermore, for all j, j′ such that fj = fj′ , we define
d(sj , sj′ ) := c(sj , sj′). All other costs are defined to be sufficiently large, while
ensuring that d satisfies the triangle inequality. The networks below illustrate
the old (left) and the new (right) facility instance. The grey parts correspond to
the unchanged distances.

By construction of the new instance, it is χsj ,qsj
(qsj · sj) ≤ ξFL

sj
(sj) for all

j ∈ [|S|], where ξFL
sj

(sj) is computed on the new instance. Additionally, D(s) ≤
C(q), with s ∈ {0, 1}n indicating S. We further use the fact that ξFL is Hn-SUM
[RS07] in order to obtain

|S|∑

j=1

χFL
sj ,qsj

(qsj · sj) ≤
|S|∑

j=1

ξFL
sj

(sj) ≤ Hn · D(s) ≤ Hn · C(q) . ��

Corollary 1. There is a marginal cost-sharing method χ such that MoulinGDχ

is (3L)-BB and (3L · (1 + Hn))-EFF with respect to C and C′.
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Proof. Define χ by multiplying χFL by 3. Adjusting the proofs of Theorem 2
and Theorem 3 leads to the stated BB and EFF guarantees.

We shortly describe the marginal cost-sharing method χAFL used in the acyclic
mechanism introduced by Mehta et al. [MRS07]. The mechanism itself is essen-
tially Mechanism MoulinGDχ, where line 2 is replaced by “while there exists i
with bi,l < χi,l(q) for an l ∈ [qi]”. The main difference between χAFL and χFL

is that χFL
i,l (q) is independent of connections computed in iterations 1 to l − 1.

The marginal cost shares χAFL
i,l (q) for all i ∈ Ql are computed iteratively for

l = 1, . . . , L. In each iteration l, the cross-monotonic cost-sharing method of Pál
and Tardos [PT03] is invoked for all agents with qi ≥ l. The instance is changed
in such a way that opening costs are set to 0 for already opened facilities. In
order to ensure that each agent i is connected to qi distinct facilities, the distance
c(i, f) for already existing connections between i and f is set to infinity. All other
distances stay the same. Consider the network below, given by [MRS07]:

f1 f2 f3

0

1
2

3
4

1
1 + e

1 + 2e

1 + 3e

3

ee3e

Here, χAFL
4,2 ((2, 2, 2, 2)) = 5 + 5ε > 3 = χAFL

4,2 (0, 2, 2, 2) obviously violates cross-
monotonicity. Essentially, this happens due to that fact that for (2, 2, 2, 2), c(4, 3)
is set to infinity in the first iteration, making her ghost grow longer in the second
iteration. However, for (0, 2, 2, 2) it is c(4, 3) = 3 in both iterations.

4 Generalized Steiner Problem in Networks

For binary demand, Könemann et al. [KLS05] give a polynomial-time computable
cross-monotonic cost-sharing method ξGS : {0, 1}n → Q

n
≥0 which is (2 − 1

n )-
BB. The computed solution is a Steiner forest which can be deduced from the
cost-share computation. Additionally, it is known that ξGS is O(log2 n)-SUM
[CRS06]. The cost-sharing method can essentially be computed by the algorithm
by Agrawal et al. [AKR95] with only a small modification which is crucial for
cross-monotonicity.

We combine the cost-sharing method from [KLS05] with a straightforward
solution construction by Goemans and Bertsimas [GB93]. The marginal cost-
sharing method χGS : Q → L≥0 is simply defined by letting χGS

i,l (q) := ξGS
i (ql)

for all q ∈ L, where ql ∈ {0, 1} indicates Ql := {i ∈ [n] | qi ≥ l}. Our computed
solution is simply the union of the Steiner forests from each round (as implied
by ξGS), where multiple edges count as copies.
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Theorem 4. There is a marginal cost-sharing method χGS and a solution with
cost C′(q) for each q ∈ Q, such that MoulinGDχGS is ((2− 1

n )·HL)-BB, ((2− 1
n +

log2 n) · HL)-EFF, and GSP with respect to C and C′. Furthermore, it satisfies
NPT, VP, and CS.
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