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Abstract. In this paper, a magnetic resonance image (MRI) segmentation 
method based on two-dimensional exponential entropy (2DEE) and parameter 
free particle swarm optimization (PSO) is proposed. The 2DEE technique does 
not consider only the distribution of the gray level information but also takes 
advantage of the spatial information using the 2D-histogram. The problem with 
this method is its time-consuming computation that is an obstacle in real time 
applications for instance. We propose to use a parameter free PSO algorithm 
called TRIBES, that was proved efficient for combinatorial and non convex 
optimization. The experiments on segmentation of MRI images proved that the 
proposed method can achieve a satisfactory segmentation with a low 
computation cost.  
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1   Introduction 

The increasing need for analyzing the brain magnetic resonance images (MRI) 
allowed to establish MRI segmentation as an important research field. For instance, in 
order to make easy the evaluation of the ventricular space evolution, a multilevel MRI 
segmentation is required. In this paper, we consider the problem of detecting the 
ventricular space from MRI of the brain. The image segmentation problem at hand is 
difficult because of the common occurrence of peri-ventricular lesions in MRI of even 
normal aging subjects, which locally alter the appearance of the white matter 
surrounding the ventricular space. 

The segmentation problem has received a great deal of attention, thus any attempt to 
survey the literature would be too space-consuming. The most popular segmentation 
methods (tissue classification methods) may be found in [1] to [13]. The common class 
of parametric methods used in brain MRI segmentation is based on an expectation-
maximization framework. This class of methods is based on the assumption that a 
mixture Gaussian distribution is assumed as a model for the voxel intensity probability 
distribution. However, in most cases, the distribution is far from being Gaussian. Many 
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authors tried to overcome this problem by regularizing the misclassification error 
through spatially constraining the segmentation process with prior information from a 
probabilistic atlas [4]. However, the method becomes very sensitive to the correct 
alignment of the atlas with the image and too time consuming. Actually, doctors do not 
want to spend a lot of time waiting the result of segmentation, because of the large 
number of subjects. That induces the need for a fast segmentation algorithm.  

Many authors have applied to brain MRI classical segmentation methods, details 
are given in [3], [6], and [7] to [13]. In order to overcome the problem of these 
methods, some post-classification methods were proposed [7]. 

The main contribution of the work we present here is a novel method for brain 
MRI segmentation based on an information measure, defined in [8], called 
exponential entropy (EE). The EE information measure solves the different problems 
related to the use of the classical Shannon entropy, pointed out in [9], i.e. Shannon’s 
entropic description is not defined for distributions that include probabilities of 0. To 
avoid the problem of the spatial distribution, we defined a two-dimensional 
histogram, that takes into account the pixel spatial distribution. We also extended the 
EE to the two-dimensional and multilevel case.  

As the computation complexity of the problem at hand exponentially increases 
with the increase of the number of classes, a fast optimization metaheuristic is needed 
to search for the optimal solution. Most metaheuristics have the drawback of having 
parameters which must be set by the user. According to the values given to these 
parameters, the algorithm is more or less efficient. However, there are many 
applications for which the user of the algorithm has no time to waste with parameter 
tuning. Practically, if the values of the objective function result from an experimental 
time costly process, it would be not possible to lead tests on the values of parameters, 
particularly in industrial applications. Tuning the parameters requires a minimum of 
experience about the used algorithm, so, it would be difficult and time consuming for 
a novice user to find the optimal set of parameters. 

In this paper, we propose to use a parameter free PSO algorithm, called TRIBES, 
that does not need any parameter fitting [14]. Many authors tried to make the PSO 
algorithm free of parameters [15], [16] and [17]. But the first really parameter free 
algorithm, called TRIBES, was proposed by Clerc [14]. 

This paper is outlined as follows: in the next section, the computation of the two-
dimensional histogram is presented. In section 3, definition of the exponential entropy 
is given and the extension of the exponential entropy to the two-dimensional case is 
presented. A quick description of the TRIBES parameter free Particle Swarm 
Optimization algorithm is given in section 4. The proposed segmentation algorithm is 
presented in section 5. Experimental results are discussed in section 6. Finally, we 
conclude in the last section. 

2   Two-Dimensional Histogram 

The two-dimensional (2D) histogram [18] of a given image is computed as follows. 
One calculates the average gray-level value of the neighborhood of each pixel. Let 
w(x, y) be the averaged image of f(x, y) using a window of size 3x3 defined by: 
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where x⎢ ⎥⎣ ⎦  denotes the integer part of the number x. In order to solve the frontier 

problem we disregard the top and bottom rows and the left and right columns. Then 
the 2D histogram is constructed using expression (2). 
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The joint probability is given by: 

           ( , )ijp h i j=  ,           (3) 

where { }, 0,1,2, , 255i j ∈ …  . 
 

The 2D histogram plane is represented in figure 1: the first and the second quadrant 
denote the background and the objects respectively, the third and the fourth quadrant 
contain information about noise and edges alone, they are not considered here. A 
threshold vector is (s, t), where s, for g(x, y), represents the threshold of the average 
gray-level of the pixel neighborhoods and t, for f(x, y), represents the threshold of the 
gray level of the pixel. The quadrants containing the background and the objects (first 
and second) are considered to be independent probability distributions; values in each 
case must be normalized in order to have a total probability equal to 1. In the case of 
image segmentation into N classes, a posteriori class probabilities are given by: 
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where ( , )n n na s t≡ ; n=1,…,N; m=2,…,N and N is the number of classes.  
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Fig. 1. Two-dimensional histogram plane, where s and t are the thresholds for w(x,y) and f(x,y), 
respectively 
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3   Two-Dimensional Exponential Entropy 

We define the 2D exponential entropy (2DEE) by: 
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where α ∈ℜ and 1α ≠ . 
Thus the exponential entropies associated with different image classes' distributions 
are defined below: 

- The 2DEE of the class m-1 can be computed through: 
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- The 2DEE of the class m can be computed through: 
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For the convenience of illustration, two vectors ( ) ( )0 0, 0, 0s t =  and 
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According to the maximum entropy principle, the optimal 

vectors ( )* * * * *
1,..., 1 1 1 1 1( ) ( , ),..., ( , )N N Na s t s t− − −≡  should meet: 

                                
( ) { }*

1,..., 1 1,..., 1max ( )T T
N NH a H aα α− −=

                                   
 (10) 

where: 1 2 10 .... 255Ns s s −< < < < <  and 1 2 10 .... 255Nt t t −< < < < < . 
In the case of one threshold (N=2) the computational complexity for determining 

the optimal vector (s*, t*) is O(L4), where L is the total number of gray-levels (usually 
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256). However, it is too time-consuming in the case of multilevel thresholding. For 
the n-thresholding problem, it requires O(L2n+2). In this paper, we further present a 
parameter free PSO algorithm for solving 

{ }1 1 2 2 1 1arg max ( , ), ( , ),..., ( , )T
N NH s t s t s tα − −⎡ ⎤⎣ ⎦  efficiently. 

4   Parameter Free PSO Algorithm (TRIBES) 

The Particle Swarm Optimization (PSO) is a population based stochastic technique 
developed by Kennedy and Eberhart (1995). PSO has similarities with the genetic 
algorithms: a population of potential solutions is used in the search. However there is 
no evolution operator in PSO. The technique starts with a random initialization of a 
swarm of particles in the search space. Each particle is modeled by its position in the 
search space and its velocity. At each time step, all particles adjust their positions and 
velocities, thus their trajectories, according to their best locations and the location of 
the best particle of the swarm, in the global version of the algorithm, or of the 
neighbors, in the local version. Here appears the social behavior of the particles. 
Indeed, each individual is influenced not only by its own experience but also by the 
experience of other particles. 

TRIBES is an adaptive algorithm of which parameters change according to the 
swarm behavior. In TRIBES, the user only has to define the objective function and 
the stopping criterion. The method incorporates rules defining how the structure of the 
swarm must be modified and also how a given particle must behave, according to the 
information gradually collected during the optimization process. 

However, it must be pointed out that TRIBES, like all competing optimization 
algorithms, cannot solve with certainty all the problems. Moreover, TRIBES is a 
stochastic algorithm, thus results given by the algorithm are probabilistic. The aim of 
TRIBES is to be an algorithm which is efficient enough in most cases and which 
permits to the users to gain time by avoiding the fitting of parameters. 

4.1   Swarm’s Structure and Communication 

The swarm is structured in different “tribes” of variable size. The space search is 
simultaneously explored and all tribes exchange results in order to find the global 
optimum. The algorithm includes two different types of communication: intra-tribe 
communication and inter-tribes communication, more details about these types of 
communication are given in [14]. 

To set rules to modify the swarm’s structure, quality qualifiers are defined for each 
particle and likewise for the tribes. These qualifiers allow defining two rules: removal 
of a particle and generation of particles. These structural adaptations are not done  
at all iterations. In practice, if NL is information links number at the moment of the 
last adaptation, the next adaptation will occur after NL/2 iterations. For more details  
see [14]. 
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1. Initialization of a population of particles with random positions and 
velocities. 

2. Evaluate the objective function for each particle and compute g. 
For each individual i, pi is initialized at Xi. 
3. Repeat until the stopping criterion is met 

3.1. Determination of status of all particles 
3.2. Choice of the displacement strategies 
3.3. Update the velocities and the positions of the particles. 

3.4. Evaluate the objective function 0 ,...,T
NH a aα ⎡ ⎤⎣ ⎦  for each 

individual. 
3.5. Compute the new pi and g. 

If n<NL 
 - Determination of tribes qualities 
 - Swarm’s adaptations 
 - Computation of NL 
End if 

4. Show the best solution. 

4.2   Swarm Evolution 

The swarm is initialized by only one particle, that represents a single tribe. A second 
tribe is created if, at the first iteration, the initial particle does not improve its location. 
The same process is then applied for the next iterations. The size of the swarm 
increases until promising areas are found. In other words, the capacity of the swarm to 
explore increases, but the time between successive adaptations decreases. Then, the 
swarm has more and more chances to find a good solution between two adaptations. 
This can be seen as a strategy of displacement. Other implemented strategies are 
described below. 

4.3   Strategies of Displacement 

The second strategy to adapt the swarm to the found results is by selecting a different 
strategy of displacement of each particle according to its recent past. Then the 
algorithm chooses to call for the best strategy of displacement in order to move the 
particle to the best possible location, that can be reached.  

TRIBES tries to overcome an important problem of metaheuristics: the fitting of 
parameters. TRIBES frees users of defining parameters by adapting the structure of 
the swarm and the strategies of displacement of the particles. The particles use their 
own history and the history of the swarm to decide the way of their move and the 
organization of the swarm in view of approaching as efficiently as possible the global 
optimum. Fig. 2 shows a summary of TRIBES process. 
 

Fig. 2. Principle of TRIBES, where g is the best location reached by the swarm, pi is the best 
location for particle I, Xi the position vector of the particle i, NL is the number of information 
links at the last structure of the swarm, and n is the number of iterations since the last 
adaptation of the swarm. 
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Fig. 3.  Example of the evolution of the fitness function in logarithmic scale (for image of Fig. 
4 (a)) for : (a) 2000 evaluations, (b) 1000 evaluations. The curves are the result of the averaging 
of 25 runs. 

5   The Proposed Image Segmentation Algorithm 

The proposed image segmentation algorithm is based on the maximization of the total 
2DEE using TRIBES. The method exploits the particle swarm approach to solve the 
segmentation problem expressed by (10). The algorithm does not require any special 
initialization. The number of evaluations was used as stopping criterion. Looking at 
our experiments (Fig. 3), the value of the fitness function does not increase 
significantly after 1000 evaluations of the objective function, that explains our 
decision to fix the maximum number of evaluations of the objective function at 1000.  

6   Experimental Results and Discussion 

In this section, we discuss the selection of the optimal thresholds and the presentation 
of some MR images. The performances of the method are compared to those of five 
other methods, over the segmentation of a synthetic images. The results on MRI 
segmentation were compared to those provided by the 2D Shannon entropy (2DSE) 
method [11]. Here, are presented only the results in the case of four and five classes’ 
segmentation.  

The value of the optimal threshold depends on the 2DEE order (α). In order to find 
the optimal value (α*), the well known uniformity criterion is used. This criterion is 
given by: 

                                ( )
2 2

max min
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1 2
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i i
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where N is the number of thresholds, Cj the jth class, M the number of pixels in the 
image, fi the gray level of pixel i, µi the mean gray level of pixels in jth class, fmax and 
fmin the maximum and the minimum gray levels of pixels in the image, respectively. U 
has a positive value and lies between 0 and 1. When U is close to 1, the uniformity is 
very good and vice versa. 
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6.1   Comparison to Other Methods 

We compared the performance of the proposed method to those of five other methods: 
EM algorithm based method (EM) [20], one method based on valley-emphasis (VE) 
[21], the well known Otsu method [9], the classical Kapur et al. method [9], and 
Sahoo et al. method based on 2D Tsallis entropy (TE) [22]. The comparison is based 
on synthetic images, noised with different degrees of noise (Fig. 3). To measure these 
performances, the misclassification error (ME) criterion was used [9]. ME is defined 
in terms of correlation of the images with human observation. ME is expressed by: 

   
(%) 1 100O T O T

O O

B B F F
ME

B F

⎛ ⎞∩ + ∩
= − ×⎜ ⎟⎜ ⎟+⎝ ⎠

                 (12) 

where background and foreground are denoted by BO and FO for the original image, 
and by BT and FT for the thresholded image, respectively. In the best case of ideal 
thresholding, ME is equal to 0% and, in the worst case, ME value is 100%. 
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Fig. 4. (A) Original synthetic image, (B) to (D) noised images 

Table 1. Performance evaluation of the proposed method compared to competing methods 

Segmentation methods 
EE2D 

Test 
images of 
Fig. 4 

Otsu 
ME(%) 

Kapur 
ME(%) 

EM
ME(%) 

VE 
ME(%) 

TE 
ME(%) ME(%) α 

Image B 0.45 5.61 8.68 0.34 0.64 0.23  0.4 
Image C 0.88 4.50 12.50 0.63 1.12 0.56  0.4 
Image D 12.22 4.97 28.87 11.59 12.90 3.57  0.6 

 
The quantitative comparison of the results provided by our method and the five 

other methods, based on segmentation of synthetic images, is presented on table 1. As 
it can be seen, the proposed method provides better results than the other methods, 
only VE method provides a better performance in the case of image B. 

 
Table 2. Experimental results for image in Fig. 4 (a) 

 

Number of 
classes (N) 

Time (s) Speed gain factor 

3 14.8 106. 104 
4 19.6 687.108 
5 26.7 194.1016 
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6.2   Examples of Results and Discussion 

The obtained results through the application of our segmentation algorithm are 
illustrated with two brain MRI. Fig. 5 shows the original images and their multilevel 
classification (segmented) version when N=4 and 5. The results in the case of a sane 
subject are in Fig. 5 (c) and (e); those in the case of an atrophy pathology are shown 
in Fig. 5 (d) and (f). Our goal is to detect the different spaces and the white matter 
surrounding the ventricular space quickly. In order to quantify the performance of the 
optimization algorithm, we define the speed gain factor, that corresponds to the ratio 
of the number of the exhaustive search solutions to the evaluation number of the 
objective function. 

(a) (b) 

(c) (d) 

(e) (f)  

Fig. 5. Segmentation of sane and pathologic MRI. (a) Original image of a sane brain, (b) 
Original image of a pathologic brain, (c) 4 classes segmented image T=(30, 112, 134) with 
α=0.1, where T is the threshold vector, (d) 4 classes segmented image  T=(49, 88, 180) with 
α=0.3, (e) 5 classes segmented image T=(10, 47, 61, 97) with α=0.4, (f) 5 classes segmented 
image T=(36, 82, 138, 153) with α= 0.2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 6. 2DSE segmentation results. (a) 4 classes segmented image T(64, 128, 191), where T is 
the threshold vector, (b) 4 classes segmented image T(65, 131, 192), (c) 5 classes segmented 
image  T(52, 102, 152, 203), (d) 5 classes segmented image T(52, 103, 155, 205). 

The number of points for which the criterion function must be evaluated, in the 

case of an exhaustive search, is ( )( )2
!/ ( 1 )!( 1)!L L N N+ − − , where L is the total 

number of gray-levels (usually 256). For instance, when L=256 and N=2, the number 
of objective function evaluations is 65536 and, when L= 256 and N=3, it is 326402! 
[14]. Table 1 shows the experimental results obtained on the image of Fig. 5 (a). The 
speed gain factor and the time values show effectiveness of TRIBES algorithm and 
confirm that our method is fast compared to those in [1] to [7], where the result is 
obtained after more than 120s [7]. As it can be seen, in table 2, the speed gain factor 
increases by a factor higher than 104 when one class is added to the problem.   

Fig. 6 shows the results obtained via the application of 2DSE. One notices that the 
results provided by our method are more homogeneous than those provided by 2DSE. 
This can be seen clearly, for instance, through the comparison of the detected white 
matter, between Fig. 5 (f) and Fig. 6 (d). 

7   Conclusion 

In this paper, we proposed a new fast approach to find the optimal thresholds, based 
on 2DEE to avoid the problems related to the use of Shannon entropy to segment 
images. We also proposed to use a parameter free PSO algorithm and our experiments 
proved that TRIBES can be used as a black box optimization tool to solve a 
segmentation problem. The use of TRIBES allows to avoid the parameter tuning step 
that requires a minimum of experience about the used algorithm. 
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It is clearly seen from the experimental results that the presented method is more 
efficient than the classical 2DSE and using TRIBES allows to obtain good results 
quickly. However, the use of the method to segment other kinds of images does not 
provide good segmentation results when the images are strongly noised. In the work 
in progress we use a multiobjective optimization based on parameter free PSO in 
order to add information to segment noised images. 
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