
N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 316–327, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Improvement of Intelligent Optimization
by an Experience Feedback Approach

Paul Pitiot1, Thierry Coudert1, Laurent Geneste1, and Claude Baron2

1 Laboratoire Génie de Production, Ecole Nationale d’Ingénieurs de Tarbes,
47, av. d’Azereix BP 1629 - 65016 Tarbes, France

2 Laboratoire d’Etude des Systèmes Informatiques et Automatique, INSA de Toulouse,
135, av. de Rangueil - 31077 Toulouse, France

{paul.pitiot,thierry.coudert,laurent.geneste}@enit.fr,
claude.baron@insa-toulouse.fr

Abstract. Intelligent optimization is a domain of evolutionary computation that
emerges since a few years. All the methods within this discipline are based on
mechanisms for maintaining a set of individuals and, separately, a space of
knowledge linked to the individuals. The aim is to make the individuals evolve
to reach better solutions generation after generation using the knowledge linked
to them. The idea proposed in this paper consists in using previous experiences
in order to build the knowledge referential and then accelerate the search
process. A method which allows reusing knowledge gained from experience
feedback is proposed. This approach has been applied to the problem of
selection of project scenario in a multi-objective context. An evolutionary
algorithm has been modified in order to allow the reuse of capitalized
knowledge. This knowledge is gathered in an influence diagram allowing its
reuse by the algorithm.

Keywords: Project management, evolutionary algorithm, knowledge
management, experience feedback, influence diagrams.

1 Introduction

The management of industrial projects is a more and more complex activity. The
constraints to take into account are: multi-domain projects, uncertain and dynamic
environment, innovative systems and/or components, multi-criteria optimization, etc.
In this context, optimal methods are not suitable because of the complex and large
search space. Several studies (see [1] for example) highlight the fact that
combinatorial optimization techniques are in general relatively blind methods (i.e.
they are not a priori guided). It is usual to launch an optimal search algorithm
considering that the search space is uniformly interesting. This hypothesis is, in
practice, often proved to be inappropriate. However, some techniques based on meta-
models propose to gain knowledge (learning) during the resolution processes. They
build a model of objective function (response surfaces, Kriging, etc.). Another
alternative is to propose, during the exploration process, some interesting hypotheses
of configuration and to use them as guidelines [2].

 Improvement of Intelligent Optimization by an Experience Feedback Approach 317

Nevertheless, being able to reuse the knowledge capitalized during previous
optimization processes can be an interesting way to improve future explorations of the
search space. The capitalized knowledge can provide interesting information for
initial conditions and during exploration of search space. It is however necessary to
adapt the knowledge capitalized during previous explorations to the current one.

In the domain of project management, the problem of scenario selection is very
difficult, particularly when projects concern the design of new products. This context
provides an interesting framework for knowledge reuse. Indeed, the reuse of
components or knowledge when designing new systems is an increasingly important
and strategic issue for companies. So a lot of information is already available, but not
used to accelerate the optimization process. Moreover, the reuse process must take
into account variations of environment to improve information used.

So, in this paper a framework for integration of an experience feedback process
during optimization processes is proposed. The study is adapted to scenario selection
in project management. In the next section, a state of the art about knowledge
utilization to guide search methods is presented as well as the objectives of the
proposed method based on experience feedback process. In section 3, knowledge
acquisition process and model used by experience feedback process are described.
Section 4 presents different ways to use knowledge during resolution before
concluding and presenting prospects.

2 Knowledge as Guidelines for Optimization Methods: State of
Art

The goal of combinatorial optimization techniques is to find a good solution, if
possible optimal, according to a set of criteria, in the state space of input parameters
(domains of combinatorial parameters). The method searches in this space
combinations of parameters leading to interesting areas with respect to evaluation
criteria. When the studied problem is too complex, two kinds of search methods are
usually used: the meta-modeling of the objective function or the meta-heuristic
methods.

The meta-modeling methods, such as neural networks, consider that the objective
function, even complex, is coherent. Those methods try to build a regression model
used to guide exploration procedure. One major problem with this type of method is
the lack of explanations about obtained solutions. Knowledge is learned by the
program and then stored in a model (e.g. weights on arcs between neurons) but it
remains inaccessible for the user. Their advantage is the capacity of generalization
which ensures a good reuse of knowledge on new cases.

Most heuristics and meta-heuristics methods assume that exploration process (local
or global) will make it possible to find a good solution in a reasonable time and this
by formulating assumptions on the data structure [3]. Heuristics methods are rules
improving search of solutions for certain types of problems or for a particular aspect
of a complex problem. Thus, they carry out a partial knowledge about a part of the
problem or its structure. The search procedure is then accelerated but it is not enough
to find a complete solution.

318 P. Pitiot et al.

Meta-heuristics are more general models which must be adapted according to the
problem to solve. For most of these methods and especially for Evolutionary
Algorithms (EA), the method does not consist in spending time to capitalize
knowledge about the problem which is too complex or changing. It rather consists in
testing (quickly) a great number of possible solutions and to make sure that
exploration process converges towards increasingly interesting solutions. This kind of
method indirectly reuses knowledge associated with the problem via the evaluation of
generated solutions. The assumption is made that carried out knowledge is linked to
the quality of generated solutions. The method tries to improve these solutions. But
knowledge, used during exploration, is not preserved from one execution to the other.
Moreover, it is impossible to reuse only a part of it.

Recently, new methods, called “intelligent optimization methods” [2][4] suggest a
coupling between a Model of Knowledge (MoK) about the problem to be solved and
a traditional search method. The MoK must guide search towards promising zones
while a traditional search method provides a “virtually contextualized information” to
the MoK. For the majority of methods listed above, the use of knowledge is achieved
indirectly. It is represented by means of classes of operators [5], intervals [6],
assumptions on the parameters values [7] or by attributes about good solutions [8].
Works carried out by Chebel-Morello in [9] or Huyet in [4] propose to model the
knowledge directly using parameters classes. Each class of parameters is more or less
favorable to the different objectives. The problem is that it is very difficult to directly
handle this knowledge with the employed methods (Knowledge Discovery in
Databases - e.g. decision trees or neural network).

Finally, other methods [10] [11] use different kinds of Bayesian network as MoK.
The MoK is learned from a database containing selected individuals from previous
generation and it is used to generate directly the new population of individuals by
sampling. The step of induction on the probability model constitutes the hardest task
to perform and this task had to be performed for each generation.

Moreover, no study proposes a reuse mechanism of knowledge obtained during
previous resolution processes to better solve new problems. Such reuse allows
building and improving a complex MoK of the problem before optimization process
and only using it during search (no knowledge actualization).

Objectives of our study. The proposed framework suggests to use a hybrid method
including a meta-heuristic for search and a MoK to provide heuristics adapted to the
current case. The MoK should not provide all information precisely but has to give
some orientations with respect to a given situation. Michalski in [2] shows that fixing
some interesting solutions properties is enough so that search method generates very
quickly some solutions close to the optimal one. The system has to ensure the
following properties:

1) The search process has to be efficient and to provide optimization even with an
incomplete MoK or a failing one. In this study an Evolutionary Algorithm for the
search process and an Influence Diagram as MoK are used;
2) Reuse and continuous improvement of operational knowledge has to be performed
in an interactive manner (achieved projects) within an experience feedback process;

 Improvement of Intelligent Optimization by an Experience Feedback Approach 319

3) Reuse of the knowledge resulting from the simulations produced by the genetic
algorithm. This is possible by means of a Knowledge Discovery in Databases (KDD)
process for example;
4) Capacities of knowledge generalization that allow adapting knowledge according
to new current cases. This adaptation has also to be performed in interaction with the
meta-heuristic.

Application problem. In the domain of project management, the problem of scenario
selection is considered. The aim of this application is to solve simultaneously the
problem of selecting design alternatives for a system and the project planning problem
to achieve this system. The constraints to be taken into account during the project
planning are modeled by a project graph proposed in [12] and shown on figure 1. This
model allows considering simultaneously the planning constraints and the design
constraints. The project graph includes the tasks to be carried out, the AND nodes
(parallel tasks) and the OR nodes representing the possible decisions during the design
process called “design alternatives”. Tasks are represented by means of rectangles with
a task number, AND nodes by means of vertical double-bars, OR nodes by means of
circles. The gray rectangles inside the tasks represent the different possibilities to carry
out a task, called “task options”. The selection of a path in the graph represents a
potential scenario for the project as show on figure 1.

Fig. 1. Graphs of a project and scenario encoding; for example, this one concerns the
realization of a pen with a scenario highlighted

Search method used in previous study. The search method is an evolutionary
algorithm (EA) proposed by C. Baron in [12] for scenario selection. An EA is a meta-
heuristic for stochastic optimization, used for global exploration. The SPEA method
used in this study (Strength Pareto Evolutionary Algorithm) [13] is a traditional EA
with classical steps (initialization, evaluation, selection) and genetics operators cross-
over and mutation. It ensures the multi-objective evaluation of individuals according
to the two following steps: i) the Taguchi approach is used in order to evaluate cost of
a scenario for each criterion [14]; ii) multi-criteria evaluation is then achieved by
means of Pareto front in order to compare and classify the scenarios (concept of

320 P. Pitiot et al.

dominance between solutions). The probability of selection for an individual is
proportional to its fitness. The fitness depends on the position of the individual
compared to the Pareto front (maximum fitness for the Pareto-optimal solutions). The
fitness of an individual is calculated by formula (1) according to the strength (Si) of
individual which it dominates (Pareto-dominance). The strength of an individual is
given by the formula (2) where n is the number of dominated solutions and Pop is the
population size.

 1

1

i

ji i,

s
fj

∑
<

+
= . (1)

1 Pop

n
si

+
= . (2)

After selection, cross-over operator is applied (selection of two “parents” and then
crossing of their “genes”). Finally, the mutation operator is applied (selection of an
individual and change of one or more genes). The criterion used for stopping this
process is a strict limit of the number of generations.

EA requires an encoding of individuals. In this model, an individual represents one
scenario for the project, i.e. an instantiation of the graph as shown on figure 1. The
chromosome of an individual gathers on first part (the left one) the design alternatives
choice. Each gene corresponds to a path choice in the project graph and it is
represented in chromosome by a number corresponding to the selected alternative.
Then on the second part of the chromosome (right one), each gene corresponds to
selection of a task option (a number corresponding to selected option).

All possible choices are always represented whereas majority of them are inactive
since they are inhibited by alternatives choices. For example, in figure 1, the first
design choice (OR node - choice of arc (2) noted (1:2)) inhibits node and then,
tasks 1 and 2. The second possible design choice for this scenario (OR node -
choice of arc (2) noted (3:2)) inhibits the tasks 3 and 4. Consequently, the tasks 1, 2, 3
and 4 are present in the chromosome but their genes are inhibited. This encoding
ensures a constant viability of solutions but requires an additional control on genetics
operators. A check has to be performed to avoid inefficient mutation or cross-over.

3 Knowledge Acquisition and Modeling

3.1 Knowledge and Experience Feedback

Knowledge management relies on expert’s knowledge extraction and direct use of this
knowledge through a modeling. Methods using this process (MKSM, Kads) encounter
problems such as difficulty of data extraction, expert’s availability or knowledge
actualization. Experience feedback proposes acquisition and knowledge reuse through
the experiences (spontaneous declaration of knowledge during their application). It
rests mainly on two cycles of information management: capitalization and
generalization. Capitalization is carried out by memorizing behavior of the expert.

 Improvement of Intelligent Optimization by an Experience Feedback Approach 321

Experiences are used as vectors to build knowledge reference frame. Each time that
an event occurs, actors formalize their judgment. Indeed, to generalize a model of
knowledge starting from lived experiments is easier than to clarify knowledge apart
from its context.

In our study, knowledge corresponds to the identification of system and
environment of system to be realized. It consists in probabilistic or determinist links
between three state spaces: i) input parameters of the problem (i.e. genome where
each gene corresponds to a design or planning decision); ii) the evaluation criteria and
objectives (discrete values in our study); and iii) parameters characterizing the
environment of the project. Indeed, context modeling is necessary to adapt knowledge
to current situation. Knowledge about criteria and objectives is related to
functionalities of the designed system (e.g. customer’s requirement) or on
requirements for the project management (e.g. minimize cost, delay, etc). Among
knowledge about genome, two different kind of knowledge can be distinguished. The
first one is a structural knowledge related to the problem to solve (e.g. the constraints
of precedence and inhibition between decisions). Note that this part of knowledge
referential is specific to the graph routing problem. The second kind of knowledge
used is the set of preferences between genes according to criteria and objectives.
Knowledge is extracted from: a) the project graph shape; b) information and analyses
of operational experience feedback and finally; c) intermediate simulation results
(individuals evaluated by EA).

3.2 The Model of Knowledge (MoK)

Paradigm used to model required knowledge is Influence Diagrams (ID) [15], a
stepwise-solvable bayesian network. Firstly, they represent an interesting way for
representation and use of knowledge because they were conceived for conceptual
representation in decision support. So, they allow the representation of expertise and
an interactive management of knowledge coming from experience feedback.
Moreover, they allow an automated learning process on simulation results. This
double source of knowledge (expertise and learning process) allows an interesting
way for knowledge extraction [15]. Indeed, an expert can easily provide a structure of
problem (or parts of it) but with uncertain parameters values. Formulating this expert
knowledge by means of an ID, some rules, based on probabilities, allow calculating
estimated data. These data can be compared with the data resulting from simulation or
from previous carried out projects. Considering the process of KDD, statistical
extraction of structures is a much more complex problem than the statistical
extraction of parameters values. If we already have a structure (resulting from
expertise), calculations for parameters acquisition are simplified. This cycle of
information extraction improves and facilitates the construction of the model by using
the two sources of knowledge (i.e. expertise and results of simulation).

An Influence Diagram (ID) is a regular acyclic and no-forgetting graph of
probabilistic relations between decisions, objectives, decision criteria and environment
(see left part of figure 2), based on a net. Three kinds of nodes are used: “utility
nodes”, “decision nodes” and “chance nodes”. “Utility nodes” do not have “children
nodes”. To each of them, an exact value is associated for each combination of “parent
nodes”. They represent in our case the objectives of the project. “Decision nodes”

322 P. Pitiot et al.

represent the possible decisions, i.e. the genes of EA. Decision rules enable to associate
to each possible configuration of “parent nodes” a single decision. Lastly, the “chance
nodes” are used in order to represent context and decision criteria. A table of
conditional probabilities is associated to each node. It contains all the probabilities
depending on states of “parent nodes”. The example on left part of figure 2 is linked to
the scenario shown in figure 1. Decisions d5 and d6 are related to the options of
realization (respectively Task T5 and T6) for a pen built in two parts. An expert
determines that for these two decisions the principal criterion is the mode of realization
(internal or external). This criterion is conditioned by the external supply (E2) of the
required resources (for example a subcontracting supplier). Based on its experience,
the expert estimates that these criteria can be aggregated in “Mode of realization” (C4).
Once this analysis is carried out, we have a structure which could be completed by an
estimated distribution of probabilities provided by the expert.

Nevertheless, a better way consists in setting these probabilities by confronting the
ID with the real data coming from previous similar scenarios (e.g. a similar decision
chain). This ID constitutes an “experience” in our system. This diagram ensures a
conceptual classification of the properties of the decisions. The interest of conceptual
classification is that it enables to define and classify the objects according to their
descriptions (concepts used) without any considerations about raw data. The search
for new projects or similar ones in different contexts can be done at conceptual level.
This largely facilitates exchange with user and knowledge reusing.

Fig. 2. Influence Diagram for a scenario and for the project

The ID represented on left part of figure 2 results from a learning process, but for
only one scenario. To obtain a global MoK able to guide the EA for all the possible
scenarios, it is necessary to carry out a second cycle of abstraction by confronting the
various ID. This global MoK is an extended influence diagram (on right part of figure 2)
representing the set of possible decisions, criteria and sub-criteria linking decisions to
objectives and environment. It is carried out by differential analysis of the contexts of
each concept (objective, criterion or decision) used in the IDs. The context of a concept
is defined as the set of concepts on which it is linked in the ID. For example, the context
of a decision of realization associated with a task in a particular project (for example D1
on figure 2) is the set of the other decisions concerning the scenario, the criteria,
functions and objectives related to this task. Mechanisms of context changing can be
inferred each time that this task is used within a project.

 Improvement of Intelligent Optimization by an Experience Feedback Approach 323

These mechanisms activate or inhibit concepts associated with the task according to
its context of use. The global ID is composed of three parts: in the higher part, a net of
chance and utility nodes gathers the decision criteria and the objectives. It is the result
of generalization of the selected decision criteria. It enables to represent all the
combinations of relevant concepts. Then, the set of decisions to be evaluated are
represented (D1,…, d8). It corresponds to the project’s genome. Another set of
decision nodes (Reg1 to Reg3) related to design alternatives is also represented. It
corresponds to the structural aspect of knowledge resulting from project graph. This
knowledge can be interpreted as activation constraints [16] and illustrates the fact that
selection of an alternative activates corresponding tasks and inhibits tasks associated
with other possible alternatives. For example, decision D3 activates d3 and d4 or d5
and d6.

4 Different Way to Use knowledge in Evolutionary Algorithm

Within our model of knowledge, some information links the search space (parameters
to be selected), the objectives of project and the space of global context. So, in order
to accelerate the exploration process within the EA, we use the capitalized knowledge
(gathered in the MoK) adapting it to the current case. Considering that the MoK can
be unsuitable or incomplete in certain cases and that it is not revised during search
process, it is thus necessary to preserve independence of search method when
predictions of MoK are not appropriated. For this reason, evaluation and selection
steps of classic EA are preserved. Moreover, a mechanism is envisaged allowing to
partially come back to traditional genetics operator when insufficient progress is
observed.

The main problem for direct interaction between ID and EA is the step of inference
in probability model especially because of multi-criteria fitness in ID consumes too
much computing time. As a consequence, knowledge should be clusterised [2] [11]
with respect to objectives and provided to EA during initialization. This way
developed in next section allows general orientation to reach interesting zones of
search space. The main difference between this study and the others using a MoK to
guide search [10] [11] to guide search is that the MoK is more complex here (multi
objectives, interdependencies between variables) but it is made before optimization
process, as an off-line process.

Interaction based on knowledge clustering. This kind of interaction is based on two
classifications: i) the classification of individuals with respect to objectives by EA and
ii) the conceptual classification of scenarios by project’s global ID. During
initialization step, the global I.D. provides classes of favorable genes for each class of
objectives. The classes of objectives are distributed uniformly on search space and
their number is fixed by the user. A Class of genes gathers probabilities of selection
for each alternative of each gene of the genome.

In a traditional EA, initial population is generated randomly. Here, the initial
population is build according to the classes of genes, in order to start search procedure
with a priori good orientations. The individuals are divided through the various
classes of genes. Then for each individual, the probabilities of his class are used to fix
the value of genes as shown on figure 3. In the class of gene, each table corresponds

324 P. Pitiot et al.

to the selection’s probabilities for each state of a gene. For example, the values (1; 0)
of the first table indicate that, to reach the matched class of objectives, it is necessary
to choose with a probability of 100% the first alternative. This choice implies that
genes 3, 6, 7, 8 and 9 (respectively linked to decision D3, d3, d4, d5 and d6 on figure
2) are inhibited according to structural knowledge (their probability on the class of
genes is fixed to -1). When a gene is inhibited by previous genes already instantiated
(genes encoding OR node’s options choice), its value is fixed to 1.

Fig. 3. Utilization of gene’s class for individual building during initialization

During EA process, classes of genes are matched to current cluster of Pareto-
optimal individuals (see left part of figure 4). The centered solution of cluster (i.e.
which minimizes distance with other solutions) will be used as reference point for the
class of genes to which it is matched. That makes it possible affecting to each
individual the class of genes to which the center is closest.

The mutation operator, shown on the right part of figure 4, selects an individual
randomly among the population and secondly, the probabilities of its class are used to
fix the value of genes similarly as during initialization except that a gene mutation
occurs according to the mutation probability and mutations on inhibited genes are
skipped. This method allows to preserve good properties of an individual, to avoid
useless changes and thus to concentrate the changes on the remaining genes.

Fig. 4. Assignment of individual to classes and mutation operator

 Improvement of Intelligent Optimization by an Experience Feedback Approach 325

The crossover operator, illustrated on figure 5, enables exploration or
intensification of search space. It corresponds then to an “inter-class” exchange by
crossing individuals belonging to different classes or an “intra-class” exchange by
crossing on the same class, according to the strategy of selection of parents. Once
parent selection is done, probabilities of their classes are used to determine points of
crossing. For each gene, if one of its parents has an inhibited gene or if the two
parents have a probability of 1 for two different alternatives, the crossing does not
take place for this gene. If only one of the two parents has a probability of 100% for
an alternative, a unilateral crossing is done for this gene (from the parent with 100%
towards the other as for first gene on figure 1). Lastly, if none of the preceding case is
applicable, the crossing will be carried out in a traditional way according to the
probability of crossing as for second gene on figure 1. This method makes it possible
to preserve and, if possible, to exchange favorable genes of each individual.

Fig. 5. Crossover operator

First results. We use a platform coded in C++ which allows testing our method.
Table 1 presents preliminary results obtained for a graph with sixty tasks (three
options per task) and fifteen OR node (three alternatives per OR node). The first row
is the mean of best solution’s evaluation obtained after ten runs. The evaluation of an
individual is calculated by adding the square of difference to each objective multiplies
by a coefficient define by user (the optimal solution’s evaluation for this problem is
3051.28). The second row is the mean of generation’s number in which the best
solution has been found and the last one is the time needed to achieved the ten runs on
a AMD Sempron 3400+ with 512Mb of RAM.

For a first evaluation of this approach, the intelligent evolutionary algorithm (IEA)
has been tested with a perfect learned MoK (class of genes learned with every best
solutions generated separately) and without MoK (MoK with class equiprobable for
every gene, equivalent to a traditional EA). Tests were realized for ten generations,
with a population of fifty or ten individuals and with a genetic strategy (GS:
PCross=0.7, PMut=0.3) or an evolutionary strategy (ES: PCross=0.3, PMut=0.7). The best
strategy, here the ES one, is linked to problem instance. These first encouraging
results show that the learned MoK guide very quickly the algorithm to interesting
individuals as shown by runs done with ES strategy and fifty individuals where the

326 P. Pitiot et al.

IEA find optimal solution at every execution in only five seconds. The learned MoK
achieved best results (average of eight percents for all runs) to find the best solution
and done as well for every class of objectives (the entire Pareto front is improved).

Table 1. Mean results after ten executions with and without learned MoK. The Eval. and Gen.
columns represent respectively the best value obtained and the generation in which it added.

I.E.A. using learned MoK I.E.A. without MoK
Gen/Pop/ Strat.

Eval. Gen. Eval. Gen.
time

10/50/ GS 3074.27 1.66 3316.96 3.73 6s
10/50/ ES 3051.28 (optimal) 3.26 3274.85 4.9 5s

100/10/ ES 3051.28 (optimal) 6.4 3212.72 61.1 8s

5 Conclusion / Perspectives

An original approach based on coupling between a graphic model of knowledge built
starting from experiments in an interactive and iterative way and a multi-objective
evolutionary algorithm has been proposed in this paper. The first tests show
promising results. We currently perform more experiments to test and validate the
approach when MoK is incomplete or failing. Then some perspectives have to be
carrying out. First of all, we investigate different way to use a direct interaction
between MoK and EA without classification matching in order to use knowledge
more specifically. Two possibilities are now investigated. The first one consists in
compiling all information with an automaton as proposed by J. Amilastre in [17]. This
model has very short response times but must be built before launching scenario’s
search process. The second possibility is to simplify the global ID. This operation can
be carried out by means of an adaptive meta-model representing the relevance of a
node as proposed M. Crampes in [18]. Secondly, another perspective concerns the
update of the global ID starting from the past experiments (i.e. starting from the set of
all the MoK corresponding to all previous instantiated scenarios). It has to be
specified as well as the interaction between models and decision makers.

References

1. Talbi, D.: Application of Optimization Techniques to Parameter Set-up of Industrial
Scheduling Software. Computers In Industry 55, n°2, 105–124 (2005)

2. Michalski, R.S., Wojtusiak, J., Kaufman, K.A.: Intelligent Optimization via Learnable
Evolution Model. In: 18th IEEE Conf. on Tools with Artificial Intelligence, pp. 332–335
(2006)

3. Russel, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice
Hall/Pearson education international, London (2003)

4. Huyet, A.-L., Paris, J.-L.: Synergy between Evolutionary Optimization and Induction
Graphs Learning for Simulated Manufacturing Systems. International Journal of
Production Research 42(20), 4295–4313 (2004)

5. Sebag, M., Schoenauer, M.: A rule based similarity measure, vol. 837, pp. 119–130.
Springer, Heidelberg (1994)

 Improvement of Intelligent Optimization by an Experience Feedback Approach 327

6. Cervone, K.: Experimental Validations of the Learnable Evolution Model. Congress on
Evolutionary Computation, San Diego CA (2000)

7. Alami, J., El imrani, A.: A multipopulation cultural algorithm using fuzzy clustering.
Applied Soft Computing 7(2), 506–519 (2007)

8. Chung, C.J.: Knowledge based approaches to self adaptation in cultural algorithms, PhD
thesis, Wayne State University, Detroit, USA (1997)

9. Chebel-Morello, B., Lereno, E., Baptiste, P.: A New Algorithm to Select Learning
Examples from Learning Data. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000.
LNCS, vol. 1983, pp. 13–15. Springer, Heidelberg (2000)

10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A new Tool for
Evolutionary Computation. Kluwer, Dordrecht (2001)

11. Miquélez, M., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on
Bayesian classifiers. Int. Journal AMCS 14(3), 335–349 (2004)

12. Baron, C., Rochet, S., Esteve, D.: GESOS: a multi-objective genetic tool for project
management considering technical and non-technical constraints, Art. Intel. Applications
and Innovations (AIAI), IFIP World Computer Congress, Toulouse (2004)

13. Zitzler, E., Thiele, L.: Multi objective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Trans. on evolutionary computation 3, n°4, 257–
271 (1999)

14. Watthayu, W., Peng, Y.: A Bayesian network based framework for multi-criteria decision
making. In: MCDM 2004, Whistler, Canada (2004)

15. Becker, A., Naim, P.: Les Réseaux Bayésien: modèles graphique de connaissance, Eyrolles
(1999)

16. Vareilles, E., Aldanondo, M.: Evaluation of a Solution in Interactive Aiding Design
Process. In: INCOM 2006, Saint Etienne, France (2006)

17. Crampes, M.: Méta modèle adaptatif de la pertinence d’un modèle de connaissance. In:
RFIA 2004, Toulouse (2004)

18. Amilastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in
dynamic CSPs – Application to configuration, vol. 135(1-2), pp. 199–234. Elsevier A.I,
Amsterdam (2001)

	Improvement of Intelligent Optimization by an Experience Feedback Approach
	Introduction
	Knowledge as Guidelines for Optimization Methods: State of Art
	Knowledge Acquisition and Modeling
	Knowledge and Experience Feedback
	The Model of Knowledge (MoK)

	Different Way to Use knowledge in Evolutionary Algorithm
	Conclusion / Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

