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Abstract. Intelligent optimization is a domain of evolutionary computation that 
emerges since a few years. All the methods within this discipline are based on 
mechanisms for maintaining a set of individuals and, separately, a space of 
knowledge linked to the individuals. The aim is to make the individuals evolve 
to reach better solutions generation after generation using the knowledge linked 
to them.  The idea proposed in this paper consists in using previous experiences 
in order to build the knowledge referential and then accelerate the search 
process. A method which allows reusing knowledge gained from experience 
feedback is proposed. This approach has been applied to the problem of 
selection of project scenario in a multi-objective context.  An evolutionary 
algorithm has been modified in order to allow the reuse of capitalized 
knowledge. This knowledge is gathered in an influence diagram allowing its 
reuse by the algorithm. 

Keywords: Project management, evolutionary algorithm, knowledge 
management, experience feedback, influence diagrams. 

1   Introduction 

The management of industrial projects is a more and more complex activity. The 
constraints to take into account are: multi-domain projects, uncertain and dynamic 
environment, innovative systems and/or components, multi-criteria optimization, etc. 
In this context, optimal methods are not suitable because of the complex and large 
search space. Several studies (see [1] for example) highlight the fact that 
combinatorial optimization techniques are in general relatively blind methods (i.e. 
they are not a priori guided). It is usual to launch an optimal search algorithm 
considering that the search space is uniformly interesting. This hypothesis is, in 
practice, often proved to be inappropriate. However, some techniques based on meta-
models propose to gain knowledge (learning) during the resolution processes. They 
build a model of objective function (response surfaces, Kriging, etc.). Another 
alternative is to propose, during the exploration process, some interesting hypotheses 
of configuration and to use them as guidelines [2]. 
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Nevertheless, being able to reuse the knowledge capitalized during previous 
optimization processes can be an interesting way to improve future explorations of the 
search space. The capitalized knowledge can provide interesting information for 
initial conditions and during exploration of search space. It is however necessary to 
adapt the knowledge capitalized during previous explorations to the current one.  

In the domain of project management, the problem of scenario selection is very 
difficult, particularly when projects concern the design of new products. This context 
provides an interesting framework for knowledge reuse. Indeed, the reuse of 
components or knowledge when designing new systems is an increasingly important 
and strategic issue for companies. So a lot of information is already available, but not 
used to accelerate the optimization process. Moreover, the reuse process must take 
into account variations of environment to improve information used. 

So, in this paper a framework for integration of an experience feedback process 
during optimization processes is proposed. The study is adapted to scenario selection 
in project management. In the next section, a state of the art about knowledge 
utilization to guide search methods is presented as well as the objectives of the 
proposed method based on experience feedback process. In section 3, knowledge 
acquisition process and model used by experience feedback process are described. 
Section 4 presents different ways to use knowledge during resolution before 
concluding and presenting prospects. 

2   Knowledge as Guidelines for Optimization Methods: State of 
Art 

The goal of combinatorial optimization techniques is to find a good solution, if 
possible optimal, according to a set of criteria, in the state space of input parameters 
(domains of combinatorial parameters). The method searches in this space 
combinations of parameters leading to interesting areas with respect to evaluation 
criteria. When the studied problem is too complex, two kinds of search methods are 
usually used: the meta-modeling of the objective function or the meta-heuristic 
methods. 

The meta-modeling methods, such as neural networks, consider that the objective 
function, even complex, is coherent. Those methods try to build a regression model 
used to guide exploration procedure. One major problem with this type of method is 
the lack of explanations about obtained solutions. Knowledge is learned by the 
program and then stored in a model (e.g. weights on arcs between neurons) but it 
remains inaccessible for the user. Their advantage is the capacity of generalization 
which ensures a good reuse of knowledge on new cases.  

Most heuristics and meta-heuristics methods assume that exploration process (local 
or global) will make it possible to find a good solution in a reasonable time and this 
by formulating assumptions on the data structure [3]. Heuristics methods are rules 
improving search of solutions for certain types of problems or for a particular aspect 
of a complex problem. Thus, they carry out a partial knowledge about a part of the 
problem or its structure. The search procedure is then accelerated but it is not enough 
to find a complete solution. 
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Meta-heuristics are more general models which must be adapted according to the 
problem to solve. For most of these methods and especially for Evolutionary 
Algorithms (EA), the method does not consist in spending time to capitalize 
knowledge about the problem which is too complex or changing. It rather consists in 
testing (quickly) a great number of possible solutions and to make sure that 
exploration process converges towards increasingly interesting solutions. This kind of 
method indirectly reuses knowledge associated with the problem via the evaluation of 
generated solutions. The assumption is made that carried out knowledge is linked to 
the quality of generated solutions. The method tries to improve these solutions. But 
knowledge, used during exploration, is not preserved from one execution to the other. 
Moreover, it is impossible to reuse only a part of it. 

Recently, new methods, called “intelligent optimization methods” [2][4] suggest a 
coupling between a Model of Knowledge (MoK) about the problem to be solved and 
a traditional search method. The MoK must guide search towards promising zones 
while a traditional search method provides a “virtually contextualized information” to 
the MoK. For the majority of methods listed above, the use of knowledge is achieved 
indirectly. It is represented by means of classes of operators [5], intervals [6], 
assumptions on the parameters values [7] or by attributes about good solutions [8]. 
Works carried out by Chebel-Morello in [9] or Huyet in [4] propose to model the 
knowledge directly using parameters classes. Each class of parameters is more or less 
favorable to the different objectives. The problem is that it is very difficult to directly 
handle this knowledge with the employed methods (Knowledge Discovery in 
Databases - e.g. decision trees or neural network).  

Finally, other methods [10] [11] use different kinds of Bayesian network as MoK. 
The MoK is learned from a database containing selected individuals from previous 
generation and it is used to generate directly the new population of individuals by 
sampling. The step of induction on the probability model constitutes the hardest task 
to perform and this task had to be performed for each generation.  

Moreover, no study proposes a reuse mechanism of knowledge obtained during 
previous resolution processes to better solve new problems. Such reuse allows 
building and improving a complex MoK of the problem before optimization process 
and only using it during search (no knowledge actualization). 

 

Objectives of our study. The proposed framework suggests to use a hybrid method 
including a meta-heuristic for search and a MoK to provide heuristics adapted to the 
current case. The MoK should not provide all information precisely but has to give 
some orientations with respect to a given situation. Michalski in [2] shows that fixing 
some interesting solutions properties is enough so that search method generates very 
quickly some solutions close to the optimal one. The system has to ensure the 
following properties: 

1) The search process has to be efficient and to provide optimization even with an 
incomplete MoK or a failing one. In this study an Evolutionary Algorithm for the 
search process and an Influence Diagram as MoK are used; 
2) Reuse and continuous improvement of operational knowledge has to be performed 
in an interactive manner (achieved projects) within an experience feedback process; 
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3) Reuse of the knowledge resulting from the simulations produced by the genetic 
algorithm. This is possible by means of a Knowledge Discovery in Databases (KDD) 
process for example; 
4) Capacities of knowledge generalization that allow adapting knowledge according 
to new current cases. This adaptation has also to be performed in interaction with the 
meta-heuristic. 

Application problem. In the domain of project management, the problem of scenario 
selection is considered. The aim of this application is to solve simultaneously the 
problem of selecting design alternatives for a system and the project planning problem 
to achieve this system. The constraints to be taken into account during the project 
planning are modeled by a project graph proposed in [12] and shown on figure 1. This 
model allows considering simultaneously the planning constraints and the design 
constraints. The project graph includes the tasks to be carried out, the AND nodes 
(parallel tasks) and the OR nodes representing the possible decisions during the design 
process called “design alternatives”. Tasks are represented by means of rectangles with 
a task number, AND nodes by means of vertical double-bars, OR nodes by means of 
circles. The gray rectangles inside the tasks represent the different possibilities to carry 
out a task, called “task options”. The selection of a path in the graph represents a 
potential scenario for the project as show on figure 1.  

 

Fig. 1. Graphs of a project and scenario encoding; for example, this one concerns the 
realization of a pen with a scenario highlighted  

Search method used in previous study. The search method is an evolutionary 
algorithm (EA) proposed by C. Baron in [12] for scenario selection. An EA is a meta-
heuristic for stochastic optimization, used for global exploration. The SPEA method 
used in this study (Strength Pareto Evolutionary Algorithm) [13] is a traditional EA 
with classical steps (initialization, evaluation, selection) and genetics operators cross-
over and mutation. It ensures the multi-objective evaluation of individuals according 
to the two following steps: i) the Taguchi approach is used in order to evaluate cost of 
a scenario for each criterion [14]; ii) multi-criteria evaluation is then achieved by 
means of Pareto front in order to compare and classify the scenarios (concept of 
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dominance between solutions). The probability of selection for an individual is 
proportional to its fitness. The fitness depends on the position of the individual 
compared to the Pareto front (maximum fitness for the Pareto-optimal solutions). The 
fitness of an individual is calculated by formula (1) according to the strength (Si) of 
individual which it dominates (Pareto-dominance). The strength of an individual is 
given by the formula (2) where n is the number of dominated solutions and Pop is the 
population size. 
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After selection, cross-over operator is applied (selection of two “parents” and then 
crossing of their “genes”). Finally, the mutation operator is applied (selection of an 
individual and change of one or more genes). The criterion used for stopping this 
process is a strict limit of the number of generations. 

EA requires an encoding of individuals. In this model, an individual represents one 
scenario for the project, i.e. an instantiation of the graph as shown on figure 1. The 
chromosome of an individual gathers on first part (the left one) the design alternatives 
choice. Each gene corresponds to a path choice in the project graph and it is 
represented in chromosome by a number corresponding to the selected alternative. 
Then on the second part of the chromosome (right one), each gene corresponds to 
selection of a task option (a number corresponding to selected option).  

All possible choices are always represented whereas majority of them are inactive 
since they are inhibited by alternatives choices. For example, in figure 1, the first 
design choice (OR node  - choice of arc (2) noted (1:2)) inhibits node  and then, 
tasks 1 and 2. The second possible design choice for this scenario (OR node  - 
choice of arc (2) noted (3:2)) inhibits the tasks 3 and 4. Consequently, the tasks 1, 2, 3 
and 4 are present in the chromosome but their genes are inhibited. This encoding 
ensures a constant viability of solutions but requires an additional control on genetics 
operators. A check has to be performed to avoid inefficient mutation or cross-over. 

3   Knowledge Acquisition and Modeling  

3.1   Knowledge and Experience Feedback 

Knowledge management relies on expert’s knowledge extraction and direct use of this 
knowledge through a modeling. Methods using this process (MKSM, Kads) encounter 
problems such as difficulty of data extraction, expert’s availability or knowledge 
actualization. Experience feedback proposes acquisition and knowledge reuse through 
the experiences (spontaneous declaration of knowledge during their application). It 
rests mainly on two cycles of information management: capitalization and 
generalization. Capitalization is carried out by memorizing behavior of the expert. 



 Improvement of Intelligent Optimization by an Experience Feedback Approach 321 

Experiences are used as vectors to build knowledge reference frame. Each time that 
an event occurs, actors formalize their judgment. Indeed, to generalize a model of 
knowledge starting from lived experiments is easier than to clarify knowledge apart 
from its context. 

In our study, knowledge corresponds to the identification of system and 
environment of system to be realized. It consists in probabilistic or determinist links 
between three state spaces: i) input parameters of the problem (i.e. genome where 
each gene corresponds to a design or planning decision); ii) the evaluation criteria and 
objectives (discrete values in our study); and iii) parameters characterizing the 
environment of the project. Indeed, context modeling is necessary to adapt knowledge 
to current situation. Knowledge about criteria and objectives is related to 
functionalities of the designed system (e.g. customer’s requirement) or on 
requirements for the project management (e.g. minimize cost, delay, etc). Among 
knowledge about genome, two different kind of knowledge can be distinguished. The 
first one is a structural knowledge related to the problem to solve (e.g. the constraints 
of precedence and inhibition between decisions). Note that this part of knowledge 
referential is specific to the graph routing problem. The second kind of knowledge 
used is the set of preferences between genes according to criteria and objectives. 
Knowledge is extracted from: a) the project graph shape; b) information and analyses 
of operational experience feedback and finally; c) intermediate simulation results 
(individuals evaluated by EA).  

3.2   The Model of Knowledge (MoK) 

Paradigm used to model required knowledge is Influence Diagrams (ID) [15], a 
stepwise-solvable bayesian network. Firstly, they represent an interesting way for 
representation and use of knowledge because they were conceived for conceptual 
representation in decision support. So, they allow the representation of expertise and 
an interactive management of knowledge coming from experience feedback. 
Moreover, they allow an automated learning process on simulation results. This 
double source of knowledge (expertise and learning process) allows an interesting 
way for knowledge extraction [15]. Indeed, an expert can easily provide a structure of 
problem (or parts of it) but with uncertain parameters values. Formulating this expert 
knowledge by means of an ID, some rules, based on probabilities, allow calculating 
estimated data. These data can be compared with the data resulting from simulation or 
from previous carried out projects. Considering the process of KDD, statistical 
extraction of structures is a much more complex problem than the statistical 
extraction of parameters values. If we already have a structure (resulting from 
expertise), calculations for parameters acquisition are simplified. This cycle of 
information extraction improves and facilitates the construction of the model by using 
the two sources of knowledge (i.e. expertise and results of simulation). 

An Influence Diagram (ID) is a regular acyclic and no-forgetting graph of 
probabilistic relations between decisions, objectives, decision criteria and environment 
(see left part of figure 2), based on a net. Three kinds of nodes are used: “utility 
nodes”, “decision nodes” and “chance nodes”. “Utility nodes” do not have “children 
nodes”. To each of them, an exact value is associated for each combination of “parent 
nodes”. They represent in our case the objectives of the project. “Decision nodes” 
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represent the possible decisions, i.e. the genes of EA. Decision rules enable to associate 
to each possible configuration of “parent nodes” a single decision. Lastly, the “chance 
nodes” are used in order to represent context and decision criteria. A table of 
conditional probabilities is associated to each node. It contains all the probabilities 
depending on states of “parent nodes”. The example on left part of figure 2 is linked to 
the scenario shown in figure 1. Decisions d5 and d6 are related to the options of 
realization (respectively Task T5 and T6) for a pen built in two parts. An expert 
determines that for these two decisions the principal criterion is the mode of realization 
(internal or external). This criterion is conditioned by the external supply (E2) of the 
required resources (for example a subcontracting supplier). Based on its experience, 
the expert estimates that these criteria can be aggregated in “Mode of realization” (C4). 
Once this analysis is carried out, we have a structure which could be completed by an 
estimated distribution of probabilities provided by the expert.  

Nevertheless, a better way consists in setting these probabilities by confronting the 
ID with the real data coming from previous similar scenarios (e.g. a similar decision 
chain). This ID constitutes an “experience” in our system. This diagram ensures a 
conceptual classification of the properties of the decisions. The interest of conceptual 
classification is that it enables to define and classify the objects according to their 
descriptions (concepts used) without any considerations about raw data. The search 
for new projects or similar ones in different contexts can be done at conceptual level. 
This largely facilitates exchange with user and knowledge reusing. 

 

Fig. 2. Influence Diagram for a scenario and for the project 

The ID represented on left part of figure 2 results from a learning process, but for 
only one scenario. To obtain a global MoK able to guide the EA for all the possible 
scenarios, it is necessary to carry out a second cycle of abstraction by confronting the 
various ID. This global MoK is an extended influence diagram (on right part of figure 2) 
representing the set of possible decisions, criteria and sub-criteria linking decisions to 
objectives and environment. It is carried out by differential analysis of the contexts of 
each concept (objective, criterion or decision) used in the IDs. The context of a concept 
is defined as the set of concepts on which it is linked in the ID. For example, the context 
of a decision of realization associated with a task in a particular project (for example D1 
on figure 2) is the set of the other decisions concerning the scenario, the criteria, 
functions and objectives related to this task. Mechanisms of context changing can be 
inferred each time that this task is used within a project. 
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These mechanisms activate or inhibit concepts associated with the task according to 
its context of use. The global ID is composed of three parts: in the higher part, a net of 
chance and utility nodes gathers the decision criteria and the objectives. It is the result 
of generalization of the selected decision criteria. It enables to represent all the 
combinations of relevant concepts. Then, the set of decisions to be evaluated are 
represented (D1,…, d8). It corresponds to the project’s genome. Another set of 
decision nodes (Reg1 to Reg3) related to design alternatives is also represented. It 
corresponds to the structural aspect of knowledge resulting from project graph. This 
knowledge can be interpreted as activation constraints [16] and illustrates the fact that 
selection of an alternative activates corresponding tasks and inhibits tasks associated 
with other possible alternatives. For example, decision D3 activates d3 and d4 or d5 
and d6. 

4   Different Way to Use knowledge in Evolutionary Algorithm  

Within our model of knowledge, some information links the search space (parameters 
to be selected), the objectives of project and the space of global context. So, in order 
to accelerate the exploration process within the EA, we use the capitalized knowledge 
(gathered in the MoK) adapting it to the current case. Considering that the MoK can 
be unsuitable or incomplete in certain cases and that it is not revised during search 
process, it is thus necessary to preserve independence of search method when 
predictions of MoK are not appropriated. For this reason, evaluation and selection 
steps of classic EA are preserved. Moreover, a mechanism is envisaged allowing to 
partially come back to traditional genetics operator when insufficient progress is 
observed. 

The main problem for direct interaction between ID and EA is the step of inference 
in probability model especially because of multi-criteria fitness in ID consumes too 
much computing time. As a consequence, knowledge should be clusterised [2] [11] 
with respect to objectives and provided to EA during initialization. This way 
developed in next section allows general orientation to reach interesting zones of 
search space. The main difference between this study and the others using a MoK to 
guide search [10] [11] to guide search is that the MoK is more complex here (multi 
objectives, interdependencies between variables) but it is made before optimization 
process, as an off-line process. 

Interaction based on knowledge clustering. This kind of interaction is based on two 
classifications: i) the classification of individuals with respect to objectives by EA and 
ii) the conceptual classification of scenarios by project’s global ID. During 
initialization step, the global I.D. provides classes of favorable genes for each class of 
objectives. The classes of objectives are distributed uniformly on search space and 
their number is fixed by the user. A Class of genes gathers probabilities of selection 
for each alternative of each gene of the genome. 

In a traditional EA, initial population is generated randomly. Here, the initial 
population is build according to the classes of genes, in order to start search procedure 
with a priori good orientations. The individuals are divided through the various 
classes of genes. Then for each individual, the probabilities of his class are used to fix 
the value of genes as shown on figure 3. In the class of gene, each table corresponds 
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to the selection’s probabilities for each state of a gene. For example, the values (1; 0) 
of the first table indicate that, to reach the matched class of objectives, it is necessary 
to choose with a probability of 100% the first alternative. This choice implies that 
genes 3, 6, 7, 8 and 9 (respectively linked to decision D3, d3, d4, d5 and d6 on figure 
2) are inhibited according to structural knowledge (their probability on the class of 
genes is fixed to -1). When a gene is inhibited by previous genes already instantiated 
(genes encoding OR node’s options choice), its value is fixed to 1. 

 

Fig. 3. Utilization of gene’s class for individual building during initialization  

During EA process, classes of genes are matched to current cluster of Pareto-
optimal individuals (see left part of figure 4). The centered solution of cluster (i.e. 
which minimizes distance with other solutions) will be used as reference point for the 
class of genes to which it is matched. That makes it possible affecting to each 
individual the class of genes to which the center is closest.  

The mutation operator, shown on the right part of figure 4, selects an individual 
randomly among the population and secondly, the probabilities of its class are used to 
fix the value of genes similarly as during initialization except that a gene mutation 
occurs according to the mutation probability and mutations on inhibited genes are 
skipped. This method allows to preserve good properties of an individual, to avoid 
useless changes and thus to concentrate the changes on the remaining genes. 

 

Fig. 4. Assignment of individual to classes and mutation operator 
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The crossover operator, illustrated on figure 5, enables exploration or 
intensification of search space. It corresponds then to an “inter-class” exchange by 
crossing individuals belonging to different classes or an “intra-class” exchange by 
crossing on the same class, according to the strategy of selection of parents. Once 
parent selection is done, probabilities of their classes are used to determine points of 
crossing. For each gene, if one of its parents has an inhibited gene or if the two 
parents have a probability of 1 for two different alternatives, the crossing does not 
take place for this gene. If only one of the two parents has a probability of 100% for 
an alternative, a unilateral crossing is done for this gene (from the parent with 100% 
towards the other as for first gene on figure 1). Lastly, if none of the preceding case is 
applicable, the crossing will be carried out in a traditional way according to the 
probability of crossing as for second gene on figure 1. This method makes it possible 
to preserve and, if possible, to exchange favorable genes of each individual. 

 

Fig. 5. Crossover operator 

First results. We use a platform coded in C++ which allows testing our method. 
Table 1 presents preliminary results obtained for a graph with sixty tasks (three 
options per task) and fifteen OR node (three alternatives per OR node). The first row 
is the mean of best solution’s evaluation obtained after ten runs. The evaluation of an 
individual is calculated by adding the square of difference to each objective multiplies 
by a coefficient define by user (the optimal solution’s evaluation for this problem is 
3051.28). The second row is the mean of generation’s number in which the best 
solution has been found and the last one is the time needed to achieved the ten runs on 
a AMD Sempron 3400+ with 512Mb of RAM.  

For a first evaluation of this approach, the intelligent evolutionary algorithm (IEA) 
has been tested with a perfect learned MoK (class of genes learned with every best 
solutions generated separately) and without MoK (MoK with class equiprobable for 
every gene, equivalent to a traditional EA). Tests were realized for ten generations, 
with a population of fifty or ten individuals and with a genetic strategy (GS: 
PCross=0.7, PMut=0.3) or an evolutionary strategy (ES: PCross=0.3, PMut=0.7). The best 
strategy, here the ES one, is linked to problem instance. These first encouraging 
results show that the learned MoK guide very quickly the algorithm to interesting 
individuals as shown by runs done with ES strategy and fifty individuals where the 



326 P. Pitiot et al. 

IEA find optimal solution at every execution in only five seconds. The learned MoK 
achieved best results (average of eight percents for all runs) to find the best solution 
and done as well for every class of objectives (the entire Pareto front is improved).  

Table 1. Mean results after ten executions with and without learned MoK. The Eval. and Gen. 
columns represent respectively the best value obtained and the generation in which it added. 

I.E.A. using learned MoK I.E.A. without MoK 
Gen/Pop/ Strat.

Eval. Gen. Eval. Gen. 
time 

10/50/ GS 3074.27 1.66 3316.96 3.73 6s 
10/50/ ES 3051.28 (optimal) 3.26 3274.85 4.9 5s 

100/10/ ES 3051.28 (optimal) 6.4 3212.72 61.1 8s 

5   Conclusion / Perspectives 

An original approach based on coupling between a graphic model of knowledge built 
starting from experiments in an interactive and iterative way and a multi-objective 
evolutionary algorithm has been proposed in this paper. The first tests show 
promising results. We currently perform more experiments to test and validate the 
approach when MoK is incomplete or failing. Then some perspectives have to be 
carrying out. First of all, we investigate different way to use a direct interaction 
between MoK and EA without classification matching in order to use knowledge 
more specifically. Two possibilities are now investigated. The first one consists in 
compiling all information with an automaton as proposed by J. Amilastre in [17]. This 
model has very short response times but must be built before launching scenario’s 
search process. The second possibility is to simplify the global ID. This operation can 
be carried out by means of an adaptive meta-model representing the relevance of a 
node as proposed M. Crampes in [18]. Secondly, another perspective concerns the 
update of the global ID starting from the past experiments (i.e. starting from the set of 
all the MoK corresponding to all previous instantiated scenarios). It has to be 
specified as well as the interaction between models and decision makers.  
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