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Abstract. This paper focuses on the design of control strategies for
Evolutionary Algorithms. We propose a method to encapsulate multiple
parameters, reducing control to only one criterion. This method allows
to define generic control strategies independently from both the algo-
rithm’s operators and the problem to be solved. Three strategies are
proposed and compared on a classical optimization problem, considering
their generality and performance.

1 Introduction

Evolutionary Algorithms (EAs) [1] are metaheuristics inspired by natural evo-
lution that are used to find sufficiently acceptable solutions to complex opti-
mization problems. A set of candidate solutions, known as population, evolves
by means of genetic operators. The two main operators are mutation, that mod-
ifies randomly an individual from the population, and crossover, that combines
two of them. A selection process chooses the individuals that will survive in the
next generation population. The whole process is repeated until a termination
condition is satisfied. One of the strongest advantages of EAs over traditional
optimization methods is their ability to escape from local optima. They have
been successfully applied to various application domains.

Most of the time, the performance of these algorithms are strongly related to
a suitable setting of several parameters such as population size and operator’s
application rate. The tuning of these parameters is difficult to achieve and often
depends on empirical experiments or intuition. From the problem’s resolution
point of view, these parameters can be used to control the exploration of the
search space and the exploitation of its interesting areas. If exploitation (also
known as intensification of the search) is excessive, premature convergence may
occur, while if exploration is too excessive (i.e., diversification), the algorithm
becomes inefficient. The management of these two search strategies is indeed the
central preoccupation of search (meta)heuristics.

Another important difficulty when using EAs to solve specific problems is the
limited efficiency of generic evolution operators. Generally, the performance of an
EA is also strongly related to the definition of efficient dedicated operators that
take into account the structural properties of the considered problem (without
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neglecting the importance of encoding). These operators are often controlled by
parameters, even in its most elemental way of application rate. The influence
of those parameters over the Balance between Exploration and Exploitation
(EEB) is a priori unknown, and knowledge about it is usually acquired across
computationally expensive sets of experiments.

Control strategies often rely on specific rules to control a particular parameter.
This makes it impossible to apply the acquired knowledge to algorithms with
different operators: knowledge is not exportable because it is not expressed in
general terms. It would be then interesting to generate control strategies w.r.t.
EEB, which would allow us to encapsulate the complexity of handling specific
parameters and define simpler and more general control schemes.

In this paper, we present a study about general control strategies based on a
more global view of EA behavior. We first use a method to encapsulate the com-
plexity of handling multiple parameters, even if they are associated to unknown-
behavior operators [2]. This scheme focuses on a particular criterion: the popula-
tion diversity. The population diversity and quality (i.e. mean fitness), produced
by different combination of parameter’s values, are measured during a training
phase. Then, the combinations that provide maximal quality for different levels
of diversity are identified and used later during the control phase. Genotypic
diversity1 is highly correlated with EEB: if exploitation is intensive, individu-
als will tend to concentrate in the higher fitness zones, so diversity will be low.
On the other hand, if exploration is sparse, individuals will be dispersed in the
search space, and diversity will increase.

Then, we propose several control strategies for managing diversity along the
search process. By using diversity as the main controlling parameter, strategies
can be expressed in more general terms of exploration and exploitation, common
to all EAs. These control strategies are experimented and compared on a well-
known combinatorial optimization problem: the quadratic assignment problem.

This paper is organized as follows. Sect. 2 summarizes relevant work, Sect. 3
provides an overview of our approach, while Sect. 4 analyzes several criteria to
define general control strategies. Sect. 5 discusses experimental results, to finally
draw conclusions in Sect. 6.

2 Relevant Related Work

2.1 Parameter Control

In [3], a broad number of approaches to control EA parameters have been re-
viewed and classified according to the taxonomy of Fig. 1.

Parameter setting strategies are divided in two main sets: those that fix pa-
rameters for the whole search before the run, and those that change their values
during the run. In the first group the central task consists in finding fixed recom-
mended values. In the second group parameter’s values change during the run,
1 Measured as the difference between individuals in the population. Since this approach

can be applied to different problems, diversity must be defined accordingly.
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Fig. 1. Taxonomy of parameter control proposed by Eiben et al. [3]

those are divided according to how the adjustment is achieved: Deterministic
control changes parameter’s values by using deterministic rules, usually in rela-
tion with the number of elapsed generations. Adaptive control modifies parame-
ters according to the current state of the search. Finally, parameter modification
in self-adaptive control is performed by coding parameters inside individuals and
make them evolve together.

Most studies focus on specific parameters control, with just a few exceptions.
An adaptive genetic algorithm is presented in [4], where the relationship between
state measures and parameters are encoded in control rules. In [5] a statistical
method is used to measure relevance and to tune the parameters of an EA
thanks to a second one. Two dynamic control strategies are compared in [6],
where parameters are awarded according to their past performance.

Moreover, the integration of different fields of Artificial Intelligence has led to
new kinds of control approaches. One of these approaches involves Fuzzy Logic
(FL), where fuzzy rules are used to set parameter’s values based on performance
measures [7]. Our approach to handle parameters is based on this mixture, but
applies FL not to control but to modeling behavior, while control is based on
adaptive heuristics.

2.2 Fuzzy Logic Controllers

FL is an extension of classic boolean logic where levels of truth are expressed by
a membership function with values ranging from 0 (false) to 1 (true). One of the
most useful applications of FL are Fuzzy Logic Controllers (FLC) [8,9]. FLCs
allows to infer answers from rules such as “IF car speed is high AND road is dry,
THEN risk is medium”. Since FLCs are universal approximators of continuous
functions [10], they act as modeling tools that express the output w.r.t. inputs.
An early application was proposed by Wang and Mendel [11], in which many of
the subsequent methods have been based.

3 Handling Multiple Parameters in EAs

3.1 Overview of the Approach

When faced to an EA, the user needs to understand its behavior in order to
correctly tune its parameters and benefit from acceptable performances. Most of
the time, a learning process (usually a long set of experiments using the algorithm
with different parameters values) is not included in the algorithm but relies on
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the user’s expertise and intuition. Then, she/he may apply her/his personal, and
often empirical, control rules.

In a similar way, our approach is divided in two phases: Learning and Control.
During Learning, the algorithm produces examples (EA’s generations) using
different parameter’s values, to capture the mapping of these combinations with
genotypic diversity. Since populations with similar levels of diversity may vary in
terms of quality, another model is built, in order to link parameters and quality,
measured in terms of mean fitness.

Both models are used to find the combinations of parameter’s values that
produce the higher quality populations corresponding to different values of di-
versity, which are obtained from a fine partition of reachable diversity. With this
approach, the only parameter to modify thereafter is diversity.

During the Learning phase, three main problems arise: dimensionality, inertia
and noise. Dimensionality is related to the fact that the amount of examples to
be generated depends exponentially on the number of controlled parameters.
Inertia is related to the resistance to the change of diversity and mean fitness
values between consecutive generations. Here, we understand noise as the short-
term variation product of random operators that induce inaccuracy in modeling.

During the Control phase, the controller changes diversity (and therefore pa-
rameters) in order to correctly exploit the search space and try to escape from
local optima. It allows the user to express a generic strategy that can be applied
to algorithms with different operators and solving different problems.

To provide an easy integration with any EA, the controller algorithm has been
designed to be as independent as possible. Communication occurs as follows: the
EA informs about current diversity and quality, and the controller assigns new
values to controlled parameters, decides the reinitialization of population and
the end of the search.

3.2 Learning Phase

There are 4 subphases in Learning: 1.Example production, in which examples
are generated for every fuzzy partition combination; 2.Modeling, where diversity
and quality FLCs are built, based on earlier collected examples; 3.Refinement,
in which new examples, focused on the most promising areas, are generated to
achieve a fine tuning of the model; and 4.Releasing, where all examples are used
to build the definitive model, which will be used during Control phase.

The effects of noise and inertia are specially disturbing during Example pro-
duction. Several techniques have been used to mitigate those effects. The first
one aims to eliminate the influence of initial population by ignoring a number
of generations at the beginning of the search.

Inertia has the undesirable effect of flattening measures of diversity and qual-
ity, as shown in Fig. 2.a (the surface should be continuous), where the examples
of a each training grid cell (shown in the base of the plot), has been gener-
ated before passing to the next cell. Note that flattening occurs even in a close
area, so it is advisable to use a training grid fine enough. We have defined a
grid in function of fuzzy partitions of FLC’s input variables. The intersection of
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Fig. 2. (a) Formation of platforms (emphasized by squares) in a 4x4 coarse training
grid, (b) influence area (fp12,fp22) for two dimensions, in a partition with fineness of 3

all parameter’s partitions define what we have called influence areas, that are
subdivided by a factor of fineness (Fig. 2.b).

In order to avoid abrupt changes in parameters that would increase the unde-
sirable effects of inertia, we have defined a visiting order called smooth, in which
just one parameter value is modified in a minimal amount each time. Fig. 3 shows
examples for 2 and 3 parameters in contrast with classical “nested loop” visiting
order.

Fig. 3. Visiting orders: (a) classical nested loop, (b) smooth in 2D, (c) smooth in 3D

Once examples are collected, the Modeling subphase takes place. A Takagi-
Sugeno FLC with polynomials of order 1 is used. To obtain the coefficients of
the polynomials of the rule corresponding to an influence area, the algorithm
performs a multiple linear regression of the examples collected to build FLCs in
the sense parameters → diversity/fitness.

Fitness FLC is built similarly to diversity FLC, with the difference that an
exponentially descending weighted average correction is done to consider the
effects of long-term operators, like mutation. This method has also the advantage
of reducing the noise. To cancel the bias produced by this correction, an even
number of visiting runs are performed, shifting the direction every time.

Since controller requires the inverse, i.e. which parameters produce a given
level of diversity with maximum quality, a dense grid of parameter combinations
must be created to first find –using Diversity FLC– which ones have the required
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diversity, and then –using Fitness FLC– the one with the higher quality. Values
of diversity and corresponding optimal parameters are stored in the so-called
cachedDiv table.

In order to refine the model, a kind of “beta testing” is performed during
the Refinement subphase, generating examples with the optimal parameter’s
values found, including a normal-distributed error. After that, during Releasing
subphase, all generated examples are used to build the definitive model.

4 Control Strategies for EAs

By modeling diversity and quality w.r.t. parameter values, control strategies
can be expressed closer to EEB than existing control methods. Therefore, the
strategies could be applied to EA’s that solve different problems with other
operators. The issue is then to manage diversity in order to escape from local
optima and to better exploit promising areas. This section discusses several
criteria to design such strategy.

If an excessive diversity is allowed, it is likely that an excessive exploration
will occur, without concentrating in the most interesting zones. On the other
hand, if diversity falls to a small value, all individuals will tend to concentrate
and will be trapped in a local optima. Additionally, if the latter happens, it
would be difficult to reconstruct a population both diverse and of good quality,
since all secondary optima must be found again. Therefore, an intermediate
“correct” value of diversity should be maintained to have a good balance between
exploration and exploitation, and mainly avoid the loss of diversity. Of course,
all problems have different levels of “correct” diversity, so the algorithm must
be able to identify it. A possible approach is to observe the fitness value of the
better individual during the last generations. If the same value is often repeated,
it is likely that the population is converging to the point corresponding to that
fitness.

Another consideration is to alternate between stages of exploration and ex-
ploitation. Actually, during preliminary experiments, we have noted that there
are some problems that were solved very easily with a simple zigzag between min-
imal and maximal diversities. It seems that it is sometimes necessary to “forget”
what has been found to have the chance to explore a totally different zone of
the search space and –perhaps– find a better solution. The question of how long,
in terms of generations, should last this forgetting period is also another issue
to consider: if it is too short the population will return to its initial position.
On the other hand, if it is too long, the algorithm will loose computation time,
although, since the parameters corresponding to maximal diversity are set to be
quality-optimal, the risk of loosing the entire wealth of the population is much
smaller than those when population is regenerated.

We have also experimented strategies with a small oscillation around the
nominal level of diversity, that both performs a local exploration/exploitation
and helps to stabilize the value of observed diversity in relation to commanded
diversity. Another well-known consideration is to first explore and then exploit,
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in such way that the algorithm concentrates progressively in the most promising
areas of the search space.

Tested Control Strategies. In order to compare control strategies, we have
tested three different approaches that emphasize some of the aspects discussed
earlier. Those strategies varies from maintaining diversity in a rather stable level
to moving it abruptly during the search.

– MX (Mixed): it integrates first-explore-then-exploit, forgetting and small
oscillation. A series of intermediate descending diversity levels: 0.7, 0.6, 0.5,
0.4, 0.3 and 0.2, in the range of achievable diversity, belonging to [0, 1], are
commanded to the EA, with an oscillation of 10% of this range, both above
and below the nominal level. A period of 300 generations are executed at
each level, which are extended in case of finding an historical improvement.
After the algorithm has performed the descending steps of diversity, this
one is raised to its maximum value, to escape from local optima, during 200
generations. After this, decreasing starts again.

– CD (Correct Diversity): it tries to reach an adequate diversity level.
Every 10 generations, the fitness of the best individuals of the last 100 gen-
erations are considered. If more than 46 of them have the same value, com-
manded diversity is risen by 0.003, while if there are less than 17, diversity
is lowered by 0.001. Those values where obtained from preliminary experi-
ments. If the repeated value is not the higher one, or if the higher one has
been obtained recently, the rising rule is relaxed a bit. Note that it is faster
to rise diversity than to decrease it, what reflects the importance of avoiding
premature convergence.

– ZZ (ZigZag): it implements a wide oscillation around a central value of
diversity. This value is given by the mean of commanded diversities corre-
sponding to the last five historic improvements. The oscillation, centered at
this point, grows until the limits of possible diversity. If an historic improve-
ment is reached, the amplitude of the oscillation is reset to zero, to start
growing again.

Some control parameters were tuned to obtain reasonable results, even if our goal
here is not to define the best heuristic for solving QAP but to compare several
control approaches. However, it must be noted that different instances presented
considerable differences among them, as we will see in the following sections. I
order to provide more general and reliable control strategies over a wider set of
benchmarks, a learning component could be studied in future research.

5 Experimentation

In this section, we describe the experiments we have carried out in order to
compare the different control strategies described in section 4 2. We use an
2 It is also possible to obtain fixed settings by taking parameters corresponding to a

given diversity level in CachedDiv. Those settings normally produce worse perfor-
mances than adaptive strategies, as shown in [2].
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EA to solve the Quadratic Assignment Problem (QAP) with three operators,
whose application rate parameters are controlled according to our method. Our
purpose is not to be competitive w.r.t. state of the art solvers on this particular
problem, but rather to compare performances of the previously presented control
strategies.

5.1 Quadratic Assignment Problem

QAP is a well-known combinatorial optimization problem that can be stated as
follows. Let us consider two matrices A = (aij)n×n, B = (bkl)n×n, and a mapping
function Π . The goal is to find a permutation pi = (π(1), π(2), . . . , π(n)) that
minimizes:

f(π) =
n∑

i=1

n∑

j=1

aijbπ(i)π(j)

This problem was formulated by Koopmans and Beckmann [12] for a facility
allocation problem, in which a set of n facilities with physical flows between
them (matrix A) must be placed in n locations separated by known distances
(matrix B). The goal is to minimize the cost (flow×distance) of overall system.

A set of 38 medium-size instances, obtained from the QAPLIB repository 3,
was selected to test the algorithm, covering instances from all families.

5.2 Evolutionary Algorithm

The individuals are encoded as permutations. Population size is set to 100 in-
dividuals and three operators are applied: standard exchange mutation, that
simply interchange two allocations randomly, cycle crossover [13], that preserves
the absolute position of allocations from parents to descendants, and a spe-
cialized operator called remake that randomly erases four allocations, try the
4! possible reconstructions and chooses the best one. In order to focus on the
general abstraction and control methodology, the selection process is not con-
sidered here as a mechanism to control diversity. Therefore, we choose a very
basic selection scheme (roulette wheel) that correspond to a rather naive genetic
algorithm implemented by a non specialist user. A set of 15 runs of 10.000 gen-
erations (learning not considered) have been performed for each instance and
strategy. This great amount of generations was defined to observe how definitive
is premature convergence in every case.

Diversity is defined as the sum of the differences of encoded variables between
all population’s individuals, and scaled linearly in [0,1] between minimal an
maximal possible values, given the number of variables and the population size.

5.3 Learning Phase Parameters

During Learning phase, 2.000 generations were ignored at the beginning of Ex-
ample production and Refining phases. Parameter’s value range were divided
3 http://www.seas.upenn.edu/qaplib/
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into 4 fuzzy partitions and subdivided with fineness of 3. Within each partition
of fineness, 5 generations were executed. During Refining, diversity descends and
mounts linearly for 800 generations each one. In order to eliminate the effects
of the modeling in the strategy comparison, 15 preliminary runs were made for
each instance and only one cachedDiv has been chosen for each instance. The
chosen cachedDiv was the one that presented the smaller deviation of observed
diversity from commanded diversity during test runs.

5.4 Results and Discussion

Table 5.4 presents the mean values of cost and the standard deviation (in paren-
thesis) for each strategy and instance. An additional column shows the best
known solution published in QAPLIB (April 2007). At the bottom of the table
we have included the average number of runs in which the best known value
was reached, and the number of instances where each strategy significatively4

outperformed the others.
MX and CD have obtained the best results across different instance’s families,

with a slight advantage of CD. On the other hand, ZZ seems to be the least
efficient strategy, with a couple of exceptions. However, the mean number of
times in which the best known value have been reached is not much different for
ZZ, but all successful results are concentrated on a few instances, while other
control strategies seem to have a more regular behavior. Therefore MX and
CD appear as more generic and could work properly on other problems. Some
instances are notably easier that others (considering the operators used), since
they were optimally solved by all strategies in every run, while others by none.

In order to analyze the characteristics of each strategy, we will concentrate on
three representative instances that show the behavior of each one of the three
strategies (Fig. 4). Relative ranking of the control scheme is indicated in each
figure.

Considering CD on tai64c, we can see that, after an initial confusion due to the
effect of initial population, the algorithm is able to rise diversity up to the level
required by this particular instance. However, since the convergence-escaping
heuristic of CD considers only one value of equally fitness-valued generations, it
fails to detect excessive convergence when there are several values with fitness
close to the local optima, as in ste36a and els19.

ZZ, nevertheless, solves els19 without any difficulty. This is partially acci-
dental, since the starting diversity level agrees with the level required for this
instance. Actually, placing the center of oscillation in the mean value of last
successful improvements does not guarantee that this will be the right diversity
to command. This appears clearly on tai64c. While CD lacks of means to detect
sub-optimal multimodality, ZZ lacks of a criterion to well focusing on the right
diversity level.

Note that CD and ZZ have opposite behavior w.r.t. diversity change : ZZ
moves it continuously during the search, while CD stands quietly at a convenient
value. Why CD solves better tai64c and ZZ does with els19 ? One explanation
4 Using a t-Student test with significance level of 0.05.
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Table 1. Mean and standard deviation of experimental results

Instance MX CD ZZ Best known

bur26a 5430603(2813) 5429382(2801) 5431717(1797) 5426670
bur26b 3820099(2645) 3820701(3237) 3819815(2497) 3817852
bur26g 10117735(637) 10118015(1805) 10118437(734) 10117172
bur26h 7098797(227) 7101812(11143) 7099036(314) 7098658
chr12a 9552(0) 9552(0) 9552(0) 9552
chr18b 1534(0) 1534(0) 1534(0) 1534
chr20c 14980(676) 15564(967) 14462(415) 14142
chr25a 4282(145) 4160(193) 4738(189) 3796
els19 17255411(64685) 17403382(428255) 17212548(0) 17212548
esc32a 133(1) 137(3) 146(4) 130
esc32b 174(8) 183(7) 190(3) 168
esc64a 116(0) 116(0) 116(0) 116
had12 1652(0) 1652(0) 1652(0) 1652
had20 6922(0) 6922(0) 6922(0) 6922
kra30a 90618(536) 90688(671) 91805(556) 88900
lipa20a 3696(21) 3690(12) 3695(21) 3683
lipa40b 504178(40403) 509671(41952) 558748(18977) 476581
lipa60a 108419(55) 108263(46) 108649(35) 107218
lipa60b 3001663(133444) 3005495(6122) 3068971(5125) 2520135
nug15 1150(0) 1150(0) 1150(0) 1150
nug20 2573(3) 2571(2) 2574(6) 2570
nug30 6177(26) 6156(21) 6261(25) 6124
rou20 729645(1575) 728832(1764) 729987(3362) 725522
scr20 110375(428) 110129(178) 110178(255) 110030
sko42 15982(62) 15962(48) 16341(61) 15812
sko64 49193(120) 49051(175) 50934(209) 48498
ste36a 9744(102) 9704(98) 10268(148) 9526
ste36b 16209(293) 16341(526) 16973(254) 15852
ste36c 8402215(76340) 8360860(84502) 8525723(69745) 8239110
tai20a 710633(2832) 709743(1618) 712817(2402) 703482
tai20b 122562707(222601) 122824782(270418) 122667094(266302) 122455319
tai40a 3249903(12230) 3231014(13179) 3304776(11237) 3139370
tai40b 647477626(8092672) 650707492(12312552) 654471314(8168843) 637250948
tai60a 7615573(33603) 7468530(19378) 7722640(22912) 7205962
tai60b 617635298(4993344) 616454128(4540470) 630041081(4689169) 608215054
tai64c 1857916(2066) 1856511(736) 1857830(2128) 1855928
tho40 244248(1349) 244027(1418) 251943(1598) 240516
wil50 49029(56) 48994(88) 49728(80) 48816

avg. optima 4.82 4.60 4.29
outperf. MX — 6 2
outperf. CD 3 — 1
outperf. ZZ 20 21 —

could be related to the shape of fitness landscape of both instances: if it is
smooth, a quiet search, that walks across the “plains” and the “valleys” could
be appropriate, while if it is rugged, a “messy search”, that first jumps between
“peaks” to then concentrate of them could be best suited. The interest in finding
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Fig. 4. Plot of commanded diversity (below) and fitness of best individual of the pop-
ulation (above) obtained with proposed strategies for representative instances els19,
ste36b and tai64c. In parenthesis appears the relative order according to mean result.

out a relationship between fitness landscape and the best suited control strategy
lies in the simplicity to know the former, thus it would be possible to auto-
matically select the most performing strategy by measuring ruggedness at the
beginning of the search.

In order to check this hypothesis, we have calculated the random walk cor-
relation function, proposed by Weinberger [14]. This function takes a sequence
of fitness values from a solution that is randomly modified by an operator, and
calculates correlation between fitness values separated by s iterations. We have
calculated the correlation for all treated instances with values of s ranging form
1 to 10, and with two operators; exchange mutation and remake, for series 50.000
iterations long. We have found that tai64c has, as we expected, a high level of
correlation, revealing a smooth fitness landscape. Most of the instances with
a similar correlation structure were best solved by CD (lipa60a, tai60a) and
in some of them ZZ’s performance was particularly inefficient (lipa60b, sko64,
tai60b, wil50). On the other hand, els19 has one of the lowest measures of corre-
lation, pointing out a rugged fitness landscape. The same happens with another
instance well solved by ZZ, chr20c. However, the mapping between strategies
and fitness landscape is not that clear in this case, since there are some rugged
instances that are slightly better solved by CD (rou20, tai20a), and most them
are solved similarly by all strategies (chr12a, chr18b, had12, had20, nug15, nug20,
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scr20). That could be caused by the inappropriate placing of center in ZZ. Fur-
ther work is needed before concluding a definitive relationship.

Analyzing MX, we found that it worked exactly as expected when solving
ste36b: Diversity descends progressively as fitness rises, and forgetting periods
allows to escape from local optima to reach a better one. Even though these
general-purpose diversity levels worked relatively well with most instances, they
were not high enough to deal with tai64c. Another drawback of this strategy is
that it does not consider the converging rate, i.e. even if fitness is rising firmly,
when the time to forget is come, the algorithm starts to explore, losing the op-
portunity to improve the current best solution. The number of generations before
entering a forgetting period is a sensible parameter, whose value depends on the
problem. Something similar happens with the frequency of diversity change in
ZZ.

6 Conclusion

In this paper we have presented a method to control multiple EA’s parameters.
Our purpose was to create an abstraction of algorithmic details in order to allow
the definition of high-level control strategies, applicable to a wide range of EAs,
regardless of the operators used and the problems being solved.

We have discussed several criteria that should be considered when defining
general strategies, and three different schemes, all of them absolutely indepen-
dent from EA’s operators, have been studied. We have considered strategies:
that keep a somewhat stable value of EEB, and others that continuously move
this value.

An interesting relation between the performance of these strategies and the
shape of the fitness landscape has been suggested. This could be used to auto-
matically choose which strategy to apply when faced to a particular problem. A
learning component could analyze performance of control strategies over differ-
ent problems and parameters.

We have considered application rate parameters. It would be interesting to
apply this method to other kind of parameters, such as selection pressure or
population size.

Future work would also extend to other problems in order to assess the gen-
erality of our approach.
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