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Abstract. The (1 + 1)-ES is modeled by a general stochastic process
whose asymptotic behavior is investigated. Under general assumptions, it
is shown that the convergence of the related algorithm is sub-log-linear,
bounded below by an explicit log-linear rate. For the specific case of
spherical functions and scale-invariant algorithm, it is proved using the
Law of Large Numbers for orthogonal variables, that the linear conver-
gence holds almost surely and that the best convergence rate is reached.
Experimental simulations illustrate the theoretical results.

1 Introduction

Evolutionary algorithms (EAs) are bio-inspired stochastic search algorithms that
iteratively apply operators of variation and selection to a population of candi-
date solutions. Among EAs, adaptive Evolution Strategies (ESs) are recognized
as state of the art algorithms when dealing with continuous optimization prob-
lems. Adaptive ESs sequentially adapt the parameters of the search distribution,
usually a multivariate normal distribution, based on the history of the search.
Several adaptation schemes have been introduced in the past. The one-fifth suc-
cess rule [1,2] considers the adaptation of one parameter, referred as the step-
size, based on the success probability. The most advanced adaptation scheme,
the Covariance Matrix Adaptation (CMA), adapts the full covariance matrix of
the multivariate normal distribution [3].

The first theoretical works carried out in the context of Evolution Strategies
focused on the so-called progress rate defined as a one-step expected progress
towards the optimum [1,4]. The progress rate approach consists in looking for
step-sizes maximizing the expected progress. This amounts to investigating an
artificial step-size adaptation scheme called scale-invariant, in which, at each
iteration, the step-size is proportional to the distance to the optimum. The results
derived in the context of the progress rate theory hold asymptotically in the
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dimension of the search space and the techniques used do not allow to obtain
finite dimension estimations.

Finite dimension results were obtained in the context of ’comma’ strategies
on the class of the so-called sphere functions, mapping R

d into R (d being the
dimension of the search space) and defined as

f(x) = g(‖x‖2) , (1)

where g : [0, +∞[�→ R is an increasing function and ‖.‖ denotes the usual eu-
clidian norm on R

d. On this class of functions, scale-invariant ESs [5] and self-
adaptive ESs (which use a real adaptation rule) [5,6] do converge (or diverge)
with order one, or log-linearly1.

In this paper, finite dimension results are investigated and the focus is on the
simplest ES, namely the (1+1)-ES. Section 2 introduces the mathematical model
associated to the algorithm in a general framework and provides preliminary re-
sults. In Section 3, a sharp lower bound of the log-convergence rate is proved.
In Section 4, it is shown that this lower bound is reached for a scaled-invariant
algorithm on the class of sphere functions. The proof of convergence on the class
of sphere functions uses the Law of Large Numbers for orthogonal random vari-
ables. A central limit theorem is also derived from this analysis. In Section 5 our
results are discussed and related to previous works. Some numerical experiments
illustrating the theoretical results are presented.

2 Mathematical Model for the (1 + 1)-ES

Let R
d be equipped with the Borel σ-algebra and the Lebesgue measure. In

the sequel we always assume that (Nn)n denotes a sequence of random vectors
(r.vec.) independent and identically distributed (i.i.d.), defined on a suitable
probability space (Ω, P ), with common law the multivariate isotropic normal
distribution on R

d denoted by N (0, Id) (2). Let (σn)n be a given sequence of
positive random variables (r.var.). We also assume that for each index n, σn is
defined on Ω and is independent of Nn; further we will also require that the
sequences (σn)n and (Nn)n are mutually independent. Finally, let f : R

d → R

be an objective function (which is always assumed to be Lebesgue measurable)
and let δn : R

d × Ω → {0, 1} (n ≥ 0) be the measurable function defined
by δn(x, ω) := 1{f(x+σn(ω)Nn(ω))≤f(x)}. In this paper, (1 + 1)-ES algorithms
are modeled by the R

d-valued random process (Xn)n≥0 defined on Ω by the
recurrence relation

Xn+1 = Xn + δn(Xn, IΩ)σnNn , (2)

where IΩ is the identity function ω �→ ω on Ω and X0 is given.

1 We say that the sequence (Xn)n converges log-linearly to zero (resp. diverges log-
linearly) if there exists c < 0 (resp. c > 0) such that limn

1
n

ln ‖Xn‖ = c.
2 N (0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and
covariance matrix the identity Id.
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The classical terminology used for algorithms defined by (2) stresses the par-
allel with the biology: the iteration index n is referred as generation, the random
vector Xn is called the parent, the perturbed random vector X̃n = Xn +σnNn is
the n-th offspring. The scalar r.var. σn is called step-size. The r.var. δn translates
the plus selection “+” in the (1 + 1)-ES: the offspring is accepted if and only if
its fitness value is smaller than the fitness of the parent. Several heuristics have
been introduced for the adaptation of the step-size σn, the most popular being
the one-fifth success rule [1,2].

Notations and Preliminary Results

For a real valued function x �→ h(x) we introduce its positive part h+(x) :=
max{0, h(x)} and negative part h− = (−h)+. In other words h = h+ − h− and
|h| = h+ + h−. In the sequel, we denote by e1 a unitary vector in R

d. The
following technical lemmas will be useful in the sequel.

Lemma 1. Let N be a r.vec. of distribution N (0, Id). The map F : [0, ∞] →
[0, +∞] defined by F (+∞) := 0 and

F (σ) := E
[
ln− (‖e1 + σN‖)

]
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx (3)

otherwise, is continuous on [0, +∞] (endowed with the usual compact topology),
finite valued and strictly positive on ]0, ∞[.

Proof. The integral (3) always exists but could be infinite. In any case, F (σ)
is independent of the choice of e1 due to the invariance of N under rotations.
For convenience we choose e1 = (1, 0, . . . , 0) so that ln−(‖e1 + σx‖) = 0 if
x = (x1, . . . , xd) with x1 ≥ 0. Let f1 : R

d × [0, ∞] → [0, +∞] be defined by

f1(x, σ) = ln−(‖e1 + σx‖2)e−
‖x‖2

2

for x �= (−1/σ, 0, . . . , 0) and f1((−1/σ, 0, . . . , 0), σ) = +∞ (with σ > 0) and
finally f1(x, +∞) = 0 (= limσ→+∞ f1(x, σ)). Notice that f1(x, σ) = 0 if x1 ≥ 0
and readily f1((x1, x2, . . . , xd), σ) = f1((x1, ε2x2, . . . , εdxd), σ) for any (ε2, . . . , εd)
in {−1, +1}d−1 so that we can restrict the integration giving F (σ) to the domain
D :=] − ∞, 0[×]0, ∞[d−1, more precisely one has

F (σ) =
1
4

( 2
π

)d/2
∫

D
f1(x, σ)dx (4)

with in addition f1 is finite everywhere in D. From the definition of F (+∞) and
f1 one has 1

4 (2/π)d/2
∫
D f1(x, +∞)dx = 0 = F (+∞) so that (4) holds also for

σ = +∞. Now, for any real number σ > 0 fixed, the inequality f1(x, σ) > 0
holds on Bσ := {x ∈ D ; ‖e1 +σx‖ < 1} which is a nonempty open set, therefore
F (σ) > 0. In addition, f1(x, 0) = 0 for all x and so, F (0) = 0. Passing to
spherical coordinates (with d ≥ 2)we obtain after partial integration

∫

D
f1(x)dx = 2cd

∫ +∞

0

∫ π/2

0
ln−(|σr − eiθ1 |)rd−1e−

r2
2 sind−2 θ1dr dθ1
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where

cd =
∫ π/2

0
· · ·

∫ π/2

0
sind−3(θ2) . . . sin(θd−2)dθ2 . . . dθd−1

for d ≥ 3 and c2 = 1. With the classical Wallis integral Wd−2 =
∫ π/2
0 sind−2 θ dθ

and the surface area of the d-dimensional unit ball Sd = 2πd/2/Γ (n
2 ) we have

Sd = 2dcdWd−2 and after collecting the above results we get

F (σ) =
( 1

2π

)d/2 1
Wd−2Γ (d

2 )

∫ +∞

0

∫ π/2

0
ln−(|σr − eiθ|)rd−1e−

r2
2 sind−2(θ) dr dθ .

The integrand g : (r, θ, σ) �→ ln−(|σr−eiθ |)rd−1e−
r2
2 sind−2(θ) defined on the set

]0, +∞[×[0, π/2]× [0, ∞] (with g(r, θ, +∞) = 0) is continuous. In fact, the conti-
nuity is clear at each point (r, θ, σ) with σ �= +∞ and for the points (r, θ, +∞),
one has g(ρ, α, σ) = 0 on ]r/2, +∞[×[0, π/2]×] 4r , +∞]. Moreover, g is dominated
by g1 : (r, θ) �→ ln−(sin θ)rd−1e−r2/2 i.e., g(r, θ, σ) ≤ g1(r, θ) for all (r, θ, σ)
in ]0, +∞[×[0, π/2] × [0, +∞]. Since g1 is integrable, the continuity of F on
[0, +∞] follows from the Lebesgue dominated convergence theorem. For the re-
maining case d = 1 the conclusions of the lemma follow easily from (4) that gives
F (σ) = 1

2
√

2π

∫ ∞
0 ln−(|1 − σr|)e− r2

2 dr. 
�

Corollary 1. The supremum τ := sup F ([0, +∞]) is reached and σF := min
F−1(τ) exists. Moreover 0 < σF < +∞ and 0 < τ < +∞.

Proof. This corollary is a straightforward consequence of the continuity of F
according to Lemma 1 which implies that F−1(τ) is nonempty and compact. 
�

Lemma 2. Let X denote a r.vec. in R
d such that ‖X‖−1 is finite almost surely.

Let σ be a non negative random variable and let N be a random vector in R
d

with distribution N (0, Id) and independent of σ‖X‖−1. Assume that

E
(

ln
(
1 + r

σ

‖X‖

))
∈ O(ecr)

with a constant c ≥ 0, then the expectation of ln+(‖X‖−1‖X + σN‖) is finite.

Proof. Obviously E(ln+(‖X‖−1‖X + σN‖)) ≤ E(ln(1 + σ
‖X‖‖N‖)). Using the

independency of σ‖X‖ and N , and passing to the spherical coordinates, one gets

E
(
ln

(
1 +

σ

‖X‖‖N‖
))

≤ E
( ∫

Rd

ln(1 +
σ

‖X‖‖x‖)e−
‖x‖2

2 dx
)

= SdE
( ∫ +∞

0
ln(1 + r

σ

‖X‖)rd−1e−
r2
2 dr

)

= Sd

∫ +∞

0
E(ln(1 + r

σ

‖X‖))rd−1e−
r2
2 dr

<<

∫ +∞

0
rd−1ecr−r2

2 dr < +∞ . 
�
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Remark 1. The assumption E(ln(1 + r σ
‖X‖ )) ∈ O(ecr) (with c = 0) is verified if

there exists α > 0 such that the expectation of the r.var. (σ/‖X‖)α is finite.

3 Lower Bounds for the (1 + 1)-ES

In this section, we consider a general measurable objective function f : R
d → R.

We prove that the (1 + 1)-ES defined by (2) for minimizing f , under suitable
assumptions, satisfies for all x∗ in R

d and all indices n ≥ 0:

−∞ < E(ln ‖Xn − x∗‖) − τ ≤ E(ln ‖Xn+1 − x∗‖) < +∞ (5)

where τ is defined in Corollary 1.
If x∗ is a limit point of (Xn) (that could be a local optimum of f), (5) means

that the expected log-distance to x∗ cannot decrease more than τ , in other words,
−τ is a lower bound for the convergence rate of (1 + 1)-ES. The proof of this
result uses the following easy Lemma whose proof is left to the reader.

Lemma 3. Let Z and V be r.vec. and let Θ be any r.var. valued in {0, 1}.
Assume that the r.var. ln(‖Z‖) is finite almost surely. Then the following in-
equalities

ln(‖Z‖) − ln−(‖Z‖−1‖Z + V ‖) ≤ ln(‖Z + ΘV ‖)
≤ ln(‖Z‖) + ln+(‖Z‖−1‖Z + V ‖) (6)

hold almost surely. 
�

We are ready to prove the following general theorem.

Theorem 1 (Lower bounds for the (1+1)-ES). Let (Xn)n be the sequence of
random vectors verifying (2) with a given objective function f as above. Assume
that for each step n = 0, 1, 2, . . . the random vector Nn is independent of both
the random variable σn and the random vector Xn. Let x∗ be any vector in R

d

and suppose that E(
∣
∣ ln(‖X0 − x∗‖)

∣
∣) < +∞ and for all n ≥ 0,

E
(

ln(1 + r
σn

‖Xn − x∗‖)
)

∈ O(ecnr)

with a constant cn ≥ 0. Then

E (| ln (‖Xn − x∗‖) |) < +∞ ,

and

E(ln(‖Xn − x∗‖)) − τ ≤ E(ln(‖Xn+1 − x∗‖)) , (7)

for all n ≥ 0, where τ is defined in Corollary 1. In particular, the convergence
of the (1 + 1)-ES is at most linear, in the sense that

inf
n∈N

1
n

E
(
ln

(
‖Xn − x∗‖/‖X0 − x∗‖

))
≥ −τ . (8)
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Proof. Set Zn = Xn − x∗, X̃n = Xn + σnNn and Z̃n = X̃n − x∗. We prove the
integrability of ln (‖Zn‖) by induction. By assumption E

(
ln(‖Z0‖)

)
is finite.

Suppose that E
(
ln ‖Zn‖

)
is finite, then 0 < ‖Zn‖ < +∞ almost surely, hence

ln
(
‖Zn+1‖

)
is also finite almost surely. We claim that E

(
ln(‖Zn+1‖)

)
is finite.

By applying Lemma 3 we get (6) and derive

ln+ (‖Zn+1‖) ≤ ln+ (‖Zn‖) + ln+ (
‖Zn‖−1(‖Zn + σnNn‖)

)
. (9)

By Lemma 2 the expectation of ln+ (
‖Zn‖−1(‖Zn + σnNn‖)

)
is finite and us-

ing (9) we conclude that E
(
ln+ (‖Zn+1‖)

)
< +∞. It remains to show that

E
(
ln−(‖Zn+1‖)

)
is also finite. Using the first inequality in (6) we obtain

ln− (‖Zn+1‖) ≤ − ln (‖Zn‖)+ ln−
(∥
∥
∥

Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥
∥
∥
)

+ ln+ (‖Zn+1‖) . (10)

For each n ≥ 0, let Fn denote the σ-algebra generated by the r.vec. Xn and the
r.var. σn. Taking the conditional expectation we obtain

E[ln−(‖Zn+1‖) | Fn]

≤ − ln(‖Zn‖) + E
[
ln−

(∥
∥
∥

Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥
∥
∥
)

| Fn

]
+ E

[
ln+ (

‖Zn+1‖
)
| Fn

]
.

Since the distribution Nn is invariant under rotation and independent of Fn,

E
(
ln−

(∥∥
∥

Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥∥
∥
)

| Fn

)
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + tnx‖)e−
‖x‖2

2 dx

= F (tn)

where e1 is any unit vector on R
d, tn = σn/‖Zn‖ (and F is the map introduced

in Lemma 1). Using Lemma 1, we get E
[
ln− (‖Zn+1‖) | Fn

]
≤ − ln (‖Zn‖)+τ +

E
[
ln+ (‖Zn+1‖) | Fn

]
(recall that τ = max F ([0, +∞])). Passing to the expec-

tation we get

E
[
ln− (‖Zn+1‖)

]
≤ −E [ln (‖Zn‖)] + τ + E

[
ln+ (‖Zn+1‖)

]
< +∞ .

Hence E[| ln(‖Zn+1‖)|] is finite for all n ≥ 0. Moreover, we also get

E(ln ‖Zn+1‖) ≥ E(ln ‖Zn‖) − τ

and after summing such inequalities we obtain

E (ln (‖Zn‖/‖Z0‖)) ≥ −τn

and (8) follows. 
�

When x∗ is a local minimum of the objective function, E(ln ‖Xn − x∗‖) −
E(ln ‖Xn+1 − x∗‖) represents the expected log-distance reduction towards x∗

at the n-th step of iteration, called log-progress in [7]. Theorem 1 shows that the
log-progress is bounded above by τ = F (σF ).
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4 Spherical Functions and the Scale-Invariant Algorithm

In this section we prove that the lower bound −τ obtained in Theorem 1 is
reached for spherical objective functions when σn = σF ‖Xn‖ (n ≥ 0). Recall
that sphere objective functions are defined by f(x) = g(‖x‖2) where g is any
increasing map, so that the acceptance condition f(Xn+1) ≤ f(Xn) is equiva-
lent to ‖Xn+1‖ ≤ ‖Xn‖. It follows that (‖Xn‖)n≥0 is a non-increasing sequence
of positive random variables (finite almost surely), hence converges pointwise
almost surely. For spherical functions, Lemma 3 becomes:

Lemma 4. Let X and W be any random vectors and let Θ = 1{f(X+W )≤f(X)}
and assume that the random variable ln(‖X‖) is finite almost surely. Then the
equality

ln(‖X + ΘW‖) − ln(‖X‖) = − ln+(‖X‖−1‖X + W‖) (11)

holds almost surely.

Proof. The equality (11) emphasizes the fact that ‖X +Θ‖ ≤ ‖X‖ with equality
on the event {Θ = 0} (= {‖X + W‖ > ‖X‖}). 
�

Proposition 1. Let (Xn)n be the sequence of random vectors valued in R
d sat-

isfying the recurrence relation (2) involving spherical function f(x) = g(‖x‖2)
where g : [0, ∞[→ R is an increasing map. Assume that E(ln(‖X0‖) is finite and
that, at each step n, the random vector Nn is independent of both the random
variable σn and the random vector Xn. Then E(ln(‖Xn‖) is finite for all indices
n, the inequalities

E(ln(‖Xn‖) − τ ≤ E(ln(‖Xn+1‖)

hold, where τ is defined above in Corollary 1, and

ln(‖Xn‖) − ln(‖Xn+1‖) = ln−(‖Xn‖−1‖Xn + σnNn‖) < +∞ a.s. (12)

Proof. By construction ‖Xn+1‖ ≤ ‖Xn‖ ≤ ‖X0‖ so that E(ln+(‖Xn+1‖)) ≤
E(ln+(‖X0‖)) < +∞. Now assume that ln(‖Xn‖) is integrable, hence 0 <
‖Xn‖ < +∞ a.s. and so, by Lemma 4, to obtain the inequalities and equal-
ity asserted in the proposition it is enough to prove that E(ln−(‖Xn‖−1‖Xn +
σnNn‖)) ≤ τ . But similarly to the end part of the proof of Theorem 1 we have
E(ln−(‖Xn‖−1‖Xn + σnNn‖)) = E(F (σn/‖Xn‖)) ≤ τ . 
�

Now we pay attention to the particular case where σn = σ‖Xn‖ with σ > 0
fixed. The resulting (1 + 1)-ES is said to be scale-invariant, and is modeled by
the d-dimensional random process

Xn+1 = Xn + δn(Xn, IΩ)σ‖Xn‖Nn (n ≥ 0) . (13)

For convenience of the reader we collect the hypothesis that govern the scale-
invariant random process (13):
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(HSI) The sequence of random vectors (Nn)n in R
d is i.i.d. with common

law N (0, Id), is independent of the initial random vector X0 and ln(‖X0‖)
has a finite expectation.

Notice that Assumption (HSI) implies in particular that for m ≥ n ≥ 0, Nm

is independent of Xn and by Proposition 1, ln(‖Xn‖) has a finite expectation.
The update rule (13) is not so realistic because in practice, at each step n, the
distance of Xn to the optimum is unknown. Nevertheless, we will show that the
stochastic process defined by (13) converges log-linearly for sphere functions and
that for σ = σF the convergence rate in log is equal to −F (σF ) (= −τ). In other
words, the choice σn = σF ‖Xn‖ correspond to the adaptation scheme that gives
the optimal convergence rate for isotropic Evolution Strategies.

It is usual for studying stochastic search algorithms to consider log-linear
convergence of Xn by investigating the stability of ln (‖Xn+1‖/‖Xn‖). This idea
was introduced in the context of ESs by Bienvenüe and François [5] and exploited
in [6]. The process Xn given by (13) has a remarkable property expressed in terms
of orthogonality of the random sequences Yn = ln−

(∥
∥∥ Xn

‖Xn‖ + σNn

∥
∥∥
)

− F (σ):

Proposition 2. Consider the random variables

Yn := ln−
(∥
∥
∥

Xn

‖Xn‖ + σNn

∥
∥
∥
)

− F (σ)

where F is defined by (4) and let σ > 0. Under the hypothesis (HSI) the follow-
ings hold:

1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.
2. Let (Y ′

n)n≥0 be the sequence of random variables

Y ′
n := ln−(‖e1 + σNn‖) − F (σ).

The random variables Yn (n ≥ 0) are identically distributed and for every
n ≥ 0, Yn and Y ′

n follow the same distribution.
3. The sequence of random variables (Yn)n≥0 is orthogonal, i.e. for all indices

i, j, with i �= j one has E(Yi) = 0, E(Y 2
i ) < +∞ and E(YiYj) = 0.

Proof. The isotropy of the standard d-dimensional normal distribution gives

E
(

ln−
(∥
∥
∥

Xn

‖Xn‖ + σNn

∥
∥
∥
)

| Xn

)
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx

= F (σ)

hence E
[
ln−

(∥∥
∥ Xn

‖Xn‖ + σNn

∥∥
∥
)]

= E [F (σ)] and so, E(Yn) = 0. Let F2 : [0, ∞] →
[0, +∞[ be defined by F2(∞) = 0 and, for t ∈ [0, +∞[,

F2(t) :=
1

(2π)d/2

∫

Rd

[
ln−(‖e1 + tx‖)

]2
e−

‖x‖2

2 dx . (14)
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Similarly to the proof of Lemma 1, we prove that F2 is continuous, hence
bounded. Now, from the definitions of F and F2 one has

E(|Yn|2) = F2(σ) − (F (σ))2 < +∞ . (15)

This ends the proof of the first point.
The random vectors Yn and Y ′

n have the same distribution if their character-
istic functions are identical. But successively

E(eitYn | Xn) = e−itF (σ)E
(
eit ln−

(∥∥ Xn
‖Xn‖ +σNn

∥
∥)

| Xn

)

=
e−itF (σ)

(2π)d/2

∫

Rd

eit ln−
(∥∥ Xn

‖Xn‖ +σx
∥
∥)

e−‖x‖2/2dx

=
e−itF (σ)

(2π)d/2

∫

Rd

eit ln−
(∥∥e1+σx

∥∥)
e−‖x‖2/2dx

= E(eitY ′
n) .

Therefore E(eitYn) = E(E(eitYn | Xn)) = E(eitY ′
n). To finish the proof we show

the orthogonality property of the Yn (n ≥ 0). Let n and m be indices such that
n < m. The random vector Yn is σ(Xn, Nn)-measurable, so that

E(YmYn | Xn, Xm, Nn) = YnE(Ym|Xn, Xm, Nn) .

Using the independency of Nm with the random vectors. Xn, Nn and Xm, we
get

E(Ym|Xn, Xm, Nn) =
1

(2π)d/2

∫

Rd

(
ln− (∥∥ Xn

‖Xn‖ + σx
∥
∥))

e−
‖x‖2

2 dx − F (σ)

=
1

(2π)d/2

∫

Rd

(
ln−(‖e1 + σx‖)

)
e−

‖x‖2

2 dx − F (σ) = 0 ,

that implies E(YmYn) = 0. 
�

With the above notations define the random vectors Sn = Y0 + · · · + Yn and
S′

n = Y ′
0 + · · ·+Y ′

n. Under the hypothesis (HSI), the characteristic function of Sn

can be written as E(itSn) = E(E(itSn | X0, N0, . . . , Nn−1)) and so, E(itSn) =
E(itS′

n) = (E(itY ′
0))n+1. But the random vectors Yn are i.i.d. with expectation

0 and variance F2(σ) − F (σ)2 (see (15)). As a consequence, the central limit
theorem holds for both (Yn)n and (Y ′

n)n:

Theorem 2. Under the hypothesis (HSI) one has

lim
n→+∞P

(
ln(‖Xn‖) − ln(‖X0‖) + F (σ)n

√
(F2(σ) − F (σ)2)n

≤ t

)

=
1√
2π

∫ t

−∞
e−

u2
2 du .

The pointwise stability of ln (‖Xn+1‖/‖Xn‖) is obtained by applying the follow-
ing Law of Large Numbers (LLN) for orthogonal random variables (see [10, p.
458] where a more general statement is given).
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Theorem 3 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a
sequence of identically distributed real random variables with finite variance and
orthogonal, i.e., for all indices i, j, with i �= j one has E(Yi) = 0, E(Y 2

i ) < +∞
and E(YiYj) = 0. Then

lim
n

1
n

n−1∑

k=0

Yk = 0 a.s.

We are now ready to prove the following main result

Theorem 4. Let σ > 0 and let (Xn)n be the sequence of random vectors satis-
fying the recurrence relation (13) with f(x) = g(‖x‖2) where g is an increasing
map. Assume that the hypothesis (HSI) holds. Then (Xn)n converges log-linearly
to the minimum, in the sense that

lim
n

1
n

ln
(‖Xn‖

‖X0‖

)
= −F (σ)(< 0) a.s. (16)

where F is defined by (4). The optimal convergence rate is obtained for σ =
σF := minF−1(maxF ) (see Corollary 1).

Proof. In case σn = σ‖Xn‖ for all indices n the equality (12) becomes

ln ‖Xn+1‖ − ln ‖Xn‖ = − ln−
(∥
∥
∥

Xn

‖Xn‖ + σNn

∥
∥
∥
)

.

and after summing the equations for k = 0, . . . , n − 1, we obtain

1
n

(ln ‖Xn‖ − ln ‖X0‖) = − 1
n

n−1∑

k=0

ln−
(∥∥
∥

Xk

‖Xk‖ + σNk

∥∥
∥
)

.

Proposition 2 and Theorem 3 end the proof. 
�

5 Discussion and Conclusion

Theorems 1 and 4 show that optimal bounds for the convergence rate of an
isotropic (1 + 1)-ES with multivariate normal distribution are reached for the
scale-invariant algorithm with σn = σF ‖Xn‖ for the sphere function, where σF

maximizes

F (σ) = E(ln− ‖e1 + σN‖) =
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx .

From (12) and from the isotropy of the multivariate normal distribution N ,
it follows that finding σ maximizing F amounts to finding σ maximizing the
log-progress E(ln ‖Xn‖) − E(ln ‖Xn+1‖).

Most of the works based on the progress rate, consist in finding σ maximizing
estimations of the expected progress E(‖Xn‖) − E(‖Xn+1‖) (when d goes to in-
finity) [1,4]. Note that the definition of progress in those works does not consider
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Fig. 1. Left: Plot of the function σ �→ dF (σ/d) (Eq. (4)) versus σ for d = 5 (resp. 10,
30) and 0 ≤ σ ≤ 8. The upper curve corresponds to d = 5, the middle one to d = 10
and the lower one to d = 30. Note that the function F defined in (4) implicitly depends
on d. Using the more explicit notation Fd instead of F , the plots represent actually
σ �→ dFd(σ/d). For d = 10, we see that σF maximizing F (defined in Corollary 1)
approximately equals 0.13. The plots were obtained doing Monte Carlo estimations of
F using 106 samples.

Right: Twenty realizations of the scale-invariant algorithm on the sphere function for
d = 10. The y-axis shows the distance to the optimum (in log-scale) and the x-axis the
number of iterations n. The twenty curves below correspond to the optimal algorithm,
ie. σn = σF ‖Xn‖ for all n where σF equals to 0.13 (value maximizing the curve of F
on the left for d = 10). The twenty curves above correspond to 20 realizations of the
scale-invariant algorithm for σn = 0.3‖Xn‖. Observed, the log-linear convergence as
well as the optimality of the scale-invariant algorithm for σ = σF .

ln ‖Xn‖ and so is different from the one underlying our study. Assuming that
both definitions matches3, our results give an interpretation of this approach in
terms of lower bounds for convergence of ESs.

The lower bounds derived in this paper are tight. Consequently they can be
used in practice to assess the performances of a given step-size adaptation strat-
egy comparing the convergence rate achieved by the strategy with the optimal
one, given by the scale-invariant algorithm.

The numerical estimation of the optimal convergence rate −τ can be achieved
with a Monte Carlo integration: for different σ, F (σ) equals the expectation
E(ln− ‖e1 + σN‖). This expectation can be estimated by summing independent
samplings of the random variable ln− ‖e1 + σN‖. This is illustrated in Fig 1.

The analysis of the log-linear convergence carried out in this paper relies on
the application of the Strong Law of Large Numbers for orthogonal random
variables. This study uses deeply the invariance under rotations of the standard
d-dimensional multivariate normal distribution and does not cover directly the
usual case of stable Markov chains that will be investigated in future works.

3 This will be true asymptotically in the dimension d, though we do not prove it
rigorously in this paper.
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