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Abstract. We show the convergence of 1+λ-ES with standard step-size
update-rules on a large family of fitness functions without any convexity
assumption or quasi-convexity assumptions ([3,6]). The result provides
a rule for choosing λ and shows the consistency of halting criteria based
on thresholds on the step-size.

The family of functions under work is defined through a condition-
number that generalizes usual condition-numbers in a manner that only
depends on level-sets. We consider that the definition of this condition-
number is the relevant one for evolutionary algorithms; in particular,
global convergence results without convexity or quasi-convexity assump-
tions are proved when this condition-number is finite.

1 Introduction

We consider here a 1 + λt-ES algorithm as in Algorithm 1. We will, in a more
general framework than state of the art papers (in spite of the fact that the
functions are unimodal), show: (i) conditions under which the halting criterion
ensure a good final output (Section 2); (ii) how to choose λ (Sections 3 and 4);
(iii) the convergence of the algorithm (Section 5).

The state of the art contains convergence proofs on simple functions (e.g. the
sphere function [4,1,2]), or more general lower bounds ([7,10]), or for simplified
algorithms. In fact, the positive results are essentially convergence results for
convex of quasi-convex fitness functions ( i.e., functions for which level sets are
convex); this is not close to the practice of evolutionary algorithms, which can
follow long non-convex valleys as in e.g. Rosenbrock’s banana function. We here
show our convergence on hypothesis which do not imply neither convexity nor
quasi-convexity.

2 The Model and the Consistency of the Halting
Criterion

Assume that the fitness is such that

∀v ∈ R, fitness−1(v) = g(v)Ev (1)

where Ev ⊂ R
d and where g is an increasing mapping [0, ∞[→ [0, ∞[ with

g(0) = 0. This implies that the inf fitness = 0 and fitness(0) = 0; as the
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Algorithm 1. 1 + λt-ES. The population size λt depends on t. The halting
criterion depends on the mutation strength σ. The Nt,i are usually, but not
necessarily, independent Gaussians. λt will be chosen as in Equation 13 (quasi-
random case, Section 3) or Equation 15 (random case, Section 4).

initialize x1 ∈ R
d, σ1 > σ0, t = 1.

while σt ≥ σ0 do
Update λt (Equation 13 or 15).
for i ∈ {1, . . . , λt} do

x(i) = xt + σtNt,i.
end for
x′ = arg minx∈{xt,x(1),...,x(λ)} fitness(x).
if fitness(x′) < fitness(xt) then

Acceptance for time step t: xt+1 = x′.
Choose σt+1 > σt.

else
Rejection for time step t: xt+1 = xt.
Choose σt+1 < σt.

end if
t = t + 1.

end while
Output x′.

algorithm is translation-invariant (both in the fitness-space and in the domain)
this does not reduce the generality. As the algorithm only uses comparisons, we
can equivalently consider Equation 2 ( i.e., g(v) = v):

∀v ∈ R, fitness−1(v) = vEv (2)

and we assume ∀v ∈ R, Ev ⊂
⋃

Bo(z,1)⊂⋃
v′<v v′Ev′

S(z, 1) (3)

where Bo(x, r) = {t; ||t − x|| < r} and S(x, r) = {t; ||t − x|| = r}.The constant 1
is arbitrary, but we can rescale Ev; in fact, the hypothesis is that for some ε, a
level-set vEv is included in the union of all spheres of radius vε enclosing areas
of lower fitness. We let

C(fitness) = inf
(Ev)v∈[0,∞[such that (2) and (3) hold

sup
v

sup
e∈Ev

||e||.

This equation is not simple. The family (Ev)v∈[0,∞[ is not uniquely determined by
the fitness function; we consider the inf for all possible families (Ev)v≥0 such that
Equations 2 and 3 hold. There is also a supremum of ||e|| for all v ≥ 0, e ∈ Ev.

C(fitness) depends on the shape of the level-sets of the fitness, can be seen
as a condition number, dedicated to comparison-based algorithms. For exam-
ple, for the sphere-function, Ev = E (independent of v) and E = S (the unit
sphere in R

d) and C(fitness) = 1. This number is finite for many, many fitness-
functions; mainly, the level-sets have to be connected. For example, the fitness
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function with level-sets as in Fig. 1 has a finite C(fitness). Another nice prop-
erty is that this condition-number is finite for quadratic fitness functions and
generalizes the classical condition-number of quadratic fitness functions. Yet an-
other feature is illustrated by experiments in Fig. 2: an infinite C(fitness) can
lead to premature convergence of 1 + λ-ES.

We claim:

Main lemma for the halting criterion. Assume that eqs 2 and 3 hold.

If for all t ∈ N, εS ⊂ ∪i∈{1,...,λt}B
o(Nt,i, ε) (4)

and if σT < σ0, then fitness(xT ) ≤ εσT−1 (5)
and ||xT || ≤ εσT−1C(fitness). (6)

Proof: Assume that eqs 2 and 3 hold, and that for all t,

εS ⊂ ∪i∈{1,...,λt}B(Nt,i, ε).

Then,

Equation 3 leads to Ev ⊂ ∪Bo(z,1)⊂∪v′<v
v′
v Ev′

S(z, 1) (7)

which leads to e ∈ Ev ⇒ ∃f ; ||f − e|| = 1 ∧ Bo(vf, v) ⊂ ∪v′<vv
′Ev′ .(8)

Assume that σT < σ0, and that T is minimal with this condition (as t 
→
fitness(xt) is non-increasing, there’s no loss of generality in this assumption).
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Fig. 1. An example of fitness-function (level sets are plotted) with finite C(fitness).
The fitness is not convex; it is also not quasi-convex. Much more complicated examples
can be defined; mainly, we need level sets which all contain a “wide” path to the
optimum (at least with width scaling as the level set).
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Fig. 2. Level sets of a simple function (x �→ ||x|| + angle(x)2, with angle(x) the angle
between x and an axis) with infinite C(fitness) (top), and results of 1 + λ-ES with
λ = 16 and one-fifth rule ([9,8]) on this function (bottom). We see that σ falls down,
without convergence: this is a premature convergence which illustrates Corollary 1.

This implies that at t = T − 1, we have a reject; therefore,

∀i ∈ {1, . . . , λt}, fitness(x(i)) ≥ fitness(xt)). (9)

Let x = xt for short. Equation 2 implies that

x = fitness(x)e for some e ∈ Efitness(x). (10)
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Equation 9 leads to, for all i ∈ {1, . . . , λt},

x + σtNt,i �∈ ∪v′<fitness(x)v
′Ev′ and successively:

fitness(x)e + σtNt,i �∈ ∪v′<fitness(x)v
′Ev′

with e as in Equation 10,
fitness(x)e + σtNt,i �∈ Bo(fitness(x)f, fitness(x))

with f as in Equation 8,
σtNt,i �∈ Bo(fitness(x)f − fitness(x)e︸ ︷︷ ︸

=r

, fitness(x))

with ||r|| = fitness(x) by Equation 8,

σtNt,i �∈ Bo(r, fitness(x)),
Nt,i �∈ Bo(r/σt, fitness(x)/σt),
Nt,i �∈ Bo(δ, ||δ||)

where δ = r/σt verifies ||δ|| = fitness(x)/σt.

We assume, to get a contradiction, that

||δ|| = fitness(x)/σt ≥ ε. (11)

Then, Equation 11, together with c > 1 ⇒ B(a, ||a||) ⊂ B(c.a, c||a||), implies

∀i ∈ {1, . . . , λt}, Nt,i �∈ Bo(ε
1

||δ||δ, ε).

This is a contradiction with the assumption that for all t, εS ⊂ ∪i∈{1,...,λt}B(Nt,i,
ε). Therefore, Equation 11 does not hold. Hence, fitness(x) < εσt = εσ0. This
leads to Equation 5; Equation 5 and Equation 2 lead to Equation 6. �

3 Choosing λ in the Derandomized Setting

Equation 4 (recalled below, Equation 12, in the case ε = 1) is the main assump-
tion of the main lemma above:

S ⊂ ∪i∈{1,...,λt}B
o(Nt,i, 1). (12)

We consider ε = 1 as this hypothesis has moderate impact on the result; the
results below are similar with other values of ε. We now study how to ensure
Equation 12. A solution consists in using a minimal 1-cover of S; λt = λQR

where

λQR =inf{λ ∈ N; d1,. . . , dλ ∈ Sλ; S(0, 1) ⊂ Bo(d1, 1)∪Bo(d2, 1)∪· · ·∪Bo(dλ, 1)}.
(13)

It is known ([5]) that λQR ≥ c cos(φ1)/ sin(φ1)dd3/2 ln
(
1 + d2 cos(φ1)

)
, with

φ1 = arg cos(1/2). This leads to λQR of order roughly 1/ sin(φ1)d; the exponen-
tial dependency in d can not be removed.
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Let’s show that we can not ensure the halting criterion without at least λQR

points, for any deterministic offspring (Nt,i = N1,i deterministically fixed).

Corollary 1 (lower bound on λ for deterministic offsprings). If λ < λQR

and for any fixed Nt,1, . . . , Nt,λ independent of t, then there exists an update rule
for σ (see Algorithm 1), σ0, and a function fitness verifying eqs 2 and 3, such
that σT < σ0 and ||xT || > σT−1C(fitness).

Proof: We build a counter-example with T = 2, fitness(x) = ||x||, any update
rule setting σt+1 = 0 in case of rejection, σ1 = 1. Then, for all v > 0, Ev = S =
S(0, 1).
We just have to choose x1 ∈ S such that for all i ∈ {1, . . . , λ},

x1 + Nt,i �∈ Bo(0, 1)

or equivalently, we need, for building the counter-example, an x such that for all
i ∈ {1, . . . , λ},

Nt,i �∈ Bo(−x1, 1)

i.e., ||Nt,i + x|| ≥ 1;

such an x1 exists by equation 13, as soon as λ < λQR, as the Bo(Nt,i, 1) can’t
cover S. �

We note dQR
1 , . . . , dQR

λQR
the points realizing Equation 13; these points are by

definition a minimal covering of the sphere by open balls of radius ones with
centers on the sphere.

4 Choosing λt in the Random Case

We now consider Nt,1, . . . , Nt,λt independently randomly uniformly drawn in
S(0, 1). The question is: for which values of λt do we ensure Equation 4 (or 12)
with probability 1 − δ ? We set

N = inf{λ ∈ N; y1, . . . , yλ ∈ Sλ; S(0, 1) ⊂ Bo(y1,
1
2
)∪Bo(y2,

1
2
)∪· · ·∪Bo(yλ,

1
2
)}.

(14)
The formula of N is close to Equation 13 but with radius 1

2 instead of 1. [5] shows
that N ≤ c cos(φ2)/ sin(φ2)dd3/2 ln

(
1 + d cos(φ2)2

)
with φ2 = 2 arg sin(1/4);

roughly, N is of order O(1/ sin(φ2)d). It is not possible to get rid of the expo-
nential dependency in d.

Theorem 2. Assume that

λt ≥ N
(
log(N) + log(t2) + log(1/δ) − log(π2/6)

)
(15)

and that the Nt,i are independently uniformly drawn on S(0, 1). Then, Equation
12 holds with probability at least 1 − δ.
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Before the proof of this result, let’s show a simple corollary, based on theorem
2 and on the main lemma:

Corollary 3 for algorithm 1. Assume that eqs 2 and 3 hold, and that

λt ≥ N
(
log(N) + log(t2) + log(1/δ) − log(π2/6)

)

with Nt,i independent random variables uniform on S. Then, with probability
at least 1 − δ, σT < σ0 ⇒ ||xT || ≤ σT−1C(fitness).

Remark A. If the step-size adaptation rule is of the form σn+1 = βσn in case
of rejection, then the result implies σT < σ0 ⇒ ||xT || ≤ σ0C(fitness)/β.

Remark B: Gaussian mutations. We use spheres instead of Gaussians as it is
more parsimonious (λ smaller) than in the case of Gaussians; however, the result
is essentially the same with Gaussians. With just have to add a multiplicative
factor in Equation 17 in the proof below (the factor is polynomial in d).

Proof of the corollary: Application of theorem 2 and of the main lemma. �
Let’s now show theorem 2.

Proof of Theorem 2: Assume that

λt ≥ N

⎛

⎝log(N) + log(t2) + log(1/δ) + log(
∑

i≥1

1/i2)

⎞

⎠ .

This is equivalent to Equation 15. We note δt the probability of Equation 4 with
ε = 1, namely δt is the probability of

S ⊂ ∪i∈{1,...,λt}B
o(Nt,i, 1). (16)

We let y1, . . . , yn be elements of S realizing Equation 14. We see that if

∀i ∈ {1, . . . , N}, ∃j ∈ {1, . . . , λt}Nt,j ∈ Bo(yi,
1
2
),

then Equation 16 holds.
Therefore, with μ the uniform measure,

δt ≤
∑

i

πj

(
1 − P (Nt,j ∈ Bo(yi,

1
2
))

)
,

δt ≤ N(1 − 1/N)λt as μ

(
Bo(yi,

1
2
) ∩ S

)
≥ μ(S)/N, (17)

log(δt) ≤ log(N) + λt log(1 − 1/N) ≤ log(N) − λt/N.

Then,
∑

t≥1

δt ≤ N exp(−λt/N)

≤
∑

t

δ

⎛

⎝
∑

i≥1

1/i2

⎞

⎠ /(t2)

≤ δ which is the expected result. �
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5 Convergence Issues: 1 + λ-ES Almost Surely Halts

We have considered above the risk of raising the halting criterion before a good
fitness value is met. This is meaningless, however, if we do not show that, after
a finite time, the halting criterion will be met.

Theorem 4: almost sure convergence. We assume that the update rules are
as follows:

– σt+1 = min(ασt, σmax) in case of acceptance (α > 1);
– σt+1 = βσt in case of rejection (0 < β < 1).

We assume that Equations 2 and 3 hold for some ε > 0. We assume that the
measure μ([0, 1[Ev) of [0, 1[Ev > G > 0. We assume that C(fitness) < ∞
and Nt,i are independent standard multivariate Gaussians. We also assume that
λt ≤ Ztζ for some Z < ∞, ζ < 1. Then, almost surely, ∃T > 0, σT < σ0, i.e.,
the algorithm halts.

Proof
We note T = inf{t; σt < σ0} (possibly, a priori, T = ∞). We first point out some
simple useful facts about the (σt)t∈N:

1. ∀t > 0, σt ≤ σmax.
2. ∀t < T, σt ≥ σ0.
3. If rejection holds at all steps t + 1, . . . , t + n0, with n0 ≥ log(σmax/σ0)/

log(1/β), then T ≤ t + n0 + 1 < ∞.

Now, some simple facts about the (xt)t∈N:

1. t 
→ fitness(xt) is non-increasing.
2. ||xt|| ≤ Cfitness(xt) ≤ Cfitness(x0).
3. Thanks to t ≤ T ⇒ (σt ≥ σ0 ∧ ||xt|| ≤ C.fitness(xt) ≤ C.fitness(x0),

P (fitness(xt) < ε|xt−1, σt−1)
> P (xt + σtNt,1 ∈ cEc|xt−1, σt−1)
> P (Nt,1 ∈ (cEc − xt)/σt|xt−1, σt−1)
> cdμ(Ec)d ((||xt|| + cC(fitness)) /σt)
> Kεd

for some K > 0 that only depends on d, Z, and σ0.
4. The previous point implies that P (∃u < t; fitness(xu) < ε) > 1 − (1 −

Kεd)t, and therefore if d′ < d,

P
(
∃u < t; fitness(xu) < (1/t)1/d′

)
> 1 −

(
1 − K/td/d′

)t

→ 1 as t → ∞.

5. The previous points implies that if d′ > d, then almost surely, there exists
t0 < ∞ such that

t ≥ t0 ⇒ fitness(xt) < t−1/d′
. (18)
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Let’s now consider the probability pt of rejection at steps t, conditionally to xt

and σt, conditionally to t ≤ T .
We point out that if ∀i ≤ λt, σt||Nt,i|| > ||xt|| + fitness(xt)C, then there

is rejection (all x′
i have in that case norm > Cfitness(xt) and therefore have

fitness > fitness(xt)). This implies that

pt ≥ 1 − (P (σt||Nt,1|| > ||xt|| + Cfitness(xt)))
λt

≥ 1 − (P (σ0||Nt,1|| > Cfitness(xt) + Cfitness(xt)))
λt

as σt ≥ σ0 and ||xt|| ≤ Cfitness(xt)

≥ 1 − (P (σ0||Nt,1|| > 2Cfitness(xt)))
Ztζ

as λt ≤ Ztζ

≥ 1 −
(
P

(
σ0||Nt,1|| > 2Ct−1/d′

))Ztζ

if t ≥ t0 thanks to Equation 18

≥ 1 −
(
1 − 1/td/d′

)Ztζ

≥ p0 > 0 if we choose d′ s.t. d < d′ < d/ζ.

The probability of rejection at all steps t + 1, . . . , t + n0, conditionally to xt and
σt, is therefore at least 1− (1−p0)n0 > p > 0. This quantity is lower bounded by
a positive number; this implies that almost surely, such a sequence of rejections
almost surely occurs, hence the expected result. �

6 Discussion: Derandomization, Halting Criteria,
Robustness, Conditioning

Let’s summarize our results about the 1+λ-ES for fitness functions with not-too-
bad conditioning in the sense of Equations 2, 3 and C(fitness) with λt = O(tζ)
for some ζ < 1, and with an update rule for σ as in Theorem 4. By Theorem
4, we know that the algorithm converges almost surely ( i.e., it halts after a
finite number of time steps). By Corollaire 3, we know that if the population
size verifies Equation 15, then with probability at least 1 − δ, the algorithm
stops close to the optimum - within distance σ0C(fitness)β. C(f) quantifies
the conditioning, and is finite also for many non-convex functions. Therefore, we
have, for some λt logarithmic in t:

– global convergence with high probability;
– consistency of the halting criterion, i.e.no premature convergence.

A main strength of this result is that no convexity, no smoothness, no quasi-
convexity is assumed and we have global convergence; see Fig. 1. As far as we
know, there’s no convergence proof of 1+λ-ES that is not covered by the results
in this paper. Another strength is that C(fitness) appears as an important rel-
evant criterion for evolutionary algorithms: it generalizes the usual conditioning
(which is a local criterion), and:

– Fig. 2 shows that very simple functions with C(fitness) lead to premature
convergence;
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– corollary 3 and Theorem 4 show that C(fitness) finite leads to both (i)
convergence with high probability (ii) consistency of the halting criterion.

C(fitness) only depend on level sets, as well as the behavior of most evolu-
tionary algorithms, and is finite for many fitness functions without convexity or
quasi-convexity; mainly, it assumes that at each scale, the width of the path to
the optimum scales as the diameter of the level set. We believe that the definition
of C(fitness) is the main contribution of this paper.

A weakness is that we ensure convergence, and the efficiency of the halting
criterion, but there’s no convergence rate. However, evolutionary algorithms are
more well known for robustness than for convergence rates. Moreover, a conver-
gence rate can easily be derived under some slightly stronger assumptions.

Our results propose a rule for choosing λt as a function of t, δ, d (see Equations
14 and 15). This rule is reasonable for its dependency in t and δ (logarithmic
dependency); the dependency in the dimension is prohibitively high, but it is a
fact that evolutionary algorithms are not stable in front of large dimensionality.

We see in the results above that:

– the population size should scale as
• log(t) (recall that log(t2) = 2 log(t)); population size should therefore

increase with time (very slowly).
• log(1/δ); more robustness requires a bigger population size.
• N log(N), which is exponential in d.

– we can compare the number of points required for avoiding too early conver-
gence of the algorithm in the randomized and in the derandomized setting
by comparing λQR (Equation 13) and λt (random case, Equation 15); in
both cases, λ is exponential in d, but with a much better constant in the
derandomized case. On the other hand, the convergence proof (theorem 3)
only holds for the random case.
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