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Abstract. Production resettings is a vital element of production flex-
ibility and optimizing the setup tasks scheduling within a production
channel is required to improve production rate. This paper deals with a
NP-Hard production resetting optimization problem based on an indus-
trial case. In this paper we present how to hybrid a Branch-and-Bound
method for this problem with a genetic algorithm. The idea is to use the
genetic algorithm to improve the upper bound and thus speeding up the
Branch-and-Bound while the genetic algorithm uses the content of the
Branch-and-Bound stack to reduce its search space. Both methods are
running in parallel and are therefore collaborating together.

1 Introduction

Improving production flexibility is one of the main problems encountered in the
industry as it is closely linked with customer service improvement and the length
of delays between customers orders and delivery of products. It is thus important
to reduce resetting times between batches. A production resetting consists in
operations made on each machine of a production channel made by operators.
These operations are required to setup the machines for the new batch. One way
to improve resetting times is to work on the global organization of the different
setup tasks according to industrial constraints, e.g., the skills of the operators,
their availability periods. The study is based on a real industrial case found in
SKF MDGBB (Medium Deep Groove Ball Bearings) factories.

This problem can be identified as an unrelated parallel machine scheduling
problem, for which we have developed a Branch-and-Bound method in Pessan
et. al. [2006b]. The main drawback of this method is the upper bound that is
so far away of the optimal solution in our experiments that the method can not
prune any node at the beginning of the resolution. On the other hand, we have
also developed in Pessan et. al. [2006a] a heuristic on a more general problem
(serial-parallel production channel) based on a genetic algorithm hybridized with
a local search that proved to work well for this problem. The idea of this paper
is to hybrid the Branch-and-Bound with a genetic algorithm in order to get the
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best of both methods: fast convergence to good solutions and exact resolution.
The genetic algorithm is not only run at the root node but in parallel with the
Branch-and-Bound. Moreover, the encoding method is based on the content of
the Branch-and-Bound stack: it means that while the Branch-and-Bound pro-
gresses, it reduces the search space of the genetic algorithm, and when the genetic
algorithm improves the best known solution, it helps pruning more nodes. So,
both methods are really collaborating together during the whole execution.

It is natural to use genetic algorithms to find a good upper bound of the
optimal solution quickly either on the root node or regularly during the execu-
tion of the Branch-and-Bound. Such attempts have been made in several papers.
Portman et. al. ([1998]) use a genetic algorithm on the root node of a Branch-and-
Bound in order to provide a good initial upper bound to the Branch-and-Bound.
Jouglet et. al. ([2005]) propose a similar approach but they use the genetic algo-
rithm to provide an initial upper bound to a constraint programming method. In
Basseur et. al. ([2005]) a biobjective unrelated parallel machine problem is tack-
led with a genetic algorithm that provides an initial pareto front to a 2 phases
Branch-and-Bound. Branch-and-Bound are also commonly hybridized with other
meta-heuristics like in Rocha et. al. ([2004]): the GRASP meta-heuristic is used
to provide an upper bound to a Branch-and-Bound method. Cotta et. al. ([1995])
show some preliminary results on various combination of Branch-and-Bound
and genetic algorithms: they have tried using Branch-and-Bound like methods
as local search operator of a genetic algorithm leading to a heuristic hybrid
method. On the other hand, they propose an hybrid method that run in parallel
a Branch-and-Bound and a genetic algorithm but they mention some difficul-
ties in handling diversification of the genetic algorithm population and the slow
convergence of genetic algorithms for the traveling salesman problem they are
working on. French et. al. ([2001]) present also such a hybrid algorithm, they
use the Branch-and-Bound to find promising nodes and thus generate the initial
genetic algorithm population and then use the genetic algorithm results to give
hints to the Branch-and-Bound on where there can potentially be interesting
solutions. They switch back and forth between the two methods. Their results
seem promising. Puchinger ([2005]) in its survey on these hybrid methods dis-
tinguishes between integrative combinations that tend to use one method as an
operator of the other and collaborative methods. This second category is also
categorized between sequential execution and parallel execution. It is also men-
tioned that parallel execution algorithms have not been extensively tried but
with the emergence of mainstream multi core processors that can execute in
parallel several algorithms with fast access to a common memory area that ease
data sharing between the algorithms, it may be time to give importance to such
algorithms.

In this paper we present in section 2 the model of the problem we are study-
ing and the existing Branch-and-Bound method. Then, in the section 3 we
describe the hybrid method. Finally, experimental results are presented in
section 4.
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2 Existing Methods

2.1 Problem Description

Let n be the number of machines of a production channel, it is also the number
of tasks to schedule. For each machine (or task) Mi, i ∈ {1, . . . , n}, we know its
release date ri. It is the minimum duration needed for the last ball bearing of
the previous batch to go from M1 to Mi. We also know its tail qi, the minimum
duration needed for the first ball bearing of the next batch to go from Mi to
Mn. When a machine Mi is restarted, it can not have any effect on production
rate that is measured at the end of the production line before qi time unit. ti
and Ci denote respectively the beginning and the completion time of setup task
on machine Mi.

In the production unit, there are λ operators. Each operator Oh, h ∈ {1, . . . , λ},
depending on his own experience, needs a different time to set up a machine: this
time is denoted pi,h. If an operator Oh does not have the skill for a machine Mi, we
set, without loss of generality, pi,h = +∞. Moreover each operator is only available
during a time interval [Rh, Dh].

In this paper, we consider serial channels: it means that the production can only
restartwhen allmachines have been setup.Therefore,we have to optimize themax-
imum completion time of the setup tasks, also known asCmax = maxi=1,...,nCi+qi

in standard scheduling notations.
According to classical scheduling problem classification, this problem can be

identified as an unrelated multipurpose parallel machines problem with release
dates and tails. In our problem, resources are the operators, operations are the
setup tasks of each machine. This problem is denoted R, MPM |ri, qi|Cmax.
Figure 1 presents an instance made up of 4 machines and 2 operators.

Moreover as explained previously, ri and qi can be seen as distances in time
from machine Mi to respectively the beginning and the end of the production
channel. It means that for a machine Mi, the farther it is from the beginning of
the channel, the closer it is to the end of the channel. Then the non decreasing
ri order is the same as the non increasing qi order. This proposition (prop. 1) is
illustrated on the figure 2.

Proposition 1. In a serial channel, ri and qi are such that: ∀i ∈ {1, . . . , n}, ri ≤
ri+1 and qi ≥ qi+1.

Corollary 1. On each operator, scheduling tasks in non decreasing release date
order is optimal

Using proposition 1, it is easy to deduce the corollary 1 as shown in Pessan
et. al. ([2006b]). Therefore, the problem can be seen as an assignment problem:
once tasks are assigned to operators, their order and then their starting time are
deduced using corollary 1.

The R, MPM |ri, qi|Cmax problem is NP−Hard even in our case of serial
channel since the particular case P, MPM ||Cmax is known to be NP−Hard as
shown by Garey and Johnson ([1978]).
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Fig. 2. Property on ri and qi

Unlike the P |ri, qi|Cmax problem studied in Carlier ([1987]) and Gharbi and
Haouari ([2002]) and unlike the multipurpose parallel machines problem studied
in Jurisch ([?]), the R, MPM |ri, qi|Cmax problem has not been extensively stud-
ied in the literature. We can mention for instance Gharbi and Haouari ([2005])
but the corollary 1 on our specific problem allows us to implement more efficient
algorithms (cf. section 2.2).

2.2 Branch-and-Bound Method

In this section we describe briefly the Branch-and-Bound method presented in
Pessan et al. ([2006b]). This Branch-and-Bound is used in the hybrid method.

Generalities: A Branch-and-Bound method is a classical way of implicitly
enumerating all solutions of a search space to find the optimal one. In a Branch-
and-Bound method the search space is assimilated with a tree stored using a data
structure, e.g. stack, containing not yet explored nodes. Each node represents
a partial solution and a sub-domain of the search space. Moreover, going from
one level to the next one means making a decision and reducing the domain
of at least one variable. On a leaf node, all variables are fixed. The figure 3
shows the relationships between the search space representation, the tree and
the stack. The tree is a representation of the search space and the stack contains
the frontier of the unexplored parts of the search space.

At each iteration, a node (N) is extracted from the stack and a lower bound
lb(N) of all the solutions in its corresponding sub-space is computed. Then, this
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Fig. 3. Relationship between search space, stack and tree

lower bound is compared to the best known solution ub also known as the upper
bound of the optimal solution. If (N) is a leaf node and if its criterion is better
than the upper bound, the upper bound is updated. Otherwise, if the lower
bound is greater that the upper bound, i.e. lb(N) > ub, the node is discarded
(we also say that the node is pruned) and if it is lower, child nodes are generated
and pushed on the stack. A cutting rule can be seen as an extension of the use of
a lower bound to prune the search tree. A cutting rule is a procedure that takes
one parameter D and returns a boolean. Answer ’no’, corresponds to the fact
that no promising solution, i.e., solution having a makespan lower than or equal
to D, could be found in the subspace corresponding to the current node. If the
cutting condition answers ’no’ with D= ub − 1 then the node can be pruned.

Notice that generally lower bounds are computed once node is extracted from
the stack, but in the case that the exploration strategy is based on the lower
bounds, e.g, best-first strategy (see section 3.2), the lower bound is computed
before new nodes are pushed on the stack.
Branching Scheme: According to corollary 1 the only decision we have to make
is the assignment of the tasks to operators. Moreover without loss of generality,
we assume that the tasks are already sorted so that ∀i ∈ {1, . . . , n−1}, ri ≤ ri+1.
At each level (i) of the search tree, the branching scheme tries to assign task
Mi to each operator that is able to perform the task. It means that there are
n levels in the tree and a maximum of λ branches per node depending on the
number of operators who master the skill corresponding to the task.
Upper Bound: The upper bound is computed using a simple greedy algorithm
that uses the Earliest Completion Time (ECT) priority rule. It is assigning tasks
to the operators who can complete it first. In our experimental results (Pessan
et. al. [2006a]), this upper bound was the main problem of the method as it was
too far away from the optimal to prune nodes. Moreover, solutions built using
ECT may not be feasible, regarding to [Rh, Dh].
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Cutting Rule: The cutting rule is based on relaxation of non-preemption con-
straint : it means a task can be interrupted and restarted later either on the same
operator or on another one. We define deadlines for each task as d̃i = ub−1−qi.
The lower bound checks if it is possible to achieve all the tasks within the allowed
time-windows (within [ri, d̃i]). If it is not possible, then the node can be pruned.
Checking this can be done polynomially using a linear program as shown by
Lawler and Labetoulle ([1978]).

3 Hybrid Method
3.1 Generalities

We have seen that a method such as Branch-and-Bound is enumerating implicitly
all feasible solutions. The search space can be reduced whenever a node (N) can
be pruned, that is when lb(N) ≥ ub or when the cutting condition return ’no’,
thus, the upper bound is an important part: the upper bound is improved as
the method is discovering better solutions but as long as the upper bound is not
close enough of the optimal, it is usually hard to prune nodes as the condition
lb(N) ≥ ub is rarely satisfied. So it is important to find a good upper bound as
fast as possible. Moreover, if the search is stopped before reaching the optimal
solution, it is interesting to have a good solution that can be given to the decision
maker.

Here we describe how a Branch-and-Bound can be improved using an efficient
method to compute an upper bound, namely, genetic algorithm. The genetic
algorithm can be used at the root node or it can be used at any time to search
a better upper bound. The idea, is that the genetic algorithm process should
focus on improving the best known solution by searching within the remaining
search space, i.e, whose frontier is still in the stack of the Branch-and-Bound,
while the Branch-and-Bound should eliminate as large parts of the search space
as possible. Basically there are two ways to modify the search space. First, each
time child nodes are created in the Branch-and-Bound, the search space of the
parent node is subdivided into disjoint sub-spaces of the newly created nodes.
Second, when a node is pruned in the Branch-and-Bound, a part of the search
space is eliminated. So the genetic algorithm should be implemented in a way
such that it only searches within the unexplored areas and a convenient way to
do this is to use the nodes contained in the stack.

3.2 Hybrid Exact Genetic Algorithm

Genetic algorithm is a meta-heuristic inspired by biological evolution that has
been introduced by Holland ([1975]). The method uses a population of solutions
that are encoded using a carefully chosen encoding function: these encoded solu-
tions are called individuals or chromosoms. During each iteration, the algorithm
follows these steps:

– selection: pairs of individuals are selected
– crossover: a crossover operator is applied to the selected individuals pairs.



142 C. Pessan, J.-L. Bouquard, and E. Néron

– mutation: each generated individuals may be mutated by slightly changing
them. The probability of mutating an individual should be low

– replacement: individuals that will survive through next generation should
be selected in order to keep a constant population size

The idea is that good individuals should propagate their characteristics. This
kind of algorithms has proved to work well on a more general case of the problem
(serial-parallel production channel, see Pessan et. al. ([2006a])), that is why we
have tried to use a genetic algorithm to improve the Branch-and-Bound.

Encoding Function: As mentioned above, the corollary 1 means that our
problem can be reduced to the assignment problem of tasks to operators. So,
the encoding function of the genetic algorithm should only contain assignments
of operators to the tasks. The decoding function of the genetic algorithm only
has to order tasks in non decreasing ri order, and then computing starting time
of tasks.

As shown on figure 4, the chosen encoding function generates individuals
compound of three parts: a node, the node level and an assignment array. A
node structure contains a partial solution and its level in the search tree: a node
at level k containt k assignments. So, the node of the individual defines the first
assignments. The remaining assignments should be encoded in the third part of
the individual.

node node level assignments of remaining tasks
7© 2 1/3/4/4

Fig. 4. An example of an encoded solution for a problem with n = 6 and m = 4

The individual of the example presented in figure 4 is using the node 7 that
is at level 2 of the search tree: the 2 first assignments are taken from the node.
The node contains only a partial solution with 2 assignments, so the rest of the
individual requires n − node level = n − 2 = 4 additional assignments needed to
build a solution.

The advantage of this function is that the hybrid method is using the stack to
generate individuals and keeping the node in the encoded individual eases the
synchronization of the population with the stack content as explained below.

Crossover Operator: The crossover operator is a classical one point crossover
that generates two individuals from two parents. It selects randomly a number p
between 0 and n. To generate the first child, the operator copies, p assignments
from the first parent and n − p assignments from the second parent. The node
of the child is the node of first parent. The second child is created by exchanging
the roles of parents. An advantage of this operator is that child always contains
existing nodes of the stack and valid assignments and thus belong to the remaining
search space whose frontier are the nodes of the Branch-and-Bound stack.

On the example of the figure 5, p is set to 3. So, 3 assignments are copied
from the first individual to the first child: the 2 assignments of the node and
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individual 1: 7© 2 1/3/4/4
individual 2: 21© 4 2/1
cross point : 3
child 1: 7© 2 1/X/2/1

X should be extracted from partial solution of node 21©
child 2: 21© 4 4/4

Fig. 5. Crossover example

one additional assignment. Then, other assignments are taken from the second
individual: one that comes from the node 21 and the rest from the third field of
the individual.

Mutation Operator: There are two mutation operators in this method. The
first one is randomly changing a gene within the third field of an individual, that
is, within the assignments that complete the partial solution of the node.

The second mutation operator is randomly switching to a new node present
in the stack. If the new node is at a lower, it extracts missing assignements from
the old node. On the example of figure 6, node 7 that is at level 2 is replaced
by node 21 that is at level 4: the 4 first assignements of the mutated individual
are extracted from node 21 and the two remaining assignments come from the
original individual.

before mutation: 7© 2 1/3/4/4
after mutation: 21© 4 4/4

Fig. 6. Second mutation operator example

The probability pm1 of mutating an individual should be set to a high value
mainly because of the chosen encoding function and crossover operator: as long
as there are no mutations, no new assignments are introduced in the population.
But it is also required because of the need to explore quickly a subspace in this
hybrid method. If there is a mutation, the probability pm2 of using the second
operator should be low because this operator change many assignments in an
individual and using it too much would lead to too much randomness.

Synchronization Operator: it is an operator that is specific to our hybrid
method. It is there to check that the genetic algorithm is only searching within
the unexplored area: the part of the search space whose frontier is in the stack.
This operator requires non negligible amount of time to be executed and should
not be executed at each iteration. Moreover if it is called too many times, it
may be hard for the genetic algorithm to evolve correctly as it would eventually
invalidate solutions as soon as they are created. So we have chosen to call it
every maxIt (maxIt = 2000) iterations of the genetic algorithm.

The operator is simply checking that all individuals of the genetic algorithm
has a node that is still in the stack. If a node that is not anymore in the stack is
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discovered the second mutation operator (that changes the node of an individual)
is called.

Moreover, if there is no improvement of the best solution using the genetic
algorithm for quite a while and if we are running the method on a mono-processor
computer, the genetic algorithm can be paused a few seconds in order to give
the Branch-and-Bound more cpu time: this is done because in many cases it can
takes time to prove that we have found the optimal solution and then trying to
improve the best known solution is not relevant.

Finally, the synchronization operator gives the list of solutions with criterion
equals to ub to the Branch-and-Bound. The Branch-and-Bound can then quickly
explore the corresponding nodes. This has two advantages:

– it removes these solutions of the stack and forces the genetic algorithm to
search in other areas of the search space

– creating child nodes of all the nodes that are in the path that lead to these
solutions introduce in the stack some nodes in the neighborhood of the best
genetic algorithm solutions that can potentially lead either the Branch-and-
Bound or the genetic algorithm to better solutions.

Exploration Strategy: We have tried to use the depth first search. In classical
Branch-and-Bound, this strategy has the advantage of finding feasible solutions
quickly and to keep a reasonable stack size. But for our method, it may not be
the best strategy because all the nodes of the stack are within the same area of
the search space and it does not help the genetic algorithm much.

So, we have implemented another strategy: the best first strategy that takes
the node that has smallest lower bound and within the nodes that have equals
lower bound, it takes the deepest one. This has the advantage of keeping a large
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Fig. 7. Synchronization of the stack with the genetic algorithm and effect of the genetic
algorithm on the Branch-and-Bound
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enough stack that contains nodes that can be within all areas of the search
space: it gives a large choice for the genetic algorithm that can be more efficient.
Another advantage of this strategy is that it can improve the lower bound of
the overall problem and it is an information that can be given to the decision
maker to let him decide if it is worth continuing to search the optimal for very
long to solve problem. The idea behind this strategy is to use the Branch-and-
Bound to cut as many nodes as possible and to finally prove that we have found
the optimal while the task of searching good solutions is done by the genetic
algorithm.

Notice that we do not have explicit lower bound but a lower bound can be
computed using cutting condition: let us consider D∗ the smallest value of D for
which the cutting condition answers ’no’, then D∗ + 1 is a valid lower bound.
Then to compute a valid lower bound at node N different values of D are tested
starting from the lower bound of the parent nodes of N . At the root node lb is
computed using binary search on D.

Moreover when the synchronization operator is called, it sends to the method
that handles nodes priority all the individuals that have a criterion equals to the
best solution found until now. The Branch-and-Bound will then immediately
explore these nodes. This way, they are removed from the stack and the genetic
algorithm will be forced in the next synchronization to search other solutions
than these best ones.

4 Experimental Results

The method is coded using Java language and was testing on a monoprocessor
machine equipped with a 1.7GHz centrino and 1Gb of RAM. The two algorithms
run in their own thread meaning that the program would immediately benefit
of a second processor on a multicore or multiprocessor machine.

Preliminary tests have shown that the following parameters give nice results:
a population size of 500 individuals, pm = 30%, pm2 = 5% and maxIt = 2000.
The method is limited to 10 minutes. The tests have been done on 2000 generated
instances with a number of tasks between 10 and 45 and a number of operators
between 2 and 10. These have been generated such that they have a similar
skill repartition and similar values than what is found in industrial instances.
In our industrial case, instances usually have between 30 and 40 tasks. In the
results table, we have used the following abbreviation: bb means Branch-and-
Bound only, df means hybrid method with depth-first search and bf means
hybrid method with best-first search. When tested alone, the Branch-and-Bound
is using a depth first search because using a best first search leads to stack size
explosion due to the poor upper bound.

We can see on the table 1 that the hybrid method with depth first search
is nearly always as good or better than the Branch-and-Bound alone despite
the fact that in the hybrid method less nodes can be explored as the processor
is shared by both method. Between the two hybrid methods, it looks like the
best first search is better for large instances with higher differences starting from
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Table 1. Percentage of instances solved to optimality

n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45
m bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf

2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 97 97 97 97 97 97 83 83 83
3 100 100 100 100 100 100 100 100 100 100 100 97 97 100 97 80 87 93 70 70 77 50 47 77
4 100 100 100 100 100 100 100 100 97 80 87 90 73 73 80 50 50 57 43 43 47 27 33 50
5 100 100 100 100 100 100 83 83 83 77 80 77 47 47 63 40 43 57 23 20 27 3 7 37
6 100 100 100 100 100 100 90 93 93 60 63 67 23 23 37 20 23 27 3 3 7 6 7 7
7 100 100 100 97 100 97 60 70 60 60 60 57 13 13 20 3 13 20 3 7 3 0 7 7
8 100 100 100 93 93 83 47 50 60 33 33 30 17 20 23 13 13 13 3 7 3 6 7 7
9 100 100 100 90 93 90 53 53 37 23 27 30 12 3 0 3 7 7 0 3 7 3 3 3
10 100 100 100 90 93 90 13 17 13 10 13 13 7 7 3 3 3 0 0 3 3 3 3 3

Table 2. Average gap between lower and upper bound

n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45
m bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .03 .01 .01 .01 .05 .05 .05 .3 .3 .3
3 0 0 0 0 0 0 0 0 0 0 0 .01 .2 .1 .02 .5 .5 .09 .7 .7 .4 1.7 1.7 .2
4 0 0 0 0 0 0 0 0 .02 .6 .6 .1 .9 .9 .2 1.9 1.9 .6 2.7 2.7 .5 2.9 2.9 .6
5 0 0 0 0 0 0 .9 .9 .5 .9 .8 .3 2.7 2.7 .4 3.1 3.1 .6 3 3 1 5.5 5.5 1.6
6 0 0 0 0 0 0 .4 .4 .1 2 2 .7 3.7 3.7 1.1 4.7 4.7 1.4 7.7 7.7 2.3 6.3 6.3 2.1
7 0 0 0 3 3 .03 .6 5.6 1.6 3 3 2 6 6 2.9 6.4 6.4 2.1 7 7 3.4 8 8 3.7
8 0 0 0 5 5 2 11 11 6.3 5.1 5.1 2.5 10 10 3.5 7.9 7.9 3.3 8 8 4.2 9.1 9.2 4.2
9 0 0 0 4 3 1.5 13 13 8.2 15 15 11 9.4 9.4 4.8 8.8 8.8 5.2 9.6 9.6 4.5 10.5 10.5 5.5
10 0 0 0 4 3 1.5 25 25 13 28 28 14 14 14 5.9 9 9 5.5 11 11 5.3 10.4 10.4 6.1

n=30. This corresponds to the size of the instances found in our industrial
case.

On the other hand, the table 2 shows the gap in percentage between the lower
bound of all the nodes remaining in the stack and the upper bound. It shows
that the hybrid method with depth first search rarely improves the gap but best
first search improves it significantly. It is mainly due to two factors. The first
factor is that the diversity of the stack content gives more chance to the genetic
algorithm to improve its best solution than the local search done with depth first
search. The second factor is that with the best first strategy, the lower bound of
the remaining nodes is naturally improved over time.

5 Conclusion

We have presented how a genetic algorithm can be combined with a Branch-and-
Bound method in order to improve both methods. From the point of view of the
genetic algorithm, the Branch-and-Bound is there to reduce its search space.
From the point of view of the Branch-and-Bound, the genetic algorithm helps
to improve the upper bound and thus to prune more node earlier. The results
are promising for this method especially when used with a best first search.
Moreover, these tests have been done on a monoprocessor machine and meaning
it is very promising in the case of multicore processors.
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en mêlant algorithme génétique et propagation de contraintes. In: ROADEF
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