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Abstract. In earlier papers we presented a technique (“RelaxGP”) for
improving the performance of the solutions generated by Genetic Pro-
gramming (GP) applied to regression and approximation of symbolic
functions. RelaxGP changes the definition of a perfect solution: in stan-
dard symbolic regression, a perfect solution provides exact values for each
point in the training set. RelaxGP allows a perfect solution to belong to
a certain interval around the desired values.

We applied RelaxGP to regression problems where the input data is
noisy. This is indeed the case in several “real-world” problems, where
the noise comes, for example, from the imperfection of sensors. We com-
pare the performance of solutions generated by GP and by RelaxGP in
the regression of 5 noisy sets. We show that RelaxGP with relaxation
values of 10% to 100% of the gaussian noise found in the data can out-
perform standard GP, both in terms of generalization error reached and
in resources required to reach a given test error.

1 Motivation and Background

Darwinian evolution and Mendelian genetics are the inspiration for the field of
Genetic Programming (GP); GP solves complex problems by evolving popula-
tions of computer programs, and is particularly relevant in approaching non-
analytical, multiobjectives and (practically) infinite solution space dimension
problems (for details on GP, we invite interested readers to consult [6] or [1]).
GP has proved its utility for supporting human analysis of problems in a vari-
ety of domains: computational molecular biology [7], cellular automata, sorting
networks, analogical electrical circuits [5], among them.

We showed, in [2] and [3], that calculating fitness values with “relaxed” points
on a GP problem helps avoiding the overfitting of the best solutions, as well as
reducing the use of resources on the course of a GP run. Specifically, we designed
a variation of GP where a perfect solution is not defined as the solution whose
training points are reached with error zero, but as a solution that is close enough
to them. In practical terms, this means that the fitness calculation is modified:
a solution has fitness 0 (“perfect”) if its approximation falls within an interval
around the real targeted values. This concept is depicted in Fig. 1; the original
(“perfect”) point is (x1, y1). Now, with an absolute relaxation value of δ, any
point with y value in (y1 − δ, y1 + δ) has a perfect (zero) fitness.
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Fig. 1. Relaxation (δ) at one point. For fitness matters, the distance between (x1, y1)
and (x1, y2) is 0 if y2 ∈ [y1 − δ, y1 + δ], |y2 − y1| otherwise.

This definition enables a “relaxation” of the data, as the selection of individu-
als over the genetic process is more permissive. As an example, in Fig. 2, GP was
used to evolve an individual well-trained to a certain training set (Fig. 2(a)); that
best individual resulted in a sinusoidal function. On the other hand, a population
evolved by RelaxGP yielded a straight line as best individual (the relaxation is
noticeable by the vertical segments at each training point); a straight line being
a simpler mathematical model than a sinusoidal function, the best individual
generated by RelaxGP is then simpler than the one generated by GP. Their test
errors are similar (right part of Figures 2(a) and (b)).
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Fig. 2. Solutions by standard and relaxed GP for a problem. The sinusoidal function
(left) was produced by standard GP, and corresponds to sin(x)/x+x/1000. The straight
line was produced by relaxed GP.

Our basic working hypothesis is that relaxing the data set gives more freedom
to the solutions generated by GP, avoiding in this way overfitting to the training
set, and guiding the population towards a generalizing solution. At the same
time, giving some latitude to the individuals in a population produces more
compact solutions than with regular fitness calculation.
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In this paper we start from the idea that the proposed RelaxGP technique
should be very useful in treating data that is, from the beginning, noisy and
uncertain. We feel it is counterproductive to try to reach a perfect fit on points
that are not perfect, by themselves. This is the case for most practical applica-
tions, where uncertainty in measurements is always present, and is considered
part of the problem by the researchers.

To measure the adequacy of the technique for solving this kind of problems,
we compared the performance of regular GP with those of RelaxGP (with var-
ious relaxations) on the task of predicting the output of a noisy set of points.
These points were generated by introducing Gaussian noise to the output of the
“quartic polynomial function” (Q(x) = x4 + x3 + x2 + x).

In the remaining of the paper, we present our experimental protocol and
experiments; our main objective is to find a relation between the quantity of
gaussian noise in data and the best relaxation value for RelaxGP. This allows for
an appropriate relaxation value to be chosen if gaussian noise can be found and
measured in a problem’s input data. We also show how the RelaxGP technique
can outperform standard GP in terms of both the (computational) resources
required for the experiments and the actual test performance when the optimal
relaxation value is used.

2 Experimental Setting

2.1 Sets of Noisy Points

Gaussian Noise. A point y, perturbed by an amount of Gaussian noise a, yields
a value y′; y′ belongs to the interval [y −a, y +a] with probability .95. a is called
an absolute noise (a can be seen as approximately twice the standard deviation
of the data).

A relative noise r is defined with respect to the total range δY of values
Q(x) can take when x ∈ [−10, 10]. The absolute value corresponding to r is
a = (r ∗ δY )/100. For x ∈ [−10, 10], δY = 1.111 ∗ 104

For this paper, we used 5 relative noise values: 0.5, 1, 2, 5 and 10.

Training Points. We generated several sets of “noisy” points used for training.
Each set has 80 points in the region x ∈ [−10, 10] (one set for each noise value),
generated from the mathematical definition of the quartic polynomial (Q(x) =
x4+x3+x2+x) and introducing the given amount of Gaussian noise. In Fig. 3(a)
the 80 points generated for training with noise 10% are shown.

Test Points. 160 noisy points were generated for testing, for each noise value, in
the region on interval x ∈ [−20, 20]. In Fig. 3(b) the points generated for testing
with noise 10% are shown.

2.2 RelaxGP: Relaxation Values

We applied an amount of relaxation relative to the noise present in the points of
the set. In that way, different experiments, with different noises, can be compared
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Fig. 3. Values from the quartic function. 80 values were generated for training in the
interval x ∈ [−10, 10] for each noise value. 160 values were generated for testing in
the interval x ∈ [−20, 20] for each noise value. The values generated with noise 10%
are shown as crosses. The full line is the plot of Q(x). Sub-plot (a) was zoomed from
sub-plot (b).

to each other. For a given (relative) noise the amounts of relaxation applied to
the fitness functions were: 0 (regular GP), 10%, 100% (so relaxation = noise),
200% and 500%.

2.3 GP (and RelaxGP) Runs’ Parameters

500 runs for each experiment were conducted, with the following parameters for
each run (for details on the meaning of each parameter, please refer to [6]):

– Population of 500 individuals.
– Roulette selection reproduction.
– Crossover probability: 95%
– Mutation rate = 10%.
– Elitism defined by selection after reproduction: children are generated from

the population of parents, and from this new population (parents and chil-
dren together) only the best 500 are kept.

– A run stops when either (a) the best solution of the population solves the
success predicate or (b) generation 50 is reached.

The experiments were conducted with GPLAB [8], a GP toolbox for MAT-
LAB, modified in order to allow optimization by intervals.

2.4 Measures

In this problem we’re studying resource utilization and generalization power.

Resource utilization. We presented in [3] a complete method for measuring the
performance of the genetic programming paradigm in terms of the amount of
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computer processing necessary to solve a particular problem. This is an extension
of the method presented by Koza in [6, chap. 8]. A quick refresher is presented
here.

The need for a careful inspection of the results of GP runs arises from the
fact that there is randomness in the normal functioning of the GP algorithm: in
the creation of the initial population, selection of individuals for reproduction,
selection of crossover points, number of genetic operators to be executed and
(possibly) the election of the points where fitness is calculated. Because of these
probabilistic steps, there is no guarantee that a given run will yield an individual
that satisfies the success predicate of the problem after being run for a number
of generations [6, page 191].

One way to minimize this effect is to do multiple independent runs; the amount
of computational resources required by GP1 is then determined by (a) the num-
ber of independent runs needed to yield a success with a certain probability p and
(b) the resources used for each run. The total number of resources is calculated
as the sum of all resources used on each of the runs.

The method presented in [3] and [6, chap. 8] aims at estimating, in a robust
statistical way, the amount of processing needed to reach a certain success pred-
icate with a certain probability. For that we perform an important number of
replications (500, in [3]) and we calculate (1) the practical probability of reaching
the predicate at a certain generation, and (2) the amount of resources needed
to reach a certain generation. Combining these two pieces of information yields
the best couple (k, g), indicating the need to replicate the experiment k times
up to generation g to reach the objective.

The result of such an analysis produces a curve and a table of values (see Fig. 4
and the accompanying Table). We can observe on Fig. 4 that the number of nodes
to be evaluated is minimized when running 5 replications up to generation 40.
The objective would then be reached at the evaluation of 1.63 ∗ 106 nodes.

Generalization Power. A central problem in the field of statistical pattern
recognition is how to design a classifier that could, based on a set of examples
(the training set), suggest actions when presented with novel patterns[4]. This
is the issue of generalization.

Since good generalization is our objective, our data will be split in two parts:
one is used as the traditional training set for designing the approximating func-
tion. The other (the “test” set) is used to estimate the generalization error. As
mentioned in Subsec. 2.1, the training set for each experiment has 80 points on
the interval [−10, 10], the test set has 160 points on the interval [−20, 20].

3 Results

For each noise we performed 6 groups of experiments, each with a relaxation
relative to the noise. Each group corresponds to a relaxation of 10%, 50%, 100%,

1 Or by the conventional genetic algorithm.
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Fig. 4. Total resources (nodes) to evaluate to reach a given objective. The solid line is
the average of the value, the dotted lines correspond to average ± standard deviation.
The values are presented in the following table:

Generation Runs Number of Generation Runs Number of
required nodes (106) required nodes (106)

20 31 3.51 40 5 1.63
36 6 1.64 46 5 1.70
39 6 1.87 47 4 1.76

200% and 500%. For example, for noise 0.5, the points were relaxed a relative
amount of 0.05, 0.25, 0.5, 1, and 2.5

For each experiment we measured, at each generation g:

1. The test error for the best individual at g: the test error for an appro-
ximation f to Q is calculated on the (160) test points as:

ta =
160∑

i=1

|f(x(i)
t ) − y

(i)
t | (1)

where (x(i)
t , y

(i)
t ) is the i-th test point.

2. The number of nodes evaluated to reach g

The first results are presented as boxplots showing the values obtained for the
test error of the best individual after 50 generations. Results for noise 0.5 are
presented in Fig. 5(a), for noise 1 in Fig. 5(b), for noise 2 in Fig. 6(a), for noise 5
in Fig. 6(b) and for noise 10 in Fig. 7.

We observe that, for all noise values, the best results are obtained when the
value of the relaxation is less than the noise itself (relaxation ≤ 100 on all
boxplots). It is interesting to notice that standard GP (relaxation 0 on boxplots)
does not (statistically) outperform RelaxGP with relaxation ≤ 100.

To obtain more precise information we show the results of the study con-
cerning resource utilization coupled with performance values (see 2.4, page 4 for
details).
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Fig. 5. Noise 0.5% and 1%

0 10 50 100 200 500

1400

1600

1800

2000

2200

2400

2600

2800

B
es

t t
es

t e
rr

or

Noise = 2

Relaxation (in percentage of noise)

(a) Noise 2%

0 10 50 100 200 500
3000

3500

4000

4500

5000

5500

6000

B
es

t t
es

t e
rr

or

Noise = 5

Relaxation (in percentage of noise)

(b) Noise 5%

Fig. 6. Noise 2% and 5%
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Fig. 7. Noise 10%

Comparing target errors with resources. We are interested in measuring the num-
ber of resources required to reach a certain test error t, for a certain relaxation
r. For this we define a success criteria S:

S : “to reach test error t”

We choose to look for the values that reach S with probability .99. The analysis
of Subsec. 2.4 is then undertaken, and then the minimum value of nodes, n,
reaching S, is kept. The pair (t, n) is then interpreted as:

With probability .99 (based on 500 runs), RelaxGP with relaxation r needs
n nodes to reach error t.
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Repeating this procedure for a set of test errors t yields a curve for relaxation
r (Fig. 8). A point (t, n) is read as “replications of experiment with relaxation
r having reached a test error of at most t have evaluated n nodes”; two points
resulting from such calculations have been linked by a straight line.

For comparing the effects of two relaxation values r1 and r2 we plot the two
curves together (Fig. 9). Certain comparisons can then be made; for example
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Fig. 9. Extended curve for relaxations r1 and r2

the curve for relaxation r1 shows a set of points whose value can not be reached
by the curve of relaxation r2. Test error t1 can not be reached with relaxation
r2, while with relaxation r1 error t1 is reached using, in average, n1 nodes.

The relative position of the curves is also important; for example, we observe
that for test error t2 relaxation r1 uses n3 nodes, while relaxation r2 uses n2
nodes, and n2 > n3. So, if we are interested in using less resources for reaching
error t2, we should relax the training data by r1 (instead of by r2).
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This idea is now being applied to the comparison of all the relaxations to-
gether. In order to compare different experiments, with different values, an ab-
solute error ta (defined in (1), page 6) is expressed as a percentage of (a) the
number of test points and (b) the total range δY of values Q(x) (the quar-
tic polynomial) when x ∈ [−20, 20] (interval from where the test points were
generated). So, tr, the relative test error corresponding to ta, is:

tr =
ta

160 ∗ δY
∗ 100 (2)

The analysis of the results yields several interesting points. First, for all sets of
noisy values there are relaxations that outperform standard GP (i.e., non-zero
relaxations resulted in a best relative test error than relaxation 0). The best
values for each noise are depicted in Table 1 (see Fig. 10 and Fig. 11 for details).
An interesting fact from this Table is that relaxations 10% and 100% are always
the best performers.

We also noticed that non-zero relaxations are generally better (in terms of
resources required to reach a certain error) than standard GP in all experi-
ments (Table 2), the only exception being a range around relative error 3.25
in noise 0.5% (Fig. 10(a)). In other words, relaxing the fitness function results
in a better utilization of resources for reaching a given test error. The relative
gain is the smallest in the case of the smaller noise (0.5, a gain of 12.57%), and
comparable in the other cases (in the range [22 − 28]%).

These and other results of our analysis are now presented in terms of resources
required to reach a set of target relative errors: noises 0.5 and 1 are presented

Table 1. Best relative error reached

Noise Standard GP RelaxGP
Test Error Best relaxation Test Error

0.5 3.258 10% 3.257
1 6.731 10%, 100% 6.724
2 11.14 100% 11.11
5 33.70 10% 33.62
10 52.12 100% 51.76

Table 2. Utilization of resources

Noise Relative error RelaxGP Standard GP. Gain
for measure Relaxation Resources Resources (%)

0.5 3.26 10% 8.83 ∗ 106 1.01 ∗ 107 12.57%
1 6.73 10% 1.57 ∗ 107 2.02 ∗ 107 22.17%
2 11.14 100% 1.20 ∗ 107 1.63 ∗ 107 26.38%
5 33.70 10% 2.06 ∗ 107 2.86 ∗ 107 27.97%
10 52.12 50% 8.13 ∗ 106 1.05 ∗ 107 22.57%
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in Fig. 10. Noise 2, 5 and 10 are in Fig. 11. In all plots, the thick black line
corresponds to the standard GP. For being considered into the plot, a target
error of value t must have been reached by at least 30 of the (500) replications.
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An observation made from the plots reaffirms the results presented earlier in
the boxplots (Figs. 5, 6 and 7): only relaxations equal or less than the noise are
competitive with standard GP: curves of relaxations 200% and 500% are worse
than relaxation 0 both in best error reached and in terms of resources used.

4 Discussion

In this paper we proposed the use of a technique we developed earlier (RelaxGP,
in [2] and [3]) as an alternative to treat noisy data sets in the context of regression
and approximation of symbolic functions. RelaxGP stands on a new definition
of a perfect solution: in standard symbolic regression, a perfect solution provides
exact values for each point in the training set. RelaxGP allows a perfect solution
to belong to a certain interval around the desired values.

Our main hypothesis was that RelaxGP should outperform classical GP in
the solving of regression problems where the input data is originally noisy. Noisy
data is actually found in several “real-world” problems, where the noise comes,
for example, from the imperfection of sensors. We compare the performance of
solutions generated by GP and by RelaxGP in the regression of 5 noisy sets. The
performance was assessed through the measure of the solutions’ generalization
error (cumulative error on a set of values not used for training) and the amount
of resources (in number of nodes) used for attaining a certain performance.

For all our experiments, RelaxGP, using an appropriate relaxation value, out-
performed standard GP, both in terms of generalization error reached and in
number of resources required to reach a certain given test error. Moreover, the
amount of relaxation “optimal” for each noise n is experimentally discovered to
be between 10 and 100% of the noise of the data (always assuming a Gaussian
noise). In other words, if we can have an idea of “how large” the noise of the
measures making up the input to a problem is, the best way to attack that
problem is by using RelaxGP with relaxation lower than this noise.

These results are positive and motivate the need for another set of experi-
ments, where we could understand more precisely the exact nature of the influ-
ence of relaxation on the dynamics of the evolutionary process, in general, and
on the “cleaning” of noisy data, in particular.
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