

Lecture Notes in Computer Science 4926
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nicolas Monmarché El-Ghazali Talbi
Pierre Collet Marc Schoenauer
Evelyne Lutton (Eds.)

Artificial Evolution

8th International Conference
Evolution Artificielle, EA 2007
Tours, France, October 29-31, 2007
Revised Selected Papers

13

Volume Editors

Nicolas Monmarché
Ecole Polytechnique de l’Université de Tours, Laboratoire d’Informatique
64 avenue Jean Portalis, 37200 Tours, France
E-mail: nicolas.monmarche@univ-tours.fr

El-Ghazali Talbi
Université des Sciences et Technologies de Lille
Laboratoire d’Informatique Fondamentale de Lille (LIFL)
Bât. M3, 59655 Villeneuve d’Ascq, France
E-mail: el-ghazali.talbi@lifl.fr

Pierre Collet
Université Louis Pasteur, Laboratoire des Sciences de l’Image, de l’Informatique et
de la Télédétection (LSIIT) Strasbourg
Parc d’innovation, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
E-mail: Pierre.Collet@lsiit.u-strasbg.fr

Marc Schoenauer
INRIA Saclay - Île-de-France, LRI
Université de Paris-Sud
Bât. 490, 91405 Orsay, France
E-mail: marc.schoenauer@inria.fr

Evelyne Lutton
INRIA Saclay - Île-de-France
Parc Orsay Université
4 rue Jacques Monod, 91893 Orsay, France
E-mail: evelyne.lutton@inria.fr

Library of Congress Control Number: 2008925337

CR Subject Classification (1998): F.1, F.2.2, I.2.6, I.5.1, G.1.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-79304-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79304-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12257629 06/3180 5 4 3 2 1 0

Preface

This book is based on the best papers presented at the 8th Conference on Arti-
ficial Evolution, EA1 2007, held in Tours (France). Previous EA meetings took
place in Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999),
Nimes (1997), Brest (1995), and Toulouse (1994).

Authors were invited to present original work relevant to artificial evolu-
tion, including, but not limited to: evolutionary computation, evolutionary op-
timization, co-evolution, artificial life, population dynamics, theory, algorith-
mics and modeling, implementations, application of evolutionary paradigms to
the real world (industry, biosciences, ...), other biologically inspired paradigms
(swarm, artificial ants, artificial immune systems, ...), memetic algorithms, multi-
objective optimization, constraint handling, parallel algorithms, dynamic opti-
mization, machine learning and hybridization with other soft computing
techniques.

Papers submitted to the conference were reviewed by at least three members
of the International Program Committee, and 30 out of the 62 submissions were
selected to be presented at the Conference. As for the previous editions (see, in
the same collection, volumes 1063, 1363, 1829, 2310, 2936, and 3871), 27 of those
papers were revised according to the reviewers’ comments, and are now included
in this volume, resulting in a 43.5% acceptance rate for this volume.

We would like to thank the Program Committee for the conscientious work
during the paper selection stage of this conference. We are also very grateful
to the Organizing Committee for their efficient work and dedication to provide
a pleasant environment for conference attendees. We take this opportunity to
thank the different partners whose financial and material support contributed
to the success of the conference: PolytechTours, University of Tours, DGA, Min-
istère de l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche,
City of Tours, INRIA, AFIA, Région Centre, ROADEF, and EA association.
Last but not least, we thank all the authors who submitted papers, and the
authors of accepted papers for revising and sending their final versions on time.

December 2007 Nicolas Monmarché
El-Ghazali Talbi

Pierre Collet
Marc Schoenauer

Evelyne Lutton

1 As with previous editions of the conference, the EA acronym is based on the original
French name “Évolution Artificielle”.

Évolution Artificielle 2007 – EA 2007

October 29–31, 2007

Université François Rabelais, Tours, France
8th International Conference on Artificial Evolution

Steering Committee

Pierre Collet, Université Louis Pasteur de Strasbourg, France
Evelyne Lutton, INRIA Futurs, France
Nicolas Monmarché, Université François Rabelais de Tours, France
Marc Schoenauer, INRIA Futurs, France
El-Ghazali Talbi, Université de Lille 1, France

Organizing Committee

Sébastien Aupetit, Laboratoire d’Informatique, Université de Tours, France
Romain Clair, Laboratoire d’Informatique, Université de Tours, France
Sonia Colas, Laboratoire d’Informatique, Université de Tours, France
Colette Gatefait, Laboratoire d’Informatique, Université de Tours, France
Pierre Gaucher, Laboratoire d’Informatique, Université de Tours, France
Thierry Henocque, Laboratoire d’Informatique, Université de Tours, France
Nicolas Monmarché, Laboratoire d’Informatique, Université de Tours, France
Arnaud Puret, Laboratoire d’Informatique, Université de Tours, France
Alexis Sepchat, Laboratoire d’Informatique, Université de Tours, France
Mohamed Slimane, Laboratoire d’Informatique, Université de Tours, France

Program Committee

Anne Auger, INRIA, France
Sébastien Aupetit, LI, Université de Tours, France
Christian Blum, ALBCOM, Universitat Politècnica de Catalunya, Spain
Jürgen Branke, Institute AIFB, University of Karlsruhe, Germany
Nicolas Bredèche, INRIA, France
Edmund Kieran Burke, University of Nottingham, UK
Stefano Cagnoni, Università di Parma, Italy
Alexandre Caminada, UTBM, Laboratoire SET, France
Erick Cantu-Paz, Yahoo! Inc., USA
Uday K. Chakraborty, University of Missouri St. Louis, USA
Alastair Channon, University of Birmingham, UK
Carlos A. Coello Coello, CINVESTAV-IPN, Mexico

VIII Organization

Philippe Collard, Laboratoire I3S UNSA-CNRS, France
Pierre Collet, LSIIT, Université de Strasbourg, France
Daniel Delahaye, Air Navigation Research Center, France
Clarisse Dhaenens, LIFL - University of Lille, France
Nicolas Durand, DSNA/R&D, France
Marc Ebner, Universität Würzburg, Germany
Cyril Fonlupt, LIL - Université du Littoral - Côte d’Opale, France
Marian Gheorghe, University of Sheffield, UK
Jean-Louis Giavitto, IBISC - CNRS & Université d’Evry, France
Jens Gottlieb, SAP AG, Germany
Manuel Graña, Universidad del Pais Vasco, Spain
Steven Gustafson, GE Global Research, USA
Jin-Kao Hao, Université d’Angers, France
Laetitia Jourdan, INRIA Futurs/LIFL, France
Petros Kefalas, City College, Thessaloniki, Greece
Natalio Krasnogor, University of Nottingham, UK
Nicolas Lassabe, IRIT/UT1, France
Claude Lattaud, Université René Descartes Paris 5, France
Pierre Liardet, Université de Provence, France
Jean Louchet, INRIA, France
Evelyne Lutton, INRIA, France
Nouredine Melab, INRIA Futurs, Université de Lille1, France
Zbigniew Michalewicz, University of Adelaide, Australia
Nicolas Monmarché, LI, Université de Tours, France
Miguel Nicolau, INRIA, France
Gabriela Ochoa, University of Nottingham, UK
Gustavo Olague, CICESE, Mexico
Martin Pelikan, University of Missouri in St. Louis, USA
David Alejandro Pelta, University of Granada, Spain
Philippe Preux, LIFL, Université de Lille, France
Gnther Raidl, Vienna University of Technology, Austria
Jean-Philippe Rennard, GEM, France
Celso Ribeiro, Universidade Federal Fluminense, Brazil
Denis Robilliard, LIL - Université Littoral Cote d’Opale, France
Guenter Rudolph, University of Dortmund, Germany
Marc Schoenauer, INRIA, France
Michele Sebag, CNRS, France
Patrick Siarry, Université de Paris 12, France
Terence Soule, University of Idaho, USA
Antoine Spicher, Université d’Evry, France
Thomas Stuetzle, IRIDIA, Université Libre de Bruxelles, Belgique
Hideyuki Takagi, Kyushu University, Japan
El-Ghazali Talbi, LIFL - Lille, France
German Terrazas Angulo, University of Nottingham, UK
Olivier Teytaud, INRIA, France

Organization IX

Shigeyoshi Tsutsui, Hannan University, Japan
Shengxiang Yang, University of Leicester, UK
Eckart Zitzler, ETH, Switzerland

Invited Talks

Adaptive Business Intelligence, Zbigniew Michalewicz
Puzzle Based Learning (Invited Tutorial), Zbigniew Michalewicz

Sponsoring Institutions

École Polytechnique de l’Université de Tours
Université François Rabelais de Tours
Conseil Régional du Centre
Ville de Tours
Institut National de Recherche en Informatique et en Automatique (INRIA)
Délégation Générale pour l’Armement (DGA)
Ministère de l’Éducation Nationale de l’Enseignement Supérieur et de la Recherche
Association Française d’Intelligence Artificielle (AFIA)
Société française de Recherche Opérationnelle et Aide à la Décision (ROADEF)

Table of Contents

Genetic Programming

Treating Noisy Data Sets with Relaxed Genetic Programming 1
Luis Da Costa, Jacques-André Landry, and Yan Levasseur

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic . . . 13
Robert E. Keller and Riccardo Poli

Automatic Design of Vision-Based Obstacle Avoidance Controllers
Using Genetic Programming . 25

Renaud Barate and Antoine Manzanera

Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic
Framework . 37

Mohamed Bader-El-Den and Riccardo Poli

Swarm Intelligence

Magnetic Resonance Image Segmentation Based on Two-Dimensional
Exponential Entropy and a Parameter Free PSO . 50

Amir Nakib, Yann Cooren, Hamouche Oulhadj, and Patrick Siarry

Mimetic Variations on Stigmergic Swarm Paintings 62
Paulo Urbano

Minimal and Necessary Conditions for the Emergence of Species-Specific
Recognition Patterns . 73

Nicolas Brodu

Artificial Ants for the Optimization of Virtual Keyboard Arrangement
for Disabled People . 87

Sonia Colas, Nicolas Monmarché, Pierre Gaucher, and
Mohamed Slimane

Combinational and Multi-objective Optimization

Self-organization and Evolution Combined to Address the Vehicle
Routing Problem . 100

Jean-Charles Créput and Abderrafiaâ Koukam

An Evolutionary Algorithm for the Block Stacking Problem 112
Tim Hohm, Matthias Egli, Samuel Gaehwiler, Stefan Bleuler,
Jonathan Feller, Damian Frick, Richard Huber, Mathias Karlsson,
Reto Lingenhag, Thomas Ruetimann, Tom Sasse, Thomas Steiner,
Janine Stocker, and Eckart Zitzler

XII Table of Contents

A Study of Evaluation Functions for the Graph K-Coloring Problem 124
Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz

Genetic Branch-and-Bound or Exact Genetic Algorithm? 136
Cédric Pessan, Jean-Louis Bouquard, and Emmanuel Néron

Aerodynamic Topology Optimisation Using an Implicit Representation
and a Multiobjective Genetic Algorithm . 148

Windo Hutabarat, Geoffrey T. Parks, Jerome P. Jarrett,
William N. Dawes, and P. John Clarkson

Direct and Indirect Representations for Evolutionary Design of
Objects . 160

Juraj Plavcan and Pavel Petrovic

Adaptive and Assortative Mating Scheme for Evolutionary
Multi-Objective Algorithms . 172

Khoi Le and Dario Landa-Silva

Theory in GA and ES

The Cooperative Royal Road: Avoiding Hitchhiking 184
Gabriela Ochoa, Evelyne Lutton, and Edmund Burke

Conditioning, Halting Criteria and Choosing λ. 196
Olivier Teytaud

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 207
Mohamed Jebalia, Anne Auger, and Pierre Liardet

Applications of EAs

Evolution Strategies for Laser Pulse Compression . 219
Riccardo Fanciulli, Lars Willmes, Janne Savolainen,
Peter van der Walle, Thomas Bäck, and Jennifer L. Herek

Fully Three-Dimensional Tomographic Evolutionary Reconstruction in
Nuclear Medicine . 231

Aurélie Bousquet, Jean Louchet, and Jean-Marie Rocchisani

A Study of Crossover Operators for Gene Selection of Microarray
Data . 243

Jose Crispin Hernandez Hernandez, Béatrice Duval, and
Jin-Kao Hao

Searching for Glider Guns in Cellular Automata: Exploring
Evolutionary and Other Techniques . 255

Emmanuel Sapin and Larry Bull

Table of Contents XIII

A Genetic Algorithm for Generating Improvised Music 266
Ender Özcan and Türker Erçal

Unsupervised Learning of Echo State Networks: A Case Study in
Artificial Embryogeny . 278

Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer

Enhanced Genetic Algorithm with Guarantee of Feasibility for the Unit
Commitment Problem . 291

Guillaume Sandou, Stéphane Font, Sihem Tebbani,
Arnaud Hiret, and Christian Mondon

On the Design of Adaptive Control Strategies for Evolutionary
Algorithms . 303

Jorge Maturana and Frédéric Saubion

Improvement of Intelligent Optimization by an Experience Feedback
Approach . 316

Paul Pitiot, Thierry Coudert, Laurent Geneste, and Claude Baron

Author Index . 329

Treating Noisy Data Sets with Relaxed Genetic

Programming

Luis Da Costa1,2, Jacques-André Landry1, and Yan Levasseur1

1 LIVIA, École de Technologie Supérieure, Montréal, Canada
2 INRIA Futurs, LRI, Univ. Paris-Sud, Paris, France

Abstract. In earlier papers we presented a technique (“RelaxGP”) for
improving the performance of the solutions generated by Genetic Pro-
gramming (GP) applied to regression and approximation of symbolic
functions. RelaxGP changes the definition of a perfect solution: in stan-
dard symbolic regression, a perfect solution provides exact values for each
point in the training set. RelaxGP allows a perfect solution to belong to
a certain interval around the desired values.

We applied RelaxGP to regression problems where the input data is
noisy. This is indeed the case in several “real-world” problems, where
the noise comes, for example, from the imperfection of sensors. We com-
pare the performance of solutions generated by GP and by RelaxGP in
the regression of 5 noisy sets. We show that RelaxGP with relaxation
values of 10% to 100% of the gaussian noise found in the data can out-
perform standard GP, both in terms of generalization error reached and
in resources required to reach a given test error.

1 Motivation and Background

Darwinian evolution and Mendelian genetics are the inspiration for the field of
Genetic Programming (GP); GP solves complex problems by evolving popula-
tions of computer programs, and is particularly relevant in approaching non-
analytical, multiobjectives and (practically) infinite solution space dimension
problems (for details on GP, we invite interested readers to consult [6] or [1]).
GP has proved its utility for supporting human analysis of problems in a vari-
ety of domains: computational molecular biology [7], cellular automata, sorting
networks, analogical electrical circuits [5], among them.

We showed, in [2] and [3], that calculating fitness values with “relaxed” points
on a GP problem helps avoiding the overfitting of the best solutions, as well as
reducing the use of resources on the course of a GP run. Specifically, we designed
a variation of GP where a perfect solution is not defined as the solution whose
training points are reached with error zero, but as a solution that is close enough
to them. In practical terms, this means that the fitness calculation is modified:
a solution has fitness 0 (“perfect”) if its approximation falls within an interval
around the real targeted values. This concept is depicted in Fig. 1; the original
(“perfect”) point is (x1, y1). Now, with an absolute relaxation value of δ, any
point with y value in (y1 − δ, y1 + δ) has a perfect (zero) fitness.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. Da Costa, J.-A. Landry, and Y. Levasseur

x1

y1

X

Y

δ

δ

(x
1
,y

1
+δ)

(x
1
,y

1
−δ)

(x
1
,y

1
)

Fig. 1. Relaxation (δ) at one point. For fitness matters, the distance between (x1, y1)
and (x1, y2) is 0 if y2 ∈ [y1 − δ, y1 + δ], |y2 − y1| otherwise.

This definition enables a “relaxation” of the data, as the selection of individu-
als over the genetic process is more permissive. As an example, in Fig. 2, GP was
used to evolve an individual well-trained to a certain training set (Fig. 2(a)); that
best individual resulted in a sinusoidal function. On the other hand, a population
evolved by RelaxGP yielded a straight line as best individual (the relaxation is
noticeable by the vertical segments at each training point); a straight line being
a simpler mathematical model than a sinusoidal function, the best individual
generated by RelaxGP is then simpler than the one generated by GP. Their test
errors are similar (right part of Figures 2(a) and (b)).

10 15 20 25 30 35 40 45 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Training points

Test points

X

Y

(a) GP

10 20 30 40 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Training points
Test points

X

Y

(b) RelaxGP

Fig. 2. Solutions by standard and relaxed GP for a problem. The sinusoidal function
(left) was produced by standard GP, and corresponds to sin(x)/x+x/1000. The straight
line was produced by relaxed GP.

Our basic working hypothesis is that relaxing the data set gives more freedom
to the solutions generated by GP, avoiding in this way overfitting to the training
set, and guiding the population towards a generalizing solution. At the same
time, giving some latitude to the individuals in a population produces more
compact solutions than with regular fitness calculation.

Treating Noisy Data Sets with Relaxed Genetic Programming 3

In this paper we start from the idea that the proposed RelaxGP technique
should be very useful in treating data that is, from the beginning, noisy and
uncertain. We feel it is counterproductive to try to reach a perfect fit on points
that are not perfect, by themselves. This is the case for most practical applica-
tions, where uncertainty in measurements is always present, and is considered
part of the problem by the researchers.

To measure the adequacy of the technique for solving this kind of problems,
we compared the performance of regular GP with those of RelaxGP (with var-
ious relaxations) on the task of predicting the output of a noisy set of points.
These points were generated by introducing Gaussian noise to the output of the
“quartic polynomial function” (Q(x) = x4 + x3 + x2 + x).

In the remaining of the paper, we present our experimental protocol and
experiments; our main objective is to find a relation between the quantity of
gaussian noise in data and the best relaxation value for RelaxGP. This allows for
an appropriate relaxation value to be chosen if gaussian noise can be found and
measured in a problem’s input data. We also show how the RelaxGP technique
can outperform standard GP in terms of both the (computational) resources
required for the experiments and the actual test performance when the optimal
relaxation value is used.

2 Experimental Setting

2.1 Sets of Noisy Points

Gaussian Noise. A point y, perturbed by an amount of Gaussian noise a, yields
a value y′; y′ belongs to the interval [y −a, y +a] with probability .95. a is called
an absolute noise (a can be seen as approximately twice the standard deviation
of the data).

A relative noise r is defined with respect to the total range δY of values
Q(x) can take when x ∈ [−10, 10]. The absolute value corresponding to r is
a = (r ∗ δY)/100. For x ∈ [−10, 10], δY = 1.111 ∗ 104

For this paper, we used 5 relative noise values: 0.5, 1, 2, 5 and 10.

Training Points. We generated several sets of “noisy” points used for training.
Each set has 80 points in the region x ∈ [−10, 10] (one set for each noise value),
generated from the mathematical definition of the quartic polynomial (Q(x) =
x4+x3+x2+x) and introducing the given amount of Gaussian noise. In Fig. 3(a)
the 80 points generated for training with noise 10% are shown.

Test Points. 160 noisy points were generated for testing, for each noise value, in
the region on interval x ∈ [−20, 20]. In Fig. 3(b) the points generated for testing
with noise 10% are shown.

2.2 RelaxGP: Relaxation Values

We applied an amount of relaxation relative to the noise present in the points of
the set. In that way, different experiments, with different noises, can be compared

4 L. Da Costa, J.-A. Landry, and Y. Levasseur

−10 −5 0 5 10

0

2000

4000

6000

8000

10000

12000

(a) Training
−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

10

12

14

16x 10
4

(a)

(b) Test

Fig. 3. Values from the quartic function. 80 values were generated for training in the
interval x ∈ [−10, 10] for each noise value. 160 values were generated for testing in
the interval x ∈ [−20, 20] for each noise value. The values generated with noise 10%
are shown as crosses. The full line is the plot of Q(x). Sub-plot (a) was zoomed from
sub-plot (b).

to each other. For a given (relative) noise the amounts of relaxation applied to
the fitness functions were: 0 (regular GP), 10%, 100% (so relaxation = noise),
200% and 500%.

2.3 GP (and RelaxGP) Runs’ Parameters

500 runs for each experiment were conducted, with the following parameters for
each run (for details on the meaning of each parameter, please refer to [6]):

– Population of 500 individuals.
– Roulette selection reproduction.
– Crossover probability: 95%
– Mutation rate = 10%.
– Elitism defined by selection after reproduction: children are generated from

the population of parents, and from this new population (parents and chil-
dren together) only the best 500 are kept.

– A run stops when either (a) the best solution of the population solves the
success predicate or (b) generation 50 is reached.

The experiments were conducted with GPLAB [8], a GP toolbox for MAT-
LAB, modified in order to allow optimization by intervals.

2.4 Measures

In this problem we’re studying resource utilization and generalization power.

Resource utilization. We presented in [3] a complete method for measuring the
performance of the genetic programming paradigm in terms of the amount of

Treating Noisy Data Sets with Relaxed Genetic Programming 5

computer processing necessary to solve a particular problem. This is an extension
of the method presented by Koza in [6, chap. 8]. A quick refresher is presented
here.

The need for a careful inspection of the results of GP runs arises from the
fact that there is randomness in the normal functioning of the GP algorithm: in
the creation of the initial population, selection of individuals for reproduction,
selection of crossover points, number of genetic operators to be executed and
(possibly) the election of the points where fitness is calculated. Because of these
probabilistic steps, there is no guarantee that a given run will yield an individual
that satisfies the success predicate of the problem after being run for a number
of generations [6, page 191].

One way to minimize this effect is to do multiple independent runs; the amount
of computational resources required by GP1 is then determined by (a) the num-
ber of independent runs needed to yield a success with a certain probability p and
(b) the resources used for each run. The total number of resources is calculated
as the sum of all resources used on each of the runs.

The method presented in [3] and [6, chap. 8] aims at estimating, in a robust
statistical way, the amount of processing needed to reach a certain success pred-
icate with a certain probability. For that we perform an important number of
replications (500, in [3]) and we calculate (1) the practical probability of reaching
the predicate at a certain generation, and (2) the amount of resources needed
to reach a certain generation. Combining these two pieces of information yields
the best couple (k, g), indicating the need to replicate the experiment k times
up to generation g to reach the objective.

The result of such an analysis produces a curve and a table of values (see Fig. 4
and the accompanying Table). We can observe on Fig. 4 that the number of nodes
to be evaluated is minimized when running 5 replications up to generation 40.
The objective would then be reached at the evaluation of 1.63 ∗ 106 nodes.

Generalization Power. A central problem in the field of statistical pattern
recognition is how to design a classifier that could, based on a set of examples
(the training set), suggest actions when presented with novel patterns[4]. This
is the issue of generalization.

Since good generalization is our objective, our data will be split in two parts:
one is used as the traditional training set for designing the approximating func-
tion. The other (the “test” set) is used to estimate the generalization error. As
mentioned in Subsec. 2.1, the training set for each experiment has 80 points on
the interval [−10, 10], the test set has 160 points on the interval [−20, 20].

3 Results

For each noise we performed 6 groups of experiments, each with a relaxation
relative to the noise. Each group corresponds to a relaxation of 10%, 50%, 100%,

1 Or by the conventional genetic algorithm.

6 L. Da Costa, J.-A. Landry, and Y. Levasseur

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6
x 10

6 Number of nodes required

N
od

es
 (

to
ta

l)

Generation

Fig. 4. Total resources (nodes) to evaluate to reach a given objective. The solid line is
the average of the value, the dotted lines correspond to average ± standard deviation.
The values are presented in the following table:

Generation Runs Number of Generation Runs Number of
required nodes (106) required nodes (106)

20 31 3.51 40 5 1.63
36 6 1.64 46 5 1.70
39 6 1.87 47 4 1.76

200% and 500%. For example, for noise 0.5, the points were relaxed a relative
amount of 0.05, 0.25, 0.5, 1, and 2.5

For each experiment we measured, at each generation g:

1. The test error for the best individual at g: the test error for an appro-
ximation f to Q is calculated on the (160) test points as:

ta =
160∑

i=1

|f(x(i)
t) − y

(i)
t | (1)

where (x(i)
t , y

(i)
t) is the i-th test point.

2. The number of nodes evaluated to reach g

The first results are presented as boxplots showing the values obtained for the
test error of the best individual after 50 generations. Results for noise 0.5 are
presented in Fig. 5(a), for noise 1 in Fig. 5(b), for noise 2 in Fig. 6(a), for noise 5
in Fig. 6(b) and for noise 10 in Fig. 7.

We observe that, for all noise values, the best results are obtained when the
value of the relaxation is less than the noise itself (relaxation ≤ 100 on all
boxplots). It is interesting to notice that standard GP (relaxation 0 on boxplots)
does not (statistically) outperform RelaxGP with relaxation ≤ 100.

To obtain more precise information we show the results of the study con-
cerning resource utilization coupled with performance values (see 2.4, page 4 for
details).

Treating Noisy Data Sets with Relaxed Genetic Programming 7

0 10 50 100 200 500

400

600

800

1000

1200

B
es

t t
es

t e
rr

or
Noise = 0.5

Relaxation (in percentage of noise)

(a) Noise 0.5%

0 10 50 100 200 500

800

1000

1200

1400

1600

B
es

t t
es

t e
rr

or

Noise = 1

Relaxation (in percentage of noise)

(b) Noise 1%

Fig. 5. Noise 0.5% and 1%

0 10 50 100 200 500

1400

1600

1800

2000

2200

2400

2600

2800

B
es

t t
es

t e
rr

or

Noise = 2

Relaxation (in percentage of noise)

(a) Noise 2%

0 10 50 100 200 500
3000

3500

4000

4500

5000

5500

6000

B
es

t t
es

t e
rr

or

Noise = 5

Relaxation (in percentage of noise)

(b) Noise 5%

Fig. 6. Noise 2% and 5%

0 10 50 100 200 500

0.7

0.8

0.9

1

1.1

1.2

1.3

x 10
4

B
es

t t
es

t e
rr

or

Noise = 10

Relaxation (in percentage of noise)

Fig. 7. Noise 10%

Comparing target errors with resources. We are interested in measuring the num-
ber of resources required to reach a certain test error t, for a certain relaxation
r. For this we define a success criteria S:

S : “to reach test error t”

We choose to look for the values that reach S with probability .99. The analysis
of Subsec. 2.4 is then undertaken, and then the minimum value of nodes, n,
reaching S, is kept. The pair (t, n) is then interpreted as:

With probability .99 (based on 500 runs), RelaxGP with relaxation r needs
n nodes to reach error t.

8 L. Da Costa, J.-A. Landry, and Y. Levasseur

10
−1

10
0

10
5

10
6

Nodes by error target, confidence = .99

n:
 n

od
es

 r
eq

ui
re

d
(t

ot
al

)

t: target test errors

(t,n)

Fig. 8. Typical extended curve for a given relaxation r

Repeating this procedure for a set of test errors t yields a curve for relaxation
r (Fig. 8). A point (t, n) is read as “replications of experiment with relaxation
r having reached a test error of at most t have evaluated n nodes”; two points
resulting from such calculations have been linked by a straight line.

For comparing the effects of two relaxation values r1 and r2 we plot the two
curves together (Fig. 9). Certain comparisons can then be made; for example

10
−1

10
0

10
5

10
6

Nodes by error target, confidence = .99

n:
 n

od
es

 r
eq

ui
re

d
(t

ot
al

)

t: target test errors

(t
1
,n

1
)

(t
2
,n

3
)

(t
2
,n

2
)

relaxation r
1

relaxation r
2

Fig. 9. Extended curve for relaxations r1 and r2

the curve for relaxation r1 shows a set of points whose value can not be reached
by the curve of relaxation r2. Test error t1 can not be reached with relaxation
r2, while with relaxation r1 error t1 is reached using, in average, n1 nodes.

The relative position of the curves is also important; for example, we observe
that for test error t2 relaxation r1 uses n3 nodes, while relaxation r2 uses n2

nodes, and n2 > n3. So, if we are interested in using less resources for reaching
error t2, we should relax the training data by r1 (instead of by r2).

Treating Noisy Data Sets with Relaxed Genetic Programming 9

This idea is now being applied to the comparison of all the relaxations to-
gether. In order to compare different experiments, with different values, an ab-
solute error ta (defined in (1), page 6) is expressed as a percentage of (a) the
number of test points and (b) the total range δY of values Q(x) (the quar-
tic polynomial) when x ∈ [−20, 20] (interval from where the test points were
generated). So, tr, the relative test error corresponding to ta, is:

tr =
ta

160 ∗ δY
∗ 100 (2)

The analysis of the results yields several interesting points. First, for all sets of
noisy values there are relaxations that outperform standard GP (i.e., non-zero
relaxations resulted in a best relative test error than relaxation 0). The best
values for each noise are depicted in Table 1 (see Fig. 10 and Fig. 11 for details).
An interesting fact from this Table is that relaxations 10% and 100% are always
the best performers.

We also noticed that non-zero relaxations are generally better (in terms of
resources required to reach a certain error) than standard GP in all experi-
ments (Table 2), the only exception being a range around relative error 3.25
in noise 0.5% (Fig. 10(a)). In other words, relaxing the fitness function results
in a better utilization of resources for reaching a given test error. The relative
gain is the smallest in the case of the smaller noise (0.5, a gain of 12.57%), and
comparable in the other cases (in the range [22 − 28]%).

These and other results of our analysis are now presented in terms of resources
required to reach a set of target relative errors: noises 0.5 and 1 are presented

Table 1. Best relative error reached

Noise Standard GP RelaxGP
Test Error Best relaxation Test Error

0.5 3.258 10% 3.257
1 6.731 10%, 100% 6.724
2 11.14 100% 11.11
5 33.70 10% 33.62
10 52.12 100% 51.76

Table 2. Utilization of resources

Noise Relative error RelaxGP Standard GP. Gain
for measure Relaxation Resources Resources (%)

0.5 3.26 10% 8.83 ∗ 106 1.01 ∗ 107 12.57%
1 6.73 10% 1.57 ∗ 107 2.02 ∗ 107 22.17%
2 11.14 100% 1.20 ∗ 107 1.63 ∗ 107 26.38%
5 33.70 10% 2.06 ∗ 107 2.86 ∗ 107 27.97%
10 52.12 50% 8.13 ∗ 106 1.05 ∗ 107 22.57%

10 L. Da Costa, J.-A. Landry, and Y. Levasseur

3.25 3.26 3.27 3.28 3.29

10
7

[Noise = 0.5] Nodes by error target, confidence = .99

N
od

es
 r

eq
ui

re
d

(t
ot

al
)

Relative target test error

relax=200%

relax=100%

relax=
10% relax=0%

(a) noise=0.5%

6.73 6.75

10
7.1

10
7.2

10
7.3

10
7.4

[Noise = 1%] Nodes by error target, confidence = .99

N
od

es
 r

eq
ui

re
d

(t
ot

al
)

Relative target test error

relax=10%

relax=100%

relax=50%

relax=0%

relax=200%

(b) noise=1%

Fig. 10. Noises 0.5% and 1%

11.12 11.14

10
7

[Noise=2%] Nodes by error target, confidence = .99

N
od

es
 r

eq
ui

re
d

(t
ot

al
)

Relative target test error

relax=100%

relax=50% relax=10%

relax=0%

(a) noise=2%

33.65 33.30 33.80 33.88

10
6

10
7

[Noise=5%] Nodes by error target, confidence = .99

N
od

es
 r

eq
ui

re
d

(t
ot

al
)

Relative target test error

relax=10%

relax=100%

relax=0%
relax=50%

relax=200

(b) noise=5%

51.76 52 52.25 52.48

10
7

[Noise=10%] Nodes by error target, confidence = .99

N
od

es
 r

eq
ui

re
d

(t
ot

al
)

Relative target test error

relax=100% relax=10%

relax=0%

relax=50%

(c) noise=10%

Fig. 11. Noises 2%, 5%, and 10%

in Fig. 10. Noise 2, 5 and 10 are in Fig. 11. In all plots, the thick black line
corresponds to the standard GP. For being considered into the plot, a target
error of value t must have been reached by at least 30 of the (500) replications.

Treating Noisy Data Sets with Relaxed Genetic Programming 11

An observation made from the plots reaffirms the results presented earlier in
the boxplots (Figs. 5, 6 and 7): only relaxations equal or less than the noise are
competitive with standard GP: curves of relaxations 200% and 500% are worse
than relaxation 0 both in best error reached and in terms of resources used.

4 Discussion

In this paper we proposed the use of a technique we developed earlier (RelaxGP,
in [2] and [3]) as an alternative to treat noisy data sets in the context of regression
and approximation of symbolic functions. RelaxGP stands on a new definition
of a perfect solution: in standard symbolic regression, a perfect solution provides
exact values for each point in the training set. RelaxGP allows a perfect solution
to belong to a certain interval around the desired values.

Our main hypothesis was that RelaxGP should outperform classical GP in
the solving of regression problems where the input data is originally noisy. Noisy
data is actually found in several “real-world” problems, where the noise comes,
for example, from the imperfection of sensors. We compare the performance of
solutions generated by GP and by RelaxGP in the regression of 5 noisy sets. The
performance was assessed through the measure of the solutions’ generalization
error (cumulative error on a set of values not used for training) and the amount
of resources (in number of nodes) used for attaining a certain performance.

For all our experiments, RelaxGP, using an appropriate relaxation value, out-
performed standard GP, both in terms of generalization error reached and in
number of resources required to reach a certain given test error. Moreover, the
amount of relaxation “optimal” for each noise n is experimentally discovered to
be between 10 and 100% of the noise of the data (always assuming a Gaussian
noise). In other words, if we can have an idea of “how large” the noise of the
measures making up the input to a problem is, the best way to attack that
problem is by using RelaxGP with relaxation lower than this noise.

These results are positive and motivate the need for another set of experi-
ments, where we could understand more precisely the exact nature of the influ-
ence of relaxation on the dynamics of the evolutionary process, in general, and
on the “cleaning” of noisy data, in particular.

Acknowledgements

The authors would like to acknowledge the financial support of the the Natural
Sciences and Engineering Research Council of Canada (NSERC).

References

1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming An
Introduction. Morgan Kauffman Publishers, San Francisco (1998)

2. Da Costa, L.E., Landry, J.-A.: Relaxed genetic programming. In: Keijzer, M. (ed.)
Proceedings of GECCO 2006, Seattle, USA, pp. 937–938 (2006)

12 L. Da Costa, J.-A. Landry, and Y. Levasseur

3. Da Costa, L.E., Landry, J.-A., Levasseur, Y.: Improving genetic programming by
relaxing the fitness function. Improving genetic programming by relaxing the fitness
function (2007) (Submitted to Genetic Programming and Evolvable Machines)

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley
and sons, Inc., New York (2001)

5. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of automatically defined
functions and architecture-altering operations in automated circuit synthesis using
genetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.)
Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 132–
140. The MIT Press, Stanford University. Cambridge, MA (1996)

6. Koza, J.R.: Genetic Programming-On the programming of Computers by Means of
Natural Selection, vol. 1. MIT Press, Cambridge, London (1992)

7. Koza, J.R.: Evolution of a computer program for classifying protein segments as
transmembrane domains using genetic programming. In: Altman, R., Brutlag, D.,
Karp, P., Lathrop, R., Searls, D. (eds.) Proceedings of the Second International
Conference on Intelligent Systems for Molecular Biology, pp. 244–252. AAAI Press,
Menlo Park, CA (1994)

8. Silva, S.: Gplab-a genetic programming toolbox for matlab (2004),
http://gplab.sourceforge.net

http://gplab.sourceforge.net

Cost-Benefit Investigation of a

Genetic-Programming Hyperheuristic

Robert E. Keller and Riccardo Poli

Department of Computing and Electronic Systems, University of Essex, UK

Abstract. In previous work, we have introduced an effective, grammar-
based, linear Genetic-Programming hyperheuristic, i.e., a search heuristic
on the space of heuristics. Here we further investigate this approach in
the context of search performance and resource utilisation. For the chosen
realistic travelling salesperson problems it shows that the hyperheuris-
tic routinely produces metaheuristics that find tours whose lengths are
highly competitive with the best results from literature, while population
size, genotype size, and run time can be kept very moderate.

1 Introduction

A heuristic is a method that, given a problem, often finds a good solution within
acceptable time, while it cannot be shown that a found solution cannot be bad,
or that the heuristic will always operate reasonably quickly. A metaheuristic
is a heuristic that approaches a problem by employing heuristics. The term
hyperheuristic [21], see [22] for its origin, refers to a heuristic that explores the
space of metaheuristics that approach a given problem.

Over the past few years, hyperheuristics (HH) have increasingly attracted re-
search interest. For example, [7] suggests a method of building low-level heuristics
for personnel scheduling, [6] proposes tabu search on the space of heuristics, [9]
describes a timetabling application of a hyperheuristic, and [8] suggests simu-
lated annealing as learning strategy for a hyperheuristic. [19] employs Genetic
Programming (GP) [2, 15, 16] for evolving Evolutionary Algorithms that are
applied to problems of discrete optimisation. For the bin-packing problem, [4]
introduces a hyperheuristic that is driven by GP. This system successfully re-
produces a human-designed bin-packing method.

While the approaches presented in these papers use fixed, problem-specific
languages implying sequential execution of actions, our linear GP hyperheuristic,
introduced in [13] and further investigated in [14], uses grammars to obtain
independence from a given problem domain and to contribute to guiding the
search for a solution to a given problem.

In our previous work we saw that the introduction of a looping construct
in one of the investigated grammars proved crucial to the effectiveness of the
hyperheuristic: it routinely produced metaheuristics that actually delivered best-
known solutions to larger TSP benchmark instances despite the simplicity of the
underlying grammar. Also the low-level heuristics, given to the hyperheuristic

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 R.E. Keller and R. Poli

as building material, were basic, showing that a user is only required to provide
simple heuristics.

The advantage of the approach is that domain knowledge becomes a free
resource for the GP hyperheuristic that does not have to rediscover the provided
component heuristics. Moreover, by crafting a grammar appropriately, one can
direct evolutionary search towards promising types of metaheuristics.

The demonstrated principle and its real-world effectiveness clearly confirmed
the original hope behind hyperheuristics that they can lead to optimisation meth-
ods that are more flexible in their application to different practical domains. In
this context, the domain-independence of the principle is of particular relevance
since a fixed HH that efficiently operates for all domains cannot be designed
[24]. This obstacle can be circumvented with our GP hyperheuristic because a
decision maker can specialise it for a given problem domain by changing the
supporting grammar.

As seen in our previous work, the demands on the user of the hyperheuristic
are very modest in terms of sophistication of heuristics to be supplied to the
HH. In the present paper, we shall investigate the question whether the HH
is also easy on its computing resources, in particular in terms of the sizes of
populations and genotypes, and whether obtaining a significant increase in search
performance does only require a modest additional investment of resources. To
the end of experimenting, we use those grammars from our previous work that
have shown most beneficial in guiding the hyperheuristic search.

The paper is organised as follows. In Section 2, we introduce the hyperheuristic
in detail. In Section 3, we describe the types of problem used in experiments
with the hyperheuristic. In Section 4, we describe the grammars that we then
use for experiments described in Section 5. In Section 6, we give a summary and
conclusions, while in Section 7 we describe interesting avenues for future work.

2 A Linear-GP Hyperheuristic

Our GP hyperheuristic accepts the definition of the structure of desired meta-
heuristics for D, an arbitrary, fixed domain of problems. Then, in principle, af-
ter changing this description appropriately, one can apply the HH to a different
domain.

To give the definition, one may represent some of D’s low-level heuristics or
well-known metaheuristics as components of sentences of a language that one
describes by a grammar G. In this manner, σ ∈ L(G) defines a metaheuristic
for D. Then, any form of grammar-based GP (e.g., [20] [23] [18] [12] [25] [10]),
evolving programs from L(G), is a hyperheuristic for D. Here, we describe our
HH implementation that is a flavour of linear GP [3].

A metaheuristic is represented as a genotype g ∈ L(G) with a domain-specific
grammar G. T shall designate the set of terminals of G. L(G) ⊂ T∗, the set
of all strings over T . We call a terminal t ∈ T a primitive (and T a primitive
set) to avoid confusion regarding “terminal” as used in the field of GP. Primitives

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic 15

Algorithm 1. GP-based HYPERHEURISTIC
1: given: grammar G, population size p, length l
2: repeat
3: produce next random primitive-sequence σ : |σ| = l
4: EDITING(σ,G) → g genotype
5: until p genotypes created
6: while time available do
7: Selection: 2-tournament
8: Reproduction: Copy winner g into loser’s place → g′

9: Exploration: with a given probability
Mutate copy g′ → δ
EDITING(δ,G)→ g′′ genotype

10: end while

may represent manually created metaheuristics, low-level heuristics, or parts of
them.

The execution of a metaheuristic, g, with g = i0 i1...in, ij ∈ T , means the
execution of the ij . This execution constructs a complete structure, s, that is a
candidate solution to the given problem. More specifically, s is obtained from an
initial, complete structure, i0():

s = in(...(i1(i0()))...).

All ij with j �= 0 accept a complete structure as input. All ij deliver a complete
structure as output. In particular, i0, in some straightforward fashion, delivers
an initial, complete structure.

g’s fitness shall depend on the quality of s because the execution of g’s prim-
itives builds s in the described manner.

At the beginning of a run of the GP hyperheuristic (s. Algorithm 1), given
population size p, initialisation produces p random primitive-sequences from T ∗.
All such sequences are of the same length, l. Mutation of a genotype g ∈ L(G)
randomly selects a locus, j, of g, and replaces the primitive at that locus, ij ,
with a random primitive, t ∈ T, t �= ij.

Naturally, both initialisation and mutation may result in a primitive-sequence,
σ = i0..ij ..ik ∈ T ∗, that is not a valid genotype, i.e., σ �∈ L(G) ⊂ T ∗. In this
case, the sequence is passed to an operator called EDITING that starts reading
σ from left to right.

If EDITING reads a primitive, p, that represents a syntax error in its current
locus, EDITING replaces it with the no-operation primitive, n. These steps are
repeated until the last primitive has been processed. Then, either the current σ
is in L(G), and EDITING ends, or still σ �∈ L(G). In the latter case, EDITING

keeps repeating the above steps on σ, but this time processing it from right to
left. The result is either a σ ∈ L(G) or a σ that consists of n-instances only.
In this latter, unlikely case, EDITING then assigns the lowest available fitness
value to σ. This way σ will most likely disappear from the population during
tournament selection.

16 R.E. Keller and R. Poli

Note that, although we initialise the population using sequences of a fixed
length, l, the application of EDITING effectively leads to a population containing
genotypes of variable lengths not longer than l. This variation in genotype size
is beneficial, as, in principle, it allows the evolution of parsimonious heuristics.

We actually observed this effect and described it in [14]. It may contribute
to saving run time since a shorter genotype may execute faster. In any case, l,
the maximally available genotype size, controls the actual genotype sizes, and
we shall investigate its influence on search performance later.

3 Problem Domain

To study aspects of resource use in the context of the performance of the GP hy-
perheuristic, we select the NP-hard set of travelling salesperson problems (TSP)
[17].

In its simplest form, a TSP involves finding a minimum-cost Hamiltonian
cycle, also known as “tour”, in a given, complete, weighted graph. Let the n
nodes of such a graph be numbered from 0 to n − 1. Then, one describes a tour
involving edges (v0, v1), (v1, v2), ..., (vn−1, v0) as a permutation p = (v0, ..., vn−1)
over {0, ..., n − 1}.

We call permutation (0, 1, ..., n−1) the natural cycle of the graph. The weight
of an edge (i, j) represents the cost of travelling between i and j. Here, we shall
interpret this cost as the distance between i and j. Thus, the shorter a tour is,
the higher is its quality.

4 Grammars

We describe TSP-specific languages that will support experimenting. To that
end, we require a few simple routines, including basic heuristics, that are re-
presented as primitives of terminal sets of the describing grammars.

The primitive NATURAL designates the method that creates the natural cycle
for a problem.

The low-level heuristic 2-CHANGE identifies a minimal change of a tour H into
a different tour: given two of H ’s edges (a, b), (c, d) : a �= d, b �= c, 2-CHANGE
replaces them with (a, c), (b, d). When the hyperheuristic is about to call a
2-CHANGE primitive, it randomly selects two appropriate edges, (a, b), (c, d), as
arguments for 2-CHANGE.

Another primitive, IF 2-CHANGE, executes 2-CHANGE only if this will shorten
the tour under construction. As every greedy operator, IF 2-CHANGE is a boon
and a curse, but its introduction is safe here since there is a randomising coun-
terweight in the form of 2-CHANGE.

Another low-level heuristic is known as a 3-change: delete three mutually
disjoint edges from a given tour, and reconnect the obtained three paths so that
a different tour results. Given this method, we define the heuristic IF 3-CHANGE:
randomly select edges as arguments for 3-change;
if 3-change betters the cycle for the arguments, execute 3-change.

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic 17

metaheuristic ::= NATURAL
| NATURAL search

search ::= heuristic
| heuristic search

heuristic ::= 2-CHANGE
| IF_2-CHANGE
| IF_3-CHANGE
| IF_NO_IMPROVEMENT

Fig. 1. Grammar ThreeChange

Preamble

heuristic ::= 2-CHANGE
| IF_2-CHANGE
| IF_3-CHANGE

Fig. 2. Grammar NoNoImprove

Since IF 3-CHANGE introduces a further greedy bias if it is used in combination
with IF 2-CHANGE, it may or may not be helpful to provide a counter-bias, for
instance by occasionally allowing for possibly worsening a tour, such as in the
heuristic

IF NO IMPROVEMENT:
if none of the latest 1, 000 individuals produced has found a
better best-so-far tour, execute a 2-change.

Using the defined primitives, we give grammar ThreeChange (s. Figure 1).
In further grammars, we shall represent the top two grammar rules, i.e.,
metaheuristic and search, by the symbol Preamble.

A small language is desirable, as it means a small solution space for the hyper-
heuristic. To understand, by means of a coming experiment, whether IF NO IM-
PROVEMENT does or does not improve the effectiveness of the GP hyperheuristic,
we remove it from grammar ThreeChange. We call the resulting grammar and
its language NoNoImprove (s. Figure 2).

So far, only sequential and conditional execution of user-provided heuristics
are available to evolved metaheuristics. A loop element is required to complete
the set of essential control structures. To that end, we introduce the primitive
REPEAT UNTIL IMPROVEMENT p:
execute primitive p until it has lead to a shorter tour or until
it has been executed ι times for user-given ι.

An example for the use of REPEAT UNTIL IMPROVEMENT in a grammar, DoTill-
Improve, is shown in Figure 3.

18 R.E. Keller and R. Poli

Preamble

heuristic ::= 2-CHANGE
| loop IF_2-CHANGE
| loop IF_3-CHANGE

loop ::= REPEAT_UNTIL_IMPROVEMENT
| /* empty */

Fig. 3. Grammar DoTillImprove

5 Experiments

5.1 Setup

We number the loci of genotypes, beginning with zero. For the present setup of
the hyperheuristic, its random choice of an element from a set shall be uniform.
For all experiments, mutation probability (cf. Algorithm 1, step 9) shall be 0.5.
The GP-HH shall measure time in terms of the number of offspring individuals
produced after creation of the initial individuals (cf. Algorithm 1, step 6).

5.2 First Problem

We consider problem eil51 from [1]. Its dimension is n = 51 nodes, its best
known solution has a length of 428.87 [11] with natural length of approximately
1,313.47. For a symmetrical TSP instance, the number of tours that are different
in human terms equals (n − 1)!/2.

The evolved metaheuristics operate on permutations of n nodes, so that the
size of their search space is n!. n = 51 gives about 1.6× 1066 search points and
1.52× 1064 different tours. Table 1 reports a subset of results from [14] obtained
with grammars ThreeChange and NoNoImprove, the latter lacking the primitive
IF NO IMPROVEMENT.

Here, we comment on an effect that was not in the focus of our previous work:
surprisingly, eliminating the non-destructive primitive IF NO IMPROVEMENT from
grammar ThreeChange yields better search performance (s. bottom row of table).

A possible explanation of this phenomenon is the much smaller size of the
resulting language which is the solution space of the hyperheuristic. This smaller
size may at least partially compensate for the loss of IF NO IMPROVEMENT. For
each of both grammars, given its primitive set T and genotype length l, the size
of the induced solution space equals

|L(G)| =
l−1∑

i=0

(|T | − 1)i, (1)

since the grammar generates language

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic 19

Table 1. Performance for eil51 over ThreeChange and NoNoImprove, 30 runs. Basic
parameters: pop.size 100, genotype size 500, offspring 1× 105, mut. prob. 0.5. “Best”
mentions the best value over all runs.

eil51 Mean best SD Best

Natural length 1,313.47 n.a. n.a.

ThreeChange 874.96 26.55 810.73
NoNoImprove 798.32 15.98 763.30

L(G) =
l−1⋃

i=0

{NATURAL} ⊗ (T \ {NATURAL})⊗i ,

where ⊗ is the Cartesian product and the superscript ⊗i represents the Cartesian
product iterated i times. The largest term of the finite geometric series (1) is
(|T |−1)l−1. So, for grammar G = ThreeChange , where |T | = 5, and for genotype
length l = 500, this term equals 4499 ≈ 2.7× 10300. For G = NoNoImprove, we
obtain merely 3499 ≈ 1.2× 10238.

Therefore, in terms of enhancing effectiveness and efficiency of the GP hy-
perheuristic, it may well be recommendable in general to approach a problem
first with a small primitive set for the underlying grammar. This is because ev-
ery language increases in size, often exponentially, when one adds an element
to its primitive set. Should the problem at hand resist solution, one can still
incrementally add beneficial primitives.

5.3 Second Problem

While the metaheuristics’ search space for eil51 already has a realistic size, next,
we consider eil76 [1], a 76-node problem with a size of about 1.9× 10111 search
points.

We use the same basic parameters as given in Table 1, and, from here, gram-
mar DoTillImprove with parameter ι for the loop primitive. The best known
result from literature [11] is α = 544.37, obtained by a highly specialised, man-
ually designed hybrid Genetic Algorithm.

An individual of the GP hyperheuristic that locates a tour whose length is at
least as good as α shall be called a top metaheuristic.

Table 2 shows results regarding our GP hyperheuristic. The mean best over
all runs is well within one percent of α. Our evolved top metaheuristics yield tour
lengths that are actually shorter than α = 544.37. Unfortunately, [11] does not
specify whether α is a rounded value. Thus, we report that our GP hyperheuristic
has found an overall best tour length of αHH = 544.36908.

In any case, since the hyperheuristic at least finds α, the used parameters are
a good starting point for further experiments.

Population size. We ask how the performance of the GP hyperheuristic de-
pends on the population size. Therefore, we vary the population size over several
orders of magnitude for different experiments.

20 R.E. Keller and R. Poli

Table 2. Performance of metaheuristics evolved over language DTI, on problem eil76.
100 runs of GP hyperheuristic. Basic parameters: pop.size 100, genotype size 500,
offspring 1×106; mut. prob. 0.5. Evolved top metaheuristics at least match effectiveness
of hand-crafted Hybrid GA. P.%: Mean best or natural length in terms of % of best
known result α. All real values rounded off to nearest hundredth.

eil76 Mean best S.D. Best ι P.%
Nat. length 1,974.71 n.a. n.a. n.a. 262.75

DTI 548.99 1.67 544.37 2× 103 0.85
Hybrid GA n.a. n.a. 544.37 best known n.a.

Table 3. Performance of metaheuristics evolved over language DTI, on problem eil76.
100 runs of GP hyperheuristic for each given population size. Other basic parameters:
genotype size 500, offspring 1× 106, ι 2,000; mut. prob. 0.5. Bottom row gives best
known rounded result as found by GP hyperheuristic and Hybrid GA. Over all runs,
column First gives the mean of the serial number of the first metaheuristic of a run
that finds a shortest tour of the run, rounded off to the nearest 1,000, given in the unit
of 1,000 individuals.

eil76 Mean best S.D. Best Pop.size P.% First[k]

Nat. length 1,974.71 n.a. n.a. n.a. 262.75 n.a.

677.53 13.76 614.55 10 24.46 476
548.99 1.67 544.37 100 0.85 627

DTI 547.48 1.69 544.37 500 0.57 845
552.86 2.55 546.74 1,000 1.56 905
722.89 29.03 651.82 10,000 32.79 955

GPHH/HGA n.a. n.a. 544.37 best known n.a. n.a.

Table 3 shows the results. Starting at p=10,000, smaller population sizes yield
better results, up to a point: the drop to p=10 clearly worsens the effectiveness of
the GP hyperheuristic. This can be explained by the enhancement of tournament-
selection pressure that comes with a smaller population size, which prematurely
stalls progress when the pressure becomes too high too early during a run.

We are interested in the efficiency of a run of the GP hyperheuristic in terms
of the number of individuals it produces before it locates the first of its best
individuals.

Table 3 gives these values in its “First” column. While p=10 yields the highest
efficiency, the resulting effectiveness (column “Best”) is poor. However, p=100
gives best effectiveness (column “Best”), best reliability (“S.D.”), second best
overall effectiveness (“Mean best”), and second best efficiency (“First”). Thus,
an investment in a larger population size is of secondary interest only, as it, at
best, yields a marginal improvement in the overall effectiveness, without yielding
a better metaheuristic.

Genotype size. Next, we ask for the connection of efficiency and genotype
size in the context of effectiveness. To that end, we fix p=100 as it has given
best effectiveness, and we shall vary the genotype size, l. For the chosen p-value,
Table 3 suggests setting the number of offspring to be produced to 627,000.

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic 21

Table 4. Runs of GP hyperheuristic for given genotype sizes. Other parameters: pop-
ulation size 100, offspring 627,000; ι 2,000; mut. prob. 0.5. Over all runs done for a
given genotype size l, column Firstbest gives the mean of the serial number of the top
metaheuristic discovered first, if any, else “—”; unit: 1,000 individuals. Column Runs
gives the number of runs performed for given l. Other details as given in caption of
Table 3.

eil76 Mean best S.D. Best Geno.size P.% Firstbest[k] Runs

Nat. length 1,974.71 n.a. n.a. n.a. 262.75 n.a. n.a.

1,314.000 17.55 1,263.400 50 141.38 — 100
713.601 14.89 677.980 250 31.09 — 100
642.870 12.4 613.129 300 18.11 — 100
568.134 4.57 556.451 400 4.37 — 100

DTI 556.043 3.46 545.667 450 2.14 — 55
548.990 1.67 544.369 500 0.85 621 100
546.531 1.1 544.369 600 0.4 494 16
544.765 0.79 544.369 700 0.07 463 10

544.369 0.0 544.369 900 0.0 255 15

GPHH/HGA n.a. n.a. 544.370 best known n.a. n.a. n.a.

Table 4 collects the results. Already for modest values of l, such as 400, the GP
hyperheuristic produces competitive metaheuristics. Higher values, still in the
same order of magnitude, increase all aspects of performance, such as efficiency
(“First best”) and effectiveness. l=900 even guarantees the best known result
for every observed run. Thus, clearly, if one considers making an additional
investment of memory, it should be spent on the genotype size.

Iteration number. Finally, we are interested in the question whether, for
p=100, l=500, 1× 106 offspring, and mutation probability 0.5 (cf. Table 3), at
a reasonable expense of more run time per metaheuristic, the hyperheuristic
can clearly improve its overall effectiveness. For ι = 2, 000, on average, the
hyperheuristic produces 97 metaheuristics per second. To approach our question,
we run the HH for ι = 15, 000.

We find that the mean best’s P.% value drops to 0.26, less than a third of
its previous value, 0.85. On average, the GP hyperheuristic still produces 56
metaheuristics per second. Thus, the run-time increase by factor 1/56/(1/97)≈
1.7 has more than tripled the overall effectiveness of the hyperheuristic. Also,
while we consider only 30 runs, a very low standard deviation (0.97) indicates
reliable search behaviour.

6 Summary and Conclusions

We have investigated our domain-independent, linear GP hyperheuristic (HH)
[14, 13] with respect to its demand for computing resources in the context of its
effectiveness and efficiency. The HH produces metaheuristics from a user-given
language, employing provided heuristics. We experimented on this approach,
using the domain of travelling-salesperson problems. To this end we provided the

22 R.E. Keller and R. Poli

hyperheuristic with elementary heuristics for this domain and with a progression
of simple grammars.

On the used, realistic benchmark problems, it shows that the GP hyperheuris-
tic shows excellent competitiveness, yielding best known tour lengths usually
only produced by specialised, sophisticated, man-made solvers initialised with
selected tours as good starting points.

We observed that one can increase efficiency and effectiveness of the hy-
perheuristic by making only modest additional investments of population size,
genotype size, and production time of an evolved metaheuristic. Favourable scal-
ability may well be a common property of GP-based hyperheuristics over differ-
ent problem domains, since [5] reports related results for a different challenge.

Also, regarding our GP hyperheuristic, we noted that decreasing the size of
the primitive set of the underlying grammar may help solve a problem. We
argued that this is at least due to the resulting, exponentially smaller solution
space facing the hyperheuristic. It may thus be beneficial to start out with a
small primitive set, before incrementally adding primitives if solution quality
stays unacceptable.

In our experiments with the TSP domain, it was important to approach a
problem with a medium-sized population when using tournament selection, as
neither small nor high selection pressure appeared beneficial. It is also useful,
if run time is acceptable and memory available, to rather increase the genotype
size instead of the population size. These two approaches may also work well for
problems other than TSP, but further research is needed to confirm this.

We conclude that, in addition to asking for only little domain knowledge of
its user, the GP hyperheuristic, while being competitive, is also undemanding in
terms of computing resources.

7 Further Work

In the future we intend to test the presented GP hyperheuristic on further real-
world problems from several domains, again comparing the produced metaheuris-
tics to domain-specific algorithms.

Also, it would be interesting to explore what happens if one breaks up low-
level heuristics into their components and represents them as primitives. In this
way, in principle, the hyperheuristic would be able to produce even more novel
and powerful metaheuristics.

Furthermore, on the level of search guidance, we intend to have the GP hy-
perheuristic collect and use information on the topology of the search space of
an underlying problem.

Acknowledgements

We would like to acknowledge financial support from EPSRC (grants
EP/C523377/1 and EP/C523385/1) and to thank the anonymous reviewers for
helpful comments.

Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic 23

References

[1] http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/tsp/
[2] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: On the Automatic Evolu-

tion of Computer Programs and its Applications. In: Genetic Programming – An
Introduction, Morgan Kaufmann, San Francisco, CA, USA (1998)

[3] Brameier, M., Banzhaf, W.: Linear Genetic Programming. In: vol. 1, Genetic and
Evolutionary Computation, Springer, Heidelberg (2006)

[4] Burke, E., Hyde, M., Kendall, G.: Evolving bin packing heuristics with genetic
programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869.
Springer, Heidelberg (2006)

[5] Burke, E., Hyde, M., Kendall, G., Woodward, J.: Scalability of evolved on line
bin packing heuristics. In: Proceedings of Congress on Evolutionary Computation,
CEC 2007 (2007)

[6] Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling
and rostering. Journal of Heuristics 9(6), 451–470 (2003)

[7] Chakhlevitch, K., Cowling, P.: Choosing the fittest subset of low level heuristics
in a hyperheuristic framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005.
LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)

[8] Dowsland, K., Soubeiga, E., Burke, E.: A simulated annealing hyper-heuristic
for determining shipper sizes. European Journal of Operational Research 179(3),
759–774 (2007)

[9] Gaw, A., Rattadilok, P., Kwan, R.: Distributed choice function hyper-heuristics
for timetabling and scheduling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004.
LNCS, vol. 3616, pp. 495–497. Springer, Heidelberg (2005)

[10] Janikow, C.Z.: Constrained genetic programming. In: Hussain, T.S. (ed.) Ad-
vanced Grammar Techniques Within Genetic Programming and Evolutionary
Computation, Orlando, Florida, USA, 13 July 1999, pp. 80–82 (1999)

[11] Jayalakshmi, G., Sathiamoorthy, S., Rajaram, R.: An hybrid genetic algorithm
— a new approach to solve traveling salesman problem. International Journal of
Computational Engineering Science 2(2), 339–355 (2001)

[12] Keller, R.E., Banzhaf, W.: The evolution of genetic code on a hard problem. In:
Spector, L., Langdon, W.B., Wu, A., Voigt, H.-M., Gen, M. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), San
Francisco, CA, July 7–11, 2001. pp. 50–66, Morgan Kaufmann, San Francisco, CA
(2001)

[13] Keller, R.E., Poli, R.: Linear genetic programming of metaheuristics. In: GECCO
2007: Proceedings of the 9th annual conference on Genetic and evolutionary com-
putation, July 7-11, 2007, ACM Press, London (2007)

[14] Keller, R.E., Poli, R.: Linear genetic programming of parsimonious metaheuristics.
In: Proceedings of Congress on Evolutionary Computation (CEC 2007), Swissotel
The Stamford, Singapore September 25-28 (2007)

[15] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

[16] Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidel-
berg (2002)

[17] Lawler, E., Lenstra, J., Kan, A.R., Shmoys, D. (eds.): The Travelling Salesman
Problem. Wiley, Chichester (1985)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/tsp/

24 R.E. Keller and R. Poli

[18] Montana, D.J.: Strongly typed genetic programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

[19] Oltean, M.: Evolving evolutionary algorithms using linear genetic programming.
Evolutionary Computation 13(3), 387–410 (Fall 2005)

[20] O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic
Publishers, Dordrecht (2003)

[21] Ross, P.: Hyperheuristics. In: Burke, E., Kendall, G. (eds.) Search Methodologies,
pp. 529–556. Springer, New York, Berlin (2005)

[22] Soubeiga, E.: Development and application of hyper-heuristics to personnel
scheduling. PhD thesis, Computer Science, University of Nottingham (2003)

[23] Whigham, P.A.: Search bias, language bias, and genetic programming. In: Koza,
J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996:
Proceedings of the First Annual Conference, Stanford University, CA, USA, July
28–31, 1996, pp. 230–237, MIT Press, Cambridge (1996)

[24] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

[25] Wong, M.L., Leung, K.S.: Applying logic grammars to induce sub-functions in
genetic programming. In: 1995 IEEE Conference on Evolutionary Computation,
Perth, Australia, November 29 - 1 December, 1995, vol. 2, pp. 737–740. IEEE
Press, Los Alamitos (1995)

Automatic Design of Vision-Based Obstacle

Avoidance Controllers Using Genetic
Programming

Renaud Barate and Antoine Manzanera

ENSTA - UEI, 32 bd Victor,
75739 Paris Cedex 15, France

renaud.barate@ensta.fr, antoine.manzanera@ensta.fr

Abstract. The work presented in this paper is part of the development
of a robotic system able to learn context dependent visual clues to navi-
gate in its environment. We focus on the obstacle avoidance problem as
it is a necessary function for a mobile robot. As a first step, we use an off-
line procedure to automatically design algorithms adapted to the visual
context. This procedure is based on genetic programming and the can-
didate algorithms are evaluated in a simulation environment. The evolu-
tionary process selects meaningful visual primitives in the given context
and an adapted strategy to use them. The results show the emergence
of several different behaviors outperforming hand-designed controllers.

1 Introduction

Obstacle avoidance is an essential function for any mobile robot. Range sensors
are the most commonly used devices for detecting obstacles but the accuracy
of sonars depends on the angle of reflection and the material of the detected
object and laser range sensors are expensive and can be harmful. More, both
are active sensors which is undesirable for military applications for instance. On
the contrary, video cameras are now cheap, low consumption and high resolution
sensors. Nevertheless detecting obstacles with a single camera is a difficult prob-
lem. Different solutions exist, using either optical flow or more simple contextual
information, but none is generic enough to deal with changing environments.

Ideally, the robot should be able to adapt itself dynamically to the current
context and to select its behavior (here, the obstacle avoidance algorithm) in real
time depending on its environment. The robot would learn those most efficient
behaviors only by interacting with the environment. As a first step towards this
goal, we propose here an offline method based on genetic programming for the
automatic design of obstacle avoidance controllers within a given environment.
The next steps will be to develop a set of algorithms adapted to different en-
vironments and to design a high level controller able to select in real time the
best algorithm for the current environment. Our system uses a simulation en-
vironment to test different algorithms. We will show that the evolved solutions
use relevant visual primitives and that they perform better than hand-designed
controllers.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 25–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 R. Barate and A. Manzanera

2 Inspiration and Principles

2.1 Vision Based Obstacle Avoidance

One commonly used method to perform obstacle avoidance using a single camera
is based on the calculation of optical flow. Optical flow represents the perceived
movement of the objects in the camera field of view. It is commonly represented
by a vector field, each vector representing the displacement of the corresponding
pixel. According to the parallax principle, the perceived displacements will be
greater for nearer objects when the camera has a translational movement. A
simple and robust approach for obstacle avoidance is to move the robot forward
for a few seconds, to calculate the mean of the optical flow on the right and left
sides of the image, then to turn the robot in order to balance the flow on each
side. This technique is inspired by the behavior of bees and has been successfully
applied to center a mobile robot in a corridor [1,2]. More recently it has been
used for the control of an autonomous helicopter [3,4]. However, systems based
on optical flow don’t cope well with thin or lowly textured obstacles.

On the other hand, simple primitives can be used to extract different in-
formations about the image. Those include threshold, Gaussian and Laplacian
filters as well as orientation and frequency filters. In many cases, combinations
of some of those primitives can deliver enough information to discriminate po-
tential obstacles. For instance, Michels implemented a system to estimate depth
from texture information in outdoor scenes [5]. Other obstacle avoidance systems
use this kind of information to discriminate the floor from the rest of the scene
and calculate obstacle distances in several directions [6,7,8]. Nevertheless those
methods suppose that the floor may be clearly discriminated and they neglect
potentially useful contextual information from the rest of the scene. Ideally, a
good obstacle avoidance system should be able to use any visual clue.

2.2 Vision in Evolutionary Robotics

Evolutionary techniques have already been used for robotic navigation and the
design of obstacle avoidance controllers but in general vision is either overly
simplified or not used at all. For instance, Harvey used a 64x64 pixels camera but
simplified the input to a few average values on the image [9]. Marocco used only a
5x5 pixels retina as visual input [10]. A description of several other evolutionary
robotics systems can be found in [11,12] but most of them rely only on range
sensors. On the other hand, genetic programming has been proved to achieve
human-competitive results in image processing systems, e.g. for the detection
of interest points [13,14]. Ebner also developed a navigation system for a robot
using range sensors [15] but he didn’t combine the two approaches for a vision-
based navigation system. Parisian evolution has also been shown to produce very
good results for obstacle detection and 3D reconstruction but those systems need
two calibrated cameras [16,17].

To our knowledge, only Martin tried evolutionary techniques with monocular
images for obstacle avoidance [18]. The structure of his algorithm is based on

Automatic Design of Vision-Based Obstacle Avoidance Controllers 27

the floor segmentation technique and the evaluation is done with a database
of hand labeled real world image. The advantage of such an approach is that
the evolved algorithms are more likely to work well with real images than those
evolved with computer rendered images. Nevertheless, it introduces an important
bias since the algorithms are only selected on their ability to label images in
the database correctly. In our work, the vision algorithms are not limited to a
particular technique and the selection is based on a functional evaluation of the
algorithms, that is their ability to avoid obstacles in the simulation environment.

3 Material and Methods

3.1 The Vision Algorithms

Generally speaking, a vision algorithm can be divided in three main parts: First,
the algorithm will process the input image with a number of filters to highlight
some features. Then these features are extracted, i.e. represented by a small set
of scalar values. Finally these values are used for a domain dependent task, here
to generate motor commands to avoid obstacles. We designed the structure of
our algorithms according to this general scheme. First, the filter chain consists of
spatial and temporal filters, optical flow calculation and projection that will pro-
duce an image highlighting the desired features. Then we compute the mean of
the pixel values on several windows of this transformed image (feature extraction
step). Finally those means are used to compute a single scalar value by a linear
combination. Several scalar values can be produced with different filter chains,
these values are then combined using scalar operators. A final step will generate
a motor command using the resulting scalar value(s). We extended this purely
vision based algorithmic structure by adding two scalar input variables: the goal
location distance and heading relative to the robot position. These variables can
be used for command generation along with the other scalar values.

An algorithm is represented as a tree, the leaves being input data, the root
being output command, and the internal nodes being primitives (transformation
steps). The program can use different types of data internally, i.e. scalar values,
images, optical flow vector fields or motor commands. For each primitive, the
input and output data types are fixed. Some primitives can internally store
information from previous states, thus allowing temporal computations like the
calculation of the optical flow. Fig. 1 shows an example program for a simple
obstacle avoidance behavior based on optical flow. Here is the list of all the
primitives that can be used in the programs and the data types they manipulate:

– Spatial filters (input: image, output: image): Gaussian, Laplacian, thresh-
old, Gabor, difference of Gaussians, Sobel and subsampling filter.

– Temporal filters (input: image, output: image): pixel-to-pixel min, max,
sum and difference of the last two frames, and recursive mean operator.

– Optical flow (input: image, output: vector field): Horn and Schunck global
regularization method, Lucas and Kanade local least squares calculation and
simple block matching method [19].

28 R. Barate and A. Manzanera

Fig. 1. Algorithmic tree of a program example for obstacle avoidance. Rectangles rep-
resent primitives and ellipses represent data.

– Projection (input: vector field, output: image): Projection on the horizontal
or vertical axis, Euclidean or Manhattan norm computation, and time to
contact calculation using the flow divergence.

– Windows integral computation (input: image, output: scalar): The me-
thod used for this transformation is:
1. A global coefficient α0 is defined for the primitive.
2. Several windows are defined on the left half of the image with different

positions and sizes. With each window is paired a second window defined
by symmetry along the vertical axis. A coefficient αi and an operator (+
or −) are defined for each pair.

3. The resulting scalar value R is a simple linear combination calculated
with the following formula:

R = α0 +
∑n

i=1 αiμi

μi = μLi + μRi or μi = μLi − μRi

where n is the number of windows and μLi and μRi are the means of the
pixel values over respectively the left and right window of pair i.

The number of windows pairs, their positions, sizes, operator and coefficient
along with the global coefficient are characteristic parts of the primitive and
will be customized by the evolutionary process.

Automatic Design of Vision-Based Obstacle Avoidance Controllers 29

– Scalar operators (input: scalar(s), output: scalar): Addition, subtraction,
multiplication and division operators, temporal mean calculation and simple
if-then-else test.

– Command generation (input: scalar(s), output: command): The motor
command is represented by two scalar values: the requested linear and an-
gular speeds. We created two operators to generate these values:

• Direct generation: The required linear and angular speeds are two input
scalar values.

• Sequential moves: The movement is decomposed in straight moves and
in-place rotations. This facilitates the usage of optical flow based strate-
gies, since optical flow exploitation is more straightforward when the
movement has no rotational part. This operator uses one input scalar
value, which will be the angle of rotation at the end of a straight move.

Most of those primitives use parameters along with the input data to do their
calculations (for example, the standard deviation value for the Gaussian filter).
Those parameters are specific to each algorithm; they are randomly generated
when the corresponding primitive is created by the genetic programming system
described in Sect. 3.3.

3.2 Evaluation of Algorithms

For the evaluation of the different obstacle avoidance algorithms, we use a simu-
lation environment in which the robot moves freely during each experiment. The
simulation is based on the open-source robot simulator Gazebo. The simulation
environment is a closed room of 36 m2 area (6 m x 6 m) with block obstacles or
furniture items depending on the experiments.

The simulation uses ODE physics engine for the movement of the robot and
collisions detection and OpenGL for the rendering of the camera images. The
physics engine update rate is 50 Hz while the camera update rate is 10 Hz. In
all the experiments presented in this paper, the simulated camera produces 8-
bits gray-value images of size 320x160 representing a field of view of 120◦ x 60◦.
This large field of view reduces the dead angles and hence facilitates obstacle
detection and avoidance. All the obstacles are immovable to prevent the robot
from just pushing them instead of avoiding them.

In each experiment, the goal of the robot is to go from a given starting point to
a goal location without hitting obstacles. For that, we place the robot at the fixed
starting point and let it move in the environment during 60 s driven by the obsta-
cle avoidance algorithm. Two scores are attributed to the algorithm depending
on its performance: a goal-reaching score G1 rewards algorithms reaching or
approaching the goal location, whereas score C1 rewards the individuals that
didn’t hit obstacles on their way. Those scores are calculated with the following
formulas:

G1 =
{

tG if the goal is reached
tmax + dmin/V else

C1 = tC

30 R. Barate and A. Manzanera

where tG is the time needed to reach the goal in seconds, tmax is the maximum
time in seconds (here 60 s), dmin is the minimum distance to the goal achieved
in meters, V is a constant of 0.1 m/s and tC is the time spent near an obstacle
(i.e. less than 18 cm, which forces the robot to keep some distance away from
obstacles).

We proceed then to a second run with a different starting point and a different
goal location. Scores G2 and C2 are calculated the same way and the total scores
GT and CT are obtained by adding the scores from the two runs:

GT = G1 + G2

CT = C1 + C2

The goal is hence to minimize those two scores GT and CT. Performing two
different runs favors algorithms with a real obstacle avoidance strategy while
not increasing evaluation time too much. The starting points are fixed because
we want to evaluate all algorithms on the same problem.

3.3 The Evolution Process

We use genetic programming to evolve obstacle avoidance algorithms with the
least possible a priori on the structure of the algorithm. Genetic programming,
as introduced by J. Koza [20], is the evolution of computer programs by means of
artificial evolution. Like other evolutionary algorithms, it is based on a selection-
breeding process inspired by biological evolution which creates better algorithms
by combining the primitives of the best algorithms of previous generations.

As usual with evolutionary algorithms, the population is initially filled with
randomly generated individuals. The difficulty that arises with algorithms that
use different data types is to ensure that the generated algorithms are valid. Mon-
tana introduced strongly-typed genetic programming to overcome this problem
[21] and Whigham extended it by using a grammar to generate the algorithms
[22]. We decided to use this grammar-based genetic programming as it also al-
lows us to bias the search toward more promising primitives and to control the
growth of the algorithmic tree.

In the same way that a grammar can be used to generate syntactically cor-
rect random sentences, a genetic programming grammar is used to generate valid
algorithms. The grammar defines the primitives and data (the bricks of the algo-
rithm) and the rules that describe how to combine them. The generation process
consists in successively transforming each non-terminal node of the tree with one
of the rules. This grammar is used for the initial generation of the algorithms
and for the transformation operators. The crossover consists in swapping two
subtrees issuing from identical non-terminal nodes in two different individuals.
The mutation consists in replacing a subtree by a newly generated one. For clar-
ity and space reasons, we cannot present the whole derivation process here but
detailed explanations can be found in the paper from Whigham [22]. Table 1
presents the exhaustive grammar that we used in all our experiments.

The numbers in brackets are the probability of selection for each rule. A major
advantage of this system is that we can bias the search toward the usage of more

Automatic Design of Vision-Based Obstacle Avoidance Controllers 31

Table 1. Grammar used in the genetic programming system for the generation of the
algorithms

[1.0] start → command [0.14] spatial filter → threshold
[0.5] command → sequentialMove(real) [0.14] spatial filter → gabor
[0.5] command → directMove(real,real) [0.14] spatial filter → differenceOfGaussians
[0.1] real → targetDistance [0.14] spatial filter → sobel
[0.1] real → targetHeading [0.15] spatial filter → subsampling
[0.1] real → scalarConstant [0.2] temporal filter → temporalMinimum
[0.05] real → add(real,real) [0.2] temporal filter → temporalMaximum
[0.05] real → subtract(real,real) [0.2] temporal filter → temporalSum
[0.05] real → multiply(real,real) [0.2] temporal filter → temporalDifference
[0.05] real → divide(real,real) [0.2] temporal filter → recursiveMean
[0.05] real → temporalRegularization(real) [0.33] optical flow → hornSchunck(image)
[0.05] real → ifThenElse(real,real,real,real) [0.33] optical flow → lucasKanade(image)
[0.4] real → windowsIntegralComputation(image) [0.34] optical flow → blockMatching(image)
[0.3] image → videoImage [0.2] projection → horizontalProjection
[0.4] image → spatial filter(image) [0.2] projection → verticalProjection
[0.15] image → projection(optical flow) [0.2] projection → euclideanNorm
[0.15] image → temporal filter(image) [0.2] projection → manhattanNorm
[0.15] spatial filter → gaussian [0.2] projection → timeToContact
[0.14] spatial filter → laplacian

promising primitives by setting a high probability for the rules that generate
them. We can also control the size of the tree by setting small probabilities for
the rules that are likely to cause an exponential growth (rules like REAL →
ifThenElse(REAL,REAL,REAL,REAL) for example).

As described in the previous section, we wish to minimize two criteria GT and
CT. There are different ways to use evolutionary algorithms to perform optimiza-
tion on several and sometimes conflicting criteria. For the experiments described
in this paper, we chose the widely used multi-objective evolutionary algorithm
called NSGA-II introduced by K. Deb. We will not describe this algorithm here,
as detailed and thorough explanations can be found in [23].

For the parameters of the evolution, we use a crossover rate of 0.8 and a prob-
ability of mutation of 0.01 for each non-terminal node. The population size is
100 individuals and the experiments last for 100 generations. We use a classical
binary tournament selection in all our experiments. Those parameters were de-
termined empirically with a few tests using different values. Due to the length
of the experiments, we didn’t proceed to a thorough statistical analysis of the
influence of those parameters.

4 Experiments and Results

4.1 Experiment in a Simple Environment with Block Obstacles

The experiment described in this subsection uses only simple block obstacles.
The goal is to cross the environment diagonally without hitting those block ob-
stacles. We use a single brick texture for all the walls, floor, ceiling and blocks.
We also manually created a simple obstacle avoidance controller for this envi-
ronment based on optical flow. It manages to avoid some obstacles but it is quite
slow and gets stuck in some situations. For this problem, the evolution created
more efficient solutions, as shown on Figure 2.

32 R. Barate and A. Manzanera

 0

 20

 40

 60

 80

 100

 120 140 160 180 200 220 240 260

C
on

ta
ct

 s
co

re

Goal reaching score

Manual controller
Generation 0

Generation 20
Generation 99

Fig. 2. Left: Snapshot of the simple environment with textured block obstacles. Right:
Evolution of the best algorithms along the generations. Only the Pareto front for each
generation is shown here.

Different kinds of controllers emerged, from slow ones only covering a few
meters to fast ones quickly reaching the goal but bouncing on obstacles rather
than avoiding them. The interesting point is that all those controllers use either
an optical flow based technique, which is the most straightforward, or a Gabor
filter detecting near obstacles. The evolution didn’t find the ideal compromise
between obstacle avoidance and speed but it selected reasonable and usable
visual primitives for the environment efficiently. The resulting trajectories for
the reference controller and two evolved ones are shown on Fig. 3.

Starting point 1
Starting point 2

Target point 1
Target point 2

Trajectory 1
Trajectory 2

Contact points

Fig. 3. Left: Trajectory of the reference controller. Middle: Trajectory of an evolved
controller with a careful behavior. Right: Trajectory of a faster evolved controller
bouncing on obstacles.

The two corresponding evolved controllers are shown on Fig. 4. It is inter-
esting to note that these controllers use only a few primitives. In this kind of
experiment, several primitives are seldom selected: edge detectors for example
(Laplacian or Sobel) are almost never used, probably because the integral com-
putation step is not adapted for the extraction of this kind of feature. On the

Automatic Design of Vision-Based Obstacle Avoidance Controllers 33

Fig. 4. Left: Algorithm of an evolved controller with a careful behavior. Right: Algo-
rithm of a faster evolved controller.

contrary, optical flow is very often used but mainly to detect near obstacles
because the flow computation is very imprecise at high speed or with a rotary
movement. Gabor filter is also often selected as it can detect textured obstacles
at a given distance.

4.2 Experiment in a More Realistic Environment

In this experiment, the block obstacles have been replaced by bookshelves. The
floor and the walls have different textures. The environment is less cluttered but
the obstacles are larger than in the previous experiment. As there is more free
space and the target location is nearer from the starting point, the experiment
time is reduced to 30 seconds. We manually designed another reference controller
to compare with the evolution results. It is also based on optical flow but it has
been slightly changed to perform better in this environment. Figure 5 shows the
environment and the performance of these controllers.

Once again, one of the evolved controllers avoids obstacles correctly but it is
far from perfect as it doesn’t reach the goal from the first starting point. Other
evolved controllers reach the goal quickly but hit obstacles and walls several
times on their way. This time, almost all the evolved controllers use direct in-
tegral computations on the image to detect obstacles. When approaching the
bookshelves, the bottom of the shelves becomes more visible. Those areas are
darker because the light comes from the ceiling in these experiments, thus with
a simple integral computation in the upper part of the image, the robot brakes
when approaching an obstacle. This obstacle detection technique is coupled with
a target heading behavior and a seemingly random back and forth move that
partially prevents the robot from getting stuck behind large obstacles. The com-
bination of those three techniques achieves a rather good obstacle avoidance
performance, as shown on Fig. 6.

34 R. Barate and A. Manzanera

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

C
on

ta
ct

 s
co

re

Goal reaching score

Manual controller
Generation 0

Generation 20
Generation 99

Fig. 5. Left: Snapshot of the environment with several furniture items. Right: Evolution
of the best algorithms along the generations.

Starting point 1
Starting point 2

Target point 1
Target point 2

Trajectory 1
Trajectory 2

Contact points

Fig. 6. Left: Trajectory of the hand-designed controller. Middle: Trajectory of an
evolved controller avoiding obstacles. Right: Trajectory of another evolved controller
quickly reaching the goal but not avoiding obstacles.

4.3 Discussion

The results of these two experiments show that the evolution process introduced
in this paper is able to produce interesting solutions, generally outperforming
hand-designed controllers. The evolution caused the emergence of original solu-
tions to the obstacle avoidance problem depending on the context. The visual
primitives selected in each case are coherent and can be used to avoid obstacles.
This is promising for the next necessary step which will be the validation of the
evolved algorithms on a real robot.

Nevertheless it should be noted that these performances are far from per-
fect. More, in other experiments with an even simpler environment where hand-
designed controllers are really efficient, evolution gets stuck in local minima
and achieves far worse performance. This underlines the major drawback of our
approach at the moment: the population is much too small compared to the
size of the search space, so evolution only explores a small part of it and hence
misses many interesting solutions. We currently investigate solutions to overcome
this problem without increasing the evolution time too much. The first possible

Automatic Design of Vision-Based Obstacle Avoidance Controllers 35

solution would be to introduce a diversity metric to prevent premature con-
vergence. This solution has been proved efficient on several problems but it is
not straightforward to define a good diversity metric for tree based algorithms.
An easier and probably more efficient solution would be to change population
parameters. We could either split the population in several independent sub-
populations or change the population size during the evolution to explore more
solutions in the beginning. A combination of these two solutions is also possible
and is likely to improve the results greatly. Another drawback is that our fea-
ture extraction operator is not adapted for linear or punctual features (edges or
corners for instance). The addition of others feature extraction operators should
increase the diversity of usable features.

5 Conclusion

In this paper, we used multi-objective genetic programming to create obstacle
avoidance controllers making use of visual information. We use a simulation en-
vironment with computer rendered images to evaluate the candidate controllers.
The evolution allowed the emergence of original strategies using relevant visual
primitives in the environment. For future research, we intend to improve the
results by controlling more precisely the population parameters of the evolution
process. We also plan to design a more realistic simulation environment and
robot model to evolve more robust controllers and to test them on a real robot.
We will then adapt our system for the online selection of relevant controllers in
order to develop strategies adapted to the visual context in real time. This will
bring us closer to our goal of an adaptive and reactive robot able to face the
complex and ever-changing environments of the real world.

References

1. Santos-Victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergent stereo for robot
navigation: learning from bees. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pp. 434–439 (1993)

2. Ebner, M., Zell, A.: Centering behavior with a mobile robot using monocular
foveated vision. Robotics and Autonomous Systems 32(4), 207–218 (2000)

3. Muratet, L., Doncieux, S., Brière, Y., Meyer, J.A.: A contribution to vision-based
autonomous helicopter flight in urban environments. Robotics and Autonomous
Systems 50(4), 195–209 (2005)

4. Hrabar, S.: Vision-Based 3D Navigation for an Autonomous Helicopter. PhD thesis,
University of Southern California (2006)

5. Michels, J., Saxena, A., Ng, A.: High speed obstacle avoidance using monocular
vision and reinforcement learning. In: Proceedings of the 22nd international con-
ference on Machine learning, pp. 593–600 (2005)

6. Horswill, I.: Polly: A vision-based artificial agent. In: Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-1993), pp. 824–829 (1993)

7. Lorigo, L., Brooks, R., Grimson, W.: Visually-guided obstacle avoidance in unstruc-
tured environments. In: Proceedings of the 1997 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, vol. 1, pp. 373–379 (1997)

36 R. Barate and A. Manzanera

8. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular
color vision. In: Proceedings of AAAI Conference, pp. 866–871 (2000)

9. Harvey, I., Husbands, P., Cliff, D.: Seeing the Light: Artificial Evolution, Real
Vision. In: From Animals to Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, pp. 392–401 (1994)

10. Marocco, D., Floreano, D.: Active vision and feature selection in evolutionary be-
havioral systems. From Animals to Animats 7, 247–255 (2002)

11. Mataric, M., Cliff, D.: Challenges in evolving controllers for physical robots.
Robotics and Autonomous Systems 19(1), 67–83 (1996)

12. Walker, J., Garrett, S., Wilson, M.: Evolving controllers for real robots: A survey
of the literature. Adaptive Behavior 11(3), 179–203 (2003)

13. Ebner, M., Zell, A.: Evolving a task specific image operator. In: Evolutionary im-
age analysis, signal processing and telecommunications: First european workshop,
evoiasp, pp. 74–89 (1999)

14. Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic pro-
gramming. In: Proceedings of the 8th annual conference on Genetic and evolution-
ary computation, pp. 887–894 (2006)

15. Ebner, M., Zell, A.: Evolving a behavior-based control architecture-From simula-
tions to the real world. In: Proceedings of Genetic and Evolutionary Computation
Conference, vol. 2, pp. 1009–1014 (1999)

16. Pauplin, O., Louchet, J., Lutton, E., De La Fortelle, A.: Evolutionary Optimisation
for Obstacle Detection and Avoidance in Mobile Robotics. Journal of Advanced
Computational Intelligence and Intelligent Informatics 9(6), 622–629 (2005)

17. Olague, G., Puente, C.: Parisian evolution with honeybees for three-dimensional
reconstruction. In: Proceedings of the 8th annual conference on Genetic and evo-
lutionary computation, pp. 191–198 (2006)

18. Martin, M.: Evolving visual sonar: Depth from monocular images. Pattern Recog-
nition Letters 27(11), 1174–1180 (2006)

19. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. In-
ternational Journal of Computer Vision 12(1), 43–77 (1994)

20. Koza, J.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA, USA (1992)

21. Montana, D.: Strongly Typed Genetic Programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

22. Whigham, P.: Grammatically-based genetic programming. In: Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications, pp.
33–41 (1995)

23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

Generating SAT Local-Search Heuristics Using a

GP Hyper-Heuristic Framework

Mohamed Bader-El-Den and Riccardo Poli

Department of Computing and Electronic Systems, University of Essex, UK

Abstract. We present GP-HH, a framework for evolving local-search 3-
SAT heuristics based on GP. The aim is to obtain “disposable” heuristics
which are evolved and used for a specific subset of instances of a problem.
We test the heuristics evolved by GP-HH against well-known local-search
heuristics on a variety of benchmark SAT problems. Results are very
encouraging.

1 Introduction

Hyper-heuristics could simply be defined as “heuristics to choose other heuris-
tics” [4]. A heuristic is considered as “rule of thumb” or “educated guess” that
reduces the search required to find a solution. The difference between meta-
heuristics and hyper-heuristics is that the former operate directly on the targeted
problem search space with the goal of finding optimal or near optimal solutions.
The latter, instead, operate on the heuristics search space (which consists of the
heuristics used to solve the targeted problem). The goal then is finding or gener-
ating high-quality heuristics for a target problem, for a certain class of instances
of a problem, or even for a particular instance.

There are two main classes of hyper-heuristics. In a first class of hyper-
heuristic systems, which we term HH-Class 1, the system is provided with a
list of preexisting heuristics for solving a certain problem. Then the hyper-
heuristic system tries to discover what is the best sequence of application for
these heuristics for the purpose of finding a solution. Different techniques have
been used to build hyper-heuristic systems of this class. Algorithms used to
achieve this include, for example: tabu search [5], case-based reasoning [6], ge-
netic algorithms [7], ant-colony systems [22], and even algorithms inspired to
marriage in honey-bees [1].

The second approach used to build hyper-heuristic systems aims at evolving
new heuristics by making use of the components of known heuristics. We term
this class HH-Class 2. This is the approach we will adopt also in this paper.
The process starts simply by selecting a suitable set of heuristics that are known
to be useful in solving a certain problem. However, instead of directly feeding
these heuristics to the hyper-heuristic system (as an in HH-Class 1 discussed
above), the heuristics are first decomposed into their basic components. Differ-
ent heuristics may share different basic components in their structure. However,
during the decomposition process, information on how these components were

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 37–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 M. Bader-El-Den and R. Poli

connected with one another is lost. To avoid this problem, this information is
captured by a grammar. So, in order to provide the hyper-heuristic systems
with enough information on how to use components to create valid heuristics,
one must first construct an appropriate grammar. Hence, in the hyper-heuristics
in HH-Class 2, both the grammar and the heuristics components are given to
the hyper-heuristic systems. The system then uses a suitable evolutionary algo-
rithm to evolve new heuristics. For example, in recent work [3] genetic program-
ming [13,14] was successfully used to evolve new heuristics in HH-Class 3 for
one-dimensional online bin packing problems. Very positive results with evolv-
ing offline bin-packing heuristics have recently been obtained in [16] where GP
was used to evolve strategies to guide a fixed solver. In general, we can say that
the HH-Class 2 approach has more freedom to create new heuristics for a given
problem than HH-Class 1. However, HH-Class 1 is easier to implement since it
does not require the decomposition of heuristics nor the use of a grammar.

The long term goal in our research is investigating the use of GP as a hyper-
heuristic framework for evolving instance-dependent heuristics. That is, the aim
is not to obtain general heuristics, but effectively “disposable” heuristics which
are evolved and used for a specific instance of a problem. Here, we will make a
first step in this direction, by exploring the evolution of heuristics which are spe-
cialised to solve specific subsets of instances of a problem. In particular we evolve
heuristics specialised to solve SAT problems with a fixed number of variables.
We do this with a grammar based strongly-typed GP hyper-heuristic system,
which we call GP-HH.

2 SAT Problem

The target in the satisfiability problem (SAT) is to determine whether it is
possible to set the variables of a given Boolean expression in such a way to make
the expression true. The expression is said to be satisfiable if such an assignment
exists. If the expression is satisfiable, we often want to know the assignment that
satisfies it. The expression is typically represented in Conjunctive Normal Form
(CNF), i.e., as a conjunction of clauses, where each clause is a disjunction of
variables or negated variables.

There are many algorithms for solving SAT. Incomplete algorithms attempt
to guess an assignment that satisfies a formula. So, if they fail, one cannot
know whether that’s because the formula is unsatisfiable or simply because the
algorithm did not run for long enough. Complete algorithms, instead, effectively
prove whether a formula is satisfiable or not. So, their response is conclusive.
They are in most cases based on backtracking. That is, they select a variable,
assign a value to it, simplify the formula based on this value, then recursively
check if the simplified formula is satisfiable. If this is the case, the original formula
is satisfiable and the problem is solved. Otherwise, the same recursive check is
done using the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the Davis Putnam Lo-
gemann Loveland procedure [8]. Incomplete algorithms are often based on local

Generating SAT Local-Search Heuristics 39

Algorithm 1. General algorithm for SAT stochastic local search heuristics

L = initialise the list of variables randomly
for i = 0 to MaxFlips do

if L satisfies formula F then
return L

end if
select variable V using some selection heuristic
flip V in L

end for
return no assignement satisfying F found

search heuristics (see Section 2.1). These algorithms can be extremely fast, but
success cannot be guaranteed. On the contrary, complete algorithms guarantee
success, but they computational load can be considerable, and, so, they cannot
be used for large SAT instances.

2.1 Stochastic Local-Search Heuristics

Stochastic local-search heuristics have been widely used since in the early 90s
for solving the SAT problem following the successes of GSAT [21]. The main
idea behind these heuristics is to try to get an educated guess as to which
variable will most likely, when flipped, give us a solution or to move us one step
closer to a solution. Normally the heuristic starts by randomly initialising all the
variables in the CNF formula. It then flips one variable at a time, until either a
solution is reached or the maximum number of flips allowed has been exceeded.
Algorithm 1 shows the general structure of a typical local-search heuristic for
the SAT problem. The algorithm is normally repeatedly restarted for a certain
number of times if it is not successful.

2.2 Evolutionary Algorithms and SAT Problem

Different evolutionary techniques have been applied to the SAT problem. There
are two main research directions: direct evolution and evolution of heuristics.

An example of methods in the first direction – direct evolution – is FlipGA
which was introduced by Marchiori and Rossi in [15]. There a genetic algorithm
was used to generate offspring solutions to SAT using the standard genetic op-
erators. However, offspring were then improved by means of local search meth-
ods. The same authors later proposed, ASAP, a variant of FlipGA [17]. A good
overview of other algorithms of this type is provided in [12].

The second direction, which we also adopt in this paper, is to use evolutionary
techniques to automatically evolve local search heuristics. A successful example
of this is the CLASS system developed by Fukunaga [9,10]. The process of evolv-
ing new heuristics in the CLASS system is based on five conditional branching
cases (if-then-else rules) for combining heuristics. Effectively CLASS can be con-
sidered as a very special type of the genetic programming system where these

40 M. Bader-El-Den and R. Poli

rules are used instead of the standard GP operators (crossover and mutation).
The results of the evolved heuristics were competitive with a number of human-
designed heuristics. However, the evolved heuristics were relatively slow. This is
because the conditional branching operations used evaluate two heuristics first
and they then select the output of one to decide which variable to flip. Also,
restricting evolution to use only conditional branching did not give the CLASS
system enough freedom to evolve heuristics radically different from the human-
designed heuristics (effectively, the evolved heuristic are made up by a number of
nested heuristics). Another example of system that evolves SAT heuristics is the
STAGE system introduced by Boyan and Moore in [2]. STAGE tries to improve
the local search performance by learning (online) a function that predicts the
output of the heuristic based on some characteristics seen during the search.

3 GP-HH for SAT

To construct a grammar suitable to guide GP-HH in the solution of SAT prob-
lems, we used a number of the well-know local-search heuristics. We decomposed
these heuristics into their basic components. The heuristics considered are the
following:

– GSAT: [21] which, at each iteration, flips the variable with the highest gain
score, where the gain of the variable is the difference between the total
number of satisfied clauses after flipping the variable and the current number
of satisfied clauses. The gain is negative if flipping the variable reduces the
total number of satisfied clauses.

– HSAT: [11] In GSAT more than one variable may present the maximum gain.
GSAT chooses among such variables randomly. HSAT, instead, uses a more
sophisticated strategy. Its selects the variable with the maximum age, where
the age of the variable is the number of flips since it is was last flipped. So,
the most recently flipped variable has an age of zero.

– GWSAT: [19] with probability p selects a variable occurring in some unsat-
isfied clauses while with probability (1− p) flips the variable with maximum
gain as in GSAT.

– WalkSat: [20] starts by selecting one of the unsatisfied clauses C. Then it
flips randomly one of the variables that have a gain score of 0 (leading to
a “zero-damage” flip). If none of the variables in C has a “zero-damage”
characteristic, it selects with probability p the variable with the maximum
score gain, and with probability (1 − p) a random variable in C.

We have designed a simple but flexible grammar, which gives GP-HH enough
freedom to evolve really new heuristics. By analysing the previous heuristics, we
classified the main components of these heuristics into two main groups. The
first group of components, Group 1, returns a variable from an input list of
variables (e.g., the selection of a random variable from the list or of the variable
with highest gain score). The second group, Group 2, returns a list of variables
from the CNF formula (e.g., the selection of a random unsatisfied clause which,
effectively, returns a list of variables).

Generating SAT Local-Search Heuristics 41

After trying different grammar representations we decided to design the gram-
mar in such a way to produce nested functions to avoid using variables for pass-
ing data from a function to another. The aim was to reduce the constraints on
the crossover and mutation operators, and to make the GP tree representing
each individual simpler. The grammar we used and its components are shown in
Figure 1.

In Group 2 we have two more components which are not directly taken from
the list of heuristics above. The first, which we call ALL USC (which stands for
all unsatisfied clauses), returns a list of non-repeated variables found in all the
unsatisfied clauses. We found that this component performed well especially on
instances with a relatively small number of variables, as will be shown later. The
second additional component, which we call RAND USC (which stands for random
unsatisfied clause), returns the variables in a randomly selected clause. The main
difference between RAND USC and USC, which also returns a random unsatisfied
clause, is that USC returns the same unsatisfied clause during the course of the
execution of a heuristic, while RAND USC randomly selects a different clause each
time it is invoked.

The primitive SCR Z selects a zero-damage variable (as in WalkSAT). We
placed this component in group 2. It returns the input list if no variable with
zero score gain is found. If, instead, a zero-damage variable is found, it returns
a list which includes this variable only.

Most primitives which accept a list as input are provided in two versions: one
with a single list argument, and one with a list and an object of type op. The non-
terminal symbol op in the grammar specifies how to break ties between variables
whenever multiple variables in a list satisfy a selection criterion. When op is not
provided, a default tie-breaking strategy is used. For example, in MAX SCR – the
component that returns the variable with the highest score gain – if multiple
variables have the same highest score, the first variable is returned by default.
However, if the optional parameter op is provided and it is TIE AGE, the tie will
be broken by favouring the variable which has least recently been flipped. In
some cases a specific option may have no meaning with a particular component.
For example, TIE SCR breaks ties by favouring the variable with highest score.
Naturally, when used in conjunction with MAX SCR this option has no effect.

We also included probabilistic branching components (IFV and IFL) in our
heuristics. We classify branching components on the basis of their return type.
For example, if the branch is between selecting a random variable from a list and
selecting the variable with the highest gain score, we consider this probabilistic
branching component as in Group 1 since it returns a variable. The parameter
prob represents the probability of returning the first argument of an IFV or an
IFL primitive.

The grammar in Figure 1 could describe any of the heuristics discussed above.
For example, a statement describing the GWSAT heuristic with a noise pa-
rameter of 0.5 could be written as FLIP IFV 50, MAX_SCR ALL, TIE_RAND,

RANDOM USC, where ALL returns all the variables in the CNF formula, TIE RAND
stands for “break ties randomly”, MAX SCR selects a variable with highest score

42 M. Bader-El-Den and R. Poli

start → FLIP v
v → RANDOM l

| MAX_SCR l | MAX_SCR l, op
| IFV prob, v, v
| MIN_SCR l | MIN_SCR l, op
| MAX_AGE l | MAX_AGE l, op

l → ALL | ALL_USC
| RAND_USC | USC
| IFL prob, l, l
| SCR_Z l | SCR_Z l, op

op → TIE_RAND | TIE_AGE
| TIE_SCR | NOT_ZERO_AGE

prob → 20 | 40 | 50 |
70 | 80 | 90

Fig. 1. The grammar used for evolving heuristics for SAT using GP-HH

Fig. 2. GWSAT heuristic represented using the grammar adopted in GP-HH

and RANDOM selects a random variable from USC (unsatisfied clause). A tree rep-
resentation of this individual is shown in Figure 2.

4 Experimental Setup

We have implemented the full genetic programming hyper-heuristic framework
for the SAT problem in C++ compiled with the gcc compiler. The system con-
sists of two main parts: a grammar based GP engine and a SAT engine for
handling SAT formulas.

The GP-HH system was applied to solve benchmark cases taken from the uni-
form random 3-SAT library SatLib.1 All the problems in our benchmarks were
satisfiable uniform random 3-SAT problems with 20, 50, 75 and 100 variables.

1 A full set of benchmarks is available from http://www.cs.ubc.ca/~hoos/SATLIB/
benchm.html

http://www.cs.ubc.ca/~{}hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~{}hoos/SATLIB/benchm.html

Generating SAT Local-Search Heuristics 43

Fig. 3. Operations and interactions in the GP-HH framework

To reiterate, the objective of the experiments was to evolve a separate heuristic
that best performs on SAT instances of a given size, and not a general heuristics
for 3-SAT problem. So, we are not trying to evolve heuristics that compete with
general SAT solvers, although, as it will become clear later, unexpectedly we
obtained solvers with a considerable degree of generality.

Normally a local-search heuristic starts by randomly initialising all the vari-
ables in the formula to either zero or one. We did this in testing. However, during
evolution we started the evolved heuristics with all variables set to zero. This
may have slightly reduced the total number of solved cases and may even have
slightly increased the mean number of flips required by each heuristics in each
run. We used this approach, however, because it reduces the randomness in the
evolutionary process and makes it easier to compare results. Once again, this
was done only during the evolution of heuristics, while in testing we initialised
all the variables randomly, as customary.

The GP system initialises the population by using the grammar and selecting
random primitives out of the functions and terminals that are consistent with
the grammar. So, all initial heuristics are guaranteed to be syntactically valid
SAT heuristic. The population is then manipulated by the following operators:

– We use truncation selection, where only the best 40% of the population is
allowed to reproduce.

44 M. Bader-El-Den and R. Poli

Table 1. GP parameters

SAT set Population size Crossover rate Mutation rate Fitness cases Max Flips

uf20 300 35% 1% 80 1000
uf50 250 40% 1% 100 4000
uf75 300 40% 1% 40 10000
uf100 250 40% 1% 100 12000

– Offspring are created using a specialised form of crossover. A random cross-
over point is selected in the first parent, then the grammar is used to select
the crossover point from the second parent. It is randomly selected from all
valid crossover points. If no point is available, the process is repeated again
from the beginning until crossover is successful.

– Single point mutation is applied to 1% of the population. Again the grammar
is used to ensure that all individuals are valid heuristics throughout the
course of evolution.

– Individuals that have not been effected by any genetic operator are not
evaluated again to reduce the computation cost of the evolution phase.

Figure 3 shows how the framework works and how the interaction between
the two main engines, GP and SAT, operates.

As we mentioned before, we apply GP-HH to discover high-quality SAT solvers
specialised for SAT instances of a particular size. So, we pass to the system sets
of SAT instances all with the same number of variables. These form a training
set of fitness cases on which individuals are tested. The fitness of each individual
is based on three factors: a) how many cases have been solved out of the given
fitness cases (SAT instances), b) the mean number of flips needed in the solved
cases, and c) how many primitives (nodes) are present in an individual. Table 1
summarises the GP parameters used for each set of benchmarks.

During the evaluation of the initial population, we use only a fraction of the
training set. Also, the number of maximum flips allowed is smaller, than during
the other generations. This is done to reduce the computation load involved
with the evaluation of the initial population. Since this is randomly generated,
a high percentage of individuals have very low performance. These time saving
techniques help filter them out quickly.

Although the initial population in GP-HH is randomly generated and includes
no handcrafted heuristics, individuals representing GSAT, HSAT and GWSAT
were created in the initialisation in almost all experiments we did. This is because
of their simple representation with our grammar. This gave evolved heuristic a
chance to start competing with previously known good heuristics from the be-
ginning. In some cases the standard heuristics dominated the early generations
of runs. Nonetheless, GP was always able to eventually discover new and bet-
ter heuristics, despite our using in all our training and testing sets hard SAT
instances, where the clause-to-variable ratio is grater than or equal to 4.3. None
of the instance used in testing and comparing the evolved heuristics have been
used in the evolution phase.

Generating SAT Local-Search Heuristics 45

5 Results

Evolving heuristics for SAT is hard, with each GP-HH run taking between a few
hours to several days (for the biggest training sets) to complete. So, we cannot
provide here a statistical analysis of GP-HH runs. All we can say is that most
of our runs successfully evolved high-quality heuristics for the SAT instances in
their training set. We feel that this deficiency is acceptable, since this is one of
those cases where one is more interested in the results of a set of runs rather
than the runs themselves, since the results of our runs are actual problem solvers.
These we can study in great detail. So, in this section we present some of the
results of the evolved heuristics for each instance set of the 3-SAT problem.
We also compare the performance of these heuristics with that of well-known
local-search SAT heuristics.

We start by showing a typical example of the heuristics evolved using the GP-
HH framework. Figure 4 shows one of the best performing heuristics evolved for
the 50-variables instance set (brackets were introduced to increase readability).
As one can see evolved heuristics are significantly more complicated than the
standard heuristics we started from (e.g., GWSAT). So, a manual analysis of how
the component steps of an evolved heuristic contribute to its overall performance
is very difficult.

FLIP(IFV(90, IFV(40, MAX SCR(ALL,
TIE RAND), IFV(70, RANDOM(USC)), IFV(80,
MAX SCR(RAN USC, NOT ZERO AGE), IFV(20,

MAX SCR(ALL, TIE RAND), MAX SCR(RAND USC,
TIE AGE))))), IFV(80, IFV(50, MAX SCR(ALL,

TIE AGE), MAX SCR(RAND USC, TIE RAND)),
MAX SCR(IFL(70, ALL USC, USC)

NOT ZERO AGE))))

Fig. 4. SAT heuristics evolved by GP-HH. Training set taken from the uf50 benchmark
set.

However, it is possible to characterise the performance of SAT local search
heuristics using certain numerical measures [18]. Depth and mobility are, per-
haps, the two most important ones. Depth measures how many clauses remain
unsatisfied during the execution of a heuristic. Mobility is a measure of how
rapidly the heuristic moves in the search space. In general it is desirable to have
algorithms with large mobility values which indicate that the heuristic is moving
rapidly in the search space. Instead, it is better to have small values of depth,
indicating that the average number of unsatisfied clauses is small during the
course of execution of the heuristic.

Table 2 compares the depth and mobility of the GP-HH evolved heuristics
against depth and mobility of reference human-designed heuristics. The com-
parison is done on the uf100-0953 SATLib benchmark, which consists of SAT
instances with 100 variables and 430 clauses. The results for GSAT, HSAT and

46 M. Bader-El-Den and R. Poli

Table 2. Comparison of evolved and known SAT solvers on the uf100-953 instance set

Solver Mean depth Mean mobility Mean flips

GSAT() 2.13 5.7 99,006
WSAT(0.5) 5.65 15.7 9,421
Novelty(0.5) 4.76 18.9 4,122
GPHH100a 5.23 35,2 6,864
GPHH50a 8.17 42.9 11,154

WSAT are taken form [18]. In this table we show two of the local search heuris-
tics evolved using GP-HH, GPHH100a, which was evolved using 100-variable in-
stances, and GPHH50a, which was evolved on 50-variable instances. In both cases
SAT training instances were taken from the SATLib benchmark library. The
results show that GPHH100a performs better than GSAT, HSAT and WSAT in
terms of mobility and the average the number for flips used. However, GSAT
and HSAT have lower (better) values of depth. This is because they use a very
large number of flips, which cause these algorithms to have a smaller average
number of unsatisfied clauses. GPHH100a did not outperform the Novelty heuris-
tic, but the results are very close. We think this is a good result because Novelty
is an extremely high performing heuristics and it wasn’t one of the heuristics
decomposed to construct our GP-HH grammar. So, we hope that by including
components from Novelty in future research we may be able to further improve
GP-HH. Table 2 also shows the performance of GPHH50a, that was trained on
50-variable instances. Despite this, it appears to perform rather well also on
instances with 100 variable, showing some generalisation capability.

Some benchmark suites consisting of a number of SAT instances with between
30 and 100 variables were used in [12], where comparative results between a
number of heuristics, some of which evolutionary, were presented. These suites
have been used in a number of other studies. So, we chose the same suites to
perform a wider range of tests on our evolved heuristics. In particular, we used
Suite A, which encompasses instance with 30, 40, 50 and 100 variables, and Suite
B, which includes instances with 50, 75 and 100 variables. More details can be
found in [12].

In Tables 3 and 4 we provide comparative results of the GP-HH heuristics
against other state-of-the-art evolutionary heuristics and human-designed heuris-
tics on Suites A and B. The results of the GP-HH evolved heuristics are averages
of 5 runs on the benchmark sets. In Tables 3 and 4 the results of the FlipGA and
WSAT are taken from [12], while in Table 4 the results for Novelty+ and C2-D3
are taken from [10]. The number of runs of these heuristics on the suites varied
from 4 to 10. Note that we are testing evolved heuristics on all the instances in
the suites. So, for example, heuristics evolved for 50 variable instances are also
tested on the 75 and 100 variables instances. This gives us an indication of how
general the heuristics are, though a thorough analysis of this issue is beyond the
scope of this study.

In Table 3 and 4 two measures of the heuristics performance are shown: the
success rate (SR) on the set and the average number of flips (AF) used by each

Generating SAT Local-Search Heuristics 47

Table 3. Results for benchmark suite A. SR=success rate, AF=average number of flips
(out of a maximum of 300,000). Results for FlipGA and WSAT are taken from [12].

n = 30 n = 50 n = 100
SR AF SR AF SR AF

FlipGA 1.0 25,490 1.0 127,300 0.87 116,653
WSAT 1.0 1,631 1.0 15,384 0.8 19,680

GPHH100a 1.0 1,864 1.0 12,872 0.92 54,257
GPHH50a 1.0 2,035 1.0 16,273 0.84 24,549
GPHH20a 1.0 1,457 0.95 18,384 0.66 32,781

Table 4. Results for benchmark suite B

n = 50 n = 75 n = 100
SR AF SR AF SR AF

FlipGA 1.0 103,800 0.82 29,818 0.57 20,675
WSAT 0.95 16,603 0.84 33,722 0.6 23,853
Novelty+ N/A N/A 0.966 17,018 0.716 34,849
C2-D3 N/A N/A 0.972 19,646 0.786 40,085

GPHH100a 0.96 12,527 0.93 27,975 0.74 41,284
GPHH75a 1.0 18,936 0.95 26,571 0.59 29,495
GPHH50a 0.97 11,751 0.81 36,215 0.46 22,648

heuristic. The results show that the heuristics evolved by GP-HH performed well
compared to most local-search heuristics, outperforming some. The tables also
show that the heuristics evolved by GP-HH outperformed FlipGA in terms of
both the success rate and average number of flips.

From the results it can also be noticed that in some cases heuristics evolved
for a instances with a larger number of variables have a considerable degree of
generality, performing well also on problems with a smaller number variables.

6 Conclusion

In this paper we presented GP-HH, a framework for evolving “disposable” heuris-
tics for the SAT problem, i.e., heuristics that are relatively fast to evolve and
are specialised to solve specific sets of instances of the problem. We presented
a comparison between GP-HH and other well-known evolutionary and local-
search heuristics. The results show that the heuristics produced by GP-HH are
competitive with these.

GP-HH produced heuristics that are on par with some of the best-known
SAT solvers. We consider this a success. However, the heuristics evolved using
CLASS2 are slightly better than the ones evolved by GP-HH. As mentioned
in [10], these heuristics are slower than ours. This is because of the use of condi-
tional branching as a GP primitive. As mentioned in Section 2.2 in most cases this
requires to run two heuristics. We don’t use this form of conditional branching

48 M. Bader-El-Den and R. Poli

(our branching instructions are probabilistic branches). So, GP-HH heuristics are
faster than CLASS2 ones. Also the CLASS2 system used a large training sets and
much longer evolutionary runs compared to GP-HH. It remains to be explored
if by including more components in the grammar (e.g., those from Novelty),
performing longer runs and feeding the GP-HH with a set of the well performing
heuristics in the initial population, GP-HH could outperform CLASS2. This will
be the target of our future research.

Furthermore, in future work we intend to test and evolve heuristics for a
wider range of SAT problems. We also want to study the behaviour of GP-HH
in more detail. In addition, we aim to further speed up evolution. Like most
other GP systems, GP-HH populations include a large numbers of repeated in-
dividuals. So, a natural speed-up technique is to avoid the evaluation of repeated
individuals. Additional savings could be obtained by avoiding the evaluation of
repeated subtrees. We will also apply GP-HH to different combinatorial optimi-
sation problems, e.g., job shop scheduling.

Acknowledgements

The authors acknowledge financial support from EPSRC (grants EP/C523377/1
and EP/C523385/1).

References

1. Abbass, H.A.: MBO: Marriage in honey bees optimization - A haplometrosis polyg-
ynous swarming approach. In: Proceedings of the, Congress on Evolutionary Com-
putation CEC2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-
gu, Seoul, Korea, 27-30. pp. 207–214, IEEE Press, Los Alamitos (2001)

2. Boyan, J., Moore, A.: Learning evaluation functions to improve optimization by
local search. Journal of Machine Learning Research 1, 77–112 (2000)

3. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic
programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869.
Springer, Heidelberg (2006)

4. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Aca-
demic Publishers, Dordrecht (2003)

5. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9(6), 451–470 (2003)

6. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. Journal of Scheduling 9(2), 115–132 (2006)

7. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algo-
rithm applied to a trainer scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A.,
Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of
the 2002 Congress on Evolutionary Computation CEC2002, pp. 1185–1190. IEEE
Press, Los Alamitos (2002)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

Generating SAT Local-Search Heuristics 49

9. Fukunaga, A.: Automated discovery of composite SAT variable selection heuristics.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 641–648.
AAAI, Menlo Park (2002)

10. Fukunaga, A.: Evolving local search heuristics for SAT using genetic programming.
In: Deb, K., al., e. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494. Springer,
Heidelberg (2004)

11. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for
sat. In: Proc. of AAAI-1993, Washington, DC, pp. 28–33 (1993)

12. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary algorithms for the satisfiability
problem. Evol. Comput. 10(1), 35–50 (2002)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

14. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidel-
berg (2002)

15. Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard 3-SAT problems. In:
Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H, Honavar, V., Jakiela, M., Smith,
R.E., (eds). Proceedings of the Genetic and Evolutionary Computation Conference
Orlando, Florida, USA, 13-17, 1999, vol. 1, pp. 393–400, Morgan Kaufmann, San
Francisco (1999)

16. Poli, R., Woodward, J., Burke, E.: A histogram-matching approach to the evolution
of bin-packing strategies. In: Proceedings of the IEEE Congress on Evolutionary
Computation, Singapore (accepted, 2007)

17. Rossi, C., Marchiori, E., Kok, J.N.: An adaptive evolutionary algorithm for the
satisfiability problem. SAC 1, 463–469 (2000)

18. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT pro-
cedures. Artificial Intelligence 132(2), 121–150 (2001)

19. Selman, B., Kautz, H.: Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence(IJCAI-1993), Chambéry, France (1993)

20. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI
1994), Seattle, pp. 337–343 (1994)

21. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfia-
bility problems. In: Rosenbloom, P., Szolovits, P. (eds.) Proceedings of the Tenth
National Conference on Artificial Intelligence, Menlo Park, California, pp. 440–446.
AAAI Press, Menlo Park (1992)

22. Silva, D.L., O’Brien, R., Soubeiga, E.: An ant algorithm hyperheuristic for the
project presentation scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A., Yao,
X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the
2005 IEEE Congress on Evolutionary Computation, pp. 92–99 (2005)

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 50– 61, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Magnetic Resonance Image Segmentation Based on
Two-Dimensional Exponential Entropy and

a Parameter Free PSO

Amir Nakib, Yann Cooren, Hamouche Oulhadj, and Patrick Siarry

Université de Paris XII, Laboratoire Images, Signaux et Systèmes Intelligents
(LISSI, E. A. 3956), 61 avenue du Général De Gaulle

94010 Créteil, France
{nakib,cooren,oulhadj,siarry}@univ-paris12.fr

Abstract. In this paper, a magnetic resonance image (MRI) segmentation
method based on two-dimensional exponential entropy (2DEE) and parameter
free particle swarm optimization (PSO) is proposed. The 2DEE technique does
not consider only the distribution of the gray level information but also takes
advantage of the spatial information using the 2D-histogram. The problem with
this method is its time-consuming computation that is an obstacle in real time
applications for instance. We propose to use a parameter free PSO algorithm
called TRIBES, that was proved efficient for combinatorial and non convex
optimization. The experiments on segmentation of MRI images proved that the
proposed method can achieve a satisfactory segmentation with a low
computation cost.

Keywords: image segmentation, two-dimensional exponential entropy, particle
swarm optimization, tribes, parameter free.

1 Introduction

The increasing need for analyzing the brain magnetic resonance images (MRI)
allowed to establish MRI segmentation as an important research field. For instance, in
order to make easy the evaluation of the ventricular space evolution, a multilevel MRI
segmentation is required. In this paper, we consider the problem of detecting the
ventricular space from MRI of the brain. The image segmentation problem at hand is
difficult because of the common occurrence of peri-ventricular lesions in MRI of even
normal aging subjects, which locally alter the appearance of the white matter
surrounding the ventricular space.

The segmentation problem has received a great deal of attention, thus any attempt to
survey the literature would be too space-consuming. The most popular segmentation
methods (tissue classification methods) may be found in [1] to [13]. The common class
of parametric methods used in brain MRI segmentation is based on an expectation-
maximization framework. This class of methods is based on the assumption that a
mixture Gaussian distribution is assumed as a model for the voxel intensity probability
distribution. However, in most cases, the distribution is far from being Gaussian. Many

 Magnetic Resonance Image Segmentation 51

authors tried to overcome this problem by regularizing the misclassification error
through spatially constraining the segmentation process with prior information from a
probabilistic atlas [4]. However, the method becomes very sensitive to the correct
alignment of the atlas with the image and too time consuming. Actually, doctors do not
want to spend a lot of time waiting the result of segmentation, because of the large
number of subjects. That induces the need for a fast segmentation algorithm.

Many authors have applied to brain MRI classical segmentation methods, details
are given in [3], [6], and [7] to [13]. In order to overcome the problem of these
methods, some post-classification methods were proposed [7].

The main contribution of the work we present here is a novel method for brain
MRI segmentation based on an information measure, defined in [8], called
exponential entropy (EE). The EE information measure solves the different problems
related to the use of the classical Shannon entropy, pointed out in [9], i.e. Shannon’s
entropic description is not defined for distributions that include probabilities of 0. To
avoid the problem of the spatial distribution, we defined a two-dimensional
histogram, that takes into account the pixel spatial distribution. We also extended the
EE to the two-dimensional and multilevel case.

As the computation complexity of the problem at hand exponentially increases
with the increase of the number of classes, a fast optimization metaheuristic is needed
to search for the optimal solution. Most metaheuristics have the drawback of having
parameters which must be set by the user. According to the values given to these
parameters, the algorithm is more or less efficient. However, there are many
applications for which the user of the algorithm has no time to waste with parameter
tuning. Practically, if the values of the objective function result from an experimental
time costly process, it would be not possible to lead tests on the values of parameters,
particularly in industrial applications. Tuning the parameters requires a minimum of
experience about the used algorithm, so, it would be difficult and time consuming for
a novice user to find the optimal set of parameters.

In this paper, we propose to use a parameter free PSO algorithm, called TRIBES,
that does not need any parameter fitting [14]. Many authors tried to make the PSO
algorithm free of parameters [15], [16] and [17]. But the first really parameter free
algorithm, called TRIBES, was proposed by Clerc [14].

This paper is outlined as follows: in the next section, the computation of the two-
dimensional histogram is presented. In section 3, definition of the exponential entropy
is given and the extension of the exponential entropy to the two-dimensional case is
presented. A quick description of the TRIBES parameter free Particle Swarm
Optimization algorithm is given in section 4. The proposed segmentation algorithm is
presented in section 5. Experimental results are discussed in section 6. Finally, we
conclude in the last section.

2 Two-Dimensional Histogram

The two-dimensional (2D) histogram [18] of a given image is computed as follows.
One calculates the average gray-level value of the neighborhood of each pixel. Let
w(x, y) be the averaged image of f(x, y) using a window of size 3x3 defined by:

52 A. Nakib et al.

1 1

1 1

1
(,) (,)

9
i j

w x y f x i y j
=− =−

⎢ ⎥
⎢ ⎥= + +
⎢ ⎥⎣ ⎦
∑∑ . (1)

where x⎢ ⎥⎣ ⎦ denotes the integer part of the number x. In order to solve the frontier

problem we disregard the top and bottom rows and the left and right columns. Then
the 2D histogram is constructed using expression (2).

 (,) Cardinal((,) and (,)) / image sizeh i j f x y i w x y j= = = . (2)

The joint probability is given by:

 (,)ijp h i j= , (3)

where { }, 0,1,2, , 255i j ∈ … .

The 2D histogram plane is represented in figure 1: the first and the second quadrant
denote the background and the objects respectively, the third and the fourth quadrant
contain information about noise and edges alone, they are not considered here. A
threshold vector is (s, t), where s, for g(x, y), represents the threshold of the average
gray-level of the pixel neighborhoods and t, for f(x, y), represents the threshold of the
gray level of the pixel. The quadrants containing the background and the objects (first
and second) are considered to be independent probability distributions; values in each
case must be normalized in order to have a total probability equal to 1. In the case of
image segmentation into N classes, a posteriori class probabilities are given by:

1 1

1 1

1 1,
n n

n n

s t

m n n ij
i s j t

P a a p
− −

− −

− −
= =

=⎡ ⎤⎣ ⎦ ∑ ∑ .(4)

1 11 1

1,
n n

n n

s t

m n n ij
i s j t

P a a p
+ +− −

+
= =

=⎡ ⎤⎣ ⎦ ∑ ∑ . (5)

where (,)n n na s t≡ ; n=1,…,N; m=2,…,N and N is the number of classes.

4 1

2 3

s 255

255

t

0

Fig. 1. Two-dimensional histogram plane, where s and t are the thresholds for w(x,y) and f(x,y),
respectively

 Magnetic Resonance Image Segmentation 53

3 Two-Dimensional Exponential Entropy

We define the 2D exponential entropy (2DEE) by:

1/(1)

ij
i j

H p

α

α
α

−
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑∑ , (6)

where α ∈ℜ and 1α ≠ .
Thus the exponential entropies associated with different image classes' distributions
are defined below:

- The 2DEE of the class m-1 can be computed through:

 1 1

1/(1)
1 1

(1)
1

1

,
,

n n

n n

s t
ijm

n n
m n ni s j t

p
H a a

P a a

αα

α
− −

−
− −

−
−

−= =

⎛ ⎞⎛ ⎞⎜ ⎟=⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠⎝ ⎠
∑ ∑

. (7)

- The 2DEE of the class m can be computed through:

1 1

1/(1)
1 1

()
1

1

,
,

n n

n n

s t
ijm

n n
m n ni s j t

p
H a a

P a a

αα

α

+ +
−

− −

+
+= =

⎛ ⎞⎛ ⎞⎜ ⎟=⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠⎝ ⎠
∑ ∑ . (8)

For the convenience of illustration, two vectors () ()0 0, 0, 0s t = and

() (), 255,255N Ns t = were added, where 0 1 2 ... Nt t t t< < < <

and 0 1 2 ... Ns s s s< < < < .

Then the total 2DEE is:

1
(1)

0 1
0

,..., ,
N

T i
N i i

i

H a a H a aα α

−
+

+
=

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

 (9)

According to the maximum entropy principle, the optimal

vectors ()* * * * *
1,..., 1 1 1 1 1() (,),..., (,)N N Na s t s t− − −≡ should meet:

() { }*

1,..., 1 1,..., 1max ()T T
N NH a H aα α− −=

 (10)

where: 1 2 10 255Ns s s −< < < < < and 1 2 10 255Nt t t −< < < < < .
In the case of one threshold (N=2) the computational complexity for determining

the optimal vector (s*, t*) is O(L4), where L is the total number of gray-levels (usually

54 A. Nakib et al.

256). However, it is too time-consuming in the case of multilevel thresholding. For
the n-thresholding problem, it requires O(L2n+2). In this paper, we further present a
parameter free PSO algorithm for solving

{ }1 1 2 2 1 1arg max (,), (,),..., (,)T
N NH s t s t s tα − −⎡ ⎤⎣ ⎦ efficiently.

4 Parameter Free PSO Algorithm (TRIBES)

The Particle Swarm Optimization (PSO) is a population based stochastic technique
developed by Kennedy and Eberhart (1995). PSO has similarities with the genetic
algorithms: a population of potential solutions is used in the search. However there is
no evolution operator in PSO. The technique starts with a random initialization of a
swarm of particles in the search space. Each particle is modeled by its position in the
search space and its velocity. At each time step, all particles adjust their positions and
velocities, thus their trajectories, according to their best locations and the location of
the best particle of the swarm, in the global version of the algorithm, or of the
neighbors, in the local version. Here appears the social behavior of the particles.
Indeed, each individual is influenced not only by its own experience but also by the
experience of other particles.

TRIBES is an adaptive algorithm of which parameters change according to the
swarm behavior. In TRIBES, the user only has to define the objective function and
the stopping criterion. The method incorporates rules defining how the structure of the
swarm must be modified and also how a given particle must behave, according to the
information gradually collected during the optimization process.

However, it must be pointed out that TRIBES, like all competing optimization
algorithms, cannot solve with certainty all the problems. Moreover, TRIBES is a
stochastic algorithm, thus results given by the algorithm are probabilistic. The aim of
TRIBES is to be an algorithm which is efficient enough in most cases and which
permits to the users to gain time by avoiding the fitting of parameters.

4.1 Swarm’s Structure and Communication

The swarm is structured in different “tribes” of variable size. The space search is
simultaneously explored and all tribes exchange results in order to find the global
optimum. The algorithm includes two different types of communication: intra-tribe
communication and inter-tribes communication, more details about these types of
communication are given in [14].

To set rules to modify the swarm’s structure, quality qualifiers are defined for each
particle and likewise for the tribes. These qualifiers allow defining two rules: removal
of a particle and generation of particles. These structural adaptations are not done
at all iterations. In practice, if NL is information links number at the moment of the
last adaptation, the next adaptation will occur after NL/2 iterations. For more details
see [14].

 Magnetic Resonance Image Segmentation 55

1. Initialization of a population of particles with random positions and
velocities.

2. Evaluate the objective function for each particle and compute g.
For each individual i, pi is initialized at Xi.
3. Repeat until the stopping criterion is met

3.1. Determination of status of all particles
3.2. Choice of the displacement strategies
3.3. Update the velocities and the positions of the particles.

3.4. Evaluate the objective function 0 ,...,T
NH a aα ⎡ ⎤⎣ ⎦ for each

individual.
3.5. Compute the new pi and g.

If n<NL
 - Determination of tribes qualities
 - Swarm’s adaptations
 - Computation of NL
End if

4. Show the best solution.

4.2 Swarm Evolution

The swarm is initialized by only one particle, that represents a single tribe. A second
tribe is created if, at the first iteration, the initial particle does not improve its location.
The same process is then applied for the next iterations. The size of the swarm
increases until promising areas are found. In other words, the capacity of the swarm to
explore increases, but the time between successive adaptations decreases. Then, the
swarm has more and more chances to find a good solution between two adaptations.
This can be seen as a strategy of displacement. Other implemented strategies are
described below.

4.3 Strategies of Displacement

The second strategy to adapt the swarm to the found results is by selecting a different
strategy of displacement of each particle according to its recent past. Then the
algorithm chooses to call for the best strategy of displacement in order to move the
particle to the best possible location, that can be reached.

TRIBES tries to overcome an important problem of metaheuristics: the fitting of
parameters. TRIBES frees users of defining parameters by adapting the structure of
the swarm and the strategies of displacement of the particles. The particles use their
own history and the history of the swarm to decide the way of their move and the
organization of the swarm in view of approaching as efficiently as possible the global
optimum. Fig. 2 shows a summary of TRIBES process.

Fig. 2. Principle of TRIBES, where g is the best location reached by the swarm, pi is the best
location for particle I, Xi the position vector of the particle i, NL is the number of information
links at the last structure of the swarm, and n is the number of iterations since the last
adaptation of the swarm.

56 A. Nakib et al.

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

Evaluations(x10)

F
itn

es
s

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

Evaluations(x10)

F
itn

es
s

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Evaluations (x10)

F
itn

es
s

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Evaluations (x10)

F
itn

es
s

Fig. 3. Example of the evolution of the fitness function in logarithmic scale (for image of Fig.
4 (a)) for : (a) 2000 evaluations, (b) 1000 evaluations. The curves are the result of the averaging
of 25 runs.

5 The Proposed Image Segmentation Algorithm

The proposed image segmentation algorithm is based on the maximization of the total
2DEE using TRIBES. The method exploits the particle swarm approach to solve the
segmentation problem expressed by (10). The algorithm does not require any special
initialization. The number of evaluations was used as stopping criterion. Looking at
our experiments (Fig. 3), the value of the fitness function does not increase
significantly after 1000 evaluations of the objective function, that explains our
decision to fix the maximum number of evaluations of the objective function at 1000.

6 Experimental Results and Discussion

In this section, we discuss the selection of the optimal thresholds and the presentation
of some MR images. The performances of the method are compared to those of five
other methods, over the segmentation of a synthetic images. The results on MRI
segmentation were compared to those provided by the 2D Shannon entropy (2DSE)
method [11]. Here, are presented only the results in the case of four and five classes’
segmentation.

The value of the optimal threshold depends on the 2DEE order (α). In order to find
the optimal value (α*), the well known uniformity criterion is used. This criterion is
given by:

 ()
2 2

max min
0

1 2
() ()

j

N

i i
j i C

N
U f µ f f

Mα
= ∈

−⎛ ⎞= − −⎜ ⎟
⎝ ⎠∑∑

. (11)

where N is the number of thresholds, Cj the jth class, M the number of pixels in the
image, fi the gray level of pixel i, µi the mean gray level of pixels in jth class, fmax and
fmin the maximum and the minimum gray levels of pixels in the image, respectively. U
has a positive value and lies between 0 and 1. When U is close to 1, the uniformity is
very good and vice versa.

 Magnetic Resonance Image Segmentation 57

6.1 Comparison to Other Methods

We compared the performance of the proposed method to those of five other methods:
EM algorithm based method (EM) [20], one method based on valley-emphasis (VE)
[21], the well known Otsu method [9], the classical Kapur et al. method [9], and
Sahoo et al. method based on 2D Tsallis entropy (TE) [22]. The comparison is based
on synthetic images, noised with different degrees of noise (Fig. 3). To measure these
performances, the misclassification error (ME) criterion was used [9]. ME is defined
in terms of correlation of the images with human observation. ME is expressed by:

(%) 1 100O T O T

O O

B B F F
ME

B F

⎛ ⎞∩ + ∩
= − ×⎜ ⎟⎜ ⎟+⎝ ⎠

 (12)

where background and foreground are denoted by BO and FO for the original image,
and by BT and FT for the thresholded image, respectively. In the best case of ideal
thresholding, ME is equal to 0% and, in the worst case, ME value is 100%.

(A)

(B)

(C)

(D)

Fig. 4. (A) Original synthetic image, (B) to (D) noised images

Table 1. Performance evaluation of the proposed method compared to competing methods

Segmentation methods
EE2D

Test
images of
Fig. 4

Otsu
ME(%)

Kapur
ME(%)

EM
ME(%)

VE
ME(%)

TE
ME(%) ME(%) α

Image B 0.45 5.61 8.68 0.34 0.64 0.23 0.4
Image C 0.88 4.50 12.50 0.63 1.12 0.56 0.4
Image D 12.22 4.97 28.87 11.59 12.90 3.57 0.6

The quantitative comparison of the results provided by our method and the five

other methods, based on segmentation of synthetic images, is presented on table 1. As
it can be seen, the proposed method provides better results than the other methods,
only VE method provides a better performance in the case of image B.

Table 2. Experimental results for image in Fig. 4 (a)

Number of
classes (N)

Time (s) Speed gain factor

3 14.8 106. 104
4 19.6 687.108
5 26.7 194.1016

58 A. Nakib et al.

6.2 Examples of Results and Discussion

The obtained results through the application of our segmentation algorithm are
illustrated with two brain MRI. Fig. 5 shows the original images and their multilevel
classification (segmented) version when N=4 and 5. The results in the case of a sane
subject are in Fig. 5 (c) and (e); those in the case of an atrophy pathology are shown
in Fig. 5 (d) and (f). Our goal is to detect the different spaces and the white matter
surrounding the ventricular space quickly. In order to quantify the performance of the
optimization algorithm, we define the speed gain factor, that corresponds to the ratio
of the number of the exhaustive search solutions to the evaluation number of the
objective function.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Segmentation of sane and pathologic MRI. (a) Original image of a sane brain, (b)
Original image of a pathologic brain, (c) 4 classes segmented image T=(30, 112, 134) with
α=0.1, where T is the threshold vector, (d) 4 classes segmented image T=(49, 88, 180) with
α=0.3, (e) 5 classes segmented image T=(10, 47, 61, 97) with α=0.4, (f) 5 classes segmented
image T=(36, 82, 138, 153) with α= 0.2.

 Magnetic Resonance Image Segmentation 59

(a)

(b)

(c)

(d)

Fig. 6. 2DSE segmentation results. (a) 4 classes segmented image T(64, 128, 191), where T is
the threshold vector, (b) 4 classes segmented image T(65, 131, 192), (c) 5 classes segmented
image T(52, 102, 152, 203), (d) 5 classes segmented image T(52, 103, 155, 205).

The number of points for which the criterion function must be evaluated, in the

case of an exhaustive search, is ()()2
!/ (1)!(1)!L L N N+ − − , where L is the total

number of gray-levels (usually 256). For instance, when L=256 and N=2, the number
of objective function evaluations is 65536 and, when L= 256 and N=3, it is 326402!
[14]. Table 1 shows the experimental results obtained on the image of Fig. 5 (a). The
speed gain factor and the time values show effectiveness of TRIBES algorithm and
confirm that our method is fast compared to those in [1] to [7], where the result is
obtained after more than 120s [7]. As it can be seen, in table 2, the speed gain factor
increases by a factor higher than 104 when one class is added to the problem.

Fig. 6 shows the results obtained via the application of 2DSE. One notices that the
results provided by our method are more homogeneous than those provided by 2DSE.
This can be seen clearly, for instance, through the comparison of the detected white
matter, between Fig. 5 (f) and Fig. 6 (d).

7 Conclusion

In this paper, we proposed a new fast approach to find the optimal thresholds, based
on 2DEE to avoid the problems related to the use of Shannon entropy to segment
images. We also proposed to use a parameter free PSO algorithm and our experiments
proved that TRIBES can be used as a black box optimization tool to solve a
segmentation problem. The use of TRIBES allows to avoid the parameter tuning step
that requires a minimum of experience about the used algorithm.

60 A. Nakib et al.

It is clearly seen from the experimental results that the presented method is more
efficient than the classical 2DSE and using TRIBES allows to obtain good results
quickly. However, the use of the method to segment other kinds of images does not
provide good segmentation results when the images are strongly noised. In the work
in progress we use a multiobjective optimization based on parameter free PSO in
order to add information to segment noised images.

Acknowledgements. The authors would like to thank Dr. Raphael Blanc, from
Neurosurgery service of “Centre Hospitalier Universitaire de Mondor”, Créteil,
France, for supplying the MR images.

References

1. Drapaca, C.S., Cardenas, V., Studholme, C.: Segmentation of tissue boundary evolution
from brain MR image sequences using multi-phase level sets. Computer Vision and Image
Understanding 100, 312–329 (2005)

2. Qiao, Y., Hu, Q., Qian, G., Luo, S., Nowinski, W.L.: Thresholding based on variance and
intensity contrast. Pattern Recognition 40, 596–608 (2007)

3. Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive template moderate spatially
varying statistical classification. Medical Image analysis 4, 43–55 (2000)

4. Murgasova, M., Dyet, L., Edwards, D., Rutherford, M., Hajnal, J.V., Rueckert, D.:
Segmentation of Brain MRI in Young Children. In: 9th Int. Conf. MICCAI Copenhagen,
pp. 687–694 (2006)

5. Song, Z., Tustison, N., Avants, B., Gee, J.C.: Integrated Graph Cuts for Brain MRI
Segmentation. In: 9th Int. Conf. MICCAI, Copenhagen, Denmark, pp. 831–838 (2006)

6. Kamber, M., Shinghal, R., Collins, D.L., Francis, G.S., Evans, A.C.: Model-based
segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE
Trans. on Med. Imaging 14, 442–453 (2000)

7. Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI
Tissue Classification. Medical Image Analysis 7, 513–527 (2003)

8. Zografos, K., Nadarajah, S.: Survival Exponential Entropies. IEEE Trans. on Information
Theory 51, 1239–1246 (2005)

9. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic Imaging 13, 146–165 (2004)

10. Tao, W., Tian, J., Liu, J.: Image segmentation by three level thresholding based on
maximum fuzzy entropy and genetic algorithm. Pattern Recognition Letters 24, 3069–3078
(2004)

11. Peng-Yeng, Y.: Multilevel minimum cross entropy threshold selection based on particle
swarm optimization. Applied Mathematics and Computation 184, 503–513 (2007)

12. Zahara, E., Fan, S.S., Tsai, D.: Optimal multi-thresholding using a hybrid optimisation
approach. Pattern Recognition Letters 26, 1082–1095 (2004)

13. Synder, W., Bilbro, G.: Optimal thresholding: A new approach. Pattern Recognition
Letters 11, 803–810 (1990)

14. Clerc, M.: TRIBES - Un exemple d’optimisation par essaim particulaire sans paramètres
de contrôle. In: OEP 2003, Paris (2003)

15. Ye, X.F., Zhang, W.J., Yang, Z.L.: Adaptive Particle Swarm Optimization on Individual
Level. Int. Conf. on Signal Processing (ICSP), Beijing, China, 1215–1218 (2002)

 Magnetic Resonance Image Segmentation 61

16. Zhang, W., Liu, Y., Clerc, M.: An adaptive PSO algorithm for real power optimization. In:
APSCOM (Advances in Power System Control Operation and Management), S6:
Application of Artificial Intelligence Technique (part I), Hong Kong, pp. 302–307 (2003)

17. Yasuda, K., Iwasaki., N.: Adaptive particle swarm optimization using velocity information
of swarm. In: IEEE Conference on System, Man and Cybernetics, The Hague,
Netherlands, pp. 3475–3481 (2004)

18. Nakib, A., Oulhadj, H., Siarry, P.: Microscopic image segmentation based on two-
dimensional exponential entropy with hybrid microcanonical annealing. In: Proceedings of
Int. Conf. IAPR- MVA2007, Tokyo, pp. 420–423 (2007)

19. Nakib, A., Oulhadj, H., Siarry, P.: Image histogram thresholding based on multiobjective
optimization. Signal processing 87, 2516–2534 (2007)

20. Bazi, Y., Bruzzone, L., Melgani, F.: Image thresholding based on the EM algorithm and
the generalized Gaussian distribution. Patter Recognition Journal 40, 619–634 (2007)

21. Ng, H.: Automatic thresholding for defect detection. Pattern Recognition Letters 27, 1644–
1649 (2006)

22. Sahoo, K.P., Arora, G.: Image thresholding using two dimensional Tsallis-Havrda-Charvat
entropy. Pattern Recognition Letters 27, 520–528 (2006)

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 62–72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Mimetic Variations on Stigmergic Swarm Paintings

Paulo Urbano

Faculdade de Ciências da Universidade de Lisboa
Campo Grande 1749-016 Lisboa, Portugal

pub@di.fc.ul.pt

Abstract. This paper explores artificial collective artistic work inspired by
natural phenomena, namely the use of pheromone substances for mass recruit-
ment in ants. Our goal is to look for innovative patterns using techniques de-
rived from Artificial Life. We will play 2 variations, based on imitation, on a
society of anonymous and homogeneous artificial micro-painters (the Colom-
bines). In the Colombines model the virtual canvas, besides being a computa-
tional space for depositing paint, is also a pheromone medium, mirroring the
painting patterns and influencing the painters’ behaviour. More, the micro-
painters do not exchange information directly with each other, they are simply
attracted towards non-painting areas of the canvas—the non-painted “tableaux”
patches diffuse an “environmental produced” chemical and the painters prefer
to follow the chemical gradient. Thus, this form of stigmergic communication
simply influences the artistic agents movements. We will expand the Colom-
bines basic model adding direct communication between the micro-artists: they
will imitate the colour of others. In the first variation, they will imitate the col-
our of who ever they interact with and in the second one they will have a force
attribute and colour imitation will depend on the force relationship between
them.

1 Introduction

The study of biological self-organization [1] has revealed that numerous sophisticated
pattern formation, decision-making, and collective behaviour, are the emergent result
of the interaction of very simply behaviours performed by masses of individuals rely-
ing only on local information. In particular, successful problem solving by social in-
sects made models of their collective mechanisms particularly attractive [4,5]. The
dissemination of Artificial Life has been an important influence in the media arts [18].
Our goal is to explore the artistic possibilities of artificial collective artists that rely on
auto-organization, furthering on previous work [17,18].

There are already examples of collective artistic pieces made by natural and real
agents. Examples of flocking based artwork include interactive musicians [2] and
interactive video installations [3,13]. L. Moura [4] has used a small group of robot-
painters inspired by ants’ behaviour that move randomly in a limited space. Stimu-
lated by the local perception of the painting they may leave a trace with one of their
coloured pens. The painters rely on stigmergic interaction [6,15] in order to create
confused patterns with some spots of the same colour. Colour has the pheromone role:

 Mimetic Variations on Stigmergic Swarm Paintings 63

a spot dominated by a certain colour has the capacity to stimulate the painter-robot to
add some paint of the same colour. Monmarché et al. [10] have also designed groups
of painters inspired by ants’ pheromone behaviour and the paintings were evolved
using an interactive genetic algorithm. It is based on a competition between ants: the
virtual artists try to superimpose their colours on traces made by others, creating a
dynamic painting which is never finished. Ants have the capability to “sniff” the
painted colour and react appropriately. The group is composed by a small number of
individuals (less than 10). Monmarché et al. [10] have also applied their swarm algo-
rithm to music. Greenfield [7] introduced a non-interactive genetic algorithm to
evolve swarm paintings. In [17] we developed swarm painters, the Colombines,
where the environment is responsible for the production and diffusion of pheromones
which guide the movement of the painters. One of the differences from the other ant-
paintings is that the artistic individuals are not charged for pheromone production,
(the environment is responsible for that task). More, the diffusion process does not
occur on any of the ant paintings we have referred. We introduced also populations of
numerous agents: we have experimented with groups composed of up to 2000 indi-
viduals working in the same artistic piece. Greenfield furthered the Colombines style,
introducing a multiple pheromone model [8].

Following the work of Kaplan [9] and Shoham and Tennenholtz [14] on conven-
tion emergence in multiagent systems, in [18] we have applied a collective mecha-
nism of emergence of random convention sequences, to the generation of collective
paintings. We introduced the Gaugants, a society of micro-painters where consensus
(collective choice) around some attributes (colour and orientation) is the source of
artistic pattern and where the continuously changing collective choices are the source
of diversity and non-homogeneity. Both the Colombines and Gaugants were imple-
mented in Netlogo, a derivation of Starlogo [12].

We will play 2 variations, based on imitation, on the Colombines model referred
before. We will expand the Colombines model, where stigmergic communication
simply influences the artistic agents movements, adding direct communication be-
tween the micro-artists: they will imitate the colour of others. In the first variation,
they will imitate the colour of who ever they interact with and in the second one they
will have a force attribute and colour imitation will depend on the force relationship
between them. These variations allow us to explore the possibilities of pattern forma-
tion in swarm societies.

The remainder of the paper is organized as follows: In section 2 we remember the
Colombines painters; in section 3 we introduce the first mimetic variation on the basic
model: besides moving towards the unpainted parts of the canvas they imitate the
colour of their neighbours which are captured inside a varying perception radius. In
section 4 we describe the Force-Mimetic Colombines and their artistic pieces. In the
final section we conclude.

2 The Colombines

The Colombines are a swarm of small and homogeneous artificial micro-painters,
individually very simple, which are able to paint a bi-dimensional virtual canvas,
composed of small cells.

64 P. Urbano

The canvas is bi-dimensional space with a toroidal format, divided in small
squared sections, called patches or cells, it is a kind of grided paper, with no borders,
folded in every direction, in which two types of virtual materials coexist: paint and a
chemical signal. Each patch can have a certain colour and can have a certain quantity
of chemical. There is a fixed colour (usually grey) for the background. Any other col-
our corresponds to paint.

The non-painted cells have more attraction power (more chemical). Therefore,
every cell has the potential ability to release chemical, but only the non-painted cells
(the background ones) are chemical producers. The squared canvas is a kind of
chemical medium where every cell is permanently diffusing chemical to their imme-
diate neighbours, independently of being painted or not. The chemical evaporates at a
constant rate. Without evaporation, the attraction power decay of recently painted
spots will last more time, disorientating the painters, attracting them to painted spots.
Foremost, the evaporation phenomenon increases the painters’ efficiency: the painting
will be completed sooner.

The cells behaviour is the following: 1) if it is not painted increase its own chemi-
cal quantity by a certain amount, otherwise the chemical level is maintained intact; 2)
diffuses a percentage of its chemical to their 8 immediate neighbours; 3) delete a per-
centage of its chemical (evaporation). The chemical constant produced by non-painted
cells, the evaporation and diffusion taxes are parameters modifiable by the user.

Initially, we launch these painters in a non-painted background, each one occupy-
ing a particular cell, and they will move along, depositing a trace of ink, until the
canvas is completely fulfilled. Note that each painter is constrained to paint only non-
painted cells and when there isn’t any non-painted cell left, the artistic work cannot
change and is considered finished.

Our micro-painters have a very limited perception field—they have an orientation
and have access just to the three cells in front of them. Each painter is created with a
particular colour and they never change to another colour. It’s the empty spots that
guide the painters. They prefer to move towards empty spots.

If each Lilliputian painter just acted on its own, without any interactions, either with
the world or with the others, interesting phenomena would never arise. They do no
more than moving on the virtual canvas, visiting preferentially cells with more amount
of chemical, (preferring to move towards non-painted spots) and painting cells still
unpainted, leaving traces of colour behind them. In case of identical chemical values in
their neighbouring cells they have a tendency to preserve its current direction. Each
Colombine has a position (real Cartesian coordinates), an orientation (0..360), and can
only inhabit one cell, the one that corresponds to their coordinates. They see just their
own cell and also the three cells immediately in front of them. On the other hand, the
painters are created with a particular colour that is never going to be changed.

The behaviour of each Colombine is the following: 1) it senses the three immediate
cells in front of him and chooses the one with more chemical, changing his orientation
towards that winning cell and moving to it; 2) if that cell is not yet painted, stamps his
colour on it, otherwise, does not paint it. In detail, the painter senses his three forward
neighbouring cells and if there is no better patch than the one in front he remains with
the same orientation and go forward one step (rounding his coordinates). If the left
path is the most attractive he rotates 45 degrees to the left and moves forward one
unity, rounding both position coordinates; the same happens when he prefers the right

 Mimetic Variations on Stigmergic Swarm Paintings 65

cell: he rotates to the right 45 degrees, moving forward one unity, rounding his coor-
dinates. The round operation influences the patterns generated, as we will see later.

The evolution of the collective artistic work happens in the following way. Ini-
tially, the virtual canvas is grey and each patch has an identical quantity of chemical
(normally 0). We create a colony of Colombines, each one with its own colour and
orientation, distributing them in the environment. The painting process will begin in a
sequence of iterations until every patch is painted completing the plastic work. Each
iteration is divided in two steps: in the first, every cell executes its behaviour (chemi-
cal production, diffusion and evaporation); in the second step, the Colombines move,
attracted by chemical, depositing paint. The paintings are only declared finished when
there are no grey patches, but, alternatively, we could finish the collective work after
a random or fixed number of iterations.

2.1 Dynamics Responsible for Pattern Emergence

The canvas can be seen as a dynamical chemical landscape, in permanent mutation—
there is a constant interaction between chemical distribution and the painters’ behav-
iour. The chemical world is information floating both in the painted and background
patches. There is a strong circularity: On one hand, the chemical information guides
the movement of the Colombines, attracting them toward non-painted spots, On the
other hand, their painting activity change the information landscape, in an permanent
auto-catalytic interaction. The patterns, the coloured forms, are the by-product of the
collaboration between the Colombines and their chemical environment. Figure1 illus-
trates how Colombines pattern emerges.

We have two painters, one white and one black. They have an initial orientation
(black moves east and white goes south). They both tend to preserve their directions.
The black suddenly changes direction, avoiding the trace left by the white painter.
After a while the white painter reaches his own trace and avoids it, changing direction
and having to avoid later the black trace and the painting progresses. Sometimes, the
painters have to cross already painted spots, due to the fact that the three patches
ahead are already painted and they cannot escape them.

Fig. 1. The interaction between two painters. Illustration of the tendency to conserve direction
and to avoid painted patches.

In figure 2 we show a painting progress taken in 4 different instants, made by 300
micro-painters. Initially the Colombines are scattered randomly on the “tableaux”,
starting with a colour randomly chosen from a list of 140. Notice that we can find
spots with the same colour due to the fact that a painter can be on a non-painted area
which is surrounded by traces, constraining him to be inside, painting that enclosed

66 P. Urbano

Fig. 2. The progress of a painting made by 300 Colombines. Each one has a colour chosen
randomly from a 140 possibilities.

spot. Population size is important because as density increases the possibility of en-
countering very soon traces of other painters also increases and constrains immedi-
ately our micro-artist that begin to fold their patterns, creating smaller spots with the
same colour as we are going to see. In this painting the “tableaux” has a dimension
131*131 patches.

Fig. 3. Four Colombine black and white paintings. From left to right: Alfama of Glass, Opening
the Head of Pacheco Pereira, Coimbra of Xanana and In the Roof of Hugo Pratt.

In figure 3 we show four examples of finished paintings made by societies of Co-
lombines of different sizes (from left to right, 1000, 100, 50 and 2000 painters) in a
world of 125*125 patches. There are only black and white painters equitably distributed
by each of the colours and which are randomly scattered on the “tableau”. The painters
were created with random orientations. If we increase the number of micro-painters, the
possibility of encountering traces also increases. The resulting effect is that the spots
with the same colour have a smaller area and we find less rectilinear traces.

Fig. 4. Four Colombine coloured paintings. From left to right: 50, 100, 500 and 1000 painters
with a random initial colour.

 Mimetic Variations on Stigmergic Swarm Paintings 67

In figure 4 we vary population size and show some coloured paintings, where ini-
tially each painter has a random colour chosen from 140 possibilities (0..139). We can
conclude that there is a Colombines style made by painters trying to avoid painting
spots even if they never do not change their colours.

3 First Variation: Simple Mimetic Colombines

We will now introduce a variation in the Colombines behaviour. Now they will inter-
act directly with each other exchanging information. They will imitate the colour of
who ever they happen to meet.

3.1 Simple Imitation in Convention Emergence

We will first describe the simple imitation behaviour in the context of convention
emergence developed in lexical [9] and social rules [14] formation research. Suppose
we have a number of agents which are able to make their own decisions, and they can
interact with each other, influencing and being influenced by others. With time, a
winning option can eventually emerge and a consensus is therefore attained. The main
goal is to reach a global consensual choice through decentralised mechanisms based
on self-organisation. In every model each agent has only local access to the society,
which is composed of anonymous agents.

In the research of convention emergence, initial situations correspond to situations
of maximal competition. In the literature, two initial situations of maximal competi-
tion are considered. In the first one we have only two possible choices for being the
convention adopted, where each one is initially adopted by 50% of the population,
and in the second one we have a different initial choice per individual.

The interaction is based on a series of dialogues involving a pair of agents. In each
dialogue, two of the society members are randomly chosen for interaction, the hearing
and speaking elements. In what concerns performance analysis, we are interested es-
pecially in the average convergence velocity for several simulations and its variation
with the number of agents. The convergence velocity is the number of dialogues nec-
essary for reaching a global consensus, starting with options that are equally distrib-
uted among agents—no option dominates in the initial population.

In the imitation game, during a unilateral dialogue, the speaking agent indicates to
the hearing agent the option it is currently using, and the latter adopts it immediately.
Starting with 2 or N options equally distributed in the population (N agents), nothing
directs the group towards convergence, as every option can increase its influence with
equal probability. In general, convergence is assured after an important series of oscil-
lations in a time quadratic with the number of agents.

3.2 Simple Mimetic Colombines

In convention emergence we want behaviours with fast convergence and the simple
imitation behaviour surely does not fit this goal. But it is perhaps well suited for our
artistic purposes. If convergence on some attribute, colour for example, is too fast, it
means that soon we will have only one colour in the canvas, even starting from a

68 P. Urbano

situation of maximal divergence. A slow convergence means we will have diversity
and full homogeneity will arrive late.

This way we will change the Colombines introducing a vision radius, defining a
perception area on each micro-painter. They continue to sense their own patch and the
three patches ahead for chemical but they can sense other painters inside the vision
radius. In each painting step, besides following the gradient and depositing paint, they
will pick a random neighbour (someone inside the perception area) and imitate un-
conditionally its colour.

The convergence time, towards a consensual situation on colour will increase with
the number of painters involved and it will increase with shorter perception radius.
Note also that movement depends on chemical production and diffusion, and they
depend on the painted spots and movement conditions painters’ positions and theirs
neighbourhoods. Everything is related and dependent.

In figure 5 we show three snapshots describing the evolution of a painting made by
50 painters with a vision radius of 15. Initially there are 25 pink painters and 25 red
ones. The pink colour wins the convergence game and the painting result is a red pat-
tern on a pink background. Remember that the non-painted background colour was
grey. Therefore, the resulting pattern will be the result of a balance between the num-
ber of painters and the vision-radius. We will try to show in the following figures, the
paintings that can result from the tuning of those 2 parameters.

In figure 6 we show 3 paintings for different population and radius-vision sizes. All
this populations have mimetic-stigmergic painters of 2 initial colours (blue and red)
and we begin with 50% reds and 50% blues.

Fig. 5. Evolution of a painting with 50 painters (two colours (red and pink) equally distributed,
25 pinks and 25 reds. The vision radius is 15 units.

Fig. 6. 3 paintings with 100, 500 and 1000 painters with 15, 30 and 30 of vision-radius respec-
tively. Only 2 colours are competing, blue and red.

 Mimetic Variations on Stigmergic Swarm Paintings 69

Fig. 7. The first painting made with 50 painters with a random initial colour and a vision radius
of 10. The other 3 paintings are made by a group of 100 painters where we vary the vision-
radius, respectively (20, 30 and 10).

Fig. 8. Four mimetic-estigmergic multicoloured paintings made from groups of 200, 500, 500
and 1000 micropainters with vison-radius of 50, 20, 30 and30.

In figure 7 and 8 we show 4+4 paintings for different 140-coloured populations
and different vision-radius. We know that in the simple imitation behaviour, after
some time, two colours begin to dominate and finally one of them wins, but eventu-
ally there is not enough time to achieve convergence and also it can happen that when
convergence is achieved there are not many non-painted spots left. Therefore, we can
find 2 or 3 dominant colours. In conclusion, with this mimetic variation on stigmergic
painters we have arrived to create new patterns that were not possible with non mi-
metic painters.

4 Second Variation: Imitation Based on Force: Consensual
Evolution

In the context of convention emergence research we have designed a very successful
behaviour in what concerns speed of convergence and its variation with the number of
agents involved [17]. We have introduced force as a new attribute of agents, besides
choice. The force attribute transforms each dialogue in a conflict interaction. The
main point of conflict interactions is that agents only imitate other agents as strong or
stronger than them.

4.1 Double Imitation of Stronger Agents with Reinforcement

In this behaviour, we will have imitation of option and of force. During unilateral
encounters, we have again one speaking and one hearing agents. The speaker will tell
the other how much force it has and what is its option. The behaviour is divided in

70 P. Urbano

two parts, in the first one force is compared and there will be imitation eventually; in
the following part, there is positive reinforcement.

Part 1: In case the hearing agent looses (it has less or the same force of its inter-
locutor) it will imitate both the force and colour of the speaking agent. If the speaking
agent is weaker than the hearing agent, this one will conserve both force and option.
This way, the new recruited agents will have their force increased and will be more
powerful recruiters than they were before the dialogue started. Agents with more
power impose their colours in a contagious way.

Part 2: if they had the same choice or option when they met, the hearing agent will
now reinforce its force in 1 unit, independently of loosing or winning the interaction
in part 1.

In sum, the stronger ones recruit weaker agents (these will be at least as strong as
the winners imitating their choices, and they can even overpass them in case their
options were the same) enlarging the influence of their options.
This behaviour manifests fast convergence, even faster than a known behaviour well
studied in convention emergence research (positive reinforcement with score) [9, 14],
which has a complexity of nlogn, where n is the number of agents.

So, we have a very effective behaviour for consensual choice formation, which is
well-suited for decentralized convention formation, unlike the simple imitation, but
let’s try to apply it to artistic creation, and specifically to swarm painting.

4.2 ForceMimeticColombines

We will now apply this successful behaviour, concerning convergence velocity, to our
micro-painters. What we called option will be the colour attribute. So, initially we dis-
tribute the ForceMimeticColombines randomly on the “tableaux” assigning them ran-
dom initial colours and 0 of force. Thus, each time a painter sees another (depending
on the vision-radius) it compares its force with its interlocutor. In case, it is weaker or
it has the same force, it will imitate both the stronger force and colour; if it has more
force, no mimetism. After there is the reinforcement phase—if their colours were the
same when they met the “hearing” painter will reinforce its strength in one unit.

Fig. 9. Evolution of a painting with 1000 painters (random chosen from 140 possibilities). The
vision radius is 20 units.

The difference towards the simple mimetic painters is on the speed of collectively
choosing a colour. The consensual colour will be found earlier with the ForceMi-
meticColombines, which is perhaps not very desirable for artistic societies composed
of a small number of agents, unless they have a small vision-radius. Otherwise, one of

 Mimetic Variations on Stigmergic Swarm Paintings 71

Fig. 10. Four paintings made with 2000 painters with different vision-radius (from left to right,
5, 15, 30, 50

the colour dominates very early and once it dominates the whole population nothing
will change until the end, which means a lot of homogeneous pattern—a super mini-
malism; a big background colour and some Colombine style traces on it,

In figure 10 we show images made by societies of numerous painters (2000) where
colour convergence varies with the vison-radius attribute. We can compare these
pieces with simple mimetic ones made by 1000 or 2000 thousand painters and the dif-
ference is obvious. Those exposed in figure 10 have much more spots with the same
colour due to the fact that imitation is more effective. We can turn the knobs of popula-
tion size and vision-radius in order to obtain a wide variation on pattern besides the
fact that the collective choices on colour are different from simulation to simulation.

We finish this section comparing this work with previous work with consensual
behaviour, the Gaugants model [18]. In the Gaugants model there was no stigmergic
interactions and there was an imitation behaviour of colour and orientation. As a col-
lective choice was obtained very fast we had to create the figure of a dissident and
contagious painter that after seeing enough clones of itself decides to change its col-
our and orientation attributes and increase its force, imposing its new attributes (in a
very contagious way) to its painter colleagues.

5 Conclusions and Future Work

We have mixed two coordinating models based on auto-organization in order to gen-
erate collective artificial paintings. The first model is based on stigmergy (Colom-
bines) and the second one is based on mimetic behaviours derived for convention
emergence (Gaugants). The movement of painters is controlled by the stigmergic in-
teraction, a chemical produced by non-painted “tableaux” cells) attracts painters, and
the colour used by agents depends on mimetic interactions. We have applied two mi-
metic variations on the Colombine models, simple imitation which is not very effec-
tive in what concerns fast convergence towards collective choice on colour and an
algorithm developed by the author [16] where there is a recruitment based on the
force of agents, which is very effective. These 2 variations expand the stigmergic
model creating new patterns, generating innovative swarm paintings.

We are going to continue exploring new ways of coordinating swarms and of gen-
erating artificial art.

If you have problems seeing the images you can consult www.di.fc.ul.pt/~ pub/
Evo07 where you can generate images and see images at their real scale.

72 P. Urbano

References

[1] Bonabeau, E., Dorigo, M., Theraulaz, Z.: Swarm Intelligence: From Natural to Artificial
Systems. Santa Fe Institute, Studies in the Sciences of Complexity (1999)

[2] Blackwell, T.M.: Swarm Music: Improvised Music with Multi-Swarms. Artificial Intelli-
gence and the Simulation of Behaviour, University of Wales (2003)

[3] Boyd, J.E., Hushlak, G., Jacob, C.J.: Swarm Art: interactive art from swarm intelli-gence.
In: Proceedings of the 12th annual ACM International Conference on Multimedia, NY
USA (2004)

[4] Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, Z., Bonabeau, E.:
Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

[5] Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Co-
operating Agents. IEEE Trans. Syst. Man. Cybern. B 26, 29–41 (1996)

[6] Grassé, P.-P.: Termitologia, Tome II.” Fondation des Sociétés. Construction, Paris, Mas-
son (1984)

[7] Greenfield, G.: Evolutionary methods for ant colony paintings. In: Proceedings of the 7th
Conference on Short and Medium Span Bridges, Montréal, Québec, Canada (2006)

[8] Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P.,
Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.): EvoWorkshops 2005. LNCS,
vol. 3449. Springer, Heidelberg (2005)

[9] Kaplan, F.: L’Émergence d’un Lexique dans une Population d’Agents Autonomes These
de Doctorat de L’Université de, Paris VI (2000)

[10] Monmarché, N., Slimane, Mohamed, Venturini, G.: Interactive Evolution of Ant Paint-
ings. IEEE Congress on Evolutionary Computation, Los Alamitos (2003)

[11] Moura, L.: Swarm Paintings. Architopia: Art, Architecture, Science (ed. Maubant) Insti-
tut d’Art Contemporaine (2002)

[12] Resnick, M.: Turtles, Termites and Traffic Jams: explorations in massively parallel mi-
croworlds. MIT Press, Cambridge (1994)

[13] Shiffman, D.: Swarm. Emerging Technologies Exhibition. Siggraph, Los Angeles, LA,
USA

[14] Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agents systems: initial ex-
periments results and observations. In: Proceedings of the 3rd International Conference
on Principles of Knowledge and Reasoning (1992)

[15] Theraulaz, G., Bonabeau, E.: A Brief History of Stigmergy. Artificial Life 2 (1993)
[16] Urbano, P.: Jogos Descentralizados de Consenso ou de Consenso em Consenso. Tese de

Doutoramento, Universidade de Lisboa (2004)
[17] Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P.,

Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.): EvoWorkshops 2005. LNCS,
vol. 3449. Springer, Heidelberg (2005)

[18] Urbano, P.: Consensual Paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E.,
Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D.,
Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 622–632.
Springer, Heidelberg (2006)

[19] Whitelaw, M.: Metacreation: Art and Artificial Art. MIT Press, Cambridge (2004)

Minimal and Necessary Conditions for the

Emergence of Species-Specific Recognition
Patterns

Nicolas Brodu

INRIA-IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
Concordia University, 1455 de Maisonneuve Blvd. W. Montreal,

QC H3G 1M8, Canada
nicolas.brodu@free.fr

Abstract. A simple mechanism is presented for the emergence of recog-
nition patterns that are used by individuals to find each other and mate.
The genetic component determines the brain of an individual, a machine
learning architecture which is then used to transmit knowledge. Thanks
to the interactions between the genetic and the knowledge parts the
agents get to use species-specific recognition patterns, starting from an
initial condition where the species are not distinguishable. Several ma-
chine learning architectures are investigated, as well as the influence of
space and asynchronous genetic algorithm operations. Agents selecting
each other for mating based on their limited recognition capacities is all
that is needed for the emergence of species-specific recognition patterns:
the transition between symbols to sequences with an intrinsic role within
the species.

1 Introduction

Computer simulations are powerful tools to analyze the emergence of language
[1], but despite the progress they entail [2] the field remains controversial [3,4,5,1].
The work introduced here is about interactions between communication and
reproduction. Previous related work have studied for example the knowledge
transmission of the categorization of object attributes [6], or have introduced
specific mappings between meaning and symbols [7]. The present work does not
rely on any a priori semantic concepts. The model is stripped down to the bare
minimum: genetic reproduction, and basic learning capabilities. The model also
omit social interactions [8,9] and ecology [10]. Yet complex patterns emerge for
the mutual recognition of individuals belonging to the same species. The goal is
then to find the necessary and sufficient conditions for the emergence of these
mutual recognition patterns. These patterns may perhaps serve as basis for a
protolanguage [11,5], which may then be extended into a full-featured language
thanks to social interactions [9]. This work is about how some of the precursor
patterns may form in the first place, the transition from isolated symbols to
sequences, not about the later two transitions to a full-featured language.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 73–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

nicolas.brodu@free.fr

74 N. Brodu

Communication is imperfect and takes the form of strings of symbolic values.
Each individual emits a string, and it is presented with the strings from the
other individuals. The task is then to find a suitable mate, which necessarily
implies the formation of specific patterns for higher than random recognition
rates. By design less symbols are available than the number of species, so mono-
symbol sequences cannot uniquely identify a species and more complex patterns
are required. As time passes the agents get to recognize each other better, using
these more elaborated strings.

Genetics alone cannot determine the recognition patterns for the simplest
models. Knowledge transmission alone cannot solve the problem either: there
are few and noisy learning instances. Hence the combination of both is neces-
sary for the agents to agree on more complex recognition patterns. Species are
initially indistinguishable. The individuals who could find a mate may teach the
others, according to the algorithm presented in Section 2 and 3. Genetics act
on the brain structure. Several simple machine learning models are compared
so as to determine the minimal conditions for the emergence of the recognition
patterns. These models are detailed Section 4. Results are presented in Section
5, and the role of space is then investigated in Section 6, together with the influ-
ence of synchronizing or not the genetic algorithm operations in time. Section 7
concludes this work and proposes possible extensions.

2 The Model

The goal of this experiment is to investigate the minimal and necessary condi-
tions for the emergence of species recognition patterns. A simulation model is
built accordingly: Each agent is equated to an AI model for performing string
recognition and symbol production. The parameters of this AI model form the
genome for the agent (See Fig. 1). Several AI models are used, they are pre-
sented in Section 3. Each agent produces a “song”. Each agent then selects a
mate according to how much it likes the other agents songs. Only agents choos-
ing a mate from the same species may reproduce. The symbols that are used to
build the songs are assumed to be available and identical for all agents. Agents

Fig. 1. The simulation model

Minimal and Necessary Conditions for the Emergence 75

communicate only through the sequence exchange. In particular, there is no way
for an agent to assert the species of another agent except by inferring this infor-
mation from the symbol sequence of the other agent. So, this model operates on
the transition from isolated symbols to recognition patterns ; it aims at provid-
ing some reasons why a structure may appear in the symbol sequences. In a first
time, the model is simplistic with discrete time (synchronous genetic algorithm)
and no spatial structure. Section 6 then extends the model to continuous time
(asynchronous genetic algorithm) and three-dimensions, in order to alleviate the
fairly strong assumptions of the discrete model.

3 The Genetic Algorithm/Machine Learning Interactions

The core of the algorithm is a feedback loop between the genetic and the ma-
chine learning algorithm components: Each individual must recognize a mate for
the selection process, amongst all individuals from all species, and only success-
ful individuals may reproduce. There is thus no explicit fitness function. Each
individual produces a ”song” that will be presented to the others during a “mat-
ing parade” (see Fig. 1). The discrete time, synchronous genetic algorithm is
sketched in Fig. 2.

Fig. 2. The core algorithm where both genetic and knowledge components interact.
The main text introduces the algorithm details, like R which is the maximum turnover
rate.

More formally, a song is a series of symbols, (s)i with i = 1..M and M the
maximum song size. Random series are presented to the first generation in order
to bootstrap the experiment. A moving window of size N inputs is applied to
each substring (s)j of each training song, with j = i . . . i+N−1. The individual is
trained to produce si+N the next symbol of the sequence for each such substring
(see Fig. 3). For the first symbols i = −N . . . − 1 of the sequence there are not
enough previous symbols to fill the moving window and genetically determined
symbols fill the substring (Fig. 3). The generation of the songs is the natural
reverse operation: The genetic starter string is presented and the individual is
asked to produce a symbol based on its previous knowledge.

Some genetic starter strings G are better suited than others for learning some
sequences. Suppose G = AAAA and the task is to learn the song AB. In this
case, the system will generate two conflicting training instances AAAA → A and

76 N. Brodu

Fig. 3. Song production and mate selection from symbol sequences

AAAA → B. On the other hand if G = CDDC there is no conflict. The genetic
part thus has an influence on how well it is possible to learn some sequences.
Conversely there are several possible genetic starters which are all equally suited
with respect to learning a particular song. Hence the genome does not determine
the species song, it merely defines for each individual a subspace of all possible
sequences for which there is no conflict. Any song within these subspaces inter-
section can be learned equally well by all members of the species, even if they
have different genetic material.

In the mate selection task each agent classifies the candidate songs by order
of preference. Each candidate song is fed as input, possibly after alteration by
imperfect communication (symbols are modified at random with a predetermined
probability). The individual then estimates what symbol it would have produced
for each substring (see Fig. 3). When the symbols match the candidate gets one
point. Each individual selects a mate with maximal points, choosing at random
for ex-aequo candidates. The agent may reproduce if the selected partner belongs
to the same species.

The mating process is straightforward: crossover and mutation of the AI model
parameters between the parents so as to produce the offspring. But at this point
the new child has no training and is thus unable to produce its own sequence
at the next generation. The parents songs are used so a child starts with only
two training instances (possibility imperfectly communicated). But now, if all
individuals from one generation successfully reproduce they are all killed and re-
placed by their offspring, destroying the knowledge that accumulated with time.
In order to eliminate this risk a maximum number of children R is introduced
in each species. With this setup the individuals get a chance to survive more
than one generation and accumulate knowledge. However no mechanism has yet
been introduced that would allow this accumulation (only one that prevents the
non-accumulation). In order to get more training instances a selected mate also
trains on the reproducer which selected it (Fig. 2). Thus, as time passes, agents
now have a chance to accumulate knowledge.

4 The Different Machine Learning Models

Any machine learning model may be used in the algorithm in Fig. 2. This
model receives as training instances (sequence, symbol) pairs, and must predict a

Minimal and Necessary Conditions for the Emergence 77

symbol when presented other (possibly unknown) sequences. The models chosen
for this study are simple ones, exploiting different information, since the goal
is to investigate what are the minimal conditions for the emergence of mutual
recognition patterns.

4.1 The Linear Classifier

As often for categorical data (the symbols) each input is duplicated into L entries,
with L the size of the alphabet. Each of these entries is here set to +1 or −1
if the corresponding input matches that entry value. For example: with L = 3
symbols ABC, the input string ABCA is mapped into the 12 entries vector
I = (+1, −1, −1, − 1, +1, −1, − 1, −1, +1, + 1, −1, −1). Similarly the vector P
for the symbol to predict contains S outputs.

The training instances are converted in this (I, P) format. For T training in-
stances the I vectors form a N.L×T matrix A and the P vectors a L×T matrix
B. The least squared error solution for the equation WA = B gives the weights
W that are used by the linear classifier. Then, for a new unknown instance J ,
the predicted vector is P = WJ . The output symbol for J is extracted from
P as the one with largest entry. For example suppose P = (0.68, −0.87, 0.05),
then the symbol A is returned. When two symbols have equal value one is cho-
sen at random, which makes the machine learning algorithm occasionally non-
deterministic. This is acceptable in our context, especially since any song may
be altered randomly later on by imperfect communication anyway. The linear
classifier model has no genetic component in addition to the initial sequence of
symbols presented in the previous section.

4.2 The 2-Layer Perceptron (MLP)

The same setup as for the linear classifier is reused for mapping the symbols
to categorical data. A 2-layer perceptron then processes the input data. More
precisely, the N.L categorical entries are connected to the input neurons. This
input layer is connected to 10 hidden neurons with sigmoidal transfer function
(f(x) = x/(1 + abs(x)) is used here for its reduced computational costs com-
pared to the more usual tanh, see [12]). An output layer with linear activation
functions finally maps the results of the hidden layer to the L output categori-
cal entries. The training set is formed as before. The MLP is trained simply by
performing 30 steps of batch gradient descent with a learning rate of 0.1 over all
known instances. The MLP initial connection weights and biases before learn-
ing form an additional genetic component, together with the initial sequence of
symbols presented in the previous section. When the training set is fixed (i.e.
when individuals have agreed on a unique species recognition pattern) then indi-
viduals who have a genetic information (initial weights) that is better suited to
this training set have an advantage over the others since they need less training,
hence a Baldwin effect is expected [13].

78 N. Brodu

4.3 The K-nearest Neighbors (KNN) Classifier, with K = 5

The KNN model represents a simple form of learning by imitation of previously
observed instances. [14] notes that “simple models of cultural transmission solely
based on imitation are not sufficient to permit linguistic co-ordination”. However,
as mentioned in the introduction, the current work in not about the emergence of
a full featured language, just about the emergence of recognition patterns. The
more elaborated mechanisms that would additionally be necessary to turn these
precursor patterns into a full language are out of scope. However the only way
to assert whether the KNN model – imitating previous instances – is sufficient
for the emergence of the recognition patterns, is to test it in practice.

Each training sequence S = (s)i with i = 1 . . .N is kept with the associated
next symbol X , forming a pair (S, X). When a symbol has to be predicted from
an unknown input sequence Σ, the distance between Σ and each known S is
computed. That distance is simply the number of differences between Σ and
S. For example, ABCD and AACD are at distance 1, ABCD and BBCA are
at distance 2, etc. The K nearest S are then selected, with ex-aequo chosen at
random if necessary. Then, for each of the up to K neighbors, the symbol X
associated to that neighbor S is given a weight vk. This weight vk depends on
the neighbor distance order k. Summing over all neighbors, the output symbol
with the largest total weight wins the selection: It is returned by the classifier
as the result of predicting the sequence Σ.

In this model the votes (vk)k=1...K associated to each of the K neighbors
(in distance order) are genetic parameters in addition to the initial sequence of
symbols presented in Section 2. K = 5 has been chosen for this study, though
with the voting mechanism it may happen than some of the vk become null
during the genetic evolution and thus reduce the effective value of K.

4.4 The Assembly of Maximum Likelihood (ML) Estimators

For a sequence S = (s)i, a ML learner seeks to maximize the probability of
this sequence p(s1...sN |t) over all possible output symbols t. Unlike the more
usual approach of maximizing p(t|s1...sN), the probability of obtaining t given
the observed sequence, the maximum likelihood approach discriminates between
competing sequences. The probabilities are noted from the samples, but unfortu-
nately estimating p(s1...sN |t) requires monitoring LN+1 combinations (one LN

for each t), with L the number of symbols. A simple yet limited solution is to con-
sider that inputs are independent, simplifying p(s1...sN |t) into

∏
i=1...N p(si|t),

hence reducing the complexity to N × K2 combinations. An intermediary so-
lution allowing one level of dependence has been chosen for this work. Inputs
are gathered into mutually independent groups (assumption A1). A main in-
put is chosen in each group, and the other group members are assumed to be
independent conditionally to this input (assumption A2).

Example: Suppose N = 5, with two groups {s1, s2, s3} and {s4, s5}, and with
s1 and s4 the group leaders. In this case:

Minimal and Necessary Conditions for the Emergence 79

– p(s1, s2, s3, s4, s5|t) = p(s1, s2, s3|t).p(s4, s5|t) Using A1
– p(s1, s2, s3, s4, s5|t) = p(s2, s3|s1, t).p(s1|t).p(s5|s4, t).p(s4|t)p(s1, s2, s3, s4, s5|t) =

p(s2|s1, t).p(s3|s1, t).p(s1|t).p(s5|s4, t).p(s4|t) With A2

One level of dependence is thus kept, while maintaining the number of com-
binations to monitor in O(K3) instead of KN+1: one K3 for each p(sj |si, t) with
si a group leader and sj in that group. An assembly of maximum likelihood pre-
dictors was introduced so as to deal with more complex songs: Several predictors
are maintained in parallel, each with its own conditional dependence assump-
tions on the inputs. The final predicted symbol is simply the result of a majority
vote amongst the predictors.

For each possible output symbol t, p(s1...sN |t) is computed using the decom-
position presented above. The symbol with maximum likelihood value is selected.
In the case where some p(si|t) were not observed, the selection operates between
outputs with less unknown p(si|t). This is equivalent to still noting known sub-
sets of inputs when the whole sequence is unknown. When all input combinations
are unknown no output is selected and majority is then voted amongst the other
predictors in the assembly (which use different grouping assumptions). When all
predictors fail the song simply stops. Ex-aequo situations are solved by choosing
one candidate solution at random.

In this study 3 ML estimators are gathered in an assembly. The grouping in-
formation for the conditional dependence between the inputs form an additional
genetic material together with the initial starter sequences.

5 Results for the Synchronous Case

As all species receive equal treatment the results can be averaged over all species
to give synthetic indicators for the whole population. The experiments in this
section use: 6 species, 49 individuals per species, a moving window size of N = 5
inputs, a maximum song size of M = 10 symbols, and a maximum turnover rate
of 20% (fixing R in Fig. 2). A first experiment is performed using 3 symbols.
There is a probability of 0.01 that each time a symbol is transmitted it is replaced
by another one at random. A second experiment reduces the number of symbols
to 2, and a third experiment studies the effect of removing the transmission
errors. 20 batches of runs are performed with the same random seeds for each
experiment, and repeated again for all 4 machine learning algorithms. The results
are plotted in Fig. 4-7.

Fig. 4 highlights the failure of the ML model to produce recognition patterns.
The simplest linear classifier is less efficient than the KNN and MLP models
in the noisy scenarii (left and middle plots). The number of symbols does not
seem to influence much the models, except for the ML recognizer. An hypothesis
would be a lack of training examples so to produce reliable statistics in the ML
model, with more symbols meaning more combinations hence even less instances
for each combination. Experiments performed where all individuals listen to all
the species songs tend to confirm this hypothesis by improving the performance
of the ML model.

80 N. Brodu

Fig. 4. Evolution of the number of reproducers vs. number of generations, when 2
symbols are in use (left), 3 symbols (middle), and 3 symbols with no transmission
error (right)

Fig. 5. Evolution of the number of songs vs. the number of generations, when 2 symbols
are in use (left), 3 symbols (middle), and 3 symbols with no transmission error (right)

Fig. 5 introduces the number of songs used in each species. It is not obvious
whether the present scenario converges or not to a unique song for each species,
given the limited number of training instances for the children and the trans-
mission errors. Powerful AI models may also learn several songs. Once again the
KNN and MLP models are relatively insensitive to both noise and number of
symbols. The linear recognizer is too sensitive to noise, as is apparent from both
Fig. 4 and Fig 5.

Fig. 6 shows the repartition of the individuals using the few songs that are
present in each species. In this synchronous scenario the dominant song is shared
by a large majority of the individuals. The remaining songs are variants emitted
probably by individuals without enough training (like the children). Some exam-
ples of dominant songs produced at the end of the 300 generations (with symbols
noted as numbers) are the obvious mono-symbol sequences like 2222222222,
etc., the cycle-2 patterns like 0101010101, and other repetitive patterns like
0110110110, 1100011000, 1201201201, etc. The patterns may also be more com-
plex, like 2221102212: Even though the fixed window size of N inputs would
eventually make the trailing sequence in these patterns cyclic, the genetic starter
string must be taken into account for determining the first symbols, which are

Minimal and Necessary Conditions for the Emergence 81

Fig. 6. Number of users for the three main songs in each species, when 2 symbols are
in use (left), 3 symbols (middle), and 3 symbols with no transmission error (right)

Fig. 7. Percentage of songs with given cycle lengths in abscissa (N = no cycle), when
2 symbols are in use (left), 3 symbols (middle), and 3 symbols with no transmission
error (right)

thus not part of the eventual cycle, but nevertheless included in the pattern
recognition between individuals.

Fig. 7 displays the repartition of the songs according to their cycle length.
The number of acyclic (over the first symbols) songs is highest for the linear
recognizer, possibly due to the aforementioned sensitivity of that model. The ML
model fails to produce distinctive patterns for each species, which corroborates
Fig. 4: that model could not produce the more complex songs, necessary to
overcome the symbol limit. Fig. 5, right, shows that the MLP and the KNN
have similar performances. Fig. 7 shows however that the KNN classifier makes
use of simpler recognition sequences on average, while the MLP produces a more
diverse complexity repartition.

In order to investigate what are the intrinsic capabilities of each algorithm,
a simple solution is to disable the genetic or the knowledge transmission part.
Without knowledge transmission only the genetic structure may evolve, and
without the genetic algorithm the initial agents may only learn from each other
without producing new children. Fig. 8 proves that both components are nec-
essary for the emergence of efficient recognition patterns, though the two most
successful models (KNN and MLP) still exhibit limited capabilities with only

82 N. Brodu

Fig. 8. Evolution of the number of reproducers vs. number of generations, with only
knowledge transmission (middle) and with only the genetic algorithm (right). The left
plot from Fig. 2 is reproduced with a similar scale to ease comparison.

one component active. The interactions between the genetic and the knowledge
transmission parts, however, are necessary for producing real recognition pat-
terns: the levels obtained with the partial cases correspond to less than half the
population successfully recognizing each other.

6 Results for the Asynchronous Case

The synchronous selection operation without spatial organization is useful for
determining the respective influence of the models, but it imposes a fairly severe
constraint on the genetic algorithm. Moreover these assumptions go against the
goal of analyzing the minimal conditions for the emergence of the recognition
patterns. A more general framework is thus needed, where the influence of the
spatial distribution of agents may be studied, together with the possibility for
the agents to reproduce at any time. Fig. 9 is a capture of the 3D simulation, with

Fig. 9. Three-dimensional environment with an asynchronous genetic algorithm

Minimal and Necessary Conditions for the Emergence 83

continuous space and time. The agents are embodied as vehicles with definite
mass, position and velocity, and wander in the world with the aim of avoiding
collisions. No further AI is given to the agents. Each agent chooses a mate as
before, but only amongst neighbors present within a predetermined radius. The
influence of space on the simulation is studied by varying the search radius. The
agents reproduce at their own rhythm, determined by a frequency and a phase.
Each agent has its own phase so the genetic algorithm operations are performed
asynchronously in time.

Another change from the basic experiment is necessary due to the spatial
localization: a minimum delay between reproduction events. This minimum delay
ensures that a child has some time to move away from its parent, and that
isolated mates don’t reproduce too fast independently of the rest of the species.
The asynchronous aspect is also enhanced, since the delays are randomly set
for each reproduction event. A negative learning was finally introduced in the
scenario, with agents learning instances that do not lead to a mating operation as
bad sequences, with the hypothesis that it could improve the species recognition.

Fig. 10. Evolution of the recognition level vs. simulation time, when 2 symbols are in
use (left), 3 symbols (middle), and 3 symbols with no transmission error (right)

Results for the recognition capabilities are given in Fig. 10, using the KNN
learning algorithm, by averaging the results for 6 species over 20 experiments.
These plots are the equivalent of Fig. 4 in the present asynchronous scenario.

The base random level is computed by checking how much agents from the
same species were present in each neighborhood at each reproduction event; it
gives the chance an agent would select another one from the same species at
random. As before, at the beginning of the simulation the agents start with no
prior knowledge and do not better than random. As time passes, the average
recognition level over the past 50 time units is monitored, and increases up to
a point where the agents in each species can recognize each other with a good
accuracy.

Figure 11 shows the influence of space on the convergence to recognition pat-
terns, as well as the influence of the negative learning and the transmission
error. The negative learning does not have a significant effect on the agent per-
formances. However space is found to be a major factor: When the search radius

84 N. Brodu

Fig. 11. Recognition levels and number of songs in each species at the end of the run,
for various asynchronous scenario configurations, with 3 symbols and 6 species

is too small the individuals from the same species do not learn to recognize each
other as efficiently, possibly due to the agents using different recognition pat-
terns at different places, as is reflected by an increased number of songs. The
effect of removing the 1% transmission error is however clearly visible: A better
recognition rate, and much less diversity in the patterns used within a species.
This contrasts from Fig. 5 in the synchronous case, where the number of songs
was not noticeably affected by the removal of the transmission error.

7 Conclusion

A framework was presented where the genetic component and the knowledge
acquired during an agent lifetime interact with each other: The genetic material
defines the innate processing power of an individual, its capabilities for learn-
ing. In turn, the knowledge an agent acquires directly influences its success at
reproduction. Both parts may be transmitted to the next generations: the ge-
netic component using a crossover/mutation algorithm, and the knowledge using
machine learning techniques built according to these genetic instructions.

The main findings of this work may be summarized by:

1. The learning mechanism needs to be simple and robust (failure of the linear
model, Fig. 4 and 5, and of the ML classifier, Fig. 4).

2. Too powerful models are sufficient, but not necessary: the KNN model is
simpler than the MLP and converges to the same performances (Fig. 4).

3. Complex recognition patterns are produced for free (Fig. 7, cycle lengths).
4. Asynchronous reproduction events in continuous time do not seem to alter

the performances of the KNN model (Fig. 10).
5. However when the agents are too spatially isolated the recognition perfor-

mance drops (Fig. 11).

The original problem of determining the minimal and sufficient conditions for
the emergence of mutual recognition patterns can now be answered. According
to the present study results, it seems that good candidate conditions are: 1. A
turnover of agents in the genetic algorithm so as to produce new patterns, and
2. A limited form of knowledge transmission by imitating previous instances.
In particular imperfect transmission is not a necessary condition (though no

Minimal and Necessary Conditions for the Emergence 85

error improves performances), but a sufficient spatial distribution may be neces-
sary. Additional experiments using more species (up to 12) and symbols (2,3,4)
produce similar results that are not included here due to space restrictions.

An extension to this work could be the introduction of an external envi-
ronment, allowing more advanced forms of communication, like stigmergy. The
current setup has been restricted on purpose to a bare-bones model where the
agents interactions are strictly controlled. Yet, this prevents group effects and
other collective behaviors that would be a natural extension to this framework.
Another direction of research would be to investigate the influence of the learned
part on the genetic component, the Baldwin effect [13]. Visual inspection sug-
gests that in the current setup the genetic starter strings resemble the species
specific song at the end of the training, but the more general question is why
this is so and whether this is always necessarily the case. For example, for some
AI architecture a genetic starter similar to the dominant species song introduces
more training substrings, hence provide a selective advantage over individuals
without the correct starter sequence. For more elaborated AI algorithms, and
also for more complex environments with “social” interactions not restricted to
choosing a mate based on its song, it is possible that the Baldwin effect operates
in more complicated ways.

In any case, the current experiments have shown that very few preconditions
are needed for the emergence of species-specific recognition patterns. What this
shows is that the transition from isolated symbols to precursor sequences for
more elaborated forms of communication, like language, is not exceptional. The
more interesting question of how the precursor patterns may then turn or not
into these advanced form of communication is, however, an open question.

References

1. Wang, W.S.-Y., Ke, J., Minett, W.J.: Computational Studies of Language Evo-
lution. In: Computational linguistics and Beyond, pp. 65–106. Huang, C.R. &
Lenders, W (2004)

2. Wagner, K., Reggia, J.A., Uriagereka, J., Wilkinson, G.S.: Progress in the simu-
lation of emergent communication and language. Adaptive Behavior 11(1), 37–69
(2003)

3. Harris, R.A.: Review of “The language instinct” by S. Pinker. The Globe & Mail
(1994)

4. Smith, J.M., Szathmáry, E.: The major transitions in evolution. Oxford Univ.
Press, Oxford (1995)

5. Calvin, W.H., Bickerton, D.: Lingua ex Machina: Reconciling Darwin and Chomsky
with the human brain. MIT Press, Cambridge (2000)

6. Acerbi, A., Parisi, D.: Cultural Transmission Between and Within Generations. J.
of Artificial Societies and Social Simulation 9(1)9 (2006)

7. Gong, T., Wang, S.-Y.W.: Computational Modeling on Language Emergence: A
Coevolution Model of Lexicon, Syntax, and Social Structure. Lang. and Linguis-
tics 6(1), 1–41 (2005)

8. Beecher, D.M., Burt, M.J.: The Role of Social Interaction in Bird Song Learning.
Cur. Dir. in Psychological Science 13(6), 224–228 (2004)

86 N. Brodu

9. Dessalles, J.-L.: From protolanguage to language: model of a transition. Marges
linguistiques 11, 142–152 (2006)

10. Slabbekoorn, H., Smith, T.B.: Bird song, ecology and speciation. In: Philosophical
trans. of the Royal Society of London. Series B, Bio. Sciences. 357,1420, pp. 493–
503 (April 2002)

11. Jackendoff, R.: Possible stages in the evolution of the language capacity. Trends in
Cognitive Sciences 3 (July 7, 1999)

12. Elliott, D.L.: A Better Activation Function for Artificial Neural Networks. Techni-
cal Report 93-8, Institute for Systems Research, University of Maryland (1993)

13. Baldwin, J.M.: A New Factor in Evolution. American Nat. 30, 441–451, 536-553
(1896)

14. Oudeyer, P.Y., Kaplan, F.: Language evolution as a Darwinian process: computa-
tional studies. Cogn Process 8, 21–35 (2007)

Artificial Ants for the Optimization of Virtual

Keyboard Arrangement for Disabled People

Sonia Colas, Nicolas Monmarché, Pierre Gaucher, and Mohamed Slimane

Laboratoire d’Informatique de l’Université de Tours,
64 avenue Jean Portalis, 37200 Tours, France

Abstract. Many physically impaired people can meet difficulties when
using a computer and particularly with the keyboard. Often, a virtual
keyboard can improve the usability of the computer system by handi-
capped people and can be adapted to their disabilities. From a combina-
torial point of view, artificial ants have been studied to improve classical
keyboard arrangements. This paper present how this method can fit the
first problem and then become a tool to build new “tailor-made” key-
boards. Then, the artificial ants meta-heuristic can be used as often as
needed as an optimizer that take into account user’s activities of writing.

1 Introduction

Handicapped persons are dependent on their computer to work and communi-
cate. Many of them are heavily disable and computers are the best way to give
them a feeling of autonomy.

Internet has now become to play a prominent role in commercial services (on-
line shopping, train or plan reservation,...) but also in administrative services.
These on-line services can be perceived as a quick mean to get documents, infor-
mations or goods. In order to make internet access easier for handicapped per-
sons, several laws have been voted to improve web sites compliance with WCAG
1.0 (Web Content Accessibility Guidelines) norm [1] from the Web Accessibility
Initiative (WAI) [2]. Since 1998, USA have started to consider the problem of
accessibility and more recently Europe have decided to oblige institutional web
sites to become accessible. This kind of law have only been approved in France
during February 2005.

A poll of INSEE [3] has shown that 8 millions of motor handicapped people
and 6 millions of sensory handicapped people are living in France. About 20 %
of the first group are affected with serious paralysis and as population is getting
older, this tendency will not stop soon.

In order to reach the Internet, handicapped people first have to be able to use
their computer alone. They often have to use specialized devices, called assistive
technologies, adapted to their specific disabilities. For instance blind people can
use braille terminals or voice synthesis instead of the screen and a standard key-
board. Some motor handicapped persons can use a classical computer mouse but
others could prefer other pointing devices like touch-pads or game’s joysticks1.
1 Virtual Projects : JoyMouse. At http://www.vp-soft.com/software/joymouse.php

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 87–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 S. Colas et al.

In order to assist people with special needs, four kinds of keyboard-like systems
can be found:

– modified and improved real keyboard (hardware)
– software that simulates a standard keyboard on screen (virtual keyboards)
– software that simulates an improved keyboard on screen (virtual keyboards

with static or dynamic improvement of keys’position)
– software that simulates a keyboard on screen and which suggests words (vir-

tual keyboards with prediction ability)

In our work, we focus our effort on the third kind of keyboards, i.e. a virtual
keyboards for which keys’positions are chosen in order to minimize the typing
energy of the user.

The remainder of this paper is organized as follows: next section quickly de-
scribes various real and virtual keyboards, then section 3 deals with artificial
ants and previous works about keyboards. In section 4, we describe our method
for the specific case of virtual keyboards and we give results of our experiments
in section 5.

2 Overview of Assistive Technologies to Take Place of
Keyboards

2.1 Hardware Solutions

There exists a lot of modified keyboards that can help disabled persons to enter
textual data in computer. For instance, the Contoured keyboard (fig. 1.a) pro-
posed by Kinesis Ergo2 has been designed to reduce arms and hands moves while

(a) (b) (c)

Fig. 1. Modified keyboards (Kinesis Ergo): contoured keyboard (a), maxim keyboard
(b) and evolution keyboard (c)

typing. Keys are clustered in two groups, one for each hand. The Maxim keyboard
(fig. 1.b) displays an example of keyboard that can take various angle values be-
tween the two arms (wists can rest on mobile parts, as often provided with key-
boards). The Evolution keyboard if made of two parts, totally independent.

These kind of keyboards can of course be used by ordinary people who are
trying to increase their typing efficiency or their everyday comfort. But more
2 Kinesis Corporation: Computer ergonomics. At http://www.kinesis-ergo.com

Artificial Ants for Keyboard Arrangement Optimization 89

(a) (b)

Fig. 2. Specific keyboards for handicapped people using a stem with mouth: M32h
keyboard by SEVEKE (a) and GT keyboard by GORLO (b)

specific keyboards also exist. For instance small keyboards which are used with
a mouth stick: they must be sensitive to low pressure and most frequently used
keys must be near the center of the keyboard (see fig.2).

Other specific keyboards can also be found: for only one hand (fig.3.a) or with
an improved separation of keys (fig.3.b).

(a) (b)

Fig. 3. Other examples of adapted keyboards: ergonomic keyboard MALTRON for
right hand (A) and improved keyboard SUMO (b)

2.2 Virtuals Keyboards

For a simulated keyboard, also called virtual or screen keyboard, it is necessary
to move a cursor to select a key. Cursor moves can be obtained by a mouse,
joystick or any physical input device. Even if this keyboard is displayed on
screen, for a given user (i.e. with his/her particular handicap and particular
tasks to perform) a bad arrangement of keys can slow down his/her typesetting
rate since the pointer moves are similar to the finger moves of a single finger
user.

90 S. Colas et al.

Sometimes, a mouse click is even not possible to obtain from the user and
the click must be automatic. Several virtual keyboards, such as Windows XP
virtual keyboard, Click-N-Type keyboard [4], CVK keyboard [5], ScreenDors
2000 keyboard [6] or Keystrokes for Apple computers [7] propose this “autoclick”
functionality: the key is selected if the cursor does not move for a given time.

Two methods can be used to scroll up and down the key list: linearly and
automatically (one dimension) or bidimensional (within rows and columns). In
case of particular serious handicap, the user can only use the first method and
has to wait that the correct key is present under the cursor, it is then sometimes
possible to first select a group of keys and after the key inside the group. For
instance (see fig.4), keys can be virtually clustered in Microsoft virtual keyboard
as in Clavicom keyboard [8].

(a) (b)

Fig. 4. Microsoft Windows XP virtual keyboard: standard configuration (a), and block
configuration (b) for automatic scrolling

Several improvements are often present: CVK keyboard can zoom on the
selected key, Click-N-Type keyboard can spell scrolled keys. It’s often possible
to use sound to verify typing (CVK, Clavicom, Wivik [9]). Moreover, virtual
keyboards can modify their display characteristics: size of keyboard/keys can
vary (ScreenDoor and Wivik).

In order to improve the typing rate, keyboards are equipped with a predic-
tion system (except Microsoft windows XP virtual keyboard): CVK, Vitipi [10],
Wivik, Clavicom, ScreenDoors, Keystrokes and Click-N-Type all use a word pre-
diction system. Thanks to a dictionary, they can provide a word list from the
first selected letters. Skippy keyboard uses the probability to use a word after
another one to sort the proposed list. A multi-lingual dictionary is used in Vitipi
but without any grammatical rules. At the opposite, the HandiAs system [11] can
use French grammar but can also be extended to foreign grammars. Sometimes,
the dictionary can be automatically filed with new words (ScreenDoors).

Figure 5 displays the CVK keyboard with its word prediction system. This
keyboard is an open source software and can be embedded in any Windows
application (here the notepad).

As words can be predicted, letters probability can also be exploited: for in-
stance with Keyglasses [12] and Sibylettre [13] virtual keyboards. With Key-
glasses (see fig.6), the most probable letters that could be typed appears with
transparency around the last typed one (in order to reduce the distance to reach
these keys). This can be particularly useful for people using a pointing device
(like a mouse). With Sibylettre, after each letter, the keyboard is re-organized

Artificial Ants for Keyboard Arrangement Optimization 91

Fig. 5. Words prediction system with CVK keyboard

in order to first present the most probable letters. This can be useful for peo-
ple using a linearly scrolling of keys but, of course, if the keyboard is modified
at each key stroke, this can be a problem when the user selects letters with a
pointing device.

Fig. 6. Virtual keyboards with letters prediction system: Keyglasses keyboard after
the letter ‘b’

In our work, we try to improve the typing rate (or typing tiredness) by re-
organizing the keyboard according to user habits.

3 Artificial Ants for Combinatorial Optimization

Since 70’s, new paradigms inspired by natural systems have arisen in computer
science. One of the recent successful idea is the artificial ant paradigm: artificial
ant-agents are used to solve collectively hard problems while they use only sim-
ple interactions within the colony or with their environment. These works are
referred as Swarm intelligence methods and most of the published ones are in
the field of combinatorial optimization [14,15].

The ant-colony paradigm has met a great success with combinatorial opti-
mization because problem’s underlying graph structure is not too far from the
food network that ants can build and exploit with the help of a global shared
memory known as pheromones. Artificial ants can build solutions to the problem

92 S. Colas et al.

while they move between vertices of the graph and reinforce edges that belong
to promising solution. Then, this positive feedback will orient other ants toward
these regions of the search space. The multiple interactions of ants throught
this global shared memory tend to collectively provide the emergence of good
solutions.

Regarding to the keyboard arrangement problem, a recent work has shown
that artificial ants can be efficiently used to find the best arrangement of key-
boards [16]. However, this work has two major limitations: (1) once the optimum
keyboard for a given language has been found, it is of no use to run the optimiza-
tion tool once more (unless we consider new keys or new languages) and (2) even
if actual keyboards are not optimal, new arrangements, even if they are better,
are not spread at all by the keyboard manufacturers or adopted by users. Then,
with the adaptation of visual keyboard to disable people, we think that these
two limitations would be bypassed: disabilities are most often different from on
user to another one (a different keyboard for each user) and if the advantage of
a new keyboard can be felt for every days’ typing tasks, a user could have more
motivation to use a personalized keyboard.

We can notice that genetic algorithms have been recently introduced to tackle
this optimization task, for diseable people [17] or for air traffic controller [18].

4 Optimization of a Virtual Keyboard by Artificial Ants

The derived combinatorial problem can then be formulated as follows:

– a keyboard of m × n keys is considered,
– a set of texts that have to be typeset, or a set of document that are usually

produced by the considered user in a given context (i.e. emails, financial
reports,...),

We need to know the best arrangement of the keyboard that minimizes the
total length of pointer’s moves for the given set of texts. Of course, we can note
that this problem can be exactly considered as a traveler salesman problem and
consequently is NP-complete.

The work of ants is then to assign symbols (i.e. letters or keys) to keyboard
locations. To make this assignment, they take into account pheromone quanti-
ties as a global information built by the whole colony. At this stage, different
possibilities of using pheromones are possible:

– Pheromone quantities are used by ants to choose the next symbol to assign
at each time step of their solution building,

– or, pheromones are used by ants to choose, for each symbol, a location on
the empty keyboard.

Ant decisions are also influenced by randomness in the same way that they can
do in real life when exploring ground around their nest.

Let us notice that we will only consider the first semantic direction for phero-
mones’ role in the following of this paper. This is due to the fact that first ex-
periments of the second method have quickly shown that assigning a pheromone

Artificial Ants for Keyboard Arrangement Optimization 93

value on the link between a symbol and a location on the keyboard is not a
good idea. We have noticed that a small change in location can induce large
irregularities in objective function: therefore it is difficult for ants to converge
gradually. Then we have decided to consider pheromones between symbols in
order to concentrate ants on the order of symbols to be assigned to keyboard
locations.

The general framework of the algorithm is given in algorithm 1. This frame-
work is quite classic with this class of population based algorithm: ants build
solutions, best solutions are used to update the global memory and this mecha-
nism is repeated for a given number of iterations.

Algorithm 1. Keyboard arrangement optimization with artificial ants
1: Initialize pheromone values τ 0

i,j

2: for Tmax iterations do
3: for all ant k do
4: Build a keyboard arrangement Kk

5: Evaluate the quality of Kk

6: end for
7: Update pheromone values according to quality of new solutions and pheromone

natural evaporation
8: end for
9: Return the best keyboard arrangement found since the beginning

4.1 Solution Building

During each iteration T ∈ {1, . . . , Tmax}, each ant k builds a solution (i.e. a
keyboard) Kk and uses a collective memory called pheromones in their natural
world. Artificial pheromones are real values that are used by artificial ants to
build a solution. We note τi,j , the pheromone quantity between symbol i and
symbol j. They also use a local information ηi,j called desirability which repre-
sents a kind of heuristic value specific to each problem instance. This value is
calculated once at the beginning of one run whereas pheromones are modified
and evolve along the T max iterations.

At time t of iteration T the ant has built the partial solution Kk(t) with the
last symbol assigned i and performs a new assignment of a symbol j using the
following probability:

P (t)(i, j) = P (T)
e × τα

i,j × ηi,j∑

l∈N(Kk(t))

τα
i,l × ηi,l

+(1−P (T)
e)×

{
1 if j = arg max

l∈N(Kk(t))
{τα

i,l × ηi,l}

0 else

(1)

where j is chosen in N(Kk(t)) which corresponds to the set of symbols that
are still not assigned in the partial solution Kk(t). The exponent α is used as
a parameter to scale the relative importance of pheromones against desirability.

94 S. Colas et al.

P
(T)
e is the exploration/exploitation probability, which is often a constant in

ant algorithms, but here varies along the iterations : P
(T)
e = 0.8(T/T max) in

order to increase exploitation vs exploration behavior of ants as the iterations
are increasing.

At time t = 0 the ant starts from a factious symbol only used as a start
node. At time t = m × n the ant has completed its solution building and the
obtained keyboard can be evaluated. Figure 7 shows a small example of keyboard
assignment.

0 1 2 3 4 5 6 7 8 9 10 11

0 (a z e r t y u x b :)

1 ! i o p q s d f c n . ;

2 * , g h j k l m w v ?

Fig. 7. Keyboard of size 12 × 3

4.2 Solution Evaluation

The quality Q(K, S) of an arrangement K is calculated according to a sequences
of symbols S = {s[1], s[2], . . . , s[|S|]} of length |S| and corresponds to the total
length of moves that are necessary to typeset the sequence on a given keyboard
K.

Q(K, S) =
100
|S|

|S|−1∑

i=1

dε(s[i], s[i + 1]) (2)

where dε(x, y) stands for the euclidean distance between keys x and y of coordi-
nates (x1, x2) ∈ {0, . . . , m − 1}2 and (y1, y2) ∈ {0, . . . , n − 1}2 on the keyboard
K:

dε(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

4.3 Pheromones Update

Once all the ants have built their solution, each pheromone value is updated
according to the following rule:

τi,j ← (1 − ρ)τi,j + ρ

A∑

k=1

Δk
i,j (3)

ρ is called evaporation coefficient and Δ is computed in order to favor good
choices of ants:

Δk
i,j =

⎧
⎨

⎩

min
l∈{1,...,A}

{Q(Kl, S)}
Q(Kk,S)×(Rank(Kk)+1) if symbol j follows symbol i in keyboard Kk

0 else
(4)

Artificial Ants for Keyboard Arrangement Optimization 95

with A the number of ants. In this case, Δk
i,j is increased each time there is

one ant with the symbol j after symbol i in its keyboard and proportionally to
the relative quality of the keyboard and its rank in a decreasing order ofquality
(Rank(Kbest) = 1). If no ant have decided to set j after i, the pheromone quantity
is only decreased according to the parameter ρ. Finally, pheromones are kept
inside bounds [τmin; τmax].

5 Experimental Results

5.1 Experimental Settings

In order to study the algorithm performances, we have built a set of 12 different
documents of 4 types (see table 1). For all these documents, the same character
set is used:

azertyuiopmlkjhgfdsqwxcvbn,;:!.?&"’(-_)][$* 1234567890{}\n

and the same keyboard size is used: 20 × 3.

Table 1. 12 documents used as testbed

Name Type Lengths

S1, S2, S3 blog extracts 1564, 3269, 2370
S4, S5, S6 C programming code 1943, 3495, 2934
S7, S8, S9 tales of Grimm extracts 8802, 9425, 6193
S10, S11, S12 newspaper extracts 4103, 2105, 4701

Parameters of ants have been chosen as follows:

– pheromone bounds: [τmin; τmax] = [0.1; 0.9],
– initial pheromone value: τ0

i,j = τmax if i �= j and τ0
i,i = 0.0,

– evaporation rate : ρ = 0.01,
– desirability ηi,j is computed as the relative frequency of co-occurrence of

symbols i and j in the considered text,
– number of ants = number of symbols to set on the keyboard (57 in our case),
– number of iteration : 500 (each ant builds 500 keyboards).

5.2 Parameter Study

We have introduced several measures to study ants’work at iteration T but we
only focus in this paper on pheromone entropy:

Ent(T) = −
m∑

i=1

n∑

j=1

|τi,j − τ̄ |
max
u,v

{τu,v} − min
u,v

{τu,v}
log

|τi,j − τ̄ |
max
u,v

{τu,v} − min
u,v

{τu,v}
(5)

Figure 8 shows the evolution of keyboard quality, pheromone values and
pheromone entropy for document S1 (blog). Three cases of α are compared :

96 S. Colas et al.

300

350

400

450

500

550

600

0 100 200 300 400 500

Q
ua

lit
y

iteration number

Solution quality

iteration best
best of run

pop avg

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone quantity

min
mean

max

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone entropy

entropy

300

350

400

450

500

550

600

0 100 200 300 400 500

Q
ua

lit
y

iteration number

Solution quality

iteration best
best of run

pop avg

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone quantity

min
mean

max

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone entropy

entropy

300

350

400

450

500

550

600

0 100 200 300 400 500

Q
ua

lit
y

iteration number

Solution quality

iteration best
best of run

pop avg

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone quantity

min
mean

max

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone entropy

entropy

300

350

400

450

500

550

600

0 100 200 300 400 500

Q
ua

lit
y

iteration number

Solution quality

iteration best
best of run

pop avg

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone quantity

min
mean

max

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
he

ro
m

on
es

iteration number

Pheromone entropy

entropy

(a) (b) (c)

Fig. 8. Plots for document S1 (blog): (a) evolution of keyboard quality (best of run,
best of iteration, mean over the population), (b) pheromone values (max, min and
mean over all the edges) and (c) pheromone entropy. First row: α = 2, second row:
α = 1, third row: α = 0.5 and fourth row: α = 0.

α = 1 (pheromones and desirability are of same importance in ant’s probabilis-
tic decision rule), α = 0.5 (pheromones are twice less used than desirability) and
α = 0 (pheromones are not used!). Each plot is the average of 30 independent
runs. Plots obtained for other documents are very similar. We can notice that the
pheromone entropy curve (column (c)) is more or less similar for each value of α:
pheromone entropy does only depend on the mean pheromone value which de-
creases similarly (when most of the edges have reach the minimum value of τmin

around iteration T = 220, see column (b)). But, we can see that if pheromones
are not used (last row, in this case the algorithm is then similar to a greedy
algorithm restarted 500 times), the mean quality of the population and the best
keyboard for a given iteration remain constant while for α = 2.0 the quality of
the whole population increases (with a slow down around iteration T = 220).

Artificial Ants for Keyboard Arrangement Optimization 97

Table 2. Relative mean performances of the best keyboard found for each document
(rows) over all 12 documents (columns). results are given in %.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S1 1.89 5.43 1.47 37.24 73.75 29.69 1.90 4.30 2.90 3.40 3.19 3.50
S2 9.84 1.66 0.73 44.49 80.19 29.87 3.68 5.37 5.78 6.17 6.77 4.53
S3 11.77 7.29 0.20 39.42 82.88 26.97 6.07 8.82 7.23 7.30 7.75 7.28

S4 21.57 19.86 15.13 1.09 42.07 10.46 17.49 20.04 18.21 17.28 16.87 17.94
S5 50.35 47.34 45.06 38.04 0.00 33.10 47.63 46.64 42.21 49.04 50.38 47.10
S6 74.34 70.69 69.15 90.06 109.08 0.00 73.23 72.12 70.19 71.02 69.74 70.33

S7 8.39 7.65 4.12 41.56 74.31 30.33 0.25 4.31 3.95 5.27 6.59 5.29
S8 7.83 5.26 1.80 38.73 75.70 25.43 1.48 2.53 2.53 5.21 5.22 4.74
S9 8.35 8.04 4.50 41.61 76.80 31.86 2.18 5.31 0.60 7.53 7.15 5.80

S10 7.24 5.94 1.64 36.87 74.87 25.55 2.85 5.07 4.10 1.29 4.01 2.84
S11 6.81 7.32 2.68 41.08 78.09 25.35 3.01 5.69 4.79 3.85 1.27 3.72
S12 6.16 7.46 2.39 42.00 87.65 31.73 2.51 5.56 4.52 3.91 5.07 1.41

We can conclude that pheromones are useful for ants’progression and if we
would like to obtain still better results, we should try to keep pheromone entropy
at the first level (during the 220 first iterations). To do this, we can play with
parameters ρ.

5.3 Experimental Comparison

For each document {S1, . . . , S12} and each of the 30 independent runs, we have ob-
tained a best virtual keyboard. This keyboard is then used to compute its quality
when typing the 12 documents. Values reported in table 2 give the mean relative
performance of one keyboard over the 12 documents. We can notice that for a given
“keyboard” (i.e. which is learned with the given document), the relative best typ-
ing performances are obtained for the given document and more widely for the
same class of documents (for instance, learning with S5 is always the best way to
type in S5). This confirms us that it seems to be useful to train the keyboard with
representative documents of user’s activity. We see clearly that keyboards built
from C documents are much more efficient for typing C documents.

6 Conclusion

In this paper, we have presented a work which is taking advantage of artificial
ant optimization:

– the first work on artificial ants and keyboards [16] was interesting and well
conducted but it was missing a real need, and in our opinion, helping disabled
persons is a good one. Moreover, as needs of handicapped persons are always
different from each other and because their capabilities are often in evolution
(positive or negative) our method will be for many persons and many times!

98 S. Colas et al.

– preliminary results presented in this paper show that the algorithm has the
needed characteristics to follow our goal: an adaptive behavior according to
simple document different types,

– other properties of ant algorithms can be useful, for instance we can provide
an online-version that can dynamically modify the keyboard according to
every day use and then follows the user’s evolution in its habits.

Many experiments will be added to this first study. For instance in order to
compare artificial ants with other population based metaheuristics. Performances
can surely be improved by introducing a local search step. We will also improve
the fitness computation by introducing classical measures or user models used
in the field of adapted input devices and interfaces [19].

The next step of this work would be to provide a virtual keyboard with the
ant algorithm inside. Then, it will be possible to perform experiments with real
users. As we have seen it in section 2, it will not be possible to ignore to include
a prediction mechanism.

References

1. Chisholm, W., Vanderheiden, G., Jacobs, I.: CSS Techniques for Web Content
Accessibility Guidelines 1.0 (Novembre 2000) (last visit on 10/11/2006),
http://www.w3.org/TR/WCAG10-CSS-TECHS/

2. WAI: Web Accessibility Initiative (2006) (last visit on 06/12/2006),
http://www.w3.org/WAI

3. Mormiche, P.: le groupe de projet HID: Le handicap en institution, le devenir des
pensionnaires entre 1998 et 2000. (septembre 2001)

4. Lake Software: Click-n-type (2007) (last visit on 30/01/2007),
http://www.lakefolks.org/cnt/fr-intro.htm

5. In’Tech INFO: Custom Virtual Keyboard (CVK) (2007) (last visit on 30/01/2007),
http://www.cvk.fr/

6. Madentec: Screendoors 2000 (2007) (last visit on 30/01/2007),
http://www.madentec.com/products/screendoors.php

7. AssistiveWare: Keystrokes (2007) (last visit on 30/01/2007),
http://www.assistiveware.com/keystrokes.php

8. Handicap International: Clavicom (2007) (last visit on 30/01/2007),
http://www.handicap-icom.asso.fr/adaptations/aides techniques/
clavicom.html

9. Bloorview Kids Rehab: Wivik (2007) (last visit on 30/01/2007),
http://www.wivik.com/

10. Boissière, P., Dours, D.: Vitipi: Un système d’aide à l’écriture basé sur un principe
d’autoapprentissage et adapté à tous les handicaps moteurs. In: IFRATH Handicap
2000, AACCESS Reprographie (Paris 15 - 16 Juin 2000), pp. 81–96

11. Maurel, D., Fouche, B., Briffault, S.: Handias: Aider la communication en facilitant
la saisie rapide de textes. In: IFRATH Handicap 2000, (Paris 15 - 16 Juin 2000),
pp. 87–92 (2000)

12. Raynal, M.: Keyglasses: des touches semi-transparentes pour optimiser la saise de
texte. In: Interaction Homme Machine IHM 2005 (2005)

http://www.w3.org/TR/WCAG10-CSS-TECHS/
http://www.w3.org/WAI
http://www.lakefolks.org/cnt/fr-intro.htm
http://www.cvk.fr/
http://www.madentec.com/products/screendoors.php
http://www.assistiveware.com/keystrokes.php
http://www.handicap-icom.asso.fr/adaptations/aides_techniques/clavicom.html
http://www.handicap-icom.asso.fr/adaptations/aides_techniques/clavicom.html
http://www.wivik.com/

Artificial Ants for Keyboard Arrangement Optimization 99

13. Schadle, I., Antoine, J.Y., Le Pévédic, B., Poirier, F.: Sibylettre: prédiction de
lettre pour la communication assistée. In: Revue d’Interaction Homme-Machine,
RIHM vol. 3 (2002)

14. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA,
USA (2004)

16. Eggers, J., Feillet, D., Kehl, S., Wagner, M.O., Yannou, B.: Optimization of the
keyboard arrangement problem using an Ant Colony algorithm. European Journal
of Operational Research 148(3), 672–686 (2003)

17. Raynal, M., Vigouroux, N.: Genetic Algorithm to Generate Optimized Soft Key-
board. In: Conference for Human-Computer Interaction (CHI 2005), Portland, Ore-
gon (April 27, 2005), pp. 1729–1732. ACM, New York (2005)

18. Delahaye, D., Puechmorel, S.: Air Traffic Controller Keyboard Optimization by
Artificial Evolution. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer,
M. (eds.) EA 2003. LNCS, vol. 2936, pp. 177–188. Springer, Heidelberg (2004)

19. Soukoref, R., MacKenzie, I.: Theorical Upper and Lower Bounds on Typing Speed
Using a Stylus and Soft Keyboard. Behavior and Information Technology 14(6),
370–379 (1995)

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 100 – 111, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Self-organization and Evolution Combined to Address
the Vehicle Routing Problem

Jean-Charles Créput and Abderrafiaâ Koukam

Systems and Transportation Laboratory,
University of Technology of Belfort-Montbeliard, 90010 Belfort, France

{Jean-Charles.Creput,Abder.Koukam}@utbm.fr

Abstract. The paper deals with a self-organizing system in a evolutionary
framework applied to the Euclidean Vehicle Routing Problem (VRP).
Theoretically, self-organization is intended to allow adaptation to noisy data as
well as to confer robustness according to demand fluctuation. Evolution
through selection is intended to guide a population based search toward near-
optimal solutions. To implement such principles to address the VRP, the
approach uses the standard self-organizing map algorithm as a main operator
embedded in a evolutionary loop. We evaluate the approach on standard
benchmark problems and show that it performs better, with respect to solution
quality and/or computation time, than other self-organizing neural networks to
the VRP presented in the literature. As well, it substantially reduces the gap to
some classical Operations Research heuristics.

Keywords: Neural network, Self-organizing map, Evolutionary algorithm,
Vehicle routing problem.

1 Introduction

In this paper we are concerned with the Vehicle Routing Problem (VRP) [3]. The
VRP is defined on a set V = {v0, v1, ..., vN} of vertices, where vertex v0 is a depot at
which are based m identical vehicles of capacity Q, while the remaining N vertices
represent customers, also called requests or demands. A non-negative cost, or travel
time, is defined for each edge (vi, vj) ∈ V × V. Each customer has a non-negative
demand qi and a non-negative service time si. A vehicle route is a circuit on vertices.
The VRP consists of designing a set of m vehicle routes of least total cost, each
starting and ending at the depot, such that each customer is visited exactly once by a
vehicle, the total demand of any route does not exceed Q, and the total duration of any
route does not exceed a preset bound D. As it is the most often done in practice
[7][20], we shall be concerned in this paper with the Euclidean VRP, where each
vertex vi has a location in the plane, and where the travel cost is given by the
Euclidean distance d(vi, vj) for each edge (vi, vj) ∈ V × V. Then, the main objective of
the problem is the total route length.

This problem is one of the most widely studied problems in combinatorial
optimization. It has a central place for the determination of efficient routes in distribution

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 101

management. The problem is NP-hard. Then, for large instances, using heuristics is
encouraged in that they have statistical or empirical guaranty to find good solutions
possibly for large scale problems with several hundreds of customers. For example, ones
of the most powerful Operations Research (OR) heuristics for the VRP, referred in the
extensive surveys [7][14][20], are based on metaheuristic frameworks as the Tabu Search
[6][28][32], simulated annealing, and population based methods, such as evolutionary
algorithms [22][25], adaptive memory [31] and ant algorithms [26]. Other methods can
hybridize several metaheuristics principles, as for example the very powerful active
guided local search [22], which is maybe the overall winner approach considering both
quality solution and computation time.

Here, we focus on the Euclidean VRP and propose a Euclidean solving approach.
The method presented in this paper takes its origin in neural networks (NN) visual
patterns that evolve and distort in the plane according to an underlying data
distribution. The neural network considered in this paper is the self-organizing map
(SOM) [19], which is often presented as a non supervised learning procedure
performing a non parametric regression that reflects topological information of the
input data. The underlying concept, that we call adaptive meshing, lets envisage
application to many spatially distributed problems, as radio-mobile and terrestrial
transportation dimensioning, clustering k-median, and unified clustering and routing
problems [8][9][10][11][12]. By preserving density and topology of a data
distribution, SOM allows positioning of facilities in accordance to the demand,
respecting the inter-component network architecture. As well, its O(N) spatial
complexity theoretically allows application to very large instances. Furthermore,
continuous visual feedback during simulations is naturally allowed.

To solve the combinatorial optimization problem, we present an evolutionary
framework which incorporates self-organizing maps as internal operators. The
approach is called memetic SOM by reference to memetic algorithms [24], which are
hybrid evolutionary algorithms (EA) incorporating a neighborhood search.
Furthermore, since the communication times at the level of selection is relatively
small, the long running times of independent SOM processes favor parallel execution
of the method on standard computer systems.

In the literature, many applications of neural networks have addressed the traveling
salesman problem (TSP). For more information on this subject, we refer the reader to
the extensive survey of Cochrane and Beasley [5]. However, extending SOM to the
more complex vehicle routing problem remains a difficult task. Few works were
carried out trying to extend SOM, or elastic nets, to the VRP. As far as we know, the
most recent approaches are [15][18][21][23][29][30][33]. They are generally based on
a complex modification of the internal learning law, altered by problem dependant
penalties. Here, to apply SOM to the VRP and to improve performances as well, the
standard SOM execution interleaves with other processes, or operators, following the
evolutionary method. The standard SOM is a main operator embedded into an EA and
combined with other greedy insertion operators, fitness evaluation and selection
operators.

Evaluation of the proposed approach is performed against neural networks and some
of the recent Operations Research heuristics presented in [7]. Mainly, we will try to
show that the memetic SOM yields a substantial gain of accuracy in comparison to the
previous SOM based approaches. Considering OR heuristics, memetic SOM does not

102 J.-C. Créput and A. Koukam

compete with the most powerful ones, which beneficiate of the considerable effort
spent over more than thirty years, but we claim that it substantially reduces the gap.

The paper is organized as follows. Section 2 presents the memetic SOM approach.
Section 3 reports experiments carried out on the capacitated VRP, as well as on its
time duration version. Evaluations against SOM based approaches and OR heuristics
are performed. Finally, the last section is devoted to the conclusion and further
research.

2 Evolutionary Algorithm Embedding SOM

2.1 Method Principle

To illustrate the “philosophy” of the SOM behavior, an example of its application to
the TSP is illustrated in Fig. 1 on the bier127 instance from TSPLIB [27], at different
steps of a long simulation run. The TSP can be seen as a VRP, with no capacity and
no time duration constraint, and using a single vehicle. The example shows a tour
construction using a ring network, which is a planar graph with a fixed number of
vertices having a ring shape. The network dispatches its vertices among cities, or
customers (dots in the figure), in a massively parallel manner. At the beginning, the
local moves in the plane are performed with a great intensity in order to let the ring
deploy toward cities, starting from scratch (a). Then, the intensity of moves slightly
decreases in order to progressively freeze the vertices near cities (b-c). At a final step,
customers have just to be assigned to their nearest vertex in the ring in order to
generate a final tour ordering.

(a) (b) (c)

Fig. 1. A TSP tour construction by SOM using the TSPLIB bier127 instance

This massive parallelism, using an intermediate structure in the plane, differentiates
the approach from classical Operations Research heuristics. Such methods operate
(sequentially) on a graph, where the vertices stand for the customers. They generally
model routes by a customer ordering, and apply local search operators performing
customer swaps and/or arc exchanges between routes [7][14][20].

Here, routes are defined by an ordering of cluster centers, or neurons, moving in
the plane, and having to be assigned to customers in a subsequent step. We think that
separating the transportation network from the underlying customer demands has
several positive aspects. One of the goals is to give the natural potential to deal with
noisy or incomplete data, and with fluctuating demand. As well, we think that this

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 103

independent structure more closely models usual transportation networks, which are
physical interconnected infrastructures more or less adapted to the many potential
customers. A characteristic of the method is that non standard solutions are admitted
during the course of the optimization process. This allows to deal with combined
clustering and routing problems, in a unified way. For example, [10][11][12] present a
combination of the Euclidean k-median problem [1] and classical VRP. It consists of
positioning bus stops according to customer locations (k-median problem) and
generating vehicle routes among bus-stops (VRP). Bus-stops define clusters where
customers are grouped and where they have to walk to take the bus.

To extend SOM applicability to complex problems, such as the VRP, it becomes an
operator embedded into an evolutionary algorithm, yielding to what we call the
memetic SOM algorithm. An advantage is that operators can be designed
independently and then combined. The term used to describe and qualify our method
focuses on the analogy with the memetic algorithm [24] which incorporates a local
search into a standard evolutionary loop. The SOM algorithm stands for local search. It
is used here as a long run process applied to a population of solutions, and interrupted
during its progress by application of evolutionary operators. Here, no recombination,
nor crossover, operators are considered. The method is a descendant approach just like
evolution strategies [2] and memetic algorithms, and at the contrary of genetic
algorithms [16] that are ascendant methods (solutions are constructed) centered around
crossover. By following the two kind of spatial and natural metaphors of self-
organization and evolution, and by using standard algorithm structures, such as SOM
and EA, the goal is also to address the build of a simple and effective distributed
method for the solving of hard combinatorial optimization problems.

2.2 The Kohonen’s Self-Organizing Map

The standard self-organizing map [19] algorithm operates on a non directed graph G =
(A, E), called the network, where each vertex n ∈ A is a neuron having a location wn =
(x, y) in the plane. The set of neurons A is provided with the dG induced canonical

metric (), ' 1d n nG = if and only if (), 'n n E∈ , and with the usual Euclidean
distance d(n, n').

The training procedure applies a given number of iterations niter to a graph
network, the vertex coordinates of which being randomly initialized into an area
delimiting the data set. Here, the data set is the set of demands, or customers. Each
iteration follows four basic steps. At each iteration t, a point p(t)∈ℜ2 is randomly
extracted from the data set (extraction step). Then, a competition between neurons
against the input point p(t) is performed to select the winner neuron n* (competition
step). Usually, it is the nearest neuron to p(t).

() () () () ()()1 . *, .w t w t t h n n p w tn n t nα+ = + − (1)

Then, the learning law (1) (triggering step) is applied to n* and to all neurons within a
finite neighborhood of n* of radius σt, in the sense of the topological distance dG,
using learning rate α(t) and function profile ht. The function profile is given by the
Gaussian in (2).

104 J.-C. Créput and A. Koukam

() ()()2 2*, exp *,h n n d n nt G tσ= −

(2)

Finally, the learning rate α(t) and radius σt slowly decrease as geometric functions
of time (decreasing step). To perform a decreasing run within tmax iterations, at each

iteration t coefficients α(t) and σt are multiplied by ()()exp ln maxx x tfinal init ,

with respectively x = α and x = σ, xinit and xfinal being respectively the values at
starting and final iteration. In our evolutionary algorithm, a SOM simulation becomes

an operator specified by its running parameters (), , , , maxtinit initfinal finalα α σ σ .

2.3 Evolutionary Loop and Operators

A construction loop as well as an improvement loop are instantiated based on the
following generic memetic loop structure, where the parameter setting has been
determined empirically after a preliminary round of experiments :

Initialize population with Pop=50 individuals.
Gen = 0
While not Gen=N/2 generations are performed /* Gen=5N for
long runs */.
 1. In construction mode only, apply a standard SOM
operator, with parameters (α

init
, α

final
, σ

init
, σ

final
, t

max
)= (0.5,

0.5, 2×N/m, 4, Gen×niter), to each individual in population
separately, performing niter=N/4 iterations by individual at
each generation.
 2. In improvement mode only, apply a standard SOM
operator, with parameters (α

init
, α

final
, σ

init
, σ

final
, t

max
)= (0.9,

0.5, 2×N/m, 0.5N/m, Gen×niter), to each individual in
population separately, performing niter=1 iteration by
individual at each generation.
 3. In improvement mode only, apply derived SOM
operator, denoted SOMVRP, with parameters (α

init
, α

final
, σ

init
,

σ
final

, t
max
)= (0.5, 0.5, 10, 4, Gen×niter), to each individual in

population separately, performing niter=N/m iterations by
individual at each generation.
 4. Apply mapping operator MAPPING to each
individual in population to assign each demand to a closest
vertex, then move vertices to demand locations.
 5. Apply fitness evaluation operator FITNESS to
each individual in population.
 6. Save the best individual encountered.
 7. Apply selection operator SELECT.
 8. Apply elitist selection operator SELECT_ELIT.
 9. Apply derived operator SOMDVRP, to each
individual in population separately to perform greedy
insertion moves to the residual demands. */
 8. Gen = Gen +1
End while.
Report best individual encountered.

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 105

The memetic loop applies a set of operators to a population of Pop individuals, at
each iteration (called a generation). A loop executes a fixed number of generations Gen,
depending on the problem size N. The number of individuals is constant. One individual
encapsulates exactly one solution, that is, a set of m routes, called the network. Each
route is represented by a planar graph having a ring structure with 5×N/m vertices. To
each route corresponds exactly one vehicle. Each ring has a vertex fixed at the depot
location. Other vertices are free to move anywhere in the plane. Vertices are the
variables which have to be located on, and assigned to, customer locations in order to
define the different tour orderings which stand for the VRP solution. The number of
vertices by vehicle corresponds to the maximum of customers a vehicle can visit. It has
been adjusted empirically to allow a good compromise between number of customers
visited, equilibration of route lengths and computation speed.

The construction loop starts its execution with solutions having randomly
generated vertex coordinates into a rectangle area containing demands. The
improvement loop starts with the single best previously constructed solution, which is
duplicated in a new population. Mainly, the behavior consists of applying a SOM
process and interrupting its progress, at each generation, by application of a mapping
operator which generates a VRP solution by projecting vertices to customer locations.
Other operators have a complementary role, trying to direct the search toward better
quality solutions. The construction loop is responsible for creating an initial solution
from scratch, whereas the improvement loop is responsible of local improvements on
solutions. It follows that the SOM process embedded in the former loop performs a
greater number of iterations by generation, using a larger neighborhood. The
improvement loop performs very few and punctual moves at each generation.

The two loops are managed by a master loop controlling restart executions, from
random solutions at each time. A complete run executes construction followed by
improvement until all customers are inserted and all constraints satisfied, at least
NExec times, and at most a predefined large number of times. For fast runs, we take
NExec = 1 and Gen = N/2. For long runs, we take NExec = 5, Gen = 5N, the
improvement phase being also restarted as soon as the fitness is improved.

The construction and improvement phases are illustrated in Fig. 2 on the c5
instance with 200 customers of the publicly available Christofides, Mingozzi, and
Toth (CMT) [3] benchmark, showing the visual pattern moving in the plane. The
construction phase is illustrated in (a-d). Two consecutive pictures show the network,
at a given generation, as distorted by the SOM operator followed immediately by the
admissible, or near admissible, solution generated by the mapping operator. This
mapping operator creates a VRP solution by projecting nearest vertices to each
customer. (a-b) present the network at the beginning of construction and (c-d) several
generations later. In (e-f) is shown the network at different steps of the improvement
phase, illustrating the local perturbations responsible for local improvements.

Details of operators are the followings:

1) Self-organizing map operator. It is the standard SOM applied to the graph
network. It is denoted by its name and its internal parameters, as

(), , , , maxSOM tinit final init finalα α σ σ . One or more instances of the operator,

with their own parameter values, can be combined. A SOM operator is executed

106 J.-C. Créput and A. Koukam

(a) (b) (c)

(d) (e) (f)

Fig. 2. Two phases algorithm with the CMT c5 instance. (a)-(d) Construction phase. (e)-(f)
Improvement phase.

performing niter basic iterations by individual, at each generation. Parameter tmax is
the number of iterations defining a long decreasing run performed in the stated
generation number Gen, for each individual. Other parameters define the initial and
final intensity and neighborhood for the learning law. The operator can be used to
deploy the network toward customers in construction phase, or to introduce punctual
moves to exit from local minima in improvement phase.

2) SOM derived operators. Two operators are derived from the SOM algorithm
structure for dealing with the VRP. The first operator, denoted SOMVRP, is a
standard SOM restricted to be applied on a randomly chosen vehicle, using customers
already inserted into the vehicle/route. It helps eliminate remaining crossing edges in
routes. While capacity constraint is greedily tackled by the mapping/assignment
operator below, the second operator, denoted SOMDVRP, deals with the time duration
constraint specifically. It performs few insertion moves of customers, not already
assigned, to a vehicle vertex with least route time increase.

3) Mapping/assignment operator. This operator, denoted MAPPING, generates a
VRP solution by inserting customers into routes and modifies the shape of the
network accordingly. The operator greedily maps customers to their nearest vertex,
considering vertices not already assigned, for which vehicle capacity constraint is
satisfied. Then, the operator moves the vertices to the location of their assigned
customer (if exist) and dispatches regularly (by translation) other vertices along edges
formed by two consecutive customers in a route.

4) Fitness operator, denoted FITNESS. Once the assignment of customers to routes
has been performed, this operator evaluates a scalar fitness value for each individual
that has to be maximized and which is used by the selection operator. The value
returned is fitness = sat − 10−5 × length, where sat is the number of customers that are
successfully assigned to routes, and length is the length of the routes defined by the

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 107

ordering of such customers mapped along the rings. Admissible solutions are the ones
for which sat = N, N being the number of customers.

5) Selection operators. Based on fitness maximization, the operator denoted
SELECT replaces Pop/5 worst individuals, which have the lowest fitness values in the
population, by the same number of bests individuals, which have the highest fitness
values in the population. An elitist version SELECT_ELIT replaces the Pop/10 worst
individuals by the single best individual encountered during the current run.

3 Computational Results

3.1 Influence of the Main Algorithmic Components

Using the parameter settings given in the previous section, we apply the construction
and improvement loops in sequence, one time each, and study the influence of the
main algorithmic components, for a fixed population size of 50 individuals. The
generation numbers GenC and GenI are set to N. The tests are done using the c10
instance of the Christofides, Mingozzi, and Toth (CMT) [3] benchmark, with 200
customers and time duration constraint, performing 10 runs by test with a chosen
component being removed from the algorithm. Fig. 3(a) presents the mean fitness
values obtained at the last generation within 95% confidence intervals. Fig. 3(b)
presents the mean route lengths, as well in 95% confidence intervals.

(a) (b)

Fig. 3. Performances of memetic SOM removing algorithmic components. (a) Fitness values in
95 % confidence intervals. (b) Route lengths in 95 % confidence intervals.

Clearly, as shown in Fig. 3(a), selections operators have a great influence on the
algorithmic performance. Without any selection operator, the algorithm behaves like
executing 50 independent runs on a single individual. In that case, only 196 demands,
on a total of 200, are satisfied on average. As well, the SOMDVRP operator,
responsible for random insertions according to time duration constraint, plays an
important role. Removing this component yields to solution with less than 200
customers successfully inserted, thus to non admissible solutions.

Removing elitist selection only, or SOMVRP operator responsible for single route
improvement, yields to fitness values overlapping with the standard case Pop = 50.
Then, to decide whether these two operators play a significant role, we need to look at

108 J.-C. Créput and A. Koukam

the secondary fitness component, which is the total route length, in fact the main VRP
objective to minimize. Fig. 3(b) clearly shows that removing the elitist selection has a
non negligible impact on route length minimization. Removing the SOMVRP however
has a weaker impact on this value, but this can be explained by the particular test case
used, where time duration constraint is predominant. The standard Pop = 50 case wins
in all cases, considering both fitness and length.

3.2 Comparative Evaluation

Evaluation of the memetic SOM approach is done against neural network algorithms
and against some recent Operations Research heuristics. In the former case, we
compare memetic SOM to the three representative approaches of Ghaziri [15],
Modares et al. [23] and Schwardt and Dethloff [30]. Only these authors have made
significant use of the publicly available Christofides, Mingozzi, and Toth (CMT) [3]
test problems. Other neural network versions [18][21][29][33] are quite
algorithmically similar or clearly worse performing. Only Ghaziri [15] addresses the
time-duration version of VRP and solves almost all the corresponding CMT test
cases. We also evaluate the approach against the Clarke and Wright construction
heuristic [4], the Unified Tabu Search Algorithm (UTSA) [6], the Active Guided
Evolution Strategy (AGES) [22], and the Very Large Neighborhood Search (VLNS)
[13] approach. Considering the survey of Cordeau et al. [7], the UTSA approach has
displayed good performances on solution quality and is considered very simple and
flexible, but time consuming. Other recent OR heuristics present similar accuracy
within less computation time. An exception is the AGES approach, which displays a
very high performance considering both solution quality and computation time. At the
opposite, VLNS appears to be the less performing OR heuristic presented in [7].
Results on the large test problems of Golden et al. [17], with up to 483 customers, will
be mentioned briefly.

Numerical results on CMT instances are given in Table 1. The fourteen CMT
instances of the capacitated VRP are composed of two subsets containing seven
instances of each VRP types, with (D subset) or without time duration constraint (C
subset). The first column “Name-size-veh” indicates the name, size and number of
vehicles of the instance. Second column indicates the best known values that were
obtained initially for a large part by [28] through a long run. The memetic SOM
results are averaged on a basis of 10 runs. We used the two configurations “fast” and
“long” of the algorithm, to adjust computation time. Approaches are mentioned in
Table 1 using the name of the method and/or the author names and date of
publication. For each method, the percentage deviation to the best known value of the
mean solution is reported in column “%PDM” and the average computation time (if
exist) in column “Min” in minutes. Some results that are best values over many runs
are reported in column “Best”. Results in Table 1 show the improvement carried out
by memetic SOM against earlier neural network approaches. Accuracy is substantially
improved since the average deviation to the best known value is reduced from roughly
5 % to 3.39 % on average for fast runs, and to 1.20 % for long runs.

Here, all CMT test cases are addressed successfully. Modares et al. [23] and
Schwardt and Dethloff [30] do not report computation time. Furthermore, they do not

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 109

address the time duration version of the problem. Only Ghaziri [15] deals with it.
Taking care of the rough approximation performed when comparing computation
times, memetic SOM clearly improves solution quality. We also report in Table 1
results obtained by the Clarke and Wright construction heuristic [4], available at VRP
Web http://neo.lcc.uma.es/radi-aeb/WebVRP/. Neural networks perform better than
the construction heuristic, for more computation time. Finally, results obtained by the
UTSA approach [6] are given in the two last columns. They illustrate the gap to such
a recent Operations Research heuristic. With roughly 30-40 % computation time more
on a similar computer, UTSA yields 0.56 % of average deviation, whereas memetic
SOM 1.20 %. At the opposite, referring to [7], the best performing, but complicated,
AGES [22] yields 0.03 % deviation to best known in 7.72 minutes on a Pentium IV
(2000 MHz), and 0.07 % deviation in 0.27 minutes.

Considering Operations Research heuristics, we also used the large test problems
of Golden et al. [17], with up to 483 customers. On all the tests, memetic SOM yields
2.70 % deviation in 39 minutes on a AMD Athlon (2000 MHz) computer, whereas
UTSA yields 1.45 % in 56 minutes on a Pentium IV (2000 MHz), using results
reported in [7]. Memetic SOM appears to be more accurate on instances with time
duration constraint. In that case, the average deviation obtained was 1.96 % in 44
minutes, whereas UTSA yields 1.60 % in 38 minutes. On such instances, the proposed
memetic SOM performs better than the VLNS [13] heuristic. It yields 3.45 % of
average deviation in 10 minutes, whereas VLNS yields 3,76 % in 22 minutes
normalized to the same computer.

Table 1. Numerical results for the CMT instances

110 J.-C. Créput and A. Koukam

4 Conclusion

By combining self-organization in evolution, we presented an approach that extends
and improves neural networks applied to the VRP. Operators have a similar structure
based on closest point findings and simple moves performed in the plane. They can be
interpreted as performing parallel and massive insertions, simulating the behavior of
spatially distributed agents which interact continuously, having localized and limited
abilities. The evolutionary framework adds another level of parallel computation and
direct the search toward problem goals. Application within a dynamic and stochastic
context is now a question to be addressed. Exploiting the natural parallelism of the
approach for multi-processor implantations is also a key point to address.

References

[1] Arora, S.: Polynomial-time Approximation Schemes for Euclidean TSP and other
Geometric Problems. Journal of the ACM 45(5), 753–782 (1998)

[2] Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: 4th Int.
Conf. on Genetic Algorithms, La Jolla, CA (1991)

[3] Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides,
N., et al. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)

[4] Clarke, G., Wright, J.W.: Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points. Operations Research 12, 568–581 (1964)

[5] Cochrane, E.M., Beasley, J.E.: The co-adaptive neural network approach to the Euclidean
Travelling Salesman Problem. Neural Networks 16, 1499–1525 (2003)

[6] Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society 52,
928–936 (2001)

[7] Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New Heuristics for
the Vehicle Routing Problem. In: Langevin, A., Riopel, D. (eds.) Logistics Systems:
Design and Optimization, pp. 279–297. Springer, New York (2005)

[8] Créput, J.C., Koukam, A., Lissajoux, T., Caminada, A.: Automatic Mesh Generation for
Mobile Network Dimensioning using Evolutionary Approach. IEEE Transactions on
Evolutionary Computation 9(1), 18–30 (2005)

[9] Créput, J.C., Koukam, A.: Local search study of honeycomb clustering problem for
cellular planning. International Journal of Mobile Network Design and Innovation 1(2),
153–160 (2006)

[10] Créput, J.C., Koukam, A.: Interactive Meshing for the Design and Optimization of Bus
Transportation Networks. Journal of Transportation Engineering 133(9), 529–538 (2007)

[11] Créput, J.C., Koukam, A.: Transport Clustering and Routing as a Visual Meshing Process.
Journal of Information and Optimization Sciences, Taru Publications (2007) (in press)

[12] Créput, J.C., Koukam, A., Hajjam, A.: Self-Organizing Maps in Evolutionary Approach
for the Vehicle Routing Problem with Time Windows. International Journal of Computer
Science and Network Security 7(1), 103–110 (2007)

[13] Ergun, Ö., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out
of smaller ones by compounding moves: a study on the vehicle routing problem. MIT
Sloan Working Paper No. 4393-02, USA (2003)

[14] Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP. In: Toth,
P., Vigo, D. (eds.) The vehicle routing problem, pp. 129–154. SIAM, Philadelphia (2002)

 Self-organization and Evolution Combined to Address the Vehicle Routing Problem 111

[15] Ghaziri, H.: Supervision in the Self-Organizing Feature Map: Application to the Vehicle
Routing Problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory &
Applications, pp. 651–660. Kluwer, Boston (1996)

[16] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1994)

[17] Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: Metaheuristics in vehicle routing. In:
Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer,
Boston (1998)

[18] Gomes, L.C.T., Von Zuben, F.J.A.: Vehicle Routing Based on Self-Organization with
and without Fuzzy Inference. Proc. of the IEEE International Conference on Fuzzy
Systems 2, 1310–1315 (2002)

[19] Kohonen, T.: Self-Organization Maps and associative memory, 3rd edn. Springer, Berlin
(2001)

[20] Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.: Classical and Modern Heuristics for
the vehicle routing problem. International Transaction in Operational Research 7, 285–
300 (2000)

[21] Matsuyama, Y.: Self-organization via competition, cooperation and categorization
applied to extended vehicle routing problems. In: Proc. of the International Joint
Conference on Neural Networks, Seatle, WA, pp. 385–390 (1991)

[22] Mester, D., Bräysy, O.: Active Guided Evolution Strategies for Large Scale Vehicle
Routing Problems with Time Windows. Computers & Operations Research 32, 1593–
1614 (2005)

[23] Modares, A., Somhom, S., Enkawa, T.: A self-organizing neural network approach for
multiple traveling salesman and vehicle routing problems. International Transactions in
Operational Research 6, 591–606 (1999)

[24] Moscato, P.: Memetic Algorithms: A Short Introduction. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, McGraw Hill, New York (1999)

[25] Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research 31, 1985–2002 (2004)

[26] Reimann, M., Doerner, K., Hartl, R.F.: D-ants: savings based ants divide and conquer the
vehicle routing problem. Computers & Operations Research 31, 563–591 (2004)

[27] Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA Journal on
Computing 3, 376–384 (1991)

[28] Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local search
for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

[29] Schumann, M., Retzko, R.: Self-organizing maps for vehicle routing problems
minimizing an explicit cost function. In: Proc. of the International Conference on
Artificial Neural Networks, Paris, pp. 401–406 (1995)

[30] Schwardt, M., Dethloff, J.: Solving a continuous location-routing problem by use of a
self-organizing map. Int J Physical Distribution & Logistics Management 35(6), 390–408
(2005)

[31] Taillard, E.D., Gambardella, M.L., Gendreau, M., Potvin, J.Y.: Adaptive memory
programming: A unified view of metaheuristics. European Journal of Operational
Research 135, 1–16 (2001)

[32] Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle routing
problem. INFORMS Journal on Computing 15, 333–348 (2003)

[33] Vakhutinsky, A.I., Golden, B.L.: Solving vehicle routing problems using elastic net. In:
IEEE International Conference on Neural Network, pp. 4535–4540 (1994)

An Evolutionary Algorithm for the Block

Stacking Problem

Tim Hohm, Matthias Egli, Samuel Gaehwiler, Stefan Bleuler, Jonathan Feller,
Damian Frick, Richard Huber, Mathias Karlsson, Reto Lingenhag,
Thomas Ruetimann, Tom Sasse, Thomas Steiner, Janine Stocker,

and Eckart Zitzler�

Computer Engineering and Networks Laboratory (TIK), ETH Zurich
{hohm,bleuler,zitzler}@tik.ee.ethz.ch,

http://www.tik.ee.ethz.ch/sop/

Abstract. How has a stack of n blocks to be arranged in order to max-
imize its overhang over a table edge while being stable? This question
can be seen as an example application for applied statics and at the same
time leads to a challenging optimization problem that was discussed re-
cently in two theoretical studies.

Here, we address this problem by designing an evolutionary algorithm;
the proposed method is applied to two instances of the block stacking
problem, maximizing the overhang for 20 and 50 block stacks. The study
demonstrates that the stacking problem is worthwhile to be investigated
in the context of randomized search algorithms: it represents an abstract,
but still demanding instance of many real-world applications. Further-
more, the proposed algorithm may become useful in empirically testing
the tightness of theoretical upper bounds proposed for this problem.

1 Introduction

What is the largest overhang beyond the edge of a table that can be reached
with a stack of n blocks (see Fig. 1)? A question that can be reformulated into
the following optimization problem: Find a stable stack consisting of n blocks
with a maximal overhang beyond the edge of a table. This is an example system
to demonstrate the principles of static equilibrium that was discussed in two
recent theoretical studies by Hall [3] and Paterson and Zwick [6].

Although this problem is mentioned in several engineering mechanics textbooks
throughout the years [7,4] as well as in mathematics [1,5], until now optimal so-
lutions are only known for strongly restricted variants. Nevertheless construction
schemes and upper bounds for some scenarios are available [3,6]. Up to now, there
exists no algorithm generating stacks where each block is explicitly represented;
both studies, Hall’s and Paterson and Zwick’s, present algorithms involving im-
plicit representations for parts of the stacks by introducing additional weights.
� This study arose from a student project within the Bachelor’s program in Informa-

tion Technology and Electrical Engineering at ETH Zurich that was supervised by
Stefan Bleuler, Tim Hohm and Eckart Zitzler.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 112–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Evolutionary Algorithm for the Block Stacking Problem 113

Fig. 1. An example Stack and its overhang over a table edge

Therefore developing a technique generating fully represented stack provides an
interesting complement to the theoretical studies, empirically substantiating the
proposed bounds. In addition, following Hall, the described problem “ ... could
pose a worthy test for general optimization algorithms.” (page 1115 in [3]). This
problem is an interesting addition to the set of test problems for stochastic op-
timization techniques like evolutionary algorithms (EAs) and expands the set of
representatives of stacking problems often considered in EA studies [2].

Therefore, taking up Hall’s suggestion in the following, we describe an EA
designed to work on the described problem, addressing the questions of (i) how
to represent the problem and how to design appropriate variation operators such
that an EA can explore the space of stack configurations effectively, and (ii) what
overhang can be reached by an EA - regarding a 20 block and a 50 block setup.

2 Related Work

The block stacking problem has a long history and was mentioned already in the
19th century [8] recurring from then on regularly in textbooks, providing only
limited information on how a general optimal solution could look like. Recently,
two theoretical studies examined the problem in more detail. In the first study,
Hall [3] investigated the influence of different restrictions of the problem on the
achievable overhang. He showed that the widely believed to be optimal overhang
Dn for a stack of n blocks of

Dn =
1
2

n∑

i=1

1
i

(1)

only holds for the most restricted variant: a scenario considering only vertical
forces on the blocks and further demanding that all blocks are lying one-on-one.
Non-intuitively, since Eq. 1 diverges for n → ∞, the overhang for stacks following
these restrictions can already reach an infinite overhang. Additionally he tested
two less restricted variants, one where as well only vertical forces are considered
but more than one block is allowed to rest on top of another and one extending
the former scenario by considering friction as vertical contribution. For both less
restricted settings better overhangs could be achieved.

114 T. Hohm et al.

Taking up the work by Hall and focusing on stacks of where more than one
block is allowed per level and only vertical forces are considered, in a succession
study Paterson and Zwick [6] further formalized the problem and introduced
upper bounds, whereas their tightest bounds remain unproven. Further on they
propose construction schemes for a slightly varied problem where they only con-
sider a set of blocks producing the actual overhang and the remaining blocks are
only implicitly represented by point forces applied from above. Using this vari-
ated problem (loaded stacks), empirical results for different numbers of blocks
are presented.

Thereby these two studies provide formalizations and theoretical background
for the considered problem, paving the way to consider the described problem as
a demanding test problem for general optimization techniques. In addition, the
tightest proposed bounds for optimal overhangs are given for loaded stacks only
therefore posing the questions what an algorithm designing stacks with optimal
overhang looks like and if the bounds can be reached.

3 The Block Stacking Problem

The problem considered here is to find a stack of n blocks producing a maximal
overhang over the edge of a table while being stable, see Fig. 1. In this study the
two dimensional block stacking problem is investigated for which it is assumed
that:

– all blocks are rectangular,
– all blocks are of same size,
– all blocks are rigid,
– all blocks are perfectly smooth (no friction between blocks),
– all blocks are of equal and same density,
– all blocks have to lie on their long edge.

Further on, it is assumed that the table on which the stacks are built covers the
third quadrant (x, y ≤ 0) of a Cartesian coordinate system in which the origin
marks the upper right corner of the table.

In a stack built from such blocks, contacting blocks exert forces onto each
other. These forces can be summed up to a single resulting force acting at one
point in the contact interval. Resulting from the assumption that there is no
friction between blocks, no horizontal forces but only vertical forces are present
and since their is no drag between blocks, all forces F exerted have to be non-
negative (F ≥ 0). Following Newton’s third law of motion, for each force FA

exerted by a block A on a block B, there has to be a counterforce FB = −FA

exerted from block B onto block A.
Now, for a stack to be stable it is necessary that all blocks in this stack are

in equilibrium—a condition met if all forces exerted by blocks lying on top of a
considered block C (plus the weight force FW of C) and the moments imposed
by these forces are evened out by counter forces and moments exerted by blocks
lying below C. For the example stack shown in Fig. 2, for the middle light gray

An Evolutionary Algorithm for the Block Stacking Problem 115

Fig. 2. To determine the forces exerted on or by a block A, a stack like the one shown
on the left is decomposed into single blocks (shown on the right). Adhering gravity,
each of these blocks has a downwards directed weight force FW . In addition, there are
forces exerted between the blocks, summed up to resulting forces that act on a certain
point of the contact surface and for each of these forces exists an exact counterforce
(F1, F2, F3). Finally, momenta act on each block. They are defined by the forces acting
on the block times the horizontal parts of the vectors between the forces’ points of
application and the block’s centroid.

block this results in the following equations, Eq. 2 and Eq. 3, that need to be
satisfied:

F1 + FW = F2 + F3 (2)
x1F1 + x3F3 = x2F2 , (3)

where xi denotes the horizontal part of the distance of the point where Fi is
exerted to the centroid of the block. If and only if there exists a set of non-
negative forces for which these equations for all blocks in the stack are satisfied,
the stack is stable.

The model described here is the same that was already used in the studies
of Hall and Paterson and Zwick, representing an abstraction of the full three
dimensional block stacking problem that, i.e., can be tested by using wooden
blocks like in the game J enga and allows for fast fitness function evaluations due
to its simplicity. Additionally, it can be easily extended by, i.e., incorporating
friction between blocks or using non-identical block shapes. Still, the principles
underlying the optimization will stay the same, only the question if a stack is
stable or not will become harder to answer.

4 An EA for the Block Stacking Problem

In the following, an EA for the block stacking problem is proposed, in particular
(i) the choice of a suitable representation, (ii) evolutionary operators for gen-
erating offspring, and (iii) the considered fitness function are described. Here,
choosing a suitable stack representation poses the most important but most dif-
ficult task since straight forward representations often suffer from resulting in

116 T. Hohm et al.

Fig. 3. Schematic overview on the transition process from representation to a stack

physically invalid stacks due to overlapping blocks and thereby make it hard to
design functioning evolutionary operators.

4.1 Representation and Candidate Stack Initialization

How to represent a stack in a way that no two blocks overlap is less obvious
then it appears. For example, when representing the stack by storing the x, y
coordinates of a certain point of each block, without using a repair mechanism
overlapping blocks can occur. To avoid this problem we have decided to use a
representation which by default produces feasible stacks: A stack s is represented
by an ordered list s = [b1, . . . , bn] of blocks where for each block bi the x co-
ordinate of its lower left corner is stored. To generate the stack represented by
this list, the blocks are dropped from above onto the table one-by-one according
to their order given in the list. Their y coordinate is then determined by the
level down to which they fell before hitting either the table or another block (cf.
Fig. 3). Further on, since only stacks with just a single block lying directly on
the table can have an optimal overhang, stacks have to fulfill this criterion to
be valid. If invalid stacks are occurring during optimization or initialization, the
process leading to the invalid stack is repeated until a valid stack is generated.
In addition to this validity condition, during initialization of the first individuals
further criteria are posed on the stacks that need to be fulfilled. For initializa-
tion, x coordinates are randomly drawn from a normal distribution N (−1, σ)1,
where σ is iteratively increased as the stack grows from bottom to top: starting
from σ = 0 with each new x coordinate drawn for a stack (one block is added),
σ is increased by a constant s. For a stack to become valid, it is then required
that each of the newly placed blocks has a minimum contact surface to blocks on
top of which they are placed. For the first block the minimal overlap in percent
o is defined by an offset constant ooff, iteratively increased with each block so
that for the last block a predefined overlap value omax is reached. The iterative

1 Since each block is represented by the x coordinate of its lower left corner and
each block has a breadth of 1, the normal distribution the x coordinates are drawn
from has a mean of −1: this allows for generation of stacks where the first block in
expectation comes to rest with its centroid above the table.

An Evolutionary Algorithm for the Block Stacking Problem 117

increase for o is calculated by linearly distributing omax − ooff on the n blocks
of the stack. Using this method, a hundred times the number of required stacks
are generated and those stacks with the minimal stack height are chosen.

4.2 Operators

The proposed algorithm involves two selection steps, mating selection and en-
vironmental selection as well as mutation and crossover. For mating selection
a tournament selection with tournament size two is used. Taking thereby se-
lected pairs of individuals, they are first recombined and one of the resulting
offspring individuals is afterwards mutated. Recombination takes place accord-
ing to a predefined crossover probability pcross and in case no recombination is
applied, simply the first parent is handed over to mutation. After mutation, a
plus-selection scheme on parent population and offsprings is used to determine
the new population by taking the best individuals from this set.

Crossover and mutation are working in detail as follows: For recombination, one
point crossover is used, choosing the crossover point Pcross uniformly distributed
Pcross ∈ {1, 2, . . . , n}, where n is the number of blocks in the stack. Afterwards the
resulting offspring stack is collapsed to check if it adheres to the validity constraint
(only one block lies on the table, none is falling in the void beyond the table). If
the resulting stack is invalid, crossover is repeated up to 99 times and if within
these 100 tries no valid stack is produced, crossover is omitted.

For mutation, one of the blocks in the stack is chosen uniformly random.
This block and all the blocks on top of it in the collapsed representation are
then moved according to a random movement drawn from a normal distribution
N (0, σ), where σ is a predefined mutation strength. If this movement results in
an invalid stack, mutation is repeated up to 99 times and if within these 100
tries no valid stack is created, the parent remains unchanged and is added to
the set of offsprings. By using this mutation, stacks that are loosing height are
only scarcely created although in Sec. 2 it was shown that it is necessary to
have stacks with a height smaller than their number of blocks to reach optimal
overhang. Therefore, in one percent of all mutation cases a different type of
mutation is used: only the x coordinate of the chosen block is changed while all
the others stay the same. This mutation variant is more likely to produce stacks
loosing height.

4.3 Fitness Evaluation

The aim of the optimization process is to identify stable stacks with a maximal
overhang, therefore to evaluate a given stack two questions need to be answered:
first, is the considered stack stable and second, what is its overhang.

For a stack to be stable, in Sec. 3 it was shown that all blocks need to be
in equilibrium. Therefore, for each block the corresponding equations for forces
and resulting moments under the constraint that forces between blocks are non-
negative and that weight forces are strictly positive, have to be set up. If and
only if there exists a feasible force distribution for this usually under-determined

118 T. Hohm et al.

problem, the tested stack is stable. The question if there exists a feasible solu-
tion can be formulated as a linear programming problem that in turn can be
solved using standard solvers like Matlab, an operation consuming about three
milliseconds for a 20 block stack on one core of a Dual Core Double CPU AMD
Opteron 2.6GHz 64 Bit machine with 8GB RAM.

The overhang on the other hand can be calculated by determining the position
of the rightmost block boundary or the greatest x-extension of a block—the table
was located in the third quadrant and therefore the table edge is located at the
origin of the Cartesian coordinate system fitted into the two dimensional space.

Since we deemed it easier for the optimization process to improve the over-
hang starting from a stable stack than stabilizing an instable stack with good
overhang, we decided to use as a fitness f(x) of stack x its overhang over(x) if
the stack is stable and zero otherwise which is given by the following equation:

f(x) =

{
over(x) if x stable
0 else.

(4)

Thereby stable stacks are always preferred compared to instable ones.

5 Simulation Results

The proposed approach is tested by applying it to two instances of the block
stacking problem, one using 20 block stacks and the other one stacks made
up from 50 blocks. While the latter case represents a problem size that is on
the verge of becoming inaccessible to exhaustive search procedures and thereby
provides a glimpse on the general applicability of the proposed method, the first
is used mostly for parameter optimization for the latter case. In the following
first the results of the parameter optimization are presented, followed by the
simulation results on the 50 block stack optimization.

5.1 Parameter Testing

During the parameter optimization process we tested mutation- and crossover
rates, population- and offspring set sizes and different settings for the initializa-
tion method.

Starting with the initialization technique, offset values ooff ∈{10, 20, 30, 40, 45}
and maximal overlaps omax ∈ {50, 60, 70, 80, 90, 99} were tested. Hereby, the aim
was to identify a good trade-off between stack stability and stacks with small
height: initial simulations showed that the optimization process becomes difficult
if only few stable stacks are in the initial population (data not shown) which is
often the case if only small overlaps for the blocks are required. On the other
hand, to reach a good overhang it is necessary to build stacks of small height,
allowing for counterweight stacks to emerge (cf. Sec. 2). Therefore we tested
10000 stacks for each combination of ooff and omax, counting the number of
stable stacks (cf. Tab. 1) with the variant ooff = 45 and omax = 99 building the

An Evolutionary Algorithm for the Block Stacking Problem 119

Table 1. Trade-off between overlaps between blocks and stability measured for 10000
randomly chosen individuals, for 20 and 50 block scenarios

ooff omax Fraction of stable stacks Fraction of stable stacks
for 20 block stacks for 50 block stacks

10 50 0.0003 0.0000
10 60 0.0016 0.0000
10 70 0.0052 0.0000
10 80 0.0135 0.0000
10 90 0.0275 0.0003
10 99 0.0415 0.0003

20 50 0.0017 0.0000
20 60 0.0073 0.0000
20 70 0.0192 0.0002
20 80 0.0340 0.0003
20 90 0.0618 0.0007
20 99 0.0874 0.0013

30 50 0.0070 0.0001
30 60 0.0218 0.0000
30 70 0.0434 0.0003
30 80 0.0719 0.0021
30 90 0.1071 0.0049
30 99 0.1471 0.0067

40 50 0.0205 0.0001
40 60 0.0364 0.0005
40 70 0.0746 0.0018
40 80 0.1185 0.0053
40 90 0.1793 0.0089
40 99 0.2378 0.0143

45 50 0.0251 0.0001
45 60 0.0474 0.0006
45 70 0.0912 0.0017
45 80 0.1493 0.0021
45 90 0.2285 0.0083
45 99 0.3107 0.0185

best compromise between stability and stack height. In turn, when testing the
initialization method for 50 block stacks, the fraction of stable stacks dropped
considerably to a value of 0.0185 still feasible for optimization but indicating
that for even larger stacks the initialization technique might fail. To address this
problem there are at least two possibilities, (1) couple the initialization technique
with a local search technique trying to modify the stacks in such a way that they
become stable or (2) initialize the stacks by using a set of stack designs that are
stable by default.

Further on the influence of mutation strength and crossover rate were inves-
tigated. For mutation, different percentage levels σmut ∈ {0, 12.5, 25, 27.5, 50}
with respect to the unit block breadth have been tested while for recombina-
tion, probabilities pcross ∈ {0.0, 0.25, 0.5, 0.75, 1} have been tested. To measure

120 T. Hohm et al.

mut = 0%, cross = 1 mut = 12.5%, cross = 0.75 mut = 25% cross = 0.5 mut = 37.5%, recomb = 0.25 mut = 50%, cross = 0

1.2

1.4

1.6

1.8

2

2.2
O

ve
rh

an
g

Fig. 4. Factorial design results for different mutation strengths (mut) and recombina-
tion probabilities (cross)

the overall performance, 21 optimization runs with a population size μ = 100
and a offspring set size λ = 200 and 100000 objective function evaluations
have been conducted. The results are shown in Fig. 4, indicating that muta-
tion is necessary for the optimization process but as soon as mutation takes
place (even if only slight movements of blocks are made) the overall perfor-
mance for different mutation strengths is comparable. Only the setting where
no recombination takes place shows a discernible loss of performance. For the
further simulations we chose a mutation strength of σmut = 25% and a crossover
probability of pcross = 0.25. Using the determined parameters for initializa-
tion, mutation strength and recombination rates, in a last step we tested dif-
ferent population sizes μ and offspring set sizes λ. The tested settings have
been (μ, λ) ∈ {(10, 20), (100, 200), (200, 400)}. Again for each setup 21 runs,
running for 100000 objective function evaluations, where conducted. The simu-
lations showed that the mean performance for all three settings is comparable
(cf. Fig. 5), whereas the variance for (μ, λ) = (10, 20) is much higher than for
the latter two settings. In turn there is no reduction in variance when mov-
ing from (μ, λ) = (100, 200) to (μ, λ) = (200, 400) while the number of eval-
uations needed to reach a good overhang was smaller for (μ, λ) = (100, 200)
than for (μ, λ) = (200, 400) (cf. Fig. 5.1), indicating that the population size
of (μ, λ) = (200, 400) already could be a bit to large. In effect the best set of
parameters identified during parameter optimization comprises the following set-
tings: ooff = 45 and omax = 99 for initialization, σ = 25% as mutation strength,
pcross = 0.25 as recombination probability and (μ, λ) = (100, 200) as population
size or offspring set size respectively.

5.2 Application to a 50 Block Problem

The stacks evolved during the parameter optimization process already showed
good overhangs—the best 20 block stack found had an overhang of 2.275 while
for this stack size an overhang of 2.32014 is optimal and for a 19 block stack the
optimal overhang is 2.27713 respectively. Both optima have been determined in
[6] by exhaustive search. A simple exhaustive search results in a runtime which is

An Evolutionary Algorithm for the Block Stacking Problem 121

mu = 10, lambda = 20 mu = 100, lambda = 200 mu = 200, lambda = 400

2

2.05

2.1

2.15

2.2

2.25

O
ve

rh
an

g

Fig. 5. Overview on the distributions of the best individuals found during 21 runs for
different population sizes μ and offspring sizes λ

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

O
ve

rh
an

g

Number of Objective Function Evaluations

Fig. 6. Evolution of the best fitness per generation averaged over 21 runs for different
population sizes. The error bars indicate the first and third quartile over the 21 runs.
The dashed line represents a (μ, λ) combination of (10, 20) (left error bar), the solid line
of (100, 200) (middle error bar) and the dash-dotted line of (200, 400) (right error bar).

exponential in the number of used blocks. However, the problem complexity itself
has not been determined yet. In addition to the good overhangs generated during
parameter testing, the stack construction shown in Fig. 7 closely resembles the
construction of the optimal ones given by Paterson and Zwick (cf. [6], Fig. 3,
page 233). Taking this as a promising prospect, we decided to further test our
approach on a more demanding instance of the problem: stacks containing 50
blocks. Conducting 50 runs, 100000 fitness function evaluations each, a stack
with overhang 2.97 was found (cf. Fig. 7). According to Paterson and Zwick, a
relatively tight putative upper bound for this problem instance is an overhang
of 3.28136 and for 40 block stacks of 3.02248 [6]. Therefore the best stack found

122 T. Hohm et al.

Fig. 7. Best stacks identified, for 20 blocks on the left (overhang = 2.275) and for 50
blocks on the right (overhang = 2.97)

during optimization represents a solution with some distance to the optimum,
still it is a good solution serving as a proof of principle that the proposed EA is
in general capable to optimize the given stack overhang problem. Nevertheless
the algorithm can be improved, first by introducing a method trying to repair
instable stacks by systematically introducing small changes looking for stable
stacks in the neighborhood of a given solution and second by using a type of
local search trying to find the stack with the best overhang in direct vicinity to
the given stack.

6 Conclusions

We have presented a preliminary study, originating from a student project, con-
cerned with the optimization of stack overhangs over the edge of a table, an
example problem for static equilibria as well as an interesting test problem for
combinatorial optimization methods. The proposed algorithm was applied to
two instances of this problem, the optimization on 20 block and 50 block stacks.

Whilst the 20 block instance falls well within the range of exhaustively testable
problems, the latter already ranges amongst those which elude themselves from
exhaustive testing. Therefore, prior to tackling the 50 block problem, a param-
eter optimization on the 20 block instance was conducted. During the following
optimization runs, for both instances good stacks where found. For the 20 block
problem the found stacks were close to optimal while those for the 50 block
problem have been good but only comparable to the putative tight upper bound
for 40 block stacks.

The problems during optimization of the latter instance mainly stem from the
fact that too many instable stacks are generated both during initialization and
optimization—a problem that can be addressed in the future by coupling the
proposed method with a local search procedure that is concerned with identifying
stable stacks in the vicinity of a given, instable solution. Therefore, although the
results not yet have been optimal, a proof of concept for the usefulness of the
proposed method in tackling the given problem has been provided.

An Evolutionary Algorithm for the Block Stacking Problem 123

Acknowledgments

Tim Hohm has been supported by the European Commission under the Marie
Curie Research Training Network SY-STEM, Project 5336.

References

1. Coffin, J.G.: Problem 3009. Amer Math Monthly 30(2), 76 (1923)
2. Dubrovsky, O., Levitin, G., Penn, M.: A Genetic Algorithm with a Compact Solution

Encoding for the Container Ship Stowage Problem. Journal of Heuristics 8(6), 585–
599 (2002)

3. Hall, J.F.: Fun with stacking blocks. Am J Phys 73(12), 1107–1116 (2005)
4. Housner, G.W., Hudson, D.E.: Applied Mechanics: Statics, 2nd edn., Van Nostrand,

D., New York, NY, USA (1961)
5. Johnson, P.B.: Leaning Tower of Lire. Am J Phys 23, 240 (1955)
6. Paterson, M., Zwick, U.: Overhang. In: SODA 2006: Proceedings of the seventh

annual ACM-SIAM symposium on Discrete Algorithms, pp. 231–240. ACM Press,
New York (2006)

7. Plummer, H.C.K.: The Principles of Mechanics: An Elementary Course, Bell, G.,
London, UK (1929)

8. Walton, W.: A collection of Problems in Illustration of the principles of Theoretical
Mechanics, 2nd edn., Deighton, Bell, Cambridge, UK (1855)

A Study of Evaluation Functions for the Graph

K-Coloring Problem

Daniel Cosmin Porumbel1, Jin-Kao Hao1, and Pascale Kuntz2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
2 LINA, PolytechNantes, 44306 Nantes, France

Abstract. The evaluation or fitness function is a key component of
any heuristic search algorithm. This paper introduces a new evaluation
function for the well-known graph K-coloring problem. This function
takes into account not only the number of conflicting vertices, but also
inherent information related to the structure of the graph. To assess
the effectiveness of this new evaluation function, we carry out a number
of experiments using a set of DIMACS benchmark graphs. Based on
statistic data obtained with a parameter free steepest descent, we show
an improvement of the new evaluation function over the classical one.

1 Introduction

Heuristic algorithms are known to be a very powerful tool for solving hard and
large combinational optimization problems. It is now well recognized that the
performance of a heuristic algorithm is strongly conditioned by the design of a
number of key components. For instance, for local search algorithms, the neigh-
borhood relation constitutes an element that must be carefully studied. Similarly,
for evolutionary algorithms, it is important to seek problem specific operators
such as crossover and mutation in order to obtain a better search performance.
For both local and genetic search paradigms, another indispensable key compo-
nent is the evaluation or fitness function. Indeed, it is this function that guides
the search process to explore an arbitrarily large search space.

There are different approaches to design an informative evaluation function
[14]. First, the static or dynamic penalty approach is a well established tech-
nique for constrained problems. Here relaxed constraints are integrated into the
evaluation function with special penalty terms, which can be fixed statically or
tuned dynamically. Second, in a hierarchical approach, the evaluation function is
decomposed into several ordered components; the evaluation is realized accord-
ing to that order. The third approach, less studied in the literature, consists in
designing specific evaluation function specially adapted to the problem at hand.
Contrary to the penalty or hierarchical approaches which are general techniques
and thus applicable to different problems, the problem-specific approach requires
a fine analysis of the target problem in order to identify particular properties that
are useful for the design of the evaluation function. Such a problem-specific ap-
proach has demonstrated its effectiveness for several NP-hard problems [4,8,13].

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Study of Evaluation Functions for the Graph K-Coloring Problem 125

In this paper, we consider the well-known graph K-coloring (K-COL) problem
and try to devise a new and more informative evaluation function for a heuristic
solving of this problem. Informally, for a given graph, K-COL requires to find a
conflict-free vertex coloring using only K different colors such that two adjacent
vertices receive two different colors. As one of the three problems chosen for the
DIMACS second implementation challenge [9], K-COL is certainly one of the
most studied NP-complete problems with a large number of solution algorithms.

The long-term goal of our study is the development of high performance al-
gorithms able to produce competitive results across a large range of benchmark
instances. For this purpose, we here focus our study on the discovery of a new
evaluation function that will provide a better guidance than the classical penalty
based evaluation function for local or genetic search algorithms. Indeed, the con-
ventional evaluation function (called f in the paper) simply counts, for a given
K-coloring, the number of conflicting vertices and consequently cannot distin-
guish two K-colorings of equal number of conflicts having different potential for
further improvements.

2 Heuristic Search for Graph Coloring

2.1 Graph K-Coloring and Graph Coloring

Definition 1. (K-COL) Given a graph G = (V, E) (V and E are respectively
the vertex and edge set) and a positive integer K such that K < |V |, the graph
K-coloring problem is to determine whether there exists a conflict-free vertex
coloring using K colors or less, i.e. a function c : V → {1, 2, · · · , K} such that
∀{i, j} ∈ E, c(i) �= c(j). If such a coloring exists, G is said to be K − colorable.
In the following, we denote a coloring by C = (c(1), c(2), · · · , c(|V |)).
Definition 2. (COL) Given a graph G, the graph coloring problem is to deter-
mine the smallest K such that G is K−colorable. The smallest K is the chromatic
number of G.

From a theoretical viewpoint, K-COL is a very important NP-complete problem
as it is one of the 21 NP-complete problems listed [10]. Coloring problems are
also at the heart of numerous applications including for instance, scheduling,
register allocation in compilers and frequency assignment in mobile networks.

The graph coloring problem COL is an optimization problem (to minimize
K), while K-COL is its corresponding decision problem (to determine whether
there exists a K-coloring or not). Notice that if one can solve K-COL, one can
also solve COL by the following iterative approach: find a K−coloring of G for
a fixed K, K < |V | (solve K-COL), then decrease K (K = K − 1) until no
conflict-free K-coloring can be found.

2.2 Local Search for K-Coloring

To solve K-COL by local search, we consider K-COL from an optimization point
of view. For a given K-COL instance, i.e., a graph G = (V, E) and an integer
K, we define the following optimization problem (S, f) where:

126 D.C. Porumbel, J.-K. Hao, and P. Kuntz

– S is the search space composed of all the |V |K possible K-colorings, i.e.
S = {C|C : V → {1, 2, · · · , K}};

– f is an ”artificial” objective counting the number of conflicting edges, i.e.
∀C ∈ S, C = (c(1), c(2), · · · , c(|V |)),

f(C) =
∑

{i,j}∈E

pij , where pij =

{
1 if c(i) = c(j)
0 if c(i) �= c(j)

Accordingly, any C∗ ∈ S such that f(C∗) = 0 corresponds to a conflict-free
K-coloring and thus represent a solution to the given K-COL instance. To solve
this optimization problem by local search, three main components need to be
defined: an evaluation function, a neighboring relationship and an exploration
strategy of the neighborhood.

– Evaluation function: One convenient evaluation function is the above ob-
jective function f which counts the number of conflicting edges of a given
K-coloring. Indeed, this evaluation function is largely used by many well-
known coloring algorithms [7,5,2,6,1]. We will show in this paper that this
evaluation function is not discriminating enough and can be improved.

– Neighborhood: Given a configuration (K-coloring) C = (c(1), c(2), · · · ,
c(|V |)), a neighboring configuration C′ of C is a K-coloring C′ = (c′(1), c′(2),
· · · , c′(|V |)) with exactly one conflicting color c(i) being changed to c′(i).

– Exploration strategy: The exploration strategy used in this paper is a steep-
est descent detailed in section 4.1.

3 A New Evaluation Function

For the graph K-coloring problem, many previous algorithms use f as their
evaluation function, although other functions are also proposed (see for instance
[12,3]). However, the function f is not sufficiently discriminating since it cannot
distinguish configurations having the same number of conflicts while these color-
ings may have different possibilities for further improvement. To overcome this
difficulty, we are trying to define another evaluation function able to identify
the configurations which, despite of having the same conflict number, are more
promising for further exploration.

3.1 The New Evaluation Function

Let us consider two configurations (3-colorings) C1 (figure 1.a)) and C2 (fig-
ure1.b)) of the same graph for which one needs to obtain a 3-coloring without
conflicts. We denote by Econfl the set of edges in conflict, by δ(i) the degree of
vertex i and by confl(i) the number of conflicts for vertex i.

The Econfl set has just one element for both examples: {i, j} for C1 and
{i, k} for C2. Since δ(j) < K < δ(k), we can assign to j a color not used by
its δ(j) neighbors (i.e black or white) to solve the {i, j} conflict; it requires just

A Study of Evaluation Functions for the Graph K-Coloring Problem 127

Fig. 1. Two 3-colorings with one conflict. The conflicting edge is marked in larger
thickness; it is easier to solve the gray one (C1, left) than the black one (C2, right)
even if both configurations have just a single conflict.

one more step. Since this is not necessarily the case for the conflict {i, k} in
C2, C1 is here preferable to C2. Furthermore, it is natural to consider that C1

is preferable to C2 only because δ(j) < δ(k) (without considering the value of
K), since the more neighbors a vertex has, the more difficult it is to change
its color without perturbing the rest of the configuration. In order to consider
all conflicting vertices in a single formula, we propose the following evaluation
function:

f̂(C) = f(C) −
∑

i∈V

confl(i)
1

δ(i)
. (1)

In all practical cases, we have f(C) − 1 < f̂(C) < f(C) since, for a non-trivial
problem the final number of conflicts (the number of terms in the sum) is consider-
ably smaller than the average degree of conflicting vertices (average denominator
δ(i)). The second part of the function allows us to discriminate the configura-
tions having the same number of conflicts ; note that f̂ preserves the f ordering:
f̂(C) < f̂(C′) whenever f(C) < f(C′). In other words, we have two components
each one with a different goal: (a) the first counts the number of conflicts (f more
precisely), (b) the second is a quantity of the form

∑
i∈Vconflict

1
δ(i) (which is less

than 1) that better discriminates colorings unable to be distinguished by f . All
reported values of f̂ in this paper will be rounded to the nearest greater integer
since all encountered values of f̂(C) satisfy

⌈
f̂(C)

⌉
= f(C).

3.2 Computational Complexity

The computational efforts required by f and f̂ are equivalent. To see this, we
re-write the formula of f̂ in a computationally convenient way. Let us remark

128 D.C. Porumbel, J.-K. Hao, and P. Kuntz

that: ∑

i∈V

confl(i)
1

δ(i)
=

∑

{i,j}∈Econfl

(
1

δ(i)
+

1
δ(j)

).

Consequently, we have:

f̂(C) = f(C) −
∑

{i,j}∈Econfl

(
1

δ(i)
+

1
δ(j)

) =
∑

{i,j}∈Econfl

(1 − 1
δ(i)

− 1
δ(j)

)

In our implementation, both functions are constructed by adding constant co-
efficients (E[i, j] = 1 − 1

δ(i) − 1
δ(j)) for each conflicting edge {i, j}. All values

from E are computed before starting the main algorithm and they have a time
complexity of (O(|V |2)). In our numerical experiments, the computing time for
E is always less than 1 second on a Pentium 4 with a CPU at 2.8GHz. The only
non-negligible difference is the data types we are manipulating: instead of integer
values we use double values to store the table E and to perform all operations.

4 Experimental Comparisons of the Two Evaluation
Functions

In this section, we perform an extensive experimental analysis of the effect of
f̂ on the steepest descent (SD) algorithm. We start by detailing the algorithm,
then we present the test instances, the comparison criteria and we analyze the
results.

4.1 Steepest Descent

The steepest descent (SD) algorithm starts from a random initial configuration
and iteratively chooses, from the whole neighborhood, the best neighbor accord-
ing to the evaluation function. When there exists several equally best neighbors,
one of these neighbors is chosen at random. The algorithm stops when there
exists no improving neighbor - i.e. when the current coloring is a local optimum
with respect to the given neighborhood relation and evaluation function. For
all the experimental results reported in this paper, this simple SD algorithm is
considered with the two evaluation functions f and f̂ .

The choice of the SD algorithm for our experimentations is here justified by
the fact that it is one of the few algorithms to ensure a complete neutrality in
the final results. In any algorithm which closely depends on a given parameter
(e.g. temperature in simulated annealing, tabu list length in Tabu Search, etc),
the tuning of this parameter might significantly skew the results favoring one
method or another.

We also started performing experiments with other more advanced algorithms
(especially Tabu Search), but however, the aim of this paper is not to compete
with the best graph coloring algorithms. The goal of our experiments is to study
the influence of evaluation functions for the graph coloring algorithms from a
completely neutral point of view.

A Study of Evaluation Functions for the Graph K-Coloring Problem 129

4.2 The Experimental Conditions

Instances. The following graphs from the well-known second DIMACS chal-
lenge benchmarks are used:

– Five uniform random graphs generated by Johnson et. al in their state-
of-the-art papers about simulated annealing [8] and used extensively after-
words in testing graph coloring algorithms: dsjc250.5, dsjc500.5, dscj1000.1,
dsjc1000.5 and dscj1000.9. They have 250, 500 and 1000 vertices respectively
and the density p is denoted by the last digit (i.e. .5 for the first graph).

– Three Leighton graphs: le450.15a, le450.25a and le450.25c, these graphs
have each 450 vertices and a known chromatic number (15 for the first, 25
for the others) [11]. The last two graphs are generated in the same manner,
but with different random seeds.

Comparison Criteria. The main indicator of solution quality is the number
of conflicts of the configuration obtained at the end of the search (Other criteria
are explained in Section 5. For each graph, we set K to be the smallest number of
colors for which a coloring has ever been found or the chromatic number when it
is known (i.e. for the Leighton graphs). Consequently, all these instances are dif-
ficult to solve. For the first five graphs (dsjc*.*) we use the least K found either
by a hybrid algorithm [6] or by a population based local search algorithm com-
bining two specific neighborhoods and using the strategy of successive building
of color classes [12].

Experimental Protocol. The experimental evaluation was carried out by con-
sidering 1000 independent runs, with different random seeds, for both functions
and by statistically analyzing the solutions obtained. We examine the extremal
conflict numbers found with the two evaluation functions and precisely analyze
the distributions of the values obtained on the run set.

4.3 Results

For each instance, we show in table 1 the minimum, the mean and the maxi-
mum solution quality (columns 2,3,4 and 6,7,8 respectively) computed separately
for both functions. We also compute the standard deviation (columns 5 and 9
respectively), as it is an indicator of the algorithm’s precision and robustness.

The first observation is that the distributions of f and f̂ are disjoint in 75% of
cases: the quality of the solutions obtained with f̂ is always better (with smaller
numbers of conflicts) for absolutely all runs. And moreover, even for the rest of
25% cases, the general tendency remains the same.

More surprisingly, let us remark that f̂ leads one time to a proper coloring (no
conflicts) for the le450.25a graph with K=25 (its chromatic number). In fact,
even some state-of-the-art algorithms like HGA ([6]) fails to find a conflict free
coloring with 25 colors for graphs in the le450.25a family.

Furthermore, we collected for each graph the final values obtained by our
SD algorithm with the two evaluation functions f and f̂ into a single sample

130 D.C. Porumbel, J.-K. Hao, and P. Kuntz

Table 1. The results of 1000 runs of the SD algorithm on all the tested graphs. f̂
allows SD to obtain a better local optimum with a smaller number of conflicts for each
graph and even to find an optimal coloring for le450.25a. The numbers between the
parenthesis in Column 1 correspond to the smallest K reported in the literature.

Classic Function(f)) New Function(f̂)

Graph (colors) Min Max Mean Std. Dev. Min Max Mean Std. Dev.

dsjc250.5(28) 60 106 83.0 7.4 36 71 54.1 5.6
dsjc500.5(49) 140 209 173.1 10.7 89 136 112.2 8.2
dsjc1000.1(20) 260 355 307.2 15.2 152 231 191.8 11.7
dsjc1000.5(83) 364 478 424.9 16.6 249 333 290.0 13.3
dsjc1000.9(224) 301 402 347.5 14.4 183 253 218.9 9.5
le450.15c(15) 270 345 310.3 10.6 216 284 250.3 9.9
le450.25a(25) 11 28 18.2 2.8 0 10 4.6 1.6
le450.25c(25) 87 128 107.7 6.1 51 78 64.1 4.8

and depicted in Figure 2 the distribution of the results according to two axes:
quality (number of conflicts) and the frequency (number of colorings having a
given quality). The distribution confirms once again the superiority of f̂ in the
search process. Indeed, the distribution with f̂ is more on the left than the
distribution with f , meaning that the solutions with f̂ have a smaller number
of conflicts.

Additionally, it is important to remark that all 1000 configurations found for
each method and each graph are pairwise different, i.e. the algorithm never comes
to two identical solutions. We consider two configurations (c(1), c(2), · · · c(|V |))
and (c′(1), c′(2), · · · , c′(|V |)) to be identical if and only if there exists a permu-
tation σ of the set {1, 2, 3, · · · , K} such that the first configuration is mapped
into the second by σ (i.e σ(c(i)) = c′(i), ∀i ∈ {1..|V |}).

5 Why the New Evaluation Function Works?

In this section, we try to understand why the new evaluation function f̂ works
better than the classical one f . For this purpose, we analyze the dynamics of the
steepest descent with f and f̂ and consider three indicators: a) the convergence
of the SD algorithm with f and f̂ , b) the number of quality-improving neighbors
induced by each evaluation function and c) the cardinality of equivalence classes
of configurations.

5.1 Convergence

Table 2 indicates the total number of iterations performed by typical search
processes using both functions. Figure 3 depicts the evolution of solution qual-
ity with both functions along the same scale. These results show that the SD with

A Study of Evaluation Functions for the Graph K-Coloring Problem 131

Solution quality

N
r.

 o
f c

ol
or

in
gs

40 60 80 100

0
10

0
dsjc250.5

Solution quality
80 120 160 200

0
15

0

dsjc500.5

Solution quality

N
r.

 o
f c

ol
or

in
gs

150 200 250 300 350

0
15

0

dsjc1000.1

Solution quality
250 300 350 400 450

0
15

0 dsjc1000.5

Solution quality

N
r.

 o
f c

ol
or

in
gs

200 250 300 350 400

0
15

0

dsjc1000.9

Solution quality
220 260 300 340

0
15

0
le450_15c

Solution quality

N
r.

 o
f c

ol
or

in
gs

0 5 10 15 20 25

0
20

0

le450_25a

Solution quality
60 80 100 120

0
15

0 le450_25c

Fig. 2. The solution quality (evaluation function value) distribution for all graphs
considering 1000 random steepest descents with the new function f̂ (denoted by simple
bars) and the classic one f (denoted in shading lines)

Table 2. The number of iterations performed by the steepest descent using f and f̂ .
The descent process with f̂ lasts always longer than the descent with f .

Graph (colors) New Function(f̂) Classic Function(f)

dsjc250.5(28) 245 158
dsjc500.5(49) 465 353
dsjc1000.1(20) 941 613
dsjc1000.5(83) 1003 703
dsjc1000.9(224) 921 635
le450.25a(25) 191 154

f is trapped earlier in a local optimum than with f̂ . For instance, for the graph
(dsjc250.5), while the descent with f stops at 159th iteration, the search con-
tinues with f̂ . This is possible because f̂ offers improving neighbors for a longer
time.

132 D.C. Porumbel, J.-K. Hao, and P. Kuntz

0 50 100 150 200 250

10
0

20
0

30
0

40
0

50
0

Number of iterations

E
va

lu
at

io
n

fu
nc

tio
n

Fig. 3. The solution quality (number of conflicts) evolution for a classic steepest descent
run (G = dsjc250.5, K = 28); f̂ is depicted in dotted line, f in continuous line. The
descent process with f stops at 159th iteration while the search continues with f̂ .

5.2 Neighborhood Analysis

An important indicator about the dynamics of a search process is the evolution of
the number of improving neighbors during the search. Intuitively, if this number
decreases rapidly, the search process might easily get blocked in a local optima.
This is particularly true for a descent algorithm. Indeed, in a SD algorithm,
the number of improving neighbors tends to monotonically decrease until this
number drops to zero thus triggering the stop condition.

Let Δ denote the improvement added by a neighbor vertex Vnext to the current
vertex Vcurrent according to f or f̂ : Δf = |f(Vnext) − f(Vcurrent)| or Δf̂ =
|f̂(Vnext) − f̂(Vcurrent)|. For each coloring, we are interested to study: 1) how
many improving neighbors are there at each step and 2) what is the actual
improvement these neighbors can add (what values Δ can take).

Figure 4 depicts the first indicator on a typical run by drawing the curves for
the number of neighbors satisfying Δ > 0 (thin lines) and Δ = 0 (thick lines).
These curves confirm that f̂ is more discriminating than f : the thick curves
present significantly lower values for f̂ than for f and, at each step, there are
numerous equivalent neighbors for f especially.

Figure 5 depicts the distribution of Δ values, showing the degree of the im-
provements according to the two evaluation functions. An intriguing observation
is that the improvement at each iteration is rather small; the algorithm performs
many small steps rather than few large steps. In figure 5, one can see that the
number of neighbors improving the current solution by more than 3 is usu-
ally very low. In most cases, the actual possible improvement of both f and
f̂ is 1 or 2. Furthermore, note that at the end of the search using f̂ there are
some improvements of less than 1 (in fact of almost 0). The existence of these

A Study of Evaluation Functions for the Graph K-Coloring Problem 133

0 50 100 150

0
15

00
30

00

(classic function f)
Iterations

N
um

be
r

of
 n

ei
gh

bo
rs

0 50 100 150 200

0
15

00
30

00

(new function)
Iterations

N
um

be
r

of
 n

ei
gh

bo
rs

f̂

Fig. 4. A typical evolution of the number of quality-improving neighbors (Δ > 0, in
thin line) and of quality-stagnation neighbors (Δ = 0, in thick line) for f (left) and
f̂(right)

0 50 100 150

0
2

4

(classic function f)
Iterations

R
an

ge
Δ

0 50 100 150 200

0
2

4

(new function)
Iterations

R
an

ge
Δ

f̂

Fig. 5. A typical evolution of the possible improvement (values of Δ) in the neighbor-
hood according to f (left) and f̂ (right)

improvements is justified only by the second part of the function f̂ and not by
the conflict number; and this explains why f̂ can well distinguish between these
colorings having the same number of conflicts.

5.3 Classes of Configurations in the Landscape

An analysis of equivalence classes of configurations may be also useful for a better
understanding of the dynamics of the search process. In our case, an equivalence
class is a set of configurations that are evaluated at the same value by f or f̂ .
Thus, two colorings are in the same f -class if they have the same conflict number
and in the same f̂ -class if they have, in addition, the same degree distribution of
their conflicting vertices. Consequently, the cardinal of a f̂ -class is considerably
smaller and this is another indicator why the f̂−search is more discriminating.

The cardinal of an f̂ -class is strongly influenced by the degree distribution of the
considered graph. In regular graphs (all vertices have the same degree), any f -class
is also an f̂ -class (so there is no practical difference between the two functions)

134 D.C. Porumbel, J.-K. Hao, and P. Kuntz

since all edges {i, j} generate the same values E[i, j] = 1 − 1
δ(i) − 1

δ(j) . At the
opposite, in a heterogeneous graph with few vertices having the same degree, there
are statistically very few edges generating equal values in the table E.

6 Conclusions and Further Work

In this paper we have introduced a new evaluation function f̂ for the graph
K-coloring problem. This evaluation function is based not only on the conflicts
induced by a K-coloring, but also on information related to the structure of a
graph. The experimental results with a steepest descent algorithm show that
this function outperforms the classic evaluation function which is based only
on the conflict number. To explain the good performance of the new evaluation
function, some empirical justifications were proposed, based on the distribution
of improving neighbors induced by each evaluation function and an analysis of
the equivalent classes of configurations.

To further assess the practical usefulness of the proposed evaluation func-
tion, we are experimenting this function within a Tabu Search (TS) algorithm.
The preliminary results show that the new evaluation function boosts the Tabu
Search algorithm. Indeed, for a large number of the DIMACS graphs, the TS
algorithm using f̂ (as well as some other simple improvements) finds the best
known colorings. Moreover, it is even able to improve on half of the results
obtained by previous Tabu Search algorithms.

More generally, we believe that the evaluation function introduced in this pa-
per may be useful for other heuristic coloring algorithm and shed light on the
design of other informative evaluation functions for the graph coloring problem.

Acknowledgments. This work is partially supported by the CPER project “Pôle
Informatique Régional” (2000-2006) and the Régional Project MILES (2007-
2009). We would like to thanks our referees for their useful comments.

References

1. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph
coloring. European Journal of Operational Research 151(2), 379–388 (2003)

2. Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-colorings and set T-
colorings. Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, 77–92 (1998)

3. Eiben, A.E., van der Hauw, J.K.: Adaptive penalties for evolutionary graph color-
ing. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365,
pp. 95–106. Springer, Heidelberg (1998)

4. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics 2, 5–30 (1996)

5. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. An-
nals of Operations Research 63, 437–461 (1996)

6. Galinier, P., Hao, J.K.: Hybrid Evolutionary Algorithms for Graph Coloring. Jour-
nal of Combinatorial Optimization 3(4), 379–397 (1999)

A Study of Evaluation Functions for the Graph K-Coloring Problem 135

7. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39(4), 345–351 (1987)

8. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simu-
lated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Num-
ber Partitioning. Operations Research 39(3), 378–406 (1991)

9. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: 2nd DI-
MACS Implementation Challenge. In: DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 26, AMS, USA (1996)

10. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations 43, 85–103 (1972)

11. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal
of Research of the National Bureau of Standards 84(6), 489–503 (1979)

12. Morgenstern, C.: Distributed Coloration Neighborhood Search. In: [9], pp. 335–357
(1996)

13. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An improved evaluation func-
tion for the bandwidth minimization problem. In: Yao, X., Burke, E.K., Lozano,
J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán,
A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 650–659. Springer, Hei-
delberg (2004)

14. Rodriguez-Tello, E., Hao, J.K.: On the role of evaluation functions for heuristic
search (working paper, 2007)

Genetic Branch-and-Bound or Exact Genetic

Algorithm?

C. Pessan1,2, J.-L. Bouquard1, and E. Néron1

1 LI, Université François Rabelais Tours, 64 av. Jean Portalis, 37200 Tours, France
cedric.pessan@univ-tours.fr

2 SKF France SA, Industrial division, MDGBB Factory, 204, boulevard Charles de
Gaulle 37542 Saint-Cyr-sur-Loire CEDEX, France

Abstract. Production resettings is a vital element of production flex-
ibility and optimizing the setup tasks scheduling within a production
channel is required to improve production rate. This paper deals with a
NP-Hard production resetting optimization problem based on an indus-
trial case. In this paper we present how to hybrid a Branch-and-Bound
method for this problem with a genetic algorithm. The idea is to use the
genetic algorithm to improve the upper bound and thus speeding up the
Branch-and-Bound while the genetic algorithm uses the content of the
Branch-and-Bound stack to reduce its search space. Both methods are
running in parallel and are therefore collaborating together.

1 Introduction

Improving production flexibility is one of the main problems encountered in the
industry as it is closely linked with customer service improvement and the length
of delays between customers orders and delivery of products. It is thus important
to reduce resetting times between batches. A production resetting consists in
operations made on each machine of a production channel made by operators.
These operations are required to setup the machines for the new batch. One way
to improve resetting times is to work on the global organization of the different
setup tasks according to industrial constraints, e.g., the skills of the operators,
their availability periods. The study is based on a real industrial case found in
SKF MDGBB (Medium Deep Groove Ball Bearings) factories.

This problem can be identified as an unrelated parallel machine scheduling
problem, for which we have developed a Branch-and-Bound method in Pessan
et. al. [2006b]. The main drawback of this method is the upper bound that is
so far away of the optimal solution in our experiments that the method can not
prune any node at the beginning of the resolution. On the other hand, we have
also developed in Pessan et. al. [2006a] a heuristic on a more general problem
(serial-parallel production channel) based on a genetic algorithm hybridized with
a local search that proved to work well for this problem. The idea of this paper
is to hybrid the Branch-and-Bound with a genetic algorithm in order to get the

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Genetic Branch-and-Bound or Exact Genetic Algorithm? 137

best of both methods: fast convergence to good solutions and exact resolution.
The genetic algorithm is not only run at the root node but in parallel with the
Branch-and-Bound. Moreover, the encoding method is based on the content of
the Branch-and-Bound stack: it means that while the Branch-and-Bound pro-
gresses, it reduces the search space of the genetic algorithm, and when the genetic
algorithm improves the best known solution, it helps pruning more nodes. So,
both methods are really collaborating together during the whole execution.

It is natural to use genetic algorithms to find a good upper bound of the
optimal solution quickly either on the root node or regularly during the execu-
tion of the Branch-and-Bound. Such attempts have been made in several papers.
Portman et. al. ([1998]) use a genetic algorithm on the root node of a Branch-and-
Bound in order to provide a good initial upper bound to the Branch-and-Bound.
Jouglet et. al. ([2005]) propose a similar approach but they use the genetic algo-
rithm to provide an initial upper bound to a constraint programming method. In
Basseur et. al. ([2005]) a biobjective unrelated parallel machine problem is tack-
led with a genetic algorithm that provides an initial pareto front to a 2 phases
Branch-and-Bound. Branch-and-Bound are also commonly hybridized with other
meta-heuristics like in Rocha et. al. ([2004]): the GRASP meta-heuristic is used
to provide an upper bound to a Branch-and-Bound method. Cotta et. al. ([1995])
show some preliminary results on various combination of Branch-and-Bound
and genetic algorithms: they have tried using Branch-and-Bound like methods
as local search operator of a genetic algorithm leading to a heuristic hybrid
method. On the other hand, they propose an hybrid method that run in parallel
a Branch-and-Bound and a genetic algorithm but they mention some difficul-
ties in handling diversification of the genetic algorithm population and the slow
convergence of genetic algorithms for the traveling salesman problem they are
working on. French et. al. ([2001]) present also such a hybrid algorithm, they
use the Branch-and-Bound to find promising nodes and thus generate the initial
genetic algorithm population and then use the genetic algorithm results to give
hints to the Branch-and-Bound on where there can potentially be interesting
solutions. They switch back and forth between the two methods. Their results
seem promising. Puchinger ([2005]) in its survey on these hybrid methods dis-
tinguishes between integrative combinations that tend to use one method as an
operator of the other and collaborative methods. This second category is also
categorized between sequential execution and parallel execution. It is also men-
tioned that parallel execution algorithms have not been extensively tried but
with the emergence of mainstream multi core processors that can execute in
parallel several algorithms with fast access to a common memory area that ease
data sharing between the algorithms, it may be time to give importance to such
algorithms.

In this paper we present in section 2 the model of the problem we are study-
ing and the existing Branch-and-Bound method. Then, in the section 3 we
describe the hybrid method. Finally, experimental results are presented in
section 4.

138 C. Pessan, J.-L. Bouquard, and E. Néron

2 Existing Methods

2.1 Problem Description

Let n be the number of machines of a production channel, it is also the number
of tasks to schedule. For each machine (or task) Mi, i ∈ {1, . . . , n}, we know its
release date ri. It is the minimum duration needed for the last ball bearing of
the previous batch to go from M1 to Mi. We also know its tail qi, the minimum
duration needed for the first ball bearing of the next batch to go from Mi to
Mn. When a machine Mi is restarted, it can not have any effect on production
rate that is measured at the end of the production line before qi time unit. ti
and Ci denote respectively the beginning and the completion time of setup task
on machine Mi.

In the production unit, there are λ operators. Each operator Oh, h ∈ {1, . . . , λ},
depending on his own experience, needs a different time to set up a machine: this
time is denoted pi,h. If an operator Oh does not have the skill for a machine Mi, we
set, without loss of generality, pi,h = +∞. Moreover each operator is only available
during a time interval [Rh, Dh].

In this paper, we consider serial channels: it means that the production can only
restartwhen allmachines have been setup.Therefore,we have to optimize themax-
imum completion time of the setup tasks, also known asCmax = maxi=1,...,nCi+qi

in standard scheduling notations.
According to classical scheduling problem classification, this problem can be

identified as an unrelated multipurpose parallel machines problem with release
dates and tails. In our problem, resources are the operators, operations are the
setup tasks of each machine. This problem is denoted R, MPM |ri, qi|Cmax.
Figure 1 presents an instance made up of 4 machines and 2 operators.

Moreover as explained previously, ri and qi can be seen as distances in time
from machine Mi to respectively the beginning and the end of the production
channel. It means that for a machine Mi, the farther it is from the beginning of
the channel, the closer it is to the end of the channel. Then the non decreasing
ri order is the same as the non increasing qi order. This proposition (prop. 1) is
illustrated on the figure 2.

Proposition 1. In a serial channel, ri and qi are such that: ∀i ∈ {1, . . . , n}, ri ≤
ri+1 and qi ≥ qi+1.

Corollary 1. On each operator, scheduling tasks in non decreasing release date
order is optimal

Using proposition 1, it is easy to deduce the corollary 1 as shown in Pessan
et. al. ([2006b]). Therefore, the problem can be seen as an assignment problem:
once tasks are assigned to operators, their order and then their starting time are
deduced using corollary 1.

The R, MPM |ri, qi|Cmax problem is NP−Hard even in our case of serial
channel since the particular case P, MPM ||Cmax is known to be NP−Hard as
shown by Garey and Johnson ([1978]).

Genetic Branch-and-Bound or Exact Genetic Algorithm? 139

12

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

����������
����������
����������
����������

����������
����������
����������
����������

3 7

2

M1 M2 M3 M4

pi,h O1

M1

M2

M3

O2

∞
2

3
2 2

2

3
∞

M4

serial production channel

r4 = 6, q4 = 0

r3 = 5, q3 = 4r1 = 0, q1 = 7

processing times related to skills of operators

r2 = 3, q2 = 5

M1

q1

Cmax

O1 M4

r4 D1

O2

R2 r2

M2 M3

D2

q3

q2

O1 O2

Rh

Dh

Fig. 1. A 2 operators 4 machines instance

ri+1

M1 Mi Mi+1 Mn

ri

qi+1

qi

Fig. 2. Property on ri and qi

Unlike the P |ri, qi|Cmax problem studied in Carlier ([1987]) and Gharbi and
Haouari ([2002]) and unlike the multipurpose parallel machines problem studied
in Jurisch ([?]), the R, MPM |ri, qi|Cmax problem has not been extensively stud-
ied in the literature. We can mention for instance Gharbi and Haouari ([2005])
but the corollary 1 on our specific problem allows us to implement more efficient
algorithms (cf. section 2.2).

2.2 Branch-and-Bound Method

In this section we describe briefly the Branch-and-Bound method presented in
Pessan et al. ([2006b]). This Branch-and-Bound is used in the hybrid method.

Generalities: A Branch-and-Bound method is a classical way of implicitly
enumerating all solutions of a search space to find the optimal one. In a Branch-
and-Bound method the search space is assimilated with a tree stored using a data
structure, e.g. stack, containing not yet explored nodes. Each node represents
a partial solution and a sub-domain of the search space. Moreover, going from
one level to the next one means making a decision and reducing the domain
of at least one variable. On a leaf node, all variables are fixed. The figure 3
shows the relationships between the search space representation, the tree and
the stack. The tree is a representation of the search space and the stack contains
the frontier of the unexplored parts of the search space.

At each iteration, a node (N) is extracted from the stack and a lower bound
lb(N) of all the solutions in its corresponding sub-space is computed. Then, this

140 C. Pessan, J.-L. Bouquard, and E. Néron

stack:

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

�
�
�
�

��

�
�
�
�

��
��
��
��

��

���������
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��

��
��
��

N

��
��
��
��

����

����

����

������

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��

��

����

������������������������

��
��
��
��
��
��

��
��
��
��
��
��

������������������

����������

��
��
��
��
��

��
��
��
��
��
��������������������

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

feasible solution

Search space representation

search tree representation

search space corresponding to root node (N)

this node is already explored

already explored node

frontier of remaining
search space

��
��
��
��

N2 N3
N2

N3

N1

search space corresponding to node (N3)

search space corresponding to node (N2)

search space corresponding to node (N1)

Fig. 3. Relationship between search space, stack and tree

lower bound is compared to the best known solution ub also known as the upper
bound of the optimal solution. If (N) is a leaf node and if its criterion is better
than the upper bound, the upper bound is updated. Otherwise, if the lower
bound is greater that the upper bound, i.e. lb(N) > ub, the node is discarded
(we also say that the node is pruned) and if it is lower, child nodes are generated
and pushed on the stack. A cutting rule can be seen as an extension of the use of
a lower bound to prune the search tree. A cutting rule is a procedure that takes
one parameter D and returns a boolean. Answer ’no’, corresponds to the fact
that no promising solution, i.e., solution having a makespan lower than or equal
to D, could be found in the subspace corresponding to the current node. If the
cutting condition answers ’no’ with D= ub − 1 then the node can be pruned.

Notice that generally lower bounds are computed once node is extracted from
the stack, but in the case that the exploration strategy is based on the lower
bounds, e.g, best-first strategy (see section 3.2), the lower bound is computed
before new nodes are pushed on the stack.
Branching Scheme: According to corollary 1 the only decision we have to make
is the assignment of the tasks to operators. Moreover without loss of generality,
we assume that the tasks are already sorted so that ∀i ∈ {1, . . . , n−1}, ri ≤ ri+1.
At each level (i) of the search tree, the branching scheme tries to assign task
Mi to each operator that is able to perform the task. It means that there are
n levels in the tree and a maximum of λ branches per node depending on the
number of operators who master the skill corresponding to the task.
Upper Bound: The upper bound is computed using a simple greedy algorithm
that uses the Earliest Completion Time (ECT) priority rule. It is assigning tasks
to the operators who can complete it first. In our experimental results (Pessan
et. al. [2006a]), this upper bound was the main problem of the method as it was
too far away from the optimal to prune nodes. Moreover, solutions built using
ECT may not be feasible, regarding to [Rh, Dh].

Genetic Branch-and-Bound or Exact Genetic Algorithm? 141

Cutting Rule: The cutting rule is based on relaxation of non-preemption con-
straint : it means a task can be interrupted and restarted later either on the same
operator or on another one. We define deadlines for each task as d̃i = ub−1−qi.
The lower bound checks if it is possible to achieve all the tasks within the allowed
time-windows (within [ri, d̃i]). If it is not possible, then the node can be pruned.
Checking this can be done polynomially using a linear program as shown by
Lawler and Labetoulle ([1978]).

3 Hybrid Method

3.1 Generalities

We have seen that a method such as Branch-and-Bound is enumerating implicitly
all feasible solutions. The search space can be reduced whenever a node (N) can
be pruned, that is when lb(N) ≥ ub or when the cutting condition return ’no’,
thus, the upper bound is an important part: the upper bound is improved as
the method is discovering better solutions but as long as the upper bound is not
close enough of the optimal, it is usually hard to prune nodes as the condition
lb(N) ≥ ub is rarely satisfied. So it is important to find a good upper bound as
fast as possible. Moreover, if the search is stopped before reaching the optimal
solution, it is interesting to have a good solution that can be given to the decision
maker.

Here we describe how a Branch-and-Bound can be improved using an efficient
method to compute an upper bound, namely, genetic algorithm. The genetic
algorithm can be used at the root node or it can be used at any time to search
a better upper bound. The idea, is that the genetic algorithm process should
focus on improving the best known solution by searching within the remaining
search space, i.e, whose frontier is still in the stack of the Branch-and-Bound,
while the Branch-and-Bound should eliminate as large parts of the search space
as possible. Basically there are two ways to modify the search space. First, each
time child nodes are created in the Branch-and-Bound, the search space of the
parent node is subdivided into disjoint sub-spaces of the newly created nodes.
Second, when a node is pruned in the Branch-and-Bound, a part of the search
space is eliminated. So the genetic algorithm should be implemented in a way
such that it only searches within the unexplored areas and a convenient way to
do this is to use the nodes contained in the stack.

3.2 Hybrid Exact Genetic Algorithm

Genetic algorithm is a meta-heuristic inspired by biological evolution that has
been introduced by Holland ([1975]). The method uses a population of solutions
that are encoded using a carefully chosen encoding function: these encoded solu-
tions are called individuals or chromosoms. During each iteration, the algorithm
follows these steps:

– selection: pairs of individuals are selected
– crossover: a crossover operator is applied to the selected individuals pairs.

142 C. Pessan, J.-L. Bouquard, and E. Néron

– mutation: each generated individuals may be mutated by slightly changing
them. The probability of mutating an individual should be low

– replacement: individuals that will survive through next generation should
be selected in order to keep a constant population size

The idea is that good individuals should propagate their characteristics. This
kind of algorithms has proved to work well on a more general case of the problem
(serial-parallel production channel, see Pessan et. al. ([2006a])), that is why we
have tried to use a genetic algorithm to improve the Branch-and-Bound.

Encoding Function: As mentioned above, the corollary 1 means that our
problem can be reduced to the assignment problem of tasks to operators. So,
the encoding function of the genetic algorithm should only contain assignments
of operators to the tasks. The decoding function of the genetic algorithm only
has to order tasks in non decreasing ri order, and then computing starting time
of tasks.

As shown on figure 4, the chosen encoding function generates individuals
compound of three parts: a node, the node level and an assignment array. A
node structure contains a partial solution and its level in the search tree: a node
at level k containt k assignments. So, the node of the individual defines the first
assignments. The remaining assignments should be encoded in the third part of
the individual.

node node level assignments of remaining tasks

7© 2 1/3/4/4

Fig. 4. An example of an encoded solution for a problem with n = 6 and m = 4

The individual of the example presented in figure 4 is using the node 7 that
is at level 2 of the search tree: the 2 first assignments are taken from the node.
The node contains only a partial solution with 2 assignments, so the rest of the
individual requires n − node level = n − 2 = 4 additional assignments needed to
build a solution.

The advantage of this function is that the hybrid method is using the stack to
generate individuals and keeping the node in the encoded individual eases the
synchronization of the population with the stack content as explained below.

Crossover Operator: The crossover operator is a classical one point crossover
that generates two individuals from two parents. It selects randomly a number p
between 0 and n. To generate the first child, the operator copies, p assignments
from the first parent and n − p assignments from the second parent. The node
of the child is the node of first parent. The second child is created by exchanging
the roles of parents. An advantage of this operator is that child always contains
existing nodes of the stack and valid assignments and thus belong to the remaining
search space whose frontier are the nodes of the Branch-and-Bound stack.

On the example of the figure 5, p is set to 3. So, 3 assignments are copied
from the first individual to the first child: the 2 assignments of the node and

Genetic Branch-and-Bound or Exact Genetic Algorithm? 143

individual 1: 7© 2 1/3/4/4

individual 2: 21© 4 2/1

cross point : 3

child 1: 7© 2 1/X/2/1

X should be extracted from partial solution of node 21©
child 2: 21© 4 4/4

Fig. 5. Crossover example

one additional assignment. Then, other assignments are taken from the second
individual: one that comes from the node 21 and the rest from the third field of
the individual.

Mutation Operator: There are two mutation operators in this method. The
first one is randomly changing a gene within the third field of an individual, that
is, within the assignments that complete the partial solution of the node.

The second mutation operator is randomly switching to a new node present
in the stack. If the new node is at a lower, it extracts missing assignements from
the old node. On the example of figure 6, node 7 that is at level 2 is replaced
by node 21 that is at level 4: the 4 first assignements of the mutated individual
are extracted from node 21 and the two remaining assignments come from the
original individual.

before mutation: 7© 2 1/3/4/4

after mutation: 21© 4 4/4

Fig. 6. Second mutation operator example

The probability pm1 of mutating an individual should be set to a high value
mainly because of the chosen encoding function and crossover operator: as long
as there are no mutations, no new assignments are introduced in the population.
But it is also required because of the need to explore quickly a subspace in this
hybrid method. If there is a mutation, the probability pm2 of using the second
operator should be low because this operator change many assignments in an
individual and using it too much would lead to too much randomness.

Synchronization Operator: it is an operator that is specific to our hybrid
method. It is there to check that the genetic algorithm is only searching within
the unexplored area: the part of the search space whose frontier is in the stack.
This operator requires non negligible amount of time to be executed and should
not be executed at each iteration. Moreover if it is called too many times, it
may be hard for the genetic algorithm to evolve correctly as it would eventually
invalidate solutions as soon as they are created. So we have chosen to call it
every maxIt (maxIt = 2000) iterations of the genetic algorithm.

The operator is simply checking that all individuals of the genetic algorithm
has a node that is still in the stack. If a node that is not anymore in the stack is

144 C. Pessan, J.-L. Bouquard, and E. Néron

discovered the second mutation operator (that changes the node of an individual)
is called.

Moreover, if there is no improvement of the best solution using the genetic
algorithm for quite a while and if we are running the method on a mono-processor
computer, the genetic algorithm can be paused a few seconds in order to give
the Branch-and-Bound more cpu time: this is done because in many cases it can
takes time to prove that we have found the optimal solution and then trying to
improve the best known solution is not relevant.

Finally, the synchronization operator gives the list of solutions with criterion
equals to ub to the Branch-and-Bound. The Branch-and-Bound can then quickly
explore the corresponding nodes. This has two advantages:

– it removes these solutions of the stack and forces the genetic algorithm to
search in other areas of the search space

– creating child nodes of all the nodes that are in the path that lead to these
solutions introduce in the stack some nodes in the neighborhood of the best
genetic algorithm solutions that can potentially lead either the Branch-and-
Bound or the genetic algorithm to better solutions.

Exploration Strategy: We have tried to use the depth first search. In classical
Branch-and-Bound, this strategy has the advantage of finding feasible solutions
quickly and to keep a reasonable stack size. But for our method, it may not be
the best strategy because all the nodes of the stack are within the same area of
the search space and it does not help the genetic algorithm much.

So, we have implemented another strategy: the best first strategy that takes
the node that has smallest lower bound and within the nodes that have equals
lower bound, it takes the deepest one. This has the advantage of keeping a large

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

search tree stack genetic algorithm population

individual 1

individual 2

pruned node

generation of
individual if its
node is not in
the stack

removed of stack
and pruned

the genetic algorithm
improves ub and prune
nodes 10 and 11 that are
removed of the stack
immediately

lb(10) = 18

4

10 11 15

1

2

5 6

3

6

4

14

15

7

14

(ub = 16)

lb(4) = 19

lb(11) = 17
lb(14) = 15

lb(15) = 16

Fig. 7. Synchronization of the stack with the genetic algorithm and effect of the genetic
algorithm on the Branch-and-Bound

Genetic Branch-and-Bound or Exact Genetic Algorithm? 145

enough stack that contains nodes that can be within all areas of the search
space: it gives a large choice for the genetic algorithm that can be more efficient.
Another advantage of this strategy is that it can improve the lower bound of
the overall problem and it is an information that can be given to the decision
maker to let him decide if it is worth continuing to search the optimal for very
long to solve problem. The idea behind this strategy is to use the Branch-and-
Bound to cut as many nodes as possible and to finally prove that we have found
the optimal while the task of searching good solutions is done by the genetic
algorithm.

Notice that we do not have explicit lower bound but a lower bound can be
computed using cutting condition: let us consider D∗ the smallest value of D for
which the cutting condition answers ’no’, then D∗ + 1 is a valid lower bound.
Then to compute a valid lower bound at node N different values of D are tested
starting from the lower bound of the parent nodes of N . At the root node lb is
computed using binary search on D.

Moreover when the synchronization operator is called, it sends to the method
that handles nodes priority all the individuals that have a criterion equals to the
best solution found until now. The Branch-and-Bound will then immediately
explore these nodes. This way, they are removed from the stack and the genetic
algorithm will be forced in the next synchronization to search other solutions
than these best ones.

4 Experimental Results

The method is coded using Java language and was testing on a monoprocessor
machine equipped with a 1.7GHz centrino and 1Gb of RAM. The two algorithms
run in their own thread meaning that the program would immediately benefit
of a second processor on a multicore or multiprocessor machine.

Preliminary tests have shown that the following parameters give nice results:
a population size of 500 individuals, pm = 30%, pm2 = 5% and maxIt = 2000.
The method is limited to 10 minutes. The tests have been done on 2000 generated
instances with a number of tasks between 10 and 45 and a number of operators
between 2 and 10. These have been generated such that they have a similar
skill repartition and similar values than what is found in industrial instances.
In our industrial case, instances usually have between 30 and 40 tasks. In the
results table, we have used the following abbreviation: bb means Branch-and-
Bound only, df means hybrid method with depth-first search and bf means
hybrid method with best-first search. When tested alone, the Branch-and-Bound
is using a depth first search because using a best first search leads to stack size
explosion due to the poor upper bound.

We can see on the table 1 that the hybrid method with depth first search
is nearly always as good or better than the Branch-and-Bound alone despite
the fact that in the hybrid method less nodes can be explored as the processor
is shared by both method. Between the two hybrid methods, it looks like the
best first search is better for large instances with higher differences starting from

146 C. Pessan, J.-L. Bouquard, and E. Néron

Table 1. Percentage of instances solved to optimality

n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45
m bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf

2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 97 97 97 97 97 97 83 83 83
3 100 100 100 100 100 100 100 100 100 100 100 97 97 100 97 80 87 93 70 70 77 50 47 77
4 100 100 100 100 100 100 100 100 97 80 87 90 73 73 80 50 50 57 43 43 47 27 33 50
5 100 100 100 100 100 100 83 83 83 77 80 77 47 47 63 40 43 57 23 20 27 3 7 37
6 100 100 100 100 100 100 90 93 93 60 63 67 23 23 37 20 23 27 3 3 7 6 7 7
7 100 100 100 97 100 97 60 70 60 60 60 57 13 13 20 3 13 20 3 7 3 0 7 7
8 100 100 100 93 93 83 47 50 60 33 33 30 17 20 23 13 13 13 3 7 3 6 7 7
9 100 100 100 90 93 90 53 53 37 23 27 30 12 3 0 3 7 7 0 3 7 3 3 3
10 100 100 100 90 93 90 13 17 13 10 13 13 7 7 3 3 3 0 0 3 3 3 3 3

Table 2. Average gap between lower and upper bound

n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45
m bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf bb df bf

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .03 .01 .01 .01 .05 .05 .05 .3 .3 .3
3 0 0 0 0 0 0 0 0 0 0 0 .01 .2 .1 .02 .5 .5 .09 .7 .7 .4 1.7 1.7 .2
4 0 0 0 0 0 0 0 0 .02 .6 .6 .1 .9 .9 .2 1.9 1.9 .6 2.7 2.7 .5 2.9 2.9 .6
5 0 0 0 0 0 0 .9 .9 .5 .9 .8 .3 2.7 2.7 .4 3.1 3.1 .6 3 3 1 5.5 5.5 1.6
6 0 0 0 0 0 0 .4 .4 .1 2 2 .7 3.7 3.7 1.1 4.7 4.7 1.4 7.7 7.7 2.3 6.3 6.3 2.1
7 0 0 0 3 3 .03 .6 5.6 1.6 3 3 2 6 6 2.9 6.4 6.4 2.1 7 7 3.4 8 8 3.7
8 0 0 0 5 5 2 11 11 6.3 5.1 5.1 2.5 10 10 3.5 7.9 7.9 3.3 8 8 4.2 9.1 9.2 4.2
9 0 0 0 4 3 1.5 13 13 8.2 15 15 11 9.4 9.4 4.8 8.8 8.8 5.2 9.6 9.6 4.5 10.5 10.5 5.5
10 0 0 0 4 3 1.5 25 25 13 28 28 14 14 14 5.9 9 9 5.5 11 11 5.3 10.4 10.4 6.1

n=30. This corresponds to the size of the instances found in our industrial
case.

On the other hand, the table 2 shows the gap in percentage between the lower
bound of all the nodes remaining in the stack and the upper bound. It shows
that the hybrid method with depth first search rarely improves the gap but best
first search improves it significantly. It is mainly due to two factors. The first
factor is that the diversity of the stack content gives more chance to the genetic
algorithm to improve its best solution than the local search done with depth first
search. The second factor is that with the best first strategy, the lower bound of
the remaining nodes is naturally improved over time.

5 Conclusion

We have presented how a genetic algorithm can be combined with a Branch-and-
Bound method in order to improve both methods. From the point of view of the
genetic algorithm, the Branch-and-Bound is there to reduce its search space.
From the point of view of the Branch-and-Bound, the genetic algorithm helps
to improve the upper bound and thus to prune more node earlier. The results
are promising for this method especially when used with a best first search.
Moreover, these tests have been done on a monoprocessor machine and meaning
it is very promising in the case of multicore processors.

Genetic Branch-and-Bound or Exact Genetic Algorithm? 147

References

[2005] Basseur, M., Lemesre, J., Dhaenens, C., Talbi, E.G.: Cooperation between
Branch and Bound and Evolutionary Approaches to solve a BiObjective Flow
Shop Problem. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp.
72–86. Springer, Heidelberg (2005)

[1987] Carlier, J.: Scheduling jobs with release dates and tails on identical parallel
machines to minimize the makespan. European Journal of Operational Re-
search 127, 298–306 (1987)

[1995] Cotta, C., Aldana, J.F., Nebro, A.J., Troya, J.M.: Hybridizing genetic algo-
rithms with Branch and Bound techniques for the resolution of the TSP. In:
Pearson, D.W., Steele, N.C., Albrect, R.F. (eds.), Artificial Neural Nets and
Genetic Algorithms. Proceedings of the International Conference on Artificial
Neural Nets and Genetic Algorithms, Ales, France, pp. 277–280 (1995)

[2001] French, A.P., Robinson, A.C., Wilson, J.M.: Using a Hybrid Genetic-
Algorithm/Branch and Bound Approach to Solve Feasibility and Optimization
Integer Programming Problems. Journal of Heuristics 7, 551–564 (2001)

[1978] Garey, M.R., Johnson, D.S.: Strong NP-Completeness results: motivations,
examples, and implications. Journal of the ACM 5(3), 499–508 (1978)

[2002] Gharbi, A., Haouari, M.: Minimizing makespan on parallel machines subject
to release dates and delivery times. Journal of Scheduling 5, 329–355 (2002)

[2005] Gharbi, A., Haouari, M.: Optimal parallel machines scheduling with availabil-
ity constraints. Discrete Applied Mathematics 148, 63–87 (2005)

[1975] Holland, J.: Adaptation in natural and artificial systems. University of Michi-
gan Press, Michigan (1975)

[2005] Jouglet, A., Sevaux, M., Oguz, C.: Flowshop hybride: de nouvelles perspectives
en mêlant algorithme génétique et propagation de contraintes. In: ROADEF
2005, Congrés de la Société Française en Recherche Opérationnelle, Tours,
France (2005)

[1978] Lawler, E.L., Labetoulle, J.: On preemptive scheduling of unrelated parallel
processors by linear programming. Journal of the ACM 25(4), 612–619 (1978)

[2006a] Pessan, C., Néron, E., Bellenguez-Morineau, O.: Modélisation et planification
des opérations de réglage de machines lors de changements de série. In: Gour-
gand, M., Riane, F. (eds.) MOSIM 2006 conference, vol. 2, pp. 1545–1554 (2006)

[2006b] Pessan, C., Bouquard, J.-L., Néron, E.: An unrelated parallel machines model
for an industrial production resetting problem. European J. Industrial Engi-
neering 2(2), 153–171 (2008)

[1998] Portman, M., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and Bound
crossed with GA to solve hybrid flowshops. Eur J Oper Res 107, 389–400 (1998)

[2005] Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In: Proceedings of
the First International Work-Conference on the Interplay Between Natural
and Artificial Computation, vol. 3562, pp. 41–53 (2005)

[2004] Rocha, P.L., Ravetti, M.G., Mateus, G.R.: The meta-heuristic grasp as an
upper bound for a branch and bound algorithm in a scheduling problem
with non-related parallel machines and sequence-dependent setup times. In:
EU/ME Workshop, Nottingham, UK (2004)

Aerodynamic Topology Optimisation Using an

Implicit Representation and a Multiobjective
Genetic Algorithm

Windo Hutabarat, Geoffrey T. Parks, Jerome P. Jarrett, William N. Dawes,
and P. John Clarkson

Engineering Design Centre, Department of Engineering
University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

{wh226,gtp,jpj1001,wnd,pjc10}@eng.cam.ac.uk

Abstract. Given the focus on incremental change in existing empirical
aerodynamic design methods, radical, unintuitive, new optimal solutions
in previously unexplored regions of design space are very unlikely to be
found using them. We present a framework based on an implicit shape
representation and a multiobjective evolutionary algorithm that aims to
produce a variety of optimal flow topologies for a given requirement,
providing designers with insights into possibly radical solutions. A rev-
olutionary integrated flow simulation system developed specifically for
design work is used to evaluate candidate designs.

1 Introduction

Fluid dynamics is a complex and nonlinear discipline. Predicting the behaviour
of aerodynamic objects is not easy. Hence, aerodynamic design processes are
rarely started from first principles. Initial decisions in aerodynamic design are
usually based on empirical knowledge [1]. However, it can be argued that, in
some areas, aerodynamic designers have approached the point where using an
overly derivative approach may lead to some basic designs being used outside of
their optimal region. We shall illustrate this point with an example.

The Grid Fin Example. The wing is the solution most commonly used whenever
the generation of lift is required. By continuous incremental improvement to
its basic shape and working principle, there are now many derivatives of wings
which are widely applicable. However, today’s increasingly demanding design
requirements may uncover situations in which none of these variations is optimal;
indeed, the situation may be such that a radically different shape is necessary.

Figure 1 shows an advanced air-to-air missile equipped with a novel type of lift-
ing surface called the grid fin. This trellis-like contraption at the tail of the missile
has characteristics that happen to be very well suited to the demanding require-
ments of supersonic dogfighting [2]. It is clear that using grid fins instead of wing
derivatives contributes to the fact that this particular missile (the Vympel R-77)
is currently widely held to be the premier supersonic dogfighting missile.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 148–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Aerodynamic Topology Optimisation 149

Fig. 1. Grid fins on the Vympel R-77 missile [?]

1.1 Topology as a Design Variable

The difference between the wing and the grid fin is greater than can be captured
by the concept of shape; they are said to be different in topology. Due to the
high cost of change, it is important to select the “right” topology early in the
design process. Ideally, therefore, topology should be one of the key variables
determined during the conceptual design phase. However, the authors are not
aware of any method or tool that designers can use early in the design process to
explore alternative aerodynamic topologies. The topology of a design is therefore
usually predetermined before the design process even begins.

One possible solution is suggested by the use of simulation-based multiobjec-
tive optimisation to produce optimal designs and parameter trade-offs [4,5]. If
such a system can be used to explore the topology trade-off, its output may help
designers gain insights into radical and previously unconsidered options.

1.2 Proposed Framework

We aim to demonstrate that, for a given set of requirements, a framework consist-
ing of a stochastic, multiobjective optimiser using a topologically unconstrained
shape representation and coupled with a robust CFD evaluator is able to consis-
tently identify a variety of solution flow topologies, which will hopefully provide
designers with insight into the available topological trade-offs.

A stochastic optimiser is widely recognised to have the following characteristics:

1. The ability to incorporate practically any sort of design objectives;
2. The ability to treat evaluation codes as black-boxes;
3. The ability to escape local optima;
4. Easy parallelisation.

We consider these characteristics to be more suitable in the information-starved,
early stages of a design process than alternative approaches, despite the usual
perceived disadvantage of this choice: that of demanding a large number of ob-
jective function evaluations.

We have demonstrated the viability of a basic version of this proposed frame-
work in an earlier study [6]. Our current work extends this concept to introduce

150 W. Hutabarat et al.

multiobjective optimisation, continuous surfaces, and a proper CFD code into
the framework.

The availability of a suitable CFD flow solver is absolutely crucial. We are
grateful to Cambridge Flow Solutions for providing us with BoXeR, a newly-
developed CFD package with exactly the sort of capabilities that we need [7].

2 Related Work

Shape optimisation in fluids has been the subject of intense research [8], and
there are various ways in which CFD can be used for this purpose [9]; combining
CFD with stochastic optimisation algorithms has proven to be quite a successful
approach [5].

Nevertheless, research in topology optimisation in fluids has only started very
recently with the pioneering work of Borrvall and Petersson [10]. This work is
based on the material distribution approach, a well-known method of structural
topology optimisation [11]. The state of the art of this approach is summarised
in Gersborg-Hansen’s thesis [12]. As yet, however, this approach has not been
demonstrated using a finite-volume Navier-Stokes discretisation, which is the
best established approach in CFD.

Another approach [13] can be viewed as an extension of the Evolutionary
Structural Optimization method [14]. This approach adds or removes Boolean
cells according to a set of flow-based optimality criteria.

Our approach is built on previous work in Genetic Algorithm (GA)-based
structural topology optimisation. Our previous work [6] can be seen as an ex-
tension of voxel-based GA structural topology optimisation work [15], while the
present work can be viewed as an extension of Kita and Tanie’s work [16].

One topologically unconstrained way of representing shapes is by using an
implicit representation. Examples of shape optimisation using implicit shape
representation are provided by the level-set community, such as [17].

The Radial Basis Function (RBF) has been recognised as an efficient way of
storing implicit representations. It has been shown to be compatible with topo-
logical optimisation [18]. One of the chief objections to implicit representations
is that they cannot represent complex details without running foul of the curse
of dimensionality. However, methods exist that enable an RBF representation to
represent shapes of nearly arbitrary complexity [19].

The development of BoXeR was first reported in [20]. Since it is not yet
commercially deployed, further information may be found on the Cambridge
Flow Solutions website [7].

3 Framework Implementation

3.1 Topologically Unconstrained Shape Representation

The literature on topology optimisation suggests three main topologically un-
constrained representation methods:

Aerodynamic Topology Optimisation 151

1. Binary occupancy: [15] in structures and [13] in fluids
2. Material distribution: [11] in structures and [10] in fluids
3. Implicit representation: [17] in structures and the present work in fluids

In our previous work [6] we used a simple binary representation scheme, which
unfortunately is too expensive to use to model continuous surfaces. The second
method, material distribution, requires very extensive modification of the flow
simulation, which is not a realistic option.

In the present work we use an implicit representation with information stored
in an RBF equation. In an implicit representation, an object Ω with boundary
ω is defined as the set of points x

{x : s (x) = p} , x ∈ ω (1)

where p can be set to any scalar value; usually p = 0.
RBFs have been used by several research groups as representation methods of

solids and surface interpolators [21]. An RBF interpolation process constructs an
implicit function s(x) by using a set of control point coordinates xi and function
value si at xi. We shall briefly describe our RBF implementation.

RBF Construction. An RBF is basically a weighted sum of a given basis function
that is evaluated over the distances of all pairs of a set of control points. More
elaborately, an implicit function s(x) is expressed as

s (x) =
N∑

i=1

λiφ (|x − xi|) , x ∈ Rd (2)

where xi are the locations of the control points, N is the number of control
points, λi is the weight for control point xi, φ(ri) is the basis function, and ||
is the Euclidean norm in Rd. The basis function φ(ri) is usually chosen from a
family of well-known functions, such as the thin-plate, Gaussian, multiquadric,
etc. The multiquadric basis function

φ(ri) =
√

ε · r2
i + 1 (3)

is quite widely used. Here ε is an adjustable constant.
The RBF s (x) is completed by calculating the weights λi. If we define

Φ =

⎡

⎢⎢⎢⎣

φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

...
...

...
φN1 φN2 · · · φNN

⎤

⎥⎥⎥⎦ , where φij = φ (|xi − xj |) (4)

Λ = (λ1, λ2, . . . , λN)T (5)

S = (s1, s2, . . . , sN)T (6)

152 W. Hutabarat et al.

then the approximation process is performed by solving the linear system of
equations:

Φ · Λ = S (7)

The function s (x) can then be used as an implicit shape representation.
Initial solutions can be generated by generating control points – either ran-

domly or uniformly – and then giving each control point a random scalar value.
The embedded shape can be manipulated either by changing the values of the
control point scalars or by addition/removal of control points. Should we choose
to change only the scalar values and fix the number and locations of the control
points, we can then use standard real-valued genetic search operators. Prior to
shape evaluation, the embedded shape can be extracted from the implicit func-
tion by a variety of methods, such as the exhaustive Marching Cubes method.

In the present work, we chose to limit ourselves to 2D implicit surfaces, with
the control points spread in a regular 2D lattice. The embedded shapes are
edited by changing the nodal scalar values. The shape generation method then
resembles the generation of an elevation map, and shape manipulation chang-
ing the elevation of some nodes. The steps required to create a shape, shown
schematically in Figure 2, are as follows:

(a) A regular I × J lattice of N control points is created.
(b) Each control point is associated with a scalar value s, where smin < s <

smax. In Figure 2(b) the scalar value is plotted as a height map.
(c) A RBF implicit function is created according to the control points.
(d) The embedded shape can be extracted as an isoline of a specified value

s = sω.

In most cases, the generated isolines will not form closed shapes, intersecting
the shape generation boundary instead. We can choose whether to leave these

(a) (b)

(c) (d)

Fig. 2. Implicit representation of a 2D object. The end result of this process is the
embedded shape, shown as the red line in (d). Prior to evaluation, the red lines will be
extruded into surfaces as shown in Figure 4.

Aerodynamic Topology Optimisation 153

shapes open or to close them with some repair mechanism. In the present im-
plementation we opt for allowing non-closed shapes; this has some important
consequences that will be encountered later.

3.2 Optimisation Algorithm

For the optimisation algorithm we chose the well-known multiobjective GA
NSGA-II [22] due to its demonstrated capability in flow geometry optimisation
[23] and in unveiling innovative design principles [4].

Design Variables. The design vector s is the vector of scalar values stored in
each interpolation node. These are standard real-valued design variables; hence
the special crossover and mutation operators that we originally proposed [6] are
currently not necessary. We limit the scalar values of the control points to the
range −1 < s < 1, and we extract the shape boundary at s = 0.

Genetic Operators. Since no special operators are necessary, the crossover
and mutation operators can be chosen from the wide range of real-valued GA
operators available in the literature. With ease of implementation as our main
criterion, we chose Parent-centric Normal Crossover (PNX) [24] and the standard
Gaussian or “normal” mutation operator [25] in preference to the simulated
binary crossover (SBX) and polynomial mutation operators suggested in the
original NSGA-II paper [22]. We have used these operators with our initial test
cases and found their performance to be satisfactory.

3.3 Evaluation

BoXeR represents a new approach to the use of flow simulation in the design
process. Recognising the bottlenecks of CFD usage, Cambridge Flow Solutions
wraps revolutionary features around their industry-standard “NEWT” code, a
finite-volume Navier-Stokes flow solver, producing an integrated and parallel
geometry kernel, mesh generator, Cartesian flow solver, and post-processor [7].
Among the revolutionary features of BoXeR, our work benefited most from its
automated mesh generation capability.

The success of discretised flow simulation is highly dependent on the quality
of its mesh. CFD meshes are usually built starting from existing CAD models,
which are rarely designed with CFD use in mind [26]. This makes the process
laborious and error-prone, quite unsuited to an automated optimisation system.
BoXeR’s integrated CAD-importing and mesh generation tools do away with
this problem. The BoXeR user can simply define the domain, the geometry,
and the flow conditions, then step back and watch as the system automatically
meshes, refines, and iterates towards convergence in real-time.

4 Test Case

In this test case we set up a simple optimisation problem and see if our framework
achieves what we seek to demonstrate. We first put the shape generation box

154 W. Hutabarat et al.

Fig. 3. Virtual wind tunnel dimensions

Fig. 4. BoXeR octree domain discretisation, and a Mach number colour-mapping vi-
sualisation of the simulated flow. The curvy surfaces in the middle is the extruded
shape.

into a BoXeR virtual wind tunnel, as shown in Figure 3. BoXeR is then run for
a given number of iterations, and the resulting flow field is processed to extract
the objective function values. We wish to see whether:

1. The framework is consistently able to produce Pareto fronts.
2. The resulting Pareto front is composed of a variety of flow topologies.
3. The resulting shapes are “aesthetically pleasing”. We shall use this catch-all

clause to direct our next efforts.

Tables 1 and 2 show the parameters used in the GA and the virtual wind tunnel,
respectively. The GA parameters in Table 1 are those suggested in [22], which

Table 1. Optimisation parameters

Number of control points I = J = 8 Basis function Multiquadric
Control point scalar bounds s = [−1.0, 1.0] Shape boundary value sω = 0.0

Number of individuals 100 Crossover rate 0.85
Mutation rate 0.033 Number of generations 100

Aerodynamic Topology Optimisation 155

Table 2. BoXeR wind tunnel parameters

Wind tunnel dimensions Xwt = 10 m, Ywt = 8 m, Zwt = 1 m
Control volume dimensions Xcv = 5m, Ycv = 4m, Zcv = 0.5m
Test generation plane dimensions Xg = Yg = 1 m

Specific heat capacity cp = 1005 J kg−1K−1 Heat capacity ratio γ = 1.4
Kinematic viscosity μ = 1 × 10−5m2s−1 Inlet total pressure 1 × 105 Pa

Inlet total temperature 288 K Inlet static pressure 7.56 × 104 Pa

were found to be satisfactory after a small number of test runs. In Table 2, the
dimensions of the virtual wind tunnel are chosen to model a comfortably large
wind tunnel with a 2 m by 2 m test section. The last six parameters in Table 2
define the flow to be under atmospheric, subsonic conditions, a regime of great
interest but free of the complications found in transonic or supersonic flow.

4.1 Objective Functions

The design objective is simple: given a uniform, horizontal incoming fluid flow,
what kind of topology will produce maximum upward momentum with the least
loss in horizontal momentum? This crudely approximates the lift-drag trade-off
of a downforce generator on a racing car.

Translating this to the optimisation framework, the objective evaluator is then
a post-processor that integrates the momentum fluxes within a control volume
pcv. We define the control volume as a 3D hexahedron centrally surrounding
the shape generation plane, having dimensions exactly half the corresponding
dimensions of the simulation domain. The momentum integration is

pcv = mcv · ucv =
Ncv∑

i=1

ρi · Vi · ui (8)

where Ncv is the number of cells within the control volume, Vi is the volume of
cell i, and ρi and ui are the density and velocity of the fluid in that cell.

A large vertical momentum means that the structure performs well in de-
flecting flow upwards, while a large horizontal momentum means that the de-
sign creates minimal drag. Hence, if a given design variable vector v produces
pcv = (px, py)

T
cv, then the two objectives to be minimised are

fobjective1 (v) = −px (9)
fobjective2 (v) = −py (10)

4.2 Selection Operator

To maintain population diversity, NSGA-II applications typically use a crowded
tournament selection operator working in objective function space. We use a
design-space-based crowding operator instead, since our initial experiments sug-
gest that, while this operator causes the system converge slower, the final pop-
ulation usually has greater topological variety.

156 W. Hutabarat et al.

5 Results and Discussion

Figure 5 shows the entire population of the final generation of a typical test
case run. This entails 10,000 separate runs of the CFD code with 2000 iterations
towards convergence each. Each test case run takes approximately 24 hours to
run on a cluster of twelve Opteron nodes.

Figure 6 shows a selection of shapes that result from one optimisation run. It
is important to remember that in aerodynamic shape optimisation the objective
function is extracted not from the shape of the material but from the shape of
the void, or, more accurately, from the flow that is affected by the shape of the
void regions.

We see here a collection of shapes that importantly create flows with differ-
ent topological characteristics. The results range from the singular shape that
performs minimal flow manipulation, to a strongly curved shape that has more
effect on the flow, to multiple curved shapes that multiply the effect of the sin-
gular curved shape. In short, we see that the optimisation system has created
varying topologies generating flow patterns that minimise the two conflicting
objectives to varying degrees.

The shapes still have quirky undulations which may be smoothed if we con-
tinue the optimisation further, but we feel that, at this stage, it is more important
to prove that the system can find “embryonic” solution topologies.

Apparently, our allowing non-closed shapes has resulted in a final population
consisting of aesthetically unpleasing plate-like shapes. Apart from the obvious
(but not modeled) structural problems associated with such structures, the op-
timiser misses out on the opportunity of finer flow control useful in the latter
stages of the optimisation, since it has no separate control of the two sides of
material in contact with the flow. This, however, suggests a hybrid optimisa-
tion approach, where these results are then used as the initial points for a more
conventional shape optimisation.

Fig. 5. A typical Pareto front from the test case The lines connects solutions belonging
to the same Pareto rank as defined by NSGA-II, this particular one has two ranks

Aerodynamic Topology Optimisation 157

Fig. 6. Some samples from the Pareto front. The fluid flows from left to right, and is de-
flected upward. The carpet-like surfaces directly facing the viewer are the visualisation
of the RBF interpolation surface, the thick lines represents sω isolines. Extruded surface
is omitted for clarity. The objective function values are, respectively: (−15769, −685),
(−14610, −1779), (−13963, −2075), and (−12556, −2862).

Comparing the results with our list of objectives given in Section 4, we found
that in the limited number of tests we have done, the framework is consistently
able to produce the Pareto front for the given test case. Our first objective is
thus achieved.

As can be seen from Figure 6, the Pareto front consists of shapes with variable
topologies, albeit non-closed. This demonstrates the ability of our framework to
produce a trade-off across flow topologies. This means that the second objective
is also achieved.

However, with respect to the third objective, we found the resulting non-closed
shapes aesthetically unpleasing. This suggests that the optimisation problem can
be better defined to produce aesthetically more pleasing closed shapes. One way
to tackle this is by placing a constraint on non-closed shapes. We can do this
by exploiting the fact that non-closed shapes will have a sign change on the
interpolated scalar field boundaries. The extent of these scalar sign changes can
be used as a measure of the extent of constraint violation.

6 Conclusions and Future Work

Our previous work has shown that GAs can be used to perform fluidic topology
optimisation. Our present work seeks to demonstrate that a multiobjective GA,
driving a topologically unconstrained representation, coupled with a proper CFD
code, is able to come up with a solution topology trade-off. Most of our objectives
have been achieved, with the remaining objective providing the impetus for
further improvement.

In the future, we aim to do the following:

– Implement an objective function that extracts the non-dimensional aerody-
namic characteristics of a shape. This will provide a comparative figure of
merit that is better and more familiar to aerodynamic designers.

– Study the effects of the dimensions of the virtual wind tunnel.
– Further exploration of the robustness of the GA operator parameters.

158 W. Hutabarat et al.

Acknowledgments

The support of Cambridge Flow Solutions and of the UK Engineering and
Physical Sciences Research Council (EPSRC) under grants GR/R64100/01 and
EP/E001777/1 is gratefully acknowledged.

References

1. Giles, M.B.: Aerospace Design: a Complex Task. Technical Report 97/07, Oxford
University Computing Laboratory (1997)

2. Fluent Inc.: First Viscous Analysis of Grid Fins Gives Better Prediction of Missile
Trajectory. JA136 Journal Articles by Fluent Software Users, Fluent Inc. (2001)

3. Scott, J.: Missile Grid Fin (2006) (Last checked on September 15th, 2007),
http://www.aerospaceweb.org

4. Deb, K.: Unveiling Innovative Design Principles by Means of Multiple Conflicting
Objectives. Engineering Optimization 35(5), 445–470 (2003)

5. Sasaki, D., Obayashi, S., Nakahashi, K.: Navier-Stokes Optimization of Supersonic
Wings with Four Objectives Using Evolutionary Algorithm. Journal of Aircraft 39
(2002)

6. Hutabarat, W., Parks, G.T., Jarrett, J.P., Clarkson, P.J.: A New Approach to
Aerodynamic Topology Optimization. In: Parmee, I. (ed.) Adaptive Computing in
Design and Manufacture, vol. 2006 (2006)

7. Cambridge Flow Solutions: BoXeR (2007) (Last checked on September 15th, 2007),
http://www.cambridgeflowsolutions.com

8. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford
University Press, Oxford (2001)

9. Jameson, A., Vassberg, J.C.: Computational Fluid Dynamics for Aerodynamic De-
sign: Its Current and Future Impact. In: 39th AIAA Aerospace Sciences Meeting
and Exhibit, AIAA (2001)

10. Borrvall, T., Petersson, J.: Topology Optimization of Fluids in Stokes Flow. Inter-
national Journal for Numerical Methods in Fluids 41, 77–107 (2003)

11. Bendsoe, M., Kikuchi, N.: Generating Optimal Topologies in Structural Design
Using a Homogenization Method. Computer Methods in Applied Mechanics and
Engineering 71(2), 197–224 (1988)

12. Gersborg-Hansen, A.: Topology Optimization of Flow Problems. PhD thesis, Tech-
nical University of Denmark (2007)

13. Häussler, P., Nitsopoulos, I., Sauter, J., Stephan, M.: Topology and Shape Op-
timization Methods for CFD Problems. In: 24th CADFEM Users’ Meeting 2006,
International Congress on FEM Technology (2006)

14. Xie, Y., Steven, G.: Evolutionary Structural Optimization. Springer, Heidelberg
(1997)

15. Kane, C., Schoenauer, M.: Topological Optimum Design Using Genetic Algorithms.
Control and Cybernetics 25(5), 1059–1088 (1996)

16. Kita, E., Tamaki, T., Tanie, H.: Topology and Shape Optimization of Continuum
Structures by Genetic Algorithm and BEM. Computer Assisted Mechanics and
Engineering Sciences 11, 63–75 (2004)

17. Allaire, G., Gournay, F.D., Jouve, F., Toader, A.M.: Structural Optimization Using
Topological and Shape Sensitivity Via a Level Set Method. Technical report, Ecole
Polytechnique (2004)

http://www.aerospaceweb.org
http://www.cambridgeflowsolutions.com

Aerodynamic Topology Optimisation 159

18. Wang, S., Wang, M.: Radial Basis Functions and Level Set Method for Structural
Topology Optimization. International Journal for Numerical Methods in Engineer-
ing 65(12), 2060–2090 (2005)

19. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans,
T.: Reconstruction and Representation of 3D Objects with Radial Basis Functions.
In: Conference on Computer Graphics and Interactive Techniques, pp. 67–76 (2001)

20. Dawes, W.N.: Building Blocks Towards VR-Based Flow Sculpting. In: 43rd AIAA
Aerospace Sciences Meeting & Exhibit, AIAA (January 2005)

21. Turk, G., O’Brien, J.: Modelling with Implicit Surfaces that Interpolate. ACM
Transations on Graphics 21, 855–873 (2002)

22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. Evolutionary Computation 6(2), 182–197 (2002)

23. Hirschen, K., Schäfer, M.: A Study on Evolutionary Multi-objective Optimization
for Flow Geometry Design. Computational Mechanics 37(2), 131–141 (2006)

24. Ballester, P.J., Carter, J.N.: An Effective Real-Parameter Genetic Algorithm with
Parent Centric Normal Crossover for Multimodal Optimisation. In: Deb, K., et al.
(eds.) GECCO 2004. LNCS, vol. 3102, pp. 901–913. Springer, Heidelberg (2004)

25. Fogel, D.B.: Mutation Operators. In: Evolutionary Computation I: Basic Algo-
rithms and Operators, pp. 237–255. Institute of Physics Publishing, Bristol, UK
(2000)

26. Kellar, W.P.: Geometry Modeling in Computational Fluid Dynamics and Design
Optimisation. PhD thesis, University of Cambridge (January 2003)

Direct and Indirect Representations for

Evolutionary Design of Objects

Juraj Plavcan1 and Pavel Petrovic2

1 Faculty of Mathematics, Physics, and Informatics,
Comenius University, 84248 Bratislava, Slovakia,

2 Department of Computer and Information Science
NTNU, 7491 Trondheim, Norway

ppetrovic@acm.org

Abstract. We follow up on the work of Ebner[1] in studying represen-
tations for evolutionary design of objects. We adopt both the method
and the simulation framework, and perform more thorough experiments.
We design new representations, both direct and indirect, and compare
their performance to the original work. We design and make use of a spe-
cialised system for distributed computing that integrates smoothly with
the EO library[5]. First, we confirm the results of Ebner with VRML
scene graphs representation. Next, we demonstrate how both of the new
representations based on triangular mesh perform significantly better.
Finally, we study and improve the performance of the distributed sys-
tem that we utilised to run our experiments on tens of computing nodes.

1 Introduction

Evolutionary Design is a promising application area of the Evolutionary Com-
putation (EC) with a large and yet to be discovered potential. Steadily more
intricate and specialised designs are needed in the various technological fields,
in the scale ranging from the space applications down to the nano level. In or-
der to utilise EC for the design of parts and objects, effective ways of encoding
the 3D shapes into genotype representations must be provided and evaluated.
Straight-forward direct mapping of unit cells of a 2D or 3D grid into bits of a
genotype suffers from huge search spaces, very localised search with operators
that cannot span across local extremes, and inflexibility of the search in focusing
on the most relevant locations while covering the large even areas with only a
few data items. For instance, consider an application of evolving a can opener.
Close attention must be paid to the shape of the sharp blade, while the handle
can consist of one large cylinder. The genotype representation should be able to
dedicate many genes/alleles to the blade and cover the handle with only a few.
This distribution need not to be known in advance and should be discovered by
the evolutionary algorithm.

Previously, EC has been applied to design various shapes. For example, Robin-
son et.al. [8] evolve structures for satellite boom with passive vibration control,
i.e. shapes capable of cancelling unwanted vibration by the means of object

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 160–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Direct and Indirect Representations for Evolutionary Design of Objects 161

topology. In [3], Hamda et.al. use indirect representations based on Voronoi
diagrams, dipoles, and bars to represent 2D shapes for Topological Optimum
Design. Hornby [4] is advocating for reuse of the design components (modules)
represented by parts of genotype in particular by applying Lindenmayer systems,
an instance of what they define as generative representations, where elements of
genotypes are reused in their translations to phenotypes. In addition to reusing
modules within the same single design, authors reuse modules across individual
designs within design families. Ebner [1] addressed the challenge of indirect rep-
resentations by adopting scene graphs as genotype representation of the shape
of objects. Our work repeats Ebner’s experiments and moves ahead by com-
paring them against two new representations. His representations are based on
geometric 3D objects as building blocks that do not allow effective use of ma-
terial and possibility to describe shapes accurately enough. We instead encode
objects using a triangular mesh in two different ways: directly, by encoding the
mesh node coordinates, and by generating the coordinates through a series of
spacial transformations in a manner similar to Ebner’s VRML representation.
The second of our representations is generative.

Evolutionary experimental runs, demand extensive CPU resources. The runs
would take very long to complete on a single computer. We therefore chose to
develop a distributed version of the algorithm. The evolutionary engine runs
on a master node, which is utilising the available slave nodes to evaluate the
individuals in the population (the specific shapes). The evolutionary objective
function measures the performance of shapes by simulation in a popular open-
source body physics simulator ODE.

In the following sections, we describe the details of the ODE simulator, ex-
plain the scene graphs as used by Ebner, introduce the representations based
on triangular mesh, unveil the details of our evolutionary algorithm, discuss the
distributed system for fitness evaluations, present the results of the experiments
and summarise the paper in conclusions.

2 Simulation

Physical simulation usually works with models of a continuous nature, where the
state of the objects in the simulated world changes continuously. On the contrary,
simulation of bank transactions typically has a discrete nature. In computer
simulation, the continuous model is often approximated using a discrete model
with small time steps: either as fixed-increment time advance, or as next-event
time advance. We use the former, where the state of the system changes only in
the instantaneous moment between short time intervals of constant duration.

2.1 Open Dynamics Engine

Several simulation engines have been developed (for instance Newton DynamicsTM

and Havok PhysicsTM). As Ebner, we adopted the open-source project Open Dy-
namics Engine [10] as the simulating platform. ODE is used for interactive sim-
ulation in real time in computer games and robotic simulators (SimRobot [6],

162 J. Plavcan and P. Petrovic

Fig. 1. Relation between the maximum feasible step size and wind velocity (left),
reference plane and bounding prism for the rotor blades (right)

UCHILSIM [12], Ubersim [2], Webots [7]) and it prioritises the speed and sta-
bility over accuracy and correctness, however, it provides a realistic environment,
where the performance of representations can be studied and evaluated. We use
ODE for simulation of stream of air particles passing through and colliding with
the blades of a wind turbine and causing its rotation in result.

ODE simulation consists of two main components, Collision Detection Subsys-
tem and Physics Engine Subsystem. The latter works with rigid bodies, objects
defined by their position, orientation, speed (linear and rotational), weight, and
centre of gravity. The bodies can be isolated or connected with each other using
joints to form complex objects. The former is responsible for maintaining the
mutual position of the bodies, and for avoiding their overlapping. This requires
further attributes, such as volume, shape, ‘softness’, and ‘flexibility’. During a
contact, a special type of joint (contact joint) is created for the time period of
one simulation step. All joint types together determine the interactions of the
simulated bodies and their outcome. The geoms can have simple shapes – box,
sphere, capped cylinder, or more complex shapes – defined by a set of triangles
that together form a triangular mesh. The joints between the bodies are of dif-
ferent types (ball, hinge, slider, fixed) and have corresponding various degrees
of freedom.

Due to the discrete time intervals used, the bodies are “teleported” in time steps.
This influences the size of the air particles, which must collide with the blades of
the rotor, see Figure 1, and as a consequence the speed of the simulation.

2.2 Simulation Model

The rotor consists of three blades (each rotated by 120◦), attached as one com-
pound object to horizontal axis of rotation (represented by a capped cylinder)
using a frictionless hinge joint. We enforced a constraint for the size of the
blades, which ought to fit into a prism with dimensions 10x8x8 (figure 1). Given
a specified wind strength (particle speed, weight and density), we observed the

Direct and Indirect Representations for Evolutionary Design of Objects 163

maximum angular velocity ωMAX , the blade weight and its distribution (i.e. the
distance of the blade’s centre of gravity from the axis). Using these variables, we
estimated the maximum reached kinetic rotational energy as:

EMAX =
1
2
Iω2

MAX =
1
2
3mr2ω2

MAX .

The air particles were flying inside of a wind corridor with a circular profile. This
cylinder had its bases parallel to the rotational plane. The particles of radius of
0.1 units were generated at the start of the wind corridor with starting velocity
v0 = 10. In each step, two forces were applied on the particles: the wind force
Fwind = 0.3 with a vector parallel to the direction of the wind. The resistant
force Fd with a vector parallel to the particle’s speed vector, opposite orientation,
and size linearly proportional to the particle speed:

F = Fwind + Fd = Fwind − α × v,

where α = 0.02 is a friction coefficient and v is the speed vector. Thus the
particles with starting speed v0 = 10 will continue to move with constant speed
and direction until they collide with a blade of the rotor, or reach the end of
the corridor. At the collision, the particle gives up part of its kinetic energy
in favour of the rotational energy of the rotor, and leaves the point of contact
according to the law of reflection. Consequently, the wind force will act on the
particle to slowly change its speed vector and direct it in the direction of the
wind, accelerating to its maximum speed until it leaves the wind corridor or
collides again with a blade of the rotor.

The parameters of the model include the size of the wind corridor and the
number of air particles. Marc Ebner used a constant-size wind corridor with
100 particles, which were moved to the start of the corridor automatically when
reaching the end of the wind corridor. Given the limited total number of steps
in the simulation, and the complexity of the blades, we believe this number is
too low.

We attempted a more accurate model of the wind. We used smaller time step
(0.01 as compared to Ebner’s 0.1) and more particles. We optimised the model
by variable-length corridor (with the base radius 10.5). The length depending
on the “depth” of the rotor. The starting base was placed 0.1 units ahead of the
foremost point of the rotor, and the ending base was touching the very rear point
of the rotor. The number of particles in cube unit of the corridor was constant
(0.7), which in practice meant 500 - 2000 particles in total. The challenge was
in generating wind with stable (regular) strength. We tried two approaches:

1. In each step of the simulation, all particles were active. Immediately after
leaving the corridor, the particles were restarted. This approach achieves
an almost constant total wind energy (sum of the kinetic energies of the
particles) during the whole simulation. A disadvantage are large variations
in the number of restarted particles in each step, which result in unwanted
resonance and conflict with the criterium for terminating the simulation.

164 J. Plavcan and P. Petrovic

2. in each simulation step, a constant number of particles were started at the
start of the corridor. The particles leaving the corridor were erased from the
simulation. The number of starting particles in each step was determined
empirically so that the number of particles in a cube unit was approximately
0.7. However, leaving this number constant throughout the simulation leads
into a large variation in the total number of particles in the simulation and
thus as well in the total wind energy. The number of particles depended
extensively on the shape of the blades, and therefore was not comparable.

We chose the following compromise: we determined the total number of particles
as in the first of the two approaches. However, we limited the maximum number
of particles entering the corridor in each step (restartsmax). If too many particles
started to leave the corridor, they had to wait in a backup stack until the number
of particles arriving at the end of the corridor decreased under restartsmax

threshold. This limit was dynamically adjusted depending on the state of the
stack: when the stack was growing above safe threshold (20), the limit increase
was linearly proportional to the stack size. When it was shrinking (or empty),
the limit was decreasing at constant rate. This implementation of “even” wind
proved to be stable for different shapes of blades – the wind energy varied little
and the wind resonance was balanced.

For a fixed set of wind parameters and specific rotor, there is a maximum
angular velocity vMAX it can reach. The goal of the simulation is to determine
this speed, which together with the mass and its distribution implies the energy
that the turbine can acquire from the wind. Accordingly, we derived the sim-
ulation termination criterium: the simulation executes until the angular rotor
velocity converges, however always at least 500 and at most 2000 time steps.
We consider the velocity converged when the averages over four different history
windows vary less than δ.

In order to reduce the time required for the angular speed convergence, the
rotors were assigned a nonzero starting kinetic energy, estimated as the half
of the maximum kinetic energy reached by any shape currently present in the
population. The rotors with lower performance decelerated, those with a higher
performance accelerated. See figure 2 left for the effects of this optimisation.

3 Scene Graphs

Marc Ebner focused in his work on scene graphs and compared two existing
representations: Open Inventor used in a 3D graphics library and VRML used
for virtual reality modelling. Both representations have a tree structure. In-
ternal nodes represent transformations, while leaves represent simple objects:
sphere, capped cylinders or boxes. The resulting transformation of the leaf ob-
ject in VRML representation is defined by gradual (in that order) application
of transformations on the path from the tree root, while in the Open Inven-
tor representation, the transformation nodes can be in terminal nodes too, and
the transformations are influenced by special nodes (separators). The resulting
transformation in Open Inventor is the composition of the transformations in the

Direct and Indirect Representations for Evolutionary Design of Objects 165

-4

-2

 0

 2

 4

 0 2 4 6 8 10

Y
-c

oo
rd

in
at

e

X-coordinate

Reference grid

R2 layout
R4 layout

Fig. 2. Simulation time optimisation through initial rotor kinetic energy assignment
(left). In most cases, the simulation time is decreased: original time t1 has been de-
creased to t′

1. In some cases, the time increases: t2 to t′
2. Layout for the blade for R2

and R4 (right).

order of searching the tree using depth-first search. The separators work as local
accumulators and isolate the rest of the tree from the transformations within its
subtree; the transformations in the subtree of a separator are applied only to
the leaves inside of its subtree.

Ebner applied the two representations to represent the genotypes for the shape
of the blade of the wind turbine and used the standard GP for evolving them
in a population of 50 individuals, with the tournament selection of size 7, which
is known in general to suggest a strong vulnerability to local optima (and we
confirmed this also empirically in our early experiments). The parameters of
transformations (translation vector, rotation axis and angle) and the leaves (the
size of the placed objects) were initialised randomly and did not change during
the evolution. This is in contrast with Ebner who used evolutionary strategy to
evolve these values, while we preferred manual tuning so that the CPU cycles
were used more efficiently during the runs. The standard tree crossover and
mutation has been applied with the probability of 50%. Ten evolutionary runs
of 200 generations were performed.

Ebner showed that VRML representation outperforms the Open Inventor rep-
resentation significantly. He argued that the subtrees in VRML representation
correspond to specific parts of the blade and thus the recombination and mu-
tation of the root node in the subtree influences only these parts of the blade.
The mutations in Open Inventor influence transformations of other subtrees and
thus other parts of the blade.

4 Rotor Representations

4.1 Indirect VRML Representation with Objects R1

We performed experiments with four different representations, R1 - R4. In the
first, an individual is represented by a tree with branching factor 2–3. Maximal

166 J. Plavcan and P. Petrovic

initial depth of tree is 4. Maximal size of tree is 100 nodes (inner nodes and
leaves). Tree nodes are chosen from the set F

F = {R0, T0, R2, T2, R3, T3}, where

Ri(x, y, z, α) ∈ (0; 3) × (0; 1) × (0; 1) × (0; 2π), i = 0, 2, 3

Ti(dx, dy, dz) ∈ (0; 3) × (0; 1) × (0; 1), i = 0, 2, 3

Ri represents rotation along axis (x, y, z) of angle α. Ti represents translation
along vector (dx, dy, dz). R0, T0 are leaves and represent final rotation, and
translation of capsule (building block of blade) respectively. Node types R2,
T2 have two child nodes, R3, T3 three. Internal node parameters are initialised
randomly and later modified by the mutation operator. The rotor (phenotype) is
constructed in ODE environment by depth-first traversing of the corresponding
tree (genotype). For every tree leaf, there is one capsule placed. Its position
is transformed according to information located on the path from root of the
tree to this leave. Capsules, which are not linked to the rotation axis of the rotor
directly or via other capsules, are ignored and do not participate in simulation. If
the final rotor blade is exceeding the dimensions of the bounding prism (10x8x8),
then the individual’s fitness is set to zero. Otherwise the simulation is started
and kinetic (rotational) energy of rotor after completion of simulation represents
the individual’s fitness.

4.2 Direct Representation R2

(α, (z1, b1), (z2, b2), . . . , (z26, b26)), α ∈ R(0; 1), zi ∈ R(−4; 4), bi ∈ {0, 1}
The basis for our direct representation is a reference grid (see Figure 2 right)
containing 26 vertices. Coordinates (2D) of the vertices are fixed for all individ-
uals. We set the total number of vertices and their position in reference grid by
an expert guess.

Genotype defines elevation of each vertex relative to the reference grid. The
elevation is limited, maximum +4 and minimum -4 units. Genotype contains
presence bit for each vertex – 0 means the vertex is ignored, 1 means the vertex
is part of the blade’s shape definition (active vertex). Thus shape of the blade

Fig. 3. Direct representation R2

Direct and Indirect Representations for Evolutionary Design of Objects 167

Fig. 4. Transformation in indirect representations R3, R4

is defined by triangular mesh over elevated active vertices of the reference grid.
The last information present in the individual’s genotype is an angle of skewness
of the blade – the reference grid is rotated by this angle along x-axis.

During the initialisation and mutation of the individuals, dimensions of the
corresponding blade are checked against the dimensions of the bounding prism
(10x8x8). In the case the blade stretches out of this prism, the elevations of
conflicting vertices are adjusted so that the whole blade fits inside the prism.
We used Delaunay triangulation to determine a triangular mesh (set of triangles)
from the set of active vertices. The triangular mesh defines the front face of the
blade. For simplicity, the thickness of blades is constant (0.1 units).

4.3 Indirect Representation R3, R4

Our indirect representations of blade’s shape are based on ideas of both Ebner’s
VRML representation, and our direct representation R2 using triangular mesh.
We use reference grid with 26 vertices (their position in grid is modified com-
pared to R2 to prevent the final blade to stretch out of the bounding prism
too often, figure 2). All vertices are transformed in space using a transformation
tree which represents the whole genotypical information. The tree has a constant
number of leaves 26. Leaf contains an index of a vertex from the reference grid
(all leaves together cover all vertices). Inner nodes of the tree are either rotation
or translation nodes. Branching factor of the tree is 1–3. The transformations
on the path from the root of the tree to a leaf were applied in this order on
the corresponding vertex of the reference grid. Our first approach to indirect
representations – R3 used fixed triangular mesh – the set of triangles covering
vertices of the reference grid was fixed. This resulted in minor complications
when vertices moved relatively too far from their original locations. The second
indirect representation R4 solves this problem by projecting already transformed
vertices into XY plane. Delaunay triangulation provides set of triangles cover-
ing these projected vertices. Moreover, in R4, the final positions of vertices are
restricted so that their projections could not lay outside the boundary displayed
in figure 2 right. Another difference between R3 and R4 is in the implementation
of mutation and crossover operators. R3 did not check the dimensions of final
blade, therefore individuals that represented blades, whose dimensions did not
meet our criteria, were also present in population, but during their evaluation
in ODE simulator they received fitness zero.

168 J. Plavcan and P. Petrovic

R4 genetic operators check the dimensions of projection of transformed vertices
and also 3D dimensions of actual blade. In case the dimensions exceed limits, the
mutation or crossover are tried again (maximum 5 times). If all attempts fail, the
original individual (parent) is copied into the next generation instead. The conse-
quence of this modification (R3 vs. R4) is the absence of zero-fitness individuals
(blades that do not meet size restrictions) in population with R4. This made the
comparison between direct R2 and indirect R4 more appropriate, as R2 adjusts
elevation of vertices of reference grid so that they never exceed bounding prism
(population with R2 thus never has zero-fitness individuals).

5 Evolutionary Algorithm

The initial population of 200 individuals was created using the RHH method
as in the work of Ebner. We used tournament selection of size 2, weak elitism,
and ran for 200 generations. Common parameters were tuned to pcross = 0.3,
pmut = 0.7.

In the case of R1, the standard subtree crossover, and four different mu-
tations were used: BranchMutation replaces a subtree with random content,
PointMutation replaces a tree node with another tree node of compatible arity,
CollapseSubtreeMutation replaces a random subtree with a new leaf, and Expan-
sionMutation replaces a leaf with a randomly generated subtree. The mutation
probabilities were 0.5, 0.3, 0.1, and 0.1, respectively in the same order as above.
In the case of R2, we used the standard one-point crossover and simple average
crossover operating on skewness angle. Since the points are topologically or-
dered, the crossover corresponds to geometric crossover, cutting the blade along
a straight line. Because only some of the points of the grid are present in the
individual phenotypes, this slight bias towards straight lines is partially compen-
sated. We believe it is important to exchange the large parts of the blade using
the crossover while the mutation with a higher rate tunes the correct details of
the shape. Mutation operators were of four types: AngleMutation adds Gaus-
sian noise to the skewness angle, GaussAllMutation alters the heights zi using
Gaussian N(0, δ), Uniform3Mutation alters three randomly selected zi by a uni-
form noise from interval (-4,4), PresenceMutation toggles the presence of three
randomly selected vertices. The skewness angle always remains in the interval
(0,900), and all heights zi in the interval (-4,4). The probabilities of the muta-
tions were 0.1, 0.5, 0.3, 0.1 in the order as above. The operators are implemented
so that the resulting individual fitted into the bounding prism. In the cases of
R3 and R4, we use a kind of swap crossover operator, while paying attention
to the leaf nodes, which must form a permutation of the 26 vertices (at most
three transformation nodes are swapped). Four mutation operators were used:
ContentGaussMutation, and ContentUniformMutation apply Gaussian and uni-
form noise to all parameters in a single selected node, SwapSubtreesMutation
swaps two random subtrees, and SwapLeavesMutation swaps two random leaves.
The ratios used were 0.4, 0.2, 0.3, and 0.1, respectively. The experiments were
implemented with the universal open-source evolutionary library EO. We only

Direct and Indirect Representations for Evolutionary Design of Objects 169

made small modifications of the engine in the way the user’s call back function is
called in order to allow for the distributed evaluation of the objective function.

6 Distributed Evaluation

To perform the experiments, we utilised the idle CPU time of computers in the
student laboratories and of several powerful server machines. The evolutionary
algorithm was running on a master node, which communicated with the slave
nodes at an application layer using MySQL database. In each generation, the
master program sent a set of individuals to be evaluated into a database table,
and waited until the whole population became evaluated.

The nodes retrieved one individual each, ran a simulation and stored the com-
puted fitness back to the database table. In order to increase the utilisation of
the computational nodes, and because of their varying performance, some indi-
viduals could be evaluated simultaneously by several nodes. This occurs when
all individuals have either been evaluated or are already assigned to some node
and there are still some nodes available. This cures the situation when a difficult
individual is assigned to a node with low performance, which would otherwise
block the progress of the whole evolution for tens of minutes, leaving all remain-
ing nodes idle. Close to the end of each generation, the extra available compu-
tational nodes spread over the whole set of the remaining individuals evenly,
prioritising those that are already being tried for the longest time.

7 Results

After many testing runs focused on tuning the parameters and understanding the
underlying mechanisms, we performed 11 evolutionary runs for each of the four
representations. Each representation required about 1 year of total single-CPU
time. Figure 5 plots the best and average fitness for all runs against the num-
ber of generations. The actual number of evaluations was slightly lower in the
case of direct representation due to different sequence of mutation application,
but the trend and the result is the same as in the plot against generations. All
three triangular mesh representations (both direct and indirect) clearly outper-
form the original representation based on VRML and capped cylinders. The best
result is achieved with R3, the first version of the indirect representation (VRML)
with triangular mesh (significantly better than direct representation, t-test with
t = 4.463), and the trend is more promising. However, this is likely due to the
capability of R3 of accumulating mass by creating “folds”, and due to the possi-
bility of exploiting additional areas close to the rotation axis, which are not part
of the search space of the direct representation. This option was removed from
otherwise identical R4, which performed worse than R2, the direct representation
with triangular mesh, even though still better than the original R1.

There are couple of observations, which can explain lower performance of the
original VRML representation with capsules. The initial population contained
smaller trees, which in turn generated small blades accumulating little kinetic

170 J. Plavcan and P. Petrovic

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 20 40 60 80 100 120 140 160 180 200

F
itn

es
s

Generations

Progress of fitness
(average of 11 runs)

R1: best
R1: average

R2: best
R2: average

R3: best
R3: average

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 20 40 60 80 100 120 140 160 180 200

F
itn

es
s

Generations

Progress of fitness
(average of 11 runs)

R2: best
R2: average

R4: best
R4: average

Fig. 5. Plot of the best fitness for R1 - R3 (left) and R3, R4 (right)

Fig. 6. Examples of evolved blades for the four representations R1 – R4, the best of
the first and last generation

energy. This contributed to lower capacity of the evolution to explore the space
with good solutions as it needed to spend more efforts on finding the proper
region of the search space. In addition, an important aspect is the shape and
size of the cutting edge of the blades. Using capsules implies thick blades with
large friction against the air during the rotation. The figure 6 depicts the evolved
shapes. Note their similarity to water turbines, rather than air turbines, which is
due to our model that is not intended to be physically plausible. Note also how
the evolution exploits the possibility to create folds to accumulate the weight.

Part of the genome in the direct representation was the angle of skewness
of the reference plane. This variable converged to values around 10◦, runs with
indirect representation used a fixed 18◦ skewness.

8 Conclusions and Future Work

We follow up on the work of Marc Ebner in studying representations for evolu-
tionary design of objects. We make a completely independent re-implementation

Direct and Indirect Representations for Evolutionary Design of Objects 171

and confirm his main results. We design two new representations, where the
shape is defined as a set of triangles (triangular mesh). We demonstrate that the
representation is more suitable for this problem and in general as it allows higher
flexibility, better accuracy, and interesting genotype representations. We design
both a direct and indirect (generative) representations, both of them performing
significantly better than the original representation. We design a distributed sys-
tem that utilises idle CPU time of computational nodes in student laboratories.

The future work will focus on studying new indirect representations that could
outperform direct representations. A large number of possibilities exists, and
remains only for a creative mind of the experimenter as we make the source-
code publicly available [11], some more details of the experiments can be found
in [9]. The same simulation framework can be evaluated with other problems of
evolutionary design, and perhaps enabled with active controllers for the mutual
co-evolution of robot morphologies and controllers.

References

1. Ebner, M.: Evolutionary Design of Objects Using Scene Graphs. In: Ryan, C.,
Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 47–58. Springer, Heidelberg (2003)

2. Go, J., Browning, B., Veloso, M.: Accurate and flexible simulation for
dynamic,vision-centric robots. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.)
AAMAS 2004. LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)

3. Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., Sebag, M.: Compact Unstruc-
tured Representations for Evolutionary Topological Optimum Design. Applied In-
telligence 16, 139–155 (2002)

4. Hornby, G.S.: Generative Representations for Evolutionary Design Automation.
PhD Thesis, Michtom School of Computer Science, Brandeis University, MA (2003)

5. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving Objects: a general
purpose evolutionary computation library. Artificial Evolution, 231–244 (2001)

6. Laue, T., Spiess, K., RÃfer, T.: SimRobot – A General Physical Robot Simulator
and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Taka-
hashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer,
Heidelberg (2006)

7. Michel, O.: Cyberbotics Ltd. WebotsTM : Professional Mobile Robot Simulation.
Int. Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

8. Robinson, G., El-Beltagy, M., Keane, A.: Optimisation in Mechanical Design. In:
Bentley, P. (ed.) Evolutionary Design by Computers, Morgan Kaufmann, San Fran-
cisco (1999)

9. Plavcan, J., Petrovic, P.: Distributed Evolutionary Experiments with Representa-
tions for Evolutionary Design. IDI NTNU Technical Report (2007)

10. Smith, R.: Open Dynamics Engine Users Guide (2006)
11. RoboWiki: Evolving Shapes (2007), http://robotika.sk/projects/evodesign/
12. Zagal, J.C., del Solar, J.R.: UCHILSIM: A Dynamically and Visually Realistic

Simulator for the RoboCup Four Legged League. In: Nardi, D., Riedmiller, M.,
Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp.
34–45. Springer, Heidelberg (2005)

http://robotika.sk/projects/evodesign/

Adaptive and Assortative Mating Scheme for

Evolutionary Multi-Objective Algorithms

Khoi Le and Dario Landa-Silva

Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science, The University of Nottingham

{kxl,jds}@cs.nott.ac.uk

Abstract. We are interested in the role of restricted mating schemes in
the context of evolutionary multi-objective algorithms. In this paper, we
propose an adaptive assortative mating scheme that uses similarity in
the decision space (genotypic assortative mating) and adapts the mating
pressure as the search progresses. We show that this mechanism improves
the performance of the simple evolutionary algorithm for multi-objective
optimisation (SEAMO2) on the multiple knapsack problem.

1 Introduction

Selection plays an important role within evolutionary algorithms in selecting
individuals for survival and selecting parents for recombination. Here, we are in-
terested in mating schemes, i.e. the selection of parents for recombination within
evolutionary multi-objective (EMO) algorithms. A number of mating schemes
have been proposed in the literature including: fitness proportionate selection,
tournament selection, rank-based selection, ancestry selection and assortative
mating among others. In fitness proportionate selection, parents are chosen based
on a probability proportional to their fitness compared to the rest of the pop-
ulation. In tournament selection, a group of individuals (usually two) is chosen
(usually uniformly) from the population and the fittest individual from this
group is selected as parent. In rank-based selection, individuals are first sorted
according to some criteria (usually fitness) and a mapping function is used to
assign a selection probability to each individual according to its rank in the or-
dering. In ancestry selection individuals are organised in clans and parents are
usually selected from different clans. In assortative mating (inspired on natural
genetics), individuals are selected based on their similarity (in the objective or
the decision space) based on the assumption that recombining parents that ‘look’
alike produces better offspring. Some mating schemes incorporate some form of
restricted mating (proposed by Goldberg [6]) where recombination is allowed
only if parents meet certain criteria. For reviews on mating schemes and their
performance of single-objective evolutionary algorithms see [1,7,8].

Despite the various restricted mating schemes that have been investigated for
single-objective evolutionary algorithms, the emphasis within EMO algorithms
has been mainly on mechanisms to select individuals for survival. In Pareto-
based multi-objective optimisation the goal is to find a set of non-dominated

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 172–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptive and Assortative Mating Scheme for EMO Algorithms 173

solutions that is as close as possible to the Pareto optimal front and also well
spread and distributed over the trade-off surface [2,4]. Therefore, most modern
EMO algorithms incorporate selection mechanisms, like density-based selection
and rank-based selection, in combination with elistism and archiving strate-
gies to ensure the survival of good non-dominated solutions [2,4,14]. Also, most
EMO algorithms use tournament or other basic selection mechanism for choos-
ing parents and in most cases selection is based on fitness. Some restricted mat-
ing schemes have been investigated in the context of EMO algorithms but to
a lesser extent than for single-objective evolutionary algorithms. In their book,
Coello Coello et al. ([2], p. 201) express that restricted mating has not been fully
investigated for EMO algorithms. They also note that there is no conclusive ev-
idence to support whether restricted mating is beneficial or detrimental for the
performance of these algorithms. Coello Coello et al. also suggest that experi-
ments investigating the issue of restricted mating should benefit the literature
on EMO algorithms. In this paper, we propose an adaptive assortative mating
scheme [3] for evolutionary multi-objective optimisation. That is, parents are
chosen based in their similarity in the decision space and the similarity thresh-
old or mating pressure σmating is adapted during the search. In Section 2 we give
a more detailed account of related work. In Section 3 we describe our proposed
mating scheme and how this is incorporated into SEAMO2 (simple evolution-
ary algorithm for multi-objective optimisation) [15]. Section 3 also describes the
experimental setting and our results. Final remarks are given in Section 4.

2 Mating Schemes for EMO Algorithms

We refer to the k-optimisation problem in which the aim is to optimise the
function f(x) = (f1(x), f2(x), ..., fk(x)) subject to x ∈ X , where x represents
the decision vector, X represents the set of all feasible solutions, f(x) represents
the objective vector and each fi(x) represents the value of the i-th objective.
Within a set S of solutions, solution x is said to be non-dominated if there is no
solution in S that is better than x in each of the k objectives. Then, x is said to
be Pareto-optimal if x is non-dominated with respect to the set X .

Now we briefly review restricted mating schemes that have been implemented
into EMO algorithms. We focus on schemes proposed recently and that restrict
mating based on similarity, i.e. assortative mating. For an overview of previ-
ous mating schemes within EMO algorithms refer to the book by Coello Coello
et al. ([2], p. 201). Restricted mating has been usually implemented using the
σmating parameter which defines a mating radius or similarity threshold, which
can be perceived as the mating pressure. Individuals are not allowed to mate if
the distance between them (objective or decision space) is larger than σmating .
Kim et al. [13] incorporated neighbourhood crossover into SPEA2 to rank indi-
viduals according to how close they are in the objective space and used binary
tournaments to select parents. Few years ago, Ishibuchi and Shibata started
an investigation into the effect of restricted mating on the performance of the

174 K. Le and D. Landa-Silva

well-known NSGA2 and SPEA algorithms. In 2003 they proposed a restricted
mating scheme based on the similarity between parents (assortative mating) [9].
Later, they modified their approach by incorporating a second layer to select
parent A [10]. Their restricted mating scheme works as follows:

1. A set SA of α candidates is chosen using iterative binary tournaments.
2. The center vector (average solution) f̄(x) = (f̄1(x), f̄2(x)...f̄k(x)) in the

objective space in SA is calculated where f̄i(x) = 1/α
∑α

j=1 fi(xj) for i =
1, 2, ..., k.

3. The solution in SA that is most dissimilar (in the objective space) to f̄(x)
is chosen as parent A.

4. A set SB of β candidates is chosen using iterative binary tournaments.
5. The solution in SB that is most similar to parent A (in the objective space)

is chosen as parent B.

In [10] Ishibuchi and Shibata observed that their modified mechanism was capa-
ble of improving both convergence and diversity in SPEA and NSGA2. However,
they also noted that the parameters α and β needed to be carefully adjusted to
strike the balance between diversity and convergence speed. Note also that in
[10] Ishibuchi and Shibata used similarity in the objective space only. In 2004,
they reported further experiments to investigate the effect of the mating pres-
sure parameters (α and β) and also the effect of similarity (in the objective
space) when selecting parents A and B [11]. They tried their restricted mating
mechanism in a number of operation modes resulting from combining different
settings: α = {1, 2, 3, . . .}; β = {1, 2, 3, . . .}; parent A being similar or dissimi-
lar to f̄(x); parent B being similar or dissimilar to parent A. Once again, they
observed that convergence speed and diversity were affected by the settings of
α and β. They also expressed that there is a need to set α and β automatically
in their mating scheme. More recently, Ishibuchi and Shibata reported yet more
experiments in which they observed that recombining similar parents (which is
controlled by varying β) had a positive impact on the performance of NSGA2,
although they also observed that recombination seems to be less important than
mutation on that particular algorithm [12]. In [12] they considered similarity
in the objective and the decision space but only when selecting parent B and
observed no significant difference in their results.

In summary, the investigations by Ishibuchi and Shibata have considered
fitness-based binary tournaments and distance in the objective space to choose
parent A. For selecting parent B, they employed fitness-based binary tourna-
ments and distance both in the objective space and the decision space. The
mating pressure is controlled by the number of tournaments (α and β) and by
the target similarity to select parent A (with respect to the center vector f̄(x))
and parent B (with respect to parent A). Their results have shown that although
their mating scheme is able to improve the performance of SPEA and NSGA2,
careful adjustment of the parameters is required to strike the balance between
convergence and diversity according to the problem size.

Adaptive and Assortative Mating Scheme for EMO Algorithms 175

3 The Adaptive Assortative Mating Scheme

3.1 The Experimental Setting

We propose an adaptive assortative mating scheme for selecting parents in EMO
algorithms. The proposed mating scheme does not use tournaments, it uses sim-
ilarity in the decision space and changes the mating pressure σmating as the
search progresses. Therefore, this scheme differs from those proposed by Kim
et al. [13] and Ishibuchi and Shibata [11]. In the proposed dynamic assortative
mating scheme two individuals are considered for reproduction only if their dis-
similarity (difference between their gene structures) is above a threshold σmating .
For the experiments in this paper, we incorporate the proposed assortative mat-
ing scheme into the SEAMO2 algorithm [15] and carry out experiments on the
multiple knapsack problem. We chose SEAMO2 because it is a simple evolution-
ary algorithm for multi-objective optimisation that relies mainly on its replace-
ment strategy and it was shown to outperform more elaborate EMO algorithms
like NSGA2 and SPEA2 on the multiple knapsack problem [15]. In this pa-
per, with refer as SEAMO2(RM) to the SEAMO2 approach using the proposed
scheme for restricted mating. Then, we focus our experiments in comparing the
performance of SEAMO2(RM) against SEAMO2 [15], SPEA2 [16], NSGA2 [5]
and SEAMO2(I) (the SEAMO2 algorithm using Ishibuchi and Shibata’s mating
strategy [10]) on the multiple knapsack problem. We use the instances with two,
three and four knapsacks (with population size of 250, 300 and 350 respectively)
and 750 items proposed in [17]. We carry out short, medium and long runs,
500, 960 and 1920 generations respectively, to investigate the performance of
SEAMO2(RM). Results from 30 independent runs for each experiment are used
for statistical analysis and discussion. We use two metrics, the size of the space
covered S and the coverage of two sets C (see [17] for details on S and C).

3.2 Similarity Measurement

In this paper, the dissimilarity or distance in the decision space between solu-
tions to the multiple knapsack problem is measured as follows:

Individual s = {gi|i : 0..(n − 1)}
where n is the number of genes in the individual representation

gi =
{

0 : gene i is not in the gene structure of individual s
1 : gene i is in the gene structure of individual s

the similarity and dissimilarity between individuals s1 and s2 are as follows:

simil(s1, s2) =
|{i|g1i = 1 ∧ g2i = 1}|
|{i|g1i = 1 ∨ g2i = 1}|

diff(s1, s2) = 1 − simil(s1, s2)

The recombination of s1 and s2 is allowed if and only if diff(s1, s2) ≥ σmating

(where 0 ≤ σmating ≤ 1). Setting the value of the mating pressure σmating is
important and is discussed in the following sections.

176 K. Le and D. Landa-Silva

Note that the above definition of similarity is only valid for solutions to the
multiple knapsack problem as encoded in this paper. If the similarity between
two solutions of a problem is measured as a percentage, the proposed mating
scheme can still be implemented as described later in this paper. Therefore, the
generality of the proposed mating scheme is not affected by the encoding of
solutions or the method used to measure similarity.

3.3 Static Setting of the Mating Pressure

We first describe a simple strategy to preset σmating before starting the search
and this value remains unchanged throughout the evolutionary process. We first
calculate the value of diff(sm, sn) for every pair of individuals sm and sn in the
population. Then, we calculate the range using the minimum and maximum val-
ues, i.e. diff(range) = (max(diff(sm, sn)) − min(diff(sm, sn))). We preset σmating

to a value in this range. Otherwise, if σmating is set to a value smaller than
min(diff(sm, sn)) the selection of parents becomes uniform. Also, if σmating is
set to a value greater to max(diff(sm, sn)) no pair of individuals (sm, sn) would
satisfy the selection condition for recombination.

In order to set σmating to an appropriate value within diff(range) we could
let the population to evolve for a limited number of generations and observe
the trend on the values of diff(sm, sn) in the whole population. We carried out
a simple experiment on the multiple knapsack problem and allowed the pop-
ulation to evolve for 100 generations recording diff(range) in every generation.
We observed that diff(range) reduces significantly from 60%-70% in the first few
generations to 0%-35% in later generations. Therefore, we set σmating to a value
in the range of (0.0, 0.3). Next, we carried out experiments using eleven differ-
ent values of σmating : 0.050, 0.075, . . . , 0.300 in SEAMO2(RM). Results from
30 independent runs are reported in Figure 1. Note that we only show results
for six values of σmating which are representative of all our experimental data.
The box-plots in Figure 1 correspond to the percentage of non-covered objective
space, i.e. smaller values indicate better algorithm performance. One box-plot is
given for each algorithm: NSGA2, SPEA2, SEAMO2, and SEAMO2(RM) using
different values of σmating .

Figure 1 shows clearly that with respect to the size of the space covered
S the proposed mating scheme has a positive effect on the performance of
SEAMO2(RM). In general, we can see that the performance of SEAMO2(RM)
using a preset value of σmating is consistent over the 30 independent runs (size
of the boxplot). There is a significant improvement by applying a higher mat-
ing pressure (i.e. increasing the value of σmating). However, we can also observe
that there is an upper limit for the mating pressure after which SEAMO2(RM)
starts to perform worse. We can see in Figure 1 that this upper limit is about
25% for the 2-knapsack problem (Figure 1(a), 1(b)), between 25%-30% for the 3-
knapsack problem (Figure 1(c), 1(d)), and slighly above 30% for the 4-knapsack
problem (Figure 1(e), 1(f)). This is simply because when σmating goes above a
given value, no parents can be found that satisfy the restricted mating condi-
tion. We omit full results for the C metric (all experimental results are available

Adaptive and Assortative Mating Scheme for EMO Algorithms 177

47

48

49

50

51

52

53

54

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(a) ks2-500

47

48

49

50

51

52

53

54

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(b) ks2-1920

67

68

69

70

71

72

73

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(c) ks3-500

67

68

69

70

71

72

73

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(d) ks3-1920

80

81

82

83

84

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(e) ks4-500

80

81

82

83

84

NS2 SP2 SE2 S.05 S.10 S.15 S.20 S.25 S.30

(f) ks4-1920

Fig. 1. Performance of algorithms on the multiple knapsack problem with respect to
percentage of the non-covered objective space. NSGA2, SPEA2 and SEAMO2 are in-
dicated by NS2, SP2 and SE2 respectively while S.xx indicates SEAMO2(RM) with
a given value for σmating . Results are given for 2 (graphs a-b), 3 (graphs c-d) and 4
(graphs e-f) knapsacks with runs of 500 and 1920 generations.

on request) but we observed that increasing σmating seems to have a negative
impact on convergence and a positive impact on diversity. To illustrate this, we
show in Figure 2 the offline non-dominated fronts after 30 independent runs of
SEAMO2(RM) on the 2-knapsack problem. For better visualisation, we show the
non-dominated fronts in a lower density (only solutions separated by a distance

178 K. Le and D. Landa-Silva

23

24

25

26

27

28

29

30

31

22 23 24 25 26 27 28 29 30

SE2S.05 SE2S.10 SE2S.15 SE2S.20 SE2S.25 SE2S.30

Fig. 2. Results of SEAMO2(RM) on the 2-knapsack and 750 items problem for six
values of σmating . The horizontal axis represents profit in knapsack one and the vertical
axis represents profit in knapsack two.

of at least 400 units in the objective space). We can see that higher σmating

values reduce the convergence of SEAMO2(RM) but increase diversity (this is
similar to the observations by Ishibuchi and Shibata [9]). Therefore, in the next
subsection we propose to adapt the mating pressure as the search progresses.

3.4 Dynamic Setting of the Mating Pressure

Now we describe how σmating is adapted during the evolutionary search. This
allows to improve both convergence and diversity of the population along with
the evolutionary process. To dynamically change the value of σmating, we need
first to establish the diff(range). As discussed in section 3.3, we select uniformly
a value for σmating in every generation within the 5th and 95th percentile of
diff(range). This prevents the restricted mating becoming uniform selection (if
σmating is too low) or becoming a non-reproduction scheme (if σmating is too
high). Note that the mating pressure σmating is set in an adaptive manner as
diff(range) is adjusted after every generation to reflect the change of diversity
(in the decision space) in the population. Then, the chosen value of σmating will
adjust as the population diversity changes. For example, in the first few gener-
ations, the population is less ‘stable’ with many randomly generated solutions
provoking a high value of σmating . However, once the population is more ‘stable’,
changes in the value of σmating drive the population to evolve towards improving
diversity (wider diff(range)) or improving convergence (smaller diff(range)).

As before, we carry out 30 independent runs of SEAMO2(RM) using the
dynamic σmating. We also include the ‘best results’ obtained using Ishibuchi and

Adaptive and Assortative Mating Scheme for EMO Algorithms 179

Shibata’s restricted mating strategy [10] and using the static mating strategy of
section 3.3. These ‘best results’ are based on the average of the S metric over
30 independent runs. We used 90 combinations of values α = {1, 3, 4, . . . , 9, 10}
and β = {1, 2, . . . , 9, 10} for Ishibuchi and Shibata’s strategy and 11 different
values of σmating in the static mating strategy. These ‘best results’ are indicated
as SE2I and SE2S in Figure 3 while SE2D indicates SEAMO2(RM) using the
dynamic σmating . Figure 3 compares NSGA2, SPEA2, SEAMO2, SEAMO2 with
Ishibuchi and Shibata’s mating strategy, SEAMO2 with the static σmating setting
and SEAMO2 with the dynamic σmating setting, with respect to the S metric.
Table 1 shows the comparison with respect to the C metric.

For each knapsack problem, Figure 3 shows the average non-covered objec-
tive space (smaller values indicate better algorithm performance) at generations
500, 960 and 1920 side by side to facilitate comparison. It is clear that the dy-
namic setting of σmating benefits SEAMO2 helping it to outperform NSGA2,
SPEA2 and SEAMO2 as well as SEAMO2 with Ishibuchi and Shibata’s mat-
ing strategy. Furthermore, both our static and dynamic mating strategies out-
perform Ishibuchi and Shibata’s restricted mating strategy when incorporated
into SEAMO2. In most cases, the dynamic strategy ourperforms the static one
with the exception of the 2-knapsack problem with short and medium runs
(graphs a-b in Figure 3). Table 1 shows the strong performance of SEAMO2D
(the dynamic restricted mating incorporated in SEAMO2) particularly on prob-
lems with 3 and 4 knapsacks. From Figure 3 and Table 1 we can see that the
dynamic mating strategy significantly improves diversity but it slightly wors-
ens convergence in the higher dimension problem (4 knapsacks). We also notice
an interesting result in that Ishibuchi and Shibata’s strategy seems to worsen
the performance of SEAMO2 (it was reported in [10] that Ishibuchi adn Shi-
bata’s strategy improves the performance of SPEA and NSGA2). This is more
noticeable in the early stages of the evolutionary search (generations 500 and
960) in low dimension problems (2 and 3 knapsacks). We believe that Ishibuchi
and Shibata’s mating strategy conforms with the selection strategy in SPEA
and NSGA2 where individuals are uniformly chosen using tournament selection.
However, Ishibuchi and Shibata’s mating strategy interferes with the selection
strategy in SEAMO2 (Ishibuchi and Shibata’s mating strategy chooses the first
parent with binary tournaments while in SEAMO2 each individual acts as the
first parent once). Figure 4 shows (in lower density as in Figure 2) the non-
dominated fronts over 30 independent runs on the 2-knapsack problem. We can
see that SEAMO2(RM) using the dynamic mating strategy outperforms SPEA2
and NSGA2 but its convergence is just slightly lower than for SEAMO2. Overall,
results in Figure 3, Figure 4 and Table 1 give evidence that the dynamic setting
of σmating is beneficial for SEAMO2 on the three multiple knapsack problems.

In Figure 5 we compare the proposed assortative mating scheme using the
static setting and using the dynamic setting over 30 independent runs for the
2-knapsack problem with 750 items. The various static settings are indicated by
SE2S.xx and the dynamic setting is indicated by SE2D. We can see that the dy-
namic assortative mating scheme can simultaneously maintain the convergence

180 K. Le and D. Landa-Silva

47

48

49

50

51

52

53

54

NS2 SP2 SE2 SE2I SE2S SE2D

(a) ks2-500

47

48

49

50

51

52

53

54

NS2 SP2 SE2 SE2I SE2S SE2D

(b) ks2-960

47

48

49

50

51

52

53

54

NS2 SP2 SE2 SE2I SE2S SE2D

(c) ks2-1920

67

68

69

70

71

72

73

NS2 SP2 SE2 SE2I SE2S SE2D

(d) ks3-500

67

68

69

70

71

72

73

NS2 SP2 SE2 SE2I SE2S SE2D

(e) ks3-960

67

68

69

70

71

72

73

NS2 SP2 SE2 SE2I SE2S SE2D

(f) ks3-750-1920

79

80

81

82

83

84

NS2 SP2 SE2 SE2I SE2S SE2D

(g) ks4-500

79

80

81

82

83

84

NS2 SP2 SE2 SE2I SE2S SE2D

(h) ks4-960

79

80

81

82

83

84

NS2 SP2 SE2 SE2I SE2S SE2D

(i) ks4-1920

Fig. 3. Performance of algorithms on the multiple knapsack problem with respect to
the percentage of the non-covered objective space. NSGA2, SPEA2 and SEAMO2 are
indicated by NS2, SP2 and SE2 respectively. SE2I indicates SEAMO2 with Ishibuchi
and Shibata’s strategy, SE2S indicates SEAMO2 with the static setting and SE2D
indicates SEAMO2 with the dynamic setting.

and the diversity of the population but the static setting can only give a positive
effect on the convergence (using lower σmating) or on the diversity (using higher
σmating) but not both at the same time. This shows that adapting the diff(range)
(from where σmating is chosen) according to the population diversity during evo-
lution, helps to strike a balance between convergence and diversity. Of course,
more elaborate methods for adapting the mating pressure can be investigated,
but the proposed one points us on the right direction.

Adaptive and Assortative Mating Scheme for EMO Algorithms 181

24

25

26

27

28

29

30

31

23 24 25 26 27 28 29 30

NSGA2 SPEA2 SEAMO2 SE2I SE2S SE2D

Fig. 4. Results comparing NSGA2, SPEA2, SEAMO2, SEAMO2 using Ishibuchi and
Shibata’s strategy (SE2I), SEAMO2 using the static mating strategy (SE2S) and
SEAMO2(RM) using the dynamic mating strategy (SE2D) on the 2-knapsack problem
with 750 items. The horizontal axis represents profit in knapsack one and the vertical
axis represents profit in knapsack two.

23

24

25

26

27

28

29

30

31

22 23 24 25 26 27 28 29 30

SE2S.05 SE2S.10 SE2S.15 SE2S.20 SE2S.25 SE2S.30 SE2D

Fig. 5. Comparing the static and dynamic strategies for setting the mating pressure
σmating in SEAMO2(RM). These results are for the 2-knapsack problem with 750 items.
The horizontal axis represents profit in knapsack one and the vertical axis represents
profit in knapsack two.

182 K. Le and D. Landa-Silva

Table 1. Average values (standard deviation) of coverage of two sets C(A � B)

C(A � B)

Algorithm 2 knapsacks 3 knapsacks 4 knapsacks

A B 500 960 1920 500 960 1920 500 960 1920

NSGA2 SEAMO2D 3(7) 12(16) 24(20) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
SPEA2 2(3) 8(7) 18(16) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
SEAMO2 11(17) 18(20) 26(19) 21(17) 24(16) 26(15) 26(22) 21(18) 19(14)
SEAMO2I 0(0) 0(0) 0(1) 0(0) 0(0) 2(5) 0(0) 0(1) 1(3)
SEAMO2S 2(3) 3(4) 5(5) 0(1) 1(1) 1(1) 0(1) 1(1) 1(1)

SEAMO2D NSGA2 89(12) 69(24) 46(27) 92(7) 84(7) 77(8) 100(1) 99(3) 98(3)
SPEA2 89(10) 74(15) 53(22) 88(8) 64(10) 45(9) 95(4) 84(7) 76(7)
SEAMO2 76(34) 60(38) 47(34) 34(29) 24(25) 18(19) 16(20) 15(18) 12(12)
SEAMO2I 100(0) 100(3) 92(15) 100(1) 98(2) 82(25) 91(16) 84(23) 65(32)
SEAMO2S 80(8) 82(11) 83(10) 86(6) 83(6) 78(8) 79(6) 75(7) 67(7)

4 Final Remarks

This paper proposes a restricted mating scheme for evolutionary multi-objective
(EMO) algorithms. This mating scheme is assortative because it selects par-
ents based on their similarity in the decision space. Setting the mating pressure
σmating to a constant value provokes either convergence or diversity to be neg-
atively affected. Therefore, the proposed scheme is adaptive because it varies
σmating taking into account the population diversity in the decision space. Our
experiments show that the simple mechanism to adapt the mating pressure helps
SEAMO2 (simple evolutionary algorithm for multi-objective optimisation) to
improve its performance while striking a good balance between convergence and
diversity. The proposed mating scheme can be incorporated into different EMO
algorithms because it does not alter their original selection strategy. Future work
contemplates comparison with other mating schemes proposed for EMO algo-
rithms and on other problems such as nurse scheduling and job shop scheduling
problems. We also intend to investigate other strategies to set the threshold
σmating to further improve diversity and convergence of EMO algorithms.

References

1. Blickle, T., Thiele, L.: A Comparison of Selection Schemes Used in Evolutionary
Algorithms. Evolutionary Computation 4(4), 361–394 (1997)

2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algo-
rithms for Solving Multi-objective Problems. Kluwer Academic Publishers, Dor-
drecht (2002)

3. De, S., Pal, S.K., Ghosh, A.: Genotypic and Phenotypic Assortative Mating in
Genetic Algorithm. Information Sciences 105, 209–226 (1998)

4. Deb.: Kalyanmoy: Multi-objective Optimization Using Evolutionary Algorithms,
Wiley, Chichester (2001)

Adaptive and Assortative Mating Scheme for EMO Algorithms 183

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Addison Wesley, Reading (1989)

7. Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes Used in
Genetic Algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms,
Morgan Kaufmann, San Francisco (1991)

8. Huang, C.F.: An Analysis of Mate Selection in Genetic Algorithms. Technical Re-
port, Center for the Study of Complex Systems, University of Michgan (2001),
(also as poster paper in the GECCO 2001 conference p. 766 (2001)

9. Ishibuchi, H., Shibata, Y.: An Empirical Study on the Effect of Mating Restriction
on the Search Ability of EMO Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler,
E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 433–447. Springer,
Heidelberg (2003)

10. Ishibuchi, H., Shibata, Y.: A Similarity-Based Mating Scheme for Evolutionary
Multiobjective Optimization. In: The 2003 Genetic and Evolutionary Computation
Conference, pp. 1065–1076 (2003)

11. Ishibuchi, H., Shibata, Y.: Mating Scheme for Controlling the Diversity-
convergence Balance for Multi-objective Optimization. In: Deb, K., al., e. (eds.)
GECCO 2004. LNCS, vol. 3102, pp. 1259–1271. Springer, Heidelberg (2004)

12. Ishibuchi, H., Shibata, Y.: Recombination of Similar Parents in EMO Algorithms.
In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 265–279. Springer, Heidelberg (2005)

13. Kim, M., Hiroyasu, T., Miki, M., Watanabe, S.: SPEA2+: Improving The Perfor-
mance of The Strength Pareto Evolutionary Algorithm 2. In: Yao, X., Burke, E.K.,
Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo,
P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 742–751.
Springer, Heidelberg (2004)

14. Laumanns, M., Zitzler, E., Thiele, L.: On The Effects of Archiving, Elitism, and
Density Based Selection in Evolutionary Multiobjective Optimization. In: Zitzler,
E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS,
vol. 1993, pp. 181–196, Springer, Heidelberg (2001)

15. Mumford, C.L.: Simple Population Replacement Strategies for a Steady-State
Multi-objective Evolutionary Algorithm. In: Deb, K., et al. (eds.) GECCO 2004.
LNCS, vol. 3102, pp. 1389–1400. Springer, Heidelberg (2004)

16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for
Design, Optimisation and Control with Applications to Industrial Problems, pp.
95–100 (2002)

17. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

The Cooperative Royal Road:

Avoiding Hitchhiking

Gabriela Ochoa1, Evelyne Lutton2, and Edmund Burke1

1 Automated Scheduling, Optimisation and Planning Group, School of Computer
Science & IT, University of Nottingham, Nottingham NG8 1BB, UK

2 COMPLEX Team, INRIA Rocquencourt
Domaine de Voluceau BP 105, 78153, Le Chesnay Cedex, France

Abstract. We propose using the so called Royal Road functions as
test functions for cooperative co-evolutionary algorithms (CCEAs). The
Royal Road functions were created in the early 90’s with the aim of
demonstrating the superiority of genetic algorithms over local search
methods. Unexpectedly, the opposite was found to be true. The research
deepened our understanding of the phenomenon of hitchhiking where
unfavorable alleles may become established in the population following
an early association with an instance of a highly fit schema. Here, we
take advantage of the modular and hierarchical structure of the Royal
Road functions to adapt them to a co-evolutionary setting. Using a mul-
tiple population approach, we show that a CCEA easily outperforms a
standard genetic algorithm on the Royal Road functions, by naturally
overcoming the hitchhiking effect. Moreover, we found that the optimal
number of sub-populations for the CCEA is not the same as the num-
ber of components that the function can be linearly separated into, and
propose an explanation for this behavior. We argue that this class of
functions may serve in foundational studies of cooperative co-evolution.

1 Introduction

Co-evolutionary Algorithms (CEAs) represent a natural extension to standard
evolutionary algorithms for tackling complex problems; they can be generally
defined as a class of evolutionary methods in which the fitness of an individual
depends on its relationship to other members of the population. Several co-
evolutionary approaches have been proposed in the literature; they vary widely,
but the most fundamental classification relies on the distinction between cooper-
ation and competition. In cooperative algorithms, individuals are rewarded when
they work well with other individuals, and punished otherwise. Whereas in com-
petitive algorithms, individuals are rewarded at the expense of those with which
they interact. Most of the work on CEAs has been in competitive models; there
has been, however, an increased interest in cooperation to tackle difficult op-
timization problems by means of problem decomposition [7,3,14,18,11,10]. The
behavior of CEAs is very complicated and often counter-intuitive. Moreover,
our knowledge about the dynamics and ways of improving standard evolution-
ary algorithms, is not directly transferable to co-evolution [15]. Thus, there is

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 184–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Cooperative Royal Road: Avoiding Hitchhiking 185

a need to conduct foundational research on co-evolutionary systems in order to
improve their applicability as a problem solving methodology. With this in mind,
we propose using the so called Royal Road functions [13,4] as test functions in
cooperative co-evolution. The Royal Road functions were proposed with the aim
of isolating some of the features of fitness landscapes thought to be most rele-
vant to the performance of genetic algorithms. Surprisingly, it was found that a
random-mutation hill climber significantly outperformed the genetic algorithm
on these functions. However, this work led to a greater understanding of the phe-
nomenon of hitchhiking in evolutionary search, whereby some deleterious alleles
may become fixed in the population, after an early association with a highly fit
schema.

Cooperative co-evolutionary approaches are generally applied to decomposable
problems. Thus, we take advantage of the modular and hierarchical structure of
the Royal Road test functions to adapt them to the co-evolutionary setting. We ar-
gue that these functions may serve theoretical studies of cooperative co-evolution,
since the landscape can be varied in a number of ways, and the global optimum and
all possible fitness values are known in advance. It would also be possible to study
the dynamics of the search process by tracing the origins and history of individ-
ual building blocks. Moreover, these functions may be decomposed in several ways
(including one or more blocks on each sub-component), which made them useful
in studies testing the automated emergence of co-adapted components [18]. This
study also makes a comparison between a standard and a cooperative evolution-
ary algorithm on several instances of the Royal Road functions. The cooperative
algorithm explores all the alternative problem decompositions possible with the
modular Royal Road functions. Our results show a clear advantage of the coop-
erative algorithm in this scenario, and we go further to analyze why this is the
case. This analysis leads us to revisit the hitchhiking effect and the building blocks
hypothesis in genetic algorithms.

Next section gives a brief overview on cooperative co-evolution, distinguish-
ing between single and multiple population approaches, and describing some
test problems used so far when studying cooperative co-evolution. Thereafter,
section 3, introduces the Royal Road functions and describes the hitchhiking
phenomenon. Section 4, describes the algorithms and parameter settings used,
whilst section 5 presents and analyses our results. Finally, section 6 summarises
our findings and suggests directions for future work.

2 Cooperative Co-evolution

Previous work on extending evolutionary algorithms to allow cooperative co-
evolution can be divided into approaches that have a single population of inter-
breeding individuals, and those that maintain multiple interacting populations.

Single population approaches: The earliest single-population method that
extended the basic evolutionary model to allow the emergence of co-adapted
subcomponents was the classifier system [6]; which is a rule-based learning

186 G. Ochoa, E. Lutton, and E. Burke

paradigm that evolves fixed length stimulus-response rules. An interesting
generalization of this paradigm for solving complex problems was proposed
in [1], where an aggregation of multiple individuals (in a single population)
is considered for solving the inverse problem for Iterated Function Systems.
In this approach, which has been termed Parisian Evolution, an additional
fitness measure (a “local” fitness) is used to independently evaluate the sub-
components during the search process, while a “global” fitness is used at each
generation to measure the progress of the aggregate solution. This scheme
is well suited for incorporating additional or incomplete information about
the searched solution. However, in order to avoid trivial and degenerate so-
lutions, a special mechanism for maintaining the population diversity should
be devised. Successful applications of the Parisian Approach can be found
in the image analysis and signal processing literature [11,2]; and in data
retrieval applications [10].

Multiple population approaches: The first authors to apply a multi-species
cooperative co-evolutionary approach to tackle a difficult optimization prob-
lem were Husbands and Mill [8,7] who successfully co-evolved job-shop sched-
ules, using a parallel distributed algorithm. A few years later, the work by
Potter and De Jong [16] helped to popularise the idea of cooperative co-
evolution as an optimisation tool. The authors devised a multiple population
framework where a decomposition of the problem into subcomponents should
be identified. Each component is, then, assigned to a subpopulation that
evolves simultaneously but in isolation to the other sub-populations. The
fitness of an individual in a given sub-population is calculated after selecting
collaborators from the other sub-populations in order to form a complete so-
lution. Notice that diversity in the ecosystem is, in this framework, naturally
achieved through maintaining genetically isolated populations. This frame-
work has been further analysed [22] by considering a relationship between
cooperative co-evolution and evolutionary game theory, and thus study-
ing it from a dynamical systems perspective. From the problem-solving
point of view, multi-species cooperative co-evolution has been applied to
neural networks and concept learning [14,17,18]; and to inventory control
optimisation [3].

2.1 Abstract Test Functions

Most foundational empirical studies of cooperative co-evolution have used non
linear function optimization problems as benchmark [17,23]. These problems
are well suited for cooperative co-evolution, since a natural decomposition is
straightforward: each subpopulation represents a particular variable of the func-
tion. In [14], much simpler functions (oneRidge and twoRidges) are studied. In
his dissertation [15], Potter used several test functions including, a simple binary
string covering task, continuous nonlinear functions, and Kauffman’s coupled
NK landscapes [9]. In a further, more theoretically oriented PhD dissertation,
Wiegand [21] used cooperative versions of test functions such as the OneMax,
LeadingOnes, and Trap functions.

The Cooperative Royal Road: Avoiding Hitchhiking 187

3 Royal Road Functions and the Hitchhiking Effect

The building-block hypothesis [5] states that the genetic algorithm works well
when short, low-order, highly-fit schemata (building blocks) recombine to form
even more highly-fit, higher-order schemata. Thus, the genetic algorithm’s search
power has been attributed mainly to this ability to produce increasingly fitter par-
tial solutions by combining hierarchies of building-blocks. Despite recent criticism,
empirical evidence, and theoretical arguments against the building-blocks hypoth-
esis [19], the study of schemata has been fundamental in our understanding of ge-
netic algorithms. The first empirical counter-evidence against the building-block
hypothesis was produced by Holland himself, in collaboration with Mitchell and
Forrest [13,4]. They created the Royal Road functions, which highlight one feature
of landscapes: hierarchy of schemata, in order to demonstrate the superiority of
genetic algorithms (and hence the usefulness of recombination) over local search
methods such as hill-climbing. Unexpectedly, their results demonstrated the oppo-
site: a commonly used hill-climbing scheme (random-mutation hill-climbing) sig-
nificantly outperformed the genetic algorithm on these functions. With this hill-
climbing approach, a string is randomly generated and its fitness is evaluated. The
string is then mutated (by a bit-flip) at a randomly chosen position, and the new
fitness is evaluated. If the new string has an equal or higher fitness, it replaces
the old string. This procedure is iterated until the optimum has been found or a
maximum number of evaluations is reached. It is ideal for the Royal Road func-
tions, since it traverses its “plateaus” and reaches the successive fitness levels.
However, the algorithm (as with any other hill-climber) will have problems with
any function with many local minima. The authors [13,4] also found that although
crossover contributes to genetic algorithm performance on the Royal Road func-
tions, there was a detrimental role of “stepping stones” - fit intermediate-order
schemata obtained by recombining fit low-order schemata. The explanation sug-
gested for these unexpected results lies in the phenomenon of hitchhiking (or spuri-
ous correlation), which they describe as follows [12]: “once an instance of a higher-
order schema is discovered, its high fitness allows the schema to spread quickly in
the population, with 0s in other positions in the string hitchhiking along with the
1s in the schema’s defined positions. This slows down the discovery of the schema’s
defined positions. Hitchhiking can, in general, be a serious bottleneck for the GA.”

3.1 Functions R1 and R2

To construct a Royal Road function [4], an optimum string is selected and broken
up into a number of small building blocks. Then, values are assigned to each low-
order schema and each possible intermediate combination of low-order schemata.
Those values are, thereafter, used to compute the fitness of a bit string x in terms
of the schemata of which it is an instance.

The function R1 (Figure 1) is computed as follows: a bit string x gets 8 points
added to its fitness for each of the given order-8 schemata (si, i = 1, 2, . . . , 8)
of which it is an instance. For example, if x contains exactly two of the order-8
building blocks, then R1(x) = 16. Similarly, R1(111 . . .1) = 64. More generally,

188 G. Ochoa, E. Lutton, and E. Burke

s1 = 11111111**; c1 = 8
s2 = ********11111111**; c2 = 8
s3 = ****************11111111**; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = **11111111****************; c6 = 8
s7 = **11111111********; c7 = 8
s8 = **11111111; c8 = 8
sopt =11

Fig. 1. The Royal Road function R1: An optimal string is broken into 8 building-blocks

s9 = 1111111111111111**; c9 = 16
s10 =****************1111111111111111********************************; c10 = 16
s11 =********************************1111111111111111****************; c11 = 16
s12 =**1111111111111111; c12 = 16
s13 =11111111111111111111111111111111********************************; c13 = 32
s14 =********************************11111111111111111111111111111111; c14 = 32
sopt=11

Fig. 2. The Royal Road Function R2: Some intermediate schemata are added to the
those in R1. Namely, s9 . . . s14

R1(x) is the sum of the coefficients cs corresponding to each given schema of
which x is an instance. Here cs is equal to order(s). The fitness contribution
from an intermediate stepping stone (such as the combination of s1 and s3 in
Figure 1) is thus a linear combination of the fitness contribution of the lower-level
components.

In R2, the fitness contribution of some intermediate stepping stones is much
higher (Figure 2). The Fitness in R2 is calculated as in R1: the sum of the coef-
ficients corresponding to each schema (s1 - s14) of which a string is an instance.
For example, R2(1111111100011111111) = 16, since the string is an instance of
both s1 and s8, but R2(111111111111111100 . . .0) = 32, because the string is
an instance of s1, s2, and s9. Thus, a string’s fitness depends not only on the
number of 8-bit schemata to which it belongs, but also on their positions in the
string. The optimum string 11111111 . . .1 has fitness 192, because the string is
an instance of each schema in the list.

In [13], the authors expected the genetic algorithm to perform better (i.e. find
the optimum more quickly) on R2 than on R1, because in R2 there is a clear path
via crossover from pairs of the initial order-8 schemata (s1 - s8) to the four order-
16 schemata (s9 - s12), and from there to the two order-32 schemata (s13 and
s14), and finally to the optimum (sopt). They believed that the presence of this
stronger path would speed up the genetic algorithm’s discovery of the optimum,
but their experiments showed the opposite: the genetic algorithm performed
significantly better on R1 than on R2.

4 Methods

As the cooperative co-evolutionary algorithm, we used the multiple populations
approach (see Figure 3) firstly proposed by Potter and De Jong [16]; and later
studied by other authors [22,15].

The Cooperative Royal Road: Avoiding Hitchhiking 189

gen = 0
for each species s do

Pop_s(gen) = initialized population
evaluate(Pop_s(gen))

while not terminated do
gen++
for each species s do

Pop_s(gen) <- select(Pop_s(gen - 1))
recombine(Pop_s(gen))
evaluate(Pop_s(gen))
survive(Pop_s(gen))

Fig. 3. The structure of a cooperative co-evolutionary algorithm

Table 1. Optimal population sizes (in the set of: 64, 128, 256, and 512), for both the
standard genetic algorithm (SGA) and cooperative co-evolutionary algorithm (CCEA).
For CCEA the size producing the best performance over all the number of species
tested, was considered. L stands for the Royal Road function’s string length.

R1 R2

L = 64 L = 128 L = 256 L = 64 L = 128 L = 256

SGA 64 64 64 64 64 64
CCEA 128 256 256 64 128 256

In order to adapt the Royal Road functions to the co-evolutionary setting,
a solution string is broken into equally sized sub-strings that contain one (or
more) of the original function lower-order schemata. Each of these sub-strings
represents a problem subcomponent, and is thus assigned to a separate popu-
lation. A global solution is assembled by concatenating these sub-components.
We used the simplest method of evaluating an individual in a given population;
which is to couple it with the current best members of the remaining popula-
tions, apply the resulting string to the global function, and assign the resulting
value as the fitness of the subcomponent. The initial fitness of each subpopula-
tion member is computed by combining it with a random individual from each
of the other species. We evaluated the cooperative co-evolutionary algorithm by
comparing its performance with that of a standard genetic algorithm on several
Royal Road functions (both R1 and R2). In order to maintain resemblance with
the originally proposed Royal Road functions [13,4], we used functions (both R1
and R2) with lower-order schemata (building blocks - BBs) of length 8. With
regard to the string length, we considered functions of L = 64, 128, and 256,
that is, functions containing 8, 16 and 32 of these BBs. Several numbers of sub-
populations (or species, SP) were considered starting from the minimum of two
species, and doubling this number up to the maximum given by the number of
BBs in the function. This corresponds to sub-populations having, respectively,
a string length equal to half of the total Royal Road function length (half the
number of BBs), down to sup-populations having a string length of 8 (i.e. a
single BB). To set the size of each sub-population, we select a fixed number
of individuals in the whole ecosystem, and thereafter distributed them equally
among the sub-populations. For setting this ecosystem population size, we tested

190 G. Ochoa, E. Lutton, and E. Burke

a range of values (64, 128, 256, and 512) and selected, for each string length and
function, the size producing the best performance (see Table 1). We also selected
the optimal population size, in this range, for the standard genetic algorithm,
which turned out to be the smallest size explored (64) for all the functions. The
remaining algorithm components were equal for the standard and cooperative
genetic algorithm, and were held constant over the experiments. Specifically, we
used binary tournament selection, 2-point crossover (rate = 0.8) and bit-flip mu-
tation (rate = 1/L, L= chromosome length), and 50 replicas for experiments.
Further methodological details and the performance measures, are described in
the following section.

5 Empirical Results and Analysis

For comparing the performances, the algorithms were allowed to continue until
the optimum string was discovered, and the number of evaluations of this dis-
covery was recorded. Table 2 shows the average number of evaluations (×102)
to discover the optimum string, for the R1 (top) and R2 (bottom) functions.
The standard deviations are shown within brackets. Note that 50 replicas for
each experiment were carried out. From Table 2, we see that the CCEA (with
any number of species) clearly outperformed the SGA on all the instances stud-
ied. On average, the CCEA (with the appropriate number of species) found the
optimum a factor of about two times faster on R1, and three times faster on
R2. Notice that, as has been reported before, the SGA performs better on R1
than on R2. This is not the case, however, for the CCEA where the algorithm
has a similar best performance on both R1 and R2. Our explanation for the
improved performance of the CCEA lies in the phenomenon of hitchhiking, de-
scribed in section 3. By maintaining separate populations, the CCEA is able to
avoid hitchhiking, since each sub-population samples independently each schema
region. Thus, more than one desirable schema may appear simultaneously in the
ecosystem, and thereafter these sub-components are aggregated when calculating
the global function. In [12], the authors identify some features that would im-
prove the performance of GAs as compared to other heuristic search algorithms.
These are: (i) independent samples, (ii) sequestering desired schemas, and (iii)
instantaneous crossover of desired schemas. It is clear that a cooperative genetic
algorithm contains all these features, and entails a better implementation of the
building-blocks hypothesis (see section 3).

Another interesting observation (Table 2 and Figure 4) is that the number of
species (SP) on the CCEA, that produced the best performance was consistently
(with the exception of R1 with 8 BBs - L = 64) achieved by SP = half of the
number of blocks in the function. This corresponds to a sub-population string
length of 16 bits, namely two 8-bits BBs. This can be more clearly appreciated
in Figure 4, which compares the algorithm’s performance (SGA and CCEA with
different a number of sub-populations) on both R1 and R2, with 16 and 32 blocks
(L = 128 and 256). Thus, the optimal number of sub-populations for the CCEA
(i.e. the number of problem sub-components) is not the same as the number of

The Cooperative Royal Road: Avoiding Hitchhiking 191

Table 2. Average number of evaluations (×102) and standard deviations to find the
optimum on the R1 (top) and R2 (bottom) functions. The sub-index in the CCEA
corresponds to the number of species.

R1

Algorithm L = 64 (8 BBs) L = 128 (16 BBs) L = 256 (32 BBs)

SGA 227.8 (90.23) 665.1 (225.99) 2150.9 (805.70)
CCEA2 165.4 (66.22) 571.4 (270.62) 2161.2 (768.20)
CCEA4 142.2 (71.56) 402.2 (143.18) 1473.9 (577.42)
CCEA8 114.1(43.30) 327.1 (130.71) 1094.8 (464.03)
CCEA16 365.2 (128.84) 851.5 (319.73)
CCEA32 1140.9 (352.26)

R2

Algorithm L = 64 (8 BBs) L = 128 (16 BBs) L = 256 (32 BBs)

SGA 241.3 (119.69) 947.3 (622.71) 3278.6 (1560.43)
CCEA2 173.5 (74.76) 640.8 (301.91) 2480.1 (1141.24)
CCEA4 115.6 (51.22) 412.2 (214.98) 1432.1 (472.53)
CCEA8 127.0 (56.36) 305.7 (92.60) 1094.5 (430.02)
CCEA16 399.9 (142.02) 876.2 (330.46)
CCEA32 1389.2 (365.93)

SGA CCEA2 CCEA4 CCEA8 CCEA16
0

100

200

300

400

500

600

700

800

900

1000

Algorithm

E
va

lu
at

io
ns

 to
 O

pt
im

um

Royal Road Functions (L = 128)

R1
R2

SGA CCEA2 CCEA4 CCEA8 CCEA16 CCEA32
0

500

1000

1500

2000

2500

3000

3500

Algorithm

E
va

lu
at

io
ns

 to
 O

pt
im

um

Royal Road Functions (L = 256)

R1
R2

Fig. 4. Comparing the algorithm’s performance on both R1 and R2 with L = 128 (left
plot), and L = 256 (right plot). The bars measure the average number of evaluations
(×102) to find the optimum.

pieces that the function can be linearly separated into, which, in principle, may
appear to be a counter-intuitive observation. The following set of experiments,
offers an explanation for this behavior.

5.1 Dynamic Behavior

In order to find an explanation for the observed optimal number of sub-
populations in the CCEA (SP = half of the number of blocks in the function),
we study, in this section, the algorithms’s dynamic behavior. For the analysis
we selected the R1 function with L = 128 (16 BBs), and a CCEA with 8 and
16 sub-populations, which were the SP values producing the best performance

192 G. Ochoa, E. Lutton, and E. Burke

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

num of evaluations

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n

R1 (L = 128), single run

ccea 8
ccea 16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

num of evaluations

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n

R1 (L = 128), average

ccea 8
ccea 16

Fig. 5. Comparing the dynamic behavior of CCEA with 8 and 16 sub-populations on
the R1 function with L = 128. The left-hand plot illustrates a single run, whereas the
right-hand plot, averages 50 runs.

in this scenario. Figure 5 illustrates the performance curves for both a single
run (left-hand plot) and averaging 50 runs (right-hand plot). Each point in the
curves represents the global objective function value of the aggregated solution.
Each run lasted 50 x 104 function evaluations, and the global objective value
was sampled every 100 evaluations.

Notice that, on average, the CCEA with 8 species outperformed the CCEA
with 16 species throughout the whole run. The single run dynamics looks more
complicated, with both algorithms having similar performance at the initial
stages of the search, and CCEA16 dominating at some intermediate stages.
Towards the final stages of the search, however, it is CCEA8 which is producing
and maintaining higher fitness values. Notice that in the process of the run, the
fitness levels are discovered and lost several times before getting established,
which suggests that the convergence behavior of the multi-population CCEA is
slower and more complex than that of a standard genetic algorithm. The curves
in Figure 5 show the behavior of the aggregate solution, hiding the informa-
tion about the fitness contribution of each sub-population. In order to have a
closer look at the fitness contribution of each schema or BB to the global objec-
tive function, Figure 6 illustrates the contribution of an example schema, where
without loss of generality we select schema 9 (s9). Both single run (top plot)
and average (bottom plot) behavior are illustrated for the CCEA with 8 and 16
species1.

From the single run plots of the fitness contribution of schema 9 (figure 6,
top plots), it can be seen that the CCEA with 16 species is more unstable at
maintaining the BBs of 8 consecutive ones (fitness contribution of 8), in other
words the BB appears and disappears more easily throughout the search. This
is because when SP = 16, an individual in each sub-population is composed of
a single BB, so any bit mutation would break it. This is not the case with SP
= 8, where each individual in a sub-population is composed of two consecutive
BBs. In this scenario, a bit mutation may destroy one of the BBs, but keep

1 The plots for all the other schemata were qualitatively similar, and are not shown
due to space limits.

The Cooperative Royal Road: Avoiding Hitchhiking 193

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 8, single run, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 16, single run, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 8, average, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 16, average, schema 9

Fig. 6. Comparing the dynamic fitness contribution of a representative schema (s9)
in a CCEA with 8 (left-hand plots) and 16 (right-hand plots) species. The top plots
illustrate single runs, whereas the bottom plots show the averages of 50 runs.

the other, and the correct concatenation of the two BBs can be easily recovered
by a recombination event. This behavior is also reflected by the average plots
(Figure 6, bottom plots) where the fitness contribution curve of schema 9 reaches
lower levels (deeper drops) when SP = 16 (right-hand bottom plot). These plots
therefore suggest that having sub-populations composed by individuals contain-
ing two BBs instead of a single BB, would benefit the stability and permanence
of the appropriately set BBs in the sub-populations, thus supporting the overall
better global behavior.

6 Conclusions

Cooperative co-evolution is suitable to decomposable problems; consequently,
we have taken advantage of the modular and hierarchical structure of the Royal
Road functions to adapt them as test functions for cooperative co-evolutionary
algorithms (CCEAs). Our empirical results show that a CCEA clearly outper-
forms a standard genetic algorithm on the Royal Road functions, confirming our
intuition that cooperative co-evolution helps in overcoming the so-called hitch-
hiking (or spurious correlation) effect, which is known to hinder the performance
of evolutionary algorithms. This suggests that CCEAs may be an advantageous
technique, even for static optimization, as they entail a better instantiation of
the building-blocks hypothesis.

An advantage of the Royal Road functions as test functions in cooperative co-
evolution is that they admit several natural decompositions, which makes them

194 G. Ochoa, E. Lutton, and E. Burke

useful in studies to test the automated emergence of co-adapted components.
Our results show that having two basic sub-components, instead of a single
sub-component for sub-populations produced better overall performance, which
suggests that caution should be taken when manually proposing a problem de-
composition. A potential drawback of the Royal Road functions as test beds for
cooperative co-evolution, is similar to that highlighted for standard evolutionary
search; namely the independence (or separation) between the building blocks.
To overcome this limitation, Watson et al. [20] have proposed the so called Hier-
archical If-and-only-if (H-IFF) functions that have a hierarchical decomposable
structure where sub-problems are not separable. In consequence, a natural ex-
tension of our contribution will be to propose a cooperative version of the H-IFF
family of functions. Another interesting extension would be to compare and
assess the scenarios where a single-population implementation of cooperative
co-evolution (such as the Parisian approach [1]) would be advantageous over a
multiple-population one.

References

1. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS+parisian genetic
programming=efficient IFS inverse problem solving. Genetic Programming and
Evolvable Machines 1(4), 339–361 (2000)

2. Dunn, E., Olague, G., Lutton, E.: Parisian camera placement for vision metrology.
Pattern Recognition Letters 27(11), 1209–1219 (2006)

3. Eriksson, R., Olsson, B.: Cooperative coevolution in inventory control optimisation.
In: Proceedings of the Third International Conference on Artificial Neural Networks
and Genetic Algorithms, Springer, Heidelberg (1997)

4. Forrest, S., Mitchell, M.: Relative building-block fitness and the building block
hypothesis. In: Foundations of Genetic Algorithms, vol. 2, pp. 109–126. Morgan
Kaufmann, San Mateo (1993)

5. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI (1975)

6. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In:
Pattern-directed inference systems. Academic Press, New York (1978)

7. Husbands, P.: Distributed coevolutionary genetic algorithms for multi-criteria
and multi-constraint optimisation. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS,
vol. 865, pp. 150–166. Springer, Heidelberg (1994)

8. Husbands, P., Mill, F.: Simulated co-evolution as the mechanism for emergent
planning and scheduling. In: Proceedings of the Fourth International Conference
on Genetic Algorithms, pp. 264–270. Morgan Kaufman, San Francisco (1991)

9. Kauffman, S.A., Johnsen, S.: Co-evolution to the edge of chaos: Coupled fitness
landscapes, poised states, and co-evolutionary avalanches. In: Artificial Life II, pp.
325–369. Addison-Wesley, Reading (1992)

10. Landrin-Schweitzer, Y., Collet, P., Lutton, E.: Introducing lateral thinking in
search engines. Genetic Programming and Evolvable Machines 7(1), 9–31 (2006)

11. Louchet, J., Guyon, M., Lesot, M.-J., Boumaza, A.M.: Dynamic flies: a new pat-
tern recognition tool applied to stereo sequence processing. Pattern Recognition
Letters 23(1-3) (2002)

The Cooperative Royal Road: Avoiding Hitchhiking 195

12. Mitchell, M.: When will a genetic algorithm outperform hill-climbing? In: Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, Morgan
Kaufman, San Francisco (1993)

13. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fit-
ness landscapes and GA performance. In: Proc. of the First European Conference
on Artificial Life, pp. 245–254. MIT Press, Cambridge (1992)

14. Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and
adaptive coevolution. Evolutionary Computation 5(4), 373–399 (1998)

15. Popovici, E., De Jong, K.A.: Understanding cooperative co-evolutionary dynamics
via simple fitness landscapes. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2005, pp. 507–514. ACM, New York (2005)

16. Mitchell, A., Potter, De Jong, K.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

17. De Jong, K.A., Potter, M.A.: The Coevolution of Antibodies for Concept Learning.
In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998.
LNCS, vol. 1498, pp. 530–539. Springer, Heidelberg (1998)

18. Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

19. Reeves, C., Rowe, J.: Genetic algorithms: Principles and perspectives. Kluwer,
Dordrecht (2002)

20. Watson, R.A., Pollack, J.B.: Hierarchically consistant test problems for genetic
algorithms. In: 1999 Congress on Evolutionary Computation, pp. 1406–1413 (1999)

21. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms, Ph.D. thesis,
George Mason University (2004)

22. Wiegand, R.P., Liles, W., De Jong, K.: Analyzing cooperative coevolution with
evolutionary game theory. In: Proceedings of the 2002 Congress on Evolutionary
Computation CEC2002, pp. 1600–1605 (2002)

23. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pp. 1235–1242. Mor-
gan Kaufmann, San Francisco (2001)

Conditioning, Halting Criteria and Choosing λ

Olivier Teytaud

Equipe TAO (Inria), LRI, UMR 8623 (CNRS - Université Paris-Sud),
bât 490 Université Paris-Sud 91405 Orsay Cedex France

olivier.teytaud@inria.fr

Abstract. We show the convergence of 1+λ-ES with standard step-size
update-rules on a large family of fitness functions without any convexity
assumption or quasi-convexity assumptions ([3,6]). The result provides
a rule for choosing λ and shows the consistency of halting criteria based
on thresholds on the step-size.

The family of functions under work is defined through a condition-
number that generalizes usual condition-numbers in a manner that only
depends on level-sets. We consider that the definition of this condition-
number is the relevant one for evolutionary algorithms; in particular,
global convergence results without convexity or quasi-convexity assump-
tions are proved when this condition-number is finite.

1 Introduction

We consider here a 1 + λt-ES algorithm as in Algorithm 1. We will, in a more
general framework than state of the art papers (in spite of the fact that the
functions are unimodal), show: (i) conditions under which the halting criterion
ensure a good final output (Section 2); (ii) how to choose λ (Sections 3 and 4);
(iii) the convergence of the algorithm (Section 5).

The state of the art contains convergence proofs on simple functions (e.g. the
sphere function [4,1,2]), or more general lower bounds ([7,10]), or for simplified
algorithms. In fact, the positive results are essentially convergence results for
convex of quasi-convex fitness functions (i.e., functions for which level sets are
convex); this is not close to the practice of evolutionary algorithms, which can
follow long non-convex valleys as in e.g. Rosenbrock’s banana function. We here
show our convergence on hypothesis which do not imply neither convexity nor
quasi-convexity.

2 The Model and the Consistency of the Halting
Criterion

Assume that the fitness is such that

∀v ∈ R, fitness−1(v) = g(v)Ev (1)

where Ev ⊂ R
d and where g is an increasing mapping [0, ∞[→ [0, ∞[with

g(0) = 0. This implies that the inf fitness = 0 and fitness(0) = 0; as the

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 196–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Conditioning, Halting Criteria and Choosing λ 197

Algorithm 1. 1 + λt-ES. The population size λt depends on t. The halting
criterion depends on the mutation strength σ. The Nt,i are usually, but not
necessarily, independent Gaussians. λt will be chosen as in Equation 13 (quasi-
random case, Section 3) or Equation 15 (random case, Section 4).

initialize x1 ∈ R
d, σ1 > σ0, t = 1.

while σt ≥ σ0 do
Update λt (Equation 13 or 15).
for i ∈ {1, . . . , λt} do

x(i) = xt + σtNt,i.
end for
x′ = arg minx∈{xt,x(1),...,x(λ)} fitness(x).
if fitness(x′) < fitness(xt) then

Acceptance for time step t: xt+1 = x′.
Choose σt+1 > σt.

else
Rejection for time step t: xt+1 = xt.
Choose σt+1 < σt.

end if
t = t + 1.

end while
Output x′.

algorithm is translation-invariant (both in the fitness-space and in the domain)
this does not reduce the generality. As the algorithm only uses comparisons, we
can equivalently consider Equation 2 (i.e., g(v) = v):

∀v ∈ R, fitness−1(v) = vEv (2)

and we assume ∀v ∈ R, Ev ⊂
⋃

Bo(z,1)⊂⋃
v′<v v′Ev′

S(z, 1) (3)

where Bo(x, r) = {t; ||t − x|| < r} and S(x, r) = {t; ||t − x|| = r}.The constant 1
is arbitrary, but we can rescale Ev; in fact, the hypothesis is that for some ε, a
level-set vEv is included in the union of all spheres of radius vε enclosing areas
of lower fitness. We let

C(fitness) = inf
(Ev)v∈[0,∞[such that (2) and (3) hold

sup
v

sup
e∈Ev

||e||.

This equation is not simple. The family (Ev)v∈[0,∞[is not uniquely determined by
the fitness function; we consider the inf for all possible families (Ev)v≥0 such that
Equations 2 and 3 hold. There is also a supremum of ||e|| for all v ≥ 0, e ∈ Ev.

C(fitness) depends on the shape of the level-sets of the fitness, can be seen
as a condition number, dedicated to comparison-based algorithms. For exam-
ple, for the sphere-function, Ev = E (independent of v) and E = S (the unit
sphere in R

d) and C(fitness) = 1. This number is finite for many, many fitness-
functions; mainly, the level-sets have to be connected. For example, the fitness

198 O. Teytaud

function with level-sets as in Fig. 1 has a finite C(fitness). Another nice prop-
erty is that this condition-number is finite for quadratic fitness functions and
generalizes the classical condition-number of quadratic fitness functions. Yet an-
other feature is illustrated by experiments in Fig. 2: an infinite C(fitness) can
lead to premature convergence of 1 + λ-ES.

We claim:

Main lemma for the halting criterion. Assume that eqs 2 and 3 hold.

If for all t ∈ N, εS ⊂ ∪i∈{1,...,λt}B
o(Nt,i, ε) (4)

and if σT < σ0, then fitness(xT) ≤ εσT−1 (5)
and ||xT || ≤ εσT−1C(fitness). (6)

Proof: Assume that eqs 2 and 3 hold, and that for all t,

εS ⊂ ∪i∈{1,...,λt}B(Nt,i, ε).

Then,

Equation 3 leads to Ev ⊂ ∪Bo(z,1)⊂∪v′<v
v′
v Ev′

S(z, 1) (7)

which leads to e ∈ Ev ⇒ ∃f ; ||f − e|| = 1 ∧ Bo(vf, v) ⊂ ∪v′<vv
′Ev′ .(8)

Assume that σT < σ0, and that T is minimal with this condition (as t →
fitness(xt) is non-increasing, there’s no loss of generality in this assumption).

-20-15-10-5 0 5 10 15 20 -20
-15

-10
-5

 0
 5

 10
 15

 20

Fig. 1. An example of fitness-function (level sets are plotted) with finite C(fitness).
The fitness is not convex; it is also not quasi-convex. Much more complicated examples
can be defined; mainly, we need level sets which all contain a “wide” path to the
optimum (at least with width scaling as the level set).

Conditioning, Halting Criteria and Choosing λ 199

-1 -0.5 0 0.5 1
-1

-0.5

 0

 0.5

 1

level sets of norm(x)+angle(x)

-20

-15

-10

-5

 0

 5

 10

 15

 0 200 400 600 800 1000

lambda=16

log(norm(x)/sigma)
log(norm(x))

log(sigma)

Fig. 2. Level sets of a simple function (x �→ ||x|| + angle(x)2, with angle(x) the angle
between x and an axis) with infinite C(fitness) (top), and results of 1 + λ-ES with
λ = 16 and one-fifth rule ([9,8]) on this function (bottom). We see that σ falls down,
without convergence: this is a premature convergence which illustrates Corollary 1.

This implies that at t = T − 1, we have a reject; therefore,

∀i ∈ {1, . . . , λt}, fitness(x(i)) ≥ fitness(xt)). (9)

Let x = xt for short. Equation 2 implies that

x = fitness(x)e for some e ∈ Efitness(x). (10)

200 O. Teytaud

Equation 9 leads to, for all i ∈ {1, . . . , λt},

x + σtNt,i �∈ ∪v′<fitness(x)v
′Ev′ and successively:

fitness(x)e + σtNt,i �∈ ∪v′<fitness(x)v
′Ev′

with e as in Equation 10,
fitness(x)e + σtNt,i �∈ Bo(fitness(x)f, fitness(x))

with f as in Equation 8,
σtNt,i �∈ Bo(fitness(x)f − fitness(x)e︸ ︷︷ ︸

=r

, fitness(x))

with ||r|| = fitness(x) by Equation 8,

σtNt,i �∈ Bo(r, fitness(x)),
Nt,i �∈ Bo(r/σt, fitness(x)/σt),
Nt,i �∈ Bo(δ, ||δ||)

where δ = r/σt verifies ||δ|| = fitness(x)/σt.

We assume, to get a contradiction, that

||δ|| = fitness(x)/σt ≥ ε. (11)

Then, Equation 11, together with c > 1 ⇒ B(a, ||a||) ⊂ B(c.a, c||a||), implies

∀i ∈ {1, . . . , λt}, Nt,i �∈ Bo(ε
1

||δ||δ, ε).

This is a contradiction with the assumption that for all t, εS ⊂ ∪i∈{1,...,λt}B(Nt,i,
ε). Therefore, Equation 11 does not hold. Hence, fitness(x) < εσt = εσ0. This
leads to Equation 5; Equation 5 and Equation 2 lead to Equation 6. �

3 Choosing λ in the Derandomized Setting

Equation 4 (recalled below, Equation 12, in the case ε = 1) is the main assump-
tion of the main lemma above:

S ⊂ ∪i∈{1,...,λt}B
o(Nt,i, 1). (12)

We consider ε = 1 as this hypothesis has moderate impact on the result; the
results below are similar with other values of ε. We now study how to ensure
Equation 12. A solution consists in using a minimal 1-cover of S; λt = λQR

where

λQR =inf{λ ∈ N; d1,. . . , dλ ∈ Sλ; S(0, 1) ⊂ Bo(d1, 1)∪Bo(d2, 1)∪· · ·∪Bo(dλ, 1)}.
(13)

It is known ([5]) that λQR ≥ c cos(φ1)/ sin(φ1)dd3/2 ln
(
1 + d2 cos(φ1)

)
, with

φ1 = arg cos(1/2). This leads to λQR of order roughly 1/ sin(φ1)d; the exponen-
tial dependency in d can not be removed.

Conditioning, Halting Criteria and Choosing λ 201

Let’s show that we can not ensure the halting criterion without at least λQR

points, for any deterministic offspring (Nt,i = N1,i deterministically fixed).

Corollary 1 (lower bound on λ for deterministic offsprings). If λ < λQR

and for any fixed Nt,1, . . . , Nt,λ independent of t, then there exists an update rule
for σ (see Algorithm 1), σ0, and a function fitness verifying eqs 2 and 3, such
that σT < σ0 and ||xT || > σT−1C(fitness).

Proof: We build a counter-example with T = 2, fitness(x) = ||x||, any update
rule setting σt+1 = 0 in case of rejection, σ1 = 1. Then, for all v > 0, Ev = S =
S(0, 1).
We just have to choose x1 ∈ S such that for all i ∈ {1, . . . , λ},

x1 + Nt,i �∈ Bo(0, 1)

or equivalently, we need, for building the counter-example, an x such that for all
i ∈ {1, . . . , λ},

Nt,i �∈ Bo(−x1, 1)

i.e., ||Nt,i + x|| ≥ 1;

such an x1 exists by equation 13, as soon as λ < λQR, as the Bo(Nt,i, 1) can’t
cover S. �

We note dQR
1 , . . . , dQR

λQR
the points realizing Equation 13; these points are by

definition a minimal covering of the sphere by open balls of radius ones with
centers on the sphere.

4 Choosing λt in the Random Case

We now consider Nt,1, . . . , Nt,λt independently randomly uniformly drawn in
S(0, 1). The question is: for which values of λt do we ensure Equation 4 (or 12)
with probability 1 − δ ? We set

N = inf{λ ∈ N; y1, . . . , yλ ∈ Sλ; S(0, 1) ⊂ Bo(y1,
1
2
)∪Bo(y2,

1
2
)∪· · ·∪Bo(yλ,

1
2
)}.

(14)
The formula of N is close to Equation 13 but with radius 1

2 instead of 1. [5] shows
that N ≤ c cos(φ2)/ sin(φ2)dd3/2 ln

(
1 + d cos(φ2)2

)
with φ2 = 2 arg sin(1/4);

roughly, N is of order O(1/ sin(φ2)d). It is not possible to get rid of the expo-
nential dependency in d.

Theorem 2. Assume that

λt ≥ N
(
log(N) + log(t2) + log(1/δ) − log(π2/6)

)
(15)

and that the Nt,i are independently uniformly drawn on S(0, 1). Then, Equation
12 holds with probability at least 1 − δ.

202 O. Teytaud

Before the proof of this result, let’s show a simple corollary, based on theorem
2 and on the main lemma:

Corollary 3 for algorithm 1. Assume that eqs 2 and 3 hold, and that

λt ≥ N
(
log(N) + log(t2) + log(1/δ) − log(π2/6)

)

with Nt,i independent random variables uniform on S. Then, with probability
at least 1 − δ, σT < σ0 ⇒ ||xT || ≤ σT−1C(fitness).

Remark A. If the step-size adaptation rule is of the form σn+1 = βσn in case
of rejection, then the result implies σT < σ0 ⇒ ||xT || ≤ σ0C(fitness)/β.

Remark B: Gaussian mutations. We use spheres instead of Gaussians as it is
more parsimonious (λ smaller) than in the case of Gaussians; however, the result
is essentially the same with Gaussians. With just have to add a multiplicative
factor in Equation 17 in the proof below (the factor is polynomial in d).

Proof of the corollary: Application of theorem 2 and of the main lemma. �
Let’s now show theorem 2.

Proof of Theorem 2: Assume that

λt ≥ N

⎛

⎝log(N) + log(t2) + log(1/δ) + log(
∑

i≥1

1/i2)

⎞

⎠ .

This is equivalent to Equation 15. We note δt the probability of Equation 4 with
ε = 1, namely δt is the probability of

S ⊂ ∪i∈{1,...,λt}B
o(Nt,i, 1). (16)

We let y1, . . . , yn be elements of S realizing Equation 14. We see that if

∀i ∈ {1, . . . , N}, ∃j ∈ {1, . . . , λt}Nt,j ∈ Bo(yi,
1
2
),

then Equation 16 holds.
Therefore, with μ the uniform measure,

δt ≤
∑

i

πj

(
1 − P (Nt,j ∈ Bo(yi,

1
2
))

)
,

δt ≤ N(1 − 1/N)λt as μ

(
Bo(yi,

1
2
) ∩ S

)
≥ μ(S)/N, (17)

log(δt) ≤ log(N) + λt log(1 − 1/N) ≤ log(N) − λt/N.

Then,
∑

t≥1

δt ≤ N exp(−λt/N)

≤
∑

t

δ

⎛

⎝
∑

i≥1

1/i2

⎞

⎠ /(t2)

≤ δ which is the expected result. �

Conditioning, Halting Criteria and Choosing λ 203

5 Convergence Issues: 1 + λ-ES Almost Surely Halts

We have considered above the risk of raising the halting criterion before a good
fitness value is met. This is meaningless, however, if we do not show that, after
a finite time, the halting criterion will be met.

Theorem 4: almost sure convergence. We assume that the update rules are
as follows:

– σt+1 = min(ασt, σmax) in case of acceptance (α > 1);
– σt+1 = βσt in case of rejection (0 < β < 1).

We assume that Equations 2 and 3 hold for some ε > 0. We assume that the
measure μ([0, 1[Ev) of [0, 1[Ev > G > 0. We assume that C(fitness) < ∞
and Nt,i are independent standard multivariate Gaussians. We also assume that
λt ≤ Ztζ for some Z < ∞, ζ < 1. Then, almost surely, ∃T > 0, σT < σ0, i.e.,
the algorithm halts.

Proof
We note T = inf{t; σt < σ0} (possibly, a priori, T = ∞). We first point out some
simple useful facts about the (σt)t∈N:

1. ∀t > 0, σt ≤ σmax.
2. ∀t < T, σt ≥ σ0.
3. If rejection holds at all steps t + 1, . . . , t + n0, with n0 ≥ log(σmax/σ0)/

log(1/β), then T ≤ t + n0 + 1 < ∞.

Now, some simple facts about the (xt)t∈N:

1. t → fitness(xt) is non-increasing.
2. ||xt|| ≤ Cfitness(xt) ≤ Cfitness(x0).
3. Thanks to t ≤ T ⇒ (σt ≥ σ0 ∧ ||xt|| ≤ C.fitness(xt) ≤ C.fitness(x0),

P (fitness(xt) < ε|xt−1, σt−1)
> P (xt + σtNt,1 ∈ cEc|xt−1, σt−1)
> P (Nt,1 ∈ (cEc − xt)/σt|xt−1, σt−1)
> cdμ(Ec)d ((||xt|| + cC(fitness)) /σt)
> Kεd

for some K > 0 that only depends on d, Z, and σ0.
4. The previous point implies that P (∃u < t; fitness(xu) < ε) > 1 − (1 −

Kεd)t, and therefore if d′ < d,

P
(
∃u < t; fitness(xu) < (1/t)1/d′

)
> 1 −

(
1 − K/td/d′

)t

→ 1 as t → ∞.

5. The previous points implies that if d′ > d, then almost surely, there exists
t0 < ∞ such that

t ≥ t0 ⇒ fitness(xt) < t−1/d′
. (18)

204 O. Teytaud

Let’s now consider the probability pt of rejection at steps t, conditionally to xt

and σt, conditionally to t ≤ T .
We point out that if ∀i ≤ λt, σt||Nt,i|| > ||xt|| + fitness(xt)C, then there

is rejection (all x′
i have in that case norm > Cfitness(xt) and therefore have

fitness > fitness(xt)). This implies that

pt ≥ 1 − (P (σt||Nt,1|| > ||xt|| + Cfitness(xt)))
λt

≥ 1 − (P (σ0||Nt,1|| > Cfitness(xt) + Cfitness(xt)))
λt

as σt ≥ σ0 and ||xt|| ≤ Cfitness(xt)

≥ 1 − (P (σ0||Nt,1|| > 2Cfitness(xt)))
Ztζ

as λt ≤ Ztζ

≥ 1 −
(
P

(
σ0||Nt,1|| > 2Ct−1/d′

))Ztζ

if t ≥ t0 thanks to Equation 18

≥ 1 −
(
1 − 1/td/d′

)Ztζ

≥ p0 > 0 if we choose d′ s.t. d < d′ < d/ζ.

The probability of rejection at all steps t + 1, . . . , t + n0, conditionally to xt and
σt, is therefore at least 1− (1−p0)n0 > p > 0. This quantity is lower bounded by
a positive number; this implies that almost surely, such a sequence of rejections
almost surely occurs, hence the expected result. �

6 Discussion: Derandomization, Halting Criteria,
Robustness, Conditioning

Let’s summarize our results about the 1+λ-ES for fitness functions with not-too-
bad conditioning in the sense of Equations 2, 3 and C(fitness) with λt = O(tζ)
for some ζ < 1, and with an update rule for σ as in Theorem 4. By Theorem
4, we know that the algorithm converges almost surely (i.e., it halts after a
finite number of time steps). By Corollaire 3, we know that if the population
size verifies Equation 15, then with probability at least 1 − δ, the algorithm
stops close to the optimum - within distance σ0C(fitness)β. C(f) quantifies
the conditioning, and is finite also for many non-convex functions. Therefore, we
have, for some λt logarithmic in t:

– global convergence with high probability;
– consistency of the halting criterion, i.e.no premature convergence.

A main strength of this result is that no convexity, no smoothness, no quasi-
convexity is assumed and we have global convergence; see Fig. 1. As far as we
know, there’s no convergence proof of 1+λ-ES that is not covered by the results
in this paper. Another strength is that C(fitness) appears as an important rel-
evant criterion for evolutionary algorithms: it generalizes the usual conditioning
(which is a local criterion), and:

– Fig. 2 shows that very simple functions with C(fitness) lead to premature
convergence;

Conditioning, Halting Criteria and Choosing λ 205

– corollary 3 and Theorem 4 show that C(fitness) finite leads to both (i)
convergence with high probability (ii) consistency of the halting criterion.

C(fitness) only depend on level sets, as well as the behavior of most evolu-
tionary algorithms, and is finite for many fitness functions without convexity or
quasi-convexity; mainly, it assumes that at each scale, the width of the path to
the optimum scales as the diameter of the level set. We believe that the definition
of C(fitness) is the main contribution of this paper.

A weakness is that we ensure convergence, and the efficiency of the halting
criterion, but there’s no convergence rate. However, evolutionary algorithms are
more well known for robustness than for convergence rates. Moreover, a conver-
gence rate can easily be derived under some slightly stronger assumptions.

Our results propose a rule for choosing λt as a function of t, δ, d (see Equations
14 and 15). This rule is reasonable for its dependency in t and δ (logarithmic
dependency); the dependency in the dimension is prohibitively high, but it is a
fact that evolutionary algorithms are not stable in front of large dimensionality.

We see in the results above that:

– the population size should scale as
• log(t) (recall that log(t2) = 2 log(t)); population size should therefore

increase with time (very slowly).
• log(1/δ); more robustness requires a bigger population size.
• N log(N), which is exponential in d.

– we can compare the number of points required for avoiding too early conver-
gence of the algorithm in the randomized and in the derandomized setting
by comparing λQR (Equation 13) and λt (random case, Equation 15); in
both cases, λ is exponential in d, but with a much better constant in the
derandomized case. On the other hand, the convergence proof (theorem 3)
only holds for the random case.

Acknowledgments. We thank Anne Auger for fruitful talks and Pierre Liardet
for constructive remarks on a preliminar version of this paper. This work was
supported in part by the Pascal Network of Excellence.

References

1. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
markov chains. Theoretical Computer Science 334, 35–69 (2005)

2. Auger, A., Hansen, N.: Reconsidering the progress rate theory for evolution strate-
gies in finite dimensions. In: Press, A. (ed.) Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2006), pp. 445–452 (2006)

3. Bäck, T.: Evolutionary Algorithms in theory and practice. Oxford University Press,
York (1995)

4. Bienvenue, A., Francois, O.: Global convergence for evolution strategies in spherical
problems: some simple proofs and difficulties. Theor. Comput. Sci. 306(1-3), 269–
289 (2003)

206 O. Teytaud

5. Boroczky, K., Wintsche, G.: Covering the sphere by equal spherical balls. In: Dis-
crete and Computational Geometry, pp. 237–253 (2003)

6. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidel-
berg (2003)

7. Jagerskupper, J., Witt, C.: Runtime analysis of a (mu+1)es for the sphere function.
Technical Report ISSN 1433-3325, University of Dortmund (2005)

8. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learn-
ing Probability Distributions in Continuous Evolutionary Algorithms - A Compar-
ative Review. Natural Computing 3, 77–112 (2004)

9. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart
(1973)

10. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In: Tenth
International Conference on Parallel Problem Solving from Nature (PPSN 2006)
(2006)

Log-Linear Convergence and Optimal Bounds

for the (1 + 1)-ES

Mohamed Jebalia1, Anne Auger1, and Pierre Liardet2

1 TAO Team, INRIA Futurs
Université Paris Sud, LRI
91405 Orsay cedex, France

{mohamed.jebalia,anne.auger}@lri.fr
2 Université de Provence

UMR-CNRS 6632, 39 rue F. Joliot-Curie
13453 Marseille cedex 13, France

liardet@cmi.univ-mrs.fr

Abstract. The (1 + 1)-ES is modeled by a general stochastic process
whose asymptotic behavior is investigated. Under general assumptions, it
is shown that the convergence of the related algorithm is sub-log-linear,
bounded below by an explicit log-linear rate. For the specific case of
spherical functions and scale-invariant algorithm, it is proved using the
Law of Large Numbers for orthogonal variables, that the linear conver-
gence holds almost surely and that the best convergence rate is reached.
Experimental simulations illustrate the theoretical results.

1 Introduction

Evolutionary algorithms (EAs) are bio-inspired stochastic search algorithms that
iteratively apply operators of variation and selection to a population of candi-
date solutions. Among EAs, adaptive Evolution Strategies (ESs) are recognized
as state of the art algorithms when dealing with continuous optimization prob-
lems. Adaptive ESs sequentially adapt the parameters of the search distribution,
usually a multivariate normal distribution, based on the history of the search.
Several adaptation schemes have been introduced in the past. The one-fifth suc-
cess rule [1,2] considers the adaptation of one parameter, referred as the step-
size, based on the success probability. The most advanced adaptation scheme,
the Covariance Matrix Adaptation (CMA), adapts the full covariance matrix of
the multivariate normal distribution [3].

The first theoretical works carried out in the context of Evolution Strategies
focused on the so-called progress rate defined as a one-step expected progress
towards the optimum [1,4]. The progress rate approach consists in looking for
step-sizes maximizing the expected progress. This amounts to investigating an
artificial step-size adaptation scheme called scale-invariant, in which, at each
iteration, the step-size is proportional to the distance to the optimum. The results
derived in the context of the progress rate theory hold asymptotically in the

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 207–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 M. Jebalia, A. Auger, and P. Liardet

dimension of the search space and the techniques used do not allow to obtain
finite dimension estimations.

Finite dimension results were obtained in the context of ’comma’ strategies
on the class of the so-called sphere functions, mapping R

d into R (d being the
dimension of the search space) and defined as

f(x) = g(‖x‖2) , (1)

where g : [0, +∞[�→ R is an increasing function and ‖.‖ denotes the usual eu-
clidian norm on R

d. On this class of functions, scale-invariant ESs [5] and self-
adaptive ESs (which use a real adaptation rule) [5,6] do converge (or diverge)
with order one, or log-linearly1.

In this paper, finite dimension results are investigated and the focus is on the
simplest ES, namely the (1+1)-ES. Section 2 introduces the mathematical model
associated to the algorithm in a general framework and provides preliminary re-
sults. In Section 3, a sharp lower bound of the log-convergence rate is proved.
In Section 4, it is shown that this lower bound is reached for a scaled-invariant
algorithm on the class of sphere functions. The proof of convergence on the class
of sphere functions uses the Law of Large Numbers for orthogonal random vari-
ables. A central limit theorem is also derived from this analysis. In Section 5 our
results are discussed and related to previous works. Some numerical experiments
illustrating the theoretical results are presented.

2 Mathematical Model for the (1 + 1)-ES

Let R
d be equipped with the Borel σ-algebra and the Lebesgue measure. In

the sequel we always assume that (Nn)n denotes a sequence of random vectors
(r.vec.) independent and identically distributed (i.i.d.), defined on a suitable
probability space (Ω, P), with common law the multivariate isotropic normal
distribution on R

d denoted by N (0, Id) (2). Let (σn)n be a given sequence of
positive random variables (r.var.). We also assume that for each index n, σn is
defined on Ω and is independent of Nn; further we will also require that the
sequences (σn)n and (Nn)n are mutually independent. Finally, let f : R

d → R

be an objective function (which is always assumed to be Lebesgue measurable)
and let δn : R

d × Ω → {0, 1} (n ≥ 0) be the measurable function defined
by δn(x, ω) := 1{f(x+σn(ω)Nn(ω))≤f(x)}. In this paper, (1 + 1)-ES algorithms
are modeled by the R

d-valued random process (Xn)n≥0 defined on Ω by the
recurrence relation

Xn+1 = Xn + δn(Xn, IΩ)σnNn , (2)

where IΩ is the identity function ω �→ ω on Ω and X0 is given.

1 We say that the sequence (Xn)n converges log-linearly to zero (resp. diverges log-
linearly) if there exists c < 0 (resp. c > 0) such that limn

1
n

ln ‖Xn‖ = c.
2 N (0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and
covariance matrix the identity Id.

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 209

The classical terminology used for algorithms defined by (2) stresses the par-
allel with the biology: the iteration index n is referred as generation, the random
vector Xn is called the parent, the perturbed random vector X̃n = Xn +σnNn is
the n-th offspring. The scalar r.var. σn is called step-size. The r.var. δn translates
the plus selection “+” in the (1 + 1)-ES: the offspring is accepted if and only if
its fitness value is smaller than the fitness of the parent. Several heuristics have
been introduced for the adaptation of the step-size σn, the most popular being
the one-fifth success rule [1,2].

Notations and Preliminary Results

For a real valued function x �→ h(x) we introduce its positive part h+(x) :=
max{0, h(x)} and negative part h− = (−h)+. In other words h = h+ − h− and
|h| = h+ + h−. In the sequel, we denote by e1 a unitary vector in R

d. The
following technical lemmas will be useful in the sequel.

Lemma 1. Let N be a r.vec. of distribution N (0, Id). The map F : [0, ∞] →
[0, +∞] defined by F (+∞) := 0 and

F (σ) := E
[
ln− (‖e1 + σN‖)

]
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx (3)

otherwise, is continuous on [0, +∞] (endowed with the usual compact topology),
finite valued and strictly positive on]0, ∞[.

Proof. The integral (3) always exists but could be infinite. In any case, F (σ)
is independent of the choice of e1 due to the invariance of N under rotations.
For convenience we choose e1 = (1, 0, . . . , 0) so that ln−(‖e1 + σx‖) = 0 if
x = (x1, . . . , xd) with x1 ≥ 0. Let f1 : R

d × [0, ∞] → [0, +∞] be defined by

f1(x, σ) = ln−(‖e1 + σx‖2)e−
‖x‖2

2

for x �= (−1/σ, 0, . . . , 0) and f1((−1/σ, 0, . . . , 0), σ) = +∞ (with σ > 0) and
finally f1(x, +∞) = 0 (= limσ→+∞ f1(x, σ)). Notice that f1(x, σ) = 0 if x1 ≥ 0
and readily f1((x1, x2, . . . , xd), σ) = f1((x1, ε2x2, . . . , εdxd), σ) for any (ε2, . . . , εd)
in {−1, +1}d−1 so that we can restrict the integration giving F (σ) to the domain
D :=] − ∞, 0[×]0, ∞[d−1, more precisely one has

F (σ) =
1
4

(2
π

)d/2
∫

D
f1(x, σ)dx (4)

with in addition f1 is finite everywhere in D. From the definition of F (+∞) and
f1 one has 1

4 (2/π)d/2
∫
D f1(x, +∞)dx = 0 = F (+∞) so that (4) holds also for

σ = +∞. Now, for any real number σ > 0 fixed, the inequality f1(x, σ) > 0
holds on Bσ := {x ∈ D ; ‖e1 +σx‖ < 1} which is a nonempty open set, therefore
F (σ) > 0. In addition, f1(x, 0) = 0 for all x and so, F (0) = 0. Passing to
spherical coordinates (with d ≥ 2)we obtain after partial integration

∫

D
f1(x)dx = 2cd

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ1 |)rd−1e−
r2
2 sind−2 θ1dr dθ1

210 M. Jebalia, A. Auger, and P. Liardet

where

cd =
∫ π/2

0

· · ·
∫ π/2

0

sind−3(θ2) . . . sin(θd−2)dθ2 . . . dθd−1

for d ≥ 3 and c2 = 1. With the classical Wallis integral Wd−2 =
∫ π/2

0
sind−2 θ dθ

and the surface area of the d-dimensional unit ball Sd = 2πd/2/Γ (n
2) we have

Sd = 2dcdWd−2 and after collecting the above results we get

F (σ) =
(1

2π

)d/2 1
Wd−2Γ (d

2)

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ|)rd−1e−
r2
2 sind−2(θ) dr dθ .

The integrand g : (r, θ, σ) �→ ln−(|σr−eiθ |)rd−1e−
r2
2 sind−2(θ) defined on the set

]0, +∞[×[0, π/2]× [0, ∞] (with g(r, θ, +∞) = 0) is continuous. In fact, the conti-
nuity is clear at each point (r, θ, σ) with σ �= +∞ and for the points (r, θ, +∞),
one has g(ρ, α, σ) = 0 on]r/2, +∞[×[0, π/2]×] 4r , +∞]. Moreover, g is dominated
by g1 : (r, θ) �→ ln−(sin θ)rd−1e−r2/2 i.e., g(r, θ, σ) ≤ g1(r, θ) for all (r, θ, σ)
in]0, +∞[×[0, π/2] × [0, +∞]. Since g1 is integrable, the continuity of F on
[0, +∞] follows from the Lebesgue dominated convergence theorem. For the re-
maining case d = 1 the conclusions of the lemma follow easily from (4) that gives
F (σ) = 1

2
√

2π

∫ ∞
0

ln−(|1 − σr|)e− r2
2 dr.
�

Corollary 1. The supremum τ := sup F ([0, +∞]) is reached and σF := min
F−1(τ) exists. Moreover 0 < σF < +∞ and 0 < τ < +∞.

Proof. This corollary is a straightforward consequence of the continuity of F
according to Lemma 1 which implies that F−1(τ) is nonempty and compact.
�

Lemma 2. Let X denote a r.vec. in R
d such that ‖X‖−1 is finite almost surely.

Let σ be a non negative random variable and let N be a random vector in R
d

with distribution N (0, Id) and independent of σ‖X‖−1. Assume that

E
(

ln
(
1 + r

σ

‖X‖

))
∈ O(ecr)

with a constant c ≥ 0, then the expectation of ln+(‖X‖−1‖X + σN‖) is finite.

Proof. Obviously E(ln+(‖X‖−1‖X + σN‖)) ≤ E(ln(1 + σ
‖X‖‖N‖)). Using the

independency of σ‖X‖ and N , and passing to the spherical coordinates, one gets

E
(
ln

(
1 +

σ

‖X‖‖N‖
))

≤ E
(∫

Rd

ln(1 +
σ

‖X‖‖x‖)e−
‖x‖2

2 dx
)

= SdE
(∫ +∞

0

ln(1 + r
σ

‖X‖)rd−1e−
r2
2 dr

)

= Sd

∫ +∞

0

E(ln(1 + r
σ

‖X‖))rd−1e−
r2
2 dr

<<

∫ +∞

0

rd−1ecr−r2
2 dr < +∞ .
�

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 211

Remark 1. The assumption E(ln(1 + r σ
‖X‖)) ∈ O(ecr) (with c = 0) is verified if

there exists α > 0 such that the expectation of the r.var. (σ/‖X‖)α is finite.

3 Lower Bounds for the (1 + 1)-ES

In this section, we consider a general measurable objective function f : R
d → R.

We prove that the (1 + 1)-ES defined by (2) for minimizing f , under suitable
assumptions, satisfies for all x∗ in R

d and all indices n ≥ 0:

−∞ < E(ln ‖Xn − x∗‖) − τ ≤ E(ln ‖Xn+1 − x∗‖) < +∞ (5)

where τ is defined in Corollary 1.
If x∗ is a limit point of (Xn) (that could be a local optimum of f), (5) means

that the expected log-distance to x∗ cannot decrease more than τ , in other words,
−τ is a lower bound for the convergence rate of (1 + 1)-ES. The proof of this
result uses the following easy Lemma whose proof is left to the reader.

Lemma 3. Let Z and V be r.vec. and let Θ be any r.var. valued in {0, 1}.
Assume that the r.var. ln(‖Z‖) is finite almost surely. Then the following in-
equalities

ln(‖Z‖) − ln−(‖Z‖−1‖Z + V ‖) ≤ ln(‖Z + ΘV ‖)
≤ ln(‖Z‖) + ln+(‖Z‖−1‖Z + V ‖) (6)

hold almost surely.
�

We are ready to prove the following general theorem.

Theorem 1 (Lower bounds for the (1+1)-ES). Let (Xn)n be the sequence of
random vectors verifying (2) with a given objective function f as above. Assume
that for each step n = 0, 1, 2, . . . the random vector Nn is independent of both
the random variable σn and the random vector Xn. Let x∗ be any vector in R

d

and suppose that E(
∣∣ ln(‖X0 − x∗‖)

∣∣) < +∞ and for all n ≥ 0,

E
(

ln(1 + r
σn

‖Xn − x∗‖)
)

∈ O(ecnr)

with a constant cn ≥ 0. Then

E (| ln (‖Xn − x∗‖) |) < +∞ ,

and

E(ln(‖Xn − x∗‖)) − τ ≤ E(ln(‖Xn+1 − x∗‖)) , (7)

for all n ≥ 0, where τ is defined in Corollary 1. In particular, the convergence
of the (1 + 1)-ES is at most linear, in the sense that

inf
n∈N

1
n

E
(
ln

(
‖Xn − x∗‖/‖X0 − x∗‖

))
≥ −τ . (8)

212 M. Jebalia, A. Auger, and P. Liardet

Proof. Set Zn = Xn − x∗, X̃n = Xn + σnNn and Z̃n = X̃n − x∗. We prove the
integrability of ln (‖Zn‖) by induction. By assumption E

(
ln(‖Z0‖)

)
is finite.

Suppose that E
(
ln ‖Zn‖

)
is finite, then 0 < ‖Zn‖ < +∞ almost surely, hence

ln
(
‖Zn+1‖

)
is also finite almost surely. We claim that E

(
ln(‖Zn+1‖)

)
is finite.

By applying Lemma 3 we get (6) and derive

ln+ (‖Zn+1‖) ≤ ln+ (‖Zn‖) + ln+
(
‖Zn‖−1(‖Zn + σnNn‖)

)
. (9)

By Lemma 2 the expectation of ln+
(
‖Zn‖−1(‖Zn + σnNn‖)

)
is finite and us-

ing (9) we conclude that E
(
ln+ (‖Zn+1‖)

)
< +∞. It remains to show that

E
(
ln−(‖Zn+1‖)

)
is also finite. Using the first inequality in (6) we obtain

ln− (‖Zn+1‖) ≤ − ln (‖Zn‖)+ ln−
(∥∥∥

Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥∥∥
)

+ ln+ (‖Zn+1‖) . (10)

For each n ≥ 0, let Fn denote the σ-algebra generated by the r.vec. Xn and the
r.var. σn. Taking the conditional expectation we obtain

E[ln−(‖Zn+1‖) | Fn]

≤ − ln(‖Zn‖) + E
[
ln−

(∥∥∥
Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥∥∥
)

| Fn

]
+ E

[
ln+

(
‖Zn+1‖

)
| Fn

]
.

Since the distribution Nn is invariant under rotation and independent of Fn,

E
(
ln−

(∥∥∥
Zn

‖Zn‖ +
σn

‖Zn‖Nn

∥∥∥
)

| Fn

)
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + tnx‖)e−
‖x‖2

2 dx

= F (tn)

where e1 is any unit vector on R
d, tn = σn/‖Zn‖ (and F is the map introduced

in Lemma 1). Using Lemma 1, we get E
[
ln− (‖Zn+1‖) | Fn

]
≤ − ln (‖Zn‖)+τ +

E
[
ln+ (‖Zn+1‖) | Fn

]
(recall that τ = max F ([0, +∞])). Passing to the expec-

tation we get

E
[
ln− (‖Zn+1‖)

]
≤ −E [ln (‖Zn‖)] + τ + E

[
ln+ (‖Zn+1‖)

]
< +∞ .

Hence E[| ln(‖Zn+1‖)|] is finite for all n ≥ 0. Moreover, we also get

E(ln ‖Zn+1‖) ≥ E(ln ‖Zn‖) − τ

and after summing such inequalities we obtain

E (ln (‖Zn‖/‖Z0‖)) ≥ −τn

and (8) follows.
�

When x∗ is a local minimum of the objective function, E(ln ‖Xn − x∗‖) −
E(ln ‖Xn+1 − x∗‖) represents the expected log-distance reduction towards x∗

at the n-th step of iteration, called log-progress in [7]. Theorem 1 shows that the
log-progress is bounded above by τ = F (σF).

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 213

4 Spherical Functions and the Scale-Invariant Algorithm

In this section we prove that the lower bound −τ obtained in Theorem 1 is
reached for spherical objective functions when σn = σF ‖Xn‖ (n ≥ 0). Recall
that sphere objective functions are defined by f(x) = g(‖x‖2) where g is any
increasing map, so that the acceptance condition f(Xn+1) ≤ f(Xn) is equiva-
lent to ‖Xn+1‖ ≤ ‖Xn‖. It follows that (‖Xn‖)n≥0 is a non-increasing sequence
of positive random variables (finite almost surely), hence converges pointwise
almost surely. For spherical functions, Lemma 3 becomes:

Lemma 4. Let X and W be any random vectors and let Θ = 1{f(X+W)≤f(X)}
and assume that the random variable ln(‖X‖) is finite almost surely. Then the
equality

ln(‖X + ΘW‖) − ln(‖X‖) = − ln+(‖X‖−1‖X + W‖) (11)

holds almost surely.

Proof. The equality (11) emphasizes the fact that ‖X +Θ‖ ≤ ‖X‖ with equality
on the event {Θ = 0} (= {‖X + W‖ > ‖X‖}).
�

Proposition 1. Let (Xn)n be the sequence of random vectors valued in R
d sat-

isfying the recurrence relation (2) involving spherical function f(x) = g(‖x‖2)
where g : [0, ∞[→ R is an increasing map. Assume that E(ln(‖X0‖) is finite and
that, at each step n, the random vector Nn is independent of both the random
variable σn and the random vector Xn. Then E(ln(‖Xn‖) is finite for all indices
n, the inequalities

E(ln(‖Xn‖) − τ ≤ E(ln(‖Xn+1‖)

hold, where τ is defined above in Corollary 1, and

ln(‖Xn‖) − ln(‖Xn+1‖) = ln−(‖Xn‖−1‖Xn + σnNn‖) < +∞ a.s. (12)

Proof. By construction ‖Xn+1‖ ≤ ‖Xn‖ ≤ ‖X0‖ so that E(ln+(‖Xn+1‖)) ≤
E(ln+(‖X0‖)) < +∞. Now assume that ln(‖Xn‖) is integrable, hence 0 <
‖Xn‖ < +∞ a.s. and so, by Lemma 4, to obtain the inequalities and equal-
ity asserted in the proposition it is enough to prove that E(ln−(‖Xn‖−1‖Xn +
σnNn‖)) ≤ τ . But similarly to the end part of the proof of Theorem 1 we have
E(ln−(‖Xn‖−1‖Xn + σnNn‖)) = E(F (σn/‖Xn‖)) ≤ τ .
�

Now we pay attention to the particular case where σn = σ‖Xn‖ with σ > 0
fixed. The resulting (1 + 1)-ES is said to be scale-invariant, and is modeled by
the d-dimensional random process

Xn+1 = Xn + δn(Xn, IΩ)σ‖Xn‖Nn (n ≥ 0) . (13)

For convenience of the reader we collect the hypothesis that govern the scale-
invariant random process (13):

214 M. Jebalia, A. Auger, and P. Liardet

(HSI) The sequence of random vectors (Nn)n in R
d is i.i.d. with common

law N (0, Id), is independent of the initial random vector X0 and ln(‖X0‖)
has a finite expectation.

Notice that Assumption (HSI) implies in particular that for m ≥ n ≥ 0, Nm

is independent of Xn and by Proposition 1, ln(‖Xn‖) has a finite expectation.
The update rule (13) is not so realistic because in practice, at each step n, the
distance of Xn to the optimum is unknown. Nevertheless, we will show that the
stochastic process defined by (13) converges log-linearly for sphere functions and
that for σ = σF the convergence rate in log is equal to −F (σF) (= −τ). In other
words, the choice σn = σF ‖Xn‖ correspond to the adaptation scheme that gives
the optimal convergence rate for isotropic Evolution Strategies.

It is usual for studying stochastic search algorithms to consider log-linear
convergence of Xn by investigating the stability of ln (‖Xn+1‖/‖Xn‖). This idea
was introduced in the context of ESs by Bienvenüe and François [5] and exploited
in [6]. The process Xn given by (13) has a remarkable property expressed in terms
of orthogonality of the random sequences Yn = ln−

(∥∥∥ Xn

‖Xn‖ + σNn

∥∥∥
)

− F (σ):

Proposition 2. Consider the random variables

Yn := ln−
(∥∥∥

Xn

‖Xn‖ + σNn

∥∥∥
)

− F (σ)

where F is defined by (4) and let σ > 0. Under the hypothesis (HSI) the follow-
ings hold:

1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.
2. Let (Y ′

n)n≥0 be the sequence of random variables

Y ′
n := ln−(‖e1 + σNn‖) − F (σ).

The random variables Yn (n ≥ 0) are identically distributed and for every
n ≥ 0, Yn and Y ′

n follow the same distribution.
3. The sequence of random variables (Yn)n≥0 is orthogonal, i.e. for all indices

i, j, with i �= j one has E(Yi) = 0, E(Y 2
i) < +∞ and E(YiYj) = 0.

Proof. The isotropy of the standard d-dimensional normal distribution gives

E
(

ln−
(∥∥∥

Xn

‖Xn‖ + σNn

∥∥∥
)

| Xn

)
=

1
(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx

= F (σ)

hence E
[
ln−

(∥∥∥ Xn

‖Xn‖ + σNn

∥∥∥
)]

= E [F (σ)] and so, E(Yn) = 0. Let F2 : [0, ∞] →
[0, +∞[be defined by F2(∞) = 0 and, for t ∈ [0, +∞[,

F2(t) :=
1

(2π)d/2

∫

Rd

[
ln−(‖e1 + tx‖)

]2
e−

‖x‖2

2 dx . (14)

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 215

Similarly to the proof of Lemma 1, we prove that F2 is continuous, hence
bounded. Now, from the definitions of F and F2 one has

E(|Yn|2) = F2(σ) − (F (σ))2 < +∞ . (15)

This ends the proof of the first point.
The random vectors Yn and Y ′

n have the same distribution if their character-
istic functions are identical. But successively

E(eitYn | Xn) = e−itF (σ)E
(
eit ln−

(∥∥ Xn
‖Xn‖ +σNn

∥∥)
| Xn

)

=
e−itF (σ)

(2π)d/2

∫

Rd

eit ln−
(∥∥ Xn

‖Xn‖ +σx
∥∥)

e−‖x‖2/2dx

=
e−itF (σ)

(2π)d/2

∫

Rd

eit ln−
(∥∥e1+σx

∥∥)
e−‖x‖2/2dx

= E(eitY ′
n) .

Therefore E(eitYn) = E(E(eitYn | Xn)) = E(eitY ′
n). To finish the proof we show

the orthogonality property of the Yn (n ≥ 0). Let n and m be indices such that
n < m. The random vector Yn is σ(Xn, Nn)-measurable, so that

E(YmYn | Xn, Xm, Nn) = YnE(Ym|Xn, Xm, Nn) .

Using the independency of Nm with the random vectors. Xn, Nn and Xm, we
get

E(Ym|Xn, Xm, Nn) =
1

(2π)d/2

∫

Rd

(
ln− (∥∥ Xn

‖Xn‖ + σx
∥∥))

e−
‖x‖2

2 dx − F (σ)

=
1

(2π)d/2

∫

Rd

(
ln−(‖e1 + σx‖)

)
e−

‖x‖2

2 dx − F (σ) = 0 ,

that implies E(YmYn) = 0.
�

With the above notations define the random vectors Sn = Y0 + · · · + Yn and
S′

n = Y ′
0 + · · ·+Y ′

n. Under the hypothesis (HSI), the characteristic function of Sn

can be written as E(itSn) = E(E(itSn | X0, N0, . . . , Nn−1)) and so, E(itSn) =
E(itS′

n) = (E(itY ′
0))n+1. But the random vectors Yn are i.i.d. with expectation

0 and variance F2(σ) − F (σ)2 (see (15)). As a consequence, the central limit
theorem holds for both (Yn)n and (Y ′

n)n:

Theorem 2. Under the hypothesis (HSI) one has

lim
n→+∞P

(
ln(‖Xn‖) − ln(‖X0‖) + F (σ)n√

(F2(σ) − F (σ)2)n
≤ t

)
=

1√
2π

∫ t

−∞
e−

u2
2 du .

The pointwise stability of ln (‖Xn+1‖/‖Xn‖) is obtained by applying the follow-
ing Law of Large Numbers (LLN) for orthogonal random variables (see [10, p.
458] where a more general statement is given).

216 M. Jebalia, A. Auger, and P. Liardet

Theorem 3 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a
sequence of identically distributed real random variables with finite variance and
orthogonal, i.e., for all indices i, j, with i �= j one has E(Yi) = 0, E(Y 2

i) < +∞
and E(YiYj) = 0. Then

lim
n

1
n

n−1∑

k=0

Yk = 0 a.s.

We are now ready to prove the following main result

Theorem 4. Let σ > 0 and let (Xn)n be the sequence of random vectors satis-
fying the recurrence relation (13) with f(x) = g(‖x‖2) where g is an increasing
map. Assume that the hypothesis (HSI) holds. Then (Xn)n converges log-linearly
to the minimum, in the sense that

lim
n

1
n

ln
(‖Xn‖

‖X0‖

)
= −F (σ)(< 0) a.s. (16)

where F is defined by (4). The optimal convergence rate is obtained for σ =
σF := minF−1(maxF) (see Corollary 1).

Proof. In case σn = σ‖Xn‖ for all indices n the equality (12) becomes

ln ‖Xn+1‖ − ln ‖Xn‖ = − ln−
(∥∥∥

Xn

‖Xn‖ + σNn

∥∥∥
)

.

and after summing the equations for k = 0, . . . , n − 1, we obtain

1
n

(ln ‖Xn‖ − ln ‖X0‖) = − 1
n

n−1∑

k=0

ln−
(∥∥∥

Xk

‖Xk‖ + σNk

∥∥∥
)

.

Proposition 2 and Theorem 3 end the proof.
�

5 Discussion and Conclusion

Theorems 1 and 4 show that optimal bounds for the convergence rate of an
isotropic (1 + 1)-ES with multivariate normal distribution are reached for the
scale-invariant algorithm with σn = σF ‖Xn‖ for the sphere function, where σF

maximizes

F (σ) = E(ln− ‖e1 + σN‖) =
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e−
‖x‖2

2 dx .

From (12) and from the isotropy of the multivariate normal distribution N ,
it follows that finding σ maximizing F amounts to finding σ maximizing the
log-progress E(ln ‖Xn‖) − E(ln ‖Xn+1‖).

Most of the works based on the progress rate, consist in finding σ maximizing
estimations of the expected progress E(‖Xn‖) − E(‖Xn+1‖) (when d goes to in-
finity) [1,4]. Note that the definition of progress in those works does not consider

Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES 217

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Fig. 1. Left: Plot of the function σ �→ dF (σ/d) (Eq. (4)) versus σ for d = 5 (resp. 10,
30) and 0 ≤ σ ≤ 8. The upper curve corresponds to d = 5, the middle one to d = 10
and the lower one to d = 30. Note that the function F defined in (4) implicitly depends
on d. Using the more explicit notation Fd instead of F , the plots represent actually
σ �→ dFd(σ/d). For d = 10, we see that σF maximizing F (defined in Corollary 1)
approximately equals 0.13. The plots were obtained doing Monte Carlo estimations of
F using 106 samples.

Right: Twenty realizations of the scale-invariant algorithm on the sphere function for
d = 10. The y-axis shows the distance to the optimum (in log-scale) and the x-axis the
number of iterations n. The twenty curves below correspond to the optimal algorithm,
ie. σn = σF ‖Xn‖ for all n where σF equals to 0.13 (value maximizing the curve of F
on the left for d = 10). The twenty curves above correspond to 20 realizations of the
scale-invariant algorithm for σn = 0.3‖Xn‖. Observed, the log-linear convergence as
well as the optimality of the scale-invariant algorithm for σ = σF .

ln ‖Xn‖ and so is different from the one underlying our study. Assuming that
both definitions matches3, our results give an interpretation of this approach in
terms of lower bounds for convergence of ESs.

The lower bounds derived in this paper are tight. Consequently they can be
used in practice to assess the performances of a given step-size adaptation strat-
egy comparing the convergence rate achieved by the strategy with the optimal
one, given by the scale-invariant algorithm.

The numerical estimation of the optimal convergence rate −τ can be achieved
with a Monte Carlo integration: for different σ, F (σ) equals the expectation
E(ln− ‖e1 + σN‖). This expectation can be estimated by summing independent
samplings of the random variable ln− ‖e1 + σN‖. This is illustrated in Fig 1.

The analysis of the log-linear convergence carried out in this paper relies on
the application of the Strong Law of Large Numbers for orthogonal random
variables. This study uses deeply the invariance under rotations of the standard
d-dimensional multivariate normal distribution and does not cover directly the
usual case of stable Markov chains that will be investigated in future works.

3 This will be true asymptotically in the dimension d, though we do not prove it
rigorously in this paper.

218 M. Jebalia, A. Auger, and P. Liardet

Acknowledgments

The authors thank the referees for their constructive remarks on the previous
version that lead to this new version and are very grateful to Nicolas Mon-
marché for his encouragements. This work receives partial supports from the
ANR/RNTL project Optimisation Multidisciplinaire (OMD) and from the ACI
CHROMALGEMA.

References

1. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart
(1973)

2. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learn-
ing Probability Distributions in Continuous Evolutionary Algorithms - A Compar-
ative Review. Natural Computing 3, 77–112 (2004)

3. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9, 159–195 (2001)

4. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
5. Bienvenüe, A., François, O.: Global convergence for evolution strategies in spherical

problems: some simple proofs and difficulties. Theoretical Computer Science 306,
269–289 (2003)

6. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
Markov chains. Theoretical Computer Science 334, 35–69 (2005)

7. Auger, A., Hansen, N.: Reconsidering the progress rate theory for evolution strate-
gies in finite dimensions. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2006), pp. 445–452 (2006)

8. Teytaud, O., Gelly, S.S.: General lower bounds for evolutionary algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 21–31. Springer, Heidelberg (2006)

9. Jägersküpper, J.: Lower bounds for hit-and-run direct search. In: Hromkovič, J.,
Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665,
pp. 118–129. Springer, Heidelberg (2007)

10. Loève, M.: Probability Theory, 3rd edn. Van Nostrand, New York (1963)

Evolution Strategies for Laser Pulse

Compression

Riccardo Fanciulli1, Lars Willmes2,�, Janne Savolainen1, Peter van der Walle1,
Thomas Bäck2, and Jennifer L. Herek1,3

1 FOM Institute for Atomic and Molecular Physics (AMOLF)
Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

2 Natural Computing Group, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

3 Optical Sciences Group, MESA+ Institute for Nanotechnology, Twente University
Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Abstract. This study describes first steps taken to bring evolutionary
optimization technology from computer simulations to real world exper-
imentation in physics laboratories. The approach taken considers a well
understood Laser Pulse Compression problem accessible both to simu-
lation and laboratory experimentation as a test function for variants of
Evolution Strategies. The main focus lies on coping with the unavoidable
noise present in laboratory experimentation. Results from simulations are
compared to previous studies and to laboratory experiments.

1 Introduction

The use of Evolutionary Algorithms (EAs) is already widespread in several bran-
ches of science and engineering, whenever a process or product design involving
highly nonlinear and complex operating conditions needs to be optimized at
a pre-production stage of modeling or planning. In some cases, however, the
system to be optimized cannot be adequately modeled or it needs to adapt
to some (slowly) changing external parameters that cannot be predicted at a
design stage. In these cases, when feedback is measured directly from the physical
system, fitness evaluations will always be polluted by noise. The effect of this
noise on the performance of the EAs needs to be minimized as much as possible.
Generally speaking, one expects different EAs to respond differently to noise, and
even the same EA will display a different degree of robustness to noise depending
on the values of certain initial settings. In the present paper we report for the
first time a study on the effect of real world noise on two commonly applied
variants of EAs, namely Evolution Strategies (ES) using the CMA and the DR2
selfadaptation scheme.

Taking advantage of a physical experiment of laser pulse compression through
optimization (maximization) of the intensity of second harmonic generation (a

� The first two authors contributed equally to this paper.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 219–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

220 R. Fanciulli et al.

well understood process and an experimental set-up where noise can be moni-
tored and controlled), we have run theoretical and experimental comparisons of
CMA and DR2 as well as among different parameter settings of both algorithms.

Similar studies based on simulations of pulse shaping experiments have been
performed in [1,2]. However, in contrast to the work presented here, the earlier
simulations did not consider noise. Comparing results can reveal in how far algo-
rithm performance changes due to the addition of noise. Additionally, in this study
results of simulations are verified in the laboratory by physical experimentation.

2 Second Harmonic Generation (SHG) as Fitness
Function

The goal of our optimizations is to make the pulses coming out of our laser
as short as theoretically possible. In order to do that we send the laser pulses
through two devices that, at this point, we will consider as black boxes. First,
a control box (pulse shaper) acts on the pulses to lengthen or shorten them
depending on some optimization parameters [3]. Second, a monitoring box (non-
linear crystal) produces light at double the frequency of the input pulses by a
process called second harmonic generation (SHG) [4]. As we will see in more
detail later, the stronger the intensity of the SHG pulses, the shorter the initial
laser pulses will be. This allows us to use the intensity of the SHG pulses as
the fitness function for our EAs. Next we will go into a little more detail about
the system, the way to achieve control over the input pulses and the creation of
second harmonic light.

2.1 Introduction to Optical Second Harmonic Generation

A Conceptual Approach. The effect of SHG of a laser beam through a crys-
tal can be explained quite simply once some basic terminology is introduced.
Whenever a pulsed laser is considered one refers to its shape and duration in
time domain to characterize it. Imagining a plane being transversed by the laser
pulse and recording over time the intensity of the light going through such a
plane, the resulting plot of intensity vs. time is what is called the shape of the
pulse in time domain. Now, to explain the concept of SHG, we will start from the
idea that a pulse of light can be described as a superposition of sinusoidal func-
tions with different frequencies and phases (Fourier description or description in
frequency domain). The number of frequencies (i.e. colors) that are required to
describe the pulse depends on its duration and on the complexity of its shape.
The set of necessary frequencies is called the bandwidth of the pulse. The plot of
the amplitude of these sinusoidals vs. their frequency is defined as the spectrum
of the pulse, while the dependence of the phase term inside each sinusoidal on its
associated frequency is the phase profile of the pulse. The spectrum tells us how
much weight each sinusoidal has in describing the pulse, while the phase profile
has to do with the relative delay of each frequency component with respect to a
fixed reference (usually the frequency with the highest amplitude).

Evolution Strategies for Laser Pulse Compression 221

For our purpose a so called SHG crystal can be regarded as a black box
in which all frequency components within the pulse spectrum are combined to
give new sinusoidal components characterized by a frequency that is the sum of
the input frequencies. When combining all these frequencies, the phase in each
sinusoidal function plays a crucial role in determining the intensity of the SHG
light in output.

A Mathematical Approach. Defining the pulse shape in time domain as
E(t) and its corresponding spectrum as Ẽ(ω), the SHG pulse in output from the
crystal is given simply by:

ESHG(t) = E2(t) (1)

In frequency domain, one can use the property of the Fourier transforms that
relates a simple product of two functions in one domain to the convolution
integral of the two functions separately-transformed in the other domain:

Ẽ(ω) =

∞∫

−∞
ẼSHG(ω − ω′)Ẽ(ω′) dω′. (2)

If we change variable ω′ = ω+ω′′

2 , we find that Eqn. 2 can be rewritten as:

ẼSHG(ω) =

+∞∫

−∞
Ẽ

(
ω − ω′′

2

)
Ẽ

(
ω + ω′′

2

)
dω′′. (3)

Equation 3 highlights better the fact that every frequency component ω in the
ẼSHG spectrum is the result of the combination of a (infinite) number of frequency
couples ωleft = ω−ω′′

2 and ωright = ω+ω′′

2 whose center is located in ω.

2.2 The Role of the Phase

The last step to understand our experiment of SHG optimization consists in
recognizing the importance of the phase of the input pulse for the intensity of
the SHG pulse in output. In our mathematical approach to SHG, the phase
terms have been hidden until now in the functions E(ω).

In the next equations we pull the phases out.

ẼSHG(ω) =

+∞∫

−∞
|Ẽ

(
ω − ω′′

2

)
|eiφ

(
ω−ω′′

2

)

|Ẽ
(

ω + ω′′

2

)
|eiφ

(
ω+ω′′

2

)

dω′′ (4)

φ(ω) = φ0(ω) + φsh(ω) (5)

In Eqn. 5, now, the phase profile of the input pulse is explicitly written as the
sum of two conceptually very different terms, the natural term φ0(ω) and a
computer-controlled term φsh(ω) introduced by means of our pulse shaper. The
effect of the phase terms on the integral can be immediately understood if we

222 R. Fanciulli et al.

regard the amplitude of the integrand as the length of a vector (length dependent
on ω) and the phase as the direction of such vector (also dependent on ω). The
best scenario that optimizes the output of the integral is then clearly when all
the vectors are pointing in the same direction. This case translates in all the
vectors having the same phase (modulus 2π), which is tantamount to having a
constant phase profile φ(ω) in the input pulses. In an ideal pulse the term φ0(ω)
should be constant as all frequencies should have the same phase when coming
out of the laser. Unfortunately, in real life applications, as the pulse travels
through optical tools like amplifiers, non-linear crystals for frequency tuning,
simple lenses, beam splitters etc., it picks up a significant frequency-dependent
phase profile that severely reduces the amount of SHG light coming out of our
monitoring black box.

2.3 Fitness and Free Parameters of the Search

We define the fitness parameter for our evolutionary search as the total intensity
of the SHG light generated in the crystal. In mathematical terms this would be:

F =

+∞∫

−∞
|ẼSHG(ω)|2dω (6)

This function needs to be optimized by adding an adequate phase profile φsh(ω)
with our computer-controlled pulse shaper. In both our experiments and sim-
ulations, this additional phase function φsh(ω) is described by 320 parameters
free of varying within a [0, 2π] range. The result of optimizing a fitness function
F , as defined above, is to make the total phase function φ(ω) = φ0(ω)+ φsh(ω)
a constant (modulus 2π), which, in return, yields the shortest possible pulse for
the given bandwidth (transform-limited (TL) pulse).

2.4 Properties of the Fitness Function, Search Landscape and
Real-Life Noise

In this special case it is easy to prove that, modulus 2π, there is only one optimal
solution with no local solutions. This lack of false directions or secondary solu-
tions would seem to make the problem easy to solve. However, as we will show
both with simulations and laboratory data, the most commonly used evolution-
ary algorithms do not always converge to the optimal, constant phase, solution.
This behavior is expected in the presence of noise in the fitness function F . In the
following sections we will show a comparison between CMA and DR2 algorithms
and we will try to find their best settings to handle a (realistic) noise level. After
estimating the noise level of the fitness function F in the laboratory, we mod-
eled the SHG process based on Eqns. 3 and 6 and we introduced a random noise
on top of the F function according to Eqn. 7 and 8. Due to software require-
ments the original problem had to be turned from a maximization problem to a

Evolution Strategies for Laser Pulse Compression 223

minimization problem. Equation 8 also expresses the fact that F−1 was used as
a fitness function1.

nc ∼ 5
29

· U(0, 1), nv ∼ 0.05
29

· U(0, 1) (7)

Fopt = F−1 · (1 + nc) + nv (8)

where U(0, 1) denotes uniformally distributed random numbers from the interval
[0, 1).

3 Evolution Strategies

For this study two algorithms from the class of derandomized Evolution Strategies
(ES) were applied. The defining feature of derandomized Evolution Strategies is a
deterministic adaptation mechanism that derives new step size information from
old step sizes and the magnitudes of successful mutation events.

The two variants applied here differ mainly in the distribution information
that is adapted and used for creation of new offspring individuals: The sim-
ple Derandomized Adaptation (DR2) as suggested in [5] basically adapts the n
variances of an n-dimensional Gaussian distribution while the more advanced
Covariance Matrix Adaptation (CMA) as in [6] uses the n(n + 1)/2 variances
and covariances. Though the details of the two adaptation schemes differ they
are built on identical concepts. The core idea of derandomized step size adapta-
tion is to compare the size of actual realizations of mutation events (|z|) to the
expected value of the originally proposed distribution (E[|z|]). Let σ denote a
parameter of the mutation distribution, and let σ′ = A(σ, z, θ) be the adapted
parameter derived from the old σ, the successful mutation event z and some
internal parameters θ. Then a derandomized adaptation function A (i.e. here
either DR2 or CMA) basically implements a deterministic method that ensures
the following conditions:

E[|z|] ≥ |z| −→ σ ≥ σ′ = A(σ, z, θ) (9)
E[|z|] < |z| −→ σ < σ′ = A(σ, z, θ) (10)

That means that whenever a successful mutation is observed whose magnitude
is smaller than what would be expected from the current step size the step size
will be reduced and vice versa.

To stabilize the adaptation process both DR2 and CMA use the concept of
cumulation path which means that the random variable z used for adaptation
is not directly the latest single successful mutation event but a weighted sum of
successful mutations stretching over multiple generations. Therefore z needs to
be updated with successful mutation events m by

z′ = cm + (1 − c)z (11)

where c ∈ [0, 1] is an algorithm specific constant2.
1 For future studies we would rather choose −F , but since F is strictly positive using

F −1 is a feasible approach.
2 c is usually assumed to depend on problem dimensionality.

224 R. Fanciulli et al.

The implementations of DR2 and CMA used for this study also share the use
of weighted recombination as introduced in [6]. Although the DR2 algorithm was
originally suggested as a (1, λ) strategy without recombination the adaptation
scheme is sufficiently general to allow application of weighted recombination, i.e.
new individuals are created by recombination

x′ = x1:μ · w (12)

where x1:μ denotes the matrix of the μ best column vectors of design variables
and w is a weights vector with

wi =
log(μ + 1) − log(i)∑

wi
, 1 ≤ i ≤ μ. (13)

After recombination individuals are mutated by

m ∼ N (0, Σ) (14)
x′′ = x′ + m (15)

where m ∼ N (0, Σ) denotes sampling m from a Gaussian distribution with
expectation 0 and covariance matrix Σ.

Handling Box Constraints. As already mentioned in Section 2.4, optimal
solutions to the SHG problem are unique modulus 2π. This introduces a cer-
tain difficulty for derandomized Evolution Strategies, since a successful muta-
tion event might appear to be big on first sight, but reduce to a small change
modulus 2π. In this situation the ES will falsely consider a too big mutation as a
successful event. To avoid this kind of situation the Gaussian mutation operator
was slightly extended to ensure 0 ≤ xi ≤ 2π for all optimization variables xi.

The basic idea of a mutation is a small change to the original data, such
that evolution proceeds as a series of minor changes rather than a big singular,
dramatic change. This is one of the main reasons for using Gaussian distributions
as mutation operators in Evolution Strategies [7]. Since Gaussian distributions
are at least theoretically unbounded the usual mutation operators as defined in
Eqns. 14 and 15 cannot assure upper or lower bounds on the outcoming, mutated
optimization variable x. Assume box constraints of the form lb ≤ x ≤ ub, where
lb and ub denote lower and upper bounds on x, respectively. We propose a repair
method working on top of the usual Gaussian mutation, where the following
conditions should hold:

1. Whenever an infeasible Gaussian mutation event is detected, the new muta-
tion operator should yield a mutation that is smaller or equal to the Gaussian
mutation event. By doing so, we assume that the Gaussian mutation event
always classifies as a small change, and ensuring that the new mutation event
is even smaller and therefore qualifies as a mutation like small change.

2. Whenever an infeasible Gaussian mutation event is detected, the new mu-
tation operator should create a mutation in the same direction, i.e. if the

Evolution Strategies for Laser Pulse Compression 225

Gaussian mutation event increased x then the new mutation event should
also do that and vice versa. This is different from a simple resampling ap-
proach, where Gaussian mutations are performed repeatedly until a feasible
value is generated. Resampling biases resulting values away from the interval
bounds, which is undesirable.

To implement this we suggest to mutate Gaussian first, and whenever that yields
infeasible values, to replace the Gaussian sampling by a uniform sampling in
the interval given by the original x and the respective bound violated by the
Gaussian mutation event. E.g. if the Gaussian mutation violates lb the mutation
samples uniformly in the interval [lb, x]. Doing so of course assumes that x is
always feasible, but that should not be problematic by initializing feasibly. This
approach is formalized in the following equations:

m0 ∼ N (0, 1) (16)

x′ =

⎧
⎨

⎩

x + s · m0 if lb ≤ x + s · m0 ≤ ub
x + U(0, 1) · (x − lb) if x + s · m0 < lb
x − U(0, 1) · (ub − x) if x + s · m0 > ub

(17)

m = (x′ − x) · s−1 (18)

where U(0, 1) denotes sampling uniformally from [0, 1). Equation 18 is required
for path accumulation (Eqn. 11) during derandomized adaptation. For CMA
and DR2 the repair mechanism simply pretends that the mutation event was
originally created by Gaussian mutation, such that search distributions can be
adapted appropriately.

Derandomized Adaptation (DR2). The derandomized adaptation approach
DR2 used in this study was first introduced in [5]. For an n-dimensional opti-
mization problem it uses n + 1 strategy or step size parameters, where one (σ0)
defines the global width of the Gaussian search distribution and the remaining
ones (σi, 1 ≤ i ≤ n) define the variances of n independent Gaussian distributions
used to mutate the corresponding n optimization variables. Equation 19 shows
the working principal of the adaptation scheme using the accumulated path z as
defined in Eqn. 11.

σ′
0 = σ0 · exp

(
c1

(
|z|
c2

− E[|z|]
))

, σ′
i = σi · exp

(
c3

(
|zi|
c4

− E[|zi|]
))

(19)

where E[|z|] and E[|zi|] denote approximations to the expected value of the
length of the z vector and the absolute value of its components, respectively,
and c1,...,4 are normalization constants. For further details sees [5,8]3.

Covariance Matrix Adaptation (CMA). The following equations give a
bird’s eye view of the main aspects of the Covariance Matrix Adaptation scheme.
3 In [5] the adaptation of the local step size σi in Eqn. 19 has a slightly different form,

yet in our experience both versions perform equally well.

226 R. Fanciulli et al.

Further details, especially on the vastly simplified setting of the various normal-
ization constants, can be found in [6]. Consider Σ the covariance matrix to be
adapted and B the corresponding matrix of eigenvectors and D the correspond-
ing eigenvalues, and let N (μ, Σ) denote a Gaussian random variable with ex-
pectation μ and covariance matrix Σ. The eigenvectors and eigenvalues are used
for rotation and scaling such that a vector of independently N (0, 1) distributed
Gaussian random variables can be turned into a vector of N (0, Σ) distributed
Gaussian random variables and vice versa. Assume further that m0,1 is the vec-
tor of N (0, 1) distributed Gaussian random variables that happened to be a
successful mutation4.

CMA first of all adapts a global scalar step size σ0 that determines the overall
width of the next search distribution. To do so CMA compares the length of
the accumulated successful mutation information vector to its expected value
E[|z′σ0

|].

z′σ0
= c1zσ0 + c2Bm0,1, σ′

0 = σ0 exp
(

c3

(|z′σ0
|

E[|z′σ0
|] − 1

))
(20)

The actual covariance matrix is adapted after accumulation by adding a rank
one matrix yield from multiplying the accumulated path information by itself.

p′Σ = c4pΣ + c5BDm0,1, Σ′ = c6Σ + c7p
′
Σp′TΣ (21)

4 SHG Optimization on Simulations

The simulation study considers the following parameters of the optimization
algorithms:

Adaptation Mechanism. The core method implementing self adaptiveness of
the Evolution Strategy.

Number of Parents. The μ parameter in a (μ, λ) Evolution Strategy
Number of Offspring. The λ parameter in a (μ, λ) Evolution Strategy
Initial Step size. The magnitude σ0 of the initial step sizes, i.e. width of the

search distribution.

These parameters are probably the most frequently used parameters to tune
Evolution Strategies. Although by now there are useful suggestions available for
automatically setting population sizes ([6]) these heuristics are not necessarily
applicable for noisy functions. It has been observed before ([9]) that population
sizes are highly influential for noisy fitness functions. From early on the numbers
of parents and offspring have not been considered as independent parameters
(see e.g. [7]), it has rather been assumed that the ratio of μ and λ is a key
parameter. Therefore, in this simulation study, combinations of a number of
parents μ and the parent to offspring numbers ratio μ/λ were tested rather than

4 In accordance with Eqns. 14 and 15 m = BDm0,1 holds true.

Evolution Strategies for Laser Pulse Compression 227

combinations of μ and λ directly. The following parameter values were combined
for the simulation study:

μ ∈ {1, 5, 10, 20},
μ

λ
∈

{
1
2
,
1
4
,

1
10

}
, σ0 ∈ {0.2, 0.1, 0.01}

Table 1 summarizes some of the results achieved with simulation runs. First
of all the table contains the best parameter sets detected. As quality measure
the median of the best fitness value recorded in 15 repetitions of the same op-
timization run was used. Table 1 also shows the mean, minimum, maximum,
and standard deviation of the 15 best fitness values associated with each pa-
rameter set. Additionally some of the worse results are listed for reference. Due
to limited space not all results can be given. It is obvious from the table that
with the exception of the last row there are no trials listed using the smallest
initial step size of σ0 = 0.01. It turned out that almost all optimizations using
this small step size achieved only very bad results. This can be seen in Table 2,
where performance metrics were aggregated over all results with identical initial
step size. The aggregation averages over very differently performing strategies,

Table 1. Performance of different parameter settings after 5000 evaluations showing
median (Median), mean (Mean), minimum (Min), maximum (Max), and standard
deviation (Std) of the best fitness values of 15 repeated optimization runs. The Rk
column indicates the position of the row if ordered by the respective value. Rows
marked with � were tested in the laboratory.

Alg μ λ σ0 Median Rk Min Rk Max Rk Mean Rk Std Rk
� CMA 20 40 0.10 2.471 1 2.207 2 3.117 2 2.525 1 0.229 4
� DR2 20 80 0.20 2.703 2 2.073 1 3.932 9 2.834 3 0.532 13

CMA 20 40 0.20 2.716 3 2.441 4 3.114 1 2.747 2 0.210 3
CMA 10 40 0.10 2.876 4 2.515 6 3.928 8 3.024 5 0.462 11

CMA 10 20 0.10 2.937 5 2.453 5 3.291 3 2.981 4 0.237 5
DR2 10 100 0.20 2.938 6 2.432 3 6.258 22 3.248 8 0.988 27
CMA 10 20 0.20 3.018 7 2.635 7 3.759 7 3.047 6 0.355 8
DR2 10 40 0.20 3.125 8 2.740 8 3.613 4 3.192 7 0.271 7

CMA 20 80 0.10 3.336 9 2.989 13 3.739 6 3.317 9 0.188 1
CMA 5 20 0.10 3.340 10 2.797 9 5.156 15 3.543 11 0.588 15
CMA 10 40 0.20 3.415 11 3.165 17 3.719 5 3.446 10 0.193 2
DR2 20 40 0.20 3.607 12 3.093 15 6.656 23 4.014 16 1.130 30

� DR2 5 50 0.10 4.043 18 2.963 12 5.537 16 3.969 15 0.733 21
� CMA 5 10 0.10 4.256 21 3.835 24 4.970 12 4.275 20 0.266 6
� DR2 20 40 0.10 7.256 32 5.025 30 12.497 31 7.477 32 2.010 42

DR2 1 10 0.20 9.886 35 7.269 35 12.513 32 9.993 35 1.669 40

DR2 1 10 0.10 10.308 36 7.254 34 13.978 35 10.168 36 1.974 41
CMA 1 10 0.10 11.282 37 8.758 39 16.961 38 12.198 37 2.336 44
CMA 1 10 0.20 13.553 38 9.254 40 15.974 37 13.032 38 2.195 43

� CMA 20 40 0.01 16.967 42 14.955 45 18.409 40 16.747 40 1.030 28

228 R. Fanciulli et al.

Table 2. Performance of initial stepsize values (σ0) (Column headings as in Tab. 1)

σ0 Median Rank Min Rank Max Rk Mean Rank Std Rank
0.10 5.16 1 2.21 2 74.46 2 15.08 2 20.67 3
0.20 5.52 2 2.07 1 72.40 1 14.75 1 20.13 1
0.01 26.97 3 13.15 3 83.11 3 35.84 3 20.28 2

as can be seen from the respective minimum, maximum, and standard deviation
columns. Still there seems to be a dramatic difference in the mean and median
values for σ0 ∈ {0.1, 0.2} on the one hand and σ0 = 0.01 on the other hand.

Coming back to the results of Table 1 significant differences between the
SHG Problem with and without added noise can be seen. While in [2] the
(1,10)-ES using DR2 adaptation outperformed a (1,10)-ES using CMA adap-
tation, which itself outperformed an (8,17)-ES using CMA, the addition of noise
clearly discards the (1,10)-Strategies, which finished with ranks 35-38. Interest-
ingly though, within the set of (1,10)-Strategies DR2 still performs better than
CMA, so one might conclude that DR2 manages the basic characteristics of
the SHG problem more successful than CMA, without noise changing this big
picture for a (1,10)-ES.

From Table 1, no clear answer to the question of which adaptation scheme
to prefer can be deduced. Although the table contains more well performing
results based on CMA than on DR2, the second best performing strategy uses
DR2. The fact that there are more rows filled with CMA results than with DR2
results basically means that CMA is less sensitive to its parameter settings, i.e.
it is less critical to determine good population sizes for CMA than it is for DR2.
In general, a certain improved reliability turns out to be an advantage of CMA
that is also visible in the standard deviation column of Table 1. Apart from less
sensitive parameter settings CMA’s higher reliablity can also be seen in smaller
variance of optimization results. With the exception of the (10,40)-ES using DR2
all CMA results have considerably less spread than their DR2 counterparts.

5 SHG Optimization in the Laboratory

One of the main motivations for this study apart from studying the influence
of laboratory noise on optimization performance was to assess the transfer of
knowledge gained from simulated optimization runs to real world laboratory
experimentation. This is largely because laboratory time is considerably more
expensive and restricted than computation time. A single optimization run in
the laboratory takes up to 30 minutes, neglecting considerable time to set up
the experiment correctly. Due to limited laboratory infrastructure optimization
runs cannot be parallelized which is most easily done with simulations. So in the
light of limited experimentation time available for this study we decided to trade
widespread parameter testing for statistical significance, and ran multiple repe-
titions of a limited number of paremeter settings in the laboratory. In order to
not bias results by selecting only the best parameter settings for both CMA and

Evolution Strategies for Laser Pulse Compression 229

Table 3. Performance of different parameter settings in laboratory experimentation. L̄.

denote average performance of laboratory experiments, S̄. denotes average performance
of simulation experiments. {S̄, L̄}� denote the best average performance achieved with
the respective adaptation scheme.

Alg μ λ σ0 L̄ S̄ L̄/L̄� S̄/S̄�

CMA 20 40 0.1 70.42 2.47 1.00 1.00
CMA 5 10 0.1 142.86 4.26 2.03 1.72
CMA 20 40 0.01 500.00 16.97 7.10 6.87

DR2 20 80 0.2 156.25 2.70 1.00 1.00
DR2 5 50 0.1 222.22 4.04 1.42 1.50
DR2 20 40 0.1 250.00 7.26 1.60 2.68

DR2, the best, a mediocre, and a rather bad setting as found in the simulations
were tested. In Table 1 these settings are marked with a 	.

Table 3 summarizes the results achieved in the laboratory together with the
respective simulation experiments. For technical reasons the numerical values
for simulations and experiments in the table do not match exactly. To extract
more meaningful information on the link between simulations and experiments,
we separately normalized both type of results to their best value. Comparing
these ratios in the last two columns of Table 3 we can see how the results of
simulations and experiments are strikingly similar.

In contrast to the simulation results, though, CMA yields better results than
DR2, except when used with the much too small step size of σ0 = 0.01. The issue
of too small initial step size is likely to be more problematic in the laboratory
than it was for simulations, since there are potentially additional sources of noise
acting on the inputs that were not covered during simulations. Too small initial
step sizes may easily lead to variable changes on the same scale as the noise,
which makes optimization practically impossible.

6 Conclusions and Outlook

In this study we compared two different adaptation schemes of Evolution Strate-
gies, namely DR2 and CMA, together with variations of their parameter settings
in a prototype laboratory situation. We found significant differences between sim-
ulations with and without added noise. Nonetheless, the results from the noisy
simulations transferred nicely to the laboratory, as verified by a number of exper-
iments. Although both variants of the Evolution Strategy in principle produced
good results both in simulations and in the laboratory, CMA turned out to be
the more reliable algorithm. Since reliability is of fundamental importance in the
laboratory, CMA is considered the method of choice for future experimentation.

The results of this study suggest that Second Harmonic Generation can be
used as a prototype application for online control of laboratory experiments by
Evolutionary Algorithms. The obvious next steps are improvement of algorithm
performance for the targeted noisy fitness functions on the one hand, using SHG

230 R. Fanciulli et al.

as a primary test function. On the other hand, more challenging applications
can be addressed with the knowledge gained by the SHG experiments. Espe-
cially laboratory optimization experiments for which today no feasible computer
simulations are available, may be tackled using the methods and insights avail-
able from continuing improvement of the algorithms.

Acknowledgements

This work is part of the research program of the Stichting voor Fundamenteel On-
derzoek der Materie (FOM), which is financially supported by the Nederlandse
organisatie voor Wetenschappelijk Onderzoek (NWO).

References

1. Shir, O., Siedschlag, C., Bäck, T., Vrakking, M.: Evolutionary algorithms in the
optimization of dynamic molecular alignment. In: G.G.Y., et al, (ed): IEEE Congress
on Evolutionary Computation, Vancouver, BC, Canada, pp. 2912–2919. IEEE Press
Los, Alamitos (2006)

2. Shir, O.M., Bäck, T.: The second harmonic generation case-study as a gateway for
ES to quantum control problems. In: Lipson, H. (ed.) Genetic and Evolutionary
Computation Conference, ACM, New York (2007)

3. Weiner, A.M.: Femtosecond pulse shaping using spatial light modulators. Review of
Scientific Instruments 71(5), 1929–1960 (2000)

4. Trebino, R.: Frequency-Resolved Optical Gating: The Measurement of Ultrashort
Laser Pulses. Kluwer Academic, Dordrecht, The Netherlands (2002)

5. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-local
use of selection information. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 189–198. Springer, Heidelberg (1996)

6. Hansen, N., Ostermeier, A.: Completley derandomized selfadaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

7. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)
8. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal

mutation distributions in evolution strategies: The generating set adaptation. In:
Eshelman, L. (ed.) Sixth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Francisco CA (1995)

9. Beyer, H.G.: Evolutionary Algorithms in Noisy Environments: Theoretical Issues
and Guidelines for Practice. Computer Methods in Applied Mechanics and Engi-
neering 186(2–4), 239–267 (2000)

N. Monmarch\'{e} et al. (Eds.): EA 2007, LNCS 4926, pp. 231 – 242, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fully Three-Dimensional Tomographic Evolutionary
Reconstruction in Nuclear Medicine

Aurélie Bousquet1, Jean Louchet1, and Jean-Marie Rocchisani1,2

1INRIA Rocquencourt/ COMPLEX, Domaine de Voluceau, B.P. 105. 78153
Le Chesnay, France

2 Paris XIII University, UFR SMBH & Avicenne hospital, 74 rue Marcel Cachin. 930013
Bobigny, France

aurelie.bousquet@inrets.fr, jean.louchet@inria.fr,
jean-marie.rocchisani@{avc.aphp.fr, inria.fr}

Abstract. 3-D reconstruction in Nuclear Medicine imaging using complete
Monte-Carlo simulation of trajectories usually requires high computing
power. We are currently developing a Parisian Evolution Strategy in order to
reduce the computing cost of reconstruction without degrading the quality of
results. Our approach derives from the Fly algorithm which proved successful
on real-time stereo image sequence processing. Flies are considered here as
photon emitters. We developed the marginal fitness technique to calculate the
fitness function, an approach usable in Parisian Evolution whenever each
individual's fitness cannot be calculated independently of the rest of the
population.

Keywords. Computer Tomography, Emission Tomography, Artificial Evolution,
Parisian Evolution, FlyAlgorithm, Compton scattering, Nuclear Medicine.

1 Introduction

1.1 Nuclear Medicine

In Nuclear Medicine diagnosis, radioactive substances are administered to patients using
a tracer molecule containing a radioactive marker. The distribution of radioactivity in the
body is then estimated from the radiation detected by gamma cameras. In order to get an
accurate estimation, a three-dimensional tomography is built from two-dimensional scin-
tigraphic images.

Some artefacts due to scattering and absorption are then to be corrected. Existing
analytical and statistical methods are costly and require heavy computing. The main
variants of Nuclear Imaging are SPECT (Single Photon Emission Computed Tomo-
graphy) and PET (Positon Emission Tomography). Radioactive tracers are photons or
positons emitters. Compared to other tomography techniques as X-ray scanning or
Magnetic Resonance Imaging, Nuclear Imaging brings useful information on biologi-
cal and metabolic function. The marker most widely used in SPECT is Technetium
99m (99mTc), with a half-life of about 6 hours and emitting photons at an energy
level of 140keV, which is well adapted to current gamma-camera technology. In

232 A. Bousquet, J. Louchet, and J.-M. Rocchisani

planar mode, the gamma camera is fixed and collects a plain two-dimensional projec-
tion of the radioactive tracer concentration. In tomographic mode, the gamma camera
rotates around the patient. A gamma camera can also be used in static or dynamic
mode, allowing to monitor how the radioactive tracer concentration evolves in the
body. The main limitations of this technology are:

− sensor performance (resolution, sensitivity),
− physical effects (absorption, scattering, noise),
− motion of patient (long exposure times),
− accuracy of reconstruction algorithms.

1.2 The Compton Effect and Its Consequences

Rayleigh effect occurs when a photon meets an atom without disturbing its electronic
structure. The photon then gets deviated but keeps its original energy. With high en-
ergy photons, this effect is negligible except in the gamma camera crystal itself. In
photoelectric interaction, our photon is completely absorbed by an atom which then
emits a fluorescence photon to carry the excess energy. This is the basic process of
photon detection in the gamma camera.

The Compton effect is by far the dominant perturbation during the transit of high
energy photons from the tracer through the body. Both absorption and scattering in-
duce important effects on image quality, as they vary with the nature and thickness of
the part of the body involved. Compton scattering with important energy losses will
have a larger than average deviation angle.

The photons with an energy level close to the initial level have a small probability of
having been deviated. However, the energy resolution of gamma cameras is not suffi-
cient to always ascertain whether a photon has been deviated or not. In order to correct
attenuation, it is possible to use a X-ray CT scanner image which gives an accurate rep-
resentation of the attenuation map in the body; however, a uniform attenuation map may
be used when the organ is homogeneous enough. On the other hand, scattering is more
difficult to deal with. The main algorithm families [1, 2, 7] are:

− subtraction algorithms using energy windows to filter primary electrons,
− deconvolution algorithms which consider scattering is a uniform process,
− recombination algorithms (based e.g. on principal component analysis).

Our long-term aim is to correct Compton scattering using Evolutionary Computation
in order to get faster results with a level of quality similar to present high cost algo-
rithms. The first step presented in this paper is the validation of an evolutionary 3-D
reconstruction algorithm with a simplified propagation model, allowing future re-
placement of the propagation module with a more accurate model [6] including the
modelling of Rayleigh and Compton effects. Contrary to standard reconstruction algo-
rithms: Filtered back projection (FBP) and Ordered Subset Expectation Maximisation
(OSEM) where the problem is split into parallel 2-D slices and not all sensor data are
used, our method pertains to the family of "fully 3-D" reconstruction methods.

Fully 3D Tomographic Evolutionary Reconstruction in Nuclear Medicine 233

Fig. 1. Detection spectrum of gamma photons

Fig. 2. Contributions of primary and scattered photons

2 A Parisian Evolutionary Approach

2.1 The Classical Fly Algorithm

The original Fly Algorithm [5] is a 3-D evolutionary reconstruction method based on
the Parisian Approach. Each individual ("fly") represents a point of space and the
whole population of flies is the representation of the object detected. It uses a fitness
function based on the consistency of grey level properties of the projections of the fly
on the images taken by each camera. It has been first used on stereovision [4].

Here, the semantics of the fly is enriched as we will now consider the fly is a pho-
ton emitter. Again, the algorithm evolves a population of flies which eventually con-
verge to the three dimensional shape to be detected. While this approach has been
validated in its principles, computation costs were still high due to the complexity of
physically modelling random photon trajectories, and the reconstruction results were
not quite up to the vquality expected or obtained through more classical methods.
Following this, we developed an innovative evaluation function based on a specific
approach to fitness calculation, called "marginal fitness", giving encouraging results
on both simplified synthetic data and real scintigraphic images.

2.2 Monte-Carlo Simulation

Monte-Carlo simulation [3] is well adapted to nuclear medicine with its particle emis-
sion, propagation and detection random processes. Each photon trajectory is

234 A. Bousquet, J. Louchet, and J.-M. Rocchisani

processed separately. The photon is propagated through space cells where it can be
absorbed or scattered conforming to suitable random depending on the local environ-
ment. Each photon thus carries his own including which fly was its source. In a first
approach, we considered the patient's body as a homogeneous cylinder. A later, more
refined approach consists of using an absorption map in function of the material
involved.

2.3 Building a Fitness Function

Radioactive tracers are only present in the central search zone, which contains the
patient's body. The "screens" are the different positions of the gamma camera crystals.
A fly is defined as a photon emitter and is described by its coordinates (x, y, z).

Fig. 3. Modeling the tomographic system: lateral view (left), axial view (rigth)

We first validated the principles of an evolutionary approach using a simplified,
homogeneous model of the body, and a bonus-based fitness function: each simulated
photon that reached a detector cell had a contribution to the fitness of its originator fly
proportional to the actual number of photons received by this cell. The high number
of Monte-Carlo simulations led to unrealistic processing time. In a second approach,
in order to speed up processing, we defined a number of archetypal flies characterised
by their distance from the detectors, while the search space was still considered ho-
mogeneous. Monte-Carlo simulation was performed on each archetypal fly and the
results stored to be used as a lookup table in the evolutionary process. Evolution was
then run calculating fitness values based on pre-calculated Monte-Carlo results, lead-
ing to less than half the original computation time. However this approach cannot take
into account the heterogeneity of matter and it lacks precision, so that we had to
concentrate on developing a fitness function that be fast, accurate and open to
heterogeneity.

The overall process is summarized by the following diagram:

Fully 3D Tomographic Evolutionary Reconstruction in Nuclear Medicine 235

Fig. 4. The 3D Evolutionary reconstruction

Bonus Fitness. While reducing the number of photons emitted by each fly to only 4
photons initially oriented orthogonally to the detectors gave a substantial improve-
ment in calculation time, experience showed an important backside of bonus-based
fitness: in presence of several bright objects, the flies will tend to accumulate on the
brightest or biggest object at the expense of the other ones. This is illustrated on the
following images: the 3-D scene consists of two cubes of different size and bright-
ness; the image on the left shows what an ideal reconstruction algorithm should have
given, and the right image what it actually gave using bonus fitness. The same behav-
iour was found on all similar data.

Fig. 5. Bonus fitness: loss of smaller objects (left: ideal image; right: actual reconstruction, side
view)

Marginal Fitness. Rather than evaluating a fly independently of its context, we intro-
duced marginal evaluation by defining the fitness of a particular fly as its contribution
(positive or negative) to the whole population's Fitness:

fitness (i) = Fitness (population - { i}) - Fitness (population) (1)

To this end, the Fitness of a given population is given by the likeness of the projection
images generated through Monte-Carlo simulation, with the actual images given by
the sensors. As the grey level of the synthesised images depends on the number of
flies, a normalization factor must be introduced in order to compare the natural and
synthetic projections.

236 A. Bousquet, J. Louchet, and J.-M. Rocchisani

Fig. 6. Marginal fitness: better detection of smaller objects (left: ideal image; right: actual re-
construction), side view

Fig. 7. Top views of results with bonus (left) and marginal (right) fitness functions

Rotating Screens. Rotating screens are often used in SPECT imaging, with up to 128
screen positions. In order to exploit all the data while keeping memory requirements
down, only 4 screens are used for fitness calculation and periodically rotated.

3 Results

The following results have been calculated from real SPECT images using the algo-
rithm described above. In the current state of research, we did not include detailed
Monte-Carlo simulation of absorption and Compton scattering into these experiments
which only demonstrate the validity of the fly-based reconstruction algorithm. Inte-
gration of a fast Monte-Carlo simulation into the algorithm will be necessary to obtain
high quality results.

3.1 Example 1

The objects are three cylinders with different brightness and diameter. The parameters
are given in table 1.

As this is usual with Parisian Evolution, high mutation rates are used while cross-
over is not always essential to performance.

Fully 3D Tomographic Evolutionary Reconstruction in Nuclear Medicine 237

Table 1. Parameters used in synthetic data reconstruction

projection image size 128*128

number of flies 266000

number of screens used at each generation 4

total number of screens 128

 screens rotated every 5 generations

 number of generations 1000

probability of mutation 50,00%

decrease of pm per generation 5,00%

probability of crossover 0,00%

mutation factor 1cm

Fig. 8. Synthesised projections of the object, viewed under different angles: n / 4, n � [0,7]}

Fig. 9. Side views of the 3-D reconstructed object (flies) under the same angles

Fig. 10. Views of original object (left) and reconstructions (slices of 5, 10 and 20 pixels)

238 A. Bousquet, J. Louchet, and J.-M. Rocchisani

3.2 Example 2

Here, there are 3 nested objects with different brightness. The algorithm parameters
are the same as in the previous example.

Fig. 11. Synthesised projections of the object, viewed under different angles

Fig. 12. Side views of the 3-D reconstructed object (flies) under the same angles

Fig. 13. Top views of the 3-D reconstructed object: original object (left) and its reconstructions
(slices of 5, 10 and 20 pixels)

3.3 Example 3: Real Data

We tested the algorithm on actual images of bone scintigraphy, with the following
parameters:

Fully 3D Tomographic Evolutionary Reconstruction in Nuclear Medicine 239

Table 2. Parameters used in bone scintigraphy reconstruction

projection image size 128*128

number of flies 1017500

number of screens used at each generation 4

total number of screens 64

screens rotated every 5 generations

number of generations 1000

probability of mutation 50,00%

decrease of pm per generation 5,00%

probability of crossover 0,00%

mutation factor 1cm

Fig. 14. Original projection acquired around the patient

Fig. 15. Side views of the 3-D reconstructed object (flies)

240 A. Bousquet, J. Louchet, and J.-M. Rocchisani

Fig. 16. Projections of the 3-D reconstructed object (flies): Acquisition (left), OSEM (middle),
Flies (right)

Fig. 17. Axial views of the same 3-D reconstructed object (flies), at waist (upper row) and tho-
rax (lower) levels. (Dash lines of figure 16). OSEM (left) and Flies (right) reconstructions

Our algorithm was compared with a commercial 2D OSEM reconstruction. It well
recovers shapes and contrast, with a processing time around 10 times longer than the
optimized OSEM.

3.4 Example 4: Noise Resistance

In this test example, a Gaussian noise has been added to the images of example 1
(Fig. 9) and the same algorithm parameters have been used.

We observe that reconstruction is fairly noise resistant, probably thanks to the fact
screen redundancy is exploited by the algorithm, although the brightness differences
between the three cylinders are not rendered as clearly as with the noiseless images.

Fully 3D Tomographic Evolutionary Reconstruction in Nuclear Medicine 241

Fig. 18. Noisy synthesised projections of the object

Fig. 19. Side views of the 3-D reconstructed object

Fig. 20. Top views of the object reconstructed from noisy images (slices of 5, 10 and 20 pixels)

4 Conclusion

We demonstrated the validity of a generalization of the Fly algorithm introducing the
marginal fitness calculation method, to constructing the 3-D shape of radioactive
tracer concentration from SPECT images. Contrary to more classical approaches, our
"fully 3-D reconstruction method" exploits all the projection images. The next stages
of this research will concentrate upon building simplified but accurate models of scat-
tering and absorption derived from complete Monte-Carlo simulation of Compton and
Rayleigh scattering, exploit energy level information and x-ray absorption data, in
order to get high quality results in realistic times. More elaborate validations than
visual inspection must be achieved with ground truth images than only could be ob-
tained by sophisticated Monte Carlo simulations.

242 A. Bousquet, J. Louchet, and J.-M. Rocchisani

Acknowledgements. We wish to specially thank the students who contributed to the
ideas and methods presented in this paper and their implementation and testing, in
particular: Sébastien Gaucher, Charles Brintet, Lionel Castillon, Marie Thépaut,
Maria Rodriguez Lopez.

References

1. Bonnin, F., Buvat, I., Benali, H., di Paola, R.: Scatter correction in scintigraphy: the state of
the art. European Journal of Nuclear Medicine 21(7) (July 1994)

2. Kalos, M., Wittlock, P.: Monte-Carlo methods. John Wiley and Sons, Chichester (1986)
3. Louchet, J.: Stereo Analysis Using Individual Evolution Strategy. In: ICPR 2000, Barce-

lona, Spain (September 2000)
4. Louchet, J.: Model-based Image Analysis using Evolutionary Strategies. In: Cagnoni (ed.)

Genetic and Evolutionary Computation in Image and Computer Vision, Springer, Heidel-
berg (2007)

5. SIMSET Simulation System for Emission Tomography software, University of Washing-
ton, http://depts.washington.edu/simset/html/simset_main.html

6. Yanch, J.C., Flower, M.A., Webb, S.: A comparison of deconvolution and windowed sub-
traction techniques for scatter compensation, SPECT. IEEE transactions on Medical Imag-
ing 7(1) (1988)

A Study of Crossover Operators for Gene

Selection of Microarray Data

Jose Crispin Hernandez Hernandez, Béatrice Duval, and Jin-Kao Hao

LERIA, Université d’Angers,
2 Boulevard Lavoisier, 49045 Angers, France

{josehh,bd,hao}@info.univ-angers.fr

Abstract. Classification of microarray data requires the selection of
a subset of relevant genes in order to achieve good classification per-
formance. Several genetic algorithms have been devised to perform this
search task. In this paper, we carry out a study on the role of crossover op-
erator and in particular investigate the usefulness of a highly specialized
crossover operator called GeSeX (GEne SElection crossover) that takes
into account gene ranking information provided by a Support Vector Ma-
chine classifier. We present experimental evidences about its performance
compared with two other conventional crossover operators. Comparisons
are also carried out with several recently reported genetic algorithms on
four well-known benchmark data sets.

Keywords: Microarray gene expression, Feature selection, Genetic al-
gorithms, Support vector machines.

1 Introduction

Recent advances in DNA microarray technologies enable to consider molecular
cancer diagnosis based on gene expression. Classification of tissue samples from
gene expression levels aims to distinguish between normal and tumor samples,
or to recognize particular kinds of tumors [9,2]. Gene expression levels are ob-
tained by cDNA microarrays and high density oligonucleotide chips, that allow
to monitor and measure simultaneously gene expressions for thousands of genes
in a sample. So, the currently available data in this field concern a very large
number of variables (thousands of gene expressions) relative to a small num-
ber of observations (typically under one hundred samples). This characteristic,
known as the “curse of dimensionality”, is a difficult problem for classification
methods and requires special techniques to reduce the data dimensionality (gene
selection) in order to obtain reliable predictive results.

Gene selection for microarray data is a special kind of feature selection that
aims at finding a (small) subset of informative features from the initial data in
order to obtain high classification accuracy [13]. Given the particular characteris-
tic of “curse of dimensionality” of microarray data, gene selection for microarray
data is known to be particularly difficult.

The literature offers a large number of solution methods for gene selection
which are based on genetic algorithms, often combined with other approaches

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 243–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

[19,6,18,17,8,16,4,22]. For instance, the so-called wrapper approach uses GAs to
search over the space of gene subsets, the fitness of each subset being evaluated
by its classification performance obtained by a given classifier.

In this paper, we are interested in studying the genetic algorithms for gene se-
lection. In particular, we focus our investigation on the very role of the crossover
operator. Indeed, it is now well recognized that among the different components
of a GA, the crossover operator may make a difference if it is carefully designed
for the targeted problem.

The main contributions of the paper is to present in details a highly specialized
crossover operator called GeSeX (GEne SElection crossover) introduced in [12]
and to report extensive comparative studies of GeSeX with two other conventional
crossover operators (uniform and single point). These results help to understand
the behavior of these crossover operators and their relative performance when they
are applied with a GA. Comparisons are also carried out with several recently
reported genetic algorithms on four well-known benchmark data sets.

The paper is organized as follows; in Section 2, we review the main charac-
teristics of Support Vector Machines (SVM) that are used in our approach. In
Section 3, we describe the specialized crossover operator GeSeX and the other
components of our GA. Experimental results and comparaisons are presented in
Section 4 before conclusions are given in Section 5.

2 SVM Classification and Gene Selection

It is common in wrapper approaches for gene selection to use a classifier to eval-
uate the quality of a proposed gene subset. SVM classifier can be used for such
purposes. The originality of our genetic algorithm is that a SVM classifier is
used not only in the fitness evaluation of gene subsets but also in the genetic
operators: actually, the characteristics of the SVM classifier are used to propose
a specialized crossover operator. This section recalls the main characteristics of
SVM and explains how a feature selection process can be guided by the infor-
mations provided by a SVM classifier.

2.1 Support Vector Machines

SVMs have been successfully used for gene selection and classification [11,20,15].
SVMs are state-of-the-art classifiers that solve a binary classification problem by
searching a decision boundary that has the maximum margin with the examples.
SVMs handle complex decision boundaries by using linear machines in a high
dimensional feature space, implicitly represented by a kernel function. In this
work, we only consider linear SVMs because they are known to be well suited
to the datasets that we consider and they offer a clear biological interpretation.

For a given training set of labeled samples, a linear SVM determines an op-
timal hyperplane that divides the positively and the negatively labeled samples
with the maximum margin of separation. A noteworthy property of SVM is that
the hyperplane only depends on a small number of training examples called the

A Study of Crossover Operators for Gene Selection of Microarray Data 245

support vectors, they are the closest training examples to the decision boundary
and they determine the margin.

Formally, we consider a training set of n samples belonging to two classes; each
sample is noted {Xi, yi} where {Xi} is the vector of attribute values describing
the sample and yi the class label.

A soft-margin linear SVM classifier aims at solving the following optimization
problem:

min
w,b,ξi

1
2

‖w‖2 + C

n∑

i=1

ξi (1)

subject to yi (w · Xi + b) ≥ 1 − ξi and ξi ≥ 0, i = 1, ..., n.
In this formulation, w is the weight vector that determines the separating

hyperplane; C is a given penalty term that controls the cost of misclassification
errors. To solve this optimization problem, it is convenient to consider the dual
formulation [5]:

min
αi

1
2

n∑

i=1

n∑

l=1

αiαlyiylXi · Xl −
n∑

i=1

αi (2)

subject to
∑n

i=1 yiαi = 0 and 0 ≤ αi ≤ C.
The decision function for the linear SVM classifier with input vector X is

given by f(X) = w · X + b with w =
∑n

i=1 αiyiXi and b = yi − w · Xi.
The weight vector w is a linear combination of training samples. Most weights

αi are zero and the training samples with non-zero weights are the support
vectors.

2.2 Feature Ranking by SVM

As discussed in [11], the weights of a linear discriminant classifier can be used to
rank the features for selection purposes. More precisely, in a backward selection
method, the idea is to start with all the features and to iterate the removal of
the least informative feature. To determine which feature can be removed, one
can consider the feature that has the least influence on the cost function of the
classification process. For a linear SVM, the cost function is defined by 1

2 ||w||2.
So given a SVM with weight vector w, we can define the ranking coefficient
vector c given by:

∀i, ci = (wi)
2 (3)

Intuitively, that means that in order to select informative genes, the orientation
of the separating hyperplane found by a linear SVM can be used. If the plane
is orthogonal to a particular gene dimension, then that gene is informative, and
vice versa. As we show in the next section, the coefficient vector c can provide a
dedicated crossover operator with very useful ranking information.

3 A Dedicated Genetic Algorithm for Gene Selection and
Classification

Our genetic algorithm for gene selection begins by a pre-selection step that
enables to reduce the gene subset space. For a given microarray dataset, we

246 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

first filter the most interesting genes by the BW ratio criterion introduced in
[7]; the number p of pre-selected genes is fixed at 50. From this reduced subset,
we will determine an even smaller set of genes (typically < 10) which allows
to give the highest classification accuracy. To achieve this goal, we propose a
dedicated Genetic Algorithm which integrates, in its genetic operators, specific
knowledges on our gene selection and classification problem. It relies on a linear
SVM classifier to evaluate each individual and the ranking coefficient vector
of this SVM enables to propose a highly informed crossover operator. In what
follows, we present the main elements of this GA, focusing on the crossover
operator. Other characteristics of our approcah can be found in [12].

3.1 Problem Encoding

An individual I = < Ix, Iy > is composed of two parts Ix and Iy called respec-
tively gene subset vector and ranking coefficient vector. The first part, Ix, is a
binary vector of fixed length p. Each bit Ix

i (i = 1...p) corresponds to a particular
gene and indicates whether or not the gene is selected. The second part, Iy, is a
positive real vector of fixed length p and corresponds to the ranking coefficient
vector c (Equation 3) of the linear SVM classifier. Iy indicates thus for each
selected gene the importance of this gene for the SVM classifier.

Therefore, an individual represents a candidate subset of genes with addi-
tional information on each selected gene with respect to the SVM classifier. The
gene subset vector of an individual will be evaluated by a linear SVM classi-
fier while the ranking coefficients obtained during this evaluation provide useful
information for the evolutonary process.

3.2 SVM Based Fitness Evaluation

Given an individual I = < Ix, Iy >, the gene subset part Ix, is evaluated by two
criteria: the abily to obtain a good classification in this gene subset representation
and the number of genes contained in this subset. More formally, the fitness
function is defined as follows:

f (I) =
CASV M(Ix) +

(
1 − |Ix|

p

)

2
(4)

The first term (CASV M (Ix)) is the classification accuracy obtained with a linear
SVM classifier trained on this subset and evaluated via 10-fold cross-validation.
The second term ensures that for two gene subsets having an equal classification
accuracy, the smaller one is preferred.

For a given individual I, this fitness function leads to a positive real fitness
value f(I) (higher values are better). At the same time, the ranking vector c
obtained from the SVM classifier is calculated and copied in Iy.

3.3 Specialized Crossover Operator [12]

Crossover is one of the key evolution operators for any effective GA and needs
a particularly careful design. As our goal is to obtain small subsets of selected

A Study of Crossover Operators for Gene Selection of Microarray Data 247

genes with a high classification accuracy, we have designed a highly specialized
crossover operator following two fundamental principles: 1) to conserve the genes
shared by both parents and 2) to preserve “high quality” genes from each parent
even if they are not shared by both parents. The notion of “quality” of a gene
here is defined by the corresponding ranking coefficient stored in Iy. Notice that
applying the first principle will have as main effect of getting smaller and smaller
gene subsets while applying the second principle allows us to keep up good genes
along the search process.

Let I =< Ix, Iy > and J =< Jx, Jy > be two selected individuals (parents),
we combine I and J to obtain a single child K =< Kx, Ky > using the following
steps:

1. Extract the subset of genes shared by both parents by boolean logic AND
operator (⊗) and arrange them in an intermediary gene subset vector F .

F = Ix ⊗ Jx

2. For the subset of genes obtained from the first step, extract the maximum
coefficients maxI and maxJ accordingly from their original ranking vectors
Iy and Jy.

maxI = max {Iy
i | i such that Fi = 1}

and
maxJ = max {Jy

i | i such that Fi = 1}

3. This step aims to transmit high quality genes from each parent I and J
which are not retained by the logic AND operator in the first step. These
are genes with a ranking coefficient greater than maxI and maxJ . The genes
selected from I and J are stored in two intermediary vectors AI and AJ

AIi =
{

1 if Ix
i = 1 and Fi = 0 and Iy

i > maxI

0 otherwise

and

AJi =
{

1 if Jx
i = 1 and Fi = 0 and Jy

i > maxJ

0 otherwise

4. The gene subset vector Kx of the offspring K is then obtained by grouping
all the genes of F , AI and AJ using the logical ”OR” operator (⊕).

Kx = F ⊕ AI ⊕ AJ

The ranking coefficient vector Ky will be filled up when the individual K is
evaluated by the SVM based fitness function.

3.4 The General GA and Its Other Components

An initial population P is randomly generated such that the number of genes
by each individual varies between p and p/2 genes. From this population, the

248 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

fitness of each individual I is evaluated using the function defined by the formula
4. The ranking coefficient vector c of the SVM classifier is then copied to Iy.

To obtain a new population, a temporary population P ′ is used. To fill up
P ′, we first copy the two best individuals of P to P ′ (elitism). The rest of P ′

is completed with individuals obtained by crossover and mutation. Precisely,
Stochastic Universal Selection is applied to P to generate a pool of |P | candi-
date individuals. From this pool, crossover is applied 0.49 ∗ |P | times to pairs
of randomly taken individuals, each new resulting individual being inserted in
P ′. Similarly, random mutation is applied 0.49 ∗ |P | times to randomly taken
individuals to fill up P ′. Once P ′ is filled up, it replaces P to become the current
population. The GA stops when a fixed number of generations is reached.

4 Comparison

In this section we present two comparative studies. The first compares the
crossover operator GeSeX with two well-known crossover operators. In the sec-
ond study, we carry out a comparison with four highly effective GA-based gene
selection approaches [17,22,8,16].

4.1 Data Sets

We applied our approach on four well-known data sets that concern leukemia,
colon cancer and two lymphoma data sets.

The leukemia data set consists of 72 tissue samples, each with 7129 gene
expression values. The samples include 47 acute lymphoblastic leukemia (ALL)
and 25 acute myeloid leukemia (AML). The data were produced from Affymetrix
gene chips. The data set was first used in [9] and is available at http://www-
genome.wi.mit.edu/cancer/.

The colon cancer data set contains 62 tissue samples, each with 2000 gene ex-
pression values. The tissue samples include 22 normal and 40 colon cancer cases.
The data set is available at http://microarray.princeton.edu/oncology/affydata/
index.html and was first studied in [2].

The first lymphoma data set is based on 4026 variables describing 47 samples
(24 and 23 of which are respectively considered as GC B-Like samples and ac-
tivated B-Like samples). The data set was first analyzed in [1]. The data set is
available at http://llmpp.nih.gov/lymphoma/data.shtml.

The second lymphoma data set contains 58 patients with DLBCL each with
7129 gene expression values, 32 with cured disease and 26 with fatal or refractory
disease. This is available at http://broad.mit.edu/cgi-bin/cancer/datasets.cgi.
The data set was reported in [21].

Prior to running our method, we apply a linear normalization procedure to
each data set to transform the gene expressions to mean value 0 and standard
deviation 1.

A Study of Crossover Operators for Gene Selection of Microarray Data 249

4.2 Comparison of Crossover Operators

The purpose of the first experiment is to evaluate the performance of two well
known crossover operators (single point and uniform crossovers) against our
GeSeX crossover operator. The evaluation takes into account two aspects: the
capacity to generate new potentially promising individuals and the ability to keep
a diversified population. Both characteristics are very important in the whole
search process because they represent the classical trade-off between exploration
and exploitation.

The first criterion is measured by the quality of the best individual of a pop-
ulation. For an individual, that is a gene subset, we measure its quality by the
classification accuracy of a SVM classifier built on this gene subset. This ac-
curacy is evaluated via a 10-fold cross validation, so for an individual I, it is
exactly CASV M (Ix) (see Section 3). The population diversity is calculated with
the entropy measure proposed in [10] and recalled in Equation 5, where nij rep-
resent the number of times the gene i is set to the value j in the population P .
This function takes values in the interval [0, 1]. An entropy of 0 indicates that
all the individuals in the population are identical, while an entropy of 1 means
that all the individuals are different.

Entropy (P) =

∑n
i=1

∑1
j=0

(
nij

|P |
)

log
(

nij

|P |
)

nlog2
(5)

In order to enable a fair comparison, all the crossover operators were tested under
the same conditions on three microarray datasets (Colon, Leukemia and the first
lymphoma data set [1]). The following parameters were used in this experiment:
a) population size |P | = 100, b) maximal number of generations is fixed at 100.
We use a classical mutation where each bit of an individual has a mutation
probabilty of 0.3. For the single point and uniform crossover operators, we use
a crossover probability of 0.5, whereas the general settings for GeSeX operator
are explained in subsection 3.4.

Due to the non deterministic character of GA, 10 independent runs were ex-
ecuted for each dataset/operator combination. The results are shown in figure 1
and in figure 2.

In figure 1 the X axis represents the number of generations, while the Y axis
represents the accuracy of the best individual of a population, both averaged
over the 10 runs. This figure shows clearly that the GeSeX operator allows us
to obtain better results for the three datasets because it constantly reaches a
higher classification accuracy. More specifically, let us examine the case of the
Leukemia dataset. With the GeSeX operator, an average accuracy of 98.611%
is rapidly reached by the best individual within 20 generations, meaning that
for each of the 10 experiences, only one sample out of the 72 is misclassified in
the cross-validation process. With the two other crossover operators, an average
accuracy is onlt around 96% because in most experiences 3 examples out of
72 is misclassified and for one or two experiences, two samples out of 72 are
misclassified. We can notice also that after 90 generations, the curve for GeSeX

250 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

0 20 40 60 80 100
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Generations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GeSex
Single point
Uniform

0 20 40 60 80 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Generations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GeSex
Single point
Uniform

0 20 40 60 80 100
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Generations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GeSex
Single point
Uniform

a) Colon b) Leukemia c) Lymphoma

Fig. 1. Average classification accuracy of the best individuals of populations for Single
point, Uniform and GeSeX crossover operators using three microarray datasets

0 20 40 60 80 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

E
n
tr

o
p
y

Single point
Uniform
GeSex

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

E
n
tr

o
p
y

Single point
Uniform
GeSex

0 20 40 60 80 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

E
n
tr

o
p
y

Single point
Uniform
GeSex

a) Colon b) Leukemia c) Lymphoma

Fig. 2. Population entropy for Single point, Uniform and GeSeX crossover operators

leaves the stage of 98.611% because for one or two experiences among the 10,
the best individual reaches the maximal accuracy of 100%.

In figure 2 we show how the population entropy evolves with the number
of generations. Each point represents the average population entropy over all
runs. Observe that GeSex keeps a higher population entropy that the other
crossover operators. Therefore GeSex provides a good balance between quality
and diversification of the population.

4.3 Comparison with Other Genetic Algorithms

In this section we carry out a comparison of our GA+GeSeX with four highly
effective GA-based gene selection approaches.

Genetic Approaches. In [17] the authors propose a gene selection method
that relies on two steps. The first step is a pre-selection that rank the genes
according to an original filtering criterion proposed by the authors; the top

A Study of Crossover Operators for Gene Selection of Microarray Data 251

genes are selected to construct a reduced search space, that the GA explores in
order to minimize the number of selected genes. Their GA is a classical one with
a multiple-point crossover. The paper reports the best classification accuracies
estimated by LOOCV on the whole set of samples for a single run. Notice that
the lymphoma data set is the one analysed in [21] and they find an final subset
with 11 selected genes. For the colon cancer, they report a subset with 9 selected
genes and for the leukemia data set they select a subset of 8 genes.

In [22] the authors propose a hybrid algorithm using SVM and GA. In the
first step of their approach, a gene subset of size p is selected by Least Square
Support Vector Machine to construct the search space of the GA. In the second
step, they apply a GA to carry out gene selection. The particularity of their GA
is that crossover and mutation operators are designed to keep the same number
p of genes. So their objective is to explore all the subsets of size p in order
to find the best one. The fitness function of a gene subset uses the information
entropy of the classes represented on that gene subset. When the GA terminates,
they evaluate the quality of the selected gene subset by the accuracy of a SVM
classifier. For colon cancer, the test set has 32 samples and the best accuracy
(over one run) is obtained with 20 selected genes. For leukemia, the test set has
34 samples and their best result is obtained with 15 selected genes.

In [8] the authors propose a genetic method that is not a wrapper approach:
the GA explores the space of subsets and each candidate subset is evaluated by
two clustering measures. The idea is to consider the two classes of the data set
as two given clusters and to compare the quality of the clusters when the gene
subset used to represent the data is changed. Such a GA-Filter approach requires
a lower computational burden since the fitness evaluation does not require a
classifier training. For each data set, 10 runs of GA-Filter are executed and
each time, the gene subset selected by GA-Filter is evaluated by a classification
experiment where different classifiers are tried. The paper presents the average
and standard deviation of the classification accuracy over these 10 runs. We
retain for comparison the best result reported in the paper, for each dataset that
we consider. Notice that the lymphoma is the one presented in [1]. The number
of selected genes were respectively 15, 17 and 10 together with respectively 34,
22, and 13 testing samples for the leukemia, colon and lymphoma datasets.

In [16] the authors combine SVM and GA in another way. Their SVM uses a
kernel function that combines a set of simple kernel functions and they propose
a new learning method exploiting Evolutionary Algorithm technique to obtain
an optimal decision model. So their genetic search aims to find out the optimal
set of features but also the optimal set of parameters for the combined kernel
function. The average of the classification accuracy over 10 independent runs is
provided for colon and leukemia datasets. The number of selected genes were 15
in both datasets.

Experimental Context and Results of Comparison. In order to compare
our approach with each of these four works, we apply our genetic algorithm
to each data set with exactly the same experimental conditions as those re-
ported in the corresponding paper. More precisely, we fix the number of genes in

252 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

Table 1. Comparison of four GA-based selection approaches and our method. The
table gives the number of genes and the classification accuracy reported by each author
(Reported) and the classification accuracy obtained by our approach (GeSeX) when
we fix the number of genes to the value used in the corresponding paper.

[17] [22] [8] [16]
Data set Reported GeSeX Reported GeSeX Reported GeSeX Reported GeSeX
Leukemia 8 98.6 100 15 97.1 100 15 99.70 98.82 15 77.06 98.82
Colon 9 95.1 100 20 90.6 93.75 17 77.50 85.9 15 75.33 86.0
Lymph.[1] - - - - 10 96.15 96.92 - -

Lymph.[21] 11 100 100 - - - - - -

our method, that means that for each data set and each previously cited work
[17,22,8,16], we determine which classification accuracy can be obtained by our
GA for the number of genes reported in this work. Moreover, we evaluate the
classifier accuracy with the same number of runs: for [17] and [22], the result is
the best accuracy obtained in one run while for [8] and [16], this is the average
over 10 runs. We also use the same test samples as the authors for each dataset,
this is important because previous studies have shown that the accuracy esti-
mate may be biased and may have an important variance [3]. In this experiment,
our genetic algorithm uses also a specialized mutation operator [12] that uses
ranking information provided by the SVM and stored in the ranking coefficient
vector Iy to eliminate ”mediocre” genes.

Table 1 summarizes the comparison: the number of genes and the classifica-
tion accuracy reported in the papers are in front of the classification accurary
obtained by our method. Some cells of the table contain no information because
the experiment on the corresponding data set is not available in the papers.

From Table 1, we observe that the results of our GA are better than those
published results, except for the result of leukemia reported in [8]. As indicated,
in these experiments we restrict our method to consider the same number of
selected genes as in the reported works. In fact, our method is able to optimize
two criteria: the number of selected genes and the classification accuracy. So,
our method is able to select smaller subsets of informatives genes with high
classification accuracy. Concretely, we have experimented our method on 50 trials
for Leukemia and Colon data sets and we obtain the following results [12]. For
Leukemia, the number of selected genes was respectively 3.17±1.16 and the
accuracy (evaluated by a 10-fold cross validation) was 91.5±5.9; for Colon, the
number of selected genes was 7.05±1.07 and the accuracy was 84.6±6.6. Those
numbers cannot be compared with [17] and [22], which do not provide averaged
results but they are comparable with those of [16,8] and better in the sense that
the number of genes is smaller.

5 Conclusions and Future Work

We have presented a study on the role of the crossover operators for gene se-
lection of microarray data. We have presented a specialized crossover operator

A Study of Crossover Operators for Gene Selection of Microarray Data 253

GeSeX that is used in a wrapper genetic algorithm. Contrary to conventional
crossover operators, GeSex takes into account the information provided by the
SVM classifier used by our fitness function.

Our experimental analysis shows that this crossover operator behaves more
efficiently than traditional crossover operators and that it ensures a good trade-
off between exploration and exploitation of the search space. We also compare
our GA+GeSeX approach to other recently proposed GA devoted to the task
of gene selection and classification of microarray data. These experimentations
show that GA+GeSex gives globally very competitive results.

We are currently studying alternative fitness functions to provide a more
effective guidance of the genetic process. Moreover we are developing a local
search based mutation operator in order to intensify the genetic search.

Acknowledgments. This work is partially supported by the French Ouest
Genopole R© and the ”Bioinformatique Ligérienne” projects. The first author is
supported by a Mexicain PROMEP-DGEST scholarship. The authors of this
paper would like to thank the reviewers for their useful comments.

References

1. Alizadeh, A., Eisen, M.B., Davis, E., Ma, C., Lossos, I., Rosenwald, A., Boldrick,
J., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Hudson Jr, J.,
et al.: Distinct types of diffuse large B–cell lymphoma identified by gene expression
profiling. Nature 403, 503–511 (2000)

2. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine,
A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National
Academy of Sciences USA 96, 6745–6750 (1999)

3. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of
microarray gene-expression data. Proceedings of the National Academy of Sciences
USA 99(10), 6562–6566 (2002)

4. Bonilla Huerta, E., Duval, B., Hao, J.-K.: A hybrid ga/svm approach for gene se-
lection and classification of microarray data. In: Rothlauf, F., Branke, J., Cagnoni,
S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H.,
Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006.
LNCS, vol. 3907, pp. 34–44. Springer, Heidelberg (2006)

5. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-
sifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pp. 144–152. ACM Press, New York (1992)

6. Deb, K., Reddy, A.R.: Reliable classification of two-class cancer data using evolu-
tionary algorithms. Biosystems 72(1-2), 111–129 (2003)

7. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
Statistical Association 97(457), 77–87 (2002)

8. Feres de Souza, B., de Carvalho, E.C.P.L.F.: Gene Selection Using Genetic Algo-
rithms. In: Barreiro, J.M., Mart́ın-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA
2004. LNCS, vol. 3337, pp. 479–490. Springer, Heidelberg (2004)

254 J.C. Hernandez Hernandez, B. Duval, and J.-K. Hao

9. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286, 531–537 (1999)

10. Grefenstette, J.J.: Incorporating Problem Specific Knowledge into Genetic Algo-
rithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60.
Morgan Kaufmann Publishers, London (1987)

11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

12. Hernandez Hernandez, J.C., Duval, B., Hao, J.-K.: A genetic embedded approach
for gene selection and classification of microarray data. In: Marchiori, E., Moore,
J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 90–101. Springer,
Heidelberg (2007)

13. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97(1-2), 273–324 (1997)

14. Liu, J., Iba, H.: Selecting informative genes using a multiobjective evolutionary
algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation,
pp. 297–302. IEEE Press, Los Alamitos (2002)

15. Marchiori, E., Jimenez, C.R., West-Nielsen, M., Heegaard, N.H.H.: Robust svm-
based biomarker selection with noisy mass spectrometric proteomic data. In: Roth-
lauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.)
EvoWorkshops 2006. LNCS, vol. 3907, pp. 79–90. Springer, Heidelberg (2006)

16. Nguyen, H.-N., Ohn, S.-Y., Park, J., Park, K.-S.: Combined Kernel Function Ap-
proach in SVM for Diagnosis of Cancer. In: Wang, L., Chen, K., S. Ong, Y. (eds.)
ICNC 2005. LNCS, vol. 3610, pp. 1017–1026. Springer, Heidelberg (2005)

17. Ni, B., Liu, J.: A Novel Method of Searching the Microarray Data for the Best
Gene Subsets by Using a Genetic Algorithm. In: Yao, X., Burke, E.K., Lozano,
J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán,
A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1153–1162. Springer,
Heidelberg (2004)

18. Paul, T.K., Iba, H.: Selection of the most useful subset of genes for gene expression-
based classification. In: Proceedings of the 2004 Congress on Evolutionary Com-
putation, pp. 2076–2083. IEEE Press, Los Alamitos (2004)

19. Peng, S., Xu, Q., Ling, X.B., Peng, X., Du, W., Chen, L.: Molecular classification
of cancer types from microarray data using the combination of genetic algorithms
and support vector machines. FEBS Letters 555(2), 358–362 (2003)

20. Rakotomamonjy, A.: Variable selection using svm-based criteria. Journal of Ma-
chine Learning Research 3, 1357–1370 (2003)

21. Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C.,
Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., Ray, T.S., et al.: Diffuse large
B-cell lymphoma outcome prediction by gene-expression profiling and supervised
machine learning. Nature Medecine 8(1), 68–74 (2002)

22. Xiong, W., Zhang, C., Zhou, C., Liang, Y.: Selection for Feature Gene Subset
in Microarray Expression Profiles Based on a Hybrid Algorithm Using SVM and
GA. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA
Workshops 2006. LNCS, vol. 4331, pp. 637–647. Springer, Heidelberg (2006)

Searching for Glider Guns in Cellular Automata:

Exploring Evolutionary and Other Techniques

E. Sapin and L. Bull

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England,

Bristol BS16 1QY, UK
emmanuelsapin@hotmail.com, Larry.Bull@uwe.ac.uk

Abstract. We aim to construct an automatic system for the discov-
ery of collision-based universal cellular automata that simulate Turing
machines in their space-time dynamics using gliders and glider guns.

In this paper, an evolutionary search for glider guns with different
parameters is described and other search techniques are also presented as
benchmark. We demonstrate the spontaneous emergence of an important
number of novel glider guns discovered by genetic algorithms.

1 Introduction

The emergence of computation in complex systems with simple components is
a hot topic in the science of complexity [1]. A uniform framework to study
emergent computation in complex systems are cellular automata [2]. They are
discrete systems in which an array of cells evolves from generation to generation
on the basis of local transition rules [3].

The well-established problems of emergent computation and universality in
cellular automata has been tackled by a number of people in the last thirty
years [4], [5], [6], [7], [8] and remains an area where amazing phenomena at the
edge of theoretical computer science and non-linear science can be discovered.

The most known universal automaton is the Game of Life [9]. It was shown
to be universal by Conway [10] who employed gliders and glider guns. Gliders
are mobile self-localized patterns of non-resting states, and glider guns are pat-
terns which, when evolving alone, periodically recover their original shape after
emitting some gliders.

The search for gliders was notably explored by Adamatzky et al. with a phe-
nomenological search [11], Wuensche who used his Z-parameter and entropy [12]
and Eppstein [13]. Sapin et al. have considered the emergence of gliders-based
universality by use of a genetic algorithm [14].

We aim to construct an automatic system for the discovery of computationally
universal cellular automata, spatially. Inspired by the link between universality
and the presence of gliders and glider guns in cellular automata, we are here
interested in the emergence of glider guns. In this paper, three search methods
for glider guns are compared.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 255–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 E. Sapin and L. Bull

The paper is arranged as follows: Section 2 describes previous related work.
Section 3 sets out the characteristics of the search methods. Then the result of
the best search method are described in Section 4. The last section summarizes
the presented results and discusses directions for future research.

2 Previous Work

In this section, some previous work about cellular automata are presented. Brief
descriptions of some search methods are given. Then some previous work about
using an evolutionary approach to search for automata are presented.

2.1 Cellular Automata

In [15], Wolfram studies the space I of 2D isotropic CA, with rectangular 8-cell
neighbourhoods: if two cells have the same neighbourhood states by rotations
and symmetries, then these two cells take the same state at the next generation.
There are 512 different rectangular 8-cell neighbourhood states. An automaton
of I can be described as shown figure 1 by telling what will become of a cell in
the next generation, depending on its subset of isotropic neighbourhood states.

There are 102 subsets of isotropic neighbourhood states, meaning that there
are 2102 different automata in I.

2.2 Search Methods

In order to search for universal automata, we have examined the search methods
such as monte carlo, taboo search [16] and an evolutionary algorithm [17], as
briefly described here.

Fig. 1. The squares are the 102 neighbourhood states describing an automaton of I.
A black cell on the right of the neighbourhood state indicates a future central cell.

Searching for Glider Guns in Cellular Automata 257

The monte carlo method consists solely of generating random solutions and
testing them.

Tabu search traverses the solution space by testing mutations of an individual
solution. Tabu search generates many mutated solutions and moves to the best
solution of those generated. In order to prevent cycling and encourage greater
movement through the solution space, a tabu list is maintained of partial or
complete solutions. It is forbidden to move to a solution that contains elements
of the tabu list, which is updated as the solution traverses the solution space.

Evolutionary algorithms have been used with cellular automata in a number
of ways, after [18].

2.3 Evolving Cellular Automata

Previously, several good results from the evolution of cellular automaton rules
to perform some useful tasks have been published. Mitchell et al. [19,20,21,22]
have investigated the use of evolutionary computing to learn the rules of uniform
one-dimensional, binary cellular automata. Here a Genetic Algorithm produces
the entries in the update table used by each cell, candidate solutions being
evaluated with regard to their degree of success for the given task — density
and synchronization.

Sipper [23] has presented a related approach, which produces non-uniform
solution. Each cell of a one or two-dimensional cellular automata is viewed as a
genetic algorithm population member, mating only with its lattice neighbours
and receiving an individual fitness. He shows an increase in performance over
Mitchell et al.’s work, exploiting the potential for spatial heterogeneity in the
tasks. Koza et al. [24] have also repeated Mitchell et al.’s work, using Genetic
Programming [25] to evolve update rules. They report similar results.

3 Search for Glider Guns

This section describes the used search for glider guns. To compare the parameters
of the search methods, glider guns that emitting the glider in figure 2 are searched
for. The first search method is an evolutionary algorithm. Monte carlo algorithm
and tabu search are also used as benchmark.

3.1 Evolutionary Algorithm

The parameters of the evolutionary algorithm are described here. The choice to
try different parameters has been taken to find the best ones.

Fitness Function
Two fitness functions have been tried.
– First fitness function

The computation of the fitness function is based on the one used in [26].
A random configuration of cells is evolved by the tested automaton. After
this evolution, the presence of gliders G is checked by scanning the result
of the configuration of the cells. The value of the fitness function is the
number of gliders that appeared divided by the total number of cells.

258 E. Sapin and L. Bull

Fig. 2. The glider emitted by the searched glider gun

– Second fitness function
The computation of the second fitness function is based on the first one.
A random configuration of cells is evolved by the tested automaton.
After this evolution, the presence of gliders G is checked by scanning the
result of the configuration of the cells. The size of the biggest square S
without cells in the evolved configuration of cells is computed. The value
of the fitness function is the multiplication of the number of gliders that
appeared by the size of the square S.

Initialization
The search space is the set I described in Section 2. Cell-state transition
table can describe an automaton of this space. An individual is an automaton
coded as a bit string of 102 Booleans representing the values of a cell at the
next generation for each neighbourhood state.

The research has been guided by chosing automata for initialisation that
accept the glider of figure 2. In order to chose these automata, the 102 bits of
an automaton are divided into two subsets. The first subset, called invarious
subset, is the neighbourhood states used by the glider G and their values
are determined by the evolution of G. The process that determines these
neighbourhood states is detailed for the glider of figure 2 in the figure 3. The
other neighbourhood states are in the second subset, called unused subset,
and are initialised at random.

The population size is 100 individuals.
Genetic Operators

The research has been guided again by chosing mutated automata that still
accept the glider of figure 2. The mutation function then simply consists of
mutating one bit among the second subset of the 102 bits. The rates 1,5 and
10 percent are tried, together with three crossover operators.
– No crossover

The genetic algorithm is tried without crossover.
– Central point

A single point crossover with a locus situated exactly on the middle of
the genotype is tried.

– Random point
A last kind of recombination is tried with a single point crossover with
a locus randomly situated.

Searching for Glider Guns in Cellular Automata 259

Fig. 3. Detail of the construction of set of neighbourhood states that are used by a
glider

260 E. Sapin and L. Bull

A linear ranking selection and a binary tournament selection of size 2 are
tried.

Evolution Engine
An elitist strategy in which the best half of population is kept and a non-
elitist strategy in which the new population is made of only children are
tried.

Stopping Criterion
The presence of a glider gun is continuously checked. The test is inspired
by Bays’ test [27] and also used in [28]. After the evolution of the random
configuration of cells, the pattern is isolated and tested in an empty universe.
If a pattern P reappears at the same place with gliders around then the
pattern P is a glider gun. When a glider gun is found the algorithm stops.

Some executions of the algorithm can be very long so the choice to stop the
algorithm if better automata are not found has been taken. Then the value
of the fitness function and the generation of the best rule are memorized.
If after ten new generations the algorithm has not found a better rule the
algorithm stops.

Thanks to these stopping criteria, an execution of the algorithm stops
after an average of 38 generations.

3.2 Monte Carlo Method

In one million randomly generated automata, the presence of glider guns after
the evolution of a random configuration of cells was tested. The test is the one
used for the stopping criterion of the algorithm described in Section 3.1. There
are not any guns found by this method.

3.3 Tabu Search

A random automaton A is generated, two fitness functions are tried to measure
the performance of this automaton:

All the automata obtained by mutating one bit among the unused subset, as
described section 2.5, are tested by the fitness function. The best one who is not
in a list L of the last chosen automaton is chosen to become the new automaton
A. The sizes of 10, 100 and 1000 are tried for the list L. The presence of glider
guns is checked in all the tested automata.

The algorithm stops when the best automaton, among the automata obtained
by mutation, who is not in a list L is not better than the current automaton.
With this stopping criterion, an execution of the algorithm stop after an average
of 49, 42 and 35 generations depending on the size of the list L.

3.4 Discussion

For each of the values of the parameters, the number of executions which find a
gun are shown in table 1.

The best parameters for the evolutionary algorithm, among the tested ones,
are a mutation rate of 1, a non elitist strategy, a tournament selection and a

Searching for Glider Guns in Cellular Automata 261

Table 1. Number of executions from a total of 100 per experiment that find a gun
under a given combination of parameters or operators. The three numbers correspond
to the 1,5, and 10 mutation rates. No guns were found with the monte carlo algorithm.

central crossover and second fitness function. The evolutionary algorithm with
these parameters have been chosen to obtain the glider guns described in the
next Sections.

The good results of the central crossover can be explained by the fact that
the first 51 neighbourhood states determine the birth of cells, while the other
51 determine how they survive or die. The elitist strategy that kept half of the
population is worse than the non-elitist strategy. An elitist strategy that just
kept one parent could be tried, however.

The results of a monte carlo algorithm and tabu search,presented as bench-
marks, are not as good as the evolutionary approach. The results of the evolu-
tionary algorithms without crossover are about the same of the tabu search.

4 Results of the Algorithm

The results of the genetic algorithm with the best parameters for the glider in
figure 2 are described here.

4.1 Number of Guns

In order to determine how many different glider guns were found, an automatic
system that determines if a gun is new is required. So, in order to determine if a
gun is new, the set of neighbourhood states used by the given gun are compared
to the ones of the other guns. For each gun and each neighbourhood state, three
cases exist:

262 E. Sapin and L. Bull

Fig. 4. Evolution of the percentage of new guns among 1000 different found guns

– The neighbourhood state is not used by this gun.
– The neighbourhood state is used by this gun and the value of the central

cell at the next generation is 0.
– The neighbourhood state is used by this gun and the value of the central

cell at the next generation is 1.

Two guns are different iff at least one neighbourhood state is not in the same
case for the two guns.

Thank to this qualification of different guns leads, through the experimenta-
tions, 10008 different glider guns were discovered. All these guns have emerged
spontaneously from random configurations of cells. The 10008 guns can be found
in [29] in Life format.

The total number of different guns findable by this algorithm is unknown but
the evolution of the percentage of new guns among the last 1000 different found
guns is given by the figure 4.

In order to estimate the total number of different guns findable by this algo-
rithm, Suppose each gun has the same probability to be found.

Let N be the total number of guns findable by this algorithm. The probability
of a gun found by the algorithm to be new would be 1 − 10008/N . The number
of new guns among the last 1000 different found guns is 755. So the total number
of guns findable by the algorithm could be estimated by N = 10008 ∗ 1000/245
about 40849.

4.2 The Most Discovered Gun

The most discovered gun is shown figure 5. This gun emits two gliders toward
two opposite directions. These two gliders are lined up and dephased. This gun
is exhibited by the rule in figure 6.

5 Synthesis and Perspectives

This paper deals with the emergence of computation in complex systems with
local interactions. A search for glider guns has been presented, building on pre-
vious work in [26,28].

Searching for Glider Guns in Cellular Automata 263

Fig. 5. The most discovered gun during a period

Fig. 6. The transition rule of the cellular automata in which the most discovered gun
during a period was discovered

In particular, monte carlo method, tabu search and evolutionary algorithms
are explored with different parameters. The best results are found for an evo-
lutionary algorithm. The experimentation showed that cross over in the evo-
lutionary algorithm plays a key role in the search process. Future work will
consider other search techniques like a meta-EA to explore the search space of
operators/rates could be implemented.

The algorithm succeeded in finding 10008 glider guns [29] for the glider of
figure 2. The discovery of the emergence and existence of so many different
glider guns for the same glider represent a contribution to the area of complex
systems that considers computational theory.

Further goals can be to find all the glider guns possible and to calculate how
many automata exhibit these guns. All these automata may be potential can-
didates for being shown universal automata thanks to an automatic system for
the demonstration of universal automata that can be developed. Then, another
domain that seems worth exploring is how this approach could be extended to
automata with more than 2 states or more than 2 dimensions.

264 E. Sapin and L. Bull

Future work could also calculate for each automata some rule-based param-
eters, e.g., Langton’s lambda [30]. All automata exhibing glider guns may have
similar values for these parameters that could lead to find areas between chaos
and order, to a better understanding of the link between the rule transition and
the emergence of computation in cellular automata and therefore the emergence
of computation in complex systems with local interactions.

Acknowledgements

The work was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of the United Kingdom, Grant EP/E005241/1.

References

1. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Illinois, USA (2002)
2. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois

Press, Urbana, Ill (1966)
3. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35

(1984)
4. Banks, E.R.: Information and transmission in cellular automata. PhD thesis, MIT

(1971)
5. Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)
6. Lindgren, K., Nordahl, M.: Universal computation in simple one dimensional cel-

lular automata. Complex Systems 4, 299–318 (1990)
7. Morita, K., Tojima, Y., Katsunobo, I., Ogiro, T.: Universal computing in reversible

and number-conserving two-dimensional cellular spaces. In: Adamatzky, A. (ed.)
Collision-Based Computing, pp. 161–199. Springer, Heidelberg (2002)

8. Adamatzky, A.: Universal dymical computation in multi-dimensional excitable lat-
tices. International Journal of Theoretical Physics 37, 3069–3108 (1998)

9. Gardner, M.: The fantastic combinations of john conway’s new solitaire game
”life”. Scientific American 223, 120–123 (1970)

10. Berlekamp, E., Conway, J.H., Guy, R.: Winning ways for your mathematical plays.
Academic Press, New York (1982)

11. Adamatzky, A., Martinez, G.J., McIntosh, H.V.: Phenomenology of glider colli-
sions in cellular automaton rule 54 and associated logical gates chaos. Fractals and
Solitons 28, 100–111 (2006)

12. Wuensche, A.: Discrete dinamics lab (ddlab) (2005), http://www.ddlab.org
13. Eppstein, D., http://www.ics.uci.edu/∼eppstein/ca/
14. Sapin, E., Bailleux, O., Chabrier, J.J., Collet, P.: A new universel automata dis-

covered by evolutionary algorithms. In: Deb, K., al., e. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 175–187. Springer, Heidelberg (2004)

15. Wolfram, S., Packard, N.H.: Two-dimensional cellular automata. Journal of Sta-
tistical Physics 38, 901–946 (1985)

16. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13, 533–549 (1986)

17. Holland, J.H.: Adaptation in natural and artificial systems, University of Michigan
(1975)

http://www.ddlab.org
http://www.ics.uci.edu/~eppstein/ca/

Searching for Glider Guns in Cellular Automata 265

18. Packard, N.H.: Adaptation toward the edge of chaos. In: Kelso, J.A.S., Mandell,
A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301.
World Scientific, Syngapore (1988)

19. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform
computations: Mechanisms and impediments. Physica D 75, 361–391 (1994)

20. Hraber, P.T., Mitchell, M., Crutchfield, J.P.: Revisiting the edge of chaos: Evolving
cellular automate to perform computations. Complex systems 7, 89–130 (1993)

21. Hordijk, W., Crutchfield, J.P., Mitchell, M.: Mechanisms of emergent computation
in cellular automata. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P.
(eds.) Parallel Problem Solving from Nature-V, vol. 866, pp. 344–353. Springer,
Heidelberg (1998)

22. Das, R., Crutchfield, J.P., Mitchell, M., Hanson, J.E.: Evolving globally synchro-
nized cellular automata. In: Proceedings of the Sixth International Conference on
Genetic Algorithms, pp. 336–343 (1995)

23. Sipper, M.: Evolution of parallel cellular machines. In: Stauffer, D. (ed.) Annual
Reviews of Computational Physics, pp. 243–285. V. World Scientific, Singapore
(1997)

24. Andre, D., Koza, J.R., Bennett III, F.H., Keane, M.A.: Genetic programming iii:
Darwinian invention and problem solving. Morgan Kaufmann, San Francisco, CA
(1999)

25. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA (1992)

26. Sapin, E., Bailleux, O., Chabrier, J.J.: Research of complex forms in the cellular
automata by evolutionary algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lut-
ton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 373–400. Springer,
Heidelberg (2004)

27. Bays, C.: Candidates for the game of life in three dimensions. Complex Systems 1,
373–400 (1987)

28. Sapin, E., Bailleux, O., Chabrier, J.J.: Research of a cellular automaton simulating
logic gates by evolutionary algorithms. In: Ryan, C., Soule, T., Keijzer, M., Tsang,
E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 414–423.
Springer, Heidelberg (2003)

29. Sapin, E.: http://uncomp.uwe.ac.uk/sapin/ea/gun
30. Langton, C.L.: Computation at the edge of chaos. Physica D 42 (1990)

http://uncomp.uwe.ac.uk/sapin/ea/gun

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 266 – 277, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Genetic Algorithm for Generating Improvised Music

Ender Özcan and Türker Erçal

Yeditepe University,
Department of Computer Engineering,

34755 Kadıköy/İstanbul, Turkey
{eozcan,tercal}@cse.yeditepe.edu.tr

Abstract. Genetic art is a recent art form generated by computers based on the
genetic algorithms (GAs). In this paper, the components of a GA embedded into
a genetic art tool named AMUSE are introduced. AMUSE is used to generate
improvised melodies over a musical piece given a harmonic context. Population
of melodies is evolved towards a better musical form based on a fitness func-
tion that evaluates ten different melodic and rhythmic features. Performance
analysis of the GA based on a public evaluation shows that the objectives used
by the fitness function are assembled properly and it is a successful artificial in-
telligence application.

1 Introduction

Evolutionary art allows the artists to generate complex computer artwork without a
need to delve into the actual programming used. This can be provided by creative
evolutionary systems. Such systems are used to aid the creativity of users by helping
them to explore the ideas generated during the evolution, or to provide users new
ideas and concepts by generating innovative solutions to problems previously thought
to be only solvable by creative people [1]. In these systems, the role of a computer is
to offer choices and a human is to select one. This can be achieved in two ways. The
choices of the human(s) can be used interactively or can be specified before and get
autonomous results without interaction with the computer. The latter art form is also
referred as the genetic art. In any case a human specifies some criteria and the com-
puters are used for their capacity to investigate large search spaces. Composing a
musical piece involves many stages, but surely, search forms a substantial part.
Searching the right notes and durations can be an example. The existence of such a
search process might require a pruning process to throw out the useless or unsuitable
ideas. Musical composition can be considered as an exploration for an optimal musi-
cal piece in a very large search space.

Genetic algorithms (GAs) represent a class of algorithms used for search and opti-
mization inspired from the natural evolution. They were rediscovered by J. Holland
[6], and have been used to solve many difficult problems [5, 11, 12]. In GAs, a set of
chromosomes, representing candidate solutions is evolved towards an optimal solu-
tion. This set is referred to as population. A chromosome consists of genes, where
each gene receives a value from an allele set. The most common representation
scheme is binary encoding that uses {0, 1} as an allele set. Depending on the problem,

 A Genetic Algorithm for Generating Improvised Music 267

other appropriate encodings are allowed. In an evolutionary cycle, a set of genetic
operators, such as, crossover and mutation is employed on initially randomly gener-
ated chromosomes. Good building blocks, possibly some part of an optimal solution
are maintained within the population during the evolutionary process, while the poor
ones are pruned based on an evaluation measured by a fitness function. With these
properties, GAs can be considered as a suitable approach for generating musical com-
position. At the first glance, it might seem to be impossible for an algorithm to simu-
late the creative thinking process of a human. But GAs have achieved considerable
results in the artistic fields.

The suitability of GAs for musical composition is researched and explained by
Jones et al. [2]. The opportunities for evolutionary music composition are presented
by Brown in [3]. Probably one of the most famous software about the topic is GenJam
by Biles [4]. It uses an interactive GA to generate jazz solos over a given chord pro-
gression. Jacob also used interactive GA to implement a composing system and did
research on the algorithmic composition [7, 8]. Papadopoulos et al. [13] and Wiggins
et al. [16] produced a similar work to Biles. Instead of user intervention for evalua-
tion, a fitness function is utilized in their implementation. Amnuaisuk et al. studied
harmonizing chorale melodies [14]. 21 different melodic features of a musical fitness
function are presented in [15]. Johnson used an evolutionary algorithm to generate
melodies in the style of church hymnody and presented important fitness objectives
for this purpose [9].

In this paper, a creative GA is presented. It is embedded into a Java user interface
as a musical expert, named as AMUSE for generating improvised melodies over a
musical piece given a harmonic context. AMUSE integrates a modified representation
scheme and different fitness objectives under a GA approach for generating melodies
automatically without a human feedback. The evaluation of such a subjective work is
not trivial. In this study, the implementation is evaluated with respect to the GA per-
formance, influence of each objective within GA and the variance of the generated
melodies from that of a human composer by a group of human listeners.

In the next section, an overview of the GA used is presented. The representation
scheme is explained in detail with examples and descriptions are given on how the
genetic operators work. In Section 3, the objectives are explained and illustrated with
example cases. In Section 4, the results of three different public evaluations are pre-
sented and finally, the conclusions derived from those evaluations are discussed and
the performance of AMUSE is assessed in different aspects.

2 A Genetic Algorithm for Generating a Melody

AMUSE (A MUSical Evolutionary assistant) is a graphical user interface with which
a user controls the parameters of GA and the attributes of the melody or solo to be
generated as illustrated in Fig. 1. AMUSE can be downloaded from the web address:
http://cse.yeditepe.edu.tr/ARTI/projects/AMUSE. AMUSE allows a user to load the
musical piece (substructure) for which an improvised melody will be generated in
MIDI format (see http://www.midi.org for more).

268 E. Özcan and T. Erçal

Fig. 1. A snapshot of AMUSE graphical user-interface

The GA requires a special representation scheme for generating melodies. The first
scheme that comes to mind is having each gene to denote a musical note. Unfortu-
nately, such a scheme is not sufficient alone, since it does not cover the duration of
each note. This problem can be overcome by keeping two different allele values at
each locus in a chromosome; a musical note and a rhythmic value. But, this produces
another problem. The duration of each separate note can only be changed during mu-
tation, limiting the variety of different rhythmic patterns. The representation scheme
used in AMUSE addresses these issues.

The GA in AMUSE makes use of the traditional operators whose related parame-
ters are chosen with respect to the chromosome length. One point and two point
crossovers are both used with equal probability. One of them is employed to each
selected individual pairs (mate) in the population. During the preliminary experi-
ments, it is observed that this hybridized crossover performs better than applying just
one type of crossover. All mates are chosen using tournament selection with a tour
size of four. The population size is one third of the chromosome length. The offspring
pool size is the same as the population size. The traditional trans-generational re-
placement scheme is used. The mutation operator in AMUSE randomly perturbs an
allele within an allowed range using a mutation rate of 1/chromosome-length. Choice
of default values for GA parameters is arbitrary and based on the previous studies in
[10-12]. AMUSE allows the user to modify these default values.

 A Genetic Algorithm for Generating Improvised Music 269

2.1 Representation

In AMUSE, a chromosome (individual) encodes an improvised melody having the
contribution of some other parameters. An allele (set of values a gene can have) value
represents the order of a note in a given scale. The advantage of this representation
scheme is that it is impossible to generate non-scale notes. For example, a ‘4’ indi-
cates the 4th note in the corresponding scale, ‘0’ indicates a rest. The maximum al-
lowed allele value indicates a hold event that makes the previous note to continue.
Although the representation scheme is similar to the one used in GenJam [4], there
are some differences. In GenJam, there are two different populations: measure and
phrase populations. An individual in the measure population maps to a sequence of
MIDI events. An individual in the phrase population maps to the indices of measures
in the measure population. But, in AMUSE, a single population of individuals is
maintained; each individual corresponds to a whole melody. Another difference is
that; in our implementation, the range of the notes can be expanded or narrowed and
the durations represented by each gene can be adjusted.

As stated before, some additional information is required to obtain the actual musi-
cal notes from the chromosome. For example, durations of the notes are needed.
Those durations are derived from two values; one of them is the hold event. Hold
events in a chromosome stretch the duration of the notes that are placed right before
them in a chromosome. The other one is the rhythmic value that is defined the same
for all genes. This value provides us the duration of each note identified by a gene
(e.g. ‘Eighth Note’ or a ‘Whole Note’). In a way, the rhythmic value specifies the
shortest note that can be heard in the melody. On the other hand, it is a parameter that
increases (decreases) the search space size with the chromosome length when the
duration represented by each gene is shortened (elongated). Such relevant information
can be entered into the AMUSE as a user preference, providing more flexibility

0 10 8 7 5 0 15 1 3 5 15 15 6 7 10 15 14 15 15 0

Fig. 2. (a) Gene values and the corresponding eighth notes in C Major Scale (b) An example
chromosome, and (c) The actual notes that might be decoded from that chromosome

(b)

(c)

(a)

270 E. Özcan and T. Erçal

for the user over the melody. Also, the maximum allele value can be adjusted for
expanding or narrowing the pitch range of the melody to be generated. Furthermore,
the beginning note can be modified for shifting the pitch range to higher or lower
octaves. This value is added to all of the alleles when creating the melody from the
genotype and it takes the melody to higher or lower octaves.

As an example; assuming that the given scale is C Major, the rhythmic value of all
notes is a quarter note, the maximum allowed allele value (hold event) is 15 (corre-
sponds to a pitch range of two octaves for a seven-note scale) and the beginning note
of the pitch range is A2 (the third lowest A note in a piano). According to these pa-
rameters, mapping of the gene values and musical notes are shown in Fig. 2 (a) and
the example chromosome in Fig. 2 (b) is decoded as in Fig. 2 (c). But, sometimes the
user might not want to generate a melody using just a single pitch and scale. Then,
each gene will be mapped to a different scale and pitch. In such a case, the same
mechanism can be still employed. Only, the values in a chromosome will be mapped
to the actual notes based on different scales and pitches.

3 Objectives and the Fitness Function

One of the most important components of a GA for generating a pleasant melody is
the fitness function. Fitness function can evaluate ten different objectives (Eq. 1).
Some of these objectives are also used by Johnson in a different manner [9]. Note that
some objectives might not be evaluated depending on the user’s preferences. Eight
objectives (f1 to f5 and f8 to f10) generate a value in [0,1) for a given candidate melody
x that are equally weighted with wi=1/|no.of_objectives_used|. Two of them (f6 and f7)
check for some condition and apply punishment, generating a value in (-1,0]. Fitness
value varies in the range (-2,1). A higher fitness value denotes a better melody.

 ∑
=

=
10

1

)()(
i

ii xfwxf (1)

Objectives can be divided into two groups; core and adjustable objectives. Core
objectives can not be manipulated by the user, whereas the adjustable objectives are
maintained according to the initial preferences of a user:

• Core objectives: Chord note (f1), relationships between notes (f2), directions of
notes (f3), beginning note (f4), ending note (f5), over fifth (f6), drastic duration
change (f7)

• Adjustable objectives: Rest proportion (f8), hold event proportion (f9), pattern
matching (f10)

Chord note objective checks whether an actual note decoded from a gene is in the
notes of the chord of the same beat or not. The objective value denotes the percentage
of such notes over all notes. This evaluation is provided only when a chord file is
defined. Otherwise, only the scale is known and this objective is not considered.

Several different type of relationship between notes are analyzed and evaluated.
The objective function for the relationships between notes returns a weighted sum of
all sub-objective values. All consecutive notes are considered one by one. The

 A Genetic Algorithm for Generating Improvised Music 271

number of such note groups is counted with respect to the category each of them falls,
returning the sub-objective value. In order to get an overall evaluation of the objec-
tive, a scaling that will be referred as overall scaling is performed by dividing the
total by the number of actual notes minus one. The sub-objectives are as follows:

• One Step (Fig. 3 (a)): Next note’s scale degree is one step higher or lower than the
previous note's degree. When the notes belong to different scales, it is checked
whether the next note is one or two half steps higher or lower. The weight is 1.0.

• Two Steps (Fig. 3 (b)): Next note’s scale degree is two steps higher or lower than
the previous note's degree. When the notes belong to different scales, it is checked
whether the next note is three or four steps higher or lower. The weight is 1.0.

• Same Note (Fig. 3 (c)): Next degree is the same as the previous degree. (0.9).
• Three Steps (Fig. 3 (d)): Next note’s scale degree is three steps higher or lower

than the previous note's degree. When the notes belong to different scales, it is
checked whether the next note is five steps higher or lower. The weight is 0.8.

• Four Steps (Fig. 3 (e)): Next note’s scale degree is four steps higher or lower than
previous note's degree. When the notes belong to different scales, it is checked
whether the next note is six or seven steps higher or lower. The weight is 0.7.

Fig. 3. Examples of relationships between notes in C major scale

When the tonal distance between two consecutive notes becomes smaller, it is more
likely that they will sound better. If the tonal gap between notes becomes larger, then
the notes should be carefully organized to provide a better sound. Therefore, higher
weights are assigned for smaller tonal distances to get a melody progressing with
small steps.

In music, direction, in other words, contour of the melody is also important. A mel-
ody might fall, rise or stay stable (Fig. 4). The objective function for the directions of
notes evaluates three sub-objectives simultaneously where each objective counts the
note triplets that fall into their category in a given melody. The note triplets represent all
three actual consecutive notes in the melody. Finally, overall scaling is performed on the
weighted sum of all sub-objective values by the number of actual notes minus two:

• A Falling Melody (Fig. 4 (a)): This sub-objective checks whether a given three
consecutive actual notes form a falling melody or not. The weight is 1.0.

• A Rising Melody (Fig. 4 (b)): This sub-objective checks whether a given three
consecutive actual notes form a rising melody or not. The weight is 1.0.

• A Stable Melody (Fig. 4 (c)): All three notes are the same. The weight is 0.9.

We do not desire the generated melodies to change direction up and down rapidly,
because that sounds unpleasant in general. Instead, a smoothly flowing melody is
desired that has a progress in one direction for a while. The weights of the falling and

 (a) (b) (c) (d) (e)

272 E. Özcan and T. Erçal

Fig. 4. Example of (a) a falling melody, (b) a rising melody, and (c) a stable melody

rising melodies are set to higher values as compared to the stable melodies to support
these sub-objectives. Notice that the stable melodies are not ignored completely, since
they might still generate a pleasant sound.

The beginning of a musical piece is important. It is like an introduction or a starting
step for the song or music. This objective function returns 1.0 for a candidate melody,
if it starts with the root note of the scale, since it is always harmonically correct and
never disturbs the listener. Similarly, the ending is like a conclusion for a musical
piece and the root note of the corresponding scale is again a good choice for an end-
ing note, since, we hear all the notes in a song relative to the root. Due to this affect,
the same notes in different songs raise different feelings. As a result, ending a melody
with a base sound resolves the music comfortably. This objective function also returns
1.0 for a candidate melody, if it ends with the root note of the corresponding scale.

Over fifth objective is a complementary objective to the relationships between
notes objective. All pairs of consecutive notes in a candidate melody are scanned. The
objective function checks if the next note’s scale degree is more than four steps higher
or lower than the previous note’s degree for each pair. Such pairs are counted and an
overall scaling is performed by the number of actual notes minus one. The objective
function punishes such tendencies that might generate unpleasant solo by returning a
negative value of the scaled count. An example over fifth violation in C Major Scale
is shown in Fig. 5 (a). A is the 6th note from C in C Major Scale.

Drastic duration changes between consecutive notes might sound disturbing.
Hence, this objective function punishes such occurrences in a melody by checking the
proportion of the duration of two consecutive notes. All pairs generating a proportion
that is more than four are counted. After an overall scaling is performed by the num-
ber of actual notes minus one, the objective function returns a negated value. An ex-
ample duration change violation is shown in Fig. 5 (b). C is a whole note and F is an
eighth note in this example.

Rests can make the melodies more pleasant as if providing breaks in the melody.
Rest proportion is the ratio of the total rest durations to the overall duration. User
determines an expected value, denoted by rpr beforehand. Then, AMUSE attempts to
arrange a melody carrying a rest proportion as close as possible to the rpr. For a

Fig. 5. Example of (a) an over fifth violation in C Major Scale, (b) a drastic duration change

(a) (b) (c)

(a) (b)

 A Genetic Algorithm for Generating Improvised Music 273

candidate melody x, given that the rest proportion is denoted by z = restPropOf(x),
then the objective returns f8(x) = –200(restPropOf(x) – rpr)2 + 1, only if z is within
±0.05 of the rpr. Otherwise, f8 returns zero.

Every allele value receives the same rhythmic duration, determined by the user.
Notes having different rhythmic durations enrich a melody. An allele value corre-
sponding to a hold event makes the duration of a note longer. Hold event proportion is
the ratio of the number of hold events to the chromosome length. Similar to the rpr,
an expected hold event proportion can be defined by the user, denoted as hpr. For a
candidate melody x, given that the rest proportion is denoted by z = holdEventPro-
pOf(x), then the objective returns f9(x) = –50(holdEventPropOf(x) – hpr)2 + 1, only if z
is within ±0.1 of the hpr. Otherwise, f9 returns zero. The hpr and rpr provided by the
user is also considered during initialization. Every initial individual is generated
around the expected rest and hold event proportion.

A user might require having similar patterns in a melody. Choruses in the songs are
good examples for such patterns in music. Pattern matching objective function
searches for repeated patterns with 3 to 10 notes in a melody. For each note in com-
parison of a pattern; an award of 0.5 is given for the same notes with different dura-
tions, 1.0 for the same notes with the same durations. For the sample melodies in Fig. 6
(a) and Fig. 6 (b), the overall awards are 1.5 and 3.0, respectively. The maximum over-
all award occurs (Fig. 6 (c)) only if a melody repeats the same three note pattern. A
scaling is performed on the overall award by this maximum possible value.

Fig. 6. Three note pattern: (a) same note, different duration, (b) same note and duration, (c)
maximum possible overall award situation

4 Results

In this section, the results of a public evaluation are presented. This evaluation is
completed by the help of 36 university students around the age of 20 from different
schools and departments. It consists of three parts. The first part is a Turing Test (27
students). Two MIDI formatted music files are given to the participants. Both files
share the same melodic substructure, but they carry different solos. One of the solos is
generated by an amateur musician who has not listened to any solo generated by
AMUSE before. The other solo is generated by the GA in AMUSE. The participants
are asked to find the correct author of each solo in the musical pieces; human versus
computer. The results in the first part show that, the participants cannot differentiate

(a) (b)

 (c)

274 E. Özcan and T. Erçal

Table 1. Evaluation results for the pairs of solos produced by AMUSE, where each pair uses
the same substructure and one song in a pair is generated during the initial generation while the
other during the 1000th generation. The letters in the song title denote the substructure.

Song Title V1 V2 W1 W2 X1 X2 Y1 Y2 Z1 Z2

Fitness 0,92 0,30 0,29 0,94 0,94 0,27 0,94 0,24 0,17 0,90

id Rank of each song provided by each participant

1 10 7 1 2 9 8 5 6 4 3

2 10 7 8 9 5 3 6 4 1 2

3 2 1 3 4 8 7 10 9 6 5

4 2 1 3 4 10 5 8 6 7 9

5 9 7 1 6 8 3 10 2 4 5

6 3 4 9 10 7 8 1 2 5 6

7 10 9 6 7 8 5 2 1 4 3

8 9 10 3 4 5 6 7 8 1 2

9 3 1 2 4 9 8 10 7 5 6

10 10 4 3 6 9 2 8 1 7 5

11 6 5 3 7 4 2 8 4 1 3

12 3 4 6 5 8 9 2 1 10 7

13 9 3 6 7 8 2 10 4 1 5

14 10 6 3 4 9 5 8 1 2 8

15 4 3 6 5 8 7 9 10 1 2

16 2 1 4 3 10 9 6 5 8 7

17 7 2 5 8 10 1 9 3 4 6

18 4 1 7 8 10 2 9 3 5 6

19 9 6 8 7 10 3 5 4 1 2

20 9 8 1 3 7 2 10 5 4 6

Avr. Rank 6,55 4,50 4,40 5,65 8,10 4,85 7,15 4,30 4,05 4,90

Std. 3,27 2,89 2,48 2,18 1,77 2,72 2,87 2,72 2,67 2,13

the human work from the computer’s work, because 52% of them provided wrong
answers. This is a satisfying result, since our goal is not for AMUSE to beat an ama-
teur musician, but to provide a matching performance.

The second part of the evaluation is arranged to observe whether the GA in
AMUSE improves the initial population of melodies or not (20 students). At first, five
different MIDI formatted music files are generated by using Band-in-a-Box software
by PG Music Inc. (http://www.pgmusic.com). Then a pair of solos are obtained for
each of them using the AMUSE. One of the solos is obtained from the initial popula-
tion with a lower fitness, while the other one is obtained from the 1000th generation
with a higher fitness. The rest of the parameters are kept the same during the runs. In
this part, the participants listened to these ten solos in the given music files and
ranked them as they like. 10 indicate the best solo, whereas 1 indicates the worst solo.
The results are presented in Table 1. A solo with the higher fitness ranks as the first.

 A Genetic Algorithm for Generating Improvised Music 275

Notice the order of the average ranks of each pair of solos based on the same sub-
structure having different fitness values in Table 1. Each solo with a higher fitness has
a better rank than the other solo using the same substructure with a lower fitness. The
results between the files that share the same substructure are compared to remove the
subjectivity of the participants, because they all evaluate the songs according to their
musical taste. Still, all solos having higher fitness rank better than the ones having
lower fitness.

Table 2. Comparison of solos evaluated by different fitness functions, - indicates the excluded
objective

Fitness
Function

f -f1 -f2 -f3 -f6 -f7

id Rank of each solo provided by each participant

1 6 1 4 5 3 2

2 4 3 5 2 1 6

3 4 3 6 5 1 2

4 6 4 3 5 1 2

5 1 3 2 6 4 5

6 4 6 2 5 1 3

7 4 5 2 6 1 3

8 3 6 4 5 2 1

9 6 1 2 5 3 4

10 5 1 2 3 4 6

11 6 1 5 3 2 4

12 5 6 3 2 1 4

13 6 1 2 3 4 5

Avr. Rank 4.62 3.15 3.23 4.23 2.15 3.62

Std. 1.50 2.08 1.42 1.42 1.28 1.61

Furthermore, two-tailed sign test is used to investigate whether these rankings are

statistically significant or not. Two related groups are compared according to the
distribution similarity. The result of the sign test (‘p’ value) gives us the probability
that those two groups are from the same underlying distribution. It is applied to the
ranks obtained from the subjects for the song pairs. According to the results; almost
all pairs (4 out of 5) have statistically significant performance variances within differ-
ent confidence intervals. Among 20 subjects, V1:V2 and X1:X2 gave a result of 3
versus 17; W1:W2 and Y1:Y2 gave 4 versus 16; Z1:Z2 gave 6 versus 14 for the num-
ber of correct evaluations along with fitness values versus the number of wrong
evaluations. As 3 versus 17 is a significant difference with significant level of 1%
(p<0.01) and 4 versus 16 is also significantly different with a level of %5 (p<0.05).
However, 6 versus 14 is not significantly different enough (p≈0.1) according to the

276 E. Özcan and T. Erçal

minimum accepted significant level of %5. On average, ‘Z’ substructure is the least
liked one, hence, that might be the reason why ‘Z’ pair received less significance.
Moreover, Z1 among all initially generated melodies and Z2 among all melodies that
AMUSE improved in 1000 generations have the least fitness values.

In the third part of the evaluation, the relative importance of each objective com-
posing the fitness function is investigated (13 students). Six different music files are
generated by AMUSE using the same musical substructure. One of the files is gener-
ated using the fitness function that evaluates all objectives, while the rest of them
exclude one of the objectives. The participants ranked each musical piece from one to
six, similar to the previous part. As summarized in Table 2, the best solo having the
highest average rank is the one that is generated by using the fitness function evaluat-
ing all the objectives as discussed in Section 3. Over fifth objective seems to be the
most important one. Chord note, relationships between notes and duration change
objectives follow it according to the order of importance from the highest to the low-
est. The effect of the direction change objective on the generated melody might not be
perceived by all the listeners and in some cases; the direction of the notes can be well-
arranged even without using this objective. From the results of this part, it can be
concluded that it is the least important objective.

5 Conclusions and Future Work

An automated evolutionary approach for generating melodies is discussed and evalu-
ated in this paper. The proposed approach aims to fulfill two important requirements;
generating melodies that are harmonically correct and sound pleasant to an ordinary
listener. The first goal is achieved by making use of an effective representation
mechanism based on the theory of the relationships between chords and scales. The
second goal is achieved using an evaluation function that includes some fundamental
objectives to push the search towards pleasing or at least non-disturbing melodies.
The objectives assembled within the evaluation function are not mandatory rules in
music. They might restrict the variety of melodies, but at the same time they reduce
the risks of unpleasant melody generation.

GAs have already been used successfully in art. This study also showed that they
can yield satisfying results in the field of music. The GA in AMUSE generates pleas-
ant solos for a given substructure, that is comparable with an amateur human musi-
cian. An ordinary listener who has never listened to the solos generated by AMUSE
before, cannot easily differentiate between an improvisation written by an amateur
human composer and AMUSE. But, at this point, it is still not sufficient for an experi-
enced composer to use AMUSE for practical purposes. In this form, it is more suit-
able for research and provides a basis to develop more sophisticated designs. To
achieve better results and make the tool to be a practical one for users rather than a
research tool, the fitness function may be rearranged. New fitness objectives can be
added and new genetic operators can be embedded to cooperate with the fitness objec-
tives. Current chord and scale mappings can be rearranged and new chord types can
be added in order to expand the harmonic vocabulary.

 A Genetic Algorithm for Generating Improvised Music 277

References

1. Bentley, P.J., Corne, D.W.: Creative Evolutionary Systems. Morgan Kaufmann Publishers,
San Francisco (2002)

2. Gartland-Jones, A., Copley, P.: The Suitability of Genetic Algorithms for Musical Compo-
sition. Contemporary Music Review 22(3), 43–55 (2003)

3. Brown, A.R.: Opportunities for Evolutionary Music Composition. In: Australasian Com-
puter Music Conference, pp. 27–34. ACMA, Melbourne (2002)

4. Biles, J.A.: GenJam: A Genetic Algorithm for Generating Jazz Solos. In: Int. Computer
Music Conf (ICMC 1994), Aarhus, Denmark, pp. 131–137 (1994)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley, Reading (MA) (1989)

6. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Mich. Press (1975)
7. Jacob, B.L.: Algorithmic Composition as a Model of Creativity, Organised Sound,

vol. 1(3), pp. 157–165. Cambridge University Press, Cambridge (1996)
8. Jacob, B.L.: Composing With Genetic Algorithms. In: Proc. of the 1994 International

Computer Music Conference, pp. 452–455 (1995)
9. Johnson, M., Tauritz, D.R., Wilkerson, R.: Evolutionary Computation Applied to Melody

Generation. In: Proc. of the ANNIE 2004 (2004)
10. Ozcan, E.: An Empirical Investigation on Memes, Self-generation and Nurse Rostering. In:

Proc. of the 6th International Conference on the Practice and Theory of Automated Time-
tabling, pp. 246–263 (2006)

11. Ozcan, E., Mohan, C.K.: Partial Shape Matching using Genetic Algorithms. Pattern Rec-
ognition Letters 18, 987–992 (1997)

12. Ozcan, E., Onbasioglu, E.: Memetic Algorithms for Parallel Code Optimization. Interna-
tional Journal of Parallel Programming 35(1), 33–61 (2007)

13. Papadopoulos, G., Wiggins, G.: A Genetic Algorithm for the Generation of Jazz Melodies.
In: STeP 1998, Jyväskylä, Finland (1998),

 http://citeseer.ist.psu.edu/papadopoulos98genetic.html
14. Phon-Amnuaisuk, S., Tuson, A., Wiggins, G.: Evolving Musical Harmonization, The Uni-

versity of Edinburgh, Division of Informatics, Research Paper #904 (1998)
15. Towsey, M., Brown, A., Wright, S., Diederich, J.: Towards Melodic Extension Using Ge-

netic Algorithms. Technology & Society 4(2), 54–65 (2001)
16. Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S., Tuson, A.: Evolutionary Methods

for Musical Composition. In: Proc. of the CASYS 1998 Workshop on Anticipation, Music
& Cognition (1998), http://citeseer.ist.psu.edu/13486.html

Unsupervised Learning of Echo State Networks:

A Case Study in Artificial Embryogeny

Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer

TAO team - INRIA Futurs - LRI/CNRS, Bat 490 - Université Paris-Sud - France

Abstract. Echo State Networks (ESN) have demonstrated their effi-
ciency in supervised learning of time series: a ”reservoir” of neurons
provide a set of dynamical systems that can be linearly combined to
match the target dynamics, using a simple quadratic optimisation al-
gorithm to tune the few free parameters. In an unsupervised learning
context, however, another optimiser is needed. In this paper, an adap-
tive (1+1)-Evolution Strategy is used to optimise an ESN to tackle the
”flag” problem, a classical benchmark from multi-cellular artificial em-
bryogeny: the genotype is the cell controller of a Continuous Cellular
Automata, and the phenotype, the image that corresponds to the fixed-
point of the resulting dynamical system, must match a given 2D pattern.
This approach is able to provide excellent results with few evaluations,
and favourably compares to that using the NEAT algorithm (a state-
of-the-art neuro-evolution method) to evolve the cell controllers. Some
characteristics of the fitness landscape of the ESN-based method are also
investigated.

1 Introduction

Neural Networks (NNs) can be used to tackle a variety of problems. In classifi-
cation or regression problems, some examples of inputs/outputs of the network
are available during the learning phase: the training is supervised, and the fit-
ness function is generally some Mean Square Error (MSE) between the network
outputs and the actual outputs over the know examples. On the other hand,
unsupervised learning regards cases where no such examples are available. When
the network is used as a component of some computational model for a physical
process, an explicit optimisation criterion (or oracle) is nevertheless available:
the optimal network is the one for which the model reaches a target behaviour.
Typical examples of such situation include control problems (e.g. robotics), and
engineering inverse problems. Finally, the optimisation criterion can be implicit,
and rely on some internal stabilisation of the network under external stimulation,
as for instance in the case of Kohonen maps [24], where the task is to cluster
pattern examples.

Two crucial programmer’s decisions impact the choice of a learning method to
train the network: the type of topology – feedforward or recurrent, i.e. without
or with loops in the connection graph – and the choice of what will be learnt –
the weights of a fixed topology, or both the topology and the weights.

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 278–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Unsupervised Learning of Echo State Networks 279

For static problems, feedforward NNs will more likely be used, because the
resulting learning problem is generally easier, while dynamical problems (where
data k depends on data k − 1, k − 2, . . .) will bias the choice toward recurrent
NNs, that include some memory of the past in the activations of their internal
neurons. However, feedforward NN fed with multiple past inputs can also capture
the essence of dynamical systems, sometimes better than recurrent NNs [8].

Regarding the choice of the free parameters, very powerful methods are avail-
able to learn the weights of a fixed topology (e.g. for supervised learning, the
back-propagation algorithm for feedforward [32] or recurrent [30] NNs), that
would favour such approach. However, the choice of the topology itself then only
relies on the programmer’s expertise, and a poor guess will hinder the whole
process. On the other hand, whereas learning both the weights and the topology
opens up a much larger search space, the best topology can stay out of reach
of the chosen learning method. The versatility and robustness of Evolutionary
Algorithms make them perfect candidates for this latter task (see Section 2 for
a brief survey).

Recently, however, an alternative to topology learning for recurrent NNs was
proposed in the context of supervised learning of dynamical systems, namely the
prediction of times series: the Echo State Network (ESN) approach [19] turns
the search for the best topology into the search for the best combination of many
randomly connected neurons: if sufficiently many different dynamics are present
in the reservoir of neurons, then any dynamical system can be approximated
by a linear combinations of those dynamics [29]. The learning problem is thus
quadratic, and can be solved rapidly and efficiently by any standard optimisation
method (more details in Section 3). However, this straightforward approach is
limited to supervised learning, and very few attempts, if any, have tried to use
ESNs in other contexts.

This paper proposes to use Evolutionary Computation to train an ESN in
the context of unsupervised learning with explicit optimisation criterion, more
precisely, to find the best controller of the cells of a multi-cellular approach
to embryogenic design. As said above, training an ESN amounts to learning
a vector of real parameters. However, because the context is unsupervised, no
gradient-based approach applies. Moreover, because of the huge number of differ-
ent dynamics that exist in the reservoir, it is expected that the fitness landscape
will be quite rough. Hence Evolutionary Algorithms seem to be a good choice
here. Unfortunately, an additional difficulty arises from the number of weights
to learn: even though only the output weights are to be learnt (see again Section
3), the need for a large reservoir usually requires dozens or hundreds of internal
neurons, resulting in as many weights per output of the network to be adjusted.
Hence special care must be taken when choosing the optimisation method that
will adjust those weights.

The paper is organised as follows : section 2 gives an overview on the state
of the art of NN learning, focusing more precisely on evolutionary methods,
and detailing in particular the NEAT algorithm [33], that constructively evolves
the topology of a recurrent NN. Section 3 briefly introduces the Echo State

280 A. Devert, N. Bredeche, and M. Schoenauer

Networks and their (supervised) training before detailing the proposed approach
for unsupervised optimisation of the weights of the ESN using an adaptive (1+1)
Evolution Strategy. Section 4 describes the multi-cellular artificial embryogeny
benchmark problem. Such problem has been addressed by the authors in a recent
work using NEAT [9]. Those latter results are the baseline for the experimental
validation of the proposed ESN-based approach, in section 5, where the fitness
landscape is also studied in more detail. Finally, conclusions and further direc-
tions of research are given in section 6.

2 Artificial Evolution of Neural Network

The start of the Golden Age for Neural Networks was the invention of the back-
propagation algorithm for supervised learning of feed-forward networks in the
early 80’s [32]. Several improvements have been proposed since then (e.g. variants
of gradient methods for accelerated convergence, modification of the method for
supervised learning of recurrent networks [30]). However, while theoretical results
proved the representation power of such networks even with a single hidden layer
[17], the issue of setting the correct number of hidden neurons for a given task
remains open.

Some works addressed this issue by modifying the structure of the neural
network prior to, or during, the learning process. Proposed approaches rely on
hand-crafting the NN topology [25], pruning arcs or nodes from fully connected
NN [26] or even growing NN by adding new nodes during the course of learning
[11,2]. In this context, Evolutionary Algorithms (EAs) quickly appeared as a
relevant approach towards NN learning (see [35] for a detailed survey). And
though they can also be useful for the optimisation of the weights of a feed-
forward NN, because backpropagation, as a gradient-based method, can easily
get stuck in some local optima, EAs have been mainly used for their flexibility
to handle complex search spaces: variation operators acting on the topology can
easily be designed.

But evolutionary learning of NNs can be applied as soon as some performance
measure for a given network is available, i.e. in both supervised or unsupervised
(with an explicit optimisation criterion) context, or for feed-forward as well as for
recurrent network topologies. Indeed, evolutionary learning of both the topology
and the weights of recurrent NNs has been widely adopted in domains that could
benefit from the wide variety of rich dynamical behaviours they offer, e.g. for
control problems, in evolutionary robotics . . .

Notable works in this field include: the GNARL approach [1] which uses direct
encoding of a neural network for building a robot controller; SANE [28] (Sym-
biotic Adaptive Neuro-Evolution), ESP [13] (Enforced Sub-population) evolve
a population of neurons (rather than network) and combine these neurons to
form effective neural networks; GASNET [18] combines optimising the position
of neurons in an euclidean space with diffusion of chemicals; Gruau’s Cellular
Encoding [15,34] and his followers use indirect encoding, evolving a set of in-
structions that creates the network.

Unsupervised Learning of Echo State Networks 281

More recently, NEAT (Neuro Evolution of Augmenting Topologies) [33] and
AGE (Analog Genetic Encoding) [10] have both been able to provide some rel-
evant results, both in pure performance and speed of convergence, on classical
benchmarks such as the double pole balancing. While AGE relies on an approach
inspired from Genetic Regulatory Networks [5] where (regulatory) part of the
genome encodes information on how to interpret (coding) parts, NEAT uses a
direct encoding, as detailed in next section.

2.1 NEAT: Revolution of Augmenting Topologies

The NEAT algorithm [33], is an evolutionary neural network optimisation al-
gorithm. It evolves both the topology and the weights of a neural network,
either feedforward or recurrent. It relies on a direct encoding of neural network
topologies and is based on a specific evolutionary scheme, using different sub-
populations to preserver diversity along evolution. The main feature of NEAT is
that it explores the topologies from the bottom-up: it starts from an empty net-
work (direct connections from inputs to outputs), and proceeds constructively,
using several mutation operators (and no crossover operator) to stochastically
add neurons and connections to the networks while preserving as much as possi-
ble the behaviour of the network (e.g. new connections have very small weights,
new neurons have no connections to start with, . . .). Some Gaussian mutation
operator modifies the weights so as to fine tune the network.

NEAT has been applied successfully to a wide range of problem, from the
classical two pole balancing problem to particle systems rendering [16]. However,
it should be noted that direct encoding methods poorly scale up, and sometimes
have trouble to catch problem regularities (such as symmetries). Extensions of
the original NEAT implementation have been proposed to tackle this issue, such
as HyperNEAT [7], which has been successfully applied in an autonomous robotic
context. Nevertheless, NEAT is currently one of the (if not ”the”) state-of-the-art
NN optimisation algorithm and will be considered in this paper as the reference
algorithm.

3 Echo State Networks

Echo state networks (ESN) have been proposed by Jaeger in 2001 [19,20] with the
objective to endow a neural network with rich dynamics behavioural patterns
while keeping learning complexity at a low level. An ESN is a discrete time,
continuous state, recurrent neural network using a sigmoidal activation function
for all neurons. A typical ESN is shown in figure 1, and will be used in this
paper: the input layer is totally connected to the hidden layer, both the hidden
and input layers are totally connected to the output layer. Moreover, the output
layer is connected backward to the hidden layer. In this setup, the hidden layer,
or reservoir, is randomly generated: N neurons are randomly connected up to
a user-defined density of connections ρ. The weights of those connections are
randomly set uniformly in [−1, 1], and are scaled so that the spectral radius of

282 A. Devert, N. Bredeche, and M. Schoenauer

Fig. 1. Schematic view of an Echo State Network. Plain arrows stand for weights that
are randomly chosen and remain fixed, while dashed arrows represent the weights to
be optimised ((K + N) × N) if N is the number of neurons in the reservoir.

the connection matrix is less than a given value α < 1, ensuring that the network
exhibits the ”echo state property”, i.e. stays out of the chaotic behaviour zone
whatever the input sequence (see e.g. [21]). The random construction of an ESN
is thus determined by the 3 parameters N , ρ and α.

The main point in ESN is that only the weights going from the input and
hidden nodes to the output nodes are to be learnt. If the problem has K inputs
and L outputs and a reservoir of size N , this amounts to (K + N) × L free pa-
rameters. Moreover, the learning problem is reduced to a quadratic optimisation
problem that can be efficiently and quickly solved by any deterministic optimi-
sation procedure, even for very large values of N . In some sense, an ESN can be
seen as a universal dynamical system approximator, which linearly combines the
elementary dynamics contained in the reservoir [29]. ESN have been shown to
perform surprisingly well in the context of supervised learning, in particular for
problems of prediction of times series, though it has also been successfully used
in the context of (supervised) robot control learning (see [22] for an overview of
ESN applications).

3.1 Unsupervised Learning of ESN

It is rather straightforward to replace the default learning algorithm of ESN
with any derivative-free optimisers, such as Evolution Strategies or Simulated
Annealing, to train an Echo State Network for supervised learning [4]. Yet, to
date, and despite its intrinsic properties, ESN has not been applied to unsuper-
vised problem with explicit criteria.

In order to address this class of problems, this unsupervised learning task is
turned into an optimisation task: optimising an ESN amounts to optimising a
real-valued vector representing the plastic weights of the network (from inputs
and reservoir to outputs, see Figure 1). In such situation, Evolution Strategies

Unsupervised Learning of Echo State Networks 283

(ES) [31,6] provide an efficient and well-grounded framework. However, although
only a limited amount of weights have to be optimised, the size of the reservoir
may quickly lead to a high dimensional search space depending on the number
of outputs, which impacts on the type of ES to be chosen.

This is why an adaptive (1 + 1) − ES has been chosen here: this simple
yet efficient ES scales up well with the dimension of the search space, in term
of memory and computation time needed. In this algorithm, the ”population”
contains only a single individual Xt, that generates a single offspring Yt using
Gaussian mutation as follow :

Yt = Xt + σtN (0, 1)

N (0, 1) is a realisation of the normal probability distribution, and σt is the
mutation strength at time t. The selection is deterministic: Xt+1 is the best
performing individual among {Xt, Yt}

The idea behind this (1 + 1) − ES is to adapt the σ value during the course
of evolution with regards to the success of creating better offspring. Following
[23], the σ value is updated according to the so-called one-fifth rule:

σt+1 =
{

2σt if f(Yt) < f(Xt)
2−

1
4 σt otherwise

4 Multi-cellular Artificial Embryogeny

The model for Artificial Embryogeny considered here was originally proposed
in [9]. It can be viewed as a continuous state discrete space and time cellular
automata. Cells are placed on a two dimensional regular square grid (the whole
grid is filled with cells, no cell division or migration is used). The state of each
cell is a continuous value, representing here a grey level. The whole grid, or
organism, can hence be interpreted as a grey image. Each cell communicates
with its 4 neighbours by exchanging some “chemicals”: each cell has an internal
controller (a neural network) that determines its state as well as the amount
of chemical it emits at time t toward its neighbours, according to the amount
of chemical it received from its neighbours at previous time step t − 1 (cells on
the boundary of the grid don’t receive anything from the external environment).
Starting from a given state for all cells at time 0, this developmental process is
repeated until some stopping condition is reached. The goal is here to reach a
target 2D image when the development stops.

The original feature of the proposed model lies in the stopping criterion for
the development: whereas previous works used a fixed number of development it-
erations, this model waits for the organism to stabilise (and penalises individuals
whose organism doesn’t stabilise within a prescribed number of iterations). The
controller used in [9] was a neural network, evolved using the NEAT approach
(described in section 2.1). Thanks to the stopping criterion, the evolved organ-
isms exhibited very strong robustness to perturbation: the target image seemed
to be the only fixed point of the best organisms considered as dynamical systems,

284 A. Devert, N. Bredeche, and M. Schoenauer

NEAT
3 steps 10 steps 23 steps 102 steps

ESN-10
3 steps 10 steps 23 steps 120 steps

Fig. 2. Developmental stages for the disc problem. The right-most plots show the
fixed-point image.

even though a single starting point was used during evolution. Figure 2 shows an
example of a complete development of such result toward the fixed-point shape
(the target shape was a black disc on white background). In the following, a
maximum number of iterations of 1024 steps is fixed. If the organism has not
reached a stable pattern before this limit, its fitness is set to the worst value.

4.1 The Flag Problems

In order to evaluate multi-cellular approaches, it is common to consider matching
with simple geometric 2-dimensional images, like “flags” (French and Norwegian
flags are quite popular in the literature [27,12]) or other regular patterns [14]).
Figure 3 shows the two 32 × 32 target grey-level images used in this work,
respectively called the disc and the half-disc.

The fitness function (to be minimised) is based on the MSE between two
images. It takes value in [0, 1], the optimal value is 0 when both images are
identical:

s(A, B) =
1

wh

h−1∑

i=0

w−1∑

j=0

(A(i, j) − B(i, j))2

disc half-discs

Fig. 3. The two target pictures (with grid lines)

Unsupervised Learning of Echo State Networks 285

5 Experimental Results

Three algorithms are compared on the two target flags for the embryogenic
approach described in previous section: NEAT (results from [9]), and two Echo
State Networks with different reservoir sizes.

5.1 Settings

The NEAT implementation used here includes the latest features from the litera-
ture. Our implementation has been validated with regards to the original results
presented in [33]. NEAT explores recurrent topologies without constraints using
a population of 500 individuals while all other parameters are set to default
values (see [9] for a detailed information).

Two variants are tested for the Echo State Networks: reservoirs of sizes 10
and 50, with connection factor of respectively 50% and 10%. In both cases, the
damping factor (spectral radius) was set to 0.9. These are refered to as 10- and
5-ESN respectively.

The settings for the (1 + 1) − ES optimiser are as follows : σ0 is set to 10−1,
and the starting point x0 has all weights set to 0. The algorithm is stopped and
restarted (with the same reservoir) whenever σt < 10−8. In any case, the run is
stopped when the total number of evaluations reaches 250000. Figure 4 displays
the evolution of the fitness for a typical run: the restarts are clearly visible (note
that it is a coincidence that the best fitness is reached after the final restart).

Note that the CPU cost of a single evaluation cannot be estimated alone,
whatever the algorithm: it of course depends on the reservoir size for ESN, and
on the (dynamic) number of neurons for NEAT, but also heavily on the number
of developmental steps before stabilisation. Globally, the 16 ESN runs lasted
around 2 days for reservoir size 10 and 5 days for reservoir size 50. In contrast,
NEAT needed 7 days for the same experimental conditions.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50000 100000 150000 200000 250000

fit
ne

ss

nb evaluations

"run.dat" using 1:3

Fig. 4. A typical run for ESN with 10 neurons on the disc problem

286 A. Devert, N. Bredeche, and M. Schoenauer

5.2 Results

On-line results of best-so-far fitness averaged over 16 independent runs are dis-
played on figures 5. Note that NEAT plot starts after the evaluation of the initial
population (of size 500). The corresponding off-line results (i.e. after 250 000
evaluations) are detailed in Table 1.

It is clear that the ESNs outperform NEAT on the disc problem, and con-
firmed by a two-tailed t-test at 99% confidence level. Furthermore, though a
bigger reservoir gives more parameters to optimise, it also makes the problem
easier: the performances of ESN-10 and ESN-50 are not statistically distinguish-
able. An important remark is that the results of ESN are much more stable, as
witnessed by the standard deviations in Table 1, one order of magnitude smaller
for ESN (whatever the reservoir size) than for NEAT.

Table 1. Off-line results out of 16 runs: minimum – average(std. deviation)

NEAT 10-ESN (1+1)ES 50-ESN (1+1)ES 10-ESN CMAES
Disc 0.076 – 0.105(0.135) 0.021 – 0.030(0.009) 0.027 – 0.033(0.008)

Half-disc 0.135 – 0.201(0.171) 0.205 – 0.207(0.002) 0.206 – 0.209(0.002) 0.184 – 0.194(0.004)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 m
in

im
um

 fi
tn

es
s

Evaluations

ESN vs NEAT on disc

NEAT
ESN-10 (1+1)ES
ESN-50 (1+1)ES

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 m
in

im
um

 fi
tn

es
s

Evaluations

ESN vs NEAT on half-discs

NEAT
ESN-10 (1+1)ES
ESN-10 CMAES

(a) The disc problem (b) The half-disc problem

Fig. 5. On-line average minimal fitness reached by NEAT and both 10- and 50-ESN in
250000 evaluations, on the disc and half-disc problems with one chemical. Y-axes have
different scales for both problems.

The picture is somewhat different for the half-discs problem. The first re-
mark is that the best fitness is much worse for all algorithms than for the disc
problem. Moreover, there is no statistically significant difference (whatever the
confidence level in a 2-tailed t-test) among the 3 results. However, here again,
the standard deviation among the NEAT runs is much larger than among the
ESN runs . . . and this does make a difference here when considering the best fit-
ness reached among the 16 runs: NEAT reaches 0.135 while no ESN run can find
a better fitness than 0.206. Additional experiments are needed to give this some
statistical significance. Nevertheless, this is a typical “design” situation where a
large variance is a better indicator of possible good performance for equivalent
averages.

Unsupervised Learning of Echo State Networks 287

5.3 The Fitness Landscape

In order to investigate the characteristics of the fitness landscape, projections on
random directions of IR(N+K)×L (see Figure 1) have been plot, both around the
initial point of all optimisation, i.e. with all weights set to 0 (Figure 6) and the best
point reached by one of the ESN-10 runs on the disc problem (Figure 7). Whereas
the landscape around the initial point seems very smooth and almost convex, that
around the final solution looks much more rough. In particular, there exist points
very close to the solution that have the worst possible fitness value of 1, i.e. whose
development never reaches a fixed point. This suggests that some gradient-based
algorithm could be used at the beginning of evolution, but will rapidly stop being
efficient when reaching lower-fitness regions, with rougher landscapes.

 0.2
 0.22
 0.24
 0.26
 0.28
 0.3

 0.32
 0.34
 0.36

-4 -2 0 2 4

distance to the center

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-4 -2 0 2 4

distance to the center

 0.21
 0.215
 0.22

 0.225
 0.23

 0.235
 0.24

 0.245
 0.25

 0.255
 0.26

-4 -2 0 2 4

distance to the center

Fig. 6. Typical sections of fitness landscape for ESN-10 on the disc problem around
the initial null point (centre of x-axis)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -2 0 2 4

distance to the center

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -2 0 2 4

distance to the center

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -2 0 2 4

distance to the center

Fig. 7. Typical sections of fitness landscape for ESN-10 on the disc problem around
the best individual of one of the successful runs (centre of the x-axis)

6 Conclusion

Echo State Networks are able to perform rich dynamic behavioural patterns with
only few real-valued parameters to optimise. This makes ESN a very good choice
for classification, regression and time-series prediction, even compared to more
complex approaches such as NN weight and topology optimisation algorithms.
Yet, to date, applications of ESN have been limited to supervised learning tasks.

This paper has introduced ESN in the context of an unsupervised learning
task. The proposed approach combines ESN with a simple yet efficient Evolution
Strategy algorithm (a (1+1)−ES implementing the 1/5 rule). Experiments con-
ducted on two benchmark problems from Multi-Cellular Artificial Embryogeny
have shown that the proposed approach is competitive with that using NEAT,
a state-of-the-art Neural Network topology optimisation algorithm.

288 A. Devert, N. Bredeche, and M. Schoenauer

ESN clearly outperform NEAT in one of the two problems, have similar per-
formance on the other, and converge much faster in both cases: this confirms
both their ability to model complex dynamics and the possible gain due to opti-
mising in a smaller search space. Furthermore, NEAT results have a much larger
variance. Whereas this can be thought as a defect demonstrating some lack of
robustness, it can also turn out to be an advantage when the average values are
comparable, as in the second experiment, as it witnesses the ability for the algo-
rithm to find some very good solution, though very rarely. A deeper statistical
study is required to assess (or not) this property.

Further analysis showed that the fitness landscape is very smooth around the
initial solution, which might explain the good results in terms of speed of min-
imisation obtained with such a simple optimiser. This also suggests to try other
optimisation strategies, using, or at least starting with, gradient based method
in the first steps. At the other end of the process, it seems that the landscape
is rather rough close to the (local) optima reached on the flag problems, in part
due to the non-stabilisation of the developmental dynamical systems very close
to the solution. This in turn suggests to use an adaptive stopping criterion rather
than a fixed user-defined number of iterations.

Finally, all experiments have been performed with default parameters, both
for generating ESN and tuning the (1+1)−ES optimiser. Results might possibly
be improved with a fine tuning of these parameters. Future directions include
optimising the meta-parameters implied in the generation of the ESN reservoir,
as well as relying on more powerful Evolution Strategy algorithms, such as the
state-of-the-art CMA-ES algorithm [3], whenever the size of the reservoir is small
enough to make possible.

References

1. Angeline, P.J., Saunders, G.M., Pollack, J.P.: An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks 5(1),
54–65 (1994)

2. Ash, T.: Dynamic node creation in backpropagation networks. Connection Sci-
ence 1(4), 365–375 (1989)

3. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population
size. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2005), pp. 1769–1776 (2005)

4. Babinec, S.: Evolutionary optimization methods in echo state networks. In: 6th
Czech-Slovak Workshop on Cognition and Artificial Life (2006)

5. Banzhaf, W.: On the dynamics of an artificial regulatory network. In: Banzhaf,
W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS
(LNAI), vol. 2801, pp. 217–227. Springer, Heidelberg (2003)

6. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction.
Natural Computing: an international journal 1(1), 3–52 (2002)

7. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural
network sensor and output geometry. In: Thierens, D., et al. (eds.) GECCO 2007,
ACM Press, New York (2007)

Unsupervised Learning of Echo State Networks 289

8. Dematos, G., Boyd, M., Kermanshahi, B., Kohzadi, N., Kaastra, I.: Feedforward
versus recurrent neural networks for forecasting monthly japanese yen exchange
rates. Asia-Pacific Financial Markets 3(1), 59–75 (1996)

9. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental
design. In: Thierens, D., et al. (eds.) GECCO 2007, ACM Press, New York (2007),
http://hal.inria.fr/inria-00145336/en/

10. Durr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding.
In: PPSN IX, pp. 671–680 (2006)

11. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, Denver,
vol. 2, pp. 524–532. Morgan Kaufmann, San Mateo (1990)

12. Federici, D., Downing, K.: Evolution and development of a multicellular organism:
scalability, resilience, and neutral complexification. Artificial Life 12(3), 381–409
(2006)

13. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Technical Report AI96-248, 1 (1996)

14. Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development.
In: GECCO 2005, pp. 83–90. ACM Press, New York (2005)

15. Gruau, F.: Genetic synthesis of modular neural networks. In: ICGA 1993, pp. 318–
325. Morgan Kaufmann, San Francisco (1993)

16. Hastings, E., Guha, R., Stanley, K.O.: Neat particles: Design, representation, and
animation of particle system effects. In: IEEE CIG 2007 (2007)

17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2, 359–366 (1989)

18. Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry:
Evolving gasnets for robot control. Connection Science 10(3-4), 185–210 (1998)

19. Jaeger, H.: The Echo State approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center
for Information Technology (2001)

20. Jaeger, H.: Short term memory in echo state network. Technical Report GMD
Report 152, German National Research Center for Information Technology (2001)

21. Jaeger, H.: Tutorial on training recurrent neural networks. Technical report, GMD
Report 159, Fraunhofer Institute AIS (2002)

22. Jaeger, H., Haas, H., Principe, J.C. (eds.): NIPS 2006 Workshop on Echo State
Networks and Liquid State Machines (2006)

23. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms: a com-
parative review. Natural Computing 3(1), 77–112 (2004)

24. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences,
vol. 30. Springer, Berlin, Heidelberg (1997) (Second Extended Edition, 1997)

25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural
Computation 1(4), 541–551 (1989)

26. LeCun, Y., Denker, J.S., Solla, S., Howard, R.E., Jackel, L.D.: Optimal brain dam-
age. In: Touretzky, D. (ed.) NIPS 1989, Morgan Kaufman, San Francisco (1990)

27. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In: Deb,
K., al., e. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg
(2004)

28. Moriarty, D.E.: Symbiotic evolution of neural networks in sequential decision tasks.
Technical Report AI97-257, 1 (1997)

http://hal.inria.fr/inria-00145336/en/

290 A. Devert, N. Bredeche, and M. Schoenauer

29. Ozturk, M.C., Xu, D., Principe, J.C.: Analysis and design of echo state networks.
Neural Computation 19(1), 111–138 (2007)

30. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks:
A survey. IEEE Transactions on Neural Networks 6, 1212–1228 (1995)

31. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

32. Rumelhart, D.E., Hinton, G.E., McClelland, J.L.: Exploration in Parallel Dis-
tributed Processing. MIT Press, Cambridge (1988)

33. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

34. Whitley, D., Gruau, F., Pyeatt, L.: Cellular encoding applied to neurocontrol. In:
ICGA 1995, pp. 460–467. Morgan Kaufman, San Francisco (1995)

35. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–
1447 (1999)

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 291–302, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enhanced Genetic Algorithm with Guarantee
of Feasibility for the Unit Commitment Problem

Guillaume Sandou1, Stéphane Font1, Sihem Tebbani1,
Arnaud Hiret2, and Christian Mondon2

1 Supelec, Automatic Control Department, 3 rue Joliot Curie
F-91192 Gif-sur-Yvette, France

{Guillaume.Sandou,Stephane.Font,Sihem.Tebbani}@supelec.fr
2 EDF Recherche et Développement, 6 quai Watier, F-78401 Chatou, France

{Arnaud.Hiret,Christian.Mondon}@edf.fr

Abstract. In this paper, an enhanced genetic algorithm for the Unit Commit-
ment problem is presented. This problem is known to be a large scale, mixed in-
teger programming problem for which exact solution is highly intractable.
Thus, a metaheuristic based method has to be used to compute a very often suit-
able solution. The main idea of the proposed enhanced genetic algorithm is to
use a priori knowledge of the system to design new genetic operators so as to
increase the convergence rate. Further, a suitable penalty criterion is defined to
explicitly deal with numerous constraints of the problem and to guarantee the
feasibility of the solution. The method is also hybridized with an exact solution
algorithm, which aims to compute real variables from integer variables. Finally,
results show that the enhanced genetic algorithm leads to the tractable computa-
tion of a satisfying solution for large scale Unit Commitment problems.

1 Introduction

The Unit Commitment problem is a classical mixed integer optimisation problem for
Power Systems. It refers to the computation of the optimal scheduling of several pro-
duction units while satisfying consumer’s demand and technical constraints of pro-
duction units. Integer variables are the on/off status of production units, while real
variables are the amount of energy they produce. Because of temporal coupling im-
plied by constraints such as time up or time down constraints, a large temporal hori-
zon has to be considered, leading to a large number of binary variables. Numerous
methods have already been applied to get a suitable solution. They are for example
listed in [1].

An exact solution method can be used: exhaustive enumeration, “Branch and
Bound” [2] or dynamic programming [3] have been applied, but these methods suffer
from combinatorial complexity. Furthermore, some of temporal constraints may be
difficult to express in a suitable frame for those methods. As a result, approximated
methods are required to compute near optimal solutions with low computation times,
especially for large scale systems.

Deterministic approximated methods such as priority lists can be used [4]. However,
these methods can be strongly suboptimal, as once again constraints can sometimes

292 G. Sandou et al.

be hardly taken into account. Constraints are explicitly considered by Lagrangian re-
laxation [5]. Coupling constraints such as consumers’ demand fulfilling are first re-
laxed. Thus, the unit Commitment problem is divided into several smaller optimisation
problems (one per production unit), each of them being easier solved by considering
dual problems. However, because of the non convexity of objective function, a duality
gap may occur. Furthermore, no guarantee can be given on the actual optimality of the
solution. An iterative organisation of the algorithm has to be used: solution of the op-
timisation problems considering fixed Lagrange multipliers, updating of these multi-
pliers, and so on. This updating can be performed with genetic algorithms [6] or by
subgradient methods [7].

Stochastic approximated methods are a class of interesting methods which have
been intensively used for Unit Commitment. For example, a simulated annealing
approach is used in [8], tabu search is used in [9], genetic algorithms are used in [10]
and ant colony is used in [11]. With such methods, there is no guarantee on the actual
optimality of the solution, but, one can often get a very suitable solution with low
computation times. In this paper, an enhanced genetic algorithm is developed for the
Unit Commitment solution. By defining new knowledge based genetic algorithm, the
convergence time can be decreased. Furthermore, by choosing a suitable criterion and
an elitist strategy, the feasibility of the final solution can be guaranteed. The algorithm
is also hybridized with an exact solution method which aims to compute real variables
from integer variables.

In section 2, the Unit Commitment problem is briefly called up. The enhanced ge-
netic algorithm is depicted in section 3. Exact real solution and new a priori knowl-
edge based operators are presented, together with the feasibility criterion. Numerical
results are given in section 4 for academic cases and large scale cases, up to 100 unit
cases. Finally, conclusions and forthcoming works are drawn in section 5.

2 Unit Commitment Problem Statement

Unit Commitment is a very classical optimisation problem, stated as follows:

∑ ∑
= =

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

N

n

K

k

k
n

k
n

k
offon

k
n

k
n

k
prod

Qu

uucuQc

k
n

k
n

1 1
1/

},{

)),(),((min (1)

With :

- N: length of time horizon,
- K: number of production units,

- k
nu : on/off status of unit k during time interval n (binary variable),

- k
nQ : energy produced by unit k during time interval n (real variable).

Production costs of unit k during time interval n are:

k
n

kk
n

k
n

kk
n

kk
n

kk
n

k
n

k
prod uαuQαuαQαuQc 0101)(),(+=+= (2)

 Enhanced Genetic Algorithm with Guarantee of Feasibility 293

Start-up and start-down costs can be expressed by:

)1()1(),(111/
k
n

k
n

k
off

k
n

k
n

k
on

k
n

k
n

k
offon uucuucuuc −+−= −−− (3)

The following constraints have to be satisfied:
- Capacity constraints:

k
n

kk
n

k
n

k uQQuQ maxmin ≤≤ (4)

- Satisfaction of consumer’s demand dem
nQ :

dem
n

K

k

k
n QQ ≥∑

=1

 (5)

- Spinning reserves:

n
dem
n

K

k

k
n

k RQuQ +≥∑
=1

max (6)

- Time-up constraints:

⎟
⎠

⎞
⎜
⎝

⎛ ===⇒
⎪⎩

⎪
⎨
⎧

=
=

−+++
− 1,,1,1

1

0
121

1 k
Tn

k
n

k
nk

n

k
n

k
up

uuu
u

u
 (7)

- Time-down constraints:

⎟
⎠
⎞

⎜
⎝
⎛ ===⇒

⎪⎩

⎪
⎨
⎧

=
=

−+++
− 0,,0,0

0

1
121

1 k
Tn

k
n

k
nk

n

k
n

k
down

uuu
u

u
 (8)

3 Enhanced Genetic Algorithm

3.1 Real Variable Computation

The problem is firstly reformulated in a fully integer programming problem frame-

work. Consider that binary variables { } { }KkNnuk
n ,,1,,,1, …… ∈∀∈∀ are given and

refer to a feasible solution: time-up and time-down constraints are fulfilled and spin-
ning reserves (equation 6) and demand constraints are possible to satisfy. Then, real

variables k
nQ are computed from the following optimisation problem:

{ }
∑ ∑
= =

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

N

n

K

k

k
n

k
n

k
offon

k
n

k
n

k
prod

Q

uucuQc

k
n

1 1
1/)),(),((minarg (9)

294 G. Sandou et al.

This problem can be successively simplified:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∑∑∑∑

∑∑

∑ ∑

= == =

= =

= =
−

N

n

K

k

k
n

k
n

k

Q

N

n

K

k

k
n

kk
n

k
n

k

Q

N

n

K

k

k
n

k
n

k
prod

Q

N

n

K

k

k
n

k
n

k
offon

k
n

k
n

k
prod

Q

uQαuαuQα

uQc

uucuQc

k
n

k
n

k
n

k
n

1 1
1

}{
1 1

01

}{

1 1
}{

1 1
1/

}{

minargminarg

)),((minarg

)),(),((minarg

 (10)

The solution is supposed to be feasible. So there are no temporally coupling con-
straints anymore, and the problem is divided into N optimisation problems:

⎪
⎩

⎪
⎨

⎧

≤≤

≥
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∑∑ =
=

=
k
n

kk
n

k
n

k

dem
n

K

k

k
n

K

k

k
n

k
n

k

KkQ uQQuQ

QQ
uQα

k
n maxmin

1
1

1

},...,1,{

tosubjectmin (11)

Consider that production units are sorted, Kααα 1
2
1

1
1 ≤≤≤ … , then the optimal so-

lution of problem (10) is to produce as much as possible with low-cost units, while
satisfying capacity constraints. It leads to the following recursive computation of real
variables:

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∑

∑∑

∑

−

=

+=

−

=

=

K
n

KK
K

i

i
n

dem
n

K
n

k
n

kk
K

ki

i
n

i
k

i

i
n

dem
n

k
n

n

K

i

i
n

idem
nn

uQQQQQ

uQQuQQQQ

uQQuQQQ

maxmin

1

1

maxmin
1

min

1

1

11
max

1
min

2
min

1

,,maxmin

,,maxmin

,,maxmin

 (12)

The Unit Commitment problem (1) is thus a full integer programming problem, for
which genetic algorithm is well suited.

3.2 Classical Genetic Algorithm

Genetic algorithm has emerged as a well-known and efficient metaheuristic method to
solve integer optimisation problems. The general flow chart of this algorithm is given
in fig. 1. The main idea is to make a population of potential solutions evolve so as to
create new potential population by using stochastic (or “genetic”) operators. Classical
operators (crossing-over and mutation operators) are depicted in fig. 2.

 Enhanced Genetic Algorithm with Guarantee of Feasibility 295

Genetic operations :
cross-over, mutation

Selection

New population

Initial
population

Fig. 1. General flow chart of a genetic algorithm

0

0

1 1 1

1 1 0

0

1

0 1 0 0 0

N périods

1

0

0 0 1

1 1 0

0

0

0 1 0 1 1

0

0

1 1 1

1 1 0

0

0

0 1 0 0 0

1

0

0 0 1

1 1 0

0

1

0 1 0 1 1

Children

Parents

2 random
points

K units

a)

0

0

1 1 1

1 1 0

0

1

0 1 0 0 0

0

0

1 0 1

1 1 0

0

1

0 1 0 0 0

Parent Child
b)

Fig. 2. Classical genetic operators a) Crossing over; b) mutation

For the genetic algorithm, individuals are represented as matrices of binary vari-

ables, which are { } { }KkNnuk
n ,,1,,,1, …… ∈∀∈∀ variables (see figure 2). Note that

they are NK optimisation variables. For the crossing over operation, two potential
solutions (labeled “parents”) are randomly chosen in the population. They stochasti-
cally exchange their optimisation variables (or “genes”) to create two new solutions
(“children”). In fig. 2, the crossing over operation is a two point one. The mutation
operation deals with the random selection of a solution and of one of its genes. This
gene is changed to another. The aim is to keep the population genetic diversity by
making new genes appear in the population.

296 G. Sandou et al.

Finally, the selection operator (see fig. 1) is a genetic operator which aims to
choose a new population from parents and children. This operation is performed by
the classical roulette wheel selection. After having computed the fitness value of each
individual, the probabilities of selection are proportional to the quality of individuals.

3.3 Feasibility Criterion

To guarantee the feasibility of the solution, a suitable criterion is now defined. The
idea is to compute penalty functions and to define an elitist strategy. Penalty functions
have to be quickly computed as they will be calculated for all potential solutions in
successive populations. As in [12], the following integer variables can be defined:

)1(

)1(

1

1

k
n

k
n

k
n

k
n

k
n

k
n

uuε

uuδ

−=

−=

−

− (13)

With the help of these variables, time-up and time-down constraints can be ex-
pressed by the following set of linear constraints:

k
n

k
up

T

j

k
jn

k
Tn

k
n

k
n

k
n δTuuuuδ

k
up

k
up

≥⇔⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ===⇒= ∑
−

=
+−+++

1

0
121 1,,1,11 …

k
n

k
down

T

j

k
jn

k
Tn

k
n

k
n

k
n

εTu

uuuε

k
down

k
down

≥−⇔

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ===⇒=

∑
−

=
+

−+++

1

0

121

)1(

0,,0,01 …

(14)

Capacity constraints (4), consumers’ demands satisfaction (5) and spinning re-
serves (6) have also linear expressions. Finally, constraints can be expressed by a
linear global matrix equation, Ac and Bc collapsing all constraints:

⎩
⎨
⎧

===
≤

==

Tk
n

k
n

k
n

k
n

cc

k
n

k
n

KkNnεδQux

BxA

KkNnQu

),,1;,,1;,,,(

feasibleis},,1;,,1;,{

……

……

(15)

From this expression, a penalty function is quickly computed. To guarantee the
feasibility of the final solution, the following criterion is defined for the algorithm.

{ }

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++

+∑∑
= =

−

=
=

}),{(})).,{()1((

),(),(
min 1 1

1/

,,1
,,1

,
k
n

k
n

k
n

k
n

f

N

n

K

k

k
n

k
n

k
offon

k
n

k
n

k
prod

Kk
Nn

Qu QuBQuhcε

uucuQc

k
n

k
n

…

(16)

 Enhanced Genetic Algorithm with Guarantee of Feasibility 297

- ε is a small positive real.

- }),{(k
n

k
n Quh is a penalty function for non feasible solutions },{ k

n
k
n Qu .

- }),{(k
n

k
n QuB is a boolean function (1 for non feasible solutions, 0 otherwise).

- cf is the cost of a known feasible solution.

With such a criterion, any unfeasible solution will have a higher cost than the best
feasible solution already known. Thus, the optimisation problem (17) can be solved
with an unconstrained optimisation algorithm, and constraints will be implicitly taken
into account. In this study, the chosen optimisation procedure is genetic algorithm. If
the selection strategy is an elitist one (the best solution is always kept in the popula-
tion by the selection operator), then the final solution necessary satisfies all the con-
straints of the Unit Commitment problem.

This feasible solution can be quickly computed from a basic priority list. Note that
the high quality of this solution is not necessary for the algorithm as it is possible to
change the criterion during the algorithm when better feasible solutions are known.

3.4 Knowledge Based Genetic Operators

Classical genetic operators may not be well suited to Unit Commitment problem. The
a priori knowledge can be used to design new genetic operators. Such adapted opera-
tors will imply a faster convergence of the algorithm. Selective mutation, exchange
and “all-on” and “all-off” operators are defined.

Selective mutation operator. Consider for instance the situation of fig. 3. Because of
time down and time up constraints, a random mutation will very often lead to an
infeasible solution. Switching times are particular points of the solution where a
mutation has a higher probability to create a new feasible solution.

Thus, a selective mutation operator has been designed. The idea is to detect switch-
ing times, and to allow mutations only on these particular points. Note that there is no
guarantee that the feasibility is achieved, but the “probability of feasibility” is higher.

1 1 1 1 1 1 0 0 0 0

Switching times :
Authorized
mutations

Fig. 3. Selective mutation operator

298 G. Sandou et al.

Exchange operator. As some production units are more profitable than others, it may
be interesting to exchange their planning. The exchange operator randomly chooses a
potential solution, two production units and two instants and exchanges the
corresponding planning (see figure 4).

0 1 1 1 0

1 0 0 1 1

N

K

Fig. 4. Exchange operator

“All-on” and “all-off” operators. Finally, very simple but very important stochastic
operators have been developed. Consider the situation of fig. 5. Because of time down
constraints, mutation or even selective mutation will lead to infeasibility. The only
way to reach the solution b) is to make two successive mutations, or to perform a
lucky crossing-over, which is very improbable. That is why an “all-on” (and an “all-
off”) operator has been designed. The operator randomly chooses a solution, a
production unit and two instants, and switch on or switch off the unit on the
corresponding time interval. The goal of this operator is to increase the probability of
going from a feasible solution to another by crossing the infeasible set.

4 Numerical Results

4.1 Academic Cases

The proposed algorithm has been tested with Matlab 6.5 (Pentium IV 2 GHz) for an
academic case (4 unit example). As stochastic algorithms are considered, 100 tests are
performed, and statistical data about the results are given. Optimisation horizon is 24
hours with a sampling time of one hour. The characteristics are those of table I.

It is assumed that at time 0, all units are switched off and can be switched on (time

down constraints are satisfied). Consumer’s demand dem
nQ is depicted in figure 6a.

This demand can be fulfilled by 2 production units (see 2 units limit in figure 6), ex-
cept for hour number 9, for which a third unit has to be switched on. Because of time
up constraints this unit will be switched on at least for 3 hours.

To be able to guess the optimal solution, null spinning reserves have been consid-
ered. As very low start up and start down costs have been chosen, the third unit will
be switched off as soon as possible. From these physical arguments, one can guess the
optimal solution, represented in figure 6b.

 Enhanced Genetic Algorithm with Guarantee of Feasibility 299

1 1 1 1 1 1 1 0 0 1
« All
On »

2=downT
a)

b)

Fig. 5. “All on” operator

Table 1. Characteristics for the “4 units” case

Unit Qmin
MW

Qmax
MW

α0 (€€) α1 (€€ /
MWh)

con
(€€)

coff
(€€)

Tdown
(h)

Tup

(h)
1 10 40 25 2.6 10 2 2 4
2 10 40 25 7.9 10 2 2 4
3 10 40 25 13.1 10 2 3 3
4 10 40 25 18.3 10 2 3 3

Fig. 6. Consumers’ demand for the “4 unit” case and “4 unit” case optimal solution

The corresponding optimisation problem is made of 96 binary variables (24 hours
and 4 units). Table 2 shows comparative results of optimisation. Statistical results are
given: best case, mean, standard deviation σ , number of success (a test is successful
if the known best solution is found by the algorithm) and computation times. Genetic
algorithm is tested with a population of 50 or 100 individuals, and for 100, 200 and
300 generations.

Operator probabilities are set to:

- 70% for the crossing-over operator,
- 5% for the mutation operator,
- 10% for the selective mutation, the exchange, the all-on and the all-off operators.

300 G. Sandou et al.

Table 2. Optimisation results for the “4 unit” case with knowledge based operators

Case Best Mean σ Nb of
success

Time

50 ind.
100 iter.

8778 €€
(+0%)

9050 €€
(+3.1%)

236 €€ 20 13 s

100 ind.
100 iter.

8778 €€
(+0%)

9006 €€
(+2.6%)

265 €€ 31 26 s

50 ind.
200 iter.

8778 €€
(+0%)

8824 €€
(+0.5%)

73 €€ 77 24 s

50 ind.
300 iter.

8778 €€
(+0%)

8788 €€
(+0.1%)

37 €€ 94 40 s

The choice of parents for genetic operations is always a fully random one, and does

not depend on parent performances. Individual performances only influence the selec-
tion operator to create the new population. Results show that the enhanced algorithm
is a very efficient algorithm as a very satisfying solution is found in a few seconds:
for 50 individuals and 300 iterations, the best solution is found 94 times out of 100, in
just 40 seconds. The mean result is just 0.1% higher than the best solution. It has been
observed that the algorithm is not sensible to the tuning of operator probabilities. In
order to study the influence of knowledge based operators, the same tests have been
performed for a classical genetic algorithm, without these operators. Statistical results
are given in table 3.

Table 3. Optimisation results for the “4 units” case without knowledge based operators

Case Best Mean σ Nb of
success

Time

50 ind.
100 iter.

12 221 €€ 13272 €€ 466 €€ 0 12 s

100 ind.
100 iter.

10 798 €€ 12 838€€ 559 €€ 0 24 s

Results are much less satisfying with the classical algorithm than with the en-

hanced algorithm. To achieve as good results, the number of iterations has to be mul-
tiplied by 5 or 10, compared with the enhanced algorithm. It can be observed that the
selective mutation is the most interesting operator. The knowledge based operators
are not time consuming as it can be deduced from table 2 and 3. Indeed, the introduc-
tion of these operators only leads to a very slight increase in computation times.

4.2 Large Scale Cases

In this section, the proposed algorithm is applied to large scale cases with up to 100
units, with a time horizon of 24 hours. Statistical results are given for 10, 20, 40, 60,
80 and 100 unit cases. Small populations of 50 individuals have been considered. It is
possible to choose particular characteristics for the problem so as to guess the optimal
solution. Table 4 shows optimisation results for these large scale cases.

 Enhanced Genetic Algorithm with Guarantee of Feasibility 301

Table 4. Optimisation results for large scale cases

Nb
units

Nb iter. Best Mean σ Time

10 500
29815 €€

(+0.07%)
30016 €€

(+0.74%)
185 €€ 188 s

20 500
1.50 105 €€
(+ 0.1%)

1.51 105 €€
(+ 0.9%)

710 €€ 466 s

40 1000
5.56 105 €€
(+ 0.07%)

5.59 105 €€
(+ 0.7%)

1.76 103 €€ 3100 s

60 1500
1.21 106 €€
(+ 0.21%)

1.22 106 €€
(+ 0.37%)

3.45 103 €€ 12000 s

80 2000
2.14 106 €€
(+ 0.32%)

2.15 106 €€
(+ 0.61%)

6.83 103 €€ 21000 s

100 2000
3.34 106 €€
(+ 0.85%)

3.36 106 €€
(+ 1.51%)

1.50 104 €€ 34000 s

Results of table 4 show that the algorithm leads to very satisfying solutions, with a

relatively small number of iterations compared with the size of the optimisation prob-
lem. Computation times are not particularly good because the optimisation algorithm
has been tested with Matlab which is not the best tool for this kind of applications.
However, it can be seen that the required number of iterations is much smaller than
classical genetic algorithm procedures: the number of iterations is divided by 3 to 5,
compared with literature benchmarks. Thus, the enhanced algorithm with knowledge
based operators has a great potential for large scale applications.

5 Conclusion

In this paper, an enhanced genetic algorithm has been presented. The main idea of the
method is to use a priori knowledge of the problem to design new stochastic operators
to increase the probability of creating new interesting solutions. The selective muta-
tion, the all-on, the all-off and the exchange operators have been designed. Thus, the
probability of reaching a feasible point in the search space is increased. A feasibility
criterion has also been defined, leading to the guarantee of solution feasibility. Due to
the use of relevant operators and criterion, the algorithm is very easy to tune, as it is
not sensible to parameter modifications. Finally, it appears that the use of the opera-
tors leads to a decrease in the iteration numbers, with only a slight increase in itera-
tion computation times. This could lead to a huge decrease in global computation
times in the use of genetic algorithm, as shown for large scale cases: for a population
of 50 individuals, only 2000 iterations are required to find suitable solutions (less than
1% from the optimal solution) for the 100 unit case. Forthcoming works deals with
the generalization of the approach to non linear costs, the hybridization of genetic
algorithm with local search or other stochastic algorithms such as ant colony, and the
use of such algorithms for predictive control of hybrid systems.

302 G. Sandou et al.

Acknowledgments

This study is a part of the project €€ nergie of Supélec dealing with the optimisation of
energy systems. This part is carried out with ‘Electricité de France’.

References

[1] Sen, S., Kothari, D.P.: Optimal Thermal Generating Unit Commitment: a Review. Elec-
tri-cal Power & Energy Systems 20, n° 7, 443–451 (1998)

[2] Chen, C.-L., Wang, S.-C.: Branch and Bound scheduling for thermal generating units.
IEEE Trans. on Energy Conversion 8, n°2, 184–189 (1993)

[3] Ouyang, Z., Shahidehpour, S.M.: An intelligent dynamic programming for unit commit-
ment application. IEEE Trans. on Power Systems 6, n°3, 1203–1209 (1991)

[4] Senjyu, T., Shimabukuro, K., Uezato, K., Funabashi, T.: A fast technique for Unit Com-
mitment problem by extended priority list. IEEE Trans. on Power Systems 19, n° 4,
2119–2120 (2004)

[5] Zhai, Q., Guan, X.: Unit Commitment with identical units: successive subproblems solv-
ing method based on Lagrangian relaxation. IEEE Trans. on Power Systems 17, n°4,
1250–1257 (2002)

[6] Orero, S.O., Irving, M.R.: A combination of the genetic algorithm and Lagrangian relaxa-
tion decomposition techniques for the generating unit commitment problem. Electric
Power Systems Research 43, 149–156 (1997)

[7] Dotzauer, E., Holmström, K., Ravn, H.F.: Optimal Unit Commitment and Economic Dis-
patch of Cogeneration Systems with a Storage. In: 13th PSCC 1999, pp. 738–744 (1999)

[8] Wong, Y.W.: An Enhanced Simulated Annealing Approach to Unit Commitment. Elec-
trical Power & Energy Systems 20, n° 5, 359–368 (1998)

[9] Rajan, C.C.A., Mohan, M.R.: An evolutionary programming-based tabu search method
for solving the unit commitment problem. IEEE Trans. on Power Systems 19, n°1, 577–
585 (2004)

[10] Kasarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit
commitment problem. IEEE Trans. on Power Systems 11, n°1, 83–92 (1996)

[11] Sandou, G., Font, S., Tebbani, S., Hiret, A., Mondon, C.: Optimisation par colonie de
fourmis d’un site de generation d’énergie. Journal Européen des Systèmes Automa-
tisés 38, n°9/10, 1097–1119 (2004)

[12] Sandou, G., Font, S., Tebbani, S., Hiret, A., Mondon, C.: Short term optimisation of co-
generation systems considering heat and electricity demands. In: 15th PSCC 2005 (2005)

On the Design of Adaptive Control Strategies

for Evolutionary Algorithms

Jorge Maturana and Frédéric Saubion

LERIA, Université d’Angers
2, Bd Lavoisier 49045 Angers (France)

{maturana,saubion}@info.univ-angers.fr

Abstract. This paper focuses on the design of control strategies for
Evolutionary Algorithms. We propose a method to encapsulate multiple
parameters, reducing control to only one criterion. This method allows
to define generic control strategies independently from both the algo-
rithm’s operators and the problem to be solved. Three strategies are
proposed and compared on a classical optimization problem, considering
their generality and performance.

1 Introduction

Evolutionary Algorithms (EAs) [1] are metaheuristics inspired by natural evo-
lution that are used to find sufficiently acceptable solutions to complex opti-
mization problems. A set of candidate solutions, known as population, evolves
by means of genetic operators. The two main operators are mutation, that mod-
ifies randomly an individual from the population, and crossover, that combines
two of them. A selection process chooses the individuals that will survive in the
next generation population. The whole process is repeated until a termination
condition is satisfied. One of the strongest advantages of EAs over traditional
optimization methods is their ability to escape from local optima. They have
been successfully applied to various application domains.

Most of the time, the performance of these algorithms are strongly related to
a suitable setting of several parameters such as population size and operator’s
application rate. The tuning of these parameters is difficult to achieve and often
depends on empirical experiments or intuition. From the problem’s resolution
point of view, these parameters can be used to control the exploration of the
search space and the exploitation of its interesting areas. If exploitation (also
known as intensification of the search) is excessive, premature convergence may
occur, while if exploration is too excessive (i.e., diversification), the algorithm
becomes inefficient. The management of these two search strategies is indeed the
central preoccupation of search (meta)heuristics.

Another important difficulty when using EAs to solve specific problems is the
limited efficiency of generic evolution operators. Generally, the performance of an
EA is also strongly related to the definition of efficient dedicated operators that
take into account the structural properties of the considered problem (without

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 303–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 J. Maturana and F. Saubion

neglecting the importance of encoding). These operators are often controlled by
parameters, even in its most elemental way of application rate. The influence
of those parameters over the Balance between Exploration and Exploitation
(EEB) is a priori unknown, and knowledge about it is usually acquired across
computationally expensive sets of experiments.

Control strategies often rely on specific rules to control a particular parameter.
This makes it impossible to apply the acquired knowledge to algorithms with
different operators: knowledge is not exportable because it is not expressed in
general terms. It would be then interesting to generate control strategies w.r.t.
EEB, which would allow us to encapsulate the complexity of handling specific
parameters and define simpler and more general control schemes.

In this paper, we present a study about general control strategies based on a
more global view of EA behavior. We first use a method to encapsulate the com-
plexity of handling multiple parameters, even if they are associated to unknown-
behavior operators [2]. This scheme focuses on a particular criterion: the popula-
tion diversity. The population diversity and quality (i.e. mean fitness), produced
by different combination of parameter’s values, are measured during a training
phase. Then, the combinations that provide maximal quality for different levels
of diversity are identified and used later during the control phase. Genotypic
diversity1 is highly correlated with EEB: if exploitation is intensive, individu-
als will tend to concentrate in the higher fitness zones, so diversity will be low.
On the other hand, if exploration is sparse, individuals will be dispersed in the
search space, and diversity will increase.

Then, we propose several control strategies for managing diversity along the
search process. By using diversity as the main controlling parameter, strategies
can be expressed in more general terms of exploration and exploitation, common
to all EAs. These control strategies are experimented and compared on a well-
known combinatorial optimization problem: the quadratic assignment problem.

This paper is organized as follows. Sect. 2 summarizes relevant work, Sect. 3
provides an overview of our approach, while Sect. 4 analyzes several criteria to
define general control strategies. Sect. 5 discusses experimental results, to finally
draw conclusions in Sect. 6.

2 Relevant Related Work

2.1 Parameter Control

In [3], a broad number of approaches to control EA parameters have been re-
viewed and classified according to the taxonomy of Fig. 1.

Parameter setting strategies are divided in two main sets: those that fix pa-
rameters for the whole search before the run, and those that change their values
during the run. In the first group the central task consists in finding fixed recom-
mended values. In the second group parameter’s values change during the run,
1 Measured as the difference between individuals in the population. Since this approach

can be applied to different problems, diversity must be defined accordingly.

On the Design of Adaptive Control Strategies for EAs 305

Fig. 1. Taxonomy of parameter control proposed by Eiben et al. [3]

those are divided according to how the adjustment is achieved: Deterministic
control changes parameter’s values by using deterministic rules, usually in rela-
tion with the number of elapsed generations. Adaptive control modifies parame-
ters according to the current state of the search. Finally, parameter modification
in self-adaptive control is performed by coding parameters inside individuals and
make them evolve together.

Most studies focus on specific parameters control, with just a few exceptions.
An adaptive genetic algorithm is presented in [4], where the relationship between
state measures and parameters are encoded in control rules. In [5] a statistical
method is used to measure relevance and to tune the parameters of an EA
thanks to a second one. Two dynamic control strategies are compared in [6],
where parameters are awarded according to their past performance.

Moreover, the integration of different fields of Artificial Intelligence has led to
new kinds of control approaches. One of these approaches involves Fuzzy Logic
(FL), where fuzzy rules are used to set parameter’s values based on performance
measures [7]. Our approach to handle parameters is based on this mixture, but
applies FL not to control but to modeling behavior, while control is based on
adaptive heuristics.

2.2 Fuzzy Logic Controllers

FL is an extension of classic boolean logic where levels of truth are expressed by
a membership function with values ranging from 0 (false) to 1 (true). One of the
most useful applications of FL are Fuzzy Logic Controllers (FLC) [8,9]. FLCs
allows to infer answers from rules such as “IF car speed is high AND road is dry,
THEN risk is medium”. Since FLCs are universal approximators of continuous
functions [10], they act as modeling tools that express the output w.r.t. inputs.
An early application was proposed by Wang and Mendel [11], in which many of
the subsequent methods have been based.

3 Handling Multiple Parameters in EAs

3.1 Overview of the Approach

When faced to an EA, the user needs to understand its behavior in order to
correctly tune its parameters and benefit from acceptable performances. Most of
the time, a learning process (usually a long set of experiments using the algorithm
with different parameters values) is not included in the algorithm but relies on

306 J. Maturana and F. Saubion

the user’s expertise and intuition. Then, she/he may apply her/his personal, and
often empirical, control rules.

In a similar way, our approach is divided in two phases: Learning and Control.
During Learning, the algorithm produces examples (EA’s generations) using
different parameter’s values, to capture the mapping of these combinations with
genotypic diversity. Since populations with similar levels of diversity may vary in
terms of quality, another model is built, in order to link parameters and quality,
measured in terms of mean fitness.

Both models are used to find the combinations of parameter’s values that
produce the higher quality populations corresponding to different values of di-
versity, which are obtained from a fine partition of reachable diversity. With this
approach, the only parameter to modify thereafter is diversity.

During the Learning phase, three main problems arise: dimensionality, inertia
and noise. Dimensionality is related to the fact that the amount of examples to
be generated depends exponentially on the number of controlled parameters.
Inertia is related to the resistance to the change of diversity and mean fitness
values between consecutive generations. Here, we understand noise as the short-
term variation product of random operators that induce inaccuracy in modeling.

During the Control phase, the controller changes diversity (and therefore pa-
rameters) in order to correctly exploit the search space and try to escape from
local optima. It allows the user to express a generic strategy that can be applied
to algorithms with different operators and solving different problems.

To provide an easy integration with any EA, the controller algorithm has been
designed to be as independent as possible. Communication occurs as follows: the
EA informs about current diversity and quality, and the controller assigns new
values to controlled parameters, decides the reinitialization of population and
the end of the search.

3.2 Learning Phase

There are 4 subphases in Learning: 1.Example production, in which examples
are generated for every fuzzy partition combination; 2.Modeling, where diversity
and quality FLCs are built, based on earlier collected examples; 3.Refinement,
in which new examples, focused on the most promising areas, are generated to
achieve a fine tuning of the model; and 4.Releasing, where all examples are used
to build the definitive model, which will be used during Control phase.

The effects of noise and inertia are specially disturbing during Example pro-
duction. Several techniques have been used to mitigate those effects. The first
one aims to eliminate the influence of initial population by ignoring a number
of generations at the beginning of the search.

Inertia has the undesirable effect of flattening measures of diversity and qual-
ity, as shown in Fig. 2.a (the surface should be continuous), where the examples
of a each training grid cell (shown in the base of the plot), has been gener-
ated before passing to the next cell. Note that flattening occurs even in a close
area, so it is advisable to use a training grid fine enough. We have defined a
grid in function of fuzzy partitions of FLC’s input variables. The intersection of

On the Design of Adaptive Control Strategies for EAs 307

 0

 0.5

 1

 0

 0.5

 1

 0
 0.2
 0.4
 0.6
 0.8

Div

(a)

Param1Param2

Div

Fig. 2. (a) Formation of platforms (emphasized by squares) in a 4x4 coarse training
grid, (b) influence area (fp12,fp22) for two dimensions, in a partition with fineness of 3

all parameter’s partitions define what we have called influence areas, that are
subdivided by a factor of fineness (Fig. 2.b).

In order to avoid abrupt changes in parameters that would increase the unde-
sirable effects of inertia, we have defined a visiting order called smooth, in which
just one parameter value is modified in a minimal amount each time. Fig. 3 shows
examples for 2 and 3 parameters in contrast with classical “nested loop” visiting
order.

Fig. 3. Visiting orders: (a) classical nested loop, (b) smooth in 2D, (c) smooth in 3D

Once examples are collected, the Modeling subphase takes place. A Takagi-
Sugeno FLC with polynomials of order 1 is used. To obtain the coefficients of
the polynomials of the rule corresponding to an influence area, the algorithm
performs a multiple linear regression of the examples collected to build FLCs in
the sense parameters → diversity/fitness.

Fitness FLC is built similarly to diversity FLC, with the difference that an
exponentially descending weighted average correction is done to consider the
effects of long-term operators, like mutation. This method has also the advantage
of reducing the noise. To cancel the bias produced by this correction, an even
number of visiting runs are performed, shifting the direction every time.

Since controller requires the inverse, i.e. which parameters produce a given
level of diversity with maximum quality, a dense grid of parameter combinations
must be created to first find –using Diversity FLC– which ones have the required

308 J. Maturana and F. Saubion

diversity, and then –using Fitness FLC– the one with the higher quality. Values
of diversity and corresponding optimal parameters are stored in the so-called
cachedDiv table.

In order to refine the model, a kind of “beta testing” is performed during
the Refinement subphase, generating examples with the optimal parameter’s
values found, including a normal-distributed error. After that, during Releasing
subphase, all generated examples are used to build the definitive model.

4 Control Strategies for EAs

By modeling diversity and quality w.r.t. parameter values, control strategies
can be expressed closer to EEB than existing control methods. Therefore, the
strategies could be applied to EA’s that solve different problems with other
operators. The issue is then to manage diversity in order to escape from local
optima and to better exploit promising areas. This section discusses several
criteria to design such strategy.

If an excessive diversity is allowed, it is likely that an excessive exploration
will occur, without concentrating in the most interesting zones. On the other
hand, if diversity falls to a small value, all individuals will tend to concentrate
and will be trapped in a local optima. Additionally, if the latter happens, it
would be difficult to reconstruct a population both diverse and of good quality,
since all secondary optima must be found again. Therefore, an intermediate
“correct” value of diversity should be maintained to have a good balance between
exploration and exploitation, and mainly avoid the loss of diversity. Of course,
all problems have different levels of “correct” diversity, so the algorithm must
be able to identify it. A possible approach is to observe the fitness value of the
better individual during the last generations. If the same value is often repeated,
it is likely that the population is converging to the point corresponding to that
fitness.

Another consideration is to alternate between stages of exploration and ex-
ploitation. Actually, during preliminary experiments, we have noted that there
are some problems that were solved very easily with a simple zigzag between min-
imal and maximal diversities. It seems that it is sometimes necessary to “forget”
what has been found to have the chance to explore a totally different zone of
the search space and –perhaps– find a better solution. The question of how long,
in terms of generations, should last this forgetting period is also another issue
to consider: if it is too short the population will return to its initial position.
On the other hand, if it is too long, the algorithm will loose computation time,
although, since the parameters corresponding to maximal diversity are set to be
quality-optimal, the risk of loosing the entire wealth of the population is much
smaller than those when population is regenerated.

We have also experimented strategies with a small oscillation around the
nominal level of diversity, that both performs a local exploration/exploitation
and helps to stabilize the value of observed diversity in relation to commanded
diversity. Another well-known consideration is to first explore and then exploit,

On the Design of Adaptive Control Strategies for EAs 309

in such way that the algorithm concentrates progressively in the most promising
areas of the search space.

Tested Control Strategies. In order to compare control strategies, we have
tested three different approaches that emphasize some of the aspects discussed
earlier. Those strategies varies from maintaining diversity in a rather stable level
to moving it abruptly during the search.

– MX (Mixed): it integrates first-explore-then-exploit, forgetting and small
oscillation. A series of intermediate descending diversity levels: 0.7, 0.6, 0.5,
0.4, 0.3 and 0.2, in the range of achievable diversity, belonging to [0, 1], are
commanded to the EA, with an oscillation of 10% of this range, both above
and below the nominal level. A period of 300 generations are executed at
each level, which are extended in case of finding an historical improvement.
After the algorithm has performed the descending steps of diversity, this
one is raised to its maximum value, to escape from local optima, during 200
generations. After this, decreasing starts again.

– CD (Correct Diversity): it tries to reach an adequate diversity level.
Every 10 generations, the fitness of the best individuals of the last 100 gen-
erations are considered. If more than 46 of them have the same value, com-
manded diversity is risen by 0.003, while if there are less than 17, diversity
is lowered by 0.001. Those values where obtained from preliminary experi-
ments. If the repeated value is not the higher one, or if the higher one has
been obtained recently, the rising rule is relaxed a bit. Note that it is faster
to rise diversity than to decrease it, what reflects the importance of avoiding
premature convergence.

– ZZ (ZigZag): it implements a wide oscillation around a central value of
diversity. This value is given by the mean of commanded diversities corre-
sponding to the last five historic improvements. The oscillation, centered at
this point, grows until the limits of possible diversity. If an historic improve-
ment is reached, the amplitude of the oscillation is reset to zero, to start
growing again.

Some control parameters were tuned to obtain reasonable results, even if our goal
here is not to define the best heuristic for solving QAP but to compare several
control approaches. However, it must be noted that different instances presented
considerable differences among them, as we will see in the following sections. I
order to provide more general and reliable control strategies over a wider set of
benchmarks, a learning component could be studied in future research.

5 Experimentation

In this section, we describe the experiments we have carried out in order to
compare the different control strategies described in section 4 2. We use an
2 It is also possible to obtain fixed settings by taking parameters corresponding to a

given diversity level in CachedDiv. Those settings normally produce worse perfor-
mances than adaptive strategies, as shown in [2].

310 J. Maturana and F. Saubion

EA to solve the Quadratic Assignment Problem (QAP) with three operators,
whose application rate parameters are controlled according to our method. Our
purpose is not to be competitive w.r.t. state of the art solvers on this particular
problem, but rather to compare performances of the previously presented control
strategies.

5.1 Quadratic Assignment Problem

QAP is a well-known combinatorial optimization problem that can be stated as
follows. Let us consider two matrices A = (aij)n×n, B = (bkl)n×n, and a mapping
function Π . The goal is to find a permutation pi = (π(1), π(2), . . . , π(n)) that
minimizes:

f(π) =
n∑

i=1

n∑

j=1

aijbπ(i)π(j)

This problem was formulated by Koopmans and Beckmann [12] for a facility
allocation problem, in which a set of n facilities with physical flows between
them (matrix A) must be placed in n locations separated by known distances
(matrix B). The goal is to minimize the cost (flow×distance) of overall system.

A set of 38 medium-size instances, obtained from the QAPLIB repository 3,
was selected to test the algorithm, covering instances from all families.

5.2 Evolutionary Algorithm

The individuals are encoded as permutations. Population size is set to 100 in-
dividuals and three operators are applied: standard exchange mutation, that
simply interchange two allocations randomly, cycle crossover [13], that preserves
the absolute position of allocations from parents to descendants, and a spe-
cialized operator called remake that randomly erases four allocations, try the
4! possible reconstructions and chooses the best one. In order to focus on the
general abstraction and control methodology, the selection process is not con-
sidered here as a mechanism to control diversity. Therefore, we choose a very
basic selection scheme (roulette wheel) that correspond to a rather naive genetic
algorithm implemented by a non specialist user. A set of 15 runs of 10.000 gen-
erations (learning not considered) have been performed for each instance and
strategy. This great amount of generations was defined to observe how definitive
is premature convergence in every case.

Diversity is defined as the sum of the differences of encoded variables between
all population’s individuals, and scaled linearly in [0,1] between minimal an
maximal possible values, given the number of variables and the population size.

5.3 Learning Phase Parameters

During Learning phase, 2.000 generations were ignored at the beginning of Ex-
ample production and Refining phases. Parameter’s value range were divided
3 http://www.seas.upenn.edu/qaplib/

On the Design of Adaptive Control Strategies for EAs 311

into 4 fuzzy partitions and subdivided with fineness of 3. Within each partition
of fineness, 5 generations were executed. During Refining, diversity descends and
mounts linearly for 800 generations each one. In order to eliminate the effects
of the modeling in the strategy comparison, 15 preliminary runs were made for
each instance and only one cachedDiv has been chosen for each instance. The
chosen cachedDiv was the one that presented the smaller deviation of observed
diversity from commanded diversity during test runs.

5.4 Results and Discussion

Table 5.4 presents the mean values of cost and the standard deviation (in paren-
thesis) for each strategy and instance. An additional column shows the best
known solution published in QAPLIB (April 2007). At the bottom of the table
we have included the average number of runs in which the best known value
was reached, and the number of instances where each strategy significatively4

outperformed the others.
MX and CD have obtained the best results across different instance’s families,

with a slight advantage of CD. On the other hand, ZZ seems to be the least
efficient strategy, with a couple of exceptions. However, the mean number of
times in which the best known value have been reached is not much different for
ZZ, but all successful results are concentrated on a few instances, while other
control strategies seem to have a more regular behavior. Therefore MX and
CD appear as more generic and could work properly on other problems. Some
instances are notably easier that others (considering the operators used), since
they were optimally solved by all strategies in every run, while others by none.

In order to analyze the characteristics of each strategy, we will concentrate on
three representative instances that show the behavior of each one of the three
strategies (Fig. 4). Relative ranking of the control scheme is indicated in each
figure.

Considering CD on tai64c, we can see that, after an initial confusion due to the
effect of initial population, the algorithm is able to rise diversity up to the level
required by this particular instance. However, since the convergence-escaping
heuristic of CD considers only one value of equally fitness-valued generations, it
fails to detect excessive convergence when there are several values with fitness
close to the local optima, as in ste36a and els19.

ZZ, nevertheless, solves els19 without any difficulty. This is partially acci-
dental, since the starting diversity level agrees with the level required for this
instance. Actually, placing the center of oscillation in the mean value of last
successful improvements does not guarantee that this will be the right diversity
to command. This appears clearly on tai64c. While CD lacks of means to detect
sub-optimal multimodality, ZZ lacks of a criterion to well focusing on the right
diversity level.

Note that CD and ZZ have opposite behavior w.r.t. diversity change : ZZ
moves it continuously during the search, while CD stands quietly at a convenient
value. Why CD solves better tai64c and ZZ does with els19 ? One explanation
4 Using a t-Student test with significance level of 0.05.

312 J. Maturana and F. Saubion

Table 1. Mean and standard deviation of experimental results

Instance MX CD ZZ Best known

bur26a 5430603(2813) 5429382(2801) 5431717(1797) 5426670
bur26b 3820099(2645) 3820701(3237) 3819815(2497) 3817852
bur26g 10117735(637) 10118015(1805) 10118437(734) 10117172
bur26h 7098797(227) 7101812(11143) 7099036(314) 7098658
chr12a 9552(0) 9552(0) 9552(0) 9552
chr18b 1534(0) 1534(0) 1534(0) 1534
chr20c 14980(676) 15564(967) 14462(415) 14142
chr25a 4282(145) 4160(193) 4738(189) 3796
els19 17255411(64685) 17403382(428255) 17212548(0) 17212548
esc32a 133(1) 137(3) 146(4) 130
esc32b 174(8) 183(7) 190(3) 168
esc64a 116(0) 116(0) 116(0) 116
had12 1652(0) 1652(0) 1652(0) 1652
had20 6922(0) 6922(0) 6922(0) 6922
kra30a 90618(536) 90688(671) 91805(556) 88900
lipa20a 3696(21) 3690(12) 3695(21) 3683
lipa40b 504178(40403) 509671(41952) 558748(18977) 476581
lipa60a 108419(55) 108263(46) 108649(35) 107218
lipa60b 3001663(133444) 3005495(6122) 3068971(5125) 2520135
nug15 1150(0) 1150(0) 1150(0) 1150
nug20 2573(3) 2571(2) 2574(6) 2570
nug30 6177(26) 6156(21) 6261(25) 6124
rou20 729645(1575) 728832(1764) 729987(3362) 725522
scr20 110375(428) 110129(178) 110178(255) 110030
sko42 15982(62) 15962(48) 16341(61) 15812
sko64 49193(120) 49051(175) 50934(209) 48498
ste36a 9744(102) 9704(98) 10268(148) 9526
ste36b 16209(293) 16341(526) 16973(254) 15852
ste36c 8402215(76340) 8360860(84502) 8525723(69745) 8239110
tai20a 710633(2832) 709743(1618) 712817(2402) 703482
tai20b 122562707(222601) 122824782(270418) 122667094(266302) 122455319
tai40a 3249903(12230) 3231014(13179) 3304776(11237) 3139370
tai40b 647477626(8092672) 650707492(12312552) 654471314(8168843) 637250948
tai60a 7615573(33603) 7468530(19378) 7722640(22912) 7205962
tai60b 617635298(4993344) 616454128(4540470) 630041081(4689169) 608215054
tai64c 1857916(2066) 1856511(736) 1857830(2128) 1855928
tho40 244248(1349) 244027(1418) 251943(1598) 240516
wil50 49029(56) 48994(88) 49728(80) 48816

avg. optima 4.82 4.60 4.29
outperf. MX — 6 2
outperf. CD 3 — 1
outperf. ZZ 20 21 —

could be related to the shape of fitness landscape of both instances: if it is
smooth, a quiet search, that walks across the “plains” and the “valleys” could
be appropriate, while if it is rugged, a “messy search”, that first jumps between
“peaks” to then concentrate of them could be best suited. The interest in finding

On the Design of Adaptive Control Strategies for EAs 313

 0.3

 0.5

 0.7

 0.9

 0 2000 4000 6000 8000

ta
i6

4c

(3rd)

 0 2000 4000 6000 8000

(1st)

 0 2000 4000 6000 8000

-2.4e+06

-2.3e+06

-2.2e+06

-2.1e+06

-2.0e+06

-1.9e+06

(2nd)

 0.1

 0.3

 0.5

 0.7

 0.9

st
e3

6b

(1st) (2nd)

-6.0e+04

-5.0e+04

-4.0e+04

-3.0e+04

-2.0e+04

(3rd)

 0.1

 0.3

 0.5

 0.7

 0.9

el
s1

9

MX

(2nd)

CD

(3rd)
-3.5e+07

-3.0e+07

-2.5e+07

-2.0e+07

ZZ

(1st)

Fig. 4. Plot of commanded diversity (below) and fitness of best individual of the pop-
ulation (above) obtained with proposed strategies for representative instances els19,
ste36b and tai64c. In parenthesis appears the relative order according to mean result.

out a relationship between fitness landscape and the best suited control strategy
lies in the simplicity to know the former, thus it would be possible to auto-
matically select the most performing strategy by measuring ruggedness at the
beginning of the search.

In order to check this hypothesis, we have calculated the random walk cor-
relation function, proposed by Weinberger [14]. This function takes a sequence
of fitness values from a solution that is randomly modified by an operator, and
calculates correlation between fitness values separated by s iterations. We have
calculated the correlation for all treated instances with values of s ranging form
1 to 10, and with two operators; exchange mutation and remake, for series 50.000
iterations long. We have found that tai64c has, as we expected, a high level of
correlation, revealing a smooth fitness landscape. Most of the instances with
a similar correlation structure were best solved by CD (lipa60a, tai60a) and
in some of them ZZ’s performance was particularly inefficient (lipa60b, sko64,
tai60b, wil50). On the other hand, els19 has one of the lowest measures of corre-
lation, pointing out a rugged fitness landscape. The same happens with another
instance well solved by ZZ, chr20c. However, the mapping between strategies
and fitness landscape is not that clear in this case, since there are some rugged
instances that are slightly better solved by CD (rou20, tai20a), and most them
are solved similarly by all strategies (chr12a, chr18b, had12, had20, nug15, nug20,

314 J. Maturana and F. Saubion

scr20). That could be caused by the inappropriate placing of center in ZZ. Fur-
ther work is needed before concluding a definitive relationship.

Analyzing MX, we found that it worked exactly as expected when solving
ste36b: Diversity descends progressively as fitness rises, and forgetting periods
allows to escape from local optima to reach a better one. Even though these
general-purpose diversity levels worked relatively well with most instances, they
were not high enough to deal with tai64c. Another drawback of this strategy is
that it does not consider the converging rate, i.e. even if fitness is rising firmly,
when the time to forget is come, the algorithm starts to explore, losing the op-
portunity to improve the current best solution. The number of generations before
entering a forgetting period is a sensible parameter, whose value depends on the
problem. Something similar happens with the frequency of diversity change in
ZZ.

6 Conclusion

In this paper we have presented a method to control multiple EA’s parameters.
Our purpose was to create an abstraction of algorithmic details in order to allow
the definition of high-level control strategies, applicable to a wide range of EAs,
regardless of the operators used and the problems being solved.

We have discussed several criteria that should be considered when defining
general strategies, and three different schemes, all of them absolutely indepen-
dent from EA’s operators, have been studied. We have considered strategies:
that keep a somewhat stable value of EEB, and others that continuously move
this value.

An interesting relation between the performance of these strategies and the
shape of the fitness landscape has been suggested. This could be used to auto-
matically choose which strategy to apply when faced to a particular problem. A
learning component could analyze performance of control strategies over differ-
ent problems and parameters.

We have considered application rate parameters. It would be interesting to
apply this method to other kind of parameters, such as selection pressure or
population size.

Future work would also extend to other problems in order to assess the gen-
erality of our approach.

References

1. Michalewicz, Z.: Genetics Algorithms + Data Structures = Evolution Programs
(1996)

2. Maturana, J., Saubion, F.: Towards a generic control strategy for EAs: an adaptive
fuzzy-learning approach. In: IEEE Congress on Evolutionary Computation (CEC
2007), IEEE, Los Alamitos (2007)

3. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in
EAs. In: Parameter Setting in EAs, pp. 19–46. Springer, Heidelberg (2007)

On the Design of Adaptive Control Strategies for EAs 315

4. Kee, E., Airey, S., Cyre, W.: An adaptive genetic algorithm. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp. 391–397 (2001)

5. Nannen, V., Eiben, A.: Relevance estimation and value calibration of EA param-
eters. In: Proc. of 20th Int.Joint Conf. on Artificial Intelligence IJCAI-2007, pp.
975–980 (2007)

6. Thierens, D.: Adaptive Strategies for Operator Allocation. In: Parameter Setting
in EAs, Springer, Heidelberg (2007)

7. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of
genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Sys-
tems 141(1) (2004)

8. Kulkarni, A.: 3. In: Fuzzy Logic Fundamentals, pp. 61–103. Prentice-Hall, PTR
(2001)

9. Piegat, A.: Fuzzy Modeling and Control. Springer, Heidelberg (2001)
10. Buckley, J.J.: Sugeno type controllers are universal controllers. Fuzzy Sets and

Systems 53, 299–303 (1993)
11. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE

Transactions on Systems, Man and Cybernetics 22(6), 1414–1427 (1992)
12. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-

nomic activities. Econometrica 25, 53–76 (1957)
13. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-

tors on the TSP. In: Proceedings of the 2nd Int.Conf.on GAs and their application,
USA (1987)

14. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biological Cybernetics 63, 325–336 (1990)

N. Monmarché et al. (Eds.): EA 2007, LNCS 4926, pp. 316–327, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Improvement of Intelligent Optimization
by an Experience Feedback Approach

Paul Pitiot1, Thierry Coudert1, Laurent Geneste1, and Claude Baron2

1 Laboratoire Génie de Production, Ecole Nationale d’Ingénieurs de Tarbes,
47, av. d’Azereix BP 1629 - 65016 Tarbes, France

2 Laboratoire d’Etude des Systèmes Informatiques et Automatique, INSA de Toulouse,
135, av. de Rangueil - 31077 Toulouse, France

{paul.pitiot,thierry.coudert,laurent.geneste}@enit.fr,
claude.baron@insa-toulouse.fr

Abstract. Intelligent optimization is a domain of evolutionary computation that
emerges since a few years. All the methods within this discipline are based on
mechanisms for maintaining a set of individuals and, separately, a space of
knowledge linked to the individuals. The aim is to make the individuals evolve
to reach better solutions generation after generation using the knowledge linked
to them. The idea proposed in this paper consists in using previous experiences
in order to build the knowledge referential and then accelerate the search
process. A method which allows reusing knowledge gained from experience
feedback is proposed. This approach has been applied to the problem of
selection of project scenario in a multi-objective context. An evolutionary
algorithm has been modified in order to allow the reuse of capitalized
knowledge. This knowledge is gathered in an influence diagram allowing its
reuse by the algorithm.

Keywords: Project management, evolutionary algorithm, knowledge
management, experience feedback, influence diagrams.

1 Introduction

The management of industrial projects is a more and more complex activity. The
constraints to take into account are: multi-domain projects, uncertain and dynamic
environment, innovative systems and/or components, multi-criteria optimization, etc.
In this context, optimal methods are not suitable because of the complex and large
search space. Several studies (see [1] for example) highlight the fact that
combinatorial optimization techniques are in general relatively blind methods (i.e.
they are not a priori guided). It is usual to launch an optimal search algorithm
considering that the search space is uniformly interesting. This hypothesis is, in
practice, often proved to be inappropriate. However, some techniques based on meta-
models propose to gain knowledge (learning) during the resolution processes. They
build a model of objective function (response surfaces, Kriging, etc.). Another
alternative is to propose, during the exploration process, some interesting hypotheses
of configuration and to use them as guidelines [2].

 Improvement of Intelligent Optimization by an Experience Feedback Approach 317

Nevertheless, being able to reuse the knowledge capitalized during previous
optimization processes can be an interesting way to improve future explorations of the
search space. The capitalized knowledge can provide interesting information for
initial conditions and during exploration of search space. It is however necessary to
adapt the knowledge capitalized during previous explorations to the current one.

In the domain of project management, the problem of scenario selection is very
difficult, particularly when projects concern the design of new products. This context
provides an interesting framework for knowledge reuse. Indeed, the reuse of
components or knowledge when designing new systems is an increasingly important
and strategic issue for companies. So a lot of information is already available, but not
used to accelerate the optimization process. Moreover, the reuse process must take
into account variations of environment to improve information used.

So, in this paper a framework for integration of an experience feedback process
during optimization processes is proposed. The study is adapted to scenario selection
in project management. In the next section, a state of the art about knowledge
utilization to guide search methods is presented as well as the objectives of the
proposed method based on experience feedback process. In section 3, knowledge
acquisition process and model used by experience feedback process are described.
Section 4 presents different ways to use knowledge during resolution before
concluding and presenting prospects.

2 Knowledge as Guidelines for Optimization Methods: State of
Art

The goal of combinatorial optimization techniques is to find a good solution, if
possible optimal, according to a set of criteria, in the state space of input parameters
(domains of combinatorial parameters). The method searches in this space
combinations of parameters leading to interesting areas with respect to evaluation
criteria. When the studied problem is too complex, two kinds of search methods are
usually used: the meta-modeling of the objective function or the meta-heuristic
methods.

The meta-modeling methods, such as neural networks, consider that the objective
function, even complex, is coherent. Those methods try to build a regression model
used to guide exploration procedure. One major problem with this type of method is
the lack of explanations about obtained solutions. Knowledge is learned by the
program and then stored in a model (e.g. weights on arcs between neurons) but it
remains inaccessible for the user. Their advantage is the capacity of generalization
which ensures a good reuse of knowledge on new cases.

Most heuristics and meta-heuristics methods assume that exploration process (local
or global) will make it possible to find a good solution in a reasonable time and this
by formulating assumptions on the data structure [3]. Heuristics methods are rules
improving search of solutions for certain types of problems or for a particular aspect
of a complex problem. Thus, they carry out a partial knowledge about a part of the
problem or its structure. The search procedure is then accelerated but it is not enough
to find a complete solution.

318 P. Pitiot et al.

Meta-heuristics are more general models which must be adapted according to the
problem to solve. For most of these methods and especially for Evolutionary
Algorithms (EA), the method does not consist in spending time to capitalize
knowledge about the problem which is too complex or changing. It rather consists in
testing (quickly) a great number of possible solutions and to make sure that
exploration process converges towards increasingly interesting solutions. This kind of
method indirectly reuses knowledge associated with the problem via the evaluation of
generated solutions. The assumption is made that carried out knowledge is linked to
the quality of generated solutions. The method tries to improve these solutions. But
knowledge, used during exploration, is not preserved from one execution to the other.
Moreover, it is impossible to reuse only a part of it.

Recently, new methods, called “intelligent optimization methods” [2][4] suggest a
coupling between a Model of Knowledge (MoK) about the problem to be solved and
a traditional search method. The MoK must guide search towards promising zones
while a traditional search method provides a “virtually contextualized information” to
the MoK. For the majority of methods listed above, the use of knowledge is achieved
indirectly. It is represented by means of classes of operators [5], intervals [6],
assumptions on the parameters values [7] or by attributes about good solutions [8].
Works carried out by Chebel-Morello in [9] or Huyet in [4] propose to model the
knowledge directly using parameters classes. Each class of parameters is more or less
favorable to the different objectives. The problem is that it is very difficult to directly
handle this knowledge with the employed methods (Knowledge Discovery in
Databases - e.g. decision trees or neural network).

Finally, other methods [10] [11] use different kinds of Bayesian network as MoK.
The MoK is learned from a database containing selected individuals from previous
generation and it is used to generate directly the new population of individuals by
sampling. The step of induction on the probability model constitutes the hardest task
to perform and this task had to be performed for each generation.

Moreover, no study proposes a reuse mechanism of knowledge obtained during
previous resolution processes to better solve new problems. Such reuse allows
building and improving a complex MoK of the problem before optimization process
and only using it during search (no knowledge actualization).

Objectives of our study. The proposed framework suggests to use a hybrid method
including a meta-heuristic for search and a MoK to provide heuristics adapted to the
current case. The MoK should not provide all information precisely but has to give
some orientations with respect to a given situation. Michalski in [2] shows that fixing
some interesting solutions properties is enough so that search method generates very
quickly some solutions close to the optimal one. The system has to ensure the
following properties:

1) The search process has to be efficient and to provide optimization even with an
incomplete MoK or a failing one. In this study an Evolutionary Algorithm for the
search process and an Influence Diagram as MoK are used;
2) Reuse and continuous improvement of operational knowledge has to be performed
in an interactive manner (achieved projects) within an experience feedback process;

 Improvement of Intelligent Optimization by an Experience Feedback Approach 319

3) Reuse of the knowledge resulting from the simulations produced by the genetic
algorithm. This is possible by means of a Knowledge Discovery in Databases (KDD)
process for example;
4) Capacities of knowledge generalization that allow adapting knowledge according
to new current cases. This adaptation has also to be performed in interaction with the
meta-heuristic.

Application problem. In the domain of project management, the problem of scenario
selection is considered. The aim of this application is to solve simultaneously the
problem of selecting design alternatives for a system and the project planning problem
to achieve this system. The constraints to be taken into account during the project
planning are modeled by a project graph proposed in [12] and shown on figure 1. This
model allows considering simultaneously the planning constraints and the design
constraints. The project graph includes the tasks to be carried out, the AND nodes
(parallel tasks) and the OR nodes representing the possible decisions during the design
process called “design alternatives”. Tasks are represented by means of rectangles with
a task number, AND nodes by means of vertical double-bars, OR nodes by means of
circles. The gray rectangles inside the tasks represent the different possibilities to carry
out a task, called “task options”. The selection of a path in the graph represents a
potential scenario for the project as show on figure 1.

Fig. 1. Graphs of a project and scenario encoding; for example, this one concerns the
realization of a pen with a scenario highlighted

Search method used in previous study. The search method is an evolutionary
algorithm (EA) proposed by C. Baron in [12] for scenario selection. An EA is a meta-
heuristic for stochastic optimization, used for global exploration. The SPEA method
used in this study (Strength Pareto Evolutionary Algorithm) [13] is a traditional EA
with classical steps (initialization, evaluation, selection) and genetics operators cross-
over and mutation. It ensures the multi-objective evaluation of individuals according
to the two following steps: i) the Taguchi approach is used in order to evaluate cost of
a scenario for each criterion [14]; ii) multi-criteria evaluation is then achieved by
means of Pareto front in order to compare and classify the scenarios (concept of

320 P. Pitiot et al.

dominance between solutions). The probability of selection for an individual is
proportional to its fitness. The fitness depends on the position of the individual
compared to the Pareto front (maximum fitness for the Pareto-optimal solutions). The
fitness of an individual is calculated by formula (1) according to the strength (Si) of
individual which it dominates (Pareto-dominance). The strength of an individual is
given by the formula (2) where n is the number of dominated solutions and Pop is the
population size.

 1

1

i

ji i,

s
fj

∑
<

+
= . (1)

1 Pop

n
si

+
= . (2)

After selection, cross-over operator is applied (selection of two “parents” and then
crossing of their “genes”). Finally, the mutation operator is applied (selection of an
individual and change of one or more genes). The criterion used for stopping this
process is a strict limit of the number of generations.

EA requires an encoding of individuals. In this model, an individual represents one
scenario for the project, i.e. an instantiation of the graph as shown on figure 1. The
chromosome of an individual gathers on first part (the left one) the design alternatives
choice. Each gene corresponds to a path choice in the project graph and it is
represented in chromosome by a number corresponding to the selected alternative.
Then on the second part of the chromosome (right one), each gene corresponds to
selection of a task option (a number corresponding to selected option).

All possible choices are always represented whereas majority of them are inactive
since they are inhibited by alternatives choices. For example, in figure 1, the first
design choice (OR node - choice of arc (2) noted (1:2)) inhibits node and then,
tasks 1 and 2. The second possible design choice for this scenario (OR node -
choice of arc (2) noted (3:2)) inhibits the tasks 3 and 4. Consequently, the tasks 1, 2, 3
and 4 are present in the chromosome but their genes are inhibited. This encoding
ensures a constant viability of solutions but requires an additional control on genetics
operators. A check has to be performed to avoid inefficient mutation or cross-over.

3 Knowledge Acquisition and Modeling

3.1 Knowledge and Experience Feedback

Knowledge management relies on expert’s knowledge extraction and direct use of this
knowledge through a modeling. Methods using this process (MKSM, Kads) encounter
problems such as difficulty of data extraction, expert’s availability or knowledge
actualization. Experience feedback proposes acquisition and knowledge reuse through
the experiences (spontaneous declaration of knowledge during their application). It
rests mainly on two cycles of information management: capitalization and
generalization. Capitalization is carried out by memorizing behavior of the expert.

 Improvement of Intelligent Optimization by an Experience Feedback Approach 321

Experiences are used as vectors to build knowledge reference frame. Each time that
an event occurs, actors formalize their judgment. Indeed, to generalize a model of
knowledge starting from lived experiments is easier than to clarify knowledge apart
from its context.

In our study, knowledge corresponds to the identification of system and
environment of system to be realized. It consists in probabilistic or determinist links
between three state spaces: i) input parameters of the problem (i.e. genome where
each gene corresponds to a design or planning decision); ii) the evaluation criteria and
objectives (discrete values in our study); and iii) parameters characterizing the
environment of the project. Indeed, context modeling is necessary to adapt knowledge
to current situation. Knowledge about criteria and objectives is related to
functionalities of the designed system (e.g. customer’s requirement) or on
requirements for the project management (e.g. minimize cost, delay, etc). Among
knowledge about genome, two different kind of knowledge can be distinguished. The
first one is a structural knowledge related to the problem to solve (e.g. the constraints
of precedence and inhibition between decisions). Note that this part of knowledge
referential is specific to the graph routing problem. The second kind of knowledge
used is the set of preferences between genes according to criteria and objectives.
Knowledge is extracted from: a) the project graph shape; b) information and analyses
of operational experience feedback and finally; c) intermediate simulation results
(individuals evaluated by EA).

3.2 The Model of Knowledge (MoK)

Paradigm used to model required knowledge is Influence Diagrams (ID) [15], a
stepwise-solvable bayesian network. Firstly, they represent an interesting way for
representation and use of knowledge because they were conceived for conceptual
representation in decision support. So, they allow the representation of expertise and
an interactive management of knowledge coming from experience feedback.
Moreover, they allow an automated learning process on simulation results. This
double source of knowledge (expertise and learning process) allows an interesting
way for knowledge extraction [15]. Indeed, an expert can easily provide a structure of
problem (or parts of it) but with uncertain parameters values. Formulating this expert
knowledge by means of an ID, some rules, based on probabilities, allow calculating
estimated data. These data can be compared with the data resulting from simulation or
from previous carried out projects. Considering the process of KDD, statistical
extraction of structures is a much more complex problem than the statistical
extraction of parameters values. If we already have a structure (resulting from
expertise), calculations for parameters acquisition are simplified. This cycle of
information extraction improves and facilitates the construction of the model by using
the two sources of knowledge (i.e. expertise and results of simulation).

An Influence Diagram (ID) is a regular acyclic and no-forgetting graph of
probabilistic relations between decisions, objectives, decision criteria and environment
(see left part of figure 2), based on a net. Three kinds of nodes are used: “utility
nodes”, “decision nodes” and “chance nodes”. “Utility nodes” do not have “children
nodes”. To each of them, an exact value is associated for each combination of “parent
nodes”. They represent in our case the objectives of the project. “Decision nodes”

322 P. Pitiot et al.

represent the possible decisions, i.e. the genes of EA. Decision rules enable to associate
to each possible configuration of “parent nodes” a single decision. Lastly, the “chance
nodes” are used in order to represent context and decision criteria. A table of
conditional probabilities is associated to each node. It contains all the probabilities
depending on states of “parent nodes”. The example on left part of figure 2 is linked to
the scenario shown in figure 1. Decisions d5 and d6 are related to the options of
realization (respectively Task T5 and T6) for a pen built in two parts. An expert
determines that for these two decisions the principal criterion is the mode of realization
(internal or external). This criterion is conditioned by the external supply (E2) of the
required resources (for example a subcontracting supplier). Based on its experience,
the expert estimates that these criteria can be aggregated in “Mode of realization” (C4).
Once this analysis is carried out, we have a structure which could be completed by an
estimated distribution of probabilities provided by the expert.

Nevertheless, a better way consists in setting these probabilities by confronting the
ID with the real data coming from previous similar scenarios (e.g. a similar decision
chain). This ID constitutes an “experience” in our system. This diagram ensures a
conceptual classification of the properties of the decisions. The interest of conceptual
classification is that it enables to define and classify the objects according to their
descriptions (concepts used) without any considerations about raw data. The search
for new projects or similar ones in different contexts can be done at conceptual level.
This largely facilitates exchange with user and knowledge reusing.

Fig. 2. Influence Diagram for a scenario and for the project

The ID represented on left part of figure 2 results from a learning process, but for
only one scenario. To obtain a global MoK able to guide the EA for all the possible
scenarios, it is necessary to carry out a second cycle of abstraction by confronting the
various ID. This global MoK is an extended influence diagram (on right part of figure 2)
representing the set of possible decisions, criteria and sub-criteria linking decisions to
objectives and environment. It is carried out by differential analysis of the contexts of
each concept (objective, criterion or decision) used in the IDs. The context of a concept
is defined as the set of concepts on which it is linked in the ID. For example, the context
of a decision of realization associated with a task in a particular project (for example D1
on figure 2) is the set of the other decisions concerning the scenario, the criteria,
functions and objectives related to this task. Mechanisms of context changing can be
inferred each time that this task is used within a project.

 Improvement of Intelligent Optimization by an Experience Feedback Approach 323

These mechanisms activate or inhibit concepts associated with the task according to
its context of use. The global ID is composed of three parts: in the higher part, a net of
chance and utility nodes gathers the decision criteria and the objectives. It is the result
of generalization of the selected decision criteria. It enables to represent all the
combinations of relevant concepts. Then, the set of decisions to be evaluated are
represented (D1,…, d8). It corresponds to the project’s genome. Another set of
decision nodes (Reg1 to Reg3) related to design alternatives is also represented. It
corresponds to the structural aspect of knowledge resulting from project graph. This
knowledge can be interpreted as activation constraints [16] and illustrates the fact that
selection of an alternative activates corresponding tasks and inhibits tasks associated
with other possible alternatives. For example, decision D3 activates d3 and d4 or d5
and d6.

4 Different Way to Use knowledge in Evolutionary Algorithm

Within our model of knowledge, some information links the search space (parameters
to be selected), the objectives of project and the space of global context. So, in order
to accelerate the exploration process within the EA, we use the capitalized knowledge
(gathered in the MoK) adapting it to the current case. Considering that the MoK can
be unsuitable or incomplete in certain cases and that it is not revised during search
process, it is thus necessary to preserve independence of search method when
predictions of MoK are not appropriated. For this reason, evaluation and selection
steps of classic EA are preserved. Moreover, a mechanism is envisaged allowing to
partially come back to traditional genetics operator when insufficient progress is
observed.

The main problem for direct interaction between ID and EA is the step of inference
in probability model especially because of multi-criteria fitness in ID consumes too
much computing time. As a consequence, knowledge should be clusterised [2] [11]
with respect to objectives and provided to EA during initialization. This way
developed in next section allows general orientation to reach interesting zones of
search space. The main difference between this study and the others using a MoK to
guide search [10] [11] to guide search is that the MoK is more complex here (multi
objectives, interdependencies between variables) but it is made before optimization
process, as an off-line process.

Interaction based on knowledge clustering. This kind of interaction is based on two
classifications: i) the classification of individuals with respect to objectives by EA and
ii) the conceptual classification of scenarios by project’s global ID. During
initialization step, the global I.D. provides classes of favorable genes for each class of
objectives. The classes of objectives are distributed uniformly on search space and
their number is fixed by the user. A Class of genes gathers probabilities of selection
for each alternative of each gene of the genome.

In a traditional EA, initial population is generated randomly. Here, the initial
population is build according to the classes of genes, in order to start search procedure
with a priori good orientations. The individuals are divided through the various
classes of genes. Then for each individual, the probabilities of his class are used to fix
the value of genes as shown on figure 3. In the class of gene, each table corresponds

324 P. Pitiot et al.

to the selection’s probabilities for each state of a gene. For example, the values (1; 0)
of the first table indicate that, to reach the matched class of objectives, it is necessary
to choose with a probability of 100% the first alternative. This choice implies that
genes 3, 6, 7, 8 and 9 (respectively linked to decision D3, d3, d4, d5 and d6 on figure
2) are inhibited according to structural knowledge (their probability on the class of
genes is fixed to -1). When a gene is inhibited by previous genes already instantiated
(genes encoding OR node’s options choice), its value is fixed to 1.

Fig. 3. Utilization of gene’s class for individual building during initialization

During EA process, classes of genes are matched to current cluster of Pareto-
optimal individuals (see left part of figure 4). The centered solution of cluster (i.e.
which minimizes distance with other solutions) will be used as reference point for the
class of genes to which it is matched. That makes it possible affecting to each
individual the class of genes to which the center is closest.

The mutation operator, shown on the right part of figure 4, selects an individual
randomly among the population and secondly, the probabilities of its class are used to
fix the value of genes similarly as during initialization except that a gene mutation
occurs according to the mutation probability and mutations on inhibited genes are
skipped. This method allows to preserve good properties of an individual, to avoid
useless changes and thus to concentrate the changes on the remaining genes.

Fig. 4. Assignment of individual to classes and mutation operator

 Improvement of Intelligent Optimization by an Experience Feedback Approach 325

The crossover operator, illustrated on figure 5, enables exploration or
intensification of search space. It corresponds then to an “inter-class” exchange by
crossing individuals belonging to different classes or an “intra-class” exchange by
crossing on the same class, according to the strategy of selection of parents. Once
parent selection is done, probabilities of their classes are used to determine points of
crossing. For each gene, if one of its parents has an inhibited gene or if the two
parents have a probability of 1 for two different alternatives, the crossing does not
take place for this gene. If only one of the two parents has a probability of 100% for
an alternative, a unilateral crossing is done for this gene (from the parent with 100%
towards the other as for first gene on figure 1). Lastly, if none of the preceding case is
applicable, the crossing will be carried out in a traditional way according to the
probability of crossing as for second gene on figure 1. This method makes it possible
to preserve and, if possible, to exchange favorable genes of each individual.

Fig. 5. Crossover operator

First results. We use a platform coded in C++ which allows testing our method.
Table 1 presents preliminary results obtained for a graph with sixty tasks (three
options per task) and fifteen OR node (three alternatives per OR node). The first row
is the mean of best solution’s evaluation obtained after ten runs. The evaluation of an
individual is calculated by adding the square of difference to each objective multiplies
by a coefficient define by user (the optimal solution’s evaluation for this problem is
3051.28). The second row is the mean of generation’s number in which the best
solution has been found and the last one is the time needed to achieved the ten runs on
a AMD Sempron 3400+ with 512Mb of RAM.

For a first evaluation of this approach, the intelligent evolutionary algorithm (IEA)
has been tested with a perfect learned MoK (class of genes learned with every best
solutions generated separately) and without MoK (MoK with class equiprobable for
every gene, equivalent to a traditional EA). Tests were realized for ten generations,
with a population of fifty or ten individuals and with a genetic strategy (GS:
PCross=0.7, PMut=0.3) or an evolutionary strategy (ES: PCross=0.3, PMut=0.7). The best
strategy, here the ES one, is linked to problem instance. These first encouraging
results show that the learned MoK guide very quickly the algorithm to interesting
individuals as shown by runs done with ES strategy and fifty individuals where the

326 P. Pitiot et al.

IEA find optimal solution at every execution in only five seconds. The learned MoK
achieved best results (average of eight percents for all runs) to find the best solution
and done as well for every class of objectives (the entire Pareto front is improved).

Table 1. Mean results after ten executions with and without learned MoK. The Eval. and Gen.
columns represent respectively the best value obtained and the generation in which it added.

I.E.A. using learned MoK I.E.A. without MoK
Gen/Pop/ Strat.

Eval. Gen. Eval. Gen.
time

10/50/ GS 3074.27 1.66 3316.96 3.73 6s
10/50/ ES 3051.28 (optimal) 3.26 3274.85 4.9 5s

100/10/ ES 3051.28 (optimal) 6.4 3212.72 61.1 8s

5 Conclusion / Perspectives

An original approach based on coupling between a graphic model of knowledge built
starting from experiments in an interactive and iterative way and a multi-objective
evolutionary algorithm has been proposed in this paper. The first tests show
promising results. We currently perform more experiments to test and validate the
approach when MoK is incomplete or failing. Then some perspectives have to be
carrying out. First of all, we investigate different way to use a direct interaction
between MoK and EA without classification matching in order to use knowledge
more specifically. Two possibilities are now investigated. The first one consists in
compiling all information with an automaton as proposed by J. Amilastre in [17]. This
model has very short response times but must be built before launching scenario’s
search process. The second possibility is to simplify the global ID. This operation can
be carried out by means of an adaptive meta-model representing the relevance of a
node as proposed M. Crampes in [18]. Secondly, another perspective concerns the
update of the global ID starting from the past experiments (i.e. starting from the set of
all the MoK corresponding to all previous instantiated scenarios). It has to be
specified as well as the interaction between models and decision makers.

References

1. Talbi, D.: Application of Optimization Techniques to Parameter Set-up of Industrial
Scheduling Software. Computers In Industry 55, n°2, 105–124 (2005)

2. Michalski, R.S., Wojtusiak, J., Kaufman, K.A.: Intelligent Optimization via Learnable
Evolution Model. In: 18th IEEE Conf. on Tools with Artificial Intelligence, pp. 332–335
(2006)

3. Russel, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice
Hall/Pearson education international, London (2003)

4. Huyet, A.-L., Paris, J.-L.: Synergy between Evolutionary Optimization and Induction
Graphs Learning for Simulated Manufacturing Systems. International Journal of
Production Research 42(20), 4295–4313 (2004)

5. Sebag, M., Schoenauer, M.: A rule based similarity measure, vol. 837, pp. 119–130.
Springer, Heidelberg (1994)

 Improvement of Intelligent Optimization by an Experience Feedback Approach 327

6. Cervone, K.: Experimental Validations of the Learnable Evolution Model. Congress on
Evolutionary Computation, San Diego CA (2000)

7. Alami, J., El imrani, A.: A multipopulation cultural algorithm using fuzzy clustering.
Applied Soft Computing 7(2), 506–519 (2007)

8. Chung, C.J.: Knowledge based approaches to self adaptation in cultural algorithms, PhD
thesis, Wayne State University, Detroit, USA (1997)

9. Chebel-Morello, B., Lereno, E., Baptiste, P.: A New Algorithm to Select Learning
Examples from Learning Data. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000.
LNCS, vol. 1983, pp. 13–15. Springer, Heidelberg (2000)

10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A new Tool for
Evolutionary Computation. Kluwer, Dordrecht (2001)

11. Miquélez, M., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on
Bayesian classifiers. Int. Journal AMCS 14(3), 335–349 (2004)

12. Baron, C., Rochet, S., Esteve, D.: GESOS: a multi-objective genetic tool for project
management considering technical and non-technical constraints, Art. Intel. Applications
and Innovations (AIAI), IFIP World Computer Congress, Toulouse (2004)

13. Zitzler, E., Thiele, L.: Multi objective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Trans. on evolutionary computation 3, n°4, 257–
271 (1999)

14. Watthayu, W., Peng, Y.: A Bayesian network based framework for multi-criteria decision
making. In: MCDM 2004, Whistler, Canada (2004)

15. Becker, A., Naim, P.: Les Réseaux Bayésien: modèles graphique de connaissance, Eyrolles
(1999)

16. Vareilles, E., Aldanondo, M.: Evaluation of a Solution in Interactive Aiding Design
Process. In: INCOM 2006, Saint Etienne, France (2006)

17. Crampes, M.: Méta modèle adaptatif de la pertinence d’un modèle de connaissance. In:
RFIA 2004, Toulouse (2004)

18. Amilastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in
dynamic CSPs – Application to configuration, vol. 135(1-2), pp. 199–234. Elsevier A.I,
Amsterdam (2001)

Author Index

Auger, Anne 207

Bäck, Thomas 219
Bader-El-Den, Mohamed 37
Barate, Renaud 25
Baron, Claude 316
Bleuler, Stefan 112
Bouquard, Jean-Louis 136
Bousquet, Aurélie 231
Bredeche, Nicolas 278
Brodu, Nicolas 73
Bull, Larry 255
Burke, Edmund 184

Clarkson, P. John 148
Colas, Sonia 87
Cooren, Yann 50
Coudert, Thierry 316
Créput, Jean-Charles 100

Da Costa, Luis 1
Dawes, William N. 148
Devert, Alexandre 278
Duval, Béatrice 243

Egli, Matthias 112
Erçal, Türker 266

Fanciulli, Riccardo 219
Feller, Jonathan 112
Font, Stéphane 291
Frick, Damian 112

Gaehwiler, Samuel 112
Gaucher, Pierre 87
Geneste, Laurent 316

Hao, Jin-Kao 124, 243
Herek, Jennifer L. 219
Hernandez Hernandez, Jose Crispin 243
Hiret, Arnaud 291
Hohm, Tim 112
Huber, Richard 112
Hutabarat, Windo 148

Jarrett, Jerome P. 148
Jebalia, Mohamed 207

Karlsson, Mathias 112
Keller, Robert E. 13
Koukam, Abderrafiaâ 100
Kuntz, Pascale 124

Landa-Silva, Dario 172
Landry, Jacques-André 1
Le, Khoi 172
Levasseur, Yan 1
Liardet, Pierre 207
Lingenhag, Reto 112
Louchet, Jean 231
Lutton, Evelyne 184

Manzanera, Antoine 25
Maturana, Jorge 303
Mondon, Christian 291
Monmarché, Nicolas 87

Nakib, Amir 50
Néron, Emmanuel 136

Ochoa, Gabriela 184
Oulhadj, Hamouche 50
Özcan, Ender 266

Parks, Geoffrey T. 148
Pessan, Cédric 136
Petrovic, Pavel 160
Pitiot, Paul 316
Plavcan, Juraj 160
Poli, Riccardo 13, 37
Porumbel, Daniel Cosmin 124

Rocchisani, Jean-Marie 231
Ruetimann, Thomas 112

Sandou, Guillaume 291
Sapin, Emmanuel 255
Sasse, Tom 112
Saubion, Frédéric 303
Savolainen, Janne 219

330 Author Index

Schoenauer, Marc 278
Siarry, Patrick 50
Slimane, Mohamed 87
Steiner, Thomas 112
Stocker, Janine 112

Tebbani, Sihem 291
Teytaud, Olivier 196

Urbano, Paulo 62

van der Walle, Peter 219

Willmes, Lars 219

Zitzler, Eckart 112

	Title Page
	Preface
	Table of Contents
	Treating Noisy Data Sets with Relaxed Genetic Programming
	Motivation and Background
	Experimental Setting
	Sets of Noisy Points
	RelaxGP: Relaxation Values
	GP (and RelaxGP) Runs' Parameters
	Measures

	Results
	Discussion

	Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic
	Introduction
	A Linear-GP Hyperheuristic
	Problem Domain
	Grammars
	Experiments
	Setup
	First Problem
	Second Problem

	Summary and Conclusions
	Further Work

	Automatic Design of Vision-Based Obstacle Avoidance Controllers Using Genetic Programming
	Introduction
	Inspiration and Principles
	Vision Based Obstacle Avoidance
	Vision in Evolutionary Robotics

	Material and Methods
	The Vision Algorithms
	Evaluation of Algorithms
	The Evolution Process

	Experiments and Results
	Experiment in a Simple Environment with Block Obstacles
	Experiment in a More Realistic Environment
	Discussion

	Conclusion

	Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework
	Introduction
	SAT Problem
	Stochastic Local-Search Heuristics
	Evolutionary Algorithms and SAT Problem

	GP-HH for SAT
	Experimental Setup
	Results
	Conclusion

	Magnetic Resonance Image Segmentation Based on Two-Dimensional Exponential Entropy and a Parameter Free PSO
	Introduction
	Two-Dimensional Histogram
	Two-Dimensional Exponential Entropy
	Parameter Free PSO Algorithm (TRIBES)
	Swarm’s Structure and Communication
	Swarm Evolution
	Strategies of Displacement

	The Proposed Image Segmentation Algorithm
	Experimental Results and Discussion
	Comparison to Other Methods
	Examples of Results and Discussion

	Conclusion
	References

	Mimetic Variations on Stigmergic Swarm Paintings
	Introduction
	The Colombines
	Dynamics Responsible for Pattern Emergence

	First Variation: Simple Mimetic Colombines
	Simple Imitation in Convention Emergence
	Simple Mimetic Colombines

	Second Variation: Imitation Based on Force: Consensual Evolution
	Double Imitation of Stronger Agents with Reinforcement
	ForceMimeticColombines

	Conclusions and Future Work
	References

	Minimal and Necessary Conditions for the Emergence of Species-Specific Recognition Patterns
	Introduction
	The Model
	The Genetic Algorithm/Machine Learning Interactions
	The Different Machine Learning Models
	The Linear Classifier
	The 2-Layer Perceptron (MLP)
	The K-nearest Neighbors (KNN) Classifier, with K=5
	The Assembly of Maximum Likelihood (ML) Estimators

	Results for the Synchronous Case
	Results for the Asynchronous Case
	Conclusion

	Artificial Ants for the Optimization of Virtual Keyboard Arrangement for Disabled People
	Introduction
	Overview of Assistive Technologies to Take Place of Keyboards
	Hardware Solutions
	Virtuals Keyboards

	Artificial Ants for Combinatorial Optimization
	Optimization of a Virtual Keyboard by Artificial Ants
	Solution Building
	Solution Evaluation
	Pheromones Update

	Experimental Results
	Experimental Settings
	Parameter Study
	Experimental Comparison

	Conclusion

	Self-organization and Evolution Combined to Address the Vehicle Routing Problem
	Introduction
	Evolutionary Algorithm Embedding SOM
	Method Principle
	The Kohonen’s Self-Organizing Map
	Evolutionary Loop and Operators

	Computational Results
	Influence of the Main Algorithmic Components
	Comparative Evaluation

	Conclusion
	References

	An Evolutionary Algorithm for the Block Stacking Problem
	Introduction
	Related Work
	The Block Stacking Problem
	An EA for the Block Stacking Problem
	Representation and Candidate Stack Initialization
	Operators
	Fitness Evaluation

	Simulation Results
	Parameter Testing
	Application to a 50 Block Problem

	Conclusions

	A Study of Evaluation Functions for the Graph K-Coloring Problem
	Introduction
	Heuristic Search for Graph Coloring
	Graph K-Coloring and Graph Coloring
	Local Search for K-Coloring

	A New Evaluation Function
	The New Evaluation Function
	Computational Complexity

	Experimental Comparisons of the Two Evaluation Functions
	Steepest Descent
	The Experimental Conditions
	Results

	Why the New Evaluation Function Works?
	Convergence
	Neighborhood Analysis
	Classes of Configurations in the Landscape

	Conclusions and Further Work

	Genetic Branch-and-Bound or Exact Genetic Algorithm?
	Introduction
	Existing Methods
	Problem Description
	Branch-and-Bound Method

	Hybrid Method
	Generalities
	Hybrid Exact Genetic Algorithm

	Experimental Results
	Conclusion

	Aerodynamic Topology Optimisation Using an Implicit Representation and a Multiobjective Genetic Algorithm
	Introduction
	Topology as a Design Variable
	Proposed Framework

	Related Work
	Framework Implementation
	Topologically Unconstrained Shape Representation
	Optimisation Algorithm
	Evaluation

	Test Case
	Objective Functions
	Selection Operator

	Results and Discussion
	Conclusions and Future Work

	Direct and Indirect Representations for Evolutionary Design of Objects
	Introduction
	Simulation
	Open Dynamics Engine
	Simulation Model

	Scene Graphs
	Rotor Representations
	Indirect VRML Representation with Objects R_1
	Direct Representation R_2
	Indirect Representation R_3, R_4

	Evolutionary Algorithm
	Distributed Evaluation
	Results
	Conclusions and Future Work

	Adaptive and Assortative Mating Scheme for Evolutionary Multi-Objective Algorithms
	Introduction
	Mating Schemes for EMO Algorithms
	The Adaptive Assortative Mating Scheme
	The Experimental Setting
	Similarity Measurement
	Static Setting of the Mating Pressure
	Dynamic Setting of the Mating Pressure

	Final Remarks

	The Cooperative Royal Road:Avoiding $Hitchhiking$
	Introduction
	Cooperative Co-evolution
	Abstract Test Functions

	Royal Road Functions and the Hitchhiking Effect
	Functions R1 and R2

	Methods
	Empirical Results and Analysis
	Dynamic Behavior

	Conclusions

	Conditioning, Halting Criteria and Choosing λ
	Introduction
	The Model and the Consistency of the Halting Criterion
	Choosing λ in the Derandomized Setting
	Choosing λ_t in the Random Case
	Convergence Issues: 1+ λ-ES Almost Surely Halts
	Discussion: Derandomization, Halting Criteria, Robustness, Conditioning

	Log-Linear Convergence and Optimal Bounds for the (1 + 1)-ES
	Introduction
	Mathematical Model for the (1+1)-ES
	Lower Bounds for the (1+1)-ES
	Spherical Functions and the Scale-Invariant Algorithm
	Discussion and Conclusion

	Evolution Strategies for Laser Pulse Compression
	Introduction
	Second Harmonic Generation (SHG) as Fitness Function
	Introduction to Optical Second Harmonic Generation
	The Role of the Phase
	Fitness and Free Parameters of the Search
	Properties of the Fitness Function, Search Landscape and Real-Life Noise

	Evolution Strategies
	SHG Optimization on Simulations
	SHG Optimization in the Laboratory
	Conclusions and Outlook

	Fully Three-Dimensional Tomographic Evolutionary Reconstruction in Nuclear Medicine
	Introduction
	Nuclear Medicine
	The Compton Effect and Its Consequences

	A Parisian Evolutionary Approach
	The Classical Fly Algorithm
	Monte-Carlo Simulation
	Building a Fitness Function

	Results
	Example 1
	Example 2
	Example 3: Real Data
	Example 4: Noise Resistance

	Conclusion
	References

	A Study of Crossover Operators for Gene Selection of Microarray Data
	Introduction
	SVM Classification and Gene Selection
	Support Vector Machines
	Feature Ranking by SVM

	A Dedicated Genetic Algorithm for Gene Selection and Classification
	Problem Encoding
	SVM Based Fitness Evaluation
	Specialized Crossover Operator [12]
	The General GA and Its Other Components

	Comparison
	Data Sets
	Comparison of Crossover Operators
	Comparison with Other Genetic Algorithms

	Conclusions and Future Work

	Searching for Glider Guns in Cellular Automata: Exploring Evolutionary and Other Techniques
	Introduction
	Previous Work
	Cellular Automata
	Search Methods
	Evolving Cellular Automata

	Search for Glider Guns
	Evolutionary Algorithm
	Monte Carlo Method
	Tabu Search
	Discussion

	Results of the Algorithm
	Number of Guns
	The Most Discovered Gun

	Synthesis and Perspectives

	A Genetic Algorithm for Generating Improvised Music
	Introduction
	A Genetic Algorithm for Generating a Melody
	Representation

	Objectives and the Fitness Function
	Results
	Conclusions and Future Work
	References

	Unsupervised Learning of Echo State Networks: A Case Study in Artificial Embryogeny
	Introduction
	Artificial Evolution of Neural Network
	NEAT: Revolution of Augmenting Topologies

	Echo State Networks
	Unsupervised Learning of ESN

	Multi-cellular Artificial Embryogeny
	The Flag Problems

	Experimental Results
	Settings
	Results
	The Fitness Landscape

	Conclusion

	Enhanced Genetic Algorithm with Guarantee of Feasibility for the Unit Commitment Problem
	Introduction
	Unit Commitment Problem Statement
	Enhanced Genetic Algorithm
	Real Variable Computation
	Classical Genetic Algorithm
	Feasibility Criterion
	Knowledge Based Genetic Operators

	Numerical Results
	Academic Cases
	Large Scale Cases

	Conclusion
	References

	On the Design of Adaptive Control Strategies for Evolutionary Algorithms
	Introduction
	Relevant Related Work
	Parameter Control
	Fuzzy Logic Controllers

	Handling Multiple Parameters in EAs
	Overview of the Approach
	Learning Phase

	Control Strategies for EAs
	Experimentation
	Quadratic Assignment Problem
	Evolutionary Algorithm
	Learning Phase Parameters
	Results and Discussion

	Conclusion

	Improvement of Intelligent Optimization by an Experience Feedback Approach
	Introduction
	Knowledge as Guidelines for Optimization Methods: State of Art
	Knowledge Acquisition and Modeling
	Knowledge and Experience Feedback
	The Model of Knowledge (MoK)

	Different Way to Use knowledge in Evolutionary Algorithm
	Conclusion / Perspectives
	References

	Author Index

