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Abstract. We propose an efficient nonparametric missing value imputation 
method based on clustering, called CMI (Clustering-based Missing value 
Imputation), for dealing with missing values in target attributes. In our 
approach, we impute the missing values of an instance A with plausible values 
that are generated from the data in the instances which do not contain missing 
values and are most similar to the instance A using a kernel-based method. 
Specifically, we first divide the dataset (including the instances with missing 
values) into clusters. Next, missing values of an instance A are patched up with 
the plausible values generated from A’s cluster. Extensive experiments show the 
effectiveness of the proposed method in missing value imputation task. 

1   Introduction 

Missing values imputation is an actual yet challenging issue confronted in machine 
learning and data mining [1, 2]. Missing values may generate bias and affect the 
quality of the supervised learning process or the performance of classification 
algorithms [3, 4]. However, most learning algorithms are not well adapted to some 
application domains due to the difficulty with missing values (for example, Web 
applications) as most existed algorithms are designed under the assumption that there 
are no missing values in datasets. That implies that a reliable method for dealing with 
those missing values is necessary. Generally, dealing with missing values means to 
find an approach that can fill them and maintain (or approximate as closely as 
possible) the original distribution of the data. For example, in a database, if the known 
values for an attribute A are: 2 in 60% of cases, 6 in 20% of cases and 10 in 10% of 
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cases, it is reasonable to expect that missing values of A will be filled with 2 (if A is 
discrete) or 3.4 (if A is continuous) (see [5]). 

Missing values may appear either in conditional attributes or in class attribute 
(target attribute). There are many approaches to deal with missing values described in 
[6], for instance: (a) Ignore objects containing missing values; (b) Fill the missing 
value manually; (c) Substitute the missing values by a global constant or the mean of 
the objects; (d) Get the most probable value to fill in the missing values. The first 
approach usually lost too much useful information, whereas the second one is time-
consuming and expensive in cost, so it is infeasible in many applications. The third 
approach assumes that all missing values are with the same value, probably leading to 
considerable distortions in data distribution. However, Han et al. 2000, Zhang et al. 
2005 in [2, 6] think: ‘The method of imputation, however, is a popular strategy. In 
comparison to other methods, it uses as more information as possible from the 
observed data to predict missing values. 

Traditional missing value imputation techniques can be roughly classified into 
parametric imputation (e.g., the linear regression) and non-parametric imputation 
(e.g., non-parametric kernel-based regression method [20, 21, 22], Nearest Neighbor 
method [4, 6] (referred to as NN)). The parametric regression imputation is superior if 
a dataset can be adequately modeled parametrically, or if users can correctly specify 
the parametric forms for the dataset. For instance, the linear regression methods 
usually can treat well the continuous target attribute, which is a linear combination of 
the conditional attributes. However, when we don’t know the actual relation between 
the conditional attributes and the target attribute, the performance of the linear 
regression for imputing missing values is very poor. In real application, if the model 
is misspecified (in fact, it is usually impossible for us to know the distribution of the 
real dataset), the estimations of parametric method may be highly biased and the 
optimal control factor settings may be miscalculated.  

Non-parametric imputation algorithm, which can provide superior fit by capturing 
structure in the dataset (note that a misspecified parametric model cannot), offers a 
nice alternative if users have no idea on the actual distribution of a dataset. For 
example, the NN method is regarded as one of non-parametric techniques used to 
compensate for missing values in sample surveys [7]. And it has been successfully 
used in, for instance, U.S. Census Bureau and Canadian Census Bureau. What’s more, 
using a non-parametric algorithm is beneficial when the form of relationship between 
the conditional attributes and the target attribute is not known a-priori [8].  

While nonparametric imputation method is of low-efficiency, the popular NN 
method faces two issues: (1) each instance with missing values requires the 
calculation of the distances from it to all other instances in a dataset; and (2) there are 
only a few random chances for selecting the nearest neighbor. This paper addresses 
the above issues by proposing a clustering-based non-parametric regression method 
for dealing with the problem of missing value in target attribute (named Clustering-
based Missing value Imputation, denoted as CMI). In our approach, we fill up the 
missing values with plausible values that are generated by using a kernel-based 
method. Specifically, we first divide the dataset (including instances with missing 
values) into clusters. Then each instance with missing-values is assigned to a cluster 
most similar to it. Finally, missing values of an instance A are patched up with the 
plausible values generated from A’s cluster.  
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The rest of the paper is organized as follows. In section 2, we give related work on 
missing values imputation. Section 3 presents our method in detail. Extensive 
experiments are given in Section 4. Conclusions and future work are presented in 
Section 5. 

2   Related Work 

In recent years, many researchers focused on the topic of imputing missing values. 
Chen and Chen [9] presented an estimating null value method, where a fuzzy 
similarity matrix is used to represent fuzzy relations, and the method is used to deal 
with one missing value in an attribute. Chen and Huang [10] constructed a genetic 
algorithm to impute in relational database systems. The machine learning methods 
also include auto associative neural network, decision tree imputation, and so on. All 
of these are pre-replacing methods. Embedded methods include case-wise deletion, 
lazy decision tree, dynamic path generation and some popular methods such as C4.5 
and CART. But, these methods are not a completely satisfactory way to handle 
missing value problems. First, these methods only are designed to deal with the 
discrete values and the continuous ones are discretized before imputing the missing 
value, which may lose the true characteristic during the converting process from the 
continuous value to discretized one. Secondly, these methods usually studied the 
problem of missing covariates (conditional attributes). 

Among missing value imputation methods that we consider in this work, there are 
also many existing statistical methods. Statistics-based methods include linear 
regression, replacement under same standard deviation, and mean-mode method. But 
these methods are not completely satisfactory ways to handle missing value problems.  
Magnani [11] has reviewed the main missing data techniques (MDTs), and revealed 
that statistical methods have been mainly developed to manage survey data and 
proved to be very effective in many situations. However, the main problem of these 
techniques is the need of strong model assumptions. Other missing data imputation 
methods include a new family of reconstruction problems for multiple images from 
minimal data [12], a method for handling inapplicable and unknown missing data 
[13], different substitution methods for replacement of missing data values [14], 
robust Bayesian estimator [15], and nonparametric kernel classification rules derived 
from incomplete (missing) data [16]. Same as the methods in machine learning, the 
statistical methods, which handle continuous missing values with missing in class 
label are very efficient, are not good at handling discrete value with missing in 
conditional attributes. 

3   Our Algorithm 

3.1   Clustering Process Strategy 

The process of grouping a set of physical or abstract objects into classes of similar 
objects is called clustering. In this paper, we use a clustering technique, such as,  
K-Means [17] to group the instances of the whole dataset (denoted as S). We separate 
the whole database S into clusters each of which contains similar instances. When S 
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has more than one discrete attribute, we then use the simple matching method to 
compute the similarities of these discrete attributes and use the Euclidean distance to 
process the continuous attributes. Then the distance between instance and cluster 
center is a mixed one, which is a combination distances of the discrete and continuous 
attributes based on [6]. 

Our motivation in this paper is based on the assumption [6] that the instance with 
missing values is more likely to have the similar target attribute value as the instance 
that is closest to it based on the distance’s principle, such as, the Euclidean distance. 
So we adopt the clustering method on the whole dataset in order to separate the 
instances into clusters based on the differences of their distances. Then the non-
parametric method is utilized to deal with missing values for each cluster. Note that 
K=1 is a special case of K-Means method, it is the situation without clustering, that is 
to say, it is only a simple kernel-based imputation method while the number of 
clusters is 1 in our CMI algorithm. Our goal in this paper is to show the effectiveness 
of our method than the kernel function without clustering. Given K=1 and K>1, we 
can compare the performance of this non-parametric method with and without 
clustering the dataset. We adopt the well-known K-Means as clustering algorithm 
mainly for its simplicity and efficiency. As an alternative, one can choose a more 
powerful clustering technique for this task, for example, the G-means algorithm [19] 
that can determine the parameter K automatically for the clustering task. 

3.2   Kernel Function Imputation Strategy  

Kernel function imputation is an effective method to deal with missing values, for its 
computationally efficient, robust and stable [20]. In the statistical area, kernel 
function completion is also known as kernel nonparametric regression imputation. For 
instance, Zhang [20] uses the kernel method to impute missing values. In this paper, a 
kernel function nonparametric random imputation is proposed to make inference for 
the mean, variance and the distribution function (DF) of the data.  

Let X be an n×d-dimensional vector and let Y be a variable influenced by X, we 
denote X, Y as factor attributes (FA) (or conditional attributes) and target attribute 
(TA) respectively. We assume that X has no missing values, while only Y has. To 
simplify the discussion, the dataset is denoted as ( , ,..., , , ), 1,...,

1 2
X X X Y i n

i i id i i
δ = , 

where 
i

δ is an indictor function, i.e., 0
i

δ = if Yi is missing and 1
i

δ = if Yi is not 

missing. In a real world database, we suppose that X and Y satisfy: 

( , ,..., ) , 1,..., .
1 2

Y m X X X i n
i i i id i

ε= + =  (1) 

Where ( , ,..., )
1 2

m X X X
i i id

is an unknown function, 
i

ε is a random error with mean 0 

and variance 2σ . In other words, we assume that Y has relation with X, but we have 
not any idea about it. In the case of the unknown function m(.) is a linear function, 
Wang and Rao [21, 22] show that the deterministic imputation method performance 
well in making inference for the mean of Y, Zhang [20] shows that one must use 
random imputation method in make inference for distribution functions of Y when the 
unknown function m(.) is a arbitrary function because in many complex practical 
situations, the unknown function m(.) is not a linear function.  
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In Eq.1, suppose Yi is missing, and the value of m(Xi)=m(Xi1, Xi2,…, Xid) is 
computed by using kernel methods as follows: 

( )11
( , ,..., ) , 1,..., ,

1 2

2( )11

X X
is jsn dY Ksj j j hm X X X i n

i i id X
is X

jsn d K nsj j h
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−
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Where ( )m X
) is the kernel estimate of the unknown function m(X) and n-2 is introduced 

in order to avoid the case that 
1

( )1
n

j

X X
is jsd Ksj h

δ
=

−
∏ =∑   vanishes, and h refers 

to bandwidth with h=Cn-1/5 (we will discuss the choosing of h later in this paper). The 
method of using ( )im X

)  as imputed value of Yi is called kernel imputation. 

In Eq.2, K(.) is a kernel function. There are many commonly used forms of kernel 
functions, such as the Gaussian kernel: 

1 2( ) exp( / 2)
2

K x x
π

= −  

and the uniform kernel is presented as follows: 

1/ 2,  |x| 1,
( )

0,      |x|>1.
K x

≤⎧
= ⎨
⎩

 

There are not any differences for selecting the kinds of the kernel function if the 
optimal bandwidth can be received during the process of learning. In this paper, we 
adopt the widely used Gaussian kernel function. 

3.3   The Strategy for Evaluating Unknown Parameters of Imputed Data  

We are interesting in make inferences for the parameters of the target attribute Y such 
as ( )E Yμ = , 2 ( )D Yσ =  and ( )

0
F yθ = , i.e. the mean, the variance and the 

distribution function of Y, where y0 is a fixed point, 0y R∈ . Based on the complete 

data after imputation, above parameters can be estimated as follows. 
The mean of Y is given by: 

1 *ˆ { (1 ) }1
nY Y Yi i i iin

δ δ= + −∑ =  
(3) 

Where * ˆ ( )Y m X
i i

=  if Y is completed by the kernel deterministic imputation method. 

The variance of Y is given by: 

212 * ˆ[ ( (1 ) ) ]1
n Y Y Y Yi i i i i in

σ δ δ= + − −∑ =  (4) 
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In real applications, it is very difficult to work out the exact form of the distribution 
function of Y. So, we use the empirical form of the distribution function of Y replacing 
the values of the distribution function of Y: 

1 *ˆ ( ) ( (1 ) )10 0
nF y I Y Y yi i i i in

δ δ= + − ≤∑ =  (5) 

where I(x) is the indicator function, *Y
i

is the imputed data processed by the kernel 

imputation methods. 

3.4   Clustering-Based Missing Value Imputation Algorithm 

This section presents our CMI method for missing data completion. By using the 
clustering techniques on the factor attributes (i.e., X), we divide the whole dataset into 
clusters. After clustering, we then utilize the kernel method to fill the missing-valued 
instance for each cluster. Note that in this paper, the kernel method is utilized to deal 
with the situation that Y is continuous. As for the situation of Y is discrete, we can use 
the nearest neighbor method (NN) to complete the missing values. Based on the 
above discussions, the CMI algorithm is presented as follows. 
 
Procedure: CMI 
Input: Missing-valued dataset S, k; 
Output: Complete dataset S’; 

1.    (C1,C2,…Ck )←k-means(S, k);    
2.    FOR each cluster Ci 
3.        FOR each missing-valued instance Ik in cluster Ci 
4.               use Eq. (2) to comput ˆ ( )m X

i
, R; 

5.        FOR each missing-valued instance Ik in cluster Ci 
6.                  use ˆ ( )m X

i
 to fill missing-value in Ik; 

7.        S’← 1
k C ii =U ; 

3.5   The Choosing of c and Complexity Analysis 

Kernel methods can be decomposed into two parts: one for the calculation of the 
kernel and another for bandwidth choice. Silverman [23] stated that one important 
factor in reducing the computer time is the choice of a kernel that can be calculated 
very quickly. Having chosen a kernel that is efficient to compute, one must then 
choose the bandwidth. Silverman [23] turns out that the choice of bandwidth is much 
more important than the choice o f kernel function. Small value of bandwidth h makes 
the estimate look ‘wiggly’ and shows spurious features, whereas too big values of h 
will lead to an estimate that is too smooth, in the sense, that it is too biased and may 
not reveal structural features. There is no generally accepted method for choosing the 
bandwidths. Methods currently available include ‘subjective choice’ and automatic 
methods such as the “plug-in”, ‘cross-validation’ (CV), and ‘penalizing function’ 
approaches. In this paper we use the method of cross-validation to minimize the 
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approximate mean integrated square error (AMISE) of ˆ ( )im x . For a given sample of 

data, the CV function is defined as: 

2

1
ˆ( ( , ))

n

i ii
C V y m x c−=

= −∑  (6) 

where ˆ ( , )im x c−  denotes the leave-one-out estimator evaluated for a particular value 

of c.  
That is, the value of the missing attribute of instance i is predicted by all of the 

instances except instance i itself in the same class. Thus, for every missing value 
prediction, nearly all of the instances are selected as compared instances.  

The time complexity of the kernel method is 2( )O n , where n is the number of 

instances of the dataset. After clustering, assume that the dataset is divided into k 
clusters, where ( 1,2,..., )in i k=  is the size of cluster i. Because our CMI algorithm 

performs the kernel method independently on each cluster for missing value filling, so 
the complexity of our clustering-based kernel imputation method is 2( )jO n , where 

jn is the biggest number, i.e., cluster j is the largest one of all the clusters. Generally 

speaking, jn is smaller than n when k>1, so we have 2 2( ) ( )jO n O n< . That is, the time 

complexity of our method is better than the method in [20] without clustering. 

4   Experimental Studies 

In order to evaluate the effectiveness of our approach, we have conducted extensive 
experiments on datasets from the UCI machine learning repository [18]. We evaluate 
our algorithm on the dataset abalone, which contains 8 continuous attributes, one 
class attribute and 4177 instances in total. The other dataset is housing dataset, which 
contains 13 continuous attributes (including "class" attribute "MEDV"), one binary-
valued attribute and 506 instances in total. For ease of comparison, we use random 
missing mechanism to generate missing values with missing rates at 5%, 20% and 
40%. In the previous discussions of our strategy for handling missing values, we 
know that the situation of K=1 (i.e., only one cluster) is the special case, which is 
equal to the situation of processing the whole dataset without clustering and also 
similar to the kernel-based imputation method without clustering in [20].  

In this paper we only report results on the mean and distribution function of Y. We 
use the AE (average error) to measure performance in making inference on the 
former two parameters: 

1 ˆ( | | / )1
kA E V V Vi i i ik

∑= −=  (7) 

Where V̂
i

 is the estimated parameter (variance or empirical distribution function) 

value, computed from the imputed target attribute, and V
i
 is the parameter value of 

the original target attribute and k is the number of clusters.  
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In this paper, for the abalone dataset, the last attribute Rings is set to target 
attribute, others are set to factor attributes. The experimental results on abalone are 
presented in Figure 1, from (1) to (6). For the housing dataset, the attribute MEDV is 
set to target attribute, the results are presented in Figure 2, from (7) to (12). In these 
figures, ‘Mean substitution’ means the method of imputing missing values with mean, 
our method is regard as ‘CMI’. In particular, it is the method in [20] while k=1 in our 
method, i.e., it is the method for missing values imputation without cluster. 
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Fig. 1. CMI vs Mean substitution under different missing rates on dataset abalone for variance 
and distribution function 
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Fig. 2. CMI vs Mean substitution under different missing rates on dataset housing for variance 
and distribution function 

From above figures, the method ‘Mean substitution’ is worst, the kernel method 
without clustering (k=1 in our CMI algorithm) outperform the former, and we can see 
that the clustering-based kernel method performs better most of the time than the 
kernel method that without clustering (i.e., the situation of k=1 when using k-means) 
in terms of variance and distribution function. All of results of our method are better 
than the results of the method ‘Mean substitution’. What’s more, with increase of 
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cluster number k, the average errors (AE) for variance and distribution function are 
decreasing. That implies that it is reasonable for us to impute missing values with 
cluster-based kernel methods. Yet the value of AE will increase when the number of 
clusters is big enough, this trend will be observed in the above figures. That is to say, 
the more clusters the worse performance the results of imputation are. That is because 
there will be less instances for imputing missing values in one cluster while the 
number of clusters become bigger. In our experiments, for the Abalone dataset (in 
figure 1, (1) to (6)), the best K, that is the number of clusters for K-means algorithm, 
ranges from 25 to 35; while for the Housing dataset (in figure 2, (7) to (12)), the best 
K ranges from 4 to 7. Note that for the large dataset, such as, the dataset abalone in 
Fig.1, the AE increases gradually while in small dataset (for instance, the dataset 
Housing in Fig.2) it increases rapidly. Because the number of instances in each cluster 
will change slightly when the dataset is large and there are more observed information 
for imputing missing values in one cluster. That makes the values of AE for variance 
and distribution function relatively stable compared with the previous imputation 
results. 

These results are consistent with the results obtained by using the G-means 
algorithm in [19]. This means that user can use the G-means algorithm to work out 
the number of clusters, i.e. K, for the dataset at first, and then utilizes our CMI 
algorithm based on the K, in order to deal with the missing value problems on each of 
the cluster. As a consequence, user will be easily to choose an appropriate K for 
clustering in advance, without degrading the system performances for missing value 
imputation. 

5   Conclusions and Future Work 

In this paper, we propose a clustering-based non-parametric kernel-based imputation 
method, called CMI, for dealing with missing values, which is presented in target 
attribute in data preprocessing. Extensive experimental results have demonstrated the 
effectiveness of CMI method in making inference for variance and the distribution 
function after clustering. In practice, datasets usually present missing values in 
conditional attributes and class attributes, which makes the problem of missing value 
imputation more sophisticated. In our future work, we will deal with this problem. 
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