

Lecture Notes in Computer Science 4964
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tal Malkin (Ed.)

Topics in Cryptology –
CT-RSA 2008

The Cryptographers’ Track at the RSA Conference 2008
San Francisco, CA, USA, April 8-11, 2008
Proceedings

13

Volume Editor

Tal Malkin
Columbia University
Department of Computer Science
514 CSC, 1214 Amsterdam Avenue MC 0401
New York, NY 10027-7003, USA
E-mail: tal@cs.columbia.edu

Library of Congress Control Number: 2008924621

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.4, F.2.1-2, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-79262-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79262-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12257843 06/3180 5 4 3 2 1 0

Preface

The RSA Conference is the largest regularly-staged computer security event,
with over 350 vendors and many thousands of attendees. The Cryptographers’
Track (CT-RSA) is a research conference within the RSA Conference. CT-RSA
began in 2001, and has become one of the major established venues for presenting
cryptographic research papers to a wide variety of audiences. CT-RSA 2008 was
held in San Francisco, California from April 8 to April 11.

The proceedings of CT-RSA 2008 contain 26 papers selected from 95 submis-
sions pertaining to all aspects of cryptography. Each submission was reviewed
by at least three reviewers, which was made possible by the hard work of 27 Pro-
gram Committee members and many external reviewers listed on the following
pages. The papers were selected following a detailed online discussion among the
Program Committee members. The program included an invited talk by Shafi
Goldwasser. The current proceedings include a short abstract of her talk.

I would like to express my deep gratitude to the Program Committee mem-
bers, who volunteered their expertise and hard work over several months, as
well as to the external reviewers. Special thanks to Shai Halevi for providing
and maintaining the Web review system used for paper submission, reviewing,
and final-version preparation. Finally, I would like to thank Burt Kaliski and
Ari Juels of RSA Laboratories, as well as the RSA conference team, especially
Bree LaBollita, for their assistance throughout the process.

February 2008 Tal Malkin

CT-RSA 2008

The Cryptographers’ Track of the RSA Conference

Moscone Center, San Francisco, CA, USA
April 8–11, 2008

Program Chair

Tal Malkin, Columbia University, USA

Program Committee

Masayuki Abe NTT Corporation, Japan
Feng Bao Institute for Infocomm Research, Singapore
Dario Catalano Università di Catania, Italy
Orr Dunkelman Katholieke Universiteit Leuven, Belgium
Nelly Fazio IBM Almaden Research Center, USA
Marc Fischlin Darmstadt University of Technology, Germany
Michael Freedman Princeton University, USA
Stuart Haber HP Labs, USA
Danny Harnik IBM Haifa Research Lab, Israel
Susan Hohenberger Johns Hopkins University, USA
Aggelos Kiayias University of Connecticut, USA
Eike Kiltz CWI, The Netherlands
Ilya Mironov Microsoft Research, USA
Kobbi Nissim Ben Gurion University, Israel
Satoshi Obana NEC, Japan
Elisabeth Oswald University of Bristol, UK
Kunsoo Park Seoul National University, Korea
Rafael Pass Cornell University, USA
Josef Pieprzyk Macquarie University, Australia
Tal Rabin IBM T.J. Watson Research Center, USA
Matt Robshaw France Télécom, France
Rei Safavi-Naini University of Calgary, Canada
Alice Silverberg UC Irvine, USA
Adam Smith Pennsylvania State University, USA
François-Xavier Standaert UCL, Belgium
Eran Tromer MIT, USA
Yiqun Lisa Yin Independent Consultant, USA

VIII Organization

External Reviewers

Joel Alwen
Nuttapong Attrapadung
Lejla Batina
Amos Beimel
Come Berbain
D.J. Bernstein
Guido Bertoni
Olivier Billet
Carl Bosley
Chris Charnes
Jiun-Ming Chen
Lily Chen
Joo Yeon Cho
Baudoin Collard
Scott Contini
Glenn Durfee
Jean-Charles Faugère
Martin Feldhofer
Dario Fiore
Craig Gentry
Benedikt Gierlichs
Rob Granger
Matthew Green
Johann Großschädl
Iryna Gurevych
Shai Halevi
Jason Hinek
Dennis Hofheinz
Shaoquan Jiang
Antoine Joux
Marc Joye
Marcelo Kaihara

Seny Kamara
François Koeune
Hugo Krawczyk
Mario Lamberger
Tanja Lange
Kerstin Lemke-Rust
Tieyan Li
Benoit Libert
Huijia (Rachel) Lin
Jennifer Lindsay
Stefan Mangard
Krystian Matusiewicz
Alexander May
Pradeep Kumar Mishra
David Molnar
Tal Moran
Shiho Moriai
Phong Q. Nguyen
Antonio Nicolosi
Svetla Nikova
Miyako Ohkubo
Yossi Oren
Dag Arne Osvik
Serdar Pehlivanoglu
Chris Peikert
Pedro Peris-Lopez
Ray Perlner
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas
Gilles Piret
Mario Di Raimondo

Raj Rajagopalan
Nalini Ratha
Vincent Rijmen
Thomas Ristenpart
Tom Roeder
Guy Rothblum
Tomas Sander
Bagus Santoso
Dominique Schröder
Jean-Pierre Seifert
Nicolas Sendrier
Hovav Shacham
Siamak Shahandashti
Zhijie Shi
Igor Shparlinski
Michal Sramka
Ron Steinfeld
Tamir Tassa
Stefan Tillich
Dustin Tseng
Vinod Vaikuntanathan
Muthu

Venkitasubramaniam
Shabsi Walfish
Zhenghong Wang
William Whyte
Jin Yuan
Hong Sheng Zhou
Hong-Sheng Zhou

Table of Contents

Hash Function Cryptanalysis

Security of MD5 Challenge and Response: Extension of APOP
Password Recovery Attack . 1

Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 19
Pierre-Alain Fouque and Gaëtan Leurent

Linear-XOR and Additive Checksums Don’t Protect Damg̊ard-Merkle
Hashes from Generic Attacks . 36

Praveen Gauravaram and John Kelsey

Cryptographic Building Blocks

Efficient Fully-Simulatable Oblivious Transfer . 52
Andrew Y. Lindell

Separation Results on the “One-More” Computational Problems 71
Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud

Fairness in Secure Computation

An Efficient Protocol for Fair Secure Two-Party Computation 88
Mehmet S. Kiraz and Berry Schoenmakers

Efficient Optimistic Fair Exchange Secure in the Multi-user Setting and
Chosen-Key Model without Random Oracles . 106

Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo

Legally-Enforceable Fairness in Secure Two-Party Computation 121
Andrew Y. Lindell

Message Authentication Codes

Security of NMAC and HMAC Based on Non-malleability 138
Marc Fischlin

Aggregate Message Authentication Codes . 155
Jonathan Katz and Andrew Y. Lindell

X Table of Contents

Improved AES Implementations

Boosting AES Performance on a Tiny Processor Core 170
Stefan Tillich and Christoph Herbst

A Fast and Cache-Timing Resistant Implementation of the AES 187
Robert Könighofer

Public Key Encryption with Special Properties

Identity-Based Threshold Key-Insulated Encryption without Random
Oracles . 203

Jian Weng, Shengli Liu, Kefei Chen, Dong Zheng, and Weidong Qiu

CCA2 Secure IBE: Standard Model Efficiency through Authenticated
Symmetric Encryption . 221

Eike Kiltz and Yevgeniy Vahlis

Public-Key Encryption with Non-interactive Opening 239
Ivan Damg̊ard, Dennis Hofheinz, Eike Kiltz, and Rune Thorbek

Side Channel Cryptanalysis

A Vulnerability in RSA Implementations Due to Instruction Cache
Analysis and Its Demonstration on OpenSSL . 256

Onur Acıiçmez and Werner Schindler

Fault Analysis Study of IDEA . 274
Christophe Clavier, Benedikt Gierlichs, and Ingrid Verbauwhede

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 288
Thomas Plos

Cryptography for Limited Devices

Online/Offline Signature Schemes for Devices with Limited Computing
Capabilities . 301

Ping Yu and Stephen R. Tate

RFID Security: Tradeoffs between Security and Efficiency 318
Ivan Damg̊ard and Michael Østergaard Pedersen

Invited Talk

Program Obfuscation and One-Time Programs (Abstract) 333
Shafi Goldwasser

Table of Contents XI

Key Exchange

Efficient Two-Party Password-Based Key Exchange Protocols in the
UC Framework . 335

Michel Abdalla, Dario Catalano, Céline Chevalier, and
David Pointcheval

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key
Exchange . 352

Stanis�law Jarecki, Jihye Kim, and Gene Tsudik

Cryptanalysis

Improving the Efficiency of Impossible Differential Cryptanalysis of
Reduced Camellia and MISTY1 . 370

Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman

Small Secret Key Attack on a Variant of RSA (Due to Takagi) 387
Kouichi Itoh, Noboru Kunihiro, and Kaoru Kurosawa

Cryptographic Protocols

Super-Efficient Verification of Dynamic Outsourced Databases 407
Michael T. Goodrich, Roberto Tamassia, and Nikos Triandopoulos

A Latency-Free Election Scheme . 425
Kristian Gjøsteen

Author Index . 437

Security of MD5 Challenge and Response:

Extension of APOP Password Recovery Attack

Yu Sasaki1, Lei Wang2, Kazuo Ohta2, and Noboru Kunihiro2

1 NTT Information Sharing Platform Laboratories, NTT Corporation�,
3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585, Japan

sasaki.yu@lab.ntt.co.jp
2 The University of Electro-Communications,

Chofugaoka 1-5-1, Chofu-shi, Tokyo, 182-8585, Japan
{wanglei,ota,kunihiro}@ice.uec.ac.jp

Abstract. In this paper, we propose an extension of the APOP at-
tack that recovers the first 31 characters of APOP password in practical
time, and theoretically recovers 61 characters. We have implemented our
attack, and have confirmed that 31 characters can be successfully recov-
ered. Therefore, the security of APOP is completely broken. The core of
our new technique is finding collisions for MD5 which are more suitable
for the recovery of APOP passwords. These collisions are constructed by
employing the collision attack of den Boer and Bosselares and by devel-
oping a new technique named ”IV Bridge” which is an important step
to satisfy the basic requirements of the collision finding phase. We show
that the construction of this ”IV Bridge” can be done efficiently as well.

Keywords: APOP, Challenge and Response, Password Recovery, Hash
Function, MD5, Collision Attack, Message Difference.

1 Introduction

MD5 [13] is a hash function that is designed to obtain high efficiency in terms of
computation time. MD5 is widely used all over the world, so its security is very
important.

The first attack against MD5 was proposed by den Boer and Bosselaers in
1996 [2]. They found that collisions could be generated when a pair of initial
value (IV1, IV2) exhibits some specific difference. After that, in 1996, Dobbertin
found a collision with the common initial value IV ′, where IV ′ is different from
the real IV of MD5 [5,6]. Since these attacks didn’t work for the real IV of MD5,
the real MD5 collision could not be generated. In 2005, Wang et al. proposed the
first collision attack that could handle the real IV of MD5 [21]. This attack can
generate a collision for any initial value. Since the proposal of [21], several papers
have improved its result [1,9,12,18]. At the present time, the fastest attack is the
one proposed by Klima [9]. It generates a collision of MD5 in 1 minute on a
standard PC.
� A part of this work was done while Yu Sasaki was a master student of UEC.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 Y. Sasaki et al.

From the above results, we can easily get many collisions for MD5. Therefore,
in recent days, many studies have attempted to utilize the MD5 collisions in
developing an attack for other protocols that are based on the collision resistance
of hash functions [3,4,8,10,20].

Password recovery attack against APOP
APOP is a challenge and response authentication protocol; it is used by a mail
server to authenticate a user who tries to access e-mails for that person.

In 1996, Preneel and van Oorschot proposed the key recovery attack against
Envelop MAC [15] whose protocol is partially the same as APOP. In order to
recover the key, they use collisions of MD5 which were generated according
to the birthday paradox. In FSE 2007, Leurent proposed a password recovery
attack on APOP that recovers the first three password characters [11]. In this
attack, the attacker impersonates the server. This attack is based on Preneel
and van Oorschot’s attack, but generates collision by utilizing Wang et al.’s MD5
collision attack. In this paper, we write “APOP attack” to denote the attack that
recovers an APOP password. So far, the messages generated by collision attacks
are considered to be totally random. However, Leurent shows how to generate a
collision where some part of the messages is fixed, and apply this technique to
the APOP attack. In March 2007, Sasaki et al. independently proposed a similar
attack [19].

In the APOP attacks of Leurent and Sasaki et al., the number of recoverable
password characters depends on the location of message differences for MD5
collision attack. Both methods use MD5 collision attack proposed by Wang et al
[21]. Since the message differences proposed by Wang et al. are not optimized for
the APOP attack, but for finding a collision, the number of maximum recoverable
characters is limited to three.

Our contribution
In this research, we succeed in practically recovering more APOP password char-
acters by constructing a new MD5 collision attack whose location of message
differences is optimized for the APOP attack.

Our collision attack uses a two-block collision, a pair of 1024-bit messages.
First, we found that the collision attack proposed by den Boer and Bosselaers
employs good differences for the APOP attack. However, their attack needs
specific differences on IV , and thus, it cannot be applied to the real MD5. We
overcome this shortcoming by using the techniques introduced in Wang et al.’s
collision attack; that is, we construct a differential path that yields initial value
differences suitable for den Boer and Bosselaers’s attack from the real IV of
MD5. We call this differential path “IV Bridge.”

In the APOP attack, whenever we make a guess on a target password charac-
ter, we need to generate a collision. Therefore, to recover a character (1-octet),
we need to generate 255 collisions in the worst case1. When the password is
less than or equal to 31 characters, the proposed attack generates a collision in

1 256 collisions are not needed. If we fail to recover the target character with 255 trials,
we know that the last candidate is the real password.

Security of MD5 Challenge and Response 3

practical time, so such password can be recovered in practical time. Theoreti-
cally, we can recover up to 61 characters of the password faster than using the
birthday paradox. Moreover, by combining the proposed attack and exhaustive
search, the number of characters that can be recovered in practical time is ex-
tended by 5 or 6 more characters.

For confirmation, we implemented the proposed attack and recovered the
first 31 characters of APOP passwords. As a result, we confirmed that for up
to 11 characters, a collision can be generated within 1 second, and for up to 31
characters, a collision can be generated approximately in 5 seconds.

This paper is organized as follows. Section 2 explains the specification of
APOP and MD5. In section 3, we summarize the previous MD5 collision attacks
and the APOP attacks on which we based our extension. In section 4, we explain
how to construct the IV Bridge, which is a new MD5 collision attack that extends
the number of recoverable password characters. In section 5, we propose efficient
algorithms for finding the IV Bridge. In section 6, we show the result of an
experiment on recovering APOP passwords. In section 7, we conclude this paper.
Finally, we show detailed data of the IV Bridge in the appendices2.

2 Preliminaries

2.1 APOP Algorithm

APOP (Authenticated Post Office Protocol) [14] is a challenge and response
authentication protocol between the mail server and the user. Let the pre-shared
Password be Pass. APOP is as follows.

1. The user connects to the server. (The protocol is triggered by the user.)
2. The server generates a challenge nonce C, which is a random string with

some limitations shown below, and sends it to the user.
3. The user concatenates his password to C, and computes R=MD5(C||Pass).

He sends the result R to the server.
4. The server itself computes MD5(C||Pass) by using the password stored in

the server. It authenticates the user by comparing its result and R.

Restrictions placed on APOP challenge string

1. Challenge must start from ‘<’ and include at least one ‘@’.
2. Challenge must end with ‘>’.
3. Challenge must not include ‘NULL’, ‘\n’and ‘<’,‘>’ in the middle.

2.2 Description of MD5

MD5 [13] employs a Merkle-Damg̊ard structure, which takes an arbitrary length
message M as input, and outputs 128-bit hash value H(M). First, M is padded

2 After the review process, we found that SIP [16] and Digest Authentication [7] were
vulnerable to the APOP attack. We mention this in the appendices.

4 Y. Sasaki et al.

and divided into 512-bit block messages (M0, M1, · · · , Mn−1). These messages go
through compression function (CF) with a 128-bit chaining variable. The initial
chaining variable (H0) is set as follows: a0 = 0x67452301, b0 = 0xefcdab89, c0 =
0x98badcfe, d0 = 0x10325476. The procedure of MD5 algorithm is as follows:

H1 = CF (M0, H0), H2 = CF (M1, H1), · · · , Hn = CF (Mn−1, Hn−1).
Hn will be the hash value of M .

The MD5 Compression Function
The compression function of MD5 takes Mi and Hi as input, and outputs
Hi+1. First, the message block Mi is divided into sixteen 32-bit length messages
(m0, m1, · · · , m15). The hash value Hi is divided into four 32-bit length chain-
ing variables (a0, b0, c0, d0). The compression function consists of 64 steps. Steps
1-16, steps 17-32, steps 33-48 and step 49-64 are called the first, second, third
and fourth rounds, respectively. In step j, the chaining variables aj, bj , cj , dj are
updated as follows.

aj = dj−1, bj = bj−1 + (aj−1 + f(bj−1, cj−1, dj−1) + mk + t) ≪ sj ,
cj = bj−1, dj = cj−1.

f is a Boolean function which depends on the round number. mk is one of
(m0, · · · , m15), and the index k depends on the step. t is a constant defined in
each step. ≪ sj denotes left rotation by sj bits, where sj changes each step.

3 Related Works

3.1 Weakness of MD5 Shown by den Boer and Bosselaers

In 1993, den Boer and Bosselaers showed that when the IV of MD5 had the fol-
lowing differences, one can compute M such that MD5(IV1, M)=MD5(IV2, M)
with practically computable complexity [2].

ΔIV = (IV1 ⊕ IV2) = (0x80000000, 0x80000000,0x80000000, 0x80000000).

Hereafter, we call this difference Δmsb. In their attack the MSB of b0, c0 and d0
of each IV must be the same value.

3.2 Wang et al.’s Collision Attack on MD5

Wang et al.’s attack [21] generates a collision with complexity of 238 MD5 com-
putations3. Let m and m′ be a pair of messages that yields a collision. The
difference Δ is defined to be the value yielded by subtracting the value for m
from value for m′. The attack procedure is as follows.

1. Find a “Message Difference (ΔM)” that yields a collision.
2. Determine how the impact of ΔM propagates. The propagation of the dif-

ferences is called a “Differential Path (DP)”.
3 In the original paper [21], the complexity of the attack was estimated to be 237

MD5 computations. However, in [12], it was shown that there was a mistake in the
complexity analysis, and computed the correct complexity of 238 MD5 computations.

Security of MD5 Challenge and Response 5

3. To realize the DP, generate “Sufficient Conditions (SC)” on the value of the
chaining variables.

4. Locate a message that satisfies all SCs by randomly generating messages and
applying “Message Modification (MM)”. Let the located message be M∗.

5. Compute M ′
∗ = M∗ + ΔM . Finally, M∗ and M ′

∗ become a collision pair.

The attack finds collisions using 2-block messages. First, the attacker finds a
message block M0, such that MD5(M0 + ΔM0) − MD5(M0) = ΔH1

4. Then,
the attacker searches for a message block M1, such that MD5(M1 + ΔM1) =
MD5(M1) assuming the input difference ΔH1. Specifically, for the APOP attacks
of [11,19], the used differences were of the form:

ΔM0 = (Δm0, . . . , Δm15) = (0, 0, 0, 0,231, 0, 0, 0, 0, 0, 0, 215,0, 0, 231, 0),
ΔM1 = (Δm0, . . . , Δm15) = (0, 0, 0, 0,231, 0, 0, 0, 0, 0, 0, −215,0, 0, 231, 0).

It is important to note that m15 of ΔM1 is without a difference, and that m14
contains a difference.

3.3 Previous APOP Attacks

In the APOP attack, the attacker impersonates the server. The attacker uses
“Chosen Challenge Attack,” that changes a challenge C into a convenient C′

and makes the user compute the corresponding response R′.
In 2007, Leurent [11] and Sasaki et al. [19] independently proposed the at-

tacks that recover the first three characters of APOP password by using MD5
collisions. These attacks are based on the key recovery attacks against Envelop
MAC proposed by Preneel and van Oorschot [15]. The generation of the collisions
in [11,19] and [15] are different and their attack complexities are also different.
However, algorithm for recovering key is almost the same. To begin with, we
show the key recovery algorithm proposed by [11,19] in Table 1.

Methods for Generating MD5 Collisions
Preneel and van Oorschot’s attack [15] generates MD5 collisions by using the
birthday paradox. As a result, this attack requires 267.5 offline computations.
Since 267.5 is too heavy to compute at the moment, this attack is impractical.

On the other hand, Leurent and Sasaki et al.’s attacks [11,19] generate col-
lisions based on Wang et al.’s attack. As a result, each collision is generated in
approximately 5 seconds, and thus, APOP passwords are practically recovered.

3.4 Summary and Problems of Previous Works

Preneel and van Oorschot attack generates the collisions by using the birthday
paradox. Since its complexity is too high, the attack cannot be practical.

The attacks proposed by Leurent and Sasaki et al. practically recover the first
three APOP password characters by generating collisions based on Wang et al.’s
attack. Generated collision forms MD5(C||known||p) = MD5(C′||known||p).

4 ΔH1 = (231, 231 + 225, 231 + 225, 231 + 225), which is not used in this paper.

6 Y. Sasaki et al.

Table 1. Algorithm for recovering a password in the APOP attack

1. Let known be already recovered characters. Initialize known to be NULL.
2. Let p be an octet that is used to guess one character of the password.
3. for p= 0 to 254 {
4. Generate (C, C′) such that MD5(C||known||p) = MD5(C′||known||p). Here,

The lengths of C||known||p and C′||known||p are identical and multiples of 512.
5. Send C to the user, and get the corresponding R.
6. Send C′ to the user, and get the corresponding R′.
7. if (R = R′) {
8. Password is p.
9. known ← (known � 8) + p

10. goto stage 15.
11. }
12. }
13. Password is p + 1(= 255).
14. known ← (known � 8) + (p + 1)
15. if (Three characters are recovered ?) {
16. Output known, and halt the algorithm.
17. } else {
18. goto stage 3.
19. }

Here, known||p is a fixed value and identical for both C and C′. Since C||known||p
is a multiple of 512-bit, the fixed part is located in m15 first. When we recovermany
characters, known will be long, and the fixed part is located in not only m15 but
also in m14, m13, · · · .

Both of Leurent and Sasaki et al.’s attacks use Wang et al.’s collision attack,
which needs a difference in the MSB of m14. Therefore, only m15 can be the same
between C and C′. This is why these methods cannot recover more than three
characters5. No other attack that can practically find collisions of MD5 is known.
Therefore, it is impossible to practically recover more than three characters.

4 Construction of MD5 Collision Attack That Is Efficient
for the APOP Attack

As explained in section 3, previous works cannot be used in practice to recover
more than three characters since they generate collision by using birthday para-
dox or Wang et al.’s message differences. In this section, we extend the number
of practically recoverable APOP password characters by proposing a new MD5
collision attack that uses a different approach from that of Wang et al.

4.1 Conditions for Extending the APOP Attack

To extend the number of recoverable APOP password characters, we need a new
MD5 collision attack. First, in order to recover many characters, long identical
5 Since C must end with ‘>’, m15 can contain at most three other characters.

Security of MD5 Challenge and Response 7

values need to be set in the last part of messages. Second, in order to recover
each additional character, we need to generate 255 collisions (in the worst case).
Considering this background, the following conditions are necessary for a new
collision attack.

Condition 1: There exists no message difference in the last part of messages.
Condition 2: Many collisions can be generated in practical time.

4.2 Applying den Boer and Bosselaers’s Attack to APOP

den Boer and Bosselaers’s attack generates collisions by using a common message
and (IV1, IV2) such that ΔIV = Δmsb. This property is optimal for Condition 1
in section 4.1 since no message difference is needed. Furthermore, if the message
modification technique proposed by [9,18,21] is applied, a collision can be gen-
erated within a few seconds. Therefore, den Boer and Bosselaers’s attack also
seems to be efficient for satisfying Condition 2 in section 4.1.

However, den Boer and Bosselaers’s attack requires a ΔIV difference in the
input hash value, and so cannot be applied to APOP directly. Therefore, in our
approach, we construct an IV Bridge; that is, a differential path that produces
ΔIV from the real IV of MD5.

Remarks
den Boer and Bosselaers’s attack has already been utilized by Contini and Yin
to attack HMAC [3]. However, they did not tackle the problem that den Boer
and Bosselaers’s attack could not work for the real IV of MD5. Therefore, their
attack is related-key attack.

4.3 Constructing Differential Path to Produce ΔIV = Δmsb

By using various message modification techniques, it is known that the cost for
satisfying sufficient conditions for the first and second rounds are smaller than
that for the third and fourth rounds. Consequently, we need a differential path
that holds with high probability in both the third and fourth rounds.

Constructing the differential path for the fourth round
To archive ΔIV = Δmsb, we need to have Δmsb at the end of the fourth round.
In the fourth round, if the input chaining variables in step i have Δmsb and
Δmk is 0 or 231, the output chaining variables have Δmsb with probability 1/2
because of the f function. Therefore, we make initial chaining variables for the
fourth round have Δmsb with message differences Δmk = 0 or 231, 0 ≤ k ≤ 15.

Constructing the differential path for the third round
In the third round, once Δmsb appears, all the remaining steps have Δmsb as long
as Δmk = 0. Since the f function in the third round is XOR, this happens with
probability of 1. To increase the success probability of the whole differential path
for the third round by utilizing this property, we make several differences in the
initial step of the third round, and make Δmsb within few steps by only using
Δmi = 0 or 231. As a result of the analysis, we determined the following differ-
ences. Here, the notation ∗ means that the sign does not have to be considered.

8 Y. Sasaki et al.

(Δa32, Δb32, Δc32, Δd32) = (∗231, ∗231, 0, 0),

Δm11 = ∗231, Δmk = 0 (for other k).

Constructing the differential path for the first and second rounds
We constructed the differential path for the first and second rounds by hand.
We omit our differential path search algorithm since automated path search
algorithm has been proposed by [20]. We outline the generated DP in Table 3
and the sufficient conditions in Table 4.

5 Finding an IV Bridge

Section 4 explained how to derive the differential path and the sufficient condi-
tions for the IV Bridge. In this section, we explain how to find the IV Bridge.

5.1 Overall Strategy

In order to get the IV Bridge, we need to locate a message that satisfies all
the sufficient conditions shown in Table 4. The search strategy of Wang et al.
cannot be applied to the IV Bridge. This problem is mainly caused from the
huge number of conditions in steps 17-24 of the IV Bridge. In Wang et al.’s
attack, all the conditions in the first round and a part of conditions in steps 17-
24 are satisfied by message modifications. However, since the IV Bridge has 101
conditions in steps 17-24 as shown in Table 4, partially satisfying the conditions
in steps 17-24 is not enough to find the IV Bridge in practical time. Therefore,
we need other strategy for finding the IV Bridge.

In Wang et al.’s attack, message modification is applied to satisfy all the
conditions in steps 1-16 (16 steps in total). On the other hand, In the IV Bridge,
we do not need message modification in steps 1-8 since there is no condition.
This enables us to satisfy all the conditions in steps 9-24 (a total of 16 steps).
There are 42 conditions left after step 24. Therefore, if 242 messages that satisfy
all the conditions up to step 24 are generated, one of them is likely to be an IV
Bridge. Our search process consists of the following three phases.

Phase A: The goal of Phase A is setting chaining variables in steps 9-23 to
satisfy all the conditions up to step 23. Simultaneously, the chaining vari-
ables in steps 1,2 and 8 are fixed. Phase A is executed only once. It takes
approximately 1 second to finish.

Phase B: The goal of Phase B is determining chaining variables in steps 3-7
so that the values for steps 2 and 8 determined by Phase A are connected.
Simultaneously the chaining variables in step 24 is fixed. Here, we also guar-
antee that all the conditions in step 24 are satisfied. As a result of Phase B,
all fixed messages that satisfy all conditions up to step 24 will be output.

Phase C: From one result of Phase B, generate messages that also satisfy all the
conditions up to step 24 using the techniques described in [9,18]. Compute
after step 24, and check if all the 42 sufficient conditions are satisfied.

Security of MD5 Challenge and Response 9

5.2 Phase A

Phase A takes as an input the sufficient conditions, which are shown in Table 4.
Phase A outputs chaining variables in steps 1,2,8-23 that satisfy all the sufficient
conditions up to step 23, all the extra conditions that are used in Phase C, and
m0, m1, m5, m6,m10-m15.

The step update function can be written using only the chaining variable b.
bj = bj−1 + (bj−4 + f(bj−1, bj−2, bj−3) + mk + t) ≪ sj

In this case, the IV is represented as (b−3, b0, b−1, b−2). From the above expres-
sion, if bj−1, bj−2, bj−3 and two of bj , bj−4, mk are determined, the last variable
is uniquely determined. We detail the three expressions as follows.

Standard-b for bj : bj = bj−1 + (bj−4 + f(bj−1, bj−2, bj−3) + mk + t) ≪ sj ,
Inverse-m for mk: mk = ((bj − bj−1) ≫ sj) − bj−4 − f(bj−1, bj−2, bj−3) − t,
Inverse-b for bj−4: bj−4 = ((bj − bj−1) ≫ sj) − f(bj−1, bj−2, bj−3) − mk − t.

The search algorithm is shown below.

1. Choose randomly b13 to b22 under the condition that they satisfy all the
sufficient conditions. Compute Inverse-m for m1, m6, m11, m0, m5 and m10,
which are used in steps 17-22.

2. m0, m1 are also used in step 1 and 2. Compute Standard-b for b1 and b2.
3. Choose randomly b12 under the condition that it satisfies all the sufficient

conditions. Compute Inverse-m for m15. Since m15 is also used in step 23,
compute Standard-b for b23 and check whether all the sufficient conditions
for b23 are satisfied. Repeat this stage until all conditions for b23 are satisfied.

4. Choose randomly b11, b10 and b9 under the condition that they satisfy all
the sufficient conditions. Compute Inverse-m for m14, m13 and m12.

5. Compute Inverse-b for b8 and b7, output the result and halt this algorithm.

5.3 Phase B

The input of Phase B is the result of Phase A. The chaining variables input
to step 3, the chaining variable output in step 7 and messages in step 6 and
7 are especially important. Phase B searches for m2, m3, m4 that connect the
differential path from steps 3 to 7, and satisfy all conditions in step 24. Then,
m7, m8, m9 are computed. The output of Phase B is all the fixed messages that
satisfy all the sufficient conditions up to step 24.

As shown in Table 4, steps 3-7 do not have any sufficient condition. Therefore,
any values are acceptable for chaining variables in these steps. From steps 3-7,
there are 96 free bits in messages, and only 32 bits of a chaining variable are
fixed. Therefore, we can expect that 264 results of Phase B exist for a result of
Phase A. However, 264 results are too many for finding IV Bridge. Therefore,
we reduce the search space and raise the efficiency of the algorithm. The idea is
removing the dependency of the input of the f function in step 6 by fixing the
value of the chaining variable. This ensures that when the output of f in step
6 is determined, we can immediately get input chaining variable of f that will
successfully connect step 3 to 7. The algorithm of Phase B is shown below. A
graphical explanation is given in Figure 1 of the appendices.

10 Y. Sasaki et al.

1. In order to remove the dependency of f function in step 6, we fix the value
of b5, which is one of the chaining variables input to f , to 0xffffffff 6.

2. for (c7= 0 to 0xffffffff) {
3. Compute the output of f in step 6. Due to the removal of

dependency of f in step 6, the value of c5 is uniquely determined.
4. Compute the output of f in step 7, then, the value of a6 is uniquely

determined.
5. All chaining variables from step 3 to 7 are determined now. Compute

Inverse-m for m2, m3 and m4.
6. m4 is also used in step 24. Compute Standard-b for b24.
7. if (all conditions for b24 are satisfied) {
8. Compute Inverse-m for m7 to m9. Then goto Phase C.
9. }
10. }
11. Halt Phase B, then goto stage 1 of Phase A.

The number of conditions for b24 is 11, therefore, all conditions for b24 are satis-
fied with probability of 2−11. Since the maximal number of iterations for stages 2
to 10 is 232, Phase B can generate 221 results. As shown in the above procedure,
every time we get a result of Phase B, we move to Phase C. However, if Phase
C cannot find IV Bridge, we go back to Phase B, and compute another result.

5.4 Phase C

The input of Phase C is the output of Phase B, namely, all fixed messages that
satisfy all the conditions up to step 24. Phase C generates 221 new messages that
also satisfy all the conditions up to step 24 from each result of Phase B by using
the message modification technique proposed by [18] or “Q9 Tunnel” proposed
by [9]. In this paper, we omit the details of these techniques.

Since Phase B can output 221 results and Phase C generates 221 messages for
each result, we can try 242 messages in total. Since there are 42 conditions after
step 24, we have enough messages to find an IV Bridge.

6 Evaluation and Trial of the Extended Attack

We implemented the extended APOP attack using the IV Bridge. The attack’s
process is based on previous works [11,19]. Instead of stage 15 in Table 1, we
check whether 31 characters have been already recovered. Our APOP attack
generates three blocks challenges that yield a collision with the real password7.

Block 0: Common messages satisfying the restrictions explained in section 2.1.
Block 1: The IV Bridge.
6 The f function in step 6 is f(b5, c5, d5) = (b5 ∧ c5) ∨ (¬b5 ∧ d5). If all bits of b5 are

fixed to 1, then f(b5, c5, d5) = c5.
7 The challenge is three-block, however, users compute a four-block message since the

unknown part of the password will be pushed into the fourth block.

Security of MD5 Challenge and Response 11

Block 2: den Boer and Bosselaers’s attack, where last part of messages is fixed.

Blocks 0 and 1 are the pre-computation part, where one result is used repeatedly.
Block 2 is computed many times with the last fixed part of messages.

6.1 Collision Search for Blocks 0 and 1

The message for Block 0 is determined to satisfy APOP restrictions. This is
finished in negligible time. Block 1 is the IV Bridge. Finding the IV Bridge costs
242 MD5 computations (and the IV Bridge can be used again). We ran 18 PCs
whose CPUs are Pentium 4 2.0GHz, and found the IV Bridge in 3 days.

6.2 Collision Search for Block 2

According to [2], finding a collision in block 2 requires 46 sufficient conditions.
Therefore, a collision is generated with complexity of 246 MD5 computations
using a naive search. This complexity is reduced if the message modification
techniques described in [9,18,21] are applied. If all the bits are not fixed, and thus,
we can freely modify all bits, the complexity is sufficiently low to be practical.
However, as we recover more password characters, the longer the fixed part of the
messages becomes, and some message modifications cannot be used. The most
effective modification for Block 2 is the technique named “Q4 Tunnel” by [9],
which modifies m7. Therefore, if m7 is fixed, we cannot use “Q4 Tunnel.” Given
that each message consists of 4 bytes and the last character of the challenge
must be ‘>’, guessing up to 31 characters does not fix m7. If “Q4 Tunnel” is
available, the complexity of finding Block 2 is 223 MD5 computations, which can
be quickly performed.

In our experiment, we implemented the APOP attack for 31 characters, and
confirmed that 31 characters were successfully recovered. The computation time
to generate a collision for recovering up to 11 characters was less than one second,
and for recovering 31st characters was 5.86 seconds on average. In table 2, we
show examples of collisions, where we use to guess the 31st character.

Remarks
The complexity of generating collisions for recovering more than 31 characters
is estimated as follows.

35 characters: 238 39 characters: 239 43 characters: 241

47 characters: 242 51 characters: 243

To recover more characters, the message space in Block 2 is too small, and we
need to search Block 1 again. In theory, our attack is more efficient than finding
collisions using the birthday paradox (up to the first 61 characters).

6.3 The Speed of Password Recovery Attack

In most cases, speed of password recovery attack is limited by the frequency of
interruption by impersonation. According to the assumption of [11], a password
is leaked character by character every 1 hour. This estimation is also applicable
to our attack. Therefore, 31 password characters can be recovered in 31 hours.

12 Y. Sasaki et al.

7 Conclusion

In this paper, we extended the APOP password recovery attack. Previous attacks
can recover at most three characters, whereas our attack recovers 31 characters
in practical time, and theoretically can recover up to 61 characters.

The core technique of our improvement is a new MD5 collision attack that
offers more advantages for an APOP attack. Our approach uses den Boer and
Bosselaers’s attack, and we introduced the IV Bridge, which is a differential path
producing den Boer and Bosselaers’s ΔIV from the real IV of MD5.

We experimentally confirmed the practicality of the extended APOP attack.
As a result, we successfully recovered up to 31 characters of APOP passwords.

References

1. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262–277.
Springer, Heidelberg (2006)

2. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

3. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

4. Daum, M., Lucks, S.: Hash Collisions (The Poisoned Message Attack) The Story
of Alice and her Boss. In: Eurocrypt 2005 (2005),
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

5. Dobbertin, H.: Cryptanalysis of MD5 compress. In: Eyrocrypt 1996 (1996)
6. Dobbertin, H.: The Status of MD5 After a Recent Attack. In: CryptoBytes The

technical newsletter of RSA Laboratories, a division of RSA Data Security, Inc.,
SUMMER 1996, vol. 2(2) (1996)

7. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
Stewart, L.: HTTP Authentication: Basic and Digest Access Authentication, RFC
2617, June 1999(1999), http://www.ietf.org/rfc/rfc2617.txt

8. Gebhardt, M., Illies, G., Schindler, W.: A note on the practical value of single hash
collisions for special file formats. In: Dittmann, J. (ed.) Sicherheit, GI. LNI, vol. 77,
pp. 333–344 (2006)

9. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report, /105. (2006), http://eprint.iacr.org/2006/105.pdf

10. Lenstra, A.K., de Weger, B.: On the possibility of constructing meaningful hash
collisions for public keys. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 267–279. Springer, Heidelberg (2005)

11. Leurent, G.: Message Freedom in MD4 and MD5 Collisions: Application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidel-
berg (2007)

12. Liang, J., Lai, X.: Improved Collision Attack on Hash Function MD5. Journal of
Computer Science and Technology 22(1), 79–87 (2007)

13. Rivest, R.L.: The MD5 Message Digest Algorithm. RFC 1321 (April, 1992),
http://www.ietf.org/rfc/rfc1321.txt

http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://www.ietf.org/rfc/rfc2617.txt
http://eprint.iacr.org/2006/105.pdf
http://www.ietf.org/rfc/rfc1321.txt

Security of MD5 Challenge and Response 13

14. Myers, J., Rose, M.: Post Office Protocol - Version 3. RFC 1939 (Standard), May
1996. Updated by RFCs 1957, 2449, http://www.ietf.org/rfc/rfc1939.txt

15. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer,
Heidelberg (1996)

16. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol, RFC 3261, June
2002 (2002), http://www.ietf.org/rfc/rfc3261.txt

17. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved, collision attack on MD5.
Cryptology ePrint Archive, Report 2005/400, http://eprint.iacr.org/2005/400

18. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved Collision Attacks on MD4
and MD5. IEICE TRANSACTIONS on Fundamentals of Electronics, Communica-
tions and Computer Sciences (Japan), E90-A(1), 36–47 (2007) (The initial result
was announced as [17])

19. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical Password Recovery on an MD5
Challenge and Response. Cryptology ePrint Archive, Report 2007/101

20. Stevens, M., Lenstra, A., der Weger, B.: Chosen-prefix Collisions for MD5 and Col-
liding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–12. Springer, Heidelberg (2007)

21. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

A Other Attack Targets: SIP and Digest Authentication

We show that the APOP attack is applicable to SIP [16], which is an application-
layer protocol for Internet telephone calls, multimedia conferences e.t.c., and Di-
gest Authentication [7], which is hash-based authentication protocols for HTTP
Authentication. Authentication part of SIP is based on Digest Authentication.

We found that these two protocols are vulnerable against the APOP attack.
Namely, the first 31 characters of user’s password is practically recovered. If the
attacker (impersonating server) chooses the configuration of parameters which
is suitable for the attack, the response computation is as follows.

A1 = MD5(userID‖“ : ”‖realm‖“ : ”‖password)
A2 = MD5(Method‖“ : ”‖uri)

response = MD5(A1‖“ : ”‖nonce‖“ : ”‖A2),

where, userID and password are pre-shared between the user and the server,
realm, uri and nonce are determined by the server as challenge string, and
Method is a constant value depends on what for the authentication is done.

In these protocols, the secret password is hashed twice, so their securities
look stronger than APOP. However, since collision on A1 can be observed from
responses, the attacker can recover the password by generating realms as suit-
able for the attack.

http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc3261.txt
http://eprint.iacr.org/2005/400

14 Y. Sasaki et al.

B List of Tables

Table 2. Examples of Guess for the 31st Character

m0=0x3938313c m1=0x37322d34 m2=0x332d3635 m3=0x2e383933
M0 = M ′

0 m4=0x37373936 m5=0x3433302d m6=0x38312d35 m7=0x61704035
m8=0x6f777373 m9=0x645f6472 m10=0x63657465 m11=0x5f726f74
m12=0x2e636264 m13=0x6976746d m14=0x632e7765 m15=0x73752e61

H1 = H ′
1 0x769b8c7f 0xc41742a1 0x1c8cefcc 0x195d17f4

m0=0x986e1da4 m1=0x83707d06 m2=0xa86e1ddd m3=0xe264eedb
M1 m4=0xff68e19f m5=0x120ea5b3 m6=0x7437d3e2 m7=0x600f543d

m8=0x7c63c5ab m9=0xe9ead9d9 m10=0xa9b5c51e m11=0xc309f623
m12=0xfd534f1e m13=0xad33c7ad m14=0xfd0380c6 m15=0x7745f36a
m′

0=0x986e1da4 m′
1=0x83707d06 m′

2=0xa86e1ddd m′
3=0xe264eedb

M ′
1 m′

4=0xff68e19f m′
5=0x120ea5b3 m′

6=0x7437d3e2 m′
7=0x600f543d

m′
8=0x7c63c5ab m′

9=0xe9ead9d9 m′
10=0xa9b5c51e m′

11=0x4309f623
m′

12=0xfd534f1e m′
13=0xad33c7ad m′

14=0xfd0380c6 m′
15=0x7745f36a

H2 0xbd7ade50 0xe17a619d 0x8e940937 0xfd4af95f
H ′

2 0x3d7ade50 0x617a619d 0x0e940937 0x7d4af95f

m0=0x6cbebe2c m1=0x539e4d17 m2=0x6f342bd1 m3=0x78e2b4e9

M
(3)
2 = M

′(3)
2 m4=0xef5d9c25 m5=0xe02bd34e m6=0x774d98bd m7=0x1f7b0622

m8=0x4342413e m9=0x47464544 m10=0x4b4a4948 m11=0x4f4e4d4c
m12=0x53525150 m13=0x57565554 m14=0x305a5958 m15=0x33333231

H
(3)
3 = H

′(3)
3 0x19835d2f 0xa668c75c 0xe100b765 0x3c0acd29

m0=0x8aabec3f m1=0xf18741d3 m2=0xe2c27459 m3=0x046584ad

M
(4)
2 = M

′(4)
2 m4=0x4f20f254 m5=0xed9a52ad m6=0x4bab0526 m7=0xbcfc89e2

m8=0x4342413e m9=0x47464544 m10=0x4b4a4948 m11=0x4f4e4d4c
m12=0x53525150 m13=0x57565554 m14=0x305a5958 m15=0x34333231

H
(4)
3 = H

′(4)
3 0x53fb9ff6 0x33a379ab 0x1fdb63a3 0x58f86842

MD5 uses little-endian, where the first byte of a challenge string becomes the first byte
of m0 for M0. In the example in Table 2, M0 starts with ‘<’(0x3c), and includes an
‘@’(0x40). M1, M ′

1 are the IV Bridge, where a difference exists in MSB of m11. H2,
H ′

2 are results of the IV Bridge that have the following differences:

ΔH2 = (0x80000000, 0x80000000, 0x80000000, 0x80000000).

When the 1st to 30th password characters are

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ0123’
(ASCII code: 0x41(=A), 0x42(=B), · · · 0x5a(=Z), 0x30(=0), · · · 0x33=(3)),

M
(3)
2 is yielded by guessing that the 31st character is ‘3’(0x33) and M

(4)
2 is produced

by guessing that it is ‘4’(0x34).
In both M

(3)
2 and M

(4)
2 , m0 to m7 are randomly chosen. The first byte of m8 is

fixed to be ‘>’(0x3e), which we need in the end of the challenge string. The following
30 bytes are fixed as the password. Finally, the last byte is fixed to each guess.

In Table 2, we underline the values that have difference (M1, M
′
1, H2, H

′
2).

Security of MD5 Challenge and Response 15

Table 3. Differential Path for the IV Bridge

Step Shift Δbi

i si Δmi−1 Numerical difference Difference in each bit

12 22 ∗231 221 Δ[−21, −22, · · · , 31]

13 7 26 Δ[−6, −7, −8, 9]
221 Δ[21]

−231 Δ[−31]

14 12 231 Δ[31]

15 17 −26 Δ[−6]
−210 Δ[10, 11, · · · , −20]
231 Δ[31]

16 22 231 Δ[31]

17 5 226 Δ[26]
−231 Δ[−31]

18 9 28 Δ[8]
220 Δ[20]
224 Δ[−24, −25, · · · , 28]
231 Δ[31]

19 14 ∗231 231 Δ[31]

20 20 231 Δ[31]

21 5 −21 Δ[1, 2, · · · , −8]
231 Δ[31]

22 9 213 Δ[−13, −14, · · · , 16]
229 Δ[29]
231 Δ[31]

23 14 −231 Δ[−31]

24 20 −231 Δ[−31]

25 5 −26 Δ[6, 7, −8]
−231 Δ[−31]

26 9 222 Δ[−22, 23]
−231 Δ[−31]

27 14 −231 Δ[−31]

28 20 211 Δ[11]
−231 Δ[−31]

29 5 −231 Δ[−31]

30 9

31 14

32 20 ∗231 Δ[∗31]
33 4 ∗231 Δ[∗31]
34 11 ∗231 Δ[∗31]
35 16 ∗231 ∗231 Δ[∗31]
36 23 ∗231 Δ[∗31]
· · · ∗231 Δ[∗31]
61 6 ∗231 Δ[∗31]
62 10 ∗231 ∗231 Δ[∗31]
63 15 ∗231 Δ[∗31]
64 21 ∗231 Δ[∗31]

The symbol ‘Δ[i]’ means that the value of the chaining variable
in bit position i changes from 0 to 1. The symbol ‘Δ[−i]’ means
that it changes from 1 to 0 instead.

16 Y. Sasaki et al.

Table 4. Sufficient Conditions and Extra Conditions for the IV Bridge

Chaining Conditions on bits
variables 31 - 24 23 - 16 15 - 8 7 - 0

b1 − b8 -

b9 - - - - - - - - - - - 0̄

b10 1 - - - - - - 1 - - 0 0̄

b11 0 a a a a a a 0 a a 0 1 1̄

b12 0 1 1 1 1 1 1 1 1 1 1 0 - - - - - - - - - - 0 a a a - - - - - -

b13 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 - - - - - -

b14 0 1 1 1 1 1 0 1 1 �= - 1 a a a 1 a a a a a a 0 0 0 0 - - - - - -

b15 0 - - - - 0 - - 0 0 - 0 1 0 - - - - - - - - 0 1 1 1 1 1 1 1 1 -

b16 0 - - 0 0 1 0 0 - - - 0 0 0 0 - 0 - - - 0 - - 0 - - - - - - - -

b17 1 - - 1 1 0 1 1 - - - 1 1 1 1 a 1 a a a 1 a - 1 - a - - - - - -

b18 0 - - 0 1 1 1 1 - - - 0 - - - - - - - - - - - 0 - - - - - - - -

b19 0 - - 1 0 1 - - - - - - - - - - - - - - - - - 1 0 0 0 1 0 0 0 -

b20 0 - 0 0 1 0 a a - - - a - - - 0 1 0 0 - - - - 1 1 1 1 1 1 1 1 -

b21 0 - 1 1 - - - - - - - - - - - 1 1 1 1 - - - - 1 0 0 0 0 0 0 0 -

b22 1 - 0 0 - - - - - - - - - - - 0 1 1 1 - - - - 0 0 0 - - - - - -

b23 1 - 1 1 - - - - - - - - - - - - - - - - - - - a a 0 a a a a a -

b24 1 - a - - - - - 0 0 - - - - - a a a a - - - - 0 1 1 - - - - - -

b25 1 - - - - - - - 0 1 - - - - - - - - - - - - - 1 0 0 - - - - - -

b26 1 - - - - - - - 0 1 - - - - - - - - - - 0 - - - - - - - - - - -

b27 1 - - - - - - - - - - - - - - - - - - - 1 - - a a a - - - - - -

b28 1 - - - - - - - a a - - - - - - - - - - 0 - - - - - - - - - - -

b29 1 -

b30 1 - - - - - - - - - - - - - - - - - - - a - - - - - - - - - - -

b31 0 -

b32 0 -

· · · -

b48 c -

· · · c -

b60 c -

b61 d -

b62 c -

b63 c -

cc0 a -

bb0 a -

The notations ‘0’, ‘1’, ‘a’, ‘b’, ‘c’, ‘d’ and ‘ �=’ in bit position j of chaining
variable bi stand for the conditions bi,j = 0, bi,j = 1, bi,j = bi−1,j , bi,j �=
bi−1,j , bi,j = bi−2,j , bi,j �= bi−2,j , and bi,j �= bi,j−1, respectively.

The last two conditions mean that bb0,31 = cc0,31 = dd0,31, which are
required by den Boer and Bosselaers’s attack.

We emphasize that the IV Bridge does not set any conditions for b1-b8.
Conditions without upper bar are sufficient conditions for the differential

path. Conditions with upper bar are extra conditions that are introduced
for Phase C. We also considered conditions introduced by [12]. In step i, let
Σi be ai−1 + f(bi−1, ci−1, di−1) + mi−1 + ti−1. There exists two conditions
on Σ: Σ30,22 = 0, Σ32,11 = 0.

Security of MD5 Challenge and Response 17

C A Graphical Explanation of Phase B

Chaining variables highlighted by gray are the input for Phase B. Those values
are fixed during Phase B. m5 and m6 which are used in step 6 and 7 are also input
for Phase B. We omit these variables by including them in the constant. Numbers
with parenthesis denotes the order of determining the chaining variables. We
explain how Phase B in section 5.2 connects steps 3-7.

- Stage 1 of Phase B fixes chaining variables (1) to 0xffffffff. Then, the
output of f in step 6 is equal to c5. This is indicated by the bold line.

- Next, we fix chaining variable c7 in order to fix the output of f in step 6. There-
fore, chaining variables (2) are fixed. c7 can be fixed to any value, therefore,
we repeat the algorithm 232 times by changing c7 from 0 to 0xffffffff.

Fig. 1. Graphical Explanation of the Strategy for Phase B

18 Y. Sasaki et al.

- After that, we can compute the output of f in step 6, which is the same value
as that of c5. Therefore, the chaining variables (3) are fixed.

- All chaining variables input to f in step 7 are fixed, so we can compute its
output, this, uniquely determining a6. Therefore, the chaining variables (4)
are fixed, and steps 3-7 will be connected by Inverse-m for m2, m3 and m4.

Cryptanalysis of a Hash Function Based on
Quasi-cyclic Codes

Pierre-Alain Fouque and Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

{Pierre-Alain.Fouque,Gaetan.Leurent}@ens.fr

Abstract. At the ECRYPT Hash Workshop 2007, Finiasz, Gaborit,
and Sendrier proposed an improved version of a previous provably secure
syndrome-based hash function. The main innovation of the new design
is the use of a quasi-cyclic code in order to have a shorter description
and to lower the memory usage.

In this paper, we look at the security implications of using a quasi-
cyclic code. We show that this very rich structure can be used to build
a highly efficient attack: with most parameters, our collision attack is
faster than the compression function!

Keywords: hash function, provable security, cryptanalysis, quasi-cyclic
code, syndrome decoding.

1 Introduction

Following the breakthrough collision attacks by Wang et al. against the most
widespread hash functions (MD5 in [10], SHA-1 in [9]) the crypto community is
trying to design new hash functions. One interesting approach is the construction
of provably secure hash functions, in which the security of the hash function is
proven to rely on some computationally hard problem.

At Mycrypt 2005, Augot, Finiasz, and Sendrier proposed a family of provably
secure hash functions based on the syndrome decoding problem called FSB [1].
An improved version of this design (IFSB) was presented at the ECRYPT Hash
Workshop 2007 by Finiasz, Gaborit and Sendrier [5]. The new idea introduced
in IFSB is to use a quasi-cyclic code instead of a random code. This allows to
store a smaller description of the code, and there is a huge speedup when it fits
into the CPU cache. This modification was assumed not to lower the security of
the construction.

However, this new proposal was broken by Saarinen using a simple lineariza-
tion technique [7]. The attack does not take advantage of the new elements of
the design (ie. the quasi-cyclic codes) and can also be used to break the initial
function; it is only based on the fact that ratio between two parameters of the
hash function is relatively small (r/w < 2). Therefore, it does not invalidate the
approach of [5]; we can still use a hash function based on a quasi-cyclic code, we
just need to choose a larger r.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 19–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 P.-A. Fouque and G. Leurent

This papers studies the IFSB construction, and how the use of a quasi-cyclic
code affects its security. We show that if the block size has a small divisor, we can
build a very efficient attack which works with a larger r than the linearization
attack. We still don’t break IFSB for any possible parameters, but most proposed
parameters are sensible to this attack.

Our Results. We first point out a strange property of the FSB/IFSB family
in Section 3: the mixing of the chaining value with the message is very weak.
This has two main consequences: a collision attack is essentially the same as a
pseudo-collision attack, and the compression function is not a pseudo random
function family (PRF).

In section 4, we introduce our new collision attacks on IFSB based on the
structure of quasi-cyclic codes. The main result is an attack using piecewise
periodic messages, and a new algorithm to solve a system of cyclic equations.
Here is a brief comparison (for pseudo-collisions) of the previous linearization
attack and our new cyclic attack (see Table 1 on page 33 for practical figures):

Attack Conditions Complexity Remarks

Linearization r ≤ 2w r3 r is typically 1024
if r is bigger (4/3)r−2w · r3 log2(4/3) ≈ 0.415

Cyclic r ≤ 4w (n/4w)3 n/4w is typically 64
if r is bigger 2

n(r−4w)
4wr · (n/4w)3 n/4wr is typically 1/16

These attacks are both very efficient when the ratio r/w is below a given thresh-
old, and can be extended to work above the threshold, but the complexity grows
exponentially with r. The cyclic attack has a bigger threshold, and when the
threshold is exceeded it has a lower factor in the exponent. Note that the lin-
earization attack can break FSB as well as IFSB, whereas our cyclic attack relies
on the property of the quasi-cyclic code: it can only break IFSB and also requires
r to be a power of 2.

Since these attacks rely on a low r/w ratio, they do not rule out the IFSB
construction, but only the parameter proposed in [5]. For instance, one could
use the IFSB construction with parameters based on [1], which have a higher
r/w. However, the first step of our attack can also be used together with Wag-
ner’s attack, so as to remove the dependency in the ration r/w (there is still a
requirement that r is a multiple of n/2w):

Attack Complexity Remarks

Wagner r2a′ · 2r/(a+1) Used as the security parameter
Cyclic + Wagner n

2w 2a′ · 2
n
2w /(a′+1) a′ is a or a − 1

Since n/2w is typically between r/2 and r/8, the new attack will have a com-
plexity between the square root and the eighth root of the security parameter.
These attacks basically show that the IFSB construction with a quasi-cyclic code
is not secure if r, the length of the code has many divisors. The easy choice of a
power of two is highly insecure.

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 21

In [5], the authors provided some security argument when r is prime and 2 is
a primitive root of Z/rZ. Since this was not a real proof, and they were confident
in the security of quasi-cyclic codes even without this argument, some of their
parameters do not respect this constraint. Our attacks show that IFSB should
only be used with a prime r.

About Provable security. The main motivation for the design of FSB is to
have a proof of security. In [1], the authors of FSB defined the 2-RNSD problem
(2-Regular Null Syndrome Decoding) so that finding a collision in FSB given
the matrix H is equivalent to solving 2-RNSD on the matrix H. They also prove
that 2-RNSD is a NP-complete problem, which is a good evidence that there is
no polynomial time algorithm to break FSB. However, this does not really prove
that finding a collision is hard:

– The fact that there is no polynomial time algorithm to break the function is
an asymptotic property, but in practice the function is used with a fixed size;
there might be an algorithm that break the function up to a given size in
very little time. Usually, designers look at the best known attack and choose
the size of the function so that this attack is unpractical, but there could be a
more efficient algorithm (though superpolynomial). Indeed, the first version
of FSB did not consider Wagner’s generalized birthday attack [4], and the
parameters had to be changed.

– More importantly, the fact that a problem is NP-Complete means that there
are some hard instances, not that every instance is hard. For instance, SAT
is an NP-Complete problem, but if the specific formula you try to satisfy
happen to be in 2-SAT there is a polynomial time algorithm. In the case of
FSB, the 2-RNSD problem is NP-Complete but IFSB used instances where
r < 2w which are easy [7].

– Moreover, IFSB is an improved version of FSB, but the new components (the
final transformation, the change to a quasi-cyclic matrix, and the possibility
to use a new constant weight encoder) have no security proof. Indeed, our
main result is an algorithm that breaks the 2-RNSD problem when the ma-
trix is quasi-cyclic and r is a power of 2, which is the case for most proposed
settings of IFSB.

– Lastly, the security proof considers some specific attack, such as collision,
or preimage, but there might be some other undesirable property in the
design. In Section 3, we show that the FSB design does not mix properly the
chaining value with the message.

2 Design of IFSB and Previous Cryptanalysis

The Fast Syndrome Based (FSB) and Improved Fast Syndrome Based (IFSB)
hash functions follow the Merkle-Damgård construction. The compression func-
tion is built of two steps:

22 P.-A. Fouque and G. Leurent

– A constant weight encoder ϕ that maps an s-bit word to a n-bit word of
Hamming weight w.

– A random matrix H of size r × n. Typically, r is about one hundred, and n
is about one million.

The compression function of FSB takes s bits as input (r bits of chaining variable,
and r − s bits of message) and outputs r bits; it is defined by:

F (x) = H × ϕ(x)
H: random r × n matrix
ϕ : encodes s bits to n bits with weight w

In the case of IFSB, the matrix H is quasi-cyclic: H = H0||H1||...Hn/r−1 and
each Hi is a cyclic r × r matrix. There is also a final transformation to reduce
the size of the digest, but it is not used in our collision attacks.

Notations. We will use the following notations:

– 0 and 1 are bit-strings of length one, as opposed to 0 and 1.
– if x is a bit-string, xk is the concatenation of k times x.
– x[i] is the (i + 1)-th bit of x (i is between 0 and |x| − 1).
– [f(i)]p−1

i=0 is the matrix whose columns are the f(i)’s.

2.1 Choosing a Constant Weight Encoder

Three constant word encoders are proposed in [5]. The regular encoder is a
very simple one, used in most parameters. The optimal encoder and the tradeoff
encoder are introduced in order to reduce the size of the matrix: they can use
more input bits with the same parameters n and w.

The Regular Encoder. The regular encoder was introduced in [1]; it is the
only encoder defined for the FSB family, and the main one for the IFSB family.
It is designed to be efficient and is very simple. The message M is split into w
words mi of log(n/w) bits (all the log in this paper are base 2), and the output
word is divided into chunks of n/w bits. Then, each chunk of the output word
contains exactly one non-zero bit, with its position defined the corresponding
mi. For an efficient implementation, we will often use log(n/w) = 8.

More precisely, the regular encoder is defined as:

ϕ(M) = ϕ(m0||m1||...) =
w−1⊕

i=0

ϕi(mi)

where ϕi is used to encode one message word into the output chunk i:

ϕi(x) = 0in/w0x10n/w−1−x0n−(in+1)/w

=
0 1 i w−1

000...00 000...00 000...00 000...00 000...00 000...00 000...00

0 1 x n/w−1
0 0 0 0 1 0 0 0 0 0

ϕi(x)[k] = 1 ⇐⇒ k = in/w + x

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 23

FSB with the regular encoder just selects one particular column of the matrix
H for each message word:

F (M) = H ×
w−1⊕

i=0

ϕi(mi) =
w−1⊕

i=0

Hin/w+mi
.

The Optimal Encoder. The optimal encoder tries to have all the words of
weight w in its range, whereas the regular encoders only output regular words.
There are

(
n
w

)
such words, as opposed to (n/w)w regular words; this allows the

optimal encoder to use more input bits. The optimal encoder will actually map
�log

(
n
w

)
� bits to a subspace of 2�log (n

w)� words. We do not consider the details of
the computation, we will only assume that ϕ and ϕ−1 are efficiently computable.

The Tradeoff Encoder. The main problem of the optimal encoder is that
it requires some computations with very large integers. Therefore, the tradeoff
encoder uses a combination of the optimal encoder and the regular encoder. Here
again, we do not need the details of the construction, we only use the fact that
ϕ and ϕ−1 are efficiently computable.

2.2 Wagner’s Generalized Birthday

Wagner’s generalized birthday attack [8] is a clever trick to solve the k-sum
problem: given some lists L1, L2, .., Lk of r-bit values, we want to find l1 ∈
L1, .., lk ∈ Lk such that

⊕k
i=1 lk = 0. If each list contains at least 2r/k elements

there is a good probability that a solution exists, but the best known algorithm
is a simple birthday attack in time and memory Õ(2r/2). The idea is to build
two lists LA and LB with all the sums of elements in L1, ...Lk/2 and Lk/2+1, ...Lk

respectively, sort LA and LB, and look for a match between the two lists (LA

and LB contains 2r/2 elements).
Wagner’s algorithm will have a lower complexity, but it requires more elements

in the lists. For instance with k = 4 we need lists of size 2r/3 and the algorithm
will find one solution using Õ(2r/3) time and memory.

The basic operation of the algorithm is the general join ��j: L ��j L′ consists
of all elements of L × L′ that agree on their j least significant bits:

L ��j L′ =
{
(l, l′) ∈ L × L′

∣∣∣ (l ⊕ l′)[0..j−1] = 0j
}

.

The algorithm for k = 4 is described by Figure 1. We first build the list L12 =
L1 ��r/3 L2 and L34 = L3 ��r/3 L4. By the birthday paradox, these lists should
contain about 2r/3 elements. Next, we build L1234 = L12 ��2r/3 L34. Since the
elements of L12 and L34 already agree on their r/3 lower bits, we are only doing a
birthday paradox on the bits r/3 to 2r/3, so we still expect to find 2r/3 elements.
Finally, we expect one of the elements of L1234 to be the zero sum. This can be
generalized to any k that is a power of two, using a binary tree: if k = 2a, we

24 P.-A. Fouque and G. Leurent

L1 L2 L3 L4

L12

��r/3

L34

��r/3

L1234

��2r/3

4 lists of 2r/3 elements

2 lists of 2r/3 elements
with 2r/3 zeros

1 list of 2r/3 elements
with 22r/3 zeros

Fig. 1. Wagner’s algorithm for k = 4

need k lists of 2r/(a+1) elements and the time and memory used by the algorithm
is 2a · r2r/(a+1).

Finding a collision in FSB with the regular encoder is just an instance of
the k-sum problem, so we can use Wagner’s algorithm to break it, as shown by
Coron and Joux [4]. We look for M and M ′ such that

F (M) ⊕ F (M ′) =
w−1⊕

i=0

Hin/w+mi
⊕

w−1⊕

i=0

Hin/w+m′
i
= 0.

This is an instance of the 2w-sum problem on r bits, with lists of n/w elements:
Li = {Hin/w+mi

}n/w−1
mi=0 and L′i = {Hin/w+m′

i
}n/w−1

m′
i=0 . If n/w < 2r/(log(w)+2), we

cannot apply Wagner’s attack with k = 2w as it is, but we can group the lists. For
instance, we can build w/2 lists of (n/w)4 elements, and this attack is applicable
with k = w/2 if (n/w)4 ≥ 2r/ log(w). In the end, we will use the largest a that
satisfies:

2a

a + 1
≤ 2w

r
log(n/w).

This is the main attack to break the k-sum problem, therefore it was used by
the authors of FSB to define their security levels.

2.3 Linearization Attack

Wagner noted in [8] that the generalized birthday problem can be solved using
linear algebra when r ≤ k, using a result from Bellare and Micciancio [2, Ap-
pendix A]. When we apply this to FSB, we can break it very efficiently when
r ≤ 2w. However, this was overlooked by the designers of ISFB, and almost all
the parameters they proposed satisfy r ≤ 2w. Saarinen rediscovered this attack
in [7], and extended it to r > 2w with complexity (3/4)r−2w · r3. He also redis-
covered a preimage attack when r ≤ w based on the same idea. Here, we will
only describe the basic collision attack, using our notations.

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 25

Let us choose four distinct elements a, b, c, d ∈ {0..n/w−1}, and build a vector
u and a matrix Δ: (aw is the concatenation of w times a)

u = (H × ϕ(aw)) ⊕ (H × ϕ(cw))
Δ1 = [H × (ϕi(a) ⊕ ϕi(b))]

w
i=0

Δ2 = [H × (ϕi(c) ⊕ ϕi(d))]wi=0

Δ = Δ1||Δ2

We solve the equation Δ×x = u by linear algebra and we write x = x1||x2 such
that Δ1 × x1 ⊕ Δ2 × x2 = Δ × x = u. Since the matrix Δ has size r × 2w, there
is a good probability to find a solution when r ≤ 2w (see Appendix A). Then
we build the messages M and M ′ (note that the messages are distinct because
a, b, c and d are all distinct):

mi =

{
a if x

[i]
1 = 0

b if x
[i]
1 = 1

m′i =

{
c if x

[i]
2 = 0

d if x
[i]
2 = 1

Proof. This will give a collision because

H × ϕ(M) = H ×
⊕

ϕi(mi)

= H × (
⊕

x
[i]
1 =0

ϕi(a) ⊕
⊕

x
[i]
1 =1

ϕi(b))

= (H × ϕ(aw)) ⊕ (H ×
⊕

x
[i]
1 =1

(ϕi(a) ⊕ ϕi(b)))

= (H × ϕ(aw)) ⊕ (Δ1 × x1)
H × ϕ(M ′) = (H × ϕ(cw)) ⊕ (Δ2 × x2)

(H × ϕ(M)) ⊕ (H × ϕ(M ′)) = u ⊕ Δ × x = 0

3 An IV Weakness

The regular encoder and the tradeoff encoder do not mix the chaining vari-
able input and the message input: we can write F (c, M) = H × ϕ(c||M) =
(Hc × ϕc(c)) ⊕ (HM × ϕM (M)), with H = Hc||HM . This means that a collision
attack is just the same as a pseudo-collision attack, we only have to work with
the smaller matrix HM . Since we have less degree of freedom, the complexity of
the attack might be higher, but it works exactly in the same way.

More importantly, a collision in the compression function is a collision for any
chaining variable. This is quite unexpected for a hash function, and we believe
this should be avoided. In particular, it means that if we replace the IV by a key,
we do not have a pseudo-random function family. There exists an adversary that
knows two messages M1 and M2 such that HM × ϕ(M1) = HM × ϕ(M2), and
we have F (k, M1) = F (k, M2) for any key k, which gives a distinguisher against
a random function. For instance, if FSB is used in the HMAC construction, we

26 P.-A. Fouque and G. Leurent

can run an existential forgery attack with only one chosen-message MAC, as
long as we know one fixed collision. Even if no collisions are known, the security
against a PRF-distinguisher is only 2n/2, instead of the expected 2n. This also
allows to forge signatures for virtually any hash-based signature scheme, or to
build cheap multi-collisions.

4 The Cyclic Attack

Our new attack on IFSB relies on the structure of quasi-cyclic codes and uses
two new ideas. The first idea is to use a message M such that ϕ(M) is piecewise
periodic. This reduces the message space, but when the code is quasi-cyclic, we
will see that the hash will become periodic, and we can now work on only one
period, instead of the whole hash. This step can be used as a kind of preprecessing
for Wagner’s attack or for the linearization attack. The second part of the attack
is an algorithm to solve the remaining system of cyclic equations, which is more
efficient than Wagner’s attack or the linearization technique.

4.1 Quasi-cyclic Codes and Rotations

We use x ≪ s to denote x rotated by s bits, and we say that x is s-periodic if
x = x ≪ s. Similarly, if x is broken into pieces of k bits x = x0||x1||x2..., we
define the k-piecewise rotation:

x
k

≪ s = (x0 ≪ s)||(x1 ≪ s)||(x2 ≪ s)...

If x
k

≪ s = x, we say that x is piecewise periodic. In this paper we will always
use k = r.

Let us introduce a few definitions and properties of cyclic and quasi-cyclic
matrices.

Definition 1. The matrix H is cyclic if each row vector is rotated one element
to the right relative to the previous row vector:

H =

⎡

⎢⎢⎢⎢⎢⎢⎣

α0 α1 . . . αr−2 αr−1
αr−1 α0 α1 αr−2

... αr−1 α0
. . .

...

α2
. α1

α1 α2 . . . αr−1 α0

⎤

⎥⎥⎥⎥⎥⎥⎦

Property 1. If H is cyclic, we have:

H × (x ≪ s) = (H × x) ≪ s

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 27

Definition 2. H is quasi-cyclic if H = (H0, H1, ...Hn/r−1), and each Hi is
cyclic.

H =

⎡

⎢⎢⎢⎢⎢⎢⎣

α0 α1 . . . αr−2 αr−1
αr−1 α0 α1 αr−2

... αr−1 α0
. . .

...

α2
. α1

α1 α2 . . . αr−1 α0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

β0 β1 . . . βr−2 βr−1
βr−1 β0 β1 βr−2

... βr−1 β0
. . .

...

β2
. β1

β1 β2 . . . βr−1 β0

⎤

⎥⎥⎥⎥⎥⎥⎦
· · ·

Property 2. If H is quasi-cyclic, we have:

H × (x
r

≪ s) =
n/r−1∑

i=0

Hi × (xi ≪ s)

= (H × x) ≪ s

Corollary 1. If H is quasi-cyclic and x is piecewise periodic, then H × x is
periodic:

(H × x) ≪ s = H × (x
r

≪ s) = H × x.

This simple remark will be the basis of our cyclic attack.

4.2 The Main Attack

The basic idea of our attack is very simple: let us choose M and M ′ such that
ϕ(M) and ϕ(M ′) are piecewise periodic. Then we know that the output H×ϕ(M)
and H × ϕ(M ′) are periodic, and we only have to collide on one period.

In fact we can even take further advantage of the two messages: let us choose
M such that ϕ(M) is piecewise s-periodic, and M ′ = ϕ−1(ϕ(M)

r
≪ s/2).

ϕ(M)⊕ϕ(M ′) is piecewise s/2-periodic, and so is (H×ϕ(M))⊕ (H×ϕ(M ′)) =
H × (ϕ(M) ⊕ ϕ(M ′)). Our collision search is now a search for M such that the
first s/2 bits of H × (ϕ(M) ⊕ ϕ(M ′)) are zero.

In practice, the smallest period we can achieve with the regular encoder is
n/w, so we will require that n/2w is a divisor of r. We divide the encoded word
into blocks of size r, and we choose the same mi for all the chunk of the message
that are used in the same block. The choice of a message M so that ϕ(M) is
piecewise n/w-periodic is equivalent to choice of n/r values μi ∈ {0..n/w − 1}.
Each μi will be used as the message corresponding to one block of the matrix, so
the full message will be μ

rw/n
0 μ

rw/n
1 . . . μ

rw/n
n/r−1 (that is, that is, mi = μ�i/ rw

n �).
We have

F (M) = H × μ
rw/n
0 μ

rw/n
1 . . . μ

rw/n
n/r−1 =

n/r−1⊕

i=0

H × θi(μi),

28 P.-A. Fouque and G. Leurent

where

θi(x) = ϕi rw
n

(x) ⊕ ϕi rw
n +1(x) ⊕ · · ·ϕ(i+1) rw

n −1(x)

=
0 1 i n/r−1

000...00 000...00 000...00 000...00 000...00 000...00

0 1 x 0 1 x
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

M ′ = ϕ−1(ϕ(M)
r

≪ s/2) can be constructed easily: due to the definition of the
regular encoder, we just have to set μ′i = μi + n/2w (mod n/w). We have now
reduced the collision search to the search of μ0, ...μn/r−1 such that:

F (M) ⊕ F (M ′) =
n/r−1⊕

i=0

hi(μi) = 0

where

hi(x) = H × θi(x) ⊕ H × θi(x + n/2w).

We know that the hi(x)’s are n/2w periodic, so we only have to solve an
instance of the n/r-sum problem on n/2w bit with lists of n/2w elements:
Li = {h̄i(μi)}n/2w−1

μi=0 (with h̄i(x) = hi(x)[0...n/2w−1]). We can solve it with the
same methods as the original one (which was an instance of the 2w-sum problem
on r bits, with lists of n/w elements):

– The linearization attack can be used if n/r ≥ n/2w, which is equivalent to
the condition on the original system: r ≤ 2w. The complexity will drop from
r3 to (n/2w)3.

– For Wagner’s attack, let a1 be the best a for the original problem and a2 the
best a for the new system. They have to satisfy:

2a

a + 1
≤ 2w

r
log(n/w)

2a′

a′ + 1
≤ 2w

r
(log(n/w) − 1)

In most cases, we will be able the use the same a on the new system, and
the complexity of the attack drops from r2a · 2r/(a+1) (which was used as a
security parameter) to r2a · 2

n
2w /(a+1). Since n/2w is usually much smaller

than r, this can already break all proposed parameters of FSB, many of them
in practical time!

If the we are looking for collision with the same chaining value, instead of pseudo-
collision, we will only have n/r − n/s lists instead of n/r.

The next section will introduce a new way to solve this system, which is even
more efficient.

4.3 A System of Cyclic Equations

The collision attack on IFSB has now been reduced to a collision attack on
much smaller bit-strings. But the small bit-strings still have a strong structure:

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 29

we have h̄i(x + 1) = h̄i(x) ≪ 1 because ϕi(x + 1) = ϕi(x)
n/w
≪ 1 and H is quasi-

cyclic. Therefore, each list actually contains every rotations of a single vector:
Li = {h̄i(μi)}n/2w−1

μi=0 = {h̄i(0) ≪ μi}n/2w−1
μi=0 , and we have to solve:

p−1⊕

i=0

Hi ≪ μi = 0,

where Hi = h̄i(0) is computed from H, and the μi’s are the unknown. We have
p = n/r for a pseudo-collision attack, and p = n/r − n/s for a collision attack.
We will assume that the length of the Hi’s is a power of two: n/w = 2l, which
is always the case in practice because it make the implementation easier.

First of all, if the sum of all bits of the Hi is non-zero (ie.
⊕

k,i H
[k]
i = 1),

there is no solution; in this case we will drop one of the Hi with an odd bit-sum
by setting μ′i = μi instead of μ′i = μi+n/2w for this particular i. We now assume
that

⊕
k,i H

[k]
i = 0.

To describe our algorithm, we will use a set of functions πk which folds 2l-bit
strings into 2k-bit strings: πk(x) cuts x into chunks of 2k bits, and xors them
together (πl is the identity function). We also use πL

k (x) which is the left part
of πk(x), and πR

k (x) is the right part (therefore πk−1(x) = πL
k (x) ⊕ πR

k (x)). The
algorithm is described by Algorithm 1; it uses linear algebra in a similar way as
the attack of section 2.3.

Algorithm 1. Cyclic system solver
1: for all μi do
2: μi ← 0

3: for 1 ≤ k < l do
4: Δ ← [πk(Hi ≪ μi)]

p−1
i=0

5: Set u as the solution to Δ × u = πL
k+1(

⊕
i Hi ≪ μi)

6: for all μi do
7: μi ← μi + u[i]2k

Proof. The proof of Algorithm 1 uses the fact that after iteration k we have
πk+1(

⊕
i Hi ≪ μi) = 0. If μi are the values at the beginning of iteration k, we

have πk(
⊕

i Hi ≪ μi) = 0 and:

L = πL
k+1

(⊕
Hi ≪ (μi + u[i]2k)

)

= πL
k+1

(
⊕

Hi ≪ μi ⊕
⊕

u[i]=1

(
Hi ≪ μi ⊕ Hi ≪ (μi + 2k)

)
)

= πL
k+1

(⊕
Hi ≪ μi

)
⊕

⊕

u[i]=1

πL
k+1(Hi ≪ μi) ⊕ πR

k+1(Hi ≪ μi)

= πL
k+1

(⊕
Hi ≪ μi

)
⊕

⊕

u[i]=1

πk(Hi ≪ μi)

30 P.-A. Fouque and G. Leurent

= πL
k+1

(⊕
Hi ≪ μi

)
⊕ Δ × u

= 0 (By construction of u)

while

R = πR
k+1

(⊕
Hi ≪ (μi + u[i]2k)

)

= πL
k+1

(⊕
Hi ≪ (μi + u[i]2k)

)
⊕ πk

(⊕
Hi ≪ (μi + u[i]2k)

)

= 0 ⊕ πk

(⊕
Hi ≪ μi

)
(Because πk(x ≪ 2k) = πk(x))

= 0

Therefore, at the end of the iteration, we have πk+1(
⊕

i Hi ≪ μi) = L||R = 0
with the new μi’s. After the last iteration, this reads

⊕
i Hi ≪ μi = 0.

Complexity Analysis. The complexity of the attack is very low: the only com-
putational intensive step is the linear algebra. Using a simple Gaussian elimina-
tion, we can solve the equation Δ × u = c where Δ has 2i rows and p columns
in time p22i. The time of the full algorithm is therefore

∑l−1
i=1 p22i = 4l−4

3 p.
The success probability of the algorithm is related to the probability C(n, p)

that a random system Δ × u = c is consistent, when Δ has n rows and p
columns. See Appendix A for an analysis of C. If all the systems are independent,
identically distributed, the success probability can be expressed as:

P (n, p) =
log(n)−1∏

i=1

C(2i, p).

Actually, the systems are not independent and identically distributed because
the random bits the Hi’s are aligned in a particular manned by the μi of the
previous step; in particular we have an obvious relation at each step:

∑
Δi = 0.

We will assume that this is the only difference between the algorithm and the
resolution of independent systems, which means the probability of success is
P (2l, p − 1). However, to solve a cyclic system, we first have to make sure that⊕

k,i H
[k]
i = 0; this means that for one system out of two we have to run the

algorithm with p − 1 bit-strings. In the end, the expected success probability is

Π(2l, p) =
P (2l, p − 1) + P (2l, p − 2)

2

and the expected running time is:

Π(2l, p)−1 · 4l − 4
3

p.

To check the hypothesis of independence, we ran the cyclic solver on random
systems, and compared the success rate to the theoretical value. Figure 2 shows
that we are very close to the actual success probability.

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 31

48 52 56 60 64 68 72 76 80
0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

p

Π(128, p)

Π − eΠ(128, p)

Fig. 2. Theoretical success probability Π versus experimental success probability Π̃.
Since the two curves would be on top of each over, we draw the difference between them
on a different scale. Π̃ is measured by running the algorithm 220 times with randon
systems of the given size.

When we use the cyclic solver to break IFSB, we will have l = log(n/2w) and
p = n/r for pseudo-collision, p = n/r − n/s for collisions. We will analyse the
pseudo-collision case in more detail:

1. If p ≥ 2l−1, ie r ≤ 4w: we will use p a little larger than 2l−1 so that Π(2l, p)
is almost 1. In this case, the running time of the full algorithm of the algo-
rithm is essentially:

T = 4l−4
3 p < 2(n/4w)3.

2. If p < 2l−1, ie r > 4w, we cannot have a good probability of success and
we have to repeat the cyclic solver with a randomized system. When we
want to find collisions in a given hash function, we have only one particular
system, but we can still apply a random rotation to each word. This will not
give an independent system, but since our algorithm only find some special
solutions to the cyclic system (the lower bits of the μi’s are mostly zeros)
this randomization could sufficient. Experimentally, with l = 6 and p = 53
(used for a collision attack against line 4 of Table 1) it works very well.

In this case the running time of the full algorithm of the algorithm is
essentially:

T = 2p−2l−1 4l−4
3 p < 2

n(r−4w)
4wr · 2(n/4w)3.

32 P.-A. Fouque and G. Leurent

4.4 Scope of the Attack and Parameters Choice

Our attack is only applicable if r has a small divisor. On the one hand it is very
efficient when the parameters are powers of two, but on the other hand it does
not improve previous cryptanalysis when r is a prime.

This can be related to previous results about quasi-cyclic codes [3]. If r is a
prime such that 2 is primitive modulo n, then the circulant matrix generated by
a word of odd weight is invertible, and the code has the same kind of properties
than a random code (in particular the syndromes are distributed evenly). This
was used as an argument in favor of the IFSB construction in [5]. Note that it
does not prove that finding collisions is hard: our attack does not apply, but there
might be another way to exploit the quasi-cyclic code. Our attack completes this
analysis: when r is carefully chosen there a security argument, but there is an
attack for bad r’s. Unfortunately, most parameters of IFSB were rather badly
chosen.

Table 1 gives an overview of the various parameters of IFSB and the com-
plexity of the linearization attack and the cyclic attack (for pseudo-collisions
and collisions). The first part of the table presents the parameters used for per-
formance evaluation in [5]. These parameters use r and n/w are powers of two,
which allow our new attack to be used. We can see that it has a lower complex-
ity than the linear attack, especially for the 80 bit security parameters, which
have r > 2w. The next parts of the table show the parameters recommended
by [5]. The recommended parameter set for standard applications has a prime r,
which make our attack unusable, but the parameter set for memory constrained
environments use a power of two. In the last part of the table, we show the
parameters of FSB. They have not been proposed for use with IFSB, but we feel
that it would be a natural move to prevent the attacks which need a low r/w
ratio. The parameters would have to be tweaked to be used for IFSB, and our
complexity evaluation assumes that n/4w ends up being a divisor of r (which is
the best case for our attack).

Note that it is still possible to choose parameters of IFSB which would not
be broken by known attacks. The parameters of the original FSB [1] have a big
r/w ratio which avoids the linearization attack, and if they are adapted to IFSB
with a prime r they could also avoid our cyclic attack.

Example 1. To illustrate the attack, let us consider the most interesting setting
of the table 1 of [5], designed for 128-bit security. We have:

r = 1024 w = 1024 s = 8192 n/w = 256

For a collision attack, we can build a cyclic to build a system with l = n/2w =
128 and p = n/r − n/s = 224. The main operation to solve this system will be
linear algebra on a matrix of size 64, which only costs 218 elementary operations
(xors on one bit). Since the compression function requires rw = 220 elementary
operations, our attack costs less than one call to the compression function!

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 33

Table 1. Comparison of the linearization attack and the cyclic attack on the various
parameter sets proposed in [5]. The complexity is given in elementary operations; one
compression function costs rw elementary operations (typically 220).

Linear Cyclic
r w n s n/w secu psd. coll psd. coll n/4w n/r n/s

512 512 131072 4096 256
64

227 227 219 219 64 256 32
512 450 230400 4050 512 227 227 222 222 128 450 32.2
1024 217 225 220 256 230 230 219 219 64 215 32
512 170 43520 1360 256 80 2100 - 219 230 64 85 32
512 144 73728 1296 512 - - 222 263 128 144 56.9
1024 1024 262144 8192 256

128
230 230 219 219 64 256 32

1024 904 462848 8136 512 230 230 222 222 128 452 56.5
1024 816 835584 8160 1024 230 230 225 225 256 816 102.4
Recommended parameters for standard applications:
1061 1024 262144 8192 256 128 230 230 - -
Recommended parameters for memory constrained environments:
512 320 2560 1280 8 80 227 261 211 211 2 5 2

Parameters of FSB [1]. Not proposed for IFSB, but could be a way to repair it:
480 170 43520 1360 256

80
285 - 219 225 64 90.7 32

400 85 21760 680 256 - - 229 261 64 54.4 32
320 42 10752 336 256 - - 250 - 64 33.6 32

Example 2. An other interesting set of parameter that we can break are the
recommended parameters for memory constrained environments. This function
was believed to provide a security of 280, but we can break it by hand ! Since
we have n/4w = 2 the resolution of the cyclic system is almost trivial. The
most expensive step of the attack is the construction of the system, which only
involves folding the matrix using xors.

4.5 About the Optimal Encoder

The optimal encoder allows to create messages such that ϕ(M) is concentrated
on one cyclic block of H. Since (almost) any word of weight w is in the range
of ϕ, if w ≥ r we can even choose a piecewise 1-periodic ϕ(M)! In this case, we
have a very easy pseudo-collision attack:

1. Consider the messages Mk = ϕ−1
(
0kr1r0n−(k+1)r1w−r

)

2. We have F (Mk) = H × ϕ(Mk) = sk ⊕ t, where:
sk = Hk × 1r is 1-periodic
t = H × 0n−w+r1w−r

3. Since sk is 1-periodic, it can only take two values: 0r and 1r: we have at
least one collision between M0, M1 and M2.

If the optimal encoder is combined with a quasi-cyclic matrix of non prime
length, it is easy to build periodic messages with a very small period. Because

34 P.-A. Fouque and G. Leurent

of this, we strongly discourage the use of the optimal encoder with quasi-cyclic
codes.

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, and by the
French government through the Saphir RNRT project.

References

1. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Crypto-
graphic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

2. Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incremen-
tality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

3. Chen, C.L., Peterson, W.W., W Jr., E.J.: Some Results on Quasi-Cyclic Codes.
Information and Control 15(5), 407–423 (1969)

4. Coron, J.S., Joux, A.: Cryptanalysis of a Provably Secure Cryptographic Hash
Function. Cryptology ePrint Archive, Report 2004/013 (2004)
http://eprint.iacr.org/

5. Finiasz, M., Gaborit, P., Sendrier, N.: Improved Fast Syndrome Based Crypto-
graphic Hash Functions. In: Rijmen, V. (ed.) ECRYPT Hash Workshop 2007 (2007)

6. Goldman, J., Rota, G.C.: On the foundations of combinatorial theory. IV: Finite
vector spaces and Eulerian generating functions. Stud. Appl. Math. 49, 239–258
(1970)

7. Saarinen, M.J.O.: Linearization Attacks Against Syndrome Based Hashes. Cryp-
tology ePrint Archive, Report 2007/295 (2007) http://eprint.iacr.org/

8. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, 2442 (2002)

9. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

10. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

A Probability of Solving a Linear System over F2

In this appendix we study the probability that the equation Δ × x = c has at
least one solution in x, given a random n × p binary matrix Δ, and a random
vector c. We call this probability C(n, p).

http://eprint.iacr.org/
http://eprint.iacr.org/

Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes 35

C(n, p) = Pr
Δ,c

[
∃x : Δ × x = c

]

= Pr
Δ,c

[
c ∈ Im Δ

]

=
n∑

r=0

Pr
c

[
c ∈ Im Δ| rank(Δ) = r

]
· Pr

Δ

[
rank(Δ) = r

]

=
n∑

r=0

2r−n · Pr
Δ

[
rank(Δ) = r

]

=
n∑

r=0

2r−n · 2−np
r−1∏

i=0

(2p − 2i)(2n − 2i)
2r − 2i

(see [6, Proposition 3])

The case p > n. The following lower bound is true for all p, but is mostly
useful in the case p > n, and very tight when p
 n:

C(n, p) ≥ Pr
Δ

[
rank(Δ) = n

]
= 1 − Pr

Δ

[
rank(Δ) < n

]

≥ 1 −
∑

Hhyperplan

Pr
Δ

[
Im Δ ⊂ H

]

≥ 1 − 2n 2(n−1)p

2np
= 1 − 2n−p

It shows that we just have to choose p a little bigger than n to get a very good
probability of success.

The case p ≤ n. When p ≤ n, we have

C(n, p) ≥ 2p−n · Pr
Δ

[
rank(Δ) = p

]
= 2p−n

p−1∏

i=0

1 − 2i−n

When p � n The quantity Q(n, p) =
∏p−1

i=0 1 − 2i−n is very close to one, but we
can derive a lower bound it as long as p ≤ n:

Q(n, p) ≥
∞∏

k=1

1 − 2−k = 0.288788...

This allows us to say that the probability of success of the algorithm when p < n
is about 2p−n.

Linear-XOR and Additive Checksums Don’t

Protect Damg̊ard-Merkle Hashes from Generic
Attacks

Praveen Gauravaram1,� and John Kelsey2

1 Technical University of Denmark (DTU), Denmark
Queensland University of Technology (QUT), Australia

p.gauravaram@mat.dtu.dk
2 National Institute of Standards and Technology (NIST), USA

john.kelsey@nist.gov

Abstract. We consider the security of Damg̊ard-Merkle variants which
compute linear-XOR or additive checksums over message blocks, inter-
mediate hash values, or both, and process these checksums in computing
the final hash value. We show that these Damg̊ard-Merkle variants gain
almost no security against generic attacks such as the long-message sec-
ond preimage attacks of [10,21] and the herding attack of [9].

1 Introduction

The Damg̊ard-Merkle construction [3, 14] (DM construction in the rest of this
article) provides a blueprint for building a cryptographic hash function, given a
fixed-length input compression function; this blueprint is followed for nearly all
widely-used hash functions. However, the past few years have seen two kinds of
surprising results on hash functions, that have led to a flurry of research:

1. Generic attacks apply to the DM construction directly, and make few or no
assumptions about the compression function. These attacks involve attacking
a t-bit hash function with more than 2t/2 work, in order to violate some
property other than collision resistance. Examples of generic attacks are
Joux multicollision [8], long-message second preimage attacks [10, 21] and
herding attack [9].

2. Cryptanalytic attacks apply to the compression function of the hash function.
However, turning an attack on the compression function into an attack on the
whole hash function requires properties of the DM construction. Examples of
cryptanalytic attacks that involve the construction as well as the compression
function include multi-block collisions on MD5, SHA-0 and SHA-1 [24,25,26].

These results have stimulated interest in new constructions for hash functions,
that prevent the generic attacks, provide some additional protection against crypt-
analytic attacks or both. The recent call for submissions for a new hash function
standard by NIST [18] has further stimulated interest in alternatives to DM.
� Author is supported by The Danish Research Council for Technology and Production

Sciences grant no. 274-05-0151.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 36–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Linear-XOR and Additive Checksums 37

In this paper, we consider a family of variants of DM, in which a linear-XOR
checksum or additive checksum is computed over the message blocks, intermedi-
ate states of the hash function, or both, and is then included in the computation
of the final hash value. In a linear-XOR checksum, each checksum bit is the
result of XORing together some subset of the bits of the message, intermediate
hash states, or both. In an additive checksum, the full checksum is the result of
adding together some or all of the message blocks, intermediate hash values, or
both, modulo some N . In both cases, the final checksum value is processed as a
final, additional block in computing the hash value.

Such DM variants can be seen as a special case of a cascade hash. Generic
attacks such as the long-message second preimage attack or the herding attack
appear at first to be blocked by the existence of this checksum. (For example,
see [6] for the analysis of 3C and MAELSTROM-0 against second preimage and
herding attacks.)

Unfortunately, these DM variants turn out to provide very little protection
against such generic attacks. We develop techniques, based on the multicollision
result of Joux [8], which allow us to carry out the generic attacks described
above, despite the existence of the checksum. More generally, our techniques
permit the construction of a checksum control sequence, or CCS, which can be
used to control the value of the checksum without altering the rest of the hash
computation.

To summarize our results:

1. The generic multicollision, second preimage and herding attacks on DM
hash functions can be applied to linear-XOR/additive checksum variants of
DM at very little additional cost, using our techniques.

2. Our techniques are flexible enough to be used in many other situations.
Some cryptanalytic attacks on the compression function of a hash, which
the linear-XOR/additive checksum appears to stop from becoming attacks
on the full hash function, can be carried out on the full hash function at a
relatively little additional cost using our techniques. Future generic attacks
will almost certainly be able to use our techniques to control checksums at
very low cost

1.1 Related Work

In unpublished work, Mironov and Narayan [15] developed a different technique
to defeat linear-XOR checksums in hash functions; this technique is less flexible
than ours, and does not work for long-message second preimage attacks. How-
ever, it is quite powerful, and can be combined with our technique in attacking
hash functions with complicated checksums. In [8], Joux provides a technique
for finding 2k collisions for a DM hash function for only about k times as much
work as is required for a single collision, and uses this technique to attack cascade
hashes. The linear-XOR and additive checksum variants of DM we consider in
this paper can be seen as a special (weak) case of a cascade hash.

Multi-block collisions are an example of a cryptanalytic attack on a com-
pression function, which must deal with the surrounding hash construction.

38 P. Gauravaram and J. Kelsey

Lucks [13] and Tuma and Joscak [22] have independently found that if there is a
multi-block collision for a hash function with structured differences, concatena-
tion of such a collision will produce a collision on 3C, a specific hash construc-
tion which computes checksum using XOR operation as the mixing function.
(3C does not prevent Joux multicollision attack over 1-block messages [6, 20].)

Nandi and Stinson [17] have shown the applicability of multicollision attacks to
a variant of DM in which each message block is processed multiple times; Hoch
and Shamir [7] extended the results of [17] showing that generalized sequential
hash functions with any fixed repetition of message blocks do not resist multi-
collision attacks. The MD2 hash function which uses a non-linear checksum was
shown to not satisfy preimage and collision resistance properties [11, 16]. Cop-
persmith [2] has shown a collision attack on a DES based hash function which
uses two supplementary checksum blocks computed using XOR and modular
addition of the message blocks. Dunkelman and Preneel [4] applied herding at-
tack of [9] to cascade hashes; their technique can be seen as an upper bound on
the difficulty of herding DM variants with checksums no longer than the hash
outputs.

1.2 Impact

The main impact of our result is that new hash function constructions that
incorporate linear-XOR/additive checksums as a defense against generic attacks
do not provide much additional security. Designers who wish to thwart these
attacks need to look elsewhere for defenses. We can apply our techniques to
specific hash functions and hashing constructions that have been proposed in
the literature or are in practical use. They include 3C, GOST, MAELSTROM-
0 and F-Hash. Both our techniques and the generic attacks which they make
possible require the ability to (at least) find many collisions for the underlying
compression function of the hash, and so probably represent only an academic
threat on most hash functions at present.

1.3 Guide to the Paper

This paper is organised as follows: First, we provide the descriptions of hash func-
tions with linear checksums analysed in this paper. Next, we demonstrate new
cryptanlytical techniques to defeat linear-XOR/additive checksums in these de-
signs. We then provide a generic algorithm to carry out second preimage and herd-
ing attacks on these designs with an illustration on 3C. We then demonstrate
multi-block collision attacks on these designs. We then compare our cryptanal-
ysis with that of [15]. Finally, we conclude the paper with some open problems.

2 The DM Construction and DM with Linear Checksums

2.1 The DM Construction

The DM iterative structure [3,14] shown in Figure 1 has been a popular frame-
work used in the design of standard hash functions MD5, SHA-1, SHA-224/256
and SHA-384/512.

Linear-XOR and Additive Checksums 39

M1 M2 M3 ML−1

H1 H2 H3 HL−1

ML

H(M) = Hv
ffff f

H0

Fig. 1. The Damg̊ard-Merkle construction

The message M , with |M | ≤ 2l − 1 bits, to be processed using a DM hash
function H is always padded by appending it with a 1 bit followed by 0 bits until
the padded message is l bits short of a full block of b bits. The last l bits are
filled in with the binary encoded representation of the length of true message M .
This compound message is an integer multiple of b bits and is represented with
b-bit data blocks as M = M1, M2, . . . ML. Each block Mi is processed using a
fixed-length input compression function f as given by Hi = f(Hi−1, Mi) where
Hi from i = 1 to L − 1 are the intermediate states and H0 is the fixed initial
state of H . The final state Hv = f(HL−1, ML) is the hash value of M .

2.2 Linear-XOR/Additive Checksum Variants of DM

A number of variant constructions have been proposed, that augment the DM
construction by computing some kind of linear-XOR/additive checksum on the
message bits and/or intermediate states, and providing the linear-XOR/additive
checksum as a final block for the hash function as shown in Figure 2.

CHECKSUM

M1 M2 ML−1

ffff f

ML

H0 Hv

Fig. 2. Hash function structure with a linear-XOR/additive checksum

3C hash function and its variants. The 3C construction maintains twice the
size of the hash value for its intermediate states using iterative and accumulation
chains as shown in Figure 3. In its iterative chain, a compression function f
with a block size b is iterated in the DM mode. In its accumulation chain, the
checksum Z is computed by XORing all the intermediate states each of size t
bits. The construction assumes that b > t. At any iteration i, the checksum value
is

⊕i
j=1 Hj . The hash value Hv is computed by processing Z padded with 0 bits

to make the final data block Z using the last compression function.
A 3-chain variant of 3C called 3CM is used as a chaining scheme in the

MAELSTROM-0 hash function [5]. At every iteration of f in the iterative chain

40 P. Gauravaram and J. Kelsey

P
A
D

M1 M2 ML−1

ffff f

ML

H0

0
Z

Z

Hv

Fig. 3. The 3C-hash function

of 3CM, the t-bit value in the third chain is updated using an LFSR. This
result is then XORed with the data in the iterative chain at that iteration. All
the intermediate states in the iterative chain of 3CM are XORed in the second
chain. Finally, the hash value is obtained by concatenating the data in the second
and third chains and processing it using the last f function. F-Hash [12], another
variant of 3C, computes the hash value by XORing part of the output of the
compression function at every iteration and then processes it as a checksum
block using the last compression function.

GOST hash function. GOST is a 256-bit hash function specified in the Rus-
sian standard GOST R 34.11 [19]. The compression function f of GOST is
iterated in the DM mode and a mod 2256 additive checksum is computed by
adding all the 256-bit message blocks in an accumulation chain. We generalise
our analysis of GOST by assuming that its f function has a block length of b
bits and hash value of t bits.

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hv

Z

Fig. 4. GOST hash function

An arbitrary length message M to be processed using GOST is split into b-
bit blocks M1, . . . , ML−1. If the last block ML−1 is incomplete, it is padded by
prepending it with 0 bits to make it a b-bit block. The binary encoded repre-
sentation of the length of the true message M is processed in a separate block
ML as shown in Figure 4. At any iteration i, the intermediate state in the it-
erative and accumulation chains is Hi = f(Hi−1, Mi) where 1 ≤ i ≤ L and
M1 + M2 . . . + Mi mod 2b where 1 ≤ i ≤ L − 1. The hash value of M is
Hv = f(Z, HL) where Z = M1 + M2 . . . + ML−1 mod 2b.

3 New Techniques to Defeat Linear-XOR Checksums

3.1 Extending Joux Multicollisions on DM to Multiple Blocks

Let C(s, n) be a collision finding algorithm on the compression function, where
s denotes the state at which the collision attack is applied and n, the number of

Linear-XOR and Additive Checksums 41

message blocks present in each of the colliding messages. On a t-bit hash function,
a brute force C(s, n) requires about 2t/2 hash function computations to find a
collision with 0.5 probability whereas a cryptanalytic C(s, n) requires less work
than that. The Joux multicollision attack [8] finds a sequence of k collisions
on a t-bit DM hash, to produce a 2k collision with work only k times the
work of a single collision search. For a brute-force collision search, this requires
k × 2t/2 evaluations of the compression function. While it is natural to think
of constructing such a multicollision from a sequence of single-message-block
collisions, it is no more expensive to use the brute-force collision search to find
a sequence of multi-message-block collisions.

3.2 Checksum Control Sequences

We define checksum control sequence (CCS) as a data structure which lets us to
control the checksum value of the DM variant, without altering the rest of the hash
computation. We construct the CCS bybuilding a Jouxmulticollision of the correct
size using a brute-force collision search. It is important to note that the CCS is not
itself a single string which is hashed; instead, it is a data structure which permits
us to construct one of a very large number of possible strings, each of which has
some effect on the checksum, but leaves the remainder of the hash computation
unchanged. That is, the choice of a piece of the message from the CCS affects the
checksum chain, but not the iterative chain, of the DM variant hash.

For example, a 2k collision on the underlying DM construction of 3C, in
which the sequence of individual collisions is each two message blocks long, is
shown in Figure 3. This multicollision gives us a choice of 2k different sequences
of message blocks that might appear at the beginning of this message. When we
want a particular k-bit checksum value, we can turn the problem of finding which
choices to make from the CCS into the problem of solving a system of k linear
equations in k unknowns, which can be done very efficiently using existing tools
such as Gaussian elimination [1, Appendix A], [23]. This is shown in Figure 5
for k = 2 where we compute the CCS by finding a 22 collision using random
2-block messages. Then we have a choice to choose either H0

1 ⊕ H2 or H1
1 ⊕ H2

from the first 2-block collision and either H0
3 ⊕ H4 or H1

3 ⊕ H4 from the second
2-block collision of the CCS to control 2 bits of the checksum without changing
the hash value after the CCS.

Checksum

Message blocks where generic attack happens:
controls 2 bits of xor−linear checksum

Checksum control sequence
second preimage, herding

(M1, N1) (M2, N2) (M3, N3) (M4, N4) M5 M6 M7

(H0
1 , H1

1) H2 (H0
3 , H1

3) H4 H5

f fffffff

H6 H7
H0

0

Fig. 5. Using CCS to control 2 bits of the checksum

42 P. Gauravaram and J. Kelsey

3.3 Defeating Linear-XOR Checksum in Hash Functions

ALGORITHM: Defeat linear-XOR checksum on 3C
Variables:

1. (e0
i ,e

1
i) : a pair of independent choices of random values after every 2-block

collision in the 2t 2-block collision on 3C for i = 1, 2, . . . , t.
2. a = a[1], a[2], . . . , a[t] : any t-bit string.
3. D = D[1], D[2], . . . , D[t] : the desired t-bit checksum to be imposed.
4. i, j : temporary variables.

Steps

1. Build a CCS for 3C by constructing a 2t 2-block collision on its underlying
DM using a brute force C(s, 2).

2. Each of the parts of the CCS gives one choice e0
i or e1

i for i = 1, 2, . . . , t to
determine some random t-bit value that either is or is not XORed into the
final checksum value at the end of the CCS. Now e0

i = H0
2i−1 ⊕ H0

2i and
e1

i = H1
2i−1 ⊕ H1

2i for i = 1, 2, . . . , t.
3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = e

a[1]
1 , . . . , e

a[t]
t .

4. Find a such that e
a[1]
1 ⊕ e

a[2]
2 ⊕ . . . ⊕ . . . e

a[t]
t = D. We solve the equation:⊕t

i=1 e1
i × a[i] ⊕ e0

i × (1 − a[i]) = D.
5. Each bit position of e

a[i]
i gives one equation and turn the above into t equa-

tions, one for each bit. Let a[i] = 1 − a[i].
6. The resulting system is:

⊕t
i=1 e1

i [j] × a[i] ⊕ e0
i [j] × a[i] = D[j] (j = 1, . . . , t).

Here, there are t linear equations in t unknowns that need to be solved for
the solution a[1], a[2], . . . , a[t] which lets us determine the blocks in the CCS
that form the prefix giving the checksum D.

Work: It requires t(2t/2+1) evaluations of the compression function to construct
the CCS and at most t3 + t2 bit-XOR operations to solve a system of t × t
equations using Gaussian elimination [1, Appendix A], [23].

Remark 1. Similarly, linear-XOR checksums can be defeated in F-Hash and
3CM. If a linear-XOR checksum is computed using both the message blocks
and intermediate states, linear equations due to XOR of the intermediate states
and that of message blocks need to be solved.

4 New Techniques to Defeat Additive Checksums

Consider an additive checksum mod 2k computed using messages for a DM hash
function. It is possible to build a checksum control sequence as above, but both
its construction and its use require some different techniques.

Linear-XOR and Additive Checksums 43

4.1 Building a CCS with Control of Message Blocks

When the collision finding algorithm is simply brute-force collision search, we
can build a CCS for the work required to construct a 2k Joux multicollision.
Using the CCS to control the checksum then requires negligible work.

In this algorithm, we construct a 2k Joux multicollision, in which each succes-
sive collision is two message blocks long. We choose the two-block messages in the
collisions in such a way that the additive difference between the pair of two-block
messages in each collision is a different power of two. The result is a CCS in which
the first collision allows us the power to add 1 to the checksum, the next allows us
to add 2, the next 4, and so on until the checksum is entirely controlled1.

ALGORITHM: Defeat additive checksum on GOST
Steps for Constructing the CCS:

1. Let h = the initial value of the hash function
2. For i = 0 to k − 1:

(a) Let A, B be random blocks.
(b) For j = 0 to 2t/2 − 1:

i. X [j] = A + j, B − j
ii. X∗[j] = A + j + 2i, B − j
iii. Y [j] = hash of X [j] starting from h
iv. Y ∗[j] = hash of X∗[j] starting from h

3. Search for a collision between list Y and Y ∗. Let u, v = values satisfying
Y [u] = Y ∗[v].

4. CCS[i] = X [u], X∗[u]
5. h = Y [u]

Steps for Using the CCS:
Using the CCS is very simple; we determine the checksum we would get by
choosing X [0], X [1], X [2], ..., and then determine what we would need to add to
that value to get the desired checksum value. We then use our control over the
CCS to add the desired value.

1. Let T = the checksum that is desired.
2. Let Q = the checksum obtained by choosing X [0], X [1], X [2], ..., X [k− 1] as

the message blocks of the CCS.
3. Let D = T − Q.
4. M = an empty message (which will end up with the message blocks chosen

from the CCS for this desired checksum).
5. For i = k − 1 down to 0:

(a) If D > 2i Then:
i. M = M ||X∗[i]
ii. D = D − 2i

1 A variant of this algorithm could be applied to many other checksums based on group
operations.

44 P. Gauravaram and J. Kelsey

(b) Else:
i. M = M ||X [i]

At the end of this process, M contains a sequence of k message blocks which,
when put in the place of the CCS, will force the checksum to the desired value.

Work: Constructing the CCS requires k successive brute-force collision searches,
each requiring 2t/2 work. For the specific parameters of the GOST hash, this is
256 successive 2129 collision searches, and so requires about 2137 work total. (The
same CCS could be used for many different messages.) Controlling the checksum
with the CCS requires negligible work.

4.2 Building a CCS with Random Message Blocks

If the message blocks are not under our control, or if hash chaining values or
other values not under our direct control are used as inputs for the additive
checksum, then our attack becomes much less efficient. However, we can still
construct a CCS which will be efficient to use, by carrying out an algorithm
which is based loosely on Joux’s collision attack on cascade hashes.

The idea behind this algorithm is to construct k successive Joux multicolli-
sions, each of 2k/2 possible message strings. Then, we carry out a collision search
on the first 2k/2-multicollision for a pair of strings that will cause a difference of
1 in the additive checksum, a search on the second 2k/2-multicollision for a pair
that will cause a difference of 2, and so on, until we have the ability to completely
control the checksum without affecting the rest of the hash computation.

An algorithm to defeat additive checksum on a t-bit GOST hash function
structure H shown in Figure 4 is given below:

ALGORITHM: Defeating checksum in GOST
Variables:

1. i, j, k : integers.
2. chunk[i] : a pair of (b/2) + 1-block sequences denoted by (e0

i , e1
i).

3. H0 : initial state.
4. Hi

j : the intermediate state on the iterative chain.
5. (M i

j , N
i
j) : a pair of message blocks each of b bits.

6. T : Table with three columns: a (b/2)+ 1-collision path, addition modulo 2b

of message blocks in that path and a value of 0 or 1.

Steps:

1. For i = 1 to b:
– For j = 1 to (b/2) + 1:

• Find M i
j and N i

j such that f(Hi
j−1, M

i
j) = f(Hi

j−1, N
i
j) = Hi

j where
H1

0 = H0. That is, build a (b/2) + 1-block multicollision where each
block yields a collision on the iterative chain and there are 2(b/2)+1

different (b/2) + 1-block sequences of blocks all hashing to the same
intermediate state Hi

(b/2)+1 on the iterative chain.

Linear-XOR and Additive Checksums 45

– Find a pair of paths from the different (b/2) + 1-block sequences whose
additive checksum differs by 2i−1 as follows:

• T = empty table.
• for j = 1 to 2(b/2)+1

∗ Ci
j ≡

∑(b/2)+1
k=1 X i

k mod 2b where X i
k can be M i

k or N i
k.

∗ Add to T : (Ci
j , 0, X i

1||X i
2|| . . .X i

(b/2)+1)
∗ Add to T : (Ci

j + 2i−1, 1, X i
1||X i

2|| . . . X i
(b/2)+1).

• Search T to find colliding paths between the entries with 0 and 1
in the second column of T . Let these paths of (b/2) + 1 sequence of
blocks be e1

i and e0
i where e1

i ≡ e0
i + 2i−1 mod 2b.

– chunk[i] = (e0
i , e

1
i).

2. Construct CCS by concatenating individual chunks each containing a pair
of (b/2)+ 1 blocks that hash to the same intermediate state on the iterative
chain. The CCS is chunk[1] || chunk[2] . . . || chunk[b].

3. The checksum at the end of the 2b (b/2) + 1-block collision can be forced to
the desired checksum by choosing either of the sequences e0

i or e1
i from the

CCS which is practically free to use and adding blocks in each sequence over
modulo 2b.

Work: Defeating additive checksum in GOST equals the work to construct b
2(b/2)+1 1-block collisions plus the work to find a chunk in each 2(b/2)+1 1-block
collision. It is b × ((b/2) + 1) × 2t/2 evaluations of f and a time and space of
b×2b/2+1 for a collision search to find b chunks. For GOST, it is 2143 evaluations
of f and a time and space of about 2137.

Similarly, additive checksum mod 2k for a DM hash using intermediate states
can be defeated by constructing a CCS with a 2k Joux multicollision over 2-block
messages. For a DM hash with additive checksum mod 2k computed using both
the message blocks and intermediate states, a 2(k/2)+1 Joux multicollision using
2-block messages is performed to find a pair of messages (resp. intermediate
states) within the multicollision whose additive checksum differs by any desired
value. This can be done by generating all possible 2(k/2)+1 checksum values
due to messages (resp. intermediate states) from the multicollision, and doing a
modified collision search for a pair of messages (resp. intermediate states) whose
additive difference is the desired value.

5 Generic Attacks

The fundamental approach used to perform the generic attacks on all the hash
functions with linear checksums is similar. Hence, we discuss it here only for 3C.
Broadly, it consists of the following steps:

1. Construct a CCS and combine it with whatever other structures such as
expandable message, diamond structure (or vice versa for some attacks) for
the generic attack to work.

2. Perform the generic attack, ignoring its impact on the linear checksum.

46 P. Gauravaram and J. Kelsey

3. Use the CCS to control the linear checksum, forcing it to a value that permits
the generic attack to work on the full hash function.

To find a 2k-2-block collision on 3C, first find a 2k-2-block collision on the it-
erative chain of 3C and construct CCS from this end. By defeating each possible
2k checksum value to a fixed checksum, we can get a 2k-collision for 3C. Con-
structing and using the CCS does not imply random gibberish in the messages
produced; using Yuval’s trick [27], a brute-force search for the multicollision
used in the CCS can produce collision pairs in which each possible message is a
plausible-looking one. This is possible when the CCSs to defeat the checksums
are constructed from individual collisions as in (Dear Fred/Freddie,)(Enclosed
please find/I have sent you) (a check for $100.00/a little something) and so on,
where we can choose either side of the slash for the next part of the sentence.
In that case, any choice for the CCS used to defeat the checksum will be a
meaningful message.

5.1 Long-Message Second Preimage Attack on 3C

Long message second preimage attack on a t-bit 3C hash function H :

ALGORITHM: LongMessageAttack(Mtarget) on H
Find the second preimage for a message of 2d + d + 2t + 1 blocks.
Variables:

1. Mtarget : the target long message.
2. Mlink : linking block connecting the intermediate state at the end of the

expandable message to an intermediate state of the target message.
3. Hexp : the intermediate state at the end of the expandable message.
4. Ht : the intermediate hash value at the end of the CCS.
5. Msec : the second preimage for H of the same length as Mtarget.
6. Mpref : the checksum control prefix obtained from the CCS.

Steps:

1. Compute the intermediate hash values for Mtarget using H :
– H0 and h0 are the initial states of the iterative and accumulation chains

respectively.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1, Mi) and hi = Hi ⊕ hi−1 are the ith intermediate states on

the iterative and accumulation chains respectively.
– The intermediate states on the iterative and accumulation chains are

organised in some searchable structure for the attack, such as hash table.
The hash values H1, . . . , Hd and those obtained in the processing of t 2-
block messages are excluded from the hash table.

2. Build a CCS for H by constructing a 2t 2-block collision starting from H0.
Let Ht be the multicollision value and ht be the corresponding checksum
value which is random.

Linear-XOR and Additive Checksums 47

3. Construct a (d, d + 2d − 1)-expandable message Mexp with Ht as the start-
ing state using either of the expandable message construction methods [10].
Append Mexp to the CCS and process it to obtain Hexp.

4. Find Mlink such that f(Hexp, Mlink) collides with one of the intermediate
states on the iterative chain stored in the hash table while processing Mtarget.
Let this matching value of the target message be Hu and the corresponding
state in the accumulation chain be hu where d+2t+1 ≤ u ≤ 2d +d+2t+1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref which
adjusts the state in the accumulation chain at that point to the desired value
hu of Mtarget. This is equivalent to adjusting the checksum value at the end
of the CCS.

6. Expand the expandable message to a message M∗ of u − 1 blocks long.
7. Return the second preimage Msec = Mpref ||M∗||Mlink||Mu+1 . . .

M2d+d+1+2t of the same length as Mtarget such that H(Msec) = H(Mtarget).

Work: The work to find a second preimage on 3C equals the work to construct
the CCS plus the work to solve a system of t × t linear equations plus the work
to do the second preimage attack on DM. Note that constructing and using the
CCS is very fast compared to the rest of the attack.

Illustration: Using generic-expandable message algorithm [10], the work to find
a second preimage for 3C-SHA-256 for a target message of 254 + 54 + 512 + 1
blocks is 2136 + 54 × 2129 + 2203 SHA-256 compression function evaluations and
224 + 216 bit-XOR operations assuming abundant memory.

5.2 Herding Attack on 3C

The herding attack on a t-bit 3C hash function H is outlined below:

1. Construct a 2d hash value wide diamond structure for H and output the
hash value Hv as the chosen target which is computed using any of the
possible 2d−1 checksum values or some value chosen arbitrarily. Let hc be
that checksum value.

2. Build a CCS for H using a 2t collision over 2-block messages. Let Ht be the
intermediate state due to this multicollision on H .

3. When challenged with the prefix message P , process P using Ht. Let
H(Ht, P) = Hp.

4. Find a linking message block Mlink such that H(Hp, Mlink) collides with
one of the 2d outermost intermediate states on the iterative chain in the
diamond structure. If it is matched against all of the 2d+1 − 2 intermediate
states in the diamond structure then a (1, d + 1)-expandable message must
be produced at the end of the diamond structure to ensure that the final
herded message is always a fixed length.

5. Use the CCS computed in step 2 to force the checksum of the herded message
P to hc. Let Mpref be the checksum control prefix.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the
message blocks in the diamond structure that connect H(Hp, Mlink) to the
chosen target Hv. Now Hv = H(M).

48 P. Gauravaram and J. Kelsey

Work: The work to herd 3C equals the work to build the CCS plus the work to
solve the system of equations plus the work to herd DM [9]. This equals about
t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 evaluations of f and t3 + t2 bit-XOR
operations assuming that all of the 2d+1 − 2 intermediate states are used for
searching in the diamond structure. Note that the work to build and use the
CCS is negligible compared to the rest of the attack.

Illustration: Herding 3C-SHA-256 with d = 84 requires 2136 + 2172 + 84 ×
2129 +2171 evaluations of SHA-256 compression function and 224 + 216 bit-XOR
operations.

6 On Carrying Out Generic Attacks Using Collision
Attacks

We note that it is difficult to construct the CCSs using cryptanalytic C(s, n) such
as the ones built on MD5 and SHA-1 [25,26] in order to defeat linear checksums
to carry out generic attacks. For example, consider two 2-block colliding mes-
sages of format (M2.i−1, M2.i),(N2.i−1, N2.i) for i = 1, . . . , t on the underlying
MD of 3C based on near collisions due to the first blocks in each pair of the
messages. Usually, the XOR differences of the nearly collided intermediate states
are either fixed or very tightly constrained as in the collision attacks on MD5 and
SHA-1 [25, 26]. It is difficult to construct a CCS due to the inability to control
these fixed or constrained bits. Similarly, it is also difficult to build the CCSs
using colliding blocks of format (M2.i−1, M2.i),(N2.i−1, M2.i). It is not possible
to control the checksum due to 2-block collisions of the format (M2.i−1, M2.i),
(M2.i−1, N2.i) [24] as this format produces a zero XOR difference in the checksum
after every 2-block collision.

Though we cannot perform generic attacks on this class of hash functions
using structured collisions, we can find multi-block collisions by concatenating
two structured collisions. Consider a collision finding algorithm C(s, 1) with
s = H0 for the GOST hash function H . A call to C(s, 1) results in a pair of
b-bit message blocks (M1, N1) such that M1 ≡ N1 +Δ mod 2b and f(H0, M1) =
f(H0, N1) = H1. Now call C(s, 1) with s = H1 which results in a pair of blocks
(M2, N2) such that N2 ≡ M2 + Δ mod 2b and f(H1, M2) = f(H1, N2) = H2.
That is, H(H0, M1||M2) = H(H0, N1||N2). Consider M1 + M2 mod 2b = Δ +
N1 +N2 −Δ mod 2b = N1 +N2 mod 2b, a collision in the chain which computes
additive checksum.

7 Comparison of Our Techniques with That of [15]

Independent to our work, Mironov and Narayanan [15] have found an alternative
technique to defeat linear-XOR checksum computed using message blocks. We
call this design GOST-x. While our approach to defeat the XOR checksum in
GOST-x requires finding a 2b collision using b random 1-block messages (Mi, Ni)
for i = 1 to b, their technique considers repetition of the same message block

Linear-XOR and Additive Checksums 49

twice for a collision. In contrast to the methods presented in this paper for
solving system of linear equations for the whole message, their approach solves
the system of linear equations once after processing every few message blocks.
We note that this constrained choice of messages would result in a zero checksum
at the end of the 2b multicollision on this structure and thwarts the attempts to
perform the second preimage attack on GOST-x. The reason is that the attacker
loses the ability to control the checksum after finding the linking message block
from the end of the expandable message which matches some intermediate state
obtained in the long target message.

However, we note that their technique with a twist can be used to perform the
herding attack on GOST-x. In this variant, the attacker chooses the messages for
the diamond structure that all have the same effect on the linear-XOR checksum.
These messages would result in a zero checksum at every level in the diamond
structure. Once the attacker is forced with a prefix, processing the prefix gives a
zero checksum to start with and then solving a system of equations will find a set
of possible linking messages that will all combine with the prefix to give a zero
checksum value. When the approach of [15] is applied to defeat checksums in 3C,
3CM and F-Hash, the 2t 2-block collision finding algorithm used to construct
the CCS must output the same pair of message blocks on the either side of the
collision whenever it is called. This constraint is not there in our technique, and
the approach of [15] is not quite as powerful. However, it could be quite capable
of defeating linear-XOR checksums in many generic attacks. Because it is so
different from our technique, some variant of this technique might be useful in
cryptanalytic attacks for which our techniques do not work.

8 Concluding Remarks

Our research leaves a number of questions open. Among these, the most inter-
esting is, how much security can be added by adding a checksum to DM hashes?
Our work provides a lower bound; for linear-XOR and additive checksums, very
little security is added. Joux’s results on cascade hashes [8] and more recent
results of [4] provide an upper bound, since a checksum of this kind can be seen
as a kind of cascade hash.

The other open question is on the properties that would ensure that a check-
sum would thwart generic attacks, and thus be no weaker than a cascade hash
with a strong second hash function. The inability to construct a CCS for the
checksum with less work than the generic attack is necessary but apparently not
sufficient to achieve this goal, since we cannot rule out the possibility of other
attacks on checksums of this kind, even without a CCS. The final open question
is on how our techniques might be combined with cryptanalytic attacks on com-
pression functions. It appears to be possible to combine the construction and
use of a CCS with some kinds of cryptanalytic attacks, but this depends on fine
details of the cryptanalysis and the checksum used.

50 P. Gauravaram and J. Kelsey

Acknowledgments. We thank Gary Carter, Ed Dawson, Morris Dworkin,
Jonathan Hoch, Barbara Guttman, Lars Knudsen, William Millan, Ilya Mironov,
Heather Pearce, Adi Shamir, Tom Shrimpton, Martijn Stam, Jiri Tuma and
David Wagner for comments on our work.

References

1. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

2. Coppersmith, D.: Two Broken Hash Functions. Technical Report IBM Research
Report RC-18397, IBM Research Center (October 1992)

3. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Dunkelman, O., Preneel, B.: Generalizing the herding attack to concatenated hash-
ing schemes. In: ECRYPT hash function workshop (2007)

5. Filho, D.G., Barreto, P., Rijmen, V.: The MAELSTROM-0 Hash Function. In: 6th

Brazilian Symposium on Information and Computer System Security (2006)
6. Gauravaram, P.: Cryptographic Hash Functions: Cryptanalysis, Design and Appli-

cations. PhD thesis, Information Security Institute, QUT (June 2007)
7. Hoch, J., Shamir, A.: Breaking the ICE: Finding Multicollisions in Iterated Con-

catenated and Expanded (ICE) Hash Functions. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

8. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

9. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

10. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n̂ Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

11. Knudsen, L., Mathiassen, J.: Preimage and Collision attacks on MD2. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255–267. Springer, Hei-
delberg (2005)

12. Lei, D.: F-HASH: Securing Hash Functions Using Feistel Chaining. Cryptology
ePrint Archive, Report 2005/430 (2005)

13. Lucks, S.: Hash Function Modes of Operation. In: ICE-EM RNSA 2006 Workshop
at QUT, Australia (June, 2006)

14. Merkle, R.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

15. Mironov, I., Narayanan, A.: Personal communication (August 2006)
16. Muller, M.: The MD2 Hash Function Is Not One-Way. In: Lee, P.J. (ed.) ASI-

ACRYPT 2004. LNCS, vol. 3329, pp. 214–229. Springer, Heidelberg (2004)
17. Nandi, M., Stinson, D.: Multicollision attacks on some generalized sequential hash

functions. Cryptology ePrint Archive, Report 2006/055 (2006)
18. NIST. Cryptographic Hash Algorithm Competition (November, 2007),

http://www.csrc.nist.gov/groups/ST/hash/sha-3/index.html
19. Government Committee of the Russia for Standards. GOST R 34.11-94 (1994)

http://www.csrc.nist.gov/groups/ST/hash/sha-3/index.html

Linear-XOR and Additive Checksums 51

20. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing Secure
Hash Functions by Enhancing Merkle-Damg̊ard Construction. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Hei-
delberg (2006)

21. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (1999)

22. Tuma, J., Joscak, D.: Multi-block Collisions in Hash Functions based on 3C and
3C+ Enhancements of the Merkle-Damg̊ard Construction. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 257–266. Springer, Heidelberg (2006)

23. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

24. Wang, X., Yin, Y.L., Yu, H.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

25. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

26. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

27. Yuval, G.: How to swindle Rabin. Cryptologia 3(3), 187–189 (1979)

Efficient Fully-Simulatable Oblivious Transfer

Andrew Y. Lindell

Aladdin Knowledge Systems and Bar-Ilan University, Israel

andrew.lindell@aladdin.com, lindell@cs.biu.ac.il

Abstract. Oblivious transfer, first introduced by Rabin, is one of the
basic building blocks of cryptographic protocols. In an oblivious transfer
(or more exactly, in its 1-out-of-2 variant), one party known as the sender
has a pair of messages and the other party known as the receiver obtains
one of them. Somewhat paradoxically, the receiver obtains exactly one
of the messages (and learns nothing of the other), and the sender does
not know which of the messages the receiver obtained. Due to its impor-
tance as a building block for secure protocols, the efficiency of oblivious
transfer protocols has been extensively studied. However, to date, there
are almost no known oblivious transfer protocols that are secure in the
presence of malicious adversaries under the real/ideal model simulation
paradigm (without using general zero-knowledge proofs). Thus, efficient
protocols that reach this level of security are of great interest. In this
paper we present efficient oblivious transfer protocols that are secure
according to the ideal/real model simulation paradigm. We achieve con-
structions under the DDH, Nth residuosity and quadratic residuosity
assumptions, as well as under the assumption that homomorphic en-
cryption exists.

1 Introduction

In an oblivious transfer, a sender with a pair of strings m0, m1 interacts with
a receiver so that at the end the receiver learns exactly one of the strings, and
the sender learns nothing [24,11]. This is a somewhat paradoxical situation be-
cause the receiver can only learn one string (thus the sender cannot send both)
whereas the sender cannot know which string the receiver learned (and so the
receiver cannot tell the sender which string to send). Surprisingly, it is possible
to achieve oblivious transfer under a wide variety of assumptions and adversary
models [11,15,19,23,1,17].

Oblivious transfer is one of the most basic and widely used protocol primitives
in cryptography. It stands at the center of the fundamental results on secure two-
party and multiparty computation showing that any efficient functionality can be
securely computed [25,15]. In fact, it has even been shown that oblivious transfer
is complete, meaning that it is possible to securely compute any efficient function
once given a box that computes oblivious transfer [18]. Thus, oblivious transfer
has great importance to the theory of cryptography. In addition to this, oblivious
transfer has been widely used to construct efficient protocols for problems of
interest (e.g., it is central to almost all of the work on privacy-preserving data
mining).

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 52–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Fully-Simulatable Oblivious Transfer 53

Due to its general importance, the task of constructing efficient oblivious
transfer protocols has attracted much interest. In the semi-honest model (where
adversaries follow the protocol specification but try to learn more than allowed
by examining the protocol transcript), it is possible to construct efficient oblivi-
ous transfer from (enhanced) trapdoor permutations [11] and homomorphic en-
cryption [19,1]. However, the situation is significantly more problematic in the
malicious model where adversaries may arbitrarily deviate from the protocol
specification. One possibility is to use the protocol compiler of Goldreich, Mi-
cali and Wigderson [15] to transform oblivious transfer protocols for semi-honest
adversaries into protocols that are also secure in the presence of malicious adver-
saries. However, the result would be a highly inefficient protocol. The difficulties
in obtaining secure oblivious transfer in this model seem to be due to the strict
security requirements of simulation-based definitions that follow the ideal/real
model paradigm.1 Thus, until recently, the only known oblivious transfer pro-
tocols that were secure under this definition, and thus were fully simulatable,
were protocols that were obtained by applying the compiler of [15]. In contrast,
highly-efficient oblivious transfer protocols that guarantee privacy (but not sim-
ulatability) in the presence of malicious adversaries have been constructed. These
protocols guarantee that even a malicious sender cannot learn which string the
receiver learned, and that a malicious receiver can learn only one of the sender’s
input strings. Highly efficient protocols have been constructed for this setting
under the DDH and N-residuosity assumptions and using homomorphic encryp-
tion [19,23,1,17].

This current state of affairs is highly unsatisfactory. The reason for this is
that oblivious transfer is often used as a building block in other protocols. How-
ever, oblivious transfer protocols that only provide privacy are difficult – if not
impossible – to use as building blocks. Thus, the vast number of protocols that
assume (fully simulatable) oblivious transfer do not have truly efficient instan-
tiations today. For just one example, this is true of the protocol of [20] that
in turn is used in the protocol of [2] for securely computing the median. The
result is that [2] has no efficient instantiation, even though it is efficient when
ignoring the cost of the oblivious transfers. We conclude that the absence of effi-
cient fully-simulatable oblivious transfer acts as a bottleneck in numerous other
protocols.

Our results. In this paper, we construct oblivious transfer protocols that are
secure (i.e., fully-simulatable) in the presence of malicious adversaries. Our con-
structions build on those of [23,1,17] and use cut-and-choose techniques. It is
folklore that the protocols of [23,1,17] can be modified to yield full simulatabil-
ity by adding proofs of knowledge. To some extent, this is what we do. However,
a direct application of proofs of knowledge does not work. This is because the
known efficient protocols are all information-theoretically secure in the presence
of a malicious receiver. This means that only one of the sender’s inputs is defined
1 According to this paradigm, a real execution of a protocol is compared to an ideal

execution in which a trusted third party receives the parties’ inputs and sends them
their outputs.

54 A.Y. Lindell

by the protocol transcript and thus a standard proof of knowledge cannot be ap-
plied. (Of course, it is possible to have the sender prove that it behaved honestly
according to some committed input but this will already not be efficient.) Our
protocols yield full simulatability and we provide a full proof of security.

As we show, our protocols are in the order of � times the complexity of the
protocols of [23,1,17], where � is such the simulation fails with probability 2−�+2.
Thus, � can be taken to be relatively small (say, in the order of 30 or 40). This is
a considerable overhead. However, our protocols are still by far the most efficient
known without resorting to a random oracle.

Related work. There has been much work on efficient oblivious transfer in
a wide range of settings. However, very little has been done regarding fully-
simulatable oblivious transfer that is also efficient (without using random ora-
cles). Despite this, recently there has been some progress in this area. In [6], fully
simulatable constructions are presented. However, these rely on strong and rel-
atively non-standard assumptions (q-power DDH and q-strong Diffie-Hellman).
Following this, protocols were presented that rely on the Decisional Bilinear
Diffie-Hellman assumption [16]. Our protocols differ from those of [6] and [16] in
the following ways:

1. Assumptions: We present protocols that can be constructed assuming that
DDH is hard, that there exist homomorphic encryption schemes, and more.
Thus, we rely on far more standard and long-standing hardness assumptions.

2. Complexity: Regarding the number of exponentiations, it appears that our
protocols are of a similar complexity to [6,16]. However, as pointed out in [10],
bilinear curves are considerably more expensive than regular Elliptic curves.
Thus, the standard decisional Diffie-Hellman assumption is much more effi-
cient to use (curves that provide pairing need keys that are similar in size
to RSA, in contrast to regular curves that can be much smaller).

3. The problem solved: We solve the basic 1-out-of-2 oblivious transfer problem,
although our protocols can easily be extended to solve the static k-out-of-n
oblivious transfer problem (where static means that the receiver must choose
which k elements it wishes to receive at the onset). In contrast, [6] and [16]
both solve the considerably harder problem of adaptive k-out-of-n oblivious
transfer where the receiver chooses the elements to receive one and a time,
and can base its choice on the elements it has already received.

In conclusion, if adaptive k-out-of-n oblivious transfer is needed, then [6,16] are
the best solutions available. However, if (static) oblivious transfer suffices, then
our protocols are considerably more efficient and are based on far more standard
assumptions.

2 Definitions

In this section we present the definition of security for oblivious transfer, that
is based on the general simulation-based definitions for secure computation;
see [14,21,5,7]. We refer the reader to [12, Chapter 7] for full definitions, and

Efficient Fully-Simulatable Oblivious Transfer 55

provide only a brief overview here. Since we only consider oblivious transfer in
this paper, our definitions are tailored to the secure computation of this specific
function only.

Preliminaries. We denote by s ∈R S the process of randomly choosing an
element s from a set S. A function μ(·) is negligible in n, or just negligible,
if for every positive polynomial p(·) and all sufficiently large n’s it holds that
μ(n) < 1/p(n). A probability ensemble X = {X(n, a)}a∈{0,1}∗;n∈N is an infinite
sequence of random variables indexed by a and n ∈ N. (The value a will represent
the parties’ inputs and n the security parameter.) Two distribution ensembles
X = {X(n, a)}n∈N and Y = {Y (n, a)}n∈N are said to be computationally indistin-

guishable, denoted X
c≡ Y , if for every non-uniform polynomial-time algorithm

D there exists a negligible function μ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(n, a), a) = 1] − Pr[D(Y (n, a), a) = 1]| ≤ μ(n)

All parties are assumed to run in time that is polynomial in the security param-
eter. (Formally, each party has a security parameter tape upon which that value
1n is written. Then the party is polynomial in the input on this tape.)

Oblivious transfer. The oblivious transfer functionality is formally defined as a
function f with two inputs and one output. The first input is a pair (m0, m1) and
the second input is a bit σ. The output is the string mσ. Party P1, also known as
the sender, inputs (m0, m1) and receives no output. In contrast, party P2, also
known as the receiver, inputs the bit σ and receives mσ for output. Formally,
we write f((m0, m1), σ) = (λ, mσ) where λ denotes the empty string. Stated
in words, in the oblivious transfer functionality party P1 receives no output,
whereas party P2 receives mσ (and learns nothing about m1−σ).

Adversarial behavior. Loosely speaking, the aim of a secure two-party proto-
col is to protect an honest party against dishonest behavior by the other party. In
this paper, we consider malicious adversaries who may arbitrarily deviate from
the specified protocol. Furthermore, we consider the static corruption model,
where one of the parties is adversarial and the other is honest, and this is fixed
before the execution begins.

Security of protocols. The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario
that is secure by definition. This is formalized by considering an ideal computa-
tion involving an incorruptible trusted third party to whom the parties send their
inputs. The trusted party computes the functionality on the inputs and returns
to each party its respective output. Denote by f the oblivious transfer func-
tionality and let M = (M1, M2) be a pair of non-uniform probabilistic expected
polynomial-time machines (representing parties in the ideal model). Such a pair
is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows
the honest party instructions in the above-described ideal execution). Then, the
joint execution of f under M in the ideal model (on input ((m0, m1), σ)), denoted
idealf,M ((m0, m1), σ), is defined as the output pair of M1 and M2 from the
above ideal execution.

56 A.Y. Lindell

We next consider the real model in which a real two-party protocol is exe-
cuted and there exists no trusted third party. In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable
by non-uniform probabilistic polynomial-time machines. Let π be a two-party
protocol. Furthermore, let M = (M1, M2) be a pair of non-uniform probabilistic
polynomial-time machines (representing parties in the real model). Such a pair
is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows
the strategy specified by π). Then, the joint execution of π under M in the real
model (on input ((m0, m1), σ)), denoted realπ,M ((m0, m1), σ), is defined as the
output pair of M1 and M2 resulting from the protocol interaction.

Having defined the ideal and real models, we can now define security of pro-
tocols. Loosely speaking, the definition asserts that a secure two-party protocol
(in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that admissible pairs in the ideal model are able to
simulate admissible pairs in an execution of a secure real-model protocol.

Definition 1. Let f denote the oblivious transfer protocol and let π be a two-
party protocol. Protocol π is said to be a secure oblivious transfer protocol if for
every pair of admissible non-uniform probabilistic polynomial-time machines A =
(A1, A2) for the real model, there exists a pair of admissible non-uniform prob-
abilistic expected polynomial-time machines B = (B1, B2) for the ideal model,
such that for every m0, m1 ∈ {0, 1}∗ of the same length and every σ ∈ {0, 1},

{
idealf,B(n, (m0, m1), σ)

}
c≡

{
realπ,A(n, (m0, m1), σ)

}

Note that we allow the ideal adversary/simulator to run in expected (rather than
strict) polynomial-time. This is essential for achieving constant-round protocols;
see [4].

3 Oblivious Transfer under the DDH Assumption

In this section we present an oblivious transfer protocol that is secure in the
presence of malicious adversaries, under the DDH assumption. The protocol is
a variant of the two-round protocol of [23] with some important changes. Before
proceeding, we recall the protocol of [23]. Basically, this protocol works by the
receiver generating a tuple (ga, gb, gc, gd) with the following property: if the
receiver’s input equals 0 then c = ab and d is random, and if the receiver’s
input equals 1 then d = ab and c is random. The sender receives this tuple and
carries out a manipulation that randomizes the tuple so that if c = ab then
the result of the manipulation on (ga, gb, gc) is still a DDH tuple and the result
of the manipulation on (ga, gb, gd) yields a completely random tuple (if d = ab
then the same holds in reverse). The sender then derives a secret key from the
manipulation of each of (ga, gb, gc) and (ga, gb, gd), and sends information that
enables the receiver to derive the same secret key from the DDH tuple, whereas
the key from the non-DDH tuple remains completely random. In addition, the

Efficient Fully-Simulatable Oblivious Transfer 57

sender encrypts its first message under the key derived from (ga, gb, gc) and its
second message under the key derived from (ga, gb, gd). The receiver is able to
decrypt the message derived from the DDH tuple but has no information about
the other key and so cannot learn anything about the other message. We remark
that the sender checks that gc �= gd. This ensures that only one of (ga, gb, gc)
and (ga, gb, gd) is a DDH tuple.

The secret key that is derived from the non-DDH tuple above is information-
theoretically hidden from the receiver. This causes a problem when attempting
to construct a simulator for the protocol because the simulator must learn both of
the sender’s inputs in order to send them to the trusted party (and for whatever
first message the simulator sends, it can only learn one of the sender’s inputs).
We remark that if rewinding is used to obtain both messages then this causes
a problem because the sender can make its input depend on the first message
from the receiver. We therefore change the protocol of [23] so that instead of
sending (ga, gb, gc, gd) where at most one of c or d equals a · b, the receiver sends
two tuples: one of the tuples is a DDH type and the other is not. The parties
then interact to ensure that indeed only one of the tuples is of the DDH type.
As we will see, this ensures that the receiver obtains only one message. The
“interaction” used to prove this is of the simplest cut-and-choose type.

The protocol below uses two commitment schemes for the purpose of coin
tossing: a perfectly hiding commitment scheme denoted Comh, and a perfectly
binding commitment scheme, denoted Comb. We remark that such commitment
schemes exist under the Discrete Log assumption, and thus also under the DDH
assumption. We assume that the input values m0, m1 of the sender are in the
group G that we are working with for the DDH assumption. If they cannot be
mapped to G (e.g., they are too long), then the oblivious transfer can be used to
exchange secret keys k0 and k1 that are used to encrypt m0 and m1, respectively.

Protocol 1
• Auxiliary input: The parties have the description of a group G of order

q, and a generator g for the group. In addition, they have a statistical error
parameter �.

• Input: The sender has a pair of group elements (m0, m1) and the receiver
has a bit σ.

• The protocol:
1. For i = 1, . . . , �, the receiver P2 chooses a random bit σi ∈R {0, 1} and

random values a0
i , b

0
i , c

0
i , a

1
i , b

1
i , c

1
i ∈R {1, . . . , q} under the constraint that

cσi

i = aσi

i · bσi

i and c1−σi

i �= a1−σi

i · b1−σi

i . Then, P2 computes the tuples
γ0

i = (ga0
i , gb0i , gc0

i) and γ1
i = (ga1

i , gb1i , gc1
i). Note that γσi

i is a DDH tuple
and γ1−σi

i is not.
P2 sends all of the pairs 〈(γ0

1 , γ1
1), . . . , (γ0

� , γ1
�)〉 to the sender P1.

2. Coin tossing:
(a) P1 chooses a random s ∈R {0, 1}� and sends Comh(s) to P2.

(b) P2 chooses a random s′ ∈R {0, 1}� and sends Comb(s′) to P1.

58 A.Y. Lindell

(c) P1 and P2 send decommitments to Comh(s) and Comb(s′), respec-
tively, and set r = s ⊕ s′. Denote r = r1, . . . , r�.

3. For every i for which ri = 1, party P2 sends a0
i , b

0
i , c

0
i , a

1
i , b

1
i , c

1
i to P1.

In addition, for every j for which rj = 0, party P2 sends a “reordering”
of γ0

j and γ1
j so that all of the γσ

j tuples are DDH tuples and all of the
γ1−σ

j tuples are not. This reordering is a bit such that if it equals 0 then
the tuples are left as is, and if it equals 1 then γ0

j and γ1
j are interchanged.

4. P1 checks that for every i for which ri = 1 it received the appropriate
values and that they define γ0

i and γ1
i . Furthermore, it checks that exactly

one of γ0
i and γ1

i is a DDH tuple as defined above and the other is not.
If any of the checks fail, P1 halts and outputs ⊥. Otherwise it continues
as follows:
(a) Denote γ0

j = (x0
j , y

0
j , z

0
j) and γ1

j = (x1
j , y

1
j , z1

j). Then, for every j for
which rj = 0, party P1 chooses random u0

i , u
1
i , v

0
i , v1

i ∈R {1, . . . , q}
and computes the following four values:

w0
j =

(
x0

j

)u0
i · gv0

i k0
j =

(
z0

j

)u0
i ·

(
y0

j

)v0
i

w1
j =

(
x1

j

)u1
i · gv1

i k1
j =

(
z1

j

)u1
i ·

(
y1

j

)v1
i

(b) Let j1, . . . , jt be the indices j for which rj = 0. Then, P1 “encrypts”
m0 under all of the keys k0

j , and m1 under all of the keys k1
j , as

follows:

c0 =

(
t∏

i=1

k0
ji

)
· m0 c1 =

(
t∏

i=1

k1
ji

)
· m1

P1 sends P2 all of the w0
j , w1

j values, as well as the pair (c0, c1).

5. For every j for which rj = 0, party P2 computes kσ
j = (wσ

j)b0j . Then, P2

outputs mσ = cσ ·
(∏t

i=1 kσ
ji

)−1
.

Before proceeding to the proof, we show that the protocol “works”, meaning
that when P1 and P2 are honest, the output is correctly obtained. We present
this to “explain” the computations that take place in the protocol, although
these are exactly as in the protocol of [23]. First, notice that

(
wσ

j

)bσ
j =

(
xσ

j

)uσ
j ·bσ

j ·
(
gvσ

j

)bσ
j

=
(
gaσ

j ·bσ
j

)uσ
j ·

(
gbσ

j

)vσ
j

By the fact that γσ
j is a DDH tuple we have that gaσ

j ·bσ
j = zσ

j and so
(
wσ

j

)bσ
j =

(
zσ

j

)uσ
j ·

(
yσ

j

)vσ
j = kσ

j

Thus P2 correctly computes each key kσ
j for j such that rj = 0. Given all of

these keys, it immediately follows that P2 can decrypt cσ, obtaining mσ. We
now proceed to prove the security of the protocol.

Efficient Fully-Simulatable Oblivious Transfer 59

Theorem 1. Assume that the decisional Diffie-Hellman problem is hard in G
with generator g, that Comh is a perfectly-hiding commitment scheme, and that
Comb is a perfectly-binding commitment scheme. Then, Protocol 1 securely com-
putes the oblivious transfer functionality in the presence of malicious adversaries.

Proof: We separately prove the security of the protocol for the case that no
parties are corrupted, P1 is corrupted, and P2 is corrupted. In the case that both
P1 and P2 are honest, we have already seen that P2 obtains exactly mσ. Thus,
security holds. We now proceed to the other cases.

P1 is corrupted. Let A1 be a non-uniform probabilistic polynomial-time real
adversary that controls P1. We construct a non-uniform probabilistic expected
polynomial-time ideal-model adversary/simulator S1. The basic idea behind how
S1 works is that it uses rewinding in order to ensure that all of the “checked”
tuples are valid (i.e., one is a DDH tuple and the other is not), whereas all of
the “unchecked” tuples have the property that they are both of the DDH type.
Now, since the protocol is such that a receiver can obtain a key kσ

j as long as
γσ

j was a DDH tuple, it follows that S1 can obtain all of the k0
j and k1

j keys.
This enables it to decrypt both c0 and c1 and obtain both messages input by
A1 into the protocol. S1 then sends these inputs to the trusted party, and the
honest party P2 in the ideal model will receive the same message that it would
have received in a real execution with A1 (or more accurately, a message that is
computationally indistinguishable from that message).

We now describe S1 formally. Upon input 1n and (m0, m1), the machine S1
invokes A1 upon the same input and works as follows:

1. S1 chooses a random r ∈R {0, 1}� and generates tuples γ0
1 , γ1

1 , . . . , γ0
� , γ1

� with
the following property:
(a) For every i for which ri = 1, S1 constructs γ0

i and γ1
i like an honest

P2 (i.e., one of them being a DDH tuple and the other not, in random
order).

(b) For every j for which rj = 0, S1 constructs γ0
j and γ1

j to both be DDH
tuples.

S1 hands the tuples to A1.
2. Simulation of the coin tossing: S1 simulates the coin tossing so that the

result is r, as follows:
(a) S1 receives a commitment ch from A1.
(b) S1 chooses a random s′ ∈R {0, 1}� and hands cb = Comb(s′) to A1.
(c) If A1 does not send a valid decommitment to ch, then S1 simulates P2

aborting and sends ⊥ to the trusted party. Then S1 outputs whatever
A1 outputs and halts.
Otherwise, let s be the decommitted value. S1 proceeds as follows:
i. S1 sets s′ = r ⊕ s, rewinds A1, and hands it Comb(s′).
ii. If A1 decommits to s, then S1 proceeds to the next step. If A1

decommits to a value s̃ �= s, then S1 outputs fail. Otherwise, if it
does not decommit to any value, S1 returns to the previous step
and tries again until A1 does decommit to s. (We stress that in

60 A.Y. Lindell

every attempt, S1 hands A1 a commitment to the same value s′.
However, the randomness used to generate the commitment Comb(s′)
is independent each time.)2

3. Upon receiving a valid decommitment to s from A1, simulator S1 decommits
to A1, revealing s′. (Note that r = s ⊕ s′.)

4. For every i for which ri =1, simulator S1 hands A1 the values a0
i , b

0
i , c

0
i , a

1
i , b

1
i ,

c1
i used to generate γ0

i and γ1
i . In addition, S1 hands A1 a random reordering

of the pairs.
5. If A1 does not reply with a valid message, then S1 sends ⊥ to the trusted

party, outputs whatever A1 outputs and halts. Otherwise, it receives a series
of pairs (w0

j , w1
j) for every j for which rj = 0, as well as ciphertexts c0 and

c1. S1 then follows the instructions of P2 for deriving the keys. However,
unlike an honest P2, it computes k0

j = (w0
j)b0j and k1

j = (w1
j)b1j and uses the

keys it obtains to decrypt both c0 and c1. (Note that for each such j, both
γ0

j and γ1
j are DDH tuples; thus this makes sense.)

Let m0 and m1 be the messages obtained by decrypting. S1 sends the pair
to the trusted party as the first party’s input, outputs whatever A1 outputs
and halts.

We now prove that the joint output distribution of S1 and an honest P2 in an
ideal execution is computationally indistinguishable from the output distribution
of A1 and an honest P2 in a real execution. First, note that the view of A1 in
the simulation with S1 is indistinguishable from its view in a real execution.
The only difference in its view is due to the fact that the tuples γ0

j and γ1
j

for which rj = 0 are both of the DDH type. The only other difference is due
to the coin tossing (and the rewinding). However, by the binding property of
the commitment sent by A1 and the fact that P2 generates its commitment
after receiving A1’s, we have that the outcome of the coin tossing in a real
execution is statistically close to uniform (where the only difference is due to the
negligible probability that A1 will break the computational binding property
of the commitment scheme.) In the simulation by S1, the outcome is always
uniformly distributed, assuming that S1 does not output fail. Since S1 outputs
fail when A1 breaks the computational binding of the commitment scheme, this
occurs with at most negligible probability (a rigorous analysis of this is given
in [13]). We therefore have that, apart from the negligible difference due to the
coin tossing, the only difference is due to the generation of the tuples. Intuitively,
indistinguishability therefore follows from the DDH assumption. More formally,
this is proven by constructing a machine D that distinguishes many copies of
DDH tuples from many copies of non-DDH tuples. D receives a series of tuples
and runs in exactly the same way as S1 except that it constructs the γ0

j and
γ1

j tuples (for rj = 0) so that one is a DDH tuple and the other is from its
input, in random order. Furthermore, it provides the reordering so that all of
the DDH tuples it generates are associated with σ and all of the ones it receives
2 This strategy by S1 is actually over-simplified and does not guarantee that it runs

in expected polynomial-time. This technicality will be discussed below, and we will
show how S1 can be “fixed” so that its expected running-time is polynomial.

Efficient Fully-Simulatable Oblivious Transfer 61

externally are associated with 1−σ. (For the sake of this mental experiment, we
assume that D is given the input σ of P2.) It follows that if D receives a series
of DDH tuples, then the view of A1 is exactly the same as in the simulation
with S1 (because all the tuples are of the Diffie-Hellman type). In contrast, if
D receives a series of non-DDH tuples, then the view of A1 is exactly the same
as in a real execution (because only the tuples associated with σ are of the
Diffie-Hellman type). This suffices for showing that the output of A1 in a real
execution is indistinguishable from the output of S1 in an ideal execution (recall
that S1 outputs whatever A1 outputs). However, we have to show this for the
joint distribution of the output of A1 (or S1) and the honest P2. In order to see
this, recall that the output of P2 is mσ where σ is the honest P2’s input. Now,
assume that there exists a polynomial-time distinguisher D′ that distinguishes
between the real and ideal distributions with non-negligible probability. We
construct a distinguisher D as above that distinguishes DDH from non-DDH
tuples. The machine D receives the input σ of P2 and a series of tuples that are
either DDH or non-DDH tuples. D then works exactly as above (i.e., constructing
the γ0

j and γ1
j tuples so that in the reordering step, all the γσ

j tuples are those it
generated itself and all the γ1−σ

j tuples are those it received as input). Since D
generated all of the γσ

j tuples, it is able to “decrypt” cσ and obtain mσ. Machine
D therefore does this, and invokes D′ on the output of A1 and the message
mσ (which is the output that an honest P2 would receive). Finally D outputs
whatever D′ does. It is clear that if D receives non-DDH tuples, then the output
distribution generated is exactly like that of a real execution between A1 and
P2. In contrast, if it receives DDH tuples, then the output distribution is exactly
like of an ideal execution with S1. (A subtle point here is that the distribution
over the γ tuples generated by D who knows σ is identical to the distribution
generated by S1 who does not know σ. The reason for this is that when all the
tuples are of the DDH type, their ordering makes no difference.) We conclude
that D solves the DDH problem with non-negligible probability, in contradiction
to the DDH assumption. Thus, the real and ideal output distributions must
be computationally indistinguishable, as required.

It remains to prove that S1 runs in expected polynomial-time. Unfortunately,
this is not true! In order to see this, denote by p the probability that A1 decom-
mits correctly to s when it receives a commitment to a random s′. Next, denote
by q the probability that A1 decommits correctly when it receives a commitment
to s′ = s⊕ r. (Note that this is not random because r is implicit in the way that
S1 generated the tuples. That is, if ri = 1 then γ0

i and γ1
i are honestly generated,

and otherwise they are both of the DDH type.) Now, by the hiding property of
the commitment scheme Comb, the difference between p and q can be at most
negligible. Furthermore, the expected running-time of S1 in the rewinding stage
equals p/q times some fixed polynomial factor. In order to see this, observe that
S1 enters the rewinding stage with probability p, and concludes after an expected
1/q number of rewindings. It thus remains to bound p/q. (We remark that S1’s
running time in the rest of the simulation is a fixed polynomial and so we ignore
this from now on). Unfortunately, even though p and q are at most negligibly far

62 A.Y. Lindell

from each other, as we have discussed, the value p/q may not necessarily be poly-
nomial. For example, if p = 2−n and q = 2−n +2−n/2 then p/q ≈ 2n/2. Thus, the
expected running-time of S1 is not necessarily polynomial. Fortunately, this can
be solved using the techniques of [13] who solved an identical problem. Loosely
speaking, the technique of [13] works by first estimating p and then ensuring that
the number of rewinding attempts does not exceed a fixed polynomial times the
estimation of p. It is shown that this yields a simulator that is guaranteed to
run in expected polynomial time. Furthermore, the output of the simulator is
only negligibly far from the original (simplified) strategy described above. Thus,
these techniques can be applied here and the simulator appropriately changed,
with the result being that the output is only negligibly different from before, as
required.

P2 is corrupted. As before, we let A2 be any non-uniform probabilistic
polynomial-time adversary controlling P2 and we construct a non-uniform prob-
abilistic expected polynomial-time simulator S2. The simulator S2 extracts the
bit σ used by A2 by rewinding it and obtaining the reordering of tuples that it
had previously opened. Formally, upon input 1n and σ, the simulator S2 invokes
A2 upon the same input and works as follows:

1. S2 receives a series of tuples γ0
1 , γ1

1 , . . . , γ0
� , γ1

� from A2.
2. S2 hands A2 a commitment ch = Comh(s) to a random s ∈R {0, 1}�, receives

back cb, decommits to ch and receives A2’s decommitment to cb. S2 then
receives all of the a0

i , b
0
i , c

0
i , a

1
i , b

1
i , c

1
i values from A2, for i where ri = 1, and

the reorderings for j where rj = 0. If the values sent by A2 are not valid
(as checked by P1 in the protocol) or A2 did not send valid decommitments,
S2 sends ⊥ to the trusted party, outputs whatever A2 outputs, and halts.
Otherwise, it continues to the next step.

3. S2 rewinds A2 back to the beginning of the coin-tossing, hands A2 a com-
mitment c̃h = Comh(s̃) to a fresh random s̃ ∈R {0, 1}�, receives back some
c̃b, decommits to c̃h and receives A2’s decommitment to c̃b. In addition, S2
receives the a0

i , b
0
i , c

0
i , a

1
i , b

1
i , c

1
i values and reorderings.

If any of the values are not valid, S2 repeats this step using fresh random-
ness each time, until all values are valid.

4. Following this, S2 rewinds A2 to the beginning and resends the exact mes-
sages of the first coin tossing (resulting in exactly the same transcript as
before).

5. Denote by r the result of the first coin tossing (Step 2 above), and r̃ the
result of the second coin tossing (Step 3 above). If r = r̃ then S2 outputs fail
and halts. Otherwise, S2 searches for a value t such that rt = 0 and r̃t = 1.
(Note that by the definition of the simulation, exactly one of γ0

t and γ1
t is a

DDH tuple. Otherwise, the values would not be considered valid.) If no such
t exists (i.e., for every t such that rt �= r̃t it holds that rt = 1 and r̃t = 0),
then S2 begins the simulation from scratch with the exception that it must
find r and r̃ for which all values are valid (i.e., if for r the values sent by A2
are not valid it does not terminate the simulation but rather rewinds until
it finds an r for which the responses of A2 are all valid).

Efficient Fully-Simulatable Oblivious Transfer 63

If S2 does not start again, we have that it has a0
t , b

0
t , c

0
t , a

1
t , b

1
t , c

1
t and can

determine which of γ0
t and γ1

t is a DDH tuple. Furthermore, since r̃t = 1, the
reordering that S2 receives from A2 after the coin tossing indicates whether
the DDH tuple is associated with 0 or with 1. S2 sets σ = 0 if after the
reordering γ0

t is of the DDH type, and sets σ = 1 if after the reordering γ1
t

is of the DDH type. (Note that exactly one of the tuples is of the DDH type
because this is checked in the second coin tossing.)

6. S2 sends σ to the trusted party and receives back a string m = mσ. Simulator
S2 then computes the last message from P1 to P2 honestly, while encrypting
mσ under the keys kσ

j (and encrypting any arbitrary string of the same length
under the keys kj

1−σ). S2 hands A2 these messages and outputs whatever A2
outputs and halts.

We now prove that the output distribution of A2 in a real execution with an
honest P1 (with input (m0, m1)) is computationally indistinguishable from the
output distribution of S2 in an ideal execution with an honest P1 (with the same
input (m0, m1)). We begin by showing that S2 outputs fail with probability at
most 2−�, ignoring for now the probability that r = r̃ in later rewindings (which
may occur if S2 has to start again from scratch). Recall that this event occurs if
everything is “valid” after the first coin tossing (where the result is r), and the
result of the second coin-tossing after which everything is valid is r̃ = r.3 First,
observe that the distributions of the strings r and r̃ are identical. This is because
S2 runs the coin tossing in the same way each time (using fresh random coins),
and accepts r̃ when all is valid, exactly as what happened with r. Next, note that
the distribution over the result of the coin tossing – without conditioning over A2
sending valid decommitments – is uniform. This holds because the commitment
that S2 hands to A2 is perfectly hiding and the commitment returned by A2 to
S2 is perfectly binding. Let R be a random variable that denotes the result of the
first coin tossing between A2 and S2 in the simulation, and let valid be the event
that A2 replies with valid decommitments and values after the first coin tossing.
Finally, for a given r ∈ {0, 1}�, let obtainr denote the event that the result of
one of the coin tossing attempts in the second stage equals r. (Note that this
does not mean that r̃ = r because r̃ is the result that is finally accepted after
A2 sends valid values. However, the decision of A2 to send valid values may also
depend on the randomness used to generate Comh(s). Thus, r̃ may not equal
r, even though r is obtained in one of the coin tossing attempts in the second
stage.) Clearly, fail can only occur if r is obtained at least once as the result of
a coin tossing attempt in the second stage (because fail can only occur if r̃ = r).
We therefore have the following:

Pr[fail] ≤
∑

r∈{0,1}�

Pr[R = r & valid] · Pr[obtainr] (1)

3 It is very easy to prove that the probability that S2 outputs fail is at most 2−�/2.
However, in order to keep � to a low value, we present a more subtle analysis that
demonstrates that S2 outputs fail with probability at most 2−�.

64 A.Y. Lindell

Before analyzing this probability, we compute Pr[obtainr] for a fixed r. Let p
denote the probability (over A2 and S2’s coin tosses) that A2 sends valid values
after the coin tossing. It follows that the expected number of trials by S2 in the
second coin tossing is 1/p. Letting Xr be a Boolean random variable that equals
1 if and only if the result of the second coin tossing attempt equals the fixed
r, we have that E[Xr] = 2−�. By Wald’s equation (e.g., see [22, Page 300]), it
follows that the expected number of times that r is obtained as the result of
a coin tossing attempt in the second stage by S2 is 1/p · 2−�. Using Markov’s
inequality, we have that the probability that r is obtained at least once as the
result of a coin tossing attempt in the second stage is at most 1/p · 2−�. That is:

Pr[obtainr] ≤ 1
p · 2�

We are now ready to return to Eq. (1). Denote by pr the probability that A2
sends valid values conditioned on the outcome of the coin tossing being r. It
follows that

p =
∑

r∈{0,1}�

Pr[R = r] · pr =
∑

r∈{0,1}�

pr

2�

Furthermore,

Pr[R = r & valid] = Pr[valid | R = r] · Pr[R = r] = pr · 1
2�

Combining the above, we have:

Pr[fail] ≤
∑

r∈{0,1}�

Pr[R = r & valid] · Pr[obtainr]

≤
∑

r∈{0,1}�

pr

2�
· 1
p · 2�

=
1

p · 2�
·

∑

r∈{0,1}�

pr

2�

=
1

p · 2�
· p =

1
2�

We conclude that S2 outputs fail with probability at most 2−�, as required.
Recall that this analysis doesn’t take into account the probability that S2 starts
the simulation from scratch. Rather, it just shows that S2 outputs fail in any
simulation attempt (between starts from scratch) with probability at most 2−�.
Below, we will show that the probability that S2 starts from scratch is at most
1/2. Denote by faili the probability that S2 outputs fail in the ith attempt,
given that there is such an attempt. Likewise, denote by repeati the probability
that S2 has an ith attempt. We have shown that for every i, Pr[faili] = 2−�,
and below we show that every repeat happens with probability 1/2 and so for
every i, Pr[repeati] = 2i−1 (repeat1 = 1 because we always have one attempt).
We therefore have:

Pr[fail] =
∞∑

i=1

Pr[faili] · Pr[repeati] =
1
2�

∞∑

i=1

1
2i−1 =

1
2�

· 2 =
1

2�−1

Efficient Fully-Simulatable Oblivious Transfer 65

Given the above, we proceed to show indistinguishability of the ideal and
real distributions. Notice that in the case that S does not output fail, the final
transcript as viewed by A2 consists of the first coin tossing (that is distributed
exactly as in a real execution) and the last message from S2 to A2. This last
message is not generated honestly, in that cσ is indeed an encryption of mσ,
but c1−σ is an encryption of an arbitrary value (and not necessarily of m1−σ).
However, as shown in [23], for any tuple γ1−σ

j that is not a DDH tuple, the
value k1−σ

j is uniformly distributed in G (even given w1−σ
j as received by A2).

This implies that c1−σ is uniformly distributed, independent of the value m1−σ.
Thus, A2’s view in the execution with S2 is statistically close to its view in a real
execution with P1 (the only difference being if S2 outputs fail). This completes
the proof regarding indistinguishability.

It remains to prove that S2 runs in expected polynomial-time. We begin by
analyzing the rewinding by S2 in the coin tossing phase (clearly, the running-
time of S2 outside of the rewinding is strictly polynomial, and so it suffices to
bound the expected number of rewinding attempts). Denote by p the probability
that A2 completes the coin tossing phase and provides valid values to S2. The
important point to note here is that each rewinding attempt is successful with
probability exactly p (there is no difference between the distribution over the
first and second coin tossing attempts, in contrast to the simulation where P1 is
corrupted). Thus, with probability p there are rewinding attempts, and in such
a case there are an expected 1/p such attempts. This yields an expected number
of rewindings of 1. We now analyze the number of times that S2 is expected
to have to begin from scratch (due to there being no t for which rt = 0 and
r̃t = 1). The main observation here is that for any pair r and r̃ which forces S2
to begin from scratch, interchanging r and r̃ would result in a pair for which S2
would be able to continue. Now, since r and r̃ are derived through independent
executions of the coin tossing phase, the probability that they are in one order
equals the probability that they are in the opposite order. Thus, the probability
that S2 needs to start from scratch equals at most 1/2. This implies that the
expected number of times that S2 needs to start from scratch is at most two. We
remark that when S2 starts from scratch, the expected number of times it needs
to rewind in order to obtain each of r and r̃ is 1/p. Thus, overall the expected
number of rewinding attempts is p ·O(1)/p = O(1). We conclude that the overall
expected running time of S2 is polynomial, as required.

Efficiency. The complexity of the protocol is in the order of � times the basic
protocol of [23]. Thus, the efficiency depends strongly on the value of � that is
taken. It is important to notice that the simulation succeeds except with proba-
bility ≈ 2−�+1 (as long as the cryptographic primitives are not “broken”). To be
more exact, one should take � and n so that the probability of “breaking” the
cryptographic primitives (the commitments for the coin tossing or the security
of encryption) is at most 2−�+1. In such a case, our analysis in the proof shows
that the ideal and real executions can be distinguished with probability at most
2−�+2. This means that � can be chosen to be relatively small, depending on the
level of security desired. Specifically, with � = 30 the probability of successful

66 A.Y. Lindell

undetected cheating is 2−28 ≈ 3.7×10−9 which is already very very small. Thus,
it is reasonable to say that the complexity of the protocol is between 30 and 40
times of that of [23]. This is a non-trivial price; however, this is far more efficient
than known solutions. We also remark that a similar idea can be used to achieve
security in the model of covert adversaries of [3]. For deterrent factor ε = 1/2
one can use � = 2 and have the sender choose r singlehandedly with one bit of r
equalling 0 and the other equalling 1. This yields very high efficiency, together
with simulatability (albeit in the weaker model of covert adversaries).

4 Oblivious Transfer Using Smooth Hashing

The protocol of [23] was generalized by [17] via the notion of smooth projec-
tive hashing of [8]. This enables the construction of oblivious transfer protocols
that are analogous to [23] under the Nth residuosity and quadratic residuos-
ity assumptions. Protocol 1 can be extended directly in the same way, yielding
oblivious transfer protocols that are secure against malicious adversaries, under
the Nth residuosity and quadratic residuosity assumptions. We remark that as
in the protocol of [17], the instantiation of the protocol under the Nth residuos-
ity assumption is highly efficient, whereas the instantiation under the quadratic
residuosity assumption enables the exchange of a single bit only (but is based on
a longer-standing hardness assumption). We remark, however, that using Elliptic
curves, the solution based on the DDH assumption is by far the most efficient.

5 Oblivious Transfer from Homomorphic Encryption

In this section, we present a protocol based on the protocol of [1] that uses ho-
momorphic encryption. We assume an additive homomorphic encryption scheme
(G, E, D), where G(1n) outputs a key-pair of length n, E is the encryption al-
gorithm and D the decryption algorithm. Note that additive homomorphic op-
erations imply multiplication by a scalar as well. The ideas behind this protocol
are similar to above, and our presentation is therefore rather brief.

Protocol 2

• Input: The sender has a pair of strings (m0, m1) of known length and the
receiver has a bit σ. Both parties have a security parameter n determining
the length of the keys for the encryption scheme, and a separate statistical
security parameter �.

• The protocol:
1. Receiver’s message:

(a) The receiver P2 chooses a key-pair (pk, sk) ← G(1n) from a homo-
morphic encryption scheme (G, E, D).4

4 We assume that it is possible to verify that a public-key pk is in the range of the
key generation algorithm G. If this is not the case, then a zero-knowledge proof of
this fact must be added.

Efficient Fully-Simulatable Oblivious Transfer 67

(b) For i = 1, . . . , �, party P2 chooses a random bit bi ∈R {0, 1} and
defines

cbi

i = Epk(0; rbi

i) and c1−bi

i = Epk(1; r1−bi

i) .

where r0
i and r1

i are random strings, and Epk(x; r) denotes an en-
cryption of message x using random coins r.

(c) P2 sends pk, 〈c0
1, c

1
1, . . . , c

0
� , c

1
�〉 to P1.

2. Coin tossing:
(a) P1 chooses a random s̃ ∈R {0, 1}� and sends Comh(s̃) to P2.

(b) P2 chooses a random ŝ ∈R {0, 1}� and sends Comb(ŝ) to P1.

(c) P1 and P2 send decommitments to Comh(s̃) and Comb(ŝ), respec-
tively, and set s = s̃ ⊕ ŝ. Denote s = s1, . . . , s�. Furthermore let S1
be the set of all i for which si = 1, and let S0 be the set of all j for
which sj = 0. (Note that S1, S0 are a partition of {1, . . . , �}.)

3. Receiver’s message:
(a) For every i ∈ S1, party P2 sends the randomness r0

i , r1
i used to en-

crypt c0
i and c1

i .

(b) In addition, for every j ∈ S0, party P2 sends a bit βj so that if σ = 0
then βj = bj, and if σ = 1 then βj = 1 − bj.

4. Sender’s message:
(a) For every i ∈ S1, party P1 verifies that either c0

i = Epk(0; r0
i) and

c1
i = Epk(1; r1

i), or c0
i = Epk(1; r0

i) and c1
i = Epk(0; r1

i). That is, P1
verifies that in every pair, one ciphertext is an encryption of 0 and
the other is an encryption of 1. If this does not hold for every such
i, party P1 halts. If it does hold, it proceeds to the next step.

(b) For every j ∈ S0, party P1 defines cj and c′j as follows:
i. If βi = 0 then cj = c0

j and c′j = c1
j .

ii. If βi = 1 then cj = c1
j and c′j = c0

j .
This implies that if σ = 0 then cj = Epk(0) and c′j = Epk(1), and if
σ = 1 then cj = Epk(1) and c′j = Epk(0).5

(c) For every j ∈ S0, party P1 chooses random ρj , ρ
′
j, uniformly dis-

tributed in the group defined by the encryption scheme. Then, P1 uses
the homomorphic properties of the encryption scheme to compute:

c0 =

⎛

⎝
∑

j∈S1

ρj · cj

⎞

⎠ + Epk(m0) and c1 =

⎛

⎝
∑

j∈S1

ρ′j · c′j

⎞

⎠ + Epk(m1)

5 In order to see this, note that if σ = 0 then βj = bj . Thus, if βj = bj = 0 we have
that cj = c0

j = Epk(0) and c′
j = c1

j = Epk(1). In contrast, if βj = bj = 1 then
cj = c1

j = Epk(0) and c′
j = c0

j = Epk(1). That is, in all cases of σ = 0 it holds that
cj = Epk(0) and c′

j = Epk(1). Analogously, if σ = 1 the reverse holds.

68 A.Y. Lindell

where addition above denotes the homomorphic addition of cipher-
texts and multiplication denotes multiplication by a scalar (again us-
ing the homomorphic properties).

(d) P1 sends (c0, c1) to P2.

5. Receiver computes output: P2 outputs Dsk(cσ) and halts.

Before discussing security, we demonstrate correctness:

1. Case σ = 0: In this case, as described in Footnote 5, it holds that for every
j, cj = Epk(0) and c′j = Epk(1). Noting that the multiplication of 0 by a
scalar equals 0, we have:

c0 =

⎛

⎝
∑

j∈S1

ρj · cj

⎞

⎠ + Epk(m0) = Epk(0) + Epk(m0) = Epk(m0).

Thus, when P2 decrypts c0 it receives m0, as required.
2. Case σ = 1: In this case, it holds that for every j, cj = Epk(1) and c′j =

Epk(0). Thus, similarly to before,

c1 = ·

⎛

⎝
∑

j

ρ′j · c′j

⎞

⎠ + Epk(m1) = Epk(0) + Epk(m1) = Epk(m1),

and so when P2 decrypts c1, it receives m1, as required.

We have the following theorem:

Theorem 2. Assume that (G, E, D) is a secure homomorphic encryption scheme,
Comh is a perfectly-hiding commitment scheme and Comb is a perfectly-biding com-
mitment scheme. Then, Protocol 2 securely computes the oblivious transfer func-
tionality in the presence of malicious adversaries.

Proof (sketch): In the case that P2 is corrupted, the simulator works by
rewinding the corrupted P2 over the coin tossing phase in order to obtain two
different openings and reorderings. In this way, the simulator can easily derive
the value of P2’s input σ (σ is taken to be 0 if all the cj ciphertexts for which
it obtained both reorderings and openings are encryptions of 0, and is taken to
be 1 otherwise). It sends σ to the trusted party and receives back m = mσ.
Finally, the simulator generates cσ as the honest party P1 would (using m), and
generates c1−σ as an encryption to a random string. Beyond a negligible fail
probability in obtaining the two openings mentioned, the only difference with
respect to a corrupted P2’s view is the way c1−σ is generated. However, notice
that:

c1−σ =

⎛

⎝
∑

j∈S1

ρ̂j · ĉj

⎞

⎠ + Epk(m1−σ)

Efficient Fully-Simulatable Oblivious Transfer 69

where ρ̂j = ρj and ĉj = cj , or ρ̂j = ρ′j and ĉj = c′j , depending on the value
of σ. Now, if at least one value ĉj for j ∈ S1 is an encryption of 1, then the
ciphertext c1−σ is an encryption of a uniformly distributed value (in the group
defined by the homomorphic encryption scheme). This is due to the fact that ĉj

is multiplied by ρ̂j which is uniformly distributed. Now, by the cut-and-choose
technique employed, the probability that for all j ∈ S1 it holds that ĉj �= Epk(1)
is negligible. This is due to the fact that this can only hold if for many ciphertext
pairs c0

i , c
1
i sent by P2 in its first message, the pair is not correctly generated (i.e.,

it is not the case that one is an encryption of 0 and the other an encryption of 1).
However, if this is the case, then P1 will abort except with negligible probability,
because S0 will almost certainly contain one of these pairs (and the sets S0 and
S1 are chosen as a random partition based on the value s output from the coin
tossing).

In the case that P1 is corrupted, the simulator manipulates the coin tossing so
that in the unopened pairs of encryptions, all of the ciphertexts encrypt 0. This
implies that both

(∑
j∈S1

ρj · cj

)
= Epk(0) and

(∑
j∈S1

ρ′j · c′j
)

= Epk(0), in
turn implying that c0 = Epk(m0) and c1 = Epk(m1). Thus, the simulator obtains
both m0 and m1 and sends them to the trusted party. This completes the proof
sketch. A full proof follows from the proof of security for Protocol 1.

Acknowledgements

We would like to thank Nigel Smart for helpful discussions and Benny Pinkas
for pointing out an error in a previous version.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Aggarwal, G., Mishra, N., Pinkas, B.: Secure Computation of the kth-Ranked Ele-
ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004)

3. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

4. Barak, B., Lindell, Y.: Strict Polynomial-Time in Simulation and Extraction. SIAM
Journal on Computing 33(4), 783–818 (2004)

5. Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

6. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

7. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

8. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

70 A.Y. Lindell

9. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

10. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Cryp-
tology ePrint Archive Report 2006/165 (2006)

11. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of the ACM 28(6), 637–647 (1985)

12. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

14. Goldwasser, S., Levin, L.: Computation of General Functions in Presence of Im-
moral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

15. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987) For details see [12]

16. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable
Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 265–282. Springer, Heidelberg (2007)

17. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005)

18. Kilian, J.: Founding Cryptograph on Oblivious Transfer. In: 20th STOC, pp. 20–31
(1988)

19. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: 38th FOCS, pp. 364–373
(1997)

20. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

21. Micali, S., Rogaway, P.: Secure Computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

22. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2005)

23. Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: 12th SODA, pp.
448–457 (2001)

24. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,
Aiken Computation Laboratory, Harvard U (1981)

25. Yao, A.: How to Generate and Exchange Secrets. In: 27th FOCS, pp. 162–167
(1986)

Separation Results on the “One-More” Computational
Problems

Emmanuel Bresson1, Jean Monnerat2,�, and Damien Vergnaud3

1 DCSSI Crypto Lab, Paris, France
2 Department of Computer Science & Engineering, University of California San Diego, USA

3 École Normale Supérieure – C.N.R.S. – I.N.R.I.A.
45 rue d’Ulm, 75230 Paris CEDEX 05, France

Abstract. In 2001, Bellare, Namprempre, Pointcheval and Semanko introduced
the notion of “one-more” computational problems. Since their introduction, these
problems have found numerous applications in cryptography. For instance, Bel-
lare et al. showed how they lead to a proof of security for Chaum’s RSA-based
blind signature scheme in the random oracle model.

In this paper, we provide separation results for the computational hierarchy of
a large class of algebraic “one-more” computational problems (e.g. the one-more
discrete logarithm problem, the one-more RSA problem and the one-more static
Computational Diffie-Hellman problem in a bilinear setting). We also give some
cryptographic implications of these results and, in particular, we prove that it is
very unlikely, that one will ever be able to prove the unforgeability of Chaum’s
RSA-based blind signature scheme under the sole RSA assumption.

Keywords: “One-more” problems, Black-box reductions, Random self-reducible
problems, Algebraic algorithms.

1 Introduction

BACKGROUND. In cryptography, a one-way function f is a function that can be com-
puted by some algorithm in polynomial time (with respect to the input size) but such
that no probabilistic polynomial-time algorithm can compute a preimage of f(x) with
a non-negligible probability, when x is chosen uniformly at random in the domain of f .
At the very beginning of the century, it has been observed that there seems little hope of
proving the security of many cryptographic constructions based only on the “standard”
one-wayness assumption of the used primitive. The security of some schemes seems
to rely on different, and probably stronger, properties of the underlying one-way func-
tion. Cryptographers have therefore suggested that one should formulate explicit new
computational problems to prove the security of these protocols. For instance, Okamoto
and Pointcheval [14] introduced in 2001 a novel class of computational problems, the
gap problems, which find a nice and rich practical instantiation with the Diffie-Hellman
problems. They used the gap Diffie-Hellman problem for solving a more than 10-year
old open security problem: the unforgeability of Chaum-van Antwerpen undeniable
signature scheme [11].

� Supported by a fellowship of the Swiss National Science Foundation, PBEL2–116915.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 71–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 E. Bresson, J. Monnerat, and D. Vergnaud

In 2001, Bellare, Namprempre, Pointcheval and Semanko [2] introduced the notion
of one-more one-way function. A function is one-more one-way if it can be computed
by some algorithm in polynomial time (in the input size) but for which there exists no
probabilistic polynomial-time algorithm A with non-negligible probability to win the
following game:

– A gets the description of f as input and has access to two oracles;
– an inversion oracle that given y in f ’s codomain returns x in f ’s domain such

that f(x) = y;
– a challenge oracle that, each time it is invoked (it takes no inputs), returns a

random challenge point from f ’s codomain;
– A wins the game if it succeeds in inverting all n points output by the challenge

oracle using strictly less than n queries to the inversion oracle.

Bellare et al. showed how these problems lead to a proof of security for Chaum’s RSA-
based blind signature scheme [10] in the random oracle model.

The approach consisting in introducing new computational problems to study the
security of cryptosystems is not completely satisfactory since the proof of security often
relies on an extremely strong assumption which is hard to validate. Nevertheless, it is
better to have such a security argument than nothing since as mentioned in [2]: “These
problems can then be studied, to see how they relate to other problems and to what
extent we can believe in them as assumptions.” The purpose of this paper is to study the
hierarchy of the computational difficulty of the “one-more” problems of Bellare et al.
and its cryptographic implications. In particular, we prove that it is very unlikely, that
one will ever be able to prove the unforgeability of Chaum’s RSA-based blind signature
scheme under the sole RSA assumption.

RELATED WORK. Since the one-more-inversion problems were introduced in [2], they
have found numerous other applications in cryptography.

– Bellare and Palacio [4] proved in 2002 that Guillou-Quisquater and Schnorr identi-
fication schemes [12,17] are secure against impersonation under active (and concur-
rent) attack under the assumption that the one-more RSA problem and the one-more
discrete logarithm problem are intractable (respectively).

– Bellare and Neven [3] proved the security of an RSA based transitive signature
scheme suggested by Micali and Rivest in 2002 [13] under the assumption of the
hardness of the one-more RSA problem.

– Bellare and Sandhu had used the same problem to prove the security of some two-
party RSA-based signature protocols [5].

– In [6], Boldyreva proposed a new blind signature scheme – based on Boneh-Lynn-
Shacham signature [7] – which is very similar to the RSA blind signature protocol.
She introduced a new computational problem: the one-more static Computational
Diffie-Hellman problem (see also [9]) and proved the security (in the random oracle
model) of her scheme assuming the intractability of this problem.

– Paillier and Vergnaud [15] provided evidence that the security of Schnorr signa-
tures [17] cannot be equivalent to the discrete log problem in the standard model.
They proposed a method of converting a reduction of the unforgeability of this
signature scheme to the discrete logarithm problem into an algorithm solving the

Separation Results on the “One-More” Computational Problems 73

one-more discrete log problem. Their technique applies whenever the reduction
belongs to a certain “natural” class of reductions that they refer to as algebraic
reductions.

CONTRIBUTIONS OF THE PAPER. Following the approach from [15], we give argu-
ments showing that, for any integer n > 1, solving the one-more problem with access
to the inversion oracle up to n times cannot be reduced to the resolution of this problem
with access to this oracle limited to n + 1 queries. Our results apply to the class of
black-box reductions and are extended in the case of the one-more discrete logarithm
problems to a class of algebraic black-box reductions.

These separation results apply to many computational problems used in the cryp-
tographic literature, like the one-more RSA problem and the one-more static Diffie-
Hellman problem in a bilinear setting. Due to the equivalence of the unforgeability of
Chaum and Boldyreva blind signatures [10,6] and the intractability of the one-more
RSA problem and the one-more static Diffie-Hellman problem in a bilinear setting, our
results imply that it is very unlikely, that one will ever be able to prove the unforgeabil-
ity of these schemes under the sole assumption of the one-wayness of their respective
underlying primitive.

We stress that our work sheds more light on the computational complexity of these
problems but does not explicitly lead to actual way to solve them. Finally, we mention
that Brown [8] independently found similar separation results1.

2 Preliminaries

NOTATIONS. Taking an element x uniformly at random from a set X will be denoted
x ←U X . Assigning a value a to a variable x is denoted by x ← a. Algorithms are
modeled by probabilistic Turing machines and are usually considered polynomial-time.
The term “efficient” will refer to polynomial-time. We write A(�; �) the output of
algorithm A when running on input � and using random �. With A(�), we mean the
random variable resulting from A(�; �) by choosing � uniformly at random. For any
algorithm A, T (A) denotes its running time. An algorithm A with a black-box oracle
access to an algorithm B is denoted AB .

BLACK-BOX REDUCTIONS. An algorithm R is said to be a black-box reduction from
a problem P2 to a problem P1 if for any algorithm A solving P1, algorithm RA solves
P2 thanks to a black-box access to A. Below, we provide more details about our black-
box model. Namely, we describe what we mean by a “black-box access” and give a
characterization of the classes of algorithms A we will consider. In other words, we
specify which algorithms are transformed by R and how R can interact with them.

BLACK-BOX ACCESS. A black-box access essentially means that R is allowed to use
A as a subroutine without taking advantage of its internal structure (code). R can only
provide the inputs to A and observe the resulting outputs. If A has access to an oracle,

1 His paper appeared on the IACR eprint, while our paper was already under submission. His
work is based on the very same core idea but does not explicitly handle the case where reduc-
tions make use of rewinding techniques.

74 E. Bresson, J. Monnerat, and D. Vergnaud

the corresponding queries must be answered by R. In other words, the reduction should
simulate A’s environment through its input-output interface.

When A is probabilistic, a new black-box access by R results in a new execution of
A with fresh random coins. In this paper, we do not consider the random tape of A to be
seen by R. This is in accordance with the work by Barak [1] saying that the knowledge
of such randomness can hardly help a black-box reduction.

As usually in the literature, we allow R to rewind A with a previously used random
tape. Our approach is formalized by restricting the reduction R to sequentially execute
some of the following operations when interacting with A:

– Launch. Any previously launched execution of A is aborted. R launches a
new execution of A with a fresh random tape � on an input of its choice.

– Rewind. Any previously launched execution of A is aborted. R restarts A with
a previously used random tape and an input of its choice.

– Stop. R definitely stops the interaction with A.

We assume that all executions with fresh random tapes are uniquely identified so that
R can make some “Rewind” without explicitly knowing these random tapes. Note that
a call of any above procedure is counted as a single time unit in the complexity of R.

For some results, we will need to consider a weaker model obtained by relaxing the
“Rewind” queries made by R. Instead, we only tolerate a kind of weak rewinding of A
with the same random tape and its corresponding input. So, in this weaker model, we
replace the “Rewind” queries by the following one:

– Relaunch. Any previously launched execution of A is aborted. R restarts A
with a previously used random tape and the corresponding input.

Hence, rewinding techniques which restart A on the same random tape and a dif-
ferent input are not allowed in this model. As a consequence, reductions involving
“forking-Lemma”-like [16] techniques are not considered. We however point out that a
“Relaunch” query can be useful to R when A has access to some oracles. Namely, R
may differently simulate the oracle outputs from an execution to another one in order
to gain some information to solve its challlenge.

CLASSES OF ALGORITHMS. For any τ and ε non-negative functions defined on N and
a computational problem P with associated security parameter k ∈ N, an algorithm A
is said to be an (ε, τ)-P solver if it succeeds in solving P (fed with k) with probability
at least ε(k) and at most time complexity τ(k) for any k ∈ N, where the probability
is over random tapes of all involved algorithms. We denote by CL(P, ε, τ) the class of
such probabilistic algorithms. We say that R is an (ε1, τ1, ε2, τr)-reduction from P2 to
P1 if it transforms any algorithm in CL(P1, ε1, τ1) into a P2-solver with success prob-
ability greater or equal to ε2 and the running time of R is less or equal to τr. Usually,
black-box reductions transform any adversary with a given success probability without
any consideration of the time complexity of this one. In this case, we have τ1(k) = +∞
for any k ∈ N and use the term of (ε1, ε2, τr)-reduction from P2 to P1 reduction. We
call such reductions “classical” while those transforming only bounded adversaries are
called “sophisticated” reductions. As far as we know, we are not aware of the existence

Separation Results on the “One-More” Computational Problems 75

in the literature of “sophisticated” reductions which are not implicitly classical, i.e.,
which do not succeed in transforming adversaries with a greater complexity than the
given τ1.

BLACK-BOX SEPARATIONS. A black-box reduction R from P2 to P1 can just be seen
as an oracle Turing machine solving the problem P2. Thus it can be transformed through
a so-called meta-reduction to solve another problem (say, P3). When the latter is as-
sumed to be hard, an efficient meta-reduction rules out the existence of R, hence prov-
ing a separation between problems P1 and P2. In other words, it proves that P2 is strictly
harder than P1, conditioned by the hardness of P3.

More formally, the construction is as follows. We start from the reduction R from
P2 to P1. Our goal is to specify an algorithm M that solves the problem P3, having
a black-box access to R. The algorithm M needs to simulate the environment of R,
i.e., all its oracles, and in particular, the correct behavior of the P1-solver. In the present
work, such correct behavior (viewed from R) is formalized by assuming that the P1-
solver belongs to a certain class CL(P1, ε, τ) for some given ε and τ . However, in the
classical case, the reduction is (formally) able to transform any P1-solver2 whatever its
running time is (τ = +∞).

In this work, we will focus on “classical” reductions but also show that our results
hold for “sophisticated” reductions in the weaker model, where “Rewind” queries are
replaced by the “Relaunch” ones. In this case, we confine the P1 to a given finite τ ,
thus to a smaller class CL(P1, ε, τ). Hence, by restricting the class of solvers that the
reduction R is able to deal with, we enlarge the class of such reductions. In fact, the
smaller τ is, the bigger the number of possible reductions do exist. Thus, excluding the
existence of such reductions using a meta-reduction leads to a separation result which
is at least as strong as the case where τ = +∞.

We may wonder whether this is strictly stronger to do so. Usually the reduction
should not care about the complexity of the P1-solver which is treated as a black-box
and for which an access is counted as a single unit anyway. However, when the P1-
problem is specified with some oracle access to a solver (as for the “one-more” prob-
lems), one must be more careful. The main reason is that there may be a correlation
between the “external behavior” of a P1-solver and its complexity. What we call the
“external behavior” of an algorithm corresponds to the distribution of both the interme-
diate outputs (queries) sent to the oracles and the final output. As a result, a reduction
may be able to only transform the P1-solvers with a specific “external behavior”, guar-
anteed by the bound τ . For instance, a one-more discrete logarithm solver which would
never query the discrete logarithm oracle must be a discrete logarithm solver. Assuming
that no discrete logarithm solver exists with a time less than τ , a sophisticated reduction
knows that it does not need to transform such an n-DL solver.

When devising the meta-reduction M, this difficulty is induced in the simulation of
the P1-solver. To be more explicit, the meta-reduction needs to simulate a P1-solver
with the correct “external behavior”, since this one may need to comply to a specific
form when τ is finite. In our results, the class CL(P1, ε, τ) will be chosen so that M
will simulate the correct behavior of a solver of this class.

2 Of course, for a cryptographic result to make sense in practice, the solver is restricted to
polynomial-time.

76 E. Bresson, J. Monnerat, and D. Vergnaud

3 Random Self-reducible Problems

3.1 Definitions

Let P = (PG, IG) be a generic computational problem, where PG is a parameter genera-
tor and IG is an instance generator3. Given a security parameter k ∈ N, the probabilistic
polynomial-time algorithm PG(1k) generates some parameters param. These parame-
ters notably characterize an instance set I and a solution set S. The instance generator
IG takes param as input and outputs an instance ins ∈ I.

We assume that there exists an efficient verification algorithm V(param,ins,sol)
that, for any (ins,sol) ∈ I × S, outputs 1 if sol is a solution to ins (with respect
to param) and 0 otherwise. For an algorithm A, we consider the following experiment:

Experiment ExpP
A(k).

param ← PG(1k)
ins ← IG(param)
sol ← A(param,ins)
Output V(param,ins,sol)

The success probability of A is SuccP
A(k) = Pr[ExpP

A(k) = 1], where the probability
is taken over the random coins of all algorithms PG, IG and A.

We introduce the “one-more” variants of the problem P. Let n be a non-negative
integer. We denote by OP an oracle which perfectly solves the problem P, that is, on
any input ins ∈ I, the oracle outputs some sol such that V(param,ins,sol) = 1.
The one-more n-P problem is defined by the following experiment for an algorithm A.

Experiment Expn-P
A (k).

param ← PG(1k)
For i = 0, . . . , n, generate insi ← IG(param; �i) with fresh
random tapes �0, . . . , �n.
(sol0, . . . ,soln) ← AOP(ins0, . . . ,insn)
If V(param,insi,soli) = 1 for i = 0, . . . , n and A made at
most n queries to OP output 1 else output 0

The success probability of A is Succn-P
A (k) = Pr[Expn-P

A (k) = 1], where the prob-
ability is taken over the random coins of all involved algorithms. For any functions
ε, τ : N → R, an algorithm A ∈ CL(n-P, ε, τ) is called an (ε, τ)-n-P solver.

Proposition 1 (Reduction from (n + 1)-P to n-P). Let n, m be two integers such that
n < m. Then the m-P problem cannot be harder than the n-P problem.

We omit the proof since it is elementary. We now give a definition for a computational
problem P to be random self-reducible.

Definition 2 (Random self-reducibility). A problem P defined as above is said to be
random self-reducible if there exists an efficient blinding algorithm B and an efficient
un-blinding algorithm UB such that for any k ∈ N, any string param generated by PG,
and any element ins ∈ I:

3 We separate PG and IG for exposition convenience.

Separation Results on the “One-More” Computational Problems 77

1. B(param,ins; �) is a uniformly distributed element insbl in I, w.r.t. the random
choice of �;

2. for any random tape �, any blinded instance insbl generated by B from instance
ins using random tape �, the algorithm UB satisfies

V(param,insbl ,solbl) = 1 =⇒ V(param,ins, UB(param,solbl ; �)) = 1.

In what follows, we denote by Ω the set of random tapes � used by B (and UB) and
the time complexity of algorithms B, UB, V by τ

BL
, τ

UB
, τ

VER
respectively. We remark

that our definition is similar to that of Okamoto-Pointcheval [14] except that we do not
require that UB outputs a uniform element in S. Our definition is also like that given by
Tompa-Woll [18] with the relaxation of a similar condition. Note that both the discrete
logarithm and the RSA inversion problems satisfy this definition.

3.2 Black-Box Separation

Definition 3 (Parameter-invariant reductions). Let n and n′ be some non-negative
integers. A black-box reduction R from n-P to n′-P is said to be parameter-invariant
if R only feeds the n′-P-solver with challenges containing the same string param that
was in the challenge given to R.

We first assume that the reduction executes the (n + 1)-P-solver at most one time and
never rewinds.

Lemma 4 (Separation, basic case). Let n be a non-negative integer and ε, ε′, τr be
some positive functions defined on N. We set τ

TOT
:= τ

BL
+τ

UB
+τ

VER
. There exists a meta-

reduction M such that, for any parameter-invariant black-box (ε, ε′, τr)-reduction R
from n-P to (n + 1)-P which makes at most only one “Launch” (and no “Rewind”)
query to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1) · τ

TOT
)-n-P solver.

Proof. First, remark that for any ε > 0 there exists a (n + 1)-P-solver that succeeds
with probability ε. This is because P is verifiable so the exhaustive search is possible,
and that we do not consider the execution time at that point. Moreover, we can assume
that this solver always makes n + 1 uniformly distributed queries to OP. We denote
this (naive) algorithm by A1. It receives as input an instance of (n + 1)-P, picks n + 1
uniform random P-instances ins∗1, . . . ,ins

∗
n+1 ∈U I, and submits them sequentially

to OP. For each query, A1 checks the answer of OP using the verification algorithm V
and if one answers is wrong, A1 outputs ⊥ and aborts. Otherwise, it does an exhaustive
search and outputs the correct answer of the (n + 1)-P challenge with probability ε.

One may wonder why it is necessary to check the validity of the OP oracle, since we
have assumed it is a perfect oracle. Indeed, in the real Exp(n+1)-P

A (k) experiment, such
a verification is always successful (A1 never outputs ⊥). However these checks will be
crucial in the simulated experiment in which OP is simulated by R, which can possibly
cheats. We also emphasize that the queries ins∗i are always the same if the random
tape of A1 and param are the same.

DESCRIPTION OF THE META-REDUCTION. We now explain how to build a meta-
reduction M that solves the n-P problem. First, M is given access to a OP-oracle (with

78 E. Bresson, J. Monnerat, and D. Vergnaud

at most n queries allowed) and receives an n-P challenge (param,ins0, . . . ,insn).
Then it will use R to solve it, by simulating adversary A1 (which is assumed to make
uniform queries). To this goal, M simply feeds R with the given challenge. Remind
that R has oracle access to OP and A1 (the so-called “Launch” query), so M must
be able to answer both types of queries. The OP queries are answered in a trivial way;
namely, M simply forwards the queries to its oracle OP. Below, we describe how M
processes the (unique) “Launch” query made by R, by simulating the execution of A1.

Launch(param,ins′
0, . . . ,ins

′
n+1)

for i = 0, 1, . . . , n do
�i ←U Ω
bl-insi ← B(param,insi; �i)
Submit bl-insi to OP (simulated by R) and receive bl-soli

soli ← UB(param,bl-soli; �i)
if 0 ← V(param,insi,soli) then

Return ⊥
Abort the interaction with R

If all the OP-queries are correctly answered by R, the meta-reduction aborts the
interaction with R after the (n+1)-th OP-query, and simply returns (sol0, . . . ,soln)
as the solution of the n-P problem given as input. On the other hand, if the simulation
of the oracle appears to be wrong, the “Launch” query is answered with ⊥ — this
correctly simulates the behavior of A1 described at the beginning of the proof. In that
case, the reduction eventually outputs a tuple that M just relays as its own answer. If
R does not ask any “Launch” query or decides to prematurely “Stop” the interaction
with A1, then M also outputs the same answer as R.

In simulating A1, M needs to run the algorithms B, UB, and V once per query to
OP. Since M launches R one time, we get T (MR) ≤ τr + (n + 1) · τ

TOT
.

PROBABILITY ANALYSIS. Let SuccR and SuccM be the events that “R succeeds” and
“M succeeds” respectively. Let us denote Good the event, where R correctly answers to
all OP queries made by A1. In particular, event ¬Good includes the executions in which
R does not make any “Launch” query or prematurely stops the interaction with A1.
From the above description, we can easily see that, if Good occurs, M always recovers
the correct solutionssoli for i = 0, . . . , n. On the other hand, if ¬Good occurs, M out-
puts whatever R outputs, and thus we have Pr[SuccM|¬Good] = Pr[SuccR|¬Good].
Then we obtain

Pr[SuccM] = Pr[SuccM|Good] · Pr[Good] + Pr[SuccM|¬Good] · Pr[¬Good]
= Pr[Good] + Pr[SuccR|¬Good] · Pr[¬Good]
≥ Pr[SuccR ∧ Good] + Pr[SuccR ∧ ¬Good] = Pr[SuccR] ≥ ε′,

which concludes the proof. ��

Theorem 5 (Separation, general case). Let n, ε, ε′, τr, τTOT
be as in Lemma 4. There

exists a meta-reduction M such that, for any parameter-invariant black-box (ε, ε′, τr)-
reduction R from n-P to (n + 1)-P which makes at most � queries “Launch” or
“Rewind” to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1)� · τ

TOT
)-n-P-solver.

Separation Results on the “One-More” Computational Problems 79

Proof. The proof works like in Lemma 4 except that M needs to deal with possibly
many runs and/or rewindings of the (n + 1)-P-solver A1. We summarize how we deal
with the queries of type “Launch” and “Rewind”.

Launch. For each such query, M needs to simulate a new execution of A1 with fresh
random coins. The simulation works like for Lemma 4. The main difference is that,
when a wrong simulation of OP leads to an abortion of A1, the reduction R is allowed
to continue with a new query “Launch” or “Rewind”. The same holds if R aborts
the current execution by itself by just making a new query. This does not affect the
simulation of A1 by M, which simply waits for a correct simulation of OP by R on the
n + 1 queries4.

Rewind. The simulation of such an execution is done similarly as for “Launch” except
that the randomness is not fresh. This implicitly means that M keeps track of the history
of previous A1’s executions in a non-ambiguous way. Recall that the OP queries made
by A1 does not depend on the received n-P instance, but only its random tape and
param, which is unchanged by definition. Thus, if R rewinds several times, M can
simulate correctly: the same queries to the OP oracle are repeated from a previous
execution, and a wrong answer is still detected, leading to an abortion. In that case, R
continues with another query “Launch” or “Rewind”, or makes its final “Stop”. As
above, M stops the execution if it receives all answers of the queries sent to OP and
wins the game5. If this does not occur, M simply answers the R output to its challenger.

A probability analysis as in Lemma 4 shows that M succeeds with probability at
least ε′. The running time of MR is easily upper-bounded by τr + (n + 1)� · τ

TOT
. ��

Remark 6. We observe that the reduction R solves the n-P problem using an (n + 1)-P
solver as a subroutine, while our meta-reduction M solves the same problem without
such subroutine (but with access to R). Thus, if the n-P problem is hard, the existence
of an efficient M shows that there cannot exist an efficient black-box algorithm R from
the n-P problem to the (n + 1)-P problem. On the other hand, if the n-P problem is
easy, we know that the (n + 1)-P problem is easy as well, and so basing the security of
cryptographic schemes on these problems (m-P for m ≥ n) would be hopeless.

Remark 7. Note that if the problem P is not efficiently verifiable, the above result does
not apply anymore. For instance, this does not work with the one-more (static) Com-
putational Diffie-Hellman, except in a group with an easy decisional Diffie-Hellman
problem (DDH). Namely, if R simulates the oracle by answering random elements, the
adversary A1 cannot easily detect that the simulation is not correct unless this one can
solve DDH. However, in the context of pairing cryptography the bilinear pairing allows
to efficiently solve DDH. In this case, our results apply to the one-more CDH.

4 Note that we can optimize by simply waiting until M could get n+1 correct answers of fresh
queries made to OP, even if these ones were not made during one single execution of A1. For
this, M should not re-use a solved insi by sending a new blinded insi value to OP in a
subsequent fresh (new random tape) execution of A1.

5 Though the queries are the same, R may simulate OP in a different way. In particular, it may
succeed in simulating OP, even if it failed to do so in a previous execution.

80 E. Bresson, J. Monnerat, and D. Vergnaud

3.3 The Case of Sophisticated Reductions

Here, we investigate our separation results in the context of “sophisticated” reductions,
i.e., those which are supposed to only transform a class of algorithms with a bounded
time complexity. In what follows, we are able to exhibit such a separation under the
assumption that the reduction does not rewind the adversary with the same random and
a different input.

Theorem 8 (Sophisticated reductions). Let n, ε, ε′, τr, τTOT
be as in Lemma 4. Con-

sider τ0 : N → R an arbitrary time-complexity upper bound of some existing (n+1)-P
solver succeeding with probability greater or equal to ε. In other words, we assume

CL((n + 1)-P, ε, τ0) = ∅.

Let τ such that τ(k) ≥ τ0(k) + (n + 1) · τ
TOT

(k) for any k ∈ N. There exists a
meta-reduction M such that, for any “sophisticated” parameter-invariant black-box
(ε, τ, ε′, τr)-reduction R from n-P to (n + 1)-P making at most � queries “Launch”
or “Relaunch” to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1)� · τ

TOT
)-n-P-solver.

Proof. The proof is similar to that of Theorem 5 except that the existence of a certain
(n + 1)-P-solver A1 belonging to CL((n + 1)-P, ε, τ) needs to be shown (A1 is no
more a naive algorithm). It is constructed as follows.

By definition of τ0, there exists an algorithm A0 belonging to the class CL((n + 1)-
P, ε, τ0). The algorithm A1 receives as input an instance of the (n + 1)-P-problem,
starts A0 with this input, processes the A0’s queries as explained hereafter, and finally
outputs whatever A0 outputs. For each OP query ins, A1 picks a uniformly distributed
random tape � and computes insbl ← B(param,ins; �). It then queries insbl to
OP and gets the answer solbl. It checks whether V(param,insbl,solbl) → 1: if it is
the case, it forwards sol ← UB(param,solbl; �) as the answer to A0, otherwise it
terminates and outputs ⊥. If A0 asks less than n + 1 queries to OP, A1 asks as many
uniformly distributed random queries as necessary.

This algorithm A1 has the same behavior as in Theorem 5 (it always makes (n + 1)
uniform queries), except that for a given randomness the queries to OP may depend on
the input. The rest of the proof works like for Theorem 5. In particular, M simulates A1
in the very same way and handles the “Relaunch” queries made by R as the “Rewind”
ones in the proof of Theorem 5. ��
Remark 9. The difficulty of extending the above proof to “Rewind” queries comes
from our inability to correctly simulate A1 after a rewinding of R with a different in-
put. Since A1 must be restarted with the same random tape, we cannot produce uniform
OP-queries anymore: the blinding on a different input with the same randomness would
produce different blinded queries, while in Theorem 5 the queries should not change in
case of a “Rewind”.

4 One-More Discrete Logarithm Problems

4.1 Definitions

Let k ∈ N be a security parameter and Gen be an efficient algorithm taking k (or 1k)
as input and which outputs the description of a cyclic group G of prime order (written

Separation Results on the “One-More” Computational Problems 81

multiplicatively), a generator g of G, and the k-bit prime group order q = #G. We
assume that elementary group operations in G can be done efficiently, i.e., g1g2 and
g−1
1 can be efficiently computed for any g1, g2 ∈ G, and we denote by τ

EXP
the time

required for computing an exponentiation gx, where x ∈ [1, q]. We also consider a per-
fect discrete logarithm oracle DLg , i.e., an oracle which on any queried element always
answers its discrete logarithm with respect to g. For a non-negative integer n, the n-DL
problem (one-more discrete logarithm) consists in extracting the discrete logarithms of
n + 1 elements of G with respect to g using at most n queries to the oracle DLg. More
formally, for an algorithm A, we consider the following experiment [2]:

Experiment Expn-DL
Gen,A(k).

(G, q, g) ← Gen(1k)
(t0, t1, . . . , tn) ←U Zn+1

q ; yi ← gti for i = 0, . . . , n

(t′0, . . . , t
′
n) ← ADLg (G, g, q, y0, . . . , yn)

Return 1 if the following conditions hold else return 0
– t′i ≡ ti (mod q) for all i = 0, . . . , n
– DLg has been queried at most n times

We define the success probability of A in the above experiment as

Succn-DL
Gen,A(k) = Pr[Expn-DL

Gen,A(k) = 1],

where the probability is taken over the ti’s and the random tapes of Gen and A.
For any functions ε, τ : N → R, we denote by DL(n, ε, τ) the set CL(n-DL, ε, τ).

An algorithm A of this class is said to be an (ε, τ)-n-DL solver.

4.2 Algebraic Separations

First, we note that Theorems 5 and 8 apply to the discrete logarithm problems if we as-
sume that the reduction is base-invariant, i.e., it always feeds the (n+1)-DL solver with
the same group G and generator g given in the n-DL experiment. In what follows, we
show that we can extend these separation results to some non-invariant base (but same
group) reductions under the assumption that these reductions are algebraic. We restrict
to classical black-box reductions with rewinding and follow the spirit of Theorem 5. A
treatment of “sophisticated” reductions with a rewinding relaxation (as in Theorem 8)
can be done in the very same manner so that we omit such a presentation.

ALGEBRAIC ALGORITHMS. We use the concept of algebraic algorithms introduced
by Paillier and Vergnaud [15]. Roughly, an algorithm R is algebraic with respect to a
cyclic group G (of order q) if any element of G output by the algorithm at any step can
be described as an explicitly known “multiplicative combination” of its G inputs. More
precisely, there should exist an algorithm Extract which, given the random tape � of
R, its inputs (s, g1, . . . , g�) ∈ {0, 1}∗×G�, and its code co(R), enables to retrieve, for
any y ∈ G output by R, the coefficients a1, . . . , a� ∈ Zq such that

y = ga1
1 · · · ga�

� .

Moreover, it is required that the procedure Extract runs in polynomial time with respect
to |co(R)| (the size of the code of R) and τ = T (R). We denote the time complexity

82 E. Bresson, J. Monnerat, and D. Vergnaud

of one Extract execution by τ
EXT

. Though an algebraic algorithm may not be treated
as a black-box, we will use the notation MR to express the algorithm obtained by an
algorithm M which uses R as a subroutine and possibly makes calls to Extract.

Definition 10 (Group-invariant reductions). Let n and n′ be two non-negative inte-
gers. A reduction R from n-DL to n′-DL is said to be group-invariant if R exclusively
feeds the n′-DL solver with challenges containing the same group G which was given
by Gen in the n-DL experiment.

Theorem 11 (Separation for algebraic reductions). Let n, ε, ε′, τr be as in Lemma 4.
There exists a meta-reduction M (non black-box) such that, for any algebraic group-
invariant black-box (ε, ε′, τr)-reduction R from n-DL to (n + 1)-DL which makes at
most � “Launch” or “Rewind” queries to the underlying (n + 1)-DL-solver, MR is
an (ε′, τr + 2(n + 1)� · τ

EXP
+ � · τ

EXT
)-n-DL solver.

Proof. This proof is similar to that of Theorem 5 except that M needs to simulate the
(n + 1)-DL-solver A1 in a different way.

DESCRIPTION OF M. At the beginning, M is challenged with (G, g1, q, y0, . . . , yn)
and forwards this challenge to R. Then M has to deal with the queries made by R:
“Launch”, “Rewind” and queries to the DLg1 oracle. That latter is simulated in a
straightforward way by the meta-reduction, since its own oracle is relative to base g1
as well and the number of queries asked by R is less than n. For the “Launch” and
“Rewind” queries, we have to show how M simulates the (n + 1)-DL-solver A1. We
assume that at least one execution of A1 will terminate correctly: A1 asks n+1 discrete
logarithm queries and receives correct answers. We denote this event by Good.

The subtlety is as follows. On a “Rewind”-query, R can specify another base (and
the DL-queries made by A1 will be answered by R relatively to this base). However,
A1 being started with new inputs but unchanged random tape must ask the same DL-
queries (they only depend on the random tape). We now show that this is not a problem,
as long as one execution goes correctly (event Good). For convenience of notation, we
denote g1 as y−1 and for any i ∈ [−1, n] we note αi = logg2

yi. For completeness
we explicitly specify the random tape � of the reduction R (keep in mind that this
randomness is provided by M which has non black-box access to R).

A “Launch”-query is processed as follows:

Launch(G, g2, q, z0, . . . , zn+1)

(b−1, b0, . . . , bn) ← Extract(g2, �, co(R)) // we have: g2 =
∏n

j=−1 y
bj

j

// up to a permutation, we can assume b−1 �= 0
for i = 0 to n do

ri ←U Zq // A1 asks at most n + 1 queries
Submit gri

2 yi to DLg2 (simulated by R) and receive answer θi

αi ← θi − ri // clearly αi = logg2
yi = xi

α−1 ← b−1
−1(1 −

∑n
j=0 bjαj) // we have α−1 = logg2

g1 = x−1 �= 0
for i = 0 to n do

ci ← αi/α−1 mod q // ci = logg1
yi

Abort the interaction with R

From above, it is clear that if a “Launch”-query goes successfully (n+1 DL-queries
that are answered correctly), M is able to recover all ci = logg1

yi for i ∈ [0, n].

Separation Results on the “One-More” Computational Problems 83

On the other hand, if the first A1’s execution that goes successfully6 is a “Rewind”-
query, then M does as follows. Let us denote by g′2 the (new) generator provided by R
as an input of this query, M still constructs the DL-queries as gri

2 yi (and not g′2
riyi).

However the answers are relative to base g′2 and must be exploited differently. We first
note that we have n + 3 equations: one for the Extract(g2, . . .)-query made in the
underlying “Launch”-query, one for the Extract(g′2, · · ·) in the successful “Rewind”,
and n + 1 equations δθi = ri + xi, for i = 0, . . . , n with δ = logg2

g′2. The obtained
matrix relative to the linear system with n + 3 unknowns (x−1, x0, . . . , xn, δ) is:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1 b0 b1 · · · bn 0

b′−1 b′0 b′1 · · · b′n −1

1 −θ0

1 −θ1
. . .

...

1 −θn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

// from g2 =
∏n
−1 ybi

i

// from g′2 =
∏n
−1 y

b′
i

i

. . .

. . .

// from g′2
θi = gri

2 yi = gri+xi
2

. . .

Up to the sign, the determinant of this matrix is easily seen to be

±Δ = b−1

(
− 1 · 1 +

n∑

0

b′iθi

)
− b′−1

(n∑

0

biθi

)

From the two “Extract” equations it is easy to see that for any i ∈ [−1, n] we have
b′i = δbi with overwhelming probability (if it was not the case, linearly combining the
two equations would lead to some xi by expliciting (b′i − δbi)xi = · · ·). It follows
immediately that Δ = ±b−1 = 0.

As a conclusion, as soon as event Good occurs, the meta-reduction can solve the
system and obtain all the logg2

yi as well as logg2
g1, and thus can solve its challenge.

Otherwise (if R always halts A1 before it asks n + 1 DL-queries or if R always
answers incorrectly), then M outputs whatever R outputs. Thus:

Pr[SuccM] = Pr[SuccM|Good]︸ ︷︷ ︸
we show =1

Pr[Good] + Pr[SuccM|¬Good]︸ ︷︷ ︸
=Pr[SuccR|¬Good]

Pr[¬Good] ≥ ε′

(as in Lemma 4). The running time is easily checked. ��

Definition 12 (Regular reductions). Let R be a black-box reduction from a problem
P2 to a problem P1. We denote by suc the success event for R in solving P2 and Exec
the event that R launches at least one complete execution of the P1-solver and correctly
simulates its environment. The reduction R is said to be regular if the event Succ always
implies the event Exec.

6 We recall that a “successful” execution is defined by the fact that A1 receives correct answers,
not that A1 terminates. In fact it never terminates, since M aborts A1 as soon as it has enough
information to conclude.

84 E. Bresson, J. Monnerat, and D. Vergnaud

This definition captures the fact that the reduction really exploits the access given to
the P1-solver. This assumption seems quite natural, since the reduction would simply
be a P2-solver otherwise. The following result shows that the separation holds under
the hardness of the DL problem (rather than the one-more DL) if we assume R to be
regular. Moreover we get an improvement on the “extra” time of M w.r.t. R, which
drops from 2(n + 1)� · τ

EXP
+ � · τ

EXT
down to 2� · τ

EXP
+ (n + �) · τ

EXT
.

Theorem 13 (Separation for regular reductions). Let n, ε, ε′, τr be as in Lemma 4.
There exists a (non-black-box) meta-reduction M such that, for any regular algebraic
group-invariant black-box (ε, ε′, τr)-reduction R from n-DL to (n+1)-DL which makes
at most � queries of type “Launch” or “Rewind” to the (n + 1)-DL-solver, MR is an
(ε′, τr + 2� · τ

EXP
+ (n + �) · τ

EXT
)-DL-solver.

Proof. The proof differs from that of Theorem 11 in the way M simulates the oracle
DLg1 and feeds the reduction.

DESCRIPTION OF M. At the beginning, M is challenged with (G, g1, q, y). The meta-
reduction picks a tuple (r0, . . . rn) ←U Zn

q and computes wi ← gri
1 for i = 0, . . . , n.

Then, M feeds R with (G, g1, q, w0, . . . , wn) and has to deal with the queries made by
R. The DLg1 oracle is simulated using the algebraicity of R as follows:

Query DLg1(u)
(a, a0, . . . , an) ← Extract(u, �, co(R)) // we have: u = ga

1 ·
∏n

i=0 wai
i

Return a +
∑n

i=0 airi mod q

We now describe how M simulates A1 (on “Launch” queries).

Launch(G, g2, q, z0, . . . , zn+1)
(b, c0, . . . , cn) ← Extract(g2, �, co(R)) // we have: g2 = gb

1 ·
∏n

i=0 wci
i

α ← b +
∑n

i=0 rici // α = logg1
(g2)

r ←U Zq

Submit gr
2 · y to DLg2 (simulated by R) and receive r + β // β = logg2

(y)
d ← α · β
Abort the interaction with R

As in previous proof, the interaction is aborted if R answers incorrectly. By assump-
tion on R, there always exists a successful interaction (R answering correctly). If this
is a “Launch”-query, we can easily see from the above that M successfully outputs
d = logg1

y. If this is a “Rewind(g′2, · · ·)”-query, then we have three unknowns: α, β
and δ (the values of logg1

g2, logg2
y and logg2

g′2, respectively) and three equations:
⎧
⎨

⎩

α = b +
∑

i rici // from Extract(g2, · · ·)
δ · α = b′ +

∑
i ric

′
i // from Extract(g′2, · · ·)

δ · θ = r + β // answer θ to DLg′
2
(gr

2y)

This is clearly solvable. Thus after one sucessful execution of A1, M is always able
to compute its solution logg1

y = α · β. The “regular” notion ensures that M has a
success probability greater or equal to ε′. ��

Separation Results on the “One-More” Computational Problems 85

Remark 14. Note that Theorem 13 is valid if we only assume that R correctly answered
(at least) a single DLg query made by A1 when R succeeds in solving its n-DL chal-
lenge. This condition is a relaxation of the “regular” notion.

5 Some Applications to the Public-Key Cryptography

Here, we derive some cryptographic consequences from the above separation results
(mainly Theorem 5). All follow from the following reasoning: if a cryptographic prim-
itive is equivalent to an n-P problem with n > 1, then our results show that the security
of this primitive cannot rely on the hardness of solving P (aka 0-P) by using classical
black-box reductions7. Below, we consider cryptographic algorithms which have been
proven secure under a “one-more problem” and summarize equivalence results.

5.1 Chaum’s Blind Signature

Chaum’s RSA-based blind signature [10] originally motivates the introduction of “one-
more problems” (see [2]). In this scheme, the public key is (N, e) and the signer’s
private key is d (with, ed = 1 mod φ(N) and the factorization of N is unknown).
The signature of a message M is x = RSA−1

N,e(H(M)) = H(M)d mod N , where
H : {0, 1}∗ → ZN is a hash function. The blind signature protocol allows a user to get
the signature of a message without revealing it to the signer. To do so, the user picks
r ←U Z∗N and sends M̄ = re · H(M) mod N to the signer; the signer computes
x̄ = RSA−1

N,e(M̄) = M̄d mod N and returns x̄ to the user, who extracts x = x̄ · r−1

mod N . In their paper, Bellare et al. [2] defined the notion of one-more RSA prob-
lems8 and prove there exists a reduction from n-RSA to the one-more unforgeability
of the blind signature in the random oracle model. Briefly speaking, the one-more un-
forgeability means that no efficient algorithm can produce n+1 valid message-signature
pairs, after at most n interactions with the signer (remind that in such interaction, the
signer does not see the actual message, he just extracts e-th modular roots).

The other direction is fairly simple. One key point is that the forger sees the ran-
domness used in the signature; its “signing” oracle is actually an “RSA-inversion” or-
acle. We will not go into the details here, just give the rough idea. Assume we have
an algorithm A that solves the n-RSA problem. Building a one-more forger against the
Chaum’s blind signature scheme is easy: just launch algorithm A, answer its queries us-
ing the “signing” oracle (an e-th root extractor), and use its output to produce a forgery.

Now assume that the scheme can be proven secure under the standard RSA assump-
tion, using a classical black-box reduction R. Then, from a one-more RSA solver A,
we can construct a forger as above. And applying R to this forger would lead to an
efficient RSA-inverter: in other words, we would have inverted RSA starting from al-
gorithm A. But this would contradict our Theorem 5 above. Thus, the unforgeability of
Chaum blind signatures cannot be (black-box) based on the standard RSA problem.

7 We can derive a similar conclusion for sophisticated reductions which do not use “forking-
Lemma” like techniques. Since we are not aware of such reductions in the literature, we do not
expand on this.

8 As noted in [2], these problems can be hard only if factoring does not reduce to RSA inversion.

86 E. Bresson, J. Monnerat, and D. Vergnaud

5.2 Blind BLS Signature

In 2003, Boldyreva [6] proposed variants of the BLS signature [7], whose security
holds in GDH groups [14] (groups in which CDH is hard, but deciding if a 4-tuple
is a Diffie-Hellman one can be efficiently decided). The blind signature described in [6]
was proven secure (in the random oracle model) under the one-more CDH problem.
It considers a cyclic group G of prime order q generated by g and a bilinear pairing
e : G × G → G′ to a group G′ of order q. The secret key is an element x ←U Zq

and public key is y = gx. The BLS signature σ of a message M is given by H(M)x,
where H : {0, 1}∗ → G is a hash function (modeled by a random oracle). The veri-
fication consists in checking whether e(H(M), y) = e(σ, g) holds, i.e., we check that
(g, y, H(M), σ) is a correct DDH-tuple. The blinding signing procedure consists in
picking r ∈ Zq and sending M̄ = H(M) · gr to the signer who computes σ̄ = M̄x.
The signature is finally obtained by computing σ = σ̄ · y−r.

The security model is the same as for Chaum’s blind signature except that the forger
has access to an oracle (·)x which computes the scalar exponentiation in G on the query
with factor x. The one-more CDH problem consists in receiving n+1 random elements
h0, . . . , hn ←U G and in returning y0, . . . , yn such that yi = hx

i , while asking at most
n queries to the oracle (·)x.

One can show that n-CDH is equivalent to the one-more unforgeability of the blind
BLS. Namely, one feeds the n-CDH solver with hi := H(mi) for i = 0, . . . , n with any
chosen mi’s and returns the same output as the solver’s one. In addition, the oracle (·)x

of the n-CDH-solver is trivially simulated using the same oracle as in the unforgeability
game. The other direction was proved by Boldyreva9. As for Chaum’s blind signature,
one deduces from Theorem 5 that one cannot get a black-box reduction from CDH
problem to the unforgeability of blind BLS.

6 Conclusion

We presented rigorous arguments that a “one-more” problem n-P maybe not as hard
as the corresponding 0-P when P is self-random reducible and efficiently verifiable.
This class of problems include RSA inversion problem, computational Diffie-Hellman
problem in the pairing context, and discrete logarithm problem. As main cryptographic
consequences, we showed that the security of some blind signatures may hardly rely
on standard assumption such as the RSA inversion problem or computational Diffie-
Hellman problem. Furthermore, we showed that an equivalence result between the se-
curity of a primitive and the hardness of an n-P problem rules out the existence of a
black-box reduction from 0-P to the security notion. Finally, our results also show that
relying the security of a cryptographic primitive on a “one-more” problem n-P clearly

9 To be more precise, she proved the security of this signature under a variant called one-more
chosen-target CDH. A one-more chosen-target problem is like the variant presented in this
article except that the solver receives m instances (with m > n+1) and solves n+1 instance
of his choice with n oracle accesses. This variant is closer to the unforgeability notion, since
a forger can make more than n hash evaluations. Bellare et al. showed that both variants are
equivalent in the case of RSA and the discrete logarithm. We can apply the same technique to
show that this also holds for CDH.

Separation Results on the “One-More” Computational Problems 87

does not give any guarantee that the security of the primitive can be relied on the corre-
sponding 0-P problem, i.e., to a standard computational problem.

Acknowledgments. We would like to thank Mihir Bellare, Daniel Brown, and Daniele
Micciancio for very interesting discussions and valuable comments on this work.

References

1. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: FOCS 2001, pp. 106–
115 (2001)

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The 1-More-RSA-Inversion
Problems and the Security of Chaum’s Blind Signature Scheme. J. Crypto 16, 185–215

3. Bellare, M., Neven, G.: Transitive Signatures: New Proofs and Schemes. IEEE IT 51(6),
2133–2151

4. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against
Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

5. Bellare, M., Sandhu, R.: The Security of Practical Two-Party RSA Signature Schemes,
http://eprint.iacr.org/2001/060

6. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the
Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

7. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Crypto 17(4),
297–319

8. Brown, D.: Irreducibility to the One-More Evaluation Problems: More May Be Less,
http://eprint.iacr.org/2007/435

9. Brown, D., Gallant, R.: The Static Diffie-Hellman Problem,
http://eprint.iacr.org/2004/306

10. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp. 199–203
(1982)

11. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

12. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Mi-
croprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

13. Micali, S., Rivest, R.L.: Transitive Signature Schemes. In: CT–RSA 2002, pp. 236–243
(2002)

14. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In: PKC 2001, pp. 104–118 (2001)

15. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete
Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg
(2005)

16. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures.
J. Crypto (3), 361–396

17. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Crypto (3), 161–174
18. Tompa, M., Woll, H.: Random Self-Reducibility and Zero Knowledge Interactive Proofs of

Possession of Information. In: FOCS 1987, pp. 472–482 (1987)

http://eprint.iacr.org/2001/060
http://eprint.iacr.org/2007/435
http://eprint.iacr.org/2004/306

An Efficient Protocol for

Fair Secure Two-Party Computation

Mehmet S. Kiraz and Berry Schoenmakers

Dept. of Mathematics and Computer Science, TU Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

m.kiraz@tue.nl, berry@win.tue.nl

Abstract. In the 1980s, Yao presented a very efficient constant-round
secure two-party computation protocol withstanding semi-honest adver-
saries, which is based on so-called garbled circuits. Later, several proto-
cols based on garbled circuits covering malicious adversaries have been
proposed. Only a few papers, however, discuss the fundamental property
of fairness for two-party computation. So far the protocol by Pinkas (Eu-
rocrypt 2003) is the only one which deals with fairness for Yao’s garbled
circuit approach.

In this paper, we improve upon Pinkas’ protocol by presenting a more
efficient variant, which includes several modifications including one that
fixes a subtle security problem with the computation of the so-called
majority circuit. We prove the security of our protocol according to the
real/ideal simulation paradigm, as Lindell and Pinkas recently did for
the malicious case (Eurocrypt 2007).

1 Introduction

In secure two-party computation there are two parties who are interested in
evaluating a public function f(x, y) = (f1(x, y), f2(x, y)) where x and y are their
respective private inputs, and the first party wants to know the value f1(x, y)
and the other party wants to know f2(x, y) without disclosing more information
about their inputs than what is implied by the outputs. There might be only
common output (f1(x, y) = f2(x, y)), or one party receiving no output (e.g.,
f2(x, y) = ⊥).

In his seminal paper, Yao [14] presented a protocol for secure two-party com-
putation in the semi-honest model where the adversary follows the protocol
specifications but stores all intermediate values which may be analyzed later to
learn additional information. He used a tool called a garbled circuit, an encrypted
form of a Boolean circuit that implements the function f(x, y). Roughly speak-
ing, in Yao’s protocol, the garbled circuit is constructed by one party (Bob), and
it is evaluated by the other party (Alice). Recently, several papers appeared,
extending Yao’s protocol to the malicious case by using cut-and-choose tech-
niques [7,3,13,5,6]. However, these protocols do not ensure fairness. Informally
speaking, a protocol is fair if either both parties learn their (private) outputs, or
none of them learns anything. So, a fair protocol ensures that a malicious party

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 88–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient Protocol for Fair Secure Two-Party Computation 89

cannot gain an advantage by aborting the protocol before the other (honest)
party gets its output. Pinkas [11] presented the first fair and secure two-party
protocol based on Yao’s garbled circuits, which is the starting point of this work.

One of the main ideas of [11] is that the evaluation of the garbled circuit,
as performed by Alice, does not result in garbled values (one per output wire)
but—roughly speaking—in commitments to these garbled values. Basically, Alice
will hold commitments for Bob’s output wires, and, v.v., Bob will hold commit-
ments for Alice’s output wires. The important point here is that both parties are
convinced of the correctness of the values contained in the commitments held
by the other party. For this we need some special protocol techniques. In [11],
blind signatures are used as a building block to achieve correctness of these com-
mitments. However, blind signatures make Pinkas’ protocol rather complex and
inefficient. In our protocol, we avoid the use of blind signatures, resulting in a
savings of a factor k, where k is a security parameter.

Once the correctness of the commitments for the output values is guaran-
teed, both parties will gradually open their commitments (bit by bit). For this
gradual release phase we will use the protocol of [4] implementing their “commit-
prove-fair-open” functionality, which is actually proved correct according to the
real/ideal simulation paradigm. We will use their results in a black-box way.

1.1 Our Contributions

There have been several recent advances for Yao’s garbled circuit approach
[3,5,13,6]. In this paper, we revisit fairness while borrowing several improve-
ments and ideas from these recent papers. We thus improve upon the protocol
by Pinkas [11] which is the only paper considering fairness for Yao’s garbled
circuit approach.

Pinkas presents an intricate method which involves a modification of the truth
tables for the garbled circuits. A crucial part of his protocol is to let the parties
convince each other of the correctness of the committed values for the output
wires, as explained above. The difficulty is to show the correctness of Alice’s
commitments for Bob’s output wires. Concretely, blind signatures are used in [11]
as a building block for the verification of these commitments (where Bob is the
signer, Alice is the receiver of the blind signatures, and a further cut-and-choose
subprotocol is used to ensure that Bob only signs correctly formed (blinded)
commitments). Instead, we use the well-known OR-proofs [2], to let Alice show
that she committed correctly to the garbled output values that she obtained for
each of Bob’s output wires. Alice needs to render these OR-proofs only for the
so-called majority circuit. As a consequence, whereas Pinkas’ protocol uses 2�mκ
blind signatures, our protocol only needs � OR-proofs (but also �m homomorphic
commitments), where � is the number of output wires for Bob, m is the number
of circuits used for cut-and-choose, and κ is another security parameter (used for
cut-and-choose as well). Overall, this leads to an improvement by a factor of κ in
computational complexity, and also a significant improvement in communication
complexity.

90 M.S. Kiraz and B. Schoenmakers

The above application of OR-proofs also critically relies on a slight modifica-
tion of the circuit representing f , where a new input wire (for Bob) is introduced
for every output wire of Bob. Bob will use random values for these new input
wires, to blind the values of his output wires. Nevertheless, Alice will still be able
to determine a majority circuit. This modification was suggested to us by Pinkas
to resolve a subtle problem for the protocol of [11], which we communicated to
him [10]; the problem is that a corrupted Alice may learn Bob’s private inputs.

The security of our protocol is analyzed according to the real/ideal simulation
paradigm, following the proof by Lindell and Pinkas [6] for the malicious case.
However, we note that the failure probability for their simulator is quite large
in the case that Bob is corrupted; namely 21−m/17, where m is the number of
circuits used, for a certain type of failure—in addition to other types of failures.
This requires a large value for m, even for a low level of security. By two further
extensions to the circuit representing f (the first of which actually suffices for [6]),
we are able to reduce the failure probability to 2−m/4 (which we believe is optimal
for this type of cut-and-choose protocols relying on majorities).

Roadmap

In Section 2, we describe the problem which covers fairness, the importance
of the majority circuit computation and the problem mentioned above for the
protocol by Pinkas. In Section 3, we present our improved fair and secure two-
party protocol, in Section 4 we analyze its performance and compare with the
protocol by Pinkas. Finally, in Section 5 we analyze the security of our protocol,
where we also describe how to modify the circuit for f in order to get a more
efficient simulation.

2 Main Protocol Ideas

In this section we briefly review some issues for Pinkas’ protocol, and we present
the main ideas behind our new protocol. We refer to [11] for a list of references
on fairness.

Gradual Release. Let us first mention that for the gradual release phase,
which concludes our protocol, we will use the protocol for the “commit-prove-
fair-open” functionality of [4]. Note that Pinkas [11, Appendix A] uses a special
protocol for this, based on timed-commitments. We will use the “commit-prove-
fair-open” functionality in a black-box manner. The only thing we need to take
care of before reaching the gradual release phase is that Alice and Bob hold
commitments to the correct values for each other’s output wires.

The intuition behind these gradual release protocols (which do not rely on a
trusted party) is that Alice and Bob open the commitments bit-by-bit in such
a way that the other party can directly check the correctness of each bit so
released. Also, a party prematurely aborting the protocol cannot perform the
search for the remaining bits in parallel, and [4] even shows how this can be
done in a simulatable way.

An Efficient Protocol for Fair Secure Two-Party Computation 91

Majority Circuits. We consider protocols which let Alice decide (at random)
for each of m garbled circuits constructed by Bob, whether such a circuit must be
opened by Bob (for checking by Alice), or whether the circuit will be evaluated
by Alice. Exactly m/2 circuits will be checked by Alice, and she will evaluate the
remaining half. Among the evaluated circuits there may still be a few incorrect
circuits (not computing function f), but with high probability the majority of
the evaluated circuits is correct.

We actually need to deal with two types of majority circuits. One is related
to Bob’s output wires (which we will indicate by index r throughout the paper;
to ensure that Bob cannot get any information on Alice’s inputs), and one is
related to Alice’s output wires (to ensure that Alice is guaranteed to get correct
output values). These majority circuits can be characterized as follows. First, the
majority value for an output wire is the bit value that occurs most frequently for
that wire when considered over all m/2 evaluated circuits (ties can be broken
arbitrarily). Further, an output wire is called a majority wire if its value is equal
to the majority value. And, finally, a circuit is called a majority circuit for Alice
resp. Bob if all of Alice’s resp. Bob’s output wires are majority wires.

Next, we explain why Alice should to send the output values only for a major-
ity circuit, rather than sending Bob the output values for all evaluated circuits.
For example, Bob could have constructed m − 1 garbled circuits that compute
the function f(x, y) and a single circuit which simply outputs Alice’s input val-
ues. Since Alice evaluates m/2 out of m circuits, the probability would be 1/2
that this single circuit is selected by Alice. Therefore, Bob would receive the
outputs of the incorrect circuit from Alice with probability 1/2 at the end of the
evaluation.

Note that the computation of majority circuit for Bob can be avoided alto-
gether for a protocol tolerating malicious adversaries but not achieving fairness.
Namely, Lindell and Pinkas in [6, Section 2.2] show that it suffices to consider
the case that only Alice receives private output. It is not clear, however, whether
this protocol can be extended to cover fairness as well.

Problem with Pinkas’ Computation of Majority Circuit for Bob. Omit-
ting details, the protocol by Pinkas reaches a state in which for each evaluated
garbled circuit GCj and for each output wire i of Bob, Bob knows a random bit
kij and Alice knows the value bij ⊕ kij , where bij is the actual output bit for
wire i in circuit GCj . Alice and Bob then use these values to determine a ma-
jority circuit r for Bob. Pinkas proposes that Alice can be trusted to construct
a garbled circuit for this task, as Alice needs this majority circuit to prevent
Bob from cheating. But this way, nothing prevents Alice from constructing an
arbitrary circuit which reveals some of Bob’s input values and hence some of
the ki,j values. Then Alice learns Bob’s actual output bits, which should not be
possible. Of course, this problem can be solved by running any two-party proto-
col which is secure against malicious parties (e.g., [6]). However, in this paper,
we will not require any additional protocol for computing a majority circuit for
Bob. We present a simple modification to the circuit and in this way we show
that a majority circuit can be computed without considerable additional cost.

92 M.S. Kiraz and B. Schoenmakers

Modified Circuit Randomizing Bob’s Output Wires. Alice needs to be
able to determine a majority circuit for Bob, but at the same time she should
not learn Bob’s actual output values. Let Cf denote a circuit computing function
f(x, y). We extend circuit Cf to a randomized circuit RCf , as follows [10]. See
Figure 1. Hence, for each output wire Wi of Bob, a new input wire W ′

i is added
as well as a new output wire W ′′

i , such that W ′′
i = Wi ⊕ W ′

i .

B
ob’s

actual
output

w
ires

. . .

. . .

. . .

Additional wires to randomize Bob’s actual output wires

Randomized Circuit RCf

W ′
lW ′

l−1

WlWl−1

W ′′
l−1W ′′

2W ′′
1

W2W1

W ′
1 W ′

2

W ′′
l

Original Circuit Cf

Bob’s randomized
output wires

Fig. 1. The randomized circuit RCf made from the original circuit Cf

Correctness of Garbled Input Values. Bob is not only providing Alice with
m garbled circuits, but also with garbled values for each input wire for each
circuit to be evaluated. It must be ensured that these garbled values are correct
(i.e., correspond to the actual input value and fit with the garbled truth tables
of the garbled circuits).

The correctness of Alice’s garbled inputs will basically follow by definition
of 1-out-of-2 oblivious transfer (OT) as in [11]. However, as pointed out in [5],
one cannot use plain OT for the malicious case; rather a stronger form of OT
such as committed OT, or the potentially weaker form of committing OT should
be used. Here, committing OT is like plain OT with the added requirement
upon completion of the protocol, the sender is committed to both of the input
values it used during the protocol. The additional commitments output by the
committing OT protocol will be opened by Bob (sender in OT) for the circuits
which are checked by Alice.

The correctness of Bob’s garbled inputs is not as straightforward to handle.
Pinkas [11] originally used OR-proofs [2], whereas later papers [3,13,6]) aimed
at using less expensive techniques relying on symmetric operations only (used
in combination with cut-and-choose). In this paper, we use the equality-checker
scheme of Franklin and Mohassel [3] for proving correctness of Bob’s inputs.

The equality-checker scheme roughly runs as follows. For each pair of garbled
circuits GCj and GCj′ with 1 ≤ j < j′ ≤ m, and for each input wire i for Bob,
and for each b ∈ {0, 1}, Bob commits to the garbled values wi,j,b and wi,j′,b. Alice
will check the consistency of these commitments for each pair of garbled circuits

An Efficient Protocol for Fair Secure Two-Party Computation 93

that are both opened by Bob. This implies with overwhelming probability that
Bob’s inputs to any two circuits GCj and GCj′ are equal(see [3] for more details).

Correctness of Committed Outputs. In order that the two parties can safely
enter the gradual release phase, one of the main problems that needs to be solved
is that both parties are convinced of the correctness of the values contained in
the commitments held by the other party. We treat this problem differently for
Alice and Bob.

Bob’s commitments to Alice’s outputs will be guaranteed to be correct by
cut-and-choose, exactly as in [11]. For Alice’s commitments to Bob’s outputs,
however, we will use a different approach than in [11], which used blind signatures
for this purpose. In our protocol, Alice will first obtain the garbled values for
Bob’s outputs for all evaluated circuits, and she commits to all of these values.
At that point, Bob can safely reveal both garbled values for each output wire (of
the randomized circuit, as described above). Additional commitments from Bob
will ensure that these garbled values are correct. Finally, Alice proves that she
committed to one of these garbled values, from which Bob deduces that Alice
indeed committed to correct values for Bob’s output wires.

Concretely, we let Alice produce an OR-proof as follows. Suppose Alice com-
mitted to a garbled value wi,j for output wire i of Bob in circuit GCj , and
that she received garbled values wi,j,0 and wi,j,1 from Bob. Using homomorphic
commitments, such as Pedersen commitments [9], Alice can prove that either
wi,j = wi,j,0 or wi,j = wi,j,1 without revealing which is the case, applying [2]
to the Chaum-Pedersen protocol for proving equality of discrete logarithms [1].
We will use the Fiat-Shamir heuristic to make these proofs non-interactive (and
provably secure in the random oracle model).

3 A Fair Secure Two-Party Protocol

The object of the protocol is to evaluate a function of the form f(x, y) =
(f1(x, y), f2(x, y)) securely, where Alice holds input x and gets output f1(x, y)
and Bob holds input y and gets output f2(x, y). For simplicity, we assume that
these inputs and outputs are all of equal length, i.e., f : {0, 1}� × {0, 1}� →
{0, 1}� × {0, 1}�, for some integer value �.

Let RCf denote the randomized boolean circuit for function f , see Figure 1.
We use IA resp. OA to denote the set of Alice’s input resp. output wires, and
IB resp. OB to denote the set of Bob’s input resp. output wires. Furthermore,
we use I ′B to denote the additional input wires for Bob, used in the construction
of RCf from Cf . Note that |IA| = |IB| = |I ′B | = |OA| = |OB| = �. Accordingly,
we write x = 〈xi ∈ {0, 1} : i ∈ IA〉 for Alice’s input, y = 〈yi ∈ {0, 1} : i ∈ IB〉
for Bob’s input, and z = 〈zi ∈ {0, 1} : i ∈ I ′B〉 for Bob’s random input to RCf .
Further, |RCf | denotes the number of gates in the circuit RCf , and we W denote
the set of all wires in the circuit RCf . Hence, IA ∪ IB ∪ I ′B ∪ OA ∪ OB ⊆ W .

In Phase 3 of the protocol, Bob will generate m garbled versions of the circuit
RCf , where m is a security parameter. We will denote these garbled circuits by

94 M.S. Kiraz and B. Schoenmakers

GCj , for j = 1, . . . , m. A garbled circuit GCj for RCf is completely determined
by the pair of garbled values (wi,j,0, wi,j,1) assigned by Bob to each wire i ∈ W .
Here, wi,j,b ∈ {0, 1}k corresponds to bit value b ∈ 0, 1, where k is another security
parameter, denoting the length of the garbled values.

We abstract away most of the details of how garbled circuits are generated
and evaluated. For our purposes it suffices to view a garbled circuit (as to be
evaluated by Alice) as a concatenation of permuted-encrypted-garbled-4-tuples,
one for each (binary) gate in RCf , and of permuted ordered pairs, one for each
output wire of Alice: GCj = 〈〈PEG-4-tuplen,j : 1 ≤ n ≤ |RCf |〉, 〈POPi,j : i ∈
OA〉〉. The permuted ordered pairs POPi,j are generated at random by Bob,
using the garbled values wi,j,0 and wi,j,1 assigned to wire i ∈ OA in circuit j:
POPi,j = wi,j,σi,j , wi,j,1−σi,j), where σi,j ∈R {0, 1}.

In the protocol we use two types of commitments, namely homomorphic
(‘asymmetric’) commitments, e.g., Pedersen commitments [9], and other (‘sym-
metric’) commitments, e.g., constructed from pseudorandom generators [8]. We
let commitP (m; r) denote a symmetric commitment to a message m using ran-
domness r generated by party P , and we use commith

P (m; r) to denote homo-
morphic commitments.

The protocol consists of 10 phases (see also Appendix A for a protocol diagram).

Phase 1 [Generation of garbled input values]. Bob generates garbled
values wi,j,b ∈R {0, 1}k, for i ∈ IA, j = 1, . . . , m, and b ∈ {0, 1}.

Phase 2 [Committing OT]. Committing OT is run in order for Alice to learn
her garbled input values. Bob is the sender with private input wi,j,0, wi,j,1
for i ∈ IA and j = 1, . . . , m which were generated in Phase 1, and Alice is
the receiver with private input xi ∈ {0, 1}. At the end of committing OT
Alice receives wi,j,xi and Bob gets no information about which of his inputs
is chosen. Also, the common output is AOT

i,j,b = 〈 commitB(wi,j,b; αi,j,b) 〉 for
i ∈ IA, j = 1, . . . , m, b ∈ {0, 1}. These commitments will be checked by
Alice later on, in order to prevent cheating by Bob; in particular to avoid
the protocol issue addressed in [5].

Phase 3 [Construction]. In this phase Bob does the following:
– He prepares the garbled circuits GCj for j = 1, . . . , m such that the gar-

bled values wi,j,0, wi,j,1 for i ∈ IA and j = 1, . . . , m which are generated
in Phase 1 are used for the corresponding wires.

– He also generates the commitments Bi,j,j′,b = commitB(wi,j,b, wi,j′,b;
βi,j,j′,b) for i ∈ IB ∪ I ′B and j, j′ such that 1 ≤ j < j′ ≤ m, b ∈ {0, 1}
for the equality-checker scheme. Bi,j,j′,b’s are committed to Bob’s gar-
bled input values and they are generated to ensure that Bob’s input is
consistent for all the circuits (see Section 2).

– He also computes the commitments Ci,j=commitB(σi,j ; γi,j) for i ∈ OA

and j = 1, . . . , m where σi,j ∈R {0, 1}. These committed values are used
to permute Alice’s output values and the correctness will be proved by
the cut-and-choose technique, by opening half of them in the opening
phase.

– Finally in this phase, the commitments Di,j=commitB(wi,j,0, wi,j,1; δi,j)
for i ∈ OB and j = 1, . . . , m are computed. The Di,j ’s are committed

An Efficient Protocol for Fair Secure Two-Party Computation 95

to Bob’s garbled output values and they are generated so that Alice can
determine a correct majority circuit.

He sends the circuits and the commitments generated above to Alice. Each
pair of commitments (Bi,j,j′,0, Bi,j,j′,1) is sent in random order, in order that
Alice does not learn Bob’s inputs when Bob opens one commitment for each
of these pairs later on in the evaluation phase.

Phase 4 [Challenge]. Alice and Bob run the challenge phase (a coin-tossing
protocol) in order to choose a random bit string � = �1 . . . �m ∈R {0, 1}m

that defines which garbled circuits and which commitments will be opened.
Phase 5 [Opening & Checking].

– Alice asks Bob to open the circuits GCj for j such that �j = 1 which are
called check-circuits. Similarly, the circuits GCj for j such that �j = 0 will
be called evaluation-circuits. She also asks Bob to open the corresponding
commitments for j such that �j = 1. Bob sends the following for opening:

– Bob sends the opening set G̃Cj= 〈 wi,j,b: i ∈ W 〉, for j such that �j = 1,
b ∈ {0, 1} to open the check-circuits.

– He also sends ÃOT
j,b = 〈 αi,j,b: i ∈ IA 〉 for j such that �j = 1, b ∈ {0, 1}

in order to open the corresponding commitments AOT
i,j,b.

– He also sends the opening set B̃j,j′,b= 〈 βi,j,j′,b: i ∈ IB ∪I ′B 〉 for j, j′ such
that �j=�j′ =1, 1 ≤ j < j′ ≤ m, b ∈ {0, 1} to open the corresponding
commitments Bi,j,j′,b.

– The opening set C̃j= 〈 σi,j ,γi,j : i ∈ OA 〉 for j such that �j = 1 is also
sent in this phase to open the corresponding commitments Ci,j . −The
opening set D̃j= 〈 δi,j : i ∈ OB 〉 for j such that �j = 1 is also sent to
open the corresponding commitments Di,j .

– The opening set B̃input
j,j′ = 〈 wi,j,yi ,wi,j′,yi , βi,j,j′,yi , wi′,j,zi′ ,wi′,j′,zi′ ,

βi′,j,j′,zi′ : i ∈ IB , i′ ∈ I ′B 〉 for j, j′ such that �j=�j′ =0, 1≤ j <j′ ≤
m. This set contains the garbled values of Bob’s input wires for the
evaluation-circuits, and sent to Alice which is a part of the equality-
checker scheme.

Alice verifies the circuits and the commitments. Note that the consistency
check of Bob’s input is done now by the equality-checker scheme with the
commitment set G̃Cj (contains all garbled values) for j such that �j = 1 and
b ∈ 0, 1 and the set B̃j,j′,b for j, j′ such that �j = �j′ = 1, 1 ≤ j < j′ ≤ m

and b ∈ {0, 1}. Note that the opening sets ÃOT
j,b , B̃j,j′,b and D̃j contain only

randomness since the corresponding garbled values comes already from the
set G̃Cj . If any of the verifications fail Alice aborts the protocol.

Phase 6 [Evaluation]. Alice does the following in the evaluation phase:
– She first evaluates the circuits GCj for �j = 0 and computes garbled

output values.
– She then commits to Bob’s output values as Ei,j = commith

A(wi,j ; ζi,j)
for i ∈ OB and j such that �j = 0 and sends them to Bob. Note that the
commitments Ei,j are generated to assure Bob that the committed values
in Ei,j are circuit values. If, for example, Alice commits to values different
from garbled output values then she will be detected in OR-proofs in

96 M.S. Kiraz and B. Schoenmakers

Phase 9. The crucial property we need here is that these commitments
are homomorphic in order to be able to use in OR-proofs.

Phase 7 [Opening of Bob’s ordered output]. After Bob receives the com-
mitments Ei,j for i ∈ OB and j such that �j = 0 he opens the commitments
Di,j by sending the opening set D̃j = 〈 wi,j,0,wi,j,1,δi,j : i ∈ OB 〉 for j such
that �j = 0. Note that the commitments Di,j can be opened since Bob’s
outputs are randomized (see Figure 1); hence Alice can only see which out-
puts match (and determine a majority circuit), but she does not learn Bob’s
output f2(x, y).

Phase 8 [Decision of majority circuit]. Alice determines a majority circuit
GCr for some r such that �r = 0. Note that she can determine a correct
majority circuit GCr without further interaction with Bob since the addi-
tional input values that were used to randomize Bob’s output wires are all
identical for the same wire in each circuit GCj for j such that �j = 0.

Phase 9 [Verification of Alice’s commitments]. They run OR-proofs
where Alice is the prover, Bob is the verifier. Alice proves that the com-
mitted value inside Ei,r is either equal to wi,r,0 or wi,r,1. Alice cannot cheat
here, otherwise she has to guess a garbled value, which has chances at most
negligibly in k.

Phase 10 [Gradual release]. They then run the protocol for the gradual
release to open their respective commitments, namely, Ci,j ’s and Ei,j ’s. At
the end of the gradual release:
– Alice learns all σi,j for i ∈ OA and j ∈ U and applies it to POPi,j to

learn her actual outputs for j circuits. She takes the majority of j circuits
which will result in f1(x, y).

– Bob also matches the garbled output values that are received from Alice
and the additional wire values in terms of bits (he knows the garbled val-
ues and the corresponding bits). Bob finally computes his output f2(x, y)
by XORing his randomized output wire for the circuit GCr with the cor-
responding additional wires.

4 Performance Analysis

We analyze the overall communication and computational complexity of our pro-
tocol, and compare with Pinkas’ protocol by ignoring the constructions that are
used in both protocols. We assume that Pinkas’ protocol also uses the equality-
checker for consistency of Bob’s input. We also assume that Pinkas’ protocol
uses committing OT to fix the protocol issue [5]. Note that by the modification
presented in Figure 1 we need � additional XOR gate for each output wire of
Bob which has only negligible affect to the overall complexity.

As we said before, the problem of Pinkas’ protocol with majority circuit com-
putation can be fixed by running any two-party protocol considering malicious
adversaries. For example, if the protocol in [6] is used then the communication
complexity of majority circuit computation is O(�m2 log m). We note that there
is no need to use such a protocol in our case.

An Efficient Protocol for Fair Secure Two-Party Computation 97

We next consider the parts related to fairness. Note that the way we generate
Bob’s commitments to Alice’s outputs is the same as in Pinkas’ protocol (namely,
there are O(�m) commitments to permutations σi,j ’s). However, for Alice’s com-
mitments to Bob’s outputs is much different: Pinkas’ protocol has O(�mκ) com-
mitments which are generated by Alice in order to be blindly signed by Bob,
where κ is another security parameter (which are actually timed-commitments
for the gradual opening). In our protocol, there are O(�m) homomorphic commit-
ments, and � OR-proofs (namely, one proof for each wire). In the gradual phase,
we use the protocol of [4] in order to ensure fairness, namely new commitments
(together with the proof of correctness) will be generated before applying grad-
ual opening. Note that one can also use the protocol presented by Schoenmakers
and Tuyls [12] which is a weaker version of [4] but relatively more efficient.

The major difference between our approach and the construction by Pinkas [11]
is in the removal of the blind signatures and of the majority circuit computation.
This leads to an improvement by a factor of κ for the computational complexity.
The reason is that for every output wire of Bob 2κ blind signatures are needed in
Pinkas’ protocol while in ours only one proof of knowledge is needed together with
a simple modification to the circuit.

5 Security Analysis

In our security analysis we want to take advantage of the frameworks established
by [6] and [4] for the real/ideal simulation paradigm, resp., for the malicious case
in secure two-party computation (and Yao’s protocol in particular) and for the
case of fair protocols. To do so we will actually focus on analyzing a variant of
our protocol, in which Phase 10 is replaced by Phase 10′:

Phase 10′ [Trivial opening.] Alice opens the commitments Ei,r for i ∈ OB

and Bob opens the commitments Ci,j for i ∈ OA and j such that �j = 0.

This adapted protocol is not fair, but it withstand malicious adversaries. We
will argue so by showing how to simulate it, following [6]. From this we conclude
that the commitments upon entering Phase 10 in the protocol are correct, as a
consequence of which the framework of [4] applies and the simulatability of our
protocol follows.

Before we give a simulation we present the following two additional modifica-
tions over the circuit RCf , in order to have an efficient simulation.

Modification 1. We first modify Bob’s input wires of the circuit RCf in the
following way: for each input wire of Bob (say WB), we add an AND gate and
an OR gate as shown in Figure 2 in such a way that the AND gate has one new
input wire for Alice (say WA) and the original input wire from Bob (WB). This
composition of gates always reproduces the value of the wire WB independently
of the value of WA ((WA ∧ WB) ∨ WB = WB).

This modification is applied so that the simulator is able to learn the input of
the corrupted Bob. Roughly speaking, if the simulator knows the garbled circuit,

98 M.S. Kiraz and B. Schoenmakers

two garbled values for each input wire of Alice (together with their corresponding
bit value) and a garbled value for each input wire of Bob (where he does not
know the corresponding bit value) then it is possible to compute the bit value
of the garbled value for each input wire of Bob.

W ′
B

W ′
B = (WA ∧ WB) ∨ WB = WB

Bob’s input wire Alice’s new input wire

WB WA

∧

∨

Fig. 2. Additional gates for each of Bob’s input wires

We now proceed with the details. Let wA,i,0 and wA,i,1 denote Alice’s garbled
input values (for 0 and 1) for i ∈ IA, and wB,i,b Bob’s garbled input value for
i ∈ IB ∪ I ′B and for some b ∈ {0, 1}. If the garbled values wA,i,0, wA,i,1, wB,i,b

and the garbled circuit are given then by evaluating the garbled AND gate with
the garbled inputs (wA,i,0, wB,i,b) and (wA,i,1, wB,i,b) it is possible to decide the
bit value of wB,i,b (i.e., learn the bit value b). Namely, if after these two eval-
uations the same garbled value is obtained, it means that Bob’s garbled input
corresponds to the bit 0; otherwise, Bob’s input bit is 1. We note that this de-
duction process does not work for an arbitrary Boolean gate, and this is the
reason why we modified the circuit in such a way that the input gates are AND
gates. For example, evaluation of an XOR gate (has Alice’s input wire and Bob’s
input wire) using (wA,i,0, wB,i,b) and (wA,i,1, wB,i,b) would always result in two
different garbled values from which one cannot conclude the input bit of the
corrupted Bob.

Modification 2. We next modify Bob’s output wires of the circuit RCf in the
following way: for each output wire of Bob, we add the construction presented in
Modification 1 and add two XOR gates as shown in Figure 3 in such a way that
new input wire for Alice is added. This composition of gates always reproduces
the original output bit of Bob in the garbled circuit independently of the value
of Alice’s additional input (i.e., the bit value of the wires WB , W ′

B and W ′′
B in

Figure 3 is the same regardless of Alice’s input.). The simulator has to learn the
garbled output values of the corrupted Bob together with their corresponding bit
(we describe this during the simulation), and by this modification the simulator
would be able to learn them.

If the garbled values wA,i,0, wA,i,1, wB,i,b and the garbled circuit are given
then by evaluating the modification in Figure 3 it is possible to compute the
garbled values for each output wire of Bob together with their corresponding bit.

An Efficient Protocol for Fair Secure Two-Party Computation 99

W ′′
B = (WB ⊕ WA) ⊕ WA = WB

W ′
B = (WB ∧ WA) ∨ WB = WB

W ′′
B

W ′
B

⊕

WA

Bob’s output wire

⊕

∨

∧WB

Bob’s output wire

Alice’s new input wire
RCf

Fig. 3. Additional gates for each of Bob’s output wires

More precisely, as described above, by evaluating the garbled AND gate with
the garbled inputs (wA,i,0, wB,i,b) and (wA,i,1, wB,i,b) it is possible to compute
the output bit value of Bob’s garbled output value wB,i,b for the wire WB in
Figure 3 (i.e., learn the bit value b). We here note that the bit value of W ′

B is
the same as the bit value of WB , so the bit value of W ′

B is also known.
We next show that it is possible to compute both garbled output values (0

and 1) for the output wires of XOR gates from the second construction (for the
wires W ′

B and W ′′
B in Figure 3), together with their corresponding bit. Let ŵ be

the evaluated garbled output value of the OR gate for wire W ′
B. By evaluating

the garbled XOR gate with the garbled inputs (wA,i,0, ŵ) and (wA,i,1, ŵ) where
the bit value of ŵ is known one can learn both garbled values for the output
wires of XOR gates (W ′

B and W ′′
B), and their corresponding bit. Namely, these

two evaluations always result in two different garbled values from which it is
easy to learn the corresponding bit.

We stress that our protocol is applied to this final modified circuit together
with the above modifications, and in this way we show that we have an efficient
simulator.

We are now ready to simulate the protocol (the one with the trivial opening)
assuming that either Bob or Alice is corrupted.

Case 1- Assume Bob is corrupted
Let RB be an adversary corrupting Bob; we construct a simulator SB as follows.
Since we assume that the committing OT protocol is secure, we analyze the
security of the protocol in the hybrid model with a trusted party computing the
committing OT functionality.

100 M.S. Kiraz and B. Schoenmakers

The simulator.
1. The simulator SB chooses a fixed input x′ = 0 for Alice and uses it only in
the beginning of the protocol (namely, to run the OT phase) but it is not used
later on.
2. SB invokes RB and obtains the garbled input values wi,j,0 and wi,j,1 for i ∈ IA

and j ∈ {1, . . . , m} which are RB ’s inputs from the committing OT protocol (in
the hybrid model).
3. SB receives all of the garbled circuits and the commitments from RB.
4. SB then runs the challenge phase to generate the random challenge values.
5. Now the input of RB will be extracted as follows. The simulator SB receives
all of the required decommitments from RB based on the challenge values, in-
cluding the garbled values that correspond to Bob’s input. Let wi,j be Bob’s
garbled input value for i ∈ IB ∪ I ′B and j such that �j = 0. SB verifies that all
the commitments are correct as Alice would do in Phase 5. If any of the checks
fail, SB sends an abort message to RB , sends ⊥ to the trusted party and halts,
outputting whatever RB outputs. If none of the checks fail, SB obtains m/2
input for Bob for m/2 circuits because of Modification 1. More precisely, the
simulator knows wi,j,0, wi,j,1 for i ∈ IA and wi,j for i ∈ IB ∪ I ′B for j such that
�j = 0, and by Modification 1 the simulator can learn the input bit of Bob for
each wi,j for i ∈ IB ∪ I ′B for j such that �j = 0. (In the real case, this does not
happen since Alice learns only one garbled input value from OT for each her
input wire.) If no input value appears more than m/4 times, then SB outputs
fail1. We show below that fail also does not occur with high probability. Other-
wise, SB sets y to be the value that appears more than m/4 times and sends it
to the trusted party. Trusted party replies with f2(x, y) to SB.
6. Now the simulator knows f2(x, y) but it has to convert this value into the
corresponding garbled values. The simulator SB first computes the evaluation-
circuits as in the real protocol and obtains one garbled output value per wire.
The complementary values will appear as well which are in general not the cor-
rect ones since the simulator computes the garbled circuit in the case that x′ = 0.
However, Modification 2 has been applied in order to learn both garbled output
values of Bob, and the corresponding bits. As we described above, the simulator
learns the output bit of wi,j for i ∈ IB ∪I ′B and j such that �j = 0 from the AND
gate in Figure 3 (for the wire WB). This bit value is the same as the bit value
for the wire W ′

B in Figure 3. Then, by decrypting the XOR gates the simulator
learns both garbled values, and their corresponding bits. In the real case, this
does not happen since Alice learns only one garbled input value from OT for
each her input wire. Hence, since the simulator knows the private output of the
corrupted party and corresponding garbled output values it then computes the
commitments commitA(wi,j ; ζi,j) for i ∈ OB and j such that �j = 0 as Alice
does in the real protocol in Phase 6 and sends to RB.
7. The commitments commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB and j such that
�j = 0 are opened by RB for the evaluation-circuits as in the real protocol.

1 The majority of inputs are computed in order to have a correct output by the cut-
and-choose technique.

An Efficient Protocol for Fair Secure Two-Party Computation 101

8. The simulator then determines the majority circuit since it knows the garbled
output values and the corresponding bits as in the real protocol.
9. Since the simulator knows the values in the commitments Ei,r it can produce
the proof.
10′. Alice opens the commitments Ei,r for i ∈ OB and Bob opens the commit-
ments Ci,j for i ∈ OA and j such that �j = 0.

Analysis. We claim that the view of RB in the simulation with SB is statis-
tically close to its view in a hybrid execution of the protocol with a trusted
party computing the committing OT protocol. (Note that our protocol is not
statistically secure since the simulation is in the hybrid model for committing
OT functionality, and it depends on the implementation of OT subprotocol, the
commitment schemes and the OR-proofs used).

First of all, we show that if Alice aborts the protocol depending a cheating
behavior by Bob, then Bob does not get any information about Alices input. This
is only possible either at Phase 5 (at the opening & checking phase) or at Phase
7 (at the opening of Di,j ’s) while checking the correctness of the circuits and the
commitments. In this case, the decision to abort is based on Bob’s construction
of the circuits as well as commitments (including commitments from the OT
phase), and on the random inputs of the parties, and is independent of Alice’s
input. Thus, Bob does not get any information if Alice aborts the protocol.
Thus, we know that the difference between Alice receives “abort” in an ideal
execution with SB and that Alice outputs “abort” in a real execution with RB

is negligible. From here on, we therefore consider the case that Alice does not
abort the protocol.

We now prove that the circuits and the commitments are correct with over-
whelming probability. First of all, we note that the additional modifications does
not compromise the security of the garbled circuit since, by definition of garbled
circuit, having one garbled value for each input wire for a gate results in al-
ways one garbled output value, which ensures privacy. If Alice does not abort
then with probability 2−m/4 at most m/4 of the circuits are bad (including the
commitments). Also, we know that the equality-checker scheme [3] assures with
high probability a majority of the evaluation-circuits obtain the same input and
OT assures with high probability that the values received from OT are correct
garbled values, and therefore fail does not occur with negligible probability. The
simulator SB can then decide on a majority circuit, prove that the commit-
ments are committed to the garbled values of output wires of RB and open the
commitments for only this circuit.

We next show that if SB does not output any fail message, the simulated view
of RB is identically distributed to its view in an execution of the protocol. Ac-
tually, they are identical since SB just runs the honest Alice’s instructions when
interacting with corrupted Bob. Since SB uses independent random coins in the
challenge phase and follows Alice’s instructions each time, the above process
results in a distribution that is identical to the view of RB in a real execution
with Alice. As we mentioned before the protocol is not statistically secure since

102 M.S. Kiraz and B. Schoenmakers

the simulation is considered in the hybrid model for committing OT functional-
ity, and it depends on the implementation of OT subprotocol, the commitment
schemes and the OR-proofs.

Case 2- Assume Alice is corrupted
The security analysis when Alice is corrupted is very similar to the proof of [6].
During the protocol Alice sees the circuits and the commitments and they run
a secure committing OT where she gets only the garbled values corresponding
to her input bits. On a high level, in the simulation, the simulator first extracts
the input of Alice from OT functionality in the hybrid model and then sends the
input x to the trusted party and learn the output value. Given the output, the
simulator constructs the garbled circuits. The simulator constructs the garbled
circuits where some of them correctly computes f(x, y) and some of them com-
pute a constant function which always outputs Alice’s real output. Namely, the
output of this garbled circuit is always equal to the value which is received from
the trusted party. The simulator then chooses the challenge value in such a way
that all the check-circuits correctly compute the function f(x, y) while all the
other circuits (representation of constant function) are going to be evaluation-
circuits which compute the constant function. We refer to [6] for details.

Remark. As we said before, in one part of the proof of [6], the failure probability
of the simulator is bounded above by 21−m/17. The reason is that the rewinding
process is used in the case that Bob is corrupted. We note that Modification 1
is sufficient to have a better bound of [6]. Modification 2 is not necessary for [6]
since the way our protocol permits two private outputs is different from theirs.
In our case, once Alice evaluates the circuits we know that she can compute only
one garbled output value. And, Bob accepts it as output if and only if the value
is the same as the circuit garbled value. In our security analysis, Modification
2 lets the simulator learn the corresponding garbled value and in this way, we
avoid running the rewinding procedure in [6], which results in more efficient
simulation.

Also, note that sending garbled output values or actual bit values to Bob in [6]
does not compromise the security of the protocol, however, in our protocol Alice
has to send garbled output values but not the actual values (bits). Therefore, we
highlight that in our protocol the correctness of outputs comes from checking
whether the received values are garbled values of the circuit.

Acknowledgements. We would like to thank Peter van Liesdonk and José
Villegas for their comments on the presentation.

References

1. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

2. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

An Efficient Protocol for Fair Secure Two-Party Computation 103

3. Franklin, M., Mohassel, P.: Efficiency tradeoffs for malicious two-party computa-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

4. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

5. Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled circuit construction. In: The 27th Symposium on Information Theory in
the Benelux, pp. 283–290 (2006)

6. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

7. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party compu-
tation system. In: USENIX Security, pp. 287–302 (2004)

8. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4, 151–
158 (1991)

9. Pedersen, T.: A threshold cryptosystem without trusted party. In: Davies, D.W.
(ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

10. Pinkas, B.: Personal communication (2005)
11. Pinkas, B.: Fair secure two-party computation. In: Advances in Cryptology–

Eurocrypt 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)
12. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the condi-

tional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136.
Springer, Heidelberg (2004)

13. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidel-
berg (2007), http://eprint.iacr.org/2006/397

14. Yao, A.: How to generate and exchange secrets. In: 27th IEEE Symposium on
Foundations of Computer Science, pp. 162–168 (1986)

http://eprint.iacr.org/2006/397

104 M.S. Kiraz and B. Schoenmakers

A Protocol Diagram

Common Input: f
Compute: f(x, y) = (f1(x, y), f2(x, y))

Alice Bob

Private Input: x = 〈xi ∈ {0, 1}, i ∈ IA〉 Private Input: y = 〈yi ∈ {0, 1}, i ∈ IB〉

Phase 1: Generation of garbled input values.

Generate wi,j,b ∈R {0, 1}k, i ∈ IA, j = 1, . . . , m, b ∈ {0, 1}.

Phase 2: Committing OT Run in parallel, for i ∈ IA.

Receiver Sender
Private Input: xi Private Input: 〈wi,j,0, wi,j,1 : j = 1, . . . , m〉

Committing OT subprotocol

←→
Private Output: 〈wi,j,xi

: j = 1, . . . , m〉 Private Output: 〈αi,j,0, αi,j,1 : j = 1, . . . , m〉

Common Output:
Ai,j,b = 〈 commitB(wi,j,b; αi,j,b) 〉 for j = 1, . . . , m, b ∈ {0, 1}

Phase 3: Construction.
Compute GCj for j = 1, . . . , m s.t. for all i ∈ IA

〈wi,j,0, wi,j,1 : j = 1, . . . , m〉 are used for the
corresponding wires in GCj .

Compute Bi,j,j′,b=commitB(wi,j,b, wi,j′,b; βi,j,j′,b)
for i ∈ IB ∪ I′

B and 1 ≤ j < j′ ≤ m, b ∈ {0, 1}.

Compute Ci,j=commitB(σi,j ; γi,j) for i ∈ OA and
j = 1, . . . , m where σi,j ∈R {0, 1}.

Compute Di,j=commitB(wi,j,0, wi,j,1; δi,j) for
i ∈ OB and j = 1, . . . , m.

←−
〈GCj : j = 1, . . . , m〉, 〈Ci,j : i ∈ OA, j = 1, . . . , m〉, 〈Di,j : i ∈ OB , j = 1, . . . , m〉,
〈Bi,j,j′,b

i,j,j′ , Bi,j,j′,1−b
i,j,j′ : i ∈ IB ∪ I′

B , 1 ≤ j < j′ ≤ m, bi,j,j′ ∈R {0, 1}〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Phase 4: Challenge.

Secure coin-flipping subprotocol

←→
Common Output: � = �1||�2|| . . . ||�m s.t. �i ∈R {0, 1}

An Efficient Protocol for Fair Secure Two-Party Computation 105

Phase 5: Opening & Checking.

G̃Cj = 〈wi,j,b : i ∈ W, b ∈ {0, 1}〉,�j = 1.

ÃOT
j,b = 〈αi,j,b : i ∈ IA〉,�j = 1, b ∈ {0, 1}.

B̃j,j′,b = 〈βi,j,j′,b : i ∈ IB ∪ I′
B〉, �j = �j′ = 1, 1≤j<j′≤m,

b ∈ {0, 1}.
C̃j = 〈σi,j , γi,j : i ∈ OA〉, �j = 1.
D̃j = 〈δi,j : i ∈ OB〉 for �j = 1.
B̃input

j,j′ = 〈wi,j,yi
, wi,j′,yi

, βi,j,j′,yi
, wi′,j,z

i′ , wi′,j′,z
i′ ,

βi′,j,j′,z
i′ : i ∈ IB , i′ ∈ I′

B〉 for �j = �j′ = 0, 1 ≤ j < j′ ≤ m.

←−−−
〈G̃Cj : �j = 1, b ∈ {0, 1}〉, 〈B̃j,j′,b : �j = �j′ = 1, 1≤j< j′≤m, b ∈ {0, 1}〉,

〈C̃j : �j = 1〉, 〈D̃j : �j = 1〉, 〈B̃input

j,j′ : �j = �j′ = 0, 1≤j<j′≤m〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Check GCj for �j = 1 using G̃Cj .

AOT
i,j,b

?= commitB(wi,j,b; αi,j,b) for i ∈ IA, �j = 1, b ∈ {0, 1}.
Bi,j,j′,b

?= commitB(wi,j,b, wi,j′,b; βi,j,j′,b) for i ∈ IB ∪ I′
B , �j = �j′ = 1, 1≤j<j′≤m, b ∈ {0, 1}.

Ci,j
?= commitB(σi,j ; γi,j) for i ∈ OA, �j = 1.

Di,j
?= commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB , �j = 1.

Bi,j,j′,yi

?= commitB(wi,j,yi
, wi,j′,yi

; βi,j,j′,yi
) for i ∈ IB , �j = �j′ = 0, 1≤j<j′≤m.

Bi′,j,j′,z
i′

?= commitB(wi′,j,z
i′ , wi′,j′,z

i′ ; βi′,j,j′,z
i′) for i′ ∈ I′

B , �j = �j′ = 0, 1≤j<j′≤m.

Phase 6: Evaluation.
Evaluate GCj for �j = 0, using B̃input

j,j′ .

Compute Ei,j = commith
P (wi,j ; ζi,j) for i ∈ OB and �j = 0.

−−−−−−
〈Ei,j : i ∈ OB , �j = 0〉
−−−−−−−−−−−−−−−−→

Phase 7: Opening of Di,j .

D̃j = 〈wi,j,0, wi,j,1, δi,j : i ∈ OB〉 for �j = 0.

←−−−
〈D̃j : �j = 0〉
−−−−−−−−

Di,j
?= commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB , �j = 0

Phase 8: Decision of majority circuit.
Determine a majority circuit GCr for some r s.t. �r = 0 where
only majority of Bob’s output wires are counted.

Phase 9: Verification of Alice’s commitments. Run in parallel, for i ∈ OB , r s.t. �r = 0.

Prover Verifier
Private Input: wi,r Common Input: Ei,r, wi,r,0, wi,r,1, εi,r Private Input: ⊥

OR-Proofs subprotocol←→
Private Output: ⊥ Common Output: Proof of validity Private Output: ⊥

Phase 10: Gradual Release. Run in parallel, for i ∈ OA, i′ ∈ OB , �j = 0.

Private Input: wi′,r, ζi′,r Common Input: Ci,j , Ei′,r, Private Input: σi,j , δi,j

Gradual Release subprotocol←→
Private Output: σi,j Private Output: wi′,r

Apply σi,j to POPi,j for i ∈ OA and
match wi,r with (wi,j,0, wi,j,1) for i ∈ OA

and determine a majority circuit for Alice.

Private Output: f1(x, y)

Match wi′,r with (wi′,r,0, wi′,r,1) for i′ ∈ OB to
find the randomized output bits and compute XOR
with the corresponding additional input wires.

Private Output: f2(x, y)

Efficient Optimistic Fair Exchange Secure in the

Multi-user Setting and Chosen-Key Model
without Random Oracles

Qiong Huang1, Guomin Yang1, Duncan S. Wong1, and Willy Susilo2

1 Department of Computer Science,
City University of Hong Kong, Hong Kong

2 School of Computer Science & Software Engineering,
University of Wollongong, Australia

Abstract. Optimistic fair exchange is a kind of protocols to solve the
problem of fair exchange between two parties. Almost all the previous
work on this topic are provably secure only in the random oracle model.
In PKC 2007, Dodis et al. considered optimistic fair exchange in a multi-
user setting, and showed that the security of an optimistic fair exchange
in a single-user setting may no longer be secure in a multi-user setting.
Besides, they also proposed one and reviewed several previous construc-
tion paradigms and showed that they are secure in the multi-user setting.
However, their proofs are either in the random oracle model, or involv-
ing a complex and very inefficient NP-reduction. Furthermore, they only
considered schemes in the certified-key model in which each user has to
show his knowledge of the private key corresponding to his public key.

In this paper, we make the following contributions. First, we consider
a relaxed model called chosen-key model in the context of optimistic fair
exchange, in which the adversary can arbitrarily choose public keys with-
out showing the knowledge of the private keys. We separate the security
of optimistic fair exchange in the chosen-key model from the certified-key
model by giving a concrete counterexample. Second, we strengthen the
previous static security model in the multi-user setting to a more practi-
cal one which allows an adversary to choose a key adaptively. Third, we
propose an efficient and generic optimistic fair exchange scheme in the
multi-user setting and chosen-key model. The security of our construc-
tion is proven without random oracles. We also propose some efficient
instantiations.

1 Introduction

Optimistic fair exchange, introduced by Asokan, Schunter and Waidner [1], is
a kind of protocols to solve the problems in fairly exchanging items between
two parties, say Alice and Bob. In such a protocol, there is an arbitrator who
is semi-trusted by Alice and Bob and involves only if one party attempts to
cheat the other or simply crashes. Since the introduction, it has attracted many
researchers’ attention, such as [2,3,11,20,13,16,19,26,25,4,23,12] and so on.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 106–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 107

There are two popular paradigms for building optimistic fair exchange
schemes. One is based on verifiably encrypted signatures [8], such as [2,3,11],
and the other is based on sequential two-party multisignatures, such as [20].
Park et al.’s sequential two-party multisignature based optimistic fair exchange
[20] was broken and repaired by Dodis and Reyzin [13]. However, Dodis-Reyzin
schemes are setup-driven [27,28], which require key registration for all users with
the arbitrator. In the same year, Micali proposed a fair electronic exchange pro-
tocol for contract signing with an invisible trusted party [19], using a CCA2
secure public key encryption scheme with recoverable randomness (i.e., the de-
cryption algorithm can extract from the ciphertext both the plaintext and the
randomness used for generating the ciphertext) and a signature scheme that is
existentially unforgeable under chosen message attacks. The idea is similar to
that of the verifiably encrypted signature paradigm. Later, Bao et al. [4] showed
that the scheme does not satisfy the fairness requirement. A dishonest Bob can
get Alice’s full commitment without letting Alice get his obligation. They also
provided an improvement to avoid such an attack.

To the best of our knowledge, almost all verifiably encrypted signature
schemes and sequential multisignature schemes, even though efficient, are proven
secure in the random oracle model only, which is only heuristic. The only schemes
which are proven secure without random oracles are the verifiably encrypted sig-
nature scheme and the multisignature scheme proposed by Lu et al. [17]. Both
schemes are based on Waters’ signature scheme [24], and have been proven se-
cure in the certified-key model [17] (or the registered-key model [5]), in which
the adversary is required to certify that the public keys it includes in the signing
oracle and in its forgery are properly generated and it knows the corresponding
private keys.

Recently, Dodis et al. [12] considered optimistic fair exchange in a multi-user
setting. Prior to their work, almost all previous results considered the single-
user setting only, in which there are only one signer and one verifier (along
with an arbitrator). A more practical setting is the multi-user setting, in which
there are many signers and many verifiers (along with an arbitrator), so that a
dishonest party can collude with some other parties in an attempt of cheating
another party. Though the security of both encryption and signature in the
single-user setting is preserved in the multi-user setting, Dodis et al. [12] showed
that this is not necessarily true for optimistic fair exchange. They showed a
counterexample that is secure in the single user setting but insecure in the multi-
user setting. Furthermore, they proposed a formal definition of optimistic fair
exchange in the multi-user setting, and presented a generic construction. Their
generic construction is setup-free (i.e. no key registration is required between
users and the arbitrator) and can be built if there exist one-way functions in
the random oracle model, or if there exist trapdoor one-way permutations in the
standard model. However, all the schemes presented in [12] were proven secure
in the certified-key model only. If the adversary is allowed to choose public keys
arbitrarily without requiring to show its knowledge of the corresponding private
keys, these schemes may not be secure.

108 Q. Huang et al.

Our Results: Our contributions are in three-fold. First, we note that optimistic
fair exchange schemes secure in the certified-key model may not be secure in the
chosen-key model [18]. We separate these two models by presenting a counterex-
ample. Namely, we present a scheme which is secure in the certified-key model
but insecure in the chosen-key model. The crux of the problem is to allow the
adversary in the chosen-key model to arbitrarily set public keys without showing
its knowledge of the corresponding private keys (cf. certified-key model). Hence,
the model is more realistic and it provides the adversary with more flexibility
and power in attacking other honest parties in the system.

Second, we further strengthen the security model in the multi-user setting
for optimistic fair exchange first proposed by Dodis et al. [12]. In particular,
we notice that in [12], the model capturing the security against the arbitrator
is a static model which requires the malicious arbitrator to fix its keys before
seeing the challenging public key of the signer. We propose to strengthen it to
an adaptive model which allows the arbitrator to set its keys with reference to
the value of the challenging public key of the signer.

Third, we propose an efficient and generic construction of optimistic fair ex-
change in the multi-user setting and chosen-key model, and prove the security
without random oracles. The construction is based on a conventional signature
[14,24] and a ring signature [21,24,6,22,10,15], both of which can be constructed
efficiently without random oracles. This also contributes a new paradigm for
constructing optimistic fair exchange, besides the existing ones: the verifiably en-
crypted signatures based approach and the sequential two-party multisignature
based one. In our generic construction, we further show that the ring signature
scheme used in our construction does not need to be with the highest level of
existential unforgeability considered in [6], namely unforgeability with respect to
insider corruptions. Instead, unforgeability against a static adversary [10] will
suffice. We also propose some efficient instantiations of our generic construction.

Organization: In the next section, we review the definition of optimistic fair
exchange, and modify Dodis et al.’s security games to adapt the chosen-key
model. In Sec. 3, we give a counterexample to separate the security level between
the certified-key model and the chosen-key model. Our generic construction is
then proposed and shown secure in the multi-user setting and under the chosen-
key model in Sec. 4. Some efficient instantiations are also discussed in the section.
Finally, we conclude this paper in Sec. 5.

2 Definitions and Security Model

2.1 Definitions in the Multi-user Setting and Chosen-Key Model

The definition for non-interactive optimistic fair exchange (OFE) follows the
one in the multi-user setting given in [12] but having the authenticity assump-
tion on public keys removed. This implies that we do not restrict ourselves to
the certified-key model [17], but consider the definition under a stronger secu-
rity model, called the chosen-key model [18]. We will give more details shortly

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 109

(Sec. 2.2) and make some additional remarks to discuss some subtleties in the
definitions. Readers can refer to [12] for the detailed definition.

The correctness condition can be defined in a natural way. The ambiguity
property requires that any “resolved signature” Res(m, PSig(m, SKUi , APK),
ASK, PKUi) is computationally indistinguishable from an “actual signature”
Sig(m, SKUi , APK).

2.2 Chosen-Key Model

Note that [12] only considers OFE in the certified-key model [17]. In such a
model, it is assumed that the authenticity of public keys of users in the system
can be verified and each user should show his knowledge of the corresponding
private key in some public key registration stage for defending against key substi-
tution attacks. Alternatively, the adversary is required to show that the public
keys included in queries to the signing oracle and in its forgery are properly
generated.

In this paper, we consider a stronger security model for OFE, the chosen-key
model, which was originally introduced by Lysyanskaya et al. in the context of
aggregate signature [18]. An adversary in a chosen-key model can arbitrarily set
public keys without showing its knowledge of the corresponding private keys. The
only limitations are that the adversary cannot replace the challenge user’s public
key and all the public keys chosen by the adversary should fall into some public
key space (which is defined under some system-wide parameters and known to
all parties in the system). Such relaxation gives the adversary more flexibility
and power in attacking other (honest) parties in the system. Schemes secure in
the certified-key model may not necessarily be secure in the chosen-key model.

For example, let us consider the Security Against Verifiers under the chosen-
key model (Sec. 2.3). After receiving a partial signature from the challenge signer,
the adversary may ask the arbitrator for resolving it into a full signature with
respect to a different public key chosen maliciously by the adversary according
to the challenge signer’s public key and the partial signature received. Based on
this attacking approach, in Sec. 3, we describe a concrete OFE scheme as an
example for showing that a scheme secure in the certified-key model does not
necessarily be secure in the chosen-key model.

2.3 Security Model

The security of optimistic fair exchange consists of three aspects: security against
signers, security against verifiers, and security against the arbitrator. The def-
initions of them in the multi-user setting and chosen-key model are given as
follows.

– Security against signers: Intuitively, we require that no PPT adversary
A should be able to produce a partial signature with non-negligible probabil-
ity, which looks good to verifiers but cannot be resolved to a full signature
by the honest arbitrator. This ensures the fairness for verifiers, that is, if

110 Q. Huang et al.

the signer has committed to a message, the verifier will always be able to
get the full commitment of the signer. Formally, we consider the following
experiment:

SetupTTP(1k) → (ASK, APK)

(m, σ′, PK∗) ← AORes(APK)
σ ← Res(m, σ′, ASK, PK∗)

success of A := [PVer(m, σ′, PK∗, APK) = accept

∧ Ver(m, σ, PK∗, APK) = reject]

where oracle ORes takes as input a valid1 partial signature σ′ of user Ui on
message m, i.e. (m, σ′, PKUi), and outputs a full signature σ on m under
PKUi . In this experiment, the adversary can arbitrarily choose public keys,
and it may not know the corresponding private key of PK∗. The advantage
of A in the experiment AdvA(k) is defined to be A’s success probability.

– Security against verifiers: This security notion requires that any PPT
verifier B should not be able to transform a partial signature into a full
signature with non-negligible probability if no help has been obtained from
the signer or the arbitrator. This requirement has some similarity to the
notion of opacity for verifiably encrypted signature [8]. Formally, we consider
the following experiment:

SetupTTP(1k) → (ASK, APK)

SetupUser(1k) → (SK, PK)

(m, σ) ← BOPSig,ORes(PK, APK)
success of B := [Ver(m, σ, PK, APK) = accept

∧ (m, ·, PK) �∈ Query(B, ORes)]

where oracle ORes is described in the previous experiment, the partial signing
oracle OPSig takes as input a message m and returns a valid partial signature
σ′ on m under PK, and Query(B, ORes) is the set of valid queries B issued
to the resolution oracle ORes. In the experiment, B can ask the arbitrator for
resolving any partial signature with respect to any public key (adaptively
chosen by B, probably without the knowledge of the corresponding private
key), with the limitation described in the experiment. The advantage of B
in the experiment AdvB(k) is defined to be B’s success probability.

– Security against the arbitrator: Intuitively, this security notion re-
quires that any PPT arbitrator C should not be able to generate with non-
negligible probability a full signature without explicitly asking the signer
for generating one. This ensures the fairness for signers, that is, no one can

1 By ‘valid’, we mean that σ′ is a valid partial signature on m under public key
PKUi , alternatively, the input (m, σ′, PKUi) of ORes satisfies the condition that
PVer(m,σ′, PKUi , APK) = accept.

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 111

frame the actual signer on a message with a forgery. Formally, we consider
the following experiment:

SetupUser(1k) → (SK, PK)
(ASK∗, APK) ← C(PK)

(m, σ) ← COPSig(ASK∗, APK, PK)
success of C := [Ver(m, σ, PK, APK) = accept

∧ (m, ·) �∈ Query(C, OPSig)]

where the partial signing oracle OPSig is described in the previous experiment,
ASK∗ is C’s state information, which might not be the corresponding private
key of APK, and Query(C, OPSig) is the set of queries C issued to the partial
signing oracle OPSig. The advantage of C in this experiment AdvC(k) is
defined to be C’s success probability.

Definition 1. A non-interactive optimistic fair exchange scheme is said to be
secure in the multi-user setting and chosen-key model if there is no PPT adver-
sary that wins any of the experiments above with non-negligible advantage.

Remark 1. (Differences From [12]) Though the experiments of Security Against
Signers and Security Against Verifiers remain in the same form as those in [12],
we put no requirement on that the adversary has to register a public key before
using it. In other words, the adversary can freely choose public keys (from the
public key space) and use them during the attack, without proving its knowledge
of the corresponding private keys. In [12] on the other hand, the authenticity
assumption of public keys is made in all the experiments.

On the Security Against the Arbitrator, our corresponding experiment seems
to be stronger than the one considered in [12], in which the adversary has to
fix APK before learning the challenge signer’s public key PK. This static form
of adversarial key generation seems to be unnecessarily weak. We propose a
strengthened one which allows the adversary to adaptively set APK based on the
value of PK generated using SetupUser. In this way, the security model considered
in this paper will be at least as strong as that in [12]’s, if not stronger. This
observation is also supported by the counterexample given in Sec. 3.

3 Separating Chosen-Key Model from Certified-Key
Model

As reviewed in the introduction, OFE in the single-user setting can normally be
built from verifiably encrypted signature or from sequential two-party multisig-
nature. Dodis et al. [12] showed that secure OFE in the multi-user setting can
also be built from these primitives, but only the verifiably encrypted signature
based ones may support the setup-free feature [27,28]. Also note that in [12], all
the security analysis were carried out in the certified-key model [17] and there-
fore, they may not remain secure in the chosen-key model [18]. In the following,

112 Q. Huang et al.

we give a concrete example for showing that a secure OFE in the certified-key
model may no longer be secure in the chosen-key model. The example is based
on Lu et al.’s [17] verifiably encrypted signature scheme. Readers can refer to
[17] for Lu et al.’s scheme WVES .

3.1 A WVES-Based OFE

Observe that Lu et al.’s WVES is an OFE in the single-user setting and the
certified-key model , under which, WVES.Kg and WVES.AKg constitute the
OFE registration protocol Setup, and WVES.Sig, WVES. Ver, WVES.ESig,
WVES.EVer and WVES.Adj are corresponding to Sig, Ver, PSig, PVer and
Res, respectively. In the single-user setting and certified-key model [13,12], Se-
curity Against Signers is due to the correctness of WVES. That is, if η is a
valid verifiably encrypted signature, the adjudicator can always convert it to an
ordinary signature. Security Against Verifiers is due to the opacity property [8]
of WVES.

The Security Against the Arbitrator does not trivially follow the unforgeabil-
ity of the verifiably encrypted signature scheme, since in the corresponding ex-
periment, the malicious arbitrator knows more secret information than a public
verifier does. To show its security, we build a forger F of Waters’ signature scheme
using the malicious arbitrator/adjudicator C. Given the system parameters and
a public key A = e(g, g)α, F randomly picks β ← Zp and sends the system
parameters, A and (β, v := gβ) to C2. The rest of the proof goes essentially the
same as that in [17], except that F uses its signing oracle to simulate the PSig or-
acle. If C outputs a valid forgery (S1, S2), i.e., Ver(PK, M, (S1, S2)) = accept, F
simply outputs σ∗ := (S1, S2) on M as its forgery for Waters’ signature scheme.
By the validity of (S1, S2), we have that σ∗ is also a valid forgery with respect
to the challenge public key. Besides, the above scheme can easily be shown to be
secure in the multi-user setting and the certified-key model as well.

3.2 An Attack under Chosen-Key Model

If we retain the multi-user setting but upgrade the model from certified-key
model to the chosen-key model, we will see that the WVES-based OFE above
will no longer be secure.

Let us consider the Security Against Verifiers. In the chosen-key model, the
adversary (i.e. the verifier in the experiment) can first ask the challenge signer
for a partial signature on some message under the challenge public key PK.
Then, the adversary makes up a new public key PK ′ according to the partial
signature and PK, and queries the challenger for resolving the partial signature
with respect to PK ′ rather than to PK. The adversary finally tries to find
out the full signature under PK from the resolved signature. In the chosen-key
model, since the adversary can arbitrarily pick public keys without showing its
2 Alternatively, C picks its key pair and shows its knowledge of ASK. This is due to

the restriction of certified-key model. Readers can refer to [12] for detailed discussions
about this.

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 113

knowledge of the corresponding private keys, such an attack approach is possible.
Below is the detail of the actual attack against the WVES-based OFE.

(In)Security Against Verifiers: Upon receiving the challenge signer’s public
key PK = e(g, g)α from the challenger, the adversary B queries OPSig for a
partial signature σ′ = (K1, K2, K3) on message M . Then B generates another
public key PK ′ := PK · e(g, g)b where b ← Zp, and queries ORes for resolving a
partial signature in the form σ′′ = (K1 · gb, K2, K3) under the public key PK ′.
Note that σ′′ is a valid partial signature on M under PK ′. Upon receiving the
resolved signature σ = (S1, S2), B outputs the full signature under the challenge
public key PK as σ̃ = (S1/gb, S2) and wins the game.

Therefore, WVES-based OFE is insecure in the multi-user setting under the
chosen-key model. We should also emphasize that this does not contradict with
the results given in [17] as their schemes were originally designed for security in
the certified-key model only.

4 An Efficient and Generic Construction without
Random Oracles

In this section, we propose an OFE proven secure in the multi-user setting and
the chosen-key model, that is, under the adversarial model formalized in Sec. 2.3.
Our construction is based on two primitives: conventional signature [14] and ring
signature [21]. Since there exist signature schemes and ring signature schemes
proven secure without random oracles, it is possible for us to construct a secure
OFE without random oracle also. Refers can refer to [14] for the security def-
inition of conventional signatures. In the following, we first briefly review the
definition of ring signature.

(Ring Signature:) The notion of ring signature was introduced by Rivest et
al. in Asiacrypt 2001 [21] and has later been widely studied [6,10,22,15].

The security of a ring signature scheme includes two parts, anonymity (or
ambiguity) and unforgeability. The strongest computational complexity based
security notions of them are anonymity against attribution attacks/full key ex-
posure and unforgeability with respect to insider corruption, respectively [6,10].
In our construction of OFE (to be shown later), we actually do not require a ring
signature scheme to equip with such a strong level of anonymity and unforgeabil-
ity. Instead, unforgeability under an adaptive attack, against a static adversary
[10] will suffice. It is defined as follows.

(ski, pki) ← RS.KG(1k), for i = 1, · · · , �

R := {pki}�
i=1

(R, m, σ) ← AORS.Sig(R)
success of A := [RS.Ver(m, σ, R) = accept ∧ (·, m, R) �∈ Query(A, ORS.Sig)]

where A is a PPT adversary, ORS.Sig is the ring signing algorithm which takes
as input an index i, a message m, a list of public keys S such that S ∩ R �= ∅

114 Q. Huang et al.

and pki ∈ R, and outputs a ring signature σ on m under the ring S using the
signing key ski, and Query(A, ORS.Sig) is the set of ring signing queries (of the
form (i, m, S)) issued by A. The advantage of A in the experiment is defined to
be its success probability. A ring signature scheme is said to be (existentially)
unforgeable under an adaptive attack, against a static adversary (where ‘static’
means that the adversary should not corrupt any honest user and its forgery
should be with respect to the prescribed ring R,) if there is no PPT adversary
which wins the experiment with non-negligible advantage. It’s readily seen that
the above unforgeability is weaker than the unforgeability with respect to insider
corruption considered in [6]. For our purpose, the number � of (honestly gener-
ated) public keys is 2 and the size of the ring S in a signing query issued by A
is also 2 (i.e., � = 2 and |S| = 2).

4.1 The Construction

Let SIG = (KG, Sig, Ver) be a conventional signature scheme and RS = (KG,
Sig, Ver) a ring signature scheme. Our construction idea is as follows. The par-
tial signature will be a conventional signature generated using SIG, and the full
signature is the partial signature in conjunction with a ring signature generated
under RS. The ‘ring’ members of the ring signature are the signer and the ar-
bitrator. To resolve a partial signature, the arbitrator simply produces a ring
signature. One of the main reasons of employing a ring signature scheme in our
construction is that the unforgeability game of ring signature (that is, unforge-
ability under an adaptive attack, against a static adversary, as stated above) fits
well in the chosen-key model for OFE. That is, the adversary can ask for a ring
signature with respect to a ring which includes public keys not being certified.
Below are the details of our generic construction denoted by OFE.

– SetupTTP: The arbitrator runs (ask, apk) ← RS.KG(1k) and sets (ASK,
APK) := (ask, apk).

– SetupUser: Each user Ui runs (ŝki, p̂ki) ← SIG.KG(1k) and (s̄ki, p̄ki) ←
RS.KG(1k). Ui then sets (SKUi , PKUi) := ((ŝki, s̄ki), (p̂ki, p̄ki)).

– Sig: On input a message m, the signer Ui first produces a conventional sig-
nature σ′ as the partial signature, i.e. σ′ ← SIG.Sig(ŝki, m), and then com-
pletes the signing process by generating a ring signature on m and σ′, i.e.
σRS ← RS.Sig(s̄ki, m‖σ′‖PKUi, R) where R := {p̄ki, apk}. The full signature
is then set as σ := (σ′, σRS).

– Ver: On input a message m and a signature σ purportedly produced by Ui,
where σ = (σ′, σRS), the verifier checks the validity of σ′ and σRS by running
SIG.Ver(m, σ′, p̂ki) and RS.Ver(m‖σ′‖PKUi, σ

RS, R) respectively, where R :=
{p̄ki, apk}. If both output accept, it returns accept; otherwise, it returns
reject.

– PSig: On input a message m, the signer Ui computes a conventional signa-
ture, i.e. σ′ ← SIG.Sig(ŝki, m), and returns σ′ as the partial signature.

– PVer: On input a message m and a partial signature σ′ purportedly produced
by Ui, the verifier returns SIG.Ver(m, σ′, p̂ki).

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 115

– Res: On input a message m and a partial signature σ′ of user Ui, the arbitra-
tor first checks the validity of σ′ by running OFE.PVer(m, σ′, PKUi , APK).
If σ′ is invalid, it rejects the input by outputting ⊥; otherwise, it computes
σRS ← RS.Sig(ask, m‖σ′‖PKUi , R), where R := {p̄ki, apk}. The arbitrator
returns σ := (σ′, σRS).

As in [12], one cannot view σ′ as the full signature of the signer, even though
it is itself a valid conventional signature. The signer’s full commitment to a
message comprises the partial signature σ′ generated using SIG, along with a ring
signature σRS produced by the signer or the arbitrator using RS. The correctness
of the construction simply follows that of SIG and RS, and the ambiguity follows
the anonymity requirement is satisfied due to that of the ring signature RS.

Remark 2. One may notice that Dodis et al.’s generic OFE construction [12]
uses a similar idea to ours. They employ a conventional signature as the partial
signature and use an additional OR-signature to complete the generation of the
full signature. An OR-signature itself can be viewed as a two-user ring signature.
Even though OR-signature can express much richer languages, almost all the
constructions of OR-signature follow the Fiat-Shamir heuristic, thus can only be
proven secure in the random oracle model, or otherwise, require to have complex
NP-reduction and non-interactive witness indistinguishable proofs of knowledge
involved, that could be very inefficient. By applying our idea, an efficient and
generic OFE scheme without random oracles can be built, as there are already
quite a number of efficient conventional signature schemes and ring signature
schemes proven secure without random oracles available in the literature.

Intuitively, for our construction above, the Security Against Signers holds un-
conditionally; the Security Against Verifiers follows the unforgeability property
of the ring signature RS, and the Security Against the Arbitrator is guaranteed
by the unforgeability of SIG. Thus, we have the following theorem.

Theorem 1. The generic construction of optimistic fair exchange scheme OFE
above is secure in the multi-user setting and chosen-key model, provided that
SIG is a conventional signature scheme that is existentially unforgeable against
chosen message attacks and RS is a secure ring signature scheme that is with
basic anonymity and existential unforgeability under an adaptive attack, against
a static adversary.

Proof. Theorem 1 immediately follows from the following lemmas. ��

Lemma 1. The optimistic fair exchange scheme OFE above is unconditionally
secure against signers.

Proof. Obviously, for any message m and any valid signature σ′ on m under the
verification key p̂ki, the arbitrator can always produce a ring signature σRS on
m‖σ′‖PKUi under the ring R := {p̄ki, apk}. Therefore, no adversary can win
the game. ��

Lemma 2. The optimistic fair exchange scheme OFE above is secure against
verifiers if RS is unforgeable under adaptive attacks against a static adversary.

116 Q. Huang et al.

Proof. Suppose that B is a PPT adversary which breaks the Security Against
Verifiers with probability εB. We construct a PPT algorithm B̄ to break the
existential unforgeability of RS with the same probability.

On input a security parameter 1k and given two public keys pk0 and pk1,
which are the (honestly generated) challenge public keys as in the unforgeabil-
ity game of ring signature (See page 113), B̄ randomly generates a key pair
(ŝk, p̂k) of SIG by running (ŝk, p̂k) ← SIG.KG(1k), flips a bit b ← {0, 1}, and
sets APK := pkb and PK := (p̂k, pk1−b). It then runs B on input (APK, PK),
and simulates oracle OPSig using the secret key ŝk and oracle ORes using B̄’s ring
signing oracle. More in detail, to answer an PSig query of m, B̄ computes and
returns SIG.Sig(ŝk, m) to B. To answer an Res query of (m, σ′, PKUi), if σ′ is a
valid partial signature on m under PKUi , B̄ queries its ring signing oracle for
getting a ring signature σRS on message m‖σ′‖PKUi under the ring {pk0, pk1}
using the secret key corresponding to pkb, and then sends (σ′, σRS) back to B.

At the end of the experiment, when B outputs its forgery (m̃, σ̃), where σ̃ =
(σ̃′, σ̃RS), without loss of generality, we assume that B has already got σ̃′ from a
query to oracle OPSig. The other case that B produced σ̃′ by itself will be covered
by the Security Against the Arbitrator, which is to be shown later.

Obviously, the simulation above is perfect, and thus B wins the game with prob-
ability εB. We have that OFE.Ver(m̃, σ̃, PK, APK) = accept and (m̃, ·, PK) �∈
Query(B, ORes). The former also implies that SIG.Ver(m̃, σ̃′, p̂k) = accept and
RS.Ver(m̃‖σ̃′‖PK, σRS, (pk0, pk1)) = accept hold. Since (m̃, ·, PK) �∈ Query(B,
ORes), B̄ has never issued a query to its ring signing oracle on input m̃‖σ̃′‖PK.
Therefore, σ̃RS is a valid ring signature on the new message m̃‖σ̃′‖PK under the
ring {pk0, pk1}. We then let B̄ output (m̃‖σ̃′‖PK, σ̃RS) and B̄ wins its own game
with probability εB. ��

Lemma 3. The optimistic fair exchange scheme OFE above is secure against
the arbitrator if SIG is unforgeable under chosen-message attacks.

Proof. Suppose that C is a PPT adversary which breaks the Security Against
the Arbitrator with probability εC . We build a PPT algorithm C̄ to break the un-
forgeability of the conventional signature scheme SIG with the same
probability.

Given the challenge verification key pk of SIG (along with a signing oracle Osk),
C̄ runs RS.KG(1k) to get a key pair (s̄k, p̄k) and feeds PK := (pk, p̄k) as input to
C, which then returns an arbitrator public key APK and begins to issue queries
to OPSig. This oracle can perfectly be simulated by C̄ using Osk. Namely, on input
a message m, C̄ forwards it to Osk and relays the oracle’s answer to C as a valid
partial signature. Finally, C outputs its forgery (m̃, σ̃) where σ̃ = (σ̃′, σ̃RS), such
that OFE.Ver(m̃, σ̃, PK, APK) = accept and (m̃, ·) �∈ Query(C, OPSig). We then
have that σ̃′ is a valid signature on m̃, and m̃ has never been issued by C̄ to
its signing oracle. We simply let C̄ output (m̃, σ̃′). Obviously (m̃, σ̃′) is a valid
forgery for SIG, and C̄ wins the unforgeability game with advantage εC . ��

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 117

4.2 Instantiations

There are quite a number of efficient conventional signature schemes and ring
signature schemes without random oracles available in the literature, like [24,7],
[22,15,10] and many others. Using these schemes and applying our generic con-
struction, we can get many concrete and efficient OFE schemes proven secure
without random oracles in the multi-user setting and chosen-key model. For ex-
ample, we can use Waters’ signature scheme [24] as SIG and Shacham-Waters’
ring signature scheme [22] as RS. Note that in such an instantiation, Waters’
signature scheme may work in a group of composite order [22] rather than in
a group of prime order [24], so that SIG and RS can share the same set of sys-
tem parameters. Besides, it is necessary to mention that there is a global setup
process before any execution of the scheme. The requirement of having such a
setup process stems from that of Shacham-Waters’ ring signature scheme. For
this instantiation, the ambiguity of the scheme is based on sub-group decision
assumption [9,22], while the security against verifiers and security against the
arbitrator are based on computational Diffie-Hellman assumption. The OFE.Sig
algorithm of the resulting scheme requires no pairing operation, and the OFE.Ver
algorithm requires four pairings. A main disadvantage of this instantiation is that
the size of system parameters is large. It is determined by the output length of
the underlying hash function used in Waters’ signature scheme [24,22].

Alternatively, we may consider another instantiation, which enjoys much
shorter system parameters but suffers from stronger underlying assumptions,
i.e. strong Diffie-Hellman assumption [7,15]. In this instantiation, we employ
Boneh-Boyen’s weakly secure signature scheme [7] plus a one-time signature
scheme as SIG3, and Groth’s ring signature scheme (in the common reference
string model) [15] as RS. The reason that we use Boneh-Boyen’s weakly secure
signature scheme plus a one-time signature scheme as SIG is the same as the one
behind the combination of Waters signature and Shacham-Waters ring signature.
(SIG and RS share system parameters.) Note that for RS, we do not need to use
the signature compression technique as in [15] since the ring in our case merely
consists of two users. The Sig algorithm of the resulting scheme does not require
any pairing operation either, while the Ver algorithm requires nine pairings.

In these two instantiations, each user has two key pairs, one for the con-
ventional signature and the other one for ring signature, just as in the generic
construction (Sec. 4.1). To make the instantiations more practical and efficient,
people may wish to combine the two key pairs into one. Boyen’s ring signature
[10] (or, say, his mesh signature) is a good candidate for this purpose. In Boyen’s
ring signature scheme, the adversary can make not only ring signature queries,
but also atomic (or conventional) signature queries. Boyen’s scheme works in the
common reference string model. The anonymity holds unconditionally, and the
unforgeability is guaranteed by the Poly Strong Diffie-Hellman assumption in-
troduced by Boyen [10], which is a stronger variant of the Strong Diffie-Hellman
3 It is easy to see that a weakly secure signature scheme plus a one-time signature

scheme lead to a signature scheme that is unforgeable against chosen message at-
tacks. We skip the detailed proof here.

118 Q. Huang et al.

(SDH) assumption. In the resulting OFE scheme, the signer Alice and the arbi-
trator Charlie form a ring. We view an atomic signature of Alice as her partial
signature, and the combination of the atomic signature and a ring signature as
Alice’s full commitment. We can see that, similar to the generic construction, the
security against signers of this optimized instantiation also holds unconditionally.
The security against verifiers will hold due to the unforgeability of Boyen’s (two-
user) ring signature scheme, and the security against the arbitrator follows the
unforgeability of the (single-user) ring signature scheme. Any forgery of Alice’s
atomic signature σ′ on a message m, where σ′ = (S, t) = (g

1
a+bm+ct , t) and (a, b, c)

is Alice’s secret key, can be trivially transformed into a forgery of the ring signa-
ture scheme under the ring consisting of Alice only, i.e. we set s0 := 0 and ran-
domly select t′ from its domain, then the forgery is (S0, S1, t0, t1) := (1, S, t′, t).
The validity of the forgery is readily seen. Though this instantiation relies on a
stronger assumption, it enjoys higher efficiency and fewer system parameters. It
also requires fewer pairing operations for OFE.Ver than that of the second in-
stantiation, and has fewer system parameters than that of the first instantiation.
The OFE.Sig does not require any pairing operation, and OFE.Ver requires only
four pairings. Each user including the arbitrator needs to manage only one key
pair (unlike the first two instantiations in which each user has two key pairs),
and the public key consists of only three points on the elliptic curve (if we employ
the symmetric group setting, i.e. e : G × G → Gt) [10].

5 Conclusion

In this paper we considered optimistic fair exchange in the multi-user setting and
separated the security of optimistic fair exchange in the certified-key model from
that in the chosen-key model. We proposed the efficient generic construction of
optimistic fair exchange in the multi-user setting and chosen-key model and
proved its security without random oracles. Our scheme is built from a conven-
tional signature and a ring signature, both of which can be efficiently constructed
without random oracles. We also discussed some efficient instantiations of our
generic construction.

Acknowledgements

We’d like to thank the anonymous reviewers for their invaluable comments. The
work was supported by grants from CityU (Project Nos. 7001959 and 7002001)
and the Research Grants Council of the Hong Kong Special Administrative Re-
gion, China (RGC Ref. No. CityU 122107).

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS, pp. 7–17. ACM Press, New York (1997)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures
(extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 591–606. Springer, Heidelberg (1998)

Efficient OFE Secure in the Multi-user Setting and Chosen-Key Model 119

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)

4. Bao, F., Wang, G., Zhou, J., Zhu, H.: Analysis and improvement of Micali’s fair con-
tract signing protocol. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 176–187. Springer, Heidelberg (2004)

5. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer
Society Press, Los Alamitos (2004)

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006),
http://eprint.iacr.org/

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–
432. Springer, Heidelberg (2003)

9. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

10. Boyen, X.: Mesh signatures: How to leak a secret with unwitting and unwilling
participants. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–
227. Springer, Heidelberg (2007)

11. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000)

12. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user set-
ting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133.
Springer, Heidelberg (2007) Also at Cryptology ePrint Archive, Report 2007/182,
http://eprint.iacr.org/

13. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC
2003. In: DRM 2003, pp. 47–54. ACM Press, New York (2003)

14. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing 17(2), 281–308 (1988)

15. Groth, J.: Ring signatures of sub-linear size without random oracles. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
423–434. Springer, Heidelberg (2007)

16. Kremer, S.: Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Université Libre de Bruxelles (2003)

17. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

18. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

19. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC 2003, pp. 12–19. ACM Press, New York (2003)

http://eprint.iacr.org/
http://eprint.iacr.org/

120 Q. Huang et al.

20. Park, J.M., Chong, E.K.P., Siegel, H.J.: Constructing fair-exchange protocols for
e-commerce via distributed computation of RSA signatures. In: PODC 2003, pp.
172–181. ACM Press, New York (2003)

21. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

22. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

23. Wang, G.: An abuse-free fair contract signing protocol based on the RSA signature.
In: Proceedings of 14th International Conference on World Wide Web, WWW 2005,
pp. 412–421. ACM Press, New York (2005)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidel-
berg (2005)

25. Zhang, Z., Zhou, Y., Feng, D.: Efficient and optimistic fair exchanges based on
standard RSA with provable security. Cryptology ePrint Archive, Report 2003/178
(2004), http://eprint.iacr.org/

26. Zhu, H.: Constructing optimistic fair exchange protocols from committed signa-
tures. Cryptology ePrint Archive, Report 2005/012 (2003),
http://eprint.iacr.org/

27. Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Hei-
delberg (2006)

28. Zhu, H., Susilo, W., Mu, Y.: Multi-party stand-alone and setup-free verifiably com-
mitted signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 134–149. Springer, Heidelberg (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Legally-Enforceable Fairness in Secure

Two-Party Computation

Andrew Y. Lindell

Aladdin Knowledge Systems and Bar-Ilan University, Israel

andrew.lindell@aladdin.com, lindell@cs.biu.ac.il

Abstract. In the setting of secure multiparty computation, a set of
mutually distrustful parties wish to securely compute some joint func-
tion of their private inputs. The computation should be carried out in
a secure way, meaning that the properties privacy, correctness, inde-
pendence of inputs, fairness and guaranteed output delivery should all
be preserved. Unfortunately, in the case of no honest majority – and
specifically in the important two-party case – it is impossible to achieve
fairness and guaranteed output delivery. In this paper, we show how a
legal infrastructure that respects digital signatures can be used to en-
force fairness in two-party computation. Our protocol has the property
that if one party obtains output while the other does not (meaning that
fairness is breached), then the party not obtaining output has a digitally
signed cheque from the other party. Thus, fairness can be “enforced” in
the sense that any breach results in a loss of money by the adversarial
party.

1 Introduction

In the setting of secure multiparty computation, a set of parties with private
inputs wish to jointly compute some functionality of their inputs. Loosely speak-
ing, the security requirements of such a computation are that nothing is learned
from the protocol other than the output (privacy), that the output is distributed
according to the prescribed functionality (correctness), that parties cannot make
their inputs depend on other parties’ inputs (independence of inputs), that the ad-
versary cannot prevent the honest parties from successfully computing the func-
tionality (guaranteed output delivery), and that if one party receives output then
so do all (fairness). The generality of secure multiparty computation has made
it a very important and useful tool for proving the feasibility of carrying out a
variety of tasks. Indeed, in a number of different settings, it has been shown that
any two-party or multiparty function can be securely computed [21,14,13,3,8].
Stated more simply, any distributed task that a set of parties wish to compute,
can be computed in a secure way. This implies feasibility for a multitude of
tasks, including those as simple as coin-tossing and agreement, and as complex
as electronic voting, electronic auctions, electronic cash schemes, anonymous
transactions, and privacy-preserving data mining.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 121–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 A.Y. Lindell

Fairness. Unfortunately, the above description is misleading and inaccurate. In-
deed, it is possible to securely compute any functionality, where security implies
all of the properties described above. However, this is only true if there exists
an honest majority amongst the participating parties. In the case of no honest
majority, and specifically in the important two-party case, it is impossible to
achieve fairness and guaranteed output delivery [10] in general (although some
non-trivial functions can be securely computed; see [12]). A number of differ-
ent approaches have been taken to achieve some sort of fairness despite this
impossibility:

1. Gradual release: In this approach, the output is not revealed all at once.
Rather, it is released gradually with the property that if an abort occurs, then
the adversary has not learned much more about the output than the honest
parties. The drawback of this approach is that it is inherently expensive
(requiring many rounds), and if the adversary is more powerful than the
honest parties, fairness may still be breached. See, for example, the early
works of [2,15] and more recent works [20,11] (a good survey of the many
works in this area can be found in [20]).

2. The optimistic model: In this approach, a trusted server is used with the
following property. If all the parties behave honestly, then there is no need
for the server (it is not contacted). However, if fairness is breached, then the
server may be contacted in which case fairness is restored. This approach can
be highly efficient. However, its drawbacks are the need for new infrastructure
(in the form of such a server) and the fact that the server must be trusted to
not collude with the adversary. See [18,19,1,4] for some works in this area.

In this paper, we present an approach to achieving fairness, that is inspired by
the work of [9] and has some similarities with the optimistic model. The authors
of [9] consider the question of fair exchange of signatures. They make a highly
interesting observation that in order for a signature to be enforced, it needs to
be presented at a court of law. In this case, the other party will actually see
the signature. They therefore run a computation with the following property:
the first party to receive output obtains something called a “keystone”, and the
second party then receives its signature (i.e., the signature it should receive as
output). The keystone by itself gives nothing and so if the first party aborts
after receiving it, no damage has been done (fairness has not been breached). In
contrast, after receiving its signature, the second party may abort and the first
party is left only with a useless keystone. Nevertheless, the interesting property
here is that given the keystone and the second party’s signature (i.e., the sig-
nature that the second party received as output), it is possible to construct the
signature that the first party should receive as output. Thus, if the second party
wishes to enforce its signed contract in a court of law, it can only do so by essen-
tially revealing the signature that the first party should receive, thereby restoring
fairness. In [9], the above notion is formalized and called a concurrent signature
scheme. In addition, [9] present an efficient construction of such a scheme that
is secure under the discrete logarithm assumption in the random oracle model.

Legally-Enforceable Fairness in Secure Two-Party Computation 123

Our results. In this paper, we extend the idea of [9] to general secure two-party
computation. One byproduct is that we show that the problem of concurrent sig-
natures can easily be cast as a standard secure two-party computation problem,
and therefore random oracles are not necessary. We stress, however, that in con-
trast to the construction of [9], our protocol is not efficient. Thus, it should be
viewed as a “feasibility proof” that concurrent signatures can be constructed
under general assumptions and without random oracles.

The basic idea of our approach is as follows. We construct a protocol with the
property that either both parties receive output (and so fairness is preserved)
or one party receives output while the other receives a digitally-signed cheque
from the other party that it can take to a court of law or a bank. This cheque
can contain any sum of money, as agreed by the parties. The protocol further
has the property that the only way that a party can evade paying the sum in
the cheque is to reveal the other party’s output, thereby restoring fairness.

It is instructive to compare our approach to the optimistic model. On the one
hand, both solutions use a trusted party that is only contacted in the case of
attempted cheating. However, the optimistic model guarantees fairness always,
whereas our approach allows an adversary to breach fairness as long as it is
willing to pay the cheque (although if the sum in the cheque is set appropriately,
such an event is unlikely to ever occur). In addition, even if the adversary is not
willing to pay the cheque, it can prevent the other party from receiving its output
until the court or bank processes the cheque, at which point it can provide the
other party with its output and evade payment. Thus, our approach provides a
somewhat weaker security guarantee. On the other hand, in the optimistic model
a dedicated server must be set up and trusted. The advantage of our model is that
it uses existing infrastructure (like courts and banks) that are trusted. However,
our approach does assume that digital signature law and digital cheques are
respected, and so may not always be applicable. In summary, we believe that
our approach provides an interesting alternative to the optimistic one.

Organization. As a warm-up to see how our construction works, we first present
a simple solution to the problem of concurrent signatures in Section 2 that is
based on general protocols for secure computation. Then, in Section 3 we present
the definitions that we need, as well as a formal definition of legally-enforceable
fairness. Finally, in Section 4 we show how every two-party functionality can be
securely computed with legally-enforceable fairness.

2 Concurrent Signatures

As a warm-up, we present a protocol for concurrent signatures that is based on
general secure two-party computation. We rely on the intuitive description in
the Introduction of what concurrent signatures are. A formal definition can be
found in [9]. We also use a general protocol for secure computation, where party
P1 always receives output first (e.g., the protocols of [14,13] has this property);
see definitions in Section 3 below.

124 A.Y. Lindell

We assume a public-key infrastructure for digital signatures. In particular, P1
has a pair of signing/verification keys denoted (sk1, vk1) and P2 has an analogous
pair (sk2, vk2). Furthermore, each party knows the other’s public verification
key. Without loss of generality, we assume that a signature includes the message
being signed upon. The aim of the protocol is for P1 to receive a message m2
that is signed by P2, and for P2 to receive a message m1 that is signed by P1.
The protocol appears below in Figure 1.

Concurrent Signatures
The parties use a secure two-party protocol to compute the following functionality:

– Inputs:
1. Party P1 inputs its pair of keys (sk1, vk1), party P2’s verification-key

vk2, and the messages m1 and m2 to be signed upon
2. Party P2 inputs its pair of keys (sk2, vk2), party P1’s verification-key

vk1, and the messages m1 and m2 to be signed upon
– Outputs:

1. If the keys do not match (i.e., P2 inputs vk′
1 that is different to the vk1

input by P1 or vice versa), or they are not valid (i.e., sk1 is not the
signing key associated with vk1),

1 or m1 �= m2, then the functionality
outputs ⊥ to both parties. Otherwise:

2. Party P1 receives σ2 = Signsk2
(m2, σ1), where σ1 is defined next.

3. Party P2 receives σ1 = Signsk1
(m1); recall that by our convention a

signature contains the message and so σ1 contains m1.

Fig. 1. A protocol for concurrent signatures without random oracles

We now informally describe why our protocol achieves concurrent signatures.
First, observe that if both parties received output in the secure protocol, then
they both have mutual signatures on the appropriate messages m1 and m2.
However, if only P1 receives output (because it receives output first), then P2
does not receive the signature it should receive on the message m1. Nevertheless,
the signature σ2 obtained by P1 contains the signature σ1 that P2 should receive.
Therefore, if P1 wishes to enforce its signature by taking P2 to court, it will
necessarily reveal σ1 – the signature that P2 should receive – thereby restoring
fairness. Relying on the constructions of secure protocols by [14,13], for example,
we have the following theorem:

Theorem 1. Assuming the existence of enhanced trapdoor permutations, there
exist protocols for concurrent signatures, as defined in [9].

We remark that the constructions of [9] rely on specific assumptions and assume
a random oracle, whereas our construction relies only on general assumptions and
is in the standard model. However, the constructions of [9] are highly efficient,
while ours are not.
1 We assume that such validity can be verified given the signing and verification key-

pair. This is without loss of generality.

Legally-Enforceable Fairness in Secure Two-Party Computation 125

We also remark that P1 does not receive a “pure” signature on m2. Rather,
it receives a signature on m2 together with σ1. This may have ramifications in
some applications. For example, consider the case that P1 wishes to show a third
party a signature on m2 without revealing σ1 or m1 (since σ2 contains σ1 which
in turn contains m1, this information is revealed). If necessary, it is possible to
prevent this by defining that P1 receives a signature on m2 together with an
encryption of σ1 under a key belonging to P2. This will have the same effect
regarding fairness, but now σ2 does not reveal anything about σ1 or m1 to a
third party, as desired.

3 Definitions

3.1 Standard Definitions

We use the standard definition of two-party computation for the case of no
honest majority, where no fairness is guaranteed. In particular, this means that
the adversary always receives output first, and can then decide if the honest party
also receives output. We remark that the definition in [13, Section 7] only allows
a corrupted P1 to receive output without the honest party receiving output.
The variant that we use is obtained via a straightforward modification to the
ideal model; see [16]. We refer the reader to [13, Section 7] for full definitions of
security for secure two-party computation, and present a very brief description
here only.

Preliminaries. A function μ(·) is negligible in n, or just negligible, if for every
positive polynomial p(·) and all sufficiently large n’s it holds that μ(n) < 1/p(n).
A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈IN is an infinite sequence of ran-
dom variables indexed by a and n ∈ IN. (The value a will represent the par-
ties’ inputs and n the security parameter.) Two distribution ensembles X =
{X(a, n)}n∈IN and Y = {Y (a, n)}n∈IN are said to be computationally indistin-

guishable, denoted X
c≡ Y , if for every non-uniform polynomial-time algorithm

D there exists a negligible function μ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1] − Pr[D(Y (a, n)) = 1]| ≤ μ(n)

All parties are assumed to run in time that is polynomial in the security param-
eter. (Formally, each party has a security parameter tape upon which the value
1n is written. Then the party is polynomial in the input on this tape.)

Secure two-party computation. A two-party protocol problem is cast by
specifying a random process that maps sets of inputs to sets of outputs (one for
each party). This process is called a functionality and is denoted f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗×{0, 1}∗, where party P1 is supposed to receive the first output
and party P2 the second output. For simplicity, we assume that f1 = f2 and thus
that both parties receive the same output. When considering protocols for se-
curely computing any functionality, this is without loss of generality (encryption
can be used so that P1 cannot read P2’s portion of the output and vice versa).

126 A.Y. Lindell

Security is formalized by comparing a real protocol execution to an ideal
model setting where a trusted party is used to carry out the computation. In
this ideal model, the parties send their inputs to the trusted party who first sends
the output to the adversary. (The adversary controls one of the parties and can
instruct it to behave arbitrarily) After the adversary receives the output it either
sends continue to the trusted party instructing it to also send the output to the
honest party, or halt in which case the trusted party sends ⊥ to the honest party.
The honest party outputs whatever it received from the trusted party and the
adversary outputs whatever it wishes. We stress that the communication between
the parties and the trusted party is ideally secure. The pair of outputs of the
honest party and an adversary A in an ideal execution where the trusted party
computes f is denoted idealf,A(w)(x1, x2, n), where x1, x2 are the respective
inputs of P1 and P2, w is an auxiliary input received by A, and n is the security
parameter.

In contrast, in the real model, a real protocol π is run between the parties
without any trusted help. Once again, an adversary A controls one of the parties
and can instruct it to behave arbitrarily. At the end of the execution, the honest
party outputs the output specified by the protocol π and the adversary outputs
whatever it wishes. The pair of outputs of the honest party and an adversary
A in an real execution of a protocol π is denoted realπ,A(w)(x1, x2, n), where
x1, x2, w and n are as above.

Finally, we present the notion of a “hybrid model” where the parties run a
protocol π as well as having access to a trusted party. In this paper, we will
use this to model external authorities that exist in the real world. For example,
we will consider a certificate authority (for a public-key infrastructure) and a
bank. In this model, the protocol π contains both standard messages that are
sent between the parties as well as ideal messages that are sent between the
parties and the trusted party. The pair of outputs of the honest party and an
adversary A in a hybrid execution of a protocol π with a trusted party computing
a functionality g is denoted hybrid

g
π,A(w)(x1, x2, n), where x1, x2, w and n are

as above.
Given the above, we can now define the security of a protocol π (we present

this for the hybrid model because our protocols are in this model and by taking
g to be a function with no output we have the real model as well).

Definition 2. Let π be a probabilistic polynomial-time protocol and let f be
a probabilistic polynomial-time two-party functionality. We say that π securely
computes f with abort in the g-hybrid model if for every non-uniform probabilistic
polynomial-time adversary A attacking π there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model so that for every x1, x2, w ∈
{0, 1}∗,

{
idealf,S(w)(x1, x2, n)

}

n∈IN

c≡
{
hybrid

g
π,A(w)(x1, x2, n)

}

n∈IN

Legally-Enforceable Fairness in Secure Two-Party Computation 127

This is called “security with abort” because when fairness is not guaranteed,
the adversary is allowed to abort early (after it received output but before the
honest party receives output).

Immediate message receipt. Any protocol that aims to achieve any notion of
fairness must deal with the question of when to declare that one of the parties has
not sent a message. This can be dealt with by introducing time into the model
and allowing only a certain delay (as would be the case in practice), or can be
achieved by assuming synchronous computation (i.e., the protocol proceeds in
rounds and in each round all parties send and receive messages). For the sake
of simplicity, we assume the latter. Furthermore, we assume that the receipt of
messages is immediate, meaning that after a party receives a message, its next-
message is sent straight away. In particular, this means that if it does not send
such a message, it will not send it later.

Secure signature schemes. A signature scheme consists of three probabilistic
polynomial-time algorithms (Gen, Sign, Vrfy) such that for every n, every (vk, sk)
in the range of Gen(1n), and every m ∈ {0, 1}∗, Vrfy(vk, m, Sign(sk, m)) = 1.
A signature scheme is existentially secure against chosen message attacks if any
non-uniform probabilistic polynomial-time adversary given access to a signing
oracle can generate a forgery with at most negligible probability. (A forgery is a
valid signature on any message that the adversary did not query to its signing
oracle.) See [13] for full definitions. By convention, we assume that a signature
σ = Sign(sk, m) contains the message m. Thus, in order to verify a signature, it
suffices to have the verification key vk and σ. We also assume that the validity of
a signing pair can be verified given vk and sk (this is without loss of generality;
in particular, the random coins used to run Gen can be included as part of sk).

The certificate-authority functionality. We assume a public-key infrastruc-
ture for our protocols, and formalize this via the certificate-authority function-
ality of [6]. This functionality provides simple register and retrieve instructions
and is denoted FCA; see Figure 2.

Functionality FCA

1. Upon receiving the first message (Register, sid, v) from a party P , send
(Register, sid, v) to the adversary. Upon receiving back ok from the adver-
sary, check that sid = P and that this is the first request from P . If yes,
then record the pair (P, v); otherwise, ignore the message.

2. Upon receiving a message (Retrieve, sid) from a party P ′, send
(Retrieve, sid, P ′) to the adversary, and wait for an ok from the adversary.
Then, if there is a recorded pair (sid, v) output (Retrieve,sid, v) to P ′. Else
output (Retrieve, sid, ⊥) to P ′.

Fig. 2. The ideal certification authority functionality FCA

128 A.Y. Lindell

3.2 A Simple Bank Functionality

Our notion of legally-enforceable fairness assumes the existence of an external
authority that can force parties to carry out some action. In today’s society such
an authority exists in the form of a court of law (or a bank that respects digital
cheques), and we assume the existence of digital signature law that can be used
to enforce payment when one party holds a cheque that has been digitally signed
by another party. We use the following notation:

Cheques: A cheque for $α for a party Pj from a party Pi is denoted
chq = cheque(cid, Pi →Pj , α, z), where cid is a unique identifier and z
is an auxiliary-information field (like a “notes” field on a regular paper
cheque). A cheque is only valid when signed and so chq contains the in-
formation cid, Pi→Pj , α and z in some standardized form, all signed with
party Pi’s signing key. Thus, denoting Pi’s signing key-pair as (vki, ski),
we have that a cheque is the signature chq = Signski

(cid, Pi→Pj , α, z).
Recall that by our convention, a signature also contains the message and
so the signature is all that is needed.

We assume that a digitally signed message constitutes a legally binding cheque
that is respected by banks and by courts of law.

We define a functionality that represents a “bank”. It is not supposed to be a
full-fledged abstraction of the banking system. Rather, it is a minimal functionality
that is fulfilled by the real banking system in use today. The bank that we define
is such that upon receiving a cheque cheque(cid, Pi→Pj , α, z), the bank transfers
$α from Pi’s account to Pj ’s account, and sends Pi a copy of the cheque. (This is
analogous to the scan of a cheque that is sent by many banks to customers.) For the
sake simplicity, we initialize the accounts of all parties to $0 and allow the current
balance of an account to be any value, positive or negative; we denote the current
balance of a party Pi by balancei. The bank functionality is defined as follows:

Functionality Fbank

The functionality Fbank runs with a certificate authority FCA and parties
P1, . . . , Pn. It initializes values balancei = 0 for all i and a set used = φ, and
works as follows:

Upon receiving a message chq = cheque(cid, Pi→Pj , α, z) from a party
Pj , the functionality first checks that chq is a valid cheque from Pi to
Pj (it does this using Pi’s verification-key vki as retrieved from FCA),
and that (cid, i, j) /∈ used. If not, it ignores the message. If yes, it does
the following:
1. Set balancei = balancei − α
2. Set balancej = balancej + α
3. Add (cid, i, j) to the set used
4. Send chq to party Pi

Fig. 3. The ideal bank functionality Fbank

Legally-Enforceable Fairness in Secure Two-Party Computation 129

Fbank records tuples of the form (cid, i, j) in the set used in order to ensure
that the same cheque is not cashed twice.

3.3 Legally-Enforceable Fairness

We are now ready to formally define what it means for a protocol to securely
compute a functionality f with legally-enforceable fairness. The basic idea is
that an adversary has three choices regarding the output of the protocol:

1. The adversary can abort the protocol before anyone learns anything (pre-
serving fairness).

2. The protocol can conclude with both parties receiving output (preserving
fairness).

3. The protocol can conclude with the adversary receiving output while the
honest party does not. However, in case this happens, the honest party re-
ceives a cheque for $α from the adversary that it can cash at the bank.

We formalize this by defining a functionality Fα
f that incorporates the bank

functionality and computes f as above; see Figure 4.

Functionality Fα
f

The functionality Fα
f runs with parties P1 and P2, with initial balances balance1

and balance2, and an adversary A. Let Pi denote the corrupted party and Pj

the honest party (i, j ∈ {1, 2}, i �= j). Functionality Fα
f works as follows:

1. Fα
f receives inputs x1 and x2 from parties P1 and P2. If either of the inputs

equal ⊥ or are invalid, then Fα
f sends ⊥ to both P1 and P2 and halts.

2. If Fα
f receives two valid inputs, it sends y = f(x1, x2) to A and waits for

A’s response.
(a) If A replies with fair then Fα

f sends y to Pj

(b) If A replies with unfair (or doesn’t reply), then Fα
f sets balancei =

balancei − α and balancej = balancej + α.

Fig. 4. The ideal functionality Fα
f for computing f with legally-enforceable fairness

Definition 3. Let π be a protocol and f a two-party functionality. We say that
π securely computes f with α-legally-enforceable fairness if π securely computes
the functionality Fα

f according to Definition 2.

As a sanity check, we show that any protocol that securely computes f with
legally-enforceable fairness also securely computes f under the standard notion
of security. In order to do this, however, we must make a small modification to
the definition in the case of an unfair abort (i.e., where the adversary receives
output but the honest party does not), so that the honest party does not nec-
essarily output ⊥ but may simply remain in a waiting state. (This is essentially
equivalent, but the change is necessary on a technical level to make the models
match.) Given this modification, we prove the following:

130 A.Y. Lindell

Claim 4. Let π be a protocol that securely computes a two-party functionality f
with α-legally-enforceable fairness. Then, π securely computes f with abort, as
in Definition 2.

Proof: Let A be a real adversary that attacks protocol π. We wish to construct
a simulator S for the standard notion of security as in Definition 2. In order
to do this, we first consider the simulator S′ that is guaranteed to exist by the
fact that π securely computes f with legally-enforceable fairness; note that S′ is
designed to work with Fα

f . We construct S from S′ as follows:

1. When S′ sends an input x to the trusted party, S forwards the same x to
its trusted party. Then, when it receives back y, it hands it to S′ and waits
for S′’s reply:

2. If S′ replies with fair then S sends continue to the trusted party (indicating
that the honest party should also receive output) and outputs whatever S′
outputs.

3. If S′ replies with unfair or does not reply, then S sends halt to the trusted
party (indicating that the honest party should not receive output) and out-
puts whatever S′ outputs.

It is clear that the joint output distribution of S and the honest party is identical
to the joint output distribution of S′ and the honest party (which in turn is
indistinguishable from the output of A and the honest party in a real protocol
execution). Therefore, the output distributions of S and A and the honest party
are indistinguishable, as required.

4 A Protocol with Legally-Enforceable Fairness

Before formally presenting the protocol, we informally describe how it works.
The protocol has a number of phases, as follows:

1. Registration phase: In this phase, the parties register their digital signa-
ture keys with the certificate authority FCA.

2. Main computation phase: In this phase, the parties run a protocol for
secure computation with the property that party P1 receives a cheque for $α,
while P2 receives nothing. The important property of the cheque received by
P1 is that it itself contains an encrypted cheque for P2 for $α, much like
the signature-inside-a-signature in our solution for concurrent signatures in
Section 2. We call this cheque for P2 a counter-cheque because it enables P2
to “counter” the cheque that P1 has received. That is, if P1 sends its cheque
to the bank authority, then upon receiving a copy of this cheque from Fbank,
party P2 can decrypt its own counter-cheque and return the balances to their
original values. (Using this terminology, the cheque that P1 receives contains
an encrypted counter-cheque for P2.) In addition to the above, and crucial
to our solution as we will see below, the counter-cheque for P2 contains the

Legally-Enforceable Fairness in Secure Two-Party Computation 131

function output! We stress that the counter-cheque is encrypted and so only
P2 can obtain the output that is inside it.

3. Output exchange phase: In this phase, P1 is supposed to send its cheque
to P2, upon which P2 decrypts it, obtains the counter-cheque and sends it
back to P1. Following this, both parties read the function output from the
counter-cheque and output it.

We now informally analyze the above flow in terms of what happens if one of
the parties aborts before both have received output. We present our analysis in
a step-by-step fashion, showing what happens if an abort occurs at any given
step:

1. Either party aborts in the main computation phase: In this case no one learns
anything and so fairness is preserved.

2. P1 aborts by not sending its cheque to P2: As in the previous case, here no
one learns anything and so fairness is preserved. (Recall that P1’s output
from the main computation phase is its cheque and this does not directly
contain the output. Rather, the output only appears in the counter-cheque
for P2 that is encrypted so that only P2 can decrypt it. This means that if
P1 does not send its cheque to P2 then no one receives output.)

3. P2 aborts by not sending its counter-cheque back to P1: In this case, P2
has already received output (because the output is contained in its counter-
cheque), while P1 has not. Thus, if P2 aborts at this point, without sending
P1 the counter-cheque, fairness will have been breached. This is where the
cheques and legal enforcement comes in. In this situation, P1 has a cheque
from P2 for $α. Thus, the only way for P2 to avoid paying $α to P1 is for it
to present its counter-cheque. But, the counter-cheque contains the output
and so if P2 presents the cheque, fairness is restored!

We conclude that either fairness is preserved, or P1 can force P2 to pay it $α. We
remark that now that cheques are included as part of the model, we must also
ensure that it is not possible for a dishonest party to obtain a cheque that cannot
be countered by an honest party. Otherwise an adversary could inflict financial
damage on an honest party (note that this property is implicit in the definition
of Fα

f for legally-enforceable fairness). Now, in our protocol informally described
above, the cheque received by P1 contains a counter-cheque for P2. Therefore, if
a corrupted P1 sends this cheque to the bank, P2 will receive a copy containing a
counter-cheque that it can be used to restore the bank balances to their original
values. Likewise, P2 only receives its cheque after P1 has received its own, and
so P1 can always counter any cheque sent by P2 to the bank.

We are now ready to formally describe the protocol πα for securely computing
f with α-legally-enforceable fairness. The protocol is in the FCA, Fbank-hybrid
model, meaning that the parties have access to a trusted certificate authority
and a trusted bank (or court of law that enforces digital cheques), and appears
below in Figure 5.

132 A.Y. Lindell

A Protocol πα for Securely Computing f

Inputs: P1 has x1 and P2 has x2; both parties have α and n.

The protocol:
1. Phase 0 – registration: Prior to any execution of the protocol:

(a) P1 chooses (vk1, sk1) ← Gen(1n) and sends (Register, P1, vk1) to FCA.
(b) P2 chooses (vk2, sk2) ← Gen(1n) and sends (Register, P2, vk2) to FCA.

2. Phase 1 – main computation: The parties use a secure two-party protocol
to compute the following functionality:
Inputs:
(a) Party P1 inputs its signing key-pair (vk1, sk1), party P2’s public key vk2

(obtained by sending (Retrieve, P2) to FCA), its input x1, α and n. In
addition, P1 inputs a random string cid2 ∈R {0, 1}n.

(b) Party P2 inputs its signing key-pair (vk2, sk2), party P1’s public key vk1

(obtained by sending (Retrieve, P1) to FCA), its inputs x2, α and n. In
addition, P2 inputs a random string cid1 ∈R {0, 1}n and a random r of
appropriate length (see below).

Outputs: If the α and n values received from P1 and P2 are the same, the
keys match (i.e., P2 inputs vk′

1 = vk1 and vice versa), and the key-pairs that
are input are valid (i.e., ski is associated with vki), then the functionality sets
cid = cid1‖cid2 and defines the outputs as follows:
(a) Party P1 receives the cheque chq1 = cheque(cid, P2→P1, α, z), where z =

r ⊕ chq2, chq2 = cheque(cid, P1→P2, α, y) and y = f(x1, x2).
(b) Party P2 receives nothing.
If the checks do not pass, both parties receive ⊥, in which case they output ⊥.

3. Phase 2 – exchange outputs:
(a) If P1 did not receive output from phase 1 it halts and outputs ⊥. Other-

wise, it sends chq1 to P2.
(b) P2 waits to receive a value chq1 from P1. Upon receiving such a chq1,

party P2 checks that the identifier in chq1 begins with cid1 and that the
cheque is valid with respect to vk2. If not, P2 ignores the message and
continues waiting. Otherwise, P2 computes chq2 = r ⊕ z, sends chq2 to
P1, and outputs the value y inside chq2.

(c) If P1 did not receive chq2 from P2, or if the identifier in chq2 does not end
with cid2, or if chq2 is invalid with respect to vk1, then P2 sends chq1 to
Fbank (in order to receive $α). Else, P1 outputs the value y inside chq2.

4. Additional instructions:
(a) If P1 receives a valid chq2 with an identifier ending with cid2 from Fbank

(indicating a payment made to P2), then P1 sends chq1 with cid from the
same execution to Fbank.

(b) If P2 receives a valid cheque chq1 with an identifier beginning with cid1

from Fbank (indicating a payment made to P1), then P2 works as follows:
i. If P2 received already chq1 from P1, then it sends chq2 with cid to

Fbank.
ii. If P2 did not receive chq1 from P1, it takes chq1 as the value it is wait-

ing for in Step 3b above and proceeds according to those instructions.
In addition it sends chq2 to Fbank, as derived in Step 3b.

Fig. 5. A protocol for computing f with α-legally-enforceable fairness

Legally-Enforceable Fairness in Secure Two-Party Computation 133

Theorem 5. Assume that the protocol used in phase 1 is secure by Definition 2
and that the signature scheme is existentially unforgeable under chosen-message
attacks. Then, Protocol πα securely computes f with α-legally-enforceable fair-
ness in the FCA, Fbank-hybrid model.

Proof: The proof is in the hybrid model, where we assume that FCA, Fbank
and the computation of phase 1 are carried out with the help of a trusted third
party (see [5] and [13]). We separately analyze the case that P1 is corrupted
and the case that P2 is corrupted. Recall that what we need to show is that πα

securely computes the functionality Fα
f .

P1 is corrupted. Let A be a (hybrid-model) adversary controlling party P1.
We construct a simulator S as follows:

1. S invokes A upon its input x1 and auxiliary-input α and n. In addition, S
chooses a key-pair (vk2, sk2) ← Gen(1n) for P2.

2. When A sends a (Retrieve, P2) message intended for FCA, simulator S replies
with (Retrieve, P2, vk2).

3. When A sends a (Register, P1, vk1) message intended for FCA, simulator S
records vk1.

4. S obtains A’s inputs ((vk1, sk1), vk2, x1, α, 1n, cid2) for the trusted party
computing the functionality in phase 1. If the key vk2 is not the same key
that S chose for P2, the key vk1 in the key-pair is not the same key registered
by A, the key-pair (vk1, sk1) is not valid, α or n are not the same as above
or x1 is not valid for f (e.g., it is of the wrong length), then S sends input
⊥ to the trusted party computing Fα

f (as P1’s input), hands ⊥ to A as its
output from phase 1, outputs whatever A outputs and halts. Otherwise, S
proceeds to the next step.

5. S chooses cid1 ∈R {0, 1}n and a random string r of appropriate length as
in the protocol (this length is known), and sets cid = cid1‖cid2. Then, S
computes the cheque chq1 = cheque(cid, P2 → P1, α, r) (using sk2 that it
chose above) and hands chq1 to A as its output from phase 1.

6. S receives A’s next messages:
(a) If A sends some chq′1 intended for P2, then S checks that it is a valid

cheque with identifier cid. If not, it ignores the message. Otherwise, it
works as follows:
i. If the value z′ contained inside does not equal r as chosen by S, then

S outputs fail and halts.
ii. Otherwise, S sends x1 (obtained above from A) to the trusted party

computing Fα
f , receives back an output value y, and sends back

fair. Then, S computes chq2 = cheque(cid, P1→P2, α, y), using sk1
obtained from A above and hands it to A.

(b) If A sends some chq′′1 intended for Fbank, then S checks that it is a valid
cheque with identifier cid. If not, it ignores the message. Otherwise, it
works as follows:
i. If the value z′′ contained inside chq′′1 does not equal r as chosen by

S, then S outputs fail and halts.

134 A.Y. Lindell

ii. Otherwise:
A. If S already received y above, then it simulates Fbank sending P1

the cheque chq2 (as would occur after P2 sends chq2 to Fbank).
B. If not, S sends x1 to the trusted party computing Fα

f , receives
back the output y, and sends back fair. Then, S computes chq2 =
cheque(cid, P1→P2, α, y), using sk1 obtained from A above and
hands it to A. Finally, S simulates Fbank sending P1 the cheque
chq2 (as would occur after P2 sends chq2 to Fbank).

7. If S did not send x1 in Step 6 above, then it sends ⊥ as P1’s input to the
trusted party computing Fα

f .
8. S outputs whatever A outputs and halts.

This completes the simulation. First, observe that the view of A in such a sim-
ulation with S is identical to its view in a hybrid execution of Protocol πα with
an honest P2 (and where a trusted party runs FCA and phase 1). Furthermore,
conditioned on S not outputting fail, the joint distribution of A and P2’s out-
put in a hybrid execution is identical to that of S and P2’s output in an ideal
execution. This is due to the fact that if S does not output fail, then the value
output by P2 in a hybrid execution is either ⊥ or y, just as in an ideal execution.
Furthermore, S works so that whenever P2 would receive ⊥ (resp., y) in a hybrid
execution, it receives ⊥ (resp., y) in an ideal execution (by sending ⊥ and fair to
the trusted party, appropriately). In addition, if A sends a valid chq1 to Fbank,
then by the instructions of πα party P2 would send the appropriate chq2 to
Fbank. This ensures that the account balances of P1 and P2 are unchanged, as is
the case in the simulation by S. It thus remains to show that S outputs fail with
at most negligible probability. This is proven by a straightforward reduction to
the security of the signature scheme with respect to the key vk2. In order to see
that such a reduction is possible, note that the simulation by S can be run in an
identical way with access to a signing oracle that computes signatures with sk2
(as provided to an adversary in the signature-forging experiment). Furthermore,
if S outputs fail then A must have generated a signature that was not provided
by the oracle to S, meaning that A successfully forged a signature (contradicting
the security of the signature scheme).

We remark that in this corruption case, the unfair command is never used (this
is because P2 receives output first and so it is never the case that A receives
output while P2 does not).

P2 is corrupted. Let A be a (hybrid-model) adversary controlling party P2.
We construct a simulator S as follows:

1. S invokes A upon its input x2 and auxiliary-input α and n. In addition, S
chooses keys (vk1, sk1) for P1.

2. When A sends a (Retrieve, P1) message intended for FCA, simulator S replies
with (Retrieve, P1, vk1).

3. When A sends a (Register, P2, vk2) message intended for FCA, simulator S
records vk2.

Legally-Enforceable Fairness in Secure Two-Party Computation 135

4. S obtains A’s inputs ((vk2, sk2), vk1, x2, α, 1n, cid1, r) for the trusted party
computing the functionality in phase 1. If the key vk1 is not the same key
that S chose for P1, the key vk2 in the key-pair is not the same as registered
by A, the key-pair (vk2, sk2) is not valid, α or n are not the same as above,
or x2 is not valid for f , then S sends the input value ⊥ to the trusted party
computing Fα

f (as P2’s input), hands ⊥ to A as its output from phase 1,
outputs whatever A outputs and halts.
Otherwise, S sends x2 to the trusted party and receives back the output y.
S continues with the simulation as follows:

5. S sets the identifier cid = cid1‖cid2 and computes z = r⊕chq2 where chq2 =
cheque(cid, P1→P2, α, y). Then, S computes chq1 = cheque(cid, P2→P1, α, z)
and hands chq1 to A as the message it receives from P1 in phase 2.

6. S receives A’s next messages:
(a) If A sends some cheque chq′2 intended for P1, then S checks that it is a

valid cheque with identifier cid. If not, it ignores the message. Otherwise,
it works as follows:
i. If the value z′ contained inside does not equal y, then S outputs fail

and halts.
ii. If z′ does equal y, then S sends fair to the trusted party computing

Fα
f .

(b) If A sends some cheque chq′′2 intended for Fbank, then S checks that
it is a valid cheque with identifier cid. If not, it ignores the message.
Otherwise, it works as follows:
i. If the value z′′ contained inside does not equal y, then S outputs fail

and halts.
ii. Otherwise:

A. If S already sent fair above, then it simulates Fbank sending P2
the cheque chq1 (as would occur after P1 sends chq1 to Fbank).

B. If not, S sends fair to the trusted party computing Fα
f and sim-

ulates Fbank sending P2 the cheque chq1.
7. If S does not send fair in Step 6 above, then it sends unfair to the trusted

party computing Fα
f .

8. S outputs whatever A outputs and halts.

The analysis for this case is almost identical to the previous one. Namely, there
can only be a difference between an execution of πα with A and the simulation
with S in the ideal model if A succeeds in forging a signature. This completes
the proof.

Sequential composition. In general, secure protocols are guaranteed to remain
secure when run sequentially many times [5]. However, this is not necessarily
the case when some joint state is kept between executions [17]. In Protocol πα,
the parties’ signing and encryption keys are used in many executions and so
sequential composition is not automatically guaranteed. This can be solved in
two ways. One solution is to use different keys in each execution. However,
since we prefer to assume a standard public-key infrastructure, the user’s keys

136 A.Y. Lindell

must be fixed throughout. A second solution is to ensure that the signatures in
each execution are valid only in that execution by including a unique identifier
inside each signature, and having the party who verifies the signature check
that the identifier is correct. This solution was used in [7] and shown to achieve
the necessary level of security. Observe that in Protocol πα, the parties include
random cheque identifiers cid1 and cid2 in order to achieve this exact effect.
(Note that if these identifiers were not included, then for example P1 can send
a chq1 from a previous execution thereby causing the output of P2 to be that of
a previous execution and not the current one.) In order to prove security under
sequential composition, the only difference is that S may output fail even when
A provides a signature that was provided by the signing oracle. Specifically, this
can happen if a cidi appears twice in two different executions (in such a case, A
can provide the cheque from the previous execution, where the output may be
different to y). However, since cidi ∈R {0, 1}n and there are only a polynomial
number of executions, this can happen with at most negligible probability. Thus,
Protocol πα remains secure also under sequential composition.

Acknowledgements

We would like to thank Jonathan Katz for helpful discussions about how to
formalize the notion of legally-enforceable fairness, and for comments on the
write-up.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange.
In: 4th CCS, pp. 8–17 (1997)

2. Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty Majority. In: 30th
FOCS, pp. 468–473 (1989)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: 20th STOC, pp. 1–10
(1988)

4. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

6. Canetti, R.: Universally Composable Signature, Certification, and Authentication.
In: 17th IEEE Computer Security Foundations Workshop (CSFW), pp. 219–235
(2004)

7. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

8. Chaum, D., Crépeau, C., Damgard, I.: Multi-party Unconditionally Secure Proto-
cols. In: 20th STOC, pp. 11–19 (1988)

9. Chen, L., Kudla, C., Paterson, K.: Concurrent Signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer,
Heidelberg (2004)

Legally-Enforceable Fairness in Secure Two-Party Computation 137

10. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors are Faulty.
In: 18th STOC, pp. 364–369 (1986)

11. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Com-
posability of Cryptographic Protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

12. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-
Party Computation (manuscript, 2007)

13. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

14. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987)

15. Goldwasser, S., Levin, L.: Fair Computation of General Functions in Presence of
Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

16. Goldwasser, S., Lindell, Y.: Secure Computation Without Agreement. Journal of
Cryptology 18(3), 247–287 (2005)

17. Lindell, Y., Lysysanskaya, A., Rabin, T.: On the Composition of Authenticated
Byzantine Agreement. Journal of the ACM 53(6), 881–917 (2006)

18. Micali, S.: Secure Protocols with Invisible Trusted Parties. Presentation on Multi-
Party Secure Protocols, Weizmann Institute of Science, Israel (June 1998)

19. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In:
22nd PODC, pp. 12–19 (2003)

20. Pinkas, B.: Fair Secure Two-Party Computation. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

21. Yao, A.: How to Generate and Exchange Secrets. In: 27th FOCS, pp. 162–167
(1986)

Security of NMAC and HMAC
Based on Non-malleability

Marc Fischlin�

Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

www.fischlin.de

Abstract. We give an alternative security proof for NMAC and HMAC
when deployed as a message authentication code, supplementing the pre-
vious result by Bellare (Crypto 2006). We show that (black-box) non-
malleability and unpredictability of the compression function suffice in
this case, yielding security under different assumptions. This also sug-
gests that some sort of non-malleability is a desirable design goal for
hash functions.

1 Introduction

HMAC is one of the most widely deployed cryptographic algorithms today. Pro-
posed by Bellare et al. [3] it is nowadays standardized in several places like ANSI
X9.71 and incorporated into SSL, SSH and IPSec. It is used as a universal tool to
derive keys, to provide a pseudorandom function or simply to authenticate mes-
sages. Roughly, for keys kin, kout algorithm HMAC, and its generalized version
NMAC, are defined as

HMAC(kin,kout)(M) := H(IV, kout||H(IV, kin||M))
NMAC(kin,kout)(M) := H(kout, H(kin, M))

where H is an iterated hash function like MD5 or SHA1, based on some com-
pression function h.

In the original paper of Bellare et al. [3] algorithms HMAC and NMAC have
been shown to be a pseudorandom function assuming that the compression func-
tion h is pseudorandom and collision-resistant. With the emerging attacks on
the collision-resistance on popular hash functions like MD5 and SHA1 [11,12] the
trustworthiness of HMAC and NMAC was slightly tarnished, but subsequently
Bellare [5] proved both algorithms to be pseudorandom under the sole assump-
tion that the compression function is pseudorandom. This result is complemented
by several works [8,9,10] showing that weaknesses in collision-resistance can be
actually exploited to successfully attack HMAC and NMAC.

� This work was supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG).

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 138–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Security of NMAC and HMACBased on Non-malleability 139

Our results. Here, we present alternative assumptions about the compression
function to yield a security proof for HMAC and NMAC when used as a message
authentication code (MAC), instead of being deployed as a pseudorandom func-
tion. We require two orthogonal properties of the compression function which
are both implied simultaneously if, for instance, the compression function h is
pseudorandom:

– non-malleability: learning images of the iterated compression function (with
an unknown key involved) does not lend any additional power to create
another hash value under this key.1

– unpredictability: it is infeasible to predict the output of the iterated com-
pression function (with an unknown key involved).

Intuitively, unpredictability says that it is impossibile to guess images from
scratch (i.e., with no other images available). This is a very weak form of a
MAC but does not guarantee the common notion of security under adaptive
chosen-message attacks. Adding non-malleability then provides this stronger se-
curity notion, as seeing other images does not facilitate the task.

We also show that, if there are pseudorandom functions at all, then there
are compression functions which obey these two properties but are not pseu-
dorandom. Hence, our result shows security under weaker prerequisites on the
compression function, strengthening the confidence in the security of NMAC and
HMAC when deployed as a MAC. Moreover, the result here indicates that non-
malleability (or at least some relaxation thereof) is an eligible property for hash
functions and their designs.

Related results. We stress that Bellare [5], although using a stronger assumption,
also derives a stronger statement, namely, that the pseudorandomness of the
compression function carries over. Since HMAC is used for distinct purposes
such as key derivation or as a pseudorandom function, this security claim is
required for such cases. Our result merely supplements Bellare’s more general
result and shows that security of MACs is somewhat easier to achieve than
pseudorandomness (cf. [1]).

In [5] Bellare also considers weaker requirements for HMAC and NMAC used
as a MAC. He introduces the notion of privacy-preserving MACs and shows
that this condition suffices to guarantee security of the MAC, together with the
fact that the compression function is computationally almost universal which,
in turn, follows from the pseudorandomness of the compression function. Al-
though resembling each other, privacy-preserving MACs and our notion of non-
malleability are in general incomparable (as we discuss in Section 5.2). Our result
can therefore be seen as an alternative security claim based on different assump-
tions. At the same time, for some specific cases, our notion of non-malleability
implies privacy-preservation and thus also helps to characterize this property.

1 Here, depending on the padding of the hash function, we may require a special form
of “black-box” non-malleability, implemented via so-called simulatable images.

140 M. Fischlin

2 Preliminaries

We start by recalling HMAC and NMAC and then define our two properties,
non-malleability and unpredictability, before formalizing security of message au-
thentication codes.

2.1 HMAC and NMAC

Algorithms HMAC and NMAC are built from iterated hash functions based on
a compression function h, mapping {0, 1}n × {0, 1}b to {0, 1}n. For such a com-
pression function let the iteration of the compression function h∗(k, M) for input
k ∈ {0, 1}n and M = M [1] . . .M [n], consisting of b-bit blocks M [i], be given by
the value zn, where z0 = k and zi+1 = h(zi, M [i + 1]) for i = 0, 1, . . . , n − 1.
For notational convenience we write B = {0, 1}b and B≤N = ∪i≤NBi and
B+ = ∪i∈NBi such that h∗ : {0, 1}n × B+ → {0, 1}n.

Given the iterated compression function we can define the hash function H
as follows. Let H(k, M) = h∗(k, pad(M)) where pad(M) stands for the message
padded to a multiple of b bits. Here pad(·) is an arbitrary one-to-one function,
and we write TimeL(pad) for the time to compute the padding function for any
input of length at most L, and ExtendL(pad) for the maximal number of bits
the padding function adds to each string of at most L bits. We furthermore
assume that the padding length only depends on the input length. For example,
the standard padding appends a 1-bit to M and then adds the smallest number
of 0-bits to obtain a multiple of b bits, such that TimeL(pad) = O(L + b) and
ExtendL(pad) = b + 1.

We presume that the hash function’s description also contains a fixed, public
value IV and we set H(M) = H(IV, M). Define algorithms HMAC and NMAC
now as:

HMAC(kin,kout)(M) := H(kout||H(kin||M))
NMAC(kin,kout)(M) := H(kout, H(kin, M))

where keys kin, kout for NMAC consist of n-bits each and are used instead of IV,
and keys kin, kout ∈ {0, 1}b for HMAC are prepended to the strings.

In practice, HMAC is typically used with dependent keys kin = k ⊕ ipad
and kout = k ⊕ opad for fixed constants ipad = 0x3636 . . .36 and opad =
0x5c5c . . . 5c and a key k of at most b bits. In either case, one can view HMAC as
a special case of NMAC with kNMAC

in = h(IV, kHMAC
in) and kNMAC

out = h(IV, kHMAC
out).

2.2 Non-malleability and Simulatability

Non-malleability of a cryptographic function refers to the (in)ability to construct
an image which is related to previously seen images. This is formalized by con-
sidering an experiment in which an adversary A can first ask to see hash values
yi = H(xi) of pre-images xi distributed according to some distribution X . Then
A tries to find a hash value y∗ of a related pre-image x∗, where related pre-
images are specified through a relation R. The success probability of A should

Security of NMAC and HMACBased on Non-malleability 141

not be significantly larger than in an experiment of a simulator S which does
not get to learn the images yi but should still be able to find a related value y∗.

Non-malleability for hash functions has been defined in [2] and we follow their
approach but state the property in terms of concrete security. The authors of [2]
point out that the most general notion for hash functions and arbirtrary distri-
butions and relations is not achievable. Fortunately, here we deal with the easier
problem of considering only very special distributions and specific relations.

Below we formalize non-malleability for the compression function instead of
the hash function to make a claim about the security propagation. In the ad-
versary’s experiment we let A “bias” the distribution of the pre-images xi via a
parameter pi ∈ B+ passed to the (stateful) distribution X (k, ·), using a random
seed k. Formally, oracle GenSample takes the parameter pi as input, computes
xi ← X (k, pi) and the image yi = h(xi). After having seen some sample images
adversary A outputs an image y∗ and a transformation T which maps x1, x2, . . .
to x∗. That is, the adversary does not need to know the pre-image x∗ when
creating y∗, but must only commit to the transformation which determines x∗

once x1, x2, . . . become known (in fact, T produces x∗ from k, p1, p2, . . . from
which x1, x2, . . . can be derived). The simulator S only gets a restricted oracle
GenSample0 which samples the xi’s but does not return the image yi to S. Still,
the simulator should create a valid pair (T, y∗).

Definition 1 (Non-Malleable Compression Function). A compression
function h : {0, 1}n × {0, 1}b → {0, 1}n is called (tA, tS , Q, N, μ)-non-malleable
with respect to distribution X and relation R if for any algorithm A with running
time tA there exists a simulator S with running time tS , such that

Prob
[
Expnm-adv

h,A = 1
]

≤ Prob
[
Expnm-sim

h,S = 1
]
+ μ

where

Experiment Expnm-adv
h,A

k ← {0, 1}n

(T, y∗) ← AGenSample(k,·)

where GenSample(k, pi) computes
xi ← X (k, pi)
yi = h(xi)

and returns yi

x∗ ← T (k, p1, p2, . . .)
Return 1 iff

R(T, k, p1, p2, . . . , x
∗)

∧ (x∗, y∗) /∈ {(x1, y1), (x2, y2), . . . }
∧h(x∗) = y∗

Experiment Expnm-sim
h,S

k ← {0, 1}n

(T, y∗) ← SGenSample0(k,·)()
where GenSample0(k, pi) picks

xi ← X (k, pi)

x∗ ← T (k, p1, p2, . . .)
Return 1 iff

R(T, k, p1, p2, . . . , x
∗)

∧h(x∗) = y∗

Here A and S each make at most Q queries to their oracle, each query having
at most N blocks.

We consider here a special distribution XNMAC(k, ·) which, on input pi =
Mi[1] . . .Mi[j + 1] first computes the j-th iteration of the compression function

142 M. Fischlin

zi = h∗(k, Mi[1] . . .Mi[j]) for random key k and then returns the pre-image xi =
(zi, Mi[j + 1]) (from which yi = h(xi) is then derived). The relation RNMAC for
input (T, k, p1, p2, . . . , x

∗) merely checks that the transformation T computes the
output (h∗(k, M [1] . . .M [j]), M [j+1]) for some constants M [1], . . . , M [j+1] ∈ B
hardwired into T , and such that M [1] . . .M [j + 1] has at most N blocks, and
no pi is a prefix of M [1] . . .M [j + 1]. The prefix-check is necessary to prevent
standard extension attacks.

In a refinement of the non-malleability notion we consider π-simulatable com-
pression functions which allow to simulate images (given only a fraction π(pi) of
the parameter) and which can potentially be used to construct a black-box non-
malleability simulator. Simulatability essentially says that images can be created
without the (complete) pre-image, and thus immediately suggests a strategy for
constructing the non-malleability simulator. Below we formalize the notion of
simulatability by demanding that no efficient distinguisher can tell apart whether
it is communicating with the GenSample oracle or the oracle SimAnswer simulat-
ing images:

Definition 2 (π-Simulatability). A compression function h : {0, 1}n×{0, 1}b

→ {0, 1}n is called (tD, tSim, Q, N, σ)-π-simulatable for distribution X if there is
an algorithm SimAnswer running in time tSim such that for any algorithm D
running in time tD and making at most Q queries, each of at most N blocks,

Prob
[
DGenSample(k,·) = 1

]
≤ Prob

[
DSimAnswer(π(·)) = 1

]
+ σ

where oracle GenSample is defined as in Definition 1, and where we assume that
D never queries its oracles about the same value twice. The probabilites are taken
over D’s random choices, and k ← {0, 1}n in the first case and the randomness
of SimAnswer in the second case.

Given algorithm SimAnswer one can construct a black-box non-malleability sim-
ulator as follows. Consider another algorithm Interface which basically provides
the interface between the simulator’s oracle GenSample0 and the queries made
by the simulated adversary A. Then the non-malleability simulator is of the
form S = AInterface(·), where Interface on input pi forwards this value to oracle
GenSample0 of S and then computes yi ← SimAnswer(π(pi)) and returns it to A.
This simulator basically inherits the properties of SimAnswer, namely, runs in
time tS = tA + Q · (Time(SimAnswer) + Time(π)), makes at most Q queries and
is σ-close. This is under one condition: it must be possible to map the difference
in the output behavior (T, y∗) of A when communicating with oracle GenSample
or with oracle SimAnswer to a distinguisher with binary output. This will indeed
be the case for our application.

2.3 Unpredictability

A trivial example of a (π-simulatable) non-malleable compression function is a
constant function: any information available through images is known before-
hand and therefore redundant. Of course, such examples do not yield a good

Security of NMAC and HMACBased on Non-malleability 143

MAC, and in order to avoid such contrived cases we introduce the mild assump-
tion of unpredictability. Basically, a compression function is unpredictable if one
cannot determine a parameter p ∈ B∗ (specifying a distribution as in the non-
malleability definition), a message block m ∈ B and its image z = h(h∗(k, p), m),
before the key k is chosen:

Definition 3 (Unpredictablility). A compression function h :{0, 1}n×{0, 1}b

→ {0, 1}n is (t, N, ρ)-unpredictable if for any algorithm P running in time t, the
probability that for (p, m, z) ← P() and k ← {0, 1}n we have h(h∗(k, p), m) = z
and p||m ∈ B≤N , is at most ρ.

In the sequel we often view p and m as one message M = p||m such that the
definition says one cannot predict h∗(k, M) = h(h∗(k, p), m). A trivial example
of a (t, N, 2−n)-unpredictable compression function is the identity function (on
the key part), h(k, m) = k. Another example are pseudorandom compression
functions, as we prove formally in Section 5.

The examples of a constant compression function h(k, m) = 0n and (a mod-
ification of) the “identity-on-key-part” function h(k, m) = k also separate the
notions of non-malleability and unpredictability. The former function is clearly
π-simulatable (for any π) and non-malleable —the simulator can easily simulate
the oracle’s answers— but not unpredictable. In contrast, a slight modification
of the latter function, namely h(k, m) = k ⊕ lsbn(m) for the n least signifi-
cant bits lsbn(m) of m ∈ {0, 1}b, is unpredictable, yet malleable for XNMAC and
RNMAC. Malleability follows as an adversary is able to recover the key k from a
single query about message m = 0b and can then output the image k ⊕ 1n for
message m∗ = 1b (and the corresponding transformation). A simulator, on the
other hand, needs to output the image k ⊕ m for constant m in clear without
having any information about the key k.

We claim that h(k, m) = k ⊕ lsbn(m) is not π-simulatable for any π with
output length strictly less than n. A distinguisher D merely forwards distinct
random values m0, m1 ∈ {0, 1}b and checks that the replies y0, y1 satisfy y0 ⊕
y1 ⊕ m0 ⊕ m1 = 0n. For the function h this will be the case with probability 1.
For SimAnswer this probability cannot be more than 1

2 , since SimAnswer lacks
at least one bit of information about lsbn(m0 ⊕ m1) from π(m0), π(m1).

2.4 Message Authentication Codes

Our goal is to show that non-malleability of the compression function (plus un-
predictability) gives a secure message authentication code. Formally, a message
authentication code M = (KeyGen, MAC, Vf) consists of three (probabilistic) al-
gorithms, the key generation algorithm returning a key K ← KeyGen(), the MAC
algorithm computing a message authentication code τ ← MAC(K, M) for a mes-
sage M , and a verification algorithm deciding upon acceptance a ← Vf(K, M, τ)
for a message M and a putative MAC τ . MACs generated by the key-holder
should always be accepted, i.e., for any K ← KeyGen(), any message M and any
τ ← MAC(K, M) we always have Vf(K, M, τ) = 1.

144 M. Fischlin

Definition 4. A MAC M = (KeyGen, MAC, Vf) is called (t, Q, L, ε)-unforgeable
if for any algorithm B running in time t, the probability that for K ← KeyGen(),
(M∗, τ∗) ← BMAC(K,·)() making at most Q queries M1, M2, . . . to MAC(K, ·),
each query and M∗ of at most L bits, we have Vf(K, M∗, τ∗) = 1 and M∗ /∈
{M1, M2, . . . }, is at most ε.

In the definition above we let the adversary make only a single verification query.
Bellare et al. [6] have shown that for HMAC and NMAC this implies security
against adversaries which make v arbitrarily interleaved verification queries for
fresh messages not queried previously. This comes with a loss of at most a factor
v in security (and some minor change in the running time parameter t).

3 Security of NMAC

We first show that NMAC is a secure MAC, given that the compression function
is non-malleable, simulatable and unpredictable. For simplicity we refer to NMAC
as both the MAC algorithm and the scheme (with straightforward key generation
and verification algorithm).

We simply state the theorem and present the proof for π-simulatable, where
π is a constant function 0; afterwards we discuss that the theorem holds for
more general functions. We also remark that we can give a proof based on non-
malleability and unpredictability only (i.e., without simulatability) if the padding
function is prefix-free. See Appendix A.

Theorem 1. Let the compression function h : {0, 1}n × {0, 1}b → {0, 1}n be
(tA, tS , Q, N, μ)-non-malleable with respect to distribution XNMAC and relation
RNMAC, and (tD, tSim, Q, σ)-0-simulatable for XNMAC. Assume further that h is
(tS , N, ρ)-unpredictable. Then NMAC is a (t′, Q′, L′, ε′)-unforgeable MAC where

t′ = min{tA, tS , tSim} − (Q + 1) · TimebN (pad)
− Θ(NQ log Q · (Time(h) + n + b))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + μ) + σ.

Proof. We first make two simplifying assumptions about the MAC adversary B.
First we assume that B always pads any message before outputting it or submit-
ting it to the MAC oracle. Since the padding function is one-to-one, the padded
forgery attempt is still distinct from all (padded) submissions. Furthermore, the
adversary’s running time only increases by (Q + 1) · TimeL(pad) and the length
by at most ExtendL(pad) bits for each message. Secondly, we presume that B
never submits the same message twice. Since the MAC computation is determin-
istic such queries can be easily answered by keeping track of previous queries
and these checks only add the running time O(bNQ log Q).

For a successful attacker B on the MAC we distinguish between two cases:

Case NoColl: In the final output the MAC adversary B returns a (now padded)
message M∗ such that h∗(kin, M∗) 	= h∗(kin, Mi) for all previous queries Mi,
i = 1, 2, . . . , Q.

Security of NMAC and HMACBased on Non-malleability 145

Case Coll: The MAC adverary B returns a forgery attempt M∗ such that
h∗(kin, M∗) = h∗(kin, Mi) for some i.

Adding (the bounds for) the two probabilities then gives an upper bound on B’s
success probability.

Case NoColl. Assume B succeeds and that the first case happens. Consider the
following adversary Aout against the non-malleability for distribution XNMAC and
relation RNMAC. Adversary Aout initially chooses a key kin ← {0, 1}n at random.
It next runs a simulation of B and answers each query Mi to the MAC oracle
by computing locally zi = h∗(kin, Mi) and submitting pi = pad(zi) to its oracle
GenSample. Adversary Aout sets τi = yi for the oracle’s answer and returns τi to
B. When B eventually produces its output (M∗, τ∗) attacker Aout computes z∗ =
h∗(kin, M∗) and prepares the transformation T (k, p1, p2, . . .) which computes
h∗(k, pad(z∗)) for fixed value pad(z∗). Aout finally outputs (T, y∗) for y∗ = τ∗.

It is easy to see that Aout’s success probability in the non-malleability experi-
ment equals the success probability of B attacking the MAC scheme, given that
h∗(kin, M∗) 	= h∗(kin, Mi) for all i. The latter implies that z∗ 	= z1, z2, . . . and
therefore (x∗, y∗) 	= (xi, yi) for all i in the non-malleability experiment. Further-
more, the padding function is one-to-one and appends only the same amount
of bits for each z∗, z1, z2, . . . such that no pi is a prefix of pad(z∗). Hence, by
assumption, there exists a simulator S making tS steps and which is μ-close to
Aout’s probability, but which does not get to see any image under h∗(kout, ·). In
particular, without any knowledge about kout, the simulator outputs an image y∗

and a transformation T involving a constant c ∈ B≤N such that h∗(kout, c) = y∗.
But since the compression function is (tS , N, ρ)-unpredictable, the claim for this
case follows (in particular, ε′ ≤ μ + ρ).

Case Coll. Now consider the second case, that B succeeds and finds a collision
in the inner function. In fact, we only need that B is able to generate such a
collision M∗ 	= M1, M2, . . . , possibly not even succeeding in forging a MAC.
We then construct an attacker Ain on the non-malleability of the compression
function, again with respect to distribution XNMAC and relation RNMAC. The idea
is that such a collision can be guessed in advance and can then be used to predict
the image for the second value.

But first assume that, instead of communicating with oracle NMAC(kin,kout),
adversary B instead receives the answers from oracle SimAnswer(π(h∗(kin, ·))) =
SimAnswer(0) guaranteed by the π-simulatability (where π is constantly 0). We
claim that the probability of B producing a collision for the inner function cannot
drop by more than σ when communicating with SimAnswer. Else, one can easily
devise a distinguisher D separating GenSample and SimAnswer.

More formally, distinguisher D picks kin itself and is given access to an oracle
either implementing h∗(kout, ·) or SimAnswer and runs a simulation of B. Each
query Mi of B is answered by first computing zi = pad(h∗(kin, Mi)). Then D
checks if this value has appeared before, in which case D fetches the previous
answer and handing it back to B. Else, D forwards zi to its oracle and returns

146 M. Fischlin

the answer to B. When B eventually outputs a forgery attempt (M∗, τ∗) the
distinguisher verifies that M∗ 	= M1, M2, . . . (if not, it outputs 0), computes
z∗ = pad(h∗(kin, M∗)) and checks that there is a collision between z∗ and some
zi. If so, then D outputs 1, in any other case it returns 0.

The probability of returning 1 when given access to oracle GenSample is iden-
tical to the probability that B generates a collision on the inner function between
M∗ and some (distinct) Mi when attacking NMAC. On the other hand, if D is
given access to SimAnswer then the probability for returning 1 corresponds ex-
actly to the probability that B produces such a collision when given access to
SimAnswer instead. By assumption this difference cannot be more than σ, taking
into account that D essentially runs in the same time as B but needs to compute
the inner function and check for collisions.

Given B with access to SimAnswer we now build adversary Ain playing against
the non-malleability of the inner function. Adversary Ain is granted access to
oracle GenSample. It first picks random indices i0 between 1 and Q as well as
j0, �0 between 0 and N − 1. It also flips a coin c ← {0, 1}. Then it runs a black-
box simulation of B for oracle SimAnswer (which works independent of the actual
content of the queries of B). Only for the i0-th query Mi0 = Mi0 [1] . . .Mi0 [ni0],
if c = 0, adversary Ain also forwards pi0 = Mi0 [1] . . .Mi0 [j0 + 1] to its oracle
GenSample to receive a value z′i0 = h∗(kin, Mi0 [1] . . .Mi0 [j0 + 1]).2 Note that
Ain does not forward this value to B but rather uses the value generated by
SimAnswer. If c = 1 then A does not call its oracle at this point.

When B finally outputs (M∗, τ∗) and we have c = 1 then Ain has not queried
oracle GenSample so far, and now submits p∗ = M∗[1] . . .M∗[�0 +1] to receive the
value z′ = h∗(kin, M∗[1] . . .M∗[�0 + 1]).3 Adversary Ain then returns y∗ = z′ and
the transformation T (kin, , p1, p2, . . .) which for fixed j0, Mi0 [1], . . . , Mi0 [j0 + 1]
computes the value x∗ = (h∗(kin, Mi0 [1] . . .Mi0 [j0]), Mi0 [j0 + 1]). Else, if c = 0,
thenAin returns y∗ = z′i0 and the transformationT (kin, , p1, p2, . . .) which for fixed
�0, M

∗[1], . . . , M∗[�0 + 1] computes x∗ = (h∗(kin, M∗[1] . . .M∗[�0]), M∗[�0 + 1]).
For the success probability note that, given that B creates a collision between

some message Mi and M∗, adversary Ain predicts i0 = i and the right block

Fig. 1. Proof idea to Theorem 1: collisions among values

2 We assume that j0 < ni0 ; else stop immediately with no output.
3 Again, if �0 exceeds the number of blocks of M∗ we stop with no output.

Security of NMAC and HMACBased on Non-malleability 147

numbers j0, �0 such that Mi0 [1] . . .Mi0 [j0+1] 	= M∗[1] . . . M∗[�0+1] collide under
h∗(kin, ·) but xi = h∗(kin, Mi[1] . . . Mi[j0]) 	= x∗ = h∗(kin, M∗[1] . . .M∗[�0]),
with probability at least 1/QN2. See Figure 1. Furthermore, either Mi0 is a
prefix of M∗ or vice versa (or neither one is a prefix of the other one), and we
make the “right” choice c with probability at least 1/2 to submit the message
which is not a prefix to oracle GenSample. Hence, Ain’s success probability is
only a factor 1/2QN2 smaller than the one of B in this case. The overall running
time of Ain is essentially equal to the one of B, plus some time to prepare the
submissions and the final output.

By the non-malleability there must exist a simulator with μ-close success rate
to Ain. But this simulator never gets to see any information about kin and must
first commit to y∗ and M∗ = M∗[1] . . .M∗[n∗] for n∗ ≤ N (via T), allowing
only a success probability ρ by the unpredictability of the compression function.
Hence, the probability of B succeeding for a collision on the inner function is at
most 2QN2(μ + ρ) + σ.
�

Compared to the proof in [5], showing that NMAC is pseuodorandom given that
h is pseudorandom, we obtain a different loss factor in the success probability,
switching the roles of the number of queries and the length of messages (Θ(QN2)
vs. Θ(Q2N) as in [5]).

In the proof we have assumed that π(·) is the constant 0-function. We note
that the theorem still holds for more general cases, as long as there is a function
Π such that π(h∗(k, M)) = Π(M) for all k, M . Recall the idea from the second
part of the proof that we can simulate images for the outer function without
knowing h∗(kin, Mi). Yet, in order to execute SimAnswer(π(h∗(kin, ·))) we need
the information π(h∗(kin, Mi)). This information is easy to derive for constant
π, but also if we can deduce from Mi (known to us) via Π . Hence, the proof
goes through and we obtain:

Corollary 1. Let the compression function h : {0, 1}n × {0, 1}b → {0, 1}n be
(tA, tS , Q, N, μ)-non-malleable with respect to distribution XNMAC and relation
RNMAC, and (tD, tSim, Q, σ)-π-simulatable for XNMAC, such that there exists a
function Π with π(h∗(k, M)) = Π(M) for all k ∈ {0, 1}n and all M ∈ B+.
Assume further that h is (tS , N, ρ)-unpredictable. Then NMAC is a (t′, Q′, L′, ε′)-
unforgeable MAC where

t′ = min{tA, tS , tSim}
− Θ(NQ log Q · (Time(h) + n + b + TimebN (pad) + TimebN (Π)))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + μ) + σ.

As an example for such a function π consider a 0-simulatable compression func-
tion which appends some (fixed) subset of its input M to the output, and let
π denote the projection onto the corresponding suffix. Then this information
is clearly computable from Π(M). Somewhat interestingly, the simulatability
requirement depends to the padding function of the hash function. Namely, in
Appendix A we show that for prefix-free paddings the simulatability requirement
vanishes completely.

148 M. Fischlin

4 Security of HMAC

As explained in [3], one can map HMAC to NMAC by considering kNMAC
in =

h(IV, kHMAC
in) and kNMAC

out = h(IV, kHMAC
out) and

HMAC(kHMAC
in ||kHMAC

out , M) = NMAC(kNMAC
in ||kNMAC

out , M).

Put differently, HMAC includes a first step in which the NMAC-keys are computed
via h(IV, ·) and the HMAC-keys are used as input block.

To transfer the security claims from NMAC, Bellare [5] defines the “dual”
compression function h : B × {0, 1}n → {0, 1}n with h(b, a) = h(a, b). Then, if h
and h are pseudorandom, the security of NMAC carries over to HMAC. For the
precise claim and a discussion about the validity see [5, Sections 5.1 and 5.4].

We can extend the notions of non-malleability, π-simulatability and unpre-
dictability to these special cases. For this consider distribution XHMAC which,
for input (k, p) computes k′ = h(IV, k) and samples x ← XNMAC(k′, p). Anal-
ogously, relation RHMAC merely checks that the transformation T in the first
step computes k′ = h(IV, k) and proceeds as RNMAC. Then we demand that h is
non-malleable with respect to XHMAC and RHMAC and π-simulatable for XHMAC.

Similarly, we say that h is HMAC-unpredictable if it is infeasible to predict
h(h(IV, k), M); a more formal characeterization is easy to deduce. All assump-
tions are implied if h and h are pseudorandom (where we only need that h is
pseudorandom with respect to distinguishers that make only a single oracle call).
Under the assumptions about non-malleability, π-simulatability for suitable π
and unpredictability we conclude:

Theorem 2. Let the compression function h : {0, 1}n × {0, 1}b → {0, 1}n be
(tA, tS , Q, N, μ)-non-malleable with respect to distribution XHMAC and relation
RHMAC, and (tD, tSim, Q, σ)-π-simulatable for XHMAC, such that there exists a
function Π with π(h∗(k, M)) = Π(M) for all k ∈ {0, 1}n and all M ∈ B+.
Assume that h is (tS , N, ρ)-HMAC-unpredictable. Then HMAC is a (t′, Q′, L′, ε′)-
unforgeable MAC where

t′ = min{tA, tS , tSim}
− Θ(NQ log Q · (Time(h) + n + b + TimebN (pad) + TimebN (Π)))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + μ) + σ.

For the single-keyed HMAC variant with kin = k ⊕ ipad and kout = k ⊕
opad one can in principle adapt the notions of non-malleability, simulatability
and unpredictability for this case, too. Both properties are then implied if h
is pseudorandom under related-key attacks [7] (see also [5, Section 5.3]), and
single-keyed HMAC is a secure MAC under these versions of non-malleability,
simulatability and unpredictability.

5 Relations Among Security Notions

In this section we show that pseudorandom compression function have our
two properties but are stronger than both properties together. We also discuss

Security of NMAC and HMACBased on Non-malleability 149

that there are (simulatable) non-malleable compression functions which are not
privacy-preserving according to the notion in [5]. Below we simply write $N,n for
a randomly chosen function from all mappings with domain B≤N and
range {0, 1}n.

Definition 5. A function f : {0, 1}n × B+ → {0, 1}n is called (t, Q, N, δ)-
pseudorandom if, for any algorithm D running in time t, we have

Prob
[
Df(k,·) = 1

]
− Prob

[
D$N,n(·) = 1

]
≤ δ

where the probability in the first case is over D’s coin tosses and k ← {0, 1}n,
and in the second case over D’s coin tosses and the choice of $N,n. In both cases
D makes at most Q queries to its function oracle, each query of at most N blocks.

Below we sometimes make use of the following fact of Bellare et al. [4] about cas-
caded iteration of pseudorandom functions. The statement basically says that
the cascaded evaluation is also pseudorandom with respect to prefix-free dis-
tinguishers, i.e., distinguishers such that no oracle query is a prefix of another
one:

Lemma 1 ([4]). If the compression function h : {0, 1}n × {0, 1}b → {0, 1}n is
(t, Q, 1, δ)-pseudorandom, then h∗ : {0, 1}n × B+ → {0, 1}n is also (t′, Q, N, δ′)-
pseudorandom with respect to prefix-free distinguishers, where t′ = t−Θ(QNb+
NTime(h)) and δ′ = Nδ.

5.1 Pseudorandom ⇒ Non-malleable ∧ Unpredictable ∧
Simulatable

Recall from the security of NMAC that we defined XNMAC to be the distribution
which, for random k ∈ {0, 1}n and parameter p = M [1] . . .M [j + 1] ∈ B+

outputs the pre-image x = (h∗(k, M [1] . . .M [j]), M [j + 1]). Also, RNMAC is
the relation which, on input T, k, p1, p2, . . . , x

∗ checks that T computes x∗ =
(h∗(k, M∗[1] . . .M∗[j]), M∗[j + 1]) for some fixed M∗[1] . . .M∗[j + 1] of at most
N blocks (and checks that no pi is a prefix of M∗[1] . . .M∗[j + 1]).

Proposition 1. Let h be (t, Q, 1, δ)-pseudorandom. Then it is (tA, tS , Q, N, μ)-
non-malleable with respect to distribution XNMAC and relation RNMAC, where

tA = t−Θ(QNb logQ ·(Time(h)+n)), tS = t+O(bNQ logQ+n), μ = 2Nδ.

Proof. Consider any adversary A against non-malleability, running in time tA
and making at most Q queries. We may assume that A never queries its oracle
GenSample about a parameter whose prefix has been submitted before; such
values could be computed by A itself easily and skipping these oracle queries
can only increase A’s success probability. This increases the adversary’s running
time by at most O(bNQ log Q · (Time(h) + n)).

Construct the non-malleability simulator S running a black-box simulation of
A as follows. Each time the adversary submits a parameter pi =Mi[1] . . .Mi[j+1]

150 M. Fischlin

to its oracle, S emulates the oracle perfectly except that, instead of using the
iterated compression function, S uses lazy sampling to simulate a truly random
function.4 When the adversary A eventually outputs (T, y∗) the simulator, too,
stops with this output.

For the analysis we first consider A’s behavior if, instead of giving it access to
h∗(k, ·) we use a truly random function $N,n, also to check that y∗ = $N,n(M∗)
for the final output (instead of verifying y∗ = h∗(k, M∗)). By the pseudoran-
domness of h (and therefore of h∗) we get that the probability of A winning in
this new experiment is at least Nδ-close to the original success probability. This
can be easily turned formally into a (prefix-free5) distinguisher, simulating A in
a black-box way and calling its function oracle for each message and the final
check that T is of the right form and that y∗ is an image for M∗.

Next, consider the slightly changed experiment in which we give A random
answers for its message queries as before, but then evaluate correctly h∗(k, M∗)
to compare it to y∗. It is easy to see that the success probability of A in this
experiment cannot grow more than Nδ, again by the pseudorandomness. That
is, it is once more straightforward to construct a prefix-free distinguisher turning
this into a formal statement.

But the final experiment is identical to the success probability of the simulator,
showing the claim.
�

The proposition above shows that the same remains true for π-simulatable com-
pression functions (for arbitrary π) if we let SimAnswer simply return random
strings.

Corollary 2. Let h be (t, Q, 1, δ)-pseudorandom. Then it is (tA, tSim, Q, N, μ)-
π-simulatable with respect to distribution XNMAC, where π is arbitrary and

tA = t−Θ(QNb logQ ·(Time(h)+n)), tSim = t+O(bNQ logQ+n), μ = Nδ.

Finally, we show that pseudrandomness implies unpredictability:

Proposition 2. Let h be (t, 1, 1, δ)-pseudorandom. Then it is also (t′, N, ρ)-
unpredictable, where t′ = t − Θ(QNb + N · Time(h)) and ρ = N(δ + 2−n).

Proof. Since h is pseudorandom it remains pseudorandom if we make a single
query of (at most) N blocks. Only the running time drops slightly and the
distinguishing advantage increases to Nδ. But this implies that any algorithm
P trying to predict a function value cannot be better than for a truly random
function —which can be predicted with probability at most N · 2−n— plus the
distinguishing advantage of Nδ.
�

4 Meaning that S picks an independent random string when supposed to evaluate
the function on a new value, or repeats a previously given answer for previously
evaluated values.

5 Here we use the fact that no pi is a prefix of the message encoded in T .

Security of NMAC and HMACBased on Non-malleability 151

5.2 Non-malleable ∧ Unpredictable ∧ Simulatable �⇒
Pseudorandom

We next prove that non-malleability, simulatability and unpredictability together
do not imply pseudorandomness. Since this result only serves as a separation we
drop the viewpoint of concrete security and adopt the usual “asymptotic” notion
(with regard to parameter n). For example, being pseudorandom means to be
(poly(n), poly(n), poly(n), δ(n))-pseudorandom for any polynomial poly(n) and
some negligible function δ(n) (which may depend on the polynomial). The other
security notions can be adopted analogously.

Below we show that pseudorandomness is stronger than non-malleability, un-
predictability and π-simulatability for π = 0. Afterwards we discuss that the
claim also holds for a non-trivial functions π like the rightmost-bit function
rmb.

Proposition 3. Assume that there exists a pseudorandom compression function
h : {0, 1}n × {0, 1}b → {0, 1}n and a pseudorandom generator G : {0, 1}�n/2� →
{0, 1}n. Then there exists a compression function hsep : {0, 1}n × {0, 1}b →
{0, 1}n which is (a) non-malleable with respect to distribution XNMAC and rela-
tion RNMAC, (b) unpredictable, (c) 0-simulatable for XNMAC, but (c) not pseudo-
random.

Proof. First consider the truncated compression function htrunc(k, x) which splits
the key k into �n/2 bits kL and the remaining n−�n/2 bits kR, then computes
h(G(kL), x) and outputs only the first �n/2 bits of the result. It follows easily
from the pseudorandomness of G and h that this compression function is pseu-
dorandom, too, and therefore non-malleable, unpredictable and 0-simulatable.

Now define hsep(k, x) = htrunc(k, x)||0n−�n/2�. With this definition one can
compute the iterated output h∗sep(k, M) for any M ∈ B+ by evaluating htrunc

and appending n − �n/2 bits π(x) to the output in each stage (including the
final evaluation).

It is clear that hsep is not pseudorandom, because every function evaluation
yields only zeros in the right half of output. It is, however, still unpredictable.
If it was not unpredictable this would easily contradict unpredictability of htrunc

by cutting off the n − �n/2 rightmost bits from the output. Moreover, hsep

inherits non-malleability for XNMAC and RNMAC from htrunc because one can easily
transform attackers and simulators for the two cases (by appending or cutting off
zeros in the output). Simulatability can be shown easily, too, as one can output
random strings followed by a sequence of zeros.
�

Again, the claim remains true for π-simulatability for some non-trivial functions
π. For instance, if π(x) returns the rightmost bit rmb(x) of x and we use the
compression function hsep in the proof and replace the padding with zeros by
(rmb(x))n−�n/2� —call this function hrmb— then the proposition still holds. In
particular, the rmb-simulatability (together with non-malleability and unpre-
dictability) would suffice to prove NMAC to be secure.

We also remark that the example hrmb shows that there are π-simulatable
(and non-malleable and unpredictable) compression functions which are not a

152 M. Fischlin

privacy-preserving MAC according to [5]. Such a MAC has the additional prop-
erty that one cannot tell if either of two messages has been MACed. However,
for inputs with distinct rightmost bit this is easy for hrmb, of course. Still, 0-
simulatable compression functions are privacy-preserving, giving an alternative
characterization of this notion.

Acknowledgments

We thank the anonymous reviewers for valuable comments.

References

1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message Authen-
tication under Weakened Assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Non-Malleable Hash Func-
tions, Non-Malleable Hash Functions (manuscript, 2007)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Revisited: The
Cascade Construction and Its Concrete Security. In: Proceedings of the Annual
Symposium on Foundations of Computer Science FOCS 1996, pp. 514–523. IEEE
Computer Society Press, Los Alamitos (1996)

5. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

6. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Mes-
sage Authentication and Authenticated Encryption. Number 2004/309 in Cryptol-
ogy eprint archive (2004), http://eprint.iacr.org

7. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

8. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

9. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

10. Rechberger, C., Rijmen, V.: On Authentication With HMAC and Non-Rondom
Properties. In: Financial Cryptography FC 2007. LNCS, vol. 4886, pp. 119–133.
Springer, Heidelberg (2007)

11. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

12. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://eprint.iacr.org

Security of NMAC and HMACBased on Non-malleability 153

A Security of NMAC for Prefix-Free Paddings

Here we show that regular (i.e., not necessarily black-box) non-malleability suf-
fices to show security of NMAC and HMAC, given that the padding function pad()
is prefix-free. Formally, the function pad() is called prefix-free if for any distinct
M 	= M ′ the value pad(M) is not equal to any block-wise prefix of pad(M ′).
An example of a prefix-free padding is the standard padding with the exception
that we prepend a block containg the bit size of the original input. Then, any
messages with distinct length are clearly not a prefix of each other, and for equal
length messages pad(M) is either longer than any block-wise prefix of pad(M ′)
or of equal length, in which case they must be distinct since M 	= M ′.

Theorem 3. Let the compression function h : {0, 1}n × {0, 1}b → {0, 1}n be
(tA, tS , Q, N, μ)-non-malleable with respect to distribution XNMAC and relation
RNMAC. Assume further that h is (tS , N, ρ)-unpredictable and that pad is prefix-
free. Then NMAC is a (t′, Q′, L′, ε′)-unforgeable MAC where

t′ = min{tA, tS} − (Q + 1) · TimebN (pad) − Θ(NQ log Q · (Time(h) + n + b))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 2QN2 · (ρ + μ).

Proof. We remark that we again presume that B pads each message first and that
it never queries the MAC oracle about the same message twice. The first part of
the proof (the case that there is no collision between the inner value for M∗ and
any Mi) is identical to the “non-prefix-free” case and is therefore omitted. We
next consider the second case that B causes h∗(kin, Mi) = h∗(kin, Mi) for some
i. We again construct a non-malleability attacker Ain against the inner function.

Initially, adversary Ain picks a random index i0 between 1 and Q and indices
j0, �0 between 0 and N − 1. It next invokes the MAC adversary B and simulates
each answer for query Mi as follows.

– For i 	= i0 adversary Ain first submits pi = Mi to its oracle GenSample to get
an answer zi = yi. Then it computes τi = h∗(kout, pad(zi)) and returns this
value to B.

– For i = i0 and Mi0 = Mi0 [1] . . . Mi0 [ni0] it sends pi0 = Mi0 [1] . . . Mi0 [j0 + 1]
to the oracle6 to receive a value z′i0 = h∗(kin, Mi0 [1] . . .Mi0 [j0+1]). Compute
zi0 = h(z′i0 , Mi0 [j0 + 2] . . .Mi0 [ni0]) and τi0 = h∗(kout, pad(zi0)) and return
the latter value to B.

When B stops with output (M∗, τ∗) (for the padded message M∗) adversary Ain

sets its output to y∗ = z′i0 for the answer of the previously guessed index i0. The
adversary furthermore defines T (kin, , p1, p2, . . .) for fixed �0, M

∗[1], . . . , M∗[�0+
1] to compute x∗ = (h∗(kin, M∗[1] . . .M∗[�0]), M∗[�0 + 1]).7

To analyze Ain’s success probability let � denote some index such that, when
computing h∗(kin, M∗[1] . . .M∗[� + 1]) iteratively, this value matches any of
6 We assume that j0 < ni0 ; else stop immediately with no output.
7 We assume that �0 +1 is at most the number of blocks in M∗; else stop immediately

with no output.

154 M. Fischlin

the intermediate values h(kin, Mi[1] . . . Mi[j + 1]) for some i, j but such that
M∗[1] . . .M∗[� + 1] 	= Mi[1] . . .Mi[j + 1]. See again Figure 1 on Page 146. Ac-
cording to the assumption a collision between the value for M∗ and an image of
some query occurs and such indices must exist.

Furthermore, by the prefix-free padding function pad it follows from M∗ 	=
M1, M2, . . . that no Mi is equal to a block-wise prefix of M∗. Hence, there must
exists indices �0, i0, j0 such that we obtain a collision on the inner function and no
Mi for i 	= i0 and neither Mi0 [1] . . .Mi0 [j0 +1] is a prefix of M∗[1] . . . M∗[�0 +1].
But then Ain picks the right indices i0, j0, �0 with probability at least 1/QN2.
Under this condition, (x∗, y∗) 	= (xi, yi) for all i and Ain wins if B generates a
collision for the inner function.

Overall, Ain has a success probability which is smaller by a factor 1/QN2,
and there must exist a simulator with μ-close success rate. But this simulator
never gets to see any information about kin and must first commit to y∗ and
M∗ = M∗[1] . . .M∗[n∗] for n∗ ≤ N (via T), allowing only a success probability
ρ by the unpredictability of the compression function. The overall running time
of Ain is essentially equal to the one of B, plus the time to pad each message,
to check for double queries and to evaluate the compression function for each
oracle call.
�

Aggregate Message Authentication Codes

Jonathan Katz1 and Andrew Y. Lindell2

1 University of Maryland
jkatz@cs.umd.edu

2 Aladdin Knowledge Systems and Bar-Ilan University
andrew.lindell@aladdin.com, lindell@cs.biu.ac.il

Abstract. We propose and investigate the notion of aggregate mes-
sage authentication codes (MACs) which have the property that mul-
tiple MAC tags, computed by (possibly) different senders on multiple
(possibly different) messages, can be aggregated into a shorter tag that
can still be verified by a recipient who shares a distinct key with each
sender. We suggest aggregate MACs as an appropriate tool for authenti-
cated communication in mobile ad-hoc networks or other settings where
resource-constrained devices share distinct keys with a single entity (such
as a base station), and communication is an expensive resource.

1 Introduction

Aggregate signatures, introduced by Boneh et al. [5,16], allow t distinct signa-
tures by t (possibly different) signers on t (possibly different) messages to be
aggregated into a shorter signature that still suffices to convince a verifier that
each signer did indeed sign the appropriate message. Since their introduction,
various aggregate signature schemes have been proposed [12,11,6,13,4]. To the
best of our knowledge, however, no formal attention has yet been dedicated to
the private-key analogue of aggregate signatures: aggregate message authentica-
tion codes (MACs). In this paper, we initiate a formal study of this primitive.

One reason for the relative lack of attention focused on aggregate MACs may
be the (incorrect) perception that they are of limited value. Indeed, the appli-
cations suggested in [5] — such as compressing certificate chains, or reducing
the message size in secure routing protocols — are all specific to the public-key
(rather than the shared-key) setting. Nevertheless, we suggest that aggregate
MACs can be very useful in specific domains. As perhaps the most compelling
example, consider the problem of authenticated communication in a mobile ad-
hoc network (MANET), where communication is considered a highly “expensive”
resource because of its effect on the battery life of the nodes. Here, there is a
collection of t nodes U1, . . . , Ut, each of whom is interested in sending messages
to a base station B. We assume that the base station shares in advance a key ki

with each node Ui, and that node Ui authenticates any outgoing message mi by
computing tagi = Macki(mi).

Most nodes cannot communicate directly with the base station due to the
limited range of their wireless devices, and so all communication is instead routed

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 155–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 J. Katz and A.Y. Lindell

among the nodes themselves until it reaches the base station. For simplicity in
this example, let us assume that nodes are arranged in a (logical) binary tree
so that each node Ui at a leaf sends (mi, tagi) to its parent, and each internal
node Uj forwards to its own parent all the communication from its children in
addition to (mj , tagj). The root U∗ in this example is the only node that is
able to communicate directly with the base station, and it forwards to the base
station the communication from all nodes in the network along with its own
contribution (m∗, tag∗).

The messages themselves may be very short — corresponding, e.g., to tem-
perature readings or even just an indicator bit. For the sake of argument, let us
say that messages are 16 bits long. (Replay attacks can be addressed by using
a counter shared by the base station and all nodes in the network; this counter
would be authenticated by each node along with the message, but would not
need to be transmitted and so does not affect the communication complexity in
the calculation that follows.) Furthermore, let us assume that the length of a
MAC tag is 160 bits (e.g., if HMAC is used), and take t = 104. The commu-
nication from the root node alone to the base station is then (160 + 16) · t =
1.76×106 bits, while the total communication in the network is (approximately)
(160 + 16) · (2t log t) ≈ 4.6 × 107 bits.

The above description assumes MACs used in the ‘standard’ manner, meaning
that all MAC tags are transmitted together with the messages. If an aggregate
MAC were available, however, then each node Uj would be able to combine its
own MAC tag with those of its children. Say this aggregation can be performed
while maintaining the MAC tag length, even of aggregated tags, at 160 bits. (Our
construction will achieve this.) The communication from the root to the base
station will now be only 160+16t ≈ 1.6×105 bits, and the total communication
in the network will be improved to roughly 16(2t log t) + 160t ≈ 5.7 × 106 bits;
this is roughly an order of magnitude improvement in each case.

Aggregate MACs could also be used to improve the communication complexity
in schemes such as those of [14] or [9] which deal with aggregation of data. We do
not explore this further here, as we view the use of such techniques as tangential
to the main thrust of this paper.

1.1 Our Contributions

Motivated in part by scenarios such as the above, we formally introduce here
the notion of aggregate MACs and initiate the first detailed study of this prim-
itive. After giving appropriate definitions, we show a simple and highly efficient
construction of aggregate MACs based on a wide variety of existing (standard)
MACs. We remark that the existence of efficient aggregate MACs is somewhat
surprising since algebraic (i.e., number-theoretic) properties of the underlying
signature scheme are used to perform aggregation in the setting of aggregate
signatures. In contrast, here we would like to avoid number-theoretic construc-
tions and base aggregate MACs on primitives like block ciphers and hash func-
tions that have limited algebraic structure. Summarizing, we prove the following
informally-stated theorem:

Aggregate Message Authentication Codes 157

Theorem (basic construction – informally stated): If there exists a secure mes-
sage authentication code, then there exists a secure aggregate message authenti-
cation code with complexity as outlined below.

The complexity of our construction is as follows:

– Aggregate MAC tag length: equal to a single tag in the basic MAC scheme
– Computation of a MAC tag in the aggregate scheme: the same as for the

basic MAC scheme
– Computation of MAC tag aggregation: linear in the length of the tags to be

aggregated
– Verification of � aggregated MACs: equal to the time it takes to verify �

MACs in basic scheme

As can be seen from above, the complexity of our aggregate construction is
essentially the same as for a regular MAC scheme. This may be somewhat sur-
prising since in the public-key setting of aggregate signatures, it is significantly
harder to obtain secure aggregation. Nevertheless, the reason for this will become
clear after seeing our construction in Section 3.

Lower bound. Our aggregate scheme works very well when the receiver wishes
to verify the authenticity of all the aggregated messages. However, if the receiver
wishes to verify only one or a few messages, it must still verify them all. (This
is similar to the case of CBC encryption that requires the receiver to decrypt
the entire message even if it only wants to read the last block.) In Section 4, we
explore a variant of our main construction that offers a trade-off between the
length of an aggregate tag and the time required to verify individual messages.
We also show a lower bound showing that if constant or logarithmic-time veri-
fication of individual messages is desired, then the aggregated tag length must
be linear in the total number of messages whose tags are aggregated (and so the
trivial approach of concatenating individual tags is optimal up to a multiplicative
factor in the security parameter).

Related work. Subsequent to our work on this paper, we became aware of two
other recent papers [7,3] that, inter alia, use what are essentially aggregate MACs
(and, in fact, use essentially the same construction we show in Section 3). The key
additional contributions of our work are: (1) we provide a formal definition of the
problem and a proof of security for our construction; (2) we suggest extensions of
the construction offering the time/length trade-off discussed above; and (3) we
show a lower bound on the required tag length when fast verification of individual
messages is required.

2 Definitions

Our definitions are based on those given in [5,16] for aggregate signatures. Rather
than exploring numerous possible special cases of the definitions, we make our
definitions as general as possible (and our construction will achieve these defi-
nitions). We begin with a functional definition. The security parameter, which
determines the length of the key, will be denoted by n.

158 J. Katz and A.Y. Lindell

Definition 1. An aggregate message authentication code is a tuple of probabilis-
tic polynomial-time algorithms (Mac, Agg, Vrfy) such that:

– Authentication algorithm Mac: upon input a key k ∈ {0, 1}n and a mes-
sage m ∈ {0, 1}∗, algorithm Mac outputs a tag tag. We denote this procedure
by tag ← Mack(m).

– Aggregation algorithm Agg: upon input two sets of message/identifier1

pairs M1 = {(m1
1, id

1
1), . . ., (m1

�1
, id1

�1}, M2 = {(m2
1, id

2
1), . . . , (m

2
�2

, id2
�2)} and

associated tags tag1, tag2, algorithm Agg outputs a new tag tag. We stress
that this algorithm is unkeyed.

– Verification algorithm Vrfy: upon receiving a set of key/identifier pairs
{(k1, id1), . . ., (kt, idt)}, a set of message/identifier pairs M = {(m1, id

′
1),

. . ., (m�, id
′
�)}, and a tag tag, algorithm Vrfy outputs a single bit, with ‘1’

denoting acceptance and ‘0’ denoting rejection. We denote this procedure by
Vrfy(k1,id1),...,(kn,idt)(M, tag). (In normal usage, id′i ∈ {id1, . . . , idt} for all i.)

The following correctness conditions are required to hold:

– For all k, id, m ∈ {0, 1}∗, it holds that Vrfyk,id(m, Mack(m)) = 1. (This is
essentially the correctness condition for standard MACs.)

– Let M1, M2 be two sets of message/identifier pairs with2 M1 ∩M2 = ∅, and
let M = M1 ∪ M2. If:
1. Vrfy(k1,id1),...,(kt,idt)(M

1, tag1) = 1, and
2. Vrfy(k1,id1),...,(kt,idt)(M

2, tag2) = 1,
then Vrfy(k1,id1),...,(kn,idn)(M, Agg(M1, M2, tag1, tag2)) = 1.

The second correctness condition states that the aggregation of MAC tags still
enables correct verification.

The use of identifiers is merely a technical way to differentiate between dif-
ferent senders: in order to know which secret key to use for verification, the
receiver needs to know which message is associated with which sender. (Thus,
in the second correctness condition, enforcing M1 ∩ M2 = ∅ just means that
aggregation is not applied if the same sender authenticated the same message
twice.) Note that identifiers are not needed in the setting of aggregate signatures
where each sender is associated with a unique public key which, in effect, serves
as an identifier. For simplicity in what follows, we write Vrfyk1,...,kt

(·, ·) for the
verification algorithm, and we sometimes find it convenient to set idi = i (it can
be checked that this has no effect on our results).

An aggregate MAC would be used as follows. A receiver R who wants to re-
ceive authenticated messages from t senders begins by sharing uniformly random
keys k1, . . . , kt ∈ {0, 1}n with each sender (i.e., key ki is shared with the sender
with identity idi). When sender idi wishes to authenticate a message mi, it sim-
ply computes tagi ← Macki(mi). Given a tag computed in this way, and a second

1 We discuss the role of the identifiers below.
2 This technical condition ensures that the same message/identifier pair does not ap-

pear in both M1 and M2.

Aggregate Message Authentication Codes 159

tag tagj computed by sender idj on the message mj , these two tags can be aggre-
gated by computing the value tag ← Agg({(mi, idi)}, {(mj, idj)}, tagi, tagj). The
receiver can then check that sender idi authenticated mi, and that sender idj

authenticated mj , by computing

Vrfyki,kj

(
{(mi, idi), (mj , idj)}, tag

)

and verifying that the output is 1. Note that we do not assume idi �= idj . (But,
as per footnote 2, we do assume (mi, idi) �= (mj , idj).)

As in the case of aggregate signatures, our definition of security corresponds to
existential unforgeability under an adaptive chosen-message attack [8]. Because
we are in the shared-key setting, however, there are some technical differences
between our definition and the security definition for aggregate signatures. In
particular, we consider an adversary who may adaptively corrupt various senders
and learn their secret keys, and require security to hold also in such a setting.

Definition 2. Let A be a non-uniform probabilistic polynomial-time adversary,
and consider the following experiment involving A and parameterized by a secu-
rity parameter n:

– Key generation: Keys k1, . . . , kt ∈ {0, 1}n, for t = poly(n), are generated.
– Attack phase: A may query the following oracles:

• Message authentication oracle Mac: On input (i, m), the oracle re-
turns Macki(m).

• Corruption oracle Corrupt: upon input i, the oracle returns ki.

– Output: The adversary A outputs a set of message/identifier pairs M =
{(m1, id1), . . . , (m�, id�)} and a tag tag. (We stress that all the pairs in M
are required to be distinct.)

– Success determination: We say A succeeds if (1) Vrfyk1,...,kt
(M, tag) = 1

and (2) there exists a pair (mi∗ , idi∗) ∈ M such that

1. A never queried Corrupt(idi∗), and
2. A never queried Mac(idi∗ , mi∗).

We say that the aggregate MAC scheme (Mac, Agg, Vrfy) is secure if for all t =
poly(n) and all non-uniform probabilistic polynomial-time adversaries A, the
probability that A succeeds in the above experiment is negligible.

We do not consider verification queries even though, in general, they may give
the adversary additional power [1]. This is justified by the fact that our eventual
construction satisfies the conditions stated in [1] for which verification queries
do not give any additional power. (Of course, they prove this only for the case of
standard MACs but it is easy to see that their proof carries over to our setting as
well.) Note also that we need not allow “aggregate” queries, since the aggregation
algorithm Agg is unkeyed.

160 J. Katz and A.Y. Lindell

3 Constructing Aggregate MACs

In this section, we show that aggregate MACs can be constructed from essen-
tially any standard message authentication code. We begin by illustrating the
idea using as a building block the simple (standard) message authentication code
constructed from a pseudorandom function F with output length n as follows:
Mack(m) = Fk(m). In this case, given tags tag1, . . . , tag� associated with mes-
sage/identifier pairs (mi, i), respectively, we can aggregate these tags by simply
computing the XOR of all the tag values; i.e.,

tag = tag1 ⊕ tag2 ⊕ · · · ⊕ tag�.

(For simplicity, we consider identifiers 1, . . . , � above. However, as we will see in
the formal description below, these identifiers need not be distinct.) Verification
is carried out in the obvious way: given a set of message/identifier pairs M =
{(m1, 1), . . . , (m�, �)} and tag, the receiver outputs 1 if and only if

tag =
�⊕

i=1

Fki (mi).

As for the security of this scheme, we may argue informally as follows: say an
adversary outputs {(m1, id

′
1), . . . , (m�, id

′
�)} and tag such that there exists an i

for which A did not query either Corrupt(id′i) or Mac(id′i, mi). Let i∗ = id′i. Then,
from the point of view of the adversary, the value Fki∗ (mi) looks random. Since
XORing a random(-looking) value with any other (uncorrelated) strings yields
a random(-looking) string, we see that the value

⊕�
i=1 Fkid′

i

(mi) computed by
the receiver also looks random to the adversary, and cannot be guessed by the
adversary with probability much better than 2−n. We conclude that tag is a valid
forgery with probability only negligibly better than 2−n, and so the adversary
does not succeed in outputting a valid forgery except with negligible probability.

Extending the above ideas, we may realize that the proof does not require the
individual MAC tag Fki∗ (mi) to be pseudorandom, but instead only requires
that it be unpredictable. But this holds for any secure (standard) MAC, by the
definition of security for MACs. Thus, as far as security is concerned, the above
approach works for any underlying MAC. On the other hand, verification in the
aggregate MAC requires that verification in the underlying MAC be done by
re-computing the MAC tag and checking equality with what is received. (I.e.,
Vrfyk(m, tag) outputs 1 if and only if Mack(m) = tag.) We may assume, without
loss of generality, that verification is done this way for any deterministic MAC;
for randomized MACs (and, in particular, MACs where messages have more than
one valid tag for a given key), however, verification cannot be done this way. This
means that certain randomized MACs (e.g., XOR-MAC [2]) cannot be utilized
directly in the above construction, although we remark that any randomized
MAC could be “derandomized” using a pseudorandom function. In any case,
most commonly-used MACs are deterministic, and thus the restriction is not a
serious one.

Aggregate Message Authentication Codes 161

We now describe our aggregate MAC scheme formally, and rigorously prove its
security with respect to Definition 2. Let (Mac, Vrfy) denote a standard message
authentication code where Mac is a deterministic algorithm. (We will ignore the
Vrfy algorithm from now on since, as noted above, we can perform verification
by simply re-running Mac.) We have the following construction:

Construction 1. (Aggregate MAC Scheme)
Let Mac be a deterministic algorithm. We define (Mac∗, Agg∗, Vrfy∗) as follows:

– Algorithm Mac∗: upon input k ∈ {0, 1}n and m∈{0, 1}∗, outputs Mack(m).
– Algorithm Agg∗: upon input two sets M1, M2 of message/identifier pairs

and two tags tag1, tag2, the algorithm outputs tag = tag1 ⊕ tag2.
– Algorithm Vrfy∗: upon input a set of keys k1, . . . , kt ∈ {0, 1}n and a set

M = {(m1, i1), . . ., (m�, i�)} of message/identifier pairs where i� ∈ {1, . . . , t}
for all �, algorithm Vrfy∗ computes tag′ =

⊕�
j=1 Mackij

(mj), and outputs 1
if and only if tag′ = tag. (We stress that the input to Vrfy∗ is taken to be a
set, and so all the tuples in M are distinct.)

It is easy to verify correctness of the above scheme. As for security, we have:

Theorem 1. If (Mac, Vrfy) is existentially unforgeable under an adaptive chosen-
message attack and Mac is deterministic, then (Mac∗, Agg∗, Vrfy∗) given in Con-
struction 1 is a secure aggregate message authentication code.

Proof: Fix a probabilistic polynomial-time adversary A and some t = poly(n)
as in Definition 2. We construct a probabilistic polynomial-time algorithm F
that interacts with an instance of (Mac, Vrfy) and attempts to produce a valid
forgery for a previously-unauthenticated message. F is given access to an oracle
Mack∗(·) for an unknown key k∗, and proceeds as follows:

1. It chooses a random i∗ ← {1, . . . , t(n)}.
2. For i = 1 to t(n):

(a) If i �= i∗, choose ki ← {0, 1}n.
(b) If i = i∗, do nothing (however, we implicitly set ki∗ = k∗).

3. Run A(1n), answering its queries as follows:
Query Mac(i, m): If i �= i∗ then F answers the query using the known

key ki. If i = i∗ then F queries its own MAC oracle Mack∗(·) and returns
the result.

Query Corrupt(i): If i �= i∗ then give A the known key ki. If i = i∗ then
abort.

4. At some point, A outputs M = {(m1, id
′
1), . . . , (m�, id

′
�)} and tag. Let j be

the first index such that (1) A never queried Corrupt(id′j) and (2) A never
queried Mac(id′j , mj). (We assume without loss of generality that some such j

exists.) If id′j �= i∗ then abort; otherwise, proceed as described below.
5. Assuming id′j = i∗, algorithm F computes

tag∗ = tag ⊕

⎛

⎝
⊕

i�=j

Mackid′
i

(mi)

⎞

⎠ ,

162 J. Katz and A.Y. Lindell

where F computes Mackid′
i

(mi) using the known key kid′
i

when id′i �= i∗, and

computes Macid′
i
(mi) by querying its MAC oracle Mack∗(·) when id′i = i∗.

Finally, F outputs (mj , tag
∗).

The proof follows easily from the following observations:

– The probability that F aborts is exactly 1/t(n), which is inverse polynomial.
Furthermore, conditioned on not aborting, the simulation that F provides
for A is perfect.

– If A succeeds in a given execution (and F does not abort), then F outputs
a valid forgery. To see this, note that when A succeeds this means that

�⊕

i=1

Mackid′
i
(mi) = tag,

where we stress that Mackid′
i
(mi) is a fixed, well-defined value by virtue of

the fact that Mac is deterministic. Thus, the value tag∗ output by F is equal
to the (well-defined) value Macki∗ (mj) = Mack∗(mj). Furthermore, F has
never queried its own MAC oracle with the message mj since, by assumption,
A never queried Mac(i∗, mj) prior to step 5 of F ’s execution, above, and F
will not query mj to its MAC oracle in step 5 since all tuples in the set M
must be distinct.

This completes the proof.

Efficiency. Our construction for aggregate MACs is highly efficient. Consider
the example of a mobile ad-hoc networks (MANET) as described in the intro-
duction. If the nodes are arranged as a binary (or any other) tree, then each node
receives a set of messages together with a single tag from each of its children. In
order to forward the messages on, all the node needs to do is to concatenate the
lists of messages, compute its own MAC, and XOR all the tags together.

4 An Extension and a Lower Bound

A limitation of the construction given in the previous section is that the receiver
must re-compute the (individual) MAC tags on all � messages whose tags have
been aggregated. This is not a limitation in the MANET example given above.
However, in some cases, the receiver may only be interested in verifying the
authenticity of a single message (or some small subset of the messages). In
such cases, the requirement to re-compute the MAC tags of all the messages is
undesirable.

In this section, we present a simple idea that offers a trade-off between the
length of the aggregate tag and the time required to verify a single message. To
achieve authentication of a single message in constant time (i.e., independent of
the number of aggregated tags �), our approach yields a tag of length O(� · T),
where we take T to be the length of the tag in some underlying (standard) MAC.

Aggregate Message Authentication Codes 163

This is not of much interest because we can achieve a tag of length O(� · T) by
just concatenating the tags of a standard MAC (i.e., aggregation equals con-
catenation). However, our approach yields a tradeoff where the product of the
authentication time and tag length is O(�·T). In the previous section, we achieved
authentication in time � with a tag of length T . At the other extreme, concate-
nating MAC tags gives authentication in constant time (i.e., requires verifying a
single MAC) but has a tag of length � ·T . Our approach, described below, allows
essentially anything in between. In particular, one can achieve authentication in
time O(

√
�) with a tag of length O(

√
� · T).

It is interesting to wonder whether this is optimal. In this direction, we also
present a lower bound showing that this approach is asymptotically optimal (up
to a multiplicative factor of T) when considering verification that takes constant,
or at most logarithmic, time. That is, we show that any aggregate MAC scheme
that enables authentication in logarithmic time (in �, the number of aggregated
MACs) must have a tag of length at least Ω(�).

We stress that in this section, we consider the running time as a function of
the number � of messages. Of course, it also takes time to compute and verify a
single MAC tags. However, this is a fixed overhead for every value of the security
parameter, and so what is really of interest is how many MAC tags need to be
computed to verify a single message, when the number of aggregated MACs is �.

4.1 The Construction

Before presenting our construction, we first describe the problem in a bit more
detail. Recall from Definition 1 that the receiver holds a set of keys k1, . . . , kt,
and is assumed to receive a set of message/identifier pairs M = {(m1, id1), . . .,
(m�, id�)} and a tag tag. In this section, we assume the receiver does not care to
simultaneously verify the authenticity of all messages in M (with respect to the
identifier associated with each message) as in the previous section, but instead is
interested only in verifying authenticity of one of the messages mi (with respect
to the associated identifier idi). Obviously, the only solutions of interest are those
that are more efficient than verifying everything.

A fairly straightforward solution is as follows. Fix some parameter �′. Then
run multiple instances of the “base aggregation scheme” from the previous sec-
tion in parallel, but only aggregating at most �′ messages/tags using any given
instance. (We stress that each sender still holds only one key, the verifier still
holds one key per sender, and the Mac∗ algorithm is unchanged. All that changes
is the way aggregation and verification are performed.) The net result is that a
set of message/identifier pairs M = {(m1, id1), . . ., (m�, id�)} is now authenti-
cated by a sequence of �∗ = ��/�′� tags tag1, . . . , tag�∗ generated according to the
base scheme, where tag1 authenticates m1, . . . , m�′ (with respect to the appro-
priate associated identities), tag2 authenticates m�′+1, . . . , m2�′ , etc. To verify
the authenticity of any particular message mi, the verifier need only re-compute
MAC tags for (at most) �′ − 1 other messages.

The tag when � messages are authenticated is now the length of ��/�′� basic
MAC tags (i.e., length ��/�′� · T), and the time for verifying any particular

164 J. Katz and A.Y. Lindell

message is improved to O(�′) (instead of O(�) as previously). Thus, for example,
setting �′ =

√
� we obtain verification of time O(

√
�) and a tag that is comprised

of
√

� basic MAC tags. We remark that the time required to verify all the
messages is essentially the same as before. Achieving constant verification time
for any single message using this approach would result in a tag of (total) length
linear in the number of messages being authenticated. In particular, when �′ = 1
we obtain an “aggregate” scheme which simply concatenates MAC tags of all
the messages being authenticated.

4.2 A Lower Bound

As we have mentioned, when constant verification time is desired (i.e., �′ = 1
in the scheme of the previous section), the result is a MAC tag that consists
of � basic MAC tags (i.e., the aggregation works by just concatenating MAC
tags). This is rather disappointing and it would be highly desirable to improve
this situation. In this section we show that it is impossible to achieve a better
result since the above is essentially optimal. Informally speaking, we show that if
verification can be carried out in constant time (or even in time O(log �)), then
the tag must be at least Ω(�) bits long.

Before proceeding further, we observe this does not contradict the positive
result we obtained above. This is because we must have T = ω(log n) (otherwise
an adversary can guess a valid MAC tag, in the underlying scheme, with non-
negligible probability) and because �, the number of aggregated MACs, can be
at most polynomial in n (or else it does not make much sense to talk about
security of the scheme). Thus, the tag length of our previous construction when
�′ = O(log �) is

T · �/ log � = ω(log n) · �/O(log n) = ω(�),

as required. We now formally state and prove the lower bound:

Claim 1. Any aggregate MAC scheme in which verification of a single message
can be carried out in time O(log �) (where � denote the total number of messages
authenticated by an aggregate tag) has tags whose length is Ω(�).

Proof: We begin by providing intuition as to why the claim is true. Assume
that there exists an aggregate MAC scheme where verification of a single message
takes time log �, and the tags are of length less than �. The main observation
is that if verification takes time log �, then the Vrfy algorithm can only read at
most log � of the messages whose MACs are aggregated. If each of these messages
consists of one bit only, then it is possible to try all possible combinations of
the log � bits to see which passes verification (this takes time 2log � = � which is
feasible). A key point here, of course, is that only a correct combination should
pass or this could be used to efficiently construct a forgery of the aggregate MAC
scheme. This implies that it is possible to reconstruct log � of the (single-bit)
messages given only the MAC tag. However, this holds for all subsets of log � bits
and so all of the messages can be reconstructed in polynomial-time given only
the MAC tag. But this means that it is possible to reconstruct any �-bit message

Aggregate Message Authentication Codes 165

from a tag of length less than �. Stated differently, it means that an arbitrary
�-bit message can be compressed, something that is known to be impossible!
Our formal proof follows this intuition with some minor changes, the main one
being that we show how to reconstruct one bit at a time rather than blocks of
log � bits. Furthermore, we derive our contradiction through lower bounds for
probabilistic communication complexity rather than through compression; this
is easier because of the negligible probability of error that exists when working
with any cryptographic primitive.

We will use the public random string model of communication complexity,
where two parties share a common random string and the question is how many
bits must they communicate in order to correctly compute a function f . Given a
protocol Π , the error of this protocol is given by maxx,y {Pr[Π(x, y) = f(x, y)]}
where the probability is taken over the parties’ common random string as well
as any internal randomness they might use. We let CCε(f) denote the min-
imum number of bits need to compute f , where this minimum is taken over
all possible protocols with error at most ε. It is known that there exist func-
tions f : {0, 1}� × {0, 1}� → {0, 1} for which CCε(f) = Ω(�); the inner-product
function IP (x, y) =

∑�
i=1 xiyi mod 2 is one example. See [10,15] for more on

communication complexity.
Let (Mac∗, Agg∗, Vrfy∗) be an aggregate MAC scheme in which verification of

any message can be carried out in time O(log �). At the very least, this implies
that given any set of messages M = {m1, . . . , m�} and a single identifier id (using
a single identifier just simplifies the proof), verification of a single message mi

(with respect to id) can be carried out by examining only w = O(log �) other
messages in M . (This is due to the fact that it is not possible to read more
than log � messages in log � time.) We show that such a scheme implies that the
probabilistic communication complexity (in the public random string model) of
every function f : {0, 1}� ×{0, 1}� → {0, 1} is essentially the length of a tag for �
messages. However, since there exist functions with communication complexity
Ω(�) (see the discussion in the previous paragraph) it follows that the tag length
must also be Ω(�).

We begin by describing a protocol for computing any function f : {0, 1}� ×
{0, 1}� → {0, 1} with communication complexity that is equal to the tag length
plus 1. We stress that this protocol is for the setting of communication complexity
and not cryptography. Thus, the parties A and B are fully honest and the only
question is how many bits must be sent (there is no requirement on privacy,
etc.). Loosely speaking, the protocol we describe works by having A compute
an aggregate MAC on her input and then send the tag to B. Party B then
reconstructs A’s input from the tag, as described in the intuitive discussion
above. Finally, given A’s full input, B computes the output and sends it to A.

Before formally describing the protocol, we show how to encode a single �-bit
input into an aggregate MAC over � messages. Let x = x1 · · ·x� be A’s input.
Then, A defines messages m1, . . . , m� by mi = 〈i〉‖xi, where 〈i〉 is the binary
encoding of i. The set {m1, . . . , m�} is a valid encoding of x because it fully
defines x (all bits of x are represented, and their positions in x are given by the

166 J. Katz and A.Y. Lindell

encoding of j that is included in every mj). We remark that since only one id is
used here, we ignore it from here on. We now describe the protocol:

Protocol 1. (communication complexity protocol for any function f)

– Inputs: A has x ∈ {0, 1}� and B has y ∈ {0, 1}�.
– Public random string: both parties share a random string k ∈ {0, 1}n for

some sufficiently large n.
– The protocol:

1. A’s first step:
(a) Party A encodes its input x = x1 · · · x� into a set of � messages

M = {m1, . . . , m�} where mi = 〈i〉‖xi for every i.
(b) A computes tagi ← Mac∗k(mi) for all i, and then aggregates all the

results into a single tag tag∗ by using the algorithm Agg∗.
(c) A sends tag∗ to B.

2. Upon receiving tag∗ from A, party B works as follows for i = 1, . . . , �:
(a) B sets mi = 〈i〉‖0 (this can be viewed as a guess that xi = 0) and

attempts to run Vrfy∗k(M, tag∗). However, Vrfy∗ expects to receive M
and in general may read up to log � other messages in M .3 Therefore,
B proceeds as follows:

(b) Let Vrfy∗k((j1, mj1), . . . , (jt, mjt), tag∗) be the algorithm defined by
Vrfy∗ after it has read the t messages indexed by j1, . . . , jt with con-
tent mj1 , . . . , mjt ; note that mi is not included in this notation as
we assume it is read first. (Essentially, this algorithm is defined by
fixing the prefix of its execution until this point.)

(c) For t = 0, . . . , log �, B works as follows:
i. If t = �, then return the output bit of

Vrfy∗k((j1, mj1), . . . , (jt, mjt), tag
∗)

ii. Else , invoke Vrfy∗k((j1, mj1), . . . , (jt, mjt), tag∗) and let jt+1 be
the next message read by Vrfy∗k((j1, mj1), . . . , (jt, mjt), tag∗).

iii. Recursively invoke Vrfy∗k((j1, mj1), . . . , (jt, mjt), (jt+1, 0), tag∗)
and Vrfy∗k((j1, mj1), . . . , (jt, mjt), (jt+1, 1), tag∗), and return the
logical OR of their outputs.

If the output of Vrfy∗ from the above procedure equals 1, then B sets
xi = 0. Otherwise, it sets xi = 1.

3. Given x = x1, . . . , x�, B computes f(x, y) and returns the result to A.
4. Both parties output f(x, y).

Note that B’s procedure is such that if any of the recursive threads returns 1 then
B sets xi = 0. However, if this occurs, then this means that there exists a subset
of log � messages mj1 , . . . , mjlog �

such that Vrfy accepts mi = 〈i〉‖0 relative to
this subset. On the other hand, if this does not occur, then Vrfy rejects for all
such sets, in which case B sets xi = 1.

3 Without loss of generality we assume that Vrfy first reads mi and then up to log �
other messages.

Aggregate Message Authentication Codes 167

It is clear that if B reconstructs x correctly then the protocol is correct. It
therefore remains to show that B correctly reconstructs x except with negligible
probability. (Actually, in the context of communication complexity it suffices to
show that this holds except with some constant probability. However, we show
something stronger.)

We separately analyze the case that xi = 0 and xi = 1. In the case of xi = 0
we have that A generated tag∗ with xi = 0 and some setting of the other bits.
Therefore, there must exist some subset of log � messages that results in Vrfy
accepting (this subset is defined by A’s real input x). Thus, when xi = 0, party
B always sets xi = 0. (This follows from the correctness condition of MACs that
states that if a tag is correctly constructed, then Vrfy will always output 1.)

The more challenging case is that of xi = 1. Assume that there exists a mes-
sage x = x1, . . . , x� and an i such that with probability p, party B’s procedure
on an aggregate tag tag∗ computed from x is such that xi = 1 but B sets
x′i = 0. We use this to construct an adversary A that breaks the MAC scheme
(Mac∗, Agg∗, Vrfy∗) with probability p/�.4 Adversary A encodes x into a set M
exactly as party A does. It then uses its Mac∗ oracle to compute an aggregate
MAC on the set of � messages M ; let tag∗ be the result. Next, A chooses uni-
formly distributed bits b1, . . . , b� ∈ {0, 1} and constructs a new set M ′ where
m′i = 〈i〉‖0 and for all j �= i, m′j = 〈j〉‖bj. Finally, A outputs the set M ′ and
the tag tag∗. (We note that A uses oracles whereas the party A used the public
random string k. However, party A’s procedure does not use k in any way except
to compute Mac∗ legitimately and so A can simulate this using its Mac∗ oracle.)

We claim that A succeeds in breaking the MAC scheme with probability p/�.
This is due to the following facts:

1. The set M ′ is such that A never queried Mac(m′i) (because mi = 〈i〉‖1 but
m′i = 〈i〉‖0).

2. A did not send any Corrupt queries
3. With probability 2− log � = 1/� the random bits chosen by A that are read

by Vrfyk are equal to those that result in B’s procedure erring. Therefore,

Prob[Vrfy∗k(M ′, tag∗)] =
p

�
.

We conclude that A succeeds in its attack with probability p/�, implying that p
must be negligible (by the assumption that the scheme is secure). This implies
that Protocol 1 (probabilistically) computes f with communication complexity
|tag∗|+1. Since there exist functions f for which the communication complexity
is Ω(�), this therefore implies that |tag∗| = Ω(�) as required.

We conclude by remarking that it is actually only required that the adversary
A run in polynomial-time in order to reach a contradiction regarding the MAC.
4 We are being slightly informal here. What we prove is that for a given n and pair

(x, i), a non-uniform adversary will succeed in breaking the MAC scheme with prob-
ability that is polynomially related to the probability that B’s procedure errs regard-
ing the ith bit. This will then imply that for all sufficiently large n’s, the probability
p = p(n) must be negligible, as required.

168 J. Katz and A.Y. Lindell

In contrast, B can run in time 2� and this makes no difference (the bounds in
communication complexity hold irrespective of the computational complexity of
the parties). The crucial point is that A does not run B and so its complexity
does not depend on B. Thus B could just try all 2� strings to see if one results in
the MAC being accepted. The probability of A generating a successful forgery
remains the same because it is simply based on a random guess.

In summary, it is not possible to do (much) better than our solution of the
previous section when constant- or logarithmic-time verification is required. An
interesting question remains as to whether it is possible to do better than the
tradeoff achieved by our construction when �′ is asymptotically larger than log �.
It would also be interesting to close the remaining multiplicative factor of T (the
tag length of the underlying MAC).

Acknowledgments

The work of the first author was supported by NSF grant #0627306, and by the
US Army Research Laboratory and the UK Ministry of Defence under Agree-
ment Number W911NF-06-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the US Army Research Labo-
ratory, the US Government, the UK Ministry of Defense, or the UK Government.
The US and UK Governments are authorized to reproduce and distribute reprints
for Government purposes, notwithstanding any copyright notation herein.

References

1. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in
Message Authentication and Authenticated Encryption,
http://eprint.iacr.org/2004/309

2. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

3. Bhaskar, R., Herranz, J., Laguillaumie, F.: Aggregate Designated Verifier Signa-
tures and Application to Secure Routing. Intl. J. Security and Networks 2(3/4),
192–201 (2007)

4. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered Multisignatures and
Identity-Based Sequential Aggregate Signatures, with Applications to Secure Rout-
ing. In: ACM CCCS (2007)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Gentry, C., Ramzan, Z.: Identity-Based Aggregate Signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006)

7. Chan, H., Perrig, A., Song, D.: Secure Hierarchical In-Network Aggregation in
Sensor Networks. In: ACM CCCS, pp. 278–287 (2006)

http://eprint.iacr.org/2004/309

Aggregate Message Authentication Codes 169

8. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)

9. Hu, L., Evans, D.: Secure Aggregation for Wireless Networks. In: Workshop on
Security and Assurance in Ad-Hoc Networks, pp. 384–394 (2003)

10. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1996)

11. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

12. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signa-
tures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

13. Mu, Y., Susilo, W., Zhu, H.: Compact Sequential Aggregate Signatures. In: 2007
ACM Symposium on Applied Computing (SAC), pp. 249–253 (2007)

14. Przydatek, B., Song, D., Perrig, A.: SIA: Secure Information Aggregation in Sensor
Networks. In: SenSys 2003, pp. 255–265 (2003)

15. Raz, R.: Lecture Notes on Circuit Complexity and Communication Complexity.
IAS Summer School,
http://www.wisdom.weizmann.ac.il/∼ranraz/lecturenotes/index.html

16. Shacham, H.: New Paradigms in Signature Schemes. PhD Thesis, Stanford Uni-
versity (2005)

http://www.wisdom.weizmann.ac.il/~ranraz/lecturenotes/index.html

Boosting AES Performance on a Tiny Processor

Core

Stefan Tillich and Christoph Herbst

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich,Christoph.Herbst}@iaik.tugraz.at

Abstract. Notwithstanding the tremendous increase in performance of
desktop computers, more and more computational work is performed on
small embedded microprocessors. Particularly, tiny 8-bit microcontrollers
are being employed in many different application settings ranging from
cars over everyday appliances like doorlock systems or room climate con-
trols to complex distributed setups like wireless sensor networks. In order
to provide security for these applications, cryptographic algorithms need
to be implemented on these microcontrollers. While efficient implemen-
tation is a general optimization goal, tiny embedded systems normally
have further demands for low energy consumption, small code size, low
RAM usage and possibly also short latency. In this work we propose a
small enhancement for 8-bit Advanced Virtual RISC (AVR) cores, which
improves the situation for all of these demands for implementations of
the Advanced Encryption Standard. Particularly, a single 128-bit block
can be encrypted or decrypted in under 1,300 clock cycles. Compared to a
fast software implementation, this constitutes an increase of performance
by a factor of up to 3.6. The hardware cost for the proposed extensions
is limited to about 1.1 kGates.

Keywords: Advanced Encryption Standard, instruction set extensions,
8-bit microcontroller, AVR architecture, hardware-software codesign.

1 Introduction

In recent years, small 8-bit microcontrollers have experienced an increase in
popularity due their suitability for exciting new applications in the embedded
systems field. A good example is the advent of wireless sensor networks, which
require data processing with low energy overhead. In general, the application of
such small microcontrollers is conditioned by constraints in energy budget and/or
device cost. A common problem encountered by system designers is the relatively
low speed and limited memory of 8-bit microcontrollers. Modern architectures
like AVR have alleviated the problem to a certain extent, but careful software
implementation remains nevertheless a topic of importance.

Providing security to embedded applications demands the use of strong cryp-
tographic algorithms. In this field, symmetric cryptographic primitives can pro-
vide users with confidentiality and integrity of data as well as authentication

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 170–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Boosting AES Performance on a Tiny Processor Core 171

services. An important and increasingly popular symmetric algorithm is the Ad-
vanced Encryption Standard (AES) algorithm [16], which has been standardized
by NIST in 2001 to replace the aging Data Encryption Standard.

Processing of cryptographic algorithms is normally a rather heavy burden
on 8-bit microcontrollers and it is generally desirable to keep the overhead for
cryptography as low as possible. In the present work we propose to enhance
an 8-bit AVR core with some custom instructions (instruction set extensions)
in order to speed up AES encryption and decryption. The rest of this paper
is organized as follows. In Section 2 we give an overview of previous and re-
lated work on instruction set extensions for cryptography. Section 3 provides
an overview of the general AVR microcontroller architecture. We present the
AES extensions in Section 4. Subsequently, we deal with general implementation
issues related to both hardware and software in Section 5. We describe details of
our hardware implementation, give performance estimations, and compare the
results to related work in Section 6. Conclusions are drawn in Section 7.

2 Previous Work on Instruction Set Extensions

Nahum et al. were the first to suggest to base RISC processor design on the
need for supporting a large set of cryptographic software implementations [15].
Jean-François Dhem showed in his Ph.D. thesis the first concrete enhancements
for a processor architecture (ARM7M) in the form of long integer modulo support
for public-key algorithms [8]. First publications regarding concrete instruction
set extensions for secret-key primitives started to appear around 2000 [4,12,19]. A
bulk of research has been done in the following years, dealing with cryptography
enhancements of general-purpose processors for both public-key and secret-key
algorithms. Topics ranged from automatic design space exploration (e.g., [17])
over efficient implementation (e.g., [13]) to resistance against side-channel at-
tacks (e.g., [22]). Closely related to the field of instruction set extensions is the
work on dedicated cryptographic processors like the CryptoManiac [25] and the
Cryptonite [3], which are both VLIW architectures.

While earlier work for the secret-key domain tended to focus on a broad
support of algorithms, more recent work concentrated on single cryptographic
primitives. Due to its increasing importance after standardization, the AES
algorithm has received particular attention. Nadehara et al. suggested to map the
so-called round lookup (T lookup) of AES into a dedicated functional unit [14].
Bertoni et al. and Tillich et al. suggested independently to allow for a finer
granularity of operations, separating the S-box lookup from the ShiftRows and
MixColumns transformation [2,21].

So far, almost all architectural extensions for cryptography have been pro-
posed for processors of a word size of 32 bits or more. An exception is the work
of Eberle et al. which describes support for ECC over binary extension fields
GF(2m) for the AVR architecture [9]. A custom 8-bit microcontroller for AES
has been presented by Chia et al. in [6], with a focus on minimizing code size
rather than performance.

172 S. Tillich and C. Herbst

3 Overview of AES and AVR

3.1 Short Description of AES

The AES algorithm is a subset of the block cipher Rijndael. The NIST standard
fixes the block size to 128 bit and provides three different key sizes: 128, 192,
and 256 bit. The 128-bit block is arranged into a logical 4×4-byte matrix, which
is commonly denoted as the AES State. This State is transformed in a number
of identical rounds, each of which consists of the four transformations SubBytes,
ShiftRows, MixColumns, and AddRoundKey. An exception is the last round,
where the MixColumns transformation is omitted. In each round, a different
round key derived from the cipher key is used. SubBytes substitutes individual
bytes of the State using a single S-box table, consisting of 256 8-bit entries.
ShiftRows rotates the rows of the State, while MixColumns operates on complete
State columns, interpreting them as polynomials over GF(28). AddRoundKey
combines the State and the current round key by means of bitwise exclusive
or (XOR). For AES decryption, the inverse transformations InvSubBytes, Inv-
ShiftRows, InvMixColumns, and AddRoundKey (which is its own inverse) are
applied to the ciphertext block in reverse order. For more details on Rijndael
and AES, please refer to [7,16].

On 32-bit processors most of the AES round transformations (SubBytes,
ShiftRows, and MixColumns) can be implemented by table lookup, using one
or more round lookup (T lookup) tables with 256 32-bit entries. This approach
can be scaled down to 8-bit implementations like those of Rinne et al. which we
have used for performance comparison [18]

3.2 Description of the AVR Architecture

The Advanced Virtual RISC (AVR) by Atmel is an 8-bit Harvard architecture
microcontroller. This means, that the data and program memory are separated.
The program memory is implemented as an in-system programmable FLASH
memory whose size can vary from 1 kByte to 256 kBytes depending on the
model. The available RAM and internal in-system programmable EEPROM also
depends on the model. RAM size can vary from 32 bytes to 8 kBytes, whereas the
EEPROM size which is a non-volatile memory mainly used to store parameters
ranges from 0 kBytes to 4 kBytes.

The AVR instruction set consists of approximately 110 different instructions.
Most instructions are encoded with 16 bit and operate on the 32 general-purpose
registers of the architecture. Six of these registers can also act as three inde-
pendent 16-bit pointers for memory access. Most of the instructions require
only a single clock cycle to execute. Only a few instructions take two to four
clock cycles to finish. The instructions are directly executed from the FLASH
memory. Some of the controllers not only support in-system programming but
also self-programming is supported. That enables the controllers to reload source
code during runtime and supports the flexibility of applications implemented on
AVR microcontrollers.

Boosting AES Performance on a Tiny Processor Core 173

To address the requirements of low-power designs, the supply voltage for the
AVR family ranges from 1.8V to 5.5V. The controllers are equipped with a
sleep controller which supports various modes and the operation frequency can
be controlled by software to support power save modes. The AVR family is built
to support clock frequencies up to 20MHz.

The AVR microcontrollers are explicitly designed to be programmed in C.
There are various free software development kits available like avr-gcc for com-
piling C code and AVR Studio including a simulator. The availability of free
development tools supports the widespread use of the AVR controllers in various
embedded applications like sensor nodes.

4 Our Proposed AES Extensions

All AES extensions proposed so far in the literature try to make full use of the
32-bit datapath of the underlying processor [2,14,21]. Therefore, none of these
solutions can be scaled down to an 8-bit architecture in a straight-forward way.
As we will show in this section, it is however possible to reuse some of the
important concepts of these 32-bit approaches to arrive at a worthwhile solution
for small microcontrollers.

4.1 Support for AES Encryption

We propose three instructions to speed up AES encryption, whereby two instruc-
tions are intended to speed up the AES round transformations, while the third
instruction is conceived for use in the final round and also in the key expansion.
The instruction formats fully adhere to the AVR architecture and therefore allow
for easy integration. All instructions use similar hardware components and a
small and flexible functional unit can be easily designed to reach the maximal
speed of current state-of-the-art AVR cores (which ranges at the time of writing
at around 20MHz).

Our basic concept is to use the capability of typical AVR microcontrollers to
retrieve two register values per clock cycle [1]. With appropriate selection of the
register operands, all four AES round transformations can be executed for two
State bytes with only a few instructions. In the best case, a complete round for
an AES State column (contained in registers) can be processed and stored back
to the original registers in only 15 clock cycles.

The functionality of the two instruction variants AESENC(1) and AESENC(2)
is depicted in Figure 1. Note that the symbols

⊕
and

⊗
denote addition

(conforming to bitwise XOR) and multiplication in the Galois field GF(28),
respectively. These instructions have the same format as the integer multipli-
cation instruction MUL of the basic AVR architecture. First, the values from
the two specified registers Rd and Rr are substituted according to the AES
(forward) S-box. Depending on the instruction variant, the substituted bytes
are multiplied with specific constants from the field GF(28) (we use the notation
{x} to discern such constants from integers). Two of the multiplication results

174 S. Tillich and C. Herbst

AES

S-box

Rd Rr

AES

S-box

{2}

{3}

R0 R1

{1}

{1}

{2}

{1}

{1}

{3}

AESENC(x)

Fig. 1. AES extensions for a “normal” encryption round

are then combined with the values from the registers R0 and R1 by means of an
XOR operation. The resulting values are stored to the registers R0 and R1.

The intended use of the AESENC(x) instructions (where x ∈ {1, 2}) is to
perform all transformations of a single AES round on two bytes of a State column
with merely two invocations. The GF(28) constants have been chosen carefully
from the AES MixColumns matrix. Each invocation of AESENC(x) conforms
to the processing of a quadrant of that matrix. Due to the symmetry of the
MixColumns matrix, there are only two distinct quadrants. Therefore, the two
variants of AESENC(x) instruction are sufficient to transform the complete AES
State.

The AESENC(x) instructions can be used to produce two State bytes at the end
of a round from the according four State bytes at the start of the round and the
corresponding two bytes of the round key. In order to do this, the two bytes of
the round key are loaded into R1 and R0 and then AESENC(1) and AESENC(2) are
invoked with the according State bytes to produce a half of the resulting State
column. The feedback from R1 and R0 into the final XOR stage (cf. Figure 2)
has a dual functionality: On the first invocation of AESENC(x), the round key
bytes are added to the intermediate result. On the second invocation, this inter-
mediate result is combined with the contribution from the other State bytes in
the final XOR stage.

Boosting AES Performance on a Tiny Processor Core 175

Our approach is similar to the ones of [14] and [2] in that it tries to pack as
many operations as possible into a single instruction. It has been shown in [21]
that slight modifications can lead to a considerable increase in implementation
flexibility. Therefore, we also propose a lightweight variant of the AESENC(x)
instruction, which can be used in the final round of AES encryption as well as
in the key expansion. The functionality of this instruction, which we denote by
AESSBOX is shown in Figure 2.

AES

S-box

Rd Rr

Rd

Fig. 2. AES extension for the final round

The AESSBOX instruction adheres to the “two-input, one-output” format,
which is common to most of the arithmetic and logic instructions of the AVR
architecture, e.g., integer addition ADD and bitwise exclusive or EOR. One of the
two input registers (namely Rd) is also the target register of the instruction, while
the second input register (Rr) can be chosen freely. For our proposed AESSBOX
instruction, the value from register Rd is substituted according to the AES S-box
and XORed to the value from register Rr.

4.2 Support for AES Decryption

Most common modes of operations of block ciphers are defined with the sole use
of the according encryption function, e.g., the CTR mode for confidentiality and
the CBC-MAC variants for authentication. However, in some situations the de-
cryption function of the block cipher might be of use, e.g., when CBC encryption
mode is preferred over CTR mode. For this case we also propose instruction set
support for AES decryption, additionally motivated by the following reasons:

– Decryption support can be seamlessly integrated with encryption support
with little extra hardware cost.

– With these extensions, decryption speed can be made equal to that of
encryption, opening up additional options for more flexible protocol
implementations.

176 S. Tillich and C. Herbst

Similarly to encryption, decryption support consists of the two instruction
variants AESDEC(1) and AESDEC(2), conforming to the two distinct quadrants
of the InvMixColumn constant matrix. Another necessary change is the use of
the inverse S-box.

Decryption support incurs a slight complication of the implementation in
regard to the AddRoundKey transformation. For AESENC(x) instructions, the
final XOR stage (cf. Figure 2) performs both AddRoundKey and a combination
of intermediate values to yield the State bytes at the end of the round. The
AESDEC(x) instructions require AddRoundKey at a different stage (after the
inverse S-boxes), due to the slightly changed order of inverse round transfor-
mations in AES decryption [16]. One possible solution is to introduce a con-
ditional XOR stage after the inverse S-boxes (for AddRoundKey) and another
conditional XOR stage at the end (for combination of intermediate results).
The AESDEC(1) instruction can then make use of the first stage and bypass
the second stage, whereas AESDEC(2) can do the opposite. By sticking to a fixed
order of AESDEC(1) and AESDEC(2) instructions, decryption can be implemented
correctly. The functionality of the AESDEC(x) instruction variants is depicted in
Figure 3.

For the last round, we propose an instruction AESINVSBOX similar to AESSBOX
for encryption. The only difference is the use of the inverse S-box in the case of
decryption.

4.3 Performance Enhancement and Implementation Flexibility

Our proposed extensions are designed to improve performance using three main
strategies. Firstly, the instructions support AES transformations which are not
very well catered for by the microcontroller’s native instruction set (especially
MixColumns and InvMixColumns). Secondly, two State bytes are transformed
simultaneously, which effectively “widens” the 8-bit datapath. And finally, sev-
eral transformations can be executed by a single instruction invocation.

Compared to typical AES coprocessors, our instruction set extensions allow a
more flexible application. The custom instructions support all three key sizes of
128, 192, and 256 bit. All modes of operations can be realized seamlessly, as the
AES State can be retained in the register file. In contrast, a coprocessor might
require to transfer blocks to and from the processor whenever the chosen mode
requires operations which are not supported by the coprocessor. The resulting
overhead can be detrimental to the overall performance. Another advantage
of our extensions is that they support fast implementations of all variants of
Rijndael, which is a superset of AES and which specifies independent block
sizes and key sizes between 128 and 256 bit in 32-bit increments. A potential
application of Rijndael is as building block for a cryptographic hash function:
By setting Rijndael’s block and key size equal, it can be applied in a hashing
mode of operation to build a hash function with a hash size equal to the block
size.

Boosting AES Performance on a Tiny Processor Core 177

AES

inverse

S-box

Rd Rr

AES

inverse

S-box

{E}

{B}

R0 R1

{D}

{9}

{E}

{9}

{D}

{B}

AESDEC(x)

Fig. 3. AES extensions for a “normal” decryption round

5 Implementation Issues

We now give details on possible hardware implementation options for our pro-
posed extensions and different ways to optimize AES software implementations
through utilization of those extensions.

5.1 Hardware Implementation of the Proposed Extensions

In this section we outline important implementation issues for the functional
units as well as integration issues for the AVR architecture. We will thereby
refer to a unified implementation, which is able to provide support for both

178 S. Tillich and C. Herbst

AES encryption as well as AES decryption as described in Sections 4.1 and 4.2,
respectively.

One important aspect is the support for both the AES S-box and its inverse. In
the literature, there have been several proposals for S-box hardware implementa-
tions targeting low area, high speed or low power consumption. A comparison of
the state-of-the-art regarding their implementation characteristics in standard-
cell technology has been published in [20]. An implementation offering a mix of
small size and relatively good speed is the design of David Canright [5].

The functional part for MixColumns and InvMixColumns demands multi-
plication with constants in GF(28) under a fixed reduction polynomial [16].
These multiplications are rather easy to implement, as the characteristic two
of the finite field allows for addition without carry. This is a very desirable prop-
erty which makes GF(2m) multipliers generally much faster than their integer
counterparts.

Several implementation options are available to realize the GF(28) constant
multipliers required by our proposed extensions. The smallest solution would
be to integrate fixed multipliers similar to those used by Wolkerstorfer in [24].
Wolkerstorfer’s approach reuses the results for MixColumns to perform InvMix-
Columns, thus keeping the overall size of the multipliers small. In another ap-
proach, Elbirt proposed to realize the multipliers in a flexible fashion, so that not
only AES, but also other implementations in need of fast GF(2m) multiplication
with a constant could experience an increase in performance [10]. Naturally, this
flexibility has to be bought with an increased demand in hardware. Moreover,
the multipliers of Elbirt’s solution have to be configured for the specific constants
and the reduction polynomial at hand, before they can be used.

The highest degree of flexibility is offered by fully-fledged GF(28) multipliers
which can vary both multiplier and multiplicand at runtime without configura-
tion overhead. Eberle et al. have proposed to integrate an (8 × 8)-bit multiplier
and multiply-accumulate unit for binary polynomials in an AVR microcontroller
to accelerate Elliptic Curve Cryptography (ECC) over binary extension fields [9].
Similar synergies for instruction set support for AES and ECC have already been
demonstrated in the case of 32-bit architectures [23]. Although this variant would
be the most costly option in terms of hardware, the increased flexibility and
potential support of both symmetric and asymmetric cryptography could make
the integration of such multipliers a worthwhile solution for 8-bit architectures.

5.2 AES Software Implementation Using the Proposed Extensions

In order to check the benefits of the proposed extensions and to have a base
for performance estimations, we have implemented AES-128 encryption and
decryption in AVR assembly. We have tried to make the best use of the vast
amount of 32 general-purpose registers offered by the architecture in order to
keep costly memory accesses at an absolute minimum. In our implementation,
the 16-byte AES State is kept in 16 registers at all times and an on-the-fly
key expansion is used to preserve key agility. Three of the four 32-bit words of
the current round key are also kept in 12 additional registers and only a single

Boosting AES Performance on a Tiny Processor Core 179

round key word has to be held in memory. From the remaining four registers, two
(namely R0 and R1) are used to receive the result of AESENC(x) or AESDEC(x)
instructions and the other two registers are necessary to hold temporary values
during round transformation.

A round function is called to perform the four round transformations on
the State and to generate the subsequent round key. The transformations are
performed in-place on the 16 registers holding the State, i.e. all State columns are
written back to the same four registers from which they were originally loaded.
The ShiftRows function is not performed explicitly on this “register State”, but
it is only taken into account by appropriate selection of registers in the round
function. As a consequence, a specific State column is contained in a different
set of registers after each invocation of the round function. Consequently, we
require several different round functions which load the State bytes from the
correct registers in conformance to the current layout of the State. Luckily, the
layout of the State reverts back to its original form after four invocations of
ShiftRows. This property is illustrated in Figure 4, where the four State columns
are marked in different colors. Hence, it is sufficient to have four variants of the
round function.

1x

ShiftRows

2x

ShiftRows

3x

ShiftRows

4x

ShiftRows

Fig. 4. Change of AES State layout through ShiftRows for in-place storage

The assembly code performing all four round transformations on a single State
column is shown in Figure 5. The update of the first round key word is shown
in Figure 6.

The main function is responsible for saving the 32 registers onto the stack at
entry. Moreover, the function has to load the AES State and cipher key into the
corresponding registers. After nine calls to the appropriate round functions, the
final round is performed directly by the main function. At the end, the ciphertext
is stored to memory and the registers are restored from stack prior to return.

6 Performance Analysis

This section gives figures on implementation cost of the proposed instruction set
extensions, the performance of our optimized AES implementation and its cost
in terms on program memory and working memory.

180 S. Tillich and C. Herbst

; State column in R6, R11, R16, R5
; Round key word in R22-R25
; New State column is written over old column

; Calculate upper half of new column
MOVW R0, R22 ; Move two round key bytes into R0-R1
AESENC(1) R6, R11 ; ShiftRows, SubBytes, MixColumns & AddRoundKey
AESENC(2) R16, R5 ; ShiftRows, SubBytes, MixColumns
MOVW R30, R0 ; Save half column in temporary registers R30-R31

; Calculate lower half of new column
MOVW R0, R24 ; Move the other two round key bytes into R0-R1
AESENC(2) R6, R11 ; ShiftRows, SubBytes, MixColumns & AddRoundKey
AESENC(1) R16, R5 ; ShiftRows, SubBytes, MixColumns

; Store new column over old column
MOV R6, R30
MOV R11, R31
MOV R16, R0
MOV R5, R1

Fig. 5. Round transformations for a single State column

; First word of old round key in R18-R21
; Last word of old round key in R26-R29
; Rcon located in R30
; New first round key word written over old word

EOR R18, R30 ; Add Rcon
AESSBOX R18, R27 ; RotWord, SubWord, Add to old byte
AESSBOX R19, R28 ; RotWord, SubWord, Add to old byte
AESSBOX R20, R29 ; RotWord, SubWord, Add to old byte
AESSBOX R21, R26 ; RotWord, SubWord, Add to old byte

Fig. 6. Update of the first round key word

6.1 Hardware Cost

In order to determine the hardware cost for the proposed extensions, we have
implemented a functional unit capable of supporting all six custom instructions
for AES encryption and decryption. For the AES S-boxes we used the approach
of Canright [5]. We included a pipeline stage in the functional unit to adapt it to
the read-write capabilities of the register file of existing AVR microcontrollers [1].

Our functional unit is depicted in Figure 7. The different sections conforming
to different AES transformations are highlighted. The dashed line represents
configuration information which determines the functionality in dependence on

Boosting AES Performance on a Tiny Processor Core 181

the actual instruction. The S-boxes are used in forward direction for the instruc-
tions for encryption (AESENC(x) and AESSBOX) and in inverse direction for the
instructions for decryption (AESDEC(x) and AESINVSBOX). The multiplexors in
the AddRoundKey section select the left input for AESENC(x) and AESDEC(2)
instructions and the right input for the AESDEC(1) instruction. The multiplexors
in the (Inv)MixColumns section also always select the same input. Starting from
the top input, the according instructions are AESENC(1), AESENC(2), AESDEC(1),
and AESDEC(2). The result for AESENC(x) and AESDEC(x) instructions is deliv-
ered into R0 and R1, while the result for AESSBOX and AESINVSBOX instructions
appears at the output for Rd.

The GF(28) multipliers of the functional units have been hardwired for the
constants used in MixColumns and InvMixColumns. Thereby, the two multipliers
for a byte have been implemented jointly. A byte b is multiplied with the powers
of two, yielding four intermediate results (b, {2}b, {4}b, and {8}b). Depending
on the instruction, these intermediate results are added to yield the required
multiplication results. Figure 8 shows the implementation for the first byte (i.e.
the upper two multipliers transforming the byte from Rd in Figure 7).

We have implemented our functional unit using a 0.35 μm CMOS standard
cell library from austriamicrosystems. The synthesized circuit had a size of 1,109
gates with a critical path of 18.3 ns (about 55MHz). Note that we have optimized
the synthesis result towards minimal area, just setting a maximal critical path
of 50 ns to match the 20MHz maximal clock frequency of state-of-the-art AVR
microcontrollers. The speed of the circuit could easily be increased by trading
off area efficiency.

The smallest AES coprocessor reported in literature so far is by Feldhofer et
al. with a size of about 3,400 gates [11]. Our proposed extensions have only a
third of this size.

6.2 Performance

Based on our optimized assembly implementation, we have estimated the number
of clock cycles for a single AES-128 encryption and decryption (including the
complete on-the-fly key expansion). Thanks to the simple and deterministic
structure of AVR microcontrollers, this estimation can be done with a high
level of accuracy. For all our custom instructions we have assumed a cycle count
of 2, which we deem to be realistic for implementation. Executing a single round
function (either for encryption or decryption) requires 106 clock cycles. With
the overhead from the main function, the cycle count for encryption of a 128-bit
block amounts to 1,262 (including the loading of the plaintext from memory and
the storing of the ciphertext back to memory). Thanks to the symmetry of the
extensions, AES decryption can be equally fast in 1,263 cycles.

We compare our performance to that of an assembly-optimized software im-
plementation of AES for the AVR architecture reported in [18]. It requires 3,766
cycles for encryption and 4,558 cycles for decryption, where the overhead for

182 S. Tillich and C. Herbst

Rd Rr

AES

(inv.)

S-box

{2}

R0 R1

{1}

AESENC(x)

AESDEC(x)

AESSBOX

AESINVSBOX

{E}

{D}

{3}

{1}

{B}

{9}

{1}

{3}

{9}

{B}

{2}

{1}

{E}

{D}

AES

(inv.)

S-box

Rd

(I
n
v
)S

u
b
B

y
te

s
/

K
e
y
 e

x
p
a
n
s
io

n

A
d
d
R

o
u
n
d
K

e
y

(A
E

S
D

E
C

(1
))

A
d
d
R

o
u
n
d
K

e
y
/

A
d
d
 c

o
n
tr

ib
u
ti
o
n

(I
n
v
)M

ix
C

o
lu

m
n
s

Fig. 7. Implementation of the functional unit for supporting the AES extensions

decryption mainly stems from the more complicated InvMixColumns transfor-
mation. The speedup factors for our implementation are therefore about 3 and
3.6, respectively.

The coprocessor of Feldhofer et al. has a performance roughly equivalent to
our extensions with a cycle count of 1,032 for encryption and 1,165 for decryption
of a single block [11].

Boosting AES Performance on a Tiny Processor Core 183

 {2}

dec var var

{1}b{2}b

dec var

 {2} {2}

b

{4}b{8}b

dec: 0 if AESENC(x), 1 if AESDEC(x)

var: 0 if x = 1, 1 if x = 2

AESENC(1) {2}b {1}b

AESENC(2) {1}b {3}b

AESDEC(1) {E}b {9}b

AESDEC(2) {D}b {B}b

Fig. 8. Implementation of the finite field constant multipliers for the first byte

6.3 Code Size and RAM Requirements

Our assembly implementation of encryption and decryption requires 1,708 bytes
of code memory. This size can be further reduced with an explicit ShiftRows
at the end of each round function (20 additional MOV instructions requiring
20 cycles). In this case, a single round function for encryption and decryption
would suffice, which brings the overall code size down to 840 bytes. However,
the number of cycles per encryption and decryption would increase by 180.

In terms of RAM, our implementation requires only four bytes of extra mem-
ory in addition to the use of the general-purpose registers. Note that we are
not considering the memory from which we load the plaintext at the start of
encryption and where we store the ciphertext to at the end.

6.4 Summary of Comparison

Table 1 summarizes our performance figures with those of the optimized soft-
ware implementation from [18], the custom AES microcontroller from [6] and
Feldhofer et al.’s tiny AES coprocessor [11]. We have included both of our im-
plementation variants for maximal speed (fast) and minimal code size (compact),
cf. Section 6.3. The cycle count refers to AES-128 encryption or decryption of

184 S. Tillich and C. Herbst

Table 1. AES performance characteristics in comparison to related work

Implementation Encryption Decryption Code size Hardware cost
Cycles Cycles Bytes Gate equivalents

AVR software [18] 3,766 4,558 3,410 none
AES coprocessor [11] 1,032 1,165 n/a 3,400

AES microcontroller [6] 2,695 a 2,944 a 918 b n/a
This work (fast) 1,259 1,259 c 1,708 1,109
This work (compact) 1,442 1,443 c 840 1,109

a Excluding cost for precomputed key schedule (2,167 cycles).
b Total size for encryption, decryption and key expansion.
c Last round key supplied to decryption function.

a single 16-byte block. The code size refers to an implementation which can
support both encryption and decryption.

Our proposed solution is considerably faster and requires less code size than
the pure-software approach. Nevertheless, the flexibility of the software solution
is fully retained. Compared to the coprocessor approach, our solution offers sim-
ilar performance at much smaller hardware overhead. The AES microcontroller
has a similar code size as our compact implementation, but is significantly slower.

7 Conclusions

In this work we have presented a set of small and simple AES instruction set
extensions for the 8-bit AVR architecture. We have demonstrated the benefits
of these extensions with an optimized AES encryption implementation, which
is about three times faster than an optimized assembly implementation using
native AVR instructions. Speedup for decryption is even higher, amounting to
a factor of about 3.6. As an additional benefit, code size is small and RAM
requirements are very low. The hardware cost of our extensions ranges around
1.1 kGates. Compared to the smallest AES coprocessor reported so far, our
extensions deliver similar performance at only a third of the hardware cost. All
in all, our extensions provide a very good tradeoff between hardware overhead,
performance gain and implementation flexibility and position themselves at a
favorable section of the design space.

Acknowledgements. The research described in this paper has been supported
by the Austrian Science Fund (FWF) under grant number P18321-N15 (“Investi-
gation of Side-Channel Attacks”) and by the European Commission under grant
number FP6-IST-033563 (Project SMEPP). The information in this document
reflects only the authors’ views, is provided as is and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability.

Boosting AES Performance on a Tiny Processor Core 185

References

1. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Pro-
grammable Flash (August 2007),
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

2. Bertoni, G., Breveglieri, L., Roberto, F., Regazzoni, F.: Speeding Up AES
By Extending a 32-Bit Processor Instruction Set. In: Proceedings of the 17th
IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP 2006), pp. 275–282. IEEE Computer Society Press, Los Alamitos
(2006)

3. Buchty, R.: Cryptonite — A Programmable Crypto Processor Architecture for
High-Bandwidth Applications. Ph.d. thesis, Technische Universität München, LRR
(September 2002),
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/buchty.pdf

4. Burke, J., McDonald, J., Austin, T.: Architectural Support for Fast Symmetric-Key
Cryptography. In: ASPLOS-IX Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, USA, 2000, November 12-15, pp. 178–189. ACM Press, New York
(2000)

5. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

6. Chia, C.-C., Wang, S.-S.: Efficient Design of an Embedded Microcontroller
for Advanced Encryption Standard. In: Proceedings of the 2005 Workshop on
Consumer Electronics and Signal Processing (WCEsp 2005) (2005),
http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf

7. Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and
Cryptography, Springer, Heidelberg (2002)

8. Dhem, J.-F.: Design of an efficient public-key cryptographic library for RISC-based
smart cards. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium (May 1998)

9. Eberle, H., Wander, A., Gura, N., Chang-Shantz, S., Gupta, V.: Architectural
Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors.
In: Proceedings of the 16th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP 2005), July 2005, pp. 343–349. IEEE
Computer Society Press, Los Alamitos (2005)

10. Elbirt, A.J.: Fast and Efficient Implementation of AES via Instruction Set
Extensions. In: Proceedings of the 21st International Conference on Advanced
Information Networking and Applications Workshops (AINAW 2007), May 2007,
vol. 1, pp. 396–403. IEEE Computer Society Press, Los Alamitos (2007)

11. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

12. Gonzalez, R.E.: Xtensa: A Configurable and Extensible Processor. IEEE Mi-
cro 20(2), 60–70 (2000)

13. McGregor, J.P., Lee, R.B.: Architectural Enhancements for Fast Subword Permu-
tations with Repetitions in Cryptographic Applications. In: Proceedings of the
International Conference on Computer Design (ICCD 2001), September 2001, pp.
453–461. IEEE, Los Alamitos (2001)

14. Nadehara, K., Ikekawa, M., Kuroda, I.: Extended Instructions for the AES
Cryptography and their Efficient Implementation. In: IEEE Workshop on Signal
Processing Systems (SIPS 2004), Austin, Texas, USA, October 2004, pp. 152–157.
IEEE Press, Los Alamitos (2004)

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/buchty.pdf
http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf

186 S. Tillich and C. Herbst

15. Nahum, E., O’Malley, S., Orman, H., Schroeppel, R.: Towards High Performance
Cryptographic Software. In: Third IEEE Workshop on the Architecture and
Implementation of High Performance Communication Subsystems, 1995 (HPCS
1995), August 1995, pp. 69–72. IEEE, Los Alamitos (1995)

16. National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

17. Ravi, S., Raghunathan, A., Potlapally, N., Sankaradass, M.: System design method-
ologies for a wireless security processing platform. In: DAC 2002: Proceedings of
the 39th Conference on Design Automation, pp. 777–782. ACM Press, New York
(2002)

18. Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary
Light-Weight Block Ciphers on 8-bit Microcontrollers (June 2007),
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/
publications/conferences/lw speed2007.pdf

19. Shi, Z., Lee, R.B.: Bit Permutation Instructions for Accelerating Software Cryptog-
raphy. In: Proceedings of the 11th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP 2000), pp. 138–148. IEEE,
Los Alamitos (2000)

20. Tillich, S., Feldhofer, M., Großschädl, J.: Area, Delay, and Power Characteristics
of Standard-Cell Implementations of the AES S-Box. In: Vassiliadis, S., Wong, S.,
Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 457–466. Springer,
Heidelberg (2006)

21. Tillich, S., Großschädl, J.: Instruction Set Extensions for Efficient AES Implemen-
tation on 32-bit Processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 270–284. Springer, Heidelberg (2006)

22. Tillich, S., Großschädl, J.: Power-Analysis Resistant AES Implementation with
Instruction Set Extensions. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 303–319. Springer, Heidelberg (2007)

23. Tillich, S., Großschädl, J.: VLSI Implementation of a Functional Unit to Accelerate
ECC and AES on 32-bit Processors. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007.
LNCS, vol. 4547, pp. 40–54. Springer, Heidelberg (2007)

24. Wolkerstorfer, J.: An ASIC Implementation of the AES-MixColumn operation.
In: Rössler, P., Döderlein, A. (eds.) Austrochip 2001, pp. 129–132 (2001); ISBN
3-9501517-0-2

25. Wu, L., Weaver, C., Austin, T.: CryptoManiac: A Fast Flexible Architecture
for Secure Communication. In: ISCA 2001: Proceedings of the 28th annual
international symposium on Computer architecture, pp. 110–119. ACM Press, New
York (2001)

http://www.itl.nist.gov/fipspubs/
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf

A Fast and Cache-Timing Resistant Implementation
of the AES�

Robert Könighofer

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

robert.koenighofer@student.tugraz.at

Abstract. This work presents a fast bitslice implementation of the AES with 128-
bit keys on processors with x64-architecture processing 4 blocks of input data in
parallel. In contrast to previous work on this topic, our solution is described in
detail from the general approach to the actual implementation. As the implemen-
tation does not need table-lookups it is immune to cache-timing attacks while
being only 5% slower than the widely used optimized reference implementation.
Outspeeding other approaches for making an implementation cache-timing resis-
tant, the solution needs 8% less code memory and 93% less data memory than
the reference implementation. Further improvements are possible.

1 Introduction

There are two fundamental requirements for the implementation of cryptographic prim-
itives. The implementation should be as fast as possible and it should not contain any
weaknesses that could be exploited in an attack. The bitslicing technique can be a good
choice for implementing cryptographic algorithms with respect to these requirements.

Bitslicing was first used for software in [1] to implement the DES block cypher.
A block of input data is viewed as a collection of slices of one bit. The processor is
seen as a SIMD parallel computer, simultaneously operating on a number of registers,
each containing one bit. A conventional 64-bit register can be used just like 64 one-bit-
registers, with the operations effecting all notional one-bit-registers in the same manner.
Different bits of the input data are manipulated in a different way, so the bits are stored
in different registers. In order to fully utilize the registers, typically many blocks of input
data are processed in parallel. Another characteristic for bitslicing implementations is
not to use table-lookups. This leads to a low amount of needed memory, and makes
the implementation naturally immune to cache-timing attacks. The work in [2] showed
that this attack can be used to even recover the key from measuring the time needed for
the encryption of known plaintexts with the AES. Other techniques to prevent cache-
timing attacks (e.g. from [3]) often do not provide natural immunity and suffer from
performance problems. Our implementation is also immune to cache probing [4] [5]
and cache collision attacks [6] [7].

� The work described in this paper has been supported in part through the Austrian Science Fund
(FWF) under grant number P18321.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 187–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 R. Könighofer

The goal of the work presented in this paper was to implement the AES in a bitsliced
manner on a processor with the common x64-architecture. Previous work on bitslice
implementations of the AES was done in [8] and [9], but the implementation described
in this paper is different. Although details about the actual implementation of [8] and
[9] are hard to find out, [8] implements at least the S-box transformation, which is the
operation with the most workload, completely differently. [9] is designed to encrypt 64
blocks of input data in parallel. The implementation presented here processes 4 blocks
simultaneously.

After introducing the general approach, we discuss the transformation into the bit-
slice domain and its implementation. We furthermore derive an efficient bitslice im-
plementation of the S-box transformation from the work done in [10]. Section 5 and 6
address intelligent approaches for the implementation of the ShiftRows and the Mix-
Columns step. Finally we present performance results. The implementation is avai-
lable at http://www.iaik.tugraz.at/research/krypto/AES/index.
php#software.

2 The General Approach

The state of the AES-128 is a 128-bit piece of data, which is interpreted as a matrix of
dimension 4x4, whereas each element represents one bytes. There are different possi-
bilities for the representation of this state in the bitsliced domain.

All of the 128 bits could be stored in an own variable. To fully utilize the register
size, 64 blocks could be processed in parallel on a 64-bit CPU. The disadvantage of this
method is, that the bitsliced state can not be kept in registers, because there are only 16
registers defined in the x64-architecture. Keeping the state in memory makes a lot of
load and store operations necessary leading to worse performance results.

In the solution presented in this document, only the 8 bits of the matrix elements are
stored in different registers. This makes sense, since all matrix elements are manipulated
in a very similar manner, so the structure of the algorithm is taken into account at this
point. The approach requires 8 variables, each containing one bit of the elements of the
state-matrix. These variables can be held in 8 registers during the whole encryption,
which reduces data movement and thus increases the performance. The downside is,
that MixColumns and ShiftRows require interconnections with bits of elements of other
rows or columns. This leads to rotations of the register’s content, which do not have to
be done in the first approach.

The AES-128 state consists of 16 bytes, so only 16 of the 64 bits of the registers
storing the state would be used. To fully utilize the register size, 4 blocks can be worked
up simultaneously. There are multiple ways of arranging the bits belonging to different
blocks and to different state-matrix elements inside one register. The one leading to the
highest efficiency is shown in figure 1.

Access to AES-functionality can be separated into two parts. One function derives
the round keys in bitslice representation from the key in normal representation. The
round keys can then be used in a second function to encrypt plaintexts. The advantage
of this interface is, that the key scheduling needs to be done only once, if large amounts
of blocks are encrypted with the same key.

A Fast and Cache-Timing Resistant Implementation of the AES 189

Fig. 1. The content of a register holding one bit

3 The Transformation Function

Loading the bits of the state-matrix elements into different registers can be done in
various ways. Each bit of each element could be shifted into the carry-bit. Then it could
be rotated into the right register with a Rotate with Carry operation. This would require
8 shifts and 8 rotates per byte, leading to 256 logical operations per transformation.
Another and more efficient way is to use a function called SWAPMOVE introduced in
[11]. It is defined as:

T = ((A >> N) ⊕ B) ∧ M

B = B ⊕ T

A = A ⊕ (T << N)

The bits in B, masked by M, are swapped with the bits in A, masked by (M << N)
in 6 logical operations. To get to a bitslice representation as shown in figure 1, 24
SWAPMOVE calls, so only 144 logical operations, are necessary. This is shown in listing
1.4 in Appendix A.1. The inverse transformation can be done with exactly the same calls
of SWAPMOVE but in reverse order.

4 The SubBytes Step

The SubBytes step is defined as replacement of all elements of the matrix with the S-
box transformation of the elements. In conventional implementations, this operation is
typically done as table-lookup. However in a bitslice implementation, collecting the bits
together into one register and spreading the bits again after performing the lookup would
cost too much calculation time. The lookup has to be expressed by logical equations
instead.

The S-box transformation of one byte is defined as multiplicative inverse in GF(28)
followed by an affine transformation. There are some solutions for the implementation
in hardware. A very common one was presented by Satoh et.al. in [12], which was also
taken as starting point for the bitslice implementation of the S-box in [8]. However, there
is another version published by Canright in [10] which promises a higher performance.
Like in almost all solutions, a change of basis into a domain X , where the inverse is
easier to compute, is performed. The transformation back is merged with the affine
transformation of the S-box.

190 R. Könighofer

Some steps and intermediate results of converting the logical expressions from [10]
into an efficient bitslice implementation shall be presented in this section.

4.1 The Transformation into the Domain X

The transformation from the normal domain A into the domain X is linear and can be
expressed as matrix multiplication with a transformation matrix X:

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7
x6
x5
x4
x3
x2
x1
x0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= X · a =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a7
a6
a5
a4
a3
a2
a1
a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with a ∈ A, x ∈ X

This transformation can be implemented with one MOV and 15 XORs as shown in the
lines 22 to 37 in listing 1.5 in Appendix B.1. This implementation of the transformation
also does a permutation of the resulting variables. Allowing such permutations reduces
the number of MOV-instructions.

4.2 The Transformation from the Domain X Back to the Domain A

The transformation into the domain X can be undone by multiplying with X−1. This
multiplication can be merged with the affine transformation of the S-box transforma-
tion:

s = S · a + b = S · X−1 · x + b s, a ∈ A, x ∈ X

with : b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ S · X−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The XOR with b negates 4 of the 8 bits. This step can be left out, if the round keys are
modified accordingly (i.e. the bits 0, 1, 5 and 6 are negated).

The multiplication with S · X−1 can be implemented with 2 MOVs and 11 XORs if
a permutation of the variables is allowed. As already mentioned, the implementation of
the transformations from A to X also does a permutation of the variables. Section 4.3
will show that the calculation of the inverse in GF(28) does a permutation as well, in
order to increase efficiency. At the end of the S-box transformation all the permutations
have to be undone for the next elements of the round function to work correctly. The

A Fast and Cache-Timing Resistant Implementation of the AES 191

most efficient way of doing that is to modify the transformation back from X to A
accordingly. The desired permutation can be seen in line 9 and 13 of listing 1.5 in
Appendix B.1. The solution is shown in line 42 to 62 of the same listing, needing
10 MOVs and 11 XORs. An explicit permutation at the end would cost 10 additional
MOVs instead of the 8 additional MOVs of this solution.

4.3 The Calculation of the Inverse in GF(28)

The illustration of Canrights equations in C [10] was taken as a starting point for con-
structing an efficient bitslice implementation. In the first step, the number of MOV-
instructions can be reduced by allowing subroutines to return the results with some
permutation. A lot of further modifications can be done in order to improve the perfor-
mance of the subroutines.

Optimizing G16 inv from [10]: If the calls of G4 mul, G4 sq and G4 scl N as intro-
duced in [10] are inserted, the first part of G16 inv could be written with the following
equations:

e = (x3 ⊕ x2) ∧ (x1 ⊕ x0)
d1 = (x3 ∧ x1) ⊕ e ⊕ x1 ⊕ x3
d0 = (x2 ∧ x0) ⊕ e ⊕ x1 ⊕ x3 ⊕ x0 ⊕ x2

The variables x1 and x3 are xored to d1 and to d0. The content of e is xored to d1
and to d0 anyway, so it is more efficient to add x1 and x3 to e. Instead of 6 MOVs, 12
logical instructions and 6 temporary variables, these equations could be implemented
with 4 MOVs, 11 logical instructions and only 4 temporary variables. However, the
interconnections x3 ⊕ x2 and x1 ⊕ x0 can be used in the second part of G16 inv, so the
values must not be overwritten. The first part of G16 inv, shown in the lines 144 to 147
of listing 1.5 in Appendix B.1, therefore needs 5 MOVs, 11 logical instructions and 5
temporary variables.

The only thing left in the calculation of G16 inv are the two multiplications in
GF(24). The two calls would need 4 MOVs and 14 logical instructions. The result
can be expressed with the following boolean formulas:

e1 = (x1 ⊕ x0) ∧ (d1 ⊕ d0) e2 = (x3 ⊕ x2) ∧ (d1 ⊕ d0)
x1 = (x1 ∧ d0) ⊕ e1 x3 = (x3 ∧ d0) ⊕ e2
x0 = (x0 ∧ d1) ⊕ e1 x2 = (x2 ∧ d1) ⊕ e2

With the intermediate values x3 x2 = x3 ⊕ x2 and x1 x0 = x1 ⊕ x0, calculated
for the first part, these equations can be implemented as shown in line 148 to 150 of
listing 1.5 in Appendix B.1 with 11 instead of 14 logical operations and without any
MOV-instruction.

With the optimizations discussed in this paragraph, an improvement from 10 MOVs,
26 logical instructions and 6 temporary variables to 5 MOVs, 22 logical instructions and
5 temporary variables could be achieved. This means savings of 25% of the instructions
for the calculation of the multiplicative inverse in GF(24).

192 R. Könighofer

Optimizing G16 mul from [10]: The outcome of the first call of G4 mul followed by
G4 scl N can be expressed as:

e = (t3 ⊕ t2) ∧ (t1 ⊕ t0)
t3 = (t3 ∧ t1) ⊕ e ⊕ (t2 ∧ t0) ⊕ e = (t3 ∧ t1) ⊕ (t2 ∧ t0)
t2 = (t2 ∧ t0) ⊕ e

The xor with the temporary variable e is irrelevant for the calculation of t3. The above
equations can be implemented with 7 logical instructions and only one MOV instruction
as shown in line 6 to 7 of listing 1.1.

Listing 1.1. Efficient bitslice implementation of G16 mul
1 / / i n : x3 x2 x1 x0 , y3 y2 y1 y0 o u t : x3 x2 x1 x0
2 vo id G16 mul (u64∗ x3 , u64∗ x2 , u64∗ x1 , u64∗ x0 , u64∗ y3 , u64∗ y2 , u64∗ y1 ,
3 u64∗ y0 , u64∗ t4 , u64∗ t3 , u64∗ t2 , u64∗ t1 , u64∗ t 0) {
4 ∗ t 3 = ∗x3 ; ∗ t 3 ˆ= ∗x1 ; ∗ t 2 = ∗x2 ; ∗ t 2 ˆ= ∗x0 ; ∗ t 1 = ∗y3 ; ∗ t 1 ˆ= ∗y1 ;
5 ∗ t 0 = ∗y2 ; ∗ t 0 ˆ= ∗y0 ;
6 ∗ t 4 = ∗ t 3 ; ∗ t 4 ˆ= ∗ t 2 ; ∗ t 2 &= ∗ t 0 ; ∗ t 0 ˆ= ∗ t 1 ; ∗ t 4 &= ∗ t 0 ; ∗ t 3 &= ∗ t 1 ;
7 ∗ t 3 ˆ= ∗ t 2 ; ∗ t 2 ˆ= ∗ t 4 ;
8 G4 mul (x3 , x2 , y3 , y2 , t1 , t 0) ; G4 mul (x1 , x0 , y1 , y0 , t1 , t 0) ;
9 ∗x3 ˆ= ∗ t 2 ; ∗x2 ˆ= ∗ t 3 ; ∗x1 ˆ= ∗ t 2 ; ∗x0 ˆ= ∗ t 3 ;

10 }

The workload could be reduced from 10 MOVs, 30 logical instructions and 6 temporary
variables to 9 MOVs, 29 logical instructions and 5 temporary variables. Especially the
savings in the number of temporary variables are of great value, as shown later.

Optimizing G256 inv from [10]: The result of G16 sq scl is xored with the result of
G16 mul. Including the last 4 XOR operations of G16 mul (see listing 1.1), this can be
written as:

d3 = d3 ⊕ a2 ⊕ x6 ⊕ x2 ⊕ x4 ⊕ x0 d2 = d2 ⊕ a3 ⊕ x7 ⊕ x3 ⊕ x5 ⊕ x1
d1 = d1 ⊕ a2 ⊕ x5 ⊕ x1 ⊕ x4 ⊕ x0 d0 = d0 ⊕ a3 ⊕ x4 ⊕ x0

The above equations can be implemented with 2 MOVs and 14 logical instructions
as shown in the lines 10 to 12 in listing 1.2. Inserting G16 sq scl and G16 mul, the
number of logical instructions could be reduces from 120 to 119, the number of MOVs
could be reduced from 40 to 38.

Listing 1.2. Calculation of the inverse in GF(28)
1 / / i n : x7 x6 x5 x4 x3 x2 x1 x0 o u t : x3 x2 x1 x0 x7 x6 x5 x4
2 vo id G256 inv (u64 ∗x7 , u64 ∗x6 , u64 ∗x5 , u64 ∗x4 , u64 ∗x3 , u64 ∗x2 , u64 ∗x1 ,
3 u64 ∗x0 , u64 ∗d3 , u64 ∗d2 , u64 ∗d1 , u64 ∗d0 , u64 ∗a3 , u64 ∗a2 ,
4 u64 ∗a1 , u64 ∗a0 , u64 ∗a4) {
5 ∗a3 = ∗x7 ; ∗a3 ˆ= ∗x5 ; ∗a2 = ∗x6 ; ∗a2 ˆ= ∗x4 ; ∗d3 = ∗x3 ; ∗d3 ˆ= ∗x1 ;
6 ∗d2 = ∗x2 ; ∗d2 ˆ= ∗x0 ; ∗d1 = ∗a3 ; ∗d1 ˆ= ∗a2 ; ∗a2 &= ∗d2 ; ∗d2 ˆ= ∗d3 ;
7 ∗d1 &= ∗d2 ; ∗a3 &= ∗d3 ; ∗a3 ˆ= ∗a2 ; ∗a2 ˆ= ∗d1 ; ∗d3 = ∗x7 ; ∗d2 = ∗x6 ;
8 ∗d1 = ∗x5 ; ∗d0 = ∗x4 ;
9 G4 mul (d3 , d2 , x3 , x2 , a1 , a0) ; G4 mul (d1 , d0 , x1 , x0 , a1 , a0) ;

10 ∗a1 = ∗x0 ; ∗a1 ˆ= ∗x4 ; ∗a2 ˆ= ∗a1 ; ∗d1 ˆ= ∗a2 ; ∗d0 ˆ= ∗a3 ; ∗d3 ˆ= ∗a2 ;
11 ∗d2 ˆ= ∗a3 ; ∗d0 ˆ= ∗a1 ; ∗a1 = ∗x1 ; ∗a1 ˆ= ∗x5 ; ∗d1 ˆ= ∗a1 ; ∗d2 ˆ= ∗a1 ;
12 ∗d3 ˆ= ∗x6 ; ∗d3 ˆ= ∗x2 ; ∗d2 ˆ= ∗x7 ; ∗d2 ˆ= ∗x3 ;
13 G16 inv (d3 , d2 , d1 , d0 , a4 , a3 , a2 , a1 , a0) ;
14 G16 mul (x3 , x2 , x1 , x0 , d1 , d0 , d3 , d2 , a4 , a3 , a2 , a1 , a0) ;
15 G16 mul (x7 , x6 , x5 , x4 , d1 , d0 , d3 , d2 , a4 , a3 , a2 , a1 , a0) ;
16 }

A Fast and Cache-Timing Resistant Implementation of the AES 193

4.4 Final Improvements

Two problems are remaining. Firstly, the number of registers needed is 17. The x64-
architecture defines 16 register. 15 of them (all except for the register for the stack
pointer) can be used, so the number of temporary registers has to be reduced by 2.
Secondly, inefficiencies because of the multiple calculation of some intermediate values
in different subroutines remain. Both problems can be solved by using the stack as a
container for temporary data. The use of data slots on the stack is illustrated in listing
1.5 in Appendix B.1.

Table 1 compares the solution shown in listing 1.5 with a fully optimized x64-version
(see section 7) presented in listing 1.6 and the solution in [8].

Table 1. Comparison of the S-box implementation with [8]

Version MOVs Logical Load or x64- Bytes in
operations Store instructions memory

S-box (listing 1.5) 37 130 36 193 96
Optimized S-box (listing 1.6) 31 130 31 182 96

S-box in [8] 30 152 21 204 40

5 The ShiftRows Step

In this step, row i of the matrix representing the state in the normal representation is
rotated by i positions to the left:

Shi f tRows

⎛

⎜⎜⎝

⎡

⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

⎤

⎥⎥⎦

Translated into the bitslice domain, this means, that the lowest 16 bits in all registers
storing the state have to be rotated by 12 positions to the left as they correspond to row
3 (see figure 1). The next lowest 16 bits have to be rotated by 8 positions to the left and
the bits 32 to 47 are to be rotated by 4 positions to the left. The highest 16 bits belong
to the elements in row 0 and stay untouched.

The rotation in the subgroups of 16 bit could be done with quite a lot of bitmasking
operations. Luckily, the lowest 16 bits of each of the 64-bit registers are available as
independent register. With this feature, the ShiftRows operation could be done with 6
rotations per bit, leading to 48 rotations all together.

The ShiftRows operation can be speeded up by leaving out one rotation, such that the
resulting state-registers are rotated by 16 positions to the right compared to the original
specification. This needs 5 · 8 = 40 rotations instead of 48. The additional rotation
can be undone in the MixColumns step. For the MixColumns step it does not make
any difference in the number of instructions if the result is rotated by a multiple of 16
positions or not.

194 R. Könighofer

6 The MixColumns Step

The MixColumns step is defined as multiplication of the state-matrix with a constant
matrix: ⎡

⎢⎢⎣

b00 b01 b02 b03
b10 b11 b12 b13
b20 b21 b22 b23
b30 b31 b32 b33

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥⎥⎦ •

⎡

⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤

⎥⎥⎦

According to the rules for matrix multiplication, the resulting elements can be calcu-
lated with (i + y)4 denoting i+y modulo 4 as:

bij = 2 • a(i)4j ⊕ 3 • a(i+1)4j ⊕ a(i+2)4j ⊕ a(i+3)4j (1)

where ′•′ stands for a polynomial multiplication modulo 0x11b. On a bit level, the
polynomial multiplication with 2 and 3 can be expressed as shown in table 2, where x|b
denotes the b’th bit of x. With the content of table 2, the equation (1) can be decomposed
into equations for each bit:

bij|0 = a(i)4j|7 ⊕a(i+1)4j|0 ⊕ a(i+1)4j|7 ⊕a(i+2)4j|0 ⊕a(i+3)4j|0
bij|1 = a(i)4j|0 ⊕ a(i)4j|7 ⊕a(i+1)4j|0 ⊕ a(i+1)4j|1 ⊕ a(i+1)4j|7 ⊕a(i+2)4j|1 ⊕a(i+3)4j|1
bij|2 = a(i)4j|1 ⊕a(i+1)4j|1 ⊕ a(i+1)4j|2 ⊕a(i+2)4j|2 ⊕a(i+3)4j|2
bij|3 = a(i)4j|2 ⊕ a(i)4j|7 ⊕a(i+1)4j|2 ⊕ a(i+1)4j|3 ⊕ a(i+1)4j|7 ⊕a(i+2)4j|3 ⊕a(i+3)4j|3
bij|4 = a(i)4j|3 ⊕ a(i)4j|7 ⊕a(i+1)4j|3 ⊕ a(i+1)4j|4 ⊕ a(i+1)4j|7 ⊕a(i+2)4j|4 ⊕a(i+3)4j|4
bij|5 = a(i)4j|4 ⊕a(i+1)4j|4 ⊕ a(i+1)4j|5 ⊕a(i+2)4j|5 ⊕a(i+3)4j|5
bij|6 = a(i)4j|5 ⊕a(i+1)4j|5 ⊕ a(i+1)4j|6 ⊕a(i+2)4j|6 ⊕a(i+3)4j|6
bij|7 = a(i)4j|6 ⊕a(i+1)4j|6 ⊕ a(i+1)4j|7 ⊕a(i+2)4j|7 ⊕a(i+3)4j|7
The bitslice representation illustrated in figure 1 allows a simple implementation of
these equations. For each bit, some elements xij in row i and column j have to be
interconnected with other elements y(i+c)4j of the same column j, but different row. This
can be done by simply interconnecting the value x in bitslice representation with the
value y also in bitslice representation, where y is rotated by a multiple of 16 positions.
Each rotation of 16 positions to the left makes the bits of y appear in the same column
but in the next row. As mentioned in section 5, the ShiftRows step can be done faster if
an additional rotation by 16 positions to the right is performed. MixColumns is the step
performed after ShiftRows and has to undo this rotation by doing an additional rotation
by 16 positions to the left. The according equations are:

bit0 = bit0 ⊕rl16(bit7) ⊕rl32(bit0 ⊕ bit7) ⊕rl48(bit0)
bit1 = bit1 ⊕rl16(bit0 ⊕ bit7) ⊕rl32(bit0 ⊕ bit1 ⊕ bit7) ⊕rl48(bit1)
bit2 = bit2 ⊕rl16(bit1) ⊕rl32(bit1 ⊕ bit2) ⊕rl48(bit2)
bit3 = bit3 ⊕rl16(bit2 ⊕ bit7) ⊕rl32(bit2 ⊕ bit3 ⊕ bit7) ⊕rl48(bit3)
bit4 = bit4 ⊕rl16(bit3 ⊕ bit7) ⊕rl32(bit3 ⊕ bit4 ⊕ bit7) ⊕rl48(bit4)
bit5 = bit5 ⊕rl16(bit4) ⊕rl32(bit4 ⊕ bit5) ⊕rl48(bit5)
bit6 = bit6 ⊕rl16(bit5) ⊕rl32(bit5 ⊕ bit6) ⊕rl48(bit6)
bit7 = bit7 ⊕rl16(bit6) ⊕rl32(bit6 ⊕ bit7) ⊕rl48(bit7)

A Fast and Cache-Timing Resistant Implementation of the AES 195

Table 2. Polynomial multiplication with 2 and 3 on a bit level

bit x 2 • x 3 • x
0 x|0 x|7 x|0 ⊕ x|7
1 x|1 x|0 ⊕ x|7 x|0 ⊕ x|0 ⊕ x|7
2 x|2 x|1 x|0 ⊕ x|1
3 x|3 x|2 ⊕ x|7 x|0 ⊕ x|2 ⊕ x|7
4 x|4 x|3 ⊕ x|7 x|0 ⊕ x|3 ⊕ x|7
5 x|5 x|4 x|0 ⊕ x|4
6 x|6 x|5 x|0 ⊕ x|5
7 x|7 x|6 x|0 ⊕ x|6

In a straight forward approach, these equations could be implemented with 10 MOVs,
24 ROLs and 34 XORs if bit0 ⊕ bit7 and bit3 ⊕ bit7 were precalculated. However there
is also a better solution, precalculating the following subterms:

t0 = bit0 ⊕ rl16(bit0) t1 = rl16(bit1) ⊕ rl32(bit1)

t2 = bit2 ⊕ rl16(bit2) t3 = rl16(bit3) ⊕ rl32(bit3)

t4 = bit4 ⊕ rl16(bit4) t5 = rl16(bit5) ⊕ rl32(bit5)

t6 = bit6 ⊕ rl16(bit6) t7 = rl16(bit7) ⊕ rl32(bit7)

The pseudocode in listing 1.3 shows how these values can be used to get an efficient
implementation of the MixColumns step in a bitsliced manner.

Listing 1.3. MixColumns in pseudocode

1 b i t 2 ˆ= t 1 / / b i t 2 = b i t 2 ˆ r l 1 6 (b i t 1) ˆ r l 3 2 (b i t 1)
2 t 1 ˆ= t 0 / / t 1 = r l 1 6 (b i t 1) ˆ r l 3 2 (b i t 1) ˆ b i t 0 ˆ r l 1 6 (b i t 0)
3 t 1 = r l 1 6 (t 1) / / t 1 = r l 3 2 (b i t 1) ˆ r l 4 8 (b i t 1) ˆ r l 1 6 (b i t 0) ˆ r l 3 2 (b i t 0)
4 b i t 1 ˆ= t 1 / / b i t 1 = b i t 1 ˆ r l 3 2 (b i t 1) ˆ r l 4 8 (b i t 1) ˆ r l 1 6 (b i t 0) ˆ r l 3 2 (b i t 0)
5 t 0 = r l 3 2 (t 0) / / t 0 = r l 3 2 (b i t 0) ˆ r l 4 8 (b i t 0)
6 b i t 0 ˆ= t 0 / / b i t 0 = b i t 0 ˆ r l 3 2 (b i t 0) ˆ r l 4 8 (b i t 0)
7 b i t 4 ˆ= t 3 / / b i t 4 = b i t 4 ˆ r l 1 6 (b i t 3) ˆ r l 3 2 (b i t 3)
8 t 3 ˆ= t 2 / / t 3 = r l 1 6 (b i t 3) ˆ r l 3 2 (b i t 3) ˆ b i t 2 ˆ r l 1 6 (b i t 2)
9 t 3 = r l 1 6 (t 3) / / t 3 = r l 3 2 (b i t 3) ˆ r l 4 8 (b i t 3) ˆ r l 1 6 (b i t 2) ˆ r l 3 2 (b i t 2)

10 b i t 3 ˆ= t 3 / / b i t 3 = b i t 3 ˆ r l 3 2 (b i t 3) ˆ r l 4 8 (b i t 3) ˆ r l 1 6 (b i t 2) ˆ r l 3 2 (b i t 2)
11 t 2 = r l 3 2 (t 2) / / t 2 = r l 3 2 (b i t 2) ˆ r l 4 8 (b i t 2)
12 b i t 2 ˆ= t 2 / / b i t 2 f i n i s h e d
13 b i t 6 ˆ= t 5 / / b i t 6 = b i t 6 ˆ r l 1 6 (b i t 5) ˆ r l 3 2 (b i t 5)
14 t 5 ˆ= t 4 / / t 5 = r l 1 6 (b i t 5) ˆ r l 3 2 (b i t 5) ˆ b i t 4 ˆ r l 1 6 (b i t 4)
15 t 5 = r l 1 6 (t 5) / / t 5 = r l 3 2 (b i t 5) ˆ r l 4 8 (b i t 5) ˆ r l 1 6 (b i t 4) ˆ r l 3 2 (b i t 4)
16 b i t 5 ˆ= t 5 / / b i t 5 f i n i s h e d
17 t 4 = r l 3 2 (t 4) / / t 4 = r l 3 2 (b i t 4) ˆ r l 4 8 (b i t 4)
18 b i t 4 ˆ= t 4 / / b i t 4 = b i t 4 ˆ r l 3 2 (b i t 4) ˆ r l 4 8 (b i t 4)
19 b i t 0 ˆ= t 7 / / b i t 0 f i n i s h e d
20 b i t 1 ˆ= t 7 / / b i t 1 f i n i s h e d
21 b i t 3 ˆ= t 7 / / b i t 3 f i n i s h e d
22 b i t 4 ˆ= t 7 / / b i t 4 f i n i s h e d
23 t 7 ˆ= t 6 / / t 7 = r l 1 6 (b i t 7) ˆ r l 3 2 (b i t 7) ˆ b i t 6 ˆ r l 1 6 (b i t 6)
24 t 7 = r l 1 6 (t 7) / / t 7 = r l 3 2 (b i t 7) ˆ r l 4 8 (b i t 7) ˆ r l 1 6 (b i t 6) ˆ r l 3 2 (b i t 6)
25 b i t 7 ˆ= t 7 / / b i t 7 f i n i s h e d
26 t 6 = r l 3 2 (t 6) / / b i t 6 = r l 3 2 (b i t 6) ˆ r l 4 8 (b i t 6)
27 b i t 6 ˆ= t 6 / / b i t 6 f i n i s h e d

196 R. Könighofer

This pseudocode can be implemented with 8 MOVs, 20 ROLs and 27 XOR-instruct-
ions. Compared to the straight forward approach, 2 MOVs, 4 ROLs and 7 XORs so 13
instructions in total could be saved. These are savings of almost 20% of the instructions
of the MixColumns operation.

7 Improving the Performance on Instruction Level

The concepts presented so far where implemented in a standard version of the bitsliced
AES. In order to increase the speed of the implementation the following modifications
where made for a fast version:

– Whenever possible, the assembler instructions were mixed in a way to minimize
data dependencies between neighboring instructions.

– Whenever code contained lots of load and store instructions, they were spread be-
tween logical instructions as good as possible.

– For the implementation of the S-box, subroutines were inserted for better opti-
mization concerning the previous two points. The usage of temporary registers was
changed slightly, to reduce the number of x64-instructions, but the number of logi-
cal operations was not affected (see also table 1).

– The MixColumns step was merged with the AddRoundKey step, to avoid lots of
load operations after each other in the AddRoundKey step.

– The transformation was merged with the key addition of round 0 for the same
reasons.

8 Performance Results

On a machine with an AMD OpteronTM 146 Processor with 2.00 GHz and 1 GB of
RAM, the sources where compiled and executed with Microsoft Visual Studio R©2005
Standard Edition under Windows R©XP x64 Edition. Timing measurement was done as
shown in Appendix A of [8]. The optimised ANSI C code for the Rijndael cipher in ver-
sion 3.01 from Rijmen, Bosselaers and Barreto was used as reference implementation
for benchmarking, as it is widely used in practice (e.g. in openSSL).

The performance results are shown in table 3. The standard version is about 15%
slower than the reference implementation but needs 24% less code memory and 93%
less data memory. The fast version is only 5% slower than the reference implementation
and needs 8% less code memory and 93% less data memory. Table 4 lists the operations
necessary for the whole encryption. Supposing that the execution time of every logical
instruction is independent from the data it operates on, the execution time of the whole
implementation is constant, since no data dependent branch or memory access occurs.

Comparing the results to [8] and [9] is not easy, since both papers only provide
absolute performance measures, heavily depending on the processor type and on other
components of the test environment. As the AMD OpteronTM 146 can not compete

1 Currently (Jan. 2008) available at http://www.iaik.tugraz.at/research/
krypto/AES/old/ rijmen/rijndael/rijndael-fst-3.0.zip

A Fast and Cache-Timing Resistant Implementation of the AES 197

with modern processors, especially those with multiple cores, comparisons with such
results do not give any information on the quality of this implementation either.

[3] investigates other mitigation techniques against cache-based software side chan-
nel attacks with a performance loss between a factor of 1.35 and 2.85 (compared to the
same reference implementation). The solution presented in this paper clearly outper-
forms these mitigations.

Table 3. Performance results

Implementation Cycles/block Encrypt 100MB Code size Data size
Standard bitslice 347 1125 ms 3702 byte 704 byte

Fast bitslice 317 1031 ms 4474 byte 704 byte
Optimized reference 303 922 ms 4887 byte 10280 byte

Table 4. Instruction count

11x add- 10x S- 9x shift- 9x mixCol- 1x shift- 1x 1x
overhead

RoundKey box RowsRR16 umnsRL16 Rows mu muInv
XOR 88 940 243 72 72 1415
AND 360 24 24 408
ROL 72 180 8 260
ROR 72 16 88

ROL16 216 24 240
SHR 24 24 48
SHL 24 24 48

logical
88 1300 360 423 48 144 144 2507

instr.
ADD 10 10
MOV 350 72 24 24 470
Load 88 180 12 20 300
Store 180 12 10 202

CALL 42 42
RET 42 42
x64

88 1920 360 495 48 180 180 124 3395
instr.

9 Further Work

Most modern processors support SSE2-extensions with 128-bit registers. An imple-
mentation only using SSE2-instructions could process even more blocks in parallel due
to wider registers. Mixing SSE2-instructions with x64-instructions may also be a good
way to a solution with higher performance. However, [8] claims, that in most of to-
day’s processors, SSE2-instructions are of no real use for bitslice implementations due
to poor latency and throughput.

198 R. Könighofer

Another possibility for improvements is to completely remove all borders between
the different steps of the algorithm. Simplifications may be possible.

The main focus during this work was to achieve a high throughput. No attempts were
made to minimize the code size or the needed amount of data. Macros were used often
as they are easy to use. Some macros might be replaced by function calls without or
with only little decline of the speed of the implementation while decreasing the code
size significantly.

10 Conclusion

Bitslicing is an unorthodox technique for the implementation of algorithms in software.
The application of this method to the implementation of cryptographic primitives pro-
vides some very strong advantages like the low amount of memory needed and the
resistance against cache-timing attacks. In this paper we showed, that a bitslice solution
can outperform other mitigations to cache-timing attacks.

Further improvements and different tradeoffs in various directions are still possible.
The fact that processors with larger word size are more and more upcoming, and the
circumstance, that the speed in executing logical operations grows faster than the speed
in memory access will make the bitslice approach even more important in the future.

References

1. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

2. Bernstein, D.J.: Cache-timing attacks on AES (April 2005), Revised version of earlier 2004-
11 version, http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

3. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge AES
against cache-based software side channel vulnerabilities. Cryptology ePrint Archive, Re-
port 2006/052 (2006) http://eprint.iacr.org/

4. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer, Heidelberg (2007)

5. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of AES.
In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg
(2006)

6. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg (2006)

7. Aciiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the AES. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer, Heidelberg (2006)

8. Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M.J.B. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

9. Rebeiro, C., Selvakumar, A.D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–212.
Springer, Heidelberg (2006)

10. Canright, D.: A very compact Rijndael S-box (revised). Naval Postgraduate School Technical
Report, NPS-MA-05-001 (May 2005),
http://handle.dtic.mil/100.2/ADA427050

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://eprint.iacr.org/
http://handle.dtic.mil/100.2/ADA427050

A Fast and Cache-Timing Resistant Implementation of the AES 199

11. May, L., Penna, L., Clark, A.: An implementation of bitsliced DES on the pentium mmxtm

processor. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp.
112–122. Springer, Heidelberg (2000)

12. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture
with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–
254. Springer, Heidelberg (2001)

Appendix A.1

Listing 1.4. The transformation into the bitslice domain with SWAPMOVE

1 ; R8 = low 64 b y t e s o f b l o c k 3 R9 = low 64 b y t e s o f b l o c k 2
2 ; R10 = low 64 b y t e s o f b l o c k 1 R11 = low 64 b y t e s o f b l o c k 0
3 ; R12 = h igh 64 b y t e s o f b l o c k 3 R13 = high 64 b y t e s o f b l o c k 2
4 ; R14 = h igh 64 b y t e s o f b l o c k 1 R15 = high 64 b y t e s o f b l o c k 0
5 swapmove R12 , R8 , 8 ,00 f f 0 0 f f 0 0 f f 0 0 f f h swapmove R8 , R12 , 1 6 , 0 0 0 0 f f f f 0 0 0 0 f f f f h
6 swapmove R12 , R8 , 32 , 00000000 f f f f f f f f h swapmove R13 , R9 , 8 ,00 f f 0 0 f f 0 0 f f 0 0 f f h
7 swapmove R9 , R13 , 1 6 , 0 0 0 0 f f f f 0 0 0 0 f f f f h swapmove R13 , R9 , 32 , 00000000 f f f f f f f f h
8 swapmove R14 , R10 , 8 ,00 f f 0 0 f f 0 0 f f 0 0 f f h swapmove R10 , R14 , 1 6 , 0 0 0 0 f f f f 0 0 0 0 f f f f h
9 swapmove R14 , R10 , 32 , 00000000 f f f f f f f f h swapmove R15 , R11 , 8 ,00 f f 0 0 f f 0 0 f f 0 0 f f h

10 swapmove R11 , R15 , 1 6 , 0 0 0 0 f f f f 0 0 0 0 f f f f h swapmove R15 , R11 , 32 , 00000000 f f f f f f f f h
11 swapmove R14 , R15 , 1 ,5555555555555555 h swapmove R12 , R13 , 1 ,5555555555555555 h
12 swapmove R10 , R11 , 1 ,5555555555555555 h swapmove R8 , R9 , 1 ,5555555555555555 h
13 swapmove R13 , R15 , 2 ,3333333333333333 h swapmove R12 , R14 , 2 ,3333333333333333 h
14 swapmove R9 , R11 , 2 ,3333333333333333 h swapmove R8 , R10 , 2 ,3333333333333333 h
15 swapmove R11 , R15 , 4 ,0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f h swapmove R10 , R14 , 4 ,0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f h
16 swapmove R9 , R13 , 4 ,0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f h swapmove R8 , R12 , 4 ,0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f h

Appendix B.1

Listing 1.5. Bitsliced S-box transformation in C

1 vo id Sbox (u64∗ x7 , u64∗ x6 , u64∗ x5 , u64∗ x4 , u64∗ x3 , u64∗ x2 , u64∗ x1 , u64∗ x0 ,
2 u64∗ t7 , u64∗ t6 , u64∗ t5 , u64∗ t4 , u64∗ t3 , u64∗ t2 , u64∗ t1 , u64∗ t 0) {
3 / / i n : x7 x6 x5 x4 x3 x2 x1 x0
4 G256 newbasisA2X (x7 , x6 , x5 , x4 , x3 , x2 , x1 , x0 , t 0) ;
5 / / o u t : x2 x4 x1 x7 x3 x0 x5 x6
7 / / i n : x2 x4 x1 x7 x3 x0 x5 x6
8 G256 inv (x2 , x4 , x1 , x7 , x3 , x0 , x5 , x6 , t6 , t5 , t4 , t3 , t2 , t1 , t 0) ;
9 / / o u t : x3 x0 x5 x6 x2 x4 x1 x7

11 / / i n : x3 x0 x5 x6 x2 x4 x1 x7
12 G256 newbasisX2S (x3 , x0 , x5 , x6 , x2 , x4 , x1 , x7 , t3 , t2 , t1 , t 0) ;
13 / / o u t : x7 x6 x5 x4 x3 x2 x1 x0
15 / / do t h e a f f i n e t r a n s f o r m a t i o n (can be s k i p p e d i f round keys a r e m o d i f i e d) :
16 ∗x6 = ˜ ∗x6 ; ∗x5 = ˜ ∗x5 ; ∗x1 = ˜ ∗x1 ; ∗x0 = ˜ ∗x0 ;
17 }
18 / / i n : a7 a6 a5 a4 a3 a2 a1 a0 o u t : a2 a4 a1 a7 a3 a0 a5 a6
19 vo id G256 newbasisA2X (u64∗ a7 , u64∗ a6 , u64∗ a5 , u64∗ a4 , u64∗ a3 , u64∗ a2 ,
20 u64∗ a1 , u64∗ a0 , u64∗ a1 a7) {
21 / / a0 i s a l r e a d y OK (= x2)
22 ∗ a1 a7 = ∗a1 ; / / a1 a7 = a1
23 ∗ a1 a7 ˆ= ∗a7 ; / / a1 a7 = a1 ˆ a7
24 ∗a5 ˆ= ∗a6 ; / / a5 = a5 ˆ a6
25 ∗a5 ˆ= ∗a0 ; / / a5 = a0 ˆ a5 ˆ a6 −> OK (= x1)
26 ∗a6 ˆ= ∗a0 ; / / a6 = a0 ˆ a6
27 ∗a6 ˆ= ∗a1 ; / / a6 = a0 ˆ a1 ˆ a6
28 ∗a6 ˆ= ∗a2 ; / / a6 = a0 ˆ a1 ˆ a2 ˆ a6
29 ∗a6 ˆ= ∗a3 ; / / a6 = a0 ˆ a1 ˆ a2 ˆ a3 ˆ a6 −> OK (= x0)

200 R. Könighofer

30 ∗a7 ˆ= ∗a5 ; / / a7 = a0 ˆ a5 ˆ a6 ˆ a7 −> OK (= x4)
31 ∗a1 ˆ= ∗a5 ; / / a1 = a0 ˆ a1 ˆ a5 ˆ a6 −> OK (= x5)
32 ∗a3 ˆ= ∗a4 ; / / a3 = a3 ˆ a4
33 ∗a4 ˆ= ∗a5 ; / / a4 = a0 ˆ a4 ˆ a5 ˆ a6 −> OK (= x6)
34 ∗a2 ˆ= ∗ a1 a7 ; / / a2 = a1 ˆ a2 ˆ a7
35 ∗a2 ˆ= ∗a5 ; / / a2 = a0 ˆ a1 ˆ a2 ˆ a5 ˆ a6 ˆ a7 −> OK (= x7)
36 ∗a3 ˆ= ∗ a1 a7 ; / / a3 = a1 ˆ a3 ˆ a4 ˆ a7
37 ∗a3 ˆ= ∗a0 ; / / a3 = a0 ˆ a1 ˆ a3 ˆ a4 ˆ a7 −> OK (= x3)
38 }
39 / / i n : x7 x6 x5 x4 x3 x2 x1 x0 o u t : x0 x4 x5 x2 x7 x3 x1 x6
40 vo id G256 newbasisX2S (u64∗ x7 , u64∗ x6 , u64∗ x5 , u64∗ x4 , u64∗ x3 , u64∗ x2 , u64∗x1 ,
41 u64∗ x0 , u64∗ x6 backup , u64∗ x2 backup , u64∗ x1 backup , u64∗ x0 backup) {
42 ∗x6 backup = ∗x6 ; / / x6 backup = x6
43 ∗x6 ˆ= ∗x4 ; / / x6 = x4 ˆ x6
44 ∗x1 backup = ∗x1 ; / / x1 backup = x1
45 ∗x1 ˆ= ∗x4 ; / / x1 = x1 ˆ x4
46 ∗x2 backup = ∗x2 ; / / x2 backup = x2
47 ∗x1 ˆ= ∗x5 ; / / x1 = x1 ˆ x4 ˆ x5 −> OK (= s1)
48 ∗x4 = ∗x3 ; / / x4 = x3
49 ∗x4 ˆ= ∗x7 ; / / x4 = x3 ˆ x7 −> OK (= s6)
50 ∗x2 = ∗x4 ; / / x2 = x3 ˆ x7
51 ∗x2 ˆ= ∗x5 ; / / x2 = x3 ˆ x5 ˆ x7 −> OK (= s4)
52 ∗x7 = ∗x2 ; / / x7 = x3 ˆ x5 ˆ x7
53 ∗x7 ˆ= ∗x6 ; / / x7 = x3 ˆ x4 ˆ x5 ˆ x6 ˆ x7 −> OK (= s3)
54 ∗x0 backup = ∗x0 ; / / x0 backup = x0
55 ∗x6 ˆ= ∗x1 backup ; / / x6 = x1 ˆ x4 ˆ x6 −> OK (= s0)
56 ∗x0 = ∗x3 ; / / x0 = x3
57 ∗x0 ˆ= ∗x5 ; / / x0 = x3 ˆ x5 −> OK (= s7)
58 ∗x5 = ∗x6 backup ; / / x5 = x6
59 ∗x5 ˆ= ∗x0 backup ; / / x5 = x0 ˆ x6 −> OK (= s5)
60 ∗x3 = ∗x0 ; / / x3 = x3 ˆ x5
61 ∗x3 ˆ= ∗x5 ; / / x3 = x0 ˆ x3 ˆ x5 ˆ x6
62 ∗x3 ˆ= ∗x2 backup ; / / x3 = x0 ˆ x2 ˆ x3 ˆ x5 ˆ x6 −> OK (= s2)
63 }
64 / / i n : a1 a0 , b1 b0 o u t : a1 a0
65 vo id G4 mul21 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e) {
66 ∗e = l o a d (−64); / / s t a c k [−64] = x7 ˆ x6 = r3 ˆ r2 = a1 ˆ a0 (l i n e 93)
67 ∗e &= l o a d (−32); / / s t a c k [−32] = d1 ˆ d0 = s3 ˆ s2 = b1 ˆ b0 (l i n e 79)
68 ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
69 }
70 / / i n : a1 a0 , b1 b0 o u t : a1 a0
71 vo id G4 mul22 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e) {
72 ∗e = l o a d (−80); / / s t a c k [−80] = x5 ˆ x4 = r1 ˆ r0 = a1 ˆ a0 (l i n e 101)
73 ∗e &= l o a d (−48); / / s t a c k [−48] = d3 ˆ d2 = s1 ˆ s0 = b1 ˆ b0 (l i n e 86)
74 ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
75 }
76 / / i n : a1 a0 , b1 b0 o u t : a1 a0
77 vo id G4 mul11 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e) {
78 ∗e = ∗b1 ; ∗e ˆ= ∗b0 ;
79 s t o r e (∗ e , −32) ; / / s t a c k [−32] <− e = b1 ˆ b0 = s3 ˆ s2 = d1 ˆ d0
80 ∗e &= l o a d (−72); / / s t a c k [−72] = x3 ˆ x2 = r3 ˆ r2 = a1 ˆ a0 (l i n e 95)
81 ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
82 }
83 / / i n : a1 a0 , b1 b0 o u t : a1 a0
84 vo id G4 mul12 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e) {
85 ∗e = ∗b1 ; ∗e ˆ= ∗b0 ;
86 s t o r e (∗ e , −48) ; / / s t a c k [−48] <− e = b1 ˆ b0 = s1 ˆ s0 = d3 ˆ d2
87 ∗e &= l o a d (−88); / / s t a c k [−88] = x1 ˆ x0 = r1 ˆ r0 = a1 ˆ a0 (l i n e 103)
88 ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
89 }
90 / / i n : a1 a0 , b1 b0 o u t : a1 a0
91 vo id G 4 m u l s t o r e x 7 x 6 x 3 x 2 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e , u64∗ e1){
92 ∗e = ∗a1 ; ∗e ˆ= ∗a0 ;
93 s t o r e (∗ e , −64) ; / / s t a c k [−64] <− e = a1 ˆ a0 = x7 ˆ x6
94 ∗e1 = ∗b1 ; ∗e1 ˆ= ∗b0 ;
95 s t o r e (∗ e1 , −72) ; / / s t a c k [−72] <− e1 = b1 ˆ b0 = x3 ˆ x2
96 ∗e &= ∗e1 ; ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
97 }

A Fast and Cache-Timing Resistant Implementation of the AES 201

98 / / i n : a1 a0 , b1 b0 o u t : a1 a0
99 vo id G 4 m u l s t o r e x 5 x 4 x 1 x 0 (u64∗ a1 , u64∗ a0 , u64∗ b1 , u64∗ b0 , u64∗ e , u64∗ e1){

100 ∗e = ∗a1 ; ∗e ˆ= ∗a0 ;
101 s t o r e (∗ e , −80) ; / / s t a c k [−80] <− e = a1 ˆ a0 = x5 ˆ x4
102 ∗e1 = ∗b1 ; ∗e1 ˆ= ∗b0 ;
103 s t o r e (∗ e1 , −88) ; / / s t a c k [−88] <− e1 = b1 ˆ b0 = x1 ˆ x0
104 ∗e &= ∗e1 ; ∗a1 &= ∗b1 ; ∗a0 &= ∗b0 ; ∗a1 ˆ= ∗e ; ∗a0 ˆ= ∗e ;
105 }
106 / / i n : r3 r2 r1 r0 , s3 s2 s1 s0 o u t : r3 r2 r1 r0
107 vo id G16 mul1 (u64∗ r3 , u64∗ r2 , u64∗ r1 , u64∗ r0 , u64∗ s3 , u64∗ s2 , u64∗ s1 ,
108 u64∗ s0 , u64∗ t3 , u64∗ t2 , u64∗ t 1) {
109 ∗ t 3 = l o a d (−24); / / s t a c k [−24] = x3 ˆ x1 = r3 ˆ r1 (l i n e 160)
110 ∗ t 2 = ∗s3 ; ∗ t 2 ˆ= ∗s1 ;
111 s t o r e (∗ t2 , −24) ; / / s t a c k [−24] <− t 2 = s1 ˆ s3 = d1 ˆ d3
112 ∗ t 3 &= ∗ t 2 ; ∗ t 1 = ∗s0 ; ∗ t 1 ˆ= ∗ s2 ;
113 s t o r e (∗ t1 , −56) ; / / s t a c k [−56] <− t 1 = s0 ˆ s2 = d0 ˆ d2
114 ∗ t 2 ˆ= ∗ t 1 ;
115 s t o r e (∗ t2 , −96) ; / / s t a c k [−96] <− t 2 = s0 ˆ s1 ˆ s2 ˆ s3 = d0 ˆ d1 ˆ d2 ˆ d3
116 ∗ t 1 &= l o a d (−32); / / s t a c k [−32] = x2 ˆ x0 = r2 ˆ r0 (l i n e 162)
117 ∗ t 3 ˆ= ∗ t 1 ;
118 ∗ t 2 &= l o a d (−48); / / s t a c k [−48] = x2 ˆ x0 ˆ x3 ˆ x1 = r2 ˆ r0 ˆ r3 ˆ r1 (l i n e 166)
119 ∗ t 2 ˆ= ∗ t 1 ;
120 G4 mul11 (r3 , r2 , s3 , s2 , t 1) ;
121 ∗ r3 ˆ= ∗ t 2 ; ∗ r2 ˆ= ∗ t 3 ;
122 G4 mul12 (r1 , r0 , s1 , s0 , t 1) ;
123 ∗ r1 ˆ= ∗ t 2 ; ∗ r0 ˆ= ∗ t 3 ;
124 }
125 / / i n : r3 r2 r1 r0 , s3 s2 s1 s0 o u t : r3 r2 r1 r0
126 vo id G16 mul2 (u64∗ r3 , u64∗ r2 , u64∗ r1 , u64∗ r0 , u64∗ s3 , u64∗ s2 , u64∗ s1 ,
127 u64∗ s0 , u64∗ t3 , u64∗ t2 , u64∗ t 1) {
128 ∗ t 3 = l o a d (−8); / / s t a c k [−8] = x7 ˆ x5 = r3 ˆ r1 (l i n e 156)
129 ∗ t 3 &= l o a d (−24); / / s t a c k [−24] = d1 ˆ d3 = s3 ˆ s1 (l i n e 111)
130 ∗ t 2 = l o a d (−16); / / s t a c k [−26] = x6 ˆ x4 = r2 ˆ r0 (l i n e 158)
131 ∗ t 2 &= l o a d (−56); / / s t a c k [−56] = d0 ˆ d2 = s2 ˆ s0 (l i n e 113)
132 ∗ t 3 ˆ= ∗ t 2 ;
133 ∗ t 1 = l o a d (−40); / / s t a c k [−40] = x7 ˆ x4 ˆ x5 ˆ x4 = r3 ˆ r2 ˆ r1 ˆ r0 (l i n e 164)
134 ∗ t 1 &= l o a d (−96); / / s t a c k [−96] = d7 ˆ d4 ˆ d5 ˆ d4 = s3 ˆ s2 ˆ s1 ˆ s0 (l i n e 115)
135 ∗ t 2 ˆ= ∗ t 1 ;
136 G4 mul21 (r3 , r2 , s3 , s2 , t 1) ;
137 ∗ r3 ˆ= ∗ t 2 ; ∗ r2 ˆ= ∗ t 3 ;
138 G4 mul22 (r1 , r0 , s1 , s0 , t 1) ;
139 ∗ r1 ˆ= ∗ t 2 ; ∗ r0 ˆ= ∗ t 3 ;
140 }
141 / / i n : r3 r2 r1 r0 o u t : r1 r0 r3 r2
142 vo id G16 inv (u64∗ r3 , u64∗ r2 , u64∗ r1 , u64∗ r0 , u64∗ e , u64∗ r 3 r 2 ,
143 u64∗ r 1 r 0 , u64∗ d1 , u64∗ d0) {
144 ∗ r 3 r 2 = ∗ r3 ; ∗ r 3 r 2 ˆ= ∗ r2 ; ∗ r 1 r 0 = ∗ r1 ; ∗ r 1 r 0 ˆ= ∗ r0 ; ∗e = ∗ r 3 r 2 ;
145 ∗e &= ∗ r 1 r 0 ; ∗e ˆ= ∗ r3 ; ∗e ˆ= ∗ r1 ; ∗d1 = ∗ r3 ; ∗d1 &= ∗ r1 ;
146 ∗d1 ˆ= ∗e ; ∗d0 = ∗ r2 ; ∗d0 &= ∗ r0 ; ∗d0 ˆ= ∗e ; ∗d0 ˆ= ∗ r2 ;
147 ∗d0 ˆ= ∗ r0 ;
148 ∗ r3 &= ∗d0 ; ∗ r2 &= ∗d1 ; ∗ r1 &= ∗d0 ; ∗ r0 &= ∗d1 ;
149 ∗d0 ˆ= ∗d1 ; ∗ r 3 r 2 &= ∗d0 ; ∗ r3 ˆ= ∗ r 3 r 2 ; ∗ r2 ˆ= ∗ r 3 r 2 ; ∗ r 1 r 0 &= ∗d0 ;
150 ∗ r1 ˆ= ∗ r 1 r 0 ; ∗ r0 ˆ= ∗ r 1 r 0 ;
151 }
152 / / i n : x7 x6 x5 x4 x3 x2 x1 x0 o u t : x3 x2 x1 x0 x7 x6 x5 x4
153 vo id G256 inv (u64 ∗x7 , u64 ∗x6 , u64 ∗x5 , u64 ∗x4 , u64 ∗x3 , u64 ∗x2 , u64 ∗x1 , u64∗x0 ,
154 u64 ∗d3 , u64 ∗d2 , u64 ∗d1 , u64 ∗d0 , u64 ∗a3 , u64 ∗a2 , u64 ∗a1) {
155 ∗a3 = ∗x7 ; ∗a3 ˆ= ∗x5 ;
156 s t o r e (∗ a3 , −8) ; / / s t a c k [−8] <− x7 ˆ x5
157 ∗a2 = ∗x6 ; ∗a2 ˆ= ∗x4 ;
158 s t o r e (∗ a2 , −16) ; / / s t a c k [−16] <− x6 ˆ x4
159 ∗d3 = ∗x3 ; ∗d3 ˆ= ∗x1 ;
160 s t o r e (∗ d3 , −24) ; / / s t a c k [−24] <− x3 ˆ x1
161 ∗d2 = ∗x2 ; ∗d2 ˆ= ∗x0 ;
162 s t o r e (∗ d2 , −32) ; / / s t a c k [−32] <− x2 ˆ x0
163 ∗d1 = ∗a3 ; ∗d1 ˆ= ∗a2 ;
164 s t o r e (∗ d1 , −40) ; / / s t a c k [−40] <− x7 ˆ x5 ˆ x6 ˆ x4
165 ∗a2 &= ∗d2 ; ∗d2 ˆ= ∗d3 ;

202 R. Könighofer

166 s t o r e (∗ d2 , −48) ; / / s t a c k [−48] <− x2 ˆ x0 ˆ x3 ˆ x1
167 ∗d1 &= ∗d2 ; ∗a3 &= ∗d3 ; ∗a3 ˆ= ∗a2 ; ∗a2 ˆ= ∗d1 ;
168 ∗d3 = ∗x7 ; ∗d2 = ∗x6 ; ∗d1 = ∗x5 ; ∗d0 = ∗x4 ;
169 s t o r e (∗ a2 , −56) ; / / s t a c k [−56] <− a2 (t o us e a2 as tempora ry v a r i a b l e)
170 G 4 m u l s t o r e x 7 x 6 x 3 x 2 (d3 , d2 , x3 , x2 , a2 , a1) ;
171 G 4 m u l s t o r e x 5 x 4 x 1 x 0 (d1 , d0 , x1 , x0 , a2 , a1) ;
172 ∗a2 = l o a d (−56); / / a2 <− s t a c k [−56] (r e s t o r e a2 a g a i n) (l i n e 169)
173 ∗a1 = ∗x0 ; ∗a1 ˆ= ∗x4 ; ∗a2 ˆ= ∗a1 ; ∗d1 ˆ= ∗a2 ; ∗d0 ˆ= ∗a3 ; ∗d3 ˆ= ∗a2 ;
174 ∗d2 ˆ= ∗a3 ; ∗d0 ˆ= ∗a1 ; ∗a1 = ∗x1 ; ∗a1 ˆ= ∗x5 ; ∗d1 ˆ= ∗a1 ; ∗d2 ˆ= ∗a1 ;
175 ∗d3 ˆ= ∗x6 ; ∗d3 ˆ= ∗x2 ; ∗d2 ˆ= ∗x7 ; ∗d2 ˆ= ∗x3 ;
176 s t o r e (∗ x1 , −56) ; / / s t a c k [−48] <− x1 (t o us e x1 as tempora ry v a r i a b l e)
177 s t o r e (∗ x0 , −96) ; / / s t a c k [−88] <− x0 (t o us e x0 as tempora ry v a r i a b l e)
178 G16 inv (d3 , d2 , d1 , d0 , x1 , x0 , a3 , a2 , a1) ;
179 ∗x1 = l o a d (−56); / / x1 <− s t a c k [−48] (r e s t o r e x1 a g a i n) (l i n e 176)
180 ∗x0 = l o a d (−96); / / x0 <− s t a c k [−88] (r e s t o r e x0 a g a i n) (l i n e 177)
181 G16 mul1 (x3 , x2 , x1 , x0 , d1 , d0 , d3 , d2 , a3 , a2 , a1) ;
182 G16 mul2 (x7 , x6 , x5 , x4 , d1 , d0 , d3 , d2 , a3 , a2 , a1) ;
183 }

Appendix B.2

Listing 1.6. Fully optimized S-box implementation in x64-MASM Syntax

1 SBOX MACRO x7 , x6 , x5 , x4 , x3 , x2 , x1 , x0 , t6 , t5 , t4 , t3 , t2 , t1 , t 0
2 MOV t0 , x1 XOR x5 , x6 XOR t0 , x7 XOR x5 , x0 XOR x6 , x1 XOR x7 , x5 XOR x6 , x3
3 XOR x1 , x5 XOR x6 , x0 XOR x3 , x4 XOR x6 , x2 XOR x4 , x5 XOR x2 , t 0 XOR x3 , x0
4 XOR x2 , x5 XOR x3 , t 0 MOV t1 , x4 MOV t2 , x2 XOR t1 , x7 XOR t2 , x1
5 MOV [RSP−16] , t 1 MOV t4 , t 1 MOV t5 , x0 MOV [RSP−8] , t 2 MOV t6 , x3 XOR t5 , x6
6 XOR t6 , x5 MOV [RSP−32] , t 5 XOR t4 , t 2 AND t1 , t 5 MOV [RSP−24] , t 6 AND t2 , t 6
7 MOV [RSP−40] , t 4 XOR t5 , t 6 XOR t2 , t 1 AND t4 , t 5 MOV [RSP−48] , t 5 MOV t6 , x2
8 XOR t1 , t 4 AND t6 , x3 MOV [RSP−56] , t 1 MOV t0 , x3 MOV t1 , x2 XOR t0 , x0
9 XOR t1 , x4 MOV t5 , x4 MOV [RSP−64] , t 1 MOV t3 , x7 AND t1 , t 0 AND t3 , x6

10 MOV [RSP−72] , t 0 AND t5 , x0 XOR t6 , t 1 XOR t5 , t 1 MOV [RSP−96] , x6 MOV t1 , x1
11 MOV t0 , x5 XOR t1 , x7 XOR t0 , x6 MOV [RSP−80] , t 1 XOR t5 , t 2 MOV t4 , x1
12 MOV [RSP−104] , x5 AND t1 , t 0 AND t4 , x5 XOR x6 , x7 MOV [RSP−88] , t 0
13 XOR t4 , t 1 XOR t3 , t 1 XOR x5 , x1 MOV t1 , [RSP−56] XOR t3 , t 2 XOR t5 , x5
14 XOR t3 , x6 XOR t5 , x2 XOR t1 , x6 XOR t6 , x0 XOR t4 , t 1 XOR t6 , t 1 XOR t4 , x5
15 XOR t6 , x4 MOV t2 , t 4 XOR t5 , x3 XOR t2 , t 3 MOV x6 , t 5 MOV t0 , t 5 XOR x6 , t 6
16 AND t0 , t 3 MOV x5 , t 2 XOR t0 , t 3 AND x5 , x6 XOR t0 , t 5 XOR x5 , t 6 MOV t1 , t 6
17 XOR x5 , t 4 AND t1 , t 4 XOR t0 , x5 XOR t1 , x5 AND t6 , t 0 AND t4 , t 0
18 MOV x5 , [RSP−104] AND t5 , t 1 XOR t0 , t 1 AND t3 , t 1 AND x6 , t 0 AND t2 , t 0
19 XOR t6 , x6 XOR t4 , t 2 XOR t5 , x6 XOR t3 , t 2 MOV t1 , t 6 MOV x6 , [RSP−96]
20 AND x3 , t 4 XOR t1 , t 4 MOV t2 , [RSP−24] AND x2 , t 4 AND [RSP−8] , t 1
21 AND x5 , t 6 XOR t4 , t 3 AND x1 , t 6 AND [RSP−64] , t 4 AND x0 , t 3 XOR t6 , t 5
22 AND t4 , [RSP−72] AND x4 , t 3 AND [RSP−80] , t 6 AND x7 , t 5 XOR t3 , t 5
23 AND t6 , [RSP−88] AND x6 , t 5 AND t2 , t 1 AND [RSP−16] , t 3 XOR x5 , t 6
24 MOV t5 , [RSP−64] XOR x6 , t 6 MOV t6 , t 1 XOR x3 , t 4 XOR t1 , t 3 AND t3 , [RSP−32]
25 XOR x0 , t 4 XOR x2 , t 5 AND [RSP−40] , t 1 XOR t2 , t 3 AND t1 , [RSP−48] XOR x0 , t 2
26 MOV t0 , [RSP−8] XOR t1 , t 3 XOR x4 , t 5 MOV t3 , [RSP−80] XOR x6 , t 2 XOR x3 , t 1
27 XOR x5 , t 1 MOV t6 , x0 MOV t1 , [RSP−16] XOR x0 , x6 XOR x1 , t 3 XOR t0 , t 1
28 XOR x7 , t 3 XOR t1 , [RSP−40] XOR x4 , t 0 XOR x7 , t 0 XOR x1 , t 1 XOR x2 , t 1
29 MOV t2 , x1 MOV t1 , x4 XOR x1 , x6 MOV x4 , x5 MOV x6 , x2 XOR x1 , x5 XOR x6 , x3
30 MOV t0 , x7 XOR x4 , x6 MOV x3 , x0 MOV x7 , x5 XOR x3 , x4 XOR x7 , x2 MOV x5 , t 6
31 MOV x2 , x7 XOR x5 , t 0 XOR x2 , t 1 XOR x0 , t 2 XOR x2 , x5
32 ENDM

Identity-Based Threshold Key-Insulated

Encryption without Random Oracles�

Jian Weng1, Shengli Liu1,3, Kefei Chen1, Dong Zheng1, and Weidong Qiu2

1 Dept. of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, P.R. China

2 School of Information Security Engineering
Shanghai Jiao Tong University, Shanghai 200240, P.R. China

3 State Key Laboratory of Information Security
Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
cryptjweng@gmail.com,{slliu,kfchen,dzheng,qiuwd}@sjtu.edu.cn

Abstract. With more and more cryptosystems being deployed on inse-
cure environments such as mobile devices, key exposures appear to be
unavoidable. This is perhaps the most devastating attack on a cryptosys-
tem, since it typically means that security is entirely lost. This problem
is especially hard to tackle in identity-based encryption (IBE) settings,
where the public key is determined as a user’s identity and is not desir-
able to be changed. In this paper, we extend Dodis et al.’s key-insulation
idea and present a new paradigm named threshold key-insulation. The
new paradigm not only greatly enhances the security of the system, but
also provides flexibility and efficiency. To deal with the key-exposure
problem in IBE settings, we further propose an identity-based thresh-
old key-insulated encryption (IBTKIE) scheme. The proposed scheme is
proved to be semantically secure without random oracles.

Keywords: key-exposure, threshold key-insulation, identity-based en-
cryption, standard model.

1 Introduction

1.1 Background

Identity Based Encryption (IBE), introduced by Shamir [36], provides a public
key mechanism where an arbitrary string, such as recipient’s identity, can be
served as a public key. The ability to use identities as public keys eliminates the
need for certificates as used in the traditional pubic key infrastructure (PKI).
Although the concept was proposed in 1984, it was only in 2001 that a secure and
truly practical IBE scheme was proposed by Boneh and Franklin [6]. Since then,
a series of papers have been devoted to IBE systems, e.g. [4,5,37,24,26,16,25,2,7].

With more and more cryptographic primitives being applied to insecure en-
vironments such as mobile devices, key-exposure seems to be inevitable. This
� Supported by the National Science Foundation of China under Grant Nos. 90704004,

60673077, 60573030, and 60707030.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 203–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 J. Weng et al.

problem is perhaps the most devastating attack on a cryptosystem, since it typ-
ically means that security is lost. This problem is especially hard to tackle in
identity-based scenarios, since the public key is determined as a user’s identity
and is not desirable to be changed. One exemplification as shown in [28] is the
application of IBE systems in a mobile phone scenario, where the phone number
represents a user’s identity, and it will be simple and convenient for the mo-
bile phone users to identify and communicate with each other by their phone
numbers only.

In Eurocrypt’02, Dodis et al. [21] initially introduced a paradigm named key-
insulation to deal with the key-exposure problem for public key encryption sys-
tems. Concretely, in a key-insulated system, the life time of the system is broken
into discrete time periods, while the private key is split into two parts: a tempo-
rary private key, hold by the user on a powerful but insecure device (e.g., a mobile
device), and a helper key, stored in a physically-secure but computationally-
limited device named “helper”. The public key remains unchanged throughout
the lifetime of the system, while the temporary private key is refreshed at every
period via the interaction between the user and the helper. Decryption oper-
ations in a given period only involve the corresponding temporary private key
without further access to the helper. Exposure of the temporary private keys at
some periods will not compromise the security of the remaining periods. Even
if the helper key is compromised, the security is still ensured as long as none
of the temporary private keys is exposed. As a result, the damage caused by
key-exposure is minimized.

However, for the key-insulation mechanism with a single helper, there exists
some situations hard to deal with. For instance, to increase the system tolerance
against key-exposure, the temporary private key has to be updated at short
intervals. Unfortunately, this in turn increases the frequency of helper’s connec-
tion to insecure environments, and the risk of helper key-exposure is accordingly
increased. It should be noted that, if the helper is exposed, the security of the sys-
tem is entirely lost as long as one of the temporary private key is compromised.
Next, let’s consider another example: Suppose a person works in several branches
of a company (for an easy explanation, consider the case of two branches), e.g.,
he works in branch B1 during the odd days, while during the even days he works
in branch B2. He decides to update the temporary private key once per day. For
instance, suppose today is an odd day, he updates the temporary private key in
branch B1, and tomorrow he will update it in branch B2. Now, some problems
happen: He must remind himself to bring the helper to-and-from branches B1
and B2; Also, bringing the helper back and forth means a frequent connection
to insecure environments, and puts the helper key in a higher risk of exposure.

To deal with the above problems, in PKC’06, Hanaoka et al. [27] presented
a very clever method named parallel key-insulation, where two distinct helpers
are alternately used to update the temporary private key. Since the two helpers
are independent of each other, even if the frequency of temporary private key-
updates is twice as that in original key-insulated systems, the risk of helper
key-exposure is still the same as the latter. As a result, the security of the

Identity-Based Threshold Key-Insulated Encryption 205

system is enhanced. Furthermore, as to the aforementioned person who works in
branches B1 and B2, he can put the first helper key at B1 and the second one
at B2. Then during the odd days when he works in branch B1, he can update
his temporary private keys using the first helper key, and when he stays in the
branch B2 during the even days, he can use the second one to do so. Now, there
is no need for him to bring the helpers to-and-from branches B1 and B2, and
hence the risk of helper key-exposure will not be increased.

Parallel key-insulation is a good solution to the key-exposure problem. Nev-
ertheless, there still exist some situations hard for it to tackle. Again, take the
aforementioned person working in branches B1 and B2 as an example. However,
suppose due to certain reason, now he works in the two branches without regular-
ity, e.g., he may works in branch B1 either in even or odd days, and the similar
situation holds for his working in branch B2. It is worth noting that, according the
model of key-insulation described in [27], this person can only use the first helper
key (not the second one) to update his temporary private keys for odd days, and
vice versa. Now, a troublesome problem occurs: suppose in an odd day he is work-
ing in branch B2, then he can not use the second helper key at hand to update his
temporary private keys! Another situation hard to deal with is that, according to
the model of parallel key-insulation in [27], it only supports sequential key updates,
i.e., the temporary private key for period t can only be updated from that for pe-
riod t−1. Therefore, the user is unable to decrypt old ciphertexts. In other words,
during period t, it is impossible for him to decrypt ciphertexts encrypted for any
period t′ with t′ < t. Hence, a natural question is to introduce a variant of the
key-insulation paradigm, which not only can enhance the security of the system
but also does not suffer from the above problems.

1.2 Our Results

In this paper, we introduce a new paradigm named threshold key-insulation.
Concretely, for a (k, n) threshold key-insulated system, at least k out of n helpers
are needed to update the user’s temporary private keys. The security intentions
for a (k, n) threshold key-insulated system are:

1. If none of the helper is compromised, similar to the original key-insulated
systems, exposure of any of temporary private keys does not compromise the
security of the non-exposed periods.

2. Even if up to k − 1 helpers are compromised in addition to the exposure of
any of temporary private keys, it still can not compromise the security of
the non-exposed periods.

3. Even if all the n helpers are compromised, security of all periods is still
ensured as long as none of temporary private keys is exposed.

Obviously, compared with original key-insulated systems, the security of
threshold key-insulated systems is greatly enhanced. Moreover, compared with
parallel key-insulated systems, threshold key-insulated systems provide more
flexibilities. Recall the aforementioned person who works in branches B1 and B2
without regularity. In our threshold key-insulated paradigm, he can put k helper

206 J. Weng et al.

keys in branch B1, and another k helper keys in branch B2. Interestingly, even if
he works in branch B1 (B2, resp.) during even (odd, resp.) days, he can still use
the k helper keys at hand to update his temporary private keys. Therefore, there
is no need for him to bring the helpers to-and-from branches B1 and B2, and
hence it prevents the helper key from a higher exposure risk. Besides, as shown
in Section 3.1, threshold key-insulation can support randomness key-updates i.e.,
a temporary private key for period t can be updated from a temporary private
key for any period t′ in a single step. Consequently, it allows the user to decrypt
old ciphertexts.

We further apply the threshold key-insulated paradigm to identity-based sce-
narios, and propose an identity-based threshold key-insulated encryption
(IBTKIE) scheme. Our IBTKIE scheme is provably secure in the standard
model, due to the inheritance of Waters’ IBE. It is worth noting that the ci-
phertext length, as well as the computational cost of encryption and decryption,
is constant and independent of the threshold parameter k and the total num-
ber n of helpers. In contrast, as to Libert et al.’s parallel key-insulated public
key encryption (PKIPKE) scheme [34] and Weng et al.’s identity-based parallel
key-insulated encryption (IBPKIE) scheme [38] without random oracles, their
ciphertext lengths, together with the computational cost of encryption and de-
cryption, grow linearly with the number of helper keys. Of course, the key-update
operation in threshold key-insulated systems is slightly more time-consuming
than that of the parallel key-insulated system. However, keep in mind that, the
encryption/decryption operation is run more frequently than the key-update
operation, and hence the overall computational cost of threshold key-insulated
systems is obviously less than that of parallel key-insulated systems.

Identity-based threshold decryption (IBTD), introduced by Baek and Zheng
[12], distributes the private key across multiple servers so that at least k out of n
decryption shares can recover plaintexts. Usually, it is difficult for an adversary
to corrupt up to k servers, and hence it can be viewed as another try to deal
with the key-exposure problem. Compared with IBTD systems, IBTKIE systems
have the following attractive features:

– In IBTD systems, each decryption operation requires the cooperation of at
least k servers. In contrast, in IBTKIE systems, the decryption can be done
by the user himself, and only the key-update operation needs the cooperation
of k helpers. Again, since the decryption operation is run more frequently
than the key-update operation, IBTKIE systems save much more computa-
tional cost than IBTD systems.

– For an IBTD system, if up to k severs are corrupted, its security is completely
lost. In contrast, even if all of a user’s helper keys are compromised, security
is still ensured as long as none of his temporary private keys is compromised.
Hence the security is enhanced.

1.3 Related Works

A long line of research has focused on handling the threat of key-exposure. One
approach is to distribute the private key across multiple servers in order to make

Identity-Based Threshold Key-Insulated Encryption 207

key-exposure more difficult. This paradigm includes threshold cryptography [17]
and proactive cryptography [35]. However, such solutions are some what costly,
and most importantly, once sufficient private key shares are (simultaneously)
exposed, the security of the system is entirely lost.

Another approach is to evolve the private key with time. Forward-security
cryptosystems [3,9,13] is the first solution in this vein. In a forward-secure sys-
tem, time is divided into discrete periods and the private key is updated at the
beginning of every period. Exposure of the current key does not render usages
of previous keys insecure, but security of the future periods is lost.

Key-insulated cryptosystems, introduced by Dodis et al. [21] in Eurocrypt’02,
combine key evolution with key splitting ideas, and provide stronger security
level than forward-secure systems. Up to now, several key-insulated encryp-
tion/signature schemes have been proposed, e.g., [11,15,23,22,20,39,28]. In
PKC’06, Hanaoka et al. [27] presented the idea of parallel key-insulation and
proposed a parallel key-insulated public key encryption (PKIPKE) scheme se-
cure in the random oracle model. In PKC’07, Libert et al. [34] proposed an
elegant PKIPKE scheme without random oracles. Anh et al. [1] generalized the
notion of PKIPKE and proposed a new paradigm called key-insulated public key
encryption with auxiliary helper.

The key-insulated model has been further extended and strengthened by Itkis
and Reyzin [30] to yield the notion of intrusion-resilience. The main strength
of intrusion-resilient schemes, as opposed to prior notions, is that they remain
secure even after arbitrarily many compromises of both helper key and temporary
private keys, as long as the compromises are not simultaneous. Moreover, even
if both keys are exposed simultaneously, it is still impossible to compromise the
security of previous periods. Up to now, several intrusion-resilient systems have
been proposed, e.g., [29,18,19,33]. Indeed, the intrusion-resilient model appears
to provide the maximum possible security in the face of key-exposure, whereas
it becomes less convenient, since it only supports sequential key updates and is
unable to decrypt old ciphertexts.

To deal with the key-exposure problem in identity-based scenarios, Hanaoka
et al. [28] introduced the hierarchial key-insulation paradigm where the helpers
are hierarchically structured. This is another efficient method to enhance the
security of the key-insulated systems. However, as to the aforementioned person
who works in the two branches without regularity, he still has to bring the first-
level helper from-and-to the two branches. Weng et al. [38] extended the parallel
insulation paradigm to identity-based settings, and proposed an identity-based
parallel key-insulated encryption scheme without random oracles.

2 Preliminaries

2.1 Notations

Throughout this paper, let Zp denote the set {0, 1, 2, · · · , p − 1}, and Z
∗
p denote

Zp\{0}. For a finite set S, x
$← S means choosing an element x from S with a

uniform distribution.

208 J. Weng et al.

2.2 Bilinear Pairings

Let G and GT be two cyclic multiplicative groups with the same prime order p.
A bilinear pairing is a map e : G × G → GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z
∗
p, we have e(ga

1 , gb
2) = e(g1, g2)ab;

– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for

∀g1, g2 ∈ G.

2.3 Complexity Assumptions

Let G and GT be two cyclic multiplicative groups with the same prime order p,
and e : G × G → GT be a bilinear paring. The decisional bilinear Diffie-Hellman
(DBDH) problem in groups (G, GT) is, given a tuple (g, ga, gb, gc, Z) ∈ G

4 ×GT ,
to decide whether Z = e(g, g)abc holds.

Definition 1. We say that a polynomial-time adversary B has advantage ε in
solving the DBDH problem in groups (G, GT) if
∣∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
B(g, ga, gb, gc, e(g, g)z) = 1

] ∣∣∣ ≥ 2ε,

where the probability is taken over the randomly chosen a, b, c, z and the random
bits consumed by B.

Definition 2. We say that (t, ε)-DBDH assumption holds in (G, GT) if no t-
time adversary has advantage at least ε in solving the DBDH problem in (G, GT).

3 Model of IBTKIE

3.1 Definition

Before formalizing the definition for IBTKIE systems, we first give an overview
for IBTKIE. As original key-insulated systems, the lifetime of IBTKIE systems
is divided into discrete time periods. A user’s identity acts as his public key
and is fixed throughout the lifetime, while his private key is updated in every
period. Each user ID may have a number nID of helper keys, with respect to
a threshold parameter kID, and each helper key is stored in different helper
devices. At the beginning of a period t, each helper key owned by user ID is
used to generate a key-update information share. Combining at least kID key-
update information shares (holding the common identity ID and common period
t) with one temporary private key corresponding to another period t′, user ID
can derive the temporary private key for the current period t, while less than
kID key-update information shares are unable to do so.

Recall the aforementioned person who works in branches B1 and B2 with-
out regularity. Now, he can put kID helper keys in branch B1, and another kID

helper keys in B2. Then, even if he works in branch B1 (B2, resp.) during even

Identity-Based Threshold Key-Insulated Encryption 209

(odd, resp.) days, he can still use the kID helper keys at hand to update his
temporary private keys. Therefore, there is no need for him to bring the helpers
from-and-to B1 and B2, and hence it prevents the helper keys from a higher
exposure risk. Note that it can be easily extended to support arbitrary number
of branches. That is, for a number m of branches, this can be done by simply
letting nID = m · kID.

Next, we give a formal definition for IBTKIE. For an easy explanation, in the
subsequent depiction, we assume that all the users share the same number n of
helpers and the same threshold parameter k. Note that it can easily be adapted
to allow different nID (or kID) for different user IDs. Formally, an IBTKIE scheme
consists of the following six algorithms.

Setup (κ): The setup algorithm takes as input a security parameter κ. It gen-
erates the public parameters param and the master secret key msk.

Extract (msk, ID): The key extraction algorithm takes as input the master secret
key msk and an identity ID. It outputs an initial private key TKID,0 and a
number n of helper keys {HKID,i}1≤i≤n.
Here the threshold parameter corresponding to n is k. Each helper key HKID,i

is kept by the i-th helper, while the initial private key TKID,0 is kept by the
user ID.

HelperUpt (t, ID, HKID,i): The helper key-update algorithm takes as input a
period index t, an identity ID and his i-th (1 ≤ i ≤ n) helper key HKID,i.
It outputs the i-th key-update information share KUID,t,i with respect to
identity ID and period t.

UserUpt (ID, TKID,t′ , {KUID,t,i}i∈S): The user key-update algorithm takes as
input an identity ID, his temporary private key TKID,t′ for period t′, and
a set {KUID,t,i}i∈S of key-update information shares, where S ⊆ {1, · · · , n}
and |S| ≥ k. It returns this user’s temporary private key TKID,t for period
t, and deletes TKID,t′ and {KUID,t,i}i∈S .

Encrypt (param, ID, M, t): The encryption algorithm takes as input the public
parameters param, an identity ID, a plaintext M and a period t. It outputs
a ciphertext C encrypted under ID and t.

Decrypt (C, TKID,t): The decryption algorithm takes as input a ciphertext C
under identity ID and period t, and the temporary private key TKID,t. It
outputs the corresponding plaintext M .

Roughly speaking, for correctness, we require that any set of at least k key-
update information shares (holding the shares of a common identity ID and a
common period t), together with a temporary private key TKID,t′ for period
t′, should be able to generate a valid temporary private key TKID,t. More-
over, the decryption consistency requires that, for any message M , any iden-
tity ID and any period t, Decrypt(C, TKID,t) = M always holds, where C =
Encrypt(param, ID, M, t).

We remark that, the above definition corresponds to schemes supporting ran-
domness key-updates [21]; that is, one can update TKID,t′ to TKID,t in one “step”
for any period indices t′ and t. A weaker definition allows t = t′ + 1 only.

210 J. Weng et al.

3.2 Security Notions for IBTKIE

Key-insulated security. The key-insulated security notion in the original key-
insulated encryption [21] captures the intuition that, if an adversary does not
compromise the helper key, exposure of temporary private key does not enable
him to derive the remaining temporary private keys. To model this security
notion in IBTKIE scenarios, we consider a more powerful adversary: first, he
can issue extraction queries as in IBE settings; second, he is allowed access to
any of the temporary private keys (of course, not the target key); further, he is
even allowed to compromise up to k − 1 helper keys.

Formally, for an IBTKIE scheme E , its semantic security against an adaptive
chosen ciphertext attack under an adaptive chosen identity and adaptive chosen
key-exposure attack (IND-ID-KE-CCA2) can be defined via the following game
between an adversary A and a challenger C:

Setup. The challenger C runs algorithm Setup(κ), and gives A the resulting
public parameters param, keeping the master key msk to itself.

Query Phase 1. A adaptively issues queries q1, · · · , qm where query qi is one
of the following:
– Extraction query 〈ID〉: C first runs algorithm Extract to obtain the initial

private key TKID,0 and n helper keys {HKID,i}1≤i≤n. It then sends these
results to A.

– Helper key query 〈ID, i〉: C responds by running algorithm Extract to
generate HKID,i and sends it to A.

– Temporary private key query 〈ID, t〉: C responds by running algorithms
HelperUpt and UserUpt to generate TKID,t. It then returns it to A.

– Decryption query〈(t, C), ID〉: C responds by running algorithms HelperUpt
and UserUpt to generate TKID,t. It then runs algorithm Decrypt using
TKID,t and sends the resulting plaintext to A.

Challenge. Once A decides that Phase 1 is over, it outputs a target identity
ID∗, a period index t∗, and two equal-length plaintexts M0, M1 ∈ M on
which it wishes to be challenged. C flips a random coin γ ∈ {0, 1}, and sets
the challenge ciphertext to be C∗ = Encrypt(param, ID∗, Mγ , t∗), which is
sent to A.

Phase 2. A continues to issue additional queries as in Phase 1, and B responds
these queries as in Phase 1.

Guess. Finally, A outputs a guess γ′ ∈ {0, 1}.

We refer to the above game as an IND-ID-KE-CCA2 game. In the above game,
it is also mandated that the following conditions are simultaneously satisfied:

1. 〈ID∗〉 does not appear in extraction queries;
2. 〈ID∗, t∗〉 does not appear in temporary private key queries;
3. A can only corrupt up to k − 1 helper keys with respect to identity ID∗;
4. 〈(t∗, C∗), ID∗〉 does not appear in decryption queries.

Identity-Based Threshold Key-Insulated Encryption 211

We refer to adversary A as an IND-ID-KE-CCA2 adversary. We define his
advantage in attacking scheme E as AdvE,A =

∣∣Pr[γ′ = γ] − 1
2

∣∣, where the
probability is taken over the random coins consumed by the challenger and the
adversary. As usual, we can define the chosen plaintext security similarly to the
above game except that the adversary is not allowed to issue any decryption
queries. We call this adversary IND-ID-KE-CPA adversary.

Definition 3. We say that an IBTKIE scheme E is (t, qe, qh, qt, qd, ε)-IND-ID-
KE-CCA2 secure if for any t-time IND-ID-KE-CCA2 adversary A that makes
at most qe extraction queries, at most qh helper key queries, at most qt tem-
porary private key queries and at most qd decryption queries, we have that
AdvE,A < ε. Also, we say that E is (t, qe, qh, qt, ε)-IND-ID-KE-CPA secure if
it is (t, qe, qh, qt, 0, ε)-IND-ID-KE-CCA2 secure.

Strong key-insulated security1. The strong key-insulated security consid-
ers attacks which compromise the physically-secure helpers. Informally, a strong
key-insulated secure cryptosystem should ensure that even if all the n helpers
corresponding to an identity ID are compromised, it is still impossible for the
adversary to derive any of ID’s temporary private keys. To model this security
notion, we define another game named strong IND-ID-KE-CCA2, which is iden-
tical to IND-ID-KE-CCA2 with the following exceptions: (i). temporary private
key queries are no longer provided for A, (ii). A is said to win the strong IND-
ID-KE-CCA2 game if γ = γ′ and the following conditions are simultaneously
satisfied:

1. 〈ID∗〉 does not appear in extraction queries;
2. 〈(t∗, C∗), ID∗〉 does not appear in decryption queries.

We refer to the above adversary A as a strong IND-ID-KE-CCA2 adversary.
Similarly, we can define the strong IND-ID-KE-CPA adversary, and here as well,
the adversary is not allowed to issue any decryption queries.

Definition 4. We say that an IBTKIE scheme E is (t, qe, qh, qd, ε) strongly IND-
ID-KE-CCA2 secure if for any strong IND-ID-KE-CCA2 adversary A who makes
at most qe extraction queries, at most qh helper key queries and at most qd de-
cryption queries, we have that AdvE,A < ε. Also, we say that E is (t, qe, qh, ε)
strongly IND-ID-KE-CPA secure if it is (t, qe, qh, 0, ε) strongly IND-ID-KE-CCA2
secure.

4 Proposed IBTKIE Scheme

In this section, based on Waters’ IBE scheme [37], we present an IBTKIE scheme.
We also prove its security under the DBDH assumption.

1 The term “strong key-insulated” is borrowed from [21]. Note that we can not say
that the strong key-insulated security is “stronger” than the key-insulated security.
In fact, they are orthogonal in some sense.

212 J. Weng et al.

4.1 Construction

Let G and GT be two groups with prime order p of size κ, and let e be a
bilinear map such that e : G × G → GT . Identities and period indices will
be represented as bitstrings of length nu and nw respectively(We can also let
identities and period indices be bitstrings of arbitrary length and nu, nw be the
output lengths of collision-resistant hash functions, H1 : {0, 1}∗ → {0, 1}nu,
H2 : {0, 1}∗ → {0, 1}nw). Hereafter, for an identity ID, we use VID ⊆ {1, · · · , nu}
to denote the set of indices for which the bitstring ID is set to 1. Similarly,
for a period index t, we use Wt ⊆ {1, · · · , nw} to denote the set of indices
for which the bitstring t is set to 1. We also define the Lagrange coefficient
Δi,S(x) =

∏
v∈S
v �=i

x−v
i−v for i ∈ Zp and a set S of elements in Zp. The proposed

IBTKIE system consists of the following algorithms:

Setup(κ): Given a security parameter κ, the PKG works as below:
1. Generate G, GT and e;

2. Pick α
$← Z

∗
p, g, g2

$← G, and set g1 = gα;

3. Pick u′ $← G and a random nu-length vector U = (ui) whose elements
are randomly chosen from G;

4. Pick w′ $← G and a random nw-length vector W = (wi) whose elements
are randomly chosen from G;

5. Output the public parameters and the master secret key as

param = (g, g1, g2, u
′, w′, U , W) , msk = gα

2 .

For convenience, we define two Waters’ hash function as below2:

Hu(ID) = u′
∏

j∈VID

uj , Hw(t) = w′
∏

j∈Wt

wj .

Extract (ID, msk): Given an identity ID, the PKG uses the master key msk to
generate the initial private key and a number n of helper keys for identity
ID as follows:
1. Pick β

$← Z
∗
p, compute R = gβ

2 and set the initial private key for identity
ID to be

TKID,0 = (R, −, −, −) . (1)

2. For each index i ∈ {1, · · · , k−1}, pick ci, ri
$← Z

∗
p and set the i-th helper

key to be
HKID,i = (gci

2 Hu(ID)ri , gri) . (2)

2 We thank the anonymous review’s pointing out that, the technique from [16] can be
applied to recycle the wi’s in the definition of Hw and thus the public parameters
can be shortened.

Identity-Based Threshold Key-Insulated Encryption 213

3. Let S′ = {0, 1, · · · , k − 1}. Pick r
$← Z

∗
p. For each remaining index

i ∈ {k, · · · , n}, set the i-th helper key HKID,i to be
((

gα−β
2 Hu(ID)r

)Δi,S′ (0)
k−1∏

j=1

(
HK

〈1〉
ID,j

)Δi,S′ (j)
,(gr)Δi,S′ (0)

k−1∏

j=1

(
HK

〈2〉
ID,j

)Δi,S′ (j)
)

(3)

4. Give HKID,i to user ID’s i-th helper for each i ∈ {1, · · · , n}. While the
initial private key TKID,0 is kept by user ID himself.

Here we claim that the helper keys in Eq. (3) have the same form as those
in Eq. (2). To see this, let f1(x) denote the (k − 1)-degree polynomial such
that f1(0) = α − β and f1(i) = ci for each i ∈ {1, · · · , k − 1}. Also let f2(x)
denote the (k − 1)-degree polynomial such that f2(0) = r and f2(i) = ci for
each i ∈ {1, · · · , k − 1}. Besides, for each i ∈ {k, · · · , n}, we let f1(i) and
f2(i) denote ci and ri respectively. Then, for each i ∈ {k, · · · , n}, we have

HK〈1〉ID,i =
(
gα−β
2 Hu(ID)r

)Δi,S′ (0) k−1∏

j=1

(
HK〈1〉ID,j

)Δi,S′ (j)

=
(
gα−β
2 Hu(ID)r

)Δi,S′ (0) k−1∏

j=1

(
g

cj

2 Hu(ID)rj
)Δi,S′ (j)

= g
(α−β)·Δi,S′(0)+

k−1∑
j=1

cj ·Δi,S′(j)

2 Hu(ID)
r·Δi,S′(0)+

k−1∑
j=1

rj ·Δi,S′ (j)

= g
f1(0)·Δi,S′ (0)+

k−1∑
j=1

f1(j)·Δi,S′ (j)

2 Hu(ID)
f2(0)·Δi,S′ (0)+

k−1∑
j=1

f2(j)·Δi,S′ (j)

= g

∑

j∈S′
f1(j)·Δi,S′ (j)

2 Hu(ID)

∑

j∈S′
f2(j)·Δi,S′ (j)

= g
f1(i)
2 Hu(ID)f2(i)

= gci
2 Hu(ID)ri .

Similarly, for each i ∈ {k, · · · , n}, we have HK〈2〉ID,i = gri .
HelperUpt (t, ID, HKID,i): Given a period index t, an identity ID and his i-th

(1 ≤ i ≤ n) helper key HKID,i, this algorithm works as below:
1. Parse HKID,i as (HK〈1〉ID,i, HK〈2〉ID,i);

2. Pick si
$← Z

∗
p and output user ID’s i-th key-update information share

KUID,t,i for period t as
(
HK〈1〉ID · Hw(t)si , HK〈2〉ID , gsi

)
= (gci

2 Hu(ID)riHw(t)si , gri , gsi) . (4)

UserUpt (ID, TKID,t′ , {KUID,t,i}i∈S): Given an identity ID, a temporary private
key TKID,t′ for period t′, and a set {KUID,t,i}i∈S of key-update information
shares for period t, where S ⊆ {1, · · · , n} and |S| ≥ k (for convenience, we
assume |S| = k), this algorithm works as below:

214 J. Weng et al.

1. Parse TKID,t′ as
(
R, TK〈2〉ID,t′ , TK〈3〉ID,t′ , TK〈4〉ID,t′

)
;

2. Parse KUID,t,i as
(
KU〈1〉ID,t,i, KU〈2〉ID,t,i, KU〈3〉ID,t,i

)
;

3. Set user ID’s temporary private key TKID,t for period t to be

(
R,

∏

i∈S

(
KU〈1〉ID,t,i

)Δ0,S(i)
,
∏

i∈S

(
KU〈2〉ID,t,i

)Δ0,S(i)
,
∏

i∈S

(
KU〈3〉ID,t,i

)Δ0,S(i)
)

.

4. Delete TKID,t′ and {KUID,t,i}i∈S . Return TKID,t.
Note that if let r =

∑
i∈S Δ0,S(i) · ri and s =

∑
i∈S Δ0,S(i) · si, then the

temporary private key TKID,t is always set to be

(
R, TK〈2〉ID,t, TK〈3〉ID,t, TK〈4〉ID,t

)
=

(
gβ
2 , g

(α−β)
2 Hu(ID)rHw(t)s, gr, gs

)
. (5)

This can be seen from the following:

TK〈2〉ID,t =
∏

i∈S

(
KU〈1〉ID,t,i

)Δ0,S(i)
=

∏

i∈S

(gci
2 Hu(ID)riHw(t)si)Δ0,S(i)

=
∏

i∈S

(gci
2)Δ0,S(i)

∏

i∈S

(Hu(ID)ri)Δ0,S(i)
∏

i∈S

(Hw(t)si)Δ0,S(i)

= g
∑

i∈S Δ0,S(i)·ci

2 Hu(ID)
∑

i∈S Δ0,S(i)·riHw(t)
∑

i∈S Δ0,S(i)·si

= g
∑

i∈S Δ0,S(i)·f1(i)
2 Hu(ID)rHw(t)s

= g
f1(0)
2 Hu(ID)rHw(t)s

= gα−β
2 Hu(ID)rHw(t)s,

TK〈3〉ID,t =
∏

i∈S

(
KU〈2〉ID,t,i

)Δ0,S(i)
=

∏

i∈S

(gri)Δ0,S(i) = g
∑

i∈S Δ0,S(i)·ri = gr,

TK〈4〉ID,t =
∏

i∈S

(
KU〈3〉ID,t,i

)Δ0,S(i)
=

∏

i∈S

(gsi)Δ0,S(i) = g
∑

i∈S Δ0,S(i)·si = gs.

Encrypt (param, ID, m, t): In period t, to encrypt a message M ∈ GT under an

identity ID, the sender picks z
$← Z

∗
p and outputs

C = (C1, C2, C3, C4) = (gz, M · e(g1, g2)z , Hu(ID)z, Hw(t)z) . (6)

Decrypt (C, TKID,t):To decrypt ciphertext C =(C1, C2, C3, C4) under identity ID

for period t, the recipient with private key TKID,t =
(
R, TK〈2〉ID,t, TK〈3〉ID,t, TK〈4〉ID,t

)

outputs M =
C2 · e

(
C3, TK〈3〉ID,t

)
· e

(
C4, TK〈4〉ID,t

)

e
(
C1, R · TK〈2〉ID,t

) .

Identity-Based Threshold Key-Insulated Encryption 215

4.2 Correctness

In the above description of the scheme, it has been shown that, any set of at least
k key-update information shares (holding the shares of a common identity ID and
a common period t), together with a temporary private key TKID,t′ for period
t′, can correctly generate a valid temporary private key TKID,t. Furthermore,
assuming the ciphertext is well-formed for ID and t, we have

C2 · e
(
C3, TK〈3〉ID,t

)
· e

(
C4, TK〈4〉ID,t

)

e
(
C1, R · TK〈2〉ID,t

)

=
M · e(g1, g2)z · e (Hu(ID)z , gr) · e (Hw(t)z, gs)

e
(
gz, gβ

2 · g(α−β)
2 Hu(ID)rHw(t)s

)

=
M · e(g1, g2)z · e (gz, Hu(ID)r) · e (gz, Hw(t)s)

e (gz, gα
2 Hu(ID)rHw(t)s)

=
M · e(g1, g2)z · e (gz, Hu(ID)r) · e (gz, Hw(t)s)

e (gz, gα
2) · e (gz, Hu(ID)r) · e (gz, Hw(t)s)

= M.

4.3 Security

The above IBTKIE scheme is IND-ID-KE-CPA secure in the standard model.

Theorem 1. Our IBTKIE scheme is IND-ID-KE-CPA secure in the standard
model, assuming the DBDH assumption holds in groups (G, GT). Concretely, if
there exists a (t, qe, qh, qt, ε)-IND-ID-KE-CPA adversary A against our scheme,
then there exists an efficient algorithm B which can solve the (t′, ε′)-DBDH as-
sumption in groups (G, GT), where

t′ = t + O(ε−2 ln(ε−1)λ−1 ln(λ−1)), ε′ ≥ ε

2λ−1 .

Here λ =
1

16(qe + qt)qt(nu + 1)(nw + 1)
.

The proof technique is mainly borrowed from [37,31], and the detailed proof can
be founded in the full version of this paper.

Theorem 2. Our IBTKIE scheme is strongly IND-ID-KE-CPA secure in the
standard model, assuming the DBDH assumption holds in groups (G, GT). Con-
cretely, if there exists a (t, qe, qh, ε) strong IND-ID-KE-CPA adversary A against
our scheme, then there exists an efficient algorithm B which can solve the (t′, ε′)-
DBDH assumption in groups (G, GT), where

t′ = t + O(ε−2 ln(ε−1)λ−1 ln(λ−1)), ε′ ≥ ε

2λ−1 .

Here λ =
1

4qe(nu + 1)
.

216 J. Weng et al.

Detailed proof can be founded in the full version of this paper. We here briefly
explain why the proposed IBTKIE scheme inherently provides the strong key-
insulated security. From a high level, the intuition comes from the fact that, in
algorithm Extract, the secret gα

2 Hu(ID)r is broken into two parts, the first part
gβ
2 hold by the user, and the second part gα−β

2 Hu(ID)r which is masked by some
random elements and is shared by the helpers. Concretely, consider the following
target temporary private key

TKID∗,t∗=
(
R, TK〈2〉ID∗,t∗ , TK〈3〉ID∗,t∗ , TK〈4〉ID∗,t∗

)

=
(
gβ
2 , g

(α−β)
2 Hu(ID∗)rHw(t∗)s, gr, gs

)
.

Given enough helper keys, indeed, an adversary A can derive the last three
components, say TK〈2〉ID∗,t∗ , TK〈3〉ID∗,t∗ and TK〈4〉ID∗,t∗ . However, as an important fact
should be noted, since adversary A is disallowed to issue extraction query 〈ID∗〉
and any temporary private key queries on behalf of ID∗, the first component
R = gβ

2 is unknown to adversary A even if he compromises all of ID∗’s helper
keys. Therefore, adversary A can not derive the whole target key TKID∗,t∗ , and
hence the strong IND-ID-KE-CPA security is ensured.

4.4 Chosen-Ciphertext Security

Generic results from Canetti, Halevi and Katz [14], further improved upon by
Boneh and Katz [8], can be applied to our IBTKIE scheme and achieve the
chosen-ciphertext security in the standard model. The non-generic but more
efficient technique of Boyen, Mei and Waters [10], can be also used to achieve
the chosen-ciphertext security. However, these methods involve some overhead
to the ciphertext. Interestingly, recent result from Kiltz [32] can be similarly
applied to our IBTKIE scheme to achieve the chosen-ciphertext security without
ciphertext overhead. Due to the space limit, we here do not provide the detailed
construction.

5 Prevent Cheating from Compromised Helpers

There may be situations that, after a helper has been compromised, the user
can not immediately be aware of this fact, and he may still use the compromised
helper key to update his temporary private key. Now, an adversary, who does
not corrupt enough helper keys to compromise the security of the system, can
still cheat the user as follows: he may control the compromised helper to output
some incorrectly generated key-update information shares. Then it will render
the user to derive an invalid temporary private key, which can not be used for
decryption. Fortunately, we can slightly modify our proposed IBTKIE scheme to
prevent such a cheating. Concretely, only algorithms Extract and UserUpt need
to be changed as below:

Identity-Based Threshold Key-Insulated Encryption 217

Extract: Steps 2 to 4 are replaced by the following:

2. For each index i ∈ {1, · · · , k − 1}, pick ci, ri
$← Z

∗
p, set the i-th helper key

to be HKID,i = (gci
2 Hu(ID)ri , gri), and the i-th verification key VKID,i to be

VKID,i = gci.
3. Let S′ = {0, 1, · · · , k − 1}. Pick r

$← Z
∗
p. For each remaining index i ∈

{k, · · · , n}, set the i-th helper key HKID,i to be
((

gα−β
2 Hu(ID)r

)Δi,S′ (0)
k−1∏

j=1

(
HK

〈1〉
ID,j

)Δi,S′ (j)
, (gr)Δi,S′ (0)

k−1∏

j=1

(
HK

〈2〉
ID,j

)Δi,S′ (j)
)

,

and set the i-th verification key to be VKID,i =(gα−β)Δi,S′ (0)∏k−1
j=1 VK

Δi,S′ (j)
ID,j .

4. Give HKID,i to user ID’s i-th helper for each i ∈ {1, · · · , n}. While the initial
private key TKID,0 and all the verification keys {VKID,i}i∈{1,··· ,n} are kept
by user ID himself.

UserUpt: The following step is added between Step 2 and Step 3:

2-3. Ensure that all the key-update information shares {KUID,t,i}i∈S are valid.
To do this, for each i ∈ S, check whether the following equation holds:

e
(
g, KU〈1〉ID,t,i

)
= e(VKID,i, g2)e

(
KU〈2〉ID,t,i, Hu(ID)

)
e
(
KU〈3〉ID,t,i, Hw(t)

)
.

If one of the verifications fails, output “Invalid Shares” and abort.

Indeed, for each correctly generated key-update information share KUID,t,i, we
have

e
(
g, KU〈1〉ID,t,i

)
= e (g, gci

2 Hu(ID)riHw(t)si)

= e (g, gci
2) e (g, Hu(ID)ri) e (g, Hw(t)si)

= e (gci , g2) e (gri, Hu(ID)) e (gsi , Hw(t))

= e(VKID,i, g2)e
(
KU〈2〉ID,t,i, Hu(ID)

)
e
(
KU〈3〉ID,t,i, Hw(t)

)
.

6 Conclusions

We introduced a new paradigm named threshold key-insulation, where at least
k out of n helpers are needed to update a user’s temporary private key. The new
paradigm not only enhances the security of the system, but also provides flex-
ibility and efficiency. To deal with the key-exposure problem in identity-based
settings, we further proposed an identity-based threshold key-insulated encryp-
tion scheme, whose security does not rely on the random oracle methodology.

Acknowledgements

The authors would like to thank the anonymous referees and Junzuo Lai for
their helpful comments and suggestions.

218 J. Weng et al.

References

1. Anh, P.T.L., Hanaoka, Y., Hanaoka, G., Matsuura, K., Imai, H.: Reducing the
Spread of Damage of Key Exposures in Key-Insulated Encryption. In: Nguyên,
P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 366–384. Springer, Heidelberg
(2006)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized Key Delegation for Hierarchical
Identity-Based Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

3. Anderson, R.: Two Remarks on Public-Key Cryptology. Invited lecture. In: Proc.
of CCCS 1997 (1997), http://www.cl.cam.ac.uk/users/rja14/

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity Based Encryption
Without Parings. In: Proc. of FOCS 2007, pp. 647–657 (2007)

8. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

9. Bellare, M., Miner, S.: A Forward-Secure Digital Signature Scheme. In: Wiener,
M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg
(1999)

10. Boyen, X., Mei, Q., Waters, B.: Simple and efficient CCA2 security from IBE
techniques. In: Proc. of ACM CCS 2005, pp. 320–329. ACM Press, New-York (2005)

11. Bellare, M., Palacio, A.: Protecting against key-exposure: strongly key-insulated
encryption with optimal threshold. In: Proc. of AAECC 2006, pp. 379–396 (2006)

12. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 248–261. Springer, Heidelberg
(2004)

13. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

15. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

16. Chatterjee, S., Sarkar, P.: HIBE with Short Public Parameters Secure in the Full
Model Without Random Oracles. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 145–160. Springer, Heidelberg (2006)

17. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

http://www.cl.cam.ac.uk/users/rja14/

Identity-Based Threshold Key-Insulated Encryption 219

18. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-Resilient Public-
Key Encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32.
Springer, Heidelberg (2003)

19. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A Generic Construction for
Intrusion-Resilient Public-Key Encryption. In: Okamoto, T. (ed.) CT-RSA 2004.
LNCS, vol. 2964, pp. 81–98. Springer, Heidelberg (2004)

20. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(2002)

21. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public-key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

22. González-Deleito, N., Markowitch, O., Dall’lio, E.: A new key-insulated signature
scheme. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269,
pp. 465–479. Springer, Heidelberg (2004)

23. Dodis, Y., Yung, M.: Exposure-resilience for free: the hierarchical ID-based encryp-
tion case. In: Proc. of IEEE SISW 2002, pp. 45–52 (2002)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 445–464.
Springer, Heidelberg (2004)

25. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable
Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
Springer, Heidelberg (2007)

26. Galindo, D., Kiltz, E.: Chosen-Ciphertext Secure Threshold Identity-Based Key
Encapsulation Without Random Oracles. In: De Prisco, R., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 173–185. Springer, Heidelberg (2006)

27. Hanaoka, G., Hanaoka, Y., Imai, H.: Parallel key-insulated public key encryp-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 105–122. Springer, Heidelberg (2006)

28. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Unconditionally secure key in-
sulated cryptosystems: models, bounds and constructions. In: Deng, R.H., Qing,
S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 85–96. Springer,
Heidelberg (2002)

29. Itkis, G.: Intrusion-Resilient Signatures: Generic Constructions, or Defeating a
Strong Adversary with Minimal Assumptions. In: Cimato, S., Galdi, C., Persiano,
G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 102–118. Springer, Heidelberg (2003)

30. Itkis, G., Reyzin, L.: SiBIR: Signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

31. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key
Encapsulation without Random Oracles. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006),
http://eprint.iacr.org/2006/034

32. Eike Kiltz. Chosen-ciphertext secure identity-based encryption in the standard
model with short ciphertexts. Cryptology ePrint Archive, Report, 2006/122 (2006),
http://eprint.iacr.org/

33. Libert, B., Quisquater, J., Yung, M.: Efficient Intrusion-Resilient Signatures With-
out Random Oracles. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS,
vol. 4318, pp. 27–41. Springer, Heidelberg (2006)

34. Libert, B., Quisquater, J.J., Yung, M.: Parallel Key-Insulated Public Key Encryp-
tion Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 298–314. Springer, Heidelberg (2007)

http://eprint.iacr.org/2006/034
http://eprint.iacr.org/

220 J. Weng et al.

35. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. of PODC
1991, pp. 51–59. ACM (1991)

36. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1984)

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidel-
berg (2005)

38. Weng, J., Liu, S., Chen, K., Ma, C.: Identity-Based Parallel Key-Insulated En-
cryption Without Random Oracles: Security Notions and Construction. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 409–423. Springer,
Heidelberg (2006)

39. Yum, D.H., Lee, P.J.: Efficient key updating signature schemes based on IBS. In:
Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 16–18.
Springer, Heidelberg (2003)

CCA2 Secure IBE: Standard Model Efficiency
through Authenticated Symmetric Encryption

Eike Kiltz1,� and Yevgeniy Vahlis2

1 Cryptology and Information Security Theme
CWI Amsterdam
The Netherlands
kiltz@cwi.nl

2 University of Toronto
Canada

evahlis@cs.toronto.edu

Abstract. We propose two constructions of chosen-ciphertext secure
identity-based encryption (IBE) schemes. Our schemes have a security
proof in the standard model, yet they offer performance competitive with
all known random-oracle based schemes. The efficiency improvement is
obtained by combining modifications of the IBE schemes by Waters [38]
and Gentry [21] with authenticated symmetric encryption.

1 Introduction

An Identity-Based Encryption (IBE) scheme is a public-key encryption scheme
where any string is a valid public key. In particular, email addresses and dates
can be public keys. The ability to use identities as public keys avoids the need to
distribute public key certificates — which is one of the main technical difficul-
ties when setting up a public-key infrastructure. An efficient construction of an
IBE was not given until almost two decades after Shamir posed the initial open
question in [35] regarding the existence of such cryptographic primitives. The
first efficient IBEs appeared in 2001, given separately by Boneh and Franklin
[10, 11], and Sakai et al. [33]. In particular, Boneh and Franklin [10, 11] pro-
posed formal security notions for IBE systems and designed a fully functional
secure IBE scheme using bilinear maps. This scheme and the tools developed
in its design have been successfully applied in numerous cryptographic settings,
transcending by far the identity based cryptography framework.

Despite its only recent invention, IBE is already used extensively in practice.
Two companies — Voltage security and Identum — are specialized in identity-
based security solutions. This is one of the reasons why IBE is currently in the
process of getting standardized — the new IEEE P1363.3 standard for “Identity-
Based Cryptographic Techniques using Pairings” is currently in preparation [25].
� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels

is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 221–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.sentinels.nl

222 E. Kiltz and Y. Vahlis

The schemes that are currently in consideration are the one by Boneh and
Franklin [11]; the one by Boneh and Boyen [7, 12]; and the one by Kasahara
and Sakai [33, 16].

All the above IBE schemes provide security against chosen-ciphertext attacks.
In a chosen ciphertext attack [32, 11], the adversary is given access to a decryp-
tion oracle that allows to obtain the decryptions of ciphertexts of his choosing.
Intuitively, security in this setting means that an adversary obtains (effectively)
no information about encrypted messages, provided the corresponding cipher-
texts are never submitted to the decryption oracle. Since the dramatic attack by
Bleichenbacher [5], the notion of chosen-ciphertext security is commonly agreed
as the “right” notion of security for encryption schemes [37]. We stress that,
in general, chosen-ciphertext security is a much stronger security requirement
than semantic security, where in the latter an attacker is not given access to the
decryption oracle.

Random Oracles. The drawback of all the IBE schemes [11, 7, 33, 16] that
are currently under submission to the new IEEE P1363.3 standard is that their
security can only be guaranteed in the random oracle model [3], i.e. in an ide-
alized world where all parties get black-box access to a truly random function.
Unfortunately a proof in the random oracle model can only serve as a heuristic
argument and, admittedly using quite contrived constructions, has been shown
to possibly lead to insecure schemes when the random oracles are implemented
in the standard model (see, e.g., [14]). More importantly, there exist results [20]
indicating that even certain standardized cryptographic schemes (such as full-
domain hash signatures) will always remain in the grey area of schemes having a
proof in the random oracle yet are “provably unprovable” in the standard model.

IBE Without Random Oracles. Waters [38] presents the first practical
IBE that is chosen-plaintext secure without random oracles. It fits the cate-
gory of “commutative-blinding” IBE schemes from Boneh and Boyen [7] and
its chosen-plaintext security can be reduced to the Bilinear Decisional Diffie-
Hellman (BDDH) assumption. Based on Waters scheme several chosen-ciphertext
secure IBE schemes were proposed starting with generic constructions [9] whose
specific instantiations were later improved [13, 28]. Today’s most efficient variant
is due to Kiltz and Galindo who successfully applied “direct chosen-ciphertext”
techniques from [13, 27] to Waters’ IBE scheme. More recently, Gentry [21] pro-
posed yet another practical chosen-ciphertext secure IBE scheme based on the
class of “inversion-based” IBE schemes from [7], offering interesting efficiency
trade-offs compared to the commutative-blinding schemes [28].

Random Oracles: Theory vs. Practice. The above mentioned drawbacks
of the random oracle model readily leads to the question why random-oracle
based schemes are sometimes chosen over schemes with a rigorous proof in
the standard model. The answer is straight-forward: it is common knowledge
that schemes in the random-oracle model are usually much more efficient than
schemes in the standard model. As long as the “theoretical problems” from [14,
20] do not lead to an actual break of a non-artificial scheme, using random-oracle

CCA2 Secure IBE: Standard Model Efficiency 223

schemes seems justifiable in practice. On the other hand it is in the belief of the
authors that this general perception about random oracles will change when
alternative random-oracle free schemes become available that offer competitive
performance.

1.1 Our Contributions

In this paper we demonstrate that there exist identity-based encryption schemes
that are provably secure in the standard model, yet their performance is com-
petitive with the best schemes in the random oracle model. We propose two
constructions of chosen-ciphertext secure IBE schemes which outperform all
such existing standard-model schemes, and have performance comparable to the
random-oracle based schemes that were described above.

Scheme I. Our first IBE scheme is based on Waters’ semantically secure IBE.
Our approach to protecting a ciphertext against chosen ciphertext attacks bears
some resemblance to the one used by Cramer and Shoup [18, 19] to obtain chosen
ciphertext secure public key encryption. More precisely, we use the more efficient
“encrypt-then-mac” or “authenticated symmetric encryption” variant proposed
by Kurosawa and Desmedt [30]. More precisely, in our construction decryption
of ill-formed ciphertexts (i.e. ciphertexts that could not have been generated
by the encryption algorithm) uses randomness which is built into the user pri-
vate key (and is independent of the master public key). Such ill-Formed cipher-
texts can be detected using extra-information that is algebraically encoded into
the “identity-carrying” part of the ciphertext (similar to the HIBE construc-
tion from [8]). Overall this allows us to obtain a CCA secure IBE scheme by
only adding one exponentiation to the encryption/decryption algorithm of Wa-
ters’ scheme, which is secure only against chosen plaintext attacks. We give a
standard-model security proof reducing the intractability of the modified Bilin-
ear Decisional Diffie-Hellman (mBDDH) problem (a problem closely related to
BDDH) to breaking the CCA security of our scheme.

Scheme II. Our second construction is a variant of Gentry’s chosen-ciphertext
secure IBE scheme. Here our new contribution is to use authenticated symmetric
encryption [30, 23] to reduce ciphertext expansion and encryption/decryption
cost compared to Gentry’s original schemes. We prove chosen-ciphertext security
of our scheme with respect to the decisional augmented bilinear Diffie-Hellman
exponent (q-ABDHE) assumption [21] in the standard model. We remark that
the proof technique is different from the one used for the first scheme.

1.2 Comparison

We carefully review all known chosen-ciphertext secure IBE constructions and
make an extensive comparison with our schemes. Our studies also incorporate
all relevant practical issues when making a comparison, including the tightness
of the security reduction with respect to different assumptions and instantiat-
ing the schemes in asymmetric pairing groups. To obtain concrete comparison

224 E. Kiltz and Y. Vahlis

Size (bits) Cost (relative)
Scheme Ciphertext Public Key Encrypt Decrypt
Standard model
Ours: IBE1 (§4) 422 2376 39 216
Ours: IBE2 (§5) 1277 2223 110 222
KG [28] 513 2565 40 360
Gentry [21] 2223 3249 146 408
Random Oracle model
BF [10] 331 171 187 151
BB1 [7] 502 1386 39 217
KS [16] 331 171 38 152

Fig. 1. Efficiency comparison for CCA-secure IBE schemes in the standard/random
oracle model for MNT/80-bit security level. Timings are relative to one exponentiation
in group G.

values we estimate ciphertext expansion and encryption/decryption cost when
implemented in different pairing groups using recent (independent) timing data
from [12]. This includes pairing groups based on super-singular curves and MNT
curves.

The numerical results of our comparison for 80 bits MNT curves are given
in Fig. 1 (For 80 bits super-singular curves the results are similar. We refer the
reader to Fig. 5 in Section 6.) The figure shows that our schemes outperform
all known IBE schemes in the standard model. Most notably, compared to the
standard-model scheme KG from [28] decryption cost and ciphertext expansion is
reduced by approximately one third, whereas encryption cost is the same. More
importantly, in comparison with the random-oracle based schemes BF from [11],
BB1 from [7, 12], and KS from [33, 16] our schemes offer competitive performance
in all parameters, yet are provably secure in the standard model.

1.3 Related Work

A special class of authenticated symmetric encryption schemes which is ob-
tained using the “encrypt-then-mac” primitive was recently successfully applied
to public-key encryption schemes by Kurosawa and Desmedt [30, 2] who greatly
improved efficiency of the original Cramer-Shoup encryption scheme [19]. Their
result was generalized to cover arbitrary authenticated encryption schemes [23].
In fact, our second IBE scheme can be seen as the “Kurosawa-Desmedt vari-
ant” of the original CCA secure scheme by Gentry. A variant of it was also
sketched in independent work by Boneh, Gentry and Hamburg [6] using their
general framework of “hash proof systems”. In connection with IBE, authenti-
cated encryption was first used in [34]. This paper is an extended version of an
unpublished manuscript [26] by the first author.

CCA2 Secure IBE: Standard Model Efficiency 225

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s ←R

S denotes the operation of picking an element s of S uniformly at random.
Unless otherwise indicated, algorithms are randomized and polynomial time. By
z ←R AO1,O2,...(x, y, . . .) we denote the operation of running algorithm A with
inputs x, y, . . . and access to oracles O1, O2, . . ., and letting z be the output. An
adversary is an algorithm or a tuple of algorithms.

2.2 Identity Based Encryption

An IBE scheme consists of four algorithms: Setup, KeyGen, Enc, and Dec. Setup
generates the global public and private keys; KeyGen uses the global private key
to generate an individual private key PRIid for a given identity; Enc uses the
global public key to encrypt a message to a given identity; and Dec uses the
individual private key to decrypt ciphertexts.

The strongest and commonly accepted notion of security for an identity-based
key encryption is that of indistinguishability against an adaptive chosen cipher-
text attack [11]. This notion, denoted IND-ID-CCA (or simply CCA), is captured
by defining the following advantage function for an adversary A = (A1, A2), and
for an IBE scheme IBE:

AdvCCA
IBE,A(k) =

∣∣∣Pr[ExpCCA
IBE,A(k) = 1] − 1/2

∣∣∣

where ExpCCA
IBE,A(k) is defined by the following experiment.

Experiment ExpCCA
IBE,A(k)

(PUB, PRI) ←R Setup(1k)
(id∗, m0, m1,St) ←R A

KeyGen(·),Dec(·,·)
1 (PUB)

b ←R {0, 1}; C∗ ←R Enc(PUB, id∗, mb)
b′ ←R A

KeyGen(·),Dec(·,·)
2 (C∗,St)

If b = b′ Return 1 else return 0

The oracle KeyGen(·) on input id generates a new private key for the identity
id and returns it. The oracle Dec(·, ·) on input id and C first generates a new
private key for id and then uses it to decrypt C. When A1 outputs id∗ it must
not be any of the identities that the adversary queried to the KeyGen(·) oracle.
Furthermore, A2 is not allowed to query the KeyGen(·) oracle on id∗, and is
not allowed to query the Dec(·, ·) oracle on (id∗, C∗). The variable St represents
some internal state information of adversary A and can be any (polynomially
bounded) string.

Definition 1. An IBE scheme IBE is secure against chosen-ciphertext attacks
(CCA secure) if for all adversaries A the advantage function AdvCCA

IBE,A(·) is
negligible.

226 E. Kiltz and Y. Vahlis

For a more precise analysis of the tightness of reduction we will sometimes use
the following more detailed notation. For integers k, t, qx, qd, AdvCCA

IBE,t,qx,qd
(k) =

maxA AdvCCA
IBE,A(k), where the maximum is over all adversaries A that make at

most t computational steps, qx key-derivation, and qd decryption queries. Here
we make the convention to count all decryption queries for id �= id∗ as a key-
derivation query.

2.3 Symmetric Encryption

A symmetric encryption scheme SE = (E, D) is specified by its encryption al-
gorithm E (encrypting m ∈ MsgSp(k) with keys K ∈ K(k)) and decryption
algorithm D (returning m ∈ MsgSp(k) or ⊥). Here we restrict ourselves to de-
terministic algorithms E and D.

The most common notion of security for symmetric encryption is that of ci-
phertext indistinguishability, which requires that all efficient adversaries fail to
distinguish between the encryptions of two messages of their choice. Another
common security requirement is ciphertext authenticity. Ciphertext authenticity
requires that no efficient adversary can produce a new valid ciphertext under
some key when given one encryption of a message of his choice under the same
key. A symmetric encryption scheme which satisfies both requirements simulta-
neously is called secure in the sense of authenticated encryption (AE-OT secure).
Note that AE-OT security is a stronger notion than chosen-ciphertext security.
Formal definitions and constructions are provided in the full version [29].

3 Intractability Assumptions

3.1 Bilinear Groups

Our schemes will be parameterized by a pairing parameter generator. This is
an algorithm G that on input 1k returns the description of an multiplicative
cyclic group G of prime order p, where 2k < p < 2k+1, the description of a
multiplicative cyclic group GT of the same order, and a non-degenerate bilinear
pairing ê : G × G → GT . See [11] for a description of the properties of such
pairings. We use G

∗ to denote G \ {1}, i.e. the set of all group elements except
the neutral element. Throughout the paper we use PG = (G, GT , p, ê, g, gT) as
shorthand for the description of bilinear groups, where g is a generator of G and
gT = ê(g, g) ∈ GT .

3.2 The Modified BDDH Assumption

Let PG be the description of pairing groups. The Bilinear Decisional Diffie-
Hellman (BDDH) assumption [11] states that the two distributions (gx, gy, gz,
ê(g, g)xyz) and (gx, gy, gz, ê(g, g)r), for x, y, z, r ←R Zp are indistinguishable for
any adversary. For the modified BDDH assumption we furthermore provide the

CCA2 Secure IBE: Standard Model Efficiency 227

adversary with the element g(y2). More formally we define the advantage function
Advmbddh

G,B (k) of an adversary B as
∣∣∣∣∣
Pr[B(PG, gx, gy, gy2

, gz, ê(g, g)xyz) = 1]
− Pr[B(PG, gx, gy, gy2

, gz, ê(g, g)r) = 1]

∣∣∣∣∣ ,

where x, y, z, r ←R Zp and PG ←R G(1k). We say that the modified Bilinear
Decision Diffie-Hellman (mBDDH) assumption relative to generator G holds if
Advmbddh

G,B (·) is negligible for all adversaries B.

3.3 The Truncated q-ABDHE Assumption

Let q = q(k) be a polynomial. The q-BDDHI assumption [7] states that the
two distributions (gx, . . . , gxq

, ê(g, g)1/x) and (gx, . . . , gxq

, ê(g, g)r), for x, r ←R

Zp are indistinguishable for any adversary. In [21] Gentry proposed the related
truncated decisional augmented bilinear Diffie-Hellman exponent (truncated q-
ABDHE) assumption which augments the q-BDDHI assumption with additional
information to the adversary. We define the advantage function Advq-abdhe

G,B (k) of
an adversary B as

∣∣∣∣∣
Pr[B(PG, gx, . . . , gxq

, gz, gzxq+2
, ê(g, g)zxq+1

) = 1]
− Pr[B(PG, gx, . . . , gxq

, gz, gzxq+2
, ê(g, g)r) = 1]

∣∣∣∣∣ ,

where x, z, r ←R Zp and PG ←R G(1k). We say that the truncated q-ABDHE
assumption relative to generator G holds if Advq-abdhe

G,B (·) is negligible for all B.

3.4 Relations

The next lemma classifies the strength of the modified BDDH assumption we
introduced between the well known standard pairing-based assumptions BDDH
and 2-BDDHI. Here "A ≤ B" means that assumption B implies assumption A
(in a generic sense), i.e. assumption B is a stronger assumption than A.

Lemma 1. BDDH ≤ mBDDH ≤ 2-BDDHI ≤ . . . ≤ q-BDDHI ≤ truncated
q-ABDHE

The simple proof will be given in the full version [29]. We remark that the
complexity of q-BDDHI (as well as truncated q-ABDHE) in the in the generic-
group model [36] is roughly Ω(

√
p/q) [7, 21] which matches the recent attack

due to Cheon [17].

4 IBE Scheme I

In this section we present our first CCA secure IBE scheme. It is based on the
Boneh-Boyen “commutative-blinding” IBE scheme [7] in its full-identity secure
variant of Waters [38] which is chosen-plaintext secure. We construct a CCA

228 E. Kiltz and Y. Vahlis

secure IBE by adding a redundant group element to the ciphertext, and authen-
ticating the two group elements both explicitly, using target collision resistant
hash function, and implicitly by using the same randomness to generate both
elements.

A similar technique was already used by Cramer and Shoup to obtain chosen-
ciphertext secure public-key encryption and later also successfully applied in [13,
27, 28]. All the above works make a distinction between ciphertexts that can be
generated by the encryption algorithm (well-formed ciphertexts), and strings
that the encryption algorithm would never output (ill-formed ciphertexts) in
their security analysis. The first CCA secure IBE that applies this methodology is
[28]. The IBE of [28] handles ill-formed ciphertexts by decrypting them to a fresh
random value chosen by the decryption algorithm (“implicit rejection”). This
approach is sufficient for obtaining CCA security, but is prohibitively expensive
as it requires the decryption algorithm to be randomized, and to compute several
exponentiations of group elements to handle ill-formed ciphertexts.

We avoid this additional computation by exploiting the fact that in our IBE
the decryption of an ill-formed ciphertext depends on the randomness of the
private key that was used for the decryption. In other words, we decrypt ill-
formed ciphertexts in the same way as we would decrypt well-formed ciphertext,
but for a well formed ciphertext the outcome of the decryption is independent
of the randomness in the private key. As a result our decryption algorithm is
deterministic and significantly faster than [28]. Furthermore, our scheme also
has one group element less in the ciphertext than [28]. This is achieved by al-
gebraically integrating the implicit ciphertext consistency check into the part of
the ciphertext that carries the information about the recipient’s identity.

4.1 The IBE Construction

We assume that PG = (G, GT , p, ê, g, gT) are public system parameters obtained
by running the group parameter algorithm G(1k) (that may be shared among
multiple systems).

We review the hash function H : {0, 1}n → G used in Waters’ identity based
encryption schemes [38]. On input of G and an integer n, the randomized hash
key generator HGen(G; n) chooses n + 1 random group elements h0, . . . , hn ∈ G

and returns h = (h0, h1, . . . , hn) ∈ G
n+1 as the public description of the hash

function. The algebraic hash function H : {0, 1}n → G is evaluated on a string
id = (id1, . . . , idn) ∈ {0, 1}n as the product

H (id) = h0

n∏

i=1

hidi

i ∈ G.

Let TCR : G → be a target collision-resistant hash function and SE = (E, D) be
a symmetric encryption scheme with key-space K = GT . Our IBE scheme IBE1
with identity space IDSp = {0, 1}n is described in Fig. 2. Here it is understood
that decryption rejects if the ciphertext C does not parse to (c1, c2, c3) with
c1 ∈ G and c2 ∈ G

∗. An IBE scheme with arbitrary identity space IDSp = {0, 1}∗

CCA2 Secure IBE: Standard Model Efficiency 229

can be obtained by applying a collision-resistant hash function to the identities.
(The choice of n = 2k is due to the birthday paradox.)

Setup(1k)
α, u ←R G; z ← ê(g,α)
H ←R HGen(G; n)
PUB ← (H , u, z) ; PRI ← α
Return (PUB, PRI)

KeyGen(PRI, id)
s ←R Zp

PRIid ← (α · H (id)s, g−s, us) ∈ G
3

Return PRIid

Enc(PUB, id , m)
r ←R Zp; c1 ← gr

t ← TCR(c1); c2 ← (H (id) · ut)r

K ← zr ∈ GT ; c3 ← EK(m)
Return ciphertext C = (c1, c2, c3)

Dec(PUB, id , PRIid , C)
Parse C as (c1, c2, c3) ∈ G × G

∗ × {0, 1}∗

Parse PRIid as (d1, d2, d3) ∈ G
3

t ← TCR(c1); K ← ê(c1, d1 · dt
3) · ê(c2, d2)

Return m ← DK(c3)

Fig. 2. Our first CCA-secure IBE scheme IBE1

We now show correctness of the scheme, i.e. that the symmetric key K com-
puted in the encryption algorithm matches the key K computed in the decryp-
tion algorithm.1 A correctly generated secret key for identity id has the form
PRIid = (d1, d2, d3) = (α · H (id)s, g−s, us) for some s ∈ Zp. Therefore the de-
cryption algorithm computes the symmetric key K as

K = ê(c1, d1 · dt
3) · ê(c2, d2)

= ê(gr, α · H (id)s · (us)t) · ê((H (id) · ut)r, g−s)

= ê(gr, α) · ê(gr,H (id)s · (us)t) · ê((H (id) · ut)r, g−s)

= zr · ê(gr, (H (id) · ut)s) · ê((H (id) · ut)−s, gr)

= zr,

which is the same as the key computed in the encryption algorithm. Now cor-
rectness of the scheme is implied by correctness of SE.

4.2 Security

Theorem 1. Assume TCR is a target collision resistant hash function and
(E, D) is a AE-OT-secure symmetric scheme. Under the modified Bilinear De-
cisional Diffie-Hellman (mBDDH) assumption relative to generator G, the IBE
scheme IBE1 is CCA secure. In particular, for ε(k) = AdvCCA

IBE1,t,qx,qd
(k) and

ε̃(k) = Advmbddh
G,t̃ (k) we have

ε(k) ≤ (AdvIND
SE,t̃(k) + ε̃(k)) · 10nq + AdvTCR

TCR,t(k) + qd · AdvCT-INT
SE,t (k) + 2q2

d/p;

t ≥ t̃ − O(ε̃−2(k) · ln(ε̃−1(k)) + qd + qx) .

1 Decryption rejects all ciphertexts with c2 = 1 ∈ G. We can assume that encryption
does not generate ciphertexts with c2 = 1. In case it does encryption can pick fresh
randomness r.

230 E. Kiltz and Y. Vahlis

The full proof is given in the full version [29]. We give a brief overview here. Our
proof for this system has many similarities with [28] (which in turn is based on
[38]). The key difference between the two proofs is the treatment of ill-formed
ciphertexts. [28] use the fact that anyone that has the global public key can
check whether a ciphertext is well-formed. Then, if the ciphertext is ill-formed
the decryption algorithm chooses a random value for K, and uses it to attempt
and decrypt the symmetric ciphertext. Thus, the adversary himself could have
decrypted any ill-formed ciphertext, and does not gain any information from
querying the decryption oracle on such ciphertexts.

Our approach to dealing with ill-formed ciphertexts is different. We do not
rely on the ability of anyone who has the global public key to check whether a
ciphertext is well-formed. Instead, we make the observation that an ill-formed
ciphertext, i.e. a ciphertext of the form C = (gr, (H (id) ·ut)r′

, c3), where r �= r′,
decrypts in the following way:

1. The intermediate key K is computed: K = zr · ê(g,H (id) · ut)(r−r′)s, where
s is the random value that was used to generate the private key.

2. K is used to attempt and decrypt the AE ciphertext.

Now, the adversary makes a polynomial number of decryption queries with ill-
formed ciphertexts. We show that the first such query is likely to decrypt as
“reject”, and each query after the first is likely to decrypt as “reject” given that
all previous ill-formed queries decrypted as reject, which completes the proof.
The idea is that the value s remains random in the view of the adversary as
he makes decryption queries with valid ciphertexts, or ciphertexts that decrypt
as “reject”. Since s is random, K is also a random element of GT . Thus, by the
authenticity property of the AE encryption, c3 will be decrypted to “reject” when
the random element K is used as the key.

4.3 Extensions

Trading Public Key Size and Security Reduction. As independently
discovered in [15, 31], there exists an interesting trade-off between key-size of
Waters’ hash H and the security reduction of the IBE schemes. The construction
modifies Waters hash H as follows: Let the integer l = l(k) be a new parameter
of the scheme. In particular, we represent an identity id ∈ {0, 1}n as an n/l-
dimensional vector id = (id1, . . . , idn/l), where each id i is an l bit string. Waters
hash is then redefined to H : {0, 1}n → G, with H (id) = h0

∏n/l
i=1 hidi

i for random
public elements h0, h1, . . . , hn/l ∈ G. Waters’ original hash function is obtained
as the special case l = 1. It is easy to see that using this modification in our IBE
scheme (i) reduces the size of the public key from n+2 to n/l+2 elements in G,
whereas (ii) it adds another multiplicative factor of 2l to the security reduction
of the IBE scheme (Theorem 1).

For concreteness we propose the following value for l (our choice will be-
come clear in Section 6). For a scheme implemented in groups offering 80 bits of

CCA2 Secure IBE: Standard Model Efficiency 231

security we have n = 2 · 80 = 160 bits and use 128. This shrinks the public-key
size to reasonable n/l + 2 ≈ 10 elements in G (plus one element in GT).

We further remark that in the random-oracle model we can replace Waters’
hash H : {0, 1}∗ → G with H (id) = h0 · h

RO(id)
1 , where RO : {0, 1}∗ → Zp is

a cryptographic hash function which is modeled as a random oracle [3] in the
security analysis.

Hierarchical Identities. Hierarchical identity-based encryption (HIBE) is
a generalization of IBE to identities supporting hierarchical structures [24]. In
a HIBE, identities are hierarchical and take the form id = [id1.id2.id3]. This
particular hierarchical identity has depth 3, and is subordinate to [id1], [id1.id2],
but not to [id1.id2.id ′3]. Each user in the hierarchy may act as a local key-
generation authority for all subordinate hierarchical identities.

By the relation to Waters IBE scheme it is easy to see that our technique
can also be used to obtain a chosen-ciphertext secure HIBE. Using a tech-
nique from [8] it is furthermore possible to reduce the HIBE ciphertext size
to three elements, i.e. it is independent of the hierarchy’s depth. To be more
precise, the IBE from Section 4.1 is modified to a HIBE supporting maxi-
mal d hierarchies as follows. The setup algorithm chooses d different and in-
dependent hash functions Hi ←R HGen(G; n), for 1 ≤ i ≤ d. The user se-
cret key for the hierarchical identity id = [id1. · · · .idμ] of depth μ ≤ d is
defined as PRIid = (d1, d2, d3, (dij)μ+i≤j≤d,0≤i≤n) ∈ G

3+(n+1)·(d−μ−1), where
d1 = α · (

∏μ
j=1 Hi(id (j)))r, d2 = g−r, d3 = ur, and dij = ((h(j)

i)r). We remark
that the latter (n + 1) · (d − μ − 1) elements dij are only needed for hierar-
chical key delegation (and may be not included in PRIid if such a feature is
not wanted). Encryption of m with respect to id computes the two ciphertext
elements c1 = gr and c2 = (ut

∏μ
j=1 Hi(id (j)))r and uses the key K = zr to

compute the symmetric ciphertext (using an AE-OT-secure scheme). Decryption
uses K = ê(d1 ·dt

3, c1) · ê(d2, c2) to reconstruct the plaintext from the symmetric
ciphertext. Note that this only needs two pairing operations, independent of the
depth of the hierarchy d. (In contrast the HIBE from [28] needs d + 1 pairings.)

Security can be proved with respect to the d-modified BDDH assumption,
where compared to the mBDDH assumption the adversary gets the values gy,

gy2
, . . . , gyd+1

(instead of just gy, gy2
). As in [22, 38] the security reduction is

exponential in the depth d of the hierarchy, i.e. it introduces, roughly, a multi-
plicative factor of (nq)d. Hence the scheme can only be considered practical for
small hierarchies, say of depth d = 4.

Trading ciphertext size for efficiency. A variant of our IBE scheme
can be combined with CCA-secure symmetric encryption. CCA-secure symmet-
ric encryption is less demanding than authenticated encryption and, in
particular, strong pseudorandom permutations imply CCA-secure symmetric
encryption without any redundancy. This has the advantage of more compact
ciphertexts while decryption has to perform some algebraic consistency checks
and is therefore less efficient.

232 E. Kiltz and Y. Vahlis

5 IBE Scheme II

In this section we present our second chosen-ciphertext secure IBE scheme from
the q-ABDHE assumption. It is based on the Boneh-Boyen “exponent inver-
sion” IBE scheme [7] in its full-identity secure variant of Gentry [21]. Gentry
also presents a chosen-ciphertext secure variant of his basic chosen-plaintext
secure scheme. Our main improvement is to combine it with a strongly secure
symmetric encryption scheme to considerably reduce ciphertext size and encryp-
tion/decryption cost.

5.1 The IBE Construction

Let PG = (G, GT , p, ê, g, gT = ê(g, g)) be a pairing group. Let TCR : G×G → Zp

be a target collision-resistant hash function. Let (E, D) be a symmetric cipher.
Our IBE scheme IBE2 = (Setup, KeyGen, Enc, Dec) with identity space IDSp =
Zp is depicted in Fig. 3.

Setup(1k)
x, y1, y2 ←R Zp

u ← gx; v1 ← gy1
T ; v2 ← gy2

T

PUB ← (u, v1, v2); PRI ← (x, y1, y2)
Return (PUB, PRI)

KeyGen(PRI, id)
s1, s2 ←R Zp

d1 ← g
y1−s1
x−id ; d2 ← g

y2−s2
x−id

PRIid ← (d1, s1, d2, s2)
Return user secret-key PRIid

Enc(PUB, id ,m)

r ←R Zp c1 ← (ug−id)r; c2 ← gr
T

t ← TCR(c1, c2); K ← (vt
1v2)

r

c3 ← EK(m)
Return ciphertext C = (c1, c2, c3)

Decaps(PUB, id , PRIid , C)
Parse C as (c1, c2, c3) ∈ G × GT × {0, 1}∗

Parse PRIid as (d1, s1, d2, s2)

t ←TCR(c1, c2) ; K ← ê(c1, d
t
1d2) · cs1t+s2

2
Return m ← DK(c3)

Fig. 3. Our CCA-secure IBE scheme IBE2

To show correctness consider a ciphertext (c1, c2, c3) generated for identity
id that gets decrypted with a valid user secret key PRIid = (d1, d2, s1, s2) by
computing the symmetric key K as follows

K = ê(c1, d
t
1d2) · cs1t+s2

2

= ê(g(x−id)r, g
(y1−s1)t+(y2−s2)

x−id) · ê(g, g)(s1t+s2)r

= ê(gr, gy1t+y2)

= (vt
1v2)r ,

as in the encryption algorithm.

Theorem 2. Assume TCR is a target collision resistant hash function and
(E, D) is a AE-OT-secure symmetric scheme. Let q = qx + 1, where qx is the

CCA2 Secure IBE: Standard Model Efficiency 233

number of key-derivation queries. Under the truncated q-ABDHE assumption
relative to generator G, the IBE scheme IBE2 is IND-CCA secure. In particular,
we have

AdvCCA
IBE2,t,qx,qd

(k)

≤ Advq-abdhe
G,t (k) + AdvTCR

TCR,t(k) + 2qd · AdvCT-INT
SE,t (k) + AdvIND

SE,t(k) +
qd

p
.

The proof of Theorem 2 will be given in the full version [29]. We give some intu-
ition why the scheme is IND-CCA secure. First, the proof of Gentry [21] can be
used to show that user secret-key queries, as well as consistent decryption queries
for the challenge identity id∗ are basically useless for an adversary attacking the
scheme (unless it can efficiently solve the q-ABDHE problem). However, in-
consistent decryption queries with respect to the challenge identity id∗ may leak
information about the hidden bit b. Here we use a Cramer-Shoup argument. The
idea is that the user secret-key PRIid∗ = (d∗1, s

∗
1, d
∗
2, s
∗
2) used to answer such de-

cryption queries contains some internal randomness (s1, s2) ∈ Z
2
p that is initially

hidden from the adversary’s view. During the simulation of the IND-CCA envi-
ronment the challenge ciphertext will leak (in an information-theoretic sense) one
linear equation on the hidden randomness (s∗1, s

∗
2). Decryption queries of incon-

sistent ciphertexts will use a key K for symmetric decryption that is computed
as a linear equation in s∗1, s∗2 which is linearly independent from the equation
the adversary knows. Hence, one single key K is uniformly distributed over GT .
By the ciphertext authenticity property of SE the adversary will not be able to
come up with an inconsistent ciphertext (c1, c2, c3) such that DK(c3) does not
reject. Consequently, all inconsistent ciphertext will get rejected by the scheme.

5.2 Extensions

Using techniques from [1] it is further possible to prove IBE2 anonymous in the
sense that the ciphertext does not leak any information about the sender’s iden-
tity. This property has recently proved useful in the area of public-key encryption
with keyword search [1].

We remark that in contrast to the IBE construction from Section 4 it is not
possible to trade algebraic consistency checks for a weaker symmetric encryption
scheme. In general, the class of inversion-based IBE schemes are less versatile
than the commutative-blinding IBE schemes; for example, adding extensions like
hierarchical key delegation to inversion-based IBE schemes seems a difficult task.

6 Comparison

6.1 Considered Schemes

For our comparison we consider the following standard-model IBE schemes.

IBE1: Our scheme from Section 4 with the shorter public-parameters. See Sec-
tion 4.3 for details.

234 E. Kiltz and Y. Vahlis

IBE2: Our scheme from Section 5.
KG: The scheme from Kiltz and Galindo [28].
Gentry: The scheme from Gentry [21] (IND-CCA variant).

We furthermore consider the following three IBE schemes that only have a proof
in the random-oracle model. All of them are currently in submission for the
IEEE1363.3 standardization project [25].

BF: The (FullIdent) scheme from Boneh and Franklin [11].
BB1: The scheme from Boneh and Boyen [7] in its “hashed identities” vari-

ant [12].
KS: The scheme from Kasahara and Sakai [33] as described in [16].

We remark that when assuming the interactive gap Bilinear Diffie-Hellman (gap-
BDH) assumption efficiency of BF and BB1 can be further improved [12]. Due
to the strong assumption we will not consider those schemes.

6.2 Security Reductions

For determining the parameters of the compared schemes, we make the following
assumptions, most of the are conservative towards the efficiency of our new
schemes. For k = 80 bit security we estimate (following Bellare and Rogaway [4])
the number of (random oracle) hash queries as qH = 250. This seems reasonable
since a hash function is in the hand of an adversary and can be attacked offline.
Similar to signatures schemes we think that a reasonable estimate for the number
of key-derivation queries is qx ≈ 225. This is much smaller than the number of
hash queries since key-derivation queries can only be made online, in interaction
with the system. In practice it is easy to limit the number of key-derivation
queries.

The IBE schemes IBE1 and KG have two additional integer parameters: n, l.
Parameter n = 2k resembles the bit size n = 160 ≈ 27 of the identity space and
l(k) defines the tradeoff between public parameters and security-reduction (cf.
Section 4.3). We choose l = 18 to obtain a security loss of 218+7+25 = 250 = qH .
This explains our choice of l(k): it is chosen such that the security loss of the
above schemes matches the one of all random-oracle schemes.

The concrete security reductions are given in Fig. 4. For a fair comparison the
security reductions of the random-oracle based schemes are given relative to the
respective decisional assumption (e.g., BDDH instead of BCDH for BB1). We
note that the two schemes IBE2 and Gentry have a tight security reduction to a
much stronger security assumption. Due to the recent attacks by Cheon [17] it
seems reasonable that the q-xxxx assumption are √

q times “less secure” than the
BDDH assumption. This in particular implies (by Lemma 1) that we can treat
the mBDDH assumption as “as secure” as the BDDH assumption. To simplify
the comparison we make the conservative assumption that all the above schemes
with the given parameters have the same security loss with respect to the BDDH
assumption.

CCA2 Secure IBE: Standard Model Efficiency 235

Scheme Standard Assumption Security reduction
Model? Bounds concrete (k = 80)

IBE1
√

mBDDH 2lnqx 250

IBE2
√

q-ABDHE 1 1

KG
√

BDDH 2lnqx 250

Gentry
√

q-ABDHE 1 1
BF — BDDH > qH 250

BB1 — BDDH qH 250

KS — q-BDDHI q3
H � 250

Fig. 4. Security assumptions and (concrete) reduction factors for IBE schemes

6.3 Results

A comparison with concrete timing values from Boyen [12] is carried out in
Fig. 1 (Section 1) and Fig. 5. Ciphertext overhead represents the difference (in
bits) between the ciphertext length and the message length. All timings are
given in multiplicative factors relative to one exponentiation in G. As usual, all
symmetric operations (cryptographic hash function, symmetric encryption, etc)
are ignored. All schemes come with a security proof based on different security
assumption, furthermore introducing a different loss of security in the reduction,
depending on several system parameters. A high loss in the security reduction
reduces the real-world efficiency of the scheme by making it necessary to increase
the size of the groups for any given security level. In order not to compare apples
with pears, attempted to pick the parameters (in particular the parameter l for
IBE1 and KG) such that we obtain the same concrete security reduction for all
schemes. We refer to the full version [29] for more details of the comparison.

We conclude that our schemes are the most efficient chosen-ciphertext se-
cure IBE schemes in the standard model. Furthermore its performance and

Size (bits) Cost (relative)
Scheme Ciphertext Public Key Encrypt Decrypt
Standard model
Ours: IBE1 (§4) 1104 6144 8 25
Ours: IBE2 (§5) 1616 2560 14 25
KG [28] 1536 5632 9 29
Gentry [21] 2560 3584 18 49
Random Oracle model
BF [10] 672 512 22 21
BB1 [7] 1184 2048 7 29
KS [16] 672 512 6 22

Fig. 5. Efficiency comparison for CCA-secure IBE schemes in the standard/random
oracle model for SS/80-bit security level. Timings are relative to one exponentiation in
group G.

236 E. Kiltz and Y. Vahlis

ciphertext expansion seems comparable to the known random-oracle based
schemes, in particular to the one by Boneh and Franklin which is intensively
used in practice (see, e.g., http://www.voltage.com).

Acknowledgement

We thank Charles Rackoff, Ian Blake, and the anonymous CT-RSA reviewers
for useful comments.

References

[1] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

[2] Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

[3] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
New York (1993)

[4] Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

[5] Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

[6] Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of FOCS 2007, pp. 647–657. IEEE, Los Alamitos
(2007)

[7] Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[8] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[9] Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 5(36), 1301–1328 (2006)

[10] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidel-
berg (2001)

[11] Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003)

[12] Boyen, X.: The BB1 identity-based cryptosystem: A standard for encryp-
tion and key encapsulation. Submitted to IEEE 1363.3, (August 2006),
http://grouper.ieee.org/groups/1363/

http://www.voltage.com
http://grouper.ieee.org/groups/1363/

CCA2 Secure IBE: Standard Model Efficiency 237

[13] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005,
pp. 320–329. ACM Press, New York (2005)

[14] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: 30th ACM STOC, pp. 209–218. ACM Press, New York (1998)

[15] Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

[16] Chen, L., Cheng, Z., Malone-Lee, J., Smart, N.P.: An efficient ID-KEM based on
the Sakai-Kasahara key construction. IEE Proceedings Information Security 152,
19–26 (2006)

[17] Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

[18] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[19] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

[20] Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

[21] Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

[22] Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

[23] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsu-
lation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571.
Springer, Heidelberg (2007)

[24] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidel-
berg (2002)

[25] IEEE P1363.3 Committee. IEEE 1363.3 — standard for identity-based crypto-
graphic techniques using pairings (April 2007),
http://grouper.ieee.org/groups/1363/

[26] Kiltz, E.: Chosen-ciphertext secure identity-based encryption in the standard
model with short ciphertexts. Cryptology ePrint Archive, Report 2006/122 (2006),
http://eprint.iacr.org/

[27] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

[28] Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058. Springer, Heidelberg (2006)

[29] Kiltz, E., Vahlis, Y.: CCA2 Secure IBE: standard model efficiency through authen-
ticated symmetric encryption. Cryptology ePrint Archive, Report 2008 (2008),
http://eprint.iacr.org/

http://grouper.ieee.org/groups/1363/
http://eprint.iacr.org/
http://eprint.iacr.org/

238 E. Kiltz and Y. Vahlis

[30] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

[31] Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369 (2005), http://eprint.iacr.org/

[32] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

[33] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic
curve (in japanese). In: Proceedings of the Symposium on Cryptography and
Information Security — SCIS 2001 (Janurary 2001)

[34] Sarkar, P., Chatterjee, S.: Transforming a CPA-secure HIBE protocol into a CCA-
secure hibe protocol without loss of security. Cryptology ePrint Archive, Report
2006/362 (2006), http://eprint.iacr.org/

[35] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

[36] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

[37] Shoup, V.: Why chosen ciphertext security matters. IBM Research Report RZ
3076 (November 1998)

[38] Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

Public-Key Encryption with
Non-interactive Opening

Ivan Damgård1, Dennis Hofheinz2, Eike Kiltz2,�, and Rune Thorbek1

1 BRICS, Aarhus
2 CWI, Amsterdam

Abstract. We formally define the primitive of public-key encryption
with non-interactive opening (PKENO), where the receiver of a cipher-
text C can, convincingly and without interaction, reveal what the result
was of decrypting C, without compromising the scheme’s security. This
has numerous applications in cryptographic protocol design, e.g., when
the receiver wants to demonstrate that some information he was sent pri-
vately was not correctly formed. We give a definition based on the UC
framework as well as an equivalent game-based definition. The PKENO
concept was informally introduced by Damgård and Thorbek who sug-
gested that it could be implemented based on Identity-Based Encryption.
In this paper, we give direct and optimized implementations, that work
without having to keep state information, unlike what one obtains from
directly using IBE.

1 Introduction

Motivation. Consider the following extremely common scenario from cryp-
tographic protocol design: Player A sends a secret message to player B who
(perhaps at some later time) checks what he receives against some public infor-
mation. For instance, it may be that the message is supposed to be information
for opening a commitment that A established earlier. If the check is OK, B will
be able to proceed, but otherwise some “exception handling” must be done. The
standard solution to this is to have B broadcast a complaint, and A must then
broadcast what he claims to have sent privately, allowing all players to check the
information. This is secure, since the conflict can only occur if at least one of
A,B is corrupt, so the adversary already knows what is broadcast. But it has the
important drawback that interaction is required, in particular A must be present
to help resolve the conflict. In many cases, one cannot rely on this assumption.
For instance, suppose A is one of many clients who want to provide some in-
put to a set of servers, who will then do a secure computation on the inputs.
It is highly desirable that this can be done without interaction, in particular
that the servers can decide efficiently among themselves which clients provided
well-formed input.
� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels

is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 239–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.sentinels.nl

240 I. Damgård et al.

Public-key encryption with non-interactive opening. An alternative
solution was suggested by Damgård and Thorbek in [12], namely public-key en-
cryption with non-interactive opening (PKENO). This is based on the observa-
tion that in practice, the private communication from A to B would typically be
implemented using public key encryption, i.e., A sends a ciphertext C encrypted
under B’s public key pkB. PKENO now means that if B chooses to reveal the
result m of decrypting C (typically, if he is unhappy about m), he can do so,
convincingly and without interaction1. That is, he can broadcast m, π where π
is a proof that can be checked against pkB and C and demonstrates that in-
deed decrypting C using the secret key matching pkB results in m. Of course,
this must be done such that other ciphertexts remain secure, and this excludes
the trivial solution of revealing B’s secret key. Clearly, if PKENO can be im-
plemented efficiently, we have a nice general tool for removing interaction from
cryptographic protocols.

Difficulty of PKENO. Note that having the receiver open a ciphertext is less
trivial than having the sender do so: the sender could always be asked to simply
reveal the plaintext and the random coins used to construct the ciphertext. This
does not work when the receiver does the opening: one has to consider the fact
that the sender might be corrupt and hence C is adversarially constructed. It
may not even be a valid ciphertext, in which case “the coins used to construct
C” is not a well defined concept.

Inefficient Constructions. A few straightforward solutions for implement-
ing PKENO do exist which, however, have various drawbacks: In principle, one
can implement PKENO if a common reference string can be reliably set up.
Then the receiver B can commit to his secret key initially and π would be a non-
interactive zero-knowledge proof that the secret key committed to matches pkB
and produces m when used to decrypt C. Unfortunately, with the known tech-
niques for non-interactive zero-knowledge, this solution is very inefficient and
essentially useless in practice. Efficient solutions are easy to find in the random
oracle model, since one can take known efficient and interactive zero-knowledge
proofs and make them non-interactive using the Fiat-Shamir heuristic. However,
it is unclear what security guarantees in the random oracle model mean for the
real world, so in this paper, we will concentrate on efficient solutions that do not
use random oracles.

Known Constructions and their Limitations. In [12], the PKENO notion
was informally introduced, and it was suggested that it could be implemented
based on identity-based encryption (IBE). The idea here is that pkB would be
the public master key of an IBE system, and the secret key skB would be the
secret master key. To encrypt m, one chooses an identity id (see below for details
on how id is chosen), and encrypts m to this identity. Thus, the ciphertext C is
the pair C = (id , IBEenc(id , m)). The receiver B uses skB to generate the IBE
user secret key usk [id] corresponding to id and can then decrypt. To open C, B

1 Note that m may not be a meaningful message, it may be a special reject symbol if
C was rejected as invalid by the decryption algorithm.

Public-Key Encryption with Non-interactive Opening 241

simply reveals the decryption result m and usk [id], this allows anyone to do the
decryption and check that the result is m. Note that efficient IBE schemes exist
(under specific assumptions) that do not require random oracles [20].

It follows directly from the properties of IBE that revealing usk [id] does not
compromise security of ciphertexts directed to other identities, not even if id is
adversarially chosen. This solution is therefore secure if we can guarantee that
identities cannot be reused — but only then. This would be the case if it is used
in a protocol that assigns unique labels to all ciphertexts to be sent. Then these
labels can be used as identities. But note that these labels must be different
in different instances of the same protocol. Alternatively, all players could keep
state information allowing to test if a label has been used before. This puts
some rather heavy demands on the implementation and hence, using IBE in this
straightforward way is not satisfactory in general.

An alternative construction of PKENO can be obtained by using public-key
encryption with witness-recovering decryption (PKEWR) [19]. Here the receiver
(i. e., the holder of the secret key) can efficiently reconstruct the “randomness”
that was used for encryption. This randomness then serves as the proof. Ver-
ification performs (deterministic) re-encrypting using the randomness and the
messages. The proof is valid if the result equals the ciphertext. There exists con-
struction of PKEWR from the Decisional Diffie-Hellman assumption and from
an assumption related to lattices. However, both constructions are relatively
inefficient since the ciphertext size is linear in the message length.

Our Contributions. In this paper, we make two contributions: first, we give a
formal definition of PKENO, in fact we give two equivalent definitions, one based
on the UC framework, and a game-based definition. This allows to show that an
implementation is secure using the game-based definition (which is usually easier
than with UC), while at same time being guaranteed the composition properties
that follows from the UC theorem. We assume — for simplicity — a trusted key
set-up, i.e., all key pairs are correctly generated. We emphasize, however, that
this assumption is not inherent to the PKENO concept. The definitions can be
modified to do without it and some implementations do not need it.

Second, we show some concrete implementations of PKENO. One of our tech-
niques gives a simple and general solution to the problem with unique identities
in the IBE implementation, allowing a stateless solution. To this end we use a
technique by Naor and Yung [17] that was also used more recently by Canetti,
Halevi, and Katz [9] in a transformation of any chosen-plaintext secure IBE
scheme into a chosen-ciphertext secure PKE scheme. We adopt the latter trans-
formation to construct PKENO from IBE. The idea is to use, for each PKENO
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” id for IBE encryption. In order to tie the IBE ciphertext to this
verification key it is signed using the corresponding signing key. This ensures the
uniqueness of the identity and hence allows a stateless solution of PKENO.

Another technique gives a more direct implementation that is not based on
IBE and hence is more efficient. We use a modification of the pairing-based
chosen-ciphertext secure PKE scheme which was proposed by Boyen, Mei,

242 I. Damgård et al.

Waters [5] and Kiltz [15]. We show that it is possible to update their scheme
with a non-interactive opening functionality without compromising its security.
Security of this scheme can be reduced to the Bilinear Decisional Diffie-Hellman
(BDDH) assumption.

2 Preliminaries

2.1 Notational Conventions

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ � then 1k denotes the string of k ones. If S is a set then s ←R
S denotes the operation of picking an element s of S uniformly at random.
Unless otherwise indicated, algorithms are randomized and polynomial time. An
adversary is an algorithm or a tuple of algorithms. A function f : � → � is
negligible iff there exists c < 0 such that |f(k)| < kc for all sufficiently large k.
We write f ≈ g if f − g is negligible.

2.2 The UC Model

Canetti’s Universal Composability (UC) framework [6, 7] for multi-party com-
putation allows to formulate security and composition of multi-party protocols
in a very general way. The idea of the UC model is to compare a protocol to
an idealization of the respective protocol task. Security means that the protocol
“looks like” the idealization even in face of arbitrary attacks and in arbitrary
protocol environments. This notion of security is very strict [8, 2, 13], but im-
plies useful compositional properties [6]. In fact, in a certain sense, this notion
is even necessary for secure composition of protocols [16].

The real model. We shortly outline the framework for multi-party protocols
defined in [6, 7]. First of all, parties (denoted by P1 through Pn) are modeled
as interactive Turing machines (ITMs) (cf. [7]) and are supposed to run some
fixed protocol (i.e., program) Π . There also is an adversary, denoted A and
modeled as an ITM as well, that carries out attacks on protocol Π . Therefore,
A may corrupt parties (in which case it learns the party’s state and controls
its future actions), and intercept or inject messages sent between parties. If A
corrupts parties only before the actual protocol run of Π takes place, A is called
non-adaptive, otherwise A is said to be adaptive. In this work, we only consider
non-adaptive corruptions. The respective local inputs for all parties of protocol
Π are supplied by an environment machine (modeled as an ITM and denoted
Z), which may also read all protocol outputs locally made by the parties and
communicate with the adversary.

The ideal model. The model we have just described is called the real model of
computation. In contrast to this, the ideal model of computation is defined just
like the real model, with the following exceptions: all party ITMs are replaced
with one single ideal functionality F . The ideal functionality may not be cor-
rupted by the adversary, yet may send messages to and receive messages from

Public-Key Encryption with Non-interactive Opening 243

it. Finally, the adversary in the ideal model is called “simulator” and denoted S.
The only means of attack the simulator has in the ideal model are corruptions
(in which case S may supply inputs to and read outputs from F in the name
of the corrupted party), delaying or suppressing outputs of F , and all actions
that are explicitly specified in F . However, S has no access to the inputs F gets
and to the outputs F generates, nor are there any protocol messages to inter-
cept. Intuitively, the ideal model of computation (or, more precisely, the ideal
functionality F itself) should represent what one ideally expects the protocol to
do. In fact, for a number of standard tasks, there are formulations as such ideal
functionalities (see, e.g., [6]).

Security definition. To decide whether or not a given protocol Π fulfills the
requirements of our ideal specification F , the framework of [6] uses a
simulatability-based approach: at a time of its choice, Z may halt and gen-
erate output. The random variable describing the first bit of Z’s output will be
denoted by realΠ,A,Z(k, z) when Z is run with security parameter k ∈ � and
initial input z ∈ {0, 1}∗ in the real model of computation, and idealF ,S,Z(k, z)
when Z is run in the ideal model. Now Π is said to securely realize F iff for any
real adversary A, there exists a simulator S such that for any environment Z
and any (possibly non-uniform) family of initial inputs z = (zk)k, we have

Pr [realΠ,A,Z(k, zk) = 1] ≈ Pr [idealF ,S,Z(k, zk) = 1] . (1)

This slightly differs from the original formulations in [6, 7], but is equivalent and
eases our presentation. Intuitively, Equation 1 means that any attack against the
protocol can be simulated in the ideal model. Hence, any weakness of the real
protocol is already contained in the ideal specification (that does not contain an
“actual” weakness by definition). Interestingly, the “worst” real attack possible is
the one carried out by the dummy adversary Ã that simply follows Z’s instruc-
tions. That means that for security, it actually suffices to demand existence of a
simulator that simulates attacks carried out by Ã.

Composition of protocols. To formalize the composition of protocols, there
also exists a model “in between” the real and ideal model of computation. Namely,
the hybrid model of computation is identical to the real model, except that par-
ties have access to (multiple instances of) an ideal functionality that aids in
running the protocol. This is written as ϕF for the actual protocol ϕ and the
ideal functionality F . Instances of F are distinguished via session identifiers
(short: session ids, or sids). Note that syntactically, instances of F can be imple-
mented by a protocol Π geared towards realizing F . And indeed, the universal
composition theorem [6, 7] guarantees that if one protocol instance of Π is se-
cure, then many protocol instances are, even when used in arbitrary protocols ϕ.
More concretely, if Π securely realizes F , then ϕΠ securely realizes ϕF for any
protocol ϕ. Here, ϕF denotes that ϕ uses (up to polynomially many) instances
of F as a subprimitive, and ϕΠ denotes that ϕ uses instances of Π instead.

Conditional security and composability. Universal composability is a
very strict notion. So sometimes (e.g., in the case of bit commitments), it is not

244 I. Damgård et al.

possible to achieve full UC security. Hence, several weakenings of the notion have
been proposed. One method that will be useful in our case is to consider only
protocol environments that conform to certain rules (see [18, 1]). Concretely, se-
cure realization with respect to a certain class Z of environments means that in
Equation 1, we quantify only over environments in Z. This relaxed security no-
tion still gives precisely those compositional guarantees one would expect: secure
composition with larger protocols that can be seen as restricted environments
from Z (see [18, 1] for details).

3 Public-Key Encryption with Non-interactive Opening

3.1 A UC-Based Definition

Figure 1 depicts our ideal functionality for public-key encryption with non-
interactive openings. FPKENO is an extension of the FPKE functionality [6, 10, 14]
that captures IND-CCA secure public-key encryption. The most notable differ-
ence to FPKE are the additional Prove and Verify queries, which allow the re-
ceiver to open a ciphertext and every party to verify openings. Also, we dropped
public keys, since we assume a trusted PKI (i.e., keypair setup) for a realization.

Discussion of FPKENO. First, note that the session id sid already determines
the distinguished receiving party Precv . Any party may ask for encryptions, but
only Precv may ask for decryptions. As for the encryption of a message m, the
adversary may determine a unique tag C via the algorithm Enc. However, note
that C depends only on the length |m| of m, but not on m itself (except if
the receiver is corrupted, in which case we obviously cannot guarantee secrecy).
This reflects that ideally, encryptions reveal only the length of the message.
Decryption takes care that correctness is ensured, i.e., ciphertexts are mapped
back to the encrypted messages. (For this, FPKENO stores a list of ciphertexts
and associated messages.)

Opening and verifying openings is a bit trickier. For any ciphertext, the re-
ceiver Precv can obtain a proof π that should ideally prove what message was
encrypted. Formally, π is determined by the adversary (in form of a pre-stored
algorithm Prove) to ensure that during the simulation, at least the shape of π
matches the one of a possible real implementation. However, FPKENO ensures
that verification (via Verify queries) satisfies some natural and crucial require-
ments. Namely, an honestly (i.e., via FPKENO) generated encryption C of m
cannot be proven to contain a different message m′ �= m. Also, honestly (i.e., via
FPKENO) generated proofs are always accepted. In all cases left open by this (and
in particular, if a wrong public key is used with Verify), the adversary is free to
determine the verification outcome in order to simulate a real implementation.

Note that from the functionality’s perspective, ciphertexts and proofs are
merely tags and do not carry any semantics. The adversary is free to deter-
mine these tags, but the functionality takes care that decryptions and proofs
are handled as ideally expected. (E.g., the ciphertext tags do not depend on the
messages, or honestly generated proofs verify correctly.)

Public-Key Encryption with Non-interactive Opening 245

Why key management is outsourced. Also note that there are no public
or secret keys in the functionality. This is unlike, e.g., in the FPKE modelings
from [6, 10, 14], which do contain a public key. This simplification is possible,
since we will consider keys to be already set up, which corresponds to running a
public-key encryption scheme protocol in the FPKI-hybrid model (see below).

The reason why we opted to outsource key management into FPKI is the
following: if the receiving party Precv was allowed to take care of key generation
on its own, then a corrupted Precv could generate keys in a dishonest way. (E.g.,
if the public key contains a common reference string for a non-interactive zero-
knowledge proof, then Precv could generate this CRS along with a trapdoor that
allows Precv to cheat in the proofs. That would not have been possible with an
honest generation of keys.) While our concrete scheme from Section 6 is secure
even if a dishonest Precv chooses its keys arbitrarily, our game-based formulation
(Definition 1) guarantees nothing in that setting. Of course, an adaptation of
both Definition 1 and FPKENO is possible, such that a dishonest choice of keys
is reflected; we chose not to do so because be believe that an honest generation
of keys is more realistic.

Interpreting a public-key encryption scheme as a protocol. If we
assume that the public/secret keys have been set up already, then, syntacti-
cally, any public-key encryption scheme PKENO = (Gen, Enc, Dec, Prove, Ver)
with non-interactive opening can be interpreted as a protocol aimed at realizing
FPKENO. Namely, every party executes Encpk (m) upon (Encrypt, sid , m) inputs,
and similarly executes Verpk (C, m, π) upon (Verify, sid , C, m, π) inputs. In ad-
dition, the receiving party Precv (which is uniquely determined by the session id
sid = (recv , sid ′)) honors Decrypt and Prove inputs by using the Dec and Prove
algorithms with Precv ’s private sk . Note that although Z is free to choose sid , a
machine can never be invoked with two different sids (even across invocations),
so there are not going to be two different secret keys that would need to be
managed by one receiving party.

It remains to concretize how we imagine a trusted key setup. We do so by
considering a helper functionality FPKI, as depicted in Figure 2. Note that FPKE
is parametrized over a key-generation algorithm Gen. That means if we consider
a scheme PKENO as a protocol, we actually mean the protocol described above,
run in the FGen

PKI-hybrid model for the key-generation algorithm Gen of PKENO.

3.2 A Game-Based Definition

A public-key encryption scheme with non-interactive opening is a tuple PKENO=
(Gen, Enc, Dec, Prove, Ver) of algorithms such that:

– The key generation algorithm Gen takes as input a security parameter 1k

and outputs a public key pk and a secret key sk . We write (pk , sk) ←R
Gen(1k). The public key pk specifies the message space Mpk ← MSpc(pk)
by a mapping MSpc.

– The encryption algorithm Enc takes as input a public key pk and a message
m ∈ Mpk and outputs a ciphertext C. We write C ←R Encpk (m).

246 I. Damgård et al.

Functionality FPKENO

FPKENO proceeds as follows, running with parties P1, . . . , Pn and an adversary S. All session-ids
sid used in the following are expected to be of the form sid = (recv, sid ′), such that sid uniquely
determines a receiving party Precv .

1. Upon the first activation (no matter with which input), first:
(a) Hand (KeyGen, sid) to the adversary.
(b) Receive descriptions of the plaintext domain M, randomized algorithms Encrypt, Prove,

and deterministic algorithms Decrypt, Verify from the adversary.
Then proceed to handle the actual query as described below.

2. Upon receiving (Encrypt, sid , m) from some party Pj :
(a) If m /∈ M then output an error message to Pj .
(b) If Precv is not corrupted, set C ←R Encrypt(length, |m|). If Precv is corrupted, C ←R

Encrypt(message, m).
(c) Hand C to Pj and store the tuple (Encrypt, C, m). If there already is a stored tuple

(Encrypt, C, m′) for some different message m �= m′, then halt.
3. Upon receiving (Decrypt, sid , C) from Precv (and Precv only):

(a) If there is a tuple (Encrypt, C, m′) (for some m′) stored then set m := m′. Otherwise, set
m← Decrypt(C).

(b) Hand m to Precv .
4. Upon receiving a value (Prove, sid , C) from Precv (and Precv only):

(a) If there is a tuple (Encrypt, C, m′) (for some m′) stored then set m := m′. Otherwise, set
m← Decrypt(C).

(b) Set π ←R Prove(C, m) and hand π to Precv . Also, store the tuple (Prove, C, m, π); if the
tag π already appears in a previously stored Prove tuple then halt.

5. Upon receiving a value (Verify, sid , C, m, π) from some party Pj , determine res as follows:
(a) If there is a stored tuple (Prove, C, m, π), then set res := accept.
(b) Else, if there is a tuple (Encrypt, C, m′) for some m′ �= m, then set res := reject.
(c) In all other cases, set res ← Verify(C, m, π).
Finally, hand res to Pj .

Fig. 1. Functionality FPKENO for public-key encryption with non-interactive openings

– The deterministic decryption algorithm Dec takes as input a ciphertext C
and a secret key sk . It returns a message m ∈ Mpk or the distinguished
symbol ⊥ �∈ Mpk . We write m ← Decsk (C).

– The proving algorithm Prove takes as input a ciphertext C and a secret key
sk . It returns a proof π. We write π ←R Provesk (C).

– The deterministic verification algorithm Ver takes as input a tuple (C, m,
π, pk), consisting of a ciphertext C, a plaintext m, a proof π, and a pub-
lic key pk . It returns a result res ∈ {accept, reject}. We write res ←
Verpk (C, m, π).

We require that with probability overwhelming in the security parameter k, an
honestly generated keypair (pk , sk) ←R Gen(1k) satisfies the following:

– Correctness. For all m ∈ Mpk , we have Pr [Decsk (Encpk (m)) = m] = 1.
– Completeness. For all ciphertexts C and all possible π ← Provesk (C), we

have that for m ← Decsk (C), algorithm Verpk (C, m, π) accepts.2

2 Note that m may be ⊥.

Public-Key Encryption with Non-interactive Opening 247

Functionality FGen
PKI

FGen
PKI proceeds as follows, running with parties P1, . . . , Pn and an adversary S. All session-ids sid

used in the following are expected to be of the form sid = (recv, sid ′), such that sid uniquely deter-
mines a receiving party Precv . Furthermore, FPKI is parametrized over a key-generation algorithm
Gen.

1. Upon the first activation (no matter with which input), first run (pk , sk) ←R Gen(1k) to
generate a public key pk along with a secret key sk .

2. Upon any input from some party Pj or the adversary, send pk to Pj . In addition, if j = recv,
send also sk to Pj .

Fig. 2. Functionality FPKI that captures a trusted key setup

Definition 1 (PKENO security). A scheme PKENO is PKENO-secure if it
is IND-CCPA secure and satisfies computational proof soundness. We define
those two below:

IND-CCPA security. For an adversary A, consider the following game:

1. Gen(1k) outputs (pk , sk). Adversary A is given 1k and pk .
2. The adversary may make polynomially many queries to a decryption oracle

Decsk (·) and a proof oracle Provesk (·).
3. At some point, A outputs two equal-length messages m0, m1. A bit b is ran-

domly chosen and the adversary is given the challenge ciphertext C∗ ←
Encpk (mb).

4. A may continue to query its decryption and its proof oracle, except that it
may not query either with C∗.

5. Finally, A outputs a guess b′.

Denote A’s advantage in guessing b′ by

Advind-ccpa
PKENO,A(k) := |Pr [b = b′] − 1/2| .

Scheme PKENO is called indistinguishable against chosen-ciphertext and prove
attacks (IND-CCPA secure) if for every adversary A, Advind-ccpa

PKENO,A(·) is negligible.

Proof soundness. For an adversary A, consider the following game:

1. Gen(1k) outputs (pk , sk). Adversary A is given 1k and (pk , sk).
2. The adversary chooses a message m ∈ {0, 1}∗ and gives it to an encryption

oracle which returns C ←R Encpk (m).
3. The adversary returns (m′, π′).

Denote A’s probability to forge a proof by

Advsnd
PKENO,A(k) := Pr [accept ← Verpk (C, m′, π′) ∧ m′ �= m] .

Scheme PKENO is said to satisfy computational proof soundness if for every
adversary A, Advsnd

PKENO,A(·) is negligible.

248 I. Damgård et al.

4 Equivalence

We will show that PKENO security is equivalent to universal composability in
the sense of realizing FPKENO. The idea is simple: the guarantees that FPKENO
gives are precisely the properties that Definition 1 requires. However, there is one
catch: our simulation breaks down once proofs are asked in a situation in which
both sender and receiver are honest. Technically, this stems from a commitment
problem the simulation runs into: if sender and receiver are honest, FPKENO de-
mands as secrecy guarantee that a ciphertext C in the system does not depend
on the associated message m. However, if later on a proof is requested that C
really decrypts to m, we would need to break —ironically— exactly proof sound-
ness for a good simulation. There seems no easy way to change FPKENO itself
to prevent this: if FPKENO behaves differently depending on whether, e.g., the
receiver is corrupted or not, the sender can deduce whether the receiver is in-
deed corrupted or not. This however would lead to an unachievable functionality
(since the receiver might be passively corrupted).

Optimistic environments. To establish equivalence of the definitions, we
hence restrict to UC-environments that do not ask for proofs if both sender
and receiver are uncorrupted. We call such environments optimistic. It is nat-
ural to assume that any larger protocol context that uses a PKENO scheme is
optimistic: proofs are only requested upon conflicts, which should not happen if
both parties are honest.

Theorem 1. Say that PKENO is a public-key encryption scheme with non-
interactive opening. Then PKENO is PKENO-secure (in the sense of Definition 1)
if and only if PKENO (interpreted as a protocol as described in Section 3.1) securely
realizes FPKENO in the FGen

PKI-hybrid model, with respect to non-adaptive adver-
saries and optimistic environments.

A formal proof will be given in the full version. Here, we give some intuition.
To show that universal composability implies PKENO security, attacks on

PKENO’s IND-CCPA and proof soundness properties must be translated into at-
tacks on PKENO’s indistinguishability from FPKENO. Suppose A successfully at-
tacks PKENO’s IND-CCPA property. We build an environment Z that internally
simulates A and the whole IND-CCPA experiment. In this, Z obtains decryp-
tions and proofs via its own protocol interface (i.e., via PKENO, resp. FPKENO),
and the challenge message mb is encrypted with an Encrypt query. In the real
model, this yields a true encryption of mb, and in the ideal model results in
something independent of b by definition of FPKENO. Hence the output distri-
bution of the internally simulated A is correlated with b in the real model, and
independent of b in the ideal model, which allows to distinguish. The translation
of attacks on PKENO’s proof soundness property works similarly.

To show that PKENO security implies universal composability, we describe a
simulator S that, in the ideal setting with FPKENO, simulates attacks performed
with the dummy adversary Ã on PKENO. Essentially, S only provide algo-
rithms for FPKENO’s Encrypt, Decrypt, Prove, and Verify answers. (Of course,

Public-Key Encryption with Non-interactive Opening 249

FPKENO enforces several rules with its answers, like proof soundness guarantees,
but apart from that, S’s algorithms determine these answers.) Algorithms for
decryption, proofs, and verifications are chosen just as in the real model. (Note
that S is free to make up a FGen

PKI instance on its own, so S knows and in fact
chooses the secret keys.) The encryption algorithm for the case the sender is
uncorrupted is simply yields encryptions of 1|m| (i.e., all-one encryptions of the
right length), whereas encryptions in case the sender is corrupted can be per-
formed faithfully as in the real model (in this case, the encryption may depend
on the full message, since so secrecy is guaranteed then). The proof that this sim-
ulation is sound proceeds by transforming real into ideal model, while showing
that this transformation preserves Z’s view:

1. The substitution of m-encryptions with 1|m|-encryptions can be justified
with PKENO’s IND-CCPA property.

2. FPKENO’s list-based decryption of known ciphertexts is simply an enforced
correctness, which can be justified with PKENO’s correctness.

3. FPKENO’s verification rules can be justified with PKENO’s proof soundness.

This sketches why the simulation that S provides is correct, and hence the
theorem is proven.

Achieving full UC security. It is natural to ask whether FPKENO can be
realized unconditionally, i.e., without restricting Z. (This corresponds to com-
posability in arbitrary protocol contexts.) As sketched above, to put up a suc-
cessful simulation here, it must be possible to produce special ciphertexts (sent
between an honest sender and an honest verifier) that can be opened to an arbi-
trary, a-priori unknown message. Intuitively, this seems to break proof soundness;
however, this is possible in principle, since in the ideal model, the simulator has
control over the generation of the used keypair (pk , sk). (Note that PKENO
security only gives guarantees if this keypair is honestly generated.)

To be more concrete, consider the (inefficient) non-interactive zero-knowledge
based scheme from the introduction. By, e.g., producing a CRS in pk with knowl-
edge of a trapdoor, S is able to give fake proofs that some ciphertext really
encrypts a message m. We stress that this can not be used to break the intu-
itive guarantees that FPKENO provides: FPKENO still checks that the verifica-
tion of this proof succeeds only for the “right” message that is associated with a
ciphertext.

5 Implementation of PKENO Using IBE

5.1 Identity-Based Encryption

We first define syntax and required security properties of an identity-based en-
cryption (IBE) scheme.

Syntax. An IBE scheme is a tuple IBE = (IBEgen, KeyGen, IBEenc, IBEdec) of
algorithms along with a family M = (Mk)k of message spaces such that:

250 I. Damgård et al.

– The key generation algorithm IBEgen takes as input a security parameter
1k and outputs a public key pk and a secret key sk . We write (pk , sk) ←R
IBEgen(1k).

– The encryption algorithm IBEenc takes as input a public key pk , an identity
id ∈ {0, 1}∗ and a message m ∈ Mk and outputs a ciphertext c. We write
c ←R IBEencpk (id , m).

– The deterministic decryption algorithm IBEdec takes as input a cipher-
text c, an identity id ∈ {0, 1}∗ and a user secret key usk [id]. It returns
a message m ∈ Mk or the distinguished symbol ⊥ �∈ Mk. We write m ←
IBEdecusk [id](c).

– The deterministic user secret key algorithm KeyGen takes as input an identity
id ∈ {0, 1}∗ and a secret key sk . It returns a user secret key usk [id]. We write
usk [id] ← KeyGensk (id).3

Consistency. We require that for every honestly generated keypair (pk , sk) ←R
IBEgen(1k), for all identities id ∈ {0, 1}∗ and messages m ∈ Mk we have
IBEdecKeyGen(sk ,id)(IBEencpk (id , m)) = m with probability one.

Here we also require a non-standard soundness property that it is efficiently
verifiable if a given user secret key usk [id] was properly generated for identity
id .4 We write {accept, reject} ← IBEverpk (id , usk [id]). We require for all hon-
estly generated keypair (pk , sk) ←R IBEgen(1k) satisfies the following: For all
identities id ∈ {0, 1}∗ and strings s ∈ {0, 1}∗ we have IBEverpk (id , s) = accept
iff s = usk [id], where usk [id] ← KeyGensk (id).

Security. We only require a relatively weak security property, namely indis-
tinguishability against selective-ID chosen-plaintext attacks (IND-sID-CPA) [3].
Formally, for an adversary A, consider the following game:

1. Adversary A is given 1k and outputs a target identity id∗

2. IBEgen(1k) outputs (pk , sk). Adversary A is given 1k and pk .
3. The adversary may make polynomially many queries to a user secret-key

oracle KeyGensk (·), except that it may not query for id∗

4. At some point, A outputs two equal-length messages m0, m1. A bit b is
randomly chosen and the adversary is given the challenge ciphertext C∗ ←R
IBEencpk (id∗, mb).

5. A may continue to query its user secret-key oracle, except that it may not
query for id∗.

6. Finally, A outputs a guess b′.

Denote A’s advantage in guessing b′ by

Advsid-cpa
IBE,A (k) := |Pr [b = b′] − 1/2| .

3 We can always assume the user secret key algorithm KeyGen to be deterministic. If
it is not, the owner of the secret key ensures using the same randomness for each
identity either by maintaining a state or by deriving the randomness using a PRF
applied to the identity.

4 It is not sufficient to check whether, e.g., some random encryptions decrypt correctly.
A given alleged user secret key might misbehave on precisely one ciphertext.

Public-Key Encryption with Non-interactive Opening 251

Scheme IBE is called IND-sID-CPA secure if Advsid-cpa
IBE,A (·) is negligible for every

PPT adversary A. We remark that there exist efficient IND-sID-CPA secure IBE
schemes without random oracle [3].

5.2 From IBE to PKENO

We use an adaptation of the IBE-to-PKE transformation by Canetti, Halevi
and Katz [9]. Let IBE = (IBEgen, KeyGen, IBEenc, IBEdec) be an IBE scheme and
OTS = (SGen, SSign, SVer) be a one-time signature scheme which we require to
be strongly unforgeable against one-time attacks. (Syntax and security properties
of OTS can be looked up in [9].) We construct a PKENO scheme PKENO =
(Gen, Enc, Dec, Prove, Ver) as follows.

Gen(1k). The key generation algorithm runs the IBE key generation algorithm
(pk , sk) ←R IBEgen(1k) and returns the key-pair (pk , sk).

Encpk (m). The encryption algorithm first generates a key-pair of the one-time
signature scheme by running (vk , sigk) ←R SGen(1k). Next, it IBE encrypts
m with “identity” vk to obtain c ←R IBEencpk (vk , m). Finally, it signs the
IBE ciphertext σ ← SSignsigk (c). and returns the PKENO ciphertext C =
(vk , c, σ).

Decsk (C). The decryption algorithm parses C as the tuple (vk , c, σ). Next, it
verifies if σ is a correct signature on c by running SVervk (c). If not, it returns
⊥. Otherwise, it computes usk [vk] ← KeyGensk (vk) and IBE decrypts c by
running m ← IBEdecusk [vk](c). Finally, it returns m ∈ Mk ∪ {⊥}.

Provesk (C). The prove algorithm parses C as the tuple (vk , c, σ). Next, it verifies
if σ is a correct signature on c by running SVervk (c). If not, it returns ⊥.
Otherwise, it computes usk [vk] ← KeyGensk (vk) and returns π ← usk [vk] as
the proof.

Verpk (C, m, π). The verification algorithm parses C as the tuple (vk , c, σ). Next
it verifies if σ is a correct signature on c with respect to verification key
vk by running SVervk (c). If not, it returns reject. Otherwise, it checks
if π is a properly generated user secret-key for “identity” vk by running
IBEverpk (vk , π). If not, it returns reject. Otherwise, it IBE decrypts c by
running m̂ ← IBEdecπ(vk , c), where m̂ ∈ Mk ∪ {⊥}. If m̂ �= m, it returns
reject. Otherwise it returns accept.

It is easy to check that the above scheme satisfies correctness and completeness.

Theorem 2. Assume IBE is IND-sID-CPA secure and OTS is SUF-OT secure.
Then PKENO constructed above is PKENO secure.

First note that IBE soundness directly implies perfect proof soundness of PKENO.
This is since the proof algorithm makes sure that the proof π = usk [vk] is a
properly generated user secret key for the the “identity” vk from the ciphertext
by running the verification algorithm. Hence by consistency of the IBE scheme
the decrypted message m̂ will always equal the real message m of the ciphertext
and hence verification accepts.

252 I. Damgård et al.

Let us now give some intuition why PKENO is IND-CCPA secure. A formal
proof (following [9]) will be given in the full version. Let (c∗, vk∗, σ∗) be the
challenge ciphertext in the IND-CCPA security experiment. It is clear that,
without any oracle queries, the value of the bit b remains hidden to the adversary.
This is so because c∗ is output by IBEenc which is IND-sID-CPA secure, vk∗ is
independent of the message, and σ∗ is the result of applying the one-time signing
algorithm to c∗.

We claim that decryption and proof oracle queries cannot further help the
adversary in guessing the value of b. First note that a proof for some cipher-
text enables the adversary to decrypt the same ciphertext without making the
decryption query. It remains to consider an arbitrary proof query (c, vk , σ) �=
(c∗, vk∗, σ∗) made by the adversary during the experiment. If vk = vk∗ then
(c, σ) �= (c∗, σ∗) and the proof oracle will answer ⊥ since the adversary is unable
to forge a new valid signature σ with respect to vk∗. If vk �= vk∗ then the proof
query will not help the adversary since the the proof π = usk [vk] is an IBE user
secret key for the “identity” vk distinct from vk∗.

6 Direct Implementation of PKENO in Bilinear Group

6.1 Bilinear Groups and Assumptions

Our schemes will be parametrized by a pairing parameter generator. This is
an algorithm G that on input 1k returns the description of an multiplicative
cyclic group � of prime order p, where 2k < p < 2k+1, the description of a
multiplicative cyclic group �T of the same order, and a non-degenerate bilinear
pairing ê : �×�→ �T . We use �∗ to denote � \ {1}, i.e. the set of all group
elements except the neutral element. The pairing has to be satisfy the following
two conditions.

Non-degenerate: for all g ∈ �∗, ê(g, g) �= 1 ∈ �T .
Bilinear: for all g ∈ �∗, x, y ∈ �p, ê(gx, gy) = ê(g, g)xy.

We use �� = (�,�T , p, ê, g, gT) as shorthand for the description of bilinear
groups, where g is a generator of � and gT = ê(g, g) ∈ �T . The Bilinear Deci-
sional Diffie-Hellman (BDDH) assumption [4] states that the two distributions
(gx, gy, gz, ê(g, g)xyz) and (gx, gy, gz, ê(g, g)r), for x, y, z, r ←R �p are indistin-
guishable for any adversary. More formally we define the advantage function
Advbddh

G,A (k) of an adversary A as

| Pr[A(��, gx, gy, gz, ê(g, g)xyz) = 1] − Pr[A(��, gx, gy, gz, ê(g, g)r) = 1]|

where �� ←R G(1k) and x, y, z, r ←R �p. We say that the Bilinear Decision
Diffie-Hellman (BDDH) assumption holds relative to G if for every adversary A,
Advbddh

G,A (·) is negligible.

Public-Key Encryption with Non-interactive Opening 253

6.2 The PKENO Scheme

Our scheme uses the “direct chosen ciphertext technique” which results in an
adaptation of the IND-CCA secure PKE scheme from [5, 15]. Let TCR : �→ �p

be a hash function that we assume to be target collision resistant [11]. Let
��←R G(k) be a pairing group that is contained in the system parameters. Let
(E, D) be a symmetric encryption scheme that we assume to be chosen-ciphertext
secure.5 We assume that uses elements of the target group �T as secret keys.
We construct a PKENO scheme PKENO = (Gen, Enc, Dec, Prove, Ver) as follows.

Gen(1k). The key generation algorithm picks random exponents x1, x2, y ∈ Zp.
The secret key is sk = (x1, x2, y) ∈ �3

p and the public key is pk = (X1, X2, Y)
∈ �2 ×�T , where

X1 = gx1 ∈ �, X2 = gx2 ∈ �, Y = ê(g, g)y ∈ �T .

Encpk (m). The encryption algorithm first picks a random r ∈ �p. The ciphertext
is the tuple (c1, c2, c3), where

c1 = gr, t = TCR(c1), c2 = (Xt
1X2)r, K ← Y r, c3 ← EK(m)

Decsk (C). The decryption algorithm parses C as the tuple (c1, c2, c3). Next,
it computes t = TCR(c1) and checks if cx1t+x2

1
?= c2. If not, it returns ⊥

meaning the ciphertext is inconsistent. Otherwise, it computes

K ← ê(c1, g
y)

and returns m ← DK(c3) ∈ M ∪ {⊥}.
Provesk (C). The prove algorithm parses C as the tuple (c1, c2, c3). Next, it com-

putes t = TCR(c1) and checks if cx1t+x2
1 = c2. If not, it returns ⊥. Otherwise,

it picks s ←R �p. The proof consists of π = (d1, d2) ∈ �2, where

d1 = gs, d2 = gy · (Xt
1X2)s . (2)

Verpk (C, m, π). The verification algorithm parses C as the tuple (c1, c2, c3) and
π as the tuple (d1, d2). Next, it computes t = TCR(c1) and checks if

ê(c2, g) ?= ê(c1, X
t
1X2) and ê(g, d2)

?= Y · ê(Xt
1X2, d1) . (3)

If one of the checks fails, it returns reject. Otherwise, it computes

K̂ ← ê(c1, d2)/ê(c2, d1),

and m̂ ← DK̂(c3) ∈ Mk ∪ {⊥}. It returns accept if m̂ = m and reject,
otherwise.

It is easy to check that the above scheme satisfies correctness and completeness.
5 A symmetric encryption scheme is chosen-ciphertext secure if the encryptions of two

adversarially-chosen messages under a random hidden key K remain indistinguish-
able even relative to a decryption oracle. We refer to [11] for a formal definition.

254 I. Damgård et al.

6.3 Security

Theorem 3. Assume the BDDH assumption holds relative to G, TCR is a target
collision-resistant hash function, and (E, D) is a chosen-ciphertext secure sym-
metric encryption scheme. Then PKENO constructed above is PKENO secure.

The proof of IND-CCPA security is similar to the one from [5, 15] and omitted
here.

We verify proof soundness. Fix a key-pair and let C = (c1 = gr, c2 =
(Xt

1X2)r, c3 = EK(m)) be a proper encryption of a message m, where K = Y r

is the symmetric key used for encrypting m. Now consider the verification algo-
rithm run with C, a message m′ �= m and an arbitrary proof π′ = (d′1, d

′
2). The

right check of (3) implies that π′ = (d′1, d
′
2) is a properly generated proof of the

form (2), for some s ∈ �p and for t = TCR(c1). Hence, for the symmetric key K̂
we have

K̂ = ê(c1, d
′
2)/ê(c2, d

′
1) = ê(gr, gy · (Xt

1X2)s)/ê((Xt
1X2)r), gs) = Y r = K

By consistency of the symmetric scheme the recovered message m̂ = DK(c3)
equals m �= m′, hence verification always outputs reject.

References

[1] Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional reactive simu-
latability. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 424–443. Springer, Heidelberg (2006),
http://eprint.iacr.org/2006/132.ps

[2] Backes, M., Pfitzmann, B.: Limits of the cryptographic realization of Dolev-
Yao-style XOR. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 178–196. Springer, Heidelberg (2005),
http://eprint.iacr.org/2005/220.ps

[3] Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[4] Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003)

[5] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005,
pp. 320–329. ACM Press, New York (2005)

[6] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42th Annual Symposium on Foundations of Computer Science,
Proceedings of FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alami-
tos (2001),
http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps

[7] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. IACR ePrint Archive, Online (January 2005),
http://eprint.iacr.org/2000/067.ps

[8] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001),
http://eprint.iacr.org/2001/055.ps

http://eprint.iacr.org/2006/132.ps
http://eprint.iacr.org/2005/220.ps
http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps
http://eprint.iacr.org/2000/067.ps
http://eprint.iacr.org/2001/055.ps

Public-Key Encryption with Non-interactive Opening 255

[9] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[10] Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003), http://eprint.iacr.org/2003/174.ps

[11] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

[12] Damgård, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Hei-
delberg (2007), http://eprint.iacr.org/2007/086

[13] Datta, A., Derek, A., Mitchell, J.C., Ramanathan, A., Scredrov, A.: Games
and the impossibility of realizable ideal functionality. In: Halevi, S., Rabin, T.
(eds.) TCC 2006. LNCS, vol. 3876, pp. 360–379. Springer, Heidelberg (2006),
http://eprint.iacr.org/2005/211.pdf

[14] Hofheinz, D., Müller-Quade, J., Steinwandt, R.: On modeling IND-CCA security
in cryptographic protocols. 14 pages. Tatra Mountains Mathematical Publications
(to be published, 2005)

[15] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

[16] Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: 44th Annual Symposium on Foundations of Computer Science,
Proceedings of FOCS 2003, pp. 394–403. IEEE Computer Society, Los Alamitos
(2003), http://eprint.iacr.org/2003/141.ps

[17] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, May 1990, ACM Press, New York (1990)

[18] Nielsen, J.B.: On Protocol Security in the Cryptographic Model. PhD thesis,
University of Aarhus (2003), http://www.brics.dk/~buus/jbnthesis.ps.gz

[19] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. Cryptol-
ogy ePrint Archive, Report 2007/279 (2007), http://eprint.iacr.org/

[20] Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2003/174.ps
http://eprint.iacr.org/2007/086
http://eprint.iacr.org/2005/211.pdf
http://eprint.iacr.org/2003/141.ps
http://www.brics.dk/~buus/jbnthesis.ps.gz
http://eprint.iacr.org/

A Vulnerability in RSA Implementations

Due to Instruction Cache Analysis
and Its Demonstration on OpenSSL

Onur Acıiçmez1 and Werner Schindler2

1 Samsung Information Systems America, Samsung Electronics
95 West Plumeria Drive, San Jose, CA 95134, USA

onur.aciicmez@gmail.com
2 Bundesamt für Sicherheit in der Informationstechnik (BSI)

Godesberger Allee 185–189, 53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

Abstract. MicroArchitectural Analysis (MA) techniques, more specifi-
cally Simple Branch Prediction Analysis (SBPA) and Instruction Cache
Analysis, have the potential of disclosing the entire execution flow of a
software-implemented cryptosystem ([5,2]). In this paper we will show
that one can completely break RSA in the original unpatched OpenSSL
version (v.0.9.8e) even if the most secure configuration is in place, in-
cluding all countermeasures against side-channel and MicroArchitectural
analysis (in particular, base blinding). We also discuss (known) counter-
measures that prevent this attack.

In a first step we apply an instruction cache attack to reveal which
Montgomery operations require extra reductions. To exploit this informa-
tion we model the timing behavior of the modular exponentiation algo-
rithm by a stochastic process. Its analysis provides the optimal guessing
strategy, which reveals the secret key (mod p1) and finally the factor-
ization of the RSA modulus n = p1p2. For the instruction cache at-
tack we applied a spy process that was embedded in the target process
(OpenSSL), which clearly facilitates the experimental part. This simpli-
fication yet does not nullify our results since in cache attacks empirical
results from embedded spy processes and (suitably implemented) stand-
alone spy processes are very close to each other [16] and, moreover, our
guessing strategy is fault-tolerant. Interestingly, the second step of our
attack is related to that of a particular combined power and timing attack
on smart cards [23] (see also [27,22]).

Before we published our result [1] we informed the OpenSSL devel-
opment team who included a patch into the stable branch of v.0.9.7e
([31,32]) and CERT which informed software vendors ([33,34,35]). In
particular, this countermeasure is included in the current version 0.9.8f.
We have only analyzed OpenSSL, thus we currently do not know the
strength of other cryptographic libraries.

Keywords: RSA, Montgomery Multiplication, Instruction-Cache At-
tack, MicroArchitectural Analysis, Side Channel Analysis, Stochastic
Process.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 256–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Vulnerability in RSA Implementations 257

1 Introduction

MicroArchitectural Attacks (MA), which exploit the microarchitectural behav-
ior of modern computer systems, form a new group of side-channel analysis.
Data Cache (e.g.[9,18,20,7]), Instruction Cache ([2]), Branch Prediction ([5,6]),
and Shared Functional Unit Attacks ([3]) are different types of MA in the liter-
ature. Branch Prediction Analysis (BPA) and its very powerful variant Simple
Branch Prediction Analysis (SBPA) have been introduced by Acıiçmez et. al.
[5,6]. They showed that a carefully written spy-process running simultaneously
with an RSA-process, is able to collect during one single RSA signing execu-
tion almost all of the secret key bits. They call such an attack, analyzing the
CPU’s Branch Predictor states through spying on a single quasi-parallel compu-
tation process, a Simple Branch Prediction Analysis (SBPA) attack — sharply
differentiating it from those one relying on statistical methods and requiring
many computation measurements under the same key. Following this interest-
ing research vector, Acıiçmez has developed another MA attack based on the
functionality of instruction cache (I-cache), which is another major processor
component [2]. This new attack, called I-cache Analysis, is also aiming to reveal
the instruction flow of cryptosystems just like SBPA.

The major cryptographic libraries, especially OpenSSL which is widely uti-
lized in most of the security software today (according to an estimation from
NTT made in November 2006, more than 60% of the web servers worldwide has
OpenSSL toolkit installed [30]), have gone under several revisions to mitigate
different MA attacks immediately after the announcements of their feasibilities.
However, despite of all these efforts spent to provide better protections against
MA attacks, the original (unpatched) version 0.9.8e of OpenSSL still had a vul-
nerability, and also the originally (before we shared our attack with the OpenSSL
development team) planned SPBA countermeasures in v. 0.9.8f would not have
prevented our attack. In fact, even if all these countermeasures were turned on,
one could completely break this RSA implementation1.

The most secure configuration of the unpatched OpenSSL version v.0.9.8e
employed fixed-window exponentiation, which was implemented as a mitiga-
tion technique against cache analysis presented in [20]. OpenSSL also handles
the RSA structures in a special way to avoid cache based threats. These two
techniques come in a bundle, i.e. used together to protect enhanced security
against cache analysis. Besides various other countermeasures for MA vulner-
abilities OpenSSL v.0.9.8e used base blinding to prevent pure timing attacks.
Base-blinding had first been implemented as an optional protection and later on
became a default protection mechanism after the publication of Brumley and
Boneh Attack [10], see also [8].

1 The side-channel related countermeasures in OpenSSL are optional. Some of them
are turned on by default, while others are not. The systems built upon OpenSSL can
choose which countermeasures to be active by setting the corresponding OpenSSL
flags. It is possible for a system to activate all of these countermeasures, which
naturally come with some performance loss, or totally ignore/deactivate all of them.

258 O. Acıiçmez and W. Schindler

The source of our attack was the implementation of Montgomery Multiplica-
tion (MM), which still had the extra reduction step in the unpatched v.0.9.8e,
although it had been shown many times that this particular step cause serious
security vulnerabilities, cf. [8,10,11,26,25,27,23,22]. It also had been known for a
long time that MM can be easily implemented without extra reduction step, cf.
[28,29,12]. In this paper we will show that even if we utilize all of these mitiga-
tion techniques in the original OpenSSL v.0.9.8e, we can still completely break
the RSA implementation, due to the extra reduction step in MM. Base blinding
does not prevent our attack.

It is important to note that OpenSSL implementation was modified to elim-
inate extra reduction step in MM after we showed the feasibility of completely
breaking even the most secure configuration of the library ([31]). This change
was also applied to the current OpenSSL version 0.9.8f. We also contacted CERT
who informed software vendors. The US CERT assigned the vulnerability ex-
plained in this paper CVE name CVE-2007-3108 and CERT vulnerability num-
ber VU#724968, and they issued a vulnerability note ([33,34,35]).

Although SBPA and I-cache Analysis have the potential to reveal the entire
execution flow of an RSA cipher, our focus in this paper is only on the ex-
tra reduction step of the Montgomery multiplication algorithm. We show that
MA can be used to determine which Montgomery multiplication operations per-
form an extra reduction during the entire execution of RSA. The importance
of this information was demonstrated in [27,23,22]. Walter et. al. developed a
non-optimal attack on RSA (only for fixed window size of 2 bits) which allow
to extract the secret exponent if the occurrences of extra reduction steps for a
sample of RSA decryption/signing under the same RSA key are known to the
attacker [27]. Later, Schindler generalized and optimized this attack for arbi-
trary window sizes ([23]), and then Schindler and Walter extended this attack to
a variant of Montgomery’s multiplication algorithm ([22]). References [27,23,22]
considered fixed-window algorithms that are not equal but related to the imple-
mentation in OpenSSL. We need to mention that these attacks may be considered
as “theoretical” because neither Walter et. al. nor Schindler implemented actual
attacks on real systems but instead they assumed that side-channel information
obtained via power and timing analysis would reveal such occurrences of extra
reduction step. The second part of these attacks, the exploitation of the gathered
information, was practically verified by simulation studies.

In this paper, we combine the practicality of MicroArchitectural Analysis
(Instruction Cache Analysis in particular) and the theory of [23] to show that the
use of extra reduction step in Montgomery multiplication leads to a total break of
current RSA software implementations. We also suggest several countermeasures
that must be employed in software implementations of RSA.

2 Actual Practical Implementations of the Attack on
Extra Reduction Via MA

Motivated from the attacks given in [27,23,22], we decided to realize these attacks
via MicroArchitectural Analysis. It was already proven in [5,2] that SBPA and

A Vulnerability in RSA Implementations 259

I-cache Analysis can reveal the execution flow of RSA, which is exactly what
we need in order to bring these theoretical extra reduction attacks into practice.
We preferred to use the original OpenSSL v.0.9.8.e as our target software RSA
implementation and I-cache analysis as our tool to detect the occurrences of
extra reduction steps. The results of our experiments are given in the following
section. In this section, we outline the basics of I-cache analysis and describe our
approach of using I-cache analysis on OpenSSL to gather er-vector values.

2.1 Overview of I-Cache Analysis

I-cache analysis relies on the fact that instruction cache misses increase the ex-
ecution time of code section. Instruction cache (a.k.a. I-cache) is a small buffer
between the main memory and the processor core which provides the processor
fast and easy access to the most frequently executed instructions. When the pro-
cessor needs to read some instructions from the main memory, it first checks to
see if they are already in I-cache. If they are already in I-cache (a.k.a. cache hit),
the processor immediately uses these “cached” instructions instead of access-
ing the main memory, which has a significantly longer latency compared to an
I-cache. Otherwise (a.k.a. cache miss), the instructions are read from the mem-
ory and a copy of them is stored in I-cache. Each I-cache miss mandates an
access to a higher level memory, i.e., a higher level cache or main memory, and
thus results in additional execution time delays.

In I-cache analysis, an adversary needs to execute a spy code, which keeps
track of the changes in the state of I-cache, i.e., metadata, during the execution
of a cipher process. A spy code / process can run simultaneously or quasi-parallel
with the cipher process and determine which instructions are executed by the
cipher. To give a concrete example, [2] takes advantage of the fact that sliding
windows exponentiation generates a key dependent sequence of modular op-
erations2. Furthermore, OpenSSL uses different functions to compute modular
multiplications and square operations. [2] shows that if an adversary can run a
spy routine and evict either one of these functions, he can easily determine the
operation sequence (squaring / multiplication) of RSA.

In the attack scenario of [2] a “protected” crypto process executes RSA sign-
ing/decryption operations and an adversary executes a spy process simultane-
ously or quasi-parallel with this cipher. The spy routine

1. continuously executes a number of dummy instructions, and
2. measures the overall execution time of all of these instructions

2 OpenSSL implements both sliding window and fixed window exponentiations. Sliding
window exponentiation is the default algorithm in OpenSSL. Fixed window exponen-
tiation (which is slower than the sliding window) were implemented as an optional
protection to cache attacks (and now it also provides protection against branch
prediction attacks). The choice whether to turn the cache attack and/or branch pre-
diction attack countermeasures on (including the fixed window exponentiation) is
given to the user.

260 O. Acıiçmez and W. Schindler

in such a way that these dummy instructions precisely maps to the same I-cache
location with the instructions of multiplication function. In other words, the ad-
versary creates a conflict between the instructions of the multiplication function
and the spy routine. Because of this I-cache conflict, either the spy or multiplica-
tion instructions can be stored in I-cache at any time. Therefore, whenever the
cipher process executes the multiplication function, the instructions of the spy
routine have to be evicted from I-cache. This eviction can easily be detected by
the spy routine because when it reexecutes its instructions the overall execution
time will suffer from I-cache misses. Thus, the spy can determine when the mul-
tiplication function is executed. This information directly reveals the operation
sequence (multiplcation / squaring) of RSA. For the square & multiply exponen-
tiation algorithm this discovers the whole secret key while for sliding windows
exponentiation the attacker learns more than half of the exponent bits anyway.
For further details of I-cache analysis and this particular attack, we refer the
reader to [2].

2.2 Our Approach

Our approach in this paper is similar to the approach presented in [2]. The posi-
tions of squarings and multiplications are known in fixed-windows exponentiation
(cf. Subsect. 3.2) but we create I-cache conflicts between the spy routine and the
instructions executed during extra reduction step to reveal the er-vectors. An
er-vector is an ordered tuple of 1 and 0 values, e.g., (0, 0, 1, 0, 1, ..., 0), which
shows the occurrences of extra reduction steps. We denote the occurrence of an
extra reduction step with a 1 in er-vectors and the value 0 indicates that extra
reduction is not performed for that Montgomery operation. See further [23] and
Section 3.2. We point out that the overall attack is much more complicated than
in [2] since a single er-vector is not sufficient to recover the secret RSA expo-
nent. OpenSSL library employs Montgomery multiplication algorithm as stated
above. During a Montgomery operation, OpenSSL first calls either multiplica-
tion or square functions from BIGNUM library 3 and then reduces the result to
the modulus via Montgomery reduction function. At the end of the reduction
after each Montgomery operation, whether it is a multiplication or square, the
intermediate result is compared with the modulus to decide if an extra reduction
is needed.

The extra reduction step consists of a multiprecision subtraction and OpenSSL
realizes it as a call to BIGNUM library’s unsigned multiprecision subtraction
function, i.e., BN usub() function. This function is used/called only for the ex-
tra reduction step during the course of the RSA signing/decryption operation.
In other words, there is not any other location in OpenSSL’s code for RSA de-
cryption that calls this function. Therefore, whenever a cipher process executes
this function, it must be performing extra reduction step. Hence, it is sufficient

3 BIGNUM is a software library integrated into OpenSSL and it is responsible for
multiprecision operations.

A Vulnerability in RSA Implementations 261

to create a spy routine that has I-cache conflicts with this function in order to
detect the occurrences of extra reduction steps4.

Following this basic approach, we implemented such a spy function as de-
scribed in [2] and also considering the exact details of RSA implementation in
OpenSSL. Our spy function executes some dummy instructions and measures
their overall running time. These dummy instructions have a conflict with the
extra reduction routine BN usub() of OpenSSL, which allows the spy to detect
the occurrences of extra reduction steps, i.e., er-vector values. After enough er-
vector vectors are gathered, it becomes feasible to break the cipher. One has to
transfer the attack from [23], which has already been proven to be correct there,
to the concrete situation and apply it on the gathered er-vectors.

However, the spy measurements are not perfectly clean, i.e. there is a noise
factor to consider. It is already shown in [5] that a carefully-written spy process
can get very clean results. But [5] also states that such clean results cannot
always be collected and an adversary needs to make some trials to get clean
results. Therefore, an adversary will have to deal with this noise factor. As
pointed out below our attack tolerates some errors. Thus the problem for an
adversary becomes how clearly he can detect the extra reduction steps, i.e.,
gathering er-vectors with a low enough error rate. The error rate affects the
necessary sample size of the attack, and high error rates may make it infeasible
to compromise the cipher. However, we will show in the next section that the
measurements collected by a spy function is clean enough to practically apply
these attacks with a relatively small sample size.

3 Experimental Details, Mathematical Background and
Empirical Results

We performed two different phases of experiments in this project. The objective
of the first phase was to gather er-vectors via MA, i.e., I-cache Analysis in this
case. The second phase consisted of determining the success rate of our attack
for different sample sizes, and different error rates, applying the optimal decision
strategy developed in Subsect. 3.2.

3.1 Experimental Details

We compiled the RSA decryption function of OpenSSL (unpatched version 0.9.8e)
with all the available countermeasures enabled. We disassembled the executable
4 In fact, an adversary also needs to be sure that instructions of the spy routine do

not get completely evicted by other functions such as BIGNUM’s multiplication and
square functions. This possible situation was not a problem in our case, because the
executable code did not have such conflicts between these functions when we com-
piled OpenSSL using gcc compiler. A compiler is expected to remove possible internal
cache conflicts to increase the performance of the code. Internal cache conflicts, in
this context, indicate the conflicts occur between the instructions that belong to the
same process.

262 O. Acıiçmez and W. Schindler

file to determine the logical addresses of BIGNUM multiprecision unsigned sub-
traction function instructions. GNU Project debugger (i.e. gdb) has two functions,
”info line” and ”disas”, that we used for this task. Then we implemented our spy
routine according to these logical addresses and also considered the parameters of
the I-cache architecture on our platform.

Then we carried out the first experimental phase by letting the spy function
run during the execution of RSA signing operation. To simplify our setup and
reduce the necessary experimental efforts, we used a simple trick in this phase.
Instead of using a stand-alone spy process and relying on Operating System
functionalities as done in [17] or exploiting SMT-capability of processor archi-
tectures as done in [20,18,5], we called the spy routine inside the RSA process
with a certain frequency, i.e., after each exponentiation step. The other options
would require special manual handling of each single measurement and would
drastically increase the necessary efforts spent in this experiment, because we
needed to analyze a large number of measurements to get an accurate estima-
tion of the error rates. In more realistic attack scenarios that use stand-alone
spy processes, an adversary may (and most likely will) encounter an error rate
higher than our experimental results. However, according to an analysis on cache
attacks from Neve which is given in [16], the theoretical and actual results taken
from such a spy process are indeed very close to each other. Therefore, we expect
the actual error rates in a spy process’s measurements to be only slightly higher
than our estimated error rates.

We must also mention that these error rates depend on several parameters
including the actual platform, operating system and other software components
of the system, the implementation of the spy process as well as the cipher.
Higher error rates do not necessarily nullify the validity of these attacks since
the optimal guessing strategy for correctly observed er-vectors (cf. Theorem 1)
seems to tolerate error rates of 4 - 5%, and even guessing strategies exist that
take classification errors explicitly into account (cf. Theorem 2). Thus, we do not
claim that our results perfectly reflect the performance of these attacks in every
possible scenario. We only prove in this paper that er-vector attacks coupled with
MA techniques create a valid threat to software systems.

We used the possibility of performing the same exact measurement many
times and taking the average to decrease the measurement noise, i.e., error rate.
OpenSSL uses the same blinding factor 32 times by default before updating it.
Therefore, an adversary can force the system to perform RSA decryption for the
same base and identical blinding values t ≤ 32 many times and measure each of
these t operations. For example, he can exploit SSL handshake protocol as done
in [10,8]. Using the average of more than 1 measurement decreases the noise and
thus reduces the error rate as we will show in the next subsection. The second
phase of our experiments was to determine the success rate of er-vector attack
for several sample sizes and to estimate the effect of different error rates.

In [1] we considered both of the exponentiation algorithms implemented in
current OpenSSL version: fixed windows and sliding windows exponentiation
([15], 14.82 and 14.85). The size of the windows used in both exponentiation

A Vulnerability in RSA Implementations 263

algorithms depends on the key size in OpenSSL. For common key sizes (1024
and 2048 bits), the windows are 5-bit long, and thus we will focus on this par-
ticular case in our paper. Moreover, the Chinese Remainder Theorem (CRT),
Montgomery’s multiplication algorithm ([15], 14.36) and base blinding are ap-
plied. Due to the lack of space, we focus on fixed-windows exponentiation in the
following.

3.2 Mathematical Background and Experimental Results

In this subsection we formulate the optimal guessing strategy, explain the math-
ematical background and present experimental results.

Fixed Window Exponentiation Algorithm. As usual, n = p1p2 and R
denotes the Montgomery constant while MM(a, b; n) := abR−1(mod n) stands
for the Montgomery multiplication of a and b. The computation of xd(mod n)
is carried out in several phases:

1. Base blinding: xb := xA(modn) where A and B := A−d(modn) are the
current blinding values.

2. Compute xd
b (mod p1)

a) group the binary representation of d(1) := d(mod (p1 − 1)) = (d′w−1, . . . ,
d′0)2 into non-overlapping blocks of length wsize, starting from the least
significant bit d′0. This gives wsize-bit integers Dv−1, . . . , D0 with v :=
�w/wsize�.

b) xb,1 :≡ xb(mod p1)
c) Exponentiation algorithm 1: Fixed windows

u0 := MM(1, R2(mod p1);p1) (= R (mod p1))
u1 := MM(xb;1, R2(mod p1);p1) (= xb;1R (mod p1))
for j := 2 to 2wsize − 1 do uj:=MM(uj−1,u1;p1)
temp := u0
for i := v − 1 downto 0 do {

for j := 1 to wsize do temp:=MM(temp,temp;p1)
temp := MM(temp,uDi;p1)}

return MM(temp,1) (= xd
b;1(mod p1) = xd

b (mod p1))
Note: u0, . . . , u2wsize−1 denote the table values.

3. Compute xd
b (mod p2) analogously to Step 2

4. Compute xd(mod n)
a) CRT step: Compute xd

b (mod n) from xd
b (mod p1) and xd

b (mod p2).
b) “Remove” blinding: y := xd

bB(mod n)
5. (eventually) update A and B

The adversary’s goal is clearly to determine the secret exponent d. We first
note that it is sufficient to determine d(1) since

y − xd(1) ≡ 0(mod p1), hence gcd(y − xd(1)(mod n), n) = p1 (1)

for any known plaintext / ciphertext pair (x, y = xd(modn)). The types of
operation T (1), T (2), . . . , T (M) of the Montgomery operations during the ex-
ponentiation phase are equivalent to knowing d(1). To increase the readability

264 O. Acıiçmez and W. Schindler

of the paper we concentrate on wsize = 5, the case we are interested in. Of
course, all assertions can immediately be transferred to arbitrary window size.
Essentially, it remains to substitute 31 by 2wsize − 1.

Clearly, T (i) ∈ Θ = {‘S ’, ‘M0’, ‘M1’, . . . , ‘M31’} where ‘S’ says that the ith

Montgomery operation in the exponentiation phase is a squaring while ‘Mk’
stands for the multiplication with table entry uk. The adversary grounds his
decisions on the exponentiation of bases x1, . . . , xN . For now, assume that the
adversary knows which operations in the table initialization phase and in the
exponentiation phase require extra reductions (ERs). More formally, w′i(k) = 1,
resp. w′i(k) = 0 mean that the ith operation in the table initialization phase (=
computation of ui for base xk) requires an extra reduction, resp. requires no
extra reduction. Similarly, wi(k) = 1, resp. wi(k) = 0 mean that the ith operation
in the exponentiation phase requires an extra reduction, resp. requires no extra
reduction. In the following we outline the general procedure, explain the main
steps.

We interpret the observations w′i(k) and wi(k) as realizations of suitably defined
random variables W ′

i(k) and Wi(k). As already shown in [26] and [24] we have

Prob(Wi(k) = 1) =
{ 1

3
p1
R if T (i) = ‘S ’

uj

2p1

p1
R if T (i) = ‘Mj ’.

(2)

We note that both probabilities depend on the ratio p1/R which is yet unknown to
the attacker. Recall that the positions of the #sq = 5�log2(d(1))/5� many squar-
ings are well-known in this fixed windows variant since they do not depend on
d(1), and hence the first line of (2) can be used to estimate p1/R. (For the bases
x1, . . . , xN count the ERs within all squarings in the sample and multiply this
number by 3(N#sq)−1.) Using the second line of (2) the game was easy if the ad-
versary knew the ratios uj(1)/p1, . . . , uj(N)/p1 for each 0 ≤ j ≤ 31. Due to base
blinding (and the use of CRT) the adversary yet does not know these values.

The key is a formal treatment which analyzes the distribution of the ran-
dom variables W ′

1(k), . . . , W
′
31(k) and W1(k), W2(k), Further, s′0(k) := xb,1/p1,

s′i(k) := ui(k)/p1 for i ∈ {1, . . . , 31} and si(k) := tempi(k)/p1 assume values in the
unit interval [0, 1) where tempi(k) stands for the ith temp value in the exponenti-
ation phase for the base xk. In particular, s0(k) = u0(k)/p1 = R(mod p1)/p1. We
assume that the values s′0(k), . . . , s

′
31(k) and s1(k), s2(k), . . . are taken on by [0, 1)-

valued random variables S′0(k), . . . , S
′
31(k) and S1(k), . . . , SM(k). Let M denote the

number of Montgomery operations in the exponentiation phase. Lemma 1(iii) in
[23] implies that the random variables

S′0(k), . . . , S
′
31(k), S7(k), S8(k), . . . , SM(k) (3)

are independent and uniformly distributed on [0, 1)

which matches with the intuition that the intermediate temp values ‘spread’
wildly over Zp1 . (Note that S0(k) = · · · = S5(k) = u0(k)/p1 since MM(u0(k), u0(k);
p1) = u0(k), and S6(k) = uDv−1(k)/p1; cf. Remark 1.) It is even more interesting

A Vulnerability in RSA Implementations 265

that the random variables W ′
i(k) and Wi(k) can be expressed in terms of S′i−1(k)

and S′i(k), resp in terms of Si−1(k) and Si(k). More precisely, Lemma 1(iii) in [23]
implies

W ′
i(k) :=

{
1S′

1(k)<S′
0(R2 (mod p1)/p1)(p1/R) for i = 1
1S′

i(k)<S′
i−1(k)S

′
1(k)p1/R for 2 ≤ i ≤ 31 and

(4)

Wi(k) :=

{
1Si(k)<S2

i−1(k)p1/R if T (i) = ‘S ’
1Si(k)<Si−1(k)S

′
j(k)p1/R if T (i) = ‘Mj’.

(5)

Here 1A(x) denotes the indicator function, i.e. 1A(x) = 1 iff x ∈ A and = 0
otherwise. Our task is to analyse the stochastic process W8(k), W9(k), . . . , WM(k),
which is non-stationary and dependent. Nevertheless, exploiting (3), (4) and (5)
yet allows the exact solution of our problem. Since the positions of the squarings
are known our next goal is to compute the joint probabilities

pθ(w′1(k), . . . , w
′
31(k), wi(k)) (6)

:= Probθ(W ′
1(k) = w′1(k), . . . , W

′
31(k) = w′31(k), Wi(k) = wi(k))

for all possible types of operation θ ∈ Θ0 := {‘M0’, ‘M1’, . . . , ‘M31’}. Due to
(4) and (5) the values w′1(k), . . . , w

′
31(k) and wi(k) can be characterized by con-

ditions on s′0(k), . . . , s
′
31(k) and si−1(k), si(k). For instance, w′j(k) = 1 iff s′j(k) <

s′j−1(k)s
′
1(k)p1/R, while the impact of wi(k) on si−1(k) and si(k) clearly depends

on θ (cf. (5)). Altogether, if T (i) = θ, observing (w′1(k), . . . , w
′
31(k), wi(k)) is equiv-

alent to (s′0(k), s
′
1(k), . . . , s

′
31(k), si−1(k), si(k)) ∈ Aθ(w′1(k), . . . , w

′
31(k), wi(k)) for a

well-defined subset Aθ(w′1(k), . . . , w
′
31(k), wi(k)) ⊂ [0, 1)34 that only depends on

(w′1(k), . . . , w
′
31(k), wi(k)) and the hypothesis θ. The table entry u0(k) plays an ex-

ceptional role as it does not depend on the basis xk but is constant for all bases
(see (9) below). Due to (3) the joint probability in (6) is given by the volume of
the set Aθ(w′1(k), . . . , w

′
31(k), wi(k)).

pθ(w′1(k), . . . , w
′
31(k), wi(k)) =

∫ 1

0

∫ b′
1

a′
1

· · ·
∫ b′

31

a′
31

∫ 1

0

∫ bθ,i

aθ,i

1 dsidsi−1ds′31 · · · ds′0 (7)

with integration boundaries

(a′1, b
′
1) =

{
(0, s′0(R

2(mod p1))/R) if w′1(k) = 1
(s′0(R

2(mod p1))/R, 1) if w′1(k) = 0.
(8)

i ∈ {2, . . . , 31} : (a′i, b
′
i) =

{
(0, s′i−1s

′
1p1/R) if w′i(k) = 1

(s′i−1s
′
1p1/R, 1) if w′i(k) = 0.

(aθ,i, bθ,i) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, s2
i−1p1/R) if θ = ‘S ’ and wi(k) = 1

(s2
i−1p1/R, 1) if θ = ‘S ’ and wi(k) = 0

(0, si−1s
′
jp1/R) if θ = ‘Mj ’, j > 0 and wi(k) = 1

(si−1s
′
jp1/R, 1) if θ = ‘Mj ’, j > 0, and wi(k) = 0.

266 O. Acıiçmez and W. Schindler

For θ =′ M ′
0 the er-value wi(k) does not depend on w′1(k), . . . , w

′
31(k), and the

term p′M ′
0
(w′1(k), . . . , w

′
31(k), wi(k)) simplifies to

p′M ′
0
(w′1(k), . . . , w

′
31(k), wi(k))

= Prob(W ′
j(k) = w′j(k) for 1 ≤ j ≤ 31) · Prob′M ′

0
(Wi(k) = wi(k)) with (9)

Prob(W ′
j(k) = w′j(k) for 1 ≤ j ≤ 31) =

∫ 1

0

∫ b′
1

a′
1

· · ·
∫ b′

31

a′
31

1 ds′31 · · · ds′0 ,(10)

and from (2) we obtain Prob′M ′
0
(Wi(k) = 1) = R(modp1)/2R = 1(mod

(p1/R))/2. We have already explained how to estimate the ratio p1/R.
Since all table entries are equally likely and since all guessing errors are equally

harmful it follows from Theorem 1 in [21] that the optimal decision strategy is
given by the maximum likelihood estimator. Recall that the adversary knows
the positions where the squarings are located.

Theorem 1. [wsize=5] Let wi(k) := (w′1(k), . . . , w
′
31(k), wi(k)). Assume that all

observed vectors wi(1), . . . , wi(N) are correct and that in Montgomery operation
i ≥ 8 the temp value is multiplied by an unknown table value uj, i.e. index i is a
multiple of 6. The optimal strategy to guess T (i) is to decide for that hypothesis
θ′ ∈ Θ0 = Θ \ {‘S’} that maximizes

N∏

k=1

pθ(wi(k)). (11)

Remark 1
(i) Theorem 1 does not cover the guessing of T (6) =′ MDv−1

′ since (3) does not
apply to S5(k), S6(k) (recall that S5(k) = u0(k)/p1 and S6(k) = uDv−1(k)/p1). Type
T (6) can be determined by exhaustive search after T (12), T (18), . . . have been
guessed.
(ii) For Exponentiation algorithms 2 and 3 in [1] (3) even holds with S1(k),
S2(k), . . . in place of S7(k), S8(k),

Recall that the er-vectors ER(k) = (w′1(k), . . . , w
′
31(k), w1(k), . . . , wM(k)) are the

adversary’s only information (k = 1, . . . , N). Unlike in [21] (and [23,22]) in our
attack we are faced with erroneous observations, i.e. with flipped components of
the er-vector. The terms μ(0 | 1) and μ(1 | 0) denote the probabilities to observe
wi(k) = 0 although an extra reduction is performed, resp. the probability to ob-
serve wi(k) = 1 although no extra reduction is necessary. Practical experiments
showed that the misclassification rate does not depend on the position of the
respective Montgomery operation. The default setting in the original OpenSSL
library v.0.9.8e kept the blinding values A and B constant for 32 consecutive
exponentiations. Consequently, for any base xk the adversary may repeat mea-
surements t ≤ 32 times under identical blinding values, i.e. under identical con-
ditions. The results shown in Table 1 are average error rates calculated based
on the measurements collected during 1000 decryptions with random ciphertext

A Vulnerability in RSA Implementations 267

Table 1. The average error rates for different values of t

t μ(0 | 1) μ(1 | 0)

1 0.1052 0.0021
2 0.0872 0.0010
4 0.0536 0.0582
8 0.0294 0.0239
16 0.0080 0.0063
32 0.0026 0.0062

under each of 10 different random 1024-bit RSA keys Increasing the value of t
reduces the error rates, which become very close to 0 when t reaches 32.

With t = 16 we generated N = 2000 er-vectors (i.e., we performed tN =
16 · 2000 = 32000 measurements), belonging to different bases x1, . . . , x2000.
We randomly selected subsets of size N1 < N and performed our attack on
basis of the er-vectors that were contained in these subsets. Table 2 shows our
results, underlining the practical feasibility of our attack even with only 10000
measurements (N1 = 600, t = 16). For a 512-bit prime p1 the attacker has to
guess T (6) (cf. Remark 1) and 102 (in rare cases 101) types T (12), T (18), . . .,
applying Theorem 1. Of course, 1 error (also 2, or maybe even 3 errors) within
these 102 guesses can be corrected by exhaustive search. Whether all guesses are
correct can be checked using (1). Note that if a false candidate θ∗ maximizes
(11) the corresponding correct hypothesis θ is usually also highly ranked.

Table 2. Practical experiments (Guessing strategy according to Theorem 1)

N1 guessing errors (average) # attacks with ≤ 1 guessing errors

500 1.90 44/100
600 0.83 85/100
700 0.25 99/100
800 0.12 99/100
900 0.01 100/100
1000 0.02 100/100

For window size 5 the adversary has to compute |Θ \ {′S′}| · N · 2 = 32 · N · 2
joint probabilities pθ(w′1(k), . . . , w

′
31(k), j) (with j ∈ {0, 1}). Since Probθ(Wi(k) =

0 | ·) = 1 − Probθ(Wi(k) = 1 | ·) this essentially requires the computation
of 32 · N conditional probabilities pθ(0 | w′1(k), . . . , w

′
31(k)), i.e. of 31N many

34-dimensional integrals of type (7) and of N many 32-dimensional integrals of
type (10). For window size 5 these computations constitute the essential part of
the workload. Principally, these computations are not difficult since (7) and (10)
split into 34, resp. into 32, consecutive one-dimensional integrations of polynomi-
als. Since each w′j = 0 principally doubles the number of monomials for window
size 5 the computations are yet memory- and time-consuming. In particular,
identical monomials should be summarized regularly. Fortunately, the computed
probabilities can be used for all relevant positions, i.e. for i = 12, 18, . . . ≤ M .

268 O. Acıiçmez and W. Schindler

Simulation studies indicate that the optimal decision strategy from Theorem 1
seems to tolerate misclassification rates of 4 - 5% (cf. also Table 3 and Table 4 in
[1], which yet refer to a related exponentiation algorithm; in the present case the
situation is more favourable for an adersary since he only has to perform a sixth of
the guesses). Interestingly, if the adversary (roughly) knows the misclassification
rates he can take them explicitly into account.

Theorem 2. [wsize=5] Assume that in Montgomery operation i ≥ 8 the temp
value is multiplied by an unknown table value uj, i.e. index i is a multiple of 6.
Further, μ01 := μ(0 | 1), μ10 := μ(1 | 0) ≥ 0. For a = (a1, . . . , a32) ∈ {0, 1}32

define complementary subsets C0(a) := {j ≤ 32 | aj = 0}, C1(a) := {j ≤ 32 |
aj = 1} ⊆ {1, . . . , 32} The optimal strategy to guess T (i) is to decide for that
hypothesis θ′ ∈ Θ \ {′S′} that maximizes

N∏

k=1

∑

w∗∈{0,1}32
pθ(w∗) × (12)

× μ
|C0(wi(k))\C0(w∗)|
10 (1 − μ10)|C0(wi(k))∩C0(w∗)|μ|C1(wi(k))\C1(w∗)|

01 (1 − μ01)|C1(wi(k))∩C1(w∗)|.

Proof. Due to the properties of the stochastic process S′1(k), . . . , SM(k), k =
1, . . . , N , we may assume that er-vectors which belong to different bases or to
different blinding values are independent. The optimal decision strategy maxi-
mizes

N∏

k=1

Probθ(wi(k) observed) with

Probθ(wi(k)observed) =
∑

w∗∈{0,1}32

Probθ(w
∗correct)Probθ(wi(k) observed | w∗ correct).

Clearly, Probθ(w∗ correct) = pθ(w∗) while the second term does not depend on
θ but only on wi(k), w∗, μ01 and μ10. Elementary considerations complete the
proof of (12).

We first note that for μ01 = μ10 = 0 formula (12) coincides with (11). The practi-
cal drawback of the (12) is that it requires the computation of 32·232 probabilities
pθ(w∗) which is gigantic. Recall that we concentrated on wsize = 5 to increase
the readability of the document. Clearly, Theorem 1 and Theorem 2 can imme-
diately be adjusted to arbitrary window size (31 corresponds to 2wsize −1 in the
general case). We point out that for window size 4, for instance, the situation is
much better since it requires only 16 ·216 probabilities, and each probability can
be calculated much faster. For window size 2 only 4 · 24 such probabilities are
necessary. On the other hand, if the misclassification rates μ01, μ10 are moderate
those w∗ with large Hamming distance to wi(k) give only little contribution since
Prob(wi(k) observed | w∗ correct) is very small. Consequently, the adversary
may only consider those w∗ in (12) that have Hamming distance 1 or 2 to the
observed er-vector, giving an approximately optimal decision strategy.

A Vulnerability in RSA Implementations 269

Of course, in ‘real-life’ attacks the adversary does not know the values μ01
and μ10. However, this does not constitute a serious problem. As already pointed
out the computational bottleneck is the computation of the probabilities pθ(w∗).
Once these probabilities have been computed the adversary can experiment with
different values μ̃01 and μ̃10 since only the conditional probabilities Prob(wi(k)
is observed | w∗ correct) (i.e., the right-hand part of (12)) have to re-calculated
which is an easy task. (This concerns both (12) and the approximate decision
strategy proposed in the previous paragraph.) The efficiency of the attack may
serve as a simple quality measure for the suitability of the guessed values μ̃01
and μ̃10, i.e. whether these values are sufficiently close to μ01 and μ10.

Attacks on other modular exponentiation algorithms. The fixed win-
dows exponentiation algorithm specified above can be speeded up somewhat
since MM(temp, u0(k); p1) = temp has no computational effect, and also the be-
ginning of the exponentiation phase can be implemented more efficiently. Such a
fixed-windows algorithm is referenced as Exponentiation algorithm 2 and inves-
tigated in [1]. Also the attacks in [23,21,22] refer to that related fixed windows
exponentiation algorithm. Due to the lack of space we do not go into detail but
refer the interested reader to [1], p. 14–16. We just mention that the adversary
does not even know the positions of the squarings in this case, which makes
the attack somewhat more complicated. Interestingly, the maximum-likelihood-
estimator is yet not optimal for this exponentiation algorithm. The efficiency of
the attack can be increased by the calculus of statistical decision theory (cf. [21],
Sect. 2). Moreover, in [1], p. 16–18 we treat the sliding windows exponentiation
algorithm, which is implemented in OpenSSL v.0.9.8e and v.0.9.8f, too.

4 Possible Countermeasure Suggestions

There are several ways to achieve a “protected” RSA implementation against our
MicroArchitectural Analysis presented in this paper. Instruction Cache Analysis
and also Branch Prediction Analysis techniques exploit input-dependent execu-
tion flows of cryptosystems. Therefore, the implementations with fixed execution
flows are intrinsically secure against these potential threats; hence they consti-
tute a “risk-free” way of protection for these attacks.

[4] proposes a fixed execution flow implementation of RSA, which removes the
extra reduction step completely. This method does not only provide an enhanced
security, but also improves the performance of the RSA software compared to
the current OpenSSL implementation. The idea of avoiding extra reduction steps
is not novel to [4] and it was first given in [28,29].

Walter proved in [28] that if the Montgomery parameters were chosen appro-
priately, we could avoid every extra reduction during an RSA exponentiation.
He proved this property by analyzing the upper bounds on the values of inter-
mediate Montgomery Multiplication results throughout the exponentiation. The
parameters suggested by Walter necessitate to use more machine-words to hold
the operands than necessary. In other words, his method increases the number

270 O. Acıiçmez and W. Schindler

of words in the operands and sets the Montgomery constant, which is usually
denoted by R, accordingly and performs the multiplications in larger sizes.

Later, Hachez & Quisquater improved the results of Walter [13]. They proved
the same concept with tighter bounds and thus showed that the increase in the
word size could be relatively smaller. Their method improves the speed of the
Montgomery Multiplication and therefore the overall exponentiation compared
to Walter’s method.

Although we think it is a better practice to remove extra reduction step from
the RSA computations, which had been implemented in OpenSSL as a response
to our results in this paper, we need to mention that these attacks can also
be avoided using alternative methods. For example, exponent blinding, which
is a well-known countermeasure against side-channel analysis, is among these
alternatives. This method adds a random multiple of the group-order, i.e., a
random multiple of φ(n), where n is the public RSA modulus, to the secret
exponent. This random multiple needs to be updated frequently, preferably for
each RSA operation. The disadvantage of this method is the increased number
of Montgomery operations due to the increase in the exponent size. We also need
to mention that this method is covered by a patent, c.f. [14].

5 Conclusions

We have identified a potential serious weakness in RSA implementations. We
have developed an attack by leveraging MicroArchitectural analysis techniques
and adapted early studies on extra-reduction based attacks (in particular, [23]).
We have demonstrated that the RSA implementation in the original OpenSSL
version 0.9.8e can completely be broken, even if all of the available counter-
measures were turned on, and we proposed effective countermeasures. Before we
published our attack [1] we shared our results with the OpenSSL development
team who included a patch in a stable branch of v.0.9.8.e which also affects the
current version v.0.9.8f.

We believe that the gravity of the vulnerability we identified here mandates
revisions of the affected RSA implementations, which had already been done in
OpenSSL. We have only focused on OpenSSL library in this paper due to its
wide acceptance, however, other libraries and RSA implementations may also
be vulnerable to our attack. Due to resource and time limitations, we could not
conduct a comprehensive investigation on current security systems. We leave
this task to other researchers.

Our attack is another example of bringing an initially smart-card oriented
side-channel attack into the arena of general purpose computers. [10] demon-
strated on real software-based systems the practicality of a pure timing attack
introduced in [26]. As a response, base blinding technique was implemented as
a default countermeasure in OpenSSL. As in [23] our attack exploits the knowl-
edge of er-vectors although the techniques to gather these information are very
different (power analysis vs. instruction cache analysis). Due to our attack the
extra reduction step in Montgomery Multiplication was removed. Day by day,

A Vulnerability in RSA Implementations 271

we see more instances of “thought to be theoretical” or “smart-card only” side-
channel attacks coming into practice. One may expect that it is only a matter
of time or a matter of finding new ways to gather required side-channel infor-
mation to make many theoretical side-channel attack a bare reality. To be on
the safe side it seems to be beneficial for software developers also to observe new
developments in side-channel analysis on smart cards, just to understand the
sources of potential attacks. This might help to anticipate threats and to pre-
vent them by effective countermeasures, even if concrete attacks are not known
at this time.

References

1. Acıiçmez, O., Schindler, W.: A Major Vulnerability in RSA Implementations due to
MicroArchitectural Analysis Threat. Cryptology ePrint Archive, Report 2007/336
(August 2007)

2. Acıiçmez, O.: Yet Another MicroArchitectural Attack: Exploiting I-cache. In: ACM
Workshop on Computer Security Architecture, pp. 11–18. ACM Press, New York
(2007)

3. Acıiçmez, O., Seifert, J.-P.: Cheap Hardware Parallelism Implies Cheap Security.
In: 4th Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC
2007, pp. 80–91. IEEE Computer Society, Los Alamitos (2007)

4. Acıiçmez, O., Gueron, S., Seifert, J.-P.: New Branch Prediction Vulnerabilities
in OpenSSL and Necessary Software Countermeasures. In: Galbraith, S.D. (ed.)
Cryptography and Coding 2007. LNCS, vol. 4887, pp. 185–203. Springer, Heidel-
berg (2007), Cryptology ePrint Archive, Report 2007/039, (February 2007)

5. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: On The Power of Simple Branch Predic-
tion Analysis. In: Deng, R., Samarati, P. (eds.) ACM Symposium on InformAtion,
Computer and Communications Security (ASIACCS 2007), pp. 312–320 (2006);
Cryptology ePrint Archive, Report 2006/351 (October 2006)

6. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting Secret Keys via Branch Predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006), Cryptology ePrint Archive, Report 2006/288, (August 2006)

7. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache Based Remote Timing Attack on
the AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

8. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and Boneh Timing
Attack on Unprotected SSL Implementations. In: Meadows, C., Syverson, P. (eds.)
Proceedings of the 12th ACM Conference on Computer and Communications Se-
curity, pp. 139–146. ACM Press, New York (2005)

9. Bernstein, D. J.: Cache-timing attacks on AES. Technical Report, 37 pages, (April
2005), http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

10. Brumley, D., Boneh, D.: Remote Timing Attacks are Practical. In: Proceedings of
the 12th Usenix Security Symposium, pp. 1–14 (2003)

11. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P.-A., Quisquater, J.-J., Willems,
J.-L.: A Practical Implementation of the Timing Attack. In: Schneier, B.,
Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 175–191. Springer,
Heidelberg (2000)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

272 O. Acıiçmez and W. Schindler

12. Gueron, S.: Enhanced Montgomery Multiplication. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 46–56. Springer, Heidelberg
(2003)

13. Hachez, G., Quisquater, J.-J.: Montgomery Exponentiation with no Final Sub-
tractions: Improved Results. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 91–100. Springer, Heidelberg (2000)

14. Kocher, P.C., Jaffe, J.M.: Secure Modular Exponentiation with Leak Minimization
for Smartcards and other Cryptosystems. United States Patent, Patent No.: US
6,298,442 B1 (October 2001)

15. Menezes, A.J., van Oorschot, P.C., Vanstone, S.C.: Handbook of Applied Cryptog-
raphy. CRC Press, New York (1997)

16. Neve, M.: Cache-based Vulnerabilities and SPAM Analysis. Ph.D. Thesis, Applied
Science, UCL (July 2006)

17. Neve, M., Seifert, J.-P.: Advances on Access-driven Cache Attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

19. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
Technical Report, Department of Computer Science, University of Bristol (June
2002)

20. Percival, C.: Cache missing for fun and profit. BSDCan 2005, Ottawa (2005),
http://www.daemonology.net/hyperthreading-considered-harmful/

21. Schindler, W.: On the Optimization of Side-Channel Attacks by Advanced Stochas-
tic Methods. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103.
Springer, Heidelberg (2005)

22. Schindler, W., Walter, C.D.: More Detail for a Combined Timing and Power At-
tack against Implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and
Coding 2003. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)

23. Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier,
P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

24. Schindler, W.: Optimized Timing Attacks against Public Key Cryptosystems.
Statistics and Decisions 20, 191–210 (2002)

25. Schindler, W., Koeune, F., Quisquater, J.-J.: Improving Divide and Conquer At-
tacks Against Cryptosystems by Better Error Detection / Correction Strategies.
In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 245–267.
Springer, Heidelberg (2001)

26. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder The-
orem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 110–125.
Springer, Heidelberg (2000)

27. Walter, C.D., Thompson, S.: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
192–207. Springer, Heidelberg (2001)

28. Walter, C.D.: Montgomery exponentiation needs no final subtractions. IEE Elec-
tronics Letters 35(21), 1831–1832 (1999)

29. Walter, C.D.: Montgomery’s Multiplication Technique: How to Make It Smaller
and Faster. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 80–93.
Springer, Heidelberg (1999)

http://www.daemonology.net/hyperthreading-considered-harmful/

A Vulnerability in RSA Implementations 273

30. http://www.ntt.co.jp/news/news06e/0611/061108a.html
31. http://cvs.openssl.org/chngview?cn=16275
32. ftp://ftp.openssl.org/snapshot/
33. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3108
34. http://www.cert.org/
35. US CERT vulnerability note, http://www.kb.cert.org/vuls/id/724968

http://www.ntt.co.jp/news/news06e/0611/061108a.html
http://cvs.openssl.org/chngview?cn=16275
ftp://ftp.openssl.org/snapshot/
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3108
http://www.cert.org/
http://www.kb.cert.org/vuls/id/724968

Fault Analysis Study of IDEA

Christophe Clavier1, Benedikt Gierlichs2, and Ingrid Verbauwhede2

1 Gemalto, Security Labs
Avenue du Jujubier, ZI Athélia IV, 13705 La Ciotat Cedex, France

christophe.clavier@gemalto.com
2 K.U. Leuven, ESAT/SCD-COSIC

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. We present a study of several fault attacks against the block
cipher IDEA. Such a study is particularly interesting because of the target
cipher’s specific property to employ operations on three different alge-
braic groups while not using substitution tables. We observe that the
attacks perform very different in terms of efficiency. Although requir-
ing a restrictive fault model, the first attack can not reveal a sufficient
amount of key material to pose a real threat, while the second attack
requires a large number of faults in the same model to achieve this goal.
In the general random fault model, i.e. we assume that the fault has a
random and a priori unknown effect on the target value, the third at-
tack, which is the first Differential Fault Analysis of IDEA to the best
of our knowledge, recovers 93 out of 128 key bits exploiting about only
10 faults. For this particular attack, we can also relax the assumption of
cycle accurate fault injection to a certain extend.

Keywords: Collision Fault Analysis, Ineffective Fault Analysis, Differ-
ential Fault Analysis, IDEA, Random Fault Model.

1 Introduction

The International Data Encryption Algorithm (IDEA) is a block cipher with an
iterated round function, which encrypts 64-bit blocks of plaintext to 64-bit blocks
of ciphertext using a 128-bit key. It was introduced by Xuejia Lai and James
Massey in 1991 [9]. Today, this cipher is commonly available in cryptographic
software packages such as PGP, SSH, and OpenSSL and is used in (embedded)
cryptographic systems deployed by some operators of GSM networks and PayTV
systems [13].

IDEA was designed to resist differential cryptanalysis [3,9] in particular, but
seems to be an algorithm difficult to cryptanalyze in general, even in reduced
rounds versions. A part of IDEA’s security is based on the fact that it applies
operations on three different algebraic groups. Rather than comprising substi-
tution tables, IDEA uses a multiplication operation to generate confusion. As a
result, the progress in finding weaknesses in the cipher is relatively slow. The
best known attack against IDEA at this time has been presented in 2007 by Bi-
ham, Dunkelman, and Keller [2]. It breaks 6 out of the 8.5 rounds of IDEA with

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 274–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fault Analysis Study of IDEA 275

264 −252 pairs of plaintext/ciphertext and a time complexity equivalent to 2126.8

encryptions.
Since the algorithm is robust against classical cryptanalysis and widely de-

ployed at the same time we think it is an interesting task to study its security
under the threat of physical attacks. The fact that there exists only very little
literature on this topic, e.g. [10], underlines the need for such a study.

In this work we do not explore all possible paths for physical attacks. While
[10] presents some results for differential side channel analysis, we focus on fault
analysis. We observe that Collision Fault Analysis (CFA) [7], which requires a re-
strictive fault model, does not allow to reveal a sufficient amount of key material
to pose a real threat. Further, we show that Ineffective Fault Analysis (IFA) [5,6],
requiring the same fault model, allows to recover the entire key at the cost of
a large number of fault injections. In this light, we propose a Differential Fault
Analysis (DFA) [4] which seems to be of particular interest to an attacker, as
it allows to retrieve a substantial part of the key from a small number of fault
injections in the most general fault model. To the best of our knowledge, this is
the first described Differential Fault Analysis of IDEA. The fact that we can also
relax the assumption of cycle accurate fault injection to a certain extend renders
this attack even more practical.

We describe IDEA in Section 2 and briefly recapitulate some fault analysis
techniques in Section 3. The two following sections are respectively dedicated to
the application of collision and Ineffective Fault Analysis to IDEA. Thereafter,
we propose an efficient Differential Fault Analysis of this algorithm in Section 6
and provide results from extensive simulations of this attack in Section 7. We
conclude our work in Section 8.

2 IDEA

IDEA consists of 8 identical rounds and an output transformation (reduced round).
Each round is composed of XOR operations, additions modulo 216 denoted by
�, and multiplications modulo (216 + 1) with 0 associated to 216 denoted by �.
Round n (n = 1, . . . , 8) involves six 16-bit subkeys Zn

i (i = 1, . . . , 6). The output

Round Zn
1 Zn

2 Zn
3 Zn

4 Zn
5 Zn

6

n = 1 0-15 16-31 32-47 48-63 64-79 80-95
n = 2 96-111 112-127 25-40 41-56 57-72 73-88
n = 3 89-104 105-120 121-8 9-24 50-65 66-81
n = 4 82-97 98-113 114-1 2-17 18-33 34-49
n = 5 75-90 91-106 107-122 123-10 11-26 27-42
n = 6 43-58 59-74 100-115 116-3 4-19 20-35
n = 7 36-51 52-67 68-83 84-99 125-12 13-28
n = 8 29-44 45-60 61-76 77-92 93-108 109-124
n = 9 22-37 38-53 54-69 70-85

Fig. 1. The IDEA key schedule

276 C. Clavier, B. Gierlichs, and I. Verbauwhede

transformation employs four additional subkeys Z9
i (i = 1 . . . , 4). Each subkey

is composed of selected key bits according to IDEA’s key schedule depicted in
Figure 1.

The input of each round n (n = 1, . . . , 9) is split into four 16-bit words Xn
i

(i = 1, . . . , 4) which are processed by the IDEA round function according to
Figure 2. The output transformation produces the ciphertext, denoted by Ci

(i = 1, . . . , 4).
The decryption and encryption functions are identical except for the subkeys

involved. The decryption subkeys are derived from the encryption ones by con-
sidering them in reverse order and computing their respective inverses regarding
the operations � and �.

3 Fault Analysis Techniques and Fault Models

We now briefly recapitulate the three fault analysis techniques our attacks are
based on and their respective fault models. The specific application of these
techniques to the IDEA algorithm will be described in detail in the next sections.
For all our attacks, we consider an unprotected software implementation of IDEA
on a 16-bit platform, but the strategies can be easily adapted to 8-bit and 32-bit
implementations. We assume that an adversary is able to induce at most one
fault per encryption in a cycle accurate manner.

The first two types of fault analysis we consider both infer information about
the key from the fact that two observed ciphertexts (resulting from one normal
and one faulty execution) are identical. For these two analysis techniques we
assume a fault model where an adversary is able to set the output of an arithmetic
operation, � or � in the sequel, to a fixed and known (or guessable) value a.
The particular value of this constant does not influence the attack and is usually
assumed to be equal to zero.

Applying the first method, named Collision Fault Analysis (CFA) [1,7], the
adversary first obtains a faulty ciphertext corresponding to some arbitrary plain-
text. Then she exhaustively searches for another input whose encryption even-
tually collides with this output. CFA is so a chosen message fault analysis which
is particularly efficient since a single fault injection is usually sufficient to reveal
some piece of information about the key.

Nevertheless, it is not always possible to obtain a collision with a faulted ci-
phertext by searching a message that provokes it. This is particularly the case if
the message’s influence on the ciphertext extends the single faulted operation. To
bypass this problem, it is necessary that the encryptions with and without fault
injection operate on pairs of equal messages. The two ciphertexts of the pair will
be different except for the rare case where the normal value (without fault) of
the faulted instruction’s output is precisely equal to the value a imposed by the
fault. The obtained collision, or more precisely the identity of the ciphertexts,
makes evident that the induced fault had no effect. That is, the considered data
a priori possessed the value which the fault was going to impose. The observa-
tion and exploitation of such coincidences is so called Ineffective Fault Analysis

Fault Analysis Study of IDEA 277

Fig. 2. IDEA round function and output transformation

(IFA) [5,6]. This chosen message technique needs much more fault injections than
CFA but allows to target operations deeper in the algorithm. Note that in some
sense IFA may also be seen as a particular case of Safe Error Analysis (SEA)
techniques [8,11,12].

Our third attack is based on the classical Differential Fault Analysis (DFA) first
introduced by Biham and Shamir [4] who applied it to the DES block cipher. DFA
is a general known plaintext technique which exploits the difference between a
normal and a faulty ciphertext stemming from encryptions of the same message.
As for the attack described in [4], we analyze a fault occurring near the end
of the algorithm and assume the general random fault model where the fault
modifies the processed data in a random way. The adversary does not need to
know a priori the random value the fault imposed on the data, and, as will be
shown later, the assumption of cycle accurate fault induction can be relaxed to
a certain extend. Furthermore, our attack needs only very few fault injections,
which makes it both practical and very efficient.

278 C. Clavier, B. Gierlichs, and I. Verbauwhede

4 Collision Fault Analysis of IDEA

Assuming a fault model where an adversary is able to set the output of the �
operation to a fixed and known value a, CFA allows to recover the subkeys Z1

2
and Z1

3 at the cost of only two fault injections and on average 2×215 encryptions.
Given a faulty ciphertext where the fault occurred on the X1

2 � Z1
2 operation,

the adversary just has to exhaustively search for that value of X1
2 which leads to

the same output. Then she knows that X1
2 �Z1

2 = Y 1
2 = a and infers the subkey

value Z1
2 = a � X1

2 (where � denotes subtraction modulo 216). Faulting on the
X1

3 � Z1
3 operation will reveal Z1

3 in the same manner.
Following the same principle, it is possible to retrieve Z1

1 and Z1
4 assuming that

the same fault model also holds for the � operation. We note that for a general
purpose microprocessor it is doubtable whether it is possible to force the output
of the multiplication to a fixed and known value in the same manner as for the
addition operation. While the addition is probably implemented using a single
instruction (at least on 16 or 32 bit systems) which can be faulted relatively easy,
the multiplication is necessarily composed of several instructions. However, one
could assume that the fault model allows to simply set the output of the last
instruction in the sequence to a.

In the best case, an adversary might thus recover 64 key bits using this strat-
egy. We do not see any opportunity to recover more key bits applying CFA1.
Suppose for a moment that the adversary was able to retrieve Z1

i (i = 1, . . . , 4).
In this case, it is possible to determine the inputs p and q of the first round’s
multiplication-addition (MA) layer. However, a fault injection on any operation
of the MA layer does not allow to find another message that provokes a collision
in the ciphertext. For that, it would be necessary that the part of the message
which the adversary varies in order to find the collision (for example X1

1 or X1
3

if the fault is induced on p � Z1
5) only influences the result of the faulted opera-

tion (here p � Z1
5). Clearly, this condition is not met here because the message

entering the first round (and thus the MA layer) is involved again at the end of
the same round when it is XOR-ed with the output of the MA layer. Therefore,
it is impossible to find a collision that allows to derive Z1

5 and Z1
6 by means

of CFA.
In the next section, we discuss how this attack can be extended in order to

extract supplementary key material using a more elaborate method.

5 Ineffective Fault Analysis of IDEA

We consider the case where it is possible to set the output of the addition and
multiplication operations to a known and constant value a. The 64 bits of the
subkeys Z1

1 , . . . , Z1
4 may have been previously determined by CFA such that the

adversary is capable to calculate and control Y 1
1 , . . . , Y 1

4 as well as p and q

1 Except, however, for an adversary able to also decrypt chosen ciphertexts. Such an
adversary can retrieve both Z1

1 to Z1
4 and Z9

1 to Z9
4 which amounts to 86 out of the

128 key bits.

Fault Analysis Study of IDEA 279

entering the first round’s MA layer. Successively encrypting pairs of messages
(normal/faulted) where the fault is induced on the multiplication (p � Z1

5), it is
possible to determine the value of (p�Z1

5) as soon as an identity2 of ciphertexts
is observed. Such a winning pair allows to reveal the value of Z1

5 and is obtained
after encrypting 215 pairs on average since the adversary is able to control the
multiplication’s input p.

Knowing Z1
5 , it is now possible to control the input s of the operation (s�Z1

6),
and to determine Z1

6 in the same manner. 96 key bits are hence known and
the remaining 32 bits can be found by means of exhaustive search. The attack
requires four faults for the CFA phase and on average 2 × 215 additional faults
for the IFA phase.

6 Differential Fault Analysis of IDEA

Our attack applies to the last 1.5 rounds of IDEA and recovers 93 out of 128 key
bits. The remaining 35 key bits may be recovered by exhaustive search. Most
symbols used in the description refer to the notation introduced in Section 2.
However, since the attack involves the output transformation, we depict the
construction considered in Figure 3. Note that the figure takes into account the
double permutation of the branches two and three at the end of round eight and
the beginning of round nine, leading to a permutation of X9

3 and X9
2 . The attack

is split into three successive phases.

6.1 Phase 1: Finding the Subkeys of the Output Transformation

The first phase of the attack aims at recovering the subkeys Z9
1 , . . . , Z9

4 which
are used in the output transformation (cf. Figure 3). Taking into account that
our attack does not allow to recover the most significant bits of Z9

2 and Z9
3 , we

thus reveal 62 key bits.
The fault injection targets at the last round’s MA layer, highlighted by a gray

box in Figure 3. A fault may be induced on either p, q, r, or s whereas the
approach is identical in either case. Note that any modification of one of these
values provokes a priori a XOR-difference Δu on u and Δt on t. These alter the
reference ciphertext (C1, C2, C3, C4) into the faulty ciphertext (C∗1 , C∗2 , C∗3 , C∗4).
One can observe that

X9
1 ⊕ X9∗

1 = X9
2 ⊕ X9∗

2 = Δt (1)

holds, since Y 8
1 = Y 8∗

1 and Y 8
3 = Y 8∗

3 , i.e. Y 8
1 and Y 8

3 are not affected by the
fault. Similarly, also

X9
3 ⊕ X9∗

3 = X9
4 ⊕ X9∗

4 = Δu (2)

holds, because Y 8
2 and Y 8

4 are not affected by the fault.
The relation in Equation 1 in conjunction with a pair of reference and faulty

ciphertexts allows to infer a relation between Z9
1 and Z9

3 which can be exploited
2 We consciously avoid the term collision since the algorithm’s inputs are the same.

280 C. Clavier, B. Gierlichs, and I. Verbauwhede

Fig. 3. Last 1.5 rounds of IDEA

to restrict a list of possible candidates for the value of the couple (Z9
1 , Z9

3). Given
the pair (C1, C

∗
1) an adversary is able to derive

Δt = (C1 � (Z9
1)−1) ⊕ (C∗1 � (Z9

1)−1)

for any arbitrary guess on the value of Z9
1 . Using the pair (C3, C

∗
3) she can

generate a list of candidate values for Z9
3 which are compatible with this Δt.

More precisely, the candidate values for Z9
3 need to satisfy

(C3 � Z9
3) ⊕ (C∗3 � Z9

3) = Δt . (3)

This procedure leads to a list of tuples (Z9
1 , Z9

3) which are compatible under the
observed fault injection.

Applying the above procedure to multiple pairs of reference and faulty cipher-
texts obtained from independently performed fault injections, we can progres-
sively further restrict this list of possible candidates for the couple more and
more since the correct candidate necessarily appears in the intersection of the
lists deduced from each pair of ciphertexts. With only a few faults (cf. Section 7)
it is hence possible to definitely identify the value of Z9

1 and to determine Z9
3

except for its most significant bit. This bit can not be identified because if Z9
3

verifies Equation 3 then this also holds for Z9
3 ⊕ 0x8000. This simply comes

from the fact that adding (or subtracting) 0x8000 modulo 216 or XOR-ing with
0x8000 are just equivalent operations.

Fault Analysis Study of IDEA 281

The same approach can be mounted to derive the values of Z9
2 and Z9

4 using
the relation in Equation 2. Given the pair (C4, C

∗
4) the adversary derives

Δu = (C4 � (Z9
4)−1) ⊕ (C∗4 � (Z9

4)−1)

for any arbitrary guess on Z9
4 . Then she uses

(C2 � Z9
2) ⊕ (C∗2 � Z9

2) = Δu (4)

to build the list of candidates for the tuple (Z9
2 , Z9

4) compatible with the observed
fault. For the same reason as mentioned above, building the intersection of several
lists deduced from multiple pairs of ciphertexts allows to definitely identify Z9

4
and to determine Z9

2 except for its most significant bit.
Note that each fault injection observed during this phase can be used inde-

pendently to generate a list of candidates for the tuple (Z9
1 , Z9

3) as well as for
the tuple (Z9

2 , Z9
4). This fact makes phase one very efficient in terms of recovered

bits per fault injection. At the end of this phase we have derived four candidates
for the value of (Z9

1 , Z9
2 , Z9

3 , Z9
4) which corresponds to knowing the key bits 22

to 85 except for bits 38 and 54.

6.2 Phase 2: Finding the Subkey Z8
6

The second phase of the attack aims at recovering the 16 key bits 109 − 124
which are used as subkey Z8

6 in the penultimate round (cf. Table 1).
A fault may be induced on Y 8

2 , or any other preceding value as long as Y 8
1 ,

Y 8
3 , and Y 8

4 remain unmodified, leading to the XOR-difference Δq on q (as well
as the XOR-differences Δt and Δu). Note that the attack also works equiva-
lently when faulting on Y 8

4 or related preceding values as stated above for Y 8
2 .

Given a pair of reference and faulty ciphertexts and the subkey candidates re-
vealed in the previous phase, an adversary can compute Δt and Δu as defined
in Equations (3,4). Note that the existence of two candidates for Z9

2 does not
matter here, since both candidates lead to the same Δu and Δt. Knowing these
values allows to calculate Δq being the XOR-difference (Y 8

2 ⊕ Y 8∗
2) introduced

by the fault. The potential to calculate Δq is interesting in two ways. It will not
only enable the success of this phase but can also be useful in the more general
setting of device characterization as it allows to precisely determine the effect of
the fault.

The adversary generates the list TR of all tuples (t, r) that are compatible
with the observed Δt and Δu. A compatible tuple (t, r) verifies

(r � t) ⊕ (r � (t ⊕ Δt)) = Δu .

For any arbitrary guess on Z8
6 the adversary checks whether there exists at least

one tuple (t, r), such that

(s � r) ⊕ (s∗ � r) = Δq

with s = t � (Z8
6)−1 and s∗ = (t ⊕ Δt) � (Z8

6)−1. If no such (t, r) exists, the
guessed Z8

6 is discarded from the list of subkey candidates.

282 C. Clavier, B. Gierlichs, and I. Verbauwhede

Applying the above procedure to multiple pairs of reference and faulty cipher-
texts obtained from independently performed fault injections, the list of remain-
ing candidates for Z8

6 reduces rapidly when building the intersection. Finally,
the adversary reveals the correct subkey value.

6.3 Phase 3: Finding the Subkey Z8
5

The third phase of the attack aims at recovering the 16 key bits 93 − 108 which
are used as subkey Z8

5 in the penultimate round (cf. Table 1).
A fault may be induced on Y 8

1 leading to the XOR-difference Δp on the input
p to the MA layer (as well as the XOR-differences Δt and Δu on its outputs).
As for phase 2, any timing location of the fault which results in a modification
of either Y 8

1 or Y 8
3 would be equivalently exploitable. Given a pair of reference

and faulty ciphertexts and the previously derived subkeys Z9
1 , . . . , Z9

4 , and Z9
6 an

adversary can compute Δt, Δu, and Δp as described for the second phase. We
exhaustively consider all possible values for the tuple (t, r). For each of them, we
compute t∗ = t⊕Δt, r∗ = ((r�t)⊕Δu)�t∗, s = t�(Z8

6)−1, and s∗ = t∗�(Z8
6)−1.

We discard a candidate for (t, r) if it does not verify Δq = 0, i.e. a valid candidate
for the tuple must satisfy

s � r = s∗ � r∗ .

For all values Z8
5 we check whether at least one of the remaining candidates for

(t, r) satisfies
(r � (Z8

5)−1) ⊕ (r∗ � (Z8
5)−1) = Δp .

If this is not the case, we discard this candidate for Z8
5 .

As before, applying the above procedure to multiple pairs of reference and
faulty ciphertexts obtained from independently performed fault injections pro-
gressively eliminates wrong candidate values.

While simulating this phase of the attack, we observed that a very small num-
ber of faults (approximately five) always suffices to reduce the list of possible
values for Z8

5 to only two candidates. Contrarily to the phenomenon regarding
the most significant bits of Z9

2 and Z9
3 pointed out in the first phase, the am-

biguity between these two remaining values is not absolute. In our experiments
we observed that it might be removed, but it seems to be difficult and often
happens only after several tens of faults3.

To simplify our analysis, we hence consider the third phase a success a soon
as at most two candidates for Z8

5 remain. Consequently, we stipulate that this
phase reveals only 15 additional key bits.

3 Without having found a satisfactory explication for this phenomenon, we have how-

ever observed that for each value of Z8
5 there exists a companion Z̃8

5 having the

property that the values Δr = (p�Z8
5)⊕ (p∗ �Z8

5) and Δ̃r = (p� Z̃8
5)⊕ (p∗ � Z̃8

5), if
p and p∗ are chosen randomly, are astonishingly close in terms of Hamming Distance
and often equal. This observation is worthy of a deeper analysis and it would be
interesting to study if it could open new paths for the cryptanalysis of IDEA.

Fault Analysis Study of IDEA 283

6.4 Summary

Put together, the three phases of our attack allow to recover 93 key bits. The
following section presents simulation results which validate our approach and
give a precise estimation about how much fault injections each phase requires.

Remark 1. A trick allows to reduce the required number of faults. Indeed, one
may notice that faults injected on Y 8

2 which are used for the second phase may
also be partly useful for the first phase. This is because any change of Y 8

2 leads
to a differential Δt which may be exploitable in phase 1 as neither Y 8

1 nor Y 8
3 is

modified. In the same way, a fault modifying Y 8
1 in phase 3 is usable in phase 1

by exploiting the differential Δu. As a result, injecting n faults for each one of
phase 2 and phase 3 allows to save n faults for the first phase.

7 Simulation Results

In this section we evaluate the efficiency of all three phases of our attack by
means of simulation. The results we present here are based on about 10 000
simulations for each of the two first phases and on about 3 000 simulations for
the third phase, which requires a longer calculation time.

We use two metrics to judge the efficiency of each phase of the attack. The first
is the mean residual entropy of the subkey(s) considered after having exploited
m faults. It is defined as

hm(Zn
i) = 〈log2(#Sm)〉

where Zn
i denotes the subkey(s) concerned, 〈·〉 is the expectation operator which

we evaluate by means of the empirical mean, and #Sm denotes the size of the
set of remaining candidates for Zn

i after m faults. An attack aims at reducing
this uncertainty.

The second is a kind of success probability, defined as the probability

p(#Sm � d)

that the number of remaining candidates is less or equal than d after having
exploited m faults. An attack aims at increasing this probability.

Note that both metrics are sound since the filtering processes can not exclude
the correct candidate(s) from the list of possible values. Hence, both hm(Zn

i) = 0
and #Sm � 1 are equivalent to exactly identifying the correct subkey value.

7.1 Phase 1

Here the fault may occur on either p, q ,r, or s, i.e. the fault location is flexible
to a certain extend. We present detailed results only for the Z9

1 and Z9
3 branch

since the results for Z9
2 and Z9

4 are virtually identical. Further, we also present
results for the entire set Z9

1−4 as this is of most interest. Figure 4 shows the mean
residual entropies hm(Z9

1), hm(Z9
3), hm((Z9

1 , Z9
3)), and hm(Z9

1−4) after faulting

284 C. Clavier, B. Gierlichs, and I. Verbauwhede

m = 1, 2, . . . , 10 times, where each time a random message has been used. One
can observe that, as previously argued, revealing the value of Z9

3 is harder than
finding the value of Z9

1 . Therefore, the entropy of the tuple (Z9
1 , Z9

3) is dominated
by the entropy of Z9

3 . Further, h(Z9
1−4) is exactly the double of h(Z9

1 , Z9
3) which

is obviously due to the mutual independence of the two branches. Note that a
small number of faults suffices to rapidly approach the residual entropy’s intrinsic
limit of two bits (the two most significant bits of Z9

2 and Z9
3). After only five

faults, the initial entropy of 64 bits is reduced to 2.38.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30
h(Z

1
9)

h(z
3
9)

h(Z
1
9,Z

3
9)

h(Z
1−4
9)

Fig. 4. Mean residual entropy against
number of fault injections

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(Z
1
9)

p(Z
3
9)

p(Z
1
9,Z

3
9)

p(Z
1−4
9)

Fig. 5. Probability of #Sm � d for Z9
i

against number of fault injections

Figure 5 depicts the success probabilities p(#Sm � 1) for Z9
1 , p(#Sm � 2)

for Z9
3 , p(#Sm � 2) for (Z9

1 , Z9
3), and p(#Sm � 4) for (Z9

1−4) after faulting m =
1, 2, . . . , 10 times. After only five faults these probabilities are 97%, 83%, 83%,
and 70% respectively. Still exploiting only five faults, the probability p(#Sm � 8)
for Z9

1−4) is 93%.
Another interesting question is whether one of the fault locations, i.e. p, q, r,

and s, is particularly efficient and hence preferable for an attack. Our simulations
show that this is not the case. The results for fixed fault locations differ only
at a negligible order of magnitude and can clearly be considered noise that will
vanish for a huge number of simulations.

We also tested whether using a fixed message for the consecutive fault injec-
tions during one simulation could be advantageous. We observed that this is not
the case. For 2 000 simulations with a fixed message and 2 000 simulations with
a randomly chosen message we obtain, for the set of subkeys Z9

1−4, an entropy
of 6.44 bits in the case of a fixed message and only 4.72 bits in the case of a
randomly chosen message after exploiting three faults.

7.2 Phase 2

For the second phase, just like for the first one, a small number of fault injections
suffices to rapidly reduce the number of remaining candidates for subkey Z8

6 .

Fault Analysis Study of IDEA 285

Figure 6 shows the mean residual entropy hm(Z8
6) after faulting m = 1, 2, . . . , 10

times, where each time a random message has been used. One can observe that
after only five faults there remain less than four candidates in the average case.
After eight faults, the mean residual entropy is no more than 0.41 bits and the
correct subkey is unambiguously identified in 62% of the cases.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 6. Mean residual entropy of Z8
6

against number of fault injections
Fig. 7. Probability of #Sm � 1 for Z8

6

against number of fault injections

7.3 Phase 3

The third phase of our attack is particularly efficient. As mentioned in the de-
scription of the attack, we consider this phase a success as soon as the number
of remaining candidates for subkey Z8

5 is at most two. As can be seen in Figure 9
only four faults suffice to obtain an even better result in the average case, i.e.
the mean residual entropy is less than one bit. Exploiting only three faults, the
probability that the number of remaining candidates for Z8

5 is at most two is
greater than 74%.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8. Mean residual entropy of Z8
5

against number of fault injections
Fig. 9. Probability of #Sm <= 2 for Z8

5

against number of fault injections

286 C. Clavier, B. Gierlichs, and I. Verbauwhede

8 Conclusion

In this work we have studied the applicability and efficiency of several fault
attacks against the IDEA block cipher. We conclude that CFA can only infer 64
key bits which renders the necessary exhaustive key search for the remaining
64 key bits practically infeasible. On the other hand, IFA allows to retrieve the
entire key in the same restrictive fault model but requires a large number of fault
injections. For these practical reasons, the third attack presented is of particular
interest. Our DFA which is to the best of our knowledge the first Differential Fault
Analysis of IDEA requires no hypothesis on the effect of the fault and efficiently
extracts 93 out of 128 key bits exploiting about only 10 faults. Further, we can
also relax the assumption of cycle accurate fault injection to a certain extend
which makes the attack even more practical.

IDEA’s design makes it by default more resistant to CFA/IFA than other ciphers
(e.g. based on SP networks like AES). However, as demonstrated in this paper,
implementations of IDEA clearly need to be protected against fault attacks.

Acknowledgments

The work described in this document has been partly financially supported by
the European Commission through the IST Program under Contract IST-2002-
507932 ECRYPT.

It was also supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), by FWO projects EMA G.0475.05
and BBC G.0300.07, by the European Commission FP6 MIRG project SESOC,
number MIRG-CT-2004-516568, and by the K.U.Leuven-BOF (OT/06/40).

The information in this document reflects only the author’s views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. Amiel, F., Clavier, C., Tunstall, M.: Fault Analysis of DPA-Resistant Algorithms.
In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS,
vol. 4236, pp. 223–236. Springer, Heidelberg (2006)

2. Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-Like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

Fault Analysis Study of IDEA 287

5. Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

6. Clavier, C.: Secret External Encodings Do not Prevent Transient Fault Analysis.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007)

7. Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

8. Joye, M., Quisquater, J.-J., Yen, S.-M., Yung, M.: Observability Analysis – De-
tecting When Improved Cryptosystems Fail. In: Preneel, B. (ed.) CT-RSA 2002.
LNCS, vol. 2271, pp. 17–29. Springer, Heidelberg (2002)

9. Lai, X., Massey, J.L.: Markov Ciphers and Differentail Cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

10. Lemke, K., Schramm, K., Paar, C.: DPA on n-Bit Sized Boolean and Arithmetic
Operations and Its Application to IDEA, RC6, and the HMAC-Construction. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219.
Springer, Heidelberg (2004)

11. Yen, S.-M., Joye, M.: Checking Before Output Not Be Enough Against Fault-Based
Cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

12. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A Countermeasure against One Physical
Cryptanalysis May Benefit Another Attack. In: Kim, K.-c. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 414–427. Springer, Heidelberg (2002)

13. (September 17, 2007), http://www.mediacrypt.com/

http://www.mediacrypt.com/

Susceptibility of UHF RFID Tags to

Electromagnetic Analysis�

Thomas Plos

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

Thomas.Plos@iaik.tugraz.at

Abstract. The number of applications that use radio-frequency identi-
fication (RFID) technology has grown continually in the last few years.
Current RFID tags are mainly used for identification purposes and do
not include crypto functionality. Therefore, classical RFID tags are not
designed as secure devices and do not contain countermeasures against
side-channel analysis (SCA). The lack of such countermeasures makes
RFID tags vulnerable to attacks relying on electromagnetic (EM) anal-
ysis. When attaching crypto functionality to future RFID tags which is
considered for many use cases like forgery protection of goods, SCA be-
comes a concern. In this work we show the susceptibility of UHF RFID
tags to EM analysis by using differential-EM analysis attacks. We have
examined commercially-available passive UHF RFID tags with a mi-
crochip. The results show that a simple dipole antenna and a digital-
storage oscilloscope connected to a computer are enough to determine
data-dependent emanation of the microchip of passive UHF RFID tags
at distances up to 1m. Enhancement of RFID tags with crypto func-
tionality therefore requires re-design of the whole tag architecture with
respect to SCA.

Keywords: Side-channel analysis (SCA), radio-frequency identification
(RFID), EPC Generation 2 standard, ultra-high frequency (UHF), dif-
ferential electromagnetic analysis (DEMA).

1 Introduction

During the last few years the application of radio-frequency identification (RFID)
technology has become more and more important. Ticketing, electronic pass-
ports, immobilizers, and supply-chain management are only an outline of a long
list of applications that already use RFID systems. The integration of RFID
technology can make applications more convenient, more effective, and secure.

The main components of a basic RFID system are an RFID reader that is
connected to a back-end database and at least one RFID tag. RFID reader and

� This work has been supported by the European Commission under the Sixth Frame-
work Programme (Project BRIDGE, Contract Number IST-FP6-033546) and by the
Austrian Science Fund (FWF Project Number P18321).

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 288–300, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 289

RFID tag communicate wirelessly by using a radio frequency (RF) field. The RF
field is generated by the RFID reader via an antenna and modulated according
to the data that should be transmitted to the RFID tag. The RFID tag itself
is equipped with an antenna which it uses to extract data and energy from the
RF field. Three types of RFID tags can be distinguished: passive RFID tags,
semi-passive RFID tags, and active RFID tags. Passive RFID tags are the most
prevalent obtaining their power supply directly from the RF field, semi-passive
tags and active tags are supplied by a battery. A typical RFID tag consists of an
antenna and a microchip. The microchip contains an analog part and a digital
part, whereas the analog part of an RFID tag is responsible for demodulating
the RF field and modulating the response of the RFID tag. In addition, the
analog part of passive RFID tags is also responsible for extracting the power
supply from the RF field. The digital part is more or less complex depending on
the application. For security-enhanced applications like contactless smart cards,
the digital part of an RFID tag contains a microcontroller with non-volatile
memory, less sophisticated applications may only use a state machine with read-
only memory.

RFID systems can be classified by the frequency of the RF field and the cou-
pling method. The frequencies used by RFID systems range from about 125 kHz
in the low-frequency range up to 5.8GHz in the microwave range [1]. Deployed
coupling methods are: electric coupling, magnetic coupling, and electromagnetic
coupling. This work focuses on electromagnetic-coupled systems in the UHF
range operating at a frequency of 868MHz. In contrast to electric coupling and
magnetic coupling which operate in the near field, electromagnetic coupling op-
erates in the far field by using electromagnetic waves.

Responsible for the existence of electromagnetic waves is the limited propaga-
tion speed of the electromagnetic field. At a certain distance from the antenna
the electromagnetic field can no longer follow the voltage changes at the antenna.
The electromagnetic field separates from the antenna and propagates as an elec-
tromagnetic wave. The region where the electromagnetic field is separated from
the antenna is named far field [1]. For UHF RFID tags operating at a frequency
of 868MHz, the far field starts at a distance of about 5.5 cm from the antenna.
The simplest antenna shape that is used for generating electromagnetic waves
is the dipole antenna which consists of two wires. Since the attenuation of the
RF field in the far field is less than in the near field, electromagnetic-coupled
systems achieve longer read ranges. Typically, read ranges of 2 to 3 m and more
can be achieved, depending on the power of the RFID reader.

An important protocol for electromagnetic-coupled RFID systems in the UHF
range is the Electronic Product Code (EPC) Generation 2 standard [2]. The EPC
Generation 2 standard is planned to be the future replacement for conventional
bar codes. The vision of the inventors of the EPC Generation 2 standard is
to attach an RFID tag to each individual product. For now, RFID tags are
still too expensive to place them on each individual product, rather they are
placed on groups of products like pallets. Equipping pallets with RFID tags
allows to increase the efficiency and to reduce costs in supply-chain management.

290 T. Plos

The driving force behind the introduction of the EPC Generation 2 standard is
EPCglobal which is a not-for-profit organization that has been founded by GS1
in 2003. GS1 has emerged from Uniform Code Council (UCC) and European
Article Number (EAN) International which are the two organizations that are
responsible for managing the bar code systems. Large distributors such as Wal-
Mart, Tesco, and Metro have already integrated RFID technology that uses the
EPC Generation2 standard into their supply-chain management [3].

Usually, RFID tags have to be fairly cheap and therefore can only integrate
limited functionality which strongly affects the utilized protocol. Thus, protocols
like the EPC Geneneration 2 standard neglect to include cryptographic security.
The lack of cryptographic security makes the EPC Geneneration2 standard vul-
nerable to various attacks such as cloning or revealing secrets like the kill pass-
word. However, when using EPC Generation 2 tags to prevent valuable goods
from forgery, a higher tag price is acceptable. Pharmacy for example is a use
case where valuable goods are involved. Another important aspect is the techno-
logical progress that allows to integrate more and more functionality to future
RFID tags. There exist various proposals that deal with enhancing the security
of RFID protocols which furthermore enforce to include crypto functionality to
RFID tags (see [4, 5, 6, 7]). As soon as RFID tags contain crypto functionality,
vulnerability against side-channel analysis becomes a concern.

This work is organized as follows. Section 2 provides an overview of the related
work with respect to power analysis and electromagnetic analysis. In Section 3,
the UHF RFID tags that have been examined in this work are described, followed
by a description of the measurement setup in Section 4. Section 5 presents the
results of the side-channel analysis that have been conducted. The conclusion of
this work is given in Section 6.

2 Related Work

With the introduction of power analysis by Kocher et al. in 1998, a wide field for
new and effective side-channel attacks has been opened [8]. Power analysis makes
use of the fact that the power consumption of CMOS devices is dependent on the
data and instructions that are executed. Measuring the power consumption of
a CMOS device and deploying statistical methods allows to reveal secrets from
cryptographic devices like smart cards. Some years later, the EM radiation of
CMOS devices has also been found useful for side-channel attacks. In [9], Gan-
dolfi et al. describe the practical implementation of EM attacks and furthermore
compare them with conventional power analysis. Thereby, the authors come to
the conclusion that EM measurements, although they are noisier, lead to bet-
ter differentials than power measurements. As explained by Mangard [10], EM
attacks are not limited to the near field, they can also be successful in the far
field.

Hutter et al. [11] describe how to use EM measurements to attack passive
RFID devices which are running at 13.56MHz. Two RFID prototype devices
with a cryptographic primitive implemented on them, one in software and one in

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 291

hardware, are attacked by applying power measurements and EM measurements.
In both cases the attacks were successful. A focus on UHF RFID devices and EM
measurements is given by the work of Oren and Shamir [12]. There, the authors
describe a new attack called parasitic backscatter attack. This attack is possible
since the amount of power that is reflected by UHF RFID tags is related to the
power consumption of its internal circuit. Furthermore, the authors explain how
the parasitic backscatter attack can be used to extract the secret kill password
from EPC Generation 1 tags. Relying on the results in [12], our work goes a step
further and focuses on determining the susceptibility of EPC Generation 2 tags
to differential electromagnetic analysis (DEMA).

3 Examined UHF RFID Tags

For analyzing the side-channel leakage, two different types of UHF RFID tags
have been used. Firstly a self-made prototype of a UHF RFID tag that operates
semi passively, and secondly commercially-available UHF RFID tags that oper-
ate passively. The self-made prototype which has initially been built to evaluate
current UHF RFID protocols has also been found useful for providing the trigger
signal when performing measurements on passive UHF RFID tags.

3.1 Description of the UHF Tag Prototype

The first EM measurements presented in this work have been done by using
a self-made UHF tag prototype. When evaluating and enhancing the security
of current UHF RFID protocols, it is helpful to have a programmable UHF
RFID tag. A programmable UHF RFID tag can be used to easily integrate
additional functionality such as new security mechanisms and new commands.
Furthermore, the additional functionality can be verified and tested, showing a
proof of concept. Standard UHF RFID tags do not provide the possibility to
integrate additional functionality because their functionality is implemented in
silicon.

Unlike most UHF RFID tags, the UHF tag prototype operates semi passively.
Like a passive RFID tag, a semi-passive RFID tag only uses the RF field of
the reader for communication, but uses an extra battery for power supply like
an active RFID tag. Our UHF tag prototype is a printed circuit board (PCB)
with discrete components. As shown in Figure 1, the UHF tag prototype can be
divided into four parts: an antenna, an analog front end, a digital part, and a
protocol implementation.

Antenna. For the UHF tag prototype a simple dipole antenna has been selected
which consists of two wires [1]. The dipole antenna of the UHF tag prototype is
directly printed on the layout of the PCB. With the help of the antenna, energy
is extracted from the RF field. The voltage induced in the antenna is furthermore
fed to the input of the analog front end.

292 T. Plos

Antenna

Analog front end

Digital part

Protocol
implementation

Micro-
controller

Hysteresis
comparator

Charge-pump
rectifierBackscatter

Fig. 1. Architecture of the UHF tag prototype

Analog Front End. The analog front end of the UHF tag prototype contains
a charge-pump rectifier, a hysteresis comparator, and a backscatter. Thereby,
the charge-pump rectifier demodulates and multiplies the voltage coming
from the antenna. Afterwards, the hysteresis comparator turns the analog sig-
nal from the charge-pump rectifier into a “clean” digital signal for entering the
digital part. The backscatter consists of a resistor and a capacitor forming an
impedance that is switched in parallel to the antenna via a fast switching tran-
sistor allowing backscatter modulation. UHF RFID tags transmit their reply via
backscatter modulation [13].

Digital Part. In order to have the UHF tag prototype programmable, its dig-
ital part is realized as a microcontroller. The deployed microcontroller is an
Atmel ATMega128 which is an 8-bit microcontroller operating at 16MHz. Pro-
gramming and in-system debugging of the microcontroller is done via a JTAG
interface.

Protocol Implementation. The EPC Generation 2 standard has been selected
as protocol for the UHF tag prototype. The protocol is implemented in software
which is written to the program memory of the UHF tag prototype’s microcon-
troller. Besides the implementation of the mandatory functionality of the EPC
Generation 2 standard, the UHF tag prototype has also integrated secure tag
authentication that uses a 128-bit AES encryption scheme according to [6].

3.2 Description of Passive UHF RFID Tags

In addition to the UHF tag prototype we have used passive UHF RFID tags
that are commercially available. In contrast to the UHF tag prototype, passive
UHF RFID tags are completely powered by the RF field of the RFID reader
requiring no extra battery. A passive UHF RFID tag consists of an antenna and
a microchip that comprises an analog part and a digital part. Typically, the
protocol handling is implemented via a state machine in dedicated hardware [1].

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 293

A comparison with the previous section shows that the overall structure of a
passive UHF RFID tag is not that different from the structure of the UHF tag
prototype.

In order to obtain read ranges of several meters, passive UHF RFID tags
should consume very little power. The power consumption of passive UHF RFID
tags is in the range of some microwatts [14]. For detecting data-dependent em-
anation we have used passive UHF RFID tags from various tag vendors. All
examined passive UHF RFID tags have shown data-dependent emanation.

4 Measurement Setup for UHF RFID Tags

This section describes the measurement setup that has been used to reveal data-
dependent emanation of UHF RFID tags. Measurements have been done some
centimeters away from the UHF RFID tags in the near field and up to 1m away
from the UHF RFID tags in the far field. The RF field of the RFID reader
has been switched on during all the measurements. Initial measurements have
detected data-dependent emanation of the UHF tag prototype. Measurements
on passive UHF RFID tags could also reveal the side-channel leakage.

UHF RFID
reader

Digital-storage
oscilloscope

Computer

RF field

DUT

EM
measurement

probe

UHF tag

prototype
Trigger
signal

Fig. 2. Measurement setup for examining the emanation of a passive UHF RFID tag
(DUT) in the far field

The automation of the measurement setup is important for performing
side-channel analysis. Only an automated measurement setup allows to gather
thousands of individual measurements within an acceptable time. Besides the
examined UHF RFID tag which we call device under test (DUT), the main
components of the measurement setup are a digital-storage oscilloscope, a UHF
RFID reader that is compliant to the EPC Generation 2 standard, and an EM

294 T. Plos

Fig. 3. Near-field probes that have been
used for the measurements

Fig. 4. Self-made dipole antenna that
has been used for the measurements

measurement probe. The digital-storage oscilloscope and the UHF RFID reader
are connected to a computer. A program on the computer controls the whole
measurement flow and performs the subsequent analysis of the recorded data.
Depending on the measurement, different EM measurement probes are used to
obtain the EM signal that is radiated from the DUT. Figure 2 shows the mea-
surement setup for examining the emanation of a passive UHF RFID tag in the
far field.

Acquiring a single measurement follows always the same scheme and requires
several steps. After initializing the DUT, the computer sends the command to
the UHF RFID reader that is used for detecting the data-dependent emanation.
The UHF RFID reader in turn communicates with the DUT via the air interface.
While the DUT processes this command, its radiated EM field is recorded by
the digital-storage oscilloscope with the help of an EM measurement probe. The
data acquisition of the digital-storage oscilloscope is started by a trigger signal.
When examining the UHF tag prototype, the trigger signal directly comes from
the UHF tag prototype. Passive UHF RFID tags are not suitable for directly
providing a trigger signal. Thus, the software of the UHF tag prototype is mod-
ified such that it can be placed in parallel to the passive UHF RFID tag into
the RF field to provide the external trigger signal (compare Figure 2). Acquiring
a single measurement is finalized by transferring and storing the recorded data
from the digital-storage oscilloscope to the computer.

4.1 Near-Field Measurements

For measuring the emanation of UHF RFID tags in the near field, we have used
special near-field probes. Near-field probes are available in various sizes and
shapes depending on the frequency range and the application they are dedicated
for. During our measurements we have used the three near-field probes in Fig-
ure 3 which are designated for detecting magnetic fields. One near-field probe
works for frequencies from 100 kHz to 50MHz, the other two near-field probes
work for frequencies from 30MHz to 3GHz.

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 295

Since the signal amplitudes that can be obtained with near-field probes are
rather small, we have deployed an additional preamplifier. The preamplifier has a
voltage gain of 30 dB and is connected between the output of the near-field probe
and the input of the digital-storage oscilloscope. When doing measurements in
the range of some tenths of megahertz, it is helpful to enable the internal band-
width limitation of the digital-storage oscilloscope. Limiting the bandwidth has
the advantage that the strong RF field from the UHF RFID reader is suppressed,
which furthermore increases the quality of the measurements.

4.2 Far-Field Measurements

Near-field probes are no longer suitable for far-field measurements, rather,
electromagnetic antennas are required. The UHF RFID tags that have been
examined in this work operate at a carrier frequency of about 868MHz. Since
our far-field measurements have concentrated on detecting data-dependent em-
anation of UHF RFID tags around their carrier frequency, no special broadband
antenna is necessary. A self-made dipole antenna shown in Figure 4 whose length
is tuned to the carrier frequency is sufficient. The length of a dipole antenna for
a carrier frequency of 868MHz is about 17 cm [1]. While near-field measure-
ments require an additional preamplifier in order to obtain acceptable signal
amplitudes, far-field measurements do not. A spectrum analyzer with special
band-pass filters can be used to transform the 868MHz signal to baseband which
allows to reduce the required sampling rate of the digital-storage oscilloscope. A
reduced sampling rate results in measurements that consume less storage space
on the computer and can be analyzed in a faster way.

5 Side-Channel Analysis of UHF RFID Tags

For analyzing the susceptibility of UHF RFID tags to side-channel analysis
(SCA) we have used differential electromagnetic analysis (DEMA) attacks which
have originally emerged from differential power analysis (DPA) attacks [9]. Both
attacks are a powerful instrument to reveal secrets from crypto devices. The
difference between DEMA attacks and DPA attacks is the method in which
measurements are acquired. For DEMA attacks, measurements of the electro-
magnetic field that is emanated by crypto devices are required. DPA attacks use
power traces that are obtained by directly measuring the power consumption of
crypto devices. Both attacks have the advantage that only a simple model of the
analyzed crypto device is necessary and that even very noisy measurements can
be used [15].

Before starting a DEMA attack an appropriate operation needs to be selected
that is suitable for revealing data dependencies. The UHF RFID tags which we
have examined are EPC Generation 2 tags. For those tags, it has turned out
that the Write command is a useful operation to detect data dependencies. The
Write command as it is defined in the EPC Generation 2 standard [2] allows to
write a 2-byte value to the non-volatile memory of a UHF RFID tag. Since the

296 T. Plos

2-byte value is a freely selectable parameter of the Write command, the 2-byte
value can be used as chosen input data of the DEMA attack.

By using the measurement setup and the measurement-acquisition strategy
described in Section 4 we have obtained various electromagnetic traces. The elec-
tromagnetic traces are recorded while the examined UHF RFID tag executes a
Write command with a chosen 2-byte value. Thereby, always the same memory
location of the UHF RFID tag is used. This memory location is initialized with
the value zero before a new chosen 2-byte value is written. Initializing the mem-
ory location has the purpose to bring the UHF RFID tag always to the same
initial state.

After recording the electromagnetic traces, a hypothetical model is used to
map the chosen 2-byte values to hypothetical values that try to predict the elec-
tromagnetic emanation of the UHF RFID tag. There exist various hypothetical
models like the Hamming-weight model or the Hamming-distance model which
are not explained here in more detail (see [15]). Taking the hypothetical val-
ues from all 2-byte values that have been used to obtain the electromagnetic
traces results in a hypothesis that is assumed to be correct. Additionally, an-
other several hundred hypotheses are created that are assumed to be wrong.
Wrong hypotheses are determined by applying the hypothetical model to ran-
domly chosen values that are different from the 2-byte values that have been
used to obtain the electromagnetic traces.

Having all the hypotheses allows to compare them with the electromagnetic
traces that have been recorded previously. Comparison is done with the help
of statistical methods. A well known statistical method for DEMA attacks and
DPA attacks which we have used is the correlation coefficient. The correlation
coefficient shows the linear dependency between different values [15]. The higher
the absolute value of the correlation coefficient the higher is the linear depen-
dency between the values that are compared. Based on the correlation coefficient,
a correlation trace can be computed for each hypothesis. For the side-channel
analysis, we call a DEMA attack successful if the comparison between the elec-
tromagnetic traces and the hypothesis that is assumed to be correct leads to
significant peaks in the corresponding correlation trace.

5.1 Side-Channel Analysis of the UHF Tag Prototype

The UHF tag prototype we have built and used for side-channel analysis oper-
ates semi passively and contains a microcontroller. Compared to a conventional
passive UHF RFID tag, the power consumption of the deployed microcontroller
is much higher. For any fixed hardware architecture, higher power consumption
brings along higher electromagnetic emanation.

Results of Near-Field Measurements. Main part of the electromagnetic
field that is emanated by the UHF tag prototype’s microcontroller is located in
the frequency range of some hundreds of megahertz. Since the strong RF signal
of the UHF RFID reader is located around 868MHz, the RF signal can be easily

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 297

0 100 200

-0.5

0

0.5

Time [s]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 5. Result of the DEMA attack on
the UHF tag prototype by doing low-
pass filtering directly on the digital-
storage oscilloscope

0 100 200

-0.5

0

0.5

Time [s]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 6. Result of the DEMA attack on
the UHF tag prototype by doing low-
pass filtering via software in an addi-
tional preprocessing step

suppressed by applying a low-pass filter. There are two possible ways for low-
pass filtering: directly with the help of the digital-storage oscilloscope during
the measurement acquisition, or via software in an additional preprocessing step
before performing the DEMA attack.

Suppressing the strong RF signal by using the digital-storage oscilloscope re-
sults in electromagnetic traces with smaller amplitudes. As a consequence, a
higher input sensitivity can be selected at the digital-storage oscilloscope which
increases the accuracy of the measurements. Figure 5 shows the result of a suc-
cessful DEMA attack on the UHF tag prototype in the near-field during the exe-
cution of a Write command. Thereby, recording 1000 individual electromagnetic
traces has lead to a maximum absolute value of 0.63 for the correlation trace of
the correct hypothesis. Low-pass filtering has been directly done on the digital-
storage oscilloscope during measurement acquisition. For comparison, Figure 6
shows the result of the same DEMA attack by doing low-pass filtering of the
electromagnetic traces in software. In this case, the maximum absolute value of
the correlation trace reduces to about 0.21.

Results of Far-Field Measurements. Besides analyzing the emanation of
the UHF tag prototype in the near field, we have also done analysis work in
the far field. As mentioned in Section 4.2, we have concentrated on measuring
the emanation of UHF RFID tags around the carrier frequency of the RF signal
of about 868MHz during our far-field measurements. With our measurement
strategy we could not detect any data dependent emanation of the UHF tag
prototype in the far field.

5.2 Side-Channel Analysis of Passive UHF RFID Tags

In contrast to our UHF tag prototype, passive UHF RFID tags have a power con-
sumption of only some microwatts. With our measurement equipment we have
not been able to directly measure the electromagnetic field that is emanated by

298 T. Plos

0 0.5 1
-0.2

0
0.2
0.4
0.6

Time [ms]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 7. Result of the DEMA attack on
a passive UHF RFID tag in the near
field

0 0.5 1
-0.2

0
0.2
0.4
0.6

Time [ms]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 8. Result of the DEMA attack on
a passive UHF RFID tag from a differ-
ent tag vendor in the near field

the microchip of a passive UHF RFID tag. Therefore, we have used an indirect
effect named parasitic backscatter to detect data-dependent emanation of the
microchip. Passive UHF RFID tags deploy backscatter modulation to transmit
data to the UHF RFID reader. As described in [12], the power consumption
of passive UHF RFID tags modulates the backscatter which results in parasitic
backscatter. The most important observation is that the backscatter of a pas-
sive UHF RFID tag can be detected via a simple dipole antenna within several
meters.

Results of Near-Field Measurements. Using the parasitic backscatter of
passive UHF RFID tags in the near field has allowed to perform DEMA attacks
successfully. When using a near-field probe, its placement toward the passive
UHF RFID tag that is examined is an important factor for the success of the
DEMA attack. Favorable placement of the near-field probe stronger attenuates
the RF field that is emitted by the antenna of the UHF RFID reader. The
stronger the RF field is attenuated the less measurements are necessary for a
successful DEMA attack.

In this way we have been able to perform successful DEMA attacks by measur-
ing less than 100 electromagnetic traces. Figure 7 shows the result of a DEMA
attack on a passive UHF RFID tag by using 1000 measurements. In order to
ensure that this is not a phenomenon of a specific tag vendor, we have tested
passive UHF RFID tags from various tag vendors. Figure 8 shows the result of
the same DEMA attack by using a passive UHF RFID tag from a different tag
vendor. Although the two correlation traces in Figure 7 and Figure 8 are quite
different, both illustrate that there is a strong data dependency.

Results of Far-Field Measurements. For the passive UHF RFID tags we
have done the same measurements in the far field than for our UHF tag pro-
totype. In contrast to the UHF tag prototype, the passive UHF RFID tags we
have examined show data dependent emanation also in the far field. Thereby,

Susceptibility of UHF RFID Tags to Electromagnetic Analysis 299

0 0.5 1
-0.2

0

0.2

Time [ms]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 9. Result of the DEMA attack on
a passive UHF RFID tag at a distance
of 20 cm using 1000 EM traces

0 0.5 1
-0.05

0

0.05

0.1

Time [ms]

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 10. Result of the DEMA attack on
a passive UHF RFID tag at a distance
of 1m using 10000 EM traces

we have analyzed the electromagnetic field with a self-made dipole antenna at
various distances of the passive UHF RFID tags, starting from 20 cm up to 1 m.

All our DEMA attacks in the far field of the passive UHF RFID tags have
been successful, even at a distance of 1 m. Figure 9 shows the result of a DEMA
attack on a passive UHF RFID tag at a distance of 20 cm using 1000 measure-
ments. Regardless of the distance, the peaks in the resulting correlation traces
always look similar. For comparison, Figure 10 shows the correlation traces of
the same passive UHF RFID tag at a distance of 1m. The difference when the
distance increases is the maximum absolute value of the correlation coefficient.
Figure 9 shows a maximum absolute value of the correlation trace of 0.27 which
decreases to 0.08 in Figure 10. As a consequence, the number of measurements
must be increased to clearly identify the data dependency at greater distances.
The correlation traces in Figure 10 have been obtained by using 10000 measure-
ments.

6 Conclusion

In this work we have shown the susceptibility of UHF RFID tags to DEMA
attacks. We have analyzed a self-made UHF tag prototype and commercially-
available passive UHF RFID tags from various tag vendors. Whereas the UHF
tag prototype that operates semi passively shows only data-dependent emanation
in the near field, passive UHF RFID tags show data-dependent emanation in
the far field too. We have performed successful DEMA attacks in the far field of
passive UHF RFID tags at distances up to 1 m. However, increasing the number
of acquired measurements should allow to realize successful DEMA attacks at
greater distances as well.

Current RFID tags do not use cryptographic protection and furthermore store
no secret that could be the aim of such attacks. Hence, this work has no practical
relevance for current RFID products. Nevertheless, it was our goal to investigate
the side-channel leakage and to determine the susceptibility of future UHF RFID

300 T. Plos

tags to this class of attacks. Our results clearly show that once cryptographic
functionality should be added to UHF RFID tags, countermeasures against SCA
need to be applied as well. Analyzing our results we come to the conclusion that
ad-hoc countermeasures will not suffice, but a complete re-design of the RFID
tag’s architecture will be necessary to protect effectively from SCA.

References

[1] Finkenzeller, K.: RFID-Handbook, 2nd edn. Carl Hanser Verlag München (2003)
[2] International Organization for Standardization: ISO/IEC 18000-6C: Air Interface

for Radio-Frequenc Identification (RFID) Devices Operating in the 860 MHz to
960 MHz Industrial, Scientific, and Medical (ISM) Band used in Item Managment
Applications. ISO/IEC (2006)

[3] Garfinkel, S., Rosenberg, B.: RFID: Applications, Security, and Privacy. Addison-
Wesley Professional, Reading (2005)

[4] Aigner, M.: Seven reasons for application of standardized crypto functionality on
low cost tags. EU RFID Forum (2007)

[5] Bailey, D., Juels, A.: Shoehorning Security into the EPC Standard. In: De Prisco,
R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 303–320. Springer, Heidelberg
(2006)

[6] Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID
Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

[7] Yu, Y., Yang, Y., Fan, Y., Min, H.: Security Scheme for RFID Tag. Auto-ID Labs
Fudan University, White Paper (2006)

[8] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

[9] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

[10] Mangard, S.: Exploiting Radiated Emissions – EM Attacks on Cryptographic
ICs. In: Ostermann, T., Lackner, C. (eds.) Austrochip 2003, Proceedings, Linz,
Austria, October 1, 2003, pp. 13–16 (2003) (ISBN 3-200-00021-X)

[11] Hutter, M., Feldhofer, M., Mangard, S.: Power and EM Attacks on Passive 13.56
MHz RFID Devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

[12] Oren, Y., Shamir, A.: Remote password extraction from RFID tags. IEEE Trans-
actions on Computers 56(9), 1292–1296 (2007)

[13] Zhu, Z.: RFID Analog Front End Design Tutorial (version 0.0). Auto-ID Labs
University of Adelaide (2004)

[14] Karthaus, U., Fischer, M.: Fully Integrated Passive UHF RFID Transponder IC
With 16.7-µW Minimum RF Input Power. IEEE Journal of Solid-State Circuits,
1602–1608 (2003)

[15] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Se-
crets of Smart Cards. Springer, Heidelberg (2007) (ISBN 978-0-387-30857-9)

Online/Offline Signature Schemes for Devices with
Limited Computing Capabilities

Ping Yu1 and Stephen R. Tate2

1 Department of Computer Science and Engineering, University of North Texas,
Denton, TX 76203
pingyu@unt.edu

2 Department of Computer Science, University of North Carolina at Greensboro,
Greensboro, NC 27402
srtate@uncg.edu

Abstract. We propose a family of three efficient digital signature schemes,
which are proved secure under the strong RSA assumption without requiring
a random oracle. The new signature schemes can operate in an online/offline
manner, doing most of their work in the offline precomputation phase. The on-
line phase of even the least efficient variant is very fast, requiring only a sin-
gle non-modular multiplication of a short (160-bit) value by a longer (1022-bit)
value. Online/offline signatures are useful in settings in which signatures need
to be produced with few operations, either when there is a large volume of re-
quests or if the device performing the signature is not computationally powerful.
Our schemes have extremely low computation cost so are particularly suitable
for devices with limited computing capabilities such as smart cards or mobile
devices.

This paper provides three specific contributions. First, we propose our basic
online/offline signature scheme, which could be viewed as the online/offline ex-
tension of the Camenisch-Lysyanskaya (CL) signature scheme. Compared to us-
ing the general Shamir-Tauman technique for converting the CL signature scheme
into one that operates in an online/offline fashion, our direct adaptation has the
same online efficiency, while having advantages of a more efficient offline phase,
simpler key management that only requires one keypair, and a shorter signature.
In addition, when used as a traditional one-phase signature our basic scheme
is more efficient than the Camenisch-Lysyanskaya scheme, due to our opera-
tion restructuring. While this first scheme has advantages over using the Shamir-
Tauman/Camenisch-Lysyanskaya construction, we describe two additional
techniques that further improve efficiency of both online and offline phases. Our
first improvement uses computations over a small subgroup of Z∗

n to reduce the
size of the required computations. Our second improvement uses division in-
tractable hash functions to remove the requirement of generating random primes
for use in this class of signature schemes. As we present these three schemes,
each one is more efficient than the previous one, but requires increasingly strong
complexity assumptions.

Keywords: Digital Signature, Strong RSA Assumption, Standard Model, On-
line/Offline Signing, Devices with Limited Computing Capabilities.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 301–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 P. Yu and S.R. Tate

1 Introduction

The digital signature concept is a fundamental cryptographic primitive in modern cryp-
tography. In such schemes, a signer prepares a keypair which includes a signing key and
a verification key. The signing key is kept secret by the signer while the verification key
is public for potential verifiers. The signer generates a string by signing a message using
his signing key. This string is called the signer’s signature on this particular message.
Later a verifier can check the validity of a signature on a message using the signer’s
verification key.

The idea of digital signatures was first proposed by Diffie and Hellman [1]. Since
then, numerous constructions have been proposed in the literature based on differ-
ent security assumptions. Many schemes are based on the well-known RSA assump-
tion and a variant known as the strong RSA assumption, including PSS [2] and the
Cramer-Shoup scheme [3]. Other schemes are based on variants of the discrete loga-
rithm or computational/decisional Diffie-Hellman assumption, including ElGamal sig-
natures [4], Schnorr signatures [5], and many others.

As a fundamental cryptographic primitive, it is important to clarify the exact re-
quirements for a secure digital signature scheme. In 1988, Goldwasser et al. defined a
security notion for signature schemes, which is called existential unforgeability under
adaptive chosen message attacks [6]. Since then, this notion has been widely used to
judge whether a digital signature scheme is strong enough to be deployed in a real ap-
plication. Many digital signature schemes (e.g., Fiat-Shamir, Schnorr, ElGamal, PSS)
can be proved secure under this requirement in the random oracle model, which was
first proposed by Fiat and Shamir [7], and formalized by Bellare and Rogaway [8].
In the random oracle model, a cryptographic hash function is abstracted as a random
function that can be accessed by all participants in the protocol, including adversaries.
However, Canetti et al. constructed a scheme that can be proved secure in the random
oracle model, while any real implementation will result in an insecure construction [9].
Therefore, security proofs in the random oracle model do not necessarily imply security
in the standard model, so a proof of security in the random oracle model can only be
treated as a heuristic argument that a scheme is secure.

Gennaro, Halevi and Rabin [10] and Cramer and Shoup [3], in 1999 and 2000, re-
spectively, independently proposed practical digital signature schemes secure under
adaptive chosen message attacks under the strong RSA assumption in the standard
model. Before these two constructions, available schemes secure under an adaptive
chosen message attack in the standard model were not practical for real applications
[6,11,12]. Based on the ideas of Cramer and Shoup, Camenisch and Lysyanskaya [13],
Zhu [14,15], and Fischlin [16] all proposed schemes with similar structure based on
the strong RSA assumption. In 2005, Groth extended these results to work over a small
subgroup of Z∗n, improving the efficiency of signature generation [17].

1.1 Online/Offline Signature Schemes

The notion of online/offline signatures was first introduced by Even, Goldreich, and
Micali in 1989 [18]. An online/offline signature scheme does most of its work in an
offline precomputation phase, before the message is known. The online phase, which

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 303

is performed after the message to be signed is known, should be very efficient and
can be completed quickly. Online/offline signing is important for applications when
signatures need to be produced quickly. For instance, consider a stock broker’s server
that has “bursty” requests that need to be signed, where there are periods of low activity
and infrequent bursts of rapid transaction requests (e.g., immediately after financial
updates or news releases). Another example comes from the area of mobile computing,
in which a mobile device with limited computing capabilities needs to authenticate itself
by quickly producing a valid signature on a challenge from a server, but can precompute
offline results at low speed and power in preparation for authentication requests. In still
another example, the authenticating device could be a smart card, with a very weak
processor, but which can be loaded with precomputed results of the offline phase from
a more powerful device. In these scenarios, using precomputation can enable quick
signature generation.

In addition to proposing the online/offline signature scenario, Even et al. proposed a
generic method to convert any signature scheme into an online/offline one [18]. How-
ever, their method is not efficient enough to be practical. A little over a decade later, in
2001, Shamir and Tauman proposed another generic method to achieve online/offline
signing, which is quite efficient [19] (we will discuss the efficiency further in Sect. 1.2).
Their method is based on a new type of hash function called a trapdoor hash function,
which was proposed by Krawczyk and Rabin [20], and allows the use of a “hash-sign-
switch” paradigm. A trapdoor hash function uses a keypair with a public “hash key”
HK and a private “trapdoor key” TK, and the hash for message m is produced by the
function h(HK, r, m), where r is a supplemental random input. For a secure trapdoor
hash function, given HK , r, m, and alternative message m′, it is infeasible to find an r′

such that h(HK, r, m) = h(HK, r′, m′); however, given TK it is easy to find such an
r′. Thus, the hash-sign-switch paradigm is to first use any signature algorithm to sign
h(HK, r, m) for a random message m, and then when the real message m′ is known (in
the online phase) the signer simply computes the r′ so that the hash remains the same
and the precomputed signature is valid. Note that the new signature must contain this
r′ value, expanding the size of the signature, and that the signer must manage a key-
pair (HK, TK) for the trapdoor hash in addition to the keypair for the basic signature
scheme.

In addition to these general online/offline constructions, a signature scheme due to
Schnorr [5] operated in a two-phase manner, and was efficient enough for smartcards
and other limited devices. Schnorr constructed a three-round identification scheme over
a small prime-order subgroup of Z∗p , which was then converted into a signature scheme
using the Fiat-Shamir heuristic [7]. Schnorr’s scheme is an efficient online/offline con-
struction in which the signer needs about 160 modular multiplications for the offline
phase and one modular multiplication for the online phase1. However, Schnorr’s scheme
can only be proved secure in the random oracle model due to the reliance on the Fiat-
Shamir technique, and in fact Goldwasser and Kalai have recently published a result
that casts doubt on the general applicability of the Fiat-Shamir technique [21].

1 In the parameters used in the original system, the signer needs only 140 modular multiplica-
tions. However, 160 could be considered more appropriate due to the advance of computing
technology in the past 20 years.

304 P. Yu and S.R. Tate

1.2 Our Results and Comparison with Previous Work

In this paper we propose a family of three efficient digital signature schemes, which
we call OOSIG1, OOSIG2, and OOSIG3 (“OOSIG” is for online/offline signature).
These signature schemes are progressively more efficient but rely on increasingly strong
assumptions. All security proofs are in the standard model, without requiring a random
oracle. We summarize the relevant features here:

OOSIG1: This is our basic online/offline signature scheme, and is proved secure un-
der the strong RSA assumption. The scheme has the same verification protocol
as the Camenisch-Lysyanskaya signature scheme [13], could be viewed as the on-
line/offline extension of their scheme. We note that even when not applied in the
online/offline setting, our scheme provides benefits and efficiency improvements
over the Camenisch-Lysyanskaya scheme, saving several operations. Comparing
the cost of the online phase of our algorithm with the online phase when using
the Shamir-Tauman construction2, our online phase requires a single non-modular
multiplication of a 160-bit value by a 1022-bit value as well as one or two additions,
whereas the Shamir-Tauman construction requires the modular reduction of a 1184-
bit value by a 1024-bit modulus as well as one or two additions, which is essentially
the same cost. Note that Shamir and Tauman relate this cost to a full-length mod-
ular multiplication and estimate that it is roughly 0.1 modular multiplication [19],
and while this applies to our OOSIG1 algorithm as well we caution that this is not
general complexity result and requires several assumptions about the concrete sizes
of the values and the algorithms used.

An additional benefit of our OOSIG1 algorithm is that since OOSIG1 is a di-
rect online/offline signature scheme, we avoid the use of trapdoor hash functions
and hence do not need to manage the second keypair (although our private sign-
ing key is slightly larger than that in the original Camenisch-Lysyanskaya scheme),
and do not have to include the random commitment value r′ in the signature. As
a result, OOSIG1 has simpler key management and shorter signatures than the
Shamir-Tauman technique combined with the Camenisch-Lysyanskaya signature.
Furthermore, the use of the trapdoor hash requires an additional complex opera-
tion (a modular powering with an exponent larger than the modulus) which is not
required by our more direct approach, so our offline phase is significantly faster.
In cases where the offline phase is run during idle or lightly loaded time on an
embedded or other small device, this could be significant.

OOSIG2: In this scheme, we use computations over a small subgroup of Z∗n to fur-
ther improve the efficiency of our basic signature scheme while retaining the on-
line/offline capability, and prove this scheme secure under the strong RSA subgroup
assumption which was proposed by Groth [17].

OOSIG3: In this scheme, we remove one of the troubling requirements of this class of
signature schemes — the necessity of generating a prime number for each signature
(in the offline phase of our OOSIG1 and OOSIG2 variants). Instead, we use a hash
function that satisfies certain properties, and so this scheme is proved secure under

2 When we refer to the Shamir-Tauman construction in this paper, we always assume the use of
the third and most efficient trapdoor hash family given in their paper [19].

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 305

the assumption that this hash function is division intractable [10] as well as the
strong RSA subgroup assumption.

OOSIG3 is very efficient, and the assumptions seem reasonable. OOSIG3 needs only
about 200 modular multiplications for the offline phase, which is only slightly more
costly than the offline phase of Schnorr’s scheme. The online phase requires only a few
non-modular multiplications in which both operands are relatively short (under 200
bits), and hence is extremely efficient. To our knowledge, this is the first highly efficient
online/offline signature scheme which has security based on variants of the strong RSA
assumption in the standard model.

The rest of the paper is organized as follows. Sect. 2 reviews some cryptographic
notations and definitions. Sect. 3 presents our basic scheme, which can be viewed as an
online/offline extension of the Camenisch-Lysyanskaya signature scheme. In Sect. 4,
we discuss ways to improve the efficiency of the basic scheme by using small subgroups
of Z∗n, leading to two new schemes for devices with limited computing capabilities.
Finally, we give the conclusions in Sect. 5.

2 Preliminaries

This section reviews some notations and definitions which are used throughout the paper.

Definition 1 (Special RSA Modulus). An RSA modulus n = pq is called special if
p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 2 (Quadratic Residue Group QRn). Let Z∗n be the multiplicative group
modulo n, which contains all positive integers less than n and relatively prime to n. An
element x ∈ Z∗n is called a quadratic residue if there exists an a ∈ Z∗n such that a2 ≡
x mod n. The set of all quadratic residues of Z∗n forms a cyclic subgroup of Z∗n, which
we denote by QRn. If n is the product of two distinct primes, then |QRn| = 1

4 |Z∗n|.

Recently, Groth investigated cryptography over a small subgroup of Z∗n [17]. Two of our
proposed schemes are also constructed using this special kind of group, so we present
the definition as used by Groth here.

Definition 3 (Small Subgroup G of Z∗n). Let n = pq such that p = 2p′rp + 1 and
q = 2q′rq + 1, where p, p′, q, q′ are all prime. There is a unique cyclic subgroup G of
Z∗n of order p′q′. For the purpose of efficient cryptographic construction, the order of
G, i.e., p′q′, is chosen small and kept private. Let g be a random generator of G, and
we call (n, g) an RSA subgroup pair.

A hash function is a function mapping arbitrary strings of finite length to binary strings
of fixed length. For cryptographic purposes, the most basic property that a hash function
should satisfy is the collision-intractability property defined by Damgard [22]. One of
our schemes in this paper will use another property for a hash function called “division
intractability,” which was introduced by Gennaro et al. [10]. Informally, a hash function
is division intractable if it is infeasible to find distinct inputs for this hash function such
that the hash value of one input divides the product of hash values of all other inputs.

306 P. Yu and S.R. Tate

Definition 4 (Division Intractability [10]). A hashing family H is division intractable
if it is infeasible to find distinct inputs X1, . . . , Xn, Y such that h(Y) divides the prod-
uct of the h(Xi)’s.

Formally, for every probabilistic polynomial time algorithm A, there exists a negli-
gible function negl() such that

Prh∈Hk

⎡

⎣
A(h) = 〈X1, . . . , Xn, Y 〉
s.t. Y �= Xi for i = 1 . . . n,
and h(Y) divides

∏n
i=1 h(Xi)

⎤

⎦ = negl(k).

Now we introduce the strongest notion of a secure signature scheme, existential un-
forgeability under adaptive chosen message attacks, which was proposed by Gold-
wasser, Micali and Rivest [6]. The definition we give here is from Gennaro et al. [10].

Definition 5 (Secure Signatures [10]). A signature scheme S = 〈Gen, Sig, V er〉 is
existentially unforgeable under an adaptive chosen message attack if it is infeasible for
a forger who only knows the public key to produce a valid (message, signature) pair,
even after obtaining polynomially many signatures on messages of its choice from the
signer.

Formally, for every probabilistic polynomial time forger algorithm F , there exists a
negligible function negl() such that

Pr

⎡

⎢⎢⎢⎢⎣

〈pk, sk〉 ← Gen(1k);
for i = 1 . . . n

Mi ← F(pk, M1, σ1, . . . , Mi−1, σi−1); σi ← Sig(sk, Mi);
〈M, σ〉 ← F(pk, M1, σ1, . . . , Mn, σn),
M �= Mi for i = 1 . . . n, and V er(pk, M, σ) = accept

⎤

⎥⎥⎥⎥⎦
= negl(k).

The security of the signature schemes presented in this paper is based on a well-accepted
cryptographic assumption called the strong RSA assumption, which was first proposed
by Baric and Pfitzmann [23] and Fujisaki and Okamoto [24].

Assumption 1 (Strong RSA Assumption). Let n be an RSA modulus. The Flexible
RSA Problem is the problem of taking a random element u ∈ Z∗n and finding a pair
(v, e) such that e > 1 and ve = u mod n. The strong RSA assumption says that no
probabilistic polynomial time algorithm can solve the flexible RSA problem for random
inputs with non-negligible probability.

3 The Basic Signature Scheme

In 2002, Camenisch and Lysyanskaya proposed a signature scheme secure in the
standard model under the strong RSA assumption [13]. The Camenisch-Lysyanskaya
signature scheme produces a triple (v, e, s) as a signature, where e and s are chosen ran-
domly, and v is computed from these values, the message, and the private key. Our basic
scheme could be viewed as an online/offline extension of the Camenisch-Lysyanskaya
scheme — it produces the same triple (v, e, s) for the signature, and we will show

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 307

that the distribution of triples from our scheme is statistically indistinguishable from
the distribution of triples from the Camenisch-Lysyanskaya scheme. The key differ-
ence is that we randomly select v and e, and compute s, which requires a new key
generation and signing algorithm. The benefit is that all but a small part of the com-
putation for s can be done without knowing the message to be signed, so can be done
in an offline phase. Since our signing algorithm produces the same signatures as in
the Camenisch-Lysyanskaya scheme, our verification algorithm is the same as in the
Camenisch-Lysyanskaya scheme.

3.1 Signature Scheme OOSIG1

In this section, we define our first online/offline signature scheme, called OOSIG1.

Public System Parameters. Let k be the security parameter, and define the following
lengths: lm is the length of the message to be signed, with the restriction that lm <
k−2. l is a security parameter that controls the statistical closeness of distributions, and
should be at least polynomial in k (in practice l = 160 is sufficient). For convenience,
we also define some lengths based on these parameters: le ≥ lm + 2 is the length of an
exponent in the signature algorithm, ln = 2k is the length of the public modulus, and
ls = ln + lm + l is the length of another exponent used in the signing algorithm.

Key Generation. On input 1k, pick two k-bit safe primes p and q (so that p = 2p′ + 1,
and q = 2q′ + 1, where p′ and q′ are also prime), and let n = pq. Select b as a
random generator of QRn. Select α, β ∈R [0, p′q′) and compute a = bα mod n and
c = bβ mod n. Let K = 	2ls/p′q′
. Output public key (n, a, b, c), and private key
(p′q′, α, β, K).

Signing Algorithm. The signing procedure includes two phases.
OFFLINE PHASE: The signer picks a random γ ∈R [0, p′q′), a random le-bit prime
number e, and a random k′ ∈R [0, K), and then computes

v = bγ mod n, λ = k′p′q′ + γe − β mod Kp′q′.

ONLINE PHASE: When a message m ∈ [0, 2lm) appears, the signer computes

s = λ − αm mod Kp′q′.

Note that while this is stated as a modular operation, the ranges of the values ensure
that an adjustment to keep the value in range is only needed with negligible probability,
and even then this is accomplished with a single addition. The signature is (v, e, s) for
the message m.

Verification Algorithm. To verify that (v, e, s) is a signature on message m, check that
e’s length is le, and

ve ≡ ambsc mod n. (1)

It can be verified that a valid signature can always pass the verification algorithm. Since
these operations are being performed in QRn, we consider operations in the exponent
modulo p′q′, and get

s ≡ γe − β − αm (mod p′q′),

308 P. Yu and S.R. Tate

and so
ambsc ≡ bαm+(γe−β−αm)+β ≡ bγe ≡ ve mod n.

The salient characteristic for the signing algorithm is its online/offline mechanism.
Most of the computation can be done before the appearance of a message, and the
online phase only needs a single multiplication (where one of the values is short) and a
subtraction.

3.2 Comparison with the Camenisch-Lysyanskaya Scheme

OOSIG1 produces signatures that are indistinguishable from those of the Camenisch-
Lysyanskaya scheme. To see this, consider (1). In their scheme, a, b, c are randomly
chosen from QRn, and v is calculated as

v = (ambsc)e−1
mod n, (2)

where s ∈R [0, 2ls). In OOSIG1, a, b, c are also random elements of QRn, but s is
calculated; however, in the following lemma we show that s in OOSIG1 is statistically
indistinguishable from [0, 2ls).

Lemma 1. Let K = 	2ls/p′q′
, where K is superpolynomial in the security parameter
k. Let e be a value that is relatively prime to p′q′, α and β be constants in [0, p′q′),
and m be a constant in [0, 2lm). Let k′ ∈R [0, K) and γ ∈R [0, p′q′). If we define
s = (k′p′q′ + γe − β − αm) mod Kp′q′, then s is statistically indistinguishable from
uniform over [0, 2ls).

Proof. First, we prove that s is uniformly distributed over [0, Kp′q′). For any x ∈
[0, Kp′q′), since e is relatively prime to p′q′ there exists exactly one pair (k′, γ) such
that x = (k′p′q′ + γe − β − αm) mod Kp′q′. Therefore there is a one-to-one map-
ping between pairs (k′, γ) and values in [0, Kp′q′), and since pairs (k′, γ) are chosen
uniformly, the resulting distribution of s over [0, Kp′q′) is uniform.

Next, we prove that the uniform distribution over [0, Kp′q′) is statistically indis-
tinguishable from uniform over [0, 2ls). Let PrD(x) denote the probability of x in
distribution D. Then the distance between two distributions D1 and D2 is

dist(D1, D2) =
1
2

∑

x

|PrD1 (x) − PrD2(x)| ,

and note that for any two distributions dist(D1, D2) ≤ 1. Two distributions D1 and D2
are statistically indistinguishable if dist(D1, D2) is negligible.

Distribution D1 is uniform over [0, Kp′q′), and distribution D2 is uniform over
[0, 2ls). Doing the basic algebra, we get

dist(D1, D2) =
1
2

∑

x

|PrD1(x) − PrD2 (x)|

=
1
2
[(

1
Kp′q′

− 1
2ls

)Kp′q′ +
1

2ls
(2ls − Kp′q′)]

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 309

= 1 − Kp′q′

2ls

= 1 − 	2ls/p′q′
p′q′
2ls

< 1 − ((2ls − p′q′)/p′q′)p′q′

2ls

= 1 − (1 − p′q′

2ls
)

=
p′q′

2ls
.

Thus, the distance between D1 and D2 is less than p′q′

2ls
, and since 2ls

p′q′ is superpoly-
nomial in the security parameter k, this distance is negligible. So, the uniform distribu-
tion over [0, Kp′q′) is statistically indistinguishable from uniform over [0, 2ls).

Therefore, the distribution of s is statistically indistinguishable from uniform over
[0, 2ls). �

As a consequence of Lemma 1, the view of an attacker with respect to our scheme is sta-
tistically indistinguishable from the view of an attacker with respect to the Camenisch-
Lysyanskaya scheme, which gives the following theorem.

Theorem 1. OOSIG1 is existentially unforgeable under an adaptive chosen message
attack, assuming the strong RSA assumption.

For concrete parameters, we use the recommended parameter settings from the
Camenisch-Lysyanskaya scheme, with k = 512, so n is 1024 bits long. lm can be
chosen as 160, and messages longer than 160 bits can first be sent through a collision-
resistant hash function (e.g., SHA-1) to produce a 160-bit message digest, which is
then signed. As stated earlier, l = 160 is sufficient to ensure the statistical close-
ness of the signature’s actual distribution to the simulated distribution in the proof of
the scheme [13], so ls = 1024 + 160 + 160 = 1344. For this setting of parame-
ters, the cost of the signing algorithm is about 1022 modular multiplications and the
generation of a 162-bit prime number in the offline phase, and one multiplication in
the online phase. Our algorithm avoids multiplication related to s in the Camenisch-
Lysyanskaya scheme, which is about 1344 modular multiplications. Furthermore, note
that OOSIG1 does not require computation of the multiplicative inverse of e as required
by the Camenisch-Lysyanskaya scheme (see (2)), so has advantages even when not used
in the online/offline mode.

The verification algorithm requires about (1344 + 162 + 160) modular multiplica-
tions. However this can be expedited by providing precomputed inverses of a and b and
then verifying

ve(a−1)m(b−1)s ≡ c mod n,

since multi-base exponentiation can be done only slightly slower than single-base ex-
ponentiation (Algorithm 15.2 in [25]). Therefore, the verification needs only slightly
more than 1344 modular multiplications.

310 P. Yu and S.R. Tate

4 Further Efficiency Improvements

The basic scheme can accommodate most application scenarios when online/offline
signing is needed. However, it is possible to improve the efficiency further, particularly
in the offline phase, which could be useful in situations such as mobile devices precom-
puting values in the offline phase during idle time. The main costs of the offline phase
are due to an exponentiation taking 1022 modular multiplications and the generation of
a 162-bit prime e. In this section, we reduce both of these costs: the exponentiation cost
is reduced by working over a small subgroup of Z∗n, and we remove the requirement of
generating a prime e by using a division intractable hash function. These improvements
also make the online phase more efficient: the online phase of OOSIG1 requires the
multiplication of a 1022-bit number by a 160-bit number, and the algorithms of this
section reduce the size of the first number to 200 bits.

Using computations over a small subgroup of Z∗n in this class of signature schemes
was first investigated by Groth [17]. We incorporate these ideas into our basic scheme
OOSIG1, reducing the bit length of p′q′ from the 1022 bits suggested for OOSIG1.
Following Groth’s suggestions, we set the bit length of p′q′ to 200, which reduces the
number of modular multiplications for calculating v from 1022 to 200. The security of
these new schemes is based on Groth’s variant of the strong RSA assumption, called
strong RSA subgroup assumption over this small subgroup of Z∗n — we give this defi-
nition here, with terminology slightly cleaned up from the original paper [17].

Assumption 2 (Strong RSA Subgroup Assumption). Let K be a key generation al-
gorithm that produces an RSA subgroup pair (n, g). The flexible RSA subgroup problem
is to find u, w ∈ Z∗n and d, e > 1 such that g = uwe mod n and ud = 1 mod n.
The strong RSA subgroup assumption for this key generation algorithm states that it is
infeasible to solve the flexible RSA subgroup problem with non-negligible probability
for inputs generated by K .

In Sect. 4.1 we give our first subgroup-based signature scheme, using an idea of Groth’s
in order to reduce the cost of finding a prime e: we pick a much smaller prime number e,
and a security parameter t such that et ≥ 2lm+2. However, with a reduced range for e,
this method could lead to multiple selections of the same prime number. Therefore, the
signature scheme should pick e in an incremental way, and always remember the last
prime number used. This way, the signature becomes a stateful construction. In a later
section (Sect. 4.2) we will introduce another method which completely circumvents the
cost of prime number generation, and keeps the scheme as a stateless one. The technique
is based on the smoothness property of a random integer and the division intractability
of a hash function, which have been introduced by Gennaro et al. [10], and further
investigated by other authors [26,27]. The security of both signature schemes will be
proven in Sect. 4.3.

4.1 OOSIG2: A Stateful Signature Scheme

In this section, we present our second online/offline signature scheme, called OOSIG2.

Public System Parameters. The main parameters are similar to the OOSIG1 scheme,
but with an additional parameter t chosen and le reduced subject to t× le ≥ lm +2. We

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 311

also define a length lp′q′ which determines the size of the subgroup used, and use this
length to define ls = lp′q′ + lm + l.

Key Generation. On input 1k, pick two k-bit primes p and q as in Definition 3 (so
p = 2p′rp + 1, and q = 2q′rq + 1, where p′ and q′ are also prime, each with length
lp′q′/2), and let n = pq. Let G be the unique subgroup of Z∗n of order p′q′, and select
a random generator b of G. Select α, β ∈R [0, p′q′) such that a = bα mod n, and
c = bβ mod n. Let K = 	2ls/p′q′
. Output public key (n, a, b, c), and private key
(p′q′, α, β, K).

Signing Algorithm. The signing procedure includes two phases.
OFFLINE PHASE: Pick a random γ ∈R [0, p′q′), the next unused prime number e with
length le, and a random k′ ∈R [0, K). Compute

v = bγ mod n, λ = k′p′q′ + γ × et − β mod Kp′q′.

ONLINE PHASE: For m ∈ [0, 2lm), compute

s = λ − α × m mod Kp′q′.

The signature is (v, e, s).

Verification Algorithm. To verify that (v, e, s) is a signature on message m, check that
e’s length is le, and

vet ≡ ambsc mod n.

A concrete example would be k = 512 so that ln = 1024. We further set up other
system parameters as lp′q′ = 200, lm = 160, le = 28, t = 6, l = 120, and ls = 200 +
160 + 120 = 480. The whole signing cost now is about 200 modular multiplications,
and finding the next prime number with bit length of 28, which is significantly easier
than finding a 162-bit prime number.

4.2 OOSIG3: A Stateless Signature Scheme

In this section we show how to avoid using prime numbers explicitly for the exponent e.
In signature schemes OOSIG1 and OOSIG2, there were two important system require-
ments: that et ≥ 2lm+2, and e should not be chosen more than once. If we can somehow
generate a random integer that always has a prime factor greater than m, we don’t have
to use a prime number explicitly. In order to accomplish this, we bring in results from
Gennaro et al. [10] in a different signature scheme, where the authors introduce the
notion of a division intractable hash function and also prove some important proper-
ties regarding the smoothness of random integers. In particular, they show that a k-bit
random integer (for sufficiently large k) has at least one prime factor greater than 22

√
k

with overwhelming probability. For example, suppose k = 1024, then this prime factor
is greater than 264. Unfortunately, this bound is too small compared to our message size
which we set lm = 160. To overcome this obstacle, we can split the m into three pieces
as m = m1||m2||m3 where “||” represents string concatenation, and the bit length of
each sub-message is shorter than 63. For simplicity of notation in this section, we split

312 P. Yu and S.R. Tate

the message into three pieces as just described, but clearly this generalizes to other
numbers of pieces. This technique has also been used in the Camenisch-Lysyanskaya
scheme for block message signing, and in Fischlin’s scheme for reducing the size of e.
Therefore, we have the following stateless scheme.

Public System Parameters. The parameters are similar to the OOSIG2 scheme, but
with ls = lp′q′ + lm/3 + l. We define a new length lh to be the length of message
digests produced by a division intractable hash function h : {0, 1}∗ → {0, 1}lh, with
the requirement that 2

√
lh ≥ lm/3 + 2.

Key Generation. On input 1k, pick two k-bit primes p, q such that p = 2p′rp + 1, and
q = 2q′rq + 1, where p′ and q′ are also prime. Let n = pq, and let G be the unique
subgroup of Z∗n of order p′q′. Select a random generator b of G, select α1, α2, α3, β ∈R

[0, p′q′), and define

a1 = bα1 mod n, a2 = bα2 mod n, a3 = bα3 mod n, c = bβ mod n.

Finally, let K = 	2ls/p′q′
. The public key is (n, a1, a2, a3, b, c), while the private key
is (p′q′, α1, α2, α3, β, K).

Signing Algorithm. The signing procedure includes two phases.
OFFLINE PHASE: Pick a random γ ∈R [0, p′q′), a random r ∈R [0, 2lr), and a random
k′ ∈R [0, K). Compute

v = bγ mod n, λ = k′p′q′ + γ × h(r) − β mod Kp′q′.

ONLINE PHASE: For m ∈ [0, 2lm), break m into pieces such that m = m1||m2||m3
and the length of each piece is at most �lm/3� bits. Compute

s = λ − α1 × m1 − α2 × m2 − α3 × m3 mod Kp′q′.

The signature is (v, r, s).

Verification Algorithm. To verify that (v, r, s) is a signature on message m, check that
r’s length is lr, and

vh(r) ≡ am1
1 am2

2 am3
3 bsc mod n.

This new scheme is extremely efficient for the signer. Given parameters ln = 1024,
lp′q′ = 200, lh = 1024, lr = 256, lm = 180, l = 120, and ls = 200 + 180/3 + 120 =
380, the offline signing cost is about 200 modular multiplications, while the online
signing needs three multiplications with small numbers.

4.3 Security of OOSIG2 and OOSIG3

Our construction is similar to the schemes by Camenisch and Lysyanskaya [13],
Zhu [14,15], Fischlin [16], and Groth [17], except none of these schemes operate in
the online/offline paradigm, and none except our OOSIG3 scheme make use of a di-
vision intractable hash function. However, due to the similarities, our security proof is
similar to those in the previous schemes. The proof we give in this section is specifically

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 313

for the OOSIG3 scheme, and the proof for OOSIG2 is simply a relaxation of the proof
for OOSIG3 where we are guaranteed that the exponent e is a prime number, rather than
relying on probabilistic results regarding large factors of random integers.

To prove the security of our scheme we use a multiple generator version of the strong
RSA subgroup assumption: Given an appropriate modulus n so that Z∗n has a subgroup
G of size p′q′, let g1, . . . , gk be random generators of this subgroup. The problem is
to find values (y, e, e1, . . . , ek) such that ye = ge1

1 . . . gek

k mod n. The following
lemma (due to Groth [17]) shows that under the strong RSA subgroup assumption,
a probabilistic polynomial time algorithm A can only reliably find solutions to this
problem that have a restricted form.

Lemma 2. Let n, g1, . . . , gk be defined as above. If a probabilistic polynomial time
algorithm A produces (y, e, e1, . . . , ek) such that ye ≡ ge1

1 . . . gek

k (mod n), then
with high probability either e = e1 = e2 = . . . = ek = 0, or e|e1, . . . , e|ek and

y = u
∏k

i=1 g
ei/e
i mod n, where ue = 1 mod n.

The next lemma addresses the smoothness of a random integer. The proof can be found
in the proof of Lemma 6 presented by Gennaro et al. [10].

Lemma 3. Let e be a random k-bit integer. The probability of e being 22
√

k-smooth
(i.e., all e’s prime factors are no larger than 22

√
k) is no larger than 2−2

√
k. In other

words, the probability of e having at least one prime factor larger than 22
√

k is at least
1 − 2−2

√
k.

The following lemma is used directly in the security proof for our stateless digital signa-
ture scheme — note that the condition on w is met for sufficiently large k whenever w is
polynomial in k. The division intractability property of a hash function is based on this
lemma: when a hash function outputs k-bit random integers for arbitrary inputs, it is in-
tractable to find an input whose hash value can divide the product of other hash values.
Due to the importance of this lemma, we re-write its proof to facilitate understanding
of the subsequent proof. The original proof is presented by Gennaro et al. [10].

Lemma 4. Let e1, e2, · · · , ew be random k-bit integers, where w < 20.5
√

k. Let j be a
randomly chosen index from [1, w], and define E = (

∏w
i=1 ei)/ej . Then the probability

that ej divides E is less than 2−
√

k.

Proof. We denote by smooth the event that ej is 22
√

k-smooth. From Lemma 3, we

know that Pr[smooth] ≤ 2−2
√

k.
Consider the case in which ej is not 22

√
k-smooth. Then ej has at least one prime

factor p > 22
√

k, so Pr[ej divides E] is bounded by the probability that at least one
of the ei (i �= j) is divisible by p. Since the ei’s are chosen uniformly, the probability
that any specific ei is divisible by p is at most 1/p < 2−2

√
k. Then, the probabil-

ity that there exists an ei which is divisible by p is at most w × 2−2
√

k, and based
on the bound on w given in the lemma we get w × 2−2

√
k < 2−1.5

√
k. Therefore,

Pr [p divides E|¬smooth] < 2−1.5
√

k, and since p is a prime factor of ej , we get

Pr[ej divides E|¬smooth] < 2−1.5
√

k.

314 P. Yu and S.R. Tate

Therefore, the probability that ej divides E is at most

Pr[smooth] + Pr[ej divides E|¬smooth] < 2−2
√

k + 2−1.5
√

k < 2−
√

k,

which completes the proof. �

Given these lemmas, we can now prove the security of OOSIG3.

Theorem 2. Under the strong RSA subgroup assumption, OOSIG3 is existentially un-
forgeable under an adaptive chosen message attack.

Proof. Suppose there exists a probabilistic polynomial time forgery algorithm F , which
can launch an adaptive chosen message attack on OOSIG3 and output a valid signature
which has not been produced by the signing algorithm. Then we can construct a prob-
abilistic polynomial time algorithm A for the multiple generator version of the strong
RSA subgroup problem, defined immediately before Lemma 2. A takes a random input
(n, g1, g2, g3), with g1, g2, g3 ∈R G, and uses F as a subroutine. In the following proof,
all exponentiations are done modulo n.

Since G has order p′q′, where p′ and q′ are prime, the probability that g1, g2, g3 are
generators of G is (p′ − 1)(q′ − 1)/p′q′, which is an overwhelming probability. So, in
the sequel, we assume g1, g2, g3 are generators of G.

Suppose F asks w signature queries for messages m1, . . . , mw, obtaining signatures
(v1, r1, s1), . . . , (vw, rw, sw) before forging a valid signature (v, r, s) for a message m.
We can define three types of forgeries.

Type I: For all 1 ≤ i ≤ w, r �= ri.
Type II: For some 1 ≤ i ≤ w, r = ri, v = vi.
Type III: For some 1 ≤ i ≤ w, r = ri, v �= vi.

Any forgery algorithm which succeeds in producing forgeries must produce forgeries
of at least one of these types with non-negligible probability. Next, we show how to
construct three different algorithms for A such that if F succeeds in producing a forgery
of a particular type, then the corresponding A will succeed in solving the multiple
generator version of the strong RSA subgroup problem. In all three cases we show that
such an A is impossible, so we conclude that no successful forger F can exist.

Type I: For all 1 ≤ i ≤ w, r �= ri. A works as follows: choose according to the
signature algorithm distinct lr-bit integers r1, . . . , rw. Set E =

∏w
i=1 h(ri). A selects

t1, t2 ∈R [0, 2ls), and sets a1 = gE
1 , a2 = at1

1 , a3 = at2
1 , b = gE

2 , c = gE
3 . A

gives (n, a1, a2, a3, b, c) to the forger F . A can answer the forger F ’s signature query
mi = mi1||mi2||mi3 by choosing si ∈R [0, 2ls) and computing

vi = g
(mi1+t1mi2+t2mi3)E/h(ri)
1 g

siE/h(ri)
2 g

E/h(ri)
3 = (ami1

1 ami2
2 ami3

3 bsic)h(ri)−1
.

A gives F the signature (vi, ri, si) for message mi, which is statistically indistinguish-
able from the signature produced by OOSIG3.

Consider that the forger F outputs (v, r, s) for a message m, so we have

vh(r) = am1
1 am2

2 am3
3 bsc = g

(m1+t1m2+t2m3)E
1 gsE

2 gE
3 .

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 315

By Lemma 2, h(r) must divide E, but since E is the product of hash values this would
violate the division intractability of the hash function h. Therefore, the F cannot pro-
duce a Type I forgery with non-negligible probability.

Type II: For some 1 ≤ i ≤ w, r = ri, v = vi. A follows the same method as in Type I
to prepare E, a1, a2, a3, b, c, and answers the forger F ’s signature queries.

Consider now that the forger’s signature is (vi, ri, s) on message m. We have

ami1
1 ami2

2 ami3
2 bsi = am1

1 am2
2 am3

3 bs,

and so ami1−m1
1 ami2−m2

2 ami3−m3
3 bsi−s = 1, which gives

g
E((mi1−m1)+t1(mi2−m2)+t2(mi3−m3))
1 g

E(si−s)
2 = 1 = y0

for any non-zero y. Since mi �= m, (m1 − mi1)+ t1(m2 − mi2) + t2(m3 − mi3) �= 0.
However, this is infeasible by Lemma 2 under the strong RSA subgroup assumption.

Type III: For some 1 ≤ i ≤ w, r = ri, v �= vi. A guesses the forger F will make the
forgery by reusing ri. A prepares E as in Type I, and picks at random an ls-bit long t,
and (ls − lm/3 − l/2)-bit long t1, t2, t3, t4. Then set up

b = g
E/h(ri)
2 , a1 = bt1 , a2 = bt2 , a3 = bt3 , c = bh(ri)t4−t.

A can answer all queries j �= i as in Type I. For query i, A computes si = t − t1mi1 −
t2mi2 − t3mi3, vi = bt4 such that (vi, ri, si) is also a valid signature. Due to length
restriction over t, t1, t2, and t3, the distribution of si is statistically indistinguishable
from the uniform distribution over [0, 2ls), which is in turn indistinguishable from the
distribution of signatures produced by OOSIG3.

Consider now that the forgery F outputs a new signature (v, ri, s) on message m.
That is, vh(ri) = am1

1 am2
2 am3

3 bsc. We can obtain

(v/vi)h(ri) = g
((m1−mi1)t1+(m2−mi2)t2+(m3−mi3)t3+(s−si))E/h(ri)
2 .

We can assume that h(ri) has a prime factor π > 22
√

lh and that h(ri) divides ((m1 −
mi1)t1 + (m2 −mi2)t2 +(m3 − mi3)t3 + (s − si))E/h(ri) — these assumptions fail
with negligible probability, due to Lemma 3 and Lemma 2, respectively. Furthermore,
by Lemma 4, the probability that E/h(ri) contains π as a factor is negligible, so if F
succeeds with non-negligible probability, it must be the case that

((m1 − mi1)t1 + (m2 − mi2)t2 + (m3 − mi3)t3 + (s − si)) (3)

is divisible by π with non-negligible probability.
Let t1 = x1p

′q′+ t′1, and note that the forger’s view is independent of x1. Therefore,
if the forger succeeds for this value of t1 it must also succeed for a random t̂1 = x̂1p

′q′+
t′1 with x̂1 �= x1. Thus, π must divide (3) when t1 is replaced by t̂1, and so must
divide the difference of these two values, leading to the requirement that π divides
(m1 −mi1)(t1 − t̂1) = (m1 −mi1)(x1 − x̂1)p′q′. However, since 2

√
lh ≥ lm/3+2, π

cannot divide m1−mi1. Furthermore, the probability that a random factor π divides p′q′

is negligible, and since x1 and x̂1 are chosen randomly the probability that π divides
(x1 − x̂1) is also negligible. As we have exhausted all possibilities for F to succeed
with a Type III forgery, we conclude that Type III forgeries are infeasible. �

316 P. Yu and S.R. Tate

5 Conclusions

In this paper we have presented a family of three new efficient digital signature schemes,
which are proved secure under the strong RSA assumption or its variant (the strong
RSA subgroup assumption) in the standard model. All our schemes works in a two-
phase offline/online model, so after some offline precomputation that is independent of
the message to be signed, the online phase is highly efficient (one non-modular multipli-
cation). Our schemes are particularly suitable for the application scenarios introduced
in Sect. 1.

Our first scheme OOSIG1 is proved secure in the standard model without any special
assumptions. It greatly improves current research results on provable signature schemes
such as the Cramer-Shoup scheme, the Camenisch-Lysyanskaya’s scheme, etc. How-
ever, it still has a shortcoming that a 162-bit random prime number is needed to gen-
erate a signature. This might not be a problem for powerful devices such as personal
computer, but it does affect the applicability of the scheme on embedded devices.

Our OOSIG2 and OOSIG3 schemes are designed for embedded devices. These two
schemes work in a small subgroup of Z∗n, which greatly reduces computational over-
head related to modular multiplication. OOSIG2 uses a technique from Groth to reduce
the cost of random prime number generation. OOSIG3 completely excludes a prime
number generation by using a division-intractable hash function. OOSIG2 and OOSIG3
were proved secure in the standard model.

Our OOSIG3 has some particular contributions. Compared to the well-known digital
signature scheme for smart cards by Schnorr, our scheme has comparable computational
requirements and is provably secure in the standard model, while Schnorr’s scheme
relies on the Fiat-Shamir heuristic and thus can only be demonstrated secure in the
random oracle model. To the best of our knowledge, OOSIG3 is the most efficient
online/offline signature scheme provably secure in the standard model, and suitable for
embedded devices.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Informa-
tion Theory 11, 644–654 (1976)

2. Bellare, M., Rogaway, P.: The exact security of digital signatures — how to sign with RSA
and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416.
Springer, Heidelberg (1996)

3. Cramer, R., Shoup, V.: Signatures schemes based on the strong RSA assumption. In: ACM
Transaction on Information and System Security, pp. 161–185 (2000)

4. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

5. Schnorr, C.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 161–
174 (1991)

6. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Computing 17, 281–308 (1988)

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987)

Online/Offline Signature Schemes for Devices with Limited Computing Capabilities 317

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: First ACM Conference on Computer and Communication Security, pp. 62–73
(1993)

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle model, revisited. In: 30th Annual
ACM Symposium on Theory of Computing, pp. 209–218 (1998)

10. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random ora-
cle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidel-
berg (1999)

11. Cramer, R., Damgard, I.: New generation of secure and practical RSA-based signatures. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)

12. Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its appli-
cations. J. Cryptology 11(3), 187–208 (1988)

13. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S.,
Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidel-
berg (2003)

14. Zhu, H.: New digital signature scheme attaining immunity to adaptive chosen-message at-
tack. Chinese Journal of Electronic 10(4), 484–486 (2001)

15. Zhu, H.: A formal proof of Zhu’s signature scheme (2003),
http://eprint.iacr.org/

16. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y.G.
(ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)

17. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,

pp. 50–65. Springer, Heidelberg (2005)
18. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)
19. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.)

CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)
20. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Symposium on Network and Distributed

Systems Security – NDSS 2000, pp. 143–154 (2000)
21. Goldwasser, S., Kalai, Y.T.: On the (in)security of Fiat-Shamir paradigm. In: Proceedings of

the 44th Annual IEEE Symposium on Foundations of Computer Science — FOCS 2003, pp.
102–114 (2003)

22. Damgard, I.: Collision free hash functions and public key signature schemes. In: Price, W.L.,
Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg
(1988)

23. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without
trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer,
Heidelberg (1997)

24. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial
relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer,
Heidelberg (1997)

25. Mao, W.: Modern Cryptography: Theory & Practice. Prentice-Hall, Englewood Cliffs (2004)
26. Coron, J.S., Naccache, D.: Security analysis of the Gennaro-Halevi-Rabin signature scheme.

In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101. Springer, Heidelberg
(2000)

27. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without random or-
acles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 330–346. Springer, Heidelberg (2006)

http://eprint.iacr.org/

RFID Security: Tradeoffs between Security and

Efficiency

Ivan Damg̊ard and Michael Østergaard Pedersen

University of Aarhus
{ivan,michael}@daimi.au.dk

Abstract. We propose a model and definition for anonymous (group)
identification that is well suited for RFID systems. This is based on
the definition of Juels and Weis of strong privacy for RFID tags, where
we add requirements for completeness and soundness. We also propose
a weaker and more realistic definition of privacy. For the case where
tags hold independent keys, we prove a conjecture by Juels and Weis,
namely in a strongly private and sound RFID system using only symmet-
ric cryptography, a reader must access virtually all keys in the system
when reading a tag. It was already known from work by Molnar, Soppera
and Wagner that when keys are dependent, the reader only needs to ac-
cess a logarithmic number of keys, but at a cost in terms of privacy: For
that system, privacy is lost if an adversary corrupts just a single tag. We
propose protocols offering a new range of tradeoffs between security and
efficiency. For instance, the number of keys accessed by a reader to read
a tag can be significantly smaller than the number of tags while retaining
soundness and privacy, as long as we assume suitable limitations on the
adversary.

1 Introduction

RFID tags are small wireless devices that react to electromagnetic fields gener-
ated by an RFID reader; they can emit some prestored information and can also
do computation. The computing power one can assume an RFID tag to have,
however, is severely limited in many applications by requirements for extremely
low price tags. RFID technology holds great promise in many scenarios, but can
also lead to serious privacy problems, for instance because it becomes possible
to track the behavior and whereabouts of people carrying tagged items.

Several research works have proposed protocols for addressing the privacy
problem in RFID systems. However, until recently, not much work has addressed
formal definitions of security for RFID systems. In [9], Juels and Weis pro-
pose a definition of what they call ”strong privacy” (based on earlier work by
Avoine [2]). Strong privacy is indeed a strong notion, primarily because the ad-
versary is given a lot of power: He can corrupt any number of tags (but not the
reader) and read their contents, he can eavesdrop and schedule the tag/reader
communication any way he wants, and he can himself select the tags whose
privacy he wants to break. In independent work, Burmester, Le and Medeiros

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 318–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

RFID Security: Tradeoffs between Security and Efficiency 319

propose a security definition based on Canetti’s Universal Composability frame-
work [6] and they also propose a protocol secure in their model [14].

The work of Juels and Weis only addresses privacy, that is, making sure that
the communication of a tag does not allow an external adversary to determine
the identity of the tag. Of course, another natural requirement is that a reader
should be able to determine whether the tag it reads is valid and not fabricated
by an adversary, for instance. Indeed, if this was not required, tags could just
return random information all the time or just not reply at all. This would
trivially be private, but would of course lead to a useless system.

In this paper, we propose an extension to the strong privacy definition so one
can also require completeness and soundness, with the intuitive meaning that
the reader accepts valid tags and valid tags only. More specifically, soundness
in the weakest sense means that we assume the adversary cannot corrupt tags,
and when the reader accepts an instance of the read protocol, an (uncorrupted)
tag has been involved in that instance at some point. So in this weak flavor, it
is not required that the reader knows which tag it has been talking to. We also
suggest a stronger version where corruptions are allowed and the reader must
output the identity of the (honest) tag that was involved.

The concept of strongly private and sound systems is closely related to ex-
isting concepts for anonymous identification schemes, such as identity escrow
schemes [11] or group signature schemes [1,7,10]. They are not the same, how-
ever: Our system model is designed to model RFID systems, and where identity
escrow and group signature schemes are by definition public-key techniques, we
want to cover techniques based on secret-key algorithms only.

The most important privacy issue regarding RFID tags is the issue of being
able to systematically track individuals as they carry RFID enabled goods from
the supermarket, embedded in the their clothes, etc. In this scenario, it is rea-
sonable to assume that the adversary cannot himself choose the tags he wants
to track. Strong privacy is therefore more than we need in this scenario, so we
introduce a weaker, but more suitable, definition called benign-selection privacy.

Juels and Weis suggest a system that satisfies their definition, building on
earlier work by Weis, Sarma and Rivest [15]. In this scheme, each tag is given
an independently chosen key, and the reader must search exhaustively through
all keys every time a tag is read. This of course does not scale well, but Juels
and Weis conjecture that this is, in a certain sense, unavoidable: In strongly
private systems that use only symmetric cryptography, and where tags are in-
dependently keyed, the reader must access all, or at least a large fraction of the
keys in the system. Here, we prove this conjecture. We need to assume that the
system is complete and sound, but this is of course a natural requirement and
is necessary anyway to exclude degenerate cases, such as when tags only send
random information.

The limitation to symmetric cryptography is clearly necessary: With public-
key technology, a tag could send its identity encrypted under the reader’s public-
key, and then prove its identity using some shared-key technique, for instance.
This does not require the reader to look at any information that is not related

320 I. Damg̊ard and M.Ø. Pedersen

to the relevant tag. There has in fact been recent work in the direction of im-
plementing public-key on very small devices [5], but even if public-key enabled
RFID tags are only slightly more expensive than symmetric-key only tags, this
will still inhibit the use of public-key technology in large scenarios that require
millions of tags, in order to maximize profit. Therefore we believe the question
of what can be done with symmetric techniques is of interest, both theoretically
and in practice.

The limitation to schemes with independent keys is not surprising. It follows
from work by Molnar, Soppera and Wagner [12] that when dependent keys are
allowed, we can have a system where the reader only needs to look at a loga-
rithmic (in the number of tags) number of keys. This comes at the price that
strong privacy only holds if the adversary is ”radio-only”, i.e., he does not cor-
rupt any tags. If the adversary corrupts even a single tag, strong privacy is lost,
and benign-selection privacy is lost with large probability. This makes it natural
to ask if there are alternative solutions where we can get some amount of privacy
with a larger number of corruptions without going back to systems where the
reader does exhaustive search over all keys.

In this paper, we first argue that for a wide range of RFID systems, there
has to be a tradeoff between the efficiency of the reader and the resources we
can allow the adversary to have. We then propose a class of protocols offering a
new range of tradeoffs between security and efficiency. For instance, the number
of keys accessed by a reader to read a tag can be significantly smaller than the
number of tags while retaining soundness and privacy, as long as we assume
suitable limitations on the adversary.

2 Model and Definition

Juels and Weis define strong privacy for RFID systems using a model of which
we give a summary here, for details refer to [9].

The system consists of tags Ti, i = 1..n and a reader R. For simplicity, we
assume that there is only one reader. Tags can receive SetKey messages which
will cause the tag to reveal its secret key, and the caller may then send a new
key to the tag. This can be used to initialize the system and also models an
attacker corrupting a tag to learns its key. A tag may receive a (TagInit, sid)
message (where sid is a session id), which is used in the start of a session. The
tag will forget any previous value of sid, so a tag may only run a single session at
a time. Finally, the tag may respond to a protocol message ci, called a challenge
in [9], by a response ri. A protocol may consist of several rounds of challenges
and responses.

A Reader may receive ReaderInit messages, causing it to generate a fresh
session identifier sid and a first protocol message c0 to be sent to a tag. It may
also receive pairs of the form (sid, ri). It will then return either a new message
ci+1 to be sent to the tag or Accept or Reject. In [9], a reader, if it returns
Accept, is not required to say which tag it thinks it has been talking to. We
assume here that it may also return the identity of a tag. The reader keeps an

RFID Security: Tradeoffs between Security and Efficiency 321

internal log of all challenge and response pairs for each session id that is active,
and decides based on this whether to accept or reject. A reader may be involved
in several sessions simultaneously, but its behavior in a session only depends on
messages it receives in that session and the fixed key material it holds.

We allow the adversary A to schedule all messages as it wants, and generate
its own messages. The adversary is parameterized as follows: r is the number of
ReaderInit messages it generates, s is the number of computational steps and
t is the number of TagInit messages it generates. Finally, k is a cryptographic
security parameter. Juels and Weis do not treat the number of SetKey mes-
sages, i.e., the number of corrupted tags, as a separate parameter, but simply
say it has to be at most n−2. As we shall see, however, the number of corrupted
tags is a very important parameter, so we will define u to be the number of tags
corrupted by the adversary. A summary of these parameters can be found in
Figure 1. Note that this model also captures an adversary that passively listens
to a session between reader and tag, namely he starts a session with the reader
and one with the tag and simply relays messages between the parties.

k: security parameter n: number of tags in the RFID system S
r: number of ReaderInit messages allowed s: number of computational steps allowed
t: number of TagInit messages allowed u: number of SetKey messages allowed

Fig. 1. Description of parameters

The system is initially setup by running a probabilistic key generation algo-
rithm Gen(1k) which produces a set of keys key1, ..., keyn to be assigned to the
tags. Of course, A does not know these keys initially.

Let S = (Gen, R, {Ti}) denote an RFID system. Strong privacy is defined
via an experiment called Exppriv

A,S [k, n, r, s, t]. Here, we run the system where
the adversary may corrupt tags, initiate sessions, etc., observing the limitations
put on him. This ends by the adversary selecting two uncorrupted tags, called
T ∗0 , T ∗1 . He is then given oracle access to T ∗b where b is a random bit. He may
now again corrupt other tags and initiate sessions, and must finally guess the
value of b. However, we have to assume that in this last phase, when using the
reader to interact with T ∗b , he only learns whether the reader outputs accept
or reject and not the identity found by the reader. Otherwise, he could just let
the reader identify T ∗b . The system is said to be (r, s, t)-private if any (r, s, t)-
adversary’s advantage over 1/2 in guessing b is negligible as a function of k.
We propose here to define also (r, s, t, u)-privacy, which is the same, except that
the adversary may only corrupt at most u tags. However, for some systems, the
advantage that can be achieved depends not only k, but on all the parameters,
and does not tend to 0 as we increase k, if other parameters are constant. We
will therefore use a variant of strong privacy here:

Definition 1. Strong (k, r, s, t, u, n, ε)-privacy is defined via the experiment
Exppriv

A,S [k, n, r, s, t, u] which is the same as Juels and Weis’ except that the

322 I. Damg̊ard and M.Ø. Pedersen

adversary can only corrupt up to u tags. We say that the system is strongly
(k, r, s, t, u, n, ε)-private if any adversary observing the limitations in the exper-
iment has advantage at most ε.

Experiment Exppriv
A,S [k, n, r, s, t, u] Setup:

1. Gen(1k) → (key0, ..., keyn)
2. Initialize R with (key0, ..., keyn)
3. Set each Ti’s key to keyi with a SetKey call

Phase 1 (Learning):

4. A may do the following in any interleaved order:
(a) Make ReaderInit calls, without exceeding r overall calls
(b) Make TagInit calls, without exceeding t overall calls
(c) Make SetKey calls, without exceeding u overall calls
(d) Communicate and compute without exceeding s overall steps

Phase 2 (Challenge):

5. A selects two tags Ti and Tj to which it did not send SetKey messages
6. Let T ∗0 = Ti and T ∗1 = Tj and remove both of these from the current tag set
7. Choose a random bit b ∈ {0, 1} and provide A access to T ∗b
8. A may do the following in any interleaved order:

(a) Make ReaderInit calls, without exceeding r overall calls
(b) Make TagInit calls, without exceeding t overall calls
(c) Make SetKey calls, without exceeding u overall calls to any tag in the

current tag set
(d) Communicate and compute without exceeding s overall steps

9. A outputs a guess bit b′

A succeeds if b = b′

As Juels and Weis note in [9], strong privacy may be too strong a notion for
many real world applications. In particular, the adversary can freely choose the
target tags he wants to be challenged on. He may not have that much power in
real life, where the choice may be forced on him by the environment he operates
in. One may try to model this by having the target tags be chosen from some
distribution independently of the adversary – this ideas is already present in
the work of Avoine [2]. But it is very difficult to single out a distribution that
realistically models the environment. We therefore propose a new model called
benign-selection privacy where we allow any distribution as long as it only selects
uncorrupted tags.

Definition 2. Benign-selection privacy is defined via an experiment called
Expbspriv

A,S,D[k, n, r, s, t, u] which is the same as Exppriv
A,S [k, n, r, s, t, u], except that

the adversary does not select the two tags T ∗0 , T ∗1 . Instead they are chosen at ran-
dom from distribution D among all uncorrupted tags. We think of D as a prob-
abilistic algorithm that only gets the set of corrupted tags as input, and outputs

RFID Security: Tradeoffs between Security and Efficiency 323

the index of the target tags, i.e., the choice is uncorrelated to adversarial activity
other than corruptions. We say that the system is (k, r, s, t, u, n, ε)-private with
benign D-selection if any adversary observing the limitations in the experiment
has advantage at most ε.

In the following, it will often be cumbersome and unnecessarily complicated to
specify s, the number of computational steps, exactly. We will often replace s
by a poly(k), meaning that the statement involved holds for any adversary that
uses time polynomial in k.

It is natural to expect a system as described here to also have the properties
that valid tags are accepted, and that the adversary cannot impersonate a tag
unless he corrupts it. This aspect was not treated in [9] (but was also not the
main goal there). We propose to define this as follows:

Completeness. Assume that at the end of session sid the internal log of the
reader R for that session contains pairs (cj , rj) where all rj

′s were gener-
ated by an honest tag in correct order. Completeness means that R outputs
Accept with probability 1 for any such session.

Strong Soundness. Consider the following experiment similar to the privacy
experiment of Juels and Weis:

Experiment Expsound
A,S [k, n, r, s, t, u] :

Setup:
1. Gen(1k) → (key0, ..., keyn)
2. Initialize R with (key0, ..., keyn)
3. Set each Ti’s key to keyi with a SetKey call

Attack:
4. A may do the following in any interleaved order:

(a) Make ReaderInit calls, without exceeding r overall calls
(b) Make TagInit calls, without exceeding t overall calls
(c) Make SetKey calls, without exceeding u overall calls
(d) Communicate and compute without exceeding s overall steps

Let E be the event that occurs if R at some point outputs (Accept, i) at
the end of session sid where Ti is not corrupted, yet R’s internal entry for
sid only contains pairs (cj , rj) where rj was not sent by Ti as a response to
cj , i.e., Ti has not been involved in the session. We say that the system pro-
vides strong (r, s, t, u)-soundness if the probability that E occurs is negligible
in k.

Weak Soundness. Weak (r, s, t)-soundness is defined by the same experiment
as above, except that R now only has to output Accept or Reject at the end
of a session, A is not allowed to corrupt tags, and the error event E is now
defined to be that R outputs Accept, and yet no tag has been involved in
the session.

324 I. Damg̊ard and M.Ø. Pedersen

3 Independent Keys

As mentioned earlier, our goal in this section is to prove the speculation by Juels
and Weis: In any strongly private, complete and sound RFID system, the reader
must access a key for every tag, or at least a large fraction of them, when reading
a tag. This can only be expected to hold, however, when keys for different tags
are independently chosen, and the system “only” uses symmetric cryptography.
If public-key cryptography was allowed, a tag could first encrypt its identity
under the reader’s public-key, and then show possession of some secret that is
shared between reader and this tag only.

To prove something, we need to formalize the constraints on the system. For
the independence of keys, this is easy, we simply assume that each tag Ti gets a
key Ki chosen independently from all other keys by a key generation algorithm
Gi, i.e., Ki ← Gi(1k) where k is the security parameter. As for the constraint
that “symmetric cryptography and nothing else is used”, we will give the system
access to a pseudorandom function, φ·(·), and we will assume that every key Ki

in the system is used only as a key to this function, i.e., tag Ti or reader use
φKi(·) as a black box. This means that we can equivalently give tags and reader
oracle access to φKi(·) for any key they need to use. Therefore, when in the
following we say that “the reader accesses a key”, this means it calls the oracle
that holds that key.

Now, to model that the pseudorandom functions are the essential crypto-
graphic resource used, we will simply assume that the keys {Ki} held by the
reader and tags are the only secret data in the system. More precisely, we think
of the reader’s algorithm as an interactive Turing machine that takes no private
input, but may make oracle calls to φKi(·) for any Ki. Similarly, a tag may only
call its own pseudorandom function, whereas the adversary may only call φKi(·)
if he has corrupted Ti. We will say that such a system is essentially symmetric.

Note that an essentially symmetric system is not prevented from using public-
key, or using secret-key techniques in a non-blackbox way – the reader could try
to do a Diffie-Hellman key exchange with a tag, for instance, or generate a key
for a pseudorandom function and use this key in any way it wants. Nevertheless,
the constraints we have defined are sufficient to show what we are after. To get
better intuition for why this is the case, one may note that, while the reader is
free to generate a public encryption key and send it to a tag, the tag cannot
immediately verify that the key comes from the reader and not the adversary.
Thus it would not be secure to send the tag’s id encrypted under the public key.

The first lemma formalizes the straightforward intuition that if keys are inde-
pendent, a reader cannot determine if it is talking to a valid tag unless it accesses
the key for that tag. More formally:

Lemma 1. Consider an RFID system that is complete, weakly (1, poly(k), 0)-
sound, and uses independent keys. Consider a session between reader and a
tag where the adversary does not modify the traffic. In any such session, the
algorithm executed by the reader when reading a tag Ti will access Ki, except
with negligible probability.

RFID Security: Tradeoffs between Security and Efficiency 325

Proof. We consider all probabilities as taken over the choice of keys and the
random coins used by tag and reader in the session. Let E be the event that
the reader does not access φKi . By completeness, the reader should accept with
probability 1, so the probability that the reader accepts and E occurs equals
Pr(E). Assume for contradiction that Pr(E) is non-negligible. Then an adver-
sary could fabricate his own tag T ′i with a key K ′i generated by Gi, and start
a session between this tag and the reader, while simply following the protocol.
Now by independence of keys, as long as E occurs, conversations with T ′i and
Ti are perfectly indistinguishable. Hence, the reader accepts with probability at
least Pr(E), which contradicts weak soundness. ��

The next theorem uses the observation that in an essentially symmetric system,
the only difference between the honest reader and an adversary is that the reader
has access to all keys, while the adversary initially does not. He can, however,
corrupt tags and get access to (some of) the keys. He can therefore potentially
run the same algorithm that the reader uses when reading a tag.

Theorem 1. Assume an essentially symmetric RFID system is complete and
weakly (1, poly(k), 0)-sound. Assume also that the reader algorithm accesses at
most αn of the keys, for a constant α < 1/2. Such a system cannot have strong
(k, 0, poly(k), 1, αn, n, 1/2 − α)-privacy

Proof. We describe an adversary that will break strong privacy for any system
that is complete and weakly sound and where only αn oracles are accessed. The
adversary picks uniformly a pair of tags Ti, Tj , and uses these two as the challenge
pair (T ∗0 , T ∗1) from the strong privacy definition. It then gets oracle access to T ∗b ,
where b = 0 or 1 and should try to guess which of the two it is talking to. To
do this, it executes the read protocol with T ∗b , and while doing so, it emulates
the reader’s algorithm. Whenever the reader algorithm wants to access Kt, the
adversary corrupts Tt, and may now call the pseudorandom function with key
Kt. This goes on until the reader algorithm wants to access Kt where t = i or
j. In this case the adversary outputs 0 if t = i and 1 otherwise and then stops.

To analyze the probability that this adversary has success, suppose, for in-
stance, that b = 0. Since our adversary follows the protocol when talking to T ∗b ,
we can apply Lemma 1 to conclude that the reader will access Ki when talking
to T ∗b with probability essentially 1. On the other hand, the probability that it
will not access Kj is greater than 1−α because only αn keys are accessed (one of
which is Ki), and given i, j is uniform over all values different from i. It follows
that the adversary’s guess is correct with probability 1 − α which is a constant
greater than 1/2 and hence we contradict strong privacy. ��

Note that since the adversary we construct in the proof selects target tags uni-
formly, this same argument also shows that a system as specified in the theorem
cannot even have benign D-selection privacy where D is the uniform distribution.

One might use some form of pre-computation to perform key lookups more
efficiently. For example Avoine, Dysli, and Oechslin [4,3] propose to use Hellman
tables [8] in the protocol of Ohkubo, Suzuki and, Kinoshita, to reduce key lookup

326 I. Damg̊ard and M.Ø. Pedersen

time to O(n2/3) at the cost of using an additional O(n2/3) space [13]. Since the
construction of the table requires accessing all keys in the system, methods
using Hellman tables do not immediately contradict the lower bound. We can,
however, argue that such methods cannot provide both soundness and privacy:
To initialize such a table one must predict all possible outputs from the tag,
which in turn means that the tag can only have a fixed number of outputs, m.
Juels and Weis show how to break strong privacy for such a scheme, simply by
querying a tag m times, and use the reader to distinguish it from another tag
that has been queried less than m times [9]. Note that the reader can only accept
having the same conversation once with a tag, otherwise a simply replay attack
could break the soundness.

4 Correlated Keys

We have shown in the previous section that if we want strong privacy and tags
have independent keys, the reader has to access least half of the keys in the worst
case. This obviously does not scale well, so we now look at how much privacy and
soundness we will loose in return for efficiency if we allow the keys to be correlated.

It was already known from the work of Molnar, Soppera and Wagner that
using correlated keys, one can obtain the property that the reader only needs to
access a logarithmic number of keys [12]. Unfortunately, this comes at the price
that strong privacy is lost already if the adversary corrupts a single tag. This is
due to the fact that the system works with a pair of keys (K0, K1), where half
the tags hold K0, the other half hold K1 - as well as many other keys, arranged
in a tree structure, which is not important here, however. Corrupting a single
tag tells the adversary one of the keys, say K0. The protocol is such that one
can easily extract from the responses tags give, a part that is computed only
from K0 or K1. This gives the adversary a way to compute from the responses of
an uncorrupted tag which of the two keys it holds. Since half the tags hold K0,
2 sessions with random chosen tags will locate two tags holding different keys
with probability 1/2. Clearly, using two such tags as the target in the privacy
experiment, the adversary can identify with certainty which tag he talks to. It is
not even private with benign selection, no matter which distribution is used: the
distribution is by definition independent of which keys are held by uncorrupted
tags, so we again have that the target tags hold different keys with probability
1/2. Of course, an error probability of 1/2 is too large in practice.

This makes it natural to ask if we can get privacy with a larger number of
corruptions without going back to systems where the reader does exhaustive
search over all keys.

4.1 A Necessary Tradeoff

First, it is useful to observe that in the kind of systems we look at here, some
tradeoff between efficiency of the reader and privacy is unavoidable: suppose the
key generation algorithm works by generating independently a number of keys,
and then assigning to each tag a subset of these keys. The system we propose

RFID Security: Tradeoffs between Security and Efficiency 327

below, as well as the systems proposed by Molnar, Soppera and Wagner, and by
Juels and Weis, are all of this type.

Let K be one of the keys used. We will say that K is efficiently decidable if
there is an efficient algorithm that, when given K and a session between a tag
T and the reader, can decide whether T holds K or not. For instance, it may
be that the tag, if indeed it holds K, computes a particular part of its response
only from K. One can then from K compute what the tag should say if it knows
K and compare to what it actually said. In the systems from [9,12], all keys are
efficiently decidable.

An efficiently decidable key can be used by the reader towards identifying the
tag it is reading, because it can tell whether the tag is in the set of tags that know
K or in the complement. However, such a key can also be used by the adversary,
who may learn K by corrupting a tag, and can now also distinguish tags that
know K from those who do not. Clearly, if the adversary can locate two tags, of
which one holds K and the other doesn’t, then he can break strong privacy. Let
p(K) be the number of tags that hold the key K. The case where p(K) = n/2
is the case where the reader gets maximal information from knowing K, namely
one bit of information on the identity of the tag. Unfortunately, this is also the
optimal case for the adversary, since interactions with a constant number of tags
will be sufficient to locate two target tags that can be used to break the privacy.

One may treat this problem either by letting every part of the tag response
depend on several keys, or make sure that p(K) is small for every efficiently
decidable key K. Both approaches make life harder for the adversary as well as
for the reader. We give below an example of the second approach.

4.2 A Tradeoff Construction

Our construction depends on two parameter, v, c. Typically, v will be quite large,
say v = nd for some constant d < 1, while c may be something small, say constant
or logarithmic in n. We will assume that we have a pseudorandom function
φ·(·). It is straightforward to construct such functions from a cryptographic
hash function by simply hashing the key together with the input, this is provably
secure in the random oracle model. Other constructions based on, e.g. AES are
also possible.

The key generation involves generating c lists of keys to the pseudorandom
function φ, Kj = (kj

1, k
j
2, ..., k

j
v) for j = 1..c.

We assign to each tag Ti a random string stri = (si,1, ..., si,c) ∈ Zc
v, c keys

(k1
si,1

, ..., kc
si,c

), and a key ki that is unique to Ti (see Figure 2). The probability
that two tags will be assigned the same string is at most n2/vc, we assume
v, c are chosen such that this is negligible. Let nT , nR be nonces chosen by tag,
respectively reader, such that these values do not repeat. Then the protocol
between the tag Ti and reader is:

1. Ri −→ Ti: nR

2. R ←− Ti: nT , φksi,j
(nT , nR), for j = 1, .., c, and φki(nT , nR). The intuition

is that the first c values allow the reader to identify the tag, while the final
value proves that the tag is who it claims to be.

328 I. Damg̊ard and M.Ø. Pedersen

K1 = k1
1 , k1

2 , k1
3, k

1
4 , . . . , k1

v

K2 = k2
1 , k2

2, k
2
3, k

2
4 , . . . , k2

v

K3 = k3
1 , k3

2 , k3
3 , k3

4 , . . . , k3
v

. . .

Kc = kc
1, kc

2 , kc
3, k

c
4, . . . , k

c
v ki

Fig. 2. Example: Keys assigned to a tag Ti with string stri = (2, 1, 3, . . . , 2)

For the j’th pseudorandom function value received, j = 1 . . . c}, the reader
searches through the v keys in Kj and checks if one of these will generate the
value received, i.e., for each k ∈ Kj one checks if φk(nT , nR) = φksi,j

(nT , nR).
If this is not the case, reject and stop. Otherwise note the index of the key. The
indices noted form a string (s1, .., sc). If this string matches the string assigned to
some tag Ti, and the final pseudorandom value received is equal to φki(nT , nR),
output (accept, i). Else output reject.

To show security of the system, we first go to the independent oracles model,
i.e., we replace each call to φ using key k by a call to a random oracle Ok, using
independent oracles for different keys. The adversary can only call an oracle Ok

if he corrupts a tag that holds k.
It is straightforward to see that if we model the hash function used in the

proposed construction of φ by a random oracle, then an adversary playing the
privacy or soundness game is exactly working in the oracle model just described.
For this reason and for simplicity, we will analyze the system in this model. At
the cost of a more complicated proof, it is also possible to argue security based
only on pseudo-randomness of φ, i.e., without using the random oracle model.

The first result on our system shows that, without loss of generality, we may
consider only adversaries who do no talk to the reader:

Lemma 2. In both the privacy and soundness games, sessions that the adver-
sary initiates with the reader can be simulated without access to the reader, but
with access to those oracles that the adversary can access. The simulation is
perfect, except with probability negligible in k.

Proof. We describe an algorithm for simulating the sessions in question: In any
session, the reader first sends a nonce nR, this can be simulated by simply follow-
ing the reader’s algorithm for selecting nonces. The message that the adversary
returns must consist of a nonce nT and c + 1 values r1, ..., rc, s. Note that the
reader checks these values against oracle outputs generated from the fresh input
nR, nT , and that we may assume that oracle answers are sufficiently long so they
cannot be guessed except with negligible probability. For these reasons, the ad-
versary can only hope to have the reader accept if he generated each of the c+1
response values by either using an oracle he has direct access to, or by start-
ing a session with an uncorrupted tag and using (part of) the tag’s response.

RFID Security: Tradeoffs between Security and Efficiency 329

If this is not the case, we can return reject to the adversary: in real life the
reader will reject such a response except with negligible probability. But if the
adversary has indeed generated the entire response by calling oracles (directly or
indirectly), we know the identity k′ of the oracle the generated the last value in
the response. If the call to oracle Ok′ was made by an uncorrupted tag Tj , this
has to be because that tag received nR as a challenge and therefore produced
a correct response for nonces nR, nT . If we see that the adversary forwards this
response to the reader, we return (accept, j) as the real reader would have done.
If the adversary has replaced any of the first c values with other oracle responses,
we return reject, which is correct except with negligible probability.

The only remaining possibility is that it was the adversary who called Ok′ .
This means he must have corrupted the tag Ti giving access to this oracle, and
so he also has access to to the other c oracles that this tag possesses. Therefore,
having generated the message sent to the reader, we can check whether this is a
correct response from Ti. If this is not the case, we return reject to the adversary.
Otherwise, we return (accept, i). ��

The following lemma turns out to be essential for privacy:

Lemma 3. Consider an adversary that does not start any session with the
reader. Let M be the set of oracles that the adversary gains access to during
the privacy game. Let E be the event that the following condition is satisfied
after the game: the adversary has started at least one session with some uncor-
rupted tag T , and one of the oracles assigned to T is in M . In the privacy game,
by convention, the adversary selecting the two target tags counts as starting a
session with both tags. Let t′ be the number of different tags the adversary talks
to during the game. The probability that E occurs is at most

ct′u
v

+
ct′u

v − u

Proof. Suppose we are at some point in the game where E has not occurred yet.
This means that for all uncorrupted tags the adversary has talked to, he knows
that they only have oracles he has no access to, but due to the randomness of
the oracles, he has no information on their identity.

The adversary may now start a session with a new tag he did not talk to
before, or corrupt a tag. For each of these moves, we bound the probability that
E will occur after the move:

Start new session: Since the adversary has not previously talked to the tag Ti,
given what he knows, stri is uniform. We can therefore model what goes on
as follows: look at one of the c positions in stri, and let x ∈ Zv be the number
in this position. Now, x is uniform over v possibilities, and the adversary has
success, if x happens to be one of the ≤ u values corresponding to oracles
he can access. So the adversary has success in one position with probability
at most u/v, and therefore has success in any position with probability at
most cu

v

330 I. Damg̊ard and M.Ø. Pedersen

Corrupt new tag: For the previously uncorrupted tag Ti, consider again x,
the number at some position in stri. Then given what the adversary knows,
before he corrupts Ti, x is uniform over at least v − u possibilities, if the
adversary talked to Ti before, he knows x does not match any of the ≤ u
possibilities he knows from already corrupted tags. The adversary hopes x
will hit one of the ≤ t′ possibilities for tags he talked to, so the probability
of success is at most t′/(v − u) for one position and ct′

v−u for all positions.

Finally, since there are at most t′ respectively u steps that could cause the first
respectively second kind of event, the lemma follows. ��

We are now ready to prove security of our construction.

Theorem 2. For the RFID system described above, we have that if the hash
function used in the construction is modeled by a random oracle, then the sys-
tem is (poly(k), poly(k), poly(k), n)-strongly sound, and is strongly (k, r, poly(k),
t, u, n, ε)-private, where

ε =
ct′u
v

+
ct′u

v − u
+ negl(k)

and where negl(k) is a negligible function of k.

Proof. Completeness is obvious from the fact that the strings assigned to tags
are unique except with negligible probability.

For soundness, recall that the adversary wins the soundness game if a session is
generated where the reader outputs (accept, i), but the (uncorrupted) tag Ti did
not participate. Since the input nonces are fresh and oracles answers cannot be
guessed in advance except with negligible probability, the oracle Oki must have
been called to generated the last part of the response. But this is impossible
since Ti did not participate and the adversary does not have access to Oki as
long as Ti is uncorrupted.

Finally, for privacy, note that by Lemma 2, any adversary A playing the
privacy game can be replaced by a new adversary A′, who does not start sessions
with the reader, and such that the advantage of A′ is smaller than that of A by
at most a negligible amount. This, together with Lemma 3 immediately implies
the privacy result. ��

Finally, we show that the adversary’s advantage in the benign selection privacy
game is much smaller:

Theorem 3. Our system is (k, r, poly(k), t, u, n, ε)-private with benign D-
selection for any D, and where ε = 2cu/v + negl(k)

Proof. As above, we can assume that the adversary does not talk to the reader,
at the cost of adding a negligible amount to the advantage. Now consider the sit-
uation when the target tags are chosen. For each of the c positions in the strings
assigned to tags, the adversary can access at most u of the v oracles assigned to
this position. Hence, when an uncorrupted tag is chosen, no matter how this is

RFID Security: Tradeoffs between Security and Efficiency 331

done, the probability that its oracle for this position is known to the adversary
is u/v since “names” of tags are assigned uniformly and independently. Since
the two target tags hold a total of 2c oracles that could be used to distinguish
them, the probability that at least one of them is known to the adversary is at
most 2cu/v. On the other hand, if the adversary has no oracles in common with
the target tags, he cannot distinguish them at all. ��

5 Efficiency

The interest in this result is that it shows a possibility for a new tradeoff between
security and efficiency for large systems, where the adversary can be expected
to only corrupt or talk to a number of the tags that is very small compared
to the total number of tags in the system. More precisely, for parameter values
such that r, t′, u << v << n, but still n2 < vc. However, for particular values
of r, t′, u and c, v and hence n must very large to make the privacy advantage
be small. This has to do with the fact that we are asking for strong privacy and
this is a very strong demand. Below, we show that the systems performs much
better under the privacy definition with benign selection. On the practical side,
note that the reader needs to look at only cv keys which can be much smaller
than n. Also, each tag only has to hold c + 1 keys. Although the total number
of keys in the system is greater than n, this does not mean that the reader has
to store this many keys – they can be generated pseudorandomly from a single
key when they are needed.

Let us look at a concrete example of parameters in the benign selection model
for any distribution. Suppose we choose v = 216 and c = 4. Then we can ac-
commodate over 33 million tags, say n = 225, and each tag only needs to store
5 keys. If the adversary can corrupt 100 tags, the above says that his chance
of distinguishing two tags that are chosen for him is at most 1/100. Note that
even if the adversary is lucky with one pair of tags, his chance against another
pair is still only 1/100, so we think this can be quite reasonable in practice. In
other words, even though a probability of 1/100 is not negligible in the usual
sense, this is not necessary, if the “bad event” does not imply a complete break
of the system. With these parameters, the reader must search through at most
218 keys to identify a tag, which is clearly better than 225, which was needed
to get strong privacy. We can even increase n without increasing the number of
keys to search through, as long as we keep the probability that two tags will be
assigned the same key n2/vc reasonably small.

6 Conclusion

We have proposed a new definition of security for RFID systems, incorporating
both strong privacy, soundness and completeness, and also a weaker but more
realistic variant of privacy, with benign selection. We have shown that in sound,
complete and essentially symmetric RFID system where tags are independently
keyed, the reader must access at least half of all keys when reading a tag, or

332 I. Damg̊ard and M.Ø. Pedersen

privacy is violated. Finally, we have proposed a new RFID system based on
symmetric cryptography offering a tradeoff between reader efficiency and privacy.

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

2. Avoine, G.: Adversarial model for radio frequency identification. Cryptology ePrint
Archive, Report 2005/049 (2005)

3. Avoine, G., Dysli, E., Oechslin, P.: Reducing time complexity in rfid systems. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306. Springer,
Heidelberg (2006)

4. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based rfid proto-
col. In: Stajano, F., Thomas, R. (eds.) PerSec 2005, vol. 00, pp. 110–114. IEEE
Computer Society Press, Los Alamitos (2005)

5. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: An
elliptic curve processor suitable for RFID-tags. Cryptology ePrint Archive, Report
2006/227 (2006)

6. Burmester, M., van Le, T., de Medeiros, B.: Provably secure ubiquitous systems:
Universally composable rfid authentication protocols. Cryptology ePrint Archive,
Report 2006/131 (2006)

7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

8. Hellman, M.E.: A cryptanalytic time-memory tradeoff. IEEE Transactions on In-
formation Theory 26(6), 401–406 (1980)

9. Juels, A., Weis, S.A.: Defining strong privacy for rfid. In: PERCOMW 2007,
vol. 1462, pp. 342–347. IEEE Computer Society Press, Los Alamitos (2007)

10. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidel-
berg (2005)

11. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)

12. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym proto-
col enabling ownership transfer of rfid tags. Cryptology ePrint Archive, Report
2005/315 (2005)

13. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based rfid privacy
protection scheme. In: Ubicomp, Privacy Workshop: Current Status and Future
Directions (2004)

14. de Medeiros, B., van Le, T., Burmester, M.: Universally composable and forward
secure rfid authentication and key exchange. Cryptology ePrint Archive, Report
2006/448 (2006)

15. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp.
201–212. Springer, Heidelberg (2004)

Program Obfuscation and One-Time Programs

Shafi Goldwasser1,2

1 RSA Professor in EECS, Massachusetts Institute of Technology
2 Weizmann Institute of Science

Abstract. Program obfuscation is the process of taking a program as
an input and modifying it so that the resulting program has the same
I/O behavior as the input program but otherwise looks ‘garbled’ to the
entity that runs it, even if this entity is adversarial and has full access to
the program. Intuitively, by looking garbled to an adversarial entity, we
mean that it should be impossible to understand the internal working
of the program, or more generally to compute anything that cannot be
computed by seeing only the legitimate outputs of the program on inputs
of choice.

Traditionally, program obfuscation has been regarded as a software-
based technique to curb the use of programs in commercial contexts
such as preventing illegal re-distribution of copyrighted information. Here
the obfuscation process is aimed at preventing ‘reverse engineering’ that
would subvert the curbs and restrictions that were embedded into the
original program. Another domain in which program obfuscation is con-
sidered imperative is within the on-line gaming industry, where in order
to maintain a fair and consistent gaming environment which will keep
gamers coming, one must ensure that hackers cannot modify the games
so as to gain an unfair advantage. Also, as more and more web sites de-
liver Javascript source code to be run locally on browsers, programmers
are naturally interested in obfuscating their source code in order to make
it hard for competitors to learn how it works.

The design of program obfuscators (or at least attempts at it) has been
standard fare in practice. However, in spite of the large effort dedicated
to develop program obfuscators, these efforts have been successful only
in the very short run. Indeed, the general belief in the industry has
remained very skeptic regarding the viability of obfuscation methods, as
expressed in the following recent quote:

This feeling seems to be supported by theoretical impossibility results
that assert that several strong (albeit natural) formulations of obfus-
cation are impossible. That is, there is no generic mechanism that can
successfully obfuscate large classes of programs.

Yet, even more recent theoretical results have pointed out a way in
which, in spite of these generic impossibility results, the basic concept
of program obfuscation is obtainable in many settings. One setting on
which we will elaborate is of one-time programs: programs that can be
executed only a restricted and pre-specified number of times. Naturally,
these programs cannot be achieved using software alone. We show how to
build them using ‘simple’ and ‘universal’ secure hardware components.

One-time programs serve many of the same purposes of program
obfuscation, the obvious one being software protection. However, the

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 333–334, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 S. Goldwasser

applications of one-time programs go well beyond those of obfuscation,
since one-time programs can only be executed once (or more generally,
a limited number of times) while obfuscated programs have no such
bounds. For example, one-time programs lead naturally to electronic
cash or token schemes and to “one-time proofs”, proofs that can only
be verified once and then become useless and unconvincing. We show
how to use a classical witness and simple secure hardware to efficiently
construct such “one-time proofs” for any NP statement.

In this talk we will survey all of these exciting developments.

Efficient Two-Party Password-Based Key
Exchange Protocols in the UC Framework

Michel Abdalla1, Dario Catalano2, Céline Chevalier1, and David Pointcheval1

1 École Normale Supérieure, LIENS-CNRS-INRIA, Paris, France
2 Università di Catania, Italy

Abstract. Most of the existing password-based authenticated key ex-
change protocols have proofs either in the indistinguishability-based se-
curity model of Bellare, Pointcheval, and Rogaway (BPR) or in the
simulation-based of Boyko, MacKenzie, and Patel (BMP). Though these
models provide a security level that is sufficient for most applications,
they fail to consider some realistic scenarios such as participants running
the protocol with different but possibly related passwords. To overcome
these deficiencies, Canetti et al. proposed a new security model in the
universal composability (UC) framework which makes no assumption on
the distribution on passwords used by the protocol participants. They
also proposed a new protocol, but, unfortunately, the latter is not as
efficient as some of the existing protocols in BPR and BMP models. In
this paper, we investigate whether some of the existing protocols that
were proven secure in BPR and BMP models can also be proven secure
in the new UC model and we answer this question in the affirmative.
More precisely, we show that the protocol by Bresson, Chevassut, and
Pointcheval (BCP) in CCS 2003 is also secure in the new UC model. The
proof of security relies in the random-oracle and ideal-cipher models and
works even in the presence of adaptive adversaries, capable of corrupting
players at any time and learning their internal states.

1 Introduction

Password-based authenticated key exchange (PAKE) protocols allow users to se-
curely establish a common key over an insecure channel only using a low-entropy,
human-memorizable, secret key called a password. Since PAKE protocols do not
require complex public-key infrastructure (PKI) or trusted hardware capable of
storing high-entropy keys, they have become quite popular since being intro-
duced by Bellovin and Merritt [3].

Due to the low entropy of passwords, PAKE protocols are subject to dictionary
attacks in which the adversary tries to break the security of the scheme by
trying all values for the password in the small set of the possible values (i.e.,
the dictionary). Unfortunately, these attacks can be quite damaging since the
attacker has a non-negligible probability of succeeding. To address this problem,
one should invalidate or block the use of a password whenever a certain number
of failed attempts occurs. However, this is only effective in the case of online

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 335–351, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

336 M. Abdalla et al.

dictionary attacks in which the adversary must be present and interact with the
system in order to be able to verify whether its guess is correct. Thus, the goal
of PAKE protocol is restrict the adversary to online dictionary attacks only.
In other words, off-line dictionary attacks, in which the adversary verifies if a
password guess is correct without interacting with the system, should not be
possible in a PAKE protocol.

Security Models. Even though the notion of password-based authentication
dates back to the seminal work by Bellovin and Merritt [3], it took several
years for the first formal security models to appear in the literature [5,4]. In [5],
Bellare, Pointcheval, and Rogaway (BPR) proposed an indistinguishability-based
security model extending the framework of Bellare and Rogaway [7,8] while,
in [4], Boyko, MacKenzie, and Patel (BMP) proposed a simulation-based security
model based on the framework of Shoup [18]. In both cases, the level of security
provided by the models is quite reasonable and sufficient for most applications
and it captures the intuition given above in which the success of an adversary
in breaking the security of a scheme should be limited to its online attempts.

Unfortunately, as pointed out by Canetti et al. [10], the BPR and BMP se-
curity models are not as general or as strong as they could be and they fail to
consider some realistic scenarios such as participants running the protocol with
different but possibly related passwords. To overcome these deficiencies, Canetti
et al. [10] proposed a new security model for PAKE schemes in the universal
composability (UC) framework [9] which makes no assumption on the distri-
bution on passwords used by the protocol participants. Their model was later
extended to the verifier-based scenario by Gentry et al. [13].

In addition to the new security model, Canetti et al. [10] also proposed a new
protocol based on the PAKE schemes by Katz, Ostrovsky, and Yung [15] and by
Gennaro and Lindell schemes [12] and proved it secure in the new model against
static adversaries based on standard computational assumptions. Unfortunately,
the new protocol is not as efficient as some of the existing protocols in BPR and
BMP models (e.g., [2,1,15,17]), an issue that can significantly limit its appli-
cability. Given this limitation, one natural question to ask is whether some of
the more efficient protocols that were proven secure in BPR and BMP models
can also be proven secure in the model of Canetti et al. [10]. In this paper, we
answer this question in the affirmative by showing that the protocol by Bresson,
Chevassut, and Pointcheval (BCP) [2] is also secure in the model of Canetti et
al. [10]. We view this as the main contribution of our paper.

In addition to proving the security of the BCP protocol in the model of Canetti
et al. [10], another contribution of our paper is to show that their protocol re-
mains secure even against adaptive adversaries, capable of corrupting adversaries
at any time and learning their internal states. Despite this being first time that
such a strong security level is achieved in the password-based scenario, we do
not consider this result very surprising given the use of the random-oracle and
ideal-cipher models in the security proof.

Organization. In Section 2, we extend the ideal functionality of PAKE pro-
tocols to include client authentication, which not only ensures the parties that

Efficient Two-Party Password-Based Key Exchange Protocols 337

nobody else knows the common secret, but also that they actually share the
same secret. As in [10], passwords are chosen by the environment who then
hands them to the parties as input. This is the strongest security model, since it
does not assume any distribution on passwords. Furthermore, it allows the envi-
ronment to even make players run the protocol with different (possibly related)
passwords. For example, this models a user mistyping a password. As in [10], we
also provide the adversary with a Test-Password query to model the vulnerability
of the passwords (whose entropy may be low). This models the case in which the
adversary tries to impersonate a player by guessing its password. If the guess
is correct (which may happen with non-negligible probability), the adversary
should succeed in its impersonation.

Next, in Section 3, we recall the password-based protocol of [2] and prove
it secure in the new extended model, even against adaptive adversaries which
can perform strong corruptions at any time. The proof is given in Section 4. As
we mentioned above, this is the first time that such a strong security level is
achieved in the password-based scenario: adaptive and strong corruptions in the
UC framework.

In the appendix, we also provide ideal functionalities for the ideal-cipher and
the random-oracle models [6].

2 Definition of Security

Notations. We denote by k the security parameter. An event is said to be
negligible if it happens with probability that is less than the inverse of any
polynomial in k. If G is a finite set, x

R← G indicates the process of selecting x
uniformly and at random in G (thus we implicitly assume that G can be sampled
efficiently).

The UC Framework. Throughout this paper we assume basic familiarity with
the universal composability framework. Here we provide a brief overview of the
framework. The interested reader is referred to [9] for complete details. In a nut-
shell, security in the UC framework is defined in terms of an ideal functionality F ,
which is basically a trusted party that interacts with a set of players to compute
some given function f . In particular, the players hand their input to F which
computes f on the received inputs and gives back to each player the appropriate
output. Thus, in this idealized setting, security is inherently guaranteed, as any
adversary, controlling some of the parties, can only learn (and possibly modify)
the data of corrupted players. In order to prove that a candidate protocol π re-
alizes the ideal functionality, one considers an environment Z, which is allowed
to provide inputs to all the participants and that aims to distinguish the case
where it receives the outputs produced from a real execution of the protocol
(involving all the parties and an adversary A, controlling some of the parties
and the communication among them), from the case where it receives outputs
obtained from an ideal execution of the protocol (involving only dummy parties
interacting with F and an ideal adversary S also interacting with F). Then we
say that π realizes the functionality F if for every (polynomially bounded) A,

338 M. Abdalla et al.

there exists a (polynomially bounded) S such that no (polynomially bounded)
Z can distinguish a real execution of the protocol from an ideal one with a sig-
nificant advantage. In particular, the universal composability theorem assures
us that π continues to behave like the ideal functionality even if it is executed
in an arbitrary network environment.

Session ID’s and Player’s IDs. In the UC framework there may be many
copies of the ideal functionality running in parallel. Each one of such copies is
supposed to have a unique session identifier (SID). Every time a message has to
be sent to a specific copy of F , such a message should contain the SID of the
copy it is intended for. Following [10], we decided to make things simple and to
assume that each protocol that realizes F expects to receive inputs that already
contain the appropriate SID. See [10] for further details about this. Moreover
we assume that every player starts a new session of the protocol with input
(NewSession, sid, Pi, Pj , pw, role), where Pi is the identity of the player, pw his
or her password, Pj the identity of the player with whom he or she intends to
share a session key and role being either client or server.

UC With Joint State. The original UC theorem allows to analyze the security
of a system viewed as a single unit, but it says nothing if different protocols share
some amount of state and randomness (such as a common reference string, for
instance). Thus for the application we have in mind, the UC theorem cannot
be used as it is, since different sessions of the protocol share the same random
oracles and the same ideal cipher.

In [11] Canetti and Rabin introduced the notion of universal composability
with joint state. Informally, they put forward a new composition operation that
allows different protocols to have some common state, while preserving security.
Very informally, this is done by defining a multisession extension F̂ of F , which
basically runs multiple executions of F . Each copy of F is identified by means of
a sub-session id (SSID). This means that, if F̂ receives a message m with SSID
ssid it hands m to the copy of F having SSID ssid. If no such copy exists, F̂
invokes a new one on the spot. Notice that, whenever F̂ is executed, the calling
protocol has to specify both the SID (i.e. the usual session id, as in any ideal
functionality) and the SSID.

Adaptive Adversaries. In this paper, we will consider protocols that are se-
cure against adaptive adversaries, i.e. adversaries that are allowed to arbitrarily
corrupt players at any moment during the execution of the protocol. The adver-
sary corrupts a player by getting complete access to its internal memory. Note
that at the end of an execution of the protocol, the adversary recovers nothing,
as if the internal state has been completely erased. In a real execution of the
protocol this is modeled by letting the adversary A obtain the password and the
internal state of the corrupted player. Moreover, the adversary can arbitrarily
modify the player’s strategy. In an ideal execution of the protocol, the simulator
S gets the player’s password and has to simulate its internal state, in a way that
remains consistent to what already provided to the environment.

Efficient Two-Party Password-Based Key Exchange Protocols 339

The Random Oracle and the Ideal Cipher. For lack of space, a description
of these functionalities is given in Appendix A.

The Password-Based Key-Exchange Functionality With Client Au-
thentication. In this section, we motivate and present our formulation of an
ideal functionality for password-based key exchange with client authentication
(see Figure 1). The starting point for our approach is the definition for univer-
sally composable password-based key exchange with no authentication [10]. Our
aim is to define a functionality that achieves the same effect, except that we also
incorporate the authentication of the client. Mutual authentication would have
been easier to model. However, client-authentication is usually enough in most
cases and often results in more efficient protocols.

First notice that the functionality is not in charge of providing the password(s)
to the participants (the client Alice and the server Bob). Rather we let the en-
vironment do this. As already pointed out in [10], such an approach allows to
model, for example, the case where some users may use the same password for
different protocols and, more generally, the case where password(s) are chosen
according to some arbitrary distribution (i.e. not necessarily the uniform one).
Moreover, notice that allowing the environment to choose the password(s) guar-
antees forward secrecy, basically for free.

The queries NewSession and TestPwd are dealt with in the same manner as
in [10], but we introduce the client authentication in the way the functionality
answers the NewKey queries. In the definition of FCA

pwKE , the server receives an
error if the players don’t meet all the conditions to receive the same, randomly-
chosen key. We could have chosen to send to the server a pair consisting of a key
chosen independently from that of the client and a flag warning the server that
the protocol has failed, but we preferred to keep the functionality as straightfor-
ward as possible.

Client Authentication. The first reason why the initial functionality didn’t
achieve this property is that we had to deal with the order of the queries NewKey.
More precisely, if the server asks the first query, it is impossible to answer it,
because we don’t know what is going to happen to the client afterwards: If the
session was fresh for both players and the server was the only one to have received
his key, the client’s session could possibly become compromised or interrupted
after the server had received his key, whereas the functionality should have been
able to determine whether or not the server should receive a key or an error
message. We solved this issue by making it mandatory for the adversary to ask
the query for the server after the corresponding query for the client. This is not a
strong restriction, since this situation frequently happens in real protocols, and
in particular in the one that we are studying: the server has to accept the client
before generating the session key.

Thus, if the adversary asks for the key of a client, everything is as before,
except that we also provide a flag ready for the session. The aim of this flag is
to help determine, when the adversary asks for the key of the server, that the
corresponding client has already got her key.

340 M. Abdalla et al.

On the other hand, if the adversary asks for the key of a server, the server
is given an error message in the easy failure cases (interrupted or compromised
sessions, corrupted players – if the passwords are different in the two latter cases).
If the session is fresh and the corresponding client hasn’t yet received her key, we
simply postpone the query of the adversary until the client has received her key.
In the latter case, when the client has received her key, the server is given the
same key if they have the same password and an error message otherwise. We
finally obtain the following definition, which remains trivially secure and correct.

3 Our Scheme

3.1 Description of the Protocol

The protocol presented in Figure 2 is based on that of [2], with two slight dif-
ferences: In the standard model using the security definition of Bellare et al. [5],
the session identifier is obtained at the end of the program execution as the con-
catenation of the random values sent by the players; in particular, it is unique.
In contrast, in the model of universal composability [9], these identifiers are
uniquely determined in advance, before the beginning of the protocol. Thus, this
difference must be taken care of in the definition of the protocol. Another dif-
ference has been made, in order to match the definition of the functionality: in
case of a failure, the server receives an error message, this feature guaranteeing
the client authentication.

3.2 Security Theorem

We consider here the Theorem of Universal Composability in its joint-state ver-
sion. Let F̂CA

pwKE be the multi-session extension of FCA
pwKE and let FRO and FIC

be the ideal functionalities that provide a random oracle and an ideal cipher to
all parties. Note that only these two functionalities belong to the joint state.

Theorem 1. The above protocol securely realizes F̂CA
pwKE in the (FRO, FIC)-

hybrid model, in the presence of adaptive adversaries.

4 Proof of Theorem 1

4.1 Description of the Proof

In order to show that the protocol UC-realizes the functionality FCA
pwKE, we need

to show that for all environments and all adversaries, we can construct a simula-
tor such that the interactions, from the one hand between the environment, the
players (say, Alice and Bob) and the adversary (the real world), and from the
other hand between the environment, the ideal functionality and the simulator
(the ideal world), are indistinguishable for the environment.

In this proof, we incrementally define a sequence of games starting with the
real execution of the protocol and ending up with game G6, which we prove to
be indistinguishable from the ideal experiment.

Efficient Two-Party Password-Based Key Exchange Protocols 341

– FCA
pwKE owns a list L initially empty of values of the form (Pi, Pj , pw).

– Upon receiving a query (NewSession, ssid, Pi, Pj , pw, role) from Pi :
• Send (NewSession, ssid, Pi, Pj , role) to S .
• If this is the first NewSession query, or if it is the second NewSession query

and there is a record (Pj , Pi, pw′, role) ∈ L, then record (Pi, Pj , pw, role) in L
and mark this record fresh.

– Upon receiving a query (TestPwd, ssid, Pi , pw′) from the adversary S:
If there exists a record of the form (Pi, Pj , pw, role) ∈ L which is fresh, then do:

• If pw = pw′, mark the record compromised and reply to S with “correct
guess”.

• If pw �= pw′, mark the record interrupted and reply to S with “wrong guess”.
– Upon receiving a query (NewKey, ssid, Pi , sk) from S, where |sk| = k:

If there is a record of the form (Pi, Pj , pw, role) ∈ L, and this is the first NewKey
query for Pi, then:
If role=client:

• If the session is compromised, or if one of the two players Pi or Pj is cor-
rupted, then send (ssid, sk) to Pi, record (Pi, Pj , pw, client, completed) in L,
as well as (ssid, Pi, pw, sk, client, status, ready) (with status being the status
of the session at that moment).

• Else, if the session is fresh or interrupted, choose a random key sk′ whose
length is k and send (ssid, sk′) to Pi. Record (Pi, Pj , pw, client, completed)
in L, as well as (ssid, Pi, pw, sk′, client, status, ready) where status stands for
fresh or interrupted;

If role=server:
• If the session is compromised, if one of the two players Pi or Pj is

corrupted, and if there are two records of the form (Pi, Pj , pw, server)
and (Pj , Pi, pw, client), set s = sk. Otherwise, if the session is fresh and there
exists any recorded element of the form (ssid, Pj , pw′, sk′, client, fresh, ready),
set s = sk′.

∗ If pw = pw′, send (ssid, s) to Pi record (Pi, Pj , pw, server, completed)
in L, as well as (ssid, Pi, pw, s, server, status).

∗ If pw �= pw′, send (ssid, error) to Pi, record (Pi, Pj , pw, server, completed)
in L, as well as (ssid, Pi, pw, server, error, status).

• If the session is fresh and there doesn’t exist any recorded element of the
form (ssid, Pj , pw′, sk′, client, fresh, ready), then do not do anything;

• If the session is interrupted, then send (ssid, error) to player Pi, and record
in L (Pi, Pj , pw, server, completed) and (sid, Pi, pw, server, error, interrupted).

Fig. 1. Functionality FCA
pwKE : it is parametrized by a security parameter k. It interacts

with an adversary S and a set of parties P1,. . . ,Pn.

Since we have to deal with adaptive corruptions, we consider different cases
according to the number of corruptions that have occurred up to now. G0 is
the real world. In G1, we start by explaining how S simulates the ideal cipher
and the random oracle. Then, in G2, we get rid of such a situation in which
the adversary wins by chance. The passive case, in which no corruption occurs
before the end of the protocol, is dealt with in G3. Next, we completely explain

342 M. Abdalla et al.

Client U Server S

x
R← [[1 ; q − 1]] y

R← [[1 ; q − 1]]

(U1) X ← gx U,X−−−→

(S2) Y ← gy

Y ∗ ← Essid‖pw(Y)
S,Y ∗

←−−− KS ← Xy

(U3) Y = Dssid‖pw(Y ∗)
KU ← Y x

Auth ← H1(ssid‖U‖S‖X‖Y ‖KU)
skU ← H0(ssid‖U‖S‖X‖Y ‖KU)

completed Auth−−−→

(S4)
if (Auth = H1(ssid‖U‖S‖X‖Y ‖KS))
then skS ← H0(ssid‖U‖S‖X‖Y ‖KS)

completed
else error

Fig. 2. Client-authenticated two-party password-based key exchange

the simulation of the client in G4, whatever corruption may occur. As for the
server, we divide it into two steps: We first show in G5 how to simulate the last
step of the protocol, and then we simulate it from the beginning in G6. G7 sums
up the situation, and is shown to be indistinguishable from the ideal world.

Note that these games are sequential and built on each other. When we say
that a game consider a specific case, one has to understand that in all other
cases, the simulation is dealt with as described in the former game.

We first describe two hybrid queries that are going to be used in the games.
The GoodPwd query checks whether the password of a certain player is the one
we have in mind or not. The SamePwd query checks if the players share the same
password, without disclosing it. In some games the simulator has actually full
access to the players. In such a case, a GoodPwd (or a SamePwd) can easily be
implemented by simply letting the simulator look at the passwords. When the
players are entirely simulated, S will replace the queries above with a TestPwd
and with a NewKey, respectively.

We say that a flow is oracle-generated if it was sent by an honest player and
arrives without any alteration to the player it was meant to. We say it is non-
oracle-generated otherwise, that is either if it was sent by an honest player and
modified by the adversary, or if it was sent by a corrupted player or a player
impersonated by the adversary.

Efficient Two-Party Password-Based Key Exchange Protocols 343

4.2 Proof of Indistinguishability

Game G0: Real Game. G0 is the real game in the random-oracle and ideal-
cipher models.

Game G1: Simulation of the oracles. Here we modify the previous game
by simulating the hash and the encryption/decryption oracles, in a quite natural
and usual way.

For the ideal cipher, we allow the simulator to maintain a list Λε of entries
(queries, responses) of length qε + qD. Such a list is used by S to be able to
provide answers which are consistent with the following requirements. First, if
the simulator receives twice the same question for the same password, it has to
give twice the same answer. Second, the simulator should make sure that the
simulated scheme (for each password) is actually a permutation. Third, in order
to help the simulator to later extract the password used in the encryption of Y ∗

in the first flow, there should not be two entries (question, answer) with identical
ciphertext, but different passwords. More precisely, Λε is actually composed of
two sublists: Λε = {(ssid, pw, Y, α, E , Y ∗)} ∪ {(ssid, pw, Y, α,D, Y ∗)}. The first
(resp. second) sublist is used to indicate that the element Y (resp. Y ∗) has been
encrypted (“E”) (resp. decrypted (“D”)) to produce the ciphertext Y ∗ (resp. Y)
via a symmetric encryption algorithm that uses the key ssid‖pw. The role of α
will be explained below. The simulator manages the list through the following
rules:

– For an encryption query Essid‖pw(Y) such that (ssid, pw, Y, ∗, ∗, Y ∗) appears
in Λε, the answer is Y ∗. Otherwise, choose a random element Y ∗ ∈ G∗ =
G\{1}. If a record (∗, ∗, ∗, ∗, ∗, Y ∗) already belongs to the list Λε, then abort,
else add (ssid, pw, Y, ⊥, E , Y ∗) to the list.

– For a decryption query Dssid‖pw(Y ∗) such that (∗, pw, Y, ∗, ∗, Y ∗) appears
in Λε, the answer is Y . Otherwise, choose a random element ϕ ∈ Zq

∗ and
evaluate the answer Y = gϕ. If (∗, ∗, Y, ∗, ∗, ∗) already belongs to the list Λε,
abort, else add (ssid, pw, Y, ϕ,D, Y ∗) to the list.

The two abort-cases will be useful later in the proof: when one sees a cipher-
text Y ∗, it cannot have been obtained as the encryption with two different pass-
words, but a unique one.

In addition, the simulator maintains a list ΛH of length qh. This list is used to
properly manage the queries for the random oracles H0 and H1. In particular,
the simulator updates ΛH using the following general rule (n stands for 0 or 1).

– For a hash query Hn(q) such that (n, q, r) appears in ΛH, the answer is r.
Otherwise, choose a random r ∈ {0, 1}�Hn . If (n, ∗, r) already belongs to the
list ΛH, abort, else add (n, q, r) to the list.

Due to the birthday paradox, G1 is indistinguishable from the real game G0.

Game G2: Case where the adversary wins by chance. This game is
almost the same as the previous one. The only difference is that we allow the

344 M. Abdalla et al.

simulator to abort if the adversary manages to guess Auth without having asked
a corresponding query to the oracle. This happens with negligible probability so
that G2 and G1 are indistinguishable.

Game G3: Passive Case: No Corruption Before Step 4. In this game,
we deal with the passive case in which no corruption occurs before step 4. We
give the simulator some partial control on the players involved in the protocol.
In particular, we assume that the simulator is given oracle access to each player,
for the first three rounds of the protocol. Then in S4, if no corruption occurred,
we require S to completely simulate their behavior. More precisely, during this
game, we consider two cases. If no corruption occurred before S4, we require S
to simulate the execution of the protocol on behalf of the two players. If, on
the other hand, some party has already been corrupted before starting S4, the
simulator does nothing. Notice that, in any case, we still allow S to know the
passwords of both players.

If at the beginning of S4, the two players are still honest and all the flows
were oracle-generated, the simulator asks a SamePwd query. Notice that, since
we are assuming that S knows both passwords, this boils down to verify that
both passwords are actually the same.

Now we distinguish two cases. If the two passwords are the same, S chooses
a random key K (in the key space) and “gives” K to all players. Otherwise, S
chooses a random key and gives it to the client whereas the server just receives
an error message.

Notice that, if the two players have the same password, such a strategy makes
this game indistinguishable with respect to previous one. If, conversely, the play-
ers do not have the same passwords, an execution of the protocol in this game is
indistinguishable from a real execution except for the risk of collision, which is
negligible. This is because, if the two players do not share the same passwords,
the server will end-up computing a different Auth, thus getting an error message,
with all but negligible probability. Hence G3 and G2 are indistinguishable.

Game G4: Simulation of the Client From the Beginning of the Proto-
col. In this game, we let S simulate the non-corrupted client from the beginning
of the protocol, but we don’t allow him to have access to her password anymore.
The simulation is done as follows. In S1, the client chooses a random x and sends
the corresponding X to the server. In S3, if she is still honest, then she doesn’t
ask a decryption query for Y ∗.

If all flows were oracle-generated, then she computes Auth with the oracle H′1
private to the simulator: Auth = H′1(ssid‖U‖S‖X‖Y ∗) instead of H1. A problem
can occur if the server gets corrupted, as we describe it more formally later on.

Otherwise, if the flow received by the client is not oracle-generated, we face
two different cases:

– If the server was corrupted sooner in the protocol, the simulator knows his
password, or if the Y ∗ sent by the adversary in S2 has been obtained via an
encryption query, then the simulator recovers his password too (with the help
of the encryption list). Then, when receiving Y ∗, the client asks a GoodPwd

Efficient Two-Party Password-Based Key Exchange Protocols 345

query for the functionality. If it is a correct guess, then S uses H1 for the
client, otherwise it uses its private oracle H′1: Auth = H′1(ssid‖U‖S‖X‖Y ∗).

– If the adversary has not obtained Y ∗ via an encryption query, there is a
negligible chance that it knows the corresponding y and the client also uses
H′1 in this case. The event AskH can then make the game to abort (we will
bound its probability later on; simply note that it is negligible and related
to the CDH):

AskH: A queries one of the oracles H0 or H1 on ssid‖U‖S‖X‖Y ‖KU or
ssid‖U‖S‖X‖Y ‖KS, ie the common value of ssid‖U‖S‖X‖Y ‖CDH(X, Y)

We now show how to simulate the second part of U3 (the computation of
skU). We need to separate the cases in which the client remains honest, and
those in which she gets corrupted.

– If the client remains honest, she is given skU by a query to H′0 if Auth was
obtained by a query to H′1 and no corruption occurred, and by a query to
H0 if Auth was obtained by a query to H1 or if Auth was obtained by a
query to H′1 and there was a corruption afterwards.

– If she is corrupted during U3, A is given her internal state: the simulator
already knows x and learns her password; it is thus able to compute a cor-
rect Y . S then recomputes Auth by a query to H1 (there is no need that this
query gives the same value as the value previously computed by the query
to H′1 since Auth has not been published) and the client is given sk by a
query to H0.

If the two players are honest at the beginning of S4 and all the flows were
oracle-generated, there will be no problem as in the former game we prevented
the server from computing Auth. If the server gets corrupted after Auth has been
sent, and if the passwords are the same, the simulator reprograms the oracles
such that on the one hand H1(ssid‖U‖S‖X‖Y ‖KU) = H′1(ssid‖U‖S‖X‖Y ∗)
and on the other hand H0(ssid‖U‖S‖X‖Y ‖KU) = H′0(ssid‖U‖S‖X‖Y ∗). This
programming will only fail if this query to H1 or H0 has already been asked
before the corruption, in which case the event AskH has happened.

Finally, if the client is being corrupted, S does the same reprogramming.
Thus, omitting the events AskH, which probability will be computed later on,

the games G4 and G3 are indistinguishable.

Game G5: Simulation of the Server in the Last Step of the Protocol. In
this game, we let S simulate the non-corrupted server in step S4. More precisely,
during this game, we consider two cases. If no corruption occurred before S4
and all the flows were oracle-generated, the behavior of S was described in G3.
If, on the other hand, the client has already been corrupted before starting S4,
or if a flow was non-oracle-generated, the simulation is done as follows.

If the client is either corrupted or impersonated by the adversary who has
decrypted Y ∗ to obtain the Y sent in Auth, then the server recovers the password
used (by the corruption or by the decryption list) and he verifies the Diffie-
Hellman sent by the client. If it is correct, then the simulator asks a GoodPwd

346 M. Abdalla et al.

query for the server (otherwise, the latter is given an error message). If the
password is correct, then the server is given the same key as the client; otherwise,
he is given an error message.

If the client is impersonated by the adversary who has sent anything else, we
abort the game. This happens only if it has guessed Y by chance, which happens
with negligible probability.

Finally, if the server is corrupted during S4, the adversary is given y and Y .
More precisely, the simulator recovers the password of the server and gives some-
thing consistent with the lists to A. Thus, G5 and G4 are indistinguishable.

Game G6: Simulation of the Server from the Beginning of the Proto-
col. In this game, we let S simulate the non-corrupted players from the beginning
of the protocol. We have already seen how S simulates the client. The simulation,
for a non-corrupted server, is done as follows.

In S2, the server sends a random Y ∗ (chosen without asking the encryption
oracle). If he gets corrupted, the simulator recovers his password, and can then
provide the adversary with adequate y and Y with the help of the encryption
and decryption lists. The simulation of S4 has already been described.

G6 is indistinguishable from G5, since if the two players remain honest until
the end of the game, they have the same key depending on their passwords and
nothing else in G3. And the case in which one of the two gets corrupted has
been dealt with in the two former games, and the execution doesn’t depend on
the value of Y ∗, recalling that the encryption is G → G such that there is always
a plaintext corresponding to a ciphertext.

Game G7: Summary of the Simulation and Replacement of the Hy-
brid Queries. Here we modify the previous game by replacing the hybrid queries
GoodPwd and SamePwd with their ideal versions. If a session aborts or termi-
nates, then S reports it to A.

Figure 3 sums up the simulation until this point and describes completely
the behavior of the simulator. At the beginning of a step of the protocol, the
player is assumed to be honest (otherwise we don’t have to simulate him or her),
and he or she can get corrupted at the end of this step. We assume that U3
(1) has to be executed before both U3 (2) and U3 (3). But the two last can be
executed in either order. For simplicity, we assume later on that the order is
respected.

We show that G7 is indistinguishable from the ideal game by first recalling
the only difference between G6 and G7: the GoodPwd queries are replaced by
TestPwd queries to the functionality and the SamePwd by NewKey ones. Say
that the players have matching sessions if they share the same ssid, have two
opposite roles (client and server) and agree on the values of X and Y ∗.

First, if the two players remain honest until the end of the game, they will
obtain a random key, both in G7 and IWE (the ideal game), as there are no
TestPwd queries and the sessions remain fresh.

We need to show that a honest client will receive the same key as a honest
server in G7 if and only if it happens in IWE. We first deal with the case of
client and server with matching sessions. If they have the same password in G7,

Efficient Two-Party Password-Based Key Exchange Protocols 347

Client Server Simulation

U1

honest
honest

random x, X = gx

adversary

gets corrupted
honest

reveal x to A
adversary

S2

honest
honest random Y ∗

adversary

honest
gets corrupted

learn pw
compute y and Y via decryption query
reveal X, y, Y to Aadversary

U3 (1)

honest
honest

no decryption query on Y ∗

adversary

gets corrupted
honest learn pw

compute y and Y via decryption query
reveal x,X, Y to Aadversary

U3 (2)

honest

honest use H′
1 for Auth

adversary

GoodPwd(pw) false, use H′
1

GoodPwd(pw) correct, use H1

if pw unknown, abort

gets corrupted
honest learn pw

compute y and Y via decryption query
reveal x,X, Y to Aadversary

U3 (3) honest

honest use H′
0 for Auth

adversary
GoodPwd(pw) false, use H′

0

GoodPwd(pw) correct, use H0

S4

honest

honest

if SamePwd correct, then same key sk

if SamePwd incorrect, then error message

adversary

if pw unknown, then abort

if pw known, DH false, then error

if pw known, DH correct, GoodPwd(pw)
correct, then same key

if pw known, DH correct, GoodPwd(pw)
false, then error

Fig. 3. Simulation and adaptive corruptions

they will receive the same key: if they are honest, their key is given to them from
G3; if the client is honest with a corrupted server, they will receive their key
from G4; and if the client is corrupted, they will receive it from G5.

348 M. Abdalla et al.

In IWE, the functionality will receive two NewSession queries with the same
password. If both players are honest, it will not receive any TestPwd query, so
that the key will be the same for both of them. And if one is corrupted and a
TestPwd query is done (and correct, since they have the same password), then
they will also have the same key, chosen by the adversary.

If they don’t have the same password in G7, the server will always be given
an error. In IWE, this is simply the definition of the functionality.

We now deal with the case of client and server with no matching sessions.
It is clear that in G7 the session keys of a client and a server in such a case
will be independent because they are not set in any of the games. In IWE, the
only way that they receive matching keys is that the functionality receives two
NewSession queries with the same passwords, and S sends NewKey queries for
these sessions without having sent any TestPwd queries. But if the two sessions
do not have a matching conversation, they must differ in either X , Y ∗ or Auth.
The probability that they share the same pair (X, Y ∗) is bounded by q2

ε/q and
thus negligible, qε being the number of encryption queries to the oracle.

If the client is corrupted until the end of the game, then in G7, the server
recovers the password and uses it in a TestPwd query to the functionality. If it
is incorrect, he is given an error message, and if it is correct, he is given the
same key as the client (which was chosen by the simulator). This is exactly the
behavior of the functionality in IWE.

If the server gets corrupted, we still have a TestPwd query concerning the
client in G7. If the password is correct, the simulator chooses the key, otherwise
it is the adversary. The same thing happens in IWE.

4.3 Simulating Executions Via the CDH Problem

As in [2], we compute the probability of event AskH with the help of a reduction
to the CDH problem, given one CDH instance (A, B). More precisely, AskH
means that there exists one session in which we replaced the random oracles H0
or H1 by H′0 or H′1 respectively and A asks the corresponding hash query. We
thus choose at random one session, denoted by ssid, and we inject the CDH
instance in this specific session. With probability 1/qs we have chosen the right
session. In this specific session ssid, we maintain a list ΛB, and

– the client sets X = A;
– the server still chooses Y ∗ at random, but the behavior of the decryption

is modified on this specific input Y ∗, whatever the key is, but only for this
session ssid: choose a random element β ∈ Zq

∗ and compute Y = Bgβ, and
store (β, Y) in the list ΛB, as well as the usual tuple in Λε. If Y already
belongs in this list, one aborts as before.

Note that this only affects the critical session ssid and doesn’t change anything
else. Contrary to the earlier simulation, we do not know the values of x and ϕ,
but they are not needed since the values of KU and KS are no longer required
to compute the authenticator and the session key: the event AskH raised for

Efficient Two-Party Password-Based Key Exchange Protocols 349

this session (X, Y) means that the adversary has queried the random oracles H0
or H1 on U‖S‖X‖Y ‖Z, where Z = CDH(X, Y). By choosing randomly in the
list ΛH, we obtain this Diffie-Hellman triple with probability 1/qh, where qh is
the number of hash queries. We can then simply look into the list ΛB for the
values β such that Y = Bgβ : CDH(X, Y) = CDH(A, Bgβ) = CDH(A, B)Aβ .

Note however that in case of corruption, we may need to reveal internal states,
with x and ϕ: If the corruption happens before the end of U3, with the publica-
tion of Auth, there is no problem since the random oracles will not be replaced
by the private oracles, and then the guess for the session was not correct, which
contradicts the assumption of good choice. If the corruption happens after the
end of U3, with the publication of Auth, there is no problem either:

– the corruption of the client does not reveal any internal state, since she has
completed her execution;

– the corruption of the server leads to a “reprogramming” of the public oracles
that immediately raises the event AskH if the query had already been asked.
We can thus stop our simulation, and extract the Diffie-Hellman value from
the list ΛH, without having to wait the end of the whole attack game.

Acknowledgments

This work was supported in part by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT, and by the French
government through the PAMPA ANR project.

References

1. Pointcheval, D., Abdalla, M.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

2. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: ACM CCS 2003, October, 2003, pp. 241–250.
ACM Press, New York (2003)

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy,
May 1992, pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)

4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, November 1993, pp. 62–73. ACM Press,
New York (1993)

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

350 M. Abdalla et al.

8. Bellare, M., Rogaway, P.: Provably secure session key distribution — the three
party case. In: 28th ACM STOC, May 1996, pp. 57–66. ACM Press, New York
(1996)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, October 2001, pp. 136–145. IEEE Computer Society
Press, Los Alamitos (2001)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally compos-
able password-based key exchange. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

11. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

12. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

13. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

14. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004)

15. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. MacKenzie, P.D.: The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2 (2002)

18. Shoup, V.: On formal models for secure key exchange. Technical Report RZ 3120,
IBM (1999)

A The Random Oracle and the Ideal Cipher

In [10], Canetti et al. show that there doesn’t exist any protocol that UC-
emulates FpwKE in the plain model (i.e. without additional setup assumptions).
Here we show how to securely realize a similar functionality without setup as-
sumption but working in the random oracle and ideal cipher models instead.

Random Oracles. The random oracle functionality was already defined by
Hofheinz and Müller-Quade in [14]. We present it again in Figure 4 for complete-
ness. It is clear that the random oracle model UC-emulates this functionality.

Ideal Cipher [16]. An ideal cipher is a block cipher that takes a plaintext or a
ciphertext as input. We describe the ideal cipher functionality FIC in Figure 5.
Notice that the ideal cipher model UC-emulates this functionality. Note that
this functionality characterizes a perfectly random permutation, by ensuring
injectivity for each query simulation.

Efficient Two-Party Password-Based Key Exchange Protocols 351

The functionality FRO proceeds as follows, running on security parameter k, with
parties P1,. . . ,Pn and an adversary S :

– FRO keeps a list L (which is initially empty) of pairs of bitstrings.
– Upon receiving a value (sid, m) (with m ∈ {0, 1}∗) from some party Pi or from S ,

do:
• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
• If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair

(m, h) ∈ L.
Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Fig. 4. Functionality FRO

The functionality FIC takes as input the security parameter k, and interacts with an
adversary S and with a set of (dummy) parties P1,. . . ,Pn by means of these queries:

– FIC keeps a (initially empty) list L containing 3−tuples of bitstrings and a
number of (initially empty) sets Ckey,sid, Mkey,sid.

– Upon receiving a query (sid, ENC, key, m) (with m ∈ {0, 1}k) from
some party Pi or S, do:

• If there is a 3−tuple (key,m, c̃) for some c̃ ∈ {0, 1}k in the list L, set c := c̃.
• If there is no such record, choose uniformly c in {0, 1}k − Ckey,sid which is

the set consisting of ciphertexts not already used with key and sid. Next,
it stores the 3−tuple (key, m, c) ∈ L and sets Ckey,sid ← Ckey,sid ∪ {c}.

Once c is set, reply to the activating machine with (sid, c).
– Upon receiving a query (sid, DEC, key, c) (with c ∈ {0, 1}k) from

some party Pi or S, do:
• If there is a 3−tuple (key, m̃, c) for some m̃ ∈ {0, 1}k in L, set m := m̃.
• If there is no such record, choose uniformly m in {0, 1}k − Mkey,sid which

is the set consisting of plaintexts not already used with key and sid. Next,
it stores the 3−tuple (key, m, c) ∈ L and sets Mkey,sid ← Mkey,sid ∪ {m}.

Once m is set, reply to the activating machine with (sid, m).

Fig. 5. Functionality FIC

Beyond Secret Handshakes:

Affiliation-Hiding Authenticated Key Exchange

Stanis�law Jarecki, Jihye Kim, and Gene Tsudik

Computer Science Department
University of California, Irvine

{stasio, jihyek, gts}@ics.uci.edu

Abstract. Public key based authentication and key exchange protocols
are not usually designed with privacy in mind and thus involve cleartext
exchanges of identities and certificates before actual authentication. In
contrast, an Affiliation-Hiding Authentication Protocol, also called a Se-
cret Handshake, allows two parties with certificates issued by the same
organization to authenticate each other in a private way. Namely, one
party can prove to the other that it has a valid organizational certificate,
yet this proof hides the identity of the issuing organization unless the
other party also has a valid certificate from the same organization.

We consider a very strong notion of Secret Handshakes, namely
Affiliation-Hiding Authenticated Key Exchange protocols (AH-AKE),
which guarantee security under arbitrary composition of protocol ses-
sions, including man-in-the-middle attacks. The contribution of our pa-
per is three-fold: First, we extend existing notions of AH-AKE security to
Perfect Forward Secrecy (PFS), which guarantees session security even
if its participants are later corrupted or any other sessions are compro-
mised. Second, in parallel to PFS security, we specify the exact level
of privacy protection, which we call Linkable Affiliation-Hiding (LAH),
that an AH-AKE protocol can provide in the face of player corrup-
tions and session compromises. Third, we show an AH-AKE protocol
that achieves both PFS and LAH properties, under the RSA assump-
tion in ROM, at minimal costs of 3 communication rounds and two
(multi)exponentiations per player.

Keywords: secret handshakes, authenticated key exchange, privacy.

1 Introduction

Affiliation-Hiding Authentication protocols, also known as Secret Handshakes
(SH) [BDS+03], allow two members of the same group to authenticate each
other in a way that hides their affiliation from all others. For example, two FBI
agents, Alice and Bob, want to discover and communicate with other agents,
but they don’t want to reveal their affiliations to non-agents. Since the environ-
ment is potentially hostile, Alice wants to authenticate herself to Bob only if
Bob is another FBI agent, and vice versa for Bob. Affiliation-hiding authenti-
cation scheme ensures that if only one of the two is a genuine agent, the other

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 352–369, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 353

(the impostor) learns nothing about the counterpart’s affiliation. More generally,
a non-member adversary who stages an active attack against group members
(even playing a man in the middle) should not determine whether any of the
parties he interacts with is a member of the targeted group.

Affiliation-hiding authentication schemes were introduced as Secret Hand-
shakes by Balfanz et al. [BDS+03], together with a construction based on the
security of the Bilinear Diffie-Hellman (BDH) problem in a group with a bilin-
ear map. Subsequently, Castelluccia, et al. [CJT04] constructed a more efficient
scheme secure under the Computational Diffie Hellman (CDH) assumption. (Re-
cently [Ver05] proposed an RSA-based SH scheme, but the scheme fails to provide
affiliation-hiding.1) However, the schemes of [BDS+03] and [CJT04] are only en-
tity authentication schemes, and not authenticated key agreements (AKE’s).
Secondly, these papers consider a weak notion of (affiliation-hiding) authenti-
cation scheme, which looks only at security of isolated protocol instances. In
particular, their model excludes man in the middle attacks.

This restricted notion of affiliation-hiding authentication was strengthened to
Affiliation-Hiding Authenticated Key Exchange protocols (AH-AKE) in [JKT07]
and [JL07]. In [JKT07] this notion was defined for group key agreement pro-
tocols, which generalize two-party AKE’s. In [JL07] the notion was strength-
ened to AKE’s which are both affiliation-hiding and unlinkable (see a more
on unlinkability below), but this in particular implies a two-party affiliation-
hiding AKE protocol. The notion of affiliation-hiding authenticated key exchange
strengthens the notion of (affiliation-hiding) entity authentication considered
in [BDS+03, CJT04] in two ways: First, an authenticated key agreement is a
more useful protocol tool because it outputs an authenticated key which can be
used for any secure communication task, including entity authentication. Sec-
ond, the AH-AKE notion of [JKT07, JL07] satisfies the standard security require-
ments demanded of AKE protocols, as formalized by Bellare, Canetti, Krawczyk
[BCK98, CK01] and Shoup [Sho99] (but without perfect forward secrecy). Es-
sentially, each protocol session remains secure even if all protocol sessions are
arbitrarily scheduled by the adversary, and even if the adversary compromises

1 Providing affiliation-privacy in RSA-based protocols requires extra care, because one
must prevent any correlation of protocol messages with the RSA modulus n which
is a part of the public key of a given group. The proposal for an RSA-based secret
handshake scheme, [Ver05], based on the OSBE scheme of [LDB03], fails to achieve
affiliation-hiding because it tries to prevent such correlation by obfuscating only the
size of the protocol messages (and hence, in their intention, the RSA modulus),
leaving intact other possibilities of correlation. In fact, instances of the protocol of
[Ver05] can be correlated with the group public key by computing the Jacobian
symbol of several protocol messages: If the protocol instance involves modulus n,
the corresponding Jacobian symbols are related in predictable ways, thus providing
a test whether the protocol session involves players affiliated with a group whose
public key is n. Our RSA-based protocol fixes this problem by requiring a safe RSA
modulus n, and making sure that all the exchanged messages are random elements
in the group Z∗

n, before applying a simple method to masks the modulus size.

354 S. Jarecki, J. Kim, and G. Tsudik

the key on any other protocol session. In particular, this implies security against
a man in the middle attack.

However, [JKT07] and [JL07] consider only a simplified notion of privacy
(i.e. of affiliation-hiding) for AH-AKE protocols, where the adversary can ar-
bitrarily interleave protocol sessions, but it cannot compromise any of them.
Consequently, it is unclear how any information about the agreed session keys
affects the privacy protection offered by such schemes. Note that in most appli-
cations even a passive adversary learns whether two sessions have succeeded, and
produced the same session key, and indeed this information reveals something
about the affiliations of two interacting parties, namely that they are the same.

Efficiency-wise, the 2-party AH-AKE protocols implied by the (affiliation-
hiding) group key agreement protocols of [JKT07] take three rounds, involve
three exponentiations, and work under either RSA or CDH assumptions in ROM.
The 2-party AH-AKE protocol implied by the affiliation-hiding and unlinkable
AKE scheme of [JL07] works only assuming that the revocation lists of the two
interacting players are no farther than some constant Δ apart, moreover the
protocol requires O(Δ ∗ log n) exponentiations where n is the upper bound on
the number of players affiliated with a single organization.

There are other results on secret handshakes [TX06, XY04], but none of them
address security under arbitrary protocol composition.

Our Contributions. First, we strengthen the AH-AKE security notion of
[JKT07] and [JL07] to include Perfect Forward Secrecy (PFS), which ensures
that each session remains secure even if its participants are eventually corrupted,
revealing all their long-term secrets to the adversary. Note that since the adver-
sary in the AH-AKE models of [JKT07, JL07] is not allowed to compromise any
group members future corruption of the long-term secrets of any of them may
endanger the security of previous protocol sessions in which this group member
was a participant. We upgrade the AH-AKE security definition to a more robust
and useful notion by modeling corruptions in the security model.

Second, in parallel to PFS security, we formalize the exact level of privacy
protection, which we call Linkable Affiliation-Hiding (LAH), that an AH-AKE
protocol might provide in the face of player corruptions and session compromises.
Intuitively, a linkably affiliation-hiding AKE protocol can reveal only as much in-
formation about affiliations of the participating parties as is revealed in the follow-
ing idealized process: The process assigns a random “pseudonym” value to each
certificate in the system. Denote a value assigned to certificate certi

(j) which user
Pi holds for group Gj as idi,j . Every time player Pi runs an AH-AKE protocol us-
ing the public key of Gj , the session reveals the pseudonym idi,j . Every time an
adversary compromises a session, it learns only if this session failed or succeeded,
and consequently it learns whether the pseudonyms idi,j and idi′,j′ of the two play-
ers participating in this session correspond to the same group (and thus it learns
whether Pi and Pj have a shared affiliation), because otherwise these sessions are
not supposed to succeed. Finally, whenever some player Pi is corrupted, the pro-
cess reveals, for each pseudonym idi,j of player Pi, which group Gj this pseudonym
corresponds to. We stress that the AH-AKE privacy models of [JKT07, JL07]

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 355

modeled only the information which the adversary learns from protocol messages,
and not the information learned from subsequent compromises of session keys
and/or corruptions of their participants.

Third, we show an optimal-cost AH-AKE protocol, which satisfies our PFS
and LAH notions, in the Random Oracle Model (ROM) under the RSA assump-
tion. The protocol takes 3 rounds, and it is an implicitly authenticated version of
the Diffie-Hellman Key Exchange protocol. The cost of the protocol appears min-
imal because its computation costs are very similar to the cost of the unauthenti-
cated Diffie-Hellman key exchange, namely one (off-line) exponentiation and one
(on-line) multi-exponentiation per participant. Moreover, three rounds of inter-
action again matches the round complexity of non-private PFS AKE protocols.

Linkability Disclaimer. As the name suggests, the privacy guaranteed by our
notion of linkable affiliation-hiding does not include unlinkability, and in this
aspect the new notion is similar to the (weaker) notions of affiliation-hiding
considered in [BDS+03, CJT04, JKT07]. Indeed, since the ideal process we use
to define the LAH privacy property reveals the same pseudonym every time a
player uses the same certificate in an AH-AKE session, the adversary can link
two instances of the same player. Note, however, that these pseudonyms do not
leak the affiliation of this player, except if a player is corrupted (which reveals
the linkage between the corrupted player’s pseudonyms and groups) or when a
session is compromised (which can reveal whether or not the pseudonyms of the
two players involved in this session correspond to the same group). We stress
that even though unlinkable and affiliation-hiding schemes exist [TX06, JL07],
they have severe limitations (synchronization in revocation lists, expensive op-
eration), while affiliation-hiding protocols, as we show here, can be achieved at
seemingly minimal expense, and thus it is important to understand the exact
privacy guarantees offered by the “merely” affiliation-hiding (but linkable) au-
thentication protocols.

Moreover, it is worth pointing out that while our security and privacy models
assume that every user has only a single certificate from any group, in which case
any two instances involving the same group member are linkable, there are vari-
ous heuristics which can ameliorate this issue in practice. For example, heuristic
unlinkability can be achieved by users rotating through a small set of certifi-
cates, by setting strict time limits on usage of each certificate, or by associating
different certificates with different locations or aspects of user’s activity.

Organization. In Section 2 we define AH-AKE protocols with perfect-forward
secrecy (PFS) and linkable affiliation-hiding (LAH), and show that linkable
affiliation-hiding implies perfect forward secrecy. In Section 3 we show an AH-
AKE scheme which satisfies the LAH property (and hence the PFS property),
based on the RSA assumption.

2 Affiliation-Hiding Authenticated Key Exchange

Entities. Our AH-AKE model is based on the existing models for standard (i.e.
non affiliation-hiding) authenticated key exchange protocols, e.g. [BPR00, CK01]

356 S. Jarecki, J. Kim, and G. Tsudik

in the setting of a Public Key Infrastructure (PKI). One difference between our
model and the standard PKI setting is that in the standard setting it is assumed
that certificates, which in many applications contain information about own-
ers’ affiliation, are publicly available. Since AH-AKE protocols aim to protect
affiliation privacy of the participants, in our model all certificates are private.
Moreover, the standard PKI model involves a certification hierarchy, where the
integrity of the association between entities and their public keys is vouched by
a chain of certificates all leading to a commonly trusted CA. In this paper we
consider only a restricted version of this general PKI model with a “flat” certi-
fication structure, where certification hierarchies and chains are not allowed. In
our model there are only “top” CA’s, and entities certified by such CA’s; there
are no intermediate CA’s and no delegation of certificates. (Indeed, it remains
an open question how to enable affiliation-hiding AKE’s with efficient support
for general certificate chains.)

An AH-AKE scheme operates in an environment that includes a set of users
U and a set of groups G. Each group is administered by a CA responsible for
creating the group, admitting entities as members and revoking membership.
We assume upper bounds m and n, respectively, on the total number of groups
and the number of members in any given group, i.e., |G| ≤ m and |U| ≤ n. We
assume that each user can be a member of many groups. We denote the fact
that user U ∈ U is a member of group G ∈ G as U≺ G.

AH-AKE Protocol. The main part of an AH-AKE scheme is an AH-AKE
protocol, which is executed by any pair of users. Player Ui, participating in an
instance of the AH-AKE protocol executes the protocol instructions on inputs a
public key of some group G ∈ G s.t. Ui≺ G, and Ui’s certificate of membership
in G. The purpose of the AH-AKE protocol is for a pair of players to establish
an authenticated shared secret key as long as (1) both run the protocol on the
public key of the same group G, and (2) it holds that Ui≺ G and Uj≺ G. To avoid
any misunderstanding, we stress that such protocol does not in general imply an
efficient solution for an (affiliation-hiding) group discovery problem, where each
player starts a protocol on a set of certificates, and the protocol succeeds, for
example, as long as the sets contributed by the two players have a non-empty
union. In contrast, our AH-AKE schemes are most practical in scenarios where
each user is a member of at most one group. However, we stress that if a user is a
member of many groups, this would affect execution efficiency, but it would not
affect the security and the affiliation-hiding of our schemes. While the protocols
we give are efficient only if each player is always a member of at most a few
groups, the security definitions stated below without loss of generality assume
that each user is a member of every group.

Public Information and Network Assumptions. We assume that all groups
G ∈ G are publicly known. In particular the public keys of all CA’s and the cer-
tificate revocation lists they maintain are public. Before any group can be cre-
ated, a common security parameter must be publicly chosen, and a public Setup
procedure is executed on that parameter. The Setup procedure creates common

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 357

cryptographic parameters which are used as inputs in all subsequent protocols,
but it does not need to be executed by a trusted authority: For example, it can
be executed by one of the CA’s, and the other CA’s can verify the validity of
its outputs. We assume that communication between the users and the CA’s,
i.e. the certificate issuance process and the CRL retrieval, are conducted over
anonymous and authenticated channels. For example, a user might communi-
cate with the CA, e.g., while retrieving the most recent CRL for its group, over
an anonymous channel such as TOR [DMS04]. Alternatively, the CRL’s of all
groups can be combined and stored at some highly-available site where they can
be either retrieved in bulk (if small) or via a Private Information Retrieval (PIR)
protocol, e.g., [CKGS98].

We assume that all communication within the AH-AKE protocol takes place
over an unauthenticated channel. In our model, the adversary is assumed to
have full control of the underlying network: it sees the messages sent by each
participant in a given round, and decides which messages will be delivered to each
participant in that round. The adversary can delete, modify or substitute any
message and it can choose to deliver different messages to different participants.

AH-AKE Syntax. We define an AH-AKE scheme as a collection of the fol-
lowing algorithms:

– Setup: on input of security parameter κ, it generates public parameters
params.

– KGen: executed by the group CA, on input params, it outputs the group
public key PK and the corresponding secret key SK for this group, and an
empty certificate revocation list CRL. We denote the group corresponding
to the public key PK as Group(PK).

– Add: executed by the CA of group G, on input SK and U ∈ U , it adds U
to G by generating a certificate for U , denoted cert. If cert is issued under a
public key PK, we say that cert ∈ Certs(PK).

– Revoke: executed by the group CA, on input U ∈ U , it retrieves the corre-
sponding certificate cert issued for U , and revokes it in the CRL object (e.g.
by adding a new entry to a list). We denote this as cert ∈ RevokedCerts(CRL).

– Handshake: This is an interactive protocol executed by two users, e.g. Ui and
Uj . The inputs of user Ui is a tuple (certi, PKi, CRLi, rolei), where PKi is
the public key of the group with whose members Ui wants to establish an
authenticated connection, CRLi is Ui’s current CRL for this group, certi is
Ui’s certificate in that group, and rolei ∈ {init, resp}. The inputs of user Uj

is the corresponding tuple (certj , PKj, CRLj , rolej). Either party can reject,
or output an authenticated secret key, Ki or Kj .

Instances and Session IDs. As in the work on standard AKE’s, e.g. [BPR00]
or [CK01], our model allows for multiple executions of the AH-AKE protocol
scheduled in an arbitrary way. Player Ui ∈ U can have many instances, involved
in distinct concurrent executions of AH-AKE protocol. We denote s-th instance
of player U as Πs

U . Each player instance can either reject, or accept and output
a key. We say that an instance Πs

U runs a protocol session, and we use player

358 S. Jarecki, J. Kim, and G. Tsudik

instance and protocol session interchangeably, denoting both as Πs
U . When refer-

ring to a specific user Ui we use Πs
i as a short-hand for Πs

Ui
. Each instance Πs

i

keeps a state variable, sids
i called session id, which is always set in our protocols

as a concatenation of all public inputs and all the messages sent and received by
instance Πs

i . (This value is defined only for a session which has completed.)

Matching Sessions, Partnered Sessions, and Correctness of AH-
AKE’s. The intended execution of the secret handshake scheme is to allow
two players running two matching instances to establish an authenticated (and
secret) key K. Two instances Πs

i and Πt
j care called matching if the respec-

tive inputs used on these sessions satisfy the following conditions: PKs
i = PKt

j ,
certsi ∈ Certs(PKs

i), certtj ∈ Certs(PKt
j), certsi �∈ RevokedCerts(CRLt

j), certtj �∈
RevokedCerts(CRLs

i), and roles
i �= rolet

j. We call two protocol instances part-
nered to denote instances which communicate without adversary’s interference.
Namely, we say that two instances Πs

i and Πs
j are partnered if sids

i = sidt
j , be-

cause this condition implies a complete agreement among these two instances
with regard to the set of messages sent and delivered between them.

Finally, we say that an AH-AKE scheme is correct if, assuming that all
keys, certificates and CRL’s are generated by following the Setup, KGen, Add
and Revoke procedures, for every instances Πs

i and Πt
j it holds that if these two

instances are matching and partnered then they output the same key Ks
i = Kt

j.

Security with Perfect Forward Secrecy. We model the security of an AH-
AKE scheme similarly to the way security has been defined for general AKE
schemes (e.g. [BPR00, CK01]). Namely, we define security via a game between
a challenger C playing the part of a network of m groups and n users, and an
adversary A who starts any number of sessions between these users, and who is in
complete control of the network over which they communicate, who is allowed to
reveal any number of agreed-upon keys and corrupt any number of players, and
yet he cannot distinguish from random a key of any un-revealed session of some
currently uncorrupted player. This is modeled in a standard way, by having an
adversary test some session executed by a currently uncorrupted player, which
also has not been revealed before (also, the adversary is barred from revealing
a session which is partnered with the tested session), at which point a random
coin-toss b determines if the adversary sees a key computed on this session or
a random bitstring of the same length. The attacker can continue starting and
revealing sessions (except of the tested session or the session which is partnered
with it) and corrupting players (including the players on the tested session), and
finally he outputs his guess b′ as to bit b, i.e. as to whether the tested key was
real or random.

Formally, security is defined via an interaction of an adversarial algorithm A
and a challenger C on common inputs (κ, n, m). The interaction starts with C
generating params via Setup(κ), and initializing m groups G1, ..., Gm, by running
the KGen(params) algorithm m times. C initializes all members in these groups,
by running the Add(SKj) algorithm, for each SKj , for n times per each key.
This way, C generates n certificates for every group, so that all n users can be

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 359

members of all m groups. The adversary A gets the public keys PK1, ..., PKm. It
then chooses a subset Rev ⊆ U of initially corrupted players and receives the set
of certificates {certi

(j)}Ui∈Rev,j∈[1..m]. For each group G in G, the challenger runs
the Revoke algorithm to revoke all corrupted members U ∈ Rev, and outputs the
resulting CRL’s for each group, CRL1, ..., CRLm.

After this initialization, A schedules any number of Handshake protocols, ar-
bitrarily manipulates their messages, requests the keys on any number of the
(accepting) sessions, and corrupts any number of additional players, all of which
can be modeled by A issuing any number of the commands listed below. Finally,
A stops and outputs a single bit b′. The commands the adversary can issue, and
the way the challenger C responds to them, are listed below. In all commands
we assume that U ∈ U \ Rev.

– Start(U, G, s, role): If U ∈ U \ Rev and G ∈ G and s was not used already in
another Start query on the same user, the challenger retrieves key PK for
group G, certificate cert issued to player U for group G, and the CRL cor-
responding to this group, initiates instance Πs

U , and follows the Handshake
protocol on behalf of user U on inputs (cert, PK, CRL, role), forwarding any
message generated by U to A. The challenger keeps the state of all initi-
ated instances Πs

U . We denote the group G upon which Πs
U is initiated as

Group(Πs
U).

– Send(U, s, M): If instance Πs
U has been initiated and is waiting for a message,

C delivers M to this instance, and forwards to A any message Πs
U generates

in response. If Πs
U outputs a key, C stores it with the session state.

– Reveal(U, s): If instance Πs
U has been initiated and has output a session key

K, C delivers this key to A. If the session has either not completed yet or
has rejected, C sends a null value to A. The challenger does not respond if
A queries Reveal on instance Πs

U for which A previously issued a Test query
(see below) or s.t. Πs

U matches and is partnered with some Πs′

U ′ for which A
issued a Test query.

– Test(U, s): This query is allowed only once, at any time during the adversary’s
execution. If Πs

U is fresh (see below), and has output some key K, then C
responds depending on its private input bit b. If b = 1 then C sends to A
the key K. If b = 0 then C sends to A a random κ-bit long value K ′. If the
session does not exist, has failed, or is still active, the challenger ignores this
Test command.

– Corrupt(U): This query models adaptive corruptions. The challenger adds U
to the revocation list Rev, and replies with all long-term secrets cert(1), ...,
cert(m) of U . In particular, the adversary can query Corrupt(U) even if it has
previously issued Test(U, s) for some s.2

2 On the other hand, C does refuse the Test(U, s) query if U is corrupted. (Compare
with the notion of freshness.) This reflects the simple fact that we can protect security
of a protocol run even if one or both of the two players involved is corrupted in the
future, but it makes no sense to ask for security of sessions in which one of the
participants is already corrupted.

360 S. Jarecki, J. Kim, and G. Tsudik

Freshness. Following [BPR00], we define a notion of freshness appropriate for
modeling perfect forward secrecy. An instance Πs

U is fresh unless, for any session
Πs′

U ′ which matches and is partnered with Πs
U , the adversary has issued any of

the following queries: Reveal(U, s), Reveal(U ′, s′), Corrupt(U), or Corrupt(U ′).

Definition 1. Denote A’s output in the above interaction with C on bit b and
(κ, n, m) as AC(b)(κ, n, m). Define the adversary’s advantage as follows (the prob-
ability goes over the randomness of A and C):

Adv sec
A (κ, n, m) =

∣∣∣Pr[1 ← AC(1)(κ, n, m)] − Pr[1 ← AC(0)(κ, n, m)]
∣∣∣

We call an AH-AKE scheme secure with perfect forward secrecy, or PFS, if
for any efficient probabilistic adversary A, for parameters n an m polynomially
related to κ, Adv sec

A (κ, n, m) is negligible in κ.

Linkable Affiliation-Hiding. We define the affiliation-hiding property, simi-
larly to security, using a game between an adversary and a challenger Cah. How-
ever, the adversary’s goal in the affiliation-hiding game is not to violate semantic
security of some session key but to learn about the participants’ affiliation by
corrupting players, and by learning whether certain sessions were successful.
Note that by corrupting players the adversary learns their affiliations, and that
by revealing whether two partnered sessions are successful the adversary learns
that these two players belong to the same group. We model the property of
the attacker’s inability to learn anything above this information, by comparing
two executions of the adversary: One where the challenger follows the protocols
faithfully on behalf of all honest participants, and the other where the adver-
sary interacts with a simulator. The simulator attempts to follow adversary’s
instructions on behalf of honest users, except that it is never told the groups
for which the (scheduled by the adversary) Handshake protocol instances are
executed, i.e., if the adversary issues a Start(U, G, s, role) query, the simulator
gets only an identifier id which is uniquely but arbitrarily assigned to the pair
(U, G) ∈ U × G.

Consequently, these inputs are also the only thing that the adversary can
possibly learn from the messages produced by this simulator. In other words,
the simulated protocol messages can reveal only whether or not two sessions
involve the same (user,group) pair. However, the adversary does not learn which
group it is, nor can he decide if two instances of two different users belong to
the same group. Note that we allow the adversary to be able to link instances
which involve the same (user,group) pair because the simulator gets the same
id for such instances. Indeed, all AH-AKE schemes we propose in this paper are
linkable in this sense.

Formally, we model the affiliation-hiding property using an interactive al-
gorithm SIM, function F indexed by the public parameters params of the
scheme, and the following game between adversary A and challenger Cah, on
inputs κ, n, m: Cah runs Setup(κ) → params, KGen(params) → (PKj , SKj),
for j ∈ [1..m], and Add(SKj) → certi

(j), for (i, j) ∈ [1..n] × [1..m], and gives

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 361

{PKj}j∈[1..m] to A. After this initialization, A can issue any number of queries
of the form Start(U, G, i, role), Send(U, s, M), Reveal(U, s), and Corrupt(U) to
Cah, as in the security game (except there’s no Test query). The challenger Cah

runs on an additional input of bit b, and it responds to A’s commands depending
on whether b = 0 or 1. If b = 1, Cah responds to all A’s commands by following
the corresponding protocol on behalf of the honest users. If b = 0 then Cah replies
to A’s commands using an ideal affiliation-hiding process and a simulator, an
interactive machine SIM running on input params, as follows:

– (1) On Start and Send, Cah replies with messages output by SIM, which in-
stead of Start(Ui, Gj , s, role) and Send(Ui, s, M) gets inputs Start(idj

i , s, role)
and Send(idj

i , s, M), respectively, where idj
i = Fparams(certi(j)).

– (2) On Corrupt(Ui), Cah gives to A all the long-term secrets of Ui, i.e.
{cert

(j)
i }j∈[1..m].

– (3) On Reveal(Ui, s), Cah returns value K̄s
i chosen as follows. If (a) Πs

i is
matched with some session Πt

j (note that Cah knows this), (b) all the messages
between Πs

i and Πt
j up to this point were correctly exchanged, (c) Πs

i has
received all messages needed to complete the protocol, and (d) K̄s

i is not yet
set, then Cah picks K̄s

i at random in {0, 1}κ, sets K̄t
j ← K̄s

i , and returns K̄s
i

to A. If (a),(b),(c) holds but not (d), i.e. if K̄s
i is already set then Cah returns

this K̄s
i to A. In every other case Cah returns K̄s

i =⊥. (In particular, if two
sessions are matching and partnered, their keys will be the same.)

Remark. Note that if an adversary A exchanges all messages between Πs
i and

Πt
j , and then reveals whether or not Πs

i established a key, then A learns whether
or not sessions Πs

i and Πt
i are matching, and hence learns that these sessions

relate to the same group. This is unavoidable, since session is supposed to be
successful only if it is partnered with a matching one, but the way Cah replies
to Reveal queries implies that this is the only information divulged by revealing
a session key. In particular, the adversary does not learn which group these two
protocol instances share.

Definition 2. Denote the output of adversary A in the above interaction with
Cah on inputs (κ, n, m), Cah’s private input b, and Cah’s access to procedure SIM
and function F , as ACah(b),SIM,F (κ, n, m). Define A’s advantage as follows,
where the probabilities are taken over the randomness of A, Cah, and SIM:

Adv ah
A,SIM,F (κ, n, m) =

∣∣∣Pr[1 ← ACah(1),SIM,F (κ, n, m)] − Pr[1 ← ACah(0),SIM,F (κ, n, m)]
∣∣∣

We call an AH-AKE scheme linkably affiliation-hiding, or LAH, if there exists
an efficiently computable F and an efficient probabilistic algorithm SIM s.t.

1. For any efficient probabilistic algorithm A and any n an m polynomially
related to κ, the adversarial advantage Adv ah

A,SIM,F (κ, n, m) is a negligible
function of κ.

362 S. Jarecki, J. Kim, and G. Tsudik

2. There is a negligible function ε s.t. for any params output by Setup(κ), and
any two keys pairs (PK0, SK0) and (PK1, SK1) output by KGen(params),
the statistical distance between distribution D0 and D1 is bounded by ε(κ),
where Db = {F (cert) | cert ← Add(SKb)}.

Remark. Intuitively, requirement (2) implies that F (certi
(j)) reveals no informa-

tion about the group Gj that issued certi
(j). Therefore, by requirement (1), the

only information that A learns when attacking a LAH scheme, is a “pseudonym”
idi,j = F (certi

(j)) which corresponds to user Ui and group Gj , but which does
not leak what group this pseudonym corresponds to.

Linkable Affiliation-Hiding Implies PFS Security. By a simple hybrid
argument we can show that LAH implies PFS. Intuitively, this is because the
affiliation-hiding game compares the view of the real execution with a “fully-
random” view, where all messages and keys are chosen by the challenger and
a simulator, whereas the security game compares the real view with a view
modified so that only the key of the tested session is chosen at random. It’s not
difficult to see that a significant difference between the views in the second pair
implies a significant difference between the views in the first pair. The exact
security in this reduction decreases by a small constant factor.

Lemma 1. If AH-AKE scheme is Linkably Affiliation-Hiding (def. 2) then it is
Secure with Perfect Forward Secrecy (def. 1).

Proof. Let A be an (adaptive) adversary which attacks the security game. The
construction of an adaptive adversary A′ which attacks the affiliation-hiding
game is trivial: A′ forwards the messages from its challenger Cah to A, and
it similarly forwards all the commands from A to Cah, except the Test(U, s)
command for which A′ issues Reveal(U, s) to Cah, and returns Cah’s response to
A. When A stops and outputs a bit b′, A′ returns the same bit.

Let p-scb denote the probability that A outputs 1 on the interaction defined as
in the security game with the challenger C(b), and p-ahb be the probability that
A′ outputs 1 when interacting with Cah(b). Note that p-ah1 = p-sc1 because in
both cases this is the interaction of A with the real protocol. Let p ≈ p′ denote
that |p − p′| is a negligible function of the security parameter. Then by the
assumption that the scheme is linkably affiliation-hiding, p-ah0 ≈ p-ah1 = p-sc1.
We will argue that p-sc0 ≈ p-sc1 as well. Let p(b1, b2, b3) denote the probability
A outputs 1 on interaction with the challenger which computes all messages
and keys as in the real protocol, except that (1) if b1 = 0 then all players’
messages are computed as Cah on b = 0, i.e. via the simulator SIM, and (2)
if b2 = 0 then all the revealed keys are chosen independently at random for
every session (unless Πs

i matches some partnered session Πs′

i′ , in which case
Ks

i = Ks′

i′), again as in the procedure for Cah on b = 0, and (3) if b3 = 0
then also the key of the tested session is chosen at random. Using this notation
we have p-ah0 = p(0, 0, 0), p-sc0 = p(1, 1, 0), p-ah1 = p-sc1 = p(1, 1, 1). Our
assumption is that p-ah0 = p(0, 0, 0) ≈ p(1, 1, 1) = p-ah1, and so if we show that
p(0, 0, 0) ≈ p(1, 1, 0), this will imply that p-sc0 = p(1, 1, 0) ≈ p(1, 1, 1) = p-sc1.

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 363

Now, if p(0, 0, 0) �≈ p(1, 0, 0) then by a trivial reduction which substitutes the
revealed and tested session keys with independently chosen random keys (except
for partnered matching sessions, as above), it would follow that p(0, 0, 0) �≈
p(1, 1, 1). By contradiction, we get p(0, 0, 0) ≈ p(1, 0, 0). By a similar argument
on just the revealed keys, if p(0, 0, 0) �≈ p(1, 1, 0) then we’d have p(0, 0, 0) �≈
p(1, 0, 0), and hence it follows that p(0, 0, 0) ≈ p(1, 1, 0) as needed.

3 PFS-Secure Affiliation-Hiding AKE Based on RSA

– Setup: Given security parameter κ, we define κ′ as the smallest integer s.t.
the RSA assumption holds on (2κ′)-long composites with security parameter
κ. We also define a hash function H1 : {0, 1}∗ → {0, 1}κ.

– KGen: Generate a 2κ′-bit safe RSA modulus n = pq, where p = 2p′ + 1,
q = 2q′+1, and p, q, p′, q′ are primes. Pick a random element g s.t. g generates
a maximum subgroup in Z∗n, i.e. ord(g) = 2p′q′, and s.t. −1 /∈ 〈g〉. (This holds
for about half of the elements in Z∗n, and it is easily tested.) Note that in this
case Z∗n ≡ 〈−1〉 × 〈g〉. Therefore, in particular, if x ← Z2p′q′ and b ← {0, 1}
then (−1)bgx is distributed uniformly in Z∗n. RSA exponents (e, d) are chosen
in the standard way, as a small prime e and d = e−1 (mod φ(n)). The secret
key is (p, q, d) and public key is (n, g, e). Key generation also fixes a hash
function Hn : {0, 1}∗ → Zn, specific to the group modulus n.3

– Add: To add user U to the group, the manager picks a random string id ←
{0, 1}κ and computes a (full-domain hash) RSA signature on id, σ = hd

(mod n), where h = Hn(id). U ’s certificate is cert = (id, σ).

– Revoke: To remove user U from the group, the manager appends string id
to the group CRL, where (σ, id) is U ’s certificate in this group.

– Handshake: This is an AKE protocol for users UA and UB of the honest
players, where player UA’s inputs a tuple (certA, PKA, CRLA, init) and UB’s
inputs (certB, PKB , CRLB, resp) s.t. certA = (idA, σA) is UA’s certificate
for the public key PKA = (nA, eA, gA), i.e. certA ∈ Certs(PKA), CRLA is
the (hopefully recent) CRL for group Group(PKA), and similarly certB =
(idB, σB), PKB = (nB, eB, gB), and CRLB are defined for UB. The protocol
is in Figure 1.

To verify correctness, observe that zA = ((θA)e(hA)−1)2 = g2exA and zB =
g2exB , and therefore both rA = (zB)xA = g2exAxB and rB = (zA)xB = g2exAxB .
Here is the key reason why this protocol hides the modulus n either player uses:
First, θ′A is uniform in Z∗nA

. Second, note that if θ′A is (statistically) uniform in

3 Selecting separate hash function Hn for every group is done purely for notational
convenience. A family of hash functions Hn : {0, 1}∗ → Zn s.t. each Hn is sta-
tistically close to a random function with range Zn, can be easily implemented
in the random oracle model with a single hash function with range 22κ′+κ. E.g.,
Hn(m) = H(n,m) mod n.

364 S. Jarecki, J. Kim, and G. Tsudik

UA on inputs UB on inputs
(certA = (idA, σA), (certB = (idB , σB),
PKA = (nA, gA, eA), PKB = (nB , gB, eB),
CRLA, init) CRLB, resp)

bA
$← {0, 1}, xA

$← ZnA bB
$← {0, 1}, xB

$← ZnB

θ′
A = (−1)bAσA(gA)xA modnA θ′

B = (−1)bB σB(gB)xB modnB

kA
$← [0, ..., �22κ′+κ/nA�] kB

$← [0, ..., �22κ′+κ/nB�]
θA = θ′

A + nAkA θB = θ′
B + nBkB

MA = (θA, idA)
MA �� MB = (θB , idB)
MB��

If idB is not on CRLA If idA is not on CRLB

then set vA = H1(rA, sidA, init) then set vB = H1(rB, sidB , resp)
where rA = (zB)xA mod nA, where rB = (zA)xB mod nB ,

zB = (θe
Bh−1

B)2 mod nA, zA = (θe
Ah−1

A)2 mod nB ,
hB = H(idB), hA = H(idA),
sidA = [(nA, gA, eA)||MA||MB]. sidB = [(nB , gB, eB)||MA||MB].

Otherwise, pick vA
$← {0, 1}2κ′+κ Otherwise, pick vB

$← {0, 1}2κ′+κ

and set reject = T . and set reject = T .
vA ��
vB��

If vB = H1(rA, sidA, resp) If vA = H1(rB, sidB , init)
then output KA = H1(rA, sidA). then output KB = H1(rB, sidB).

Otherwise set reject = T . Otherwise set reject = T .

Fig. 1. AH-AKE protocol based on the RSA assumption

ZnA then the distribution of θA = θ′A + kAnA, where kA is picked as above, is
statistically close to U22κ′+κ . An alternative way to hide the range of θA, which
does not take the κ bandwidth overhead, follows the idea given by [BBDP01]
for key-private version of RSA encryption. Namely, one can repeat picking θ′A
until θ′A ∈ {0, 1}2κ′−1. However, the expected running time of such procedure is
at most twice that of our procedure, and this alternative procedure could also
be subject to timing attacks. Note that the overhead of κ bits we incur is small
compared to |θ′A| = |nA| = 2κ′.

Theorem 1. Under the RSA assumption on safe RSA moduli (see definition 3
below), the above AH-AKE scheme is Secure with Perfect Forward Secrecy and
it is Linkably Affiliation-Hiding, in the Random Oracle Model.

Definition 3. Let S-RSA-IG(κ′) be an algorithm that outputs safe RSA in-
stances, i.e. pairs (n, e) where n = pq, e is a small prime that satisfies
gcd(e, φ(n)) = 1, and p, q are randomly generated κ′-bit primes subject to the
constraint that p = 2p′ + 1, q = 2q′ + 1 for prime p′, q′, p′ �= q′. We say that the

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 365

RSA problem is (ε, t)-hard on 2κ′-bit safe RSA moduli, if for every algorithm A
that runs in time t we have

Pr[(n, e) ← S-RSA-IG(κ′), g ← Z
∗
n : A(n, e, g) = z s.t. ze = g mod n] ≤ ε.

Proof. By lemma 1, we only need to argue LAH, i.e. we need to show that A’s
view of the interaction with the challenger Cah on bit b = 1 is indistinguishable
from the view of the interaction with Cah on bit b = 0. Let Game0 represent a real
execution, i.e., interaction of A with challenger Cah on bit b = 1, while Game2
represents a simulation, i.e., interaction of A with challenger Cah on bit b = 0.
Thus, our goal is to demonstrate that A’s view in Game0 is indistinguishable
from A’s view in Game2. Consider Game1, which is like Game0, except that
it stops if there is ever a collision in sid values of any two instances. Since θi

sent by Ui is indistinguishable from (2κ′ + κ)-bit string (see below), probability
that there is a collision in polynomially many executions is negligible. Therefore
Game0 and Game1 are indistinguishable.

Simulation. To describe Game2, i.e. the simulation, we need to define the sim-
ulator SIM and a function family F . Note that params = (κ, κ′) and that
certificates cert are pairs of the form (id, σ) where id ∈ {0, 1}κ. We will set
F(κ,κ′)(cert) = id. Note that this function satisfies requirement (2) in the LAH
definition because the id part of any certificate cert is a random κ-bit string in-
dependent of the group’s key. Now we describe the simulator SIM, and at the
same time we recall how Cah interacts with A using this simulator and function
F . Note that the simulator is only involved in the Start and Send queries. Since
the protocols of the initiator and the responder are symmetric, below we only
describe the initiator’s part.

– First Cah initializes all the groups and all the users in these groups using
Setup, KGen, and Add algorithms as in the real protocol, and gives all the
group public keys to A.

– On Start(Ui, Gj , s, init) from A, Cah runs SIM(idi,j , s, init), where idi,j =
F(κ,κ′)(certi

(j)), and responds with SIM’s output, which is a pair (θs
i , idi,j)

where θs
i ← {0, 1}2κ′+κ.

– On Send(Ui, s, M) from A, Cah runs SIM(idi,j , s) where idi,j is the id corre-
sponding to Πs

i and responds with SIM’s output. The simulator, regardless
of M, returns vs

i where vs
i ← {0, 1}2κ′+κ.

– On Corrupt(Ui), Cah gives to A the set {cert
(j)
i }j∈[1..m].

– On Reveal(Ui, s), Cah returns value K̄s
i chosen as described in the LAH def-

inition. Briefly, it’s a random κ-bit string if the sessions are matched, part-
nered, and all messages were exchanged up to this point, and otherwise it’s a
⊥ symbol. The only exception is that K̄t

j = K̄s
i on the two matched sessions

on which all messages were exchanged properly.

Let HQuery be an event that A ever queries H1 on arguments (rs
i , sid

s
i), or

(rs
i , sid

s
i , init), or (rs

i , sid
s
i , resp), for any Πs

i that A starts, where rs
i is defined via

the combination of the message (θs
i , idi, s) which instance Πs

i of an honest player

366 S. Jarecki, J. Kim, and G. Tsudik

Ui sent on that session, and message M = (θ̂, îd, s) which A sent to Πs
i in his

Send(Ui, s, M) command, as follows:

rs
i = (ẑ)xs

i mod n where ẑ = g2ex̂ = (θ̂)2e(ĥ)−2 and zs
i = g2exs

i = (θs
i)

2e(hi)−2

(1)
where ĥ = Hn(îd) and hi = Hn(idi). In other words, HQuery is an event that A
computes (and enters into hash function H1) the key-material rs

i for any instance
Πs

i run by an honest player.

Claim 1. Unless HQuery happens, A’s view of the interaction with the challenger
in Game1 is indistinguishable from A’s view in Game2.

Note that if HQuery does not happen then all the challenge/response values vs
i

and keys Ks
i that A gets in Game1 are distributed the same as in the real proto-

col, i.e. as independently chosen random κ-bit strings. Moreover, all the messages
(θs

i , idi) the adversary sees are also statistically close to the corresponding val-
ues in the real execution. The reason is that in both cases, the simulation and
the execution, each value θs

i is distributed statistically close to a uniform bit-
string of length 2κ′ + κ, and it is independent of idi (and σi). Note that since
Z∗n ≡ 〈−1〉 × 〈g〉 value θ′ = (−1)bgxσ (mod n) is random in Z∗n if b is a random
bit and if x is random in Z2p′q′ . Since n − (4p′q′) is on the order of

√
n, which is

negligible compared to n, the distribution of θ′ for x chosen in Zn is still statis-
tically close to uniform in Z∗n. Similarly, since there are only O(

√
n) elements in

Zn/Z∗n, this random variable is also statistically close to uniform in Zn. Finally,
for any s > n2κ, value θ = θ′ + k ∗ n (over integers) for random θ′ in Zn and
k ← [0, ..., �s/n�], is statistically indistinguishable from random in Zs.

Claim 2. If event HQuery happens with non-negligible probability on input
(rs

i , sid
s
i), or (rs

i , sid
s
i , init), or (rs

i , sid
s
i , resp), for any Πs

i , then A can be used to
break the RSA assumption.

We divide the adversary into three types classes, depending on the message M =
(îd, θ̂) which is involved in computation of rs

i . Type I adversary makes HQuery

s.t. the related îd and θ̂ are rerouted from another honest player’s instance. Type
II adversary makes HQuery s.t. the related îd is created by the adversary. Type
III adversary makes HQuery s.t. the related îd is rerouted but θ̂j is created by
the adversary.

We describe each reduction algorithm using a modified challenger algorithm
called F-Cah. Let G∗ be the group s.t. the probability that A queries H1 on rs

i

corresponding to Πs
i where Group(Πs

i) = G∗, is at least 1/m. For each type of
adversaries, F-Cah takes an RSA public key (n, e) of one of the groups denoted
by G∗ as an input and picks the private/public keys for all the remaining groups.
The F-Cah issues users’ certificates for all groups except of G∗ correctly as in
the real execution. However, for users in G∗ the modified challenger will need
to simulate the signatures on each idi by setting Hn(idi) as ae mod n for some
random value a. This way F-Cah can present the certificate of player idi in G∗

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 367

as a. (The exact way that values a are chosen is described in adversary type
I-III below.) The modified challenger can fail if A has made a query to Hn on
the randomly chosen idi value, for any i, but this happens with a negligible
probability of at most nqH/2κ, and otherwise the certificates are distributed as
in the execution. In each case, F-Cah responds to Send commands as in Simulation
above, additionally storing [j, Πs

i , sids
i] in table denoted TH1 , which is used by a

reduction algorithm every time A makes a query to H1 (see below).

Type I Adversary

– Setup and Initialization. On the RSA challenge (n, e, z), F-Cah sets the

public key of G∗ as (n, e, g) where g = hαe2
for h

$← Z∗n and α
$← Zn. Note

that given a safe RSA modulus n, with probability about 1/2 we have that
Z∗n ≡ 〈−1〉 × 〈g〉. The rest part of initialization is the same as in the real
protocol.

– Hash queries to Hn and H1. F-Cah sets Hn(idi) = (−1)di/gaie (mod n)
for random (di, ai) ∈ Z2×Zn for each Ui. For the queries to H1, F-Cah simply
passes these queries to H1. However, for each query (r, sid) and (r, sid, role)
to H1, F-Cah also tries to solve the RSA challenge as we describe below.

– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, (−1)di/gai).
– Start queries. On Start(Ui, G

∗, s, init) from A, F-Cah responds with
the output of SIM(idi, s, init), where idi = F(κ,κ′)(certi

(∗)). On inputs
(idi, s, init), SIM returns (θs

i , idi): SIM sets θs
i as either hgcs

i (−1)bs
i mod n

or zgcs
i (−1)bs

i mod n, plus the random kn shift, with probability 1/2 each,
for random (cs

i , b
s
i) ∈ Zn × Z2. Notice that all these values are distributed

indistinguishably from the distribution produced by the real execution.
– Reduction algorithm from HQuery event. With probability of at least

ε/16m, for the Πs
i and Πt

j instances involved in A’s query on rs
i , we have θs

i =
hgcs

i (−1)bs
i mod n and θt

j = zgct
j(−1)bt

j mod n. We replace RSA challenge z

by hk for some unknown k. Then it’s easy to see that if (θ̂, îd) = (θt
j , idj)

then in equation (1) we get zs
i = g2exs

i = g2e(1+αe2(ai+cs
i))(αe2)−1

and ẑ =
g2e(k+αe2(aj+ct

j))(αe2)−1
. Therefore,

rs
i = g2e[k(αe2)−1+aj+ct

j][(αe2)−1+ai+cs
i]

Since F-Cah knows α, e, aj, ct
j , ai and cs

i , F-Cah can extract g2k(α2e3)−1
,

from which F-Cah can compute z2dα−1
since g = hαe2

and z = hk. Thus,
z2d can be extracted. Since gcd(2, e) = 1, therefore, computing z2d leads to
computing zd. This reduction algorithm is executed whenever A makes a
query (r, sid) (or (r, sid, role)) to H1 for each entry [j, Πs

i , sids
i] in table TH1

s.t. sids
i = sid. F-Cah can verify which entry is related to the given value r,

since after computing w = z2d as above F-Cah can test if we = z2.

Type II Adversary

– Setup and Initialization. On the RSA challenge (n, e, z), F-Cah sets the
public key of G∗ as (n, e, g) where g = αe for α ← Z∗n. (Note that a random

368 S. Jarecki, J. Kim, and G. Tsudik

g in Z∗n matches that chosen by a real key generation with probability about
1/2). The rest part of initialization is the same as in the real protocol.

– Hash queries to Hn and H1. F-Cah answers a query to Hn on x depending
on the source of x. Namely, F-Cah responds with Hn(x) = ae

x/g mod n for a
randomly chosen ax ∈ Z∗n if x corresponds to some id of an honest player
generated by the simulator. Let Hn(idi) = ae

ig
−1. If x does not match with

any ids created by the simulator, F-Cah replies with Hn(x) = ae
x/z mod n

for a randomly chosen ax ∈ Z∗n . For the queries to H1, F-Cah simply passes
these queries to H1. However, for each query (r, sid) and (r, sid, role) to H1,
F-Cah also tries to solve the RSA challenge as we describe below.

– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, ai/α).
– Start queries. On Start(Ui, G

∗, s, init) from A, F-Cah responds with the out-
put of SIM(idi, s, init), where idi = F(κ,κ′)(certi

(∗)). On inputs (idi, s, init),
SIM returns (θs

i , idi) where θs
i = (−1)bs

i aig
γs

i plus the random kn shift, for
random (γs

i , bs
i) ∈ Zn × Z2.

– Reduction algorithm on HQuery event. With probability of (almost) at
least ε/4m, the query r corresponds to session Πs

i on which A sends îd �= idj

for an honest Uj , i.e., r = rs
i = (ẑ)xs

i . Since θs
i = (−1)bs

i (H(idi))dgd+γs
i and

ẑ = (θ̂/a)2ez2 where Hn(îd) = aez−1, we get zs
i = g2exs

i = g2e(d+γs
i) from

eq. (1). Therefore (ẑ)xs
i = (θ̂/a)2e(d+γi)z2(d+γi) = (θ̂/a)(2+2eγi)z2γiz2d and

F-Cah can extract z2d. Since gcd(2, e) = 1, F-Cah can compute zd from (ẑ)xτ
i .

Type III Adversary

In the last case, we assume that with probability at least ε/4m the first such
(ẑ)xs

i which makes event HQuery true corresponds to session Πs
i on which A

sends îd = idj for some session Πt
j matching Πs

i for some currently uncorrupted
Uj , but θ̂ �= θt

j . We show that F-Cah can solve the RSA problem in this case. The
view that it will present to A will match what A expects until the above query
(ẑ)xs

i , i.e. HQuery, is done, in which case F-Cah will solve the RSA problem. Note
that it is unimportant whether F-Cah can continue presenting A with the correct
view afterwards. Let Uj be a player s.t. the probability that this query is done
and that it involves îd = idj is at least ε/4mn. Setup, Start, and the reduction
algorithm are the same as in Type II, and here are the remaining queries:

– Hash queries to Hn and H1. F-Cah responds with Hn(x) = ae/g for
a randomly chosen a ∈ Z∗n if x corresponds to some id of an honest player
Ui �= Uj . If x match with the id of Uj , F-Cah replies with Hn(x) = ae/z mod n
for a randomly chosen a ∈ Z∗n. Let Hn(idi) = ae

i g
−1.

– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, ai/α) if Ui �= Uj .
On Corrupt(Uj), F-Cah stops. As we argued above, it does not matter that this
reduction cannot open the state of player Uj with a valid-looking signature
on idj , since at the time A makes the crucial rs

i query the player Uj must
be still uncorrupted.

Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange 369

References

[BBDP01] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in
public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 566–582. Springer, Heidelberg (2001)

[BCK98] Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the de-
sign and analysis of authentication and key exchange protocols (extended
abstract). In: STOC, pp. 419–428 (1998)

[BDS+03] Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong,
H.-C.: Secret handshakes from pairing-based key agreements. In: IEEE
Symposium on Security and Privacy, pp. 180–196. IEEE Computer Society
Press, Los Alamitos (2003)

[BPR00] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange
Secure against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

[CJT04] Jarecki, S., Tsudik, G., Castelluccia, C.: Secret handshakes from ca-
oblivious encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 293–307. Springer, Heidelberg (2004)

[CK01] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their
use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

[CKGS98] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–981 (1998)

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation
onion router. In: USENIX Security Symposium, pp. 303–320 (2004)

[JKT07] Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-
hiding authenticated group key agreement. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 287–308. Springer, Heidelberg (2006)

[JL07] Jarecki, S., Liu, X.: Unlinkable secret handshakes and key-private group
key management schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS,
vol. 4521, pp. 270–287. Springer, Heidelberg (2007)

[LDB03] Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: PODC,
pp. 182–189 (2003)

[Sho99] Shoup, V.: On formal models for secure key exchange. IBM Research Re-
port RZ 3120 (1999)

[TX06] Tsudik, G., Xu, S.: A flexible framework for secret handshakes. In: Danezis,
G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 295–315. Springer,
Heidelberg (2006)

[Ver05] Vergnaud, D.: Rsa-based secret handshakes. In: Ytrehus, Ø. (ed.) WCC
2005. LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006)

[XY04] Xu, S., Yung, M.: k-anonymous secret handshakes with reusable creden-
tials. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference
on Computer and Communications Security, pp. 158–167. ACM Press, New
York (2004)

Improving the Efficiency of Impossible

Differential Cryptanalysis of Reduced
Camellia and MISTY1

Jiqiang Lu1,�, Jongsung Kim2,��, Nathan Keller3,� � �, and Orr Dunkelman4,†

1 Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

lvjiqiang@hotmail.com
2 Center for Information Security Technologies (CIST), Korea University

Anam Dong, Sungbuk Gu, Seoul, Korea
joshep@cist.korea.ac.kr

3Einstein Institute of Mathematics, Hebrew University
Jerusalem 91904, Israel

nkeller@math.huji.ac.il
4ESAT/SCD-COSIC, Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

Abstract. We observe that when conducting an impossible differential
cryptanalysis on Camellia and MISTY1, their round structures allow us
to partially determine whether a candidate pair is useful by guessing only
a small fraction of the unknown required subkey bits of a relevant round
at a time, instead of guessing all of them at once. Taking advantage of
the early abort technique, we improve a previous impossible differential
attack on 6-round MISTY1 without the FL functions, and present im-
possible differential cryptanalysis of 11-round Camellia-128 without the
FL functions, 13-round Camellia-192 without the FL functions and 14-
round Camellia-256 without the FL functions. The presented results are
better than any previously published cryptanalytic results on Camellia
and MISTY1 without the FL functions.

Keywords: Block cipher, Camellia, MISTY1, Impossible differential
cryptanalysis.

� This author as well as his work was supported by a British Chevening / Royal
Holloway Scholarship and the European Commission under contract IST-2002-
507932 (ECRYPT).

�� This author was supported by the MIC (Ministry of Information and Communica-
tion), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Advance-
ment) (IITA-2006-(C1090-0603-0025)).

� � � This author was supported by the Adams fellowship.
† This work was supported in part by the Concerted Research Action (GOA) Am-

biorics 2005/11 of the Flemish Government and by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy).

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 370–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improving the Efficiency of Impossible Differential Cryptanalysis 371

1 Introduction

Camellia [1] is a 128-bit Feistel block cipher with a user key length of 128, 192
or 256 bits, and MISTY1 [19] is a 64-bit Feistel block cipher with a 128-bit
user key. Both Camellia and MISTY1 were selected to be CRYPTREC [6] e-
government recommended ciphers in 2002 and in the NESSIE [20] block cipher
portfolio in 2003, and were adopted as ISO [10] international standards in 2005.
Since Camellia and MISTY1 are increasingly being used in many real-life cryp-
tographic applications, it is essential to continuing to investigate their security
against different cryptanalytic techniques. For simplicity, we denote by Camellia-
128/192/256 the three versions of Camellia that use 128, 192 and 256 key bits,
respectively.

Many cryptanalytic results on Camellia and MISTY1 have been published
so far [2,7,8,13,14,15,22,23,24,25,26,27]. In summary, in terms of the num-
bers of attacked rounds, the best cryptanalytic results on Camellia with-
out the FL functions are the truncated differential cryptanalysis [11] on
8-round Camellia-128 [16], the impossible differential cryptanalysis on 12-round
Camellia-192 [26], and the linear [18] and impossible differential cryptanalysis on
12-round Camellia-256 [22,26]; the best cryptanalytic result on MISTY1 without
the FL functions is the impossible differential cryptanalysis on 6 rounds [14].

Impossible differential cryptanalysis [3,12], as a special case of differential
cryptanalysis [5], uses one or more differentials with a zero probability, called
impossible differentials, which are usually built in a miss-in-the-middle man-
ner [4]. In the impossible differential attacks on Camellia and MISTY1 described
in [14,26], the general approach is to guess all the unknown required subkey bits
of a relevant round to partially decrypt (or encrypt) a candidate pair through the
round function; finally one checks whether the pair could produce the expected
difference just before (respectively after) the round.

In this paper, we observe that due to the round structures of Camellia and
MISTY1, we can partially check whether a candidate pair could produce the ex-
pected difference by guessing only a small fraction of the unknown required sub-
key bits at a time, and do a series of partial checks by guessing other fractions of
the unknown required subkey bits, instead of guessing all the unknown required
subkey bits at once. Since some unuseful pairs can be discarded before the next
guess for a different fraction of the required round subkey bits, we can reduce the
computational workload for an attack, and even more importantly, we may break
more rounds of a cipher. A similar technique is used in differential cryptanalysis
of DES [5], and is referred to as the early abort technique. Taking advantage of
the early abort technique, we improve a previous impossible differential attack
on 6-round MISTY1 without the FL functions, and present impossible differen-
tial cryptanalysis of 11-round Camellia-128 without the FL functions, 13-round
Camellia-192 without the FL functions and 14-round Camellia-256 without the
FL functions, following the work described in [14,26]. Table 1 summarises our
main cryptanalytic results and the best previously published on Camellia and
MISTY1.

372 J. Lu et al.

Table 1. Summary of our main cryptanalytic results and the best previously published
on Camellia and MISTY1

Cipher Attack Type Rounds FL/FL−1 Data Time Paper

Camellia-128 Truncated differential 8 none 283.6CP 255.6 [16]

(18 rounds) Impossible differential 11 none 2118CP 2126MA&2118 This

11 none 2118CP 2126MA This

Camellia-192 Boomerang attack 9 all 2124ACPC 2170 [22]

(24 rounds) Impossible differential 12 none 2120CP 2181 [26]

13 none 2119CP 2167.9 This

13 none 2119CP 2169.4MA This

Camellia-256 High-order differential 11 all 293CP 2256 [8]

(24 rounds) Linear cryptanalysis 12 none 2119CP 2247 [22]

Impossible differential 12 none 2120CP 2181 [26]

13 none 2120CP 2168.9 This

13 none 2120CP 2170.4MA This

14 none 2120CP 2232.5 This

14 none 2120CP 2231MA This

MISTY1 Slicing attack 4 all 222.25CP 245 [15]

(8 rounds) Integral cryptanalysis 5 most 234CP 248 [13]

Impossible differential 6 none 254CP 261 [14]

6 none 239CP 2106 [14]

6 none 239CP 285 This

CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts,
Time unit: Encryptions, if otherwise stated explicitly, MA: Memory Accesses,
“none” means “no FL function”, “all” means “all the FL functions”,
“most” means “all the FL functions except those in the final swap layer”

The rest of the paper is organised as follows. In the next section, we briefly
describe the Camellia and MISTY1 ciphers. In Section 3, we introduce the early
abort technique in a general way. In Sections 4 and 5, we present our cryptan-
alytic results on Camellia and MISTY1, respectively. Section 6 concludes this
paper.

2 Preliminaries

Throughout the paper, we denote the bit-wise exclusive OR (XOR) operation
by ⊕, and bit string concatenation by ||.

2.1 The Camellia Block Cipher

Camellia [1] takes a 128-bit plaintext P as input, and has a total of N rounds,
where N is 18 for Camellia-128, and 24 for Camellia-192/256. Its encryption
procedure is as follows.

Improving the Efficiency of Impossible Differential Cryptanalysis 373

1. L0||R0 = P ⊕ (KW1||KW2)
2. For i = 1 to N :

if i = 6 or 12 (or 18 for Camellia-192/256),
L′i = F(Li−1, Ki) ⊕ Ri−1, R′i = Li−1;
Li = FL(L′i, KIi/3−1), Ri = FL−1(R′i, KIi/3);

else
Li = F(Li−1, Ki) ⊕ Ri−1, Ri = Li−1;

3. Ciphertext C = (RN ⊕ KW3)||(LN ⊕ KW4),

where KW , K and KI are 64-bit round subkeys, Li, Ri, L′i and R′i are 64 bits
long, and the F function comprises a XOR operation, then an application of 8
parallel nonlinear 8 × 8-bit bijective S-boxes s1, s2, · · · , s8, and, finally, a linear
P function. As we consider the version of Camellia without the FL functions,
we omit the description of the two functions FL and FL−1; we refer the reader
to [1] for their specifications. The P function and its inverse P−1 are defined
over GF (28)8 → GF (28)8, as follows.

P =

⎛

⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞

⎟⎟⎟⎟⎠
, P−1 =

⎛

⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞

⎟⎟⎟⎟⎠
.

2.2 The MISTY1 Block Cipher

MISTY1 [19] takes a 64-bit plaintext P as input, and has a total of 8 rounds;
the user key is 128 bits long. Its encryption procedure is as follows.

1. P = L0||R0, KL = KL1||KL2|| · · · ||KL10, KI = KI1||KI2|| · · · ||KI8,
KO = KO1||KL2|| · · · ||KO8.

2. For i = 1, 3, 5, 7:
Ri = FL(Li−1, KLi), Li = FL(Ri−1, KLi+1) ⊕ FO(Ri, KOi, KIi),
Li+1 = Ri ⊕ FO(Li, KOi+1, KIi+1), Ri+1 = Li.

3. Ciphertext C = FL(R8, KL10)||FL(L8, KL9),

where KL, KI and KO are round subkeys, and the FL function takes a 32-
bit block X and a 32-bit subkey KL as inputs, and outputs a 32-bit block Y ,
computed as defined below.

1. X = XL||XR, KL = KLiL||KLiR.
2. YR = (XL ∧ KLiL) ⊕ XR, YL = XL ⊕ (YR ∨ KLiR).
3. Y = YL||YR.

The FO function takes as inputs a 32-bit block X and two 32-bit subkeys
KOi and KIi, and outputs a 32-bit block Y , and is defined as follows.

1. X =XL0||XR0, KOi = KOi1||KOi2||KOi3||KOi4, KIi = KIi1||KIi2||KIi3.
2. For j = 1, 2, 3:

XRj = FI(XLj−1 ⊕ KOij , KIij) ⊕ XRj−1, XLj = XRj−1.

374 J. Lu et al.

3. Y = (XL3 ⊕ KOi4)||XR3.

In the above description, the FI function takes a 16-bit block X and a subkey
KIij as inputs, and outputs a 16-bit block Y , computed as follows.

1. X = XL0(9 bits)||XR0(7 bits), KIij = KIijL(7 bits)||KIijR(9 bits),
2. XL1 = XR0, XR1 = S9(XL0) ⊕ Extnd(XR0),
3. XL2 = XR1 ⊕ KIijR, XR2 = S7(XL1) ⊕ Trunc(XR1) ⊕ KIijL,
4. XL3 = XR2, XR3 = S9(XL2) ⊕ Extnd(XR2),
5. Y = XL3||XR3,

where S9 is a 9 × 9-bit bijective S-box, S7 is a 7 × 7-bit bijective S-box, the
function Extnd extends from 7 bits to 9 bits by concatenating two zeros on the
left side, and the function Trunc truncates two bits from the left side.

3 A General Description of the Early Abort Technique

Impossible differential cryptanalysis is based on one or more impossible differen-
tials, written α � β, and it usually treats a block cipher E : {0, 1}n × {0, 1}k →
{0, 1}n as a cascade of three sub-ciphers E = Eb ◦ E0 ◦ Ea, where E0 denotes
the rounds for which α � β holds, Ea denotes a few rounds before E0, and Eb

denotes a few rounds after E0. Given a guess for the subkeys used in Ea and Eb,
if a plaintext pair produces a difference of α just after Ea, and its corresponding
ciphertext pair produces a difference of β just before Eb, then this guess for the
subkeys must be incorrect. Thus, given a sufficient number of matching plain-
text/ciphertext pairs, we can find the correct subkey by discarding all the wrong
guesses.

When checking if a plaintext pair produces a difference of α just after Ea

(or its corresponding ciphertext pair produces a difference of β just before Eb),
the general approach is to guess all the unknown bits of the relevant round
subkey necessary to partially encrypt (respectively decrypt) the pair through
the substitution and diffusion layers; finally, one can check whether the pair
could produce an expected difference just after (respectively before) the round.
To make matters more specific, consider a Feistel structure as in Camellia; as
shown in Fig. 1, we assume that it has an nonlinear substitution consisting of m
parallel S-boxes and a linear diffusion function P. For simplicity, we assume the
round in Fig. 1 is just before E0; that is to say, the attacker is looking for a pair
with difference (ΔLi+1||ΔRi+1) = α. According to previous attack procedures,
due to the diffusion of the P function, the attacker will guess all the required
unknown subkey bits (i.e. those corresponding to the active S-boxes) at a time,
then encrypt the left halves of the pair through the substitution layer to get the
difference just after the P function, and finally XOR it with the difference ΔRi

to check if it has the difference α after the round.
However, the round structure can allow us to partially determine whether

a candidate pair could produce the expected difference α by guessing only a
small fraction of the required round subkey bits at a time, instead of all of them

Improving the Efficiency of Impossible Differential Cryptanalysis 375

ΔLi ΔRi

ΔLi+1 ΔRi+1

⊕
s1
s2

sm

P...
ΔS

k1 k2 km

⊕
· · ·

Fig. 1. A Feistel structure

simultaneously. More specifically, since we know the expected difference α and
the intermediate values of the pair just before the round, we can compute the
expected difference just before the P function, denoted by ΔS (= P−1(ΔRi ⊕
ΔLi+1)), as the P function is usually linearly invertible. Only if the expected
difference ΔS appears after the substitution layer could the pair produce the
difference α after the round. Thus, in the following, we guess only those of
the required unknown subkey bits corresponding to one (or more) active S-box,
then encrypt the pair through the S-box, and finally check if it produces the
corresponding partial difference in ΔS. If not, then the pair is not useful, and
we can discard it immediately; otherwise, we guess another part of the required
round subkey bits corresponding to another active S-box, and check the pair
similarly. A pair is useful only if it could produce the partial difference out of
the expected difference ΔS just before the P function, under every part of the
required round subkey bits. Some unuseful pairs can be discarded before the
next guess; by this observation we can reduce the computational workload of an
attack, and even more significantly, we may break more rounds.

4 Impossible Differential Cryptanalysis of Reduced
Camellia

As Camellia is byte-oriented, we represent the 128 bits of the (intermediate) state
as 16 bytes; and we denote the l-th byte of a subkey Ki by ki,l, (1 ≤ l ≤ 8). Let
the question mark ? denote an unknown byte difference (two bytes marked with
? may be different).

In 2007, Wu et al. [26] presented an impossible differential attack on 12-
round Camellia-192/256 without the FL functions, which is based on the fol-
lowing 8-round impossible differentials: (0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) �

(h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where a and h are any two nonzero bytes.
See Fig. 2 for more details, where the values of the forms b×, c×, · · ·, and f× are
all one byte long. A detailed explanation of these 8-round impossible differentials
is given in [26].

In this section, we also consider the version of Camellia that excludes the
FL (and FL−1) functions. We present an impossible differential cryptanalysis on

376 J. Lu et al.

P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

ΔL6 = (h, 0, 0, 0, 0, 0, 0, 0)

ΔL7 = (0, 0, 0, 0, 0, 0, 0, 0)

ΔL0 = (0, 0, 0, 0, 0, 0, 0, 0)

ΔL1 = (a, 0, 0, 0, 0, 0, 0, 0)

ΔL2 = (b, b, b, 0, b, 0, 0, b)

ΔL3 = (a ⊕ c1, c2, c3, c4, c5, c6, c7, c8)

ΔR0 = (a, 0, 0, 0, 0, 0, 0, 0)

K ◦ S

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕
ΔL5 = (f, f, f, 0, f, 0, 0, f)

(b1, b2, b3, 0, b5, 0, 0, b8)
(c1, c2, c3, c4, c5, c6, c7, c8)

ΔL8 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR8 = (0, 0, 0, 0, 0, 0, 0, 0)

(e1, e2, e3, 0, e5, 0, 0, e8)

(d1, d2, d3, d4, d5, d6, d7, d8)

ΔL4 = (h ⊕ d1, d2, d3, d4, d5, d6, d7, d8)
P−1(X) = (b1 ⊕ f, b2 ⊕ a, b3 ⊕ a, a, b5 ⊕ a, 0, 0, b8 ⊕ a)

X = (c1 ⊕ a ⊕ f, c2 ⊕ f, c3 ⊕ f, c4, c5 ⊕ f, c6, c7, c8 ⊕ f)

P−1(X) ⇒ d6 = d7 = 0 ⇒ e2 = 0 contradiction!←→ e2 �= 0

Fig. 2. 8-round impossible differentials of Camellia

14-round Camellia-256, 13-round Camellia-192 and 11-round Camellia-128, and
finally give several extensions.

4.1 Attacking 14-Round Camellia-256 without the FL Functions

We attack Rounds 1 to 14, and use the 8-round impossible differentials in
Rounds 4 to 11. As every S-box has a minimal nonzero differential probability
of 2−7, an output difference (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) of the 8-round
impossible differentials propagates to at most 27 possible output differences
(g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) after Round 12, where g is nonzero. Then,
every (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) propagates to at most (27)5 possible
output differences after Round 13. Hence, given the difference (h, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0) just after Round 11, there are at most (28 −1) ·27 · (27)5 ≈ 250

possible output differences after Round 13; we denote these possible differences
by the set Δ13. Every difference in Δ13 propagates to at most (27)8 possible out-
put differences after Round 14; therefore, given the difference (h, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0) just after Round 11, there are at most 250 · 256 = 2106 possible

Improving the Efficiency of Impossible Differential Cryptanalysis 377

output differences after Round 14; we denote these possible differences by the
set Δ14.

We use the early abort technique in the first and last two rounds of the 14-
round attack. We first give Property 1, as follows.

Property 1. The following properties hold.

1. For a plaintext pair (Pi = (L0
i , R

0
i), Pj = (L0

j , R
0
j)), P−1(R0

i ⊕R0
j ⊕(u, u, u, 0,

u, 0, 0, u)) has a unique value in the first two bytes for every nonzero value
of u (one byte long).

2. If a ciphertext pair (Ci, Cj) has an output difference (ΔL13 = L13
i ⊕

L13
j , ΔR13 = R13

i ⊕ R13
j) belonging to Δ13, then the difference just after the

S-box substitution layer of Round 13 must have the form (?, ?, ?, 0, ?, 0, 0, ?),
and there must be a h such that P−1(L13

i ⊕ L13
j ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has

the form (?, ?, ?, 0, ?, 0, 0, ?). h has 255 possible values, but only one of them
satisfies the above condition.

Proof. The proof of Property 1-1 is follows. Suppose that there are two values
u1 and u2 such that P−1(R0

i ⊕ R0
j ⊕ (u1, u1, u1, 0, u1, 0, 0, u1)) ⊕ P−1(R0

i ⊕ R0
j ⊕

(u2, u2, u2, 0, u2, 0, 0, u2)) = (0, 0, ?, ?, ?, ?, ?, ?), then we get P−1(u1 ⊕ u2, u1 ⊕
u2, u1 ⊕u2, 0, u1 ⊕u2, 0, 0, u1 ⊕u2) = (0, 0, ?, ?, ?, ?, ?, ?); by the P−1 function we
know that the first byte should be u1 ⊕ u2, meaning that u1 = u2.

The fore part of Property 1-2 is trivial; here we just prove the latter part of
Property 1-2. Assume there are two different values h1 and h2 that satisfy the
condition, then observe that P−1((h1, 0, 0, 0, 0, 0, 0, 0)⊕(h2, 0, 0, 0, 0, 0, 0, 0)) also
has the form (?, ?, ?, 0, ?, 0, 0, ?); note that the 4-th byte is 0; however, by the
P−1 function we know that the 4-th byte should be h1 ⊕ h2 �= 0. This gives a
contradiction. �

An impossible differential attack is generally conducted in the order of check-
ing ciphertext pairs first and finally plaintext pairs in a chosen-plaintext attack
scenario, or the reverse in a chosen-ciphertext attack scenario. However, it may
be improved by using an optimised order, as shown by the 14-round Camellia-256
attack below.

The above analysis enables us to give the following procedure for attacking
14-round Camellia-256. Fig. 3 illustrates the attack.

1. Choose 28 structures: each structure contains a set of 2112 plaintexts Pi =
(L0

i , R
0
i), with L0

i = P(x1, x2, x3, α4, x5, α6, α7, x8) ⊕ (x, β2, β3, β4, β5, β6, β7,
β8) and R0

i = (y1, y2, y3, y4, y5, y6, y7, y8), where the bytes with the forms x×
and y× take all the possible values in {0, 1}8, and the bytes with the forms α×
and β× are fixed to certain values in {0, 1}8, (i = 1, 2, · · · , 2112). In a chosen-
plaintext attack scenario, obtain all their ciphertexts; we denote them by
Ci = (L14

i , R14
i), respectively. For different values of (x1, x2, x3, x5, x8, x, y1,

· · · , y8), the resultant 128-bit blocks are different; thus, there are 2112×2/2 =
2223 plaintext pairs (Pi, Pj) in a structure (j = 1, 2, · · · , 2112), so the 28

structures yield a total of 2231 ciphertext pairs. Keep only the pairs (Ci, Cj)
with a difference belonging to Δ14. The expected number of remaining pairs
is about 2231 · 2106

2128 = 2209.

378 J. Lu et al.

P ⊕

K2 ◦ S P ⊕

K3 ◦ S P ⊕

K12 ◦ S P ⊕

K13 ◦ S P ⊕

8-round impossbile differentials

ΔL11 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR11 = (0, 0, 0, 0, 0, 0, 0, 0)

ΔL12 = (g, g, g, 0, g, 0, 0, g)
δ13
i,j

ΔL0 = P(?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0)

ΔL1 = (u, u, u, 0, u, 0, 0, u)

ΔL2 = (a, 0, 0, 0, 0, 0, 0, 0)

ΔL3 = (0, 0, 0, 0, 0, 0, 0, 0)

ΔR0 = (?, ?, ?, ?, ?, ?, ?, ?)

δ1
i,j

δ2
i,j

K1 ◦ S

K14 ◦ S P ⊕

Δ14

δ14
i,j

Δ13

Fig. 3. Impossible differential attack on 14-round Camellia-256

2. For every remaining plaintext pair (Pi, Pj), compute P−1(R0
i ⊕R0

j ⊕(u, u, u, 0,
u, 0, 0, u)) for all the 255 possible nonzero values of u; we denote the values
by Δ1

i,j , respectively. Then, do as follows.
(a) Guess the two bytes (k1,1, k1,2) of the subkey K1. For every plaintext

pair (Pi, Pj), partially encrypt the first two bytes of (L0
i , L

0
j) through

the s1 and s2 S-boxes, and check if they have a difference equal to any
of the corresponding two-byte partial differences in Δ1

i,j . Keep only the
qualified pairs. By Property 1-1 there is only one difference in Δ1

i,j for a
qualified pair, and we denote this difference from Δ1

i,j by δ1
i,j . As there

are 255 possible values in Δ1
i,j for every pair, the expected number of

remaining pairs is about 2209 · 255
216 ≈ 2201.

(b) For l = 3 to 8:
– Guess the byte k1,l of K1;
– For every remaining pair (Pi, Pj), partially encrypt the l-th byte of

(L0
i , L

0
j) through the sl S-box, and check if they have a difference

equal to the corresponding one-byte partial difference in δ1
i,j ; keep

only the qualified pairs. The difference δ1
i,j is already fixed in Step

2-(a), so it is expected that a proportion of about 1 − 2−8 of the
remaining pairs will be discarded after every iteration.

3. For every remaining plaintext pair (Pi, Pj), from Property 1-2 we simi-
larly know that there is only one value of a such that P−1(L0

i ⊕ L0
j ⊕

Improving the Efficiency of Impossible Differential Cryptanalysis 379

(a, 0, 0, 0, 0, 0, 0, 0)) has the form (?, ?, ?, 0, ?, 0, 0, ?); we denote by δ2
i,j the

value P−1(L0
i ⊕ L0

j ⊕ (a, 0, 0, 0, 0, 0, 0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?).
Then, for l = 1, 2, 3, 5, 8, do as follows.
– Guess the byte k2,l of the subkey K2;
– For every remaining pair (Pi, Pj), partially encrypt the l-th byte of

(L1
i , L

1
j) through the sl S-box, and check if they have a difference equal to

the corresponding one-byte partial difference in δ2
i,j ; keep only the qual-

ified pairs. Similarly, it is expected that a proportion of about 1 − 2−8

of the remaining plaintext pairs will be discarded after every iteration.
Finally, for every remaining pair of plaintexts we can get the first bytes of
their intermediate values just after Round 2.

4. Guess the byte k3,1 of the subkey K3. For every plaintext pair (Pi, Pj),
partially encrypt the first bytes of (L2

i , L
2
j) through the s1 S-box of Round

3, and check if they have a difference equal to L1
i,1 ⊕ L1

j,1. Keep only the
qualified pairs. The expected number of remaining plaintext pairs is about
2113 · 2−8 = 2105.

5. For every ciphertext pair (Ci, Cj) corresponding to a remaining plaintext
pair (Pi, Pj), compute P−1(L14

i ⊕ L14
j ⊕ (g, g, g, 0, g, 0, 0, g)) for all the 255

possible nonzero values of g; we denote the values by Δ14
i,j , respectively. Then,

do as follows.
(a) Guess the two bytes (k14,1, k14,2) of the subkey K14. For every plaintext

pair (Ci, Cj), partially encrypt the first two bytes of (R14
i , R14

j) through
the s1 and s2 S-boxes, and check if they have a difference equal to any
of the corresponding two-byte partial differences in Δ14

i,j . Keep only the
qualified pairs. From Property 1-1 we can similarly get that there is only
one difference in Δ14

i,j for a qualified pair, and we denote this difference
from Δ14

i,j by δ14
i,j . As there are 255 possible values in Δ14

i,j for every pair,
the expected number of remaining pairs is about 2105 · 255

216 ≈ 297.
(b) For l = 3 to 8:

– Guess the byte k14,l of K14;
– For every remaining pair (Ci, Cj), partially encrypt the l-th byte of

(R14
i , R14

j) through the sl S-box, and check if they have a difference
equal to the corresponding one-byte partial difference in δ14

i,j ; keep
only the qualified pairs. The difference δ14

i,j is already fixed in Step
5-(a), so it is expected that a proportion of about 1 − 2−8 of the
remaining pairs will be discarded after every iteration.

6. For every remaining ciphertext pair (Ci, Cj), by Property 1-2 there is only
one value of h such that P−1(L13

i ⊕ L13
j ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has the form

(?, ?, ?, 0, ?, 0, 0, ?); we denote by δ13
i,j the value P−1(L13

i ⊕L13
j ⊕(h, 0, 0, 0, 0, 0,

0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?). Then, for l = 1, 2, 3, 5, 8, do as follows.
– Guess the byte k13,l of the subkey K13;
– For every remaining pair (Ci, Cj), partially decrypt the l-th byte of

(R13
i , R13

j) through the sl S-box, and check if they have a difference equal
to the corresponding one-byte difference in δ13

i,j ; keep only the qualified

380 J. Lu et al.

pairs. A proportion of about 1 − 2−7 of the remaining ciphertext pairs
will be discarded after every iteration.

Finally, for every remaining pair of ciphertexts we can get the first bytes of
their intermediate values just after Round 12.

7. Guess the byte k12,1 of the subkey K12. For every remaining ciphertext pair
(Ci, Cj), compute s1(R12

i,1 ⊕ k12,1) and s1(R12
j,1 ⊕ k12,1), and check if they

have a difference equal to L12
i,1 ⊕ L12

j,1. If there exists a ciphertext pair that
passes this test, then discard this subkey guess, and try another; otherwise,
for every subkey guess (K1, k2,1, k2,2, k2,3, k2,5, k2,8), exhaustively search for
the remaining 152 key bits.

In Step 1, choosing the qualified pairs requires about 2120 ·2106 = 2226 memory
accesses in a simple implementation. Step 2 has a time complexity of about
2 · 2209 · 216 · 1

14 · 2
8 +

∑5
i=0(2 · 2201−8·i · 216+8·(i+1) · 1

14 · 1
8) ≈ 2222.2 encryptions.

Step 3 has a time complexity of about
∑4

i=0(2·2153−8·i·264+8·(i+1) · 1
14 · 1

8) ≈ 2221.5

encryptions. Step 4 has a time complexity of about 2 · 2113 · 2112 · 1
14 · 1

8 ≈ 2219.2

encryptions. Step 5 has a time complexity of about 2 ·2105 ·2128 · 1
14 · 2

8 +
∑5

i=0(2 ·
297−8·i ·2128+8·(i+1) · 1

14 · 1
8) ≈ 2230.2 decryptions. Step 6 has a time complexity of

about
∑4

i=0(2 · 249−7·i · 2176+8·(i+1) · 1
14 · 1

8) ≈ 2232.1 decryptions. In Step 7, the
expected number of remaining subkey guesses is about 2224 · (1−2−7)2

14 ≈ 239.7,
meaning that 2191.7 trial encryptions are required to find the correct 256 key
bits. Thus, Step 7 has a time complexity of about 2 · 2224 · [1 + (1 − 2−7) + · · · +
(1 − 2−7)2

14
] · 1

14 · 1
8 + 2191.7 ≈ 2225.2 encryptions.

Therefore, the attack has a total time complexity of about 2232.5 14-round
Camellia-256 computations.

Note that in the above attack we first check the plaintext pairs and finally
ciphertext pairs. Using this order, we obtain an improvement of a factor of about
26 on the time complexity of that using the general order (i.e. checking ciphertext
pairs first and finally plaintext pairs).

4.2 Attacking 13-Round Camellia-192 without the FL Functions

Using the 8-round impossible differentials we can break 13-round Camellia-192
without the FL Functions; the attack is basically the version of the above 14-
round Camellia-256 attack when the last round is removed. The main difference
is that in the last step we exhaustively search for the remaining 88 key bits for
every subkey guess (K1, k2,1, k2,2, k2,3, k2,5, k2,8). After a similar analysis, we get
that the 13-round Camellia-192 attack requires 2119 chosen plaintexts, and has
a time complexity of 2167.9 13-round Camellia-192 computations.

Note

1. Similarly, we can mount an attack on 13-round Camellia-256 without the
FL functions, with a data complexity of 2120 chosen plaintexts and a time
complexity of 2168.9 13-round Camellia-256 computations.

Improving the Efficiency of Impossible Differential Cryptanalysis 381

2. As mentioned earlier, Wu et al. [26] presented an impossible differential
cryptanalysis on 12-round Camellia-192 and Camellia-256 without the FL
functions. The attack requires 2120 chosen plaintexts, and has a time com-
plexity of 2181 Camellia-192/256 computations. However, it can be improved;
the improved attack is basically the version of the above 14-round Camellia-
256 attack when the last two rounds are removed. The improved attack on
12-round Camellia-192 requires 2119 chosen plaintexts, and has a time com-
plexity of 2131 12-round Camellia-192 computations; the improved attack
on 12-round Camellia-256 requires 2120 chosen plaintexts, and has a time
complexity of 2152 12-round Camellia-256 computations.

4.3 Attacking 11-Round Camellia-128 without the FL Functions

To attack 11-round Camellia-128, we use the 8-round impossible differentials in
Rounds 3 to 10, and use the early abort technique in the first round. We briefly
describe the attack procedure as follows.

1. Choose 230 structures: each structure contains a set of 288 chosen
plaintexts Pi = (L0

i , R
0
i), with R0

i = P(x1, x2, x3, α4, x5, α6, α7, x8) ⊕
(x, β2, β3, β4, β5, β6, β7, β8) and L0

i = (y1, y2, y3, γ4, y5, γ6, γ7, y8), where the
bytes with the forms x× and y× take all the possible values in {0, 1}8, and the
bytes with the forms α×, β× and γ× are fixed to certain values in {0, 1}8,
(i = 1, 2, · · · , 288). In a chosen-plaintext attack scenario, obtain their ci-
phertexts. Keep only the pairs such that ΔL0 = (u, u, u, 0, u, 0, 0, u) and
(ΔL11, ΔR11) belonging to the 215 possible output differences after Round
11. The expected number of remaining plaintext pairs is about 260.

2. Conduct a step similar to Step 3 of the 14-round Camellia-256 attack pre-
sented in Section 4.1. This step has a time complexity of about

∑4
i=0(2 ·

260−8·i · 28·(i+1) · 1
11 · 1

8) ≈ 264.9 11-round Camellia-128 computations.
3. Conduct a step similar to Step 4 of the 14-round Camellia-256 attack. This

step has a time complexity of about 2 · 220 · 248 · 1
11 · 1

8 ≈ 262.5 11-round
Camellia-128 computations.

4. Conduct a step similar to Step 7 of the 14-round Camellia-256 attack;
here, for every remaining guess for (k1,1, k1,2, k1,3, k1,5, k1,8, k2,1), exhaus-
tively search for the remaining 80 key bits.

In Step 1, a structure yields about 288×2

2 · 255
240 ≈ 2143 plaintext pairs with

ΔL0 = (u, u, u, 0, u, 0, 0, u), so the 230 structures yield a total of 2173 plaintext
pairs with ΔL0 = (u, u, u, 0, u, 0, 0, u), which generate 2173 · 215

2128 = 260 useful
pairs. To get the qualified pairs, we first store the ciphertexts into a hash table
indexed by the 4-th, 6-th and 7-th bytes of L11

i , the bytes from 2 to 8 of R11
i ,

the XOR of the 1-st and 2-nd bytes of L11
i , the XOR of the 1-st and 3-rd bytes

of L11
i , the XOR of the 1-st and 5-th bytes of L11

i and the XOR of the 1-st and
8-th bytes of L11

i ; and then we choose the qualified pairs. Thus, it requires about
2118 · 28 = 2126 memory accesses.

382 J. Lu et al.

In Step 4, it is expected that about 256 · (1 − 2−7)2
12 ≈ 210 guesses for

(k1,1, k1,2, k1,3, k1,5, k1,8, k2,1, k11,1) remain; thus 290 trial encryptions are re-
quired to find the 128 key bits. This step has a time complexity of about
2 ·256 · [1+(1−2−7)+ · · ·+(1−2−7)2

12
] · 1

11 · 1
8 +290 ≈ 290 11-round Camellia-128

computations.
Therefore, the attack has a total time complexity of about 2118 11-round

Camellia-128 computations and 2126 memory accesses.

4.4 Extending the above Attacks

We next observe the following Property 2 for Camellia, which can be used to
extend the attacks described in Sections 4.1 – 4.3.

Property 2. Given an input difference and an output difference of a Camellia
S-box, we can know the possible pairs of actual values input to the S-box. Every
Camellia S-box has a differential probability of 2−6 or 2−7, thus on average there
is approximately only one (≈ 126

255 · 2 + 1
255 · 4) pair of actual values input to the

S-box, given a randomly chosen pair of input and output differences.

Property 2 suggests that, during the above attacks, we can pick up the pairs with
the actual values equal to the XOR of the key guess and the possible inputs to
the S-box, instead of partially encrypting or decrypting it through the S-box,
which can be done by keeping a precomputation table storing the results. The
resulting attacks using this way have a number of table lookups (i.e. memory
accesses) comparable to the computational complexities of the above attacks.

All the attacks given above work in the following way: for a key guess, we try
to find a plaintext pair such that an impossible differential holds for the pair
under the key guess; thus the key guess is impossible, and can be discarded.
Another way to conduct an impossible differential attack is that, for a plaintext
or ciphertext pair, we can discard all the key guesses such that impossible dif-
ferentials hold for the pair under these key guesses, by using Property 2. By this
way, the 11-round Camellia-128 attack, the 13-round Camellia-192 attack, the
13-round Camellia-256 attack and the 14-round Camellia-256 attack have a time
complexity of about 2126, 2169.4, 2170.4 and 2231 memory accesses, respectively.

5 Impossible Differential Cryptanalysis of 6-Round
MISTY1 without the FL Functions

In 2001, Kühn [14] presented an impossible differential cryptanalysis on 6-round
MISTY1 (without the FL functions); the attack requires 239 plaintexts, and has
a time complexity of 2106 6-round MISTY1 computations. Kühn also presented
another impossible differential cryptanalysis on 6-round MISTY1, which requires
more plaintexts but less computations. Both the attacks are based on the fol-
lowing generic 5-round impossible differentials for Feistel networks with bijective
round structures: (0, 0, αl, αr) � (0, 0, αl, αr), where (αl, αr) �= (0, 0).

Improving the Efficiency of Impossible Differential Cryptanalysis 383

FI

⊕AKO61

AKI61
⊕

FI

⊕ AKO62

AKI62
⊕

FI

AKO63

AKI63
⊕

⊕AKO64

αrαl

βrβl

δ
i,i′

The FO function

⊕

⊕

⊕

The FI function

⊕ AKI6j

S9

S9

S7

Extnd

Extnd

Trunc

9 bits

9 bits

7 bits

7 bits

⊕

⊕ AKO65

Fig. 4. Impossible differential attack on 6-round MISTY1

Kühn’s attacks use a round structure equivalent to the original one, which is
illustrated in Fig. 4; let [KI6j]15−9 denote the bits from 9 to 15 of KI6j , [KI6k]8−0
denote the bits from 0 to 8 of KI6k, and KI ′6j = [KI6j]15−9||00||[KI6j]15−9, the
equivalent subkeys are as follows.

AKO6k = KO6k, k = 1, 2.

AKO63 = KO62 ⊕ KO63 ⊕ KI ′61.
AKO64 = KO62 ⊕ KO64 ⊕ KI ′61 ⊕ KI ′62.
AKO65 = KO62 ⊕ KI ′61 ⊕ KI ′62 ⊕ KI ′63.
AKI6k = [KI6k]8−0, k = 1, 2, 3.

MISTY1 has a nested Feistel structure, which is rather different from the
“regular” one. Nevertheless, the MISTY1 round structure also allows us to use
the early abort technique. As a result, we can improve the first attack due to
Kühn, as follows.

1. Choose 27 structures: each structure contains 232 plaintexts Pi = (x, y, ai, bi),
where x and y are 16-bit fixed constants, and ai and bi take all the pos-
sible 216 values. Keep only the pairs (Pi, Pi′) with an output difference
(?, ?, αl, αr), where the question mark ? denotes an unknown difference of
16 bits long (two differences marked with ? may be different). The expected
number of remaining ciphertext pairs is 27 · 232×2

2 · 2−32 = 238. (This step is
exactly the same as that in Kühn’s attack.)

384 J. Lu et al.

2. Guess the 41 subkey bits (AKO61, AKI61, AKO62) in Round 6. For every
remaining ciphertext pair (Ci, Ci′), the 32-bit difference in the left side is
known, say (βl, βr), (βl and βr are 16-bit long), so we can compute the
difference just after the second FI in the FO by using (AKO61, AKI61); we
denote the difference by δi,i′ , (see Fig. 4). As a consequence, using δi,i′ we
can compute the difference just after the S7 S-box in the second FI by using
AKO62. On the other hand, we know the two inputs to this S-box S7 for the
pair, whose difference is the right 7 bits of αr. Finally, keep the pair if the
inputs to the S7 produce the output difference obtained earlier. This imposes
a 7-bit filtering condition; thus about 238 · 2−7 = 231 pairs are expected to
remain for every subkey guess. This step has a time complexity of about
2 · 238 · 241 · 1

6 · 2
3 ≈ 277 6-round MISTY1 computations.

3. Guess the 9 subkey bits AKI62. For a remaining pair (Ci, Ci′), with δi,i′ we
can compute the output difference of the second S9 S-box in the second FI.
Keep the pairs which produce these output differences. The expected number
of remaining pairs is 231 ·2−9 = 222. This step has a time complexity of about
2 · 231 · 250 · 1

6 · 1
3 ≈ 278 6-round MISTY1 computations.

4. Guess the 16 subkey bits AKO63. For a remaining pair, with (βl, βr) we
can compute the difference just after the S7 S-box of the third FI by using
AKO63. Keep the pairs which produce these output differences. The expected
number of remaining pairs is 222 ·2−7 = 215. This step has a time complexity
of about 2 · 222 · 266 · 1

6 · 1
3 ≈ 285 6-round MISTY1 computations.

5. Guess the 9 subkey bits AKI63, and check whether or not there is a pair such
that the difference just after the third FI is βl ⊕ βr. If there is such a pair,
the guess for (AKO61, AKI61, AKO62, AKI62, AKO63, AKI63) is impossible,
discard it, and guess another. The expected number of remaining guesses for
the 75 subkey bits is 275 · (1 − 2−9)2

15 ≈ 2−17; thus we can assume it is the
correct one. This step has a time complexity of about 2 ·275 · [1+(1−2−9)+
· · · + (1 − 2−9)2

15
] · 1

6 · 1
3 ≈ 281 6-round MISTY1 computations.

Therefore, this attack has a total time complexity of about 285 6-round
MISTY1 computations, significantly lower than the complexity of 2106 for
Kühn’s attack.

6 Conclusions

In this paper, we observe that, when conducting an impossible differential crypt-
analysis on Camellia and MISTY1, their round structures allow us to partially
determine whether a candidate pair is useful by guessing only a small fraction of
the unknown required subkey bits of a relevant round at a time, instead of all of
them. This can reduce the computation complexity of an attack, and may allow
us to break more rounds. Taking advantage of the early abort technique, we
improve a previous impossible differential attack on 6-round MISTY1 without
the FL functions, and present impossible differential cryptanalysis of 11-round
Camellia-128 without the FL functions, 13-round Camellia-192 without the FL

Improving the Efficiency of Impossible Differential Cryptanalysis 385

functions and 14-round Camellia-256 without the FL functions. The presented
attacks are the best currently published cryptanalytic results on Camellia and
MISTY1 without the FL functions.

Depending on the design of the round structure of a block cipher, the early
abort technique can also be used to improve the efficiency of other cryptanalytic
approaches, including differential cryptanalysis and its extensions. Its application
to impossible differential cryptanalysis of AES [21] is investigated in [17].

Acknowledgments

The authors are very grateful to Jiqiang Lu’s supervisor Prof. Chris Mitchell for
his editorial comments and to the anonymous referees for their comments.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Babbage, S., Frisch, L.: On MISTY1 higher order differential cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

5. Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

6. CRYPTREC — Cryptography Research and Evaluatin Committees, report,
Archive (2002), http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

7. Duo, L., Li, C., Feng, K.: New observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

8. Hatano, Y., Sekine, H., Kaneko, T.: Higher order differential attack of Camellia(II).
In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 39–56. Springer,
Heidelberg (2003)

9. He, Y., Qing, S.: Square attack on reduced Camellia cipher. In: Qing, S., Okamoto,
T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 238–245. Springer, Heidelberg
(2001)

10. International Standardization of Organization (ISO), International Standard –
ISO/IEC 18033-3, Information technology – Security techniques – Encryption al-
gorithms – Part 3: Block ciphers (July 2005)

11. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

12. Knudsen, L.R.: DEAL — a 128-bit block cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

13. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

386 J. Lu et al.

14. Kühn, U.: Cryptanalysis of reduced-round MISTY. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)

15. Kühn, U.: Improved cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

16. Lee, S., Hong, S., Lee, S., Lim, J., Yoon, S.: Truncated differential cryptanalysis of
Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38. Springer,
Heidelberg (2002)

17. Lu, J., Dunkelman, O., Keller, N., Kim, J.: Revisiting impossible differential crypt-
analysis of AES. (manuscript, 2007)

18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

19. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

20. NESSIE — New European Schemes for Signatures, Integrity, and En-
cryption, final report of European project IST-, -12324. Archive (1999),
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

21. NIST — National Institute of Standards and Technology, Advanced Encryption
Standard (AES), FIPS-197 (2001)

22. Shirai, T.: Differential, linear, boomerang and rectangle cryptanalysis of reduced-
Round Camellia. In: Proceedings of the Third NESSIE Workshop (2002)

23. Sugita, M., Kobara, K., Imai, H.: Security of reduced version of the block ci-
pher Camellia against truncated and impossible differential cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

24. Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of MISTY1 without FL function
for higher order differential attack. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A.
(eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999)

25. Wu, W., Feng, D., Chen, H.: Collision attack and pseudorandomness of reduced-
round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 256–270. Springer, Heidelberg (2004)

26. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-
round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

27. Yeom, Y., Park, S., Kim, I.: On the security of Camellia against the square attack.
In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99. Springer,
Heidelberg (2002)

28. Yeom, Y., Park, S., Kim, I.: A study of integral type cryptanalysis on Camellia. In:
Proceedings of the 2003 Symposium on Cryptography and Information Security,
pp. 453–456 (2003)

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

Small Secret Key Attack on a Variant of RSA

(Due to Takagi)

Kouichi Itoh1, Noboru Kunihiro2, and Kaoru Kurosawa3

1 Fujistu Laboratories
2 University of Electro-Communications

3 Ibaraki University, Japan
kito@labs.fujitsu.com, kunihiro@ice.uec.ac.jp, kurosawa@mx.ibaraki.ac.jp

Abstract. For a variant of RSA with modulus N = prq and ed ≡ 1 mod

(p − 1)(q − 1), we show that d can be recovered if d < N (2−
√

2)/(r+1).
(Note that φ(N) �= (p − 1)(q − 1).) Boneh-Durfee’s result for the stan-
dard RSA is obtained as a special case for r = 1. Technically, we develop
a method of a finding small root of a trivariate polynomial equation
f(x, y, z) = x(y − 1)(z − 1) + 1 = 0 (mode) under the condition that
yrz = N . Our result cannot be obtained from the generic method of
Jochemsz-May.

Keywords: lattice, LLL, trivariate polynomial, RSA.

1 Introduction

1.1 Background

Based on LLL algorithm [11], Coppersmith showed a polynomial time algorithm
to find a small root of univariate modular polynomial equations [4]. Howgrave-
Graham showed a variant which is easy to understand and apply [8]. This algo-
rithm and its extensions to more than one variable have been used extensively
to study the security of RSA and its variants.

For example, Coron and May showed a deterministic equivalence between
factoring N = pq and finding d from (N, e), where (N, e) is a public key and
d is the private key [5]. Ernst et al. studied Partial Key Exposure Attacks on
RSA [7]. Boneh, Durfee and Howgrave-Graham [3] showed an efficient algorithm
for factoring N = prq in time O(p

2
r+1). Recently, Jochemsz-May gave a generic

method of lattice construction for multivariate polynomials and applied it to
attacks on some variants of RSA [9].

Meanwhile, an important problem of RSA is to study the security of small
d because the decryption or signature generation can be made faster if d is
small. Wiener showed that d can be recovered from (e, N) in polynomial time if
d < N1/4 [17]. Boneh-Durfee improved the bound up to d < N0.292 by using the
technique of Coppersmith and Howgrave-Graham [2]1.
1 They also studied the unbalanced case by extending their technique to a similar

trivariate modular polynomial equation. Durfee-Nguyen studied a small d attack on
another unbalanced RSA [6].

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 387–406, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 K. Itoh, N. Kunihiro, and K. Kurosawa

Meanwhile, there are two variants of RSA with modulus N = prq. In the
first variant, ed ≡ 1 mod pr−1(p − 1)(q − 1) while in the second variant, ed ≡
1 mod (p− 1)(q − 1). The first variant is more natural because φ(N) = pr−1(p−
1)(q − 1), where φ is Euler’s totient function.

For the first variant, Takagi [14,15] extended Wiener’s attack up to d <
N1/2(r+1). May showed two more efficient attacks by using the technique of
Coppersmith and Howgrave-Graham [12].

For the second variant, Takagi observed that the decryption can be signifi-
cantly faster [14,15]. Kunihiro and Kurosawa [10] proved the deterministic poly-
nomial time equivalence between factoring and computing d.

1.2 Our Contributions

In this paper, we study the security of small d of the second variant of RSA, i.e.,
ed ≡ 1 mod (p − 1)(q − 1). We show that d can be recovered from (e, N) if d <

N (2−√2)/(r+1). It is interesting to see that Boneh-Durfee’s result for the standard
RSA [2] is obtained as a special case for r = 1. Hence, our result is a natural
generalization of Boneh-Durfee [2]. Table 1 summarizes previous results and our
results. Let d = N δ. Technically, we develop a method of a finding small root

Table 1. Best Known Results and Our Contribution

N = pq N = prq N = prq
ed ≡ 1(mod lcm(p − 1, q − 1)) ed ≡ 1(mod pr−1(p − 1)(q − 1)) ed ≡ 1(mod (p − 1)(q − 1))

Basic Attack δ < 0.25 δ < 1/2(r + 1) δ < 1/2(r + 1)
Wiener [17] Takagi [15] Remark 4 in this paper

Advanced Attack δ < 0.292 δ < r
(r+1)2 , δ <

(
r−1
r+1

)2
for r ≥ 2 δ < (2 −

√
2)/(r + 1)

Boneh-Durfee[2] May [12] Theorem 2 in this paper

of a trivariate polynomial equation f(x, y, z) = x(y − 1)(z − 1) + 1 = 0 (mode)
under the condition such that yrz = N while Boneh-Durfee used a method of a
finding small root of a bivariate polynomial equation f(x, y) = 0 (mode) [2]. In
fact, we show how to derive a good lattice from the previous lattice for h(x, y) =
(y − 1)(z − 1) with yrz = N [10]. This is of independent interest.

As mentioned earlier, Jochemsz-May gave a generic method of lattice con-
struction for multivariate polynomials [9]. However, we cannot obtain our result
by using this method.

1.3 Organization

The rest of paper is organized as follows. In section 2, we explain preliminar-
ies. First, we review LLL algorithm and Howgrave-Graham’s Lemma. Then we
explain Takagi’s variant of RSA. In section 3, we introduce and show small d

attacks on Takagi’s RSA. In particular, we prove if d < N (7−2
√

7)/3(r+1) then d
can be recovered from e and N . In section 4, we use “Geometrically Progressive

Small Secret Key Attack on a Variant of RSA 389

Matrices” introduced in [2] to improve the bound of d to d < N (2−√2)/(r+1).
In section 5, we give some experimental results and we show the our attack is
effective. Finally, section 6 gives some discussions.

2 Preliminaries

This section describes LLL algorithm, Howgrave-Graham’s lemma and Takagi’s
variant of RSA.

2.1 Notations

For a vector b, ||b|| denotes the Euclidean norm of b. For a trivariate polynomial
h(x, y, z) =

∑
hijkxiyjzk, define

||h(x, y, z)|| =
√∑

h2
ijk.

That is, ||h(x, y, z)|| denotes the Euclidean norm of the vector which consists of
coefficients of h(x, y, z).

2.2 LLL Algorithm and Howgrave-Graham’s Lemma

Let M = {aij} be a w × n matrix of integers. The rows of M generate a lat-
tice L if row vectors of M are linearly independent. Rows form a basis of L.
The lattice L is also represented as follows. Letting ai = (ai1, ai2, . . . , ain), the
lattice L spanned by 〈a1, . . . , aw〉 consists of all integral linear combinations of
a1, . . . , aw, that is :

L =

{
w∑

i=1

niai|ni ∈ ZZ

}
. (1)

LLL algorithm outputs a short vector in the lattice L. This algorithm works in
a deterministic polynomial time.

Proposition 1 (LLL [11]). Let M = {aij} be a nonsingular w × n matrix of
integers. The rows of M generates a lattice L. Given M , the LLL algorithm finds
w vectors b1, . . . , bw ∈ L such that

||bi|| ≤ 2(w+i−2)/4(det L)1/(w−i+1)

in time polynomial in (w, B), where B = max log2 |aij |. Especially, it is impor-
tant for our application that

||b1|| ≤ 2(w−1)/4(detL)1/w and ||b2|| ≤ 2w/4(detL)1/(w−1).

Lemma 1 (Howgrave-Graham [8]). Let h(x, y, z) ∈ ZZ[x, y, z] be a polyno-
mial, which is a sum of at most w monomials. Let m be an integer and X, Y
and Z be some positive integers. Suppose that

1. h(x0, y0, z0) = 0 mod φm, where |x0| < X, |y0| < Y and |z0| < Z.
2. ||h(xX, yY, zZ)|| < φm/

√
w.

Then h(x0, y0, z0) = 0 holds over integers.

390 K. Itoh, N. Kunihiro, and K. Kurosawa

2.3 Takagi’s Variant of RSA

Takagi proposed a variant of RSA such that N = prq and ed ≡ 1 mod (p−1)(q−
1) and showed that a faster decryption algorithm can be obtained [14,15]. For
example, for r = 2, it is 42% faster than the original RSA decryption algorithm.
We should notice again that e and d are not set as ed ≡ 1 mod pr−1(p−1)(q−1)
in Takagi’s scheme.

Key Generation. Generate two distinct primes p and q. Let N = prq. Find e
and d such that

ed ≡ 1 mod (p − 1)(q − 1). (2)

Let dp = d mod p−1 and dq = d mod q−1. Then, e and N are the encryption
keys and dp, dq, p, q are the decryption keys.

Encryption. For a plaintext M ∈ ZZ∗N , the ciphertext is computed as follows.

C = M e mod N. (3)

Decryption. Given a ciphertext C, do:
1. Compute Mq = Cdq mod q, where Mq = M mod q.
2. Compute Mp = Cdp mod p, where Mp = M mod p.
3. Find M

(r)
p such that M

(r)
p = M mod pr by using Hensel lifting.

4. Compute M by applying Chinese remainder theorem to Mq and M
(r)
p .

Remark 1. Since e is less than (p − 1)(q − 1), e < N2/(r+1).

3 Small d Attack on Takagi’s Variant of RSA

3.1 Formulation: Small d Attack on Takagi’s RSA

We say that (r, N, e, d) is a Takagi’s RSA parameter if

N = prq, ed = 1 mod (p − 1)(q − 1),

where the bit length of p and q are the same. First, we will show that we can
recover d if d < N (7−2

√
7)/3(r+1) from the public information (r, N, e).

Since the bit length of p and q are the same, it holds that p < 2N1/(r+1)

and q < 2N1/(r+1). Letting e = Nα, we have p, q < e1/α(r+1). Furthermore, let
d < N δ.

Since ed = 1(mod (p−1)(q−1)), there exists an integer k such that ed−k(p−
1)(q − 1) = 1. The range of k is given by

k =
ed − 1

(p − 1)(q − 1)
<

2ed

pq
< 2e1+ δ

α− 2
α(r+1) . (4)

We used the inequality: (p − 1)(q − 1) > pq/2. In a usual choice, α is set as
α = 2/(r + 1). In this case, we have

p, q < 2e1/2, k < e
r+1
2 δ. (5)

Small Secret Key Attack on a Variant of RSA 391

In Appendix B, we give the general solution for arbitrary α.
Key recovery attack on Takagi’s variant of RSA is described as follows. Given

a trivariate polynomial f(x, y, z) = x(y −1)(z −1)+1, find (x0, y0, z0) satisfying

f(x0, y0, z0) = 0(mode), (6)

and yr
0z0 = N , where |x0| < e

r+1
2 δ, |y0|, |z0| < 2e1/2. Our aim is to derive the

condition of δ when the solution of the above problem is obtained.
In the next subsection, we show we can recover d if δ < (7 − 2

√
7)/(3(r + 1))

from the public information (r, N, e) in polynomial time under the reasonable
assumption.

3.2 Deriving the Bound of δ

Algorithm for key recovery on Takagi’s RSA.

Step 1. Construct a set of polynomials g[i,j,k,l](x, y, z) such that

g[i,j,k,l](x0, y0, z0) ≡ 0 mod em.

Step 2. Apply LLL algorithm to the coefficient matrix of {g[i,j,k,l](xX, yY, zZ)}
to obtain g1(x, y, z) and g2(x, y, z), where g1(x, y, z) and g2(x, y, z) are non-
zero integer combinations of g[i,j,k,l](x, y, z) with small coefficients.

Step 3. Let g′1(x, y) = Resultantz(g1(x, y, z), yrz−N) and g′2(x, y)=Resultantz

(g2(x, y, z), yrz − N). In this computation, the resultants never vanish.
Step 4. Compute the resultant of g′1(x, y) and g′2(x, y). If the resultant does not

vanish, we obtain univariate polynomial g3(x).
Step 5. Solve the equation g3(x) = 0 over integers.

As many similar papers [2,4,7,9], we cannot guarantee that g′1(x, y) and g′2(x, y)
are algebraic independent polynomials. (i.e., Resultant is not vanished.) Hence, we
make the following “heuristic” assumption.

Assumption 1. The resultant computation for the polynomials g′1(x, y) and
g′2(x, y) yields non-zero polynomials.

Ernst et al. [7] and Jochemsz et al. [9] used the same assumption. So, we will
also use the assumption. However, experiments are needed for specific cases to
justify the assumption. In Section 5, we give some examples and cannot find any
counter examples.

How to construct lattice. Remember that f(x, y, z) = x(y − 1)(z − 1) + 1.
Since it holds that ed = 1 mod (p − 1)(q − 1), there exist an integer k such that
ed − k(p − 1)(q − 1) = 1. Then, we have

k(p − 1)(q − 1) + 1 = 0 mod e, (7)

which leads that f(k, p, q) = 0 mod e. Note that p and q satisfy that N = prq
and we know N . This setting of f(x, y, z) is almost the same as the polynomial

392 K. Itoh, N. Kunihiro, and K. Kurosawa

in cryptanalysis of unbalanced RSA in [2] and in Durfee-Nguyen’s attack to RSA
schemes with short secret exponent [6].

We need to construct a lattice to find the small roots of f(x, y, z) = 0(mod e).
In our analysis, we will replace each occurrence of yrz by N because N = prq
(based on Durfee-Nguyen technique [6]). How to construct it for our problem is
not trivial.

For fixed a positive integer m, define

g[i,j,k,l](x, y, z) = xiyjzkf(x, y, z)lem−l. (8)

It is easy to see that g[i,j,k,l](k, p, q) = 0 mod em for any non-negative integers
(i, j, k, l). This setting is general. However, we need to carefully set the order of
indexes [i, j, k, l].

In our construction, we will utilize a lattice construction for h(y, z) = (y −
1)(z − 1) with constraint: yrz = N , which is introduced by Kunihiro-Kurosawa
[10]. To be self-contained, we show such a list in Appendix A. Since in their
construction, Durfee-Nguyen technique is taken into account, we need not to
consider it again in constructing that for f(x, y, z).

We set the list of polynomials G = {g[i,j,k,l]} for f(x, y, z) = x(y − 1)(z − 1)
with constraint: yrz = N as follows.

G ← ∅.
for u = 0, · · · , m, do;

for i = 0, · · · , u − 1, do;
for j = 0, 1, do; append g[u−i,j,0,i] to G.
for j = r − 1, · · · , 1, do; append g[u−i,j,1,i] to G.

for j = 0, · · · , su, do ; append g[0,j,0,u] to G.
for k = 1, · · · , tu, do ;

for j = r − 1, · · · , 0, do ; append g[0,j,k,u] to G.
return G.

Remark 2. This construction is not trivial. Actually, in Jochemsz-May’s lattice
construction, monomials will appear in lexicographic order. Table 3 shows that
the order of monomials in our lattice is not lexicographic.

Remark 3. To guarantee the coefficient matrix M is triangular, parameters su, tu
should be set as

s0 ≥ s1 ≥ · · · ≥ sm, t0 ≥ t1 ≥ · · · ≥ tm. (9)

Actually, we will set s0 = s1 = · · · = sm = t0 = t1 = · · · = tm = s.

Remark 4. Suppose that we omit to append g[0,j,0,u] and g[0,j,k,u]. This case
corresponds to an extension of Wiener’s attack on Takagi’s variant of RSA.
Then, if δ < 1/2(r + 1), d can be recovered.

We show a small example of the list G of {gijkl} for r = 2, m = 3, s0 = s1 =
s2 = s3 = 2, t0 = t1 = t2 = t3 = 2.

Small Secret Key Attack on a Variant of RSA 393

G = {g[0000], g[0100], g[0200], g[0110], g[0010], g[0120], g[0020],
g[1000], g[1100], g[1110], g[0001], g[0101], g[0201], g[0111], g[0011], g[0121], g[0021],
g[2000], g[2100], g[2110], g[1001], g[1101], g[1111], g[0002], g[0102], g[0202], g[0112], g[0012], g[0122], g[0022],
g[3000], g[3100], g[3110], g[2001], g[2101], g[2111], g[1002], g[1102], g[1112], g[0003], g[0103], g[0203], g[0113], g[0013], g[0123], g[0023]}

The 1st line of G corresponds to the list for u = 0. The 2nd, 3rd and 4th line
also corresponds to that for u = 1, 2, 3.

We briefly show that G = {g[i,j,k,l](xX, yY, zZ)} is a lower triangular. Note
that in our setting, i + l is always u. Consider g[u−l,j,k,l](x, y, z).

g[u−l,j,k,l](x, y, z) = xu−lyjzk(xh(y, z) + 1)lem−l

= xu−lyjzk{xlh(y, z)l +
l∑

i=1

(
l

i

)
xl−ih(y, z)i}em−l

= xuyjzkh(y, z)lem−l +
l∑

i=1

(
l

i

)
xu−iyjzkh(y, z)iem−l.

The number of the term including xu is only one in g[u−l,j,k,l]. The rest of all
are terms with lower degree terms of x. Hence, they must appear in the former
polynomial. To guarantee it, the parameters should be adequately chosen.

Table 2 shows a matrix M derived from G. For each u = 0, 1, .., m, M (u)

consists of three sub-matrixes M (u,0), M (u,1) and M (u,2) illustlated in Figure 1.
M (u,0) is (r+1)u× (r+1)u matrix, where the order of monomials is represented
as xuzi, xuyi+1, xuyr−1zi+1, xuyr−2zi+1, . . . , xuyzi+1 for i = 0, 1, . . . u−1. Note
that M (u,0) is empty when u = 0. M (u,1) is (su +1)× (su +1) matrix, where the
order of monomials is represented as xuzu, xuyu+1, xuyu+2, . . . , xuyu+su . M (u,2)

is rtu × rtu matrix, where the order of monomials is represented as xuyr−1zu+k,
xuyr−2zu+k, . . . , xuzu+k for k = 1, . . . tu. As an example, the explicit forms of
M (1) is given in Table 3. The determinant of M can be easily calculated.

Determinant of Sub-matrix. Let M (u) be the sub-matrix corresponding to
the list for u and monomials with xu. The determinant of M is given by det M =∏m

u=0 detM (u). Letting wu be the dimension of sub-matrix M (u), the dimension
of lattice is given by w =

∑m
u=0 wu. Next, we compute det M (u) and wu for each

M (u).
Simple analysis gives wu and detM (u) as follows. wu is given by

wu = (r + 1)u + (1 + su) + rtu = (r + 1)u + rtu + su + 1. (10)

Table 2. Small example

monomials with x0 with x1 with x2 with x3

the list for u = 0 M (0) 0
the list for u = 1 * M (1)

the list for u = 2 * * M (2)

the list for u = 3 * * * M (3)

394 K. Itoh, N. Kunihiro, and K. Kurosawa

Table 3. Example of M (1) for r = 2, m = 3, s = 2

x xy xyz xz xy2 xy3 xyz2 xz2 xyz3 xz3

g[1000](xX, yY, zZ) Xe3

g[1100](xX, yY, zZ) * XY e3

g[1110](xX, yY, zZ) * * XY Ze3

g[0001](xX, yY, zZ) * * * XZe2

g[0101](xX, yY, zZ) * * * * XY 2e2

g[0201](xX, yY, zZ) * * * * * XY 3e2

g[0111](xX, yY, zZ) * * * * * * XY Z2e2

g[0011](xX, yY, zZ) * * * * * * * XZ2e2

g[0121](xX, yY, zZ) * * * * * * * * XY Z3e2

g[0021](xX, yY, zZ) * * * * * * * * * XZ3e2

detM (u) can be described by

detM (u) = eγeXγX Y γY ZγZ . (11)

Each γe, γX , γY and γZ are given as follows.

γe =
u−1∑

i=0

(m − i)(r + 1) + (m − u)(1 + su + rtu)

= wum − u

2
((r + 1)u − (r − 1) + 2(su + rtu)).

γX is given by
γX = uwu.

γY is given by

γY =
(u + su)(u + su + 1)

2
+

r(r − 1)(u + tu)
2

.

γZ is given by

γZ =
r(u + tu)(u + tu + 1)

2
.

Substituting X = e
r+1
2 δ, Y = 2e1/2, Z = 2e1/2 into Eq. (11), we have

loge detM (u) = mwu − u

2
((r + 1)u − (r − 1) + 2(su + rtu)) +

r + 1
2

δuwu

+
1
2

(
(u + su)(u + su + 1)

2
+

r(u + tu)(u + tu + r)
2

)
.

By setting su = tu = s for any u, the logarithm of detM can be simplified as

loge detM (u) = mwu − u

2
((r + 1)u − (r − 1) + 2(r + 1)s) +

r + 1
2

δuwu

+
(u + s)(u + s + 1)(r + 1)

4
+

r2 − r

4
(u + s). (12)

The dimension of sub-lattice is given as wu = (r + 1)(u + s) + 1.

Small Secret Key Attack on a Variant of RSA 395

The necessary condition to obtain two equations over integer from Howgrave-
Graham’s Lemma is given by

detM < em(w−1)/γ, (13)

where γ is a small term. By ignoring low order terms, it is enough to consider
the inequality

detM < emw. (14)

The reason is Eq. (14) is approximated to Eq. (13) when m is large.

Derivation of the condition for δ. Eq. (14) leads to an inequality:

loge detM =
m∑

u=0

log detM (u) < m

m∑

u=0

wu. (15)

By ignoring low order terms, we carry out the computation. We have

m(r + 1)
m∑

u=0

(u + s) − r + 1
2

m∑

u=0

u(u + 2s) +
δ(r + 1)2

2

m∑

u=0

u(u + s) (16)

+
r + 1

4

m∑

u=0

(u + s)2 < m(r + 1)
m∑

u=0

(u + s).

By straightforward computation, we have

3s2 − 3(1 − (r + 1)δ)sm + (2(r + 1)δ − 1)m2 < 0.

By setting s = 1−(r+1)δ
2 m, we obtain an inequality:

3((r + 1)δ)2 − 14(r + 1)δ + 7 > 0. (17)

By solving the inequality, we have

δ <
7 − 2

√
7

3(r + 1)
. (18)

��
To summing up our claim, we have the following theorem.

Theorem 1. Under assumption 1, we can recover d from the public information

(r, N, e) in polynomial time if δ <
7 − 2

√
7

3(r + 1)
.

Boneh-Durfee’s result is obtained as a special case for r = 1.

Remark 5. In our theorems, Assumption 1 is crucial. Under Assumption 1, our
theorems are valid. If one does not agree on Assumption 1, our theorems will
not be “Theorem” but just “Claim”.

In appendix B, we will show analysis for arbitrary e.

396 K. Itoh, N. Kunihiro, and K. Kurosawa

4 Improved Bound of δ

In this section, we improve the upper bound of δ. Bound of δ is derived from
detM < emw. As detM is a function of δ, bound of δ can be improved if the
value of detM is reduced. detM is a product of element on the diagonal, so
its value will be reduced if we can eliminate the large values of element on the
diagonal. To do this, we eliminate some rows whose element on the diagonal
is large. By this elimination, M will not be full-rank matrix, which is hard to
evaluate the determinant. This problem is solved by using the “Geometrically
Progressive Matrices (GPM)” introduced by Boneh-Durfee [2]. By applying their
technique to our problem, we have the following theorem.

Theorem 2. If δ <
2 −

√
2

r + 1
, we can recover d from the public information in

polynomial time.

Proof. We set s = (1− (r +1)δ)m. We can prove that our matrix M (u) contains
GPM with some parameter. Then we take only those {g[i,j,k,l]} of M (u) whose
element on the diagonal is less than or equal to em. By eliminating rows whose
element on the diagonal greater than em, we transform M (u) to M ′(u) to calculate∏

u=0,1,...,m det(M ′(u)) < emw′
, where w′ is a number of rows of M ′(u). By using

this transformation, we can prove the improved upper bound of δ.

As the first step for calculating the determinant, we show the structure of M (u)

in Figure 1. If we define M (u,0), M (u,1), M (u,2), M ′(u,0), M ′(u,1) and M ′(u,2) as

M(u)=

M(u,0)

M(u,1)

M(u,2)

0 0

0

*

* *. . .

. . .

. . .

. . .

. . .

. . .

G←0

for u=0,…m do;

for i=0,…,u-1 do;

for j=0,1 do; append g[u-i,j,0,i] to G.

for j=r-1,…,1 do; append g[u-i,j,1,i] to G.

for j=0,…,s do; append g[0,j,0,u] to G.

for k=1,…,s do;

for j=r-1,…,0 do; append g[0,j,k,u] to G.

return G

M(u)

M(u,0)

M(u,1)

M(u,2)

M’(u)=

M’(u,0)

M’(u,1)

M’(u,2)

0 0

0

0

0 0. . .

. . .

. . .

. . .

. . .

. . .

Set lower triangular to ‘0’
by Gaussian elimination.

M’(u,0), M’(u,1) and M’(u,2) consists of selected rows
of M(u,0), M(u,1) and M(u,2) respectively.

Fig. 1. Structure of M (u)

Small Secret Key Attack on a Variant of RSA 397

Figure 1, we can see det(M ′(u)) = det(M ′(u,0)) × det(M ′(u,1)) × det(M ′(u,2)). In
[10], these matrices are said to satisfy Lemma 2.

Lemma 2 (Kunihiro-Kurosawa [10]). Coefficient matrix M (u,0), M (u,1) and
M (u,2) for {g[i,j,k,l] (xX, yY, zZ)} and X = e

r+1
2 δ, Y = Z = e1/2 satisfies follow-

ing a),b) and c) respectively, where E(M, i, j) represents the element of i-th row
and j-th column of matrix M .

a) Sequences of E(M (u,0), i, i) for i = 0, 1, . . . , u × (r + 1) − 1 are:
e

1
2 ((r+1)δu+2m), e

1
2 ((r+1)δu+2m+1), e

1
2 ((r+1)δu+2m+r), . . . , e

1
2 ((r+1)δu+2m+2), . . .

e
1
2 ((r+1)δu−k+2m, e

1
2 ((r+1)δu−k+2m+1), e

1
2 ((r+1)δu−k+2m+r), . . . , e

1
2 ((r+1)δu−k+2m+2), . . .

e
1
2 ((r+1)δu−u+1+2m, e

1
2 ((r+1)δu−u+1+2m+1), e

1
2 ((r+1)δu−u+1+2m+r), . . . , e

1
2 ((r+1)δu−u+1+2m+2).

b) Sequences of E(M (u,1), i, i) for i = 0, 1, . . . , s are:
e

1
2 ((r+1)δu+2m−u), e

1
2 ((r+1)δu+2m−u+1), . . . , e

1
2 ((r+1)δu+2m−u+s).

And |E(M (u,1), i, j)| ≤ Kb × e
r+1
2r (s+m)+u × E(M (u,1), i, i) is satisfied for

i > j and Kb = u3u.
c) Sequences of E(M (u,2), i, i) for i = 0, 1, . . . , s × r − 1 are:

e
1
2 ((r+1)δu+2m−u+r), e

1
2 ((r+1)δu+2m−u+r−1), . . . , e

1
2 ((r+1)δu+2m−u+1), . . .

e
1
2 ((r+1)δu+2m−u+r−1+k), e

1
2 ((r+1)δu+2m−u+r−2+k), . . . , e

1
2 ((r+1)δu+2m−u+k), . . .

e
1
2 ((r+1)δu+2m−u+r−1+s), e

1
2 ((r+1)δu+2m−u+r−2+s), . . . , e

1
2 ((r+1)δu+2m−u+s).

And |E(M (u,2), i, j)| ≤ Kc × e
r+1
2r (m+r−1)+u × E(M (u,2), i, i) is satisfied for

i > j and Kc = u3u.

In Lemma 2, equation of E(i, i) is trivial from [10], but relation between E(i, j)
and E(i, i) for i > j is not trivial. We describe why this relationship holds in
Appendix D.

We can see sequences of the exponents of E(M (u,0), i, i) contains irregular
pattern (i.e. (r+1)δu−k+2m, (r+1)δu−k+2m+1, (r+1)δu−k+2m+r, (r+
1)δu−k+2m+ r−1, . . . , (r +1)δu−k+2m+2), but that of E(M (u,1), i, i) and
E(M (u,2), i, i) are regular pattern. So M (u,1) and M (u,2) satisfy the condition
of GPM in Definition 1. We denote M ′(u,1) and M ′(u,2) as the matrix obtained
by eliminating the rows of M (u,1) and M (u,2) whose element on the diagonal is
greater than em. Determinant of M ′(u,1) and M ′(u,2) can be calculated by Theo-
rem 3 proposed by Boneh-Durfee [2]. Hence we can calculate the determinant as∏

u=0,1,...,m det(M ′(u)) =
∏

u=0,1,...,m{det(M (u,0))×det(M ′(u,1))×det(M ′(u,2))}
to obtain the improved bound of δ.

Definition 1 (Geometrically Progressive Matrices (GPM)). Let M be an
(a + 1)b × (a + 1)b matrix, where rows and columns are divided into a + 1 blocks
and each block is b× b matrix. And M(i, j, k, l) denotes the element of (ib+ j)-th
row and (kb+ l)-th column of M . Let C, D, c0, c1, c2, c3, c4 and β be real numbers
with C, D, β ≥ 1. A matrix M is said to be geometrically progressive matrices
(GPM) with parameters (C, D, c0, c1, c2, c3, c4, β) if the following conditions i),
ii), iii) and iv) hold for all i, k = 0, . . . , a and j, l = 1, . . . , b.

i) |M(i, j, k, l)| ≤ C × Dc0+c1i+c2j+c3k+c4l.
ii) M(k, l, k, l) = Dc0+c1i+c2j+c3k+c4l.

398 K. Itoh, N. Kunihiro, and K. Kurosawa

iii) M(i, j, k, l) = 0 whenever i > k or j > l.
iv) βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

Theorem 3. Let M be an (a+1)b×(a+1)b GPM with parameters (C, D, c0, c1,
c2, c3, c4, β) satisfying C, D, β ≥ 1 and let B be real number. Define SB =
{(k, l) ∈ {0, . . . , a} × {1, . . . , b}|M(k, l, k, l) ≤ B}, and set w′ = |SB|. If L is
a lattice defined by the rows (k, l) ∈ SB of M , then det(L) ≤ ((a + 1)b)w′/2(1 +
C)w′2 ∏

(k,l)∈SB
M(k, l, k, l)

Lemma 3. M (u,1) is (s + 1) × (s + 1) GPM with parameters (u3u, e, r+1
2 δu +

m − u
2 , −(r+1

2r (m + s) + u), 0, r+1
2r (m + s) + u + 1, 0, 1).

Lemma 4. M (u,2) is sr × sr GPM with parameters (u3u, e, r+1
2 δu + m − u

2 , −
(r+1

2r (m+ r−1)+u)r, −(r+1
2r (m+ r−1)+u), (r+1

2r (m+ r−1)+u)r+1, r+1
2r (m+

r − 1) + u − 1, 1 − 2r
(r+1)(m+r−1)+2ru).

Proof. M (u,1) and M (u,2) satisfy iii) of Definition 1, because these are lower
triangular matrix. It is easy to see that parameter (c0, c1, c2, c3, c4, β) in Lemma
3,4 satisfies iv). We can confirm parameter (c0, c1, c2, c3, c4, β) satisfies ii) from
the sequences of E(M (u,1), i, i) and E(M (u,2), i, i) in Lemma 2. And these GPM
parameters mean E(M (u,1), i − v, i) ≤ C · e(r+1

2r (m+s)+u)v · E(M (u,1), i, i) and
E(M (u,2), i − v, i) ≤ C · e(r+1

2r (m+r−1)+u)v · E(M (u,2), i, i) must be satisfied for
v ≥ 1 and C = u3u. We can see this conditions are satisfied by the relationship
between E(M (u,∗), i, j) and E(M (u,∗), i, i) for i > j in Lemma 2. Note that if m
is large enough, β is approximated to 1.

Finally, we prove Theorem 2. Firstly, we calculate emw′
. Let w0, w

′
1, w

′
2 be a

number of rows of M (u,0), M ′(u,1) and M ′(u,2) respectively. w′1 for some u is
obtained by counting the number of i satisfying ((r + 1)δu + 2m − u + i)/2 <
m(i = 0, 1, . . . , s), that is, i < u(1 − (r + 1)δ) . w′2 for some u is obtained by
counting the i satisfying ((r + 1)δu + 2m − u + i + v)/2 < m(i = 0, 1, . . . , s, v =
0, 1, . . . , r − 1), that is, i < u(1 − (r + 1)δ) − v . By summing these numbers
for u = 0, 1, . . . , m, we obtain w′1 = (m2R)/2 + o(m2) and (m2Rr)/2 + o(m2)
where R = (1 − (r + 1)δ). w0 satisfies w0 = (m2(r + 1))/2 + o(m2). From
w′ = w0 + w′1 + w′2 = ((r + 1)(R + 1)m2)/2 + o(m2), we get

emw′
= e

(r+1)(R+1)
2 m3+o(m3). (19)

Secondly, we calculate det(M ′(u,1)) and det(M ′(u,2)) by using Theorem 3 in
case B = em. Hence, w′1, w′2, s, r, Kb, Kc are functions of δ and u, but not that
of e, so that the term other than

∏
(k,l)∈Sem

M ′(u,1)(k, l, k, l) and
∏

(k,l)∈Sem

M ′(u,2)(k, l, k, l) are negligible in comparison with em3
. So we can calculate each

determinant by
∏

(k,l)∈Sem
M ′(u,1)(k, l, k, l) and

∏
(k,l)∈Sem

M ′(u,2)(k, l, k, l). By
using this idea, det(M ′(u,1)) is calculated as follows.

Small Secret Key Attack on a Variant of RSA 399

loge(det(M ′(u,1))) =
m∑

u=0

�uR�∑

i=0

1
2
((r + 1)δu + 2m − u + i)

≤
m∑

u=0

uR∑

i=0

1
2
(2m − uR + i)

=
1
2

m∑

u=0

[2muR − 1
2
u2R2] + o(m3)

=
1
12

(−R2 + 6R)m3 + o(m3). (20)

det(M ′(u,2)) is calculated as follows.

loge(det(M ′(u,2))) =
m∑

u=0

r−1∑

v=0

�uR�∑

i=0

1
2
((r + 1)δu + 2m − u + v + i)

≤
m∑

u=0

r−1∑

v=0

uR∑

i=0

1
2
(2m − uR + v + i)

=
1
2

m∑

u=0

r−1∑

v=0

[uR(2m − uR + v) +
1
2
u2R2] + o(m3)

=
1
2

m∑

u=0

r−1∑

v=0

[2muR − 1
2
u2R2] + o(m3)

=
r

12
(−R2 + 6R)m3 + o(m3). (21)

det(M (u,0)) is calculated as follows.

loge(det(M (u,0))) =
m∑

u=0

r∑

v=0

u−1∑

i=0

1
2
((r + 1)δu + 2m + v − i)

=
1
2

m∑

u=0

r∑

v=0

[(r + 1)δu2 + 2mu + vu − 1
2
u2] + o(m3)

=
1
2

m∑

u=0

r∑

v=0

[2mu + u2((r + 1)δu − 1
2
)] + o(m3)

=
1
2

m∑

u=0

r∑

v=0

[2mu + u2(
1
2

− R)] + o(m3)

=
r + 1
12

(7 − 2R)m3 + o(m3). (22)

From (19), (20), (21) and (22), the condition for
∏

u=0,1,...,m{ det(M (u,0)) ×
det(M ′(u,1)) × det(M ′(u,2)) } < emw′

holds is equal to that r+1
12 (−R2 + 4R +

7)m3+o(m3) < r+1
12 (6+6R)m3+o(m3). It means r+1

12 (R2−2R−1)m3+o(m3) > 0,

400 K. Itoh, N. Kunihiro, and K. Kurosawa

solved as R > −1 +
√

2. From R = 1 − (r + 1)δ, this condition is equal to
1 − (r + 1)δ > −1+

√
2. So we finally obtain δ < 2−√2

r+1 . Boneh-Durfee’s result is
obtained as a special case for r = 1.

5 Experiments

We performed experiments of our attacks described in section 3. We used Victor
Shoup’s NTL library [16] for performing LLL algorithm. The results are shown
in Table 4. Our experiments were ran PC with Pentium-D 3.4GHz processor
under Linux (Fedora core 6). In all cases, we succeeded to solve the resolution
of described in section 3.2, and correctly obtained y = p and z = q. Our experi-
mental results show δ (“ r+1

2 δ (experiment)” column of Table 4) is smaller than
that of theoretical upper bound (“ r+1

2 δ (upper bound for m → ∞” column of
Table 4) as r gets bigger. This can be explained by following reason: If m goes
to infinity, upper bound of r+1

2 δ is 0.284, but if m is not large, upper bound of
δ becomes smaller.

Table 4. Experimental Results

r log2N d r+1
2 δ r+1

2 δ (upper bound r+1
2 δ (upper bound m s dimension running time success rate

(experiment) for m → ∞) for given m,r)

1 1024 281bits 0.275 0.284 0.220 8 2 117 9 hours. 17 out of 17

2 1026 128bits 0.188 0.284 0.172 8 2 171 56 hours. 2 out of 2

3 1024 61bits 0.120 0.284 0.124 8 2 225 70 hours. 2 out of 2

We theoretically analyzed the upper bound of δ for given m and r without
ignoring the small term. (For further details, see Appendix C.) And we show the
result in “ r+1

2 δ (upper bound for given m, r)” column of Table 4. Experimental
results of δ can be equal or bigger or than this value, so this value can be used
to estimate experiment results for small m.

6 Discussions

We studied small d attack on Takagi’s variant of RSA. Our results are natural
extension of Boneh-Durfee’s. Boneh and Durfee described in their paper [2] “A
bound of d < N

1− 1√
2 cannot be the final answer. It is too unnatural. We believe

the correct bound is d < N1− 1
2 .”

We also try to explain the final answer of our attack by using the idea of the
counting argument. Under this idea, d is assumed to be large enough as far as
the equation has the unique solution.

Our attack tries to solve the equation x(y − 1)(z − 1) = 0(mode), where
x < e

r+1
2 δ and y, z < e

1
2 . This equation itself does not have the unique solution,

because possible patterns of (x, y, z) is e
r+1
2 δ × e

1
2 × e

1
2 = e1+ r+1

2 δ, which is
larger than the modulo e. But if we also consider the another equation yrz = N ,
possible patterns of (x, y, z) will be reduced to e

r+1
2 δ × e

1
2 = e

1
2 + r+1

2 δ because z

Small Secret Key Attack on a Variant of RSA 401

is eliminated. By solving 1
2 + r+1

2 δ < 1, we can see these equations have unique
solution for δ < 1

r+1 . Therefore, d < N
1

r+1 could be the final answer of our
attack.

Acknowledgements

We thank to anonymous referees for their helpful advices, especially for the final
answer of d.

References

1. Blömer, J., May, A.: A Tool Kit for Finding Small Roots of Bivariate Polynomials
over the Integers. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 251–267. Springer, Heidelberg (2005)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339 (2000) (Firstly appeared in
Eurocrypt 1999)

3. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for Large r.
In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337. Springer,
Heidelberg (1999)

4. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

5. Coron, J.S., May, A.: Deterministic Polynomial Time Equivalence of Computing
the RSA Secret Key and Factoring. Journal of Cryptology 20(1), 39–50 (2004)
(IACR ePrint Archive: Report 2004/208 (2004))

6. Nguyên, P.Q., Durfee, G.: Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt 99. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 14–29. Springer, Heidelberg (2000)

7. Ernst, M., Jochemsz, E., May, A., Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

8. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: IMA Int. Conf., pp. 131–142 (1997)

9. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

10. Kunihiro, N., Kurosawa, K.: Deterministic Polynomial Time Equivalence between
Factoring and Key-Recovery Attack on Takagi. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 412–425. Springer, Heidelberg (2007)

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 515–534 (1982)

12. May, A.: Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

13. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

402 K. Itoh, N. Kunihiro, and K. Kurosawa

14. Takagi, T.: Fast RSA-Type Cryptosystem Modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

15. Takagi, T.: A Fast RSA-Type Public-Key Primitive Modulo pkq Using Hensel
Lifting. IEICE Trans. Fundamentals 87(1), 94–101 (2004)

16. Shoup, V.: Number Theory Library (NTL), http://www.shoup.net/ntl/
17. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on

Information Theory 36, 553–558 (1990)

A Lattice Construction for h(y, z) = (y − 1)(z − 1) and
Converting That for xh(y, z) + 1

We show the lattice for h(y, z) = (y − 1)(z − 1) ≡ 0(mode) with constraint:
yrz = N . In construction, we need to take a care of Durfee-Nguyen technique.
The construction of lattice for this type of bivariate polynomial is given in [10].
For a fixed positive integer u, define

h
(u)
[j,k,l](y, z) = yjzkh(y, z)leu−l. (23)

The list of polynomials G(u) = (h(u)
[j,k,l]) as follows, where s and t will be deter-

mined later.

G ← ∅.
for k = 0, · · · , u − 1, do;

append h[0,0,k] and h
(u)
[1,0,k] into G in this order.

for i = r − 1, · · · , 1, do; append h
(u)
[i,1,k] to G.

for i = 0, · · · , s, do; append h
(u)
[i,0,u] to G.

for j = 1, · · · , t, do;
for i = r − 1, · · · , 0, do; append h

(u)
[i,j,u] to G.

return G.

We can easily verify that the coefficient matrix of {h
(u)
[i,j,u](yY, zZ)} is lower

triangular.
Next, we show a transformation from lattice construction for h(y, z) to that

for f(x, y, z) = xh(y, z) + 1.
Suppose that the order of polynomials h

(u)
jkl(y, z) and monomials are given for

any u. Suppose that the list of H(u) is given as follows.

H(u) = {[j(u)
1 , k

(u)
1 , l

(u)
1], [j(u)

2 , k
(u)
2 , l

(u)
2], · · · , [j(u)

wu
, k(u)

wu
, l(u)

wu
]},

where wu is the length of list.
Then, we define G for f(x, y, z) as follows.

G ← ∅.
for u = 0, · · · , m, do;

for i = 1, · · · , wu, do;
Append [u − l

(u)
i , j

(u)
i , k

(u)
i , l

(u)
i]

return G.

http://www.shoup.net/ntl/

Small Secret Key Attack on a Variant of RSA 403

B Analysis for Arbitrary e

In this section, we analyze small d attack for arbitrary e. Given a trivariate
polynomial f(x, y, z) = x(y − 1)(z − 1) + 1, find (x0, y0, z0) satisfying

f(x0, y0, z0) = 0(mode), (24)

where |x0| < e1+ δ
α− 2

α(r+1) , |y0|, |z0| < e
1

α(r+1) . Our aim is to obtain the condition
of δ when the solution of the above problem is obtained.

Theorem 4. If δ <
7 − 2

√
1 + 3α(r + 1)
r + 1

, we can recover d from the public in-

formation in polynomial time.

Proof. We build the exact same lattice used in Section 3. Plugging

X = e1+ δ
α− 2

α(r+1) , Y = Z = e
1

α(r+1) , (25)

we obtain

loge detM (u) = mwu − u

2
((r + 1)u − (r − 1) + 2(r + 1)s)

+ (1 +
δ

α
− 2

α(r + 1)
)uwu

+
1

2α(r+1)
(
(r+1)(u+s)(u+s+1)+(r2−r)(u+s)

)
. (26)

By the similar calculation as Section 3.2, we obtain

3s2 − 3(1 − (r + 1)δ)sm + (2(r + 1)δ + α(r + 1) − 3)m2 < 0.

By setting s = 1−(r+1)δ
2 m, we obtain

(
3((r + 1)δ)2 − 14(r + 1)δ + 15 − 4α(r + 1)

)
< 0.

By solving the above inequality, we have

δ <
7 − 2

√
1 + 3α(r + 1)

3(r + 1)
. (27)

��

Boneh-Durfee’s result is obtained as a special case for r = 1. Furthermore, for
α = 2/(r + 1), we obtain the result of Theorem 1.

When α = 15
4(r+1) , the bound of δ is δ = 0. Hence, this attack is ineffective

when e > N
15

4(r+1) .
By similar analysis, we obtain the improved bound as follows.

Theorem 5. If δ <
2 −

√
α(r + 1)

r + 1
and δ < α, we can recover d from the public

information in polynomial time.

For α = 2/(r + 1), we obtain the result of Theorem 2.

404 K. Itoh, N. Kunihiro, and K. Kurosawa

C Upper Bound of δ for Small m and r

If m goes to infinity, upper bound of δ satisfies r+1
2 δ = 0.284 as shown in the

proof of section 3.2. But if m is not so large, r+1
2 δ might be smaller than this

value because term o(m3) can not be ignored. In this section, we analyze the
upper bound of δ for smaller m and r by considering the term o(m3). By equation
(12), we can see δ must satisfy

m∑

u=0

loge detM (u) =
m∑

u=0

(mwu − u

2
((r + 1)u − (r − 1) + 2(r + 1)s) +

r + 1
2

δuwu

+
(u + s)(u + s + 1)(r + 1)

4
+

r2 − r

4
(u + s)) < mw. (28)

We know sum of wu for u=0, 1, . . . , m is equal to w, so above relation is euqal to

m∑

u=0

(−u

2
((r + 1)u − (r − 1) + 2(r + 1)s) +

r + 1
2

δuwu

+
(u + s)(u + s + 1)(r + 1)

4
+

r2 − r

4
(u + s)) < 0, (29)

where this equation is equal to

(6r + 6)s2

+ ((6δ + 6)r2 + (12mδ − 6m)r + 6mδ − 6m + 6)s
+ ((4m2 + 2m)δ + 3m)r2 + ((8m2 + 10m)δ − 2m2 + 5m)r
+ (4m2 + 8m)δ − 2m2 − 4m < 0. (30)

Left hand side of this equation is minimized when s = ((−r2 − 2r − 1)mδ + (r +
1)m − (r2 + 1))/(2r + 2).

By plugging this value and performing tedious computation, above relation
leads to

−((3r4 + 12r3 + 18r2 + 12r + 3)m2)δ2

−((−14r3 − 42r2 − 42r − 14)m2 + (6r4 + 8r3 − 12r2 − 24r − 10)m)δ
−(7r2 + 14r + 7)m2 + (−12r3 − 22r2 − 8r + 2)m + 3r4 + 6r2 + 3 < 0.(31)

If we plug m and r for some given value, we can solve this relation for δ with
r+1
2 δ < 0.284 to obtain the exact value of δ. If m = 8, we get δ < 0.220 for

r = 1, δ < 0.115 for r = 2 and δ < 0.062 for r = 3, which lead to “ r+1
2 δ (upper

bound for given m, r)” column of Table 4.

D Complements of Lemma 2

In Lemma 2, we showed the relation between E(M (u,∗), μ, λ) and E(M (u,∗), μ, μ)
for μ > λ, M (u,1) and M (u,2). These are

|E(M (u,1), μ, λ)| ≤ u3u × e
r+1
2r (s+m)+u × E(M (u,1), μ, μ) (32)

Small Secret Key Attack on a Variant of RSA 405

and

|E(M (u,2), μ, λ)| ≤ u3u × e
r+1
2r (m+r−1)+u × E(M (u,2), μ, μ). (33)

In this section, we explain why these relations hold.
For some g[i,j,k,l](xX, yY, zZ), E(M (u,∗), μ, μ) is diagonal element and

E(M (u,∗), μ, λ) can be any non-diagonal element. So we prove (32) and (33)
for maximum absolute value of E(M (u,∗), μ, λ), this relation holds for any non-
diagonal element.

By the definition of g[i,j,k,l](x, y, z), we get

g[i,j,k,l](x, y, z) = em−lxiyjzk
l∑

v0=0

(
l

v0

)
xl−v0(y − 1)v0(z − 1)v0

= em−lxiyjzk
l∑

v0=0

(
l

v0

)
xl−v0(y − 1)v0

(v0∑

v2=0

(
v0

v2

)
zv2(−1)v2−v0

)

= em−lxiyjzk
l∑

v0=0

(
l

v0

)
xl−v0

(v0∑

v1=0

(
v0

v1

)
yv1(−1)v0−v1

(v0∑

v2=0

(
v0

v2

)
zv2(−1)v0−v2

))

= em−l
l∑

v0=0

v0∑

v1=0

v0∑

v2=0

(
l

v0

)(
v0

v1

)(
v0

v2

)

xl−v0+iyv1+jzv2+k(−1)v0−v1(−1)v0−v2

So g[i,j,k,l](xX, yY, zZ) is

g[i,j,k,l](xX, yY, zZ)

= em−l
l∑

v0=0

v0∑

v1=0

v0∑

v2=0

(
l

v0

)(
v0

v1

)(
v0

v2

)

X l−v0+iY v1+jZv2+kxl−v0+iyv1+jzv2+k(−1)v0−v1(−1)v0−v2 .

If we consider 0 ≤ v1, v2 ≤ v0 ≤ l, i = 0 and l = u holds for M (u,1) and M (u,2),
maximum absolute value of the coefficient is

u3u · em−uXuY j+uZk+u.

By plugging X = e
r+1
2 δ and Y = Z = e

1
2 , we get

u3u · e 1
2 ((r+1)δu+2m+j+k). (34)

Above (34) represents the maximum coefficients without replacing yrz = N .
If this replacement occurs, (34) becomes Nθ/r times larger, where θ represents

406 K. Itoh, N. Kunihiro, and K. Kurosawa

the maximum order of y. θ is maximum value of j + u. And if we consider j is
ranged by 0 ≤ j ≤ s for M (u,1) and 0 ≤ j ≤ r − 1 for M (u,2), θ = u + s holds for
M (u,1), and θ = u + r − 1 holds for M (u,1). Hence, maximum coefficients with
replacing yrz = N = e

r+1
2 is u3u · e r+1

2r (u+s) · e
1
2 ((r+1)δu+2m+j+k) for M (u,1) and

u3u · e
r+1
2r (u+r−1) · e 1

2 ((r+1)δu+2m+j+k) for M (u,2). Hence we get

|E(M (u,1), μ, λ)| ≤ u3u · e
r+1
2r (u+s) · e

1
2 ((r+1)δu+2m+j+k)

and

|E(M (u,2), μ, λ)| ≤ u3u · e
r+1
2r (u+r−1) · e 1

2 ((r+1)δu+2m+j+k).

If we consider E(M (u,∗), μ, μ) = e
1
2 ((r+1)δu+2m+j+k−u) holds for any j, k of

M (u,1) and M (u,2), we finally get

|E(M (u,1), μ, λ)| ≤ u3ue
r+1
2r (u+s)+uE(M (u,1), μ, μ)

≤ u3u · e
r+1
2r (m+s)+u · E(M (u,1), μ, μ) (35)

and

|E(M (u,2), μ, λ)| ≤ u3ue
r+1
2r (u+r−1)+uE(M (u,2), μ, μ)

≤ u3u · e r+1
2r (m+r−1)+u · E(M (u,2), μ, μ). (36)

Hence (32) and (33) are proved.

Super-Efficient Verification of Dynamic

Outsourced Databases�

Michael T. Goodrich1, Roberto Tamassia2, and Nikos Triandopoulos3

1 Dept. of Computer Science, UC Irvine, USA
goodrich@ics.uci.edu

2 Dept. of Computer Science, Brown University, USA
rt@cs.brown.edu

3 Dept. of Computer Science, University of Aarhus, Denmark
nikos@daimi.au.dk

Abstract. We develop new algorithmic and cryptographic techniques for
authenticating the results of queries over databases that are outsourced
to an untrusted responder. We depart from previous approaches by con-
sidering super-efficient answer verification, where answers to queries are
validated in time asymptotically less that the time spent to produce them
and using lightweight cryptographic operations. We achieve this property
by adopting the decoupling of query answering and answer verification in
a way designed for queries related to range search. Our techniques allow
for efficient updates of the database and protect against replay attacks
performed by the responder. One such technique uses an off-line audit
mechanism: the data source and the user keep digests of the sequence of
operations, yet are able to jointly audit the responder to determine if a
replay attack has occurred since the last audit.

1 Introduction

Large databases are increasingly being outsourced to untrusted third parties
(responders) and without some kind of verification mechanisms, users cannot
trust the answers to queries. Thus, an important component of any outsourced
database system is the security of its answer-verification process. Moreover,
database outsourcing is typically realized for efficiency purposes in a distributed
setting where clients are machines that have low computational power running
applications that demand authentic responses of dynamic data at high rates.
In this context, the cryptographic protocols for trustworthy answer verification

� Research supported in part by the U.S. National Science Foundation under grants
IIS–0713403, IIS-0713046, CNS-0312760 and OCI–0724806, the Institute for Infor-
mation Infrastructure Protection under an award from the Science and Technology
Directorate at the U.S. Department of Homeland Security, and the Center for Algo-
rithmic Game Theory at the University of Aarhus under an award from the Carls-
berg Foundation. The views in this paper do not necessarily reflect the views of the
sponsors.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 407–424, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

408 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

should incur small communication and computational overheads that ideally
depend only on the answer size.

This paper studies protocols for authenticating the integrity of outsourced
databases in ways that achieve high security and efficiency levels. Most database
queries boil down to one-dimensional range search queries—asking to report
those records having values of a certain field within a given interval—and most
existing techniques for authenticating such queries have O(log n + t) commu-
nication and computational costs, where n is the total number of records in
the database and t is the number of returned records. Instead, our goal is to
design cryptographic techniques that allow super-efficient answer verification,
that is, allow authentication of range search queries with only O(t) associated
costs, even when t is o(log n). Furthermore, we wish our protocols to involve
lightweight cryptographic operations with, ideally, only O(1) modular exponen-
tiations performed during the answer-verification process.

Additionally, we seek authentication solutions that perform well even if the
database evolves frequently over time. The main challenge in this context is that
a malicious responder may perform a replay attack, i.e., provide verifiable (e.g.,
signed) but stale or currently invalid information (e.g., that was originated from
the owner long in the past) to a client. But here is exactly where super-efficiency
can hurt us, since we want to avoid a verification method that requires more
than O(t) work on the part of the client, and we want to avoid requiring the
data owner to process (e.g., re-sign) all the records of the database with each
update. Ideally, we would like a dynamic system that is super-efficient for the
client, and immune to replay attacks launched by the responder, and that can
process updates efficiently for the data owner and the responder.

Super-efficient verification is a theoretically interesting concept, since it ad-
vances the design of data authentication protocols by exploring the possibility
of removing unnecessary computations at the verifier. But it is also a practically
important property in database systems, since it provides trustworthy function-
ality in dynamic and highly distributed data dissemination models, where small
mobile and computationally limited devices query continuously and at high rates
data that is outsourced to untrusted, geographically dispersed, proxy machines.

Related Work. Extensive work exists on authenticated data structures [19, 25],
which model secure data querying in adversarial environments, where data cre-
ated by a trusted source becomes available to users through queries after it is
replicated to an untrusted remote server. The general approach is to augment
the data structures used by the source and the responder to support authentica-
tion protocols such that, along with an answer to a query, a cryptographic proof
is provided to the user by the server that can be used to verify the authenticity
of the answer. Research has mostly focused on hash-based authentication pro-
tocols, where extensions of Merkle’s hash tree [16] are used for authenticating
membership queries (e.g., [6, 11, 19, 26, 27]) or more general query types, such
as basic operations on relational databases [9], pattern matching and orthogo-
nal range searching [15], graph connectivity and geometric searching [13], XML
queries [4, 8], and two-dimensional grid searching [1]. Many of these queries

Super-Efficient Verification of Dynamic Outsourced Databases 409

essentially boil down to one-dimensional range search queries. General authen-
tication techniques have been also proposed for certain query classes, including
read-write operations on memory cells [5], queries on static data that are mod-
eled as search DAGs [15], and decomposable queries over sequences and iterative
searches over catalogs [13]. These schemes are not super-efficient as they involve
answer proofs and verification times that asymptotically equal the complexity
of answering queries. In [26], for hash-based authentication of set-membership
queries, it is showed that for a set of size n, all costs related to authentication
are at least logarithmic in n in the worst case. Related work on consistency and
privacy of committed databases appears in [6, 17, 22]. Authenticated dictionaries
in the two-party model, where the source keeps minimal state to check the in-
tegrity of its outsourced data, appear in [10, 24]. Finally, in [12] it is showed how
to use the RSA accumulator [7] to realize a dynamic authenticated dictionary
that achieves constant (thus super-efficient) verification costs at the client.

There has also been a growing body of work on authenticating queries in
outsourced databases. The model is essentially the one of authenticated data
structures, but now the data sets are relational databases residing in exter-
nal memory and are queries through SQL queries which are founded on one-
dimensional range search. In [9, 13] range queries are supported with O(log n+t)
authentication costs. In [21], cryptographic hashing and accumulators are used in
the first hash-based super-efficient, but static, verification scheme that achieves
O(log t) communication cost and O(t) verification cost, whereas in [23], static
hash trees, where each tree node is individually signed, are used to authenticate
range queries, incurring cost of O(t) signature verifications. In [20] signature ag-
gregation is used to accelerate the verification of the (individually signed) answer
records. Both schemes achieve super-efficiency, but not coupled with both effi-
cient updates and replay-attack safety. Finally, in [14] authentication techniques
based on B-trees and aggregated signatures are studied experimentally.

Table 1. A summary of how our results are qualitatively compared with existing work

[5, 13] [21, 18] [20] this work
super-efficient • • •
dynamic • • •
replay safe • n.a. •

Our Contributions. We provide the first super-efficient authentication tech-
niques for one-dimensional range searching (or queries based on it), that are
both dynamic and replay safe. Our schemes can support fast query time for
the untrusted responder, super-efficient verification for clients, and fast update
time for the data source. Our main technique for achieving these properties in-
volves the use of an optimal authentication structure (employed separately by
the source and the responder) that divides a hash tree in a recursive fashion so
that it has O(log∗ n) “special” levels (i.e., a number proportional to the inverse of
the tower-of-twos function). The database owner needs to authenticate only the
hash values of tree nodes that lie on the special levels, which significantly speeds

410 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

up data updates while also simplifying the means to achieve super-efficiency. In-
deed, for all practical applications, there are only a constant number of special
levels in our scheme. Table 1 summarizes the comparison of our work with the
best existing methods for authentication of range searching in outsourced data.

To avoid the possibility of replay attacks, we provide two possible solutions.
One solution involves the use of an RSA accumulator to allow clients to verify a
single secure aggregation to check that the signed responses to a query are still
valid even if some individual signatures are possibly quite old. We use a source-
responder work trade-off to perform updates in O(

√
n) time, which is efficient

for moderately large values of n. Our second solution provides a different trade-
off, between the update cost at the source and responder and the immediacy
in detecting a replay attack. We show how to build an off-line auditing mecha-
nism to detect, and thereby deter, replay attacks through periodic audits of the
responder. The key contribution here is that the auditor mechanism, based on
an off-line memory-checking test introduced in [5], is implemented jointly but
non-interactively by the source and the user and needs only store and process
a constant-sized digest to check the responder (so that auditing is also a super-
efficient computation), and that the responder cannot employ a replay attack
without being caught by the auditing mechanism.

Section 2 describes our authentication model. Section 3 describes our ap-
proach for verifying answers to range queries by decoupling answer verification
from query answering, and presents our core authentication structure designed
to optimally support super-efficient verification. Section 4 describes a dynamic
extension of our scheme that provides a trade-off in update and query costs, and
Section 5 presents an augmentation of our scheme that realizes an efficient off-
line auditing mechanism. Section 6 discusses extensions to support verification of
other query types that are related to range searching, and also our final conclud-
ing remarks. Focused on one-dimensional range search and due to lack of space,
this extended abstract omits some details of our design and proof techniques.

2 Authentication Model

We examine data authentication in the setting commonly used in today’s Inter-
net reality, where a database becomes available for queries at an intermediate
entity that is distinct from the data owner and untrusted by the end user. In
particular, we consider the following three-party data querying and authentica-
tion model. A data source S creates (and owns) a dynamic data set D, which
evolves through update operations, and maintains an authentication structure
for D, appropriately designed for a specific query type. Data set D is stored
by a responder R who maintains the same authentication structure for D and
answers queries issued by a user U . Along with an answer a to a query q, R pro-
vides U with a cryptographic proof p that is computed using the authentication
structure of D; p is used by a verification process ran by U to check the validity
of answer a subject to query q. On any update for D issued by the source, D
and the authentication structure are appropriately updated by S and R.

Super-Efficient Verification of Dynamic Outsourced Databases 411

The merits of this query model include scalability, decentralization and load-
balance: by outsourcing D, S minimizes its operational costs by processing only
data updates (e.g., it minimizes the time being on-line) and heavy query traffics
of an unlimited population of users can be securely handled by one (or more) un-
trusted responders (e.g., proxy servers), without the need of creating or updating
any trust relations, or installing any secure component at the server.

In this model, our goal is to design an authentication structure that allows
trustworthy answer verification, that is, to check that the answer is as accurate
as it would have been, had the answer come directly from S. To achieve this,
we use the following general approach. Using a PKI, we assume that U knows
the public key of S. The corresponding secret key is used by S in combination
with some cryptographic primitives to produce one (or more) authentication
strings (or digests) for data set D, which constitute short descriptions of D that
capture structural information related to the type of queries of interest. Given
any query q, R uses its authentication structure to produce a proof p for the
answer a of q. On input a query-answer pair (q, a), a proof p, and the public key
of S, U runs a verification algorithm that either accepts a as valid or rejects it as
invalid: p securely relates a, q to (some of) the authentication string(s), which are
authenticated by S using a signature scheme. We call the set of authentication
and communication protocols and verification process, an authentication scheme.

We now describe the security requirement that any authentication scheme
must satisfy. Security is captured as two individual requirements, modeling the
desired property: for all queries the verification process should be trustworthy,
accepting an answer-proof pair if and only if the returned answer is the correct
answer to the query. First, we require completeness, which ensures that for any
query the authentication structure generates a correct corresponding answer-
proof pair that the verification algorithm accepts. Second, we require soundness,
which ensures that if, given a query q, an answer-proof pair (a, p) is accepted by
the verification algorithm, then a is the correct answer to q. With respect to this
requirement, we assume the following threat model. The user U trusts only the
source S, not the responder R which is modeled as an entity that is controlled
by an adversary 1. R can maliciously try to cheat, by providing an incorrect
answer to a query and forging a false proof for this answer. Accordingly, the
soundness requirement dictates that given any query issued by U , no polynomial-
time responder R, having oracle access to the algorithm that the source runs
to generate the authentication strings,2 can come up with an answer-proof pair,
such that the answer is incorrect, yet the verification algorithm accepts the
answer as authentic. This definition implies safety against replay attacks.

In this work, we are interested in secure authentication schemes for ver-
ifying the results of range search queries that introduce low computational
and communication overhead to the involved parties. In particular, we seek for

1 We do not consider denial-of-service attacks but assume that R always participates
in the communication protocol and interacts with S and U .

2 That is, R observes the authentication strings of D that are produced by S over
time or selectively query for the authentication strings of specially chosen data sets.

412 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

authentication schemes that primarily incur low verification time, called veri-
fication cost. Other important secondary cost parameters are the update cost
(for updating the authentication structure at S and R after updates) and the
query cost (for producing the answer-proof pairs at R after queries), as well as
the proof size. In the interest of super-efficient verification, we wish to design
schemes that allow very fast answer verification, in time asymptotically less than
the time needed for answer generation and tolerate reasonable trade-offs in the
update and query costs or the update costs and the immediacy of replay-attack
detections.

In our authentication schemes, we use standard cryptographic tools, such as
collision-resistant hash functions and digital signatures, and the dynamic RSA
accumulator [2, 3, 7]. Given a set X of size n, an accumulator can be used to
incrementally and order-independently (through bivariate function f(·, ·)) com-
pute a constant-size accumulation value A(X), with respect to which there exist
(i) constant-size witnesses for all accumulated elements in X , and (ii) a constant-
time computationally secure verification test that accepts witnesses of only el-
ements existing in X . The RSA accumulator results by setting f(a, x) = ax

mod N as the result of accumulating new element x in the current accumulation
value a, where x is a prime number in the appropriate range and N is an RSA
modulo, thus, A(X) = a

∏
x∈X x mod φ(N)

0 , where φ(·) is Euler’s function and a0
an initial (public) value. Membership of x with witness w in set X is tested as
wx = A(X), which is a secure test: under the strong RSA assumption [3, 7], it is
computationally infeasible to find items that are not accumulated in the set and
corresponding fake witnesses that pass the test. In [12], it is showed how to use
this primitive in our three-party authentication model for optimally verifying set
membership, that is, how to update elements’ witnesses without the trapdoor
information φ(N), using O(

√
n) modular operations and multiplications.

3 A New Super-Efficient Authentication Structure

In this section, we present a new authentication structure that allows super-
efficient answer verification of one-dimensional range search queries and that is
the key component of the authentication schemes presented in the next sections.

Let D � {(k1, v1), . . . , (kn, vn)} be a set of n key-value pairs (k, v), where each
key k is a distinct element of a totally ordered universe K, where, for simplicity
and without loss of generality, k1 < . . . < kn and n = 2d. A one-dimensional
range search query q = [qL, qR] on D is an interval with qL, qR ∈ K∪{−∞, +∞},
and maps to answer Aq � {(k, v) ∈ D : qL ≤ k ≤ qR}, the subset of D
consisting of all pairs whose keys are in [qL, qR]. We assume that answer Aq

can be computed by the responder R in O(log n + t) time, using some optimal
technique (e.g., searching in a balanced range tree), where n = |D| and t = |Aq|.

Our approach for achieving super-efficient verification of range searching is
to decouple the authentication structure from the search data structure in or-
der to authenticate a collection of certain relations defined over D. Let the
successor relation σ(X), defined over a totally ordered set X with n elements,

Super-Efficient Verification of Dynamic Outsourced Databases 413

be the set of size n + 1 that consists of all ordered pairs of consecutive ele-
ments in X , augmented with pairs (−∞, x1) and (xn, +∞), where x1 and xn

are the smallest and largest elements of X , respectively (e.g., σ({1, 5, 2}) =
{(−∞, 1)(1, 2)(2, 5)(5, +∞)}). The successor relation of the keys of D is the
essential information for verifying answers of range search queries on D.

Fact 1. Let q = (qL, qR) be a range search query on set D of key-value pairs,
KD be the set of keys in D and Aq = {(ki1 , vi1), . . . , (kit , vit)}, ki1 < . . . < kit , be
a set of key-value pairs. Then A = Aq if and only if there exist keys ki0 , kit+1 ∈
KD such that: (1) {(ki0 , ki1), (ki1 , ki2), . . . , (kit−1 , kit), (kit , kit+1)} ⊆ σ(KD) and
A ⊆ D; and (2) ki0 < qL ≤ ki1 and kit ≤ qR < kit+1 .

Indeed, keys ki0 , kit+1 correspond to the boundaries of the range interval, each
one possibly coinciding with fictitious keys −∞ or +∞, with (ki0 , kit+1) ∈ σ(KD)
if Aq = ∅. The first condition guarantees that the answer A consists of t consec-
utive key-value pairs of data set D, whereas the second that the query range is
exactly covered by the answer range. Thus, in our formulation, answer correct-
ness for range searching captures both inclusiveness (all returned pairs are in
the query range) and completeness (all pairs in the query range are returned).

It follows that, if Aq = {(ki1 , vi1), . . . , (kit , vit)}, ki1 < . . . < kit , is the cor-
rect answer to query q, Aq can be authenticated by verifying (i) t pairs of the
key-value relation, namely, that (kij , vij) ∈ D, 1 ≤ j ≤ t, (ii) t + 1 pairs of the
successor relation on the keys, namely that (kij , kij+1) ∈ KD, 0 ≤ j ≤ t, where
ki0 = −∞ if ki1 = k1, or ki0 = ki1−1 otherwise, and, similarly, kit+1 = +∞
if kit = kn, or kit+1 = kit+1 otherwise, and, finally, (iii) t + 4 inequalities
(i.e., the ordering of these pairs and that ki0 < qL ≤ ki1 , kit ≤ qR < kit+1).
Assuming uniquely defined representations for the key-value and successor re-
lations, we denote by θ(q) the resulting set of 2t + 1 pairs to be verified, i.e.,
θ(q) � {(ki1 , vi1), . . . , (kit , vit)} ∪ {(ki0 , ki1), . . . , (kit , kit+1)}.

By Fact 1, we have that the problem of authenticating any range search query
q on a set D of size n is reduced to the problem of authenticating the membership
of the relations of set θ(q) (of size O(|Aq |) = O(t)) in D∪σ(KD) (the union of the
key-value and successor relations defined by D, a set of size O(n)). We use this
property to decouple the answer verification from the answer generation by de-
signing an authentication structure that for any query q provides super-efficient
verification of the corresponding special relations θ(q) over D. Our construction
securely and compactly encodes and authenticates these special relations by as-
sociating, in a cryptographically sound manner, the answer Aq, a corresponding
proof p and, overall, the relations in θ(q), with one or more authentication strings
that are signed by the source. This structure is used both by S, for computing
and signing the authentication strings, and by R, for producing the proofs that
will allow U to verify the answer to queries.

Authentication Structure. Let D be the data set as before. Our authentica-
tion structure uses a hash tree built over D that essentially encodes the relations
D and σ(KD). In particular, let h be a collision-resistant hash function. We build

414 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

a balanced hash tree T of depth d, storing at the leaves from left to right the
hash values h1, . . . , hn defined as follows, where ‖ denotes string concatenation:

– hi � h(h(ki) ‖ h(vi) ‖ h(ki+1)), i = 2, . . . , n − 1, and
– h1 � h(h(−∞) ‖ h(k1) ‖ h(v1) ‖ h(k2)), hn � h(h(kn) ‖ h(vn) ‖ h(+∞)).

Thus, the hash values at the leaves encode information about various relations:
for 2 ≤ i ≤ n − 1, hi is the digest of the key-value relation (ki, vi) and suc-
cessor relation (ki, ki+1), h1 is the digest of relations (k1, v1), (−∞, k1) and
(k1, k2), and hn is the digest of relations (kn, vn), (kn, +∞). Internal nodes in
T store the hash of the concatenation of the hash values stored at their chil-
dren. So, any node v in T stores a hash value hv that is the digest of the
key-value and successor relations Rv that are associated with the leaves of the
subtree Tv of T rooted at v. For instance, a hash value stored at the parent
u of two sibling leaf nodes j and j + 1 is the digest of the set of relations
Ru = {(kj , vj), (kj+1, vj+1), (kj , kj+1), (kj+1, kj+2)}, whereas the hash value hr

of the root r of T is the digest of all relations Rr = σ(D) ∪ D defined in T .
As we know, in order to authenticate answer Aq, it suffices to authenticate set

θ(q); consequently, due to the collision resistance property of function h and the
fact that hv is the digest of relations Rv associated with the leaves of tree Tv,
it suffices to (1) authenticate any set Sq = {hv1 , . . . , hvm} of hash values stored
at tree nodes v1, . . . , vm such that the set of relations R(Sq) = Rv1 ∪ . . . ∪ Rvm

strictly contain set θ(q), and (2) provide, as proof p, the collection of hash values
and relations that associates Aq with Sq in T . Indeed, Sq contains digests that
serve as a cryptographic commitment of θ(q) (computational binding by the
collision resistance of h), thus when, given the answer Aq and the proof p, the
authenticated hashes in Sq can be recomputed, then one can be assured—subject
to the underlying security assumptions of the cryptographic primitives—that Aq

is correct, simply by checking the validity of Aq with the test of Fact 1. Set Sq

is not uniquely defined but corresponds to a specific query q. Our goal is to
define a fixed collection of special hash values S such that any query q can be
super-efficiently verified by authenticating membership of set Sq ⊂ S in S. In the
simplest case, S can authenticate S by separately signing its hash values; Aq is
verified at hashing and signing costs proportional to |R(Sq)| and |Sq| respectively.

Super-efficient Verification. An efficient approach is to set S = hr, i.e.,
to use as special hash value for all queries the root hash hr. Then, for any
query q, Aq |Aq| = t, can be efficiently associated with hr, by considering as
proof the O(log t) subtrees of total size O(t) that exactly cover the leaves in T
that the relations in θ(q) are associated with, along with the paths connecting
these subtrees to r through O(log n) other tree nodes. The total verification
cost is O(log n + t), which is not super-efficient whenever t = o(log n) (e.g.,
t = O(log log n) or t is constant). We improve the verification cost as follows.

Suppose that we only query for answers of size t < log n (see Figure 1).
We define the set S1 of special hash values to contain the hashes h1

1, . . . , h
1
m1

,
m1 = n/ logn, at level �1 = log log n of the hash tree. It is easy to see that
any answer of size t is covered by the subtrees of at most two nodes at level

Super-Efficient Verification of Dynamic Outsourced Databases 415

...

log n

...

log n

log log n

h1
n

log nh1
2

h2
2

h2
log n

log log n

...
log log n

h1
1

h2
1

q

hr

log log log n

Fig. 1. Our new authentication structure. The set S of special hash values in the tree is
defined recursively and consists of Θ(n) values residing at log∗ n levels: hr at level log n,
{h1

1, ...} at level log log n, {h2
1, ...} at level log log log n, etc. Super-efficient verification

is achieved: answer Aq of size at most t = log log n to query q is verified by hashing
along O(log t) nodes in the hash tree up to at most two special hash values and by
optimally verifying that these hash values are indeed special, i.e., belong in S.

�1, thus can be verified at O(log log n) cost and, if t is o(log n) and Ω(log log n)
we have an improvement and optimal performance. To further improve the ver-
ification cost in the case where t is o(log log n), we use the above technique to
recursively define additional special hash values over the n/ log n trees defined
by the special hash values in S1: we consider each one of the trees of size log n
rooted at level �1 and apply the above technique, assuming that t < log log n.
We define the set S2 of special hash values to contain the hashes h2

1, . . . , h
2
m2

,
m2 = m1

log n
log log n , at level �2 = log �1 = log log log n of the hash tree and answers

of size t with log log log n < t < log log n can be authenticated super-efficiently
at cost O(log log log n). We proceed as above: at the i-th step of the recursion we
define the set Si of special hash values, we stop before level log∗ n, effectively at
the level 2 (or some other small constant) of T and set S � hr∪S1∪. . .∪S(log∗ n)−1
as the final set of special hash values, which is of Θ(n) size3.

Our authentication structure lends itself to a first authentication scheme that
achieves super-efficient verification: an answer of size t is verified with O(log t)
hashing cost where O(1) special hash values need be authenticated, essentially as
being members of the set of special hash values S. In what follows, we consider
the case where authentication in S is performed using a signatures scheme, i.e.,
each value in S is separately signed by the source S. Updates on D are handled
by appropriately updating the hash tree T (by hashing and restructuring T
along a leaf-to-root path; see also Section 4), having S sign O(log∗ n) updated
special hashes. Replay attacks are eliminated by using time-stamps in the signed
statements to check the freshness of a valid signature; this is a state-of-the-art
solution (see, e.g., [13, 14, 19]) where time is partitioned into fixed and publicly

3 In fact |S| < n − 1, thus, S has smaller size than the trivial solution of S = T .

416 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

known time-quanta, and verifiable signatures on digests are accepted only if their
time-stamps belong in the current (at the time of verification), most recent, time-
quantum. For hash-based authentication, i.e., in the most practical setting where
only cryptographic hashing is used to produce the authentication strings, our
authentication structure achieves optimal performance with respect to both the
verification and the update costs. In particular, using the lower-bound framework
of [26], we can show that in the worst case the source needs to authenticate a
set S of Ω(n) special hash values in order to achieve verification costs that are
independent of the size n of the database, and that, in this case, time-stamping
and signature refreshing is an optimal technique against replay attacks. Thus:

Theorem 1. There exists a super-efficient authentication scheme for range-
search queries over a set of n key-value pairs with the following performance,
where t denotes the number of pairs returned by a query: (i) a range query is
answered in O(log n+t) time; (ii) the answer proof has size O(log t) and consists
of two signatures, two keys, and O(log t) hash values; (iii) the answer to a range
query is validated by performing O(t) arithmetic computations, O(t) hash oper-
ations, and O(1) signature verifications; (iv) an update results in O(log n) hash
operations (at both the source and the responder), O(log∗ n) signature genera-
tions (at the source) and O(n) signature renewals (at the source). This authen-
tication scheme is secure with respect to data authentication, safe with respect
to replay attacks, and optimal with respect to super-efficient verification in the
hash-based data authentication model.

4 Super-Efficient Dynamic Authentication Scheme

In this section, we propose an alternative technique that reduces the high update
cost of the previous, optimal but less practical, hash-based authentication scheme
to get the first super-efficient dynamic authentication scheme for range queries,
which provides reasonable trade-offs between the update and query costs.

In Section 3 we constructed a hash tree for a set D of n key-value pairs that
encodes information about the key-value and successor relations in D, and we
defined a set S of O(n) special hash values that are sufficient to support super-
efficient answer verification, provided there is an optimal (in terms of verification)
technique for authenticating set-membership queries. Recall that for any query,
there are at most two special hash values, out of the total O(n), that need to be
verified as members of S, and note that only queries with positive answer need
to be authenticated: a special hash value must be verified to be in set S.

We now describe our new authentication scheme. The main idea is to use a
dynamic RSA accumulator for authenticating set membership queries for the set
of special hash values S. This is performed as follows: the set S of special hash
values is accumulated to accumulation value α = A(S) and α is signed by the
source. Then, verifying that a special hash value belongs in S is performed in
two steps, and still in optimal way (O(1) verification cost): first, the hash value
together with the membership witness are used to verify that the hash value
was used by the accumulator in producing α and, second, the signature on α is

Super-Efficient Verification of Dynamic Outsourced Databases 417

verified. For security reasons, only the source knows the trapdoor information of
the accumulator; the responder does not know the trapdoor. It follows that the
verification is (as in the construction of the previous section) super-efficient.

Let us briefly describe the dynamization of the authentication structure, i.e.,
how updates on the data set can be handled. Assume for simplicity that only
values are updated, that is, no keys are inserted or deleted in D. After any update
of this type in D, we end up rehashing over a unique-per update operation leaf-to-
root path in the hash tree. Thus O(log∗ n) special hash values change and we need
to remove the old special hash values from the accumulation α and add the new
ones into this, i.e., to perform O(log∗ n) element deletions and insertions in S and
update A(S). Inserting and deleting elements in an accumulator involves some
computational cost for updating the new accumulation but also for updating the
set-membership witnesses of all the elements. Suppose that the witnesses of the
O(n) accumulated special hash values are explicitly maintained in the source
and the responder. In a highly dynamic setting updates can be of cost O(n): the
reason is that after any update all n membership witnesses must be updated.
The problem of the high update cost becomes more challenging for deletions,
especially under the necessary restriction that the responder cannot use the
trapdoor information, but using the RSA accumulator and certain algorithmic
techniques [12] we can achieve reasonable update and query costs. We can show:

Theorem 2. There exists a dynamic super-efficient authentication scheme for
range search queries over a set of n key-value pairs with the following perfor-
mance, where t denotes the size of the returned answer: (i) a range query is
answered in O(log n + t) time; (ii) the answer proof has size O(log t) and con-
sists of one signature, two field elements, two keys and O(log t) hash values; (iii)
the answer to a range query is validated by performing O(t) arithmetic compu-
tations, O(t) hash operations and O(1) modular exponentiation and verifying
O(1) signatures; (iv) an update results in O(log n) hash operations (at both the
source and the responder), O(

√
n log∗ n) modular operations and O(1) signature

generations (at the source). This authentication structure is secure with respect
to authentication and safe with respect to replay attacks.

5 Detection and Elimination of Replay Attacks

In Section 3, we presented an authentication structure for range search queries
that provides super-efficient answer verification, asymptotically optimally in the
hash-based data authentication model. In this section, we propose a new scheme
in our three-party authentication model (S, R, U) that achieves efficient up-
date costs at S and R (only logarithmic in the database size) and super-efficient
verification costs at U (as before), but uses an alternative solution to the replay-
attack problem. In particular, we slightly relax the security requirement with
respect to the time when replay attacks are detected and replayed data is re-
jected. As before, invalid answers are immediately rejected by U , but answers
are checked to be consistent with the update history in an off-line fashion. We
introduce a technique which implements an auditing mechanism and provides

418 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

delayed consistency checking for detecting and effectively eliminating replay at-
tacks. This mechanism augments the authentication scheme of Section 3, so that
U can immediately check any received answer for correctness and at any later
time check, in a batch, all received answers for freshness.

Delayed consistency checking is a useful property in application areas where
the freshness of answers is not critical to be verified in real time. In many ap-
plications, risk management requires that invalid responses must be caught, but
this determination does not always have to be immediate, as long as it is cer-
tain and sufficiently near-term. Indeed, such swift and sure justice is an ideal
circumstance for risk management purposes. Additionally, delayed consistency
checking is appropriate when consecutive queries occur sequentially in a short
time window and share locality in risk management or equivalent trust relations.

In our auditing mechanism, the delayed consistency checking is performed by
the user U , collaboratively with the source S but without any direct interaction
between the two, however. The auditing mechanism corresponds to securely,
compactly and efficiently encoding a series of transactions with the responder
R, i.e., updates and queries over data set D issued by S and U , respectively.
In particular, S maintains an update audit state Σu, that encodes the history
of updates, through information reported after update transactions with R: for
any update u performed on the data set D, an update trail Tu is provided to S
by R that is used to update Σu through operation updU. Similarly, U maintains
a query audit state Σq, that encodes the history of queries, through information
reported after query transactions with R: for any query q issued on D and
returned answer-proof pair, a query trail Tq is provided to U by R that is used
to update Σq through operation updQ. These trails correspond to “receipts”
that the auditing mechanism collects (namely, the update and query trails that
S and U receive). This series of updates of the states Σu and Σq corresponds to
the computation phase of the auditing mechanism.

Verification of the consistency of the two transaction series (update and query)
and, consequently, replay-attack detection are performed by U in the audit phase.
At any point in time (predefined or decided instantly), U can invoke a request for
checking the consistency of the reported transactions with the current set D that
resides at R. This is performed at U through operation audit, which receives as
input the current audit query state Σq of U and the current audit update state
Σu of S, appropriately updated given the current data set D (provided to S
by R), and accepts or rejects its input, accordingly verifying the consistency
of transactions. After an audit operation that accepts its input, the audit state
remains unchanged and a new computation phase begins. If it rejects, the states
are reset and the next computational phase starts for a new data set: in this case,
the data source S is responsible for creating the new data set at R. We call the
triplet of algorithms (updU, updQ, audit) along with the protocols for formatting
the trails an auditing scheme.

An auditing scheme (updU, updQ, audit) is secure if it satisfies the follow-
ing property: operation audit accepts its input if and only if no malicious ac-
tion has been performed by R, i.e., all query-answer pairs verified by U are

Super-Efficient Verification of Dynamic Outsourced Databases 419

consistent with the update history of D and the states computed using oper-
ations updU, updQ. In particular, (updU, updQ, audit) is secure if the following
conditions hold: completeness, dictating that all valid update and query trans-
actions yield (through updU and updQ) audit states that when checked by audit
with a valid (not corrupted by R) data set D always result in accepting; and
soundness, dictating that when audit accepts its inputs, then the audit states cor-
respond to transactions of valid update/query operations subject to the current
data set.

To detect and prevent replay attacks, we augment the authentication scheme
of Section 3 with a secure auditing scheme (updU, updQ, audit) as follows. After
updates, along with the update at S and R of the underlying authentication
structure, S runs updU to update its update audit state, but now no signature
refreshing is performed: only O(log∗ n) hash values are signed by S. After queries,
along with the answer verification, U also runs updQ to update its query audit
state. If R launches a replay attack at some point in time, it will be detected by U
at the first audit phase occurring after the attack since, by the security property,
audit will reject its input. So, a rejecting audit phase is equivalent to detecting a
replay attack launched by R, and a misbehaving R who performs replay attacks
is always caught and exposed to its victim U . Note that this technique provides
only detection and cannot pinpoint which query-answer pairs were replayed.

To construct a secure auditing scheme, we use a simple cryptographic solution
that is inspired from efficient and secure cryptographic mechanisms for off-line
memory checking by Blum et al. [5]. In off-line memory checking, a trusted
checker checks the correctness (or consistency) of an untrusted memory, where
data is written in and read from the memory through operations load and store.
The checker maintains some constant-size state and augments the data that is
written into the untrusted memory with time-stamps, such that at any point
in time, a check can be performed on the memory correctness. The idea is to
use a cryptographic primitive A for generating and updating this state, as a
short description of the memory history. A can produce short digests of large
sets in an incremental fashion (i.e., elements are inserted in the set and the new
digest is updated in O(1) time without recomputing from scratch) and is used as
follows. After any (augmented) load or store operation performed in the memory,
a special encoding of the operation is created and securely enclosed in the state
through A. In particular, two separate digests are maintained over two sets: a
first set encodes the “load” history of the memory (i.e., reading operations); the
second set encodes the “store” history of the memory (i.e., writing operations).
An operation results in updating both sets (e.g., operation load(i) adds an item
di in the “load” history and item d′i with new time-stamp in the “store” history).
The crucial property of the approach in [5] is that if the memory is correct, the
encodings produce load and store digests that are the same when the check is
performed. By choosing the cryptographic primitive A such that it is collision-
resistant, meaning that its computationally infeasible to find distinct sets that
produce the same digest, the memory checking problem is reduced to an equality
testing problem (subject to an appropriate encoding for the operations in the

420 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

memory). Primitives A for incrementally computing collision-resistant digests of
sets exist (e.g., ε-biased hash functions in the original work [5]).

We next design an efficient secure auditing scheme that is based on the above
checking technique. The challenge in applying this idea in our three-party model
is to implement the checking functionality collaboratively by S and U without
destroying super-efficiency at U . We use the RSA accumulator as a collision-
resistance primitive A for incrementally computing digests over sets and use
A(S) to denote the digest of set S. Thus, given A(S) and a new element x
not in S, A(S ∪ x) can be computed in O(1) time; also, it is hard to find sets
S �= S′ such that A(S) = A(S′). We use A to define the audit states Σu and
Σq stored by S and U . The main idea is as follows. We view the set S of special
values defined over our super-efficient authentication structure of Section 3 as
an untrusted memory: memory locations correspond to the unique identifiers of
the tree nodes (according to a fixed ordering, e.g., in-order tree traversal) and
memory items correspond to the special hash values and their signatures.

Every transaction (update or query) uniquely defines a subset of special hash
values in the tree: for updates, the hashes in the O(log∗ n) special tree lev-
els in the corresponding leave-to-root path; for queries, the two hashes of the
lowest special tree level that exactly covers the answer. These two subsets of
special hashes respectively define the update trail Tu and the query trail Tq that
are returned by R. For each tree node v in a subset, the tuple (idv, hv, σv, tv)
is included in the corresponding trail. Here, idv is the identifier of v, hv the
hash value, σv the corresponding signature and tv the associated timestamp.
Algorithms updU and updQ process these trails to update the audit states
Σu = (Au,l, Au,s) and Σq = (Aq,l, Aq,s). Each audit state is a pair of values, one
for “load” history, one for “store”; Au,l, Au,s are integer values and Aq,l ,Aq,s are
accumulations. The tuple of v is encoded (according to fixed way) to a unique
string xv (e.g., by applying an one-way hash function) and for each tuple in the
trails the states are updated to Σ′u = (A′u,l, A

′
u,s) and Σ′q = (A′q,l, A

′
q,s), as fol-

lows: A′u,l = Au,l·e(xv) mod φ(N), A′u,s = Au,s·e(x′v) mod φ(N), A′q,l = A
e(xv)
q,l

mod N , A′q,s = A
e(x′

v)
q,s mod N , where e(·) is a function for computing prime rep-

resentative values, N is the RSA modulo, and x′v is encoding xv but with a fresh
time-stamp (monotonically increasing, synchronized for all parties) and possibly
with a new identifier, hash value and signature (only for updates).

The audit phase is as follows. First R forwards the request for the audit to S,
along with a final audit trail that contains a tuple for each special node in set
S (final reading of memory). S updates its update audit state (only the “load”
part), signs the final Σu and forwards it to U , through R. Given (Au,l, Au,s),
(Aq,l, Aq,s), audit (run at U) accepts if and only if: A

Au,l

q,l ≡ A
Au,s
q,s mod N .

Theorem 3. There exists a hash-based, dynamic, super-efficient and audited au-
thentication scheme for range search queries over a set of size n with the following
performance, where t denotes the number of data items returned by a query: (i)
a query is answered in O(log n + t) time; an update results in O(log n) hash op-
erations (at both the source and the responder), O(log∗ n) signature generations

Super-Efficient Verification of Dynamic Outsourced Databases 421

(at the source); (ii) the answer proof has size O(log t) and consists of two signa-
tures, two keys and O(log t) hash values; (iii) the answer to a query is validated by
performing O(t) hash operations and verifying O(1) signatures; (iv) the auditing
scheme stores O(1) audit state, performs O(log n) work per update (at the source)
and O(1) work per query (at the user) during the computation phase and performs
O(n) work (at the source) and O(1) work (at the user) during the audit phase; (v)
replay attacks performed by the responder are always detectable by the user at the
audit phase.

Proof. (Sketch.) The complexity for the queries and updates follow from Theo-
rems 1 and 2, by observing that no signature refreshing is necessary after updates
at S. The update and query audit states are both of O(1) size (a pair of values).
At the computation phase, each update incurs O(log n) cost at S for updating the
authentication structure (hashing along the update path and updating O(log∗ n)
signatures and the audit state with O(log∗ n) exponent accumulations). Each
query incurs O(1) cost at U (at most two values are accumulated in the audit
state). At the audit phase, the cost at S is O(n), since S accumulates in the
exponent all special hash values currently in the authentication structure; the
cost at U is O(1) as before. Security follows from the correctness of the checking
mechanism of [5] and the collision-resistance property of the RSA accumulator.
Recall that R does not know the trapdoor φ(N) of the accumulator. Regarding
soundness, suppose that audit fails to detect a replay attack launched by R. Ei-
ther the provided by R update and query trails were correct or there existed one
trail that was invalid. In the former case and given that the audit mechanism
accepts, the memory checking technique is incorrect; in the latter case, there
exist different sets S and S′ that produce the same RSA-based accumulations
A(S) = A(S′). We must conclude that either the R was able to compute the
trapdoor φ(N) for the RSA modulo N (a task that is computationally equivalent
to factoring N) or R was able, given A

Au,l

q,l mod N , to compute (through the
query trails that R provided U with, which are distinct from the update trails)
values Aq,s and Au,s such that A

Au,l

q,l mod N = A
Au,s
q,s mod N (a task that is

computationally infeasible under the strong RSA assumption). �

6 Extensions and Concluding Remarks

Our authentication schemes are based on the authentication structure for range
search queries of Section 3. Many other query types are related to range searching
or consist of more complex search problems that eventually boil down to range
searching. This suggests that our authentication schemes can be used as general
design tools for achieving super-efficient authentication of other types of queries.
Indeed, all that is needed is to consider a (different) hashing scheme over the
data set D (computed along the hash tree), which should be appropriate for the
target query type. Similar to the construction in Section 3, the hashing scheme
over D should securely encode these relations that are sufficient for verifying
the answers to the queries in consideration. Super-efficiency would then follow

422 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

simply by authenticating at most two special hash values at the appropriate
special level of the tree, depending on the exact range defined by the query.

We briefly discuss two types of queries that fall into this category. Consider
the class of queries that ask for any associative function over some field of data
records that lie in a query range. The canonical members of this class are ag-
gregate queries, e.g., SUM, MAX, AVG. An appropriate hashing scheme for these
queries would be constructed such that it encodes the information (relations)
about ranges, the corresponding aggregation values and the neighboring data
records. In particular, the hash tree node v defining subtree Tv stores a hash
value that encodes information about the aggregation value av computed over
the records that correspond to the leaves of Tv, the left-most and right-most
records in Tv and, also, their predecessor and successor records (not in Tv), re-
spectively. Using this hashing scheme, these queries can be authenticated by
considering the (at most two) allocation nodes that correspond to the query
range and lie in some special tree level and without applying any associate op-
eration. Similarly, we can use our schemes for the class of path property queries
that are studied in [13]—all related to range searching. Our hashing scheme of
Section 3 and, accordingly, all of our authentication schemes can be extended to
these classes of queries (aggregation and path-property queries).

In conclusion, in this paper we study data authentication in a setting where
critical information is queried at high rates from dynamic outsourced databases
that reside in untrusted sites. We propose a new approach for query authenti-
cation, where, by decoupling the answer-generation and answer-verification pro-
cedures, super-efficient answer verification is enabled, a theoretically interesting
and practically important property. We design the first authentication schemes
for range searching that achieve super-efficiency (answers of size t are verified in
time O(t), using only O(1) modular exponentiations), allow for efficient updates
on the database and eliminate the replay attacks from the database responder.
To prevent replay attacks on old invalid data, we design an authentication proto-
col that implements an off-line auditing mechanism, which checks the consistency
of a dynamic database and reliably reports malicious actions of the responder.
Open problems include further improving the update costs of our authentication
schemes and extending our auditing scheme in a multi-user setting.

References

[1] Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environ-
ment of untrusted third-party distributors. In: Proceedings of International Con-
ference on Data Engineering (ICDE) (to appear, 2008)

[2] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

[3] Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Proceedings of Advances in Cryptology — EUROCRYPT,
pp. 274–285 (1994)

Super-Efficient Verification of Dynamic Outsourced Databases 423

[4] Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., Gupta, A.: Selective
and authentic third-party distribution of XML documents. IEEE Transactions on
Knowledge and Data Engineering 16(10), 1263–1278 (2004)

[5] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

[6] Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using un-
deniable attestations. In: Proceedings of ACM Conference on Computer and Com-
munications Security, pp. 9–18. ACM Press, New York (2000)

[7] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[8] Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G., Stubblebine, S.:
Flexible authentication of XML documents. Journal of Computer Security 6, 841–
864 (2004)

[9] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic data publication
over the Internet. Journal of Computer Security 11(3), 291–314 (2003)

[10] Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated
skip lists. In: Proc. Working Conference on Data and Applications Security (DB-
SEC), pp. 31–46 (2007)

[11] Gassko, I., Gemmell, P.S., MacKenzie, P.: Efficient and fresh certification. In:
Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 342–353. Springer,
Heidelberg (2000)

[12] Goodrich, M.T., Tamassia, R., Hasic, J.: An efficient dynamic and distributed
cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 372–388. Springer, Heidelberg (2002)

[13] Goodrich, M.T., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated data
structures for graph and geometric searching. In: Joye, M. (ed.) CT-RSA 2003.
LNCS, vol. 2612, pp. 295–313. Springer, Heidelberg (2003)

[14] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 121–132 (2006)

[15] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

[16] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[17] Micali, S., Rabin, M., Kilian, J.: Zero-Knowledge sets. In: Proceedings of Sympo-
sium of Foundations of Computer science (FOCS), pp. 80–91 (2003)

[18] Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: Proceeding of Network and Distributed System Security
(NDSS) (2004)

[19] Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceed-
ings 7th USENIX Security Symposium, pp. 217–228 (1998)

[20] Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signa-
ture aggregation and chaining. In: Proceedings of 11th International Conference
on Database Systems for Advanced Applications, pp. 420–436 (2006)

[21] Nuckolls, G.: Verified query results from hybrid authentication trees. In: Proceed-
ings of Data and Applications Security (DBSec), pp. 84–98 (2005)

[22] Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized
queries on a committed database. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg
(2004)

424 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

[23] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying completeness of re-
lational query results in data publishing. In: Proceedings of ACM SIGMOD Int.
Conference on Management of data, pp. 407–418 (2005)

[24] Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two
party authenticated data structures. In: Qing, S., et al. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

[25] Tamassia, R.: Authenticated data structures. In: Proceedings of European Sym-
posium on Algorithms, pp. 2–5 (2003)

[26] Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data pro-
cessing with applications to information security. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
153–165. Springer, Heidelberg (2005)

[27] Tamassia, R., Triandopoulos, N.: Efficient content authentication in peer-to-peer
networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372.
Springer, Heidelberg (2007)

A Latency-Free Election Scheme

Kristian Gjøsteen

Department of Mathematical Sciences
Norwegian University of Science and Technology

kristian.gjosteen@math.ntnu.no

Abstract. We motivate and describe the problem of finding protocols
for multiparty computations that only use a single broadcast round per
computation (latency-free computations). We show that solutions exists
for one multiparty computation problem, that of elections, and more
generally, addition in certain groups. The protocol construction is based
on an interesting pseudo-random function family with a novel property.

1 Introduction

Consider a small cluster of stars, separated from each other by distances of
between one and four light-years. Being in a civilised part of the universe, the
cluster has a general assembly for discussing questions of importance for the
cluster. Due to the inconvenience of gathering for this assembly, it has been
decided that twice every decade, they shall have a vote on whether to convene
the assembly or not.

The communication channel can easily be established with radio telescopes
broadcasting a signal to every planet, but there is general agreement about a
need for privacy, so some kind of secure election scheme must be used.

Most secure election schemes without a central authority (see for example
[2]) that operate over a broadcast channel require two rounds of communication,
typically one round to publish encrypted votes and one round to decrypt the
result. Unfortunately, due to the speed of light, each extra round will require
up to four years to complete, which is clearly too much. Therefore we need an
election scheme that can produce a result in a single round.

A less frivolous but more realistic example is the case where an election pro-
tocol is used as a subprotocol. If the subprotocol must be repeated multiple
times, minimising the number of rounds used for the election protocol will be
important.

An election scheme is just one example of a multiparty computation prob-
lem. In general, we can consider an environment where a group of users want
to perform some type of multiparty computation many times. If they are com-
municating over high-latency channels, there is a clear incentive to minimise
the number of rounds. That raises the natural question: Can we do multiparty
computations with just a single round of communication? Of course, some kind
of setup will always be necessary, but can we hope to do one computation per
additional round, after the setup?

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 425–436, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

426 K. Gjøsteen

Sometimes it is possible to interleave independent protocol runs, to get essen-
tially one computation result per round. But if we consider situations where the
multiparty computations may happen in parallel, interleaving becomes impossi-
ble. The notion of self-tallying elections [9] allow the actual election to happen in
one round, but requires one round of precomputation where the communication
complexity depends on the number of election rounds.

We propose a solution for one multiparty computation problem (elections)
where, after some initial setup, every communication round performs one mul-
tiparty group operation, and all communication rounds are essentially indepen-
dent (any number of new rounds can start before the already started rounds
complete). The communication complexity of the initial setup is independent of
the number of election rounds.

Franklin and Yung [6] investigated how the communication complexity of mul-
tiparty computations could be reduced by performing computations in parallel.
This work was in an information-theoretic setting. Our solution does in a cer-
tain sense show how to achieve optimal asymptotic communication complexity
for certain repeated multiparty group operations: The amount of information
broadcast by the user in a single round is equal to the amount of information
he inputs into the computation. We emphasise that our results are achieved in
the random oracle model (though we discuss how they could be achieved in the
common reference string model).

Our main technical contribution in this paper is a very interesting construction
for pseudo-random function families with a useful algebraic structure, on which
our constructions rely. While the specific construction in Sect. 4.1 has previously
appeared in the literature [3] (independent our construction, which first appeared
in [7]), the algebraic structure has not been noted before. These constructions
also have interesting applications outside of the current problem domain.

The secondary contribution is the idea that our construction can be used for
a certain multiparty computation, specifically elections.

This paper is structured as follows: Sect. 2 contains basic material on pseudo-
random function families. Sect. 3 discusses requirements for single-round election
schemes in general, and describes our proposed election scheme. Sect. 4 describes
two pseudo-random function families with a useful algebraic structure, several
useful tools for these function families, and some concrete examples. In Sect. 5
we show how to remove the trusted dealer used in Sect. 3. Finally, in Sect. 6 we
make some concluding remarks.

1.1 Notation

For any distribution D and algorithm A, we denote by A(D) the output distri-
bution we get when we sample x from D and run A with input x.

For any set S, x
r← S denotes that x is sampled from the uniform distribution

on S. Following the above notation, we denote by A(S) the output distribution
we get when we sample x from the uniform distribution on S and run A with
input x.

A Latency-Free Election Scheme 427

2 Pseudo-random Function

Definition 1. Let S1 and S2 be sets. A pseudo-random function family (PRF)
F from S1 to S2 is a subset of Map(S1, S2) indexed by a key set K: F = {fk :
S1 → S2 | k ∈ K}.

A l-distinguisher A for F is an algorithm that is allowed to query a function cho-
sen either uniformly at random from F or uniformly at random from Map(S1, S2)
in at most l points of its choosing, and then output 0 or 1. The advantage of A
in distinguishing functions in F from random functions is defined to be

AdvA = |Pr[Af = 1 | f
r← F] − Pr[Af = 1 | f

r← Map(S1, S2)]|,

where Af denotes that A is run with oracle access to the function f . We say that
F is (t, ε, l)-secure if no l-distinguisher with advantage at least ε and run-time
at most t exists.

A weak l-distinguisher A for F is an algorithm that is allowed to see a func-
tion chosen either uniformly at random from F or uniformly at random from
Map(S1, S2) evaluated in l points chosen uniformly at random from S1, and then
output 0 or 1. The advantage of A in distinguishing functions in F from random
functions is defined to be

AdvA = |Pr[A((xi, f(xi))L−1
i=0) = 1 | xi

r← S1, f
r← F]

− Pr[A((xi, f(xi))L−1
i=0) = 1 | xi

r← S1, f
r← Map(S1, S2)]|.

We say that F is weakly (t, ε, l)-secure if no weak l-distinguisher with advantage
at least ε and run-time at most t exists.

In the random oracle model, we can construct a secure PRF from S0 to S2
using a weakly secure PRF from S1 to S2. This result is well-known.

Theorem 1. Let F be a pseudo-random function family from S1 to S2, let h :
S0 → S1 be a function chosen uniformly at random from Map(S0, S1), and
let F ′ = {h ◦ fk | fk ∈ F}, where ◦ denotes function composition. For any
l-distinguisher A for F ′ in the random oracle model making at most L queries
to the random oracle h, there exists a weak L + l-distinguisher for F with the
same advantage.

We also need a minor extension of this notion, where we only consider the indis-
tinguishability of part of the function value. Consider a pseudo-random function
family F from S1 to G, where G is a group that has a subgroup J . Consider
the set of functions F̃ = {x �→ f0(x)f1(x) | f0 ∈ F, f1 ∈ Map(S1, J)}. We note
that if J = G, then F̃ = Map(S1, G), and the following notions coincide with
the above notions.

An l-J-distinguisher for F is an algorithm that is allowed to query a function
chosen uniformly at random from either F or F̃ in at most l points of its choosing,
and then output 0 or 1. The advantage of the distinguisher is defined as above.

A weak l-J-distinguisher for F is an algorithm that is allowed to see a function
chosen either uniformly at random from F or uniformly at random from F̃

428 K. Gjøsteen

evaluated in l points chosen uniformly at random from S1, and then output 0
or 1. The advantage of the distinguisher is defined as above, but can also be
expressed as

AdvA = |Pr[A((xi, f(xi))l−1
i=0) = 1 | xi

r← S1, f
r← F]

− Pr[A((xi, f(xi)ri)l−1
i=0) = 1 | xi

r← S1, ri
r← J, f

r← F]|.

Again, we can construct a secure PRF from S0 to G using a weakly secure
PRF from S1 to G, in the random oracle model. From F and F̃ , we get F ′ =
{h ◦ f | f ∈ F} and F̃ ′ = {h ◦ f | f ∈ F̃}, where h ∈ Map(S0, S1).

Suppose that we have some group structure on the set F ′, written multiplica-
tively, such that for any f1, f2 ∈ F ′ and any x, (f1f2)(x) = f1(x)f2(x). We now
prove that in a certain situation, this property is of no help to an adversary
trying to decide if a function comes from F ′.

Theorem 2. Let F ′ be a pseudo-random function family from S0 to G with
a group structure as described above. Let A be an adversary that gets f ∈ F ′

as input and has oracle access to a pair of functions f1 and f2. The adversary
may make at most l queries to its oracles, and must decide if f1, f2 are chosen
uniformly at random from F ′, subject to f1f2 = f , or uniformly at random from
F̃ ′ subject to the condition that for any x, f1(x)f2(x) = f(x). If A has advantage
ε, then there exists an 2l-J-distinguisher A′ for F ′ with essentially the same run
time as A and with advantage ε.

Proof. The adversary A′ has oracle access to a function f1 that has either been
sampled from F ′ or F̃ ′. A′ samples f from the uniform distribution on F ′ and
runs A with f as input. When A queries its oracle for f1, A′ queries its own
oracle and returns the response. When A queries its oracle for f2(x), A′ queries
its own oracle for f1(x) and returns f(x)/f1(x). When A terminates with guess
b, A′ also terminates and outputs b as its own guess.

Since A′ only runs A and does at most 2l queries to its oracles, as well as 2l
group operations and function evaluations, A′ has essentially the same run time
as A.

If f1 is sampled from F ′, then A′ clearly simulates the oracles for f1 and f2
as if they were sampled from F ′. Likewise, if f1 is sampled from F̃ ′, A′ will also
simulate the oracles as if they were both sampled from F̃ ′, subject to f1f2 ∈ F ′,
since f and f1 are correctly distributed and f2 satisfies the required condition.
It is therefore clear that A′ guesses correctly if and only if A guesses correctly,
which shows that A′ has the claimed advantage. ��

3 The Election Scheme

We assume that there is a broadcast channel available. We want an election
scheme that can be used for multiple sequential or parallel elections after some
initial setup, and that satisfies the following functional requirements:

A Latency-Free Election Scheme 429

Constant-Round Setup. The number of rounds in the setup phase must be
independent of the number of voters and the number of elections that are to
be held.

Single Round per Election. Each of the multiple elections must require just
one round. No voter must be required to decide on his vote before the start
of the round, and after that round, every voter must be in possession of the
result for that election round, unless some fault occurred.

Any election scheme must satisfy at least the following security requirements:

Privacy. Every vote must be as secret as possible in an election (e.g. if the
result indicates that all votes were equal, no vote can possibly be private,
regardless of the system).

Correctness. No voter should be able to submit incorrect votes.
Verifiability. Every voter should be able to verify that the tallying was per-

formed correctly.

Usually, election schemes are also required to be robust, in the sense that a few
voters cannot prevent the remaining voters from computing the result. Schemes
that satisfy our functional requirements cannot be robust in this sense. If the
scheme allows voters to compute the correct result when one or more votes are
missing, any voter could first compute the correct result for all the votes, then
pretend that vote i is missing and compute this result. That would reveal the
ith vote, and privacy would be lost.

One might relax the functional requirements and say that the single round
requirement should hold except in the presence of faults, when a fall-back election
protocol should be used to compute the result. Unfortunately, this would allow
an inside attacker that can read the ith vote, but prevent it from being broadcast
to the other voters, to break the privacy of the ith voter. He could compute the
complete result on his own, and the result without the ith vote together with
the other voters.

It seems therefore that our functional election requirements forces us to accept
schemes that are somewhat fragile in the presence of faults. Note that a denial
of service attack is always possible, and against any election protocol, if the
attacker controls the entire network.

3.1 The Scheme

We now describe our proposed election scheme, which takes the form of a yes
or no election, encoded as 1 and 0, respectively. The t voters want to execute at
most L elections, sequentially or partially in parallel. To focus on the interesting
part, we assume that we have a trusted dealer available for now.

We assume that we have a pseudo-random function family F ′ from the set
{0, 1, . . . , L} into the group G with a group structure on F ′ (written multiplica-
tively) such that for any f1, f2 ∈ F ′ and any 0 ≤ j < L, f1(j)f2(j) = (f1f2)(j).
We also need a one-out-of-two non-interactive zero-knowledge proof for F ′ (that
is, a proof that a group element x equals either f(i) or f(i)z for some i and z)
with certain added properties. We discuss constructions in Sect. 4.

430 K. Gjøsteen

Dealer. The dealer chooses an element g from G (either a generator for G or
for a subgroup J), and for each user a function fi uniformly at random from
F ′. He computes the function f = f1f2 · · · ft. Then he sends fi privately to
the ith user, i = 1, 2, . . . , t, and broadcasts (g, f, y1, y2, . . . , yt) to every user,
where y1, . . . , yt are commitments of some form to the private keys f1, . . . , ft

that will allow other users to verify the non-interactive zero-knowledge proofs
used later in the protocol. For the concrete constructions we use, yj = fj(0).

Vote creation. In the jth election, voter i encrypts his vote vi,j ∈ {0, 1} as
follows: First he computes ci,j = fi(j)gvi,j . He creates a one-out-of-two proof
pi,j that proves that one of the values ci,j or ci,j/g is the correct value for
fi(j). Then he broadcasts (ci,j , pi,j) to every user.

Tallying. The ith voter has the votes {cl,j}l for the jth election, along the the
proofs {pl,j}l. He verifies the one-out-of-two proofs (stopping if any proof
fails), computes rj = (

∏
l cl,j)/f(j), and then computes the result vj by

computing the discrete logarithm of rj to the base g.

Note that computing the vote count will always be feasible, since the number
of votes is at most t.

Privacy. If at least two voters are honest, this scheme preserves the privacy
of every honest vote, by Theorem 2. In order to get a proper reduction,
we need the non-interactive zero knowledge proofs to be simulatable. The
constructions in Sect. 4.3 are simulatable in the random oracle model.

Correctness. The non-interactive zero-knowledge proof ensures that every vote
is correctly formed. Since every other action is performed either by the
trusted dealer or the voter himself, this is sufficient to ensure correctness.

Verifiability. Again, since the votes are verified to be correct and every other
action is performed either by the trusted dealer or the voter himself, every
voter will know that the result is correct if the tallying procedure completes.

If we need to run something more complicated than a yes or no election, we
could encode votes and use proofs as described in [5], although this would most
likely require the Paillier-based [10] group structure, otherwise computing the
discrete logarithm would be too expensive. For a multiparty computation, this
amounts to computing integer sums modulo some (large) exponent.

4 The PRF Construction

We can construct a practical pseudo-random function family as follows: Let G be
a cyclic group of order n (which may be prime or composite, known or unknown).
Let F = Hom(G, G) = {x �→ xk | k ∈ Zn} ⊆ Map(G, G). The interesting thing
about this is that even after we apply the construction in the previous section,
the pseudo-random function family F ′ still has a group structure, namely that of
Hom(G, G) induced by the group operation: (x �→ xk)(x �→ xk′

) = (x �→ xk+k′
).

As we shall see, this property is very useful.

A Latency-Free Election Scheme 431

When n is not prime, a random element of G may not be a generator. But if
n has no small prime factors, the probability φ(n)/n that an element sampled
uniformly at random from G is a generator is very close to 1.

If the group order n is unknown, but we know a reasonable bound on n,
say 2N−1 < n < 2N for some N , we can still efficiently sample 2−t-close to
uniformly from G if we have a generator g, simply by sampling k uniformly from
{0, 1, . . . , 2N+t −1} and computing gk. The cost of this is at most 2(N + t) group
operations using a simple square-and-multiply algorithm, compared to 2N group
operations if the order n is known.

Likewise, we can sample 2−t-uniformly from Hom(G, G) by sampling uni-
formly from {0, 1, . . . , 2n+t−1}. Evaluating such a function costs at most 2(N+t)
group operations, compared to 2N group operations if the order n is known.

In the interest of simplicity, we shall in the following ignore the sampling
error that comes from sampling not uniformly, but almost uniformly. The proofs
of Theorems 3 and 4 are straight-forward and we skip them to save space.

4.1 Security Based on DDH

The Decision Diffie-Hellman problem for the group G is to distinguish tuples of
the form (g, gx, gy, gxy) from tuples of the form (g, gx, gy, gxy+z), where g is a
generator for the group G and x, y, z are chosen uniformly at random from Zn.
The advantage of a DDH distinguisher A is defined to be

AdvA = |Pr[A(g, gx, gy, gxy) = 1 | x, y
r← Zn]

− Pr[A(g, gx, gy, gxy+z) = 1 | x, y, z
r← Zn]|

Any DDH adversary for G with advantage ε can trivially be turned into a
weak 2-distinguisher for F with advantage ε.

Conversely, any weak distinguisher for F can be turned into a DDH distin-
guisher with essentially the same strength.

Theorem 3. Let A be a weak L-distinguisher for F with advantage ε. Then
there exists a DDH distinguisher A′ for G with advantage ε − (1 − φ(n)/n). The
run time of A′ is the run time of A plus 4L exponentiations and L multiplications
in the group.

If the group order of G is divisible by small primes, then the above theorem is no
longer useful. However, in many cases a useful theorem can be recovered under
reasonable assumptions, such as generators being indistinguishable from small
powers of generators.

Prime Ordered Groups. The standard group structure for this construction
is a group G of known prime order, say the group of rational points on an elliptic
curve, or the multiplicative subgroup of a finite field. If the group itself is not
of prime order, we can take G to be any prime-ordered subgroup such that the
cofactor is relatively prime to the subgroup order.

432 K. Gjøsteen

4.2 Security Based on Subgroup Membership

If G has a proper, non-trivial subgroup H , the subgroup membership problem for
G and H is to distinguish elements of H from elements of G\H . The advantage
of a distinguisher A for the subgroup membership problem is defined to be

AdvA = |Pr[A(H) = 1] − Pr[A(G \ H)]|.

Now suppose G also has a proper, non-trivial subgroup J of order n′ such
that J ∩ H = {1} and G = HJ . We let F = Hom(H, H), but consider F to be
a pseudo-random function family from the subgroup H to G.

Any subgroup distinguisher with advantage ε can trivially be turned into a
weak 1-distinguisher for F with advantage ε(n′ − 1)/n′, since the output of F
will always be in the subgroup H . Conversely, we can use a J-distinguisher
for F to construct a distinguisher for the subgroup membership problem for G
and H .

Theorem 4. Suppose G has two disjoint subgroups H and J , such that G =
HJ , and let A be a weak L-J-distinguisher for F with advantage ε. Then there
exists a distinguisher for the subgroup membership problem for G and H with
advantage at least ε/(2L) − (1 − φ(n′)/n′). The run time of A′ is the run time
of A plus at most L − 1 samples from H, L samples from J , L exponentiations
and multiplications in G.

We remark that if we are willing to accept that both DDH and the Subgroup
Membership problems are hard, we can get tighter bounds in the security proof
for the family F . However, the bounds we have established are sufficient for our
uses.

Paillier’s Group. Another useful structure, especially for election schemes,
is Z

∗
ns+1 where n is a product of two prime numbers such that n is relatively

prime to the order of Z
∗
n. As first described by Paillier [10] and elaborated on

by Damg̊ard and Jurik [2], Z
∗
ns+1 contains a subgroup isomorphic to Z

∗
n that is

plausibly hard to distinguish (this would be our H), and a subgroup of order
ns where discrete logarithm computations are easy (this would be our J). This
subgroup membership problem is know as the Decision Composite Residuosity
problem.

Note that we have a nice map from Z
∗
n into Z

∗
ns+1 given by taking any rep-

resentative r for the residue class x and taking it to the residue class y with
representative rns

.
The most natural construction to apply in this situation is that of Theorem 4

(note that there are no small primes in the order of J). However, if we do not
trust the hardness of the DCR problem, we could still use Theorem 3 and rely on
Decision Diffie-Hellman, at a modest computational cost. In this case, it would
be natural to require that n is a product of two safe primes and consider only
the quadratic residues.

A Latency-Free Election Scheme 433

4.3 Useful Zero-Knowledge Proofs

In an election scheme, it is vital that every voter proves the correctness of his
vote. To do this and still preserve zero latency, we must use non-interactive zero-
knowledge proofs. Since we already employ the random oracle model, we can use
standard honest-verifier zero-knowledge proofs since in the random oracle model,
these can be converted to non-interactive zero-knowledge proofs.

The zero knowledge proofs in this section are all completely standard, and
we skip the detailed protocol descriptions. For completeness, the protocols are
included in Appendix A.

Correct Evaluation. The first proof is that a we have correctly evaluated
f ∈ F , relative to a known function value, or alternatively, of equality of discrete
logarithms. The prover P wants to prove that there exists a such that h0 = ga

0
and h1 = ga

1 , for some g0 and g1. This amounts to showing that (h0, h1) =
(g0, g1)a in the group G × G, and we can do that by proving that we know a
logarithm of (h0, h1) to the base (g0, g1) in the group G × G.

One of Two is Correct. The second proof is that for a given f ∈ F , one out
of two values correspond to the correct value of f(x) for some x. Again, for our
family F this corresponds to showing that one out of two pairs have the same
discrete logarithm as a reference pair. We prove this by running the previous
proof in parallel and tying the two runs together through the challenge. The
prover fakes an accepting conversation for the incorrect value and then creates
an accepting conversation for the correct.

This protocol can obviously be extended to one out of k by running k proofs
in parallel, faking conversations for k − 1 of them and creating the correct proof
for the final one.

5 Removing the Dealer

We would like to remove the trusted dealer from the scheme. The choice of the
element g used to encode the votes as group elements is arbitrary. The pseudo-
random function family hides any value in the subgroup equally well. The only
requirement is that every user must be able to verify that g is really inside the
proper subgroup. This is usually easy.

All that remains is for each player to choose fi and to compute a joint repre-
sentation for f without each player revealing their secret function, nor allowing
any player to cheat. The solution depends on whether the group order is known
or unknown.

5.1 Known Prime Group Order

When the group order n is known and prime, everything is simple and we do
essentially a verifiable multiparty addition. At the start, every voter chooses

434 K. Gjøsteen

their function fi simply by choosing an exponent ai uniformly at random from
{0, 1, . . . , n − 1}.

In the first round, every voter sends a share of ai secretly to every other voter.
He also commits to his choice by broadcasting fi(0) along with a non-interactive
zero-knowledge proof of knowledge of possession of the key. (One possibility is
essentially the proof given in Sect. 4.3 and Appendix A.1.)

Then every voter verifies every non-interactive zero knowledge proof, adds
every secret key share he has received, and in the second round publishes the
sum of all the shares. Finally, every voter adds together all the share sums, to
get the number a =

∑
i ai, and this number defines f =

∏
i fi. Note that the

correctness of this result can be verified by computing f(0).

5.2 Modulo a Power of an RSA Modulus

Now we consider the case of Z
∗
ns+1 . Note that the modulus can be jointly gener-

ated using for example the protocol in [1], which supposedly can be made robust
against cheating.

Let N be as in Sect 4.3, and set Q = 2tN . Every voter chooses his function
fi by choosing an exponent ai uniformly at random from {0, 1, . . . , N −1}. Note
that fi is sampled almost uniformly at random. The idea is now to add the
exponents together using multiparty addition modulo Q.

In the first round, every voter sends a share of ai secretly to every other voter.
He also commits to his choice by broadcasting fi(0) along with a non-interactive
zero-knowledge proof of knowledge of possession of the key. (One possibility is
essentially the proof given in Sect. 4.3 and Appendix A.1, except that since the
known exponent ai is very large, we must use even larger numbers in the proof
to hide ai.)

Then every voter verifies every non-interactive zero knowledge proof, adds
every secret key share he has received, and in the second round publishes the
sum of all the shares. Finally, every voter adds together all the share sums, to
get the number a =

∑
i ai (which is the integer sum), and this number defines

f =
∏

i fi. Note that the correctness of this result can be verified by computing
f(0).

6 Concluding Remarks

We have described and motivated the problem of doing multiparty computations
in a single communication round. We have also shown that this is possible, by
giving an election scheme.

If we skip the vote verification parts of the election scheme, we are left with a
general multiparty group operation protocol that is secure in the honest-but-
curious model. With the construction from Sect. 4.1, this protocol achieves
asymptotically optimal broadcast communication complexity: The user con-
tributes one group element to the multiparty computation and broadcasts one
group element per computation. It is impossible to achieve lower broadcast com-
munication complexity.

A Latency-Free Election Scheme 435

Our election scheme is realised in the random oracle model. While this is a very
good heuristic for security in the real world, many people would prefer schemes
in some weaker cryptographic model. It is possible to realise our scheme in the
common reference string model, where the common reference string replaces
the random values derived from the random function in the construction of the
PRF. Obviously, the size of the reference string will limit the number of possible
rounds. The non-interactive zero-knowledge proofs would have to be replaced
with proofs that work in the common reference string model (see for example
[8], or [4] for a somewhat different model).

We have not yet considered the general problem of what kind of multiparty
computations can at all be performed in a single broadcast round. This is cur-
rently an open problem.

Acknowledgements

Thanks to David Wagner and Ivan Damg̊ard for useful discussions, and to the
anonymous referees for helpful remarks.

References

1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

2. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

3. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable group identification. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006)

4. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

5. Damg̊ard, I., Groth, J., Salomonsen, G.: The theory and implementation of an
electronic voting system. In: Gritzalis, D. (ed.) Secure Electronic Voting, Kluwer
Academic Publishers, Dordrecht (2002)

6. Franklin, M., Yung, M.: Communication complexity of secure computation. In:
Proceedings of the 24th ACM STOC (1992)

7. Gjøsteen, K.: Re: Conditional decryption. Posted to USENET (May 2005),
http://sci.crypt, message-id d550oi$922$1@orkan.itea.ntnu.no

8. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

9. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002)

10. Paillier, P.: Public-key cryptosystems based on composite degree residue classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

http://sci.crypt
d550oi$922$1@orkan.itea.ntnu.no

436 K. Gjøsteen

A Zero Knowledge Protocols

We include detailed descriptions of the protocols referred to in Sect. 4.3. We
note that proving completeness, honest verifier zero knowledge and soundness
is straight-forward for the group structures discussed in Sect. 4 using standard
proof techniques and assumptions.

We specify two parameters, t and N . The security parameter t determines
how easy it is for a cheating prover to convince the verifier, it is chosen so that
the probability 2−t is sufficiently low. If the group order n is known, N = n.
Otherwise, N is chosen so that the uniform distributions on {0, 1, . . . , N − 1}
and {ae, ae + 1, . . . , N + ae − 1} are statistically close for any 0 ≤ a < n and
0 ≤ e < 2t, say N ≈ 22tn.

A.1 Correct Evaluation

The prover’s private input is a, the public input is (g0, g1), (h0, h1) such that
(h0, h1) = (g0, g1)a.

1. The prover chooses x uniformly at random from {0, 1, . . . , N − 1}, computes
(z0, z1) = (g0, g1)x, and sends (z0, z1) to the verifier..

2. The verifier chooses e uniformly at random from {0, 1, . . . , 2t − 1} and sends
e to the prover.

3. The prover computes y = x + ea and sends y to the verifier.

The verifier accepts if (g0, g1)y = (z0, z1)(h0, h1)e.

A.2 One of Two Is Correct

The prover’s private input is a and b, the public input is (g0, g1), (h00, h01),
(h10, h11) such that (hb0, hb1) = (g0, g1)a.

1. The prover generates an accepting conversation (z1−b,0, z1−b,1, s1−b, y1−b) for
(h1−b,0, h1−b,1) by choosing s1−b uniformly at random from {0, 1, . . . , 2t −
1}, y1−b uniformly at random from {0, 1, . . . , N − 1} and computing
(z1−b,0, z1−b,1) = (g0, g1)y1−b(h1−b,0, h1−b,1)−s1−b .
He then chooses x uniformly at random from {0, 1 . . . , N − 1} and computes
(zb,0, zb,1) = (g0, g1)x.
The prover then sends (z00, z01) and (z10, z11) to the verifier.

2. The verifier chooses e uniformly at random from {0, 1, . . . , 2t − 1} and sends
e to the prover.

3. The prover chooses sb from {0, 1, . . . , 2t − 1} such that s0 + s1 ≡ e mod 2t

and computes yb = asb + x and sends s0, s1, y0, y1 to the verifier.

The verifier accepts if s0 +s1 ≡ e (mod 2t) and (g0, g1)yi = (zi,0, zi,1)(hi,0, hi,1)e

for i = 0, 1.

Author Index

Abdalla, Michel 335
Acıiçmez, Onur 256

Bresson, Emmanuel 71

Catalano, Dario 335
Chen, Kefei 203
Chevalier, Céline 335
Clavier, Christophe 274

Damg̊ard, Ivan 239, 318
Dunkelman, Orr 370

Fischlin, Marc 138
Fouque, Pierre-Alain 19

Gauravaram, Praveen 36
Gierlichs, Benedikt 274
Gjøsteen, Kristian 425
Goldwasser, Shafi 333
Goodrich, Michael T. 407

Herbst, Christoph 170
Hofheinz, Dennis 239
Huang, Qiong 106

Itoh, Kouichi 387

Jarecki, Stanis�law 352

Katz, Jonathan 155
Keller, Nathan 370
Kelsey, John 36
Kiltz, Eike 221, 239
Kim, Jihye 352
Kim, Jongsung 370
Kiraz, Mehmet S. 88
Könighofer, Robert 187
Kunihiro, Noboru 1, 387
Kurosawa, Kaoru 387

Leurent, Gaëtan 19
Lindell, Andrew Y. 52, 121, 155
Liu, Shengli 203
Lu, Jiqiang 370

Monnerat, Jean 71

Ohta, Kazuo 1

Pedersen, Michael Østergaard 318
Plos, Thomas 288
Pointcheval, David 335

Qiu, Weidong 203

Sasaki, Yu 1
Schindler, Werner 256
Schoenmakers, Berry 88
Susilo, Willy 106

Tamassia, Roberto 407
Tate, Stephen R. 301
Thorbek, Rune 239
Tillich, Stefan 170
Triandopoulos, Nikos 407
Tsudik, Gene 352

Vahlis, Yevgeniy 221
Verbauwhede, Ingrid 274
Vergnaud, Damien 71

Wang, Lei 1
Weng, Jian 203
Wong, Duncan S. 106

Yang, Guomin 106
Yu, Ping 301

Zheng, Dong 203

	Title Page
	Preface
	Organization
	Table of Contents
	Security of MD5 Challenge and Response: Extension of APOP Password Recovery Attack
	Introduction
	Preliminaries
	APOP Algorithm
	Description of MD5

	Related Works
	Weakness of MD5 Shown by den Boer and Bosselaers
	Wang et al.'s Collision Attack on MD5
	Previous APOP Attacks
	Summary and Problems of Previous Works

	Construction of MD5 Collision Attack That Is Efficient for the APOP Attack
	Conditions for Extending the APOP Attack
	Applying den Boer and Bosselaers's Attack to APOP
	Constructing Differential Path to Produce IV = msb

	Finding an IV Bridge
	Overall Strategy
	Phase A
	Phase B
	Phase C

	Evaluation and Trial of the Extended Attack
	Collision Search for Blocks 0 and 1
	Collision Search for Block 2
	The Speed of Password Recovery Attack

	Conclusion
	Other Attack Targets: SIP and Digest Authentication
	List of Tables
	A Graphical Explanation of Phase B

	Cryptanalysis of a Hash Function Based on Quasi-cyclic Codes
	Introduction
	Design of IFSB and Previous Cryptanalysis
	Choosing a Constant Weight Encoder
	Wagner's Generalized Birthday
	Linearization Attack
	An IV Weakness
	The Cyclic Attack
	Quasi-cyclic Codes and Rotations
	The Main Attack
	A System of Cyclic Equations
	Scope of the Attack and Parameters Choice
	About the Optimal Encoder

	Probability of Solving a Linear System over F2

	Linear-XOR and Additive Checksums Don’t Protect Damg˚ard-Merkle Hashes from Generic Attacks�
	Introduction
	Related Work
	Impact
	Guide to the Paper

	The DM Construction and DM with Linear Checksums
	The DM Construction
	Linear-XOR/Additive Checksum Variants of DM

	New Techniques to Defeat Linear-XOR Checksums
	Extending Joux Multicollisions on DM to Multiple Blocks
	Checksum Control Sequences
	Defeating Linear-XOR Checksum in Hash Functions

	New Techniques to Defeat Additive Checksums
	Building a CCS with Control of Message Blocks
	Building a CCS with Random Message Blocks

	Generic Attacks
	Long-Message Second Preimage Attack on 3C
	Herding Attack on 3C

	On Carrying Out Generic Attacks Using Collision Attacks
	Comparison of Our Techniques with That of Mironov:2006
	Concluding Remarks

	Efficient Fully-Simulatable Oblivious Transfer
	Introduction
	Definitions
	Oblivious Transfer under the DDH Assumption
	Oblivious Transfer Using Smooth Hashing
	Oblivious Transfer from Homomorphic Encryption

	Separation Results on the “One-More” Computational Problems
	Introduction
	Preliminaries
	Random Self-reducible Problems
	Definitions
	Black-Box Separation
	The Case of Sophisticated Reductions

	One-More Discrete Logarithm Problems
	Definitions
	Algebraic Separations

	Some Applications to the Public-Key Cryptography
	Chaum's Blind Signature
	Blind BLS Signature

	Conclusion

	An Efficient Protocol for Fair Secure Two-Party Computation
	Introduction
	Our Contributions

	Main Protocol Ideas
	A Fair Secure Two-Party Protocol
	Performance Analysis
	Security Analysis
	Protocol Diagram

	Efficient Optimistic Fair Exchange Secure in the Multi-user Setting and Chosen-Key Model without Random Oracles
	Introduction
	Definitions and Security Model
	Definitions in the Multi-user Setting and Chosen-Key Model
	Chosen-Key Model
	Security Model

	Separating Chosen-Key Model from Certified-Key Model
	A WVES-Based OFE
	An Attack under Chosen-Key Model

	An Efficient and Generic Construction without Random Oracles
	The Construction
	Instantiations

	Conclusion

	Legally-Enforceable Fairness in Secure Two-Party Computation
	Introduction
	Concurrent Signatures
	Definitions
	Standard Definitions
	A Simple Bank Functionality
	Legally-Enforceable Fairness

	A Protocol with Legally-Enforceable Fairness

	Security of {\sf NMAC} and {\sf HMACBased} on Non-malleability
	Introduction
	Preliminaries
	HMAC and NMAC
	Non-malleability and Simulatability
	Unpredictability
	Message Authentication Codes

	Security of NMAC
	Security of HMAC
	Relations Among Security Notions
	Pseudorandom Non-malleable Unpredictable Simulatable
	Non-malleable Unpredictable Simulatable Pseudorandom

	Security of NMAC for Prefix-Free Paddings

	Aggregate Message Authentication Codes
	Introduction
	Our Contributions

	Definitions
	Constructing Aggregate MACs
	An Extension and a Lower Bound
	The Construction
	A Lower Bound

	Boosting AES Performance on a Tiny Processor Core
	Introduction
	Previous Work on Instruction Set Extensions
	Overview of AES and AVR
	Short Description of AES
	Description of the AVR Architecture

	Our Proposed AES Extensions
	Support for AES Encryption
	Support for AES Decryption
	Performance Enhancement and Implementation Flexibility

	Implementation Issues
	Hardware Implementation of the Proposed Extensions
	AES Software Implementation Using the Proposed Extensions

	Performance Analysis
	Hardware Cost
	Performance
	Code Size and RAM Requirements
	Summary of Comparison

	Conclusions

	A Fast and Cache-Timing Resistant Implementation of the AES
	Introduction
	The General Approach
	The Transformation Function
	The SubBytes Step
	The Transformation into the Domain X
	The Transformation from the Domain X Back to the Domain A
	The Calculation of the Inverse in GF(28)
	Final Improvements

	The ShiftRows Step
	The MixColumns Step
	Improving the Performance on Instruction Level
	Performance Results
	Further Work
	Conclusion

	Identity-Based Threshold Key-Insulated Encryption without Random Oracles
	Introduction
	Background
	Our Results
	Related Works

	Preliminaries
	Notations
	Bilinear Pairings
	Complexity Assumptions

	Model of IBTKIE
	Definition
	Security Notions for IBTKIE

	Proposed IBTKIE Scheme
	Construction
	Correctness
	Security
	Chosen-Ciphertext Security

	Prevent Cheating from Compromised Helpers
	Conclusions

	CCA2 Secure IBE: Standard Model Efficiency through Authenticated Symmetric Encryption
	Introduction
	Our Contributions
	Comparison
	Related Work

	Preliminaries
	Notation
	Identity Based Encryption
	Symmetric Encryption

	Intractability Assumptions
	Bilinear Groups
	The Modified BDDH Assumption
	The Truncated q-ABDHE Assumption
	Relations

	IBE Scheme I
	The IBE Construction
	Security
	Extensions

	IBE Scheme II
	The IBE Construction
	Extensions

	Comparison
	Considered Schemes
	Security Reductions
	Results

	Public-Key Encryption with Non-interactive Opening
	Introduction
	Preliminaries
	Notational Conventions
	The UC Model

	Public-Key Encryption with Non-interactive Opening
	A UC-Based Definition
	A Game-Based Definition

	Equivalence
	Implementation of PKENO Using IBE
	Identity-Based Encryption
	From IBE to PKENO

	Direct Implementation of PKENO in Bilinear Group
	Bilinear Groups and Assumptions
	The PKENO Scheme
	Security

	A Vulnerability in RSA Implementations Due to Instruction Cache Analysis and Its Demonstration on OpenSSL
	Introduction
	Actual Practical Implementations of the Attack on Extra Reduction Via MA
	Overview of I-Cache Analysis
	Our Approach

	Experimental Details, Mathematical Background and Empirical Results
	Experimental Details
	Mathematical Background and Experimental Results

	Possible Countermeasure Suggestions
	Conclusions

	Fault Analysis Study of IDEA
	Introduction
	IDEA
	Fault Analysis Techniques and Fault Models
	Collision Fault Analysis of IDEA
	Ineffective Fault Analysis of IDEA
	Differential Fault Analysis of IDEA
	Phase 1: Finding the Subkeys of the Output Transformation
	Phase 2: Finding the Subkey Z68
	Phase 3: Finding the Subkey Z58
	Summary

	Simulation Results
	Phase 1
	Phase 2
	Phase 3

	Conclusion

	Susceptibility of UHF RFID Tags to Electromagnetic Analysis
	Introduction
	Related Work
	Examined UHF RFID Tags
	Description of the UHF Tag Prototype
	Description of Passive UHF RFID Tags

	Measurement Setup for UHF RFID Tags
	Near-Field Measurements
	Far-Field Measurements

	Side-Channel Analysis of UHF RFID Tags
	Side-Channel Analysis of the UHF Tag Prototype
	Side-Channel Analysis of Passive UHF RFID Tags

	Conclusion

	Online/Offline Signature Schemes for Devices with Limited Computing Capabilities
	Introduction
	Online/Offline Signature Schemes
	Our Results and Comparison with Previous Work

	Preliminaries
	The Basic Signature Scheme
	Signature Scheme OOSIG1
	Comparison with the Camenisch-Lysyanskaya Scheme

	Further Efficiency Improvements
	OOSIG2: A Stateful Signature Scheme
	OOSIG3: A Stateless Signature Scheme
	Security of OOSIG2 and OOSIG3

	Conclusions

	RFID Security: Tradeoffs between Security and Efficiency
	Introduction
	Model and Definition
	Independent Keys
	Correlated Keys
	A Necessary Tradeoff
	A Tradeoff Construction

	Efficiency
	Conclusion

	Program Obfuscation and One-Time Programs
	Efficient Two-Party Password-Based Key Exchange Protocols in the UC Framework
	Introduction
	Definition of Security
	Our Scheme
	Description of the Protocol
	Security Theorem

	Proof of Theorem 1
	Description of the Proof
	Proof of Indistinguishability
	Simulating Executions Via the CDH Problem

	References
	The Random Oracle and the Ideal Cipher

	Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange
	Introduction
	Affiliation-Hiding Authenticated Key Exchange
	PFS-Secure Affiliation-Hiding AKE Based on RSA

	Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1
	Introduction
	Preliminaries
	The Camellia Block Cipher
	The MISTY1 Block Cipher

	A General Description of the Early Abort Technique
	Impossible Differential Cryptanalysis of Reduced Camellia
	Attacking 14-Round Camellia-256 without the FL Functions
	Attacking 13-Round Camellia-192 without the FL Functions
	Attacking 11-Round Camellia-128 without the FL Functions
	Extending the above Attacks

	Impossible Differential Cryptanalysis of 6-Round MISTY1 without the FL Functions
	Conclusions

	Small Secret Key Attack on a Variant of RSA (Due to Takagi)
	Introduction
	Background
	Our Contributions
	Organization

	Preliminaries
	Notations
	LLL Algorithm and Howgrave-Graham's Lemma
	Takagi's Variant of RSA

	Small d Attack on Takagi's Variant of RSA
	Formulation: Small d Attack on Takagi's RSA
	Deriving the Bound of

	Improved Bound of
	Experiments
	Discussions
	Lattice Construction for h(y, z)= (y-1)(z-1) and Converting That for xh(y,z)+1
	Analysis for Arbitrary e
	Upper Bound of for Small m and r
	Complements of Lemma 2

	Super-Efficient Verification of Dynamic Outsourced Databases
	Introduction
	Authentication Model
	A New Super-Efficient Authentication Structure
	Super-Efficient Dynamic Authentication Scheme
	Detection and Elimination of Replay Attacks
	Extensions and Concluding Remarks

	A Latency-Free Election Scheme
	Introduction
	Notation

	Pseudo-random Function
	The Election Scheme
	The Scheme

	The PRF Construction
	Security Based on DDH
	Security Based on Subgroup Membership
	Useful Zero-Knowledge Proofs

	Removing the Dealer
	Known Prime Group Order
	Modulo a Power of an RSA Modulus

	Concluding Remarks
	Zero Knowledge Protocols
	Correct Evaluation
	One of Two Is Correct

	Author Index

