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Summary. The chapter deals with neural networks and learning machines for engine control applications, partic-
ularly in modeling for control. In the first section, basic features of engine control in a layered engine management
architecture are reviewed. The use of neural networks for engine modeling, control and diagnosis is then briefly
described. The need for descriptive models for model-based control and the link between physical models and black
box models are emphasized by the grey box approach discussed in this chapter. The second section introduces the
neural models frequently used in engine control, namely, MultiLayer Perceptrons (MLP) and Radial Basis Function
(RBF) networks. A more recent approach, known as Support Vector Regression (SVR), to build models in kernel
expansion form is also presented. The third section is devoted to examples of application of these models in the
context of turbocharged Spark Ignition (SI) engines with Variable Camshaft Timing (VCT). This specific context is
representative of modern engine control problems. In the first example, the airpath control is studied, where open loop
neural estimators are combined with a dynamical polytopic observer. The second example considers modeling the
in-cylinder residual gas fraction by Linear Programming SVR (LP-SVR) based on a limited amount of experimental
data and a simulator built from prior knowledge. Each example demonstrates that models based on first principles
and neural models must be joined together in a grey box approach to obtain effective and acceptable results.

1 Introduction

The following gives a short introduction on learning machines in engine control. For a more detailed intro-
duction on engine control in general, the reader is referred to [20]. After a description of the common features
in engine control (Sect.1.1), including the different levels of a general control strategy, an overview of the
use of neural networks in this context is given in Sect. 1.2. Section 1 ends with the presentation of the grey
box approach considered in this chapter. Then, in Sect. 2, the neural models that will be used in the illustra-
tive applications of Sect. 3, namely, the MultiLayer Perceptron (MLP), the Radial Basis Function Network
(RBFN) and a kernel model trained by Support Vector Regression (SVR) are exposed. The examples of
Sect. 3 are taken from a context representative of modern engine control problems, such as airpath control of
a turbocharged Spark Ignition (SI) engine with Variable Camshaft Timing (VCT) (Sect. 3.2) and modeling
of the in-cylinder residual gas fraction based on very few samples in order to limit the experimental costs
(Sect. 3.3).

1.1 Common Features in Engine Control

The main function of the engine is to ensure the vehicle mobility by providing the power to the vehicle
transmission. Nevertheless, the engine torque is also used for peripheral devices such as the air conditioning
or the power steering. In order to provide the required torque, the engine control manages the engine
actuators, such as ignition coils, injectors and air path actuators for a gasoline engine, pump and valve for
diesel engine. Meanwhile, over a wide range of operating conditions, the engine control must satisfy some
constraints: driver pleasure, fuel consumption and environmental standards.
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Fig. 1. Hierarchical torque control adapted from [13]

In [13], a hierarchical (or stratified) structure, shown in Fig.1, is proposed for engine control. In this
framework, the engine is considered as a torque source [18] with constraints on fuel consumption and pollutant
emission. From the global characteristics of the vehicle, the Vehicle layer controls driver strategies and
manages the links with other devices (gear box...). The Engine layer receives from the Vehicle layer the
effective torque set point (with friction) and translates it into an indicated torque set point (without friction)
for the combustion by using an internal model (often a map). The Combustion layer fixes the set points for
the in-cylinder masses while taking into account the constraints on pollutant emissions. The Energy layer
ensures the engine load with, e.g. the Air to Fuel Ratio (AFR) control and the turbo control. The lower
level, specific for a given engine, is the Actuator layer, which controls, for instance, the throttle position, the
injection and the ignition.

With the multiplication of complex actuators, advanced engine control is necessary to obtain an effi-
cient torque control. This notably includes the control of the ignition coils, fuel injectors and air actuators
(throttle, Exhaust Gas Recirculation (EGR), Variable Valve Timing (VVT), turbocharger...). The air actu-
ator controllers generally used are PID controllers which are difficult to tune. Moreover, they often produce
overshooting and bad set point tracking because of the system nonlinearities. Only model-based control can
enhance engine torque control.

Several common characteristics can be found in engine control problems. First of all, the descriptive
models are dynamic and nonlinear. They require a lot of work to be determined, particularly to fix the
parameters specific to each engine type (“mapping”). For control, a sampling period depending on the engine
speed (very short in the worst case) must be considered. The actuators present strong saturations. Moreover,
many internal state variables are not measured, partly because of the physical impossibility of measuring and
the difficulties in justifying the cost of setting up additional sensors. At a higher level, the control must be
multi-objective in order to satisfy contradictory constraints (performance, comfort, consumption, pollution).
Lastly, the control must be implemented in on-board computers (Electronic Control Units, ECU), whose
computing power is increasing, but remains limited.

1.2 Neural Networks in Engine Control

Artificial neural networks have been the focus of a great deal of attention during the last two decades, due to
their capabilities to solve nonlinear problems by learning from data. Although a broad range of neural network
architectures can be found, MultiLayer Perceptrons (MLP) and Radial Basis Function Networks (RBFN)
are the most popular neural models, particularly for system modeling and identification [47]. The universal
approximation and flexibility properties of such models enable the development of modeling approaches,
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and then control and diagnosis schemes, which are independent of the specifics of the considered systems.
As an example, the linearized neural model predictive control of a turbocharger is described in [12]. They
allow the construction of nonlinear global models, static or dynamic. Moreover, neural models can be easily
and generically differentiated so that a linearized model can be extracted at each sample time and used
for the control design. Neural systems can then replace a combination of control algorithms and look-up
tables used in traditional control systems and reduce the development effort and expertise required for the
control system calibration of new engines. Neural networks can be used as observers or software sensors, in
the context of a low number of measured variables. They enable the diagnosis of complex malfunctions by
classifiers determined from a base of signatures.

First use of neural networks for automotive application can be traced back to early 90s. In 1991, Marko
tested various neural classifiers for online diagnosis of engine control defects (misfires) and proposed a
direct control by inverse neural model of an active suspension system [32]. In [40], Puskorius and Feldkamp,
summarizing one decade of research, proposed neural nets for various subfunctions in engine control: AFR
and idle speed control, misfire detection, catalyst monitoring, prediction of pollutant emissions. Indeed, since
the beginning of the 90s, neural approaches have been proposed by numerous authors, for example, for:

o Vehicle control. Anti-lock braking system (ABS), active suspension, steering, speed control

e FEngine modeling. Manifold pressure, air mass flow, volumetric efficiency, indicated pressure into cylinders,
AFR, start-of-combustion for Homogeneous Charge Compression Ignition (HCCI), torque or power

e Engine control. Idle speed control, AFR control, transient fuel compensation (TFC), cylinder air charge
control with VVT, ignition timing control, throttle, turbocharger, EGR control, pollutants reduction

e Engine diagnosis. Misfire and knock detection, spark voltage vector recognition systems

The works are too numerous to be referenced here. Nevertheless, the reader can consult the publications
(1, 4, 5, 39, 45] and the references therein, for an overview.

More recently, Support Vector Machines (SVMs) have been proposed as another approach for nonlinear
black box modeling [24, 41, 53] or monitoring [43] of automotive engines.

1.3 Grey Box Approach

Let us now focus on the development cycle of engine control, presented in Fig.2, and the different models
that are used in this framework. The design process is the following:

1. Building of an engine simulator mostly based on prior knowledge

2. First identification of control models from data provided by the simulator
3. Control scheme design

4. Simulation and pre-calibration of the control scheme with the simulator
5. Control validation with the simulator

6. Second identification of control models from data gathered on the engine
7. Calibration and final test of the control with the engine

This shows that, in current practice, more or less complex simulation environments based on physical relations
are built for internal combustion engines. The great amount of knowledge that is included is consequently
available. These simulators are built to be accurate, but this accuracy depends on many physical parameters
which must be fixed. In any case, these simulation models cannot be used online, contrary to real time
control models. Such control models, e.g. neural models, must be identified first from the simulator and
then re-identified or adapted from experimental data. If the modeling process is improved, much gain can
be expected for the overall control design process.

Relying in the control design on meaningful physical equations has a clear justification. This partially
explains that the fully black box modeling approach has a difficult penetration in the engine control engi-
neering community. Moreover the fully black box (e.g. neural) model based control solutions have still to
practically prove their efficiency in terms of robustness, stability and real time applicability. This issue moti-
vates the material presented in this chapter, which concentrates on developing modeling and control solutions,
through several examples, mixing physical models and nonlinear black box models in a grey box approach. In
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Fig. 2. Engine control development cycle

short, use neural models whenever needed, i.e. whenever first-principles models are not sufficient. In practice,

this can be expressed in two forms:

e Neural models should be used to enhance — not replace — physical models, particularly by extending two-
dimensional static maps or by correcting physical models when applied to real engines. This is developed
in Sect. 3.2.

e Physical insights should be incorporated as prior knowledge into the learning of the neural models. This
is developed in Sect. 3.3.

2 Neural Models

This section provides the necessary background on standard MultiLayer Perceptron (MLP) and Radial Basis
Function (RBF) neural models, before presenting kernel models and support vector regression.

2.1 Two Neural Networks

As depicted in [47], a general neural model with a single output may be written as a function expansion of
the form

n
flp,0) = Z kg () + o, (1)
k=1
where @ = [p1...¢; ... p]7 is the regression vector and @ is the parameter vector.
The restriction of the multilayer perceptron to only one hidden layer and to a linear activation function
at the output corresponds to a particular choice, the sigmoid function, for the basis function g, and to a
“ridge” construction for the inputs in model (1). Although particular, this model will be called MLP in this
chapter. Its form is given, for a single output f,,, by

n 4
Fan(,0) = wi g [ Y wijes +bh | + 07, (2)
k=1 j=1
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where 6 contains all the weights wj, ; and biases b}, of the n hidden neurons together with the weights and bias
w?, b? of the output neuron, and where the activation function g is a sigmoid function (often the hyperbolic
tangent g(z) = 2/(1 +e~2%) - 1).

On the other hand, choosing a Gaussian function g(z) = exp (—xz/az) as basis function and a radial
construction for the inputs leads to the radial basis function network (RBFN) [38], of which the output is
given by

n

F2,0) =" arg (le = vklloy) + a0 (3)
k=1
1 )2
= Z apexp | — Z (s 2’71”) + ao,
— 2 & Oiei
k=1 j=1 J

where vy, = [Yx1 .. . Yp]T is the “center” or “position” of the kth Gaussian and oy = [og1 .. . ogp) L its “scale”
or “width”, most of the time with oy; = oy, Vj, or even oy; = o, Vj, k.

The process of approximating nonlinear relationships from data with these models can be decomposed
in several steps:

e Determining the structure of the regression vector ¢ or selecting the inputs of the network, see, e.g. [46]
for dynamic system identification

e Choosing the nonlinear mapping f or, in the neural network terminology, selecting an internal network
architecture, see, e.g. [42] for MLP’s pruning or [37] for RBFN’s center selection

e Estimating the parameter vector 0, i.e. (weight) “learning” or “training”

e Validating the model

This approach is similar to the classical one for linear system identification [29], the selection of the model
structure being, nevertheless, more involved. For a more detailed description of the training and validation
procedures, see [7] or [36].

Among the numerous nonlinear models, neural or not, which can be used to estimate a nonlinear rela-
tionship, the advantages of the one hidden layer perceptron, as well as those of the radial basis function
network, can be summarized as follows: they are flexible and parsimonious nonlinear black box models, with
universal approzimation capabilities [6].

2.2 Kernel Expansion Models and Support Vector Regression

In the past decade, kernel methods [44] have attracted much attention in a large variety of fields and
applications: classification and pattern recognition, regression, density estimation, etc. Indeed, using kernel
functions, many linear methods can be extended to the nonlinear case in an almost straightforward manner,
while avoiding the curse of dimensionality by transposing the focus from the data dimension to the number
of data. In particular, Support Vector Regression (SVR), stemming from statistical learning theory [52] and
based on the same concepts as the Support Vector Machine (SVM) for classification, offers an interesting
alternative both for nonlinear modeling and system identification [16, 33, 54].

SVR originally consists in finding the kernel model that has at most a deviation e from the training
samples with the smallest complexity [48]. Thus, SVR amounts to solving a constrained optimization problem
known as a quadratic program (QP), where both the ¢;-norm of the errors larger than ¢ and the f2-norm
of the parameters are minimized. Other formulations of the SVR problem minimizing the ¢;-norm of the
parameters can be derived to yield linear programs (LP) [31, 49]. Some advantages of this latter approach
can be noticed compared to the QP formulation such as an increased sparsity of support vectors or the
ability to use more general kernels [30]. The remaining of this chapter will thus focus on the LP formulation
of SVR (LP-SVR).
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Nonlinear Mapping and Kernel Functions
A kernel model is an expansion of the inner products by the N training samples x; € IR” mapped in a higher

dimensional feature space. Defining the kernel function k(x,x;) = ®(x)T ®(x;), where ®(x) is the image of
the point x in that feature space, allows to write the model as a kernel expansion

N
F&) =" aik(x,xi) + b =K(x, X )a + b, )

i=1
where o = [a1...q;...ay]? and b are the parameters of the model, the data (x;,y;), i = 1,..., N, are

stacked as rows in the matrix X € IRY*? and the vector y, and K (x,X”) is a vector defined as follows. For
A € RP*™ and B € RP*" containing p-dimensional sample vectors, the “kernel” K(A, B) maps RP*™ x RP*"
in R™*" with K(A,B); ; = k(A;,B;), where A; and B; are the ith and jth columns of A and B. Typical
kernel functions are the linear (k(x,x;) = x7x;), Gaussian RBF (k(x,x;) = exp(—||x — x;]|3/202)) and
polynomial (k(x,x;) = (x7x; + 1)?) kernels. The kernel function defines the feature space F in which
the data are implicitly mapped. The higher the dimension of F, the higher the approximation capacity of
the function f, up to the universal approximation capacity obtained for an infinite feature space, as with
Gaussian RBF kernels.

Support Vector Regression by Linear Programming

In Linear Programming Support Vector Regression (LP-SVR), the model complexity, measured by the ¢1-
norm of the parameters c, is minimized together with the error on the data, measured by the e-insensitive
loss function I, defined by [52] as

0 if |y — f(xi)| <,

ly; — f(x;)] —& otherwise.

Wy = f(xi)) = { ()

Minimizing the complexity of the model allows to control its generalization capacity. In practice, this amounts
to penalizing non-smooth functions and implements the general smoothness assumption that two samples
close in input space tend to give the same output.

Following the approach of [31], two sets of optimization variables, in two positive slack vectors a and &,
are introduced to yield a linear program solvable by standard optimization routines such as the MATLAB
linprog function. In this scheme, the LP-SVR problem may be written as

min 1Ta+C17¢
(cv,b,£>0,2>0)
s.t. <KX, XNa+bl—y<¢ (6)
0< 1e <¢
—a< e < a,

where a hyperparameter C' is introduced to tune the trade-off between the minimization of the model com-
plexity and the minimization of the error. The last set of constraints ensures that 17a, which is minimized,
bounds ||e||;. In practice, sparsity is obtained as a certain number of parameters «; will tend to zero. The
input vectors x; for which the corresponding «; are non-zero are called support vectors (SVs).

2.3 Link Between Support Vector Regression and RBFNs

For a Gaussian kernel, the kernel expansion (4) can be interpreted as a RBFN with N neurons in the hidden
layer centered at the training samples x; and with a unique width o, = [o...0]", k = 1,..., N. Compared to
neural networks, SVR has the following advantages: automatic selection and sparsity of the model, intrinsic



On Learning Machines for Engine Control 131

regularization, no local minima (convex problem with a unique solution), and good generalization ability
from a limited amount of samples.

It seems though that least squares estimates of the parameters or standard RBFN training algorithms
are most of the time satisfactory, particularly when a sufficiently large number of samples corrupted by
Gaussian noise is available. Moreover, in this case, standard center selection algorithms may be faster and
yield a sparser model than SVR. However, in difficult cases, the good generalization capacity and the better
behavior with respect to outliers of SVR may help. Even if non-quadratic criteria have been proposed to
train [9] or prune neural networks [25, 51], the SVR loss function is intrinsically robust and thus allows
accommodation to non-Gaussian noise probability density functions. In practice, it is advised to employ
SVR in the following cases:

e Few data points are available.
e The noise is non-Gaussian.
e The training set is corrupted by outliers.

Finally, the computational framework of SVR allows for easier extensions such as the one described in this
chapter, namely, the inclusion of prior knowledge.

3 Engine Control Applications
3.1 Introduction

The application treated here, the control of the turbocharged Spark Ignition engine with Variable Camshaft
Timing, is representative of modern engine control problems. Indeed, such an engine presents for control
the common characteristics mentioned in Sect. 1.1 and comprises several air actuators and therefore several
degrees of freedom for airpath control.

More stringent standards are being imposed to reduce fuel consumption and pollutant emissions for
Spark Ignited (SI) engines. In this context, downsizing appears as a major way for reducing fuel consumption
while maintaining the advantage of low emission capability of three-way catalytic systems and combining
several well known technologies [28]. (Engine) downsizing is the use of a smaller capacity engine operating
at higher specific engine loads, i.e. at better efficiency points. In order to feed the engine, a well-adapted
turbocharger seems to be the best solution. Unfortunately, the turbocharger inertia involves long torque
transient responses [28]. This problem can be partially solved by combining turbocharging and Variable
Camshaft Timing (VCT) which allows air scavenging from the intake to the exhaust.

The air intake of a turbocharged SI Engine with VCT, represented in Fig. 3, can be described as follows.
The compressor (pressure p;,) produces a flow from the ambient air (pressure pgm, and temperature Topp)-
This air flow Qy, is adjusted by the intake throttle (section Sy,) and enters the intake manifold (pressure
Pman and temperature T4, ). The flow that goes into the cylinders Qcy1 Passes through the intake valves,
whose timing is controlled by the intake Variable Camshaft Timing V CT}, actuator. After the combustion,
the gases are expelled into the exhaust manifold through the exhaust valve, controlled by the exhaust
Variable Camshaft Timing V CT,,; actuator. The exhaust flow is split into turbine flow and wastegate flow.
The turbine flow powers up the turbine and drives the compressor through a shaft. Thus, the supercharged
pressure p;,; is adjusted by the turbine flow which is controlled by the wastegate WG.

The effects of Variable Camshaft Timing (VCT) can be summarized as follows. On the one hand, cam
timing can inhibit the production of nitrogen oxides (NOy). Indeed, by acting on the cam timing, combustion
products which would otherwise be expelled during the exhaust stroke are retained in the cylinder during the
subsequent intake stroke. This dilution of the mixture in the cylinder reduces the combustion temperature
and limits the NOy formation. Therefore, it is important to estimate and control the back-flow of burned
gases in the cylinder. On the other hand, with camshaft timing, air scavenging can appear, that is air passing
directly from the intake to the exhaust through the cylinder. For that, the intake manifold pressure must
be greater than the exhaust pressure when the exhaust and intake valves are opened together. In that case,
the engine torque dynamic behavior is improved, i.e. the settling times decreased. Indeed, the flow which
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Fig. 3. Airpath of a turbocharged SI engine with VCT

passes through the turbine is increased and the corresponding energy is transmitted to the compressor. In
transient, it is also very important to estimate and control this scavenging for torque control.

For such an engine, the following presents the inclusion of neural models in various modeling and control
schemes in two parts: an air path control based on an in-cylinder air mass observer, and an in-cylinder
residual gas estimation. In the first example, the air mass observer will be necessary to correct the manifold
pressure set point. The second example deals with the estimation of residual has gases for a single cylinder
naturally-aspirated engine. In this type of engine, no scavenging appears, so that the estimation of burned
gases and air scavenging of the first example are simplified into a residual gas estimation.

3.2 Airpath Observer Based Control
Control Scheme

The objective of engine control is to supply the torque requested by the driver while minimizing the pollutant
emissions. For a SI engine, the torque is directly linked to the air mass trapped in the cylinder for a given
engine speed N, and an efficient control of this air mass is then required. The air path control, i.e. throttle,
turbocharger and variable camshaft timing (VCT) control, can be divided in two main parts: the air mass
control by the throttle and the turbocharger and the control of the gas mix by the variable camshaft timing
(see [12] for further details on VCT control). The structure of the air mass control scheme, described in
Fig. 4, is now detailed block by block. The supervisor, that corresponds to a part of the Combustion layer
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Fig. 4. General control scheme

of Fig.1, builds the in-cylinder air mass set point from the indicated torque set point, computed by the
Engine layer. The determination of manifold pressure set points is presented at the end of the section. The
general control structure uses an in-cylinder air mass observer discussed below that corrects the errors of
the manifold pressure model. The remaining blocks are not described in this chapter but an Internal Model
Control (IMC) of the throttle is proposed in [12] and a linearized neural Model Predictive Control (MPC)
of the turbocharger can be found in [11, 12]. The IMC scheme relies on a grey box model, which includes a
neural static estimator. The MPC scheme is based on a dynamical neural model of the turbocharger.

Observation Scheme

Here two nonlinear estimators of the air variables, the recirculated gas mass RGM and the in-cylinder air
mass Mgy, are presented. Because these variables are not measured, data provided by a complex but accurate
high frequency engine simulator [27] are used to build the corresponding models.

Because scavenging and burned gas back-flow correspond to associated flow phenomena, only one variable,
the Recirculated Gas Mass (RGM), is defined

RGM — { Myg, if mby.> Mse 1)
—mge, otherwise,

where my, is the in-cylinder burned gas mass and my. is the scavenged air mass. Note that, when scavenging
from the intake to the exhaust occurs, the burned gases are insignificant. The recirculated gas mass RGM
estimator is a neural model entirely obtained from the simulated data.

Considering in-cylinder air mass observation, a lot of references are available especially for air-fuel ratio
(AFR) control in a classical engine [21]. More recently, [50] uses an “input observer” to determine the engine
cylinder flow and [3] uses a Kalman filter to reconstruct the air mass for a turbocharged SI engine.
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A novel observer for the in-cylinder air mass m,;, is presented below. Contrary to the references above, it
takes into account a non measured phenomenon (scavenging), and can thus be applied with advanced engine
technology (turbocharged VCT engine). Moreover, its on-line computational load is low. As presented in
Fig. 5, this observer combines open loop nonlinear neural based statical estimators of RGM and mg;,, and a
“closed loop” polytopic observer. The observer is built from the Linear Parameter Varying model of the intake
manifold and dynamically compensates for the residual error AQ.,; committed by one of the estimators,
based on a principle similar to the one presented in [2].

Open Loop Estimators
Recirculated Gas Mass Model

Studying the RGM variable (7) is complex because it cannot be measured on-line. Consequently, a static
model is built from data provided by the engine simulator. The perceptron with one hidden layer and a
linear output unit (2) is chosen with a hyperbolic tangent activation function g.
The choice of the regressors ¢; is based on physical considerations and the estimated Recirculated Gas
Mass RGM is given by -
RGM = fnn(pmans Ne; VCTzn, VCTezh)a (8)

where Py, is the intake manifold pressure, N, the engine speed, VCTj, the intake camshaft timing, and
VCTeyp the exhaust camshaft timing.

Open Loop Air Mass Estimator
The open loop model mg;, o1, of the in-cylinder air mass is based on the volumetric efficiency equation

Pamb chy 1
)
"Tman

Mair OL = Mol 9)
where Tipqp is the manifold temperature, pgmp the ambient pressure, V., the displacement volume, 7 the
perfect gas constant, and where the volumetric efficiency 7, is described by the static nonlinear function f

of four variables: ppan, Ne, VCTy, and VCTeyp,.
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In [15], various black box models, such as polynomial, spline, MLP and RBFN models, are compared
for the static prediction of the volumetric efficiency. In [10], three models of the function f, obtained
from engine simulator data, are compared: a polynomial model linear in manifold pressure proposed by
Jankovic [23] f1(Ne, VCT, VCOTerh)Pman + f2(Ne, VCTi, VCTeyp), where fi et fo are fourth order poly-
nomials, complete with 69 parameters, then reduced by stepwise regression to 43 parameters; a standard
fourth order polynomial model f3(pman, Ne, VCTin, VCTezpn), complete with 70 parameters then reduced to
58 parameters; and a MLP model with six hidden neurons (37 parameters)

Mol = fan (pman: Ne, VCTyy, VCTezh)- (10)

Training of the neural model has been performed by minimizing the mean squared error, using the Levenberg—
Marquardt algorithm. The behavior of these models is similar, and the most important errors are committed
at the same operating points. Nevertheless, the neural model, that involves the smallest number of parameters
and yields slightly better approximation results, is chosen as the static model of the volumetric efficiency.
These results illustrate the parsimony property of the neural models.

Air Mass Observer
Principle

The air mass observer is based on the flow balance in the intake manifold. As shown in Fig. 6, a flow Qq
enters the manifold and two flows leave it: the flow that is captured in the cylinder Q. and the flow
scavenged from the intake to the exhaust Qs.. The flow balance in the manifold can thus be written as

Bran(® = "7 (Quut) — Qugt(t) — AQuyt(t) — Quel), (11)

Vman
where, for the intake manifold, p,,q, is the pressure to be estimated (in Pa), T},4y is the temperature (K),
Vinan is the volume (m®), supposed to be constant and 7 is the ideal gas constant. In (11), Qu, can be
measured by an air flow meter (kgs™'). On the other hand, Q. (kgs™') and Qcy (kgs™') are respectively

estimated by differentiating the Recirculated Gas Mass RGM (8)

Qse = min(—RGM, 0)/trge, (12)

2 x 60

where tiqc = %" is the variable sampling period between two intake top dead center (TDC), and by
o ey

pu,mb(t) ‘/(:yl Ne(t) Myl
rTan ()2 x 60

Q(:yl(t) = ol (t) (13)

Pint

Fig. 6. Intake manifold and cylinder. From the intake manifold, the throttle air flow @y is divided into in-cylinder
air flow Qcy1 and air scavenged flow Qs
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where 1, is given by the neural model (10), pams (Pa) is the ambient pressure, V., (m?) is the displacement
volume, N, (rpm) is the engine speed and n,; is the number of cylinders. The remaining term in (11), AQcyi,
is the error made by the model (13).

Considering slow variations of AQ.y, i.e. AQcyl(t) =0, and after discretization at each top dead center
(TDC), thus with a variable sampling period tyq.(k) = Nf( kx) Sfcyl , the corresponding state space representation
can be written as

Xp+1 = A x + B ug
{U}cz C xg, (14)
where
Qun(k)
_ pmun,(k) _ 0 —
Xk = [AQ(:y](k)] e QQZ!/CZ((:)) s Yk = Pman(k): (15)
and, defining p(k) = —" 7‘;’:1‘;"71(16) tac(k), where
_ |1 olk) _ |=p(k) p(k) p(k)
A*[o 1]’ B*[o 0 0]' (16)

Note that this system is Linear Parameter Varying (LPV), because the matrices A and B depend linearly on
the (measured) parameter p(k), which depends on the manifold temperature Ty,qn, (k) and the engine speed
Ne(k).

The state reconstruction for system (14) can be achieved by resorting to the so-called polytopic observer
of the form

{ﬁkﬂ = A(pr)%r + Blpr)ur + K(yr — k) (17)
Ui, = CXy,
with a constant gain K.

This gain is obtained by solving a Linear Matrix Inequality (LMI). This LMI ensures the convergence
towards zero of the reconstruction error for the whole operating domain of the system based on its polytopic
decomposition. This ensures the global convergence of the observer. See [34, 35] and [14] for further details.

Then, the state AQ.,; is integrated (i.e. multiplied by ¢;qc) to give the air mass bias

Amgir = AQcy X tide- (18)
Finally, the in-cylinder air mass can be estimated by correcting the open loop estimator (9) with this bias as
Mair eyl = Mair 0L + AMqir. (19)

Results

Some experimental results, normalized between 0 and 1, obtained on a 1.8-Liter turbocharged four cylinder
engine with Variable Camshaft Timing are given in Fig.7. A measurement of the in-cylinder air mass, only
valid in steady state, can be obtained from the measurement of @)y, by an air flow meter. Indeed, in steady
state with no scavenging, the air flow that gets into the cylinder Q. is equal to the flow that passes through
the throttle Q¢ (see Fig.6). In consequence, this air mass measurement is obtained by integrating @y
(i.e. multiplying by t;4.). Figure 7 compares this measurement, the open loop neural estimator ((9) with a
neural model (10)), an estimation not based on this neural model (observer (17) based on model (11) but
with Qcyt = Qsec = 0), the proposed estimation ((19) combining the open loop neural estimator (9) and the
polytopic observer (17) based on model (11) with Q. given by (13) using the neural model (10) and Q..
given by (12) using (8)).

For steps of air flow, the open loop neural estimator tracks very quickly the measurement changes, but a
small steady state error can be observed (see for example between 32s and 34s). Conversely, the closed loop
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Fig. 7. Air mass observer results (mg) vs. time (s) on an engine test bench

observer which does not take into account this feedforward estimator involves a long transient error while
guarantying the convergence in steady state. Finally, the proposed estimator, including feedforward statical
estimators and a polytopic observer, combines both the advantages: very fast tracking and no steady state
error. This observer can be used to design and improve the engine supervisor of Fig.5 by determining the
air mass set points.

Computing the Manifold Pressure Set Points

To obtain the desired torque of a SI engine, the air mass trapped in the cylinder must be precisely controlled.
The corresponding measurable variable is the manifold pressure. Without Variable Camshaft Timing (VCT),
this variable is linearly related to the trapped air mass, whereas with VCT, there is no more one-to-one
correspondence. Figure 8 shows the relationship between the trapped air mass and the intake manifold
pressure at three particular VCT positions for a fixed engine speed.

Thus, it is necessary to model the intake manifold pressure py,q,. The chosen static model is a perceptron
with one hidden layer (2). The regressors have been chosen from physical considerations: air mass Mg,
(corrected by the intake manifold temperature T),qn), engine speed N, intake VCT;, and exhaust VCT,yp
camshaft timing. The intake manifold pressure model is thus given by

Pman = fnn (Tn’airv Ne, VCJ—ZI:TM VCTe'ch) . (20)

Training of the neural model from engine simulator data has been performed by minimizing the mean squared
error, using the Levenberg—-Marquardt algorithm.

The supervisor gives an air mass set point Mg, s, from the torque set point (Fig. 4). The intake manifold
pressure set point, computed by model (20), is corrected by the error Amg;, (18) to yield the final set point
Dman sp a8

Pman sp = fnn (mair sp ATnair sps Nm VCT;',“ VCTczrh) . (21)
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Fig. 8. Relationship between the manifold pressure (in bar) and the air mass trapped (in mg) for a SI engine with
VCT at 2,000 rpm
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Fig. 9. Effect of the variation of VCTs on air mass with the proposed control scheme (left) and without taking into
account the variation of VCTs in the control scheme (right)

Engine Test Bench Results

The right part of Fig.9 shows an example of results for air mass control, in which the VCT variations are
not taken into account. Considerable air mass variations (nearly +25% of the set point) can be observed.
On the contrary, the left part shows the corresponding results for the proposed air mass control. The air
mass is almost constant (nearly £2% of variation), illustrating that the manifold pressure set point is well
computed with (21). This allows to reduce the pollutant emissions without degrading the torque set point
tracking.

3.3 Estimation of In-Cylinder Residual Gas Fraction

The application deals with the estimation of residual gases in the cylinders of Spark Ignition (SI) engines
with Variable Camshaft Timing (VCT) by Support Vector Regression (SVR) [8]. More precisely, we are
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interested in estimating the residual gas mass fraction by incorporating prior knowledge in the SVR learning
with the general method proposed in [26]. Knowing this fraction allows to control torque as well as pollutant
emissions. The residual gas mass fraction y,.s can be expressed as a function of the engine speed N, the ratio
DPman/Pexhs Where ppan and pegp are respectively the (intake) manifold pressure and the exhaust pressure,
and an overlapping factor OF (in °/m) [17], related to the time during which the valves are open together.

The available data are provided, on one hand, from the modeling and simulation environment
Amesim [22], which uses a high frequency zero-dimensional thermodynamic model and, on the other hand,
from off line measurements, which are accurate, but complex and costly to obtain, by direct in-cylinder sam-
pling [19]. The problem is this. How to obtain a simple, embeddable, black box model with a good accuracy
and a large validity range for the real engine, from precise real measurements as less numerous as possible
and a representative, but possibly biased, prior simulation model? The problem thus posed, although partic-
ular, is very representative of numerous situations met in engine control, and more generally in engineering,
where complex models, more or less accurate, exist and where the experimental data which can be used for
calibration are difficult or expensive to obtain.

The simulator being biased but approximating rather well the overall shape of the function, the prior
knowledge will be incorporated in the derivatives. Prior knowledge of the derivatives of a SVR model can
be enforced in the training by noticing that the kernel expansion (4) is linear in the parameters a, which
allows to write the derivative of the model output with respect to the scalar input 27 as

df(x) EN: o, Ok(xx)

. = X .
oxd b Qxd

=r;(x)"e, (22)

i=

where r;(x) = [0k(x,x1)/027 ... 0k(x,x;)/027 ... 0k(x,xy)/027]T is of dimension N. The derivative (22)
is linear in a. In fact, the form of the kernel expansion implies that the derivatives of any order with respect
to any component are linear in a. Prior knowledge of the derivatives can thus be formulated as linear
constraints.

The proposed model is trained by a variant of algorithm (6) with additional constraints on the derivatives
at the points X, of the simulation set. In the case where the training data do not cover the whole input
space, extrapolation occurs, which can become a problem when using local kernels such as the RBF kernel.
To avoid this problem, the simulation data X,, p =1,..., NP" are introduced as potential support vectors
(SVs). The resulting global model is now

Fx) = K(x, [XT X ])a +b, (23)

- T
where @ € R¥*" and [XT X ] is the concatenation of the matrices X7 = [x; ..., ...Xy], containing

the real data, and x" = [%1...Xp...Xnpr], containing the simulation data. Defining the NP x (N + N?")-
dimensional matrix R(XT, xT XT]) = [r1(X1)...11(Xp) ... 11 (Xnwr)]T, where ri(x) corresponds to the

derivative of (23) with respect to the input 2! = Piman /Pexh, the proposed model is obtained by solving
1

c
i 17 17
L Nyl at et

A T
Nprl Z
st —€ <KXT,[XT X' a+bl—y <€ (24)
0< 1e <¢
—a < o <a

z< REX ,X"X')a-y <z

where y’ contains the NP" known values of the derivative with respect to the input pman /pesh, at the points x,
of the simulation set. In order to be able to evaluate these values, a prior model, f(x) = Z;)V:pl' apk(x, %) +0,
is first trained on the N?" simulation data (Xp,9p), p = 1,..., NP", only. This prior model is then used to
provide the prior derivatives y’ = [0f(%1)/0F" ... 8f(%,)/0%" ... Of (Xnv)/0F]T.
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Note that the knowledge of the derivatives is included by soft constraints, thus allowing to tune the trade-
off between the data and the prior knowledge. The weighting hyperparameters are set to C/N and \/NP"
in order to maintain the same order of magnitude between the regularization, error and prior knowledge
terms in the objective function. This allows to ease the choice of C' and A based on the application goals and
confidence in the prior knowledge. Hence, the hyperparameters become problem independent.

The method is now evaluated on the in-cylinder residual gas fraction application. In this experiment,
three data sets are built from the available data composed of 26 experimental samples plus 26 simulation
samples:

e The training set (X,y) composed of a limited amount of real data (N samples)

e The test set composed of independent real data (26 — N samples)

e The simulation set (X,y) composed of data provided by the simulator (NP" = 26 samples)

The test samples are assumed to be unknown during the training and are retained for testing only. It must

be noted that the inputs of the simulation data do not exactly coincide with the inputs of the experimental
data as shown in Fig. 10 for N = 3.
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30 = 30
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Fig. 10. Residual gas mass fraction x,es in percentages as a function of the ratio pman/pesn for two engine speeds Ne
and different overlapping factors OF. The 26 experimental data are represented by plus signs (+) with a superposed
circle (@) for the three points retained as training samples. The 26 simulation data appear as asterisks (*)
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Table 1. Errors on the residual gas mass fraction with the number of real and simulation data used for training

Model # of real # of simulation RMSE RMSE MAE
data N data NP" test

Experimental model 6 6.84  6.00 15.83
Prior model 26 4.86 493 9.74
Mixed model [§ 26 4.85 4.88 9.75
Proposed model 6 26 2.44 2.15 5.94
Experimental model 3 - - -

Prior model 26 4.93 493 9.74
Mixed model 3 26 4.89 486 9.75
Proposed model 3 26 2.97 2.79 5.78

‘

—’ appears when the result is irrelevant (model mostly constant)

The comparison is performed between four models:

e The experimental model trained by (6) on the real data set (X,y) only
e The prior model trained by (6) on the simulation data (X,y) only
e The mized model trained by (6) on the real data set simply extended with the simulation data
T o
((XT X7, [y" §7]7) (the training of this model is close in spirit to the virtual sample approach,
where extra data are added to the training set)

e The proposed model trained by (24) and using both the real data (X,y) and the simulation data (X,¥)

These models are evaluated on the basis of three indicators: the root mean square error (RMSE) on the
test set (RMSE test), the RMSE on all experimental data (RMSE) and the maximum absolute error on all
experimental data (MAE).

Before training, the variables are normalized with respect to their mean and standard deviation. The
different hyperparameters are set according to the following heuristics. One goal of the application is to
obtain a model that is accurate on both the training and test samples (the training points are part of the
performance index RMSE). Thus C is set to a large value (C' = 100) in order to ensure a good approximation
of the training points. Accordingly, ¢ is set to 0.001 in order to approximate the real data well. The trade-off
parameter A of the proposed method is set to 100, which gives as much weight to both the training data and
the prior knowledge. Since all standard deviations of the inputs are equal to 1 after normalization, the RBF
kernel width o is set to 1.

Two sets of experiments are performed for very low numbers of training samples N = 6 and N = 3. The
results in Table 1 show that both the experimental and the mized models cannot yield a better approximation
than the prior model with so few training data. Moreover, for N = 3, the experimental model yields a quasi-
constant function due to the fact that the model has not enough free parameters (only three plus a bias term)
and thus cannot model the data. In this case, the RMSE is irrelevant. On the contrary, the proposed model
does not suffer from a lack of basis functions, thanks to the inclusion of the simulation data as potential
support vectors. This model yields good results from very few training samples. Moreover, the performance
decreases only slightly when reducing the training set size from 6 to 3. Thus, the proposed method seems to
be a promising alternative to obtain a simple black box model with a good accuracy from a limited number
of experimental data and a prior simulation model.

4 Conclusion

The chapter exposed learning machines for engine control applications. The two neural models most used in
modeling for control, the MultiLayer Perceptron and the Radial Basis Function network, have been described,
along with a more recent approach, known as Support Vector Regression. The use of such black box models
has been placed in the design cycle of engine control, where the modeling steps constitute the bottleneck of the
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whole process. Application examples have been presented for a modern engine, a turbocharged Spark Ignition
engine with Variable Camshaft Timing. In the first example, the airpath control was studied, where open
loop neural estimators are combined with a dynamical polytopic observer. The second example considered
modeling a variable which is not measurable on-line, from a limited amount of experimental data and a
simulator built from prior knowledge.

The neural black box approach for modeling and control allows to develop generic, application indepen-
dent, solutions. The price to pay is the loss of the physical interpretability of the resulting models. Moreover,
the fully black box (e.g. neural) model based control solutions have still to practically prove their efficiency
in terms of robustness or stability. On the other hand, models based on first principles (white box models)
are completely meaningful and many control approaches with good properties have been proposed, which are
well understood and accepted in the engine control community. However, these models are often inadequate,
too complex or too difficult to parametrize, as real time control models. Therefore, intermediate solutions,
involving grey box models, seem to be preferable for engine modeling, control and, at a higher level, optimiza-
tion. In this framework, two approaches can be considered. First, besides first principles models, black box
neural sub-models are chosen for variables difficult to model (e.g. volumetric efficiency, pollutant emissions).
Secondly, black box models can be enhanced thanks to physical knowledge. The examples presented in this
chapter showed how to implement these grey box approaches in order to obtain efficient and acceptable
results.
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