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Neural networks are making their ways into various commercial products across many industries. As in
aerospace, in automotive industry they are not the main technology. Automotive engineers and researchers are
certainly familiar with the buzzword, and some have even tried neural networks for their specific applications
as models, virtual sensors, or controllers (see, e.g., [1] for a collection of relevant papers). In fact, a quick search
reveals scores of recent papers on automotive applications of NN, fuzzy, evolutionary and other technologies
of computational intelligence (CI); see, e.g., [2–4]. However, such technologies are mostly at the stage of
research and not in the mainstream of product development yet. One of the reasons is “black-box” nature
of neural networks. Other, perhaps more compelling reasons are business conservatism and existing/legacy
applications (trying something new costs money and might be too risky) [5, 6].

NN technology which complements, rather than replace, the existing non-CI technology in applications
will have better chances of wide acceptance (see, e.g., [8]). For example, NN is usually better at learning from
data, while systems based on first principles may be better at modeling underlying physics. NN technology
can also have greater chances of acceptance if it either has no alternative solution, or any other alternative
is much worse in terms of the cost-benefit analysis. A successful experience with CI technologies at the Dow
Chemical Company described in [7] is noteworthy.

Ford Motor Company is one of the pioneers in automotive NN research and development [9, 10]. Relevant
Ford papers are referenced below and throughout this volume.

Growing emphasis on model based development is expected to help pushing mature elements of the
NN technology into the mainstream. For example, a very accurate hardware-in-the-loop (HIL) system is
developed by Toyota to facilitate development of advanced control algorithms for its HEV platforms [11].
As discussed in this chapter, some NN architectures and their training methods make possible an effective
development process on high fidelity simulators for subsequent on-board (in-vehicle) deployment. While
NN can be used both on-board and outside the vehicle, e.g., in a vehicle manufacturing process, only
on-board applications usually impose stringent constraints on the NN system, especially in terms of available
computational resources.

Here we provide a brief overview of NN technology suitable for automotive applications and discuss a
selection of NN training methods. Other surveys are also available, targeting broader application base and
other non-NN methods in general; see, e.g., [12].

Three main roles of neural network in automotive applications are distinguished and discussed: models
(Sect. 1), virtual sensors (Sect. 2) and controllers (Sect. 3). Training of NN is discussed in Sect. 4, followed by
a simple example illustrating importance of recurrent NN (Sect. 5). The issue of verification and validation
is then briefly discussed in Sect. 6, concluding this chapter.

1 Models

Arguably the most popular way of using neural networks is shown in Fig. 1. NN receives inputs and produces
outputs which are compared with target values of the outputs from the system/process to be modeled or
identified. This arrangement is known as supervised training because the targets for NN training are always
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Fig. 1. A very popular arrangement for training NN to model another system or process including decision making
is termed supervised training. The inputs to the NN and the system are not necessarily identical. The error between
the NN outputs and the corresponding outputs of the system may be used to train the NN
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Fig. 2. Selected nodes in this network may be declared outputs. Any connectivity pattern, e.g., a popular layered
architecture such as in multilayer perceptron (MLP), can be created by specifying the NN connectivity table. The
order in which the nodes “fire,” or get activated, also needs to be specified to preserve causality. Furthermore, explicit
delays longer than one time step can also be included

provided by the system (“supervisor”) to be modeled by NN. Figure 1 pertains to not only supervised
modeling but also decision making, e.g., when it is required to train a NN classifier.

A general architecture of discrete-time NN is shown in Fig. 2. The neurons or nodes of the NN are labeled
as 1 through N. The links or connections may have adjustable or fixed parameters, or NN weights. Some
nodes in the NN serve as inputs of signals external to the NN, others serve as outputs from the NN to
the external world. Each node can sum or multiply all the links feeding it. Then the node transforms the
result through any of a variety of functions such as soft (sigmoidal) and hard thresholds, linear, quadratic,
or trigonometric functions, Gaussians, etc.

The blocks Z−1 indicates one time step delay for the NN signals. A NN without delays is called feedforward
NN. If the NN has delays but no feedback connections, it is called time delay NN. A NN with feedback is
called recurrent NN (RNN).

A large variety of NN exists. The reader is referred to [13] for a comprehensive discussion about many of
the NN architectures and their training algorithms.
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Clearly, many problem specific issues must be addressed to achieve successful NN training. They include
pre- and (sometimes) post-processing of the data, the use of training data sufficiently representative of
the system to be modeled, architectural choices, the optimal accuracy achievable with the given NN
architecture, etc.

For a NN model predicting next values of its inputs it is useful to verify whether iterative predictions
of the model are meaningful. A model trained to predict its input for the next time step might have a very
large error predicting the input two steps into the future. This is usually the sign of overfitting. A single-
step prediction might be too simple a task, especially for a slowly changing time series. The model might
quickly learn that predicting the next value to be the same as its current value is good enough; the iterative
prediction test should quickly reveal this problem with the model.

The trick above is just one of many useful tricks in the area of NN technology. The reader is referred to
[14] and others for more information [13, 15].

Automotive engine calibration is a good example for relatively simple application of NN models. Tra-
ditionally, look-up tables have been used within the engine control system. For instance, a table linking
engine torque production (output) with engine controls (inputs), such as spark angle (advance or retard),
intake/exhaust valve timing, etc. Usually the table is created by running many experiments with the engine
on a test stand. In experiments the space of engine controls is explored (in some fashion), and steady state
engine torque values are recorded. Clearly, the higher the dimensionality of the look-up table, and the finer
the required resolution, the more time it takes to complete the look-up table.

The least efficient way is full factorial experimental design (see, e.g., [16]), where the number of necessary
measurement increases exponentially with the number of the table inputs. A modern alternative is to use
model-based optimization with design of experiment [17–20]. This methodology uses optimal experimental
design plans (e.g., D- or V-optimal) to measure only a few predetermined points. A model is then fitted to
the points, which enables the mapping interpolation in between the measurements. Such a model can then
be used to optimize control strategy, often with significant computational savings (see, e.g., [21]).

In terms of models, a radial basis function (RBF) network [22, 23], a probabilistic NN which is implemen-
tationally simpler form of the RBF network [24], or MLP [25, 26] can all be used. So-called cluster weighted
models (CWM) may be advantageous over RBF even in low-dimensional spaces [27–29]. CWM is capable of
essentially perfect approximation of linear mappings because each cluster in CWM is paired with a linear
output model. In contrast, RBF needs many more clusters to approximate even linear mappings to high
accuracy (see Fig. 3).

More complex illustrations of NN models are available (see, e.g., [30, 31]). For example, [32] discusses
how to use a NN model for an HEV battery diagnostics. The NN is trained to predict an HEV battery
state-of-charge (SOC) for a healthy battery. The NN monitors the SOC evolution and signals about abnor-
mally rapid discharges of the battery if the NN predictions deviate significantly from the observed SOC
dynamics.

2 Virtual Sensors

A modern automobile has a large number of electronic and mechanical devices. Some of them are actuators
(e.g., brakes), while others are sensors (e.g., speed gauge). For example, transmission oil temperature is
measured using a dedicated sensor. A virtual or soft sensor for oil temperature would use existing signals
from other available sensors (e.g., air temperature, transmission gear, engine speed) and an appropriate
model to create a virtual signal, an estimate of oil temperature in the transmission. Accuracy of this virtual
signal will naturally depend on both accuracy of the model parameters and accuracies of existing signals
feeding the model. In addition, existing signals will need to be chosen with care, as the presence of irrelevant
signals may complicate the virtual sensor design. The modern term “virtual sensor” appears to be used
sometimes interchangeably with its older counterpart “observer.” Virtual sensor assumes less knowledge of
the physical process, whereas observer assumes more of such knowledge. In other words, the observer model is
often based on physical principles, and it is more transparent than that of virtual sensor. Virtual sensors are
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Fig. 3. A simple linear mapping Y = 2X+0.5 subjected to a uniform noise (red) is to be approximated by CWM and
RBF network. CMW needs only one cluster in the input space X and the associated mean-value linear model (the
cluster and its model are shown in blue). In contrast, even with five clusters (green) the RBF network approximation
(thick green line) is still not as good as the CWM approximation

often “black boxes” such as neural networks, and they are especially valuable when the underlying physics
is too complex or uncertain while there is plenty of data to develop/train a virtual sensor.

In the automotive industry, significant resources are devoted to the development of continuous monitor-
ing of on-board systems and components affecting tailpipe emissions of vehicles. Ideally, on-board sensors
specialized to measuring the regulated constituents of the exhaust gases in the tailpipe (mainly hydrocar-
bons, nitrogen oxides (NOx) and carbon monoxide) would check whether the vehicle is in compliance with
government laws on pollution control. Given that such sensors are either unavailable or impractical, the
on-board diagnostic system must rely on limited observations of system behavior and inferences based on
those observations to determine whether the vehicle emissions are in compliance with the law. Our example
is the diagnostics of engine combustion failures, known as misfire detection. This task must be performed
with very high accuracy and under virtually all operating conditions (often the error rate of far less than
1% is necessary). Furthermore, the task requires the identification of the misfiring cylinder(s) of the engine
quickly (on the order of seconds) to prevent any significant deterioration of the emission control system
(catalytic converter). False alarm immunity becomes an important concern since on the order of one billion
events must be monitored in the vehicle’s lifetime.

The signals available to analyze combustion behavior are derived primarily from crankshaft position
sensors. The typical position sensor is an encoder (toothed) wheel placed on the crankshaft of the engine
prior to torque converter, transmission or any other engine load component. This wheel, together with its
electronic equipment, provides a stream of accurately measured time intervals, with each interval being the
time it takes for the wheel to rotate by one tooth. One can infer speed or acceleration of the crankshaft
rotation by performing simple numerical manipulations with the time intervals. Each normal combustion
event produces a slight acceleration of the crankshaft, whereas misfires exhibit acceleration deficits following
a power stroke with little or no useful work (Fig. 4).
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Fig. 4. A representative segment of the engine misfire data. Each cylinder firing is either normal (circle) or abnormal
(misfire; cross). The region where misfire detection is not required is shown in the middle by diamonds. In terms of the
crankshaft acceleration (y axis), sometimes misfires are easily separable from normal (the region between k = 18,000
and k ∼ 20,000), and other times they are not (the region around k = 16,000)

The accurate detection of misfires is complicated by two main factors:

1. The engine exhibits normal accelerations and decelerations, in response to the driver input and from
changing road conditions.

2. The crankshaft is a torsional oscillator with finite stiffness. Thus, the crankshaft is subject to torsional
oscillations which may turn the signature of normal events into that of misfires, and vice versa.

Analyzing complex time series of acceleration patterns requires a powerful signal processing algorithm
to infer the quality of the combustion events. It turns out that the best virtual sensor of misfires can be
developed on the basis of a recurrent neural network (RNN) [33]; see Sect. 4 as well as [34] and [35] for training
method details and examples. The RNN is trained on a very large data set (on the order of million of events)
consisting of many recordings of driving sessions. It uses engine context variables (such as crankshaft speed
and engine load) and crankshaft acceleration as its inputs, and it produces estimates of the binary signal
(normal or misfire) for each combustion event. During each engine cycle, the network is run as many times
as the number of cylinders in the engine. The reader is referred to [36] for illustrative misfire data sets used
in a competition organized at the International Joint Conference on Neural Networks (IJCNN) in 2001. The
misfire detection NN is currently in production.

The underlying principle of misfire detection (dependence of crankshaft torsional vibrations on engine
operation modes) is also useful for other virtual sensing opportunities, e.g., engine torque estimation.

Concluding this section, we list a few representative applications of NN in the virtual sensor category:

• NN can be trained to estimate emissions from engines based on a number of easily measured engine
variables, such as load, RPM, etc., [37–39], or in-cylinder pressure [40] (note that using a structure
identification by genetic algorithms for NOx estimation can result in performance better than that of a
NN estimator; see [41] for details).



106 D. Prokhorov

• Air flow rate estimating NN is described in [19], and air–fuel ratio (AFR) estimation with NN is developed
in [42], as well as in [43] and [44].

• A special processor Vindax is developed by Axeon, Ltd. (http://www.axeon.com/), to support a variety
of virtual sensing applications [45], e.g., a mass airflow virtual sensor [46].

3 Controllers

NN as controllers have been known for years; see, e.g., [47–51]. We discuss only a few popular schemes in this
section, referring the reader to a useful overview in [52], as well as [42] and [8], for additional information.

Regardless of the specific schemes employed to adapt or train NN controllers, there is a common issue
of linkage between the cause and its effect. Aside of the causes which we mostly do not control such as
disturbances applied to plant (an object or system to be controlled), the NN controller outputs or actions in
reinforcement learning literature [53] also affect the plant and influence a quality or performance functional.
This is illustrated in Fig. 5.

To enable NN training/adaptation, the linkage between NN actions and the quality functional can be
achieved through a model of the plant (and a model of the quality functional if necessary), or without a
model. Model-free adaptive control is implemented sometimes with the help of a reinforcement learning
module called critic [54, 55]. Applications of reinforcement learning and approximate dynamic programming
to automotive control have been attempted and not without success (see, e.g., [56] and [57]).

Figure 6 shows a popular scheme known as model reference adaptive control. The goal of adaptive
controller which can be implemented as a NN is to make the plant behave as if it were the reference model
which specifies the desired behavior for the plant. Often the plant is subject to various disturbances such as
plant parameter drift, measurement and actuator noise, etc. (not shown in the figure).

Shown by dashed lines in Fig. 6 is the plant model which may also be implemented as a NN (see Sect. 1).
The control system is called indirect if the plant model is included, otherwise it is called direct adaptive
control system.

We consider a process of indirect training NN controllers by an iterative method. Our goal is to improve
the (ideal) performance measure I through training weights W of the controller

I(W(i)) = Ex0∈X

{ ∞∑
t=0

U(W(i),x(t), e(t))

}
, (1)
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Fig. 5. The NN controller affects the quality functional through a mediator such as a plant. Older values of controls
or actions (prior to t) may still have an effect on the plant as dynamic system with feedback, which necessitates the
use of dynamic or temporal derivatives discussed in Sect. 4. For NN adaptation or training, the mediator may need
to be complemented by its model and/or an adaptive critic
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Fig. 6. The closed-loop system in model reference adaptive control. If the plant model is used (dashed lines), then
the system is called indirect adaptive system; otherwise the system is called direct. The state vector x (not shown)
includes state vectors of not only the plant but also the controller, the model of the plant and the reference model.
The output vector y includes a, yp, ym and yr. The error between yp and yr may be used as an input to the
controller and for controller adaptation (dotted lines)

where W(i) is the controller weight vector at the ith training iteration (or epoch), EX is a suitable expectation
operator (e.g., average) in the domain of permissible initial state vectors x0 ≡ x(0), and U(·) is a non-
negative definite function with second-order bounded derivatives often called the instantaneous utility (or
cost) function. We assume that the goal is to increase I(W(i)) with i. The state vector x evolves according
to the closed-loop system

x(t + 1) = f(x(t), e(t),W(i)) + ε(t) (2)
y(t) = h(x(t)) + µ(t), (3)

where e(t) is a vector of external variables, e.g., reference signals r, ε and µ are noise vectors adding
stochasticity to otherwise deterministic dynamic system, and y(t) is a vector of relevant outputs. Our closed-
loop system includes not just the plant and its controller, which are usual components of the closed-loop
system, but also the plant model and the reference model.

In reality, both E and ∞ in (1) must be approximated. Assuming that all initial states x0(k) are
equiprobable, the average operator can be approximated as

R(W(i)) =
1
N

∑
x0(k)∈X,k=1,2,...,N

T∑
t=0

U(i, t), (4)

where N is the total number of trajectories of length T along which the closed-loop system performance is
evaluated at the iteration i. The first evaluation trajectory begins at time t = 0 in x0(1), i.e., x(0) = x0(1),



108 D. Prokhorov

the second trajectory starts at t = 0 in x(0) = x0(2), etc. The coverage of the domain X should be as broad
as practically possible for a reasonably accurate approximation of I.

Training the NN controller may impose computational constraints on our ability to compute (4) many
times during our iterative training process. It may be necessary to contend with this approximation of R

A(W(i)) =
1
S

∑
x0(s)∈X,s=1,2,...,S

H∑
t=0

U(i, t). (5)

The advantage of A over R is in faster computations of derivatives of A with respect to W(i) because the
number of training trajectories per iteration is S � N , and the trajectory length is H � T . However, A must
still be an adequate replacement of R and, possibly, I in order to improve the NN controller performance
during its weight training. And of course A must also remain bounded over the iterations, otherwise the
training process is not going to proceed successfully.

We assume that the NN weights are updated as follows:

W(i + 1) = W(i) + d(i), (6)

where d(i) is an update vector. Employing the Taylor expansion of I around W(i) and neglecting terms
higher than the first order yields

I(W(i + 1)) = I(W(i)) +
∂I(i)
∂W(i)

T

(W(i + 1) − W(i)). (7)

Substituting for (W(i + 1) − W(i)) from (6) yields

I(W(i + 1)) = I(W(i)) +
∂I(i)

∂W(i)

T

d(i). (8)

The growth of I with iterations i is guaranteed if

∂I(i)
∂W(i)

T

d(i) > 0. (9)

Alternatively, the decrease of I is assured if the inequality above is strictly negative; this is suitable for cost
minimization problems, e.g., when U(t) = (yr(t) − yp(t))2, which is popular in tracking problems.

It is popular to use gradients as the weight update

d(i) = η(i)
∂A(i)
∂W(i)

, (10)

where η(i) > 0 is a learning rate. However, it is often much more effective to rely on updates computed with
the help of second-order information; see Sect. 4 for details.

The condition (9) actually clarifies what it means for A to be an adequate substitute for R. The plant
model is often required to train the NN controller. The model needs to provide accurate enough d such that
(9) is satisfied. Interestingly, from the standpoint of NN controller training it is not critical to have a good
match between plant outputs yp and their approximations by the model ym. Coarse plant models which
approximate well input-output sensitivities in the plant are sufficient. This has been noticed and successfully
exploited by several researchers [58–61].

In practice, of course it is not possible to guarantee that (9) always holds. This is especially questionable
when even simpler approximations of R are employed, as is sometimes the case in practice, e.g., S = 1 and/or
H = 1 in (5). However, if the behavior of R(i) over the iterations i evolves towards its improvement, i.e., the
trend is that R grows with i but not necessarily R(i) < R(i + 1), ∀i, this would suggest that (9) does hold.

Our analysis above explains how the NN controller performance can be improved through training with
imperfect models. It is in contrast with other studies, e.g., [62, 63], where the key emphasis is on proving the
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uniform ultimate boundedness (UUB) [64], which is not nearly as important in practice as the performance
improvement because performance implies boundedness.

In terms of NN controller adaptation and in addition to the division of control to indirect and direct
schemes, two adaptation extremes exist. The first is represented by the classic approach of fully adaptive
NN controller which learns “on-the-fly,” often without any prior knowledge; see, e.g., [65, 66]. This approach
requires a detailed mathematical analysis of the plant and many assumptions, relegating NN to mere uncer-
tainty compensators or look-up table replacement. Furthermore, the NN controller usually does not retain
its long-term memory as reflected in the NN weights.

The second extreme is the approach employing NN controllers with weights fixed after training which
relies on recurrent NN. It is known that RNN with fixed weights can imitate algorithms [67–72] or adaptive
systems [73] after proper training. Such RNN controllers are not supposed to require adaptation after deploy-
ment/in operation, thereby substantially reducing implementation cost especially in on-board applications.
Figure 7 illustrates how a fixed-weight RNN can replace a set of controllers, each of which is designed for
a specific operation mode of the time-varying plant. In this scheme the fixed-weight, trained RNN demon-
strates its ability to generalize in the space of tasks, rather than just in the space of input-output vector
pairs as non-recurrent networks do (see, e.g., [74]). As in the case of a properly trained non-recurrent NN
which is very good at dealing with data similar to its training data, it is reasonable to expect that RNN
can be trained to be good interpolators only in the space of tasks it has seen during training, meaning that
significant extrapolation beyond training data is to be neither expected nor justified.

The fixed-weight approach is very suitable to such practically useful direction as training RNN off-line,
i.e., on high-fidelity simulators of real systems, and preparing RNN through training to various sources of
uncertainties and disturbances that can be encountered during system operation. And the performance of the
trained RNN can also be verified on simulators to increase confidence in successful deployment of the RNN.
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Previous observations
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…

Selector (choose one from M)
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Fig. 7. A fixed-weight, trained RNN can replace a popular control scheme which includes a set of controllers
specialized to handle different operating modes of the time-varying plant and a controller selector algorithm which
chooses an appropriate controller based on the context of plant operation (input, feedback, etc.)
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The fully adaptive approach is preferred if the plant may undergo very significant changes during its
operation, e.g., when faults in the system force its performance to change permanently. Alternatively, the
fixed-weight approach is more appropriate if the system may be repaired back to its normal state after the
fault is corrected [32]. Various combinations of the two approaches above (hybrids of fully adaptive and
fixed-weight approaches) are also possible [75].

Before concluding this section we would like to discuss on-line training implementation. On-line or con-
tinuous training occurs when the plant can not be returned to its initial state to begin another iteration of
training, and it must be run continuously. This is in contrast with off-line training which assumes that the
plant (its model in this case) can be reset to any specified state at any time.

On-line training can be done in a straightforward way by maintaining two distinct processes (see also [58]):
foreground (network execution) and background (training). Figures 8 and 9 illustrate these processes.

The processes assume at least two groups of copies of the controller C labeled C1 and C2, respectively.
The controller C1 is used in the foreground process which directly affects the plant P through the sequence
of controller outputs a1.

The controller C1 weights are periodically replaced by those of the NN controller C2. The controller C2 is
trained in the background process of Fig. 9. The main difference from the previous figure is the replacement
of the plant P with its model M . The model serves as a sensitivity pathway between utility U and controller
C2 (cf. Fig. 5), thereby enabling training C2 weights.

The model M could be trained as well, if necessary. For example, it can be done through adding another
background process for training model of the plant. Of course, such process would have its own goal, e.g.,
minimization of the mean squared error between the model outputs ym(t+i) and the plant outputs yp(t+i).
In general, simultaneous training of the model and the controller may result in training instability, and it is
better to alternate cycles of model-controller training.

When referring to training NN in this and previous sections, we did not discuss possible training
algorithms. This is done in the next section.

Controller execution (foreground process)

C1 C1

P

yp(t)

a1(t)

...

...

C1

P P

yp(t+h)

k=t k=t+1 k=t+h-1 k=t+h

a1(t+1)

yp(t+1)

Fig. 8. The fixed-weight NN controller C1 influences the plant P through the controller outputs a1 (actions) to
optimize utility function U (not shown) in a temporal unfolding. The plant outputs yp are also shown. Note that this
process in general continues for much longer than h time steps. The dashed lines symbolize temporal dependencies
in the dynamic plant
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Preparation for controller training (background process)

C2 C2

M

ym(t)=yp(t)

a2(t)

...

...

C2

M M

ym(t+h)

k=t k=t+1 k=t+h-1 k=t+h

ym(t+h-1)=yp(t+h-1)

a2(t+1)

Fig. 9. Unlike the previous figure, another NN controller C2 and the plant model M are used here. It may be helpful
to think of the current time step as step t+h, rather than step t. The controller C2 is a clone of C1 but their weights
are different in general. The weights of C2 can be trained by an algorithm which requires that the temporal history of
h + 1 time steps be maintained. It is usually advantageous to align the model with the plant by forcing their outputs
to match perfectly, especially if the model is sufficiently accurate for one-step-ahead predictions only. This is often
called teacher forcing and shown here by setting ym(t + i) = yp(t + i). Both C2 and M can be implemented as
recurrent NN

4 Training NN

Quite a variety of NN training methods exist (see, e.g., [13]). Here we provide an overview of selected
methods illustrating diversity of NN training approaches, while referring the reader to detailed descriptions
in appropriate references.

First, we discuss approaches that utilize derivatives. The two main methods for obtaining dynamic deriva-
tives are real-time recurrent learning (RTRL) and backpropagation through time (BPTT) [76] or its truncated
version BPTT(h) [77]. Often these are interpreted loosely as NN training methods, whereas they are merely
the methods of obtaining derivatives to be combined subsequently with the NN weight update methods.
(BPTT reduces to just BP when no dynamics needs to be accounted for in training.)

The RTRL algorithm was proposed in [78] for a fully connected recurrent layer of nodes. The name
RTRL is derived from the fact that the weight updates of a recurrent network are performed concurrently
with network execution. The term “forward method” is more appropriate to describe RTRL, since it better
reflects the mechanics of the algorithm. Indeed, in RTRL, calculations of the derivatives of node outputs
with respect to weights of the network must be carried out during the forward propagation of signals in a
network.

The computational complexity of the original RTRL scales as the fourth power of the number of nodes
in a network (worst case of a fully connected RNN), with the space requirements (storage of all variables)
scaling as the cube of the number of nodes [79]. Furthermore, RTRL for a RNN requires that the dynamic
derivatives be computed at every time step for which that RNN is executed. Such coupling of forward
propagation and derivative calculation is due to the fact that in RTRL both derivatives and RNN node
outputs evolve recursively. This difficulty is independent of the weight update method employed, which
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might hinder practical implementation on a serial processor with limited speed and resources. Recently an
effective RTRL method with quadratic scaling has been proposed [80] which approximates the full RTRL by
ignoring derivatives not belonging to the same node.

Truncated backpropagation through time (BPTT(h), where h stands for the truncation depth) offers
potential advantages relative to forward methods for obtaining sensitivity signals in NN training problems.
The computational complexity scales as the product of h with the square of the number of nodes (for a fully
connected NN). BPTT(h) often leads to a more stable computation of dynamic derivatives than do forward
methods because its history is strictly finite. The use of BPTT(h) also permits training to be carried out
asynchronously with the RNN execution, as illustrated in Figs. 8 and 9. This feature enabled testing a BPTT
based approach on a real automotive hardware as described in [58].

As has been observed some time ago [81], BPTT may suffer from the problem of vanishing gradients.
This occurs because, in a typical RNN, the derivatives of sigmoidal nodes are less than the unity, while the
RNN weights are often also less than the unity. Products of many of such quantities can become naturally
very small, especially for large depths h. The RNN training would then become ineffective; the RNN would
be “blind” and unable to associate target outputs with distant inputs.

Special RNN approaches such as those in [82] and [83] have been proposed to cope with the vanishing
gradient problem. While we acknowledge that the problem may be indeed serious, it is not insurmountable.
This is not just this author’s opinion but also reflection on successful experience of Ford and Siemens NN
Research (see, e.g., [84]).

In addition to calculation of derivatives of the performance measure with respect to the NN weights W,
we need to choose a weight update method. We can broadly classify weight update methods according to
the amount of information used to perform an update. Still, the simple equation (6) holds, while the update
d(i) may be determined in a much more complex process than the gradient method (10).

It is useful to summarize a typical BPTT(H) based training procedure for NN controllers because it
highlights steps relevant to training NN with feedback in general:

1. Initiate states of each component of the system (e.g., RNN state): x(0) = x0(s), s = 1, 2, . . . , S.
2. Run the system forward from time step t = t0 to step t = t0 + H , and compute U (see (5)) for all S

trajectories.
3. For all S trajectories, compute dynamic derivatives of the relevant outputs with respect to NN controller

weights, i.e., backpropagate to t0. Usually backpropagating just U(t0 + H) is sufficient.
4. Adjust the NN controller weights according to the weight update d(i) using the derivatives obtained in

step 3; increment i.
5. Move forward by one time step (run the closed-loop system forward from step t = t0+H to step t0+H +1

for all S trajectories), then increment t0 and repeat the procedure beginning from step 3, etc., until the
end of all trajectories (t = T ) is reached.

6. Optionally, generate a new set of initial states and resume training from step 1.

The described procedure is similar to both model predictive control (MPC) with receding horizon (see,
e.g., [85]) and optimal control based on the adjoint (Euler–Lagrange/Hamiltonian) formulation [86]. The
most significant differences are that this scheme uses a parametric nonlinear representation for controller
(NN) and that updates of NN weights are incremental, not “greedy” as in the receding-horizon MPC.

We henceforth assume that we deal with root-mean-squared (RMS) error minimization (corresponds to
− ∂A(i)

∂W(i) in (10)). Naturally, gradient descent is the simplest among all first-order methods of minimization for
differentiable functions, and is the easiest to implement. However, it uses the smallest amount of information
for performing weight updates. An imaginary plot of total error versus weight values, known as the error
surface, is highly nonlinear in a typical neural network training problem, and the total error function may have
many local minima. Relying only on the gradient in this case is clearly not the most effective way to update
weights. Although various modifications and heuristics have been proposed to improve the effectiveness of
the first-order methods, their convergence still remains quite slow due to the intrinsically ill-conditioned
nature of training problems [13]. Thus, we need to utilize more information about the error surface to make
the convergence of weights faster.
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In differentiable minimization, the Hessian matrix, or the matrix of second-order partial derivatives of a
function with respect to adjustable parameters, contains information that may be valuable for accelerated
convergence. For instance, the minimum of a function quadratic in the parameters can be reached in one
iteration, provided the inverse of the nonsingular positive definite Hessian matrix can be calculated. While
such superfast convergence is only possible for quadratic functions, a great deal of experimental work has
confirmed that much faster convergence is to be expected from weight update methods that use second-order
information about error surfaces. Unfortunately, obtaining the inverse Hessian directly is practical only for
small neural networks [15]. Furthermore, even if we can compute the inverse Hessian, it is frequently ill-
conditioned and not positive definite, making it inappropriate for efficient minimization. For RNN, we have to
rely on methods which build a positive definite estimate of the inverse Hessian without requiring its explicit
knowledge. Such methods for weight updates belong to a family of second-order methods. For a detailed
overview of the second-order methods, the reader is referred to [13]. If d(i) in (6) is a product of a specially
created and maintained positive definite matrix, sometimes called the approximate inverse Hessian, and the
vector −η(i) ∂A(i)

∂W(i) , we obtain the quasi-Newton method. Unlike first-order methods which can operate in
either pattern-by-pattern or batch mode, most second-order methods employ batch mode updates (e.g., the
popular Levenberg–Marquardt method [15]). In pattern-by-pattern mode, we update weights based on a
gradient obtained for every instance in the training set, hence the term instantaneous gradient. In batch
mode, the index i is no longer applicable to individual instances, and it becomes associated with a training
iteration or epoch. Thus, the gradient is usually a sum of instantaneous gradients obtained for all training
instances during the epoch i, hence the name batch gradient. The approximate inverse Hessian is recursively
updated at the end of every epoch, and it is a function of the batch gradient and its history. Next, the
best learning rate η(i) is determined via a one-dimensional minimization procedure, called line search, which
scales the vector d(i) depending on its influence on the total error. The overall scheme is then repeated until
the convergence of weights is achieved.

Relative to first-order methods, effective second-order methods utilize more information about the error
surface at the expense of many additional calculations for each training epoch. This often renders the overall
training time to be comparable to that of a first-order method. Moreover, the batch mode of operation results
in a strong tendency to move strictly downhill on the error surface. As a result, weight update methods that
use batch mode have limited error surface exploration capabilities and frequently tend to become trapped
in poor local minima. This problem may be particularly acute when training RNN on large and redundant
training sets containing a variety of temporal patterns. In such a case, a weight update method that operates
in pattern-by-pattern mode would be better, since it makes the search in the weight space stochastic. In other
words, the training error can jump up and down, escaping from poor local minima. Of course, we are aware
that no batch or sequential method, whether simple or sophisticated, provides a complete answer to the
problem of multiple local minima. A reasonably small value of RMS error achieved on an independent
testing set, not significantly larger than the RMS error obtained at the end of training, is a strong indication
of success. Well known techniques, such as repeating a training exercise many times starting with different
initial weights, are often useful to increase our confidence about solution quality and reproducibility.

Unlike weight update methods that originate from the field of differentiable function optimization, the
extended Kalman filter (EKF) method treats supervised learning of a NN as a nonlinear sequential state
estimation problem. The NN weights W are interpreted as states of the trivially evolving dynamic system,
with the measurement equation described by the NN function h

W(t + 1) = W(t) + ν(t), (11)
yd(t) = h(W(t), i(t),v(t − 1)) + ω(t), (12)

where yd(t) is the desired output vector, i(t) is the external input vector, v is the RNN state vector (internal
feedback), ν(t) is the process noise vector, and ω(t) is the measurement noise vector. The weights W may
be organized into g mutually exclusive weight groups. This trades off performance of the training method
with its efficiency; a sufficiently effective and computationally efficient choice, termed node decoupling, has
been to group together those weights that feed each node. Whatever the chosen grouping, the weights of
group j are denoted by Wj . The corresponding derivatives of network outputs with respect to weights Wj

are placed in Nout columns of Hj .
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To minimize at time step t a cost function cost =
∑

t
1
2ξ(t)T S(t)ξ(t), where S(t) > 0 is a weighting

matrix and ξ(t) is the vector of errors, ξ(t) = yd(t)− y(t), where y(t) = h(·) from (12), the decoupled EKF
equations are as follows [58]:

A∗(t) =

⎡
⎣ 1

η(t)
I +

g∑
j=1

H∗
j (t)

T Pj(t)H∗
j (t)

⎤
⎦
−1

, (13)

K∗
j (t) = Pj(t)H∗

j (t)A
∗(t), (14)

Wj(t + 1) = Wj(t) + K∗
j (t)ξ

∗(t), (15)

Pj(t + 1) = Pj(t) − K∗
j (t)H

∗
j (t)

T Pj(t) + Qj(t). (16)

In these equations, the weighting matrix S(t) is distributed into both the derivative matrices and the error
vector: H∗

j (t) = Hj(t)S(t)
1
2 and ξ∗(t) = S(t)

1
2 ξ(t). The matrices H∗

j (t) thus contain scaled derivatives of
network (or the closed-loop system) outputs with respect to the jth group of weights; the concatenation
of these matrices forms a global scaled derivative matrix H∗(t). A common global scaling matrix A∗(t) is
computed with contributions from all g weight groups through the scaled derivative matrices H∗

j(t), and
from all of the decoupled approximate error covariance matrices Pj(t). A user-specified learning rate η(t)
appears in this common matrix. (Components of the measurement noise matrix are inversely proportional
to η(t).) For each weight group j, a Kalman gain matrix K∗

j (t) is computed and used in updating the values
of Wj(t) and in updating the group’s approximate error covariance matrix Pj(t). Each approximate error
covariance update is augmented by the addition of a scaled identity matrix Qj(t) that represents additive
data deweighting.

We often employ a multi-stream version of the algorithm above. A concept of multi-stream was proposed
in [87] for improved training of RNN via EKF. It amounts to training Ns copies (Ns streams) of the same
RNN with Nout outputs. Each copy has the same weights but different, separately maintained states. With
each stream contributing its own set of outputs, every EKF weight update is based on information from all
streams, with the total effective number of outputs increasing to M = NsNout. The multi-stream training
may be especially effective for heterogeneous data sequences because it resists the tendency to improve local
performance at the expense of performance in other regions.

The Stochastic Meta-Descent (SMD) is proposed in [88] for training nonlinear parameterizations including
NN. The iterative SMD algorithm consists of two steps. First, we update the vector p of local learning rates

p(t) = diag(p(t − 1))
× max(0.5, 1 + µdiag(v(t))∇(t)), (17)

v(t + 1) = γv(t) + diag(p(t))(∇(t) − γCv(t)), (18)

where γ is a forgetting factor, µ is a scalar meta-learning factor, v is an auxiliary vector, Cv(t) is the product
of a curvature matrix C with v, ∇ is a derivative of the instantaneous cost function with respect to W (e.g.,
the cost is 1

2ξ(t)T S(t)ξ(t); oftentimes ∇ is averaged over a short window of time steps).
The second step is the NN weight update

W(t + 1) = W(t) − diag(p(t))∇(t). (19)

In contrast to EKF which uses explicit approximation of the inverse curvature C−1 as the P matrix (16),
the SMD calculates and stores the matrix-vector product Cv, thereby achieving dramatic computational
savings. Several efficient ways to obtain Cv are discussed in [88]. We utilize the product Cv = ∇∇T v where
we first compute the scalar product ∇T v, then scale the gradient ∇ by the result. The well adapted p allows
the algorithm to behave as if it were a second-order method, with the dominant scaling linear in W. This is
clearly advantageous for problems requiring large NN.

Now we briefly discuss training methods which do not use derivatives.
ALOPEX, or ALgorithm Of Pattern EXtraction, is a correlation based algorithm proposed in [89]

∆Wij(n) = η∆Wij(n − 1)∆R(n) + ri(n). (20)
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In terms of NN variables, ∆Wij(n) is the difference between the current and previous value of weight Wij at
iteration n, ∆R(n) is the difference between the current and previous value of the NN performance function
R (not necessarily in the form of (4)), η is the learning rate, and the stochastic term ri(n) ∼ N(0, σ2) (a
non-Gaussian term is also possible) is added to help escaping poor local minima. Related correlation based
algorithms are described in [90].

Another method of non-differential optimization is called particle swarm optimization (PSO) [91]. PSO is
in principle a parallel search technique for finding solutions with the highest fitness. In terms of NN, it uses
multiple weight vectors, or particles. Each particle has its own position Wi and velocity Vi. The particle
update equations are

V next
i,j = ωVi,j + c1φ

1
i,j(Wibest,j − Wi,j) + c2φ

2
i,j(Wgbest,j − Wi,j), (21)

Wnext
i,j = Wi,j + V next

i,j , (22)

where the index i is the ith particle, j is its jth dimension (i.e., jth component of the weight vector),
φ1

i,j , φ
2
i,j are uniform random numbers from zero to one, Wibest is the best ith weight vector so far (in terms

of evolution of the ith vector fitness), Wgbest is the overall best weight vector (in terms of fitness values
of all weight vectors). The control parameters are termed the accelerations c1, c2 and the inertia ω. It is
noteworthy that the first equation is to be done first for all pairs (i, j), followed by the second equation
execution for all the pairs. It is also important to generate separate random numbers φ1

i,j , φ
2
i,j for each pair

(i, j) (more common notation elsewhere omits the (i, j)-indexing, which may result in less effective PSO
implementations if done literally).

The PSO algorithm is inherently a batch method. The fitness is to be evaluated over many data vectors
to provide reliable estimates of NN performance.

Performance of the PSO algorithm above may be improved by combining it with particle ranking and
selection according to their fitness [92–94], resulting in hybrids between PSO and evolutionary methods. In
each generation, the PSO-EA hybrid ranks particles according to their fitness values and chooses the half of
the particle population with the highest fitness for the PSO update, while discarding the second half of the
population. The discarded half is replenished from the first half which is PSO-updated and then randomly
mutated.

Simultaneous Perturbation Stochastic Approximation (SPSA) is also appealing due to its extreme sim-
plicity and model-free nature. The SPSA algorithm has been tested on a variety of nonlinearly parameterized
adaptive systems including neural networks [95].

A popular form of the gradient descent-like SPSA uses two cost evaluations independent of parameter
vector dimensionality to carry out one update of each adaptive parameter. Each SPSA update can be
described by two equations

Wnext
i = Wi − aGi(W), (23)

Gi(W) =
cost(W + c∆) − cost(W − c∆)

2c∆i
, (24)

where Wnext is the updated value of the NN weight vector, ∆ is a vector of symmetrically distributed
Bernoulli random variables generated anew for every update step (e.g., the ith component of ∆ denoted as
∆i is either +1 or −1), c is size of a small perturbation step, and a is a learning rate.

Each SPSA update requires that two consecutive values of the cost function cost be computed, i.e.,
one value for the “positive” perturbation of weights cost(W + c∆) and another value for the “negative”
perturbation cost(W−c∆) (in general, the cost function depends not only on W but also on other variables
which are omitted for simplicity). This means that one SPSA update occurs no more than once every other
time step. As in the case of the SMD algorithm (17)–(19), it may also be helpful to let the cost function
represent changes of the cost over a short window of time steps, in which case each SPSA update would be
even less frequent. Variations of the base SPSA algorithm are described in detail in [95].

Non-differential forms of KF have also been developed [96–98]. These replace backpropagation with many
forward propagations of specially created test or sigma vectors. Such vectors are still only a small fraction
of probing points required for high-accuracy approximations because it is easier to approximate a nonlinear
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transformation of a Gaussian density than an arbitrary nonlinearity itself. These truly nonlinear KF methods
have been shown to result in more effective NN training than the EKF method [99–101], but at the price of
significantly increased computational complexity.

Tremendous reductions in cost of the general-purpose computer memory and relentless increase in speed
of processors have greatly relaxed implementation constraints for NN models. In addition, NN architectural
innovations called liquid state machines (LSM) and echo state networks (ESN) have appeared recently (see,
e.g., [102]), which reduce the recurrent NN training problem to that of training just the weights of the output
nodes because other weights in the RNN are fixed. Recent advances in LSM/ESN are reported in [103].

5 RNN: A Motivating Example

Recurrent neural networks are capable to solve more complex problems than networks without feedback
connections. We consider a simple example illustrating the need for RNN and propose an experimentally
verifiable explanation for RNN behavior, referring the reader to other sources for additional examples and
useful discussions [71, 104–110].

Figure 10 illustrates two different signals, all continued after 100 time steps at the same level of zero. An
RNN is tasked with identifying two different signals by ascribing labels to them, e.g., +1 to one and −1 to
another. It should be clear that only a recurrent NN is capable of solving this task. Only an RNN can retain
potentially arbitrarily long memory of each input signal in the region where the two inputs are no longer
distinguishable (the region beyond the first 100 time steps in Fig. 10).

We chose an RNN with one input, one fully connected hidden layer of 10 recurrent nodes, and one bipolar
sigmoid node as output. We employed the training based on BPTT(10) and EKF (see Sect. 4) with 150 time
steps as the length of training trajectory, which turned out to be very quick due to simplicity of the task.
Figure 11 illustrates results after training. The zero-signal segment is extended for additional 200 steps for
testing, and the RNN still distinguishes the two signals clearly.

We examine the internal state (hidden layer) of the RNN. We can see clearly that all time series are
different, depending on the RNN input; some node signals are very different, resembling the decision (output)
node signal. For example, Fig. 12 shows the output of the hidden node 4 for both input signals. This hidden
node could itself be used as the output node if the decision threshold is set at zero.

Our output node is non-recurrent. It is only capable of creating a separating hyperplane based on its
inputs, or outputs of recurrent hidden nodes, and the bias node. The hidden layer behavior after training
suggests that the RNN spreads the input signal into several dimensions such that in those dimensions the
signal classification becomes easy.
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Fig. 10. Two inputs for the RNN motivating example. The blue curve is sin(5t/π), where t = [0 : 1 : 100], and the
green curve is sawtooth(t, 0.5) (Matlab notation)
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Fig. 11. The RNN results after training. The segment from 0 to 200 is for training, the rest is for testing
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Fig. 12. The output of the hidden node 4 of the RNN responding to the first (black) and the second (green) input
signals. The response of the output node is also shown in red and blue for the first and the second signal, respectively

The hidden node signals in the region where the input signal is zero do not have to converge to a fixed
point. This is illustrated in Fig. 13 for the segment where the input is zero (the top panel). It is sufficient
that the hidden node behavior for each signal of a particular class belong to a distinct region of the hidden
node state space, non-overlapping with regions for other classes. Thus, oscillatory or even chaotic behavior
for hidden nodes is possible (and sometimes advantageous – see [110] and [109] for useful discussions), as
long as a separating hyperplane exists for the output to make the classification decision. We illustrate in
Fig. 11 the long retention by testing the RNN on added 200-point segments of zero inputs to each of the
training signals.

Though our example is for two classes of signals, it is straightforward to generalize it to multi-class prob-
lems. Clearly, not just classification problems but also regression problems can be solved, as demonstrated
previously in [73], often with the addition of hidden (not necessarily recurrent) layers.

Though we employed the EKF algorithm for training of all RNN weights, other training methods can
certainly be utilized. Furthermore, other researchers, e.g., [102], recently demonstrated that one might replace
training RNN weights in the hidden layer with their random initializations, provided that the hidden layer
nodes exhibit sufficiently diverse behavior. Only weights between the hidden nodes and the outputs would
have to be trained, thereby greatly simplifying the training process. Indeed, it is plausible that even random
weights in the RNN could sometimes result in sufficiently well separated responses to input signals of different
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Fig. 13. The hidden node outputs of the RNN and the input signal (thick blue line) of the first (top) and the second
(bottom) classes

classes, and this would also be consistent with our explanation for the trained RNN behavior observed in
the example of this section.

6 Verification and Validation (V & V)

Verification and validation of performance of systems containing NN is a critical challenge of today and
tomorrow [111, 112]. Proving mathematically that a NN will have the desired performance is possible, but
such proofs are only as good as their assumptions. Sometimes too restrictive, hard to verify or not very
useful assumptions are put forward just to create an appearance of mathematical rigor. For example, in
many control papers a lot of efforts is spent on proving the uniform ultimate boundedness (UUB) property
without due diligence demanded in practice by the need to control the value of that ultimate bound. Thus,
stability becomes a proxy for performance, which is not often the case. In fact, physical systems in the
automotive world (and in many other worlds too) are always bounded because of both physical limits and
various safeguards.

As mentioned in Sect. 3, it is reasonable to expect that a trained NN can do an adequate job interpolating
to other sets of data it has not seen in training. Extrapolation significantly beyond the training set is not
reasonable to expect. However, some automotive engineers and managers who are perhaps under pressure
to deploy a NN system as quickly as possible may forget this and insist that the NN be tested on data
which differs as much as possible from the training data, which clearly runs counter to the main principle of
designing experiments with NN.

The inability to prove rigorously superior performance of systems with NN should not discourage auto-
motive engineers from deploying such systems. Various high-fidelity simulators, HILS, etc., are simplifying
the work of performance verifiers. As such, these systems are already contributing to growing popularity of
statistical methods for performance verification because other alternatives are simply not feasible [113–116].
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To illustrate statistical approach of performance verification of NN, we consider the following performance
verification experiment. Assume that a NN is tested on N independent data sets. If the NN performance in
terms of a performance measure m is better than md, then the experiment is considered successful, otherwise
failed. The probability that a set of N experiments is successful is given by the classic formula of Bernoulli
trials (see also [117])

Prob = (1 − p)N , (25)

where p is unknown true probability of failure. To keep the probability of observing no failures in N trials
below κ even if p ≥ ε requires

(1 − ε)N ≤ κ, (26)

which means

N ≥ lnκ

ln(1 − ε)
=

ln 1
κ

ln 1
1−ε

≈ 1
ε
ln

1
κ

. (27)

If ε = κ = 10−6, then N ≥ 1.38 × 107. It would take less than 4 h of testing (3.84 h), assuming that a single
verification experiment takes 1 ms.

Statistical performance verification illustrated above is applicable to other “black-box” approaches. It
should be kept in mind that a NN is seldom the only component in the entire system. It may be useful and
safer in practice to implement a hybrid system, i.e., a combination of a NN module (“black box”) and a
module whose functioning is more transparent than that of NN. The two modules together (and possibly the
plant) form a system with desired properties. This approach is discussed in [8], which is the next chapter of
the book.
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