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Summary. Rule extraction for root cause analysis in manufacturing process optimization is an alternative to tradi-
tional approaches to root cause analysis based on process capability indices and variance analysis. Process capability
indices alone do not allow to identify those process parameters which have the major impact on quality since these
indices are only based on measurement results and do not consider the explaining process parameters. Variance
analysis is subject to serious constraints concerning the data sample used in the analysis. In this work a rule search
approach using Branch and Bound principles is presented, considering both the numerical measurement results and
the nominal process factors. This combined analysis allows to associate the process parameters with the measurement
results and therefore to identify the main drivers for quality deterioration of a manufacturing process.

1 Introduction

An important group of intelligent methods is concerned with discovering interesting information in large
data sets. This discipline is generally referred to as Knowledge Discovery or Data Mining.

In the automotive domain, large data sets may arise through on-board measurements in cars. However,
more typical sources of huge data amounts are in vehicle, aggregate or component manufacturing process.
One of the most prominent applications is the manufacturing quality control, which is the topic of this
chapter.

Knowledge discovery subsumes a broad variety of methods. A rough classification may be into:

• Machine learning methods
• Neural net methods
• Statistics

This partitioning is neither complete nor exclusive. The methodical frameworks of machine learning methods
and neural nets have been extended by aspects covered by classical statistics, resulting in a successful
symbiosis of these methods.

An important stream within the machine learning methods is committed to a quite general representation
of discovered knowledge: the rule based representation. A rule has the form x → y, x and y being, respectively
the antecedent and the consequent. The meaning of the rule is: if the antecedent (which has the form of a
logical expression) is satisfied, the consequent is sure or probable to be true.

The discovery of rules in data can be simply defined as a search for highly informative (i.e., interesting
from the application point of view) rules. So the most important subtasks are:

1. Formulating the criterion to decide to which extent a rule is interesting
2. Using an appropriate search algorithm to find those rules that are the most interesting according to this

criterion

The research of the last decades has resulted in the formulation of various systems of interestingness criteria
(e.g., support, confidence or lift), and the corresponding search algorithms.
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However, general algorithms may miss the goal of a particular application. In such cases, dedicated
algorithms are useful. This is the case in the application domain reported here: the root cause analysis for
process optimization.

The indices for quality measurement and our application example are briefly presented in Sect. 2. The
goal of the application is to find manufacturing parameters to which the quality level can be attributed. In
order to accomplish this, rules expressing relationships between parameters and quality need to be searched
for. This is what our rule extraction search algorithm based on Branch and Bound principles of Sect. 3
performs. Section 5 shows results of our comparative simulations documenting the efficiency of the proposed
algorithm.

2 Root Cause Analysis for Process Optimization

The quality of a manufacturing process can be seen as the ability to manufacture a certain product within its
specification limits U , L and as close as possible to its target value T , describing the point where its quality is
optimal. A deviation from T generally results in quality reduction, and minimizing this deviation is crucial for
a company to be competitive in the marketplace. In literature, numerous process capability indices (PCIs)
have been proposed in order to provide a unitless quality measures to determine the performance of a
manufacturing process, relating the preset specification limits to the actual behavior [6].

The behavior of a manufacturing process can be described by the process variation and process location.
Therefore, to assign a quality measure to a process, the produced goods are continuously tested and the
performance of the process is determined by calculating its PCI using the measurement results. In some
cases it is not feasible to test/measure all goods of a manufacturing process, as the inspection process might
be too time consuming, or destructive. Only a sample is drawn, and the quality is determined upon this
sample set. In order to predict the future quality of a manufacturing process based on the past performance,
the process is supposed to be stable or in control. This means that both process mean and process variation
have to be, in the long run, in between pre-defined limits. A common technique to monitor this is control
charts, which are an essential part of the Statistical Process Control.

The basic idea for the most common indices is to assume the considered manufacturing process follows
a normal distribution and the distance between the upper and lower specification limit U and L equals 12σ.
This requirement implies a lot fraction defective of the manufacturing process of no more than 0.00197ppm
∼= 0% and reflects the widespread Six-Sigma principle (see [7]). The commonly recognized basic PCIs Cp,
Cpm, Cpk and Cpmk can be summarized by a superstructure first introduced by Vännman [9] and referred
to in literature as Cp(u, v)

Cp(u, v) =
d − u|µ − M |

3
√

σ2 + v(µ − T )2
, (1)

where σ is the process standard deviation, µ the process mean, d = (U−L)/2 tolerance width, m = (U +L)/2
the mid-point between the two specification limits and T the target value. The basic PCIs can be obtained
by choosing u and v according to

Cp ≡ Cp(0, 0); Cpk ≡ Cp(1, 0)
Cpm ≡ Cp(0, 1); Cpmk ≡ Cp(1, 1). (2)

The estimators for these indices are obtained by substituting µ by the sample mean X̄ =
∑n

i=1 Xi/n and
σ by the sample variance S2 =

∑n
i=1(Xi − X̄)2/(n − 1). They provide stable and reliable point estimators

for processes following a normal distribution. However, in practice, normality is hardly encountered. Con-
sequently the basic PCIs as defined in (1) are not appropriate for processes with non-normal distributions.
What is really needed are indices which do not make assumptions about the distribution, in order to be
useful for measuring quality of a manufacturing process

C′
p(u, v) =

d − u|m − M |
3
√

[F99.865−F0.135
6 ]2 + v(m − T )2

. (3)
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In 1997, Pearn and Chen introduced in their paper [8] a non-parametric generalization of the PCIs superstruc-
ture (1) in order to cover those cases in which the underlying data does not follow a Gaussian distribution.
The authors replaced the process standard deviation σ by the 99.865 and 0.135 quantiles of the empiric
distribution function and µ by the median of the process. The rationale for it is that the difference between
the F99.865 and F0.135 quantiles equals again 6σ or C′

p(u, v) = 1, under the standard normal distribution
with m = M = T . As an analogy to the parametric superstructure (1), the special non-parametric PCIs C′

p,
C′

pm, C′
pk and C′

pk can be obtained by applying u and v as in (2).
Assuming that the following assumptions hold, a class of non-parametric process indices and a particular

specimen thereof can be introduced: Let Y : Ω → R be a random variable with Y(ω) = (Y 1, . . . , Y m) ∈
S = {S1 × · · · × Sm}, Si ∈ {si

1, . . . , s
i
mi

} where si
j ∈ N describe the possible influence variables or process

parameters. Furthermore, let X : Ω → R be the corresponding measurement results with X(ω) ∈ R. Then
the pair X = (X,Y) denotes a manufacturing process and a class of process indices can be defined as

Definition 1. Let X = (X,Y) describe a manufacturing process as defined above. Furthermore, let f(x, y)
be the density function of the underlying process and w : R → R an arbitrary measurable function. Then

Qw,X = E(w(x)|Y ∈ S) =
E(w(x)11{Y∈S})

P (Y ∈ S)
(4)

defines a class of process indices.

Obviously, if w(x) = x or w(x) = x2 we obtain the first and the second moment of the process, respectively, as
P (Y ∈ S) = 1. However, to determine the quality of a process, we are interested in the relationship between
the designed specification limits U, L and the process behavior described by its variation and location. A
possibility is to choose the function w(x) in such way that it becomes a function of the designed limits U
and L. Given a particular manufacturing process X with (xi,yi), i = 1, . . . , n we can define

Definition 2. Let X = (X, Y ) be a particular manufacturing process with realizations (xi,yi), i = 1, . . . , n
and U, L be specification limits. Then, the Empirical Capability Index (Eci) is defined as

Êci =
∑n

i=1 11{L≤xi≤U}11{yi∈S}∑n
i=1 11{yi∈S}

. (5)

By choosing the function w(x) as the identity function 11(L≤x≤U), the Eci measures the percentage of data
points which are within the specification limits U and L. A disadvantage is that for processes with a relatively
good quality, it may happen that all sampled data points are within the Six-Sigma specification limits (i.e.,
C′

p > 1), and so the sample Eci becomes one. To avoid this, the specification limits U and L have to be
relaxed to values realistic for the given sample size, in order to get “further into the sample”, by linking
them to the behavior of the process. One possibility is to choose empirical quantiles

[L̄, Ū ] = [Fα, F1−α].

The drawback of using empirical quantiles as specification limits is that L̄ and Ū do not depend anymore
on the actual specification limits U and L. But it is precisely the relation of the process behavior and
the designed limits which is essential for determining the quality of a manufacturing process. A combined
solution, which on one hand depends on the actual behavior and on the other hand incorporates the designed
specification limit U and L can be obtained by

[L̄, Ū ] =
[
µ̂0,5 − µ̂0,5 − LSL

t
, µ̂0,5 +

USL − µ̂0,5

t

]

with t ∈ R being a adjustment factor. When setting t = 4 the new specification limits incorporate the
Six-Sigma principle, assuming the special case of a centralized normally distributed process.

As stated above, the described PCIs only provide a quality measure but do not identify the major influence
variables responsible for poor or superior quality. But knowing these factors is necessary to continuously
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Table 1. Measurement results and process parameters for the optimization at a foundry of an automotive
manufacturer

Result Tool Shaft Location

6.0092 1 1 Right
6.008 4 2 Right
6.0061 4 2 Right
6.0067 1 2 Left
. . . . . . . . . . . .
6.0076 4 1 Right
6.0082 2 2 Left
6.0075 3 1 Right
6.0077 3 2 Right
6.0061 2 1 Left
6.0063 1 1 Right
6.0063 1 2 Right

improve a manufacturing process in order to produce high quality products in the long run. In practice it
is desirable to know, whether there are subsets of influence variables and their values, such that the quality
of a process becomes better, if constraining the process by only these parameters. In the following section
a non-parametric, numerical approach for identifying those parameters is derived and an algorithm, which
efficiently solves this problem is presented.

2.1 Application Example

To illustrate the basic ideas of the employed methods and algorithms, an example is used throughout this
paper, including an evaluation in the last section. This example is a simplified and anonymized version of a
manufacturing process optimization at a foundry of a premium automotive manufacturer.

In Table 1 an excerpt from the data sheet for such a manufacturing process is shown which is used for
further explanations. There are some typical influence variables (i.e., process parameters, relevant for the
quality of the considered product) as the used tools, locations and used shafts, each with their specific values
for each manufacture specimen. Additionally, the corresponding quality measurement (column “Result”) –
a geometric property or the size of a drilled hole – is a part of a data record.

2.2 Manufacturing Process Optimization: The Traditional Approach

A common technique to identify significant discrete parameters having an impact on numeric variables like
measurement results, is the Analysis of Variance (ANOVA). Unfortunately, the ANOVA technique is only
useful if the problem is relatively low dimensional. Additionally, the considered variables ought to have
a simple structure and should be well balanced. Another constraint is the assumption that the analyzed
data follows a multivariate Gaussian distribution. In most real world applications these requirements are
hardly complied with. The distribution of the parameters describing the measured variable is in general
non-parametric and often high dimensional. Furthermore, the combinations of the cross product of the
parameters are non-uniformly and sparely populated, or have a simple dependence structure. Therefore, the
method of Variance Analysis is only applicable in some special cases. What is really needed is a more general,
non-parametric approach to determine a set of influence variables responsible for lower or higher quality of
a manufacturing process.

3 Rule Extraction Approach to Manufacturing Process Optimization

A manufacturing process X is defined as a pair (X,Y) where Y(ω) describes the influence variables (i.e.,
process parameters) and X(ω) the corresponding goal variables (measurement results). As we will see later,
it is sometimes useful to constrain the manufacturing process to a particular subset of influence variables.
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Table 2. Possible sub-processes with support and conditional Eci for the foundry’s example

NX0 QX0 Sub-process X0

123 0.85 Tool in (2,4) and location in (left)
126 0.86 Shaft in (2) and location in (right)
127 0.83 Tool in (2,3) and shaft in (2)
130 0.83 Tool in (1,4) and location in (right)
133 0.83 Tool in (4)
182 0.81 Tool not in (4) and shaft in (2)
183 0.81 Tool not in (1) and location in (right)
210 0.84 Tool in (1,2)
236 0.85 Tool in (2,4)
240 0.81 Tool in (1,4)
244 0.81 Location in (right)
249 0.83 Shaft in (2)
343 0.83 Tool not in (3)

Definition 3. Let X describe a manufacturing process as stated in Definition 1 and Y0 : Ω → R be a
random variable with Y0(ω) ∈ S0 ⊂ S. Then a sub-process of X is defined by the pair X0 = (X,Y0).

This subprocess constitutes the antecedent (i.e., precondition) of a rule to be discovered. The consequent of
the rule is defined by the quality level (as measured by a process capability index) implied by this antecedent.
To remain consistent with the terminology of our application domain, we will talk about subprocesses and
process capability indices, rather than about rule antecedents and consequents.

Given a manufacturing process X with a particular realization (xi,yi), i = 1, . . . , n the support of a
sub-process X0 can be written as

NX0 =
n∑

i=1

11{yi∈S0}, (6)

and consequently, a conditional PCI is defined as QX0. Any of the indices defined in the previous section
can be used, whereby the value of the respective index is calculated on the conditional subset X0 = {xi :
yi ∈ S0, i = 1, . . . , n}. We henceforth use the notation X̃ ⊆ X to denote possible sub-processes of a given
manufacturing process X . An extraction of possible sub-process of the introduced example with their support
and conditional Eci is given in Table 2.

To determine those parameters which have the greatest impact on quality, an optimal sub-process con-
sisting of optimal influence combinations has to be identified. The first approach could be to maximize QX̃
over all sub-processes X̃ of X . In general, this approach would yield an “optimal” sub-process X̃ ∗, which
has only a limited support (NX̃ ∗ � n) (the fraction of the cases that meet the constraints defining this
subprocess). Such a formal optimum is usually of limited practical value since it is not possible to constrain
any parameters to arbitrary values. For example, constraining the parameter “working shift” to the value
“morning shift” would not be economically acceptable even if a quality increase were attained.

A better approach is to think in economic terms and to weigh the factors responsible for minor quality,
which we want to eliminate, by the costs of removing them. In practise this is not feasible, as tracking the
actual costs is too expensive. But it is likely that infrequent influence factors, which are responsible for lower
quality are cheaper to remove than frequent influences. In other words, sub-processes with high support are
preferable over those sub-processes yielding a high quality measure but having a low support.

In most applications, the available sample set for process optimization is small, often having numerous
influence variables but only a few measurement results. By limiting ourselves only to combinations of vari-
ables, we might get too small a sub-process (having low support). Therefore, we extend the possible solutions
to combinations of variables and their values – the search space for optimal sub-processes is spanned by the
powerset of the influence parameters P(Y). The two sided problem, to find the parameter set combining
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on one hand an optimal quality measure and on the other hand a maximal support, can be summarized,
according to the above notation, by the following optimization problem:

Definition 4.

(PX ) =

⎧⎨
⎩

NX̃ → max
QX̃ ≥ qmin

X̃ ⊆ X .

The solution X̃ ∗ of the optimization problem is the subset of process parameters with maximal support among
those processes, having a quality better than the given threshold qmin. Often, qmin is set to the common
values for process capability of 1.33 or 1.67. In those cases, where the quality is poor, it is preferable to set
qmin to the unconditional PCIs, to identify whether there is any process optimization potential.

Due to the nature of the application domain, the investigated parameters are discrete which inhibits an
analytical solution but allows the use of Branch and Bound techniques. In the following section a root cause
algorithm (RCA) which efficiently solves the optimization problem according to Definition 4 is presented.
To avoid the exponential amount of possible combinations spanned by the cross product of the influence
parameters, several efficient cutting rules for the presented algorithm are derived and proven in the next
subsection.

4 Manufacturing Process Optimization

4.1 Root Cause Analysis Algorithm

In order to access and efficiently store the necessary information and to apply Branch and Bound techniques, a
multi-tree was chosen as representing data structure. Each node of the tree represents a possible combination
of the influence parameters (sub-process) and is built on the combination of the parent influence set and a
new influence variable and its value(s). Figure 1 depicts the data structure, whereby each node represents
the set of sub-processes generated by the powerset of the considered variable(s). Let I, J be to index sets
with I = {1, . . . , m} and J ⊆ I. Then X̃J denotes the set of sub-processes constrained by the powerset of
Y j , j ∈ J and arbitrary other variables (Y i, i ∈ I \ J).

To find the optimal solution to the optimization problem according to Definition 4, a combination of
depth-first and breadth-first search is applied to traverse the multitree (see Algorithm 1) using two Branch
and Bound principles. The first, an generally applicable principle is based on the following relationship: by

{  }

root

X 1

{       } {       } {       }

{    }

{                }

{  } {          }

X 1,2 X 1,3 X 1,m

X 2 X m−1

X m−1,m

X m

Fig. 1. Data structure for the root cause analysis algorithm

Algorithm 1 Branch & Bound algorithm for process optimization
1: procedure TraverseTree(X̃)
2: X = GenerateSubProcesses(X̃ )
3: for all x̃ ∈ X do
4: TraverseTree(x̃)
5: end for
6: end procedure
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descending a branch of the tree, the number of constraints is increasing, as new influence variables are added
and therefore the sub-process support decreases (see Fig. 1). As in Table 2, two variables (sub-processes), i.e.,
X1 = Shaft in (2) and X2 = Location in (right) have supports of NX1 = 249 and NX2 = 244, respectively.
The joint condition of both has a lower (or equal) support than any of them (NX1,X2 = 126).

Thus, if a node has a support lower than an actual minimum support, there is no possibility to find a node
(sub-process) with a higher support in the branch below. This reduces the time to find the optimal solution
significantly, as a good portion of the tree to traverse can be omitted. This first principle is realized in the
function GenerateSubProcesses as listed in Algorithm 2 and can be seen as the breadth-first-search of
the RCA. This function takes as its argument a sub-process and generates all sub-processes with a support
higher than the actual nmax.

Algorithm 2 Branch & Bound algorithm for process optimization
1: procedure GenerateSubProcesses(X )
2: for all X̃ ⊆ X do
3: if NX̃ > nmax and QX̃ ≥ qmin then
4: nmax = NX̃
5: end if
6: if NX̃ > nmax and QX̃ < qmin then
7: X = {X ∪ X̃}
8: end if
9: end for

10: return X
11: end procedure

The second principle is to consider disjoint value sets. For the support of a sub-process the following
holds: Let X1,X2 be two sub-sets with Y1(ω) ∈ S1 ⊆ S, Y2(ω) ∈ S2 ⊆ S with S1 ∩ S2 = ∅ and X1 ∪ X2

denote the unification of two sub-processes. It is obvious that NX1∪X2 = NX1 + NX2 , which implies that by
extending the codomain of the influence variables, the support NX1∪X2 can only increase. For the a class of
convex process indices, as defined in Definition 1, the second Branch and Bound principle can be derived,
based on the next theorem:

Theorem 1. Given two sub-processes X1 = (X,Y1), X2 = (X,Y2) of a manufacturing process X = (X,Y)
with Y1(ω) ∈ S1 ⊆ S, Y2(ω) ∈ S2 ⊆ S and S1 ∩ S2 = ∅. Then for the class of process indices as defined in
(4), the following inequality holds:

min
Z∈{X1,X2}

Qw,Z ≤ Qw,X1∪X2 ≤ max
Z∈{X1,X2}

Qw,Z .

Proof. With p = P (Y∈S1)
P (Y∈S1∪S2)

the following convex property holds:

Qw,X1∪X2 = E (w(x)|Y(ω) ∈ S1 ∪ S2)

=
E
(
w(x)11{Y(ω)∈S1∪S2}

)
P (Y(ω) ∈ S1 ∪ S2)

=
E
(
w(x)11{Y(ω)∈S1}

)
+ E

(
w(x)11{Y(ω)∈S2}

)
P (Y(ω) ∈ S1 ∪ S2)

= p
E
(
w(x)11{Y(ω)∈S1}

)
P (Y(ω) ∈ S1)

+ (1 − p)
E
(
w(x)11{Y(ω)∈S2}

)
P (Y(ω) ∈ S2)

.

Therefore, by combining two disjoint combination sets, the Eci of the union of these two sets lies in between
the maximum and minimum Eci of these sets. This can be illustrated by considering Table 2 again. The two
disjoint sub-processes X1 = Tool in (1,2) and X2 = Tool in (4) yield a conditional Eci of QX1 = 0.84 and
QX2 = 0.82. The union of both sub-processes yields Eci value of QX1∪X2 = QTool not in (3) = 0.82. This value
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is within the interval < 0.82, 0.84 >, as stated by the theorem. This convex property reduces the number of
times the Eci actually has to be calculated, as in some special cases we can estimate the value of Eci by its
upper and lower limits and compare it with qmin.

In the root cause analysis for process optimization, we are in general not interested in one global optimal
solution but in a list of processes, having a quality better than the defined threshold qmin and maximal
support. An expert might choose out of the n-best processes the one which he wishes to use as a benchmark.
To get the n-best sub-processes, we need to traverse also those branches which already exhibit a (local)
optimal solution. The rationale is that a (local) optimum X̃ ∗ with NX̃ ∗ > nmax might have a child node in
its branch, which might yield the second best solution. Therefore, line 4 in Algorithm 2 has to be adapted by
postponing the found solution X̃ to the set of sub-nodes X. Hence, the actual maximal support is no longer
defined by the (actual) best solution, but by the (actual) n-th best solution.

In many real-world applications, the influence domain is mixed, consisting of discrete data and numerical
variables. To enable a joint evaluation of both influence types, the numerical data is transformed into nominal
data by mapping the continuous data onto pre-set quantiles. In most of our applications, the 10, 20, 80 and
90% quantiles have performed best. Additionally, only those influence sets have to be accounted for which
are successional.

4.2 Verification

As in practice the samples to analyze are small and the used PCIs are point estimators, the optimum of the
problem according to Definition 4 can only be defined in statistical terms. To get a more valid statement
of the true value of the considered PCI, confidence intervals have to be used. In the special case, where the
underlying data follows a known distribution, it is straightforward to construct a confidence interval. For
example, if a normal distribution can be assumed, the distribution of Cp

Ĉp
(Ĉp denotes the estimator of Cp)

is known, and a (1 − α)% confidence interval for Cp is given by

C(X) =

⎡
⎣Ĉp

√
χ2

n−1; α
2

n − 1
, Ĉp

√
χ2

n−1;1−α
2

n − 1

⎤
⎦ . (7)

For the other parametric basic indices, in general there exits no analytical solution as they all have a non-
centralized χ2 distribution. In [2, 10] or [4], for example, the authors derive different numerical approximations
for the basic PCIS, assuming a normal distribution.

If there is no possibility to make an assumption about the distribution of the data, computer based, sta-
tistical methods such as the well known Bootstrap method [5] are used to determine confidence intervals for
process capability indices. In [1], three different methods for calculating confidence intervals are derived and
a simulation study is performed for these intervals. As result of this study, the bias-corrected-method (BC)
outperformed the other two methods (standard-bootstrap and percentile-bootstrap-method). In our appli-
cations, an extension to the BC-Method called the Bias-corrected-accelerated-method (BCa) as described in
[3] was used for determining confidence intervals for the non-parametric basic PCIs, as described in (3). For
the Empirical Capability Index Eci a simulation study showed that the standard-bootstrap-method, as used
in [1], performed the best. A (1 − α)% confidence interval for the Eci can be obtained using

C(X) =
[
Êci − Φ−1(1 − α)σB , Êci + Φ−1(1 − α)σB

]
, (8)

where Êci denotes an estimator for Eci, σB is the Bootstrap standard deviation, and Φ−1 is the inverse
standard normal.

As all statements that are made using the RCA algorithm are based on sample sets, it is important
to verify the soundness of the results. Therefore, the sample set to analyze is to be randomly divided into
two disjoint sets: training and test set. A list of the n best sub-processes is generated, by first applying the
described RCA algorithm and second the referenced Bootstrap-methods to calculate confidence intervals.
In the next step, the root cause analysis algorithm is applied to the test set. The final output is a list of
sub-processes, having the same influence sets and a comparable level for the used PCI.
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5 Experiments

An evaluation of the concept was performed on data from a foundry plant for engine manufacturing in the
premium automotive industry (see Sect. 2). Three different groups of data sets where used with a total of 33
different data sets of samples to evaluate the computational performance of the used algorithms. Each of the
analyzed data sets comprises measurement results describing geometric characteristics like positions of drill
holes or surface texture of the produced products and the corresponding influence sets like a particular
machine number or a worker’s name. The first group of analyzed data, consists of 12 different measurement
variables with four different influence variables, each with two to nine different values. The second group
of data sets comprises 20 different sample sets made up of 14 variables with up to seven values each. An
additional data set, recording the results of a cylinder twist measurement having 76 influence variables, was
used to evaluated the algorithm for numerical parameter sets. The output for each sample set was a list of the
20 best sub-processes in order to cross check with the quality expert of the foundry plant. qmin was chosen
to the unconditional PCI value. The analyzed data sets had at least 500 and at most 1,000 measurement
results.

The first computing series was performed using the empirical capability index Eci and the non-parametric
C

′
pk. To demonstrate the efficiency of the first Branch and Bound principle, an additional combinatorial search

was conducted. The reduction of computational time, using the first Branch and Bound principle, amounted
to two orders of magnitude in comparison with the combinatorial search as can be seen in Fig. 2. Obviously,
the computational time for finding the n best sub-processes increases with the number of influence variables.
This fact explains the jump of the combinatorial computing time in Fig. 2 (the first 12 data sets correspond
to the first group introduced in the section above). On average, the algorithm using the first Branch and
Bound principle outperformed the combinatorial search by a factor of 160. Using the combinatorial search,
it took on average 18min to evaluate the available data sets. However, using the first Branch and Bound
principle decreased the computing time to only 4.4 s for C

′
pk and to 5.7 s using the Eci. The evaluation was

performed to a search up to a depth of 4, which means, that all sub-process have no more than four different
influence variables. A higher depth level did not yield different results, as the support of the sub-processes
diminishes with increasing the number of influence variables used as constraints.

Applying the second Branch and Bound principle reduced the computational time even further. As Fig. 3
depicts, the identification of the 20 optimal sub-processes using the Eci was on average reduced by a factor
of 5 in comparison to the first Branch and Bound principle and resulted in an average computational time of
only 0.92 s vs. 5.71 s. Over all analyzed sample sets, the second principle reduced the computing time by 80%.
Even using the Eci and the second Branch and Bound principle, it still took 20 s to compute, and for the
non parametric calculation using the first Branch and Bound principle approximately 2min. In this special

Fig. 2. Computational time for combinatorial search vs. Branch and Bound using the C
′
pk and Eci
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Fig. 3. Computational time first Branch and Bound vs. second Branch and Bound principle using Eci
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Fig. 4. Density plot for optimal sub-process (narrower plot) and its original process (broader plot) using Eci

case, the combinatorial search was omitted, as the evaluation of 76 influence variables with four values each
would have taken too long.

5.1 Optimum Solution

Applying the identified sub-processes to the original data set, the original, unconditional PCI is improved.
More precisely, considering for example the sub-process X = Tool in (1,2) and using the Eci the index
improves from 0.49 to 0.70. As Fig. 4 shows, the quality of the sub-process (narrower distribution plot)
clearly outperforms the original process (broader distribution plot), having less variance and a better process
location.

On the test set, the performance of the optimum solution, characterized by QTest is over its lower bound
determined by the bootstrap procedure on the training set, as shown in Table 3.
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Table 3. Results for the process optimization for one data set

Index NTest QTest NTrain Cl
B

Eci 244 0.85 210 0.84

6 Conclusion

We have introduced an algorithm for efficient rule extraction in the domain of root cause analysis. The appli-
cation goal is the manufacturing process optimization, with the intention to detect those process parameters
which have a major impact on the quality of a manufacturing process. The basic idea is to transform the
search for those quality drivers into an optimization problem and to identify a set of optimal parameter sub-
sets using two different Branch and Bound principles. These two methods allow for a considerable reduction
of the computational time for identifying optimal solutions, as the computational results show.

A new class of convex process capability indices, Eci, was introduced and its superiority over common
PCIs is shown with regard to computing time. As the identification of major quality drivers is crucial to
industrial practice and quality management, the presented solution may be useful and applicable to a broad
set of quality and reliability problems.
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