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1 Introduction

The production pipeline of present day’s automobile manufacturers consists of a highly heterogeneous and
intricate assembly workflow that is driven by a considerable degree of interdependencies between the par-
ticipating instances as there are suppliers, manufacturing engineers, marketing analysts and development
researchers. Therefore, it is of paramount importance to enable all production experts to quickly respond
to potential on-time delivery failures, ordering peaks or other disturbances that may interfere with the
ideal assembly process. Moreover, the fast moving evolvement of new vehicle models require well-designed
investigations regarding the collection and analysis of vehicle maintenance data. It is crucial to track down
complicated interactions between car components or external failure causes in the shortest time possible to
meet customer-requested quality claims.

To summarize these requirements, let us turn to an example which reveals some of the dependencies men-
tioned in this chapter. As we will see later, a normal car model can be described by hundreds of variables each
of which representing a feature or technical property. Since only a small number of combinations (compared
to all possible ones) will represent a valid car configuration, we will present a means of reducing the model
space by imposing restrictions. These restrictions enter the mathematical treatment in the form of depen-
dencies since a restriction may cancel out some options, thus rendering two attributes (more) dependent.
This early step produces qualitative dependencies like “engine type and transmission type are dependent.”
To quantify these dependencies some uncertainty calculus is necessary to establish the dependence strengths.
In our cases probability theory is used to augment the model, e.g., “whenever engine type 1 is ordered, the
probability is 56% of having transmission type 2 ordered as well.” There is a multitude of sources to estimate
or extract this information from. When ordering peaks occur like an increased demand of convertibles during
the Spring, or some supply shortages arise due to a strike in the transport industry, the model is used to
predict vehicle configurations that may run into delivery delays in order to forestall such a scenario by, e.g.,
acquiring alternative supply chains or temporarily shifting production load. Another part of the model may
contain similar information for the aftercare, e.g., “whenever a warranty claim contained battery type 3,
there is a 30% chance of having radio type 1 in the car.” In this case dependencies are contained in the
quality assessment data and are not known beforehand but are extracted to reveal possible hidden design
flaws.

These examples – both in the realm of planning and subsequent maintenance measures – call for treatment
methods that exploit the dependence structures embedded inside the application domains. Furthermore, these
methods need to be equipped with dedicated updating, revision and refinement techniques in order to cope
with the above-mentioned possible supply and demand irregularities. Since every production and planning
stage involves highly specialized domain experts, it is necessary to offer intuitive system interfaces that are
less prone to inter-domain misunderstandings.

The next section will sketch the underlying theoretical frameworks, after which we will present and discuss
successfully applied planning and analysis methods that have been rolled out to production sites of two large
automobile manufacturers. Section 3 deals with the handling of production planning at Volkswagen. The
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underlying data is sketched in Sect. 3.1 which also covers the description of the model structure. Section 3.2
introduces three operations that serve the purpose of modifying the model and answering user queries.
Finally, Sect. 3.3 concludes the application report at Volkswagen. The Daimler AG application is introduced
in Sect. 4 which itself is divided to explain the data and model structure: Sect. 4.1 to propose the visualization
technique for data exploration (Sect. 4.2) and finally Sect. 4.3 to present empirical evidence of the usability.

2 Graphical Models

As motivated in the introduction, there are a lot of dependencies and independencies that have to be
taken into account when to approach the task of planning and reasoning in complex domains. Graphical
models are appealing since they provide a framework of modeling independencies between attributes and
influence variables. The term “graphical model” is derived from an analogy between stochastic independence
and node separation in graphs. Let V = {A1, . . . , An} be a set of random variables. If the underlying
probability distribution P (V ) satisfies some criteria (see, e.g., [5, 13]), then it is possible to capture some of
the independence relations between the variables in V using a graph G = (V, E), where E denotes the set
of edges. The underlying idea is to decompose the joint distribution P (V ) into lower-dimensional marginal
or conditional distributions from which the original distribution can be reconstructed with no or at least
as few errors as possible [12, 14]. The named independence relations allow for a simplification of these
factor distributions. We claim, that every independence that can be read from a graph also holds in the
corresponding joint distribution. The graph is then called an independence map (see, e.g., [4]).

2.1 Bayesian Networks

If we are dealing with an acyclic and directed graph structure G, the network is referred to as a Bayesian
network. The decomposition described by the graph consists of a set of conditional distributions assigned to
each node given its direct predecessors (parents). For each value of the attribute domains (dom), the original
distribution can be reconstructed as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ai∈V

P
(
Ai = ai |

∧
(Aj ,Ai)∈E

Aj = aj

)

2.2 Markov Networks

Markov networks rely on undirected graphs where the lower-dimensional factor distributions are defined as
marginal distributions on the cliques C = {C1, . . . , Cm} of the graph G. The original joint distribution P (V )
can then be recombined as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ci∈C

φCi

( ∧
Aj∈Ci

Aj = aj

)

For a detailed discussion on how to choose the functions φCi , see, e.g., [4].

3 Production Planning at Volkswagen Group

One goal of the project described here was to develop a system which plans parts demand for the production
sites of the Volkswagen Group [8]. The market strategy is strongly customer-focused – based on adaptable
designs and special emphasis on variety. Consequently, when ordering an automobile, the customer is offered
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several options of how each feature should be realized. The result is a very large number of possible car
variants. Since the particular parts required for an automobile depend on the variant of the car, the overall
parts demand can not be successfully estimated from total production numbers alone. The modeling of
domains with such a large number of possible states is very complex. Therefore, decomposition techniques
were applied and augmented by a set of operations on these subspaces that allow for a flexible parts demand
planning and also provide a useful tool to simulate capacity usage in projected market development scenarios.

3.1 Data Description and Model Induction

The first step towards a feasible planning system consists of the identification of valid vehicle variants. If
cars contain components that only work when combined with specific versions of other parts, changes in
the predicted rates for one component may have an influence on the demand for other components. Such
relations should be reflected in the design of the planning system.

A typical model of car is described by approximately 200 attributes, each consisting of at least 2, but
up to 50 values. This scaffolds a space of possible car variants with a cardinality of over 1060. Of course,
not every combination corresponds to a valid specification. To ensure only valid combinations, restrictions
are introduced in form of a rule system. Let us assume we are dealing with three variables E, T and B
representing engine type, transmission type and brake type with the following respective domains:

dom(E) = {e1, e2, e3}, dom(T ) = {t1, t2, t3, t4}, dom(B) = {b1, b2, b3}

A set of rules could for example contain statements like

If T = t3 then B = b2

or
If E = e2 then T ∈ {t2, t3}

A comprehensive set of rules cancels out invalid combinations and may result in our example in a relation
as depicted in Fig. 1.

It was decided to employ a probabilistic Markov network to represent the distribution of the value
combinations. Probabilities are thus interpreted in terms of estimated relative frequencies. Therefore, an
appropriate decomposition has to be found. Starting from a given rule base R and a production history to
estimate relative frequencies from, the graphical component is generated as follows: We start out with an
undirected graph G = (V, E) where two variables Fi and Fj are connected by an edge (Fi, Fj) ∈ E if there
is a rule in R that contains both variables. To make reasoning efficient, it is desirable that the graph has
hypertree structure. This includes the triangulation of G, as well as the identification of its cliques. This
process is depicted in Fig. 2. To complete the model, for every clique a joint distribution for the variables of
that clique has to be estimated from the production history.

Fig. 1. The 3-dimensional space dom(E)× dom(T )× dom(B) is thinned out by a rule set, sparing only the depicted
value combinations. Further, one can reconstruct the 3-dimensional relation δ from the two projections δET and δBT
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Fig. 2. Transformation of the model into hypertree structure. The initial graph is derived from the rule base. For
reasoning, the hypertree cliques have to have the running intersection property which basically allows for a composition
of the original distribution from the clique distributions. See [5] for details. This property can be asserted by requiring
the initial graph to be triangulated

3.2 Operations on the Model

A planning model that was generated using the above method, usually does not reflect the whole potential
of available knowledge. For instance, experts are often aware of differences between the production history
and the particular planning interval the model is meant to be used with. Thus, a mechanism to modify the
represented distribution is required. Planning operators have been developed [10] to efficiently handle this
kind of problem, so modification of the distribution and restoration of a consistent state can be supported.

Updating

Consider a situation where previously forbidden item combinations become valid. This can result for example
from changes in the rule base. The relation in Fig. 1 does not allow engine type 2 to be combined with
transmission type 1 because (e2, t1) /∈ E × T . If this option becomes valid probability mass, it has to be
transferred to the respective distribution. Another scenario would be the advent of a new engine type, i.e.,
a change in the domain itself. Then, a multitude of new probabilities have to be assessed. Another related
problem arises when subsets of cliques are altered while the information of the remaining network is retained.
Both scenarios are addressed with the updating operation.
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This operation marks these combinations as valid by assigning a positive near-zero probability to their
respective marginals. Due to this small value, the quality of the estimation is not affected by this alteration.
Now instead of using the same initialization for all new combinations, the proportion of the values is chosen
in accordance to an existing combination, i.e., the probabilistic interaction structure is copied from reference
item combinations.

Since updating only provides the qualitative aspect of the dependence structure, it is usually followed by
the subsequent application of the revision operation, which is used to reassign probability mass to the new
item combinations.

Revision

The revision operation, while preserving the network structure, serves to modify quantitative knowledge in
such a way that the revised distribution becomes consistent with the new specialized information. There is
usually no unique solution to this task. However, it is desirable to retain as much of the original distribution
as possible so that the principle of minimal change [7] should be applied. Given that, a successful revision
holds a unique result [9]. As an example for a specification, experts might predict a rise of the popularity of a
recently introduced navigation system and set the relative frequency of this respective item from 20 to 30%.

Focusing

While revision and updating are essential operations for building and maintaining a distribution model, it
is much more common activity to apply the model for the exploration of the represented knowledge and its
implications with respect to user decisions. Typically users would want to concentrate on those aspects of the
represented knowledge that fall into their domain of expertise. Moreover, when predicting parts demand from
the model, one is only interested in estimated rates for particular item combinations. Such activities require
a focusing operation. It is implemented by performing evidence-driven conditioning on a subset of variables
and distributing the information through the network. Apart from predicting parts demand, focusing is
often employed for market analyses and simulation. By analyzing which items are frequently combined by
customers, experts can tailor special offers for different customer groups. To support planning of buffer
capacities, it is necessary to deal with the eventuality of temporal logistic restrictions. Such events would
entail changes in short-term production planning so that consumption of the concerned parts is reduced.

3.3 Application

The development of the planning system explained was initiated in 2001 by the Volkswagen Group. System
design and most of the implementation is currently done by Corporate IT. The mathematical modeling,
theoretical problem solving, and the development of efficient algorithms have been entirely provided by
Intelligent Systems Consulting (ISC) Gebhardt. Since 2004 the system is being rolled out to all trademarks
of the Volkswagen Group. With this software, the increasing planning quality, based on the many innovative
features and the appropriateness of the chosen model of knowledge representation, as well as a consider-
able reduction of calculation time turned out to be essential prerequisites for advanced item planning and
calculation of parts demand in the presence of structured products with an extreme number of possible
variants.

4 Vehicle Data Mining at Daimler AG

While the previous section presented techniques that were applied ahead-of-time, i.e., prior and during the
manufacturing process, we will now turn to the area of assessing the quality of cars after they left the assembly
plant. For every car that is sold, a variety of data is collected and stored in corporate-wide databases. After
every repair or checkup the respective records are updated to reflect the technical treatment. The analysis
scenario discussed here is the interest of the automobile manufacturer to investigate car failures by identifying
common properties that are exposed by specific subsets of cars that have a higher failure rate.
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4.1 Data Description and Model Induction

As stated above, the source of information consists of a database that contains for every car a set of up to
300 attributes that describe the configuration of every car that has been sold.

The decision was made to use Bayesian networks to model the dependence structure between these
attributes to be able to reveal possible interactions of vehicle components that cause higher failure rates.
The induction of a Bayesian network consists of identifying a good candidate graph that encodes the inde-
pendencies in the database. The goodness of fit is estimated by an evaluation measure. Therefore, usual
learning algorithms consist of two parts: a search method and the mentioned evaluation measure which may
guide the search. Examples for both parts are studied in [2, 6, 11].

Given a network structure, an expert user will gain first insights into the corresponding application
domain. In Fig. 3 one could identify the road surface conditions to have a major (stochastic) impact on the
failure rate and type. Of course, arriving at such a model is not always a straightforward task since the
available database may lack some entries requiring the treatment of missing values. In this case possibilistic
networks [3] may be used. However, with full information it might still be problematic to extract significant
statistics since there may be value combinations that occur too scarcely. Even if we are in the favorable
position to have sufficient amounts of complete data, the bare network structure does not reveal information
about which which road conditions have what kind of impact on which type of failure. Fortunately, this
information can be retrieved easily in form of conditional probabilities from the underlying dataset, given
the network structure. This becomes clear if the sentence above is re-stated: Given a specific road surface
condition, what is the failure probability of a randomly picked vehicle?

4.2 Model Visualization

Every attribute with its direct parent attributes encodes a set of conditional probability distributions. For
example, given a database D, the sub-network consisting of Failure, RoadSurface and Temperature in Fig. 3
defines the following set of distributions:

PD(Failure | Temperature, RoadSurface)

For every distinct combination of values of the attributes RoadSurface and Temperature, the conditional
probability of the attribute Failure is estimated (counted) from the database D. We will argue in the
next section, that it is this information that enables the user to gain better insight into the data under
consideration [15].

Fig. 3. An example of a Bayesian network illustrating qualitative linkage of components
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Given an attribute of interest (in most cases the class variable like Failure in the example setting) and its
conditioning parents, every probability statement like

P (Failure = Suspension | RoadSurface = rough, Temperature = low) = p∗

can be considered an association rule1:

If RoadSurface = rough ∧ Temperature = low, then there will be a suspension failure in 100 · p∗% of
all cases.

The value p∗ is then the confidence of the corresponding association rule. Of course, all known evaluation
measures can be applied to assess the rules. With the help of such measures one can create an intuitive visual
representation according to the following steps:

• For every probabilistic entry (i.e., for every rule) of the considered conditional distribution P (C |
A1, . . . , Am) a circle is generated to be placed inside a two-dimensional chart.

• The gray level (or color in the real application) of the circle corresponds the the value of attribute C.
• The circle’s area corresponds to the value of some rule evaluation measure selected before displaying.

For the remainder of this chapter, we choose this measure to be the support, i.e., the relative number of
vehicles (or whatever instances) specified by the values of C and A1, . . . , Am. Therefore, the area of the
circle corresponds to the number of vehicles.

• In the last step these circles are positioned. Again, the value of the x- and y-coordinate are determined
by two evaluation measures selected in advance. We suggest these measures to be recall2 and lift.3 Circles
above the darker horizontal line in every chart mark subsets with a lift greater than 1 and thus indicate
that the failure probability is larger given the instantiation of A1, . . . , An in contrast to the marginal
failure probability P (C = c).

With these prerequisites we can recommend to the user the following heuristic in order to identify
suspicious subsets:

Sets of instances in the upper right hand side of the chart may be good candidates for a closer
inspection.

The greater the y-coordinate (i.e., the lift value) of a rule, the stronger is the impact of the conditioning
attributes’ values on the class variable. Larger x-coordinates correspond to higher recall values.

4.3 Application

This section illustrates the proposed visualization method by means of three real-world datasets that were
analyzed during a cooperate research project with a automobile manufacturer. We used the K2 algorithm4 [6]
to induce the network structure and visualized the class variable according to the given procedure.

Example 1

Figure 4 shows the analysis result of 60,000 vehicles. The chart only depicts failed cars. Attributes
Transmission and Country had most (stochastic) impact on the Class variable. The subset labeled 1 was
re-identified by experts as a problem already known. Set 2 could not be given a causal explanation.
1 See [1] for details.
2 The recall is definded as P (A1 = a1, . . . , Ak = ak | C = c).
3 The lift of a rule indicates the ratio between confidence and the marginal failure rate: P (C=c|A1=a1,...,Ak=ak)

P (C=c)
.

4 It is a greedy approach that starts with a single attribute (here: the class attribute) and tries to add parent
attributes greedily. If no addition of an attribute yields a better result, the process continues at the just inserted
parent attributes. The quality of a given network is measured with the K2 metric (a Bayesian model averaging
metric).
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Fig. 4. The subset marked 1 corresponds to approx. 1,000 vehicles whose attributes values of Country and Transmission
yielded a causal relationship with the class variable. Unfortunately, there was not found a causal description of
subset 2. The cluster of circles below the lift-1 line corresponds to sets of cars that fail less often, if their instantiations
of attributes become known

Example 2

The second dataset consisted of 300,000 cars that exposed a many-valued class variable, hence the different
gray levels of the circles in Fig. 5. Although there was no explanation for the sets 3, the subset 4 represented
900 cars the increased failure rate of which could be tracked down to the respective values of the attributes
Mileage and RoadSurface.

Example 3

As the last example, the same dataset as in example 2 yielded the result as shown in Fig. 6. Here, an expert
user changed the conditioning attributes manually and identified the set 5 which represented a subset of cars
whose failure type and rate were affected by the respective attribute values.

User Acceptance

The proposed visualization technique has proven to be a valuable tool that facilitates the identification of
subsets of cars that may expose a critical dependence between configuration and failure type. Generally, it
represents an intuitive way of displaying high-dimensional, nominal data. A pure association rule analysis
needs heavy postprocessing of the rules since a lot of rules are generated due to the commonly small failure
rate. The presented approach can be considered a visual exploration aid for association rules. However, one
has to admit that the rules represented by the circles share the same attributes in the antecedence, hence
the sets of cars covered by these rules are mutually disjoint, which is a considerable difference to general
rule sets.
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Fig. 5. Although it was not possible to find a reasonable description of the vehicles contained in subsets 3, the
attribute values specifying subset 4 were identified to have a causal impact on the class variable

Fig. 6. In this setting the user selected the parent attributes manually and was able to identify the subset 5, which
could be given a causal interpretation in terms of the conditioning attributes Temperature and Mileage
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5 Conclusion

This paper presented an empirical evidence that graphical models can provide a powerful framework for
data- and knowledge-driven applications with massive amounts of information. Even though the underlying
data structures can grow highly complex, both presented projects implemented at two automotive companies
result in effective complexity reduction of the methods suitable for intuitive user interaction.
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