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Summary. Accidents involving pedestrians is one of the leading causes of death and injury around the world.
Intelligent driver support systems hold a promise to minimize accidents and save many lives. Such a system would
detect the pedestrian, predict the possibility of collision, and then warn the driver or engage automatic braking or
other safety devices. This chapter describes the framework and issues involved in developing a pedestrian protection
system. It is emphasized that the knowledge of the state of the environment, vehicle, and driver are important for
enhancing safety. Classification, clustering, and machine learning techniques for effectively detecting pedestrians are
discussed, including the application of algorithms such as SVM, Neural Networks, and AdaBoost for the purpose of
distinguishing pedestrians from background. Pedestrians unlike vehicles are capable of sharp turns and speed changes,
therefore their future paths are difficult to predict. In order to estimate the possibility of collision, a probabilistic
framework for pedestrian path prediction is described along with related research. It is noted that sensors in vehicle are
not always sufficient to detect all the pedestrians and other obstacles. Interaction with infrastructure based systems
as well as systems from other vehicles can provide a wide area situational awareness of the scene. Furthermore,
in infrastructure based systems, clustering and learning techniques can be applied to identify typical vehicle and
pedestrian paths and to detect anomalies and potentially dangerous situations. In order to effectively integrate
information from infrastructure and vehicle sources, the importance of developing and standardizing vehicle-vehicle
and vehicle-infrastructure communication systems is also emphasized.

1 Introduction

Intelligent Transportation Systems (ITS) show promise of making road travel safer and comfortable. Auto-
mobile companies have recently taken considerable interest in developing Intelligent Driver Support Systems
(IDSS) for high-end vehicles. These include active cruise control, lane departure warning, blind spot moni-
toring, and pedestrian detection systems based on sensors such as visible light and thermal infrared cameras,
RADARs, or LASER scanners. However, for an effective driver support system, it is desirable to take a
holistic approach, using all available data from the environment, vehicle dynamics, and the driver that can
be obtained using various sensors incorporated in vehicle and infrastructure [35]. Infrastructure based sen-
sors can complement the vehicle sensors by filling gaps and providing more complete information about the
surroundings. Looking in the vehicle at driver’s state is as important as looking out in surroundings in order
to convey warnings to the driver in the most effective and least distracting manner. Furthermore, due to the
highly competitive nature of automobile manufacturing, it is necessary to make such systems cost effective.
This makes multi-functional sensors that are used by several of these systems highly desirable.

Accidents involving pedestrians and other vulnerable road users such as bicyclists are one of the leading
causes of death and injury around the world. In order to reduce these accidents, pedestrian protection
systems need to detect pedestrians, track them over time, and predict the possibility of collision based on
the paths that the pedestrian and the vehicle are likely to take. The system should relay the information
to the driver in efficient and non-distracting manner or to the control system of the vehicle in order to
take preventive actions. Considerable efforts have been made on enhancing pedestrian safety by programs
in United states [3, 4], Europe [2, 5] and Japan [1]. Conferences such as Intelligent Vehicles Symposium [6]
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and Intelligent Transportation Systems Conference [7] have a number of publications related to pedestrian
detection every year. The recent survey on pedestrian protection [19] has covered the current research on
pedestrian detection, tracking, and collision prediction. It is observed that detecting pedestrians in cluttered
scenes from a moving vehicle is a challenging problem that involves a number of computational intelligence
techniques spanning image processing, computer vision, pattern recognition, and machine learning. This
paper focuses on specific computational intelligence techniques used in stages of sensor based pedestrian
protection system for detecting and classifying pedestrians, and predicting their trajectories to assess the
possibility of collision.

2 Framework for Pedestrian Protection System

Figure 1 shows the components of a general pedestrian protection system. The data from one or more
types of sensors can be processed using computer vision algorithms to detect pedestrians and determine
their trajectories. The trajectories can then be sent to collision prediction module that would predict the
probability of collision between the host vehicle and pedestrians. In the case of high probability of collision,
the driver is given appropriate warning that enables corrective action. If the collision is imminent, the
automatic safety systems could also be triggered to decelerate the vehicle and reduce the impact of collision.
In the following sections we illustrate these components using examples focusing on approaches used for
these tasks.
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Classification/Verifica tion 
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Environment Sensors in Vehicle and Infrastructure 

Imaging sensors: Visible light, near IR, thermal IR
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Fig. 1. Data flow diagram for pedestrian protection systems
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3 Techniques in Pedestrian Detection

Pedestrian detection is usually divided into two stages. The candidate generation stage processes raw data
using simple cues and fast algorithms to identify potential pedestrian candidates. The classification and
verification stage then applies more complex algorithms to the candidates from the attention focusing stage
in order to separate genuine pedestrians from false alarms. However, the line between these stages is often
blurred and some approaches combine the stages into one. Table 1 shows the approaches used by researchers
for stages in pedestrian detection.

3.1 Candidate Generation

Cues such as shape, appearance, motion, and distance can be used to generate potential pedestrian
candidates. Here, we describe selected techniques used for generating pedestrian candidates using these cues.

Chamfer Matching

Chamfer matching is a generic technique to recognize objects based on their shape and appearance using
hierarchical matching with a set of object templates from training images. The original image is converted
to a binary image using an edge detector. A distance transform is then applied to the edge image. Every
pixel r = (x, y) in the distance transformed image has a value dI(t) equal to the distance to the nearest edge
pixel:

dI(r) = min
r′∈edges(I)

‖r′ − r‖ (1)

The distance transformed image is matched to the binary templates generated from examples. For this
purpose, the template is slided over the image and at every displacement, the chamfer distance between the
image and template is obtained by taking the mean of all the pixels in the distance transform image that
have an ‘on’ pixel in template image:

D(T, I) =
1
|T |

∑
r∈T

dI(r) (2)

Positions in the image where the chamfer distance is less than a threshold are considered as successful
matches.

Table 1. Approaches used in stages of pedestrian protection

Publication Candidate generation Feature extraction Classification

Gavrila ECCV00 [20],
IJCV07 [21], Munder
PAMI06 [27]

Chamfer matching Image ROI pixels LRF Neural Network

Gandhi MM04 [15],
MVA05 [16]

Omni camera based planar
motion estimation

Gandhi ICIP05 [17],
ITS06 [18]

Stereo based U disparity
analysis

Krotosky IV06 [25] Stereo based U and V
disparity analysis

Histogram of oriented
gradients

Support Vector Machine

Papageorgiou IJCV00 [28] Haar wavelets Support Vector Machine
Dalal CVPR05 [13] Histogram of oriented

gradients
Support Vector Machine

Viola IJCV05 [37] Haar-like features in spatial
and temporal domain

AdaBoost

Park ISI07 [29] Background subtraction,
homography projection

Shape and size of object
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In order to account for the variations between individual objects, the image is matched with number
of templates. For efficient matching, a template hierarchy is generated using bottom up clustering. All the
training templates are grouped into K clusters, each represented by a prototype template pk and the set
of templates Sk in the cluster. Clustering is performed using using an iterative optimization algorithm that
minimizes an objective function:

E =
K∑

k=1

max
ti∈Sk

Dmin(ti, pk) (3)

where Dmin(ti, pk) denotes the minimum chamfer distance between the template ti and the prototype pk for
all relative displacements between them. The process is repeated recursively by treating the prototypes as
templates and re-clustering them to form a tree as shown in Fig. 2.

For recognition, the given image is recursively matched with the nodes of the template tree, starting
from the root. At any level, the branches where the minimum chamfer distance is greater than a threshold
are pruned to reduce the search time. For remaining nodes, matching is repeated for all children nodes.
Candidates are generated at image positions where the chamfer distance with any of the template nodes is
below threshold.

Motion-Based Detection

Motion is an important cue in detecting pedestrians. In the case of moving platforms, the background
undergoes ego-motion that depends on camera motion as well as the scene structure, which needs to be
accounted for. In [15, 16], a parametric planar motion model is used to describe the ego-motion of the ground
in an omnidirectional camera. The perspective coordinates of a point P on the ground in two consecutive
camera positions is governed by a homography matrix H as:

⎛
⎝Xb

Yb

Zb

⎞
⎠ = λ

⎛
⎝h11 h12 h13

h21 h32 h33

h31 h32 1

⎞
⎠
⎛
⎝Xa

Ya

Za

⎞
⎠ (4)

The perspective camera coordinates can be mapped to pixel coordinates (ua, va) and (ub, vb) using the
internal calibration of the camera:

(ua, va) = Fint([Xa, Ya, Za]T ),
(ub, vb) = Fint([Xb, Yb, Zb]T ) = Fint(HF−1

int (ua, va)) (5)

The image motion of the point satisfies the optical flow constraint:

gu(ub − ua) + gv(vb − va) = −gt + ν (6)

where gu, gv, and gt are the spatial and temporal image gradients and ν is the noise term.
Based on these relations, the parameters of the homography matrix can be estimated using the spatio-

temporal image gradients at every point (ua, va) in the first image using non-linear least squares. Based on
these parameters, every point (ua, va) on the ground plane in first frame corresponds to a point (ub, vb) in the
second frame. Using this transformation, the second image can be transformed to first frame, compensating
the image motion of the ground plane. The objects that have independent motion or height above ground do
not obey the motion model and their motion is not completely compensated. Taking the motion compensated
frame difference between adjacent video frames highlights these areas that are likely to contain pedestrians,
vehicles, or other obstacles. These regions of interest can then be classified using the classification stage.
Figure 3 shows detection of a pedestrian and vehicle from a moving platform. The details of the approach
are described in [15].
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(a) (b) (c) (d)

(e)

Fig. 2. Chamfer matching illustration: (a) template of pedestrian (b) test image (c) edge image (d) distance transform
image (e) template hierarchy (partial) used for matching with distance transform (figure based on [27])

Depth Segmentation Using Binocular Stereo

Binocular stereo imaging can provide useful information about the depth of the objects from the cameras.
This information has been used for disambiguating pedestrians and other objects from features on ground
plane [18, 25, 26], segmenting images based on layers with different depths [14], handling occlusion between
pedestrians [25], and using the size-depth relation to eliminate extraneous objects [32]. For a pair of stereo
cameras with focal length f and baseline distance of B between the cameras situated at the height of H
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(a) (b)

(d)(c)

Fig. 3. Detection of people and vehicles using an omnidirectional camera on a moving platform [15] (a) estimated
motion based on parametric motion of ground plane (b) image pixels used for estimation. Gray pixels are inliers, and
white pixels are outliers. (c) Motion-compensated image difference that captures independently moving objects (d)
detected vehicle and person

above the road as shown in Fig. 4a. An object at distance D will have disparity of d = Bf/D between the
two cameras, that is inversely proportional to object distance. The ground in the same line of sight is farther
away and has a smaller disparity of dbg = Bf/Dbg. Based on this difference, objects having height above
the ground can be separated.

Stereo disparity computation can be performed using software packages such as SRI Stereo Engine [24].
Such software produces a disparity map that gives disparities of individual pixels in the image. In [17],
the concept of U-disparity proposed by Labayrade et al. [26] is used to identify potential obstacles in the
scene using images from a stereo pair of omnidirectional cameras as shown in Fig. 4b. The disparity image
disp(u, v) generated by a stereo engine separates the pedestrian in a layer of nearly constant depth. U-
disparity udisp(u, d) image counts occurrences of every disparity d for each column u in the image. In order
to suppress the ground plane pixels, only the pixels with disparity significantly greater than ground plane
disparity are used.

udisp(u, d) = #{v|disp(u, v) = d, d > dbg(u, v) + dthresh} (7)

where # stands for number of elements in the set.
Pixels in an object at a particular distance would have nearly same disparity and therefore form a

horizontal ridge in the disparity histogram image. Even if disparities of individual object pixels are inaccurate,
the histogram image clusters the disparities and makes it easier to isolate the objects. Based on the position
of the line segments, the regions containing obstacles can be identified. The nearest (lowest) region with
largest disparity corresponds to the pedestrian. The parts of the virtual view image corresponding to the
U-disparity segments can then be sent to classifier for distinguishing between pedestrians and other objects.
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Fig. 4. (a) Stereo geometry (top and side views). The disparity between image positions in the two cameras decrease
with object distance. (b) Stereo based pedestrian candidate generation [17]: Row 1 : Color images from a stereo
pair of omni camera containing pedestrian. Row 2 : Virtual front view images generated from omni images. Row 3 :
Superimposed front view images and disparity image with lighter shades showing nearer objects with larger disparity.
Row 4 : U-disparity image taking histogram of disparities for each column. The lower middle segment in U-disparity
image corresponds to the pedestrian. Other segments corresponds to more distant structures above the ground (figure
based on [17])
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Fig. 5. Validation stage for pedestrian detection. Training phase uses positive and negative images to extract features
and train a classifier. Testing phase applies feature extractor and classifier to candidate regions of interest in the images

3.2 Candidate Validation

The candidate generation stage generates regions of interest (ROI) that are likely to contain a pedestrian.
Characteristic features are extracted from these ROIs and a trained classifier is used to separate pedestrian
from the background and other objects. The input to the classifier is a vector of raw pixel values or character-
istic features extracted from them, and the output is the decision showing whether a pedestrian is detected
or not. In many cases, the probability or a confidence value of the match is also returned. Figure 5 shows
the flow diagram of validation stage.

Feature Extraction

The features used for classification should be insensitive to noise and individual variations in appearance and
at the same time able to discriminate pedestrians from other objects and background clutter. For pedestrian
detection features such as Haar wavelets [28], histogram of oriented gradients [13], and Gabor filter outputs
[12], are used.

Haar Wavelets

An object detection system needs to have a representation that has high inter-class variability and low intra-
class variability [28]. For this purpose, features must be identified at resolutions where there will be some
consistency throughout the object class, while at the same time ignoring noise. Haar wavelets extract local
intensity gradient features at multiple resolution scales in horizontal, vertical, and diagonal directions and
are particularly useful in efficiently representing the discriminative structure of the object. This is achieved
by sliding the wavelet functions in Fig. 6 over the image and taking inner products as:

wk(m, n) =
2k−1∑
m=0

2k−1∑
n=0

ψk(m′, n′)f(2k−jm + m′, 2k−jn + n′) (8)

where f is the original image, ψk is any of the wavelet functions at scale k with support of length 2k, and
2j is the over-sampling rate. In the case of standard wavelet transforms, k = 0 and the wavelet is translated
at each sample by the length of the support as shown in Fig. 6. However, in over-complete representations,
k > 0 and the wavelet function is translated only by a fraction of the length of support. In [28] the over-
complete representation with quarter length sampling is used in order to robustly capture image features.



Computer Vision and Machine Learning for Enhancing Pedestrian Safety 67

+1 +1-1

-1

+1 -1

-1

+1

+1

scaling function vertical

horizontal diagonal

standard

overcomplete

(a)

(b)

Pedestrian 16 x 16 32 x 32 

Fig. 6. Haar wavelet transform framework. Left: Scaling and wavelet functions at a particular scale. Right: Standard
and overcomplete wavelet transforms (figure based on [28])

The wavelet transform can be concatenated to form a feature vector that is sent to a classifier. However, it is
observed that some components of the transform have more discriminative information than others. Hence,
it is possible to select such components to form a truncated feature vector as in [28] to reduce complexity
and speed up computations.

Histograms of Oriented Gradients

Histograms of oriented gradients (HOG) have been proposed by Dalal and Triggs [13] to classify objects such
as people and vehicles. For computing HOG, the region of interest is subdivided into rectangular blocks and
histogram of gradient orientations is computed in each block. For this purpose, sub-images corresponding
to the regions suspected to contain pedestrian are extracted from the original image. The gradients of the
sub-image are computed using Sobel operator [22]. The gradient orientations are quantized into K bins each
spanning an interval of 2π/K radians, and the sub-image is divided into M ×N blocks. For each block (m, n)
in the subimage, the histogram of gradient orientations is computed by counting the number of pixels in
the block having the gradient direction of each bin k. This way, an M × N × K array consisting of M × N
local histograms is formed. The histogram is smoothed by convolving with averaging kernels in position and
orientation directions to reduce sensitivity to discretization. Normalization is performed in order to reduce
sensitivity to illumination changes and spurious edges. The resulting array is then stacked into a B = MNK
dimensional feature vector x. Figure 7 shows examples with pedestrian snapshots along with the HOG
representation shown by red lines. The value of a histogram bin for a particular position and orientation is
proportional to the length of the respective line.

Classification

The classifiers employed to distinguish pedestrians from non-pedestrian objects are usually trained using fea-
ture vectors extracted from a number of positive and negative examples to determine the decision boundary
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Fig. 7. Pedestrian subimages with computed Histograms of Oriented Gradients (HOG). The image is divided into
blocks and the histogram of gradient orientations is individually computed for each block. The lengths of the red
lines correspond to the frequencies of image gradients in the respective directions

between them. After training, the classifier processes unknown samples and decides the presence or absence
of the object based on which side of the decision boundary the feature vector lies. The classifiers used for
pedestrian detection include Support Vector Machines (SVM), Neural Networks, and AdaBoost, which are
described here.

Support Vector Machines

The Support Vector Machine (SVM) forms a decision boundary between two classes by maximizing the
“margin,” i.e., the separation between nearest examples on either side of the boundary [11]. SVM in con-
junction with various image features are widely used for pedestrian recognition. For example, Papageorgiou
and Poggio [28] have designed a general object detection system that they have applied to detect pedes-
trians for a driver assistance. The system uses SVM classifier on Haar wavelet representation of images. A
support vector machine is trained using a large number of positive and negative examples from which the
image features are extracted. Let xi denote the feature vector of sample i and yi denote one of the two class
labels in {0, 1}. The feature vector xi is projected into a higher dimensional kernel space using a mapping
function Φ which allows complex non-linear decision boundaries. The classification can be formulated as an
optimization problem to find a hyperplane boundary in the kernel space:

wT Φ(xi) + b = 0 (9)

using

min
w,b,ξ,ρ

wT w − νρ +
1
L

L∑
i=1

ξi (10)

subject to
wT Φ(xi) + b ≥ ρ − ξi , ξi ≥ 0, i = 1 . . . L, ρ ≥ 0

where ν is the parameter to accommodate training errors and ξ is used to account for some samples that
are not separated by the boundary. Figure 8 illustrates the principle of SVM for classification of samples.
The problem is converted into the dual form which is solved using quadratic programming [11]:

min
α

L∑
i=1

L∑
j=1

αiyiK(xi,xj)yjαj (11)

subject to

0 ≤ αi ≤ 1/L,

L∑
i=1

αi ≥ ν,

L∑
i=1

αiyi = 0 (12)

where K(xi,xj) = Φ(xi)T Φ(xj) is the kernel function derived from the mapping function Φ, and represents
the distance in the high-dimensional space. It should be noted that the kernel function is usually much easier
to compute than the mapping function Φ. The classification is then given by the decision function:
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Fig. 8. Illustration of Support Vector Machine principle. (a) Two classes that cannot be separated by a single
straight line. (b) Mapping into Kernel space. SVM finds a line separating two classes to minimize the “margin,” i.e.,
the distance to the closest samples called ‘Support Vectors’

D(x) =
L∑

i=1

αiyiK(xi,x) + b (13)

Neural Networks

Neural networks have been used to address problems in vehicle diagnostics and control [31]. They are par-
ticularly useful when the phenomenon to be modeled is highly complex but one has large amount of training
data to enable learning of patterns from them. Neural networks can obtain highly non-linear boundaries
between classes based on the training samples, and therefore can account for large shape variations. Zhao
and Thorpe [41] have applied neural networks on gradient images of regions of interest to identify pedestrians.
However, unconstrained neural networks require training of a large number of parameters necessitating very
large training sets. In [21, 27], Gavrila and Munder use Local receptive fields (LRF) proposed by Wöhler and
Anlauf [39] (Fig. 9) to reduce the number of weights by connecting each hidden layer neuron only to a local
region of input image. Furthermore, the hidden layer is divided into a number of branches, each encoding
a local feature, with all neurons within a branch sharing the same set of weights. Each hidden layer can be
represented by the equation:

Gk(r) = f

[∑
i

WkiF (T (r) + ∆ri)

]
(14)

where F (p) denotes the input image as a function of pixel coordinates p = (x, y), Gk(r) denotes the output
of the neuron with coordinate r = (rx, ry) in the branch k of the hidden layer, Wki are the shared weights for
branch k, and f(·) is the activation function of the neuron. Each neuron with coordinates of r is associated
with a region in the image around the transformed pixel t = T (r), and ∆ri denote the displacements for
pixels in the region. The output layer is a standard fully connected layer given by:

Hm = f

[∑
i

wmk(x, y)Gk(x, y)

]
(15)

where Hm is the output of neuron m in output layer, wmk is the weight for connection between output
neuron m and hidden layer neuron in branch k with coordinate (x, y).

LeCun et al. [40] describe similar weight-shared and grouped networks for application in document
analysis.
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Fig. 9. Neural network architecture with Local Receptive Fields (figure based on [27])

Adaboost Classifier

Adaboost is a scheme for forming a strong classifier using a linear combination of a number of weak classi-
fiers based on individual features [36, 37]. Every weak classifier is individually trained on a single feature.
For boosting the weak classifier, the training examples are iteratively re-weighted so that the samples which
are incorrectly classified by the weak classifier are assigned larger weights. The final strong classifier is a
weighted combination of weak classifiers followed by a thresholding step. The boosting algorithm is described
as follows [8, 36]:

• Let xi denote the feature vector and yi denote one of the two class labels in {0, 1} for negative and
positive examples, respectively

• Initialize weights wi to 1/2M for each of the M negative samples and 1/2L for each of the L positive
samples

• Iterate for t = 1 . . . T
– Normalize weights: wt,i ← wt,i/

∑
k wt,k

– For each feature j, train classifier hj that uses only that feature. Evaluate weighted error for all
samples as: εj =

∑
i wt,i|hj(xi) − yi|

– Choose classifier ht with lowest error εt

– Update weights: wt+1,i ← wt,i

(
εt

1−εt

)1−|hj(xi)−yi|
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– The final strong classifier decision is given by the linear combination of weak classifiers and
thresholding the result:

∑
t αtht(x) ≥∑

t αt/2 where αt = log
(

1−εt

εt

)

4 Infrastructure Based Systems

Sensors mounted on vehicles are very useful for detecting pedestrians and other vehicles around the host
vehicle. However, these sensors often cannot see objects that are occluded by other vehicles or stationary
structures. For example, in the case of the intersection shown in Fig. 10, the host vehicle X cannot see the
pedestrian P occluded by a vehicle Y as well as the vehicle Z occluded by buildings. Sensor C mounted on
infrastructure would be able to see all these objects and help to fill the ‘holes’ in the fields of view of the
vehicles. Furthermore, if vehicles can communicate with each other and the infrastructure, they can exchange
information about objects that are seen by one but not seen by others. In the future, infrastructure based
scene analysis as well as infrastructure-vehicle and vehicle-vehicle communication will contribute towards
robust and effective working of Intelligent Transportation Systems.

Cameras mounted in infrastructure have been extensively applied to video surveillance as well as traffic
analysis [34]. Detection and tracking of objects from these cameras is easier and more reliable due to absence
of camera motion. Background subtraction which is one of the standard methods to extract moving objects
from stationary background is often employed, followed by classification of objects and activities.

4.1 Background Subtraction and Shadow Suppression

In order to separate moving objects from background, a model of the background is generated from multiple
frames. The pixels not satisfying the background model are identified and grouped to form regions of interest
that can contain moving objects. A simple approach for modeling the background is to obtain the statistics
of each pixel described by color vector x = (R, G, B) over time in terms of mean and variance. The mean
and variance are updated at every time frame using:

µ ← (1 − α)µ + αx

σ2 ← (1 − α)σ2 + α(x − µ)T (x − µ) (16)

If for a pixel at any given time, ‖x − µ‖/σ is greater than a threshold (typically 2.5), the pixel is classi-
fied as foreground. Schemes have been designed that adjust the background update according to the pixel

X

Z

Y 

P

C 

Fig. 10. Contribution of sensors mounted in infrastructure. Vehicle X cannot see pedestrian P or vehicle Z, but the
infrastructure mounted camera C can see all of them
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currently being in foreground or background. More elaborate models such as Gaussian Mixture Models [33]
and codebook model [23] are used to provide robustness against fluctuating motion such as tree branches,
shadows, and highlights.

An important problem in object-background segmentation is the presence of shadows and highlights of
the moving objects, which need to be suppressed in order to get meaningful object boundaries. Prati et al.
[30] have conducted a survey of approaches used for shadow suppression. An important cue for distinguishing
shadows from background is that the shadow reduces the luminance value of a background pixel, with little
effect on the chrominance. Highlights similarly increase the value of luminance. On the other hand, objects
are more likely to have different color from the background and brighter than the shadows. Based on these
cues, bright objects can often be separated from shadows and highlights.

4.2 Robust Multi-Camera Detection and Tracking

Multiple cameras offer superior scene coverage from all sides, provide rich 3D information, and enable robust
handling of occlusions and background clutter. In particular, they can help to obtain the representation
of the object that is independent of viewing direction. In [29], multiple cameras with overlapping fields of
view are used to track persons and vehicles. Points on the ground plane can be projected from one view to
another using a planar homography mapping. If (u1, v1) and (u2, v2) are image coordinates of a point on
ground plane in two views, they are related by the following equations:

u2 =
h11u1 + h12v1 + h13

h31u1 + h32v1 + h33
, v2 =

h21u1 + h22v1 + h23

h31u1 + h32v1 + h33
(17)

The matrix H formed from elements hij is the Homography matrix. Multiple views of the same object are
transformed by planar homography which assumes that pixels lie on ground plane. Pixels that violate this
assumption result in mapping to a skewed location. Hence, the common footage region of the object on
ground can be obtained by intersecting multiple projections of the same object on the ground plane. The
footage area on the ground plane gives an estimate of the size and the trajectory of the object, independent
of the viewing directions of the cameras. Figure 11 depicts the process of estimating the footage area using
homography. The locations of the footage areas are then tracked using Kalman filter in order to obtain object
trajectories.

4.3 Analysis of Object Actions and Interactions

The objects are classified into persons and vehicles based on their footage area. The interaction among
persons and vehicles can then be analyzed at semantic level as described in [29]. Each object is associated
with spatio-temporal interaction potential that probabilistically describes the region in which the object can
be subsequent time. The shape of the potential region depends on the type of object (vehicle/pedestrian)
and speed (larger region for higher speed), and is modeled as a circular region around the current position.
The intersection of interaction potentials of two objects represents the possibility of interaction between
them as shown in Fig. 12a. They are categorized as safe or unsafe depending on the site context such as
walkway or driveway, as well as motion context in terms of trajectories. For example, as shown in Fig. 12b, a
person standing on walkway is normal scenario, whereas the person standing on driveway or road represents
a potentially dangerous situation. Also, when two objects are moving fast, the possibility of collision is higher
than when they are traveling slowly. This domain knowledge can be fed into the system in order to predict
the severity of the situation.

5 Pedestrian Path Prediction

In addition to detection of pedestrians and vehicles, it is important to predict what path they are likely to
take in order to estimate the possibility of collision. Pedestrians are capable of making sudden maneuvers
in terms of the speed and direction of motion. Hence, probabilistic methods are most suitable for predicting
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(a)

(b)

Fig. 11. (a) Homography projection from two camera views to virtual top views. The footage region is obtained by
the intersection of the projections on ground plane. (b) Detection and mapping of vehicles and a person in virtual
top view showing correct sizes of objects [29]

the pedestrian’s future path and potential collisions with vehicles. In fact, even for vehicles whose paths are
easier to predict due to simpler dynamics, predictions beyond 1 or 2 seconds is still very challenging, making
probabilistic methods valuable even for vehicles.

For probabilistic prediction, Monte-Carlo simulations can be used to generate a number of possible
trajectories based on the dynamic model. The collision probability is then predicted based on the fraction
of trajectories that eventually collide with the vehicle. Particle filtering [10] gives a unified framework for
integrating the detection and tracking of objects with risk assessment as in [8]. Such a framework is shown
in Fig. 13a with following steps:

1. Every tracked object can be modeled using a state vector consisting of properties such as 3-D position,
velocity, dimensions, shape, orientation, and other appropriate attributes. The probability distribution of
the state can then be modeled using a number of weighted samples randomly chosen according to the
probability distribution.

2. The samples from the current state are projected to the sensor fields of view. The detection module would
then produce hypotheses about the presence of vehicles. The hypotheses can then be associated with the
samples to produce likelihood values used to update the sample weights.
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Fig. 12. (a) Schematic diagrams for trajectory analysis in spatio-temporal space. Circles represent interaction poten-
tial boundaries at a given space/time. Red curves represent the envelopes of the interaction boundary along tracks.
(b) Spatial context dependency of human activity (c) Temporal context dependency of interactivity between two
objects. Track patterns are classified into normal (open circle), cautious (open triangle) and abnormal (times) [29]

3. The object state samples can be updated at every time instance using the dynamic models of pedestrians
and vehicles. These models put constraints on how the pedestrian and vehicle can move over short and
long term.

4. In order to predict collision probability, the object state samples are extrapolated over a longer period of
time. The number of samples that are on collision course divided by the total number of samples gives
the probability of collision.

Various dynamic models can be used for predicting the positions of the pedestrians at subsequent time.
For example, in [38], Wakim et al. model the pedestrian dynamics using Hidden Markov Model with four
states corresponding to standing still, walking, jogging, and running as shown in Fig. 13b. For each state,
the probability distributions of absolute speed as well as the change of direction is modeled by truncated
Gaussians. Monte Carlo simulations are then used to generate a number of feasible trajectories and the
ratio of the trajectories on collision course to total number of trajectories give the collision probability. The
European project CAMELLIA [5] has conducted research in pedestrian detection and impact prediction
based in part on [8, 38]. Similar to [38], they use a model for pedestrian dynamics using HMM. They use the
position of pedestrian (sidewalk or road) to determine the transition probabilities between different gaits and
orientations. Also, the change in orientation is modeled according to the side of the road that the pedestrian
is walking.

In [9], Antonini et al. another approach called “Discrete Choice Model” which a pedestrian makes a
choice at every step about the speed and direction of the next step. Discrete choice models associate a utility
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Fig. 13. (a) Integration of detection, tracking, and risk assessment of pedestrians and other objects based on particle
filter [10] framework. (b) Transition diagram between states of pedestrians in [38]. The arrows between two states are
associated with non-zero probabilities of transition from one state to another. Arrows on the same state corresponds
to the pedestrian remaining in the same state in the next time step

value to every such choice and select the alternative with the highest utility. The utility of each alternative
is a latent variable depending on the attributes of the alternative and the characteristics of the decision-
maker. This model is integrated with person detection and tracking from static cameras in order to improve
performance. Instead of making hard decisions about target presence on every frame, it integrates evidence
from a number of frames before making a decision.

6 Conclusion and Future Directions

Pedestrian detection, tracking, and analysis of behavior and interactions between pedestrians and vehicles are
active research areas having important application in protection of pedestrians on road. Pattern classification
approaches are particularly useful in detecting pedestrians and separating them from background. It is
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seen that pedestrian detection can be performed using sensors on vehicle itself or in the infrastructure.
Vehicle based sensing gives continuous awareness of the scene around the vehicle and systems are being
designed to detect pedestrians from vehicles. However, it is also seen that relying on vehicle sensors is not
always sufficient to give full situational awareness of the scene. Infrastructure based sensors can play a
complementary role of providing wide area scene coverage. For seamless integration of information from
vehicle and infrastructure, efficient and reliable communication is needed. Communication can be performed
at image level or object level. However, transmitting full images over the network is likely to be very expensive
in terms of bandwidth. Hence, it would be desirable to perform initial detection locally and transmit candidate
positions and trajectories along with sub-images of candidate bounding boxes as needed. Future research will
be directed towards developing and standardizing these communications between vehicle and infrastructure
to efficiently convey all the information needed to get complete situational awareness of the scene.
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