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1 Introduction

The increasing number of traffic accidents due to driver inattention has become a serious problem for society.
Every year, about 45,000 people die and 1.5 million people are injured in traffic accidents in Europe. These
figures imply that one person out of every 200 European citizens is injured in a traffic accident every
year and that around one out 80 European citizens dies 40 years short of the life expectancy. It is known
that the great majority of road accidents (about 90–95%) are caused by human error. More recent data
has identified inattention (including distraction and falling asleep at the wheel) as the primary cause of
accidents, accounting for at least 25% of the crashes [15]. Road safety is thus a major European health
problem. In the “White Paper on European Transport Policy for 2010,” the European Commission declares
the ambitious objective of reducing by 50% the number of fatal accidents on European roads by 2010
(European Commission, 2001).

According to the U.S. National Highway Traffic Safety Administration (NHTSA), falling asleep while
driving is responsible for at least 100,000 automobile crashes annually. An annual average of roughly 70,000
nonfatal injuries and 1,550 fatalities results from these crashes [32, 33]. These figures only cover crashes hap-
pening between midnight and 6 a.m., involving a single vehicle and a sober driver traveling alone, including
the car departing from the roadway without any attempt to avoid the crash. These figures underestimate
the true level of the involvement of drowsiness because they do not include crashes at daytime hours involv-
ing multiple vehicles, alcohol, passengers or evasive maneuvers. These statistics do not deal with crashes
caused by driver distraction either, which is believed to be a larger problem. Between 13 and 50% of crashes
are attributed to distraction, resulting in as many as 5,000 fatalities per year. Increasing use of in-vehicle
information systems (IVISs) such as cell phones, GPS navigation systems, satellite radios and DVDs has
exacerbated the problem by introducing additional sources of distraction. That is, the more IVISs the more
sources of distraction from the most basic task at hand, i.e., driving the vehicle. Enabling drivers to benefit
from IVISs without diminishing safety is an important challenge.

This chapter presents an original system for monitoring driver inattention and alerting the driver when
he is not paying adequate attention to the road in order to prevent accidents. According to [40] the driver
inattention status can be divided into two main categories: distraction detection and identifying sleepiness.
Likewise, distraction can be divided in two main types: visual and cognitive. Visual distraction is straight-
forward, occurring when drivers look away from the roadway (e.g., to adjust a radio). Cognitive distraction
occurs when drivers think about something not directly related to the current vehicle control task (e.g.,
conversing on a hands-free cell phone or route planning). Cognitive distraction impairs the ability of drivers
to detect targets across the entire visual scene and causes gaze to be concentrated in the center of the driving
scene. This work is focused in the sleepiness category. However, sleepiness and cognitive distraction partially
overlap since the context awareness of the driver is related to both, which represent mental occurrences in
humans [26].

The rest of the chapter is structured as follows. In Sect. 2 we present a review of the main previous work in
this direction. Section 3 describes the general system architecture, explaining its main parts. Experimental
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results are shown in Sect. 4. Section 5 discusses weaknesses and improvements of the system. Finally, in
Sect. 6 we present the conclusions and future work.

2 Previous Work

In the last few years many researchers have been working on systems for driver inattention detection using
different techniques. The most accurate techniques are based on physiological measures like brain waves, heart
rate, pulse rate, respiration, etc. These techniques are intrusive, since they need to attach some electrodes on
the drivers, causing annoyance to them. Daimler-Chrysler has developed a driver alertness system, Distronic
[12], which evaluates the EEG (electroencephalographic) patterns of the driver under stress. In advanced
safety vehicle (ASV) project by Toyota (see in [24]), the driver must wear a wristband in order to measure
his heart rate. Others techniques monitor eyes and gaze movements using a helmet or special contact lens
[3]. These techniques, though less intrusive, are still not acceptable in practice.

A driver’s state of vigilance can also be characterized by indirect vehicle behaviors like lateral position,
steering wheel movements, and time to line crossing. Although these techniques are not intrusive they
are subject to several limitations such as vehicle type, driver experience, geometric characteristics, state
of the road, etc. On the other hand, these procedures require a considerable amount of time to analyze
user behaviors and thereby they do not work with the so-called micro-sleeps: when a drowsy driver falls
asleep for some seconds on a very straight road section without changing the lateral position of the vehicle
[21]. To this end we can find different experimental prototypes, but at this moment none of them has been
commercialized. Toyota uses steering wheel sensors (steering wheel variability) and pulse sensor to record the
heart rate, as mentioned above [24]. Mitsubishi has reported the use of steering wheel sensors and measures
of vehicle behavior (such as lateral position of the car) to detect driver drowsiness in their advanced safety
vehicle system [24]. Daimler Chrysler has developed a system based on vehicle speed, steering angle and
vehicle position relative to road delimitation (recorded by a camera) to detect if the vehicle is about to leave
the road [11]. Volvo Cars recently announced its Driver Alert Control system [39], that will be available on
its high-end models from 2008. This system uses a camera, a number of sensors and a central unit to monitor
the movements of the car within the road lane and to assess whether the driver is drowsy.

People in fatigue show some visual behaviors easily observable from changes in their facial features like
eyes, head, and face. Typical visual characteristics observable from the images of a person with reduced
alertness level include longer blink duration, slow eyelid movement, smaller degree of eye opening (or even
closed), frequent nodding, yawning, gaze (narrowness in the line of sight), sluggish facial expression, and
drooping posture. Computer vision can be a natural and non-intrusive technique for detecting visual char-
acteristics that typically characterize a driver’s vigilance from the images taken by a camera placed in front
of the user. Many researches have been reported in the literature on developing image-based driver alertness
using computer vision techniques. Some of them are primarily focused on head and eye tracking techniques
using two cameras [27, 38]. In [34] a system called FaceLAB developed by the company Seeing Machines
is presented. The 3D pose of the head and the eye-gaze direction are calculated accurately. FaceLAB also
monitors the eyelids, to determine eye opening and blink rates. With this information the system estimates
the driver’s fatigue level. According to FaceLab information, the system operates day and night but at night
the performance of the system decreases. All systems explained above rely on manual initialization of feature
points. The systems appear to be robust but the manual initialization is a limitation, although it simplifies
the whole problem of tracking and pose estimation.

There are other proposals that use only a camera. In [6] we can find a 2D pupil monocular tracking
system based on the differences in color and reflectivity between the pupil and iris. The system monitors
driving vigilance by studying the eyelid movement. Another successful system of head/eye monitoring and
tracking for drowsiness detection using one camera, which is based on color predicates, is presented in [37].
This system is based on passive vision techniques and its functioning can be problematical in poor or very
bright lighting conditions. Moreover, it does not work at night, when the monitoring is more important.

In order to work at nights some researches use active illumination based on infrared LED. In [36] a system
using 3D vision techniques to estimate and track the 3D line of sight of a person using multiple cameras
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is proposed. The method relies on a simplified eye model, and it uses the Purkinje images of an infrared
light source to determine eye location. With this information, the gaze direction is estimated. Nothing
about monitoring driver vigilance is presented. In [23] a system with active infrared LED illumination and a
camera is implemented. Because of the LED illumination, the method can easily find the eyes and based on
them, the system locates the rest of the facial features. They propose to analytically estimate the local gaze
direction based on pupil location. They calculate eyelid movement and face orientation to estimate driver
fatigue. Almost all the active systems reported in the literature have been tested in simulated environments
but not in real moving vehicles. A moving vehicle presents new challenges like variable lighting, changing
background and vibrations that must be taken into account in real systems. In [19] an industrial prototype
called Copilot is presented. This system uses infrared LED illumination to find the eyes and it has been
tested with truck’s drivers in real environments. It uses a simple subtraction process to find the eyes and it
only calculates a validated parameter called PERCLOS (percent eye closure), in order to measure driver’s
drowsiness. This system currently works under low light conditions. Recently, Seeing Machines has presented
a commercial system called driver state sensor (DSS) [35] for driver fatigue detection in transportation
operation. The system utilizes a camera and LEDs for night working. It calculates PERCLOS and obtains
a 93% correlation with drowsiness.

Systems relying on a single visual cue may encounter difficulties when the required visual features cannot
be acquired accurately or reliably, as happens in real conditions. Furthermore, a single visual cue may
not always be indicative of the overall mental condition [23]. The use of multiple visual cues reduces the
uncertainty and the ambiguity present in the information from a single source. The most recent research
in this direction use this hypothesis. The European project AWAKE (2001–2004) [22] proposes a multi-
sensor system adapted to the driver, the vehicle, and the environment in an integrated way. This system
merges, via an artificial intelligent algorithm, data from on-board driver monitoring sensors (such as an eyelid
camera and a steering grip sensor) as well as driver behavior data (i.e., from lane tracking sensor, gas/brake
and steering wheel positioning). The system must be personalized for each driver during a learning phase.
Another European project, SENSATION (2004–2007) [16] is been currently founded to continue research
of the AWAKE project in order to obtain a commercial system. The European project AIDE – Adaptive
Integrated Driver–Vehicle InterfacE (2004–2008) [15] works in this direction as well.

This chapter describes a real-time prototype system based on computer vision for monitoring driver
vigilance using active infrared illumination and a single camera placed on the car dashboard. We have
employed this technique because our goal is to monitor a driver in real conditions (vehicle moving) and in
a very robust and accurate way mainly at nights (when the probability to crash due to drowsiness is the
highest). The proposed system does not need manual initialization and monitors several visual behaviors that
typically characterize a person’s level of alertness while driving. In a different fashion than other previous
works, we have fused different visual cues from one camera using a fuzzy classifier instead of different cues
from different sensors. We have analyzed different visual behaviors that characterize a drowsy driver and
we have studied the best fusion for optimal detection. Moreover, we have tested our system during several
hours in a car moving on a motorway and with different users. The basics of this work were presented by
the authors in [5].

3 System Architecture

The general architecture of our system is shown in Fig. 1. It consists of four major modules: (1) Image acqui-
sition, (2) Pupil detection and tracking, (3) Visual behaviors and (4) Driver monitoring. Image acquisition
is based on a low-cost CCD micro-camera sensitive to near-IR. The pupil detection and tracking stage is
responsible for segmentation and image processing. Pupil detection is simplified by the “bright pupil” effect,
similar to the red eye effect in photography. Then, we use two Kalman filters in order to track the pupils
robustly in real-time. In the visual behaviors stage we calculate some parameters from the images in order
to detect some visual behaviors easily observable in people in fatigue: slow eyelid movement, smaller degree
of eye opening, frequent nodding, blink frequency, and face pose. Finally, in the driver monitoring stage we
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Fig. 1. General architecture

(a) Image obtained with
inner IR ring

(b) Image obtained with
outer IR ring

(c) Difference image

Fig. 2. Captured images and their subtraction

fuse all the individual parameters obtained in the previous stage using a fuzzy system, yielding the driver
inattentiveness level. An alarm is activated if this level is over a certain threshold.

3.1 Image Acquisition System

The purpose of this stage is to acquire the video images of the driver’s face. In this application the acquired
images should be relatively invariant to light conditions and should facilitate the eye detection and tracking
(good performance is necessary). The use of near-IR illuminator to brighten the driver’s face serves these
goals [25]. First, it minimizes the impact of changes in the ambient light. Second, the near-IR illumination
is not detected by the driver, and then, this does not suppose an interference with the user’s driving. Third,
it produces the bright pupil effect, which constitutes the foundation of our detection and tracking system. A
bright pupil is obtained if the eyes are illuminated with an IR illuminator beaming light along the camera
optical axis. At the IR wavelength, the retina reflects almost all the IR light received along the path back
to the camera, and a bright pupil effect will be produced in the image. If illuminated off the camera optical
axis, the pupils appear dark since the reflected light of the retina will not enter the camera lens. An example
of the bright/dark pupil effect can be seen in Fig. 2. This pupil effect is clear with and without glasses, with
contact lenses and it even works to some extent with sunglasses.

Figure 3 shows the image acquisition system configuration. It is composed by a miniature CCD camera
sensitive to near-IR and located on the dashboard of the vehicle. This camera focuses on the driver’s head for
detecting the multiple visual behaviors. The IR illuminator is composed by two sets of IR LEDs distributed
symmetrically along two concentric and circular rings. An embedded PC with a low cost frame-grabber is
used for video signal acquisition and signal processing. Image acquiring from the camera and LED excitation
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Fig. 3. Block diagram of the prototype

(a) Out-of-the-road lights
effect

(b) Vehicle lights effect (c) Sunlight effect (d) Sunlight effect with filter

Fig. 4. Effects of external lights in the acquisition system

is synchronized. The LED rings illuminate the driver’s face alternatively, one for each image, providing
different lighting conditions for almost the same scene.

Ring sizes has been empirically calculated in order to obtain a dark pupil image if the outer ring is
turned on and a bright pupil image if the inner ring is turned on. LEDs in the inner ring are as close as
possible to the camera, in order to maximize the “bright pupil” effect. The value of the outer ring radius is
a compromise between the resulting illumination, that improves as it is increased, and the available space
in the car’s dashboard. The symmetric position of the LEDs in the rings, around the camera optical axis,
cancels shadows generated by LEDs. The inner ring configuration obtains the bright pupil effect because the
center of the ring coincides with the camera optical axis, working as if there were an only LED located on
the optical axis of the lens. The outer ring provides ambient illumination that is used for contrast enhancing.
In spite of those LEDs producing the dark pupil effect, a glint can be observed on each pupil.

The explained acquisition system works very well under controlled light conditions, but real scenarios
present new challenges that must be taken into account. Lighting conditions were one of the most important
problems to solve in real tests. As our system is based on the reflection of the light emitted by the IR LEDs,
external light sources are the main source of noise. Three main sources can be considered, as are depicted in
Fig. 4: artificial light from elements just outside the road (such as light bulbs), vehicle lights, and sun light.
The effect of lights from elements outside the road mainly appears in the lower part of the image (Fig. 4a)
because they are situated above the height of the car and the beam enters the car with a considerable
angle. Then, this noise can be easily filtered. On the other hand, when driving on a double direction road,
vehicle lights directly illuminate the driver, increasing the pixels level quickly and causing the pupil effect to
disappear (Fig. 4b). Once the car has passed, the light level reduces very fast. Only after a few frames, the
automatic gain controller (AGC) integrated in the camera compensates the changes, so very light and dark
images are obtained, affecting the performance of the inner illumination system.
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Regarding the sun light, it only affects at day time but its effect changes as function of the weather
(sunny, cloudy, rainy, etc.) and the time of the day. With the exception of the sunset, dawn and cloudy days,
sun light hides the inner infrared illumination and then the pupil effect disappears (Fig. 4c). For minimizing
interference from light sources beyond the IR light emitted by our LEDs, a narrow band-pass filter, centered
at the LED wavelength, has been attached between the CCD and the lens. This filter solved the problem of
artificial lights and vehicle light almost completely, but it adds a new drawback for it reduces the intensity
of the image, and then the noise is considerably amplified by the AGC. The filter does not eliminate the sun
light interference, except for cases when the light intensity is very low. This is caused by the fact that the
power emitted by the sun in the band of the filter is able to hide the inner illumination. An image of this
case, taken by the sunset, is depicted in Fig. 4d. A possible solution for this problem could be the integration
of IR filters in the car glasses.

3.2 Pupil Detection and Tracking

This stage starts with pupil detection. As mentioned above, each pair of images contains an image with
bright pupil and another one with a dark pupil. The first image is then digitally subtracted from the second
to produce the difference image. In this image, pupils appear as the brightest parts in the image as can
be seen in Fig. 2. This method minimizes the ambient light influence by subtracting it in the generation of
the difference image. This procedure yields high contrast images where the pupils are easily found. It can be
observed that the glint produced by the outer ring of LEDs usually falls close to the pupil, with the same
grey level as the bright pupil. The shape of the pupil blob in the difference image is not a perfect ellipse
because the glint cuts the blob, affecting the modeling of the pupil blobs and, consequently, the calculation
depending on it, as will be explained later. This is the reason why the system only uses subtracted images
during initialization, and when light conditions are poor (this initialization time varies depending on the
driver and light conditions, but it was below 5 s for all test). In other cases, only the image obtained with
the inner ring is processed, increasing accuracy and reducing computation time.

Pupils are detected on the resulting image, by searching the entire image to locate two bright blobs that
satisfy certain constraints. The image is binarized, using an adaptive threshold, for detecting the brighter
blobs in the image.

A standard 8-connected components analysis [18] is then applied to the binarized difference image to
identify binary blobs that satisfy certain size and shape constraints. The blobs that are out of some size
constraints are removed, and for the others an ellipse model is fit to each one. Depending on their size,
intensity, position and distance, best candidates are selected, and all the possible pairs between them are
evaluated. The pair with the highest qualification is chosen as the detected pupils, and its centroids are
returned as the pupil positions.

One of the main characteristics of this stage is that it is applicable to any user without any supervised
initialization. Nevertheless, the reflection of the IR in the pupils under the same conditions varies from one
driver to another. Even for the same driver, the intensity depends on the gaze point, head position and
the opening of the eye. Apart from those factors, lighting conditions change with time, which modifies the
intensity of the pupils. On the other hand, the size of the pupils also depends on the user, and the distance to
the camera. To deal with those differences in order to be generic, our system uses an adaptive threshold in the
binarization stage. The parameters of the detected pupils are used to update the statistics that set thresholds
and margins in the detection process. Those statistics include size, grey level, position and apparent distance
and angle between pupils, calculated over a time window of 2 s. The thresholds also get their values modified
if the pupils are not found, widening the margins to make more candidates available to the system.

Another question related to illumination that is not usually addressed in the literature is the sensitivity
of the eye to IR emission. As the exposure time to the IR source increases, its power has to be reduced in
order to avoid damaging the internal tissues of the eye. This imposes a limit on the emission of the near-IR
LEDs. To calculate the power of our system, we have followed the recommendations of [1], based on IEC
825-1 and CENELEC 60825-1 infrared norms. With these limitations, no negative effects have been reported
in the drivers that collaborated in the tests.
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(a) Frame 187 (b) Frame 269 (c) Frame 354 (d) Frame 454 (e) Frame 517

(f) (g)

Fig. 5. Tracking results for a sequence

To continuously monitor the driver it is important to track his pupils from frame to frame after locating
the eyes in the initial frames. This can be done efficiently by using two Kalman filters, one for each pupil, in
order to predict pupil positions in the image. We have used a pupil tracker based on [23] but we have tested
it with images obtained from a car moving on a motorway. Kalman filters presented in [23] works reasonably
well under frontal face orientation with open eyes. However, it will fail if the pupils are not bright due to
oblique face orientations, eye closures, or external illumination interferences. Kalman filter also fails when
a sudden head movement occurs because the assumption of smooth head motion has not been fulfilled. To
overcome this limitation we propose a modification consisting on an adaptive search window, which size is
determined automatically, based on pupil position, pupil velocity, and location error. This way, if Kalman
filtering tracking fails in a frame, the search window progressively increases its size. With this modification,
the robustness of the eye tracker is significantly improved, for the eyes can be successfully found under eye
closure or oblique face orientation.

The state vector of the filter is represented as xt = (ct, rt,ut,vt), where (ct, rt) indicates the pupil
pixel position (its centroid) and (ut,vt) is its velocity at time t in c and r directions, respectively. Figure 5
shows an example of the pupil tracker working in a test sequence. Rectangles on the images indicate the
search window of the filter, while crosses indicate the locations of the detected pupils. Figure 5f, g draws the
estimation of the pupil positions for the sequence under test. The tracker is found to be rather robust for
different users without glasses, lighting conditions, face orientations and distances between the camera and
the driver. It automatically finds and tracks the pupils even with closed eyes and partially occluded eyes,
and can recover from tracking-failures. The system runs at 25 frames per second.

Performance of the tracker gets worse when users wear eyeglasses because different bright blobs appear
in the image due to IR reflections in the glasses, as can be seen in Fig. 6. Although the degree of reflection
on the glasses depends on its material and the relative position between the user’s head and the illuminator,
in the real tests carried out, the reflection of the inner ring of LEDs appears as a filled circle on the glasses,
of the same size and intensity as the pupil. The reflection of the outer ring appears as a circumference with
bright points around it and with similar intensity to the pupil. Some ideas for improving the tracking with
glasses are presented in Sect. 5. The system was also tested with people wearing contact lenses. In this case
no differences in the tracking were obtained compared to the drivers not wearing them.
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Fig. 6. System working with user wearing glasses

Fig. 7. Finite state machine for ocular measures

3.3 Visual Behaviors

Eyelid movements and face pose are some of the visual behaviors that reflect a person’s level of inattention.
There are several ocular measures to characterize sleepiness such as eye closure duration, blink frequency,
fixed gaze, eye closure/opening speed, and the recently developed parameter PERCLOS [14, 41]. This last
measure indicates the accumulative eye closure duration over time excluding the time spent on normal eye
blinks. It has been found to be the most valid ocular parameter for characterizing driver fatigue [24]. Face pose
determination is related to computation of face orientation and position, and detection of head movements.
Frequent head tilts indicate the onset of fatigue. Moreover, the nominal face orientation while driving is
frontal. If the driver faces in other directions for an extended period of time, it is due to visual distraction.
Gaze fixations occur when driver’s eyes are nearly stationary. Their fixation position and duration may relate
to attention orientation and the amount of information perceived from the fixated location, respectively.
This is a characteristic of some fatigue and cognitive distraction behaviors and it can be measured by
estimating the fixed gaze. In this work, we have measured all the explained parameters in order to evaluate
its performance for the prediction of the driver inattention state, focusing on the fatigue category.

To obtain the ocular measures we continuously track the subject’s pupils and fit two ellipses, to each of
them, using a modification of the LIN algorithm [17], as implemented in the OpenCV library [7]. The degree
of eye opening is characterized by the pupil shape. As eyes close, the pupils start getting occluded by the
eyelids and their shapes get more elliptical. So, we can use the ratio of pupil ellipse axes to characterize
the degree of eye opening. To obtain a more robust estimation of the ocular measures and, for example, to
distinguish between a blink and an error in the tracking of the pupils, we use a Finite State Machine (FSM)
as we depict in Fig. 7. Apart from the init state, five states have been defined: tracking ok, closing, closed,
opening and tracking lost. Transitions between states are achieved from frame to frame as a function of the
width-height ratio of the pupils.
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The system starts at the init state. When the pupils are detected, the FSM passes to the tracking ok state
indicating that the pupil’s tracking is working correctly. Being in this state, if the pupils are not detected in
a frame, a transition to the tracking lost state is produced. The FSM stays in this state until the pupils are
correctly detected again. In this moment, the FSM passes to the tracking ok state. If the width-height ratio
of the pupil increases above a threshold (20% of the nominal ratio), a closing eye action is detected and the
FSM changes to the closing state. Because the width-height ratio may increase due to other reasons, such as
segmentation noise, it is possible to return to the tracking ok state if the ratio does not constantly increase.

When the pupil ratio is above the 80% of its nominal size or the pupils are lost, being in closing state, a
transition of the FSM to closed state is provoked, which means that the eyes are closed. A new detection of the
pupils from the closed state produces a change to opening state or tracking ok state, depending on the degree
of opening of the eyelid. If the pupil ratio is between the 20 and the 80% a transition to the opening state is
produced, if it is below the 20% the system pass to the tracking ok state. Being in closed state, a transition
to the tracking lost state is produced if the closed time goes over a threshold. A transition from opening to
closing is possible if the width-height ratio increases again. Being in opening state, if the pupil ratio is below
the 20% of the nominal ratio a transition to tracking ok state is produced.

Ocular parameters that characterize eyelid movements have been calculated as a function of the FSM.
PERCLOS is calculated from all the states, except from the tracking lost state, analyzing the pupil width-
height ratio. We consider that an eye closure occurs when the pupil ratio is above the 80% of its nominal
size. Then, the eye closure duration measure is calculated as the time that the system is in the closed state.
To obtain a more robust measurement of the PERCLOS, we compute this running average. We compute
this parameter by measuring the percentage of eye closure in a 30-s window. Then, PERCLOS measure
represents the time percentage that the system is at the closed state evaluated in 30 s and excluding the
time spent in normal eye blinks. Eye closure/opening speed measures represent the amount of time needed
to fully close the eyes or to fully open the eyes. Then, eye closure/opening speed is calculated as the time
during which pupil ratio passes from 20 to 80% or from 80 to 20% of the nominal ratio, respectively. In
other words, the time that the system is in the closing state or opening state, respectively. Blink frequency
measure indicates the number of blinks detected in 30 s. A blink action will be detected as a consecutive
transition among the following states: closing, closed, and opening, given that this action was carried out in
less than a predefined time. Many physiology studies have been carried out on the blinking duration. We
have used the recommendation value derived in [31] but this could be easily modified to conform to other
recommended value. Respecting the eye nominal size used for the ocular parameters calculation, it varies
depending on the driver. To calculate its correct value a histogram of the eyes opening degree for the last
2,000 frames not exhibiting drowsiness is obtained. The most frequent value on the histogram is considered
to be the nominal size. PERCLOS is computed separately in both eyes and the final value is obtained as the
mean of both.

Besides, face pose can be used for detecting fatigue or visual distraction behaviors among the categories
defined for inattentive states. The nominal face orientation while driving is frontal. If the driver’s face
orientation is in other directions for an extended period of time it is due to visual distractions, and if it
occurs frequently (in the case of various head tilts), it is a clear symptom of fatigue. In our application, the
precise degree of face orientation for detecting this behaviors is not necessary because face poses in both
cases are very different from the frontal one. What we are interested in is to detect whether the driver’s head
deviates too much from its nominal position and orientation for an extended period of time or too frequently
(nodding detection).

This work provides a novel solution to the coarse 3D face pose estimation using a single un-calibrated
camera, based on the method proposed in [37]. We use a model-based approach for recovering the face pose
by establishing the relationship between 3D face model and its two-dimensional (2D) projections. A weak
perspective projection is assumed so that face can be approximated as a planar object with facial features,
such as eyes, nose and mouth, located symmetrically on the plane. We have performed a robust 2D face
tracking based on the pupils and the nostrils detections on the images. Nostrils detection has been carried
out in a way similar to that used for the pupils’ detection. From these positions the 3D face pose is estimated,
and as a function of it, face direction is classified in nine areas, from upper left to lower right.
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This simple technique works fairly well for all the faces we tested, with left and right rotations specifically.
A more detailed explanation about our method was presented by the authors in [5]. As the goal is to detect
whether the face pose of the driver is not frontal for an extended period of time, this has been computed
using only a parameter that gives the percentage of time that the driver has been looking at the front, over
a 30-s temporal window.

Nodding is used to quantitatively characterize one’s level of fatigue. Several systems have been reported
in the literature to calculate this parameter from a precise estimation of the driver’s gaze [23, 25]. However,
these systems have been tested in laboratories but not in real moving vehicles. The noise introduced in real
environments makes these systems, based on exhaustive gaze calculation, work improperly. In this work, a
new technique based on position and speed data from the Kalman filters used to track the pupils and the
FSM is proposed. This parameter measures the number of head tilts detected in the last 2min. We have
experimentally observed that when a nodding is taking place, the driver closes his or her eyes and the head
goes down to touch the chest or the shoulders. If the driver wakes up in that moment, raising his head, the
values of the vertical speed of the Kalman filters will change their sign, as the head rises. If the FSM is in
closed state or in tracking lost and the pupils are detected again, the system saves the speeds of the pupils
trackers for ten frames. After that, the data is analyzed to find if it conforms to that of a nodding. If so, the
first stored value is saved and used as an indicator of the “magnitude” of the nodding.

Finally, one of the remarkable behaviors that appear in drowsy drivers or cognitively distracted drivers
is fixed gaze. A fatigued driver looses the focus of the gaze, not paying attention to any of the elements of
the traffic. This loss of concentration is usually correlated with other sleepy behaviors such as a higher blink
frequency, a smaller degree of eye opening and nodding. In the case of cognitive distraction, however, fixed
gaze is decoupled from other clues. As for the parameters explained above, the existing systems calculate this
parameter from a precise estimation of the driver’s gaze and, consequently, experience the same problems. In
order to develop a method to measure this behavior in a simple and robust way, we present a new technique
based on the data from the Kalman filters used to track the pupils.

An attentive driver moves his eyes frequently, focusing to the changing traffic conditions, particularly
if the road is busy. This has a clear reflection on the difference between the estimated position from the
Kalman filters and the measured ones.

Besides, the movements of the pupils for an inattentive driver present different characteristics. Our system
monitors the position on the x coordinate. Coordinate y is not used, as the difference between drowsy and
awake driver is not so clear. The fixed gaze parameter is computed locally over a long period of time, allowing
for freedom of movement of the pupil over time. We refer here to [5] for further details of the computation
of this parameter.

This fixed gaze parameter may suffer from the influence of vehicle vibrations or bumpy roads. Modern
cars have reduced vibrations to a point that the effect is legible on the measure. The influence of bumpy roads
depends on their particular characteristics. If bumps are occasional, it will only affect few values, making
little difference in terms of the overall measure. On the other hand, if bumps are frequent and their magnitude
is high enough, the system will probably fail to detect this behavior. Fortunately, the probability for a driver
to get distracted or fall asleep is significantly lower in very bumpy roads. The results obtained for all the
test sequences with this parameter are encouraging. In spite of using the same a priori threshold for different
drivers and situations, the detection was always correct. Even more remarkable was the absence of false
positives.

3.4 Driver Monitoring

This section describes the method to determine the driver’s visual inattention level from the parameters
obtained in the previous section. This process is complicated because several uncertainties may be present.
First, fatigue and cognitive distractions are not observable and they can only be inferred from the available
information. In fact, this behavior can be regarded as the result of many contextual variables such as
environment, health, and sleep history. To effectively monitor it, a system that integrates evidences from
multiple sensors is needed. In the present work, several fatigue visual behaviors are subsequently combined
to form an inattentiveness parameter that can robustly and accurately characterize one’s vigilance level.
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The fusion of the parameters has been obtained using a fuzzy system. We have chosen this technique for its
well known linguistic concept modeling ability. Fuzzy rule expressions are close to expert natural language.
Then, a fuzzy system manages uncertain knowledge and infers high level behaviors from the observed data.
As an universal approximator, fuzzy inference system can be used for knowledge induction processes. The
objective of our fuzzy system is to provide a driver’s inattentiveness level (DIL) from the fusion of several
ocular and face pose measures, along with the use of expert and induced knowledge. This knowledge has
been extracted from the visual observation and the data analysis of the parameters in some simulated fatigue
behavior carried out in real conditions (driving a car) with different users. The simulated behaviors have
been done according to the physiology study of the US Department of Transportation, presented in [24].
We do not delve into the psychology of driver visual attention, rather we merely demonstrate that with the
proposed system, it is possible to collect driver information data and infer whether the driver is attentive
or not.

The first step in the expert knowledge extraction process is to define the number and nature of the vari-
ables involved in the diagnosis process according to the domain expert experience. The following variables are
proposed after appropriate study of our system: PERCLOS, eye closure duration, blink frequency, nodding
frequency, fixed gaze and frontal face pose. Eye closing and opening variables are not being used in our input
fuzzy set because they mainly depend on factors such as segmentation and correct detection of the eyes, and
they take place in the length of time comparable to that of the image acquisition. As a consequence, they
are very noisy variables. As our system is adaptive to the user, the ranges of the selected fuzzy inputs are
approximately the same for all users. The fuzzy inputs are normalized, and different linguistic terms and its
corresponding fuzzy sets are distributed in each of them using induced knowledge based on the hierarchical
fuzzy partitioning (HFP) method [20]. Its originality lies in not yielding a single partition, but a hierarchy
including partitions with various resolution levels based on automatic clustering data. Analyzing the fuzzy
partitions obtained by HFP, we determined that the best suited fuzzy sets and the corresponding linguistic
terms for each input variable are those shown in Table 1. For the output variable (DIL), the fuzzy set and
the linguistic terms were manually chosen. The inattentiveness level range is between 0 and 1, with a normal
value up to 0.5. When its value is between 0.5 and 0.75, driver’s fatigue is medium, but if the DIL is over
0.75 the driver is considered to be fatigued, and an alarm is activated. Fuzzy sets of triangular shape were
chosen, except at the domain edges, where they were semi-trapezoidal.

Based on the above selected variables, experts state different pieces of knowledge (rules) to describe certain
situations connecting some symptoms with a certain diagnosis. These rules are of the form “If condition,
Then conclusion”, where both premise and conclusion use the linguistic terms previously defined, as in the
following example:

• IF PERCLOS is large AND Eye Closure Duration is large, THEN DIL is large

In order to improve accuracy and system design, automatic rule generation and its integration in the
expert knowledge base were considered. The fuzzy system implementation used the licence-free tool Knowl-
edge Base Configuration Tool (KBCT) [2] developed by the Intelligent Systems Group of the Polytechnics
University of Madrid (UPM). A more detailed explanation of this fuzzy system can be found in [5].

Table 1. Fuzzy variables

Variable Type Range Labels Linguistic terms

PERCLOS In [0.0, 1.0] 5 Small, medium small, medium, medium large, large
Eye closure duration In [1.0–30.0] 3 Small, medium, large
Blink freq. In [1.0–30.0] 3 Small, medium, large
Nodding freq. In [0.0–8.0] 3 Small, medium, large
Face position In [0.0–1.0] 5 Small, medium small, medium, medium large, large
Fixed gaze In [0.0–0.5] 5 Small, medium small, medium, medium large, large
DIL Out [0.0–1.0] 5 Small, medium small, medium, medium large, large
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4 Experimental Results

The goal of this section is to experimentally demonstrate the validity of our system in order to detect fatigue
behaviors in drivers. Firstly, we show some details about the recorded video sequences used for testing, then,
we analyze the parameters measured for one of the sequences. Finally, we present the performance of the
detection of each one of the parameters, and the overall performance of the system.

4.1 Test Sequences

Ten sequences were recorded in real driving situations over a highway and a two-direction road. Each sequence
was obtained for a different user. The images were obtained using the system explained in Sect. 3.1. The
drivers simulated some drowsy behaviors according to the physiology study of the US Department of Trans-
portation presented in [24]. Each user drove normally except in one or two intervals where the driver simulated
fatigue. Simulating fatigue allows for the system to be tested in a real motorway, with all the sources of noise
a deployed system would face. The downside is that there may be differences between an actual drowsy
driver and a driver mimicking the standard drowsy behavior, as defined in [24]. We are currently working
on testing the system in a truck simulator.

The length of the sequences and the fatigue simulation intervals are shown in Table 2. All the sequences
were recorded at night except for sequence number 7 that was recorded at day, and sequence number 5
that was recorded at sunset. Sequences were obtained with different drivers not wearing glasses, with the
exception of sequence 6, that was recorded for testing the influence of the glasses in real driving conditions.

4.2 Parameter Measurement for One of the Test Sequences

The system is currently running on a PC Pentium4 (1.8Ghz) with Linux kernel 2.6.18 in real time (25 pairs
of frames/s) with a resolution of 640×480 pixels. Average processing time per pair of frames is 11.43ms.
Figure 8 depicts the parameters measured for sequence number 9. This is a representative test example with
a duration of 465 s where the user simulates two fatigue behaviors separated by an alertness period. As can
be seen, until second 90, and between the seconds 195 and 360, the DIL is below 0.5 indicating an alertness
state. In these intervals the PERCLOS is low (below 0.15), eye closure duration is low (below the 200ms),
blink frequency is low (below two blinks per 30-s window) and nodding frequency is zero. These ocular
parameters indicate a clear alert behavior. The frontal face position parameter is not 1.0, indicating that
the predominant position of the head is frontal, but that there are some deviations near the frontal position,
typical of a driver with a high vigilance level. The fixed gaze parameter is low because the eyes of the driver
are moving caused by a good alert condition. DIL increases over the alert threshold during two intervals
(from 90 to 190 and from 360 to 565 s) indicating two fatigue behaviors. In both intervals the PERCLOS
increases from 0.15 to 0.4, the eye closure duration goes up to 1,000ms, and the blink frequency parameter

Table 2. Length of simulated drowsiness sequences

Seq. Num. Drowsiness behavior time (s) Alertness behavior time (s) Total time (s)

1 394 (two intervals: 180 +214) 516 910
2 90 (one interval) 210 300
3 0 240 240
4 155 (one interval) 175 330
5 160 (one interval) 393 553
6 180 (one interval) 370 550
7 310 (two intervals: 150 +160) 631 941
8 842 (two intervals: 390 +452) 765 1,607
9 210 (two intervals: 75+ 135) 255 465

10 673 (two intervals: 310 +363) 612 1,285
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Fig. 8. Parameters measured for the test sequence number 9

Table 3. Parameter measurement performance

Parameters Total % correct

PERCLOS 93.1
Eye closure duration 84.4
Blink freq. 79.8
Nodding freq. 72.5
Face pose 87.5
Fixed gaze 95.6

increases from 2 to 5 blinks. The frontal face position is very close to 1.0 because the head position is fixed
and frontal. The fixed gaze parameter increases its value up to 0.4 due to the narrow gaze in the line of sight
of the driver. This last variation indicates a typical loss of concentration, and it takes place before other
sleepy parameters could indicate increased sleepiness, as can be observed. The nodding is the last fatigue
effect to appear. In the two fatigue intervals a nodding occurs after the increase of the other parameters,
indicating a low vigilance level. This last parameter is calculated over a temporal window of 2 min, so its
value remains stable most of the time.

This section described an example of parameter evolution for two simulated fatigue behaviors of one
driver. Then, we analyzed the behaviors of other drivers in different circumstances, according to the video
tests explained above. The results obtained are similar to those shown for sequence number 9. Overall results
of the system are explained in what follows.

4.3 Parameter Performance

The general performance of the measured parameters for a variety of environments with different drivers,
according to the test sequences, is presented in Table 3. Performance was measured by comparing the
algorithm results to results obtained by manually analyzing the recorded sequences on a frame-by-frame
basis. Each frame was individually marked with the visual behaviors the driver exhibited, if any. Inaccuracies
of this evaluation can be considered negligible for all parameters. Eye closure duration is not easy to evaluate
accurately, as the duration of some quick blinks is around 5–6 frames at the rate of 25 frames per second
(fps), and the starting of the blink can fall between two frames. However, the number of quick blinks is not
big enough to make further statistical analysis necessary.

For each parameter the total correct percentage for all sequences excluding sequence number 6 (driver
wearing glasses) and sequence number 7 (recorded during the day) is depicted. Then, this column shows
the parameter detection performance of the system for optimal situations (driver without glasses driving at
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night). The performance gets considerably worse by day and it dramatically decreases when drivers wear
glasses.

PERCLOS results are quite good, obtaining a total correct percentage of 93.1%. It has been found to
be a robust ocular parameter for characterizing driver fatigue. However, it may fail sometimes, for example,
when a driver falls asleep without closing her eyes. Eye closure duration performance (84.4%) is a little worse
than that of the PERCLOS, because the correct estimation of the duration is more critical. The variation
on the intensity when the eye is partially closed with regard to the intensity when it is open complicates the
segmentation and detection. This causes the frame count for this parameter to be usually less than the real
one. These frames are considered as closed time. Measured time is slightly over the real time, as a result
of delayed detection. Performance of blink frequency parameter is about 80% because some quick blinks
are not detected at 25 fps. Then, the three explained parameters are clearly correlated almost linearly, and
PERCLOS is the most robust and accurate one.

Nodding frequency results are the worst (72.5%), as the system is not sensible to noddings in which
the driver rises her head and then opens her eyes. To reduce false positives, the magnitude of the nodding
(i.e., the absolute value of the Kalman filter speed), must be over a threshold. In most of the non-detected
noddings, the mentioned situation took place, while the magnitude threshold did not have any influence on
any of them. The ground truth for this parameter was obtained manually by localizing the noddings on the
recorded video sequences. It is not correlated with the three previous parameters, and it is not robust enough
for fatigue detection. Consequently, it can be used as a complementary parameter to confirm the diagnosis
established based on other more robust methods.

The evaluation of the face direction provides a measure of alertness related to drowsiness and visual
distractions. This parameter is useful for both detecting the pose of the head not facing the front direction
and the duration of the displacement. The results can be considered fairly good (87.5%) for a simple model
that requires very little computation and no manual initialization. The ground truth in this case was obtained
by manually looking for periods in which the driver is not clearly looking in front in the video sequences,
and comparing their length to that of the periods detected by the system. There is no a clear correlation
between this parameter and the ocular ones for fatigue detection. This would be the most important cue in
case of visual distraction detection.

Performance of the fixed gaze monitoring is the best of the measured parameters (95.6%). The maxi-
mum values reached by this parameter depend on users’ movements and gestures while driving, but a level
above 0.05 is always considered to be an indicator of drowsiness. Values greater than 0.15 represent high
inattentiveness probability. These values were determined experimentally. This parameter did not have false
positives and is largely correlated with the frontal face direction parameter. On the contrary, it is not clearly
correlated with the rest of the ocular measurements. For cognitive distraction analysis, this parameter would
be the most important cue, as this type of distraction does not normally involve head or eye movements.
The ground truth for this parameter was manually obtained by analyzing eye movements frame by frame
for the intervals where a fixed gaze behavior was being simulated. We can conclude from these data that
fixed gaze and PERCLOS are the most reliable parameters for characterizing driver fatigue, at least for our
simulated fatigue study.

All parameters presented in Table 3 are fused in the fuzzy system to obtain the DIL for final evaluation
of sleepiness. We compared the performance of the system using only the PERCLOS parameter and the
DIL(using all of the parameters), in order to test the improvements of our proposal with respect to the
most widely used parameter for characterizing driver drowsiness. The system performance was evaluated by
comparing the intervals where the PERCLOS/DIL was above a certain threshold to the intervals, manually
analyzed over the video sequences, in which the driver simulates fatigue behaviors. This analysis consisted
of a subjective estimation of drowsiness by human observers, based on the Wierwille test [41].

As can be seen in Table 4, correct detection percentage for DIL is very high (97%). It is higher than the
obtained using only PERCLOS, for which the correct detection percentage is about the 90% for our tests.
This is due to the fact that fatigue behaviors are not the same for all drivers. Further, parameter evolution
and absolute values from the visual cues differ from user to user. Another important fact is the delay between
the moment when the driver starts his fatigue behavior simulation and when the fuzzy system detects it.
This is a consequence of the window spans used in parameter evaluation. Each parameter responds to a
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Table 4. Sleepiness detection performance

Parameter Total % correct

PERCLOS 90
DIL 97

different stage in the fatigue behavior. For example, fixed gaze behavior appears before PERCLOS starts
to increase, thus rising the DIL to a value where a noticeable increment of PERCLOS would rise an alarm
in few seconds. This is extensible to the other parameters. Using only the PERCLOS would require much
more time to activate an alarm (tens of seconds), especially if the PERCLOS increases more slowly for some
drivers. Our system provides an accurate characterization of a driver’s level of fatigue, using multiple visual
parameters to resolve the ambiguity present in the information from a single parameter. Additionally, the
system performance is very high in spite of the partial errors associated to each input parameter. This was
achieved using redundant information.

5 Discussion

It has been shown that the system’s weaknesses can be almost completely attributed to the pupil detection
strategy, because it is the most sensitive to external interference. As it has been mentioned above, there are
a series of situations where the pupils are not detected and tracked robustly enough. Pupil tracking is based
on the “bright pupil” effect, and when this effect does not appear clearly enough on the images, the system
can not track the eyes. Sunlight intensity occludes the near-IR reflected from the driver’s eyes. Fast changes
in illumination that the Automatic Gain Control in the camera can not follow produce a similar result. In
both cases the “bright pupil” effect is not noticeable in the images, and the eyes can not be located. Pupils
are also occluded when the driver’s eyes are closed. It is then not possible to track the eyes if the head
moves during a blink, and there is an uncertainty of whether the eyes may still be closed or they may have
opened and appeared in a position on the image far away from where they were a few frames before. In this
situation, the system would progressively extend the search windows and finally locate the pupils, but in
this case the measured duration of the blink would not be correct. Drivers wearing glasses pose a different
problem. “Bright pupil” effect appears on the images, but so do the reflections of the LEDs from the glasses.
These reflections are very similar to the pupil’s, making detection of the correct one very difficult.

We are exploring alternative approaches to the problem of pupil detection and tracking, using methods
that are able to work 24/7 and in real time, and that yield accurate enough results to be used in other
modules of the system. A possible solution is to use an eye or face tracker that does not rely on the “bright
pupil” effect. Also, tracking the whole face, or a few parts of it, would make it possible to follow its position
when eyes are closed, or occluded.

Face and eye location is an extensive field in computer vision, and multiple techniques have been devel-
oped. In recent years, probably the most successful have been texture-based methods and machine learning.
A recent survey that compares some of these methods for eye localization can be found in [8]. We have
explored the feasibility of using appearance (texture)-based methods, such as Active Appearance Models
(AAM) [9]. AAM are generative models, that try to parameterize the contents of an image by generating a
synthetic image as close as possible to the given one. The synthetic image is obtained from a model consisting
of both appearance and shape. These appearance and shape are learned in a training process, and thus can
only represent a constrained range of possible appearances and deformations. They are represented by a
series of orthogonal vectors, usually obtained using Principal Component Analysis (PCA), that form a base
in the appearance and deformation spaces.

AAMs are linear in both shape and appearance, but are nonlinear in terms of pixel intensities. The shape
of the AAM is defined as the coordinates of the v vertices of the shape

s = (x1, y1, x2, y2, · · · , xv, yv)t (1)
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Fig. 9. A triangulated shape

and can be instantiated from the vector base simply as:

s = s0 +
n∑

i=1

pi · si (2)

where s0 is the base shape and si are the shape vectors. Appearance is instantiated in the same way

A(x) = A0(x) +
m∑

i=1

λi · Ai(x) (3)

where A0(x) is the base appearance, Ai(x) are the appearance vectors and λi are the weights of these vectors.
The final model instantiation is obtained by warping the appearance A(x), whose shape is s0, so it

conforms to the shape s. This is usually done by triangulating the vertices of the shape, using Delaunay [13]
or another triangulation algorithm, as shown in Fig. 9. The appearance that falls in each triangle is affine
warped independently, accordingly to the position of the vertices of the triangle in s0 and s.

The purpose of fitting the model to a given image is to obtain the parameters that minimize the error
between the image I and the model instance:

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x) − I(W(x;p))
]2

(4)

where W(x;p) is a warp defined over the pixel positions x by the shape parameters p.
These parameters can be then analyzed to gather interesting data, in our case, the position of the eyes

and head pose. Minimization is done using the Gauss–Newton method, or some efficient variations, such as
the inverse compositional algorithm [4, 28].

We tested the performance and robustness of the Active Appearance Models on the same in-car sequences
described above. AAMs perform well in sequences where the IR-based system did not, such as sequence 6,
where the driver is wearing glasses (Figs. 10a, b), and is able to work with sunlight (10c), and track the face
under fast illumination changes (10d–f). Also, as the model covers most of the face, the difference between
a blink and a tracking loss is clearer, as the model can be fitted when eyes are either open or closed.

On our tests, however, AAM was only fitted correctly when the percentage of occlusion (or self-occlusion,
due to head turns) of the face was below 35% of the face. It was also able to fit with low error although the
position of the eyes was not determined with the required precision (i.e., the triangles corresponding to the
pupil were positioned closer to the corner of the eye than to the pupil). The IR-based system could locate
and track an eye when the other eye was occluded, which the AAM-based system is not able to do. More
detailed results can be found on [30].

Overall results of face tracking and eye localization with AAM are encouraging, but the mentioned
shortcomings indicate that improved robustness is necessary. Constrained Local Models (CLM) are models
closely related to AAM, that have shown improved robustness and accuracy [10]. Instead of covering the
whole face, CLM only use small rectangular patches placed in specific points that are interesting for its
characteristic appearance or high contrast. Constrained Local Models are trained in the same way as AAMs,
and both a shape and appearance vector bases are obtained.
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Fig. 10. Fitting results with glasses and sunlight

Fig. 11. A constrained local model fitted over a face

Fitting the CLM to an image is done in two steps. First, the same minimization that was used for AAMs
is performed, with the difference that now no warping is applied over the rectangles. Those are only displaced
over the image. In the second step, the correlation between the patches and the image is maximized, with
an iterative algorithm, typically the Nelder–Mead simplex algorithm [29].

The use of small patches and the two-step fitting algorithm make CLM more robust and efficient
than AAM. See Fig. 11 for an example. The CLM is a novel technique that performs well in controlled
environments, but that has to be thoroughly tested in challenging operation scenarios.

6 Conclusions and Future Work

We have developed a non-intrusive prototype computer vision system for real-time monitoring of driver’s
fatigue. It is based on a hardware system for real time acquisition of driver’s images using an active IR illu-
minator and the implementation of software algorithms for real-time monitoring of the six parameters that
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better characterize the fatigue level of a driver. These visual parameters are PERCLOS, eye closure duration,
blink frequency, nodding frequency, face pose and fixed gaze. In an attempt to effectively monitor fatigue,
a fuzzy classifier was implemented to merge all these parameters into a single Driver Inattentiveness Level.
Monitoring distractions (both visual and cognitive) would be possible using this system. The system devel-
opment has been discussed. The system is fully autonomous, with automatic (re)initializations if required.
It was tested with different sequences recorded in real driving condition with different users during several
hours. In each of them, several fatigue behaviors were simulated during the test. The system works robustly
at night for users not wearing glasses, yielding accuracy of 97%. Performance of the system decreases during
the daytime, especially in bright days, and at the moment it does not work with drivers wearing glasses. A
discussion about improvements of the system in order to overcome these weaknesses has been included.

The results and conclusions obtained support our approach to the drowsiness detection problem. In the
future the results will be completed with actual drowsiness data. We have the intention of testing the system
with more users for long periods of time, to obtain real fatigue behaviors. With this information we will
generalize our fuzzy knowledge base. Then, we would like to improve our vision system with some of the
techniques mentioned in the previous section, in order to solve the problems of daytime operation and to
improve the solution for drivers wearing glasses. We also plan to add two new sensors (a steering wheel sensor
and a lane tracking sensor) for fusion with the visual information to achieve correct detection, especially at
daytime.

Acknowledgements

This work has been supported by grants TRA2005-08529-C02-01 (MOVICON Project) and PSE-370100-
2007-2 (CABINTEC Project) from the Spanish Ministry of Education and Science (MEC). J. Nuevo is also
working under a researcher training grant from the Education Department of the Comunidad de Madrid and
the European Social Fund.

References

1. Inc. Agilent Technologies. Application Note 1118: Compliance of Infrared Communication Products to IEC 825-1
and CENELEC EN 60825-1, 1999.

2. J.M. Alonso, S. Guillaume, and L. Magdalena. KBCT, knowledge base control tool, 2003. URL
http://www.mat.upm.es/projects/advocate/en/index.htm

3. Anon. Perclos and eyetracking: Challenge and opportunity. Technical report, Applied Science Laboratories,
Bedford, MA, 1999. URL http://www.a-s-l.com

4. S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer
Vision, 56(3):221–255, March 2004.

5. L.M. Bergasa, J. Nuevo, M.A. Sotelo, R. Barea, and M.E. Lopez. Real-time system for monitoring driver vigilance.
Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, 7(1):63–77, 2006.

6. S. Boverie, J.M. Leqellec, and A. Hirl. Intelligent systems for video monitoring of vehicle cockpit. In International
Congress and Exposition ITS. Advanced Controls and Vehicle Navigation Systems, pp. 1–5, 1998.

7. G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based computer vision with intel’s open source computer
vision library. Intel Technology Journal, 09(02), May 2005.

8. P. Campadelli, R. Lanzarotti, and G. Lipori. Eye localization: a survey. In NATO Science Series, 2006.
9. T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Transaction on Pattern Analysis

an Machine Intelligence, 23:681–685, 2001.
10. D. Cristinacce and T. Cootes. Feature Detection and Tracking with Constrained Local Models. Proceedings of

the British Machine Vision Conf, 2006.
11. DaimerChryslerAG. The electronic drawbar, June 2001. URL http://www.daimlerchrysler.com
12. DaimlerChrysler. Driver assistant with an eye for the essentials. URL http://www.daimlerchrysler.com/dccom
13. B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:

793–800, 1934.
14. D. Dinges and F. Perclos: A valid psychophysiological measure of alertness as assesed by psychomotor vigilance.

Technical Report MCRT-98-006, Federal Highway Administration. Office of motor carriers, 1998.



Visual Monitoring of Driver Inattention 37

15. European Project FP6 (IST-1-507674-IP). AIDE – Adaptive Integrated Driver-Vehicle Interface, 2004–2008. URL
http://www.aide-eu.org/index.html

16. European Project FP6 (IST-2002-2.3.1.2). Advanced sensor development for attention, stress, vigilance and
sleep/wakefulness monitoring (SENSATION), 2004–2007. URL http://www.sensation-eu.org

17. A.W. Fitzgibbon and R.B. Fisher. A buyer’s guide to conic fitting. In Proceedings of the 6th British Conference
on Machine Vision, volume 2, pp. 513–522, Birmingham, United Kingdom, 1995.

18. D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
19. R. Grace. Drowsy driver monitor and warning system. In International Driving Symposium on Human Factors

in Driver Assessment, Training and Vehicle Design, Aug 2001.
20. S. Guillaume and B. Charnomordic. A new method for inducing a set of interpretable fuzzy partitions and fuzzy

inference systems from data. Studies in Fuzziness and Soft Computing, 128:148–175, 2003.
21. H. Ueno, M. Kaneda, and M. Tsukino. Development of drowsiness detection system. In Proceedings of Vehicle

Navigation and Information Systems Conference, pp. 15–20, 1994.
22. AWAKE Consortium (IST 2000-28062). System for Effective Assessment of Driver Vigilance and Warning

According to Traffic Risk Estimation – AWAKE, Sep 2001–2004. URL http://www.awake-eu.org
23. Q. Ji and X. Yang. Real-time eye, gaze and face pose tracking for monitoring driver vigilance. Real-Time Imaging,

8:357–377, Oct 2002.
24. A. Kircher, M. Uddman, and J. Sandin. Vehicle control and drowsiness. Technical Report VTI-922A, Swedish

National Road and Transport Research Institute, 2002.
25. D. Koons and M. Flicker. IBM Blue Eyes project, 2003. URL http://almaden.ibm.com/cs/blueeyes
26. M. Kutila. Methods for Machine Vision Based Driver Monitoring Applications. Ph.D. thesis, VTT Technical

Research Centre of Finland, 2006.
27. Y. Matsumoto and A. Zelinsky. An algorithm for real-time stereo vision implementation of head pose and gaze

direction measurements. In Proceedings of IEEE 4th International Conference Face and Gesture Recognition,
pp. 499–505, Mar 2000.

28. I. Matthews and S. Baker. Active appearance models revisited. International Journal of Computer Vision,
60(2):135–164, November 2004.

29. J.A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7(4):308–313, 1965.
30. J. Nuevo, L.M. Bergasa, M.A. Sotelo, and M. Ocana. Real-time robust face tracking for driver monitoring.

Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE, pp. 1346–1351, 2006.
31. L. Nunes and M.A. Recarte. Cognitive demands of hands-free phone conversation while driving, Chap. F5, pp. 133–

144. Pergamon, Oxford, 2002.
32. P. Rau. Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design,

analysis and progress, NHTSA, 2005.
33. D. Royal. Volume I – Findings; National Survey on Distracted and Driving Attitudes and Behaviours, 2002.

Technical Report DOT HS 809 566, The Gallup Organization, March 2003.
34. Seeing Machines. Facelab transport, August 2006. URL http://www.seeingmachines.com/transport.html
35. Seeing Machines. Driver state sensor, August 2007. URL http://www.seeingmachines.com/DSS.html
36. W. Shih and Liu. A calibration-free gaze tracking technique. In Proceedings of 15th Conference Patterns

Recognition, volume 4, pp. 201–204, Barcelona, Spain, 2000.
37. P. Smith, M. Shah, and N.Da.V. Lobo. Determining driver visual attention with one camera. IEEE Transaction

on Intelligent Transportation Systems, 4(4):205–218, 2003.
38. T. Victor, O. Blomberg, and A. Zelinsky. Automating the measurement of driver visual behaviours using pas-

sive stereo vision. In Proceedings of Intelligent Conference Series Vision in Vehicles VIV9, Brisbane, Australia,
Aug 2001.

39. Volvo Car Corporation. Driver alert control. URL http://www.volvocars.com
40. W. Wierwille, L. Tijerina, S. Kiger, T. Rockwell, E. Lauber, and A. Bittne. Final report supplement – task 4:

Review of workload and related research. Technical Report DOT HS 808 467(4), USDOT, Oct 1996.
41. W. Wierwille, Wreggit, Kirn, Ellsworth, and Fairbanks. Research on vehicle-based driver status/performance

monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, final report;
technical reports & papers. Technical Report DOT HS 808 247, USDOT, Dec 1994. URL www.its.dot.gov


