
Intelligent Control of Mobility Systems

James Albus, Roger Bostelman∗, Raj Madhavan, Harry Scott, Tony Barbera, Sandor Szabo, Tsai Hong,
Tommy Chang, Will Shackleford, Michael Shneier, Stephen Balakirsky, Craig Schlenoff, Hui-Min Huang,
and Fred Proctor

Intelligent Systems Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Mail Stop
8230, Gaithersburg, MD 20899-8230, USA

1 Introduction

The National Institute of Standards and Technology (NIST) Intelligent Control of Mobility Systems (ICMS)
Program provides architectures and interface standards, performance test methods and data, and infra-
structure technology needed by the U.S. manufacturing industry and government agencies in developing and
applying intelligent control technology to mobility systems to reduce cost, improve safety, and save lives. The
ICMS Program is made up of several areas including: defense, transportation, and industry projects, among
others. Each of these projects provides unique capabilities that foster technology transfer across mobility
projects and to outside government, industry and academia for use on a variety of applications. A common
theme among these projects is autonomy and the Four Dimensional (3D + time)/Real-time Control System
(4D/RCS) standard control architecture for intelligent systems that has been applied to these projects.

NIST’s Intelligent Systems Division (ISD) has been developing the 4D/RCS [1, 2] reference model archi-
tecture for over 30 years. 4D/RCS is the standard reference model architecture that ISD has applied to many
intelligent systems [3–5]. 4D/RCS is the most recent version of RCS developed for the Army Research Lab
(ARL) Experimental Unmanned Ground Vehicle program. ISD has been applying 4D/RCS to the ICMS
Program for defense, industry and transportation applications.

The 4D/RCS architecture is characterized by a generic control node at all the hierarchical control levels.
Each node within the hierarchy functions as a goal-driven, model-based, closed-loop controller. Each node
is capable of accepting and decomposing task commands with goals into actions that accomplish task goals
despite unexpected conditions and dynamic perturbations in the world. At the heart of the control loop
through each node is the world model, which provides the node with an internal model of the external world.
The fundamental 4D/RCS control loop structure is shown in Fig. 1.

The world model provides a site for data fusion, acts as a buffer between perception and behavior, and
supports both sensory processing and behavior generation. In support of behavior generation, the world model
provides knowledge of the environment with a range and resolution in space and time that is appropriate to
task decomposition and control decisions that are the responsibility of that node.

The nature of the world model distinguishes 4D/RCS from conventional artificial intelligence (AI) archi-
tectures. Most AI world models are purely symbolic. In 4D/RCS, the world model is a combination of
instantaneous signal values from sensors, state variables, images, and maps that are linked to symbolic rep-
resentations of entities, events, objects, classes, situations, and relationships in a composite of immediate
experience, short-term memory, and long-term memory. Real-time performance is achieved by restricting the
range and resolution of maps and data structures to what is required by the behavior generation module at
each level. Short range, high resolution maps are implemented in the lower levels, with longer range, lower
resolution maps at the higher levels.

A world modeling process maintains the knowledge database and uses information stored in it to generate
predictions for sensory processing and simulations for behavior generation. Predictions are compared with

∗Corresponding author, roger.bostelman@nist.gov

J. Albus et al.: Intelligent Control of Mobility Systems, Studies in Computational Intelligence (SCI) 132, 237–274 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

238 J. Albus et al.

SENSORY
PROCESSING

WORLD MODELING
VALUE JUDGMENT

KNOWLEDGE

Images

Maps Entities

Sensors Actuators World

Classification
Estimation
Computation
Grouping
Windowing

Mission (Goal)

internal
external

Events
Planners
Executors

Task
Knowledge

BEHAVIOR
GENERATION

Fig. 1. The fundamental structure of a 4D/RCS control loop

observations and errors are used to generate updates for the knowledge database. Simulations of tentative
plans are evaluated by value judgment to select the “best” plan for execution. Predictions can be matched
with observations for recursive estimation and Kalman filtering. The world model also provides hypotheses
for gestalt grouping and segmentation. Thus, each node in the 4D/RCS hierarchy is an intelligent system
that accepts goals from above and generates commands for subordinates so as to achieve those goals.

The centrality of the world model to each control loop is a principal distinguishing feature between
4D/RCS and behaviorist architectures. Behaviorist architectures rely solely on sensory feedback from the
world. All behavior is a reaction to immediate sensory feedback. In contrast, the 4D/RCS world model
integrates all available knowledge into an internal representation that is far richer and more complete than
is available from immediate sensory feedback alone. This enables more sophisticated behavior than can be
achieved from purely reactive systems.

A high level diagram of the internal structure of the world model and value judgment system is also
shown in Fig. 1. Within the knowledge database, iconic information (images and maps) is linked to each
other and to symbolic information (entities and events). Situations and relationships between entities, events,
images, and maps are represented by pointers. Pointers that link symbolic data structures to each other form
syntactic, semantic, causal, and situational networks. Pointers that link symbolic data structures to regions
in images and maps provide symbol grounding and enable the world model to project its understanding of
reality onto the physical world.

Figure 2 shows a 4D/RCS high level diagram duplicated many times, both horizontally and vertically
into a hierarchical structure as applied to a single military vehicle (lowest level) through an entire battalion
formation (highest level). This structure, now adopted as a reference model architecture for the US Army
Future Combat System, among other organizations, could also be applied to civilian on-road single or multiple
vehicles as information could be passed from one vehicle to the next or to highway communication and control
infrastructure.

This chapter will briefly describe recent project advances within the ICMS Program including: goals,
background accomplishments, current capabilities, and technology transfer that has or is planned to occur.
Several projects within the ICMS Program have developed the 4D/RCS into a modular architecture for
intelligent mobility systems, including: an Army Research Laboratory (ARL) Project currently studying on-
road autonomous vehicle control, a Defense Advanced Research Project Agency (DARPA) Learning Applied
to Ground Robots (LAGR) Project studying learning within the 4D/RCS architecture with road following
application, and an Intelligent Systems Ontology project that develops the description of intelligent vehicle
behaviors. Within the standards and performance measurements area of the ICMS program, a Transporta-
tion Project is studying components of intelligent mobility systems that are finding their way into commercial
crash warning systems (CWS). In addition, the ALFUS (Autonomy Levels For Unmanned Systems) project
determines the needs for metrics and standard definitions for autonomy levels of unmanned systems. And
a JAUS (Joint Architecture for Unmanned Systems) project is working to set a standard for interoper-
ability between components of unmanned robotic vehicle systems. Testbeds and frameworks underway at
NIST include the PRIDE (Prediction in Dynamic Environments) framework to provide probabilistic pre-
dictions of a moving object’s future position to an autonomous vehicle’s planning system, as well as the

Intelligent Control of Mobility Systems 239

O
PE

R
A

T
O

R
 I

N
T

E
R

F
A

C
E

SP
WM BG

SP WM BG

SP WM BG

SP WM BG

Points

Lines

Surfaces

SP WM BG SP WM BG

SP WM BG

0.5 second plans
Steering,
velocity

5 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

SUBSYSTEM

SURROGATE SECTION

SURROGATE PLATOON

SENSORS AND ACTUATORS

Plans for next 2 hours

Plans for next 24 hours

0.05 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

Objects of attention

LocomotionCommunication Mission Package

VEHICLE Plans for next 50 seconds
Task to be done on objects of attention

Plans for next 10 minutes
Tasks relative to nearby objects

Section Formation

Platoon Formation

Attention

Battalion Formation SURROGATE BATTALION

Fig. 2. The 4D/RCS Reference Model Architecture showing multiple levels of hierarchy

USARSim/MOAST (Urban Search and Rescue Simulation/Mobility Open Architecture Simulation and
Tools) framework that is being developed to provide a comprehensive set of open source tools for the develop-
ment and evaluation of autonomous agent systems. A NIST Industrial Autonomous Vehicles (IAV) Project
provides technology transfer from the defense and transportation projects directly to industry through col-
laborations with automated guided vehicles manufacturers by researching 4D/RCS control applications to
automated guided vehicles inside facilities. These projects are each briefly described in this Chapter followed
by Conclusions and continuing work.

2 Autonomous On-Road Driving

2.1 NIST HMMWV Testbed

NIST is implementing the resulting overall 4D/RCS agent architecture on an ARL High-Mobility Multipur-
pose Wheeled Vehicle (HMMWV) testbed (see Fig. 3). Early work has focused on the lower agent control
modules responsible for controlling the speed, steering, and real-time trajectory paths based on sensed road
features such as curbs. This effort has resulted in sensor-based, on-road driving along dynamically-smooth
paths on roadways and through intersection turns [6]. Future work includes the implementation of selected
driving and tactical behaviors to further validate the knowledge set.

NIST has put in place several infrastructural elements at its campus to support the intelligent vehicle
systems development described above. An aerial survey was completed for the entire site, providing high
resolution ground truth data. A GPS base station was installed that transmits differential GPS correction
data across the site. Testbed vehicles, equipped with appropriate GPS hardware, can make use of these
corrections to determine their location in real-time with an uncertainty a few centimeters. This data can be
collected and compared to the ground truth data from the survey to make possible extensive vehicle systems
performance measurements of, for example, mobility control and perception components. In addition, lane
markings consistent with the DOT Manual on Uniform Traffic Control Devices, have been added to parts of
the campus to support development of perception capabilities required for urban driving.

240 J. Albus et al.

Fig. 3. ARL/NIST HMMWV Testbed showing several sensors mounted above the cab

Fig. 4. Sensor suite mounted on the HMMWV cab

Perception

The perception in an autonomous mobile robot provides information about the world that enables a mobile
robot to autonomously navigate its environment and react to events or changes that influence its task.
The goal of Perception is to build and maintain the internal representation of the world (World Model) that
the behavior generation components of the mobile robot can use to plan and execute actions that modify the
world or the robot’s position in the world. Since the world in general is not static, the perception algorithms
must update the internal model rapidly enough to allow changes, such as the positions of moving objects,
to be represented accurately. This places constraints on the sensors that can be used and on the processing
that can be applied.

This section will address the perception aspects of an autonomous mobile robot under the ARL project.
Under this project, we developed and demonstrated solutions to a number of perception problems in
autonomous navigation. In order to achieve goals in supporting navigation through real-time algorithms,
color cameras, FLIR (forward looking infrared), LADARs (laser detection and ranging) (see Fig. 4) are used
and the following topics are investigated and implemented:

Sensors, Sensor Registration, and Sensor Fusion: Sensors in use include color cameras, FLIR and scanning
and imaging LADARs. These sensors have to be registered so that data from the sensors can be combined.
Registration involves accurately locating the sensors relative to each other and time- and position-stamping
the outputs of each sensor and combined with vehicle motion. Sensor fusion allows a richer description of

Intelligent Control of Mobility Systems 241

the world and is particularly useful in associating range information with data from a two-dimensional,
monocular color camera.

Obstacle Detection: Obstacles may be features that lie above the ground or holes in the ground. They
need to be detected well before the vehicle reaches them and to know the true size of an obstacle to avoid it.
Hence a three-dimensional analysis is required. This can be obtained from LADAR or stereo sensors, while
a color camera may provide the best data to identify the obstacle.

Feature Detection: To build up a rich description of the world, a variety of features need to be recognized.
These include roads, road signs, water, other vehicles, pedestrians, etc. Special purpose processing is needed
for each of these features, which must not only be detected, but tracked while they are within the immediate
vicinity of the robotic vehicle.

Performance Evaluation: Sensory processing plays a critical part in keeping the vehicle operating safely.
Evaluating the performance of the sensory processing algorithms, which involves algorithm testing in realistic
scenarios, provides a way to ensure that they work correctly and robustly enough in the real world.

The world model is used in this project as a basis for temporal fusing the extracted feature from the
perception algorithms on different sensors and producing an internal world model. The world model contains
a representation of the current state of the world surrounding the vehicle and is updated continually by the
sensors. It acts as a bridge between perception and behavior generation by providing a central repository
for storing sensory data in a unified representation, and decouples the real-time sensory updates from the
rest of the system. The world model therefore constructs and maintains all the information necessary for
intelligent path planning.

2.2 4D/RCS Task Decomposition Controller for On-Road Driving

The 4D/RCS design methodology has evolved over a number of years as a technique to capture task
knowledge and organize it in a framework conducive to implementation in a computer control system. A
fundamental premise of this methodology is that the present state of the task sets the context that identifies
the requirements for all of the support processing. In particular, the task activity at any time determines
what is to be sensed in the world, what world model states need to be evaluated, which situations need to
be analyzed, what plans should be invoked, and what behavior generation knowledge needs to be accessed.
This view has resulted in the development of a design methodology that concentrates first and foremost on
a clear understanding of the task and all of the possible subtask activities.

The application of this methodology to the on-road driving task has led to the design of a 4D/RCS control
system that is formed from a number of agent control modules organized in a hierarchical relationship where
each module performs a finer task decomposition of the goal it receives from its supervising module. Each
of these control modules receives a goal task/command, breaks it down into a set of simpler subtasks,
determines what has to be known from the internal world model to decide on the next course of action,
alerts the sensory processing as to what internal world objects have to have their states updated by new
sensory readings/measurements, and evaluates the updated state of the world model to determine the next
output action.

An on-road driving 4D/RCS control hierarchy is shown in Fig. 5, which is an application of multiple
levels of the 4D/RCS reference model architecture diagram shown in Fig. 2. Here, over 170 intermediate level
subtask commands have been identified. These are shown as input commands to the corresponding control
module where they execute. A further expansion of these commands is shown at the Vehicle Manager and
the Mobility agent control modules. Their commands are underlined in Fig. 5 and the corresponding set of
possible plans that can be selected are listed under each underlined command. For example, at the Mobility
module, the FollowRoad command can select a plan to PassVehInFront, or DriveOnTwoLaneRd, or
DriveOnMultiLaneRd, or PullOntoRoad, etc. depending on the present world state. Each of these plans
is a separate state table describing this task behavior with an appropriate set of rules. Each of these rules
would have a branching condition/situation from which are derived detail world states, objects, and sensing
resolutions. An example of the command for each module at a particular instant in time is shown in Fig. 6: a
GoTo PostOffice command to the Destination Manager might result in a GoOn SouthDr TurnLeftOnto
ServiceDr command to Vehicle Manager resulting in a TurnRightAtInterTo ServiceDr command to

242 J. Albus et al.

GoOn_TurnRightOnto_
FollowRoute
TurnRightAtIntersection
TurnRightUsingExitRamp
TurnRightUsingFork

GoOn_TurnLeftOnto_
FollowRoute
TurnLeftAtIntersection
TurnLeftUsingExitRamp
TurnLeftUsingFork
TurnLeftUsingRightWithUTurn
TurnLeftUsingUWithRightTurn

GoOn_
FollowRoute

StopAt_
FollowRoute
TurnIntoDrive
ParkVehicle

FollowVehicle
FollowRoute
TurnLeftAtIntersection
TurnLeftUsingExitRamp
TurnLeftUsingFork
TurnLeftUsingRightWithUTurn
TurnLeftUsingUWithRightTurn
TurnRightAtIntersection
TurnRightUsingExitRamp
TurnRightUsingFork
TurnIntoDrive
ParkVehicle

GoOn_Becomes_
FollowRoute

RespondToEmerVeh
RespondToOwnVehEmer
RespondToSchoolBus
RespondToTrafficPerson

PullOntoRoad

Make_U_Turn
BackUp

Plans for Vehicle Manager

FollowRoad
PassVehInFront
DriveOnTwoLaneRd
DriveOnMultiLaneRd
PullOntoRoad
ChangeLaneToGoFaster
ChangeToGoalLane
AccomodatePassingVehicle
RespondToFollowingVeh
NegotiateLaneConstriction
NegotiateMovingConstriction
RespondToPedestrian
RespondToBicyclist
RespondToVehEnteringLane
DriveOnNarrowRoad
RespondToOncomingPassingVeh

CrossThru_Intersect
CrossThru_StopSign
CrossThru_YieldSign
CrossThru_SignalLight
CrossThru_UncontrolledInter
CrossThru_TrafficPerson
MergeInto_TravelLane
AccomodateMerge
Negotiate_RRCrossing
Negotiate_TollBooth
Negotiate_PedestrianCross
Negotiate_GateKeeper

TurnLeftAtInterTo_
TurnLeft_StopSign
TurnLeft_YieldSign
TurnLeft_SignalLight
TurnLeft_UncontrolledInter
TurnLeft_IntoDrive
TurnLeft_FromDrive
TurnLeft_IntoParkingSpace
TurnLeft_TrafficPerson

TurnRightAtInterTo_
TurnRight_StopSign
TurnRight_YieldSign
TurnRight_SignalLight
TurnRight_UncontrolledInter
TurnRight_IntoDrive
TurnRight_FromDrive
TurnRight_IntoParkingSpace
TurnRight_TrafficPerson

Make_U_Turn
Do_U_TurnAtIntersection
Do_U_TurnThruAccess
TurnAroundUsingDrive
TurnAroundInRoad
TurnAround_TrafficPerson

Plans for Mobility
Manager

Backup__
BackupVehicle
BackupIntoParallelPark
BackupOutOfParkSpace

BackLeftTo__
BackLeft_IntoLane
BackLeft_IntoDrive
BackLeft_IntoParkingSpace

BackRightTo__
BackRight_IntoLane
BackRight_IntoDrive
BackRight_IntoParkingSpace

Steer
Servo

Speed
Servo

GoAt_Speed,Acc,Dir(Fwd/Rev)
InitializeSubsystems
PrepForStarting

Destination
Manager

Vehicle
Manager

Uses maps, traffic, weather,
and construction reports to
plan a sequence of MapQuest-
like route segments.

Mobility
Manager

Determines center-of-lane path.
Detects/classifies objects
1)to determine right-of-way,
2)to determine which objects
might affect own vehicle’s path.

Builds goal paths that follow
command lane segments at
proper speeds while avoiding
the set of objects specified by
Mobility.

Primitive/
Trajectory

Calculates the dynamic
trajectories based on the
command goal paths and
controls vehicle to follow
trajectory using speed and
heading commands.

Elemental
Movement

BrakeSteering

Uses a feedforward
servo to estimate
throttle position and
brake-line pressure
to go at command
speed/acceleration.

Uses a feedforward
servo to estimate
steering wheel
position to go at
command heading.

Reads signs and detects
road intersections to identify
where to turn and which lane
to be in.

4D/RCS On-road Driving
Agent Hierarchy with Commands

PrepForShutDown
MaintainForPark/Idle
Stop/Halt

SteerFwd_HeadingAngle
SteerRev_HeadingAngle
InitializeSubsystems
PrepForStarting

InitSubsystems
StartupVehicle
ShutDownVehicle
TurnOffSubsystems

Follow_StLine
Follow_CirArcCW
Follow_CirArcCCW

Stop/Halt
SetupForwardDirTraj
SetupReverseDirTraj

InitSubsystems
StartupVehicle
ShutDownVehicle
TurnOffSubsystems
FollowLane
PassOnLeft
PassOnRight
FollowRightTurnLane
FollowLeftTurnLane
StopAt

CreepForward
PeekForPass
Backup
BackOut_ToGoLeft
BackOut_ToGoRight
BackInto_FromLeft
BackInto_FromRight
DoUTurn_AtInter
DoUTurn_MidRoad
Do3Pt_UTurn

CreepBackward
AllowVehToEnter_FromLeft
AllowVehToEnter_FromRight
YieldToPassingVeh
ReactToPassingVehAbort
PullOntoRd_FromLeftSh
PullOntoRd_FromRightSh

PullOff_OnLeftShoulder
PullOff_OnRightShoulder
GotoGap_LeftLane
GotoGap_RightLane
Premerge_LeftLane
Premerge_RightLane
ChangeTo_LeftLane
ChangeTo_RightLane
StopAtIntersection
AbortPass

InitializeSytem
MakeVehOperational
ShutDownVehicle
TurnOffSystem

Goto_Destination
FollowVehicle

InitializeSystems
StartupVehicle
TurnOffSystems
ShutDownVehicle

InitSubsystems
StartUpVehicle
ShutDownVehicle
TurnOffSubsystems

Fork_Right
Fork_Left
Merge_Right
Merge_Left
GoTo_RightExitRamp
GoTo_LeftExitRamp

BackOut_GoLeft
BackOut_GoRight
RespondTo_OwnVehEmer
Accommodate_SchoolBus
Accommodate_EmerVeh

Throttle

Fig. 5. 4D/RCS on-road driving control hierarchy with over 170 identified intermediate level subtask com-
mands/plans that decompose the GoTo Destination command all the way down to the instant-by-instant steer
and speed/acceleration commands to control the vehicle

Mobility Manager resulting in a FollowRightTurnLane command to Elemental Movement resulting in a
Follow CirArcCW goal path command to Primitive/Trajectory resulting in a SteerFwd HeadingAngle
command to the Steer Servo module and a GoAt Speed,Acc,Fwd command to Speed Servo module. With
each of these control modules in Fig. 6, a summary view of the road network data structure is also pictured.
The commands (goal/action-verbs) in this example are emphasized by a red font with parameters shown in
green. There are, of course, many more parameters (not shown here) associated with each of these commands
that identify specific road and lane parameters, and objects of interest that can affect right-of-way and own
vehicle motion paths. At each control cycle, each of the agent control modules executes as a state machine
where its input state is defined by the input command from its supervisor module, status from its subordinate
module and the present state of its view of the world model. If this input state has changed from the last cycle,

Intelligent Control of Mobility Systems 243

TurnRightAtInterTo_ServiceDr

Destination
Manager

Vehicle
Manager

Uses maps, with real-time
traffic, weather, and
construction reports to plan
MapQuest-like route segments.

Mobility
Manager

Builds accurate center-of-lane
path using constant curvature arcs
designated as lane segments.
Classifies objects
1) to determine right-of-way,
2) to determine which objects
 might affect own vehicle’s path.

Builds goal paths that follow
command lane segments at
proper speeds while avoiding
the set of objects specified by
Mobility.

Primitive/
Trajectory

Calculates the dynamic
trajectories based on the
command goal paths.
Controls vehicle to follow
trajectory using speed and
heading commands.

Elemental
Movement

Reads signs and detects
road intersections to identify
where to turn and which lane
to be in. Converts route plan
to individual lanes with forks
and merges.

4D/RCS On-road Driving
Agent Hierarchy with Road Network

Follow_CirArcCW
GoalPath 115

Goto_PostOffice

GoOn_South Dr
TurnRightAt_Service Dr

FollowRightTurnLane
Lane-Segments-Path

Fig. 6. Upper 4D/RCS agent control modules of an on-road driving control hierarchy summarizing the road network
interactions for each control module. Each lower module processes a more detailed representation of the vehicle’s
goal path

244 J. Albus et al.

then the control module transitions to a new state and may change the output command to a subordinate
module, and/or the status to the supervisor module, along with changes to the world model.

The following outline will detail activities at each of these agent control modules summarizing the level
and type of knowledge and data each process. This outline uses a standardized format where each module is
described by a five part section consisting of summary of its responsibilities and actions including the world
model data generated, its input command from the supervisor control module, its input from the world
model, its output command to its subordinate control module, and its output status. Again, each command
name will be highlighted in red (with parameters in green). Road network data structure elements will be
highlighted in blue.

Destination Manager Control Module

Responsibilities and Actions: This module’s primary responsibility is to plan the route to get to a single
commanded destination, which may include passing through specified intermediate control points. This
is route planning at the level that determines which road to follow and which intersections to turn at.
At any time, real-time inputs concerning weather, traffic, construction, civil situations, etc. can cause a
re-planning/re-sequencing of route elements used to define the route.

Retrieves and builds a sequence of route elements to specify a route segment .

This module is commanded to go to a destination , which is described by not only the destination point
itself but also by a list of possible intermediate control points so that the supervisor module can control the
shape of the solution path. The input command further constrains the route to be planned to arrive at the
destination by a specified time and to be prioritized by the shortest distance, or time, or the least number
of turns or controlled intersections. As a result, this module has the responsibility to plan the sequence of
the route elements (see Fig. 7) that meet the commanded constraints. It creates multiple sets of possible
sequences of route elements and evaluates them against the commanded constraints to select a plan set
to execute. It is continually updating the attributes of the route elements based on the real-time reports
of weather, traffic, construction, civil situations, and accidents. Anytime new real-time inputs are available,
this module re-plans the sequence of route elements. It processes present experiences to create a history
of average effects of these parameters versus time of day, day of week, time of year to build more accurate
estimates of the route elements availability and average speeds. From this, over time, it can improve the
accuracy of its estimations and its planned routes. It commands the Vehicle control module to execute a route
segment , which is a sequence of route elements, all of which pass through each intervening intersection
except the last route element, which specifies a turn onto a different road. When the subordinate control
module indicates it is nearing completion of its commanded route segment, this module re-plans its set of
route elements and groups the next sequence of route elements that represents the next route segment
and issues this command to the subordinate module.

Input-Command: A command to Goto Post Office, which is the form of a Goal Destination specifi-
cation. The associated command data includes the parameters of the final goal point along with a sequential
list of any intermediate points (control points) to pass through (e.g., Goto Post Office (from the present
position which is the school) by way of the intersection at Service Dr and Research Dr (a control point)) along
with a specific time to be at this goal destination (e.g., arrive at Post Office by 10:00 a.m.). Additionally,
the command specifies that a route is to be planned that prioritizes on the shortest time, or the shortest
distance, or the least number of turns, or least number of controlled intersections.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of route elements (an interconnecting single direction of travel between two intersections
with a direction pointing out of the second intersection (e.g., turn left, or pass through, or turn right). Each
route element is a unique possible path for a vehicle to travel. Each is assigned a number of attributes that
identify its availability (i.e., is it available for a vehicle to travel on it), time constraints on its availability
(not available from 7:30 to 9:00 a.m., such as might apply to a left turn), average travel speeds with time
constraints (e.g., 35 kph from 7:00 p.m. to 7:30 a.m., 15 kph from 7:30 a.m. to 7:00 p.m.), average travel
speeds with weather constraints (35 kph clear weather, 20 kph in rain, 15 kph in snow), average travel speeds

Intelligent Control of Mobility Systems 245

63

8

RE2

RE14
712

Goal
Route Segment

Fig. 7. Route Elements (RE) are route representations that connect two Map Points (which are either intersections
or boundary points of the map and are labeled by yellow stars) and indicate a direction away from the end Map
Point. Here Route Element 2 (RE2) starts at Map Point 7 and ends at Map Point 1 heading in a direction straight
through the intersection at Map Point 1 towards Map Point 2. RE14 starts at Map Point 1 and ends at Map Point
2 heading in a direction of a right turn at the intersection towards Map Point 3. The Destination Manager control
module plans a route as the sequence of these route elements that best meet the constraints of minimum distance,
minimum time, or minimum number of turns

with traffic constraints (35 kph normal traffic, 25 kph in moderate traffic, 15kph in heavy traffic) conditions
that make it unavailable (e.g., unavailable in heavy rain – has a creek that floods, unavailable in snow or
ice because has too steep of a hill, unavailable because of accident report or construction report or civil
situation report such as a parade or demonstration). Most of the real-time information is usually received
from remote sensing since most of the route is beyond own vehicle’s sensing capabilities, but own vehicle’s
sensing can contribute in situations like observing an accident in the road ahead which has not yet been
reported on the radio.

World model road network data includes a set of history attributes that store average times to traverse
each route element under the various conditions, which should improve planning estimates.

Output-Command: Goal Route Segment which is a Map Quest-like command GoOn SouthDr Turn-
RightAt ServiceDr , which is basically a command to follow a specified road until you have to turn onto
a different road.

Associated command data: Sequential list of the route elements that combined make up the specified
route segment command.

Output-Status: Present state of goal accomplishment (i.e., the commanded goal destination) in terms
of executing, done, or error state, and identification of which intermediate control points have been executed
along with estimated times to complete the remaining control points.

Vehicle Manager Control Module

Responsibilities and Authority: This module’s primary responsibility is to use the commanded planned route
elements to build out the actual available lanes along these route elements, identifying wherever a physical

246 J. Albus et al.

1
2

3

LE18
LE21

LE32

M13

M27

F23

F37

Goal
 Lane

Fig. 8. A Lane Element (LE) is defined single lane section of road that connects two Lane Junctions. Lane Junctions
are either Forks (e.g., F23 which is a right turn fork) or Merges (e.g., M27 which is a merge of a left turn and a right
turn). This figure illustrates the lane elements for a single Route Element that turns right at the intersection (defined
as Map Point 2). Here, Lane Element 18 (LE18) is one lane of a two lane road that goes from Merge 13 (M13) to
Fork 23 (F23). LE21 goes from F23 to M27 and LE32 goes from M27 to F37. The Vehicle Manager Control Module
carries out this further refinement of the commanded Route Element 14 from the Destination Manager to build the
sequence of these three Lane Elements (LE18, LE21, and LE32) that define the planned Goal Lane for the vehicle

branching (fork) exists and selecting the correct branch (such as a right turn as opposed to passing through
an intersection). This module assembles the resultant lane element sequences in groups that define a goal
lane on a roadway between intersections or a goal lane that defines the maneuver through an intersection.
Real-time navigational data input from road name signs, exit signs and lane-use restriction signs are used
to assist plan execution.

Retrieves and builds a sequence of lane elements to specify a goal lane.

This module is commanded to go along a route segment , which is described by the corresponding
sequence list of route elements. This control module converts this higher level of route abstraction into
the actual lanes that are available for own vehicle to travel on along these route elements. It does this by
building out the sequence of lane elements that will represent the more detailed route plan for the vehicle
and then groups these lane elements into commanded goal lanes as shown in Fig. 8. It further decides,
based on navigational concerns at this level, what priority to set on the commanded goal lane. If there is
an upcoming right hand turn, for instance, on a multi-lane road, it may specify that the goal lane (which is
the furthest lane to the right) for a FollowRoad command is at the priority of only-required-to-be-in-goal-
lane-when-reach-end-of-goal-lane so that the subordinate control modules are free to chose adjacent lanes to
respond to drive behavior issues but the vehicle must be in that lane at the end of the lane in time for the
upcoming right turn.

This module assembles lane elements in order to specify either the goal lanes between intersections
or the goal lanes that navigate through intersections (including turns). In this way, these goal lane
specifications accompany the commands to the subordinate Mobility control module to carry out Follow
Road, Turn Right At Intersection, Pass Through Intersection, etc. actions.

This module uses those real-time world model data that can affect the choice of lane elements, which
affects which fork and/or merge lane junction to use. Its world data includes the road names of its own
road and all crossing roads as well as navigational signs that indicate upcoming intersections, turn lanes and
exit ramps, as well as any lane restrictions such as “No Left Turn – 4:30 to 7:00 p.m.”. It also monitors for

Intelligent Control of Mobility Systems 247

any situations that might cause changes in the set of lane elements selected to execute a commanded route
element. As an example, a right turn ramp might be closed for construction requiring the vehicle to proceed
into the intersection to make the turn, or the left turn lane may be blocked by an accident requiring the
vehicle to pass through the intersection and make a U-turn then a left turn. But in all cases, the commanded
route element is still being followed. However, if the right hand turn road were completely blocked by
an accident, this would create a situation requiring a response beyond the level of authority of this Vehicle
control module since the commanded route element can no longer be followed. This data would feedback
through the world model to the Destination manager module to trigger a re-planning of a new sequence of
route elements to deal with this situation. The Destination manager would then command the Vehicle
module with a new route segment composed of a new sequence of route elements. The Vehicle control
module would, in turn, build out its corresponding set of lane elements to specify the new goal lane and
command these to the Mobility control module. All of these responses would happen in a small fraction of a
second. This illustrates how each module can only make decisions at its level of responsibility and authority.

Input-Command: A command to GoOn SouthDr TurnRightAt ServiceDr which is the form of a
Goal Route Segment (similar to a MapQuest-like command), which is basically a command to follow a
specified road until you have to turn onto a different road.

Associated command data: Sequential list of the route elements that when combined, make up the
specified route segment command. This is a list of route elements, each of which specifies the route through
the next succeeding intersection (these will all be pass-through-the-intersection route elements) until the last
route element of the list that will specify the turn required to go onto a different road completing the
specification of the commanded route segment .

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a map
at the level of lane junctions and lane elements. Lane junctions are all of the points along a single
travelway where either a physical fork from one lane to two lanes occurs (a Fork Junction) or two lanes come
together into one lane (a Merge Junction). The interconnecting stretches of single lane travelways are the
lane elements. This is analogous to a train track where all of the switches represent the lane junctions
and the connecting track sections are the lane elements. This is a very appropriate analogy since a vehicle
traveling on a road is very much constrained to its present lane as a train is to its track and can only change
to a different lane at junction/switch points. Every physical fork junction is a decision point where the
controller has to decide which of the two lanes to choose. The decision to change lanes along a route with
multiple lanes in the same direction is not a navigation issue but a drive behavior issue that will be discussed
below. This module’s map representation is concerned with navigational decisions at the level of physical
road forks and merges. These structures of lane junctions and lane elements carry many attributes to
aid in route planning. Each lane junction is classified as a Fork or a Merge. If it is a Fork, it is classified
as forming a right or left turn, or adding a lane. For a Merge, it is classified as to which merging lane, right
or left, has the right-of-way. If there is a right-of-way control point at the lane junction, then whether the
control is a stop sign, yield sign, signal light, or own direction of travel has right-of-way is specified.

Each lane element is classified as to its type, i.e., right or left turn, entering, exiting, or passing through
an intersection, or a roadway. If there is a right-of-way control point within the lane element, then whether
the control is a stop sign, yield sign, signal light, or own direction of travel has right-of-way. The data
structures for the lane elements also maintain a large number of relationships, such as, the next following
and previous lane elements, the adjacent lane elements, the type of road (two-lane undivided, four-lane
undivided, four-lane divided, etc.) and the lane element’s position relative to other lane elements in the
roadway, whether it starts or ends at an intersection, passes through an intersection or turns, etc. They are
also classified by the action taken to enter them (fork right or left, come from merge) and the action at their
end (merge-to-left, merge-to-right, etc.). Each lane element also references its start and end lane junction.
All of the lane elements carry navigational information in the form of start and end UTM coordinates,
overall length, speed limits, heading direction, average times to traverse, name of the road, and which route
element (used by the Destination Manager control module) that they are a part of. In a corresponding
cross-referencing, each route element maintains a list of lane elements that make it up.

World model road network data includes a set of history attributes that store average times to traverse
each lane element under various conditions. These should improve the planning estimates.

248 J. Albus et al.

Output-Command: A command to Follow Road, or Turn Right At Intersection, or Cross Through
Intersection along with the data specification of the corresponding Goal Lane in the form of a sequential
list of lane elements along with a specific time to arrive at end of the goal lane. Additionally, in the case
of a multi-lane travelway with lanes traveling parallel with the goal lane, the priority of own vehicle being
in the goal lane is specified by parameters such as desired-to-be-in-goal-lane, or required-to-be-in-goal-lane,
or only-required-to-be-in-goal-lane-when-reach-end-of-goal-lane.

Associated command data: Sequential list of the lane elements that identify the goal lane for own vehicle
to travel. Additionally, the time of arrival at the end of the specified GoalLane is also commanded.

Output-Status: Present state of goal accomplishment (i.e., the commanded route segment) in terms of
executing, done, or error state, and identification of which intermediate route elements have been executed
along with estimated time to complete each remaining route element.

Mobility Control Module

Responsibilities and Authority: This module’s primary responsibility is to determine own vehicle’s present
right-of-way based on the road/intersection topography, control devices, rules of the road, and the state of
other vehicles and pedestrians. It determines when own vehicle can go and determines the lane segments
that define its nominal path (see Fig. 9). It also determines which objects might affect its path motion and
places these in an Objects-of-Interests table to send to the Elemental Movement control module to plan
a path around them.

Retrieves and builds a sequence of lane segments to specify a goal lane-segment path. Builds a table
of active objects (with evaluation costs) that might influence own vehicle’s path.

This module is commanded to go along a goal lane, which is described by a list of lane elements. It
derives a set of lane segments, which are constant curvature arcs that specify the expected center-of-lane
path for the lane elements. This module registers/aligns real-time updates of these lane segments as
derived from sensed position of the road and lanes.

Additionally, this module applies road and intersection topography templates to fill in all of the relevant
lane data, specifying such information as to which lanes cross, or merge, or do not intersect own lane

2

LnSeg82
LnSeg87

LnSeg91
M27

F23

Goal
 Lane-Segments-Path

LnSeg81

LnSeg92

M13

F37

Fig. 9. Lane Segments (LnSeg) are defined as the nominal center-of-lane path representations in the form of constant
curvature arcs and straight lines. They pass through the forks and merges that bound the Lane Elements. In this
example, the Lane Element 18 references a linked list of lane segments containing LnSeg81 and LnSeg82, LE21
references LnSeg87, and LE32 references LnSeg91 and LnSeg92. Thus, the Lane Element is a data structure to
abstract and reference the set of actual center-of-lane paths (Lane Segments). The Mobility control module manages
this relationship by constantly updating the list of Lane Segments for a particular Lane Element based on real-time
sensing of the lane position and curvature

Intelligent Control of Mobility Systems 249

Right Turn
at

3-way
Intersection

Own Vehicle’s Path

Intersecting Lanes

Merging Lanes

Non-Intersect Lanes

Fig. 10. A Lane Intersection Template for a 3-way intersection describes the type of intersecting interactions between
own vehicle goal lane and all of the other lanes in the intersection

Right Turn
at

3-way
Intersection

Own Vehicle’s Path
has right-of-way

Merging Lanes that
yield to own vehicle

Non-Intersect Lanes

Stop-Line for
Stop Sign

Fig. 11. The specific control devices (here – a Stop Sign) are populated into the template to arrive at the right-of-way
behaviors of vehicles in all of the lanes of the intersection

(see Fig. 10) These structures are then further overlaid with present detected control devices such as stop
signs to specify the relative right-of-way considerations (see Fig. 11) for all of the lanes nearby own vehicle’s
goal lane. This world model structure serves as the basis for real-time assessment of own vehicle’s right of
way when overlaid with other vehicles and their behavior states.

This module uses these observed vehicles’ and pedestrians’ world states including position, velocity and
acceleration vectors, classification of expected behavior type (aggressive, normal, conservative), and intent
(stopping at intersection, turning right, asserting right-of-way, etc.) to decide what action own vehicle should
do and when to do it.

This module also provides classification of objects relevant to the present commanded driving task (see
Fig. 12) by determining which objects are close enough to the identified relevant lanes to have the potential
to affect own vehicle’s planned path. These objects (see Fig. 13) are placed into an Objects-of-Interest
table along with a number of computed parameters such as required offset distance, passing speed, cost to
violate offset or passing speed, cost to collide, as well as dynamic state parameters such as velocity and
acceleration vectors and other parameters. This table will serve as part of the command data set to the
Elemental Movement control module.

250 J. Albus et al.

2

M27

F23 M13

F37

Pedestrians
Pot Hole

Fig. 12. Objects relevant to on-road driving (here pedestrians and pot holes) are sensed, classified, and placed into
the world model

2

M27

F23 M13

F37

X

X

X

Object-1

Object-2

Object-3

Off-Path Distance

2
Posit

ion

Objec
t-ID

Offs
et
Pas

sS
pee

d

Follo
wing

Dist

Costs
 to

 Viol
ate

X-80934
Y-23882
Z-23457

X-8093
Y-23882 X-80934 X-80934

X-80934
Y-23882
Z-23457

Objects-of-Interest
Table

Fig. 13. The Mobility control module tests the objects in the world model to see which ones are within a specified
distance to own vehicle’s goal lane (here shown as a shaded green area). In this figure, only Object-2 (a pedestrian) is in
this region. Mobility manager places this object into an Objects-of-Interest table along with parameters of minimum
offset distance, passing speed, following distance and cost values to exceed these. This is part of the command to the
subordinate Elemental Movement control module

Input-Command: A command to FollowRoad, or TurnRightAtIntersection, or Cross ThroughIn-
tersection, etc. along with the data specification of the corresponding Goal Lane in the form of a sequential
list of lane elements, with a specific time to be at the end of the goal lane. In the case of adjacent lanes
in the same direction as the goal lane, the priority of own vehicle being in the goal lane is specified with
parameters such as desired, or required, or required-when-reach-end-of-lane.

Intelligent Control of Mobility Systems 251

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a map
at the level of lane segments which are the nominal center-of-lane specifications in the form a constant
curvature arcs. This module builds out the nominal lane segments for each lane element and cross-
references them with the corresponding lane elements. The world model contains estimates of the actual
lane segments as provided by real-time sensing of roads and lanes and other indicators. This module will
register these real-time lane segments with its initial nominal set.

This module’s world model contains all of the surrounding recognized objects and classifies them according
to their relevance to the present commanded driving task. All objects determined to have the potential to
affect own vehicle’s planned path are placed into an Objects-of-Interest table along with a number of
parameters such as offset distance, passing speed, cost to violate offset or passing speed, cost to collide as
well as dynamic state parameters such as velocity and acceleration and other parameters.

Other objects include detected control devices such as stop signs, yield signs, signal lights and the present
state of signal lights. Regulatory signs such as speed limit, slow for school, sharp turn ahead, etc. are included.

The observed other vehicles’ and pedestrians’ and other animate objects’ world states are contained here
and include position, velocity and acceleration vectors, classification of expected behavior type (aggressive,
normal, conservative), and intent (stopping at intersection, turning right, asserting right-of-way, following-
motion-vector, moving-randomly, etc.).

Additionally, this module’s world model contains road and intersection topography, intersection, and
right-of-way templates for a number of roadway and intersection situations. These are used to aid in the
determination of which lanes cross, or merge, or do not intersect own lane and to aid in the determination
of right-of-way.

Output-Command: A command to FollowLane, FollowRightTurnLane, FollowLeftTurnLane,
StopAtIntersection, ChangeToLeftLane, etc. along with the data specification of a Goal Lane-
Segment Path in the form of a sequential list of lane segments that define the nominal center-of-lane path
the vehicle is to follow. Additionally, the command includes an Objects-of-Interest table that specifies a
list of objects, their position and dynamic path vectors, the offset clearance distances, passing speeds, and
following distances relative to own vehicle, the cost to violate these values, these object dimensions, and
whether or not they can be straddled.

Output-Status: Present state of goal accomplishment (i.e., the commanded GoalLane) in terms of exe-
cuting, done, or error state, and identification of which lane elements have been executed along with
estimated time to complete each of the remaining lane elements.

Elemental Movement Control Module

Responsibilities and Authority: This module’s primary responsibility is to define the GoalPaths that will
follow the commanded lane, slowing for turns and stops, while maneuvering in-lane around the objects in
the Objects-of-Interests table.

Constructs a sequence of GoalPaths.

This module is commanded to follow a sequence of lane segments that define a goal lane-segment
path for the vehicle. It first generates a corresponding set of goal paths for these lane segments by determining
decelerations for turns and stops as well as maximum speeds for arcs both along the curving parts of the
roadway and through the intersection turns. This calculation results in a specified enter and exit speed for
each goal path. This will cause the vehicle to slow down properly before stops and turns and to have the
proper speeds around turns so as not to have too large a lateral acceleration. It also deals with the vehicle’s
ability to decelerate much faster than it can accelerate.

This module also receives a table of Objects-of-Interests that provides cost values to allow this module
to calculate how to offset these calculate GoalPaths and how to vary the vehicle’s speed to meet these cost
requirements while being constrained to stay within some tolerance of the commanded GoalPath . This
tolerance is set to keep the vehicle within its lane while avoiding the objects in the table. If it cannot
meet the cost requirements associated with the Objects-of-Interest by maneuvering in its lane, it slows
the vehicle to a stop before reaching the object(s) unless it is given a command from the Mobility control

252 J. Albus et al.

2

The commanded Lane Segments are
offset and their speed modified around
an object from the Objects-of-Interest
table to generate a set of goal paths for
the vehicle that meets the control
values specified in the table.

GP113GP114

GP115

GP116

GP117

Vehicle’s Goal Paths -

Fig. 14. Elemental Movement control module generates a set of goal paths with proper speeds and accelerations
to meet turning, slowing, and stopping requirements to follow the goal lane as specified by the commanded lane
segments (center-of-lane paths). However, it will modify these lane segments by offsetting certain ones and altering
their speeds to deal with the object avoidance constraints and parameters specified in the Objects-of-Interest table
from the Mobility control module. Here, Goal Path 114 (GP114) and GP115 are offset from the original lane segment
specifications (LnSeg82 and LnSeg87) to move the vehicle’s goal path far enough out to clear the object (shown
in red) from the Objects-of-Interest table at the specified offset distance. The speed along these goal paths is also
modified according to the values specified in the table

module allowing it to go outside of its lane. The Elemental Movement module is continually reporting status
to the Mobility control module concerning how well it is meeting its goals. If it cannot maneuver around
an object while staying in-lane, the Mobility module is notified and immediately begins to evaluate when a
change lane command can be issued to Elemental Movement module.

This module will construct one or more GoalPaths (see Fig. 14) with some offset (which can be zero)
for each commanded lane segment based on its calculations of the values in the Objects-of-Interest table.
It commands one goal path at a time to the Primitive control module but also passes it the complete set
of planned GoalPaths so the Primitive control module has sufficient look-ahead information to calculate
dynamic trajectory values. When the Primitive control module indicates it is nearing completion of its
commanded GoalPath , the Elemental Movement module re-plans its set of GoalPaths and sends the next
GoalPath . If, at anytime during execution of a GoalPath , this module receives an update of either the
present commanded lane segments or the present state of any of the Objects-of-Interest , it performs a
re-plan of the GoalPaths and issues a new commanded GoalPath to the Primitive control module.

Input-Command: A command to FollowLane, FollowRightTurnLane, FollowLeftTurnLane,
StopAtIntersection, ChangeToLeftLane, etc. along with the data specification of a Goal Lane-
Segment Path in the form of a sequential list of lane segments that define the nominal center-of-lane path
the vehicle is to follow. Additionally, the command includes an Objects-of-Interest table that specifies a
list of objects, their position and dynamic path vectors, the offset clearance distances, passing speeds, and
following distances relative to own vehicle, the cost to violate these values, these object dimensions, and
whether or not they can be straddled.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of present estimated lane segments. This includes the lane segments that are in the
commanded goal lane segment path as well as the real-time estimates of nearby lane segments such as

Intelligent Control of Mobility Systems 253

the adjacent on-coming lane segments. This world model also contains the continuously updated states
of all of the objects carried in the Objects-of-Interest table. Each object’s state includes the position,
velocity, and acceleration vectors, and history and classification of previous movement and reference model
for the type of movement to be expected such.

Output-Command: A command to Follow StraightLine, Follow CirArcCW, Follow CirArcCCW,
etc. along with the data specification of a single goal path within a sequential list of GoalPaths that define
the nominal path the vehicle is to follow.

Output-Status: Present state of goal accomplishment (i.e., commanded goal lane-segment path) in
terms of executing, done, or error state, and identification of which lane segments have been executed
along with estimated time to complete each of the remaining lane segments.

Primitive (Dynamic Trajectory) Control Module

Responsibilities and Authority: This module’s primary responsibility is to pre-compute the set of dynamic
trajectory path vectors for the sequence of goal paths, and to control the vehicle along this trajectory.
Constructs a sequence of dynamic path vectors which yields the speed parameters and heading vector.

This module is commanded to follow a GoalPath for the vehicle. It has available a number of relevant
parameters such as derived maximum allowed tangential and lateral speeds, accelerations, and jerks. These
values have rolled up the various parameters of the vehicle, such as engine power, braking, center-of-gravity,
wheel base and track, and road conditions such as surface friction, incline, and side slope. This module uses
these parameters to pre-compute the set of dynamic trajectory path vectors (see Fig. 15) at a much faster
than real-time rate (100 − 1), so it always has considerable look-ahead. Each time a new command comes
in from Elemental Movement (because its lane segment data was updated or some object changed state),
the Primitive control module immediately begins a new pre-calculation of the dynamic trajectory vectors
from its present projected position and immediately has the necessary data to calculate the Speed and Steer
outputs from the next vehicle’s navigational input relative to these new vectors.

On each update of the vehicle position, velocity, and acceleration from the navigation system (every
10ms), this module projects these values to estimate the vehicle’s position at about 0.4 s into the future,
finds the closest stored pre-calculated dynamic trajectory path vector to this estimated position, calculates
the off-path difference of this estimated position from the vector and derives the next command speed,
acceleration, and heading from these relationships.

Input-Command: A command to Follow StraightLine, Follow CirArcCW, Follow CirArcCCW,
etc. with the data of a single goal path in the form of a constant curvature arc specification along with
the allowed tangential and lateral maximum speeds, accelerations, and jerks. The complete set of constant
curvature paths that define all of the planned output goal paths from the Elemental Movement control
module are also provided.

Input-World Model: Present estimate of this module’s relevant map of the road network – this is a
map at the level of goal paths commanded by the Elemental Movement control module. Other world model
information includes the present state of the vehicle in terms of position, velocity, and acceleration vectors.
This module’s world model also includes a number of parameters about the vehicle such as maximum
acceleration, deceleration, weight, allowed maximum lateral acceleration, center-of-mass, present heading,
dimensions, wheel base, front and rear overhang, etc.

Output-Command: Commanded maximum speed, present speed, present acceleration, final speed at path
end, distance to path end, and end motion state (moving or stopped) are sent to the Speed Servo control
module. Commanded vehicle center absolute heading, present arc radius, path type (straight line, arc CW,
or arc CCW), the average off-path distance, and the path region type (standard-roadway, beginning-of-
intersection-turn, mid-way-intersection-turn, arc-to-straight-line-blend) are sent to the Steer Servo control
module.

Output-Status: Present state of goal accomplishment (i.e., the commanded goal path) in terms of exe-
cuting, done, or error state, and estimated time to complete present goal path . This module estimates time
to the endpoint of the present goal path and outputs an advance reach goal point state to give an early
warning to the Elemental Movement module so it can prepare to send out the next goal path command.

254 J. Albus et al.

2

Dynamic Trajectories
built from Goal Paths.

GP113GP114

GP117

GP116

GP115

Fig. 15. Primitive/Trajectory control module pre-calculates (at 100× real-time) the set of dynamic trajectory vectors
that pass through the specified goal paths while observing the constraints of vehicle-based tangential and lateral
maximum speeds, accelerations, and jerks. As seen here, this results in very smooth controlled trajectories that blend
across the offset goal paths commanded by the Elemental Movement control module

Speed Servo Control Module

Responsibilities and Authority: This module’s primary responsibility is to use the throttle and brake to cause
the vehicle to move at the desired speed and acceleration and to stop at the commanded position.

Uses a feedforward model-based servo to estimate throttle and brake-line pressure values.

This module is commanded to cause the vehicle to move at a speed with a specific acceleration constrained
by a maximum speed and a final speed at the path end, which is known by a distance value to the endpoint
that is continuously updated by the Primitive module.

This module basically uses a feedforward servo module to estimate the desired throttle and brake-line
pressure values to cause the vehicle to attain the commanded speed and acceleration. An integrated error
term is added to correct for inaccuracies in this feedforward model. The parameters for the feedforward servo
are the commanded speed and acceleration, the present speed and acceleration, the road and vehicle pitch,
and the engine rpm. Some of these parameters are also processed to derive rate of change values to aid in
the calculations.

Input-Command: A command to GoForwardAtSpeed or GoBackwardAtSpeed or StopAtPoint
along with the parameters of maximum speed, present speed, present acceleration, final speed at path end,
distance to path end, and end motion state (moving or stopped) are sent to the Speed Servo control module.

Input-World Model: Present estimate of relevant vehicle parameters – this includes real-time measure-
ments of the vehicle’s present speed and acceleration, present vehicle pitch, engine rpm, present normalized
throttle position, and present brake line pressure. Additionally, estimates are made for the projected vehicle

Intelligent Control of Mobility Systems 255

speed, the present road pitch and the road-in-front pitch. The vehicle’s present and projected positions are
also utilized.

Output-Command: The next calculated value for the normalized throttle position is commanded to the
throttle servo module and the desired brake-line pressure value is commanded to the brake servo module.

Output-Status: Present state of goal accomplishment (i.e., the commanded speed, acceleration, and stop-
ping position) in terms of executing, done, or error state, and an estimate of error if this commanded goal
cannot be reached.

Steer Servo Control Module

Responsibilities and Authority: This module’s primary responsibility is to control steering to keep the vehicle
on the desired trajectory path.

Uses a feedforward model-based servo to estimate steering wheel values.

This module is commanded to cause the heading value of the vehicle-center forward pointing vector
(which is always parallel to the vehicle’s long axis) to be at a specified value at some projected time into the
future (about 0.4 s for this vehicle). This module uses the present steer angle, vehicle speed and acceleration
to estimate the projected vehicle-center heading at 0.4 s into the future. It compares this value with the
commanded vehicle-center heading and uses the error to derive a desired front wheel steer angle command.
It evaluates this new front wheel steer angle to see if it will exceed the steering wheel lock limit or if it will
cause the vehicle’s lateral acceleration to exceed the side-slip limit. If it has to adjust the vehicle center-
heading because of these constraints, it reports this scaling back to the Primitive module and includes the
value of the vehicle-center heading it has scaled back to.

This module uses the commanded path region type to set the allowed steering wheel velocity and acceler-
ation which acts as a safe-guard filter on steering corrections. This module uses the average off-path distance
to continuously correct its alignment of its internal model of the front wheel position to actual position. It
does this by noting the need to command a steer wheel value different than its model for straight ahead
when following a straight section of road for a period of time. It uses the average off-path value from the
Primitive module to calculate a correction to the internal model and updates this every time it follows a
sufficiently long section of straight road.

Input-Command: A GoForwardAt HeadingAngle or GoBackwardAt HeadingAngle is com-
manded along with the parameters of vehicle-center absolute heading, present arc radius, path type (straight
line, arc CW, or arc CCW), the average off-path distance, and the path region type (standard-roadway,
beginning-of-intersection-turn, mid-way-intersection-turn, arc-to-straight-line-blend).

Input-World Model: Present estimate of relevant vehicle parameters – this includes real-time measure-
ments of vehicle’s lateral acceleration as well as the vehicle present heading, speed, acceleration, and steering
wheel angle. Vehicle parameters of wheel lock positions, and estimated vehicle maximum lateral acceleration
for side-slip calculations, vehicle wheel base and wheel track, and vehicle steering box ratios.

Output-Command: The next commanded value of steering wheel position along with constraints on
maximum steering wheel velocity and acceleration are commanded to the steering wheel motor servo module.

Output-Status: Present state of goal accomplishment (i.e., the commanded vehicle-center heading angle)
in terms of executing, done, or error state, along with status on whether this commanded value had to be
scaled back and what the actual heading value used is.

This concludes the description of the 4D/RCS control modules for the on-road driving example.

2.3 Learning Applied to Ground Robots (DARPA LAGR)

Recently, ISD has been applying 4D/RCS to the DARPA LAGR program [7]. The DARPA LAGR program
aims to develop algorithms that enable a robotic vehicle to travel through complex terrain without having
to rely on hand-tuned algorithms that only apply in limited environments. The goal is to enable the control
system of the vehicle to learn which areas are traversable and how to avoid areas that are impassable or that
limit the mobility of the vehicle. To accomplish this goal, the program provided small robotic vehicles to each

256 J. Albus et al.

GPS Antenna

Dual stereo cameras

Computers, IMU
inside

Infrared sensors

Casters

Drive wheels

Bumper

Fig. 16. The DARPA LAGR vehicle

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

SP2

SP1

BG2
Planner2

Executor2

10 step plan

Group pixels

Classify objects

images
name
class

images
color
range
edges
class

Classify pixels
Compute attributes

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
objects
terrain

200x200 pix
400x400 m

frames
names
attributes
state
class
relations

WM2
Manage KD2

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

maps
cost
terrain

200x200 pix
40x40 m

state vari-
ables

names
values

WM1
Manage KD1

BG1
Planner1

Executor1

10 step plan

Sensors
Cameras, INS, GPS, bumper, encoders, current

Actuators
Wheel motors, camera controls

Scale & filter

signals

status commands

commands

commands

200 ms

20 ms

Fig. 17. Two-level instantiation of the 4D/RCS hierarchy for LAGR

of the participants (Fig. 16). The vehicles are used by the teams to develop software and a separate DARPA
team, with an identical vehicle, conducts tests of the software each month. Operators load the software onto
an identical vehicle and command the vehicle to travel from a start waypoint to a goal waypoint through
an obstacle-rich environment. They measure the performance of the system on multiple runs, under the
expectation that improvements will be made through learning.

The vehicles are equipped with four computer processors (right and left cameras, control, and the plan-
ner), wireless data and emergency stop radios, GPS receiver, inertial navigation unit, dual stereo cameras,
infrared sensors, switch-sensed bumper, front wheel encoders, and other sensors listed later in the Chapter.

4D/RCS Applied to LAGR

The 4D/RCS architecture for LAGR (Fig. 17) consists of only two levels. This is because the size of the
LAGR test areas is small (typically about 100m on a side, and the test missions are short in duration
(typically less than 4 min)). For controlling an entire battalion of autonomous vehicles, there may be as
many as five or more 4D/RCS hierarchical levels.

The following sub-sections describe the type of algorithms implemented in sensor processing, world mod-
eling, and behavior generation, as well as a section that describes the application of this controller to road
following [8].

Intelligent Control of Mobility Systems 257

Sensory Processing

The sensor processing column in the 4D/RCS hierarchy for LAGR starts with the sensors on board the
LAGR vehicle. Sensors used in the sensory processing module include the two pairs of stereo color cameras,
the physical bumper and infra-red bumper sensors, the motor current sensor (for terrain resistance), and
the navigation sensors (GPS, wheel encoder, and INS). Sensory processing modules include a stereo obstacle
detection module, a bumper obstacle detection module, an infrared obstacle detection module, an image
classification module, and a terrain slipperiness detection module.

Stereo vision is primarily used for detecting obstacles [9]. We use the SRI Stereo Vision Engine [10] to
process the pairs of images from the two stereo camera pairs. For each newly acquired stereo image pair, the
obstacle detection algorithm processes each vertical scan line in the reference image and classifies each pixel
as GROUND, OBSTACLE, SHORT OBSTACLE, COVER or INVALID.

A model-based learning process occurs in the SP2 module of the 4D/RCS architecture, taking input from
SP1 in the form of labeled pixels with associated (x, y, z) positions from the obstacle detection module. This
process learns color and texture models of traversable and non-traversable regions, which are used in SP1 for
terrain classification [11]. Thus, there is two-way communication between the levels, with labeled 3D data
passing up, and models passing down. The approach to model building is to make use of the labeled SP1
data including range, color, and position to describe regions in the environment around the vehicle and to
associate a cost of traversing each region with its description. Models of the terrain are learned using an
unsupervised scheme that makes use of both geometric and appearance information [12].

The system constructs a map of a 40 by 40m region of terrain surrounding the vehicle, with map cells
of size 0.2m by 0.2m and the vehicle in the center of the map. The map is always oriented with one axis
pointing north and the other east. The map scrolls under the vehicle as the vehicle moves, and cells that
scroll off the end of the map are forgotten. Cells that move onto the map are cleared and made ready for
new information. The model-building algorithm takes its input from SP1 as well as the location and pose of
the vehicle when the data were collected.

The models are built as a kind of learning by example. The obstacle detection module identifies regions
by height as either obstacles or ground. Models associate color and texture information with these labels,
and use these examples to classify newly-seen regions. Another kind of learning is also used to measure
traversability. This is especially useful in cases where the obstacle detection reports a region to be of one
class when it is actually of another, such as when the system sees tall grass that looks like an obstacle but
is traversable, perhaps with a greater cost than clear ground. This second kind of learning is learning by
experience: observing what actually happens when the vehicle traverses different kinds of terrain. The vehicle
itself occupies a region of space that maps into some neighborhood of cells in the traversability cost map.
These cells and their associated models are given an increased traversability weight because the vehicle is
traversing them. If the bumper on the vehicle is triggered, the cell that corresponds to the bumper location
and its model, if any, are given a decreased traversability weight. We plan to further modify the traversability
weights by observing when the wheels on the vehicle slip or the motor has to work harder to traverse
a cell.

The models are used in the lower sensory processing module, SP1, to classify image regions and assign
traversability costs to them. For this process only color information is available, with the traversability being
inferred from that stored in the models. The approach is to pass a window over the image and to compute
the same color and texture measures at each window location as are used in model construction. Matching
between the windows and the models operates exactly as it does when a cell is matched to a model in the
learning stage. Windows do not have to be large, however. They can be as small as a single pixel and the
matching will still determine the closest model, although with low confidence (as in the color model method
for road detection described below). In the implementation the window size is a parameter, typically set to
16 × 16. If the best match has an acceptable score, the window is labeled with the matching model. If not,
the window is not classified. Windows that match with models inherit the traversability measure associated
with the model. In this way large portions of the image are classified.

258 J. Albus et al.

World Modeling

The world model is the system’s internal representation of the external world. It acts as a bridge between
sensory processing and behavior generation in the 4D/RCS hierarchy by providing a central repository for
storing sensory data in a unified representation. It decouples the real-time sensory updates from the rest of
the system. The world model process has two primary functions: To create a knowledge database and keep
it current and consistent, and to generate predictions of expected sensory input.

For the LAGR project, two world model levels have been built (WM1 and WM2). Each world model
process builds a two dimensional map (200 × 200 cells), but at different resolutions. These are used to
temporally fuse information from sensory processing. Currently the lower level (Sensory Processing level
one, or SP1) is fused into both WM1 and WM2 as the learning module in SP2 does not yet send its models
to WM. Figure 18 shows the WM1 and WM2 maps constructed from the stereo obstacle detection module
in SP1. The maps contain traversal costs for each cell in the map. The position of the vehicle is shown as
an overlay on the map. The red, yellow, blue, light blue, and green are cost values ranging from high to low
cost, and black represents unknown areas. Each map cell represents an area on the ground of a fixed size
and is marked with the time it was last updated. The total length and width of the map is 40m for WM1
and 120m for WM2. The information stored in each cell includes the average ground and obstacle elevation
height, the variance, minimum and maximum height, and a confidence measure reflecting the “goodness”
of the elevation data. In addition, a data structure describing the terrain traversability cost and the cost
confidence as updated by the stereo obstacle detection module, image classification module, bumper module,
infrared sensor module, etc. The map updating algorithm relies on confidence-based mapping as described
in [15].

We plan additional research to implement modeling of moving objects (cars, targets, etc.) and to broaden
the system’s terrain and object classification capabilities. The ability to recognize and label water, rocky
roads, buildings, fences, etc. would enhance the vehicle’s performance [16–20].

Behavior Generation

Top level input to Behavior Generation (BG) is a file containing the final goal point in UTM (Universal
Transverse Mercator) coordinates. At the bottom level in the 4D/RCS hierarchy, BG produces a speed for

Fig. 18. OCU display of the World Model cost maps built from sensor processing data. WM1 builds a 0.2 m resolution
cost map (left) and WM2 builds a 0.6 m resolution cost map (right)

Intelligent Control of Mobility Systems 259

each of the two drive wheels updated every 20ms, which is input to the low-level controller included with the
government-provided vehicle. The low-level system returns status to BG, including motor currents, position
estimate, physical bumper switch state, raw GPS and encoder feedback, etc. These are used directly by BG
rather than passing them through sensor processing and world modeling since they are time-critical and
relatively simple to process.

Two position estimates are used in the system. Global position is strongly affected by the GPS antenna
output and received signal strength and is more accurate over long ranges, but can be noisy. Local position
uses only the wheel encoders and inertial measurement unit (IMU). It is less noisy than GPS but drifts
significantly as the vehicle moves, and even more if the wheels slip.

The system consists of five separate executables. Each sleeps until the beginning of its cycle, reads its
inputs, does some planning, writes its outputs and starts the cycle again. Processes communicate using the
Neutral Message Language (NML) in a non-blocking mode, which wraps the shared-memory interface [21].
Each module also posts a status message that can be used by both the supervising process and by developers
via a diagnostics tool to monitor the process.

The LAGR Supervisor is the highest level BG module. It is responsible for starting and stopping the
system. It reads the final goal and sends it to the waypoint generator. The waypoint generator chooses a
series of waypoints for the lowest-cost traversable path to the goal using global position and translates the
points into local coordinates. It generates a list of waypoints using either the output of the A∗ Planner [22]
or a previously recorded known route to the goal.

The planner takes a 201 × 201 terrain grid from WM, classifies the grid, and translates it into a grid of
costs of the same size. In most cases the cost is simply looked up in a small table from the corresponding
element of the input grid. However, since costs also depend on neighboring costs, they are automatically
adjusted to allow the vehicle to continue motion. By lowering costs of unknown obstacles near the vehicle,
it does not hesitate to move as it would with for example, detected false or true obstacles nearby. Since the
vehicle has an instrumented bumper, the choice is to continue vehicle motion.

The lowest level module, the LAGR Comms Interface, takes a desired heading and direction from the
waypoint follower and controls the velocity and acceleration, determines a vehicle-specific set of wheel speeds,
and handles all communications between the controller and vehicle hardware.

Road and Path Detection in LAGR

In the LAGR environment, roads, tracks, and paths are often preferred over other terrain. A color-based image
classification module learns to detect and classify these regions in the scene by their color and appearance,
making the assumption that the region directly in front of the vehicle is traversable. A flat world assumption
is used to estimate the 3D location of a ground pixel in the image. Our algorithm segments an image of
a region by building multiple color models similar to those proposed by Tan et al. [23], who applied the
approach to paved road following. For off-road driving, the algorithm was modified to segment an image into
traversable and non-traversable regions. Color models are created for each region based on two-dimensional
histograms of the colors in selected regions of the image. Previous approaches to color modeling have often
made use of Gaussian mixture models, which assumes Gaussian color distributions. Our experiments showed
that this assumption did not hold in our domain. Instead, we used color histograms. Many road detection
systems have made use of the RGB color space in their methods. However, previous research [24–26] has
shown that other color spaces may offer advantages in terms of robustness against changes in illumination.
We found that a 30×30 histogram of red (R) and green (G) gave the best results in the LAGR environment.

The approach makes the assumption that the area in front of the vehicle is safe to traverse. A trapezoidal
region at the bottom of the image is assumed to be ground. A color histogram is constructed for the points
in this region to create the initial ground model. The trapezoidal region is the projection of a 1m wide by
2m long area in front of the vehicle under the assumption that the vehicle is on a plane defined by its current
pose. In [27] Ulrich and Nourbakhsh addressed the issue of appearance-based obstacle detection using a color
camera without range information. Their approach makes the same assumptions that the ground is flat and
that the region directly in front of the robot is ground. This region is characterized by Hue and Saturation
histograms and used as a model for ground. Ulrich and Nourbakhsh do not model the background, and have

260 J. Albus et al.

only a single ground model (although they observe that more complex environments would call for multiple
ground models). Their work was applied to more homogeneous environments than ours, and we found that
multiple models of ground are essential for good performance in the kinds of terrain used to test the LAGR
vehicles. Substantial work has since been done in the DARPA LAGR program on learning traversability
models from stereo, color, and texture (e.g., [16–20]). Other work, such as [28], that makes use of LADAR
instead of stereo has also been of growing interest, but is not covered here.

In addition to the ground models, a background model is also built. Construction starts by randomly
sampling pixels in the area above the horizon, assuming that they represent non-traversable regions. Because
this area might only contain sky pixels, we extend the sampling area to 50 pixels below the horizon. The
horizon is the line determined by the points where the line of sight of the cameras stops intersecting the
ground plane. Once the algorithm is running, the algorithm randomly samples pixels in the current frame
that the previous result identified as background. This enables the background regions to expand below the
horizon. These samples are used to update the background color model using temporal fusion. Only one
background model is constructed since there is no need to distinguish one type of background from another.

To enable the vehicle to remember traversable terrain with different color characteristics, multiple ground
color models are learned. As new data are processed, each color distribution model is updated with new
histograms, changing with time to fit changing conditions. Potential new histograms for representing ground
are compared to existing models. If the difference is less than a threshold, the histogram is used to upgrade the
best matching ground model. Otherwise, if a maximum number of ground models has not yet been reached,
the algorithm enters a period known as learning mode. During learning mode, the algorithm monitors new
histograms in an attempt to pick out the histogram that is most different from the existing ground models.
This is done to avoid picking color models that contain significant amounts of overlap. In the learning mode,
if a histogram is found to be more different than a previous histogram, learning mode is extended. Eventually
learning mode will end, and the most different histogram is used to create a new color model.

Learning mode is turned off when the region in front of the vehicle assumed to be ground contains
obstacles. This is determined by projecting obstacles from the world model map into the image. It is also
disabled if the LAGR vehicle is turning faster than 10 degrees per second or if the LAGR vehicle is not
moving. The algorithm can also read in a priori models of certain features that commonly appear in the
LAGR tests. These include models for a path covered in mulch or in white lime. Figure 19 shows two examples
of the output of the color model based classifier. Figure 19a shows a view of an unpaved road, while Fig. 19b
shows a path laid down in a field that the vehicle is supposed to follow.

Fig. 19. (a) Top: the original images, with the classification images based on the histogram color model shown
underneath. Green means ground, the other colors are background regions with higher traversability costs. (b) Another
scene showing clearly the algorithm’s ability to learn to associate traversability with a distinctively-colored path

Intelligent Control of Mobility Systems 261

Given the models, the algorithm goes through every pixel in an image and calculates a ground probability
based upon its color. The end result is a probability map that represents the likelihood that an area is
ground. Given the pixel’s color, a ground color model and the model for background, ground probability is
calculated as:

Pground =
Nground

Nground + Nbackground

where Nground is the count in the ground histogram bin indexed by the pixel, Nbackground is the count in
the background histogram bin indexed by the pixel, and Pground is the probability that the pixel is a ground
pixel. When there are multiple ground models, all are matched and the largest ground probability is selected.
Thus multiple ground probabilities are calculated at each pixel. The largest ground probability is selected
as the ground probability for that pixel.

The next step applied to the ground histograms is temporal fusion. This combines ground probabilities
across multiple image frames to improve stability and reduce noise. The temporal fusion algorithm can
be described as a running average with a parameter to adjust for the influence of new data. The update
equation is:

Pt =
(wt−1 × Pt−1) + (c × P)

(wt−1 + c)

wt = wt−1 + c if wt−1 < wmax

where P is the current probability that the pixel should be labeled ground, Pt−1 is the probability that
the same pixel was labeled ground in the previous frame, Pt is the temporally-fused ground probability of
the pixel, and w and c are weighting constants. wmax is the maximum number of images used for temporal
fusion. The final probability map is used to determine the traversability cost at each pixel as

Cost = (1 − Pt) ∗ 250

Costs run from 0 being most traversable to 250 being least traversable.
In order to reduce processing requirements, probabilities are calculated on a reduced version of the original

image. The original image is resized to 128× 96 pixels using an averaging filter. This step has the additional
benefit of noise reduction. Experiments show that this step does not significantly impact the final segmenta-
tion. A noteworthy aspect of this algorithm is that the color models are constructed from the original image
for better accuracy, whereas probabilities are calculated on a reduced version of the image for greater speed.
The cost of each pixel in the image is sent to the world model with a 3D location determined using the
assumption of a flat ground plane.

Summary

The NIST 4D/RCS reference model architecture was implemented on the DARPA LAGR vehicle, which
was used to prove that 4D/RCS can learn. Sensor processing, world modeling, and behavior generation
processes have been described. Outputs from sensor processing of vehicle sensors are fused with models in
WM to update them with external vehicle information. World modeling acts as a bridge between multiple
sensory inputs and a behavior generation (path planning) subsystem. Behavior generation plans vehicle paths
through the world based on cost maps provided from world modeling. Road following is the example used
here to describe how 4D/RCS can be applied in a two-level architecture.

Future research will include completion of the sensory processing upper level (SP2) and developing even
more robust control algorithms than those described above.

In the second 18-month phase of the LAGR program, NIST was tasked to develop a standard operator
control unit color scheme [29] for all performers to use.

The Operator Control Unit (OCU) for a mobile robot needs to display a lot of complex information about
the state and planned actions of the vehicle. This includes displays from the robot’s sensors, maps of what
it knows about the world around it, traces of the path it has already traveled and predictions of the path

262 J. Albus et al.

Fig. 20. (left) A schematic showing the meaning of the colors on the map, (right) A sample NIST high resolution,
short-range map

it is planning to take, and information about obstacles, clear ground, and unseen regions. The information
needs to be easy to understand even by people who have no understanding of the way the control system of
the robot works, and should enable them to halt the vehicle only if it is about to take an action that will
cause damage.

In order to display all the information in an understandable way, it is necessary to use color to represent
the different types of region. Figure 20 shows the common color scheme NIST developed that is being used
for the LAGR program. The color scheme was distributed to the teams in December 2006 for use by the
January 2007 test. Use of the color scheme has had the desired effect. The Government evaluation team
can more easily understand the OCUs of different teams. It was a useful, if somewhat tedious process to
develop the common color scheme. Work needs to be done more broadly to develop common color schemes
for different application areas, such as medical images, geographic information systems, and other complex
visual displays that require substantial effort to understand.

Also in the second phase, NIST has defined interfaces in a “best-of” LAGR controller for performers
to send their best algorithms to NIST for plug-and-play testing against other performers’ algorithms. This
work is currently ongoing and expected to be completed in 2008.

3 Standards and Performance Measurements

3.1 Autonomy Levels for Unmanned Systems (ALFUS)

The ICMS Program emphasizes to the mobile robotics research community a standard set of related ter-
minology and representation of knowledge. The Autonomy Levels for Unmanned Systems (ALFUS) Ad
Hoc Work Group [28], led by NIST, aims at developing a framework to facilitate the characterization of
the autonomy capabilities of unmanned systems (UMS). The Group was formed in 2003 to respond to the
user community needs, including many Federal Agencies and private industry. The group has been holding
quarterly workshops ever since.

An ALFUS premise is that the autonomous capabilities are characterized with three significant aspects:
mission complexity, environmental complexity, and human independence, as shown in Fig. 21. Detailed
metrics, in turn, further characterize each of the three aspects.

ALFUS is collaborating with the U.S. Army Future Combat System (FCS) (http://www.army.mil/fcs/)
and a number of other UMS programs on the issues of autonomy requirements, testing, and evaluation.

Intelligent Control of Mobility Systems 263

Fig. 21. ALFUS framework contextual autonomous capability model

Interim results have been published [21–23]. They have been significantly referenced in various public docu-
ments, including the ASTM Standards E2521-07, F 2395-05, and F 2541-06 for various UMSs as well as the
U.S. Army UNMANNED and AUTONOMOUS SYSTEMS TESTING Broad Agency Announcement.

3.2 Joint Architecture for Unmanned Systems (JAUS)

The Joint Architecture for Unmanned Systems (JAUS) is a standard for interoperability between components
of unmanned robotic vehicle systems such as unmanned ground, air and underwater vehicles (UGV, UAV
and UUV, respectively). JAUS is sponsored by the Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics through the Joint Ground Robotics Enterprise (JGRE). It is mandated for use by
all JGRE programs. The goals of JAUS are to reduce life cycle costs, reduce development and integration
time, provide a framework for technology insertion, and accommodate expansion of existing systems with
new capabilities. JAUS is a standard published by the Society of Automotive Engineers (SAE) via their
Aerospace Avionics Systems Division AS-4 committee on Unmanned Systems.

JAUS is a component based, message-passing architecture that specifies data formats and methods of
communication among computing nodes. It defines messages and component behaviors that are independent
of technology, computer hardware, operator use, and vehicle platforms and isolated from mission. It uses the
SAE Generic Open Architecture (GOA) framework to classify the interfaces.

JAUS benefits from an active user and vendor community, including Government programs such as FCS,
academia such as University of Florida and Virginia Polytechnic Institute and State University (Virginia
Tech), and industry such as Applied Perception, Autonomous Solutions, Kairos Autonomi, OpenJAUS,
RE2 and TORC Technologies, which can easily be identified with a search on the internet. Users define
requirements and sponsor pilot projects. Together with vendors, they participate in testing that helps JAUS
evolve toward better performance and to support new technology.

JAUS products include commercially-available ground robots as well as software development kits (SDKs)
that help robot vendors put a JAUS-compliant interface on their new or legacy products. Open-source
implementations of JAUS exist that serve as reference implementations and help speed deployment.

NIST was one of two teams that participated in an early Red Team/Blue Team interoperability test. The
test objective was to determine how well the JAUS specification enabled independent implementors to build
JAUS-compliant systems that worked seamlessly together. For this particular test, one team built a JAUS
component that continually produced vehicle position data. The other team built a component that displayed
the current vehicle position in real time. Neither team knew the identity of the other, and interacted only
with the JGRE test sponsor. The sponsor provided information necessary for interoperability but not part of
the JAUS specification, such as the particular communication mechanism (in this case, TCP/IP Ethernet).
The sponsor also resolved ambiguities in the specification that resulted in different interpretations of how
JAUS works. These resolutions were provided to the working groups responsible for the specification for
incorporation into the next versions of the relevant documents.

Since those early tests, the JAUS working group has expanded their test activities. These are now
conducted by the Experimental Test Group (ETG). The ETG is chartered with implementing and testing

264 J. Albus et al.

proposed changes or extensions of the JAUS specification, and reporting back with recommendations for how
these proposals should be formalized into the specification. The ETG is comprised of a core group of JAUS
experts from the vendor community who are well equipped to quickly build and test new JAUS capabilities.
The JAUS ETG has invested in infrastructure development, such as setting up a distributed virtual private
network that allows participants to connect to a JAUS system from any location.

3.3 The Intelligent Systems (IS) Ontology

The level of automation in ground combat vehicles being developed for the Army’s objective force is greatly
increasing over the Army’s legacy force. This automation is taking many forms in emerging ground vehicles,
varying from operator decision aides to fully autonomous unmanned systems. The development of these
intelligent systems requires a thorough understanding of all of the intelligent behavior that needs to be
exhibited by the system so that designers can allocate functionality to humans and/or machines. Traditional
system specification techniques focus heavily on the functional description of the major systems of a vehicle
and implicitly assume that a well-trained crew would operate these systems in a manner to accomplish
the tactical mission assigned to the vehicle. In order to allocate some or all of these intelligent behaviors
to machines in future ground vehicles, it is necessary to be able to identify and describe these intelligent
behaviors.

The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has funded
NIST to explore approaches to model the ground vehicle domain with explicit representation of intelligent
behavior. This exploration has included the analysis of modeling languages (i.e., UML, DAML, OWL) as
well as reference architectures. A major component of this effort has been the development of an Intelligent
Systems (IS) Ontology.

NIST has taken the view that an IS can be viewed as a multi-agent system, where agents can represent
components within the vehicle (e.g., a propulsion system, a lethality system, etc.). In addition, an Intelligent
Ground Vehicle (IGV), as a whole, can serve as a single agent within a troop, platoon, or section, where
multiple IGVs are present. In order for a group of agents to work together to accomplish a common goal,
they must be able to clearly and unambiguously communicate with each other without the fear of loss of
information or misinterpretation. The IS Ontology has been used to specify a common lexicon and semantics
to address this challenge.

The IS Ontology uses that OWL-S upper ontology [24] as the underlying representation to document
4D/RCS in a more open XML (eXtensible Markup Language) format. OWL-S is a service ontology, which
supplies a core set of markup language constructs for describing the properties and capabilities of services in
an unambiguous, computer-interpretable format. This ontology has been built within the Protégé framework
[25], which is an ontology editor, a knowledge-base editor, as well as an open-source, Java tool that provides
an extensible architecture for the creation of customized knowledge-based applications.

The IS Ontology is based on the concept of agents, service that the agents can perform, and procedures
that the agents follow to perform the services. Figure 22 shows an agent hierarchy for a light cavalry troop.
A detailed description of this hierarchy is outside the scope of this chapter. Also specified in the constraints
for each class is whom each agent can send external service requests to and who they can receive them
from. Any activity that can be called by another agent is considered a service in OWL-S. Any activity that
the agent performs internally that cannot be externally requested is called a process. As such, “Conduct A
Tactical Road March to an Assembly Area” is modeled as a service that is provided by a Troop agent (and
can be called by a Squadron agent). The Troop agent can call services provided by other agents. In this
example, a service called “Conduct Route Reconnaissance” is defined and associated with the Scout Platoon
agent.

Process models in OWL-S are used to capture the steps that must be accomplished to carry out the
service, and the ordering constraints on those steps. Each step can be performed internally by the agent or
could involve making an external service request (a service call) to another agent. OWL-S provides a number
of control constructs that allow one to model just about any type of process flow imaginable. Control
constructs provided in OWL-S have been sufficient to model all the behaviors explored to date.

Intelligent Control of Mobility Systems 265

Fig. 22. Agent hierarchy

Environmental entities and their attributes are a primary output of the 4D/RCS methodology. These
include other vehicles, bridges, vegetation, roads, water bodies; anything that is important to perceive in the
environment relative to task that is being performed. An environment ontology in OWL-S has been built
from the bottom up (i.e., including only entities that prove to be important). Environmental ontologies have
started to be explored to see what could be leveraged.

3.4 DOT Integrated Vehicle Based Safety System (IVBSS)

The Transportation Project within the ICMS Program, although not 4D/RCS based, is an important part
of the program. While autonomous vehicles on the nations highway are still many years in the future,
components of intelligent mobility systems are finding their way into commercial crash warning systems
(CWS). The US Department of Transportation, in attempt to accelerate the deployment of CSW, recently
initiated the Integrated Vehicle-Based Safety System (IVBSS) program designed to incorporate forward
collision, side collision and road-departure warning functions into a single integrated CSW for both light
vehicles and heavy trucks [26]. Current analyses estimate that IVBSS has the potential to address 3.6M
crashes annually, of which 27,500 result in one or more fatalities.

NIST role in the IVBSS program is to assist in the development of objective tests and to evaluate system
performance independently during the tests. NIST approach for measurement-based performance evaluation
starts by developing a set of scenarios describing the problem, which in this case evolved from a DOT
analysis of the crash database statistics. The scenarios lead to a set of track- and road-based test procedures
to determine the system’s effectiveness in dealing with the problems. Current plans call for carrying out over
34 track-based tests. Figure 23 provides an example of a multiple threat scenario that forces the system to
recognize and respond to both a forward- and side-collision situation.

The pass/fail criteria for the tests include metrics that quantify acceptable performance. Various Crash
Prevention Boundary (CPB) equations [27] determine the acceptable time for a warning; a driver cannot
respond to late warnings and early warning may annoy the driver. To promote objectivity further, the
tests rely on an independent measurement system (IMS) to provide performance data as opposed to using
measurements taken by the system under test. NIST is currently developing a third generation IMS that
incorporates calibrated cameras (for lane geometry measurements) and two laser-scanners (for obstacle range
measurements). Figure 24 shows the sensor package mounted on the front of the NIST/DOT test bed vehicle.

266 J. Albus et al.

P2

P1SV

Fig. 23. Multiple threat test scenario. SV (equipped with IVBSS) encounters stopped vehicle (P1) and attempts to
avoid collision by changing lanes into second vehicle (P2)

dual laser scanners

quick mount bracket registered camera

Fig. 24. IMS consisting of calibrated cameras and laser-scanners mounted on the NIST/DOT testbed vehicle.
Program goals for this year include track testing and on-road testing of an IVBSS developed for light vehicles and a
second IVBSS developed for heavy truck

The IMS design allows for quick installation on cars and trucks. Data is collected in real time and a suite of
software exists for post-process analysis.

NIST is developing static and dynamic accuracy tests to verify the IMS meets requirements that range
error be less than 5% of the actual range. Static tests evaluate sensor performance from a stationary position
with targets at different ranges, reflectivity and orientations. The mean errors (mean of differences between
measured range and actual range) serve as a calibration factor and the standard deviations of the errors
define the uncertainty. Dynamic tests yield insight into sensor performance when operated from a fast moving
vehicle (e.g., highway speeds). No standard procedure exists for dynamic testing and NIST is working on
a novel approach involving precise time measurement, using a GPS receiver, of when a range reading takes
place. For a dynamic test, an optical switch mounted on the vehicle senses when the vehicle crosses over
reflectors placed on a track at known distances from a target. The switch causes a GPS receiver to latch
the GPS time. The approach requires that all measurements, for example video streams, laser-scanner range
measurements, etc., be stamped using GPS time (which is the case with the IVBSS warning system and
the IMS). The range error comes from the difference (at the GPS time the vehicle crosses the reflector)
between the laser-scanner’s measured range to the target and the known range. We compute a mean error
and uncertainty from measurements taken over several laps around a track. Current results indicate the laser
scanner uncertainty is approximately 1% of the actual range.

Intelligent Control of Mobility Systems 267

4 Testbeds and Frameworks

4.1 USARSim/MOAST Framework

Many of the systems described in this chapter may be viewed as intelligent embodied agents. These agents
require an environment to operate in, an embodiment that allows them to affect and move in the environ-
ment, and intelligence that allows them to execute useful behaviors that have the desired outcome in the
environment. There are many aspects of the development of these agents in which simulations can play a
useful role. If correctly implemented, simulation can be an effective first step in the development and deploy-
ment of new algorithms. Simulation environments enable researchers to focus on the algorithm development
without having to worry about hardware aspects of the robots such as maintenance, availability, and oper-
ating space. Simulation provides extensive testing opportunities without the risk of harm to personnel or
equipment. Major components of the robotic architecture (for example, advanced sensors) that may be too
expensive for an institution to purchase can be simulated and enable the developers to focus on algorithm
development. The remainder of this section will present an overview of a control framework that provides
all three aspects of the embodied agent. Urban Search and Rescue Simulation (USARSim) provides the
environment and embodiment, while Mobility Open Architecture Simulation and Tools (MOAST) provides
the intelligence.

Urban Search and Rescue Simulation (USARSim)

The current version of Urban Search and Rescue Simulation (USARSim) [2] is based on the UnrealEngine21

game engine that was released by Epic Games as part of UnrealTournament 2004. This engine may be
inexpensively obtained by purchasing the Unreal Tournament 2004 game. The USARSim extensions may
then be freely downloaded from sourceforge.net/projects/usarsim. The engine handles most of the basic
mechanics of simulation and includes modules for handling input, output (3D rendering, 2D drawing, and
sound), networking, physics and dynamics. USARSim uses these features to provide controllable camera views
and the ability to control multiple robots. In addition to the simulation, a sophisticated graphical development
environment and a variety of specialized tools are provided with the purchase of Unreal Tournament.

The USARSim framework builds on this game engine and consists of:

• Standards that dictate how agent/game engine interaction is to occur
• Modifications to the game engine that permit this interaction
• An Application Programmer’s Interface (API) that defines how to utilize these modifications to control

an embodied agent in the environment
• 3-D immersive test environments
• Models of several commercial and laboratory robots and effectors
• Models of commonly used robotic sensors

The USARSim interaction standards consist of items such as robot coordinate frame definitions and unit
declarations while the API specifies the command vocabulary for robot/sensor control and feedback. Both of
these items have become the de facto standard interfaces for use in the RoboCup Rescue Virtual Competition
which utilizes USARSim to provide an annual Urban Search and Rescue competition. In 2007 this competition
had participation from teams representing five countries.

Highly realistic environments are also provided with the USARSim release. Example indoor and outdoor
environments may be seen in Fig. 25a, b. In addition, a provided editor and the ability to import models
simplifies the creation of additional worlds. In addition to environments, USARSim provides numerous robot
and sensor models. Figure 26 shows the virtual version of the Talon robot. This robot features a simulated

1 Certain commercial software and tools are identified in this paper in order to explain our research. Such identifi-
cation does not imply recommendation or endorsement by the authors, nor does it imply that the software tools
identified are necessarily the best available for the purpose.

268 J. Albus et al.

(a) Indoor office scene (b) Outdoor accident scene

Fig. 25. Sample USARSim environments

Fig. 26. Simulated Talon Robot

track and arm with gripper. In addition to laboratory robots, aerial, road vehicles, commercial robots (both
for manufacturing and bomb disposal), and robotic arms are modeled.

USARSim does not provide a robot controller. However, several open source controllers may be
freely downloaded. These include the community developed Mobility Open Architecture Simulation and
Tools (MOAST) controller (sourceforge.net/projects/moast), the player middle-ware (sourceforge.net/
projects/playerstage), and any of the winning controllers from previous year’s competitions (2006 and 2007
winning controllers may be found on the robocup rescue wiki (www.robocuprescue.org/wiki). A description
of the winning algorithms may be found in [1].

Mobility Open Architecture Simulation and Tools (MOAST)

MOAST is a framework that provides a baseline infrastructure for the development, testing, and analysis of
autonomous systems that is guided by three principles:

• Create a multi-agent simulation environment and tool set that enables developers to focus their efforts
on their area of expertise without having to have the knowledge or resources to develop an entire control
system.

• Create a baseline control system which can be used for the performance evaluation of the new algorithms
and subsystems.

• Create a mechanism that provides a smooth gradient to migrate a system from a purely virtual world to
an entirely real implementation.

Intelligent Control of Mobility Systems 269

• MOAST has the 4D/RCS architecture at its core (described elsewhere in this chapter) and consists of
the additional components of control modules, interface specs, tools, and data sets. MOAST is fully
integrated with the USARSim simulation system and may communicate with real hardware through the
Player interface.

MOAST provides an implementation of primitive echelon through the section echelon of the 4D/RCS ref-
erence model architecture. This implementation is not designed to be complete, but rather is designed
to provide examples of control strategies and a starting point for further research. The framework provides
methods of mobility control for vehicles including Ackerman steered, skid steered, omni-drive, helicopter-type
flying machines, and water craft. Control modalities increase in complexity as one moves up the hierarchy
and include velocity/steering angle control, waypoint following, and an exploration behavior.

All of the control modules are designed to be self-contained and fully accessible through well-defined
interfaces. This allows a developer to create a module that conforms to the specifications and replace any
MOAST provided system. The idea is to allow a researcher to utilize all of the architecture except for the
modules that are in the area of their expertise. These modules would be replaced with their own research code.

In order to simplify this replacement, several debug and diagnostic tools are also provided. These allow
for unit testing of any module by providing a mechanism to send any command, status, and data into a
module that is under test. In this way, a module may be fully and repeatedly tested. Once the system is
debugged in simulation, the standardized interfaces allow the user to slowly move systems from simulation
to actual hardware. For example, planning algorithms may be allowed to control the actual vehicle while
sensing may be left in simulation.

4.2 PRediction in Dynamic Environments (PRIDE) Framework

There have been experiments performed with autonomous vehicles during on-road navigation. Perhaps the
most successful was that of Prof. Dr. Ernst Dickmanns [33] as part of the European Prometheus project in
which the autonomous vehicle performed a trip from Munich to Odense (>1,600 km) at a maximum velocity
of 180 km h−1. Although the vehicle was able to identify and track other moving vehicles in the environment,
it could only make basic predictions of where those vehicles were expected to be at points in the future,
considering the vehicle’s current velocity and acceleration.

What is missing from all of these experiments is a level of situation awareness of how other vehicles in the
environment are expected to behave considering the situation in which they find themselves. To date, the
authors are not aware of any autonomous vehicle efforts that account for this information when performing
path planning. To address this need, a framework, called PRIDE (PRediction in Dynamic Environments)
was developed that provides an autonomous vehicle’s planning system with information that it needs to
perform path planning in the presence of moving objects [34]. The underlying concept is based upon a multi-
resolutional, hierarchical approach that incorporates multiple prediction algorithms into a single, unifying
framework. This framework supports the prediction of the future location of moving objects at various levels
of resolution, thus providing prediction information at the frequency and level of abstraction necessary for
planners at different levels within the hierarchy. To date, two prediction approaches have been applied to
this framework.

At the lower levels, estimation theoretic short-term predictions is used via an extended Kalman filter-
based algorithm using sensor data to predict the future location of moving objects with an associated
confidence measure [35]. At the higher levels of the framework, moving object prediction needs to occur at
a much lower frequency and a greater level of inaccuracy is tolerable. At these levels, moving objects are
identified as far as the sensors can detect, and a determination is made as to which objects should be classified
as “objects of interest”. In this context, an object of interest is an object that has a possibility of affecting
the path in the planning time horizon. Once objects of interest are identified, a moving object prediction
approach based on situation recognition and probabilistic prediction algorithms is used to predict where
object will be at various time steps into the future. Situation recognition is performed using spatio-temporal
reasoning and pattern matching with an a priori database of situations that are expected to be seen in the
environment.

270 J. Albus et al.

Fig. 27. Moving object prediction process

The algorithms are used to predict the future location of moving objects in the environment at longer
time planning horizons on the order of tens of seconds into the future with plan steps at about one second
intervals.

The steps within the algorithm shown in Fig. 27 are:

• For each vehicle on the road (α), the algorithm gets the current position and velocity of the vehicle by
querying external programs/sensors (β).

• For each set of possible future actions (δ), the algorithm creates a set of next possible positions and
assigns an overall cost to each action based upon the cost incurred by performing the action and the cost
incurred based upon the vehicle’s proximity to static objects. An underlying cost model is developed to
represent these costs.

• Based upon the costs determined in Step 2, the algorithm computes the probability for each action the
vehicle may perform (ε).

• Predicted Vehicle Trajectories (PVT) (ξ) are built for each vehicle which will be used to evaluate the
possibility of collision with other vehicles in the environment. PVTs are a vector that indicates the
possible paths that a vehicle will take within a predetermined number of time steps into the future.

• For each pair of PVTs (η), the algorithm checks if a possible collision will occur (where PVTs intersect)
and assigns a cost if collision is expected. In this step, the probabilities of the individual actions (θ) are
recalculated, incorporating the risk of collision with other moving objects.

At the end of the main loop, the future positions with the highest probabilities for each vehicle represent
the most likely location of where the vehicles will be in the future. More information about the cost-based
probabilistic prediction algorithms can be found in [35].

4.3 Industrial Automated Guided Vehicles

Study of Next Generation Manufacturing Vehicles

This effort, called the Industrial Autonomous Vehicles (IAV) Project, aims to provide industries with stan-
dards, performance measurements, and infrastructure technology needs for the material handling industry.

Intelligent Control of Mobility Systems 271

The NIST ISD have been working with the material handling industry, specifically on automated guided
vehicles (AGVs), to develop next generation vehicles. A few example accomplishments in this area include:
determining the high impact areas according to the AGV industry, partnering with an AGV vendor to
demonstrate pallets visualization using LADAR towards autonomous truck unloading, and demonstrating
autonomous vehicle navigation through unstructured facilities. Here, we briefly explain each of these points.

Generation After Next AGV

NIST recently sponsored a survey of AGV manufacturers in the US, conducted by Richard Bishop Consulting,
to help determine their “generation-after-next” technology needs. Recognizing that basic engineering issues
to enhance current AGV systems and reduce costs are being addressed by AGV vendors, the study looks
beyond today’s issues to identify needed technology breakthroughs that could open new markets and improve
US manufacturing productivity. Results of this study are described in [36].

Within the survey and high on the list, AGV vendors look to the future for: reduced vehicle costs,
navigation in unstructured environments, onboard vehicle processing, 3D imaging sensors, and transfer of
advanced technology developed for Department of Defense. Current AGVs are “guided” by wire, laser or
other means, operate in structured environments tailored to the vehicle, have virtually no 3D sensing and
operate from a host computer with limited onboard-vehicle control.

Visualizing Pallets

Targeting the high impact area of using 3D imaging sensors on AGV, NIST ISD teamed with Transbotics, an
AGV vendor, to visualize pallets using panned line-scan LADAR towards autonomous truck unloading [37].
A cooperative agreement between NIST and Transbotics allowed NIST to: (1) set up mock pallets, conveyer
and truck loading on a loading dock, (2) to develop software to visualize pallets, the conveyer and the truck
in 3D space, and (3) verify if the pallet, conveyor and truck are in their expected location with respect to
the AGV. The project was successful on mock components used at NIST and software was transferred to
Transbotics for implementation on their AGV towards use in a production facility.

Navigation Through Unstructured Facilities

Also targeting a high impact AGV industry requested area, the ICMS Program has been transferring tech-
nology from defense mobility projects through its IAV Project to the AGV industry. By focusing on AGV
industry related challenges, for example autonomous vehicle navigation through unstructured facilities [38],
the IAV project attempts to provide improved AGV capabilities to do more than point–to–point, part pick-
up/delivery operations. For example, AGV could avoid obstacles and people in the vehicle path, adapt
to facilities instead of vice versa, navigate both indoors and outdoors using the same adaptable absolute
vehicle position software modules – all towards doing more with end users’ vehicle capital investments and
developing niche markets.

A number of changes were made to the LAGR control system software in order to transfer the military
outdoor vehicle application to an indoor industrial setting. Two RFID sensors, batteries, laptop, and network
hub were added. Active RFID sensors were integrated into the vehicle position estimate. Also, a passive RFID
system was used including tags that provide a more accurate vehicle position to within a few centimeters.
RFID systems updates replaced the outdoor GPS positioning system updates in the controller.

The control system also needed to be less aggressive for safety of people and equipment, use stereo vision
indoors, negotiate tighter corners than are typically encountered outdoors, display facility maps and expected
paths (see Fig. 28), and many other modifications detailed in [38]. The demonstration was successful and
allowed the AGV industry to view how vehicles could adapt to a more cluttered facility than AGVs typically
navigate.

Future research will include integration of a 2D safety sensor to eliminate false positives on obstacles near
ground level caused by low stereo disparity. Demonstration of controlling more than one intelligent vehicle
at a time in the same unstructured environment along with other moving obstacles is also planned.

272 J. Albus et al.

Fig. 28. LAGR AGV Graphical Displays – right and left stereo images (upper left); images overlaid with stereo
obstacle (red) and floor (green) detection and 2D scanner obstacle detection (purple) (middle left); right and left cost
maps (lower left); low level map (upper right); and high level map (lower right)

5 Conclusions and Continuing Work

The field of autonomous vehicles has grown tremendously over the past few years. This is perhaps most evi-
dent by the performance of these vehicles in the DARPA-sponsored Grand Challenge events which occurred
in 2004, 2005 and most recently in 2007 [39]. The purpose of the DARPA Grand Challenge was to develop
autonomous vehicle technologies that can be applied to military tasks, notably robotic “mules” or troop
supply vehicles. The Grand Challenge courses gradually got harder, with the most recent event incorporat-
ing moving on-road objects in the urban environment. The 2007 Challenge turned out to have more civilian
focus than military’s, with the DARPA officials and many teams emphasizing safe robotic driving as a very
important objective. The performance of the vehicles improved tremendously from 2004 to 2007, even as the
environment got more difficult. This is in part due to the advancement of technologies that are being explored
as part of the ICMS program. The ICMS Program and its development of 4D/RCS has been ongoing for
nearly 30 years with the goal to provide architectures and interface standards, performance test methods
and data, and infrastructure technology needed by US manufacturing industry and government agencies in
developing and applying intelligent control technology to mobility systems to reduce cost, improve safety,
and save lives.

The 4D/RCS has been the standard intelligent control architecture on many of the Defense, Learning, and
Industry Projects providing application to respective real world issues. The Transportation Project provides
performance analysis of the latest mobile system sensor advancements. And the Research and Engineering
Projects allow autonomy capabilities to be defined along with simulation and prediction efforts for mobile
robots.

Intelligent Control of Mobility Systems 273

Future ICMS efforts will focus deeper into these projects with even more autonomous capabilities. Broader
applications to robots supporting humans in manufacturing, construction, and farming are expected once
major key intelligent mobility elements in perception and control are solved.

References

1. Albus, J.S., Huang, H.-M., Messina, E., Murphy, K., Juberts, M., Lacaze, A., Balakirsky, S., Shneier, M.O.,
Hong, T., Scott, H., Horst, J., Proctor, F., Shackleford, W., Szabo, S., and Finkelstein, R., 4D/RCS Version 2.0:
A Reference Model Architecture for Unmanned Vehicle Systems, NIST, Gaithersburg, MD, NISTIR 6912, 2002

2. Balakirsky, S., Messina, E., Albus, J.S., Architecting a Simulation and Development Environment for Multi-Robot
Teams, Proceedings of the International Workshop on Multi Robot Systems, 2002

3. Balakirsky, S.B., Chang, T., Hong, T.H., Messina, E., Shneier, M.O., A Hierarchical World Model for an
Autonomous Scout Vehicle, Proceedings of the SPIE 16th Annual International Symp. on Aerospace/Defense
Sensing, Simulation, and Controls, Orlando, FL, April 1–5, 2002

4. Albus, J.S., Juberts, M., Szabo, S., RCS: A Reference Model Architecture for Intelligent Vehicle and High-
way Systems, Proceedings of the 25th Silver Jubilee International Symposium on Automotive Technology and
Automation, Florence, Italy, June 1–5, 1992

5. Bostelman, R.V., Jacoff, A., Dagalakis, N.G., Albus, J.S., RCS-Based RoboCrane Integration, Proceedings of the
International Conference on Intelligent Systems: A Semiotic Perspective, Gaithersburg, MD, October 20–23, 1996

6. Madhavan, R., Messina, E., and Albus, J. (Editors), Low-Level Autonomous Mobility Implementation part of
Chapter 3: Behavior Generation in the book, Intelligent Vehicle Systems: A 4D/RCS Approach, 2007

7. Jackel, Larry, LAGR Mission, http://www.darpa.mil/ipto/programs/lagr/index.htm, DARPA Information Pro-
cessing Technology Office

8. Albus, J., Bostelman, R., Chang, T., Hong, T., Shackleford, W., and Shneier, M., 2006. Learning in a Hierarchical
Control System: [4D/RCS in the DARPA LAGR Program. Journal of Field Robotics, Special Issue on Learning
in Unstructured Environments, 23(11/12): 975–1003.]

9. Konolige, K., SRI Stereo Engine, http://www.ai.sri.com/∼konolige/svs/
10. Tan, C., Hong, T., Shneier, M., and Chang, T., Color Model-Based Real-Time Learning for Road Following, in

Proceedings of the IEEE Intelligent Transportation Systems Conference (Submitted) Toronto, Canada, 2006
11. Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., and Albus, J. S. Learning traversability models

for autonomous mobile vehicles. Autonomous Robots 24, 1, January 2008, 69–86.
12. Oskard, D., Hong, T., Shaffer, C., Real-time Algorithms and Data Structures for Underwater Mapping,

Proceedings of the SPIE Advances in Intelligent Robotics Systems Conference, Boston, MA, November, 1988
13. Shackleford, W., The NML Programmer’s Guide (C++ Version) http://www.isd.mel.nist.gov/projects/rcslib/

NMLcpp.html
14. Heyes-Jones, J., A∗ algorithm tutorial, http://us.geocities.com/jheyesjones/astar.html
15. Tan, C., Hong, T., Shneier, M., Chang, T., Color Model-Based Real-Time Learning for Road Following,

Proceedings of the IEEE Intelligent Transportation Systems Conference, 2006
16. He, Y., Wang, H., Zhang, B., Color-based road detection in urban traffic scenes, IEEE Transactions on Intelligent

Transportation Systems, 5(4), 309–318, 2004
17. Kristensen, D., Autonomous Road Following. PhD thesis, KTH Royal Institute of Technology, Stockholm,

Sweden, 2004
18. Lin, X., Chen, S., Color image segmentation using modified HSI system for road following, IEEE International

Conference on Robotics and Automation, 1991, pp. 1998–2003
19. Ulrich, I., Nourbakhsh, I., Appearance-Based Obstacle Detection with Monocular Color Vision, Proceedings of

the AAAI National Conference on Artificial Intelligence, 2000
20. Shneier, M., Bostelman, R., Albus, J.S., Shackleford, W., Chang, T., Hong, T., A Common Operator Control

Unit Color Scheme for Mobile Robots, National Institute of Standards and Technology, Gaithersburg, MD,
August, 2007

21. Huang, H.-M., The Autonomy Levels for Unmanned Systems (ALFUS) Framework–Interim Results, in
Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, Maryland, 2006

22. Huang, H.-M. et al., Characterizing Unmanned System Autonomy: Contextual Autonomous Capability and Level
of Autonomy Analyses, in Proceedings of the SPIE Defense and Security Symposium, April, 2007

23. Huang, H.-M. ed., Autonomy Levels for Unmanned Systems (ALFUS) Framework, Volume I: Terminology, NIST
Special Publication 1011, Gaithersburg: National Institute of Standards and Technology, 2004

274 J. Albus et al.

24. The OWL Services Coalition, “OWL-S 1.0 Release,” http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003
25. Schlenoff, C., Washington, R., and Barbera, T., Experiences in Developing an Intelligent Ground Vehicle (IGV)

Ontology in Protege, Proceedings of the 7th International Protege Conference, Bethesda, MD, 2004
26. http://www.its.dot.gov/ivbss
27. Szabo, S., Wilson, B., Application of a Crash Prevention Boundary Metric to a Road Departure Warning System.

Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, NIST, Gaithersburg, MD,
August, 24–26, 2004. http://www.isd.mel.nist.gov/documents/szabo/PerMIS04.pdf

28. http://www.isd.mel.nist.gov/projects/autonomy levels/
29. Balakirsky, S., Scrapper, C., Carpin, S., and Lewis, M., USARSim: Providing a Framework for Multi-

robot Performance Evaluation, Proceedings of the Performance Metrics for Intelligent Systems (PerMIS)
Workshop, 2006

30. Scrapper, C., Balakirsky, S., and Messina, E., MOAST and USARSim – A Combined Framework for the
Development and Testing of Autonomous Systems, SPIE 2006 Defense and Security Symposium, 2006

31. USARSim Homepage. http://usarsim.sourceforge.net/, 2007
32. MOAST Homepage. http://sourceforge.net/projects/moast/, 2007
33. Dickmanns, E.D., A General Dynamic Vision Architecture for UGV and UAV, Journal of Applied Intelligence,

2, 251, 1992
34. Schlenoff, C., Ajot, J., and Madhavan, R., PRIDE: A Framework for Performance Evaluation of Intelligent

Vehicles in Dynamic, On-Road Environments, Proceedings of the Performance Metrics for Intelligent Systems
(PerMIS) 2004 Workshop, 2004

35. Madhavan, R. and Schlenoff, C., The Effect of Process Models on Short-term Prediction of Moving Objects for
Autonomous Driving, International Journal of Control, Automation and Systems, 3, 509–523, 2005

36. Bishop, R., Industrial Autonomous Vehicles: Results of a Vendor Survey of Technology Needs, Bishop Consulting,
February 16, 2006

37. Bostelman, R., Hong, T., Chang, T., Visualization of Pallets, Proceedings of SPIE Optics East 2006 Conference,
Boston, MA, USA, October 1–4, 2006

38. Bostelman, R., Hong, T., Chang, T., Shackleford, W., Shneier, M., Unstructured Facility Navigation by Applying
the NIST 4D/RCS Architecture, CITSA 06 Conference Proceedings, July 20–23, 2006

39. Iagnemma, K., Buehler, M., Special Issues on the DARPA Grand Challenge, Journal of Field Robotics, Volume
23, Issues 8 & 9, Pages 461–835, Aug/Sept 2006

