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1 Introduction

Resistance spot welding (RSW) is an important process in the automotive industry. The advantages of spot
welding are many: an economical process, adaptable to a wide variety of materials (including low carbon
steel, coated steels, stainless steel, aluminum, nickel, titanium, and copper alloys) and thicknesses, a process
with short cycle times, and overall, a relatively robust process with some tolerance to fit-up variations.
Although used in mass production for several decades, RSW poses several major problems, most notably,
large variation in weld quality. Given the variation and uncertainty in weld quality (attributed to factors
such as tip wear, sheet metal surface debris, and fluctuations in power supply), it is a common practice in
industry to add a significant number of redundant welds to gain confidence in the structural integrity of
the welded assembly [1]. In recent years, global competition for improved productivity and reduced non-
value added activity, is forcing automotive OEMs and others to eliminate these redundant spot welds. The
emphasis on reduction of the redundant welds significantly increases the need for monitoring of weld quality
and minimizing weld process variability. Traditionally, destructive and nondestructive tests for weld quality
evaluation are predominantly off-line or end-of-line processes. While this test information is useful and
valuable for quality and process monitoring, it cannot be utilized in process control because of the significant
delays that are associated with the off-line test analysis. In order to minimize the number of spot welds and
still satisfy essential factors such as strength and surface integrity, weld quality has to be monitored and
controlled in real-time. Advances over the last decade in the area of non-intrusive electronic sensors, signal
processing algorithms, and computational intelligence, coupled with drastic reductions in computing and
networking hardware costs, have now made it possible to develop non-intrusive intelligent resistance welding
systems that overcome the above shortcomings.

The importance of weld quality monitoring and process variability reduction is further amplified by the
recent changes in the materials used by automotive manufacturers. The demand for improved corrosion
resistance has led the automotive industry to increasingly use zinc coated steel in auto body construction.
One of the major concerns associated with welding coated steel is the mushrooming effect (the increase
in the electrode diameter due to deposition of copper into the spot surface) resulting in reduced current
density and undersized welds (cold welds). The most common approach to this problem is based on the
use of simple unconditional incremental algorithms (steppers) for preprogrammed current scheduling. The
main objective of the weld current steppers is to maintain weld nugget size within acceptable limits while
at the same time minimizing electrode growth. Large current steps could lead to an increase in electrode tip
growth due to the use of high current levels. This in turn requires even larger increases in current, thereby
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causing a runaway process of electrode growth. Under these conditions, weld size would deteriorate at a rapid
rate. On the other hand, small increases in welding current result in a slow rate of electrode tip growth,
which is advantageous in terms of electrode life, provided the small increases in current are sufficient to
maintain adequate current density to produce the required weld nugget size. Since the direct measurement
of the main process characteristics – weld quality and expulsion rate – is not feasible in an automotive plant
environment one reasonable approach is to estimate these variables by virtual or soft (indirect) sensors. A
soft sensor for indirect estimation of the weld quality can provide a real time approximate assessment of
the weld nugget diameter. Another opportunity for soft sensing in weld process control is determined by the
need to predict the impact of the current changes on the expulsion rate of the weld process. The combination
of soft sensing with adequate control algorithms can have dramatic impact on reducing variability of the
weld process and effectiveness of weld equipment. The final goal is to develop a control algorithm that can
be applied in an automotive assembly plant environment with the final objective of improving the weld
quality and consistency, in turn, improving overall manufacturing quality and productivity while reducing
redundant welds.

In this chapter we discuss two specific topics: (1) Development of accurate in-process non-destructive
evaluation (NDE) of nugget quality by using the dynamic resistance (or secondary voltage) profile during the
welding process and (2) Design of closed-loop supervisory control algorithm for adapting the weld controller
set points for weld quality enhancement and reduction of process variability.

We propose and demonstrate the performance of a Linear Vector Quantization (LVQ) network for on-line
nugget quality classification in conjunction with an intelligent algorithm for adjusting the amount of current
to compensate for the electrodes degradation. The algorithm works as a fuzzy logic controller using a set
of engineering rules with fuzzy predicates that dynamically adapt the secondary current to the state of the
weld process. The state is identified by indirectly estimating two of the main process characteristics – weld
quality and expulsion rate. A soft sensor for indirect estimation of the weld quality employing an LVQ type
classifier is designed to provide a real time approximate assessment of the weld nugget diameter. Another
soft sensing algorithm is applied to predict the impact of changes in current on the expulsion rate of the
weld process in real time. By maintaining the expulsion rate just below a minimal acceptable level, robust
process control performance and satisfactory weld quality are achieved. The Intelligent Constant Current
Control for Resistance Spot Welding is implemented and validated on a Medium Frequency Direct Current
(MFDC) Constant Current Weld Controller. Results demonstrate a substantial improvement of weld quality
and reduction of process variability due to the proposed new control algorithm.

2 Resistance Spot Welding: Background

A schematic diagram for resistance spot welding is illustrated in Fig. 1. It consists of primary (high voltage,
low current) and secondary circuits (low voltage, high current). The process employs a combination of
pressure and heat to produce a weld between the sheet metal work pieces in the secondary circuit. Resistance

Fig. 1. Schematic diagram for resistance spot welding
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Fig. 2. Dynamic resistances in the secondary circuit

heating occurs as electrical welding current flows through the work pieces in the secondary circuit of a
transformer. The transformer converts high-voltage, low current commercial power into suitable high current,
low voltage welding power.

The energy required to produce a given resistance weld is determined by several factors. Key among
them is the weld area (heated volume), the peak temperature, the specific heat of the work pieces, and the
heat loss through the surrounding metal and electrodes. An increase in magnitude of one or more of these
factors requires a corresponding increase in energy to produce the weld. A typical spot welding operation is
controlled by a weld schedule, whose time steps are controlled by a spot welding controller. The dynamic
resistance technique involves monitoring the resistance in the secondary circuit during the welding process.
It is least intrusive, very economical, and seems to provide reasonable and adequate information about the
state of the weld process. The word dynamic comes from fact that the resistance changes during the welding
cycle. While the electrical resistances of the transformer and the mechanical assembly, Rt and Rm, can be
assumed to be reasonably constant during the welding process (see Fig. 2), the sheet metal stack resistance
(Rl) varies with nugget formation.

Two of the commonly used types of resistance welding systems (welding machines) in automotive industry
are alternating current (AC) type and Medium Frequency Direct Current (MFDC) type. The AC resistance
welding machine is inexpensive and its electrodes wear out slowly. However, a disadvantage is that the
current supplied to the weld can be controlled only within fairly loose time interval [2]. The major advantage
of the MFDC type of welding system is that the current supplied to the weld can be controlled within
relatively stringent limits. This is one of the reasons for the increasing share of the MFDC type systems in
the automotive assembly plants. In this chapter we pay special attention to the MFDC weld controller, and
more specifically to the MFDC controller that is combined with a Constant Current strategy (MFDC-CC).
This type of RSW controller is employed to achieve a constant current in each millisecond within the weld
but the current can be changed from weld to weld based on a supervisory control algorithm.

3 Online Nugget Quality Evaluation Using Linear Vector
Quantization Network

The problem of real-time estimation of the weld quality from process data is one of the key objectives
in current weld control systems. The most common techniques can be grouped into four major groups:
Ultrasonic technique, Thermal Force technique, Displacement technique, and Dynamic Resistance technique.
It should be noted here that some of these techniques tend to be too intrusive and/or expensive for wide-
scale deployment (for example, the ultrasonic technique), and in that sense, not compatible for main-stream
application in automotive resistance welding. Most of the methods offered in the literature to predict nugget
diameter from the process data employ measurements such as voltage and force and are not suitable in an
industrial environment for two major reasons: the input signals for prediction model are taken from intrusive
sensors (which affect the performance or capability of the welding machine), and the methods often required
very large training and testing datasets.



222 M. El-Banna et al.

Fig. 3. Examples of normal, cold and expulsion welds [3]

This task can be alleviated if the weld controller is equipped with a voltage sensor in the secondary circuit,
facilitating evaluation of dynamic resistance. Further simplification that significantly increases the feasibility
of the mission of indirect estimation of weld quality follows from replacing the goal of quantifying the weld
quality in terms of button size and integrity by the more modest objective of indirect estimation the class
of the weld, e.g., satisfactory (acceptable, “normal” button size), unsatisfactory (under sized, “cold” welds),
and defective (“expulsion”) – Fig. 3. We consider normal the welds within the specifications, i.e., those that
have nugget diameter more than the minimum acceptable limit and exhibit no expulsion. Those welds that
do not meet the specification are characterized as cold welds. Additionally, we count as expulsion welds
the welds that indicate ejection of molten metal – an undesirable event that has detrimental effect on weld
nugget integrity (the loss of metal from the fusion zone can reduce the weld size and result in weld porosity),
which may significantly reduce the strength and durability of the welded joints.

Given its non-intrusive nature, relatively low cost of implementation, and reasonable performance in
many laboratory and industrial settings, we have adopted the dynamic resistance approach to monitor and
control the process on-line. The measurements of voltage and current (at primary or secondary side) are
used to calculate dynamic resistance.

Given its well-defined physical meaning and the ease of measurement, a number of studies on the problem
of estimation of weld quality from the secondary dynamic resistance have been performed. Cho and Rhee
[4] showed that the process variables, which were monitored in the primary circuit of the welding machine,
can be used to obtain the variation of the dynamic resistance across electrodes. They introduced an artificial
intelligence algorithm for estimation of the weld quality using the primary dynamic resistance. Cho and Rhee
used uncoated steel welding (low carbon cold rolled steel) to verify their model but fall short from discussing
the impact of coated steel (the material mainly used in the auto industry). Lee et al [5] proposed a quality
assurance technique for resistance spot welding using a neuro-fuzzy inference system. They however used the
displacement signal (something impractical in an automotive plant environment) as input to their model.
Podrzaj et al [6] proposed an LVQ neural network system to detect expulsion. The results showed that the
LVQ neural network was able to detect the expulsion in different materials. However, they identified the
welding force signal as the most important signal for classification of the expulsion occurrence. Availability
of force signal is limited to certain types of guns, and they are more expensive than other types of sensors.
Park and Cho [7] used LVQ as well as a multi-layer perceptron neural network to classify the weld quality
(strength and indentation) by using the force signal. All those studies targeted AC weld controller while the
MFDC controller was not examined.

In order to overcome these shortcomings, in this section, we propose an algorithm for estimation of weld
nugget quality through classification of button size based on a small number of patterns for cold, normal, and
expulsion welds. Our approach uses an LVQ neural network for nugget quality classification that employs the
easily accessible dynamic resistance profile as input. Our focus is on the Medium Frequency Direct Current
Constant Current (MFDC-CC) controller. A more general LVQ based soft sensing algorithm considering also
alternating current (AC) weld controllers is presented in [8]. The goal is to develop a method and algorithm
for on-line classification between normal welds, cold welds, and expulsion welds that can be applicable for
weld process control. It should be mentioned that LVQ classification of the weld status is performed after
each weld, not during the welding time.
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Fig. 4. Dynamic resistance profiles for cold, expulsion and normal welds for MFDC with constant current control

Fig. 5. Learning vector quantization (LVQ) neural network architecture

Figure 4 shows prototypical dynamic resistance profiles for three types of welds; cold, normal, and expul-
sion, for MFDC–CC controller. It can be seen that these profiles are not easily distinguishable. The cold
weld dynamic resistance profile tends to be lower than the other profiles, while the expulsion weld dynamic
resistance profile tends to have a sharp drop especially towards the end. In order to classify them we apply
an LVQ neural net classifier.

Learning vector quantization (LVQ) [9] is a method for training competitive layers of a neural network
in a “supervised” manner. It consists of three layers: an input layer, a competitive layer, and an output layer
(Fig. 5). The “classes” that the competitive layer finds are dependent only on the distance between input
vectors. If two input vectors are very similar, the competitive layer assigns them to the same class. LVQ
shows good performance for complex classification problems because of its fast learning nature, reliability,
and convenience of use. It particularly performs well with small training sets. This property is significantly
important for industrial application, where training data is very limited; take considerable time, cost, or
even impractical to get more data.

The network parameters are as follows: P is the N dimensional input vector, Wi is the weight matrix
for the ith layer, Si number of neurons in the ith layer, ni the net input vector of the ith layer, and ai the
output of the ith layer. The first (competitive) layer is used to find the prototype vector W1

s (i.e., a row of
the weight matrix W1) that points in the direction closest to the input vector, i.e.,

Mini

∥∥P − W1
i

∥∥2 ∀i, where i ∈ (1, 2. . .S1)

The neurons that possess the least distance between vector weight matrix and input vector are assigned
a value of one and the other neurons are assigned a value of zero. Finally, the output layer (linear layer)
joins the subclasses (S1) from the competitive layer and W2 weight matrix into target classes (S2) through
a linear transfer function. Matrix W2 defines a linear combiner and remains constant while the elements
of W1 change during the training process. The weights of the winning neuron (a row of the input weight
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matrix) are adjusted using the Kohonen learning rule [20]. For example, supposing that the ith neuron wins
the competition, the elements of the ith row of the input weight matrix are adjusted as shown below:

w1(i) = w1(i − 1) + ρ(P(i) − w1(i − 1)),

where P(i) is the input vector of the ith iteration and ρ is the learning rate.
If just the Kohonen learning rule is employed, the neural network is called LVQ1. LVQ2 is an improved

version of LVQ1, with the main difference being that in the latter case, the prototype vectors of two neurons
are updated if the input vector P(i) is classified incorrectly. The weights of the neuron that wrongly won
the competition are also updated as follows:

w1(i) = w1(i − 1) − ρ(P(i) − w1(i − 1))

The LVQ2 was applied to estimate weld quality by classifying the dynamic resistance vectors correspond-
ing to cold, normal an expulsion welds. The inputs to the network were the vectors of dynamic resistance
sampled at 1ms sampling rate.

An experiment was conducted with an MFDC welding machine with capacity of 180 kVA, 680 lb welding
force provided by a servo gun, HWPAL25 electrode type with 6.4mm face diameter, 233ms welding time,
11.5 kA initial input secondary current, and an incremental stepper of 1 A per weld. The nugget diameter was
measured for a total of 550 welds: 411 were found to be good welds, 22 were cold welds, and 117 welds with
expulsion. In this experiment, LVQ2 network was trained on three, six, and five patterns for cold, normal,
and expulsion welds, respectively. Twelve hidden neurons were used with a learning rate ρ = 0.01.

The performance of the LVQ-based on-line nugget quality classification algorithm was evaluated in terms
of type 1 (α) and type 2 errors (β) for cold, normal, and expulsion welds. Type 1 error (α) (known as false
alarm rate) defines the probability of “rejecting” the null hypothesis, while it is true. For example, if the
null hypothesis defined the weld as expulsion weld, Type 1 error (α) defines the probability that the weld
is misclassified as normal or cold weld, while it really is an expulsion weld. Type 2 error (β) defines the
probability of not rejecting the null hypothesis, while it is false. It is important to note that that there is a
trade off between Type 1 error and Type 2 error. If the model is too sensitive (i.e., type 2 error is very low),
it is normal to have a larger number of false alarms (i.e., type 1 error will be high). Tables 1–3 report type
1 errors (α) and type 2 errors (β) for cold, normal, and expulsion welds when using the entire discretized
dynamic resistance profile as an input vector to the LVQ neural network. It can be seen that the percent
of false alarms are lowest for the cold weld case at 0, 11% for normal welds, and 40% for expulsion welds.
As for type 2 errors, they are once again lowest for cold welds at 4, 6% for expulsion welds, and 34% for
normal welds.

Table 1. Type 1 and 2 errors for classification of cold welds when using the entire dynamic resistance profile as input
to the LVQ neural network

H0: Weld is cold True state of H0

statistical decision H0 is true H0 is false

Reject H0 α = 0.00 1 − α = 1.00
Don’t reject H0 1 − β = 0.96 β = 0.04

Table 2. Type 1 and 2 errors for normal welds classification when using the entire dynamic resistance profile as
input to the LVQ neural network

H0: Weld is normal True state of H0

statistical decision H0 is true H0 is false

Reject H0 α = 0.11 1 − α = 0.89
Don’t reject H0 1 − β = 0.66 β = 0.34
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Table 3. Type 1 and 2 errors for expulsion welds classification when using the entire dynamic resistance profile as
input to the LVQ neural network

Ho: Weld is expulsion
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.40 1 − α = 0.60
Don’t reject H0 1 − β = 0.94 β = 0.06

Table 4. Power of the test (1 − β) for different features inputs to the LVQ neural network

Feature Cold welds Normal welds Expulsion welds
(%) (%) (%)

Maximum 99.8 78.6 83.0
Minimum 94.6 13.0 100.0
Mean 98.3 13.7 100.0
Standard deviation 74.9 60.3 72.2
Range 100.0 38.2 75.0
Root mean square (RMS) 92.1 14.5 100.0
Slope 1 53.6 80.2 79.2
Slope 2 67.7 100.0 30.7
Slope 3 73.9 90.1 45.8
Slope 4 100.0 37.4 99.8
Bin 1 83.6 31.3 76.2
Bin 2 90.7 16.0 88.7
Bin 3 89.6 14.5 100.0
Bin 4 92.1 100.0 14.4
Bin 5 98.1 20.6 98.6

In order to reduce the dimensionality of the LVQ neural network input vector (dynamic resistance profile),
different features were tested as possible candidates to replace the dynamic resistance profile vector as input,
i.e., reducing the input of the LVQ network to a feature vector (the first ten models have a single feature
input while the last one has a 5-feature input vector):

• Maximum value of the dynamic resistance profile
• Minimum value of the dynamic resistance profile
• Mean value of the dynamic resistance profile
• Standard deviation value of the dynamic resistance profile
• Range value of the dynamic resistance profile
• Root mean square (RMS) value of the dynamic resistance profile
• First region slope (S1) value of the dynamic resistance profile
• Second region slope (S2) value of the dynamic resistance profile
• Third region slope (S3) value of the dynamic resistance profile
• Fourth region slope (S4) value of the dynamic resistance profile
• Binned RMS of dynamic resistance profile: dynamic resistance vector is divided into five bins and RMS

values are calculated for each bin

The criteria for features selection was based on power of the test (i.e., 1 − β) for the cold, normal, and
expulsion welds as shown in Table 4. The feature that demonstrates the highest classification performance
for the three types of welds was chosen as input for the LVQ network (the first row in Table 4). In order to
simplify features selection, we assume that interactions among features are negligible.

In our work, we just employed the most promising feature identified by power of the test criteria, the
maximum value of the dynamic resistance vector, as input for LVQ neural network. Tables 5–7 show the
type 1 and 2 error results from the network when employing just this feature. It can be seen that both types
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Table 5. Type 1 and 2 errors for cold welds classification when using the maximum of dynamic resistance profile as
a single input to the LVQ neural network

H0: Weld is cold
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.00 1 − α = 1.00
Don’t reject H0 1 − β = 0.88 β = 0.12

Table 6. Type 1 and 2 errors for normal welds classification when using maximum of dynamic resistance profile as
a single input to the LVQ neural network

H0: Weld is normal
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.29 1 − α = 0.71
Don’t reject H0 1 − β = 0.81 β = 0.19

Table 7. Type 1 and 2 errors for expulsion welds classification when using maximum of dynamic resistance profile
as a single input to the LVQ neural network

H0: Weld is expulsion
statistical decision

True state of H0

H0 is true H0 is false

Reject H0 α = 0.23 1 − α = 0.77
Don’t reject H0 1 − β = 0.87 β = 0.13

of errors are reduced by using the maximum resistance feature instead of the entire vector of resistance for
normal and expulsion welds. On the other hand, for cold welds, the type 2 error degrades.

LVQ network shows good performance for complex classification problems because of its fast learn-
ing nature, reliability, and convenience of use. It particularly performs well with small training sets. This
property is especially important for automotive manufacturing applications, where the process of obtaining
large training data sets may require considerable time and cost. Overall, the results are very promising for
developing practical on-line quality monitoring systems for resistance spot-welding machines and complete
automation of the welding process.

4 Intelligent Constant Current Control Algorithm

Most of the conventional weld control systems are based on the concept of “stepper” type preprogrammed
scheduling of the primary current. A basis for setting up a current stepper can be developed by determining
the pattern of electrode growth obtained in a particular welding cell. Different approaches are used for
setting up a weld current stepper, including subjective methods, fixed increments, constant current density,
gradient following, and iterative approaches. In a subjective or “best guess” approach, current steps are based
on maintaining a slight red glow at the electrode/sheet interface and/or regularly adjusting the current to a
level just below the splash or expulsion level. This approach has been found to give significant improvements
in electrode life. While acceptable results can be achieved by this means, an extreme skill is required in
determining the point at which current is to be increased.

In a fixed (preprogrammed scheduling) increment approach, a current stepper can be based on increasing
either the heat control (i.e., phase shift control) or the actual welding current, in fixed increments after
performing a predetermined number of welds. Generally, the increment of phase shift can be set between
1 and 5%. It was concluded [10] that a stepper function based on a fixed increment of the heat control or
phase shift control was not a viable means of extending electrode life in many instances.
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Multiple alternative approaches for adjusting the stepper algorithms based on different criteria have
been reported (constant current density [10], gradient following approach [11], fuzzy controlled adaptation
of delivered power [12], dynamic resistance profile estimation [13], prediction of weld strength [14], etc.) but
have not found strong acceptance in automotive industry for various reasons (sensitivity to the coating type,
undesirable rapid growth of electrode diameter, assumption of intrusive (electrode displacement) sensors,
lack of robustness with respect to expulsions, etc.

In this section, we present an intelligent control algorithm that addresses the problem of constant current
weld control of coated steels in the presence of significant electrode degradation [15]. The algorithm is
implemented as a fuzzy logic controller using a set of engineering rules with fuzzy predicates that dynamically
adapt the secondary current to the state of the welding process. Since the direct measurement of the main
process characteristics – weld quality and expulsion rate – is not feasible in an industrial environment, these
variables are estimated by soft (indirect) sensors.

A soft sensor for indirect estimation of the weld quality employing an LVQ type classifier that was
described in the previous section provides a real time approximate assessment of the weld nugget diameter.
Another soft sensing algorithm that is based on continuous monitoring of the secondary resistance is applied
to predict the instantaneous impact of the current changes on the expulsion rate of the weld process. The
reason for using the second soft sensor is to monitor the expulsion during the actual welding time (i.e., in
each millisecond) so if expulsion is detected during the welding process, current should be turned off or
reduced for the remaining welding time. Therefore, the second soft sensor complements the LVQ based soft
sensor that was introduced in Sect. 3 with a real time estimation of potential expulsion conditions, while the
LVQ soft sensor provides estimation of weld quality only after the completion of the weld process.

The main objective of the rule set of the fuzzy logic control algorithm is to describe a nonlinear control
strategy that adjusts the secondary current to maintain the expulsion rate just below a minimal accept-
able level guaranteeing satisfactory weld quality with robust process control performance, and minimize
the electrode degradation. The fuzziness of the rules predicates reflects the uncertainty of the indirectly
estimated weld quality and expulsion rate variables. The Intelligent Constant Current Control algorithm
was implemented and validated on a Medium Frequency Direct Current Constant Current (MFDC-CC)
Weld Controller. Results demonstrate a substantial improvement of weld quality and reduction of process
variability due to the proposed new control algorithm.

The fuzzy logic control algorithm is implemented in a supervisory control mode (Fig. 5) – it replaces
the conventional “stepper” type constant current weld control algorithm. The primary current remains
unchanged during the weld process but the primary current level for each weld is continuously adjusted
based on the estimated state of the weld process during the last p welds (parameter p represents the size
of a moving process window). The adjustment of the primary current results in a consequent adjustment
of the secondary current. Two of the main process characteristics that are used as inputs to the fuzzy logic
controller – the expulsion rate and the size of the weld nugget – are not directly measured but are derived
from the secondary resistance profiles of the last p welds. The dynamic resistance is calculated from the
measured secondary voltage and the calculated secondary current (Fig. 6).

On the other hand, in order to get the optimum strength for the weld, the input parameters (current,
time, force) need to be targeted just below the expulsion level.

The nugget quality estimation algorithm is used to determine the number of normal welds produced
during the last process window of p welds based on a LVQ neural network that was discussed in detail in the
previous section. We consider the full size input vector, i.e., P is a vector of dimension 167 (i.e., N = 167),
which is equal to the number of millisecond samples in one weld after the pre-heat and cooling phase. The
reason for using the vector of dynamic resistance profile rather than a single feature input (the maximum
of the profile) is to guarantee robustness of the proposed control algorithm. While an LVQ classifier with a
single feature input can be applied for process monitoring for the purpose of supervisory control we consider
the full size input vector classifier that contains complete information of the welding process. The number of
hidden neurons in the LVQ neural network is 12 while the number of output neurons is three corresponding
to the three categories of welding status; cold, normal, and expulsion. Consequently, the weight matrices W1

and W2 are of size (167 × 12) and (12× 3), respectively.
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The LVQ model (Fig. 5) was trained on three, six, and five patterns of the secondary resistance vectors
for cold, normal, and expulsion welds, respectively. Twelve hidden neurons were trained with a learning rate
of 0.01.

Since the number of expulsions over time (expulsion rate) plays very significant role in the proposed
control algorithm, we complement the estimation of the expulsion welds with an alternative algorithm for
indirect estimation of the expulsion rate. Expulsion is estimated indirectly from the resistance profile. The
main indicator for expulsion, as pointed out in [6, 16, 17], is the instantaneous drop in the resistance (Fig. 4).
In this chapter we use a modified version of the expulsion algorithm from reference [18].

Lets R(k) denote the dynamic resistance value at the current millisecond cycle (the MFDC weld process
takes 233ms), and R(k − 1) and R(k − 2) the two previous resistance values. The soft sensing expulsion
algorithm continuously checks for a resistance drop with respect to a dynamically defined expulsion threshold
Elevel(k) (after the cooling period, i.e., in our experiment after 67ms) that is represented by the following
condition for the resistance:

If Max{R(k − 2), R(k − 1), R(k)} > Max{R(k − 1), R(k)}
Then Elevel(k) = Max{R(k−2 ),R(k−1 ),R(k)}−Max{R(k−1 ),R(k)}

Max{R(k−1 ),R(k)} ∗ 100
Else
Elevel(k) = 0
To determine if there is an expulsion in the examined weld, the following conditions are checked against

Elevel(k):
If Elevel(k) ≥ A
Or
If {Elevel(67) + . . . + Elevel(k)} ≥ B,

where A and B are threshold parameters for expulsion detection (in our experiment A = 3, and B = 14).
In order to enhance the indirect estimation of the weld status, another soft sensing algorithm (LVQ based

quality nugget estimation block in Fig. 6) based on quality nugget estimation is introduced. Quality nugget
estimation employing an LVQ classifier is designed to provide a real time approximation of the weld nugget
status. The primary current for the next window of p welds is calculated by using a fuzzy control algorithm
relating the number of expulsion welds and number of normal welds.

Let “E” denote the number of expulsion welds detected from the expulsion algorithm, “N” the number
of normal welds detected from LVQ neural network, for the last window of p welds, and dI be the change of
current that is inferred by the algorithm. We define the mechanism for adjusting the current gain based on
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Table 8. Fuzzy logic controller rule-base

Rule

1 If “E” is low AND “N” is low THEN dI = Pa

2 If “E” is medium AND “N” is low THEN dI = Ng/2
3 If “E” is high AND “N” is low THEN dI = Ng

4 If “E” is low AND “N” is medium THEN dI = Pa/2
5 If “E” is medium AND “N” is medium THEN dI = Ng/4
6 If “E” is high AND “N” is medium THEN dI = Ng/2
7 If “E” is low AND “N” is high THEN dI = Pa/4
8 If “E” is medium AND “N” is high THEN dI = Ng/8
9 If “E” is high AND “N” is high THEN dI = Ng/4

Fig. 7. Membership functions of the number of expulsion welds and the number of normal welds in a process window
of the last p welds (p is a fixed parameter). Parameter p defines a universe [0, p] of the all possible expulsion and
normal welds within that moving window

the number of expulsion and normal welds in the last window of p welds through a set of rules with fuzzy
predicates (Table 8).

In the rules of the fuzzy logic controller low, medium, and high are fuzzy subsets defined on the [0, p]
universe for the number of expulsions “E,” and the number of normal welds “N” (Fig. 7). Ng < 0 and Pa > 0
are constants (fuzzy singletons) defining control changes of the current.

The first three fuzzy rules deal with the case where the number of normal welds “N” in the last window
is low. Based on the number of detected expulsions, three alternative strategies for changing current level
are considered:

• If the number of expulsions is low, it is reasonable to think that the state of the welds is close to the
cold welds status. Hence, it is necessary to increase gradually the amount of current, i.e., the current is
changed by. dI = Pa.

• If the number of detected expulsions is medium or high, it is reasonable to think that the state of the
welds is close to the expulsion state. Hence, it is necessary to decrease the amount of current. This is
performed selectively, based on the number of expulsions (high vs. medium), resulting in negative changes
of the current dI = Ng vs. dI = Ng/2.

When the number of normal welds N in the process window is medium, the strategies for adjusting the
current level are as follows (rules 4–6):

• When we have low expulsion detection rate, the weld state is likely approaching a cold weld. Therefore,
the level of current should be increased. This is done by increasing the current level, i.e., dI = Pa/2.
Note that the amount of increase when the number of normal welds “N” is medium (dI = Pa/2) is less
than in the case when that number “N” is low (dI = Pa).

• The next case deals with medium expulsion rate, i.e., the weld state is close to the expulsion status. This
requires a gradual reduction of the current dI. Note that the amount of decrease when “N” is medium
(dI = Ng/4) is also less than the case when the “N” is low (dI = Ng/2).

• The last case appears when the expulsion rate is high. Since this is an undesirable state, the level of current
should be lowered dramatically to minimize the number of expulsions. This is also done by modifying
the secondary current dI = Ng/2 when “N” is medium and dI = Ng when “N” is low.
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The last three fuzzy rules (7–9) consider high level of normal welds, i.e., satisfactory weld quality. Their
corresponding control strategies are:

• If we have low expulsion detection, the state of the welds will be approaching a cold weld status. Therefore,
current level should be increased to prevent potential cold welds. This is done by a minor positive change
of the current to dI = Pa/4.

• If we have medium expulsion detection, it is reasonable to consider that the state of the welds is close to
the expulsion welds status. Therefore the current level should be decreased gradually to dI = Ng/8).

• In the last case, when the expulsion detection is high, the level of the current should be decreased. The
corresponding change of the current is slightly negative (dI = Ng/4), i.e., significantly less than in the
cases when “N” is medium (dI = Ng/2) or when “N” is low (dI = Ng).

Applying the Simplified Fuzzy Reasoning algorithm [19], we obtain an analytical expression for the change
of the current dI depending on the rates of expulsion welds “E” and normal welds “N” as follows:

dI =

∑
∀i

∑
∀j

µi(x)νj(y)∆i,j∑
∀i

∑
∀j

µi(x)νj(y)

where:

µi: membership function of the linguistic value of the expulsion welds {low, medium, high}
νj: membership function of the linguistic value of the normal welds {low, medium, high}
x: number of expulsion welds in the process window detected by the expulsion algorithm
y: number of normal welds in the process window detected by the LVQ soft sensing algorithm
µi(x): firing level for the expulsion membership function
νj(y): firing level for the normal membership function
∆i,j : amount of increment/decrement when the linguistic value of expulsion welds is “i” and the linguistic

value of normal welds is “j” (for example, if the linguistic value of the expulsion welds is high and the
linguistic value of the normal welds is low then ∆high,low = Ng, where Ng negative value determines the
change of the current dI); see Table 8.

Triangular shape membership functions µi, νj are used in the fuzzy control algorithm (Fig. 7) to define the
linguistic values of the numbers of expulsion and normal welds in the process window. These membership
functions depend on the scalar parameters a, b, c as given by:

µi, νj(x, y; a, b, c) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ a
x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c

0, c ≤ x

⎫⎪⎪⎬
⎪⎪⎭

The new target current (Inew) for the next window of p welds will be:

Inew = Iold + dIIold

where Iold is the current in the previous window of p welds and dI is the change of the current that is
calculated from the fuzzy control algorithm.

Proposed Intelligent Constant Current Control algorithm was implemented in Matlab/Simulink and
was experimentally tested in a supervisory control mode in conjunction with an MFDC Constant Current
Controller. Four sets of experiments were performed as follows. The first group of tests (with/without sealer)
was performed using the Intelligent Constant Current Controller. The second group (with/without sealer)
was carried out by using a conventional stepper. The role of the sealer in this test is to simulate a typical
set of disturbances that are common for automotive weld processes. Sealer is commonly used to examine the
performance of weld controllers and their capability to control process variability.
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Each group of tests consists of sixty coupons, i.e., 360 welds (for each test without sealer), and ten coupons,
i.e., 60 welds (for each test with sealer) with two metal stacks for each coupon are used for each test. Both
tests involved welding 2.00mm gage hot tip galvanized HSLA steel with 0.85mm gage electrogalvanized
HSLA steel. Thirty six coupons (216 welds) without a sealer between sheet metals and ten coupons (60
welds) with a sealer for each group of tests were examined. Cold and expulsion welds were checked visually
in each coupon.

The length of the moving window in the Intelligent Constant Current Controller algorithm was p = 10,
i.e., the soft sensing of expulsion and normal welds was performed on a sequence of ten consecutive welds.
The negative and positive consequent singleton values in the rule-base of the fuzzy control algorithm were
set at Ng = −0.09 and Pa = +0.07.

In the stepper mode test, an increment of one ampere per weld was used as a stepper for this test. The
initial input current was set at 11.2 kA for all tests, with no stabilization process to simulate the actual
welding setup conditions in the plant after tip dressing.

4.1 Intelligent Constant Current Control and Stepper Based Control without Sealer

Figure 8 shows the weld secondary current generated by the Intelligent Constant Current Control algorithm
without sealer. It can be seen that at the beginning of the welding process, there were a couple of cold welds,
so the fuzzy control scheme increased the current gradually until expulsion began to occur. When expulsion
was identified by the soft sensing algorithm, the fuzzy control algorithm began to decrease the current level
until expulsion was eliminated and normal welds were estimated again. After that it continued to increase
the current until expulsion occurred again and so on.

It can be concluded from the test above that the secondary current in the intelligent control scheme was
responding to the weld status; in case of expulsion welds, the secondary current was decreased, and in case
of cold welds, the secondary current was increased. Thus, the fuzzy control scheme was able to adapt the
secondary current level to weld state estimated by the soft sensing algorithms.

Figure 9 shows the secondary current in the case of conventional stepper mode. The weld primary current
was set to a constant value at the beginning of the test, and then an increment of one ampere per weld was
used as a stepper to compensate for the increase in electrodes diameter (mushrooming of the electrode);
observed nonlinearity of the secondary current is a result of the transformer nonlinearities. It can be seen
that there were several cold welds at the beginning of the test, followed by some of normal welds, and then
expulsion welds were dominant until the end of the test.

Evidently, the secondary current in the stepper mode was too aggressive towards the end of the welding
process, resulting in many expulsion welds. On the other hand, at the beginning, the secondary current was
not enough, resulting in cold welds. The stepper mode does not really adapt the current to the actual weld
state at the beginning or at the end of the welding process.

Fig. 8. Secondary current using the intelligent constant current fuzzy control algorithm
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Fig. 9. Secondary current for the stepper based algorithm without sealer

Table 9. Number of expulsion welds for the fuzzy control algorithm and the conventional stepper mode without
sealer

Number of expulsion welds using Number of expulsion welds using
fuzzy controller stepper mode

68/216 = 31.5% 98/216 = 45.4%

Table 10. Number of cold welds for the fuzzy control algorithm and the conventional stepper mode without sealer

Number of cold welds using Number of cold welds using
fuzzy controller stepper mode

31/216 = 14.4% 44/216 = 20.4%

Tables 9 and 10 show the number of expulsion and cold welds for the Intelligent Constant Current Control
algorithm versus the conventional stepper mode implementation. As expected, the number of expulsion welds
in the stepper mode (98/216 = 45.4%) is higher than the number of expulsion welds in the fuzzy control
scheme (68/216 = 31.5%). It can also be seen that the number of cold welds in the fuzzy control scheme test
(31/216 = 14.4%) was less than the number of cold welds in the stepper mode (44/216 = 20.4%).

4.2 Intelligent Constant Current Control and Stepper Based Control with Sealer

It is a common practice in the automotive industry to intentionally introduce sealer material between the
two sheet metals to be welded. The purpose of this sealer is to prevent water from collecting between the
sheets and in turn reduce any potential corrosion of the inner surface of sheet metals. However, the sealer
creates problems for the spot welding process. In particular, the sealer increases the resistance significantly
between the two sheet metals to be welded. When the welding process starts, high current will be fired,
which is faced by high resistance (because of the sealer) in the desired spot to be welded, that prevents
the current from flowing in that direction. The other alternative direction for this current is to flow in the
direction of less resistance; this is what is known as shunting effect. Shunting effect produces cold welds, or
at least small welds, which will cause a serious problem to the structure.

Figure 10 shows the spot secondary current for the Intelligent Constant Current Control algorithm with
sealer. It demonstrates a performance similar to the case with no sealer – increasing/decreasing of the current
level to adapt to the estimated cold/expulsion welds.

Figure 11 shows the spot stepper mode secondary current in the presence of sealer. The weld secondary
current was set to a constant value at the beginning of the test with subsequent increments of one ampere
per weld. It can be seen that the cold welds were dominant until just before the end of the test. There were a
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Fig. 10. Spot secondary current for the fuzzy control algorithm with sealer

Fig. 11. Spot secondary current for the stepper mode with sealer

Table 11. Number of expulsion welds for the fuzzy control scheme, the stepper, and the no stepper modes with
sealer

Number of expulsion welds using Number of expulsion welds using
fuzzy controller stepper mode

3/60 = 5% 0/60 = 0.0%

Table 12. Number of cold welds for the fuzzy control algorithm, the stepper, and the no stepper modes with sealer

Number of cold welds using Number of cold welds using
fuzzy controller stepper model

14/60 = 23.3% 43/60 = 71.7%

couple of normal welds towards the end of the test. No expulsion welds occurred in this test. Apparently, the
secondary current was not enough to produce cold welds. Using stepper mode does not adapt the secondary
current according to the weld status.

Tables 11 and 12 compare the number of expulsion and cold welds for the Intelligent Constant Current
Control algorithm and the conventional stepper mode implementation in the case of welding with sealer. The
number of expulsion welds in the fuzzy control scheme test (3/60 = 5%) is slightly higher than the number
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of expulsion welds in the stepper mode test (0/60 = 0.0%). However, the number of cold welds in the case
of application of the fuzzy control algorithm (14/60 = 23.3%) is much less than the number of cold welds in
the conventional stepper mode test (43/60 = 71.7%).

5 Conclusions

The problem of real time estimation of the weld quality from the process data is one of the major issues
in the weld quality process improvement. This is particularly the case for resistance spot welding. Most of
the models offered in the literature to predict nugget diameter from the process data employ measurements
such as ultrasonics, displacement, and thermal force and are not suitable in an industrial environment for
two major reasons: the input signals for prediction model are taken from intrusive sensors (which will affect
the performance or capability of the welding cell), and, the methods often required very large training and
testing datasets.

In order to overcome these shortcomings, we proposed a Linear Vector Quantization (LVQ) neural net-
work for nugget quality classification that employs the easily accessible dynamic resistance profile as input.
Instead of estimating the actual weld nugget size the algorithm provides an on-line estimate of the weld
quality by classifying the vectors of dynamic resistance profiles into three classes corresponding to normal,
cold, and expulsion welds. We also demonstrated that the algorithm can be successfully applied when the
dynamic resistance profile vector is replaced by a limited feature set. Based on the results from LVQ, a
control algorithm called the Intelligent Constant Current Control for Resistance Spot Welding was proposed
for adapting the weld current level to compensate for electrode degradation in resistance spot welding. The
algorithm employs a fuzzy logic controller using a set of engineering rules with fuzzy predicates that dynami-
cally adapt the secondary current to the state of the weld process. A soft sensor for indirect estimation of the
weld quality employing an LVQ type classifier was implemented in conjunction with the intelligent control
algorithm to provide a real time approximate assessment of the weld nugget status. Another soft sensing
algorithm was applied to predict the impact of the current changes on the expulsion rate of the weld process.
By maintaining the expulsion rate just below a minimal acceptable level, robust process control performance
and satisfactory weld quality were achieved. The Intelligent Constant Current Control for Resistance Spot
Welding was implemented and experimentally validated on a Medium Frequency Direct Current (MFDC)
Constant Current Weld Controller.

Results were verified by benchmarking the proposed algorithm against the conventional stepper mode
constant current control. In the case when there was no sealer between sheet metal, it was found that the
proposed intelligent control approach reduced the relative number of expulsion welds and the relative number
of cold welds by 31% (from absolute 45.4–31.5%) and 29% (from absolute 20.4–14.4%) respectively, when
compared to the stepper mode approach.

In the case when there was a sealer type disturbance, the proposed control algorithm once again demon-
strated robust performance by reducing the relative number of cold welds by 67% compared to the stepper
mode algorithm (from absolute 71.7–23.3%), while increasing the absolute number of expulsion welds by
only 5%.

Our Intelligent Constant Current Control Algorithm is capable of successfully adapting the secondary
current level according to weld state and to maintain a robust performance.

Our focus in this chapter was on the Medium Frequency Direct Current (MFDC) weld controllers. An
alternative version of the Intelligent Constant Current Control Algorithm that is applicable to the problem
of alternating current (AC) weld control in conjunction with the Constant Heat Control Algorithm [8] is
under development.
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