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1 Introduction

The increased complexity and integration of vehicle systems has resulted in greater difficulty in the identifi-
cation of malfunction phenomena, especially those related to cross-subsystem failure propagation and thus
made system monitoring an inevitable component of future vehicles. Consequently, a continuous monitoring
and early warning capability that detects, isolates and estimates size or severity of faults (viz., fault detection
and diagnosis), and that relates detected degradations in vehicles to accurate remaining life-time predic-
tions (viz., prognosis) is required to minimize downtime, improve resource management via condition-based
maintenance, and minimize operational costs.

The recent advances in sensor technology, remote communication and computational capabilities, and
standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicle
systems is monitored and managed. The availability of data (sensor, command, activity and error code logs)
collected during nominal and faulty conditions, coupled with intelligent health management techniques,
ensure continuous vehicle operation by recognizing anomalies in vehicle behavior, isolating their root causes,
and assisting vehicle operators and maintenance personnel in executing appropriate remedial actions to
remove the effects of abnormal behavior. There is also an increased trend towards online real-time diagnostic
algorithms embedded in the Electronic Control Units (ECUs), with the diagnostic troubleshooting codes
(DTCs) that are more elaborate in reducing cross-subsystem fault ambiguities. With the advancements in
remote support, the maintenance technician can use an intelligent scanner with optimized and adaptive state-
dependent test procedures (e.g., test procedures generated by test sequencing software, e.g., [47]) instead
of pre-computed static paper-based decision trees, and detailed maintenance logs (“cases”) with diagnostic
tests performed, their outcomes, test setups, test times and repair actions can be recorded automatically for
adaptive diagnostic knowledge management. If the technician can not isolate the root cause, the history of
sensor data and symptoms are transmitted to a technical support center for further refined diagnosis.

The automotive industry has adopted quantitative simulation as a vital tool for a variety of functions,
including algorithm design for ECUs, rapid prototyping, programming for hardware-in-the-loop simulations
(HILS), production code generation, and process management documentation. Accordingly, fault detection
and diagnosis (FDD) and prognosis have mainly evolved upon three major paradigms, viz., model-based,
data-driven and knowledge-based approaches.

The model-based approach uses a mathematical representation of the system. This approach is applicable
to systems, where satisfactory physics-based models of the system and an adequate number of sensors to
observe the state of the system are available. Most applications of model-based diagnostic approach have
been on systems with a relatively small number of inputs, outputs, and states. The main advantage of a
model-based approach is its ability to incorporate a physical understanding of the process into the process
monitoring scheme. However, it is difficult to apply the model-based approach to large-scale systems because
it requires detailed analytical models in order to be effective.
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A data-driven approach to FDD is preferred when system models are not available, but instead system
monitoring data is available. This situation arises frequently when subsystem vendors seek to protect their
intellectual property by not providing internal system details to the system or vehicle integrators. In these
cases, experimental data from an operating system or simulated data from a black-box simulator will be
the major source of system knowledge for FDD. Neural network and statistical classification methods are
illustrative of data-driven techniques. Significant amount of data is needed from monitored variables under
nominal and faulty scenarios for data-driven analysis.

The knowledge-based approach uses qualitative models for process monitoring and troubleshooting. The
approach is especially well-suited for systems for which detailed mathematical models are not available. Most
knowledge-based techniques are based on casual analysis, expert systems, and/or ad hoc rules. Because of the
qualitative nature of these models, knowledge-based approaches have been applied to many complex systems.
Graphical models such as Petri nets, multi-signal flow graphs and Bayesian networks are applied for diag-
nostic knowledge representation and inference in automotive systems [34]. Bayesian Networks subsume the
deterministic fault diagnosis models embodied in the Petri net and multi-signal models. However, multi-signal
models are preferred because they can be applied to large-scale systems with thousands of failure sources and
tests, and can include failure probabilities and unreliable tests as part of the inference process in a way which
is computationally more efficient than Bayesian networks. Model based, data-driven and knowledge-based
approaches provide the “sand box” that test designers can use to experiment with, and systematically select
relevant models or combinations thereof to satisfy the requirements on diagnostic accuracy, computational
speed, memory, on-line versus off-line diagnosis, and so on. Ironically, no single technique alone can serve
as the diagnostic approach for complex automotive applications. Thus, an integrated diagnostic process [41]
that naturally employs data-driven techniques, graph-based dependency models and mathematical/physical
models is necessary for fault diagnosis, thereby enabling efficient maintenance of these systems.

Integrated diagnostics represents a structured, systems engineering approach and the concomitant
information-based architecture for maximizing the economic and functional performance of a system by inte-
grating the individual diagnostic elements of design for testability, on-board diagnostics, automatic testing,
manual troubleshooting, training, maintenance aiding, technical information, and adaptation/learning [4, 29].
This process, illustrated in Fig. 1, is employed during all stages of a system life cycle, viz., concept, design,
development, production, operations, and training. From a design perspective, it has been well-established
that a system must be engineered simultaneously with three design goals in mind: performance, ease of
maintenance, and reliability [12]. To maximize its impact, these design goals must be considered at all stages
of the design: concept to design of subsystems to system integration. Ease of maintenance and reliability are
improved by performing testability and reliability analyses at the design stage.

The integrated diagnostic process we advocate contains six major steps: model, sense, develop and update
test procedures, infer, adaptive learning, and predict.

(A) Step 1: Model
In this step, models to understand fault-to-error characteristics of system components are developed.
This is achieved by a hybrid modeling technique, which combines mathematical models (simulation
models), monitored data and graphical cause-effect model (e.g., diagnostic matrix (D-matrix) [34]) in
the failure space, through an understanding of the failure modes and their effects, physical/behavioral
models, and statistical and machine learning techniques based on actual failure progression data (e.g.,
field failure data). The testability analysis tool (e.g., TEAMS [47]) computes percent fault detection
and isolation measures, identifies redundant tests and ambiguity groups, and generates updated Failure
Modes Effects and Criticality Analysis (FMECA) report [13], and the diagnostic tree [11]. The onboard
diagnostic data can also be downloaded to a remote diagnostic server (such as TEAMS-RDS [47])
for interactive diagnosis (by driving interactive electronic technical manuals), diagnostic/maintenance
data management, logging and trending. The process can also be integrated with the supply-chain
management systems and logistics databases for enterprise-wide vehicle health and asset management.

(B) Step 2: Sense
The sensor suite is typically designed for vehicle control and performance. In this step, the efficacies of
these sensors are systematically evaluated and quantified to ensure that adequate diagnosis and prognosis
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Fig. 1. Integrated diagnostic process

are achievable. If the existing sensors are not adequate for diagnosis/prognosis, use of additional sensors
and/or analytical redundancy must be considered without impacting vehicle control and performance.
Diagnostic analysis by analysis tools (such as TEAMS [47]) can be used to compare and evaluate
alternative sensor placement schemes.

(C) Step 3: Develop and Update Test Procedures
Smart test procedures that detect failures, or onsets thereof, have to be developed. These procedures have
to be carefully tuned to minimize false alarms, while improving their detection capability (power of the
test and detection delays). The procedures should have the capability to detect trends and degradation,
and assess the severity of a failure for early warning.

(D) Step 4: Adaptive Learning
If the observed fault signature does not correspond to faults reflected in the graphical dependency model
derived from fault simulation, system identification techniques are invoked to identify new cause-effect
relationships to update the model.

(E) Step 5: Infer
An integrated on-board and off-board reasoning system capable of fusing results from multiple sen-
sors/reasoners and driver (or “driver model”) to evaluate the health of the vehicle needs to be applied.
This reasoning engine and the test procedures have to be compact enough so that they can be embedded
in the ECU and/or a diagnostic maintenance computer for real-time maintenance. If on-board diagnos-
tic data is downloaded to a repair station, remote diagnostics is used to provide assistance to repair
personnel in rapidly identifying replaceable component(s).

(F) Step 6: Predict (Prognostics)
Algorithms for computing the remaining useful life (RUL) of vehicle components that interface with
onboard usage monitoring systems, parts management and supply chain management databases are
needed. Model-based prognostic techniques based on singular perturbation methods of control theory,
coupled with an interacting multiple model (IMM) estimator [1], provide a systematic method to predict
the RUL of system components.
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This development process provides a general framework for diagnostic design and implementation for
automotive applications. The applications of this process are system specific, and one need not go through
all the steps for every system. In this chapter, we focus on fault diagnosis of automotive systems using model-
based and data-driven approaches. The above integrated diagnostic process has been successfully applied to
automotive diagnosis, including an engine’s air intake subsystem (AIS) [35] using model-based techniques
and an anti-lock braking system (ABS) [36] using both model-based and data-driven techniques. Data-driven
techniques are employed for fault diagnosis on automobile engine data [9, 10, 38]. The prognostic process is
employed to predict the remaining life of an automotive suspension system [37].

2 Model-Based Diagnostic Approach

2.1 Model-Based Diagnostic Techniques

A key assumption of quantitative model-based techniques is that a mathematical model is available to
describe the system. Although this approach is complex and needs more computing power, several advantages
make it very attractive. The mathematical models are used to estimate the needed variables for analytical
(software) redundancy. With the mathematical model, a properly designed detection and diagnostic scheme
can be not only robust to unknown system disturbances and noise, but also can estimate the fault size
at an early stage. The major techniques for quantitative model-based diagnostic design include parameter
estimation, observer-based design and/or parity relations [43, 54].

Parity (Residual) Equations

Parity relations are rearranged forms of the input-output or state-space models of the system [26]. The
essential characteristic of this approach is to check for consistency of the inputs and outputs. Under normal
operating conditions, the magnitudes of residuals or the values of parity relations are small. To enhance
residual-based fault isolation, directional, diagonal and structured residual design schemes are proposed [22].
In the directional residual scheme, the response to each fault is confined to a straight line in the residual
space. Directional residuals support fault isolation, if the response directions are independent. In the diagonal
scheme, each element of the residual vector responds to only one fault. Diagonal residuals are ideal for the
isolation of multiple faults, but they can only handle m faults, where m equals the number of outputs [21].
Structured residuals are designed to respond to different subsets of faults and are insensitive to others not
in each subset. Parity equations require less computational effort, but do not provide as much insight into
the process as parameter estimation schemes.

Parameter Identification Approach

The parameter estimation-based method [24, 25] not only detects and isolates a fault, but also may estimate
its size. A key requirement of this method is that the mathematical model should be identified and validated
so that it expresses the physical laws of the system as accurately as possible. If the nominal parameters are
not known precisely, they need to be estimated from observed data. Two different parameter identification
approaches exist for this purpose.

Equation Error Method. The parameter estimation approach not only detects and isolates a fault, but
also estimate its size, thereby providing FDD as a one-shot process. Equation error methods use the fact
that faults in dynamic systems are reflected in the physical parameters, such as the friction, mass, inertia,
resistance and so on. Isermann [25] has presented a five-step parameter estimation method for general
systems.

(1) Obtain a nominal model of the system relating the measured input and output variables:

y(t) = f{u(t), θ0} (1)
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(2) Determine the relationship function g between the model parameters θ, where underscore notation of
the parameters represents a vector, and the physical system coefficients p:

θ = g(p) (2)

(3) Identify the model parameter vector θ from the measured input and output variables

UN = {u (k) : 0 ≤ k ≤ N} and Y N =
{
y (k) : 0 ≤ k ≤ N

}
(3)

(4) Calculate the system coefficients (parameters): p = g−1 (θ) and deviations from nominal coefficients,
p
0

= g−1 (θ0), viz., ∆p = p − p
0

(5) Diagnose faults by using the relationship between system faults (e.g., short-circuit, open-circuit,
performance degradations) and deviations in the coefficients ∆p.

Output Error (Prediction-Error) Method. For a multiple input-multiple output (MIMO) system, suppose we
have collected a batch of data from the system:

ZN = [u(1), y(1), u(2), y(2), . . . , u(N), y(N)] (4)

Let the output error provided by a certain model parameterized by θ be given by

e(k, θ) = y(k) − ∧
y(k|θ) (5)

Let the output-error sequence in (5) be filtered through a stable filter L and let the filtered output be
denoted by eF (k, θ). The estimate θ̂N is then computed by solving the following optimization problem:

∧
θN = argmin

θ
VN (θ, ZN ) (6)

where

VN (θ, ZN ) =
1
N

∑
k=1

eT
F (k, θ)Σ−1eF (k, θ) (7)

Here Σ is the covariance of error vector. The effect of filter L is akin to frequency weighting [32]. For example,
a low-pass filter can suppress high-frequency disturbances. The minimization of (7) is carried out iteratively.
The estimated covariance matrix and the updated parameter estimates at iteration i are

Σ̂(i)
N = 1

N−1

N∑
k=1

eF (k,θ
(i)
N )eT

F (k, θ
(i)
N )

∧
θ
(i+1)

N = arg min
θ

1
N

N∑
k=1

eT
F (k,θ)[Σ̂(i)

N ]−1eF (k, θ)
(8)

We can also derive a recursive version for the output-error method. In general, the function VN (θ, ZN )
cannot be minimized by analytical methods; the solution is obtained numerically. The computational effort
of this method is substantially higher than the equation error method, and, consequently, on-line real-time
implementation may not be achievable.

Observers

The basic idea here is to estimate the states of the system from measured variables. The output estimation
error is therefore used as a residual to detect and, possibly, isolate faults. Some examples of the observers
are Luenberger observer [52], Kalman filters and Interacting Multiple Models [1], output observers [43, 54],
nonlinear observers [20, 53], to name a few.
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In order to introduce the structure of a (generalized) observer, consider a discrete-time, time-invariant,
linear dynamic model for the process under consideration in state-space form as follows.

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)
where u(t) ∈ �r, x(t) ∈ �n and y(t) ∈ �m

(9)

Assuming that the system matrices A, B and C are known, an observer is used to reconstruct the system
variables based on the measured inputs and outputs u(t) and y(t):

x̂(t + 1) = Ax̂(t) + Bu(t) + Hr(t)
r(t) = y(t) − Cx̂(t) (10)

For the state estimation error ex(t), it follows from (10) that

ex(t) = x(t) − x̂(t)
ex(t + 1) = (A − HC)ex(t) (11)

The state estimation error ex(t), and the residual r(t) = Cex(t) vanish asymptotically

lim
t→∞ ex(t) = 0 (12)

if the observer is stable; this can be achieved by proper design of the observer feedback gain matrix H
(provided that the system is detectable). If the process is subjected to parametric faults, such as changes in
parameters in {A, B}, the process behavior becomes

x(t + 1) = (A + ∆A)x(t) + (B + ∆B)u(t)
y(t) = Cx(t) (13)

Then, the state error ex(t), and the residual r(t) are given by

ex(t + 1) = (A − HC)ex(t) + ∆Ax(t) + ∆Bu(t)
r(t) = Cex(t) (14)

In this case, the changes in residuals depend on the parameter changes, as well as input and state variable
changes. The faults are detected and isolated by designing statistical tests on the residuals.

2.2 Application of Model-Based Diagnostics to an Air-Intake System

Experimental Set-Up: HILS Development Platform

The hardware for the development platform consists of a custom-built ComputeR Aided Multi-Analysis
System (CRAMAS) and two Rapid Prototype ECUs (Rtypes) [19]. The CRAMAS (Fig. 2) is a real-time
simulator that enables designers to evaluate the functionality and reliability of their control algorithms
installed in ECUs for vehicle sub-systems under simulated conditions, as if they were actually mounted
on an automobile. The Rtype is an ECU emulator for experimental research on power train control that
achieves extremely high-speed processing and high compatibility with the production ECU [23]. Besides
emulating the commercial ECU software, experimental control designs can be carried out in the Rtype host
PC using the MATLAB/Simulink environment and compiled through the Real-Time Workshop. Typical
model-based techniques include digital filter design to suppress the noise, abrupt change detection techniques
(such as the generalized likelihood ratio test (GLRT), cumulative sum (CUSUM), sequential probability
ratio test (SPRT)), recursive least squares (RLS) estimation, and output error (nonlinear) estimation for
parametric faults, extended Kalman filter (EKF) for parameter and state estimation, Luenberger observer,
and the diagnostic inference algorithms (e.g., TEAMS-RT) [2, 45, 47]. This toolset facilitates validation of
model-based diagnostic algorithms.
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Fig. 2. CRAMAS� engine simulation platform and operation GUI

Combining the Rtype with the CRAMAS, and a HIL Simulator, designers can experiment with different
diagnostic techniques, and/or verify their own test designs/diagnostic inference algorithms, execute simula-
tions, and verify HILS operations. After rough calibration is confirmed, the two Rtypes can also be installed
in an actual vehicle, and test drives can be carried out [23]. As a result, it is possible to create high-quality
diagnostic algorithms at the initial design stage, thereby significantly shortening the development period
(“time-to-market”).

The diagnostic experiment employs a prototype air intake subsystem (AIS) as the hardware system in
our HILS. The function of AIS is to filter the air, measure the intake air flow, and control the amount of air
entering the engine. The reasons for selecting the AIS are its portability and its reasonably accurate physical
model. Figure 3 shows the photograph of our prototype AIS. It consists of a polyvinyl chloride pipe, an air
flow sensor, an electronic throttle, and a vacuum pump. It functionally resembles the real AIS for the engine.

The model consists of five primary subsystems: air dynamics, fuel dynamics, torque generation, rotational
dynamics, and the exhaust system. We used a mean value model, which captures dynamics on a time-scale
spanning over several combustion cycles (without considering in-cycle effects). In the following, we elaborate
on the sub-system models. The details of the subsystems and SIMULINK model of air-intake system are
available in [35]. Nine faults are considered for this experiment. The air flow sensor fault (F1) is injected by
adding 6% of the original sensor measurement. Two physical faults, a leak in the manifold (F2) and a dirty
air filter (F3), can be manually injected in the prototype AIS. The leakage fault is injected by adjusting
the hole size in the pipe, while the dirty air filter fault is injected by blocking the opening of the pipe
located at the right hand side of Fig. 3. The throttle angle sensor fault (F4) is injected by adding 10% of
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Source of F2 
fault

Fig. 3. Photograph of air-intake system

Fig. 4. Test sequence generation for the engine system

the original sensor measurement. Throttle actuator fault (F5) is injected by adding a pulse to the output
of the throttle controller [40]. The pulse lasts for a duration of 3 s and the pulse amplitude is 20% of the
nominal control signal amplitude. The other faults are modeled using a realistic engine model in CRAMAS,
and are injected via the GUI in CRAMAS host PC. Faults F6–F9 injected through the CRAMAS include:
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Table 1. Fault list of engine system

F1a Air flow sensor fault (+6%)

F2a Leakage in AIS (2 cm × 1 cm)
F3a Blockage of air filter
F4a Throttle angle sensor fault (+10%)
F5a Throttle actuator fault (+20%)

F6b Less fuel injection (−10%)

F7b Added engine friction (+10%)

F8b AF sensor fault (−10%)
F9b Engine speed sensor fault (−10%)

a Real faults in the AIS
b Simulated faults in the CRAMAS engine
model

Table 2. Diagnostic matrix of the engine system

Fault\test R1 R2 h R2 l R3 R4 R5 R6 h R6 l

F0 0 0 0 0 0 0 0 0
F1 0 1 0 0 0 0 0 0
F2 0 0 1 1 0 0 1 0
F3 0 0 1 1 0 0 0 1
F4 0 0 0 1 0 0 0 1
F5 1 0 0 0 0 0 0 0
F6 0 0 0 1 1 1 1 0
F7 0 0 0 1 0 0 0 0
F8 0 0 0 0 0 0 0 1
F9 0 1 0 1 0 0 0 1

less fuel injection (−10%), added engine friction (+10%), air/fuel sensor fault (−10%), and the engine speed
sensor fault (−10%). Here all the % changes are deviations from the nominal values. All the injected faults
are listed in Table 1.

Residuals for the Engine Model

The identified subsystem reference models are used to set up six residuals based on the dynamics of the
diagnostic model as follows. The first residual R1 is based on the difference between the throttle angle sensor
reading from the AIS and the predicted throttle angle. The second residual R2 is based on the difference
between air mass flow sensor reading from the AIS and the predicted air flow past the throttle. The third
residual R3 is based on the difference between the engine speed from CRAMAS, and the predicted engine
speed. The fourth residual R4 is based on the difference between the turbine speed from CRAMAS and
predicted turbine speed. The fifth residual R5 is based on the difference between the vehicle speed from
CRAMAS, and the predicted vehicle speed. The sixth residual R6 is obtained as the difference between the
air/fuel ratio from CRAMAS, and the predicted air/fuel ratio.

Experimental Results

Table 2 shows the diagnostic matrix (D-matrix), which summarizes the test designs for all faults considered
in the engine. Each row represents a fault state and columns represent tests. The D-matrix D = {dij}
provides detection information, where dij is 1 if test j detects a fault state i. Here, F0 represents “System
OK” status, with all the tests passing. Since there are no identical rows in this table, all the faults can be
uniquely isolated. For R2, there are two tests: R2 l and R2 h, which correspond to the threshold tests for
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Fig. 5. Behaviors of the residuals with different faults injected at different times

low (negative) and high (positive) levels. There are also two tests R6 l and R6 h for R6 corresponding to
low and high levels of the threshold. The other tests have the same name as the residual name (e.g., R1 is
the test for residual R1). The goal of using minimum expected cost tests to isolate the faults is achieved by
constructing an AND/OR diagnostic tree via an optimal test sequencing algorithm [42, 48, 49]; the tree is
shown in Fig. 4, where an AND node represents a test and an OR node denotes the ambiguity group. In this
tree, the branch which goes to the left/right below the test means the test passed (G)/failed (NG). It can be
seen that tests R5 and R6 h are not shown in the tree, which means that these tests are redundant. This is
consistent with the D-matrix, since R4 and R5 have identical columns. One feature of the diagnostic tree is
that it shows the set of Go-path tests (R6 l, R3, R2 h and R1) that can respond to any fault. The Go-path
tests can be obtained by putting all the tests on the left branches of the tree, which lead to the “system
OK” status. Any residual exceeding the threshold(s) will result in a test outcome of 1 (failed). The residuals
for throttle position, air mass flow, engine speed, turbine speed, vehicle speed, and air/fuel ratio show the
expected behavior. In the fault-free case, the residuals are almost zero. The results of real-time fault diagnosis
are exemplified in Fig. 5 with different faults injected at different times for a particular operating condition
of the engine. The noise level of residuals is very low and changes are abrupt under all faulty scenarios.
Therefore, simple threshold tests would achieve 100% fault detection and 0% false alarms. Although more
advanced tests (such as generalized likelihood ratio test) can be adopted using the fault diagnosis toolset,
they provided the same results in this experiment. The diagnostic scheme under other operating conditions
(different throttle angles, etc.) was also tested. We found that under nominal conditions, the residuals have
the same behavior (near zero).

However, under faulty conditions, the deviation of residuals will change as the operating condition
changes. Therefore, to obtain the best performance (minimal false alarm and maximum fault detection)
of this diagnosis scheme under different operating conditions, a reasonable practice is to use a lookup table
for the thresholds on residual tests according to different operating conditions. During the experiment, we
found that, for two faults, the engine operating conditions are unstable for large-size faults. The first fault
is the air flow sensor fault (F1); the maximum size of the fault is +6%. The second fault is the leakage in
air intake manifold; the maximum size of this fault is 4 cm × 1 cm. These findings are beneficial feedback
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to control engineers in understanding the limits of their design. If the diagnostic matrix does change under
different operating conditions, we can use multi-mode diagnosis techniques to handle this situation [51].

2.3 Model-Based Prognostics

Conventional maintenance strategies, such as corrective and preventive maintenance, are not adequate to
fulfill the needs of expensive and high availability transportation and industrial systems. A new strategy
based on forecasting of system degradation through a prognostic process is required. The recent advances in
model-based design technology facilitate the integration of model-based diagnosis and prognosis of systems,
leading to condition-based maintenance to potentially increase the availability of systems. The advantage
of model-based prognostics is that, in many situations, the changes in feature vector are closely related to
model parameters [7]. Therefore, it can also establish a functional mapping between the drifting parameters
and the selected prognostic features. Moreover, as understanding of the system degradation improves, the
model can be adapted to increase its accuracy and to address subtle performance problems.

Prognostic methods use residuals as features. The premise is that the residuals are large in the presence
of malfunctions, and small in the presence of normal disturbances, noise and modeling errors.

Statistical techniques are used to define the thresholds on residuals to detect the presence of faults.
The model-based prognostic process is illustrated in Fig. 6. This process consists of six steps for predicting

the remaining life of a system. These are briefly described below.

(A) Step 1: Identify System Model
The degradation model of a system is considered to be of the following singular perturbation form:

.
x = f(x, λ(θ), u)
.

θ = ε g(x, θ)
y = Cx + Du + v

(15)

Here x ∈ Rn is the set of state variables associated with the fast dynamic behavior of the system; θ is a
scalar, slow dynamic variable related to system damage (degradation); u ∈ Rr is the input vector; the
drifting parameter λ is a function of θ; the rate constant 0 < ε << 1 defines the time-scale separation
between the fast system state dynamics and the slow drift due to damage [6]; y ∈ Rm is the output
vector and v ∈ Rm is the measurement noise. Since ε is very small, (15) can be considered as a two-time
scale system with a slowly drifting parameter.

Fig. 6. Model-based prognostic process
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The modified prognostic model, after scaling the damage variable θ(θ0 ≤ θ ≤ θM ) to a normalized
degradation measure ξ(ξ0 ≤ ξ ≤ 1) [58] and relating the degradation measure from load cycle (i− 1) to
load cycle i is:

.
x = f(x, λ(ξ), u)
ξi = ηφ1(ξi−1)φ2(ρi) + ξi−1

y = Cx + Du + v
(16)

Here ρi is the random load parameter during cycle i (e.g., stress/strain amplitude). The function λ(ξ),
which maps the degradation measure to a system parameter, is often assumed to be a polynomial [58]:

λ(ξ) =
K∑

k=0

αkξk (17)

where K is the total number of stress levels.
(B) Step 2: Simulation Under Random Loads

The prognostic model is generally nonlinear. Consequently, the evolution of system dynamics (including
fast and slow-time) is typically obtained through Monte-Carlo simulations. Since the parameter p is a
stochastic process in many applications [57], simulation of (16) for ξ requires the update of degradation
parameter ξ for every cycle based on the random load parameter p in that cycle, where p can be
represented as a function of x. The cycle number ni and randomly realized load parameter

{
pj

i

}ni

j=1

can be obtained through cycle counting method, viz., the rainflow cycle. This method catches both slow
and rapid variations of load by forming cycles that pair high maxima with low minima, even if they are
separated by intermediate extremes [28].

Consequently, the updated degradation measure is obtained as

ξi = ηφ1(ξi−1)
ni∑

j=1

φ2(p
j
i ) + ξi−1 (18)

The initial degradation measure ξ0 is assumed to be a Gaussian random variable N(µ, σ2), where µ and
σ represent the mean and the standard deviation, respectively.

(C) Step 3: Prognostic Modeling
Prognostic modeling is concerned with the dynamics of the degradation measure. Consider a system
excited under L different random load conditions as being in modes 1, 2, . . . , L. Assume that M Monte-
Carlo simulations are performed for each random load condition. Then the L models can be constructed,
one for each mode. The dynamic evolution of degradation measure under mode m is given by:

ξm(k + 1) = βm(ξm(k)) + vm(k) k = 0, 1, . . . (19)

where m is the mode number, βm is a function of previous state ξm(k) and vm(k) is a zero mean white
Gaussian noise with variance Q̂m(k). The functional form of βm is obtained from historical/simulated
data. The state prediction (function βm) is obtained in IMM [37] for mode m via:

ξ̂m(k + 1/k) = βm(ξ̂m(k/k)) k = 0, 1, . . . .. (20)

Here ξ̂m(k/k) is the updated (corrected) estimate of ξm at time k and ξ̂m(k + 1/k) denotes propagated
(predicted) estimate of ξm at time k + 1 based on the measurements up to and including time k.

(D) Step 4: Feature Parameter Estimation
Since the hidden variable ξ is unobserved, it needs to be estimated from the input/output data
{u(t), y(t)}T

t=0. One way to estimate ξ is to use the update equation for ξ in (16), where φ2(ρi) is
a function of measurement y. Since the initial value of ξ0 is not known, it will produce biased estimates.

Another method is based on estimation of the drifting parameters λ of the fast time process in
(16). Two parameter estimation techniques, equation error method and output error method, can be
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employed to estimate λ from a time history of measurements
{
u(t), y(t)

}T

t=0
[33]. Here, the equation

error method is employed to estimate λ.
In the equation-error method, the governing equation for estimating λ is the residual equation. The

residual equation r(u, y, λ) is the rearranged form of the input-output or state-space model of the system.
Suppose N data points of the fast-time process are acquired in an intermediate time interval [t, t+αT ],
then the optimal parameter estimate is given by:

λ∗ = argmin
λ∗

N∑
i=1

‖r(ui, yi, λ)‖2 (21)

Based on the internal structure of the residual equation, two optimization algorithms – linear least
squares and nonlinear least squares – can be implemented. If prior knowledge on the range of λ is
available, the problem can be solved via constrained optimization. In any case, the measurement equation
is constructed as:

z(k) = λ(ξ(k)) + ϑ(k) k = 0, 1, 2, . . . (22)

where z(k) = λ∗, λ(ξ) is typically a polynomial function as in (17) and ϑ(k) is a zero mean Gaussian

noise with variance
∧
S(k). The variance is obtained as a by-product of the parameter estimation method.

(E) Step 5: Track the Degradation Measure
To track the degradation measure, an interacting multiple model (IMM) estimator [1, 46] is implemented
for online estimation of the damage variable. For a system with L operational modes, there will be
L models in the IMM, one for each mode. Each mode will have its own dynamic equation and the
measurement equation is of the form in (22).

(F) Step 6: Predict the Remaining Life
The remaining life depends on the current damage state ξ(k), as well as the future usage of the system.
If the future operation of a system is known a priori, the remaining life can be estimated using the
knowledge of future usage. Typically, one can consider three types of prior knowledge on future usage.

(1) Deterministic Operational Sequence: In this case, the system is assumed to be operated according to a
known sequence of mode changes and mode durations. Define a sequence S = {mi, Tsi, Tei}Q

i=1, where
Tsi and Tei represent the start time and the end time under mode mi, such that Ts1 = 0, Tei = Tsi+1 and
TsQ is the time at which ξ = 1. Suppose M Monte-Carlo simulations are performed for this operational
sequence. Then, the M remaining life estimates can be obtained based on ξ̂(k/k), the updated damage
estimate at time instant k. The mean remaining life estimate and its variance are obtained from these
M estimates.

(2) Probabilistic Operational Sequences: In this case, the system is assumed to operate under J operational
sequences Sj = {mj

i , T j
si, T j

ei}J
j=1, where Sj is assumed to occur with a known probability pj . If r̂j(k) is

the estimate of residual life based on sequence Sj , then the remaining life estimate r̂(k), and its variance
P (k), are given by:

r̂(k) =
L∑

j=1

pj(k)r̂j(k)

P (k) =
L∑

j=1

pj(k)
{
Pj(k) + [r̂j(k) − r̂(k)]2

} (23)

(3) On-Line Sequence Estimation: This method estimates the operational sequence based on measured data
via IMM mode probabilities. Here, the future operation of the system is assumed to follow the observed
history and the dynamics of mode changes. For the ith Monte-Carlo run in mode m, the time to failure
until ξ = 1 can be calculated as [61]:

tim(end) = (ψi
m)−1 (24)

The remaining life estimate from ith Monte-Carlo run for mode m is:

r̂i
m(k) = tim(end) − tim(k) (25)



204 K. Pattipati et al.

Then, the remaining life estimate and its variance for mode m are:

r̂m(k) = 1
M

M∑
i=1

r̂i
m(k)

Pm(k) = 1
M−1

M∑
i=1

[r̂m(k) − r̂i
m(k)]2

(26)

The above calculation can be performed off-line based on simulated (or historical) data. To reflect the
operational history, the mode probabilities from IMM can be used to estimate the remaining life.

2.4 Prognostics of Suspension System

To demonstrate the prognostic algorithms, a simulation study is conducted on an automotive suspension
system [35]. The demonstration to estimate the degradation measure will follow the prognostic process dis-
cussed above for a half-car two degree of freedom model [64]. Singular perturbation methods of control theory,
coupled with dynamic state estimation techniques, are employed. An IMM filter is implemented to estimate
the degradation measure. The time-averaged mode probabilities are used to predict the remaining life.

The details of the system model are given in [35]. The results of 100 Monte-Carlo simulations for the
system under three different road conditions viz., very good, fair, and severe road conditions are presented in
Fig. 7. Compared to the severe road condition, the increases in the life times for the fair and very good roads
are about 35 and 80%, respectively. If we assume a 10% calendar time usage of the automobile (2.4 h a day),
the expected life of suspension system will be 4.5, 6 and 8 years, respectively, for the three road conditions.
Since the suspension system has three random road conditions, the number of modes in the degradation
model is 3. IMM may be viewed as a software sensor. It tracks the road condition very well based on noisy
data. For IMM implementation, the following transition matrix is used in this scenario:

Φ =

⎡
⎣ 0.9 0.05 0.05

0.05 0.9 0.05
0.05 0.05 0.9

⎤
⎦

where φij = P (mode j in effect at time k + 1| mode i in effect at time k). The system mode changes are
expected to be as follows. Mode 1 is from 0 to 70 × 105 s, Mode 2 is from 70 × 105 s to 140 × 1105 s, Mode
3 is from 140 × 1105 s to tend, where tend is the time at which degradation measure ξ = 1. Figure 8 shows
the plot of mode probabilities of the IMM. Figure 9 presents the estimate of remaining life (solid bold line)

Fig. 7. 100 Monte-Carlo simulations for three random loads
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Fig. 8. Mode probabilities of IMM (Mode 1: good, Mode 2: fair, Mode 3: severe road condition)

Fig. 9. Estimation of remaining life for a typical simulation run
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and its variance for a single run of the scenario considered using the IMM mode probabilities. We can see
that the remaining life estimate moves at first to the estimate in between Modes 1 and 2, then gradually
approaches the estimate for Mode 2, which is what one would expect. The dashed bold line represents the
remaining life estimate assuming that the road surface condition can be measured accurately via a sensor
(e.g., an infrared sensor).

In this case, the mode is known, and we can evaluate the accuracy of the remaining life estimate. The
dashed bold line represents the remaining life estimate with the mode sensor. In Fig. 9, we can see the IMM
produces remaining life estimate close to the estimate of the mode sensor. The difference between these two
estimates is relatively high (about 6%) at the beginning (ξ < 0.1), and they become virtually identical as
degradation measure ξ increases.

3 Data-Driven Diagnostic Approach

Data-driven FDD techniques seek to categorize the input–output data into normal or faulty classes based on
training information. Efficient data reduction techniques are employed to handle high-dimensional and/or
large volumes of data. Typically, one experiments with a number of classification algorithms and fusion
architectures, along with the data reduction techniques, to achieve high diagnostic accuracy. The fusion
architectures minimize variability in diagnostic accuracy, and ensure better collective reliability and efficiency
when compared with a single classifier.

3.1 Data-Driven Techniques

Data Preprocessing and Reduction

The sensor data obtained from a system is typically noisy and often incomplete. The data may be continuous
or discrete (categorical). A linear trend, a signal mean, or noise in the raw data, outliers and drift can cause
errors in the FDD analysis. Hence, it is important to preprocess the data. Data preprocessing involves
filtering the data to isolate the signal components, de-trending, removing drift and outliers, smart fill in of
missing values, pre-filtering and auto-scaling to adjust scale differences among variables to obtain normalized
data (typically zero mean and unit variance), to name a few. In addition, traditional methods of data
collection and storage capabilities become untenable mainly because of the increase in the number of variables
associated with each observation (“dimension of the data”) [16]. Data reduction, an intelligent preprocessing
technique, synthesizes a smaller number of features to overcome the “curse of dimensionality.” One of the
issues with high-dimensional datasets (caused by multiple modes of system operation and sensor data over
time) is that all the measurements are not salient for understanding the essential phenomena of interest.
The salient features extracted using the data reduction techniques enable real-time implementation of data-
driven diagnostic algorithms via compact memory footprint, improved computational efficiency and generally
enhanced diagnostic accuracy.

In the data reduction process, the entire data is projected onto a low-dimensional space, and the reduced
space often gives information about the important structure of the high-dimensional data space. Feature
extraction for data reduction involves signal processing methods, such as wavelets, fast Fourier transforms
(FFT) and statistical techniques to extract relevant information for diagnosing faults. Statistical data reduc-
tion techniques, such as multi-way partial least squares (MPLS) and multi-way principal component analysis
(MPCA), are among the widely investigated techniques. The MPCA is used to reduce the dimensionality of
data, and produces a representation that preserves the correlation structures among the monitored variables.
The PCA is optimal in terms of capturing the variation in data [8]. The MPLS is another dimensionality
reduction technique that considers both pattern (independent data) and class (response) information. MPLS
technique is widely used for its ability to enhance classification accuracy on high-dimensional datasets, and
its computational efficiency [5]. The reduced data can be processed with classifiers for categorizing the various
fault classes.
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Multi-Way Partial Least Squares (MPLS). In an MPLS technique, the dimensionality of the input and
output spaces are transformed to find latent variables, which are most highly correlated with the output, i.e.,
those that not only explain the variation in the input tensor X ∈ RI×J×K , but which are most predictive
of output matrix Y ∈ RI×M . The input tensor X (data samples × sensors× time steps) is decomposed into
one set of score vectors (latent variables) {tf ∈ RI}L

f=1, and two sets of weight vectors {wf ∈ RJ}L
f=1 and

{vf ∈ RK}L
f=1 in the second and third dimensions, respectively [50]. The Y matrix is decomposed into score

vectors t and loading vectors q. Formally,

xijk =
L∑

f=1

tifwjfvkf + eijk; 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K

yim =
L∑

f=1

tifqmf + uim; 1 ≤ i ≤ I, 1 ≤ m ≤ M

(27)

where L is the number of factors, J is number of sensor readings, K is time variations, and eijk and uijk are
residuals. The problem of finding t, w, v, and q is accomplished by nonlinear iterative partial least squares
(NIPALS) algorithm [63]. This reduced space (score matrix) will be applied to the classifiers, discussed in
the following section, for fault isolation.

Classifiers

Data-driven techniques for fault diagnosis have a close relationship with pattern recognition, wherein one
seeks to categorize the input–output data into normal or one of several fault classes. Many classification
algorithms use supervised learning to develop a discriminant function. This function is used to determine
the support for a given category or class, and assigns it to one of a set of discrete classes. Once a classifier is
constructed from the training data, it is used to classify test patterns. The pattern classifiers used extensively
for automobile fault diagnosis are discussed below.

Support Vector Machine (SVM). Support vector machine transforms the data to a higher dimensional
feature space, and finds an optimal hyperplane that maximizes the margin between two classes via quadratic
programming [3, 15]. There are two distinct advantages of using the SVM for classification. One is that the
features are often associated with the physical meaning of data, so that it is easy to interpret. The second
advantage is that it requires only a small amount of training data. A kernel function, typically a radial basis
function, is used for feature extraction. An optimal hyperplane is found in the feature space to separate the
two classes. In the multi-class case, a hyperplane separating each pair of faults (classes) is found, and the
final classification decision is made based on a majority vote among the binary classifiers.

Probabilistic Neural Network (PNN). The probabilistic neural network is a supervised method to estimate
the probability distribution function of each class. In the recall mode, these functions are used to estimate
the likelihood of an input vector being part of a learned category, or class. The learned patterns can also be
weighted, with the a priori probability, called the relative frequency, of each category and misclassification
costs to determine the most likely class for a given input vector. If the relative frequency of the categories
is unknown, then all the categories can be assumed to be equally likely and the determination of category
is solely based on the closeness of the input vector to the distribution function of a class. The memory
requirements of PNN are substantial. Consequently, data reduction methods are essential in real-world
applications.

K-Nearest Neighbor (KNN). The k-nearest neighbor classifier is a simple non-parametric method for
classification. Despite the simplicity of the algorithm, it performs very well, and is an important benchmark
method [15]. The KNN classifier requires a metric d and a positive integer k. A new input vector xnew is
classified using a subset of k–feature vectors that are closest to xnew with respect to the given metric d.
The new input vector xnew is then assigned to the class that appears most frequently within the k–subset.
Ties can be broken by choosing an odd number for k (e.g., 1, 3, 5). Mathematically, this can be viewed as
computing a posteriori class probabilities P (ci|xnew) as,

P (ci|xnew) =
ki

k
p (ci) (28)
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where ki is the number of vectors belonging to class ci within the subset of k nearest vectors. A new
input vector xnew is assigned to the class ci with the highest posterior probability P (ci|xnew). The KNN
classifier needs to store all previously observed cases, and thus data reduction methods should be employed
for computational efficiency.

Principal Component Analysis (PCA). Principal component analysis transforms correlated variables into
a smaller number of uncorrelated variables, called principal components. PCA calculates the covariance
matrix of the training data and the corresponding eigenvalues and eigenvectors. The eigenvalues are then
sorted, and the vectors (called scores) with the highest values are selected to represent the data in a reduced
space. The number of principal components is determined by cross-validation [27]. The score vectors from
different principal components are the coordinates of the original data sample in the reduced space. A
classification of a new test pattern (data sample) is made by obtaining its predicted scores and residuals. If
the test pattern is similar to a specific class in the trained classifier, the scores will be located near the origin
of the reduced space, and the residual should be small. The distance of test pattern from the origin of the
reduced space can be measured by Hotelling statistic [39].

Linear Discriminant Analysis (LD) and Quadratic Discriminant Analysis (QD). Discriminant functions
can be related to the class-conditional density functions through Bayes’ theorem [44]. The decision rule
for minimizing the probability of misclassification may be cast in terms of discriminant functions. Linear
discriminant function can be written as

gi (x) = wT
i x + wi0 (29)

where wi and wi0 are the weight vector and bias for the ith class, respectively. Decision boundaries corre-
sponding to linear discriminant functions are hyper planes. Quadratic discriminant function can be obtained
by adding terms corresponding to the covariance matrix with c(c+1)/2 coefficients to produce more compli-
cated separating surfaces [15]. The separating surfaces can be hyperquadratic, hyperspheric, hyperellipsoid,
hyperhyperboloid, etc.

Classifier Fusion Techniques

Fusion techniques combine classifier outputs, viz., single class labels or decisions, confidence (or probability)
estimates, or class rankings, for higher performance and more reliable diagnostic decisions than a single
classifier alone. The accuracy of each classifier in a fusion ensemble is not the same. Thus, the classifier’s
priority or weight needs to be optimized as part of the fusion architecture for improved performance.

Many fusion techniques are explored in the area of fault diagnosis [10, 14]. Some of these are
discussed below:

Fusion of Classifier Output Labels. If a classifier’s final decision on a test pattern is a single class label,
an ensemble of R classifiers provides R discrete output labels. The following algorithms use output labels
from each classifier and combine them into a final fused decision.

(1) Majority Voting: The simplest type of fusion, majority (plurality) voting counts votes for each class from
the classifiers. The class with the most votes is declared the winner. If a tie exists for the most votes,
either it can be broken arbitrarily or a “tie class label” can be assigned. This type of fusion does not
require any training or optimized architecture.

(2) Weighted Voting: In weighted voting, a weight calculated during training of the fusion architecture is
used to calculate the overall score of each class. The higher the classifier accuracy, the more weight that
classifier is given. A score is constructed for each class by using a sum of weighted votes for each class
ci [14]. The class with the highest score is declared the winner.

(3) Näıve Bayes: Classifiers often have very different performance across classes. The confusion matrix of a
classifier (derived from training data) contains this information. The entries in a confusion matrix cmi

k,s

represent the number of times true class ck is labeled class cs by the classifier Di. Support for each class
k on pattern x is developed as [31]:

µk (x) ∝ 1
NL−1

k

{
L∏

i=1

cmi
k,si

}
(30)
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Here, Nk is the number of training samples from class ck, L is the number of classifiers. The class with
the highest support is declared as the winner.

Fusion of Classifier Output Ranks. The output of classifiers can be a ranking of the preferences over the
C possible output classes. Several techniques operating on this type of output are discussed below.

(1) Borda Count: The ranked votes from each classifier are assigned weights according to their rank. The
class ranked first is given a weight of C, the second a weight of (C − 1) and so on until a weight of 1 is
assigned for the class ranked last. The score for each class is computed as the sum of the class weights
from each classifier and the winner is the class with the highest total weight [31].

(2) Ranked Pairs: Ranked Pairs is a voting technique where each voter participates by listing his/her pref-
erence of the candidates from the most to the least preferred. In a ranked pair election, the majority
preference is sought as opposed to the majority vote or the highest weighted score. That is, we combine
the outputs of classifiers to maximize the mutual preference among the classifiers. This approach assumes
that voters have a tendency to pick the correct winner [31]. This type of fusion, as in majority voting,
does not require any training. If a crisp label is required as a final output, the first position in the ranked
vector RV is provided as the final decision.

Fusion of Classifier Posterior Probabilities. The output of a classifier can be an array of confidence
estimates or posterior probability estimates. These estimates represent the belief that the pattern belongs
to each of the classes. The techniques in this section operate on the values in this array to produce a final
fusion label.

(1) Bayesian Fusion: Class-specific Bayesian approach to classifier fusion exploits the fact that different
classifiers can be good at classifying different fault classes. The most-likely class is chosen given the test
pattern and the training data using the total probability theorem. The posterior probabilities of the test
pattern along with the associated posterior probabilities of class ci from each of the R classifiers obtained
during training are used to select the class with the highest posterior probability [10].

(2) Joint Optimization of Fusion Center and of Individual Classifiers: In this technique, the fusion center
must decide on the correct class based on its own data and the evidence from the R classifiers. A major
result of distributed detection theory (e.g., [44, 59, 60]) is that the decision rules of the individual classi-
fiers and the fusion center are coupled. The decisions of individual classifiers are denoted by {uk}L

k=1 while
the decision of fusion center by u0: The classification rule of kth classifier is uk = γk(x) ∈ {1, 2, . . . , C}
and that of the fusion center is u0 = γ0(u1, u2, . . . , uL) ∈ {1, 2, . . . , C}. Let J(u0, cj) be the cost of
decision u0 by the committee of classifiers when the true class is cj . The joint committee strategy of the
fusion center along with the classifiers is formulated to minimize the expected cost E{J(u0, cj)}. For
computational efficiency, an assumption is made to correlate each classifier only with the best classifier
during training to avoid the computation of exponentially increasing entries with the number of classifiers
in the joint probability [10]. The decision rule can be written as

γk : uk = arg min
dk∈{1,2,··· ,C}

C∑
j=1

C∑
u0=1

Pk (cj |x) Ĵ (u0, cj) (31)

where

Ĵ (u0, cj) =
C∑

u0=1

P (u0|x, uk = dk, cj)J (u0, cj) (32)

≈
C∑

u0=1

P (u0|uk = dk, cj)J (u0, cj).

Dependence Tree Architectures. We can combine classifiers using a variety of fusion architectures to
enhance the diagnostic accuracy [44, 59, 60]. The class-dependent fusion architectures are developed based
on the diagnostic accuracies of individual classifiers on the training data for each class. The classifiers are
arranged as a dependence tree to maximize the sum of mutual information between all pairs of classifiers [31].
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Fig. 10. Generic decision tree architecture

For illustrative purposes, consider Fig. 10, where five classifiers are arranged in the form of a tree. Suppose
that the classifiers provide class labels {Lj}5

j=1. Then, the support for class ci is given by:

P ({Lj}5
j=1|ci) = P (L5|ci)P (L5|L4, ci)P (L5|L3, ci)P (L4|L1, ci)P (L4|L2, ci) (33)

Here, the term P (L5|ci) denotes the probability of label L5 given the true class ci from the confusion
matrix of classifier 5. The double entries of the form P (Lk|Lj , ci) represent the output labels of classifiers
k and j in the coincidence matrix developed from classifiers k and j on class ci during training. The final
decision corresponds to the class with the highest probability in (33).

Adaptive Boosting (AdaBoost). AdaBoost [18], short for adaptive boosting, uses the same training set
randomly and repeatedly to create an ensemble of classifiers for fusion. This algorithm allows adding weak
learners, whose goal is to find a weak hypothesis with small pseudo-loss1, until a desired low level of training
error is achieved. To avoid more complex requirement on the performance of the weak hypothesis, pseudo loss
is chosen in place of the prediction error. The pseudo-loss is minimized when correct labels yi are assigned the
value 1, and incorrect labels are assigned the value 0, and it is also calculated with respect to a distribution
over all pairs of patterns and incorrect labels. By controlling the distribution, the weak learners can focus
on the incorrect labels, thereby hopefully improving the overall performance.

Error-Correcting Output Codes (ECOC). Error-correcting output codes (ECOC) can be used to solve
multi-class problems by separating the classes into dichotomies and solving the concomitant binary classifi-
cation problems, one for each column of the ECOC matrix. The dichotomies are chosen using the principles of
orthogonality to ensure maximum separation of rows and columns to enhance the error-correcting properties
of the code matrix and to minimize correlated errors of the ensemble, respectively. The maximum number
of dichotomies for C classes is 2C−1 − 1; however, it is common to use much less than this maximum as in
robust design [44]. Each dichotomy is assigned to a binary classifier, which will decide if a pattern belongs
to the 0 or 1 group. Three approaches to fuse the dichotomous decisions are discussed below:

(1) Hamming Distance: Using Hamming distance, we compute the number of positions which are different
between the row representing a class in the ECOC matrix and the output of the classifier bank. The
class which has the minimum distance is declared as the output.

(2) Weighted Voting: Each classifier j detects class i with a different probability. As the multi-class problem
is converted into dichotomous classes using ECOC, the weights of each classifier can be expressed in
terms of the probability of detection (Pdj) and the probability of false alarm (Pfj). These parameters
are learned as part of fusion architecture during training. The weighted voting follows the optimum
voting rules for binary classifiers [44].

(3) Dynamic fusion: Dynamic fusion architecture, combining ECOC and dynamic inference algorithm for
factorial hidden Markov models, accounts for temporal correlations of binary time series data [30, 55]. The
fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using
error correcting output codes (ECOC) and thus solving the concomitant binary classification problems;
the second step fuses the outcomes of multiple binary classifiers over time using a sliding-window dynamic
fusion method. The dynamic fusion problem is formulated as a maximum a posteriori decision problem
of inferring the fault sequence based on uncertain binary outcomes of multiple classifiers over time. The
resulting problem is solved via a primal-dual optimization framework [56]. The third step optimizes
the fusion parameters using a genetic algorithm. The dynamic fusion process is shown in Fig. 11. The
probability of detection Pdj and false alarm probability Pfj of each classifier are employed as fusion
parameters or the classifier weights; these probabilities are jointly optimized with the dynamic fusion in
the fusion architecture, instead of optimizing the parameters of each classifier separately.

1 True loss is non-differentiable and difficult to optimize [3].



An Integrated Diagnostic Process for Automotive Systems 211

Classification 
using

error correcting 
output codes (ECOC)

Support vector 
machines (SVM)

Offline

Training data

Testing data

Multi-way partial 
least squares 

(MPLS) 
(Data reduction)

Data Preprocessing

( , )p fO O

Optimized 
parameters

( , )jPd Pf

On-line

Dynamic
Fusion

(Testing)

Fused decisions

Fault
scenarios

Fault appearance
and disappearance

probabilities
( , )i ia Pv

Classifier outcomes
at each epoch

Training

Testing

Dynamic
Fusion

(Training)

Parameter
optimization

Performance
metrics

parameters

Classification 
using

error correcting 
output codes (ECOC)

Support vector 
machines (SVM)

Classification 
using

error correcting 
output codes (ECOC)

Support vector 
machines (SVM)

OfflineOffline

Training data

Testing data

Multi-way partial 
least squares 

(MPLS) 
(Data reduction)

Data Preprocessing

( , )p fO O

Optimized 
parameters

( , )jPd Pf

On-line

Dynamic
Fusion

(Testing)

Fused decisions

Fault
scenarios

Fault appearance
and disappearance

probabilities
( , )i ia Pv

Classifier outcomes
at each epoch

Training

Testing

Training

Testing

Dynamic
Fusion

(Training)

Parameter
optimization

Performance
metrics

parameters Parameter
optimization

Performance
metrics

parameters

P

Fig. 11. Overview of the dynamic fusion architecture

This technique allows tradeoff between the size of the sliding window (diagnostic decision delay) and
improved accuracy by exploiting the temporal correlations in the data; it is suitable for an on-board appli-
cation [30]. A special feature of the proposed dynamic fusion architecture is the ability to handle multiple
and intermittent faults occurring over time. In addition, the ECOC-based dynamic fusion architecture is an
ideal framework to investigate heterogeneous classifier combinations that employ data-driven (e.g., support
vector machines, probabilistic neural networks), knowledge-based (e.g., TEAMS-RT [47]), and model-based
classifiers (e.g., parity relation-based or observer-based) for the columns of the ECOC matrix.

Fault Severity Estimation

Fault severity estimation is performed by regression techniques, such as the partial least squares (PLS), SVM
regression (SVMR), and principal component regression (PCR) in a manner similar to their classification
counterparts. After a fault is isolated, we train with the training patterns from the isolated class using the
associated severity levels as the targets (Y ), i.e., we train the fault severity estimator for each class. Pre-
classified test patterns are presented to the corresponding estimator, and the estimated severity levels are
obtained [9].

3.2 Application of Data-Driven Techniques

We consider the CRAMAS� engine data considered earlier, but now from a data-driven viewpoint2. A 5× 2
cross-validation3 is used to assess the classification performance of various data-driven techniques.

The diagnostic results, measured in terms of classification errors, with ± representing standard deviations
over 5 × 2 cross validation experiments, are shown in Table 3. We achieved not only smaller fault isolation
2 The throttle actuator fault F5 is not considered in the data driven approach. HILS data was available only for the

remaining eight faults.
3 A special case of cross validation where the data is divided into two halves, one for training and other for testing.

Next time the sets are reversed. This process is repeated for 5 times for a total of 10 training and test sets.
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Table 3. Data driven classification and fusion results on CRAMAS� engine data

CRAMAS� Method Classification error ± Std. Dev. in %

SVM KNN(k = 1) PNN PCA LD QD

Raw data Individual 8.8± 2.5 12.9 ± 2.2 14.8 ± 2.1 22.5 ± 2.3 N/A N/A
(25.6 MB) classification

Reduced Individual 8.2± 2.5 12.8 ± 2.1 14.1 ± 2.1 21.1 ± 3.7 33.1 ± 3.2 16.3 ± 2.3
data via classification
MPLS Tandem (serial) 15.87± 2.49
(12.8 KB) fusion

Fusion center (parallel) 14.81± 3.46
Majority voting 12.06± 1.89
Näıve Bayes 11.81± 1.96
ECOC fusion with 9.0± 2.85
hamming distance
Adaboost 7.625± 2.14
Bayesian 6.25± 2.29
fusion Joint optimization 5.87± 2.04
with majority voting
Dynamic fusion 4.5± 1.6

error, but also significant data reduction (25.6 MB → 12.8 KB for the size of training and testing data).
The proposed approaches are mainly evaluated on the reduced data. The Bayesian and dynamic fusion
outperformed majority voting, näıve Bayes techniques and serial and parallel fusion approaches. We are able
to further improve classification performance of joint optimization by applying majority voting after getting
decisions from the joint optimization algorithm. Posterior probabilities from PNN, KNN (k = 3), and PCA
are fed into the joint optimization algorithm, and then SVM and KNN (k = 1) are used for majority voting
with decisions from the joint optimization algorithm. Majority voting alone provided poor isolation results,
which means that the joint optimization approach is definitely a contributor to the increased accuracy. We
believe that this is because the joint optimization of fusion center and individual classifiers increases the
diversity of the classifier outputs, which is a vital requirement for reducing the diagnostic errors.

For the dynamic fusion approach, we employ SVM as the base classifier for all the columns of the ECOC
matrix. This approach achieves low isolation errors as compared to single classifier results. We experimented
with two different approaches for Pd and Pf in dynamic fusion process. The first approach used Pd and Pf
learned from the training data, while coarse optimization is applied to learn Pd and Pf, and the optimal
parameters are Pd = 0.5 ∼ 0.6 and Pf = 0 ∼ 0.02. We found that the dynamic fusion approach involv-
ing the parameter optimization reduces diagnostic errors to about 4.5%. Dynamic fusion with parameter
optimization is superior to all other approaches considered in this analysis.

The severity estimation results for raw data and reduced data are shown in Table 4. For training and
testing, we randomly selected 60% for training (24 levels for each class) and 40% for testing (16 levels for
each class). Relative errors in % are averaged for 16 severity levels in Table 4. We have applied three different
estimators, PLS, SVMR, and PCR. Large errors with the raw data can be attributed to ill-conditioning of the
parameter estimation problem due to collinearity of data when compared to the reduced data. It is evident
that faults 1, 3, and 6 provided poor estimation performance on raw data due to difficulties in estimating
low severity levels. However, significant performance improvement can be observed when the estimators are
applied to the reduced data. PLS is slightly better than SVMR and PCR in terms of severity estimation
performance and provides good estimation results for high severity levels, although estimating low severity
levels remains a problem. In all cases, SVMR and PCR are comparable to the PLS in terms of fault severity
estimation performance. It is also observed that our techniques perform better on the reduced dataset in
terms of severity estimation accuracy.

In addition to individual classifiers, such as the SVM, PNN, KNN, and PCA for fault isolation, posterior
probabilities from these classifiers can be fused by the novel Bayesian fusion, joint optimization of fusion and
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Table 4. Comparison of severity estimation performance on raw and reduced data

Fault Average error, 100%× (true severity level – its estimate)/true level

PLS SVMR PCR

Raw (%) Reduced (%) Raw (%) Reduced (%) Raw (%) Reduced (%)

Air flow sensor fault (F1) −66.88 +4.02 −9.21 −6.14 +23.13 +1.06
Leakage in air intake system (F2) −10.11 +0.76 −0.20 −0.72 −11.22 +0.75
Blockage of air filter (F3) −75.55 +6.42 +1.37 +0.75 −44.20 +6.38
Throttle angle sensor fault (F4) +0.63 −1.28 −1.19 +1.31 +5.51 −0.35
Less fuel injection (F6) −73.42 −30.92 +8.04 +6.77 −51.36 −28.60
Added engine friction (F7) +23.38 +1.43 +4.84 +6.97 +27.20 +1.73
Air/fuel sensor fault (F8) +36.32 +0.40 −2.01 −2.90 −26.28 −0.16
Engine speed sensor fault (F9) −7.14 +10.46 −25.19 −26.23 −1.55 −3.08
Overall % of error −21.60 −1.09 −2.94 −2.52 −9.85 −2.78

individual classifiers, and dynamic fusion approaches. Our results confirm that fusing individual classifiers can
increase the diagnostic performance substantially and that fusion reduces variability in diagnostic classifier
performance. In addition, regression techniques such as the PLS, SVMR and PCR estimate the severity
of the isolated faults very well when the data is transformed into a low-dimensional space to reduce noise
effects.

4 Hybrid Model-Based and Data-Driven Diagnosis

Due to the very diverse nature of faults and modeling uncertainty, no single approach is perfect on all prob-
lems (no-free-lunch theorem). Consequently, a hybrid approach that combines model-based and data-driven
techniques may be necessary to obtain the required diagnostic performance in complex automotive applica-
tions. Here, we present an application involving fault diagnosis in an anti-lock braking system (ABS) [36],
where we integrated model and data-driven diagnostic schemes. Specifically, we combined parity equations,
nonlinear observer, and SVM to diagnose faults in an ABS. This integrated approach is necessary since
neither model-based nor data-driven strategy could adequately solve the entire ABS diagnosis problem, i.e.,
isolate faults with sufficient accuracy.

4.1 Application of Hybrid Diagnosis Process

We consider longitudinal braking with no steering, and neglect the effects of pitch and roll. The model
considers the wheel speed and vehicle speed as measured variables, and the force applied to the brake pedal
as the input. The wheel speed is directly measured and vehicle speed can be calculated by integrating the
measured acceleration signals, as in [62]. Further details of the model are found in [36]. One commonly
occurring sensor fault and four parametric faults are considered for diagnosis in the ABS system. In the case
of a wheel speed sensor fault, the sensor systematically misses the detection of teeth in the wheel due to
incorrect wheel speed sensor gap caused by loose wheel bearings or worn parts. In order to model the wheel
speed sensor fault (F1), we consider two fault severity cases: greater than 0 but less than 5% reduction in
the nominal wheel speed (F1.1), and greater than 5% reduction in the nominal wheel speed (F1.2). The four
parametric faults (F2–F5) are changes in radius of the wheel (Rw), torque gain (Kf ), rotating inertia of the
wheel (Iw) and the time constant of the Master Cylinder (τm). Fault F2 is the tire pressure fault, F3 and
F5 correspond to cylinder faults, while F4 is related to vehicle body. Faults corresponding to more than 2%
decrease in Rw are considered. We distinguish among two Rw faults: greater than 2% but less than 20%
(F2.1) decrease in Rw, and greater than 20% decrease in Rw (F2.2). The severities or sizes for Kf and Iw

faults considered are as follows: ±2,±3, . . . , ±10%. The size for τm fault corresponds to a more than 15%
increase in the time constant. Table 5 shows the list of considered faults. The minimum fault magnitude is
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selected such that changes in the residual signals can not be detected if we choose fault magnitude less than
this minimum. The measurement variables for vehicle and wheel speed are corrupted by the zero mean white
noise with variances of 0.004 each. The process noise variables are also white with variance of 0.5% of the
mean square values of the corresponding states (which corresponds to a signal-to-noise ratio of +23 dB).

A small amount of process noise is added based on the fact that these states are driven by disturbances
from combustion processes in the engine (un-modeled dynamics of wheel and vehicle speeds), and non-linear
effects in the ABS actuator (for brake torque and oil pressure).

Figure 12 shows the block diagram of our proposed FDD scheme for the ABS. The parity equations
and GLRT test (G P1 ) are used to detect severe Rw(≥20%) and wheel speed sensor (≥5%) faults. Then,
a nonlinear observer [17, 36] is used to generate two additional residuals. The GLRTs based on these two
residuals (G O1 and G O2 ) and their time dependent GLRT test (G O T1 and G O T2 ) are used to isolate
the τm fault, less severe (small) Rw and sensor faults. They are also used to detect Kf and Iw faults. Finally,
we use the SVM to isolate the Kf and Iw faults. After training, a total of 35 patterns are misclassified in
the test data, which results in an error rate of 4.7%. We designed two tests S Kf and S Iw using the SVM,
which assigns S Kf = 1 when the data is classified as the Kf fault or assigns S Iw = 1 when the data is
classified as the Iw fault. The diagnostic matrix of the ABS system is shown in Table 6. With the subset of
tests, all the faults considered here can be detected. Subsequently, a parameter estimation technique is used

Table 5. Simulated fault list of ABS system

F1.1 Sensor fault (<5% decrease)

F1.2 Sensor fault (≥5% decrease)
F2.1 Rw fault (<20% decrease)
F2.2 Rw fault (≥20% decrease)
F3 Kf fault (±2% ∼ ±10%)
F4 Iw fault (±2% ∼ ±10%)
F5 τm fault (≥15% increase)

Fig. 12. FDD Scheme for ABS
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Table 6. Diagnostic matrix for ABS test design

Fault\Test G P1 G O1 G O2 G O T1 G O T2 S Kf S Iw

F0 0 0 0 0 0 0 0
F1.1 0 1 0 0 0 0 0
F1.2 0 0 1 1 0 0 1
F2.1 0 0 1 1 0 0 0
F2.2 0 0 0 1 0 0 0
F3 1 0 0 0 0 0 0
F4 0 0 0 1 1 1 1
F5 0 0 0 1 0 0 0

Table 7. Mean relative errors and normalized standard deviations in parameter estimation

Block Estimation Subset Parameter

EstimationRw Kf Iw τm

Kf err 3.2 5.0 6.0 25.0 1.05
std 1.2 3.5 6.8 22.2 0.12

Iw err 2.0 4.5 4.0 19.0 0.52
std 1.6 4.8 7.2 39.3 0.35

τm err 3.5 7.8 10.3 27.5 2.0
std 2.4 5.2 5.6 46.5 0.80

Rw err 0.39 0.33 2.98 279.33 0.004
std 0.25 0.12 1.48 33.4 0.014

err = mean relative error
“true” value

× 100%

std = standard deviation of estimated parameters
“true” value

× 100%

after fault isolation to estimate the severity of the fault. After parametric faults are isolated, an output error
method is used to estimate the severity of isolated faults. In the ABS, the nonlinear output error parameter
estimation method produces biased estimates when all the parameters are estimated as a block. Therefore,
the subset parameter estimation techniques are well suited for our application. The subset of parameters to
be estimated is chosen by the detection and isolation of the parametric fault using the GLRT and SVM. When
a parametric fault is isolated, this parameter is estimated via the nonlinear output error method. Table 7
compares the accuracies of parameter estimation averaged over 20 runs via the two methods: estimating all
the parameters versus reduced (one-at-a-time) parameter estimation after fault detection and isolation. The
parameters err and std shows the mean relative errors and standard deviations of the estimated parameters,
respectively, normalized by their “true” values (in %).

From Table 7, it is evident that subset parameter estimation provides much more precise estimates than
the method which estimates all four parameters as a block. This is especially significant with single parameter
faults.

5 Summary and Future Research

This chapter addressed an integrated diagnostic development process for automotive systems. This process
can be employed during all stages of a system life cycle, viz., concept, design, development, production,
operations, and training of technicians to ensure ease of maintenance and high reliability of vehicle sys-
tems by performing testability and reliability analyses at the design stage. The diagnostic design process
employs both model-based and data-driven diagnostic techniques. The test designers can experiment with a
combination of these techniques that are appropriate for a given system, and trade-off several performance
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evaluation criteria: detection speed, detection and isolation accuracy, computational efficiency, on-line/off-
line implementation, repair strategies, time-based versus preventive versus condition-based maintenance of
vehicle components, and so on. The use of condition-based maintenance, on-line system health monitor-
ing and smart diagnostics and reconfiguration/self-healing/repair strategies will help minimize downtime,
improve resource management, and minimize operational costs. The integrated diagnostics process promises
a major economic impact, especially when implemented effectively across an enterprise.

In addition to extensive applications of the integrated diagnostics process to real-world systems, there are
a number of research areas that deserve further attention. These include: dynamic tracking of the evolution
of degraded system states (the so-called “gray-scale diagnosis”), developing rigorous analytical framework
for combining model-based and data-driven approaches for adaptive knowledge bases, adaptive inference,
agent-based architectures for distributed diagnostics and prognostics, use of diagnostic information for recon-
figurable control, and linking the integrated diagnostic process to supply chain management processes for
effective parts management.
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