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Summary. This chapter overviews the progress of vehicle power management technologies that shape the modern
automobile. Some of these technologies are still in the research stage. Four in-depth case studies provide readers
with different perspectives on the vehicle power management problem and the possibilities that intelligent systems
research community can contribute towards this important and challenging problem.

1 Introduction

Automotive industry is facing increased challenges of producing affordable vehicles with increased electri-
cal/electronic components in vehicles to satisfy consumers’ needs and, at the same time, with improved fuel
economy and reduced emission without sacrificing vehicle performance, safety, and reliability. In order to
meet these challenges, it is very important to optimize the architecture and various devices and components
of the vehicle system, as well as the energy management strategy that is used to efficiently control the energy
flow through a vehicle system [15].

Vehicle power management has been an active research area in the past two decades, and more intensified
by the emerging hybrid electric vehicle technologies. Most of these approaches were developed based on
mathematical models or human expertise, or knowledge derived from simulation data. The application of
optimal control theory to power distribution and management has been the most popular approach, which
includes linear programming [47], optimal control [5, 6, 10], and especially dynamic programming (DP) have
been widely studied and applied to a broad range of vehicle models [2, 16, 22, 29, 41]. In general, these
techniques do not offer an on-line solution, because they assume that the future driving cycle is entirely
known. However these results have been widely used as a benchmark for the performance of power control
strategies. In more recently years, various intelligent systems approaches such as neural networks, fuzzy logic,
genetic algorithms, etc., have been applied to vehicle power management [3, 9, 20, 22, 32, 33, 38, 40, 42, 43,
45, 51, 52]. Research has shown that driving style and environment has strong influence over fuel consumption
and emissions [12, 13]. In this chapter we give an overview on the intelligent systems approaches applied to
optimizing power management at the vehicle level in both conventional and hybrid vehicles. We present four
in-depth case studies, a conventional vehicle power controller, three different approaches for a parallel HEV
power controller, one is a system of fuzzy rules generated from static efficiency maps of vehicle components,
a system of rules generated from optimal operation points from a fixed driving cycles with using Dynamic
Programming and neural networks, and a fuzzy power controller that incorporates intelligent predictions of
driving environment as well as driving patterns. We will also introduce the intelligent system research that
can be applied to predicting driving environment and driving patterns, which have strong influence in vehicle
emission and fuel consumption.
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2 Intelligent Power Management in a Conventional Vehicle System

Most road side vehicles today are standard conventional vehicles. Conventional vehicle systems have been
going through a steady increase of power consumption over the past twenty years (about 4% per year) [23,
24, 35]. As we look ahead, automobiles are steadily going through electrification changes: the core mechanical
components such as engine valves, chassis suspension systems, steering columns, brake controls, and shifter
controls are replaced by electromechanical, mechatronics, and associated safety critical communications and
software technologies. These changes place increased (electrical) power demands on the automobile [15].

To keep up with future power demands, automotive industry has increased its research in building more
powerful power net such as a new 42-V power net topologies which should extend (or replace) the traditional
14-V power net from present vehicles [11, 21], and energy efficiency components, and vehicle level power
management strategies that minimize power loss [40]. In this section, we introduce an intelligent power
management approach that is built upon an energy management strategy proposed by Koot, et al. [22].
Inspired by the research in HEVs, Koot et al. proposed to use an advanced alternator controlled by power and
directly coupled to the engine’s crankshaft. So by controlling the output power of alternator, the operating
point of the combustion engine can be controlled, thus the control of the fuel use of the vehicle.

Figure 1 is a schematic drawing of power flow in a conventional vehicle system. The drive train block
contains the components such as clutch, gears, wheels, and inertia. The alternator is connected to the engine
with a fixed gear ratio. The power flow in the vehicle starts with fuel that goes into the internal combustion
engine. The mapping from fuel consumed to Peng is a nonlinear function of Peng and engine crank speed ω,
denoted as fuel rate = F(Peng, ω), which is often represented through an engine efficiency map (Fig. 2a)
that describes the relation between fuel consumption, engine speed, and engine power.

The mechanical power that comes out of the engine, Peng, splits up into two components: i.e. Peng =
Pp+Pg, where Pp goes to the mechanical drive train for vehicle propulsion, whereas Pg goes to the alternator.
The alternator converts mechanical power Pg to electric power Pe and tries to maintain a fixed voltage level
on the power net. The alternator can be modeled as a nonlinear function of the electric power and engine
crank speed, i.e. Pg = G(Pe, ω), which is a static nonlinear map (see Fig. 2b). The alternator provides
electric power for the electric loads, Pl, and Pb, power for charging the battery, i.e. Pe = Pl + Pb. In the
end, the power becomes available for vehicle propulsion and for electric loads connected to the power net.
The power flow through the battery, Pb, can be positive (in charge state) or negative (in discharge state),
and the power input to the battery, Pb, is more than the actual power stored into the battery, Ps, i.e. there
is a power loss during charge and discharge process.

A traditional lead-acid battery is often used in a conventional vehicle system for supplying key-off loads
and for making the power net more robust against peak-power demands. Although the battery offers freedom
to the alternator in deciding when to generate power, this freedom is generally not yet used in the current
practice, which is currently explored by the research community to minimize power loss. Let P Lossbat

represents the power losses function of the battery. P Lossbat is a function of Ps, Es and T, where Ps is the
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Fig. 1. Power flow in a conventional vehicle system
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Fig. 2. Static efficiency maps of engine and alternator

power to be stored to or discharged from the battery, Es is the Energy level of the battery and T is the
temperature. To simply the problem, the influence of Es and T are often ignored in modeling the battery
power loss, then Pb can be modeled as a quadratic function of Ps, i.e. Pb ≈ Ps + βP 2

s [22]. The optimization
of power control is driven by the attempt to minimize power loss during the power generation by the internal
combustion engine, power conversion by the alternator, and battery charge/discharge.

Based on the above discussion, we are able to model fuel consumption as a function of ω, Pp, Pl, Ps. In
order to keep driver requests fulfilled, the engine speed ω, propulsion power Pp, and electric load Pl are set
based on driver’s command. Therefore the fuel consumption function can be written as a nonlinear function
of only one variable Ps : γ (Ps).

One approach to intelligent power control is to derive control strategies from the analysis of global
optimization solution. To find the global optimal solution, quadratic and dynamic programming (DP) have
been extensively studied in vehicle power management. In general, these techniques do not offer an on-line
solution, because they assume that the future driving cycle is entirely known. Nevertheless, their results can
be used as a benchmark for the performance of other strategies, or to derive rules for a rule-based strategy. In
particular if the short-term future state is predictable based on present and past vehicle states of the same
driving cycle, the knowledge can be used in combination with the optimization solution to find effective
operating points of the individual components.

The cost function for the optimization is the fuel used during an entire driving cycle:
∫ te

0
γ(Ps)dt where

[0, te] is the time interval for the driving cycle. When the complete driving cycle is known a priori, the
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global optimization of the cost function can be solved using either DP or QP with constraints imposed on
Ps. But, for an online controller, it has no knowledge about the future of the present driving cycle. Koot
et al. proposed an online solution by using Model Predict Control strategy based on QP optimization [22].

The cost function γ(Ps) can be approximated by a convex quadratic function:

γ(Ps) ≈ ϕ2 · P 2
s + ϕ1 · Ps + ϕ0, ϕ2 > 0. (1)

The optimization problem thus can be model as a multistep decision problem with N steps:

Min
P̄s

J =
N∑

k=1

min
Ps

γ(Ps(k), k) ≈
N∑

k=1

min
Ps

1
2
ϕ2P

2
s (k) + ϕ1(k)Ps(k) + ϕ0, (2)

where P̄s contains the optimal setting of Ps(k), for k = 0, . . . ,n, n is the number of time intervals in a given
driving cycle has. The quadratic function of the fuel rate is solved by minimizing the following Lagrange
function of with respect to Ps and λ:

L(Ps(1), . . . , P s(N), λ) =
N∑

k=1

{ϕ2(k)Ps(k)2 + ϕ1(k)Ps(k)} + ϕ0 − λ
N∑

k=1

Ps(k). (3)

The optimization problem is solved by taking the partial derivatives of Lagrange function L with respect
to Ps(k), k = 1, . . . to N and λ respectively and setting both equations to 0. This gives us the optimal setting
points

P o
s (k) =

λ − ϕ1(k)
2ϕ2(k)

, (4)

λ =
N∑

k=1

ϕ1(k)
2ϕ2(k)

/
N∑

k=1

1
2ϕ2(k)

, (5)

for k = 1, . . . ,N (driving time span).
The above equations show that P o

s (k) depends on the Quadratic coefficients at the current time k, which
can be obtained online; however, λ requires the knowledge of ϕ1 and ϕ2 over the entire driving cycle, which
is not available to an online controller. To solve this problem, Koot et al. proposed to estimate λ dynamically
using the PI-type controller as follows [22]:

λ(k + 1) = λ0 + Kp(Es(0) − Es(k)) + KI

k∑
i=1

(Es(0) − Es(i))∆t, (6)

where λ0 is an initial estimate. If we write the equation in an adaptive form, we have

λ(k + 1) = λ0 + Kp(Es(0) − Es(k − 1) + Es(k − 1) − Es(k)) + KI

k∑
i=1

(Es(0) − Es(i))∆t

= λ(k) + Kp(Es(k − 1) − Es(k)) + KI(Es(0) − Es(k))∆t. (7)

By incorporating Es(k), the current energy storage in the battery, into λ dynamically, we are able to avoid
draining or overcharging the battery during the driving cycle. The dynamically changed λ reflects the change
of the stored energy during the last step of the driving cycle, and the change of stored energy between current
and the beginning of the driving cycle. If the stored energy increased (or decreased) in comparison to its
value the last step and the initial state, the λ(k + 1) will be much smaller (greater) than λ(k).

Koot [25] suggested the following method to tune the PI controller in (6). λ0 should be obtained from
the global QP optimization and is electric load dependant. λ0 = 2.5 was suggested. KP and KI were tuned
such that for average values of ϕ1(t) and ϕ2(t) (6) becomes a critically damped second-order system. For
ϕ̃2 = 1.67 × 10−4, Kp = 6.7 × 10−7, KI = 3.3 × 10−10.
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Based on the above discussion, the online control strategy proposed by Koot can be summarized as follows.
During an online driving cycle at step k, the controller performs the following three major computations:

(1) Adapt the Lagrange multiplier,

λ(k + 1) = λ0 + Kp(Es(0) − Es(k − 1) + Es(k − 1) − Es(k)) + K1

k∑
i=1

(Es(0) − Es(i))∆t,

where λ0, Kp, KI are tuned to constants as we discussed above, Es (i) is the energy level contained in
the battery at step i, i = 0, 1, . . . , k, and for i = 0, it is the battery energy level at the beginning of the
driving cycle. All Es (i) are available from the battery sensor.

(2) Calculate the optimal Ps(k) using the following either one of the two formulas:

P o
s (k) = arg min

Ps(k)
{ϕ2(k)P 2

s (k) + ϕ1(k)Ps(k) + ϕ0(k) − λ(k + 1)Ps(k), (8)

or
P o

s (k) = arg min
Ps(k)

{γ(Ps(k)) − λ(k + 1)Ps(k)}. (9)

Both methods search for the optimal Ps(k) within its valid range at step k [22], which can be solved
using DP with a horizon length of 1 on a dense grid. This step can be interpreted as follows. At each
time instant the actual incremental cost for storing energy is compared with the average incremental
cost. Energy is stored when generating now is more beneficial than average, whereas it is retrieved when
it is less beneficial.

(3) Calculate the optimal set point of engine power
The optimal set point of engine power can be obtained through the following steps:

P o
eng = P o

g + Pp, where P o
g = G(P o

e ,ω), P o
e = P Lossbat(P o

s ) + P1.

Koot et al. implemented their online controllers in a simulation environment in which a conventional vehicle
model with the following components was used: a 100-kW 2.0-L SI engine, a manual transmission with five
gears, A 42-V 5-kW alternator and a 36-V 30-Ah lead-acid battery make up the alternator and storage
components of the 42-V power net. Their simulations show that a fuel reduction of 2% can be obtained
by their controllers, while at the same time reducing the emissions. The more promising aspect is that the
controller presented above can be extended to a more intelligent power control scheme derived from the
knowledge about road type and traffic congestions and driving patterns, which are to be discussed in Sect. 4.

3 Intelligent Power Management in Hybrid Vehicle Systems

Growing environmental concerns coupled with the complex issue of global crude oil supplies drive automobile
industry towards the development of fuel-efficient vehicles. Advanced diesel engines, fuel cells, and hybrid
powertrains have been actively studied as potential technologies for future ground vehicles because of their
potential to significantly improve fuel economy and reduce emissions of ground vehicles. Due to the multiple-
power-source nature and the complex configuration and operation modes, the control strategy of a hybrid
vehicle is more complicated than that of a conventional vehicle. The power management involves the design
of the high-level control algorithm that determines the proper power split between the motor and the engine
to minimize fuel consumption and emissions, while satisfying constraints such as drivability, sustaining and
component reliability [28]. It is well recognized that the energy management strategy of a hybrid vehicle has
high influences over vehicle performances.

In this section we focus on the hybrid vehicle systems that use a combination of an internal combustion
engine (ICE) and electric motor (EM). There are three different types of such hybrid systems:

• Series Hybrid: In this configuration, an ICE-generator combination is used for providing electrical power
to the EM and the battery.
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• Parallel Hybrid: The ICE in this scheme is mechanically connected to the wheels, and can therefore
directly supply mechanical power to the wheels. The EM is added to the drivetrain in parallel to the
ICE, so that it can supplement the ICE torque.

• Series–Parallel Combined System and others such as Toyota Hybrid System (THS).

Most of power management research in HEV has been in the category of parallel HEVs. Therefore this is
also the focus of this paper. The design of a HEV power controller involves two major principles:

• Meet the driver’s power demand while achieving satisfactory fuel consumption and emissions.
• Maintain the battery state of charge (SOC) at a satisfactory level to enable effective delivery of power

to the vehicle over a wide range of driving situations.

Intelligent systems technologies have been actively explored in power management in HEVs. The most
popular methods are to generate rules of conventional or fuzzy logic, based on:

• Heuristic knowledge on the efficient operation region of an engine to use the battery as a load-leveling
component [46].

• Knowledge generated by optimization methods about the proper split between the two energy sources
determined by minimizing the total equivalent consumption cost [26, 29, 30]. The optimization methods
are typically Dynamic Programming (deterministic or stochastic).

• Driving situation dependent vehicle power optimization based on prediction of driving environment using
neural networks and fuzzy logic [27, 42, 52].

Three case studies will be presented in the following subsections, one from each of the above three
categories.

3.1 A Fuzzy Logic Controller Based on the Analysis of Vehicle Efficiency Maps

Schouten, Salman and Kheir presented a fuzzy controller in [46] that is built based on the driver command,
the state of charge of the energy storage, and the motor/generator speed. Fuzzy rules were developed for the
fuzzy controller to effectively determine the split between the two powerplants: electric motor and internal
combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of three
major components, ICE (Internal Combustion Engine), EM (Electric Motor) and Battery.

The fuzzy control strategy was derived based on five different ways of power flow in a parallel HEV: (1)
provide power to the wheels with only the engine; (2) only the EM; or (3) both the engine and the EM
simultaneously; (4) charge the battery, using part of the engine power to drive the EM as a generator (the
other part of ENGINE power is used to drive the wheels); (5) slow down the vehicle by letting the wheels
drive the EM as a generator that provides power to the battery (regenerative braking).

A set of nine fuzzy rules was derived from the analysis of static engine efficiency map and motor efficiency
map with input of vehicle current state such as SOC and driver’s command. There are three control variables,
SOC (battery state of charge), Pdriver (driver power command), and ωEM (EM speed) and two solution
variables, Pgen (generator power), scale factor, SF.

The driver inputs from the brake and accelerator pedals were converted to a driver power command.
The signals from the pedals are normalized to a value between zero and one (zero: pedal is not pressed,
one: pedal fully pressed). The braking pedal signal is then subtracted from the accelerating pedal signal, so
that the driver input takes a value between −1 and +1. The negative part of the driver input is sent to a
separate brake controller that will compute the regenerative braking and the friction braking power required
to decelerate the vehicle. The controller will always maximize the regenerative braking power, but it can
never exceed 65% of the total braking power required, because regenerative braking can only be used for the
front wheels.

The positive part of the driver input is multiplied by the maximum available power at the current vehicle
speed. This way all power is available to the driver at all times [46]. The maximum available power is
computed by adding the maximum available engine and EM power. The maximum available EM and engine
power depends on EM/engine speed and EM/engine temperature, and is computed using a two-dimensional
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look-up table with speed and temperature as inputs. However, for a given vehicle speed, the engine speed has
one out of five possible values (one for each gear number of the transmission). To obtain the maximum engine
power, first the maximum engine power levels for those five speeds are computed, and then the maximum
of these values is selected.

Once the driver power command is calculated, the fuzzy logic controller computes the optimal generator
power for the EM, Pgen, in case it is used for charging the battery and a scaling factor, SF, for the EM in
case it is used as a motor. This scaling factor SF is (close to) zero when the SOC of the battery is too low.
In that case the EM should not be used to drive the wheels, in order to prevent battery damage. When the
SOC is high enough, the scaling factor equals one.

The fuzzy control variable Pdrive has two fuzzy terms, normal and high. The power range between 0
and 50kw is for “normal”, the one between 30 kw to the maximum is for “high”, the power range for the
transition between normal and high, i.e. 30 kw ∼ 50 kW, is the optimal range for the engine. The fuzzy
control variable SOC has four fuzzy terms, too low, low, normal and too high. The fuzzy set for “too low”
ranges from 0 to 0.6, “low” from 0.5 to 0.75, “normal” from 0.7 to 0.9, “too high” from 0.85 to 1.

The fuzzy control variable ωEM (EM speed) has three fuzzy sets, “low”, “optimal”, and “high”. The fuzzy
set “low” ranges from 0 to 320 rad s−1, “optimal” ranges from 300 to 470 rad s−1, “high” from 430 through
1,000 rad s−1. Fuzzy set “optimal” represents the optimal speed range which gives membership function to
1 at the range of 320 rad s−1 through 430 rad s−1. The nine fuzzy rules are shown in Table 1.

Rule 1 states that if the SOC is too high the desired generator power will be zero, to prevent overcharging
the battery. If the SOC is normal (rules 2 and 3), the battery will only be charged when both the EM speed
is optimal and the driver power is normal. If the SOC drops to low, the battery will be charged at a higher
power level. This will result in a relatively fast return of the SOC to normal. If the SOC drops to too low
(rules 6 and 7), the SOC has to be increased as fast as possible to prevent battery damage. To achieve this,
the desired generator power is the maximum available generator power and the scaling factor is decreased
from one to zero. Rule 8 prevents battery charging when the driver power demand is high and the SOC is not
too low. Charging in this situation will shift the engine power level outside the optimum range (30–50kW).
Finally, when the SOC is not too low (rule 9), the scaling factor is one.

The engine power, Peng, and EM power, PEM, are calculated as follows:

Peng = Pdriver + Pgen, PEM = −Pgen

except for the following cases:

(1) If Pdriver + PEM,gen is smaller than the threshold value SF∗6 kw) then Peng = 0 and PEM = Pdriver.
(2) If Pdriver + PEM,gen is larger than the maximum engine power at current speed (Peng,max@speed) then

Peng = Peng,max@speedand PEM = Pdriver − Peng,max@speed.

(3) If PEM is positive (EM used as motor), PEM = PEM
∗SF.

The desired engine power level is used by the gear shifting controller to compute the optimum gear
number of the automated manual transmission. First, the optimal speed-torque curve is used to compute

Table 1. Rule base of the fuzzy logic controller

1 If SOC is too high then Pgen is 0 kw
2 If SOC is normal and Pdrive is normal and ωEM is optimal then Pgen is 10 kw
3 If SOC is normal and ωEM is NOT optimal then Pgen is 0 kw
4 If SOC is low and Pdrive is normal and ωEM is low then Pgen is 5 kw
5 If SOC is low and Pdrive is normal and ωEM is NOT low then Pgen is 15 kw
6 If SOC is too low then Pgen is Pgen, max

7 If SOC is too low then SF is 0
8 If SOC is NOT too low and Pdrive is high then Pgen is 0 kw
9 If SOC is NOT too low then SF is 1
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the optimal engine speed and torque for the desired engine power level. The optimal engine speed is then
divided by the vehicle speed to obtain the desired gear ratio. Finally, the gear number closest to the desired
gear ratio is chosen.

The power controller has been implemented and simulated with PSAT using the driving cycles described
in the SAE J1711 standard. The operating points of the engine, EM, and battery were either close to the
optimal curve or in the optimal range [46].

3.2 An Intelligent Controller Built Using DP Optimization and Neural Networks

Traditional rule-based algorithms such as the one discussed in Sect. 3.1 are popular because they are easy
to understand. However, when the control system is multi-variable and/or multi-objective, as often the case
in HEV control, it is usually difficult to come up with rules that capture all the important trade-offs among
multiple performance variables. Optimization algorithms such as Dynamic Programming (DP) can help us
understand the deficiency of the rules, and subsequently serve as a “role-model” to construct improved and
more complicated rules [28, 41]. As Lin et al. pointed out that using a rule-base algorithm which mimics
the optimal actions from the DP approach gives us three distinctive benefits: (1) optimal performance is
known from the DP solutions; (2) the rule-based algorithm is tuned to obtain near-optimal solution, under
the pre-determined rule structure and number of free parameters; and (3) the design procedure is re-useable,
for other hybrid vehicles, or other performance objectives [28].

Lin et al. designed a power controller for a parallel HEV that uses deterministic dynamic programming
(DP) to find the optimal solution and then extracts implementable rules to form the control strategy [28, 29].
Figure 3 gives the overview of the control strategy. The rules are extracted from the optimization results
generated by two runs of DP, one is running with regeneration on, and the other with regeneration off. Both
require the input of a HEV model and a driving cycle. The DP running with regeneration on generates
results from which rules for gear shift logic and power split strategy are extracted, the DP running with
regeneration off generates results for rules for charge-sustaining strategy.

When used online, the rule-based controller starts by interpreting the driver pedal motion as a power
demand, Pd. When Pd is negative (brake pedal pressed), the motor is used as a generator to recover vehicle

Driving cycle 

HEV model 

Dynamic Programming 
(with regeneration ON)

Dynamic Programming 
(with regeneration OFF)

Gear shift Logic 
Power Split 
Strategy 

Charge-Sustaining 
strategy 

Power management

Rule Extraction Rule Extraction 

RULE BASE

Fig. 3. A rule based system developed based on DP optimization
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kinetic energy. If the vehicle needs to decelerate harder than possible with the “electric brake”, the fric-
tion brake will be used. When positive power (Pd > 0) is requested (gas pedal pressed), either a Power
Split Strategy or a Charge-Sustaining Strategy will be applied, depending on the battery state of charge
(SOC). Under normal driving conditions, the Power Split Strategy determines the power flow in the hybrid
powertrain. When the SOC drops below the lower limit, the controller will switch to the Charge-Sustaining
Strategy until the SOC reaches a pre-determined upper limit, and then the Power Split Strategy will resume.

The DP optimization problem is formulated as follows. Let x(k) represents three state variables, vehicle
speed, SOC and gear number, at time step k, and u(k) are the input signals such as engine fuel rate,
transmission shift to the vehicle at time step k. The cost function for fuel consumption is defined as

J = fuel =
N∑

k=1

L(x(k), u(k)), (kg),

where L is the instantaneous fuel consumption rate, and N is the time length of the driving cycle. Since the
problem formulated above does not impose any penalty on battery energy, the optimization algorithm tends
to first deplete the battery in order to achieve minimal fuel consumption. This charge depletion behavior will
continue until a lower battery SOC is reached. Hence, a final state constraint on SOC needs to be imposed
to maintain the energy of the battery and to achieve a fair comparison of fuel economy. A soft terminal
constraint on SOC (quadratic penalty function) is added to the cost function as follows:

J =
N∑

k=1

L(x(k), u(k)) + G(x(N)),

where G(x(N)) = α(SOC(N) − SOCf )2 represents the penalty associated with the error in the terminal
SOC; SOCf is the desired SOC at the final time, α is a weighting factor. For a given driving cycle, D C,
DP produces an optimal, time-varying, state-feedback control policy that is stored in a table for each of the
quantized states and time stages, i.e. u∗(x(k), k); this function is then used as a state feedback controller in
the simulations. In addition, DP creates a family of optimal paths for all possible initial conditions. In our
case, once the initial SOC is given, the DP algorithm will find an optimal way to bring the final SOC back
to the terminal value (SOCf) while achieving the minimal fuel consumption.

Note that the DP algorithm uses future information throughout the whole driving cycle, D C, to deter-
mine the optimal strategy, it is only optimal for that particular driving cycle, and cannot be implemented as
a control law for general, unknown driving conditions. However, it provides good benchmark to learn from, as
long as relevant and simple features can be extracted. Lin et al. proposed the following implementable rule-
based control strategy incorporating the knowledge extracted from DP results [28]. The driving cycle used
by both DP programs is EPA Urban Dynamometer Driving Schedule for Heavy-Duty Vehicles (UDDSHDV)
from the ADVISOR drive-cycle library. The HEV model is a medium-duty hybrid electric truck, a 4 × 2
Class VI truck constructed using the hybrid electric vehicle simulation tool (HE-VESIM) developed at the
Automotive Research Center of the University of Michigan [28]. It is a parallel HEV with a permanent mag-
net DC brushless motor positioned after the transmission. The engine is connected to the torque converter
(TC), the output shaft of which is then coupled to the transmission (Trns). The electric motor is linked
to the propeller shaft (PS), differential (D) and two driveshafts (DS). The motor can be run reversely as a
generator, by drawing power from regenerative braking or from the engine. The detail of this HEV model
can be found in [28, 29].

The DP program that ran with regeneration turned on produced power split graph shown in Fig. 4.
The graph shows the four possible operating modes in the Power Split Strategy: motor only mode (blue
circles), engine only mode (red disks), hybrid mode (both the engine and motor provide power, shown in
blue squares), and recharge mode (the engine provides additional power to charge the battery, shown in green
diamonds). Note during this driving cycle, recharging rarely happened. The rare occurrence of recharging
events implies that, under the current vehicle configuration and driving cycle, it is not efficient to use engine
power to charge the battery, even when increasing the engine’s power would move its operation to a more
efficient region. As a result, we assume there is no recharging during the power split control, other than



178 Y.L. Murphey

Fig. 4. Optimal operating points generated by DP over UDDSHDV cycle when Pd > 0

regeneration, and thus recharge by the engine will only occur when SOC is too low. The following power
split rules were generated based on the analysis of the DP results.

Nnet1 is a neural network trained to predict the optimal motor power in a split mode. Since optimal
motor power may depend on many variables such as wheel speed, engine speed, power demand, SOC, gear
ratio, etc., [28], Lin et al. first used a regression-based program to select the most dominant variables in
determining the motor power. Three variables were selected, power demand, engine speed, and transmission
input speed as input to the neural network. The neural network has two hidden layers with three and one
neurons respectively. After the training, the prediction results generated by the neural network are stored
in a “look-up table” for real-time online control.

The efficiency operation of the internal combustion engine also depends on transmission shift logic. Lin
et al. used the DP solution chooses the gear position to improve fuel economy. From the optimization results,
the gear operation points are expressed on the engine power demand vs. wheel speed plot shown in Fig. 5.
The optimal gear positions are separated into four regions, and the boundary between two adjacent regions
seems to represent better gear shifting thresholds. Lin et al. use a hysteresis function to generate the shifting
thresholds. They also pointed out that the optimal gear shift map for minimum fuel consumption can also
be constructed through static optimization. Given an engine power and wheel speed, the best gear position
for minimum fuel consumption can be chosen based on the steady-state engine fuel consumption map. They
found that the steady-state gear map nearly coincides with Fig. 5. However for a pre-transmission hybrid
configuration, it will be harder to obtain optimal shift map using traditional methods.

Since the Power Split Strategy described above does not check whether the battery SOC is within the
desired operating range, an additional rule for charging the battery with the engine was developed by Lin
et al. to prevent battery from depletion. A traditional practice is to use a thermostat-like charge sustaining
strategy, which turns on the recharging mode only if the battery SOC falls below a threshold and the charge
continues until the SOC reaches a predetermined level. Although this is an easy to implement strategy, it
is not the most efficient way to recharge the battery. In order to improve the overall fuel efficiency further,
the questions “when to recharge” and “at what rate” need to be answered. Lin et al. ran the DP routine
with the regenerative braking function was turned off to make sure that all the braking power was supplied
by the friction braking and hence there was no “free” energy available from the regenerative braking. They
set the initial SOC at 0.52 for the purpose of simulating the situation that SOC is too low and the battery
needs to be recharged. Their simulation result is shown in Fig. 6.
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Fig. 5. Transmission gear selection generated by DP algorithm when Pd > 0 over UDDSHDV cycle

Fig. 6. Optimal operating points from DP (engine recharging scenario) over UDDSHDV cycle

Note that the results obtained represent the optimal policy under the condition that the battery SOC has
to be recharged from 0.52 to 0.57 using engine power. Note also that negative motor power now represents
the recharging power supplied by the engine since there is no regenerative braking. A threshold line is drawn
to divide the plot into two regions C and D. A neural network Nnet2 was trained to find the optimal amount
of charging power. The basic logic of this recharging control is summarized in Table 3. The rules in Tables 2
and 3 together provide complete power management of the hybrid propulsion system under any conditions.
Figure 7 shows the flow charts of the power controller. T line1 is the function representing the threshold
shown in Fig. 7a, and T line2 is the function representing the threshold shown in Fig. 7b.

Lin et al. used the Urban Dynamometer Driving Schedule for Heavy-Duty Vehicles (UDDSHDV) to
evaluate the fuel economy of their power management strategy. Their results were obtained for the charge
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Table 2. Power split rules

If Pd ≤ 15 kw, use Motor only, i.e. Pm = Pd, Pe = 0.

Else

If region A, operate in power split mode: Pm = Nnet1(Pd, ωtrans, ωeng), Pe = Pd − Pm.

If region B, use engine only, i.e. Pm = 0, Pe = Pd.

If Pe > Pe max, Pe = Pe max, Pm = Pd − Pe.

Note: Pm is the motor power, Pe is the engine power, and Pd is driver’s power demand.

Table 3. Charge-sustaining rules

If Pd ≤ 8 kw, use Motor only, i.e. Pm = Pd, Pe = 0.

Else

If region C, or ωwheel < 10, Pe = Pd, Pm = 0.

If region D, Pm = −Pch, Pe = Pd + Pch, Pch = −Nnet2(Pd, ωtrans, ωeng),

If Pe > Pe max, Pe = Pe max, Pm = Pd − Pe.

sustaining strategy, with the SOC at the end of the cycle being the same as it was at the beginning. They
showed 28% of the fuel economy improvement (over the conventional truck) by the DP algorithm and 24%
by their DP-trained rule-based algorithm, which is quite close to the optimal results generated by the DP
algorithm.

3.3 Intelligent Vehicle Power Management Incorporating Knowledge
About Driving Situations

The power management strategies introduced in the previous sections do not incorporate the driving situ-
ation and/or the driving style of the driver into their power management strategies. One step further is to
incorporate the optimization into a control strategy that has the capability of predicting upcoming events.
In this section we take introduce an intelligent controller, IEMA (intelligent energy management agent) pro-
posed by Langari and Won [27, 52]. IEMA incorporates true drive cycle analysis within an overall framework
for energy management in HEVs. Figure 8 shows the two major components in the architecture of IEMA,
where Te is the current engine torque, Tec, FTD is the increment of engine torque for propulsion produced
by FTD, and Tec, TD is the increment engine torque compensating for the effect of variations of driver style.
The primary function of IEMA is to distribute the required torque between the electric motor and the IC
(internal combustion) engine. In order to accomplish this, IEMA utilizes information on roadway type and
traffic congestion level, driver style, etc., which are produced by intelligent systems discussed in Sect. 4. The
FTD is a fuzzy controller that has fuzzy rule sets for each roadway type and traffic congestion level. The
SCC, constructed based on expert knowledge about charge sustaining properties in different operating modes,
guarantees that the level of electric energy available through the electric energy storage is maintained within
a prescribed range throughout the entire driving. Its output, Tec, SOC, is the increment of engine torque for
charging. Tec is engine torque command. The relationship among these variables is characterized as follows:

Tec + Tmc = Te + Tec,FTD + Tec,SOC + Tmc = Tc, (10)

where Tmc is motor torque command and Tc is the driver’s torque command.
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Fig. 8. Architecture view of IEMA proposed by Langari and Won

The function of FTD is to determine the effective distribution of torque between the motor and the
engine. FTD is a fuzzy rule based system that incorporates the knowledge about the driving situation into
energy optimization strategies. Fuzzy rules are generated for each of the nine facility driving cycles defined
by Sierra Research [44]. These knowledge bases are indexed as RT1 through RT9.

Six fuzzy membership functions are generated for assessing driving trends, driving modes and the SOC,
and for the output variable of FTD, Tec, FTD. These fuzzy membership functions are generated by the expert
knowledge about the systems’ characteristics and the responses of the powertrain components. Fuzzy rules
are generated based on the postulate that fuel economy can be achieved by operating the ICE at the efficient
region of the engine and by avoiding transient operations that would occur in typical driving situations
such as abrupt acceleration or deceleration, frequent stop-and-go. The rational for each fuzzy rule set is
given below:

(1) Low-speed cruise trend. This speed range is defined as below 36.66 ft s−1 (25mph) with small accelera-
tion/deceleration rates (within ±0.5 ft s−2). When the level of the SOC is high, the electric mother (EM)
is used to provide the propulsive power to meet the driver’s torque demand (Tdc). When the SOC is
low, ICE is used to generate propulsive power even if it means (temporary) high fuel consumption, since
priority is given to maintaining the SOC at certain levels. For low speed region of ICE under low SOC,
no additional engine operation for propulsion is made to avoid the ICE operation at inefficient regions of
the region. For high engine speed under low SOC, ICE together with EM are used to generate propulsive
power. This strategy is applied to all facility-specific drive cycles whenever this driving trend is present.

(2) High-speed cruise trend. This speed range is defined as over 58.65 ft s−1 (40 mph) with small accelera-
tion/deceleration rates (within ±0.5 ft s−2). In this speed range, ICE is sued to provide propulsive power.
For speeds over about 55mph, fuel consumption rate increases with the increase of vehicle speed. There-
fore, EM is used in this region to easy the overall fuel usage. Note, the continued use of EM will result
in making SCC to act to recover the SOC of the battery. This rule is applied to all facility-specific drive
cycles whenever this driving trend is present. Depending on the gear ratio during driving, the engine
speed is determined according to the speed of the vehicle. Given the speed of the vehicle, the engine
speed will be high or low depending on the gear ratio. For the high-speed region of the engine, ICE is
to be operated for generating power according to the level of the SOC. The EM is used for low speed
region of the engine.

(3) Acceleration/deceleration trend. In this acceleration/deceleration, fuzzy rules are devised based on the
characteristic features of each drive cycle (i.e. each of the nine facility-specific drive cycles), and is
derived by comparing with the characteristics of the neighboring drive cycles. The fuzzy rules were
derived based on the speed-fuel consumption analysis, and observations of speed profiles for all nine
Sierra driving cycles.
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The IEMA also incorporates the prediction of driver style into the torque compensation. Langari and Won
characterizes the driving style of the driver by using a driving style factor αDSI , which is used to compensate
the output of the FTD through the following formula:

Tec,TD = Tec,FTD
∗ (1 + sgn(Tec,FTD)∗αDSI) , (11)

where Tec, TD is the increment of engine torque compensating for the effect of driver variability, which is
represented by αDSI . Combining with (10) with (11) we have

Tec + Tmc = Te + Tec,FTD
∗ (1 + sgn(Tec,FTD)∗αDSI) + Tec,SOC + Tmc = Tc. (12)

This compensation was devised based on the following assumption. The transient operation of the engine
yields higher fuel consumption than steady operation does. Therefore the driver’s behavior is predicted and
its effect on the engine operation is adjusted. For example, for the aggressive driver, the less use of ICE is
implemented to avoid fuel consumption that is due to the transient operation of the engine by the driver.
In [52], a maximum 10% of the increment of engine torque was considered for calm drivers, normal 0% and
aggressive −10%.

In order to keep the level of electric energy within a prescribed range throughout driving, SCC, the State-
of-Charge Compensator was used in IEMA. The SCC detects the current SOC and compares it with the
target SOC, and commands additional engine torque command, Tec, SOC. As shown in (12), the increment
of engine torque from SCC is added to (or subtracted from) the current engine torque for the charge (or
discharge) operation.

The charge (or discharge) operations are determined by the instantaneous operating mode, which is
characterized into start-up, acceleration, cruise, deceleration (braking), and stationary.

Under the charge sustenance concept, the function of the electric motor can be switched to that of a
generator to charge the battery for the next use if surplus power from the engine is available. In certain
driving modes, however, particularly in acceleration and cruise modes, battery charge by operating ICE
is generally not recommended because this may cause the overall performance to deteriorate and/or the
battery to be overcharged. Selective battery charge operation may be required, however, for the operation
of HEVs in these modes. In the stop (idle) mode, the charge sustaining operation can be accomplished in an
efficient region of the engine while maximizing fuel efficiency if applicable or required. While not considered
in this study, external charge operation can be accomplished in the stationary (parking) mode of the vehicle.
Langari and Won derived functions for Tec,SOC for both hybrid (acceleration, cruise, and deceleration) and
stop modes.

In the hybrid mode Tec, SOC is determined based on the analysis of the engine-motor torque plane, driver’s
torque demand, the (engine) torque margin for the charge operation (TMC) and the discharge operation
(TMD). The increments of engine torque were obtained by introducing an appropriate function that relates
to the current SOC, TMC, and TMD.

The Tec, SOC is further adjusted based on the vehicle’s mode of operation. The adjustment was imple-
mented by a fuzzy variable βhybrid and then the incremental of engine torque for the charge operation
becomes

Tec,SOC,hybrid = βhybrid × Tec,SOC,

where βhybrid is the output of a mode-based fuzzy inference system that generates a weighted value of [0, 1]
to represent the degree of charge according to the vehicle modes. For instance, if the vehicle experiences high
acceleration, additional battery charge is prohibited to avoid deteriorating the vehicle performance even in
low level of the SOC in the battery. The value of βhybrid is set to zero whenever the level of the SOC is high
in all modes. In the cruise or the deceleration mode, battery charge operation is performed according to the
engine speed under low SOC level. In the acceleration mode, battery charge operation is dependent on the
magnitude of power demand under low SOC level.

The charge sustaining operation in the stop mode is accomplished based on the analysis of efficient region
of the engine while maximizing fuel economy and the best point (or region) of operation of the engine and
the gear ratio of the transmission device.
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Langari and Won evaluated their IEMA system through simulation on the facility-specific drive cycles [7]
and the EPA UDDS [1]. For the simulation study, a typical parallel drivetrain with a continuous variable
transmission was used. The vehicle has a total mass of 1,655kg which is the sum of the curb weight of
1,467kg and the battery weight. An internal combustion engine with a displacement of 0.77L and peak
power of 25 kW was chosen. The electric motor is chosen to meet the acceleration performance (0 to 60mph
in less than 15 s.) To satisfy the requirement for acceleration, a motor with a power of 45 kW is selected. The
battery capacity is 6 kW h (21.6MJ) with a weight of 188 kg and is chosen on the basis of estimated values of
the lead acid battery type used in a conventional car. Langari and Won gave a detailed performance analysis
based on whether any of the intelligent predictions are used: roadway type, driving trend, driving style and
operating mode. Their experiments showed their IEMA gave significant improvements when any and all of
these four types knowledge were used in the power management system.

4 Intelligent Systems for Predicting Driving Patterns

Driving pattern exhibited in real driving is the product of the instantaneous decisions of the driver to
cope with the (physical) driving environment. It plays an important roll in power distribution and needs
to be predicted during real time operation. Driving patterns are generally defined in terms of the speed
profile of the vehicle between time interval [t − ∆w, t], where t is the current time instance during a
driving experience, and ∆w > 0 is the window size that characterizes the length of the speed profile that
should be used to explore driving patterns. Various research work have suggested that road type and traffic
condition, trend and style, and vehicle operation modes have various degrees of impacts on vehicle fuel
consumptions [4, 7, 8, 12, 13, 31, 49]. However most of the existing vehicle power control approaches do
not incorporate the knowledge about driving patterns into their vehicle power management strategies. Only
recently research community in intelligent vehicle power control has begun to explore the ways to incorporate
the knowledge about online driving pattern into control strategies [19, 26, 27, 52].

This section discusses the research issues related to the prediction of roadway type and traffic congestions,
the driving style of the driver, current driving mode and driving trend.

4.1 Features Characterizing Driving Patterns

Driving patterns can be observed generally in the speed profile of the vehicle in a particular environment. The
statistics used to characterize driving patterns include 16 groups of 62 parameters [13], and parameters in
nine out of these 16 groups critically affect fuel usage and emissions [4, 12]. However it may not necessary to
use all these features for predicting a specific driving pattern, and on the other hand, additional new features
may be explored as well. For example in [27], Langari and Won used only 40 of the 62 parameters and then
added seven new parameters, trip time; trip distance; maximum speed; maximum acceleration; maximum
deceleration; number of stops; idle time, i.e. percent of time at speed 0 kph. To develop the intelligent
systems for each of the four prediction problems addressed in this section, namely roadway type and traffic
congestion level, driver style, operation mode, driving trend, the selection of a good set of features is one
of the most important steps. It has been shown in pattern recognition that too many features may degrade
system performances. Furthermore, more features imply higher hardware cost in onboard implementation
and more computational time. Our own research shows that a small subset of the features used by Langari
and Won [27] can give just as good or better roadway predictions [32].

The problem of selecting a subset of optimal features from a given set of features is a classic research
topic in pattern recognition and a NP problem. Because the feature selection problem is computationally
expensive, research has focused on finding a quasi optimal subset of features, where quasi optimal implies
good classification performance, but not necessarily the best classification performance. Interesting feature
selection techniques can be found in [14, 18, 34].
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4.2 A Multi-Class Intelligent System for Predicting Roadway Types

In general a driving cycle can be described as a composition of different types of roadways such as local,
freeway, arterial/collector, etc., and different levels of traffic congestions. Under a contract with the Envi-
ronmental Protection Agency (EPA), Sierra Research Inc. [7] has developed a set of 11 standard driving
cycles, called facility-specific (FS) cycles, to represent passenger car and light truck operations over a range
of facilities and congestion levels in urban areas. The 11 drive cycles can be divided into four categories,
freeway, freeway ramp, arterial, and local. More recently they have updated the data to reflect the speed
limit changes in certain freeways [44]. The two categories, freeway and arterial are further divided into sub-
categories based on a qualitative measure called level of service (LOS) that describe operational conditions
within a traffic stream based on speed and travel time, freedom to maneuver, traffic interruptions, comfort,
and convenience. Six types of LOS are defined with labels, A through F, with LOS A representing the best
operating conditions and LOS F the worst. Each level of service represents a range of operating conditions
and the driver’s perception of those conditions; however safety is not included in the measures that establish
service levels [44, 48]. According to the most recent results [44], the freeway category has been divided into
six LOS: freeway-LOS A, through freeway-LOS F; the arterial category into three LOS: Arterial LOS A–B,
Arterial LOS C–D, and Arterial LOS E–F. The speed profiles of the 11 Sierra new driving cycles are shown
in Fig. 9. The statistical features of these 11 drive cycles are listed in Table 4.

One potential use of facility specific driving cycles in vehicle power management is to learn knowledge
about optimal fuel consumption and emissions in each of 11 facility specific driving cycles and apply the
knowledge to online control. From the discussion presented in Sect. 3 we can see that most vehicle power
management strategies are generally based on a fixed drive cycle, and as such do not deal with the variabil-
ity in the driving situation. A promising approach is to formulate a driving cycle dependent optimization
approach that selects the optimal operation points according to the characteristic features of the drive cycle.
The driving cycle specific knowledge can be extracted from all 11 Sierra FS driving cycles through machine
learning of the optimal operation points. During the online power control, the power controller needs to
predict the current road type and LOS at the current time. Based on the prediction result, the knowledge
extracted from the Sierra FS cycle that match the predicted result can be used for the online power con-
troller. The key issue is to develop an intelligent system that can predict the current and a short-term future
road type and LOS based on the history of the current driving cycle.

An intelligent system can be developed to classify the current driving environment in terms of roadway
type combined with traffic congestion level based on the 11 standard Sierra FS cycles. The intelligent system
can be a neural network or decision tree or any other classification techniques. Langari and Won used a
learning vector quantization (LVQ) network to classify the current roadway type and congestion level [27].
An LVQ network has a two-stage process. At the first stage, a competitive layer is used to identify the
subclasses of input vectors. In the second stage, a linear layer is used to combine these subclasses into the
appropriate target classes.

The prediction or classification of road type and LOS is on a segment-by-segment basis. Each driving cycle
in a training data set is divided into segments of ∆w seconds. In [27], Langari and Won used a ∆w = 150 s, and
adjacent segments are overlapped. Features are extracted from each segment for prediction and classification.
The features used in [27] consisting of 40 parameters from the 62 parameters defined by Sierra are considered
since the information on the engine speed and gear changing behavior are not provided in the drive cycles
under their consideration. In addition, seven other characteristic parameters, which they believe can enhance
the system performance are: trip time; trip distance; maximum speed; maximum acceleration; maximum
deceleration; number of stops; idle time, i.e. percent of time at speed 0 kph.

An intelligent system that is developed for road type prediction will have multiple target classes, e.g. 11
Sierra road type and LOSs. For an intelligent system that has a relative large number of output classes, it
is important to select an appropriate method to model the output classes. In general a multi-class pattern
classification problem can be modeled in two system architectures, a single system with multiple output
classes or a system of multiple classifiers. The pattern classes can be modeled by using either One-Against-
One (OAO), One-Against-ALL (OAA) or P-Against-Q, with P > 1 and Q > 1. A comprehensive discussion
on this topic can be found in [36, 37].
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4.3 Predicting Driving Trend, Operation Mode and Driver Style

Driving trends are referring to the short term or transient effects of the drive cycle such as low speed cruise,
high speed cruise, acceleration/deceleration, and so on. These driving trends can be predicted using features
such as the magnitudes of average speed, acceleration value, starting and ending speed in the past time
segment.

The instantaneous operating mode of the vehicle at every second is the representation of the driver’s
intention (desire) for the operation of the vehicle, such as start-up, acceleration, cruise, deceleration (braking),
and stationary. For each mode, different energy management strategies are required to control the flow of
power in the drivetrain and maintain adequate reserves of energy in the electric energy storage device. The
operation mode can be determined by examining the torque relations on the drive shaft. According to [27],
the operation modes can be characterized by the two torque features, the torque required for maintaining

Fig. 9. New facility specific driving cycles defined by Sierra Research. The speed is in meters per second
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Fig. 9. (Continued)

the vehicle speed constant in spite of road load such as rolling resistance, wind drag, and road grade, and the
torque required for acceleration or deceleration of the vehicle (driver’s command). Langari and Won used
the engine speed SPE is used to infer the road load, which is a function of the road grade and the speed of
the vehicle. Under the assumption that mechanical connection between the engine and the wheels through
transmission converts the input argument for the speed of the vehicle to the engine speed, and driving occurs
on a level road, the road load can be represented by the engine speed.

Driver style or behavior has a strong influence on emissions and fuel consumption [17, 39, 49, 50]. It has
been observed that emissions obtained from aggressive driving in urban and rural traffic are much higher
than those obtained from normal driving. Similar result is observed in relation to fuel consumption. Drivers
style can be categorized in the following three classes [27]:

• Calm driving implies anticipating other road user’s movement, traffic lights, speed limits, and avoiding
hard acceleration.
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Table 4. Statistics of 11 facility specific driving cycles

Facility cycles by Sierra Research

Cycle Vavg (mph) Vmax (mph) Amax (mph s−2) Length (s)

Freeway LOS A 67.79 79.52 2.3 399
Freeway LOS B 66.91 78.34 2.9 366
Freeway LOS C 66.54 78.74 3.4 448
Freeway LOS D 65.25 77.56 2.9 433
Freeway LOS E 57.2 74.43 4.0 471
Freeway LOS F 32.63 63.85 4.0 536
Freeway ramps 34.6 60.2 5.7 266
Arterials LOS A–B 24.8 58.9 5.0 737
Arterials LOS C–D 19.2 49.5 5.7 629
Arterials LOS E–F 11.6 39.9 5.8 504
Local roadways 12.9 38.3 3.7 525

• Normal driving implies moderate acceleration and braking.
• Aggressive driving implies sudden acceleration and heavy braking.

Acceleration criteria for the classification of the driver’s style are based on the acceleration ranges can be
found in [49]. In [27], a fuzzy classifier was presented. Two fuzzy variables were used, average acceleration
and the ratio of the standard deviation (SD) of acceleration and the average acceleration over a specific
driving range were used together to identify the driving style.

5 Conclusion

In this chapter we presented an overview of intelligent systems with application to vehicle power manage-
ment. The technologies used in vehicle power management have evolved from rule based systems generated
from static efficiency maps of vehicle components, driving cycle specific optimization of fuel consumption
using Quadratic or Dynamic Programming, Predictive control combined with optimization, to the intelligent
vehicle power management based on road type prediction and driving patterns such as driving style, oper-
ation mode and driving trend. We have seen more and more research in the use of neural networks, fuzzy
logic and other intelligent system approaches for vehicle power management.

During the recent years many new telematic systems have been introduced into road vehicles. For instance,
global positioning systems (GPS) and mobile phones have become a de facto standard in premium cars. With
the introduction of these systems, the amount of information about the traffic environment available in the
vehicle has increased. With the availability of traffic information, predictions of the vehicle propulsion load
can be made more accurately and efficiently. Intelligent vehicle power systems will have more active roles in
building predictive control of the hybrid powertrain to improve the overall efficiency.
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