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Abstract. We investigate the applicability of packet sampling techniques to 
flow-based accounting. First we show by theoretical considerations how the 
achievable accuracy depends on sampling techniques, parameters and traffic 
characteristics. Then we investigate empirically which accuracy is achieved 
with typical flow characteristics by experiments with real traffic traces from 
three different networks. In a third step we illustrate how to support sampling-
based accounting by providing an accuracy statement together with the 
measured data. We show which information is required for this and how an 
accuracy assessment can be approximated from information available after the 
sampling process using information elements of the IP flow information export 
protocol (IPFIX). 
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1   Introduction 

Sampling aims at the reduction of measurement costs by estimating the metric of 
interest from a subset of data. It is important that the extent of potential estimation 
errors can be evaluated, especially if measurement results map to monetary values as 
it is the case for accounting. The achievable accuracy usually depends on 
characteristics of the population, i.e., in our case the traffic in the network. Since 
network traffic is extremely dynamic providing an up-to-date accuracy assessment is 
not trivial. It must be derived from the limited information available after the 
sampling process. It has to be calculated per flow and updated continuously.  

Basic packet selection methods are currently standardized in the IETF PSAMP 
group [6]. A flow sampling scheme for accounting is introduced in [1]. Sample and 
Hold [2], Shared-state Sampling  (S3) [3], and the Runs bAsed Traffic Estimator 
(RATE) [4] propose packet sampling methods that bias the selection process towards 
large flows in order to reduce resource consumption for flow caching and flow record 
transfer. This makes sense for accounting because in typical flow distributions a few 
large flows contribute to the majority to the overall traffic volume (e.g. [1]). 
Nevertheless, all those approaches require the classification of packets into flows 
before or during the sampling process. In contrast to this we investigate the effects of 
packet sampling that is applied before flow classification, so that only selected 
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packets need to be classified, which significantly reduces workload on routers [5]. We 
compare the achievable accuracy for basic PSAMP schemes and a stratified method 
used in Cisco NetFlow to accounting requirements. We show how the accuracy can 
be approximated from available information, using IPFIX information elements [11]. 

2   Flow Accounting Requirements 

The accuracy of an estimate is assessed by bias and precision. For accounting we 
should only use unbiased estimates. This is the case if the expectation of the estimated 
values equals the real value. The precision is derived from the variance (or its square 
root: the standard error) of the estimate and expresses how far estimated values from 
sample runs would spread. The higher the standard error the lower is the precision. 
An accuracy statement can be presented to customers by a confidence interval. 
Confidence boundaries define the area in which the real value should lie and can be 
expressed by the maximum tolerable estimation error. The confidence level (CL) 
gives the probability that the real value lies within this range. From this we can derive 
a maximum standard error that should not be exceeded if a given accuracy is required. 
Table 1 shows the maximum relative standard error for different accuracy 
requirements for a normal distributed estimate.  

Table 1. Maximum Relative Standard Error for Different Accuracy Requirements 

Rel. Est. Error CL Rel. StdErr  Rel. Est. Error CL Rel. StdErr 
0.01 (1%) 99% 0.003876  0.1 (10%) 95% 0.051020 
0.01 (1%) 95%  0.005102  0.15 (15%) 95% 0.076531 
0.05 (5%) 99%  0.019380  0.20 (20%) 95% 0.102041 
0.05 (5%) 95% 0.025510  0.30 (30%) 95% 0.1531 

3   Accuracy Assessment in Theory 

We here provide a theoretical assessment of bias and precision by providing formulas 
for expectation and standard error for the sampling schemes. We also give formulas 
for sampling after classification, but our focus is on sampling before classification. It 
is the more complex case, saves classification effort and is used in NetFlow. 

Accuracy Assessment for n-out-of-N Sampling. In n-out-of-N sampling exactly n 
elements are selected from the population, which consists of N elements [6]. If there 
is only one flow (N=Nf) in the traffic mix or we apply sampling after classification, 
the number Nf of packets per flow is known. The number nf of selected packets can be 
set per flow and is also known. 

The estimate ˆ fSum for the number of bytes in flow f can be simply calculated from 
the packet sizes xi,f of the selected packets, by extrapolating with nf and Nf. The 
expected bias is zero. The standard error can be calculated by the standard formula for 
an n-out-of-N selection [9] from sampling parameters and packet size variance 2

fxσ . 
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If we apply sampling before classification Nf and nf are unknown. Extrapolation must 
be done with the overall population N and sample size n. 
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In contrast to the case above (where nf=n=const), here the number nf of packets from 
flow f in the sample varies for each sampling run and has to be considered as random 
variable (r.v.) itself. The estimate contains two random variables, nf and xi,f. To assess 
the estimation quality we need to calculate expectation and variance of a sum of 
random variables, where the number of addends itself is a random variable. We model 
nf as a discrete r.v. with a binomial distribution1 B(n, Nf/N). We denote the mean 
packet size of all packet sizes in flow f in the population by 

fxμ  and their variance 

by 2

fxσ . With xi,f we denote the number of bytes of the ith selected packet2. Since we 

apply a random selection, the xi,f are independent identical distributed  (i.i.d.).  
With the assumption of the binomial distribution for nf and independency for the xi,f  

we can derive the following formulas for expectation and variance for the estimated 
sum for flow f (see appendix): 
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The expectation equals the real volume, i.e. the estimation is unbiased. The variance 
of the estimated flow volume, and with this the expected accuracy of the estimation 
depends on the parameters n, N, Nf, 

fxμ  and 2

fxσ . Sample size n and population size 

N are preconfigured sampling parameters. Nf , 
fxμ and 2

fxσ are flow characteristics. Nf 

denotes the number of packets in the population that belong to flow f. The packet size 
mean 

fxμ  and the packet size variance 2

fxσ  depend on the packet size distribution in 

flow f.  If we take the square root of the variance we get the absolute standard error. 
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A division by the flow volume provides the relative standard error (see appendix). 

                                                           
1 If f≤0.05 and 0.1< Nf/N <0.9 the hyper geometrical distribution Hy(N, Nf, n) can be 

approximated by a binomial distribution B(n, Nf/N) (see e.g., [10]). 
2  Note that the index i is used for the selected packets only and not for all packets in the flow. 
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Accuracy Assessment for 1-in-K Sampling (stratified). Cisco NetFlow implements 
a sampling scheme that we call 1-in-K sampling3. 1-in-K sampling is a count-based 
stratified n-out-of-N sampling. The selection process is done in two steps. First the 
measurement interval is divided into L subintervals of size K. Then one packet is 
randomly selected per subinterval. The measurement interval, i.e., the population for 
which a parameter should be estimated, still consists of N packets. The estimate is 
calculated from all nf packets that were selected in all subintervals in the measurement 
interval.  

                            
,

1

ˆ
fn

f i f
i

N
Sum x

n =

= ⋅∑  with ,1 ,2 ,f f f f Ln k k k= + + +…                        (7) 

The difference to n-out-of-N sampling is that here the number nf of packets from flow 
f in the sample does not necessarily follow a binomial distribution. The sample size k 
within the subinterval is always 1. The number kf of packets from flow f within this 
sample can be 0 or 1. The probability that kf is 1 (i.e., the selected packet belongs to 
flow f) depends on the total amount of packets from flow f in the subinterval Kf. 
Therefore kf can be considered as a Bernoulli distributed random variable with a 
probability of success pf=Kf/K. So the distribution of nf depends on those subinterval 
probabilities, which depend on the packets per flow in the subinterval. 

If all packets in the measurement interval belong to one flow (Nf=N), the standard 
error for stratified sampling can be calculated as follows [see [9], following  
equation 5.9]: 
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In the 1-in-K sampling implemented in NetFlow all strata have the same size 
(Kl=N/L) and only one packet is selected per stratum (kl=1). Furthermore, if Kl>>kl 
we can approximate Kl-kl≈Kl. With this we get  
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The accuracy depends on the number L of strata and on the packet size variances 2
,x lσ  

in the subintervals. 
If the packets in the measurement interval belong to different flows (Nf<N), one 

has to consider not only the distribution of packet sizes over the subintervals but also 
the distribution of flow IDs. The calculation of the standard error becomes more 
complex because the variances have to be calculated per strata. The standard error 
now depends on the per-flow characteristics (number of packets Kf, packet size 
variance 2

,fx lσ , and mean ,fx lμ ) within each subinterval.  
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3 To avoid confusion with the interval length N we call the scheme 1-in-K instead of 1-in-N. 
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The vigilant reader may miss the sampling parameters n and N in the formula. But for 
1-in-K sampling the population size N is formed by the stratum size K and the number 
of strata L (N=K*L). The sample size n equals the number of strata L. 

Theoretical Comparison of Schemes. A scheme provides a higher estimation 
accuracy if the standard error is smaller. That means 1-in-K sampling performs better 
if the following condition holds:  

                                         ˆ ˆ[ ] [ ]strat randStdErr Sum StdErr Sum<                                  (11) 

If we consider only one flow a stratification gain can be achieved if: 
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Since n=L, this can be simplified to. 
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That means we get a higher accuracy with 1-in-K sampling if the mean of the 
variances per subinterval (over all subintervals) is smaller than the variance within the 
whole measurement interval. 

For multiple flows the formula gets more complex, because per-flow 
characteristics need to be taken into account. With the formulas for the standard error 
for n-out-of-N and stratified sampling for case II we get: 
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In order to assess the accuracy for 1-in-K sampling one would need information about 
per flow characteristics for each subinterval. In contrast to n-out-of-N sampling those 
parameters cannot be approximated for 1-in-K sampling. 

4   Accuracy Assessment in Practice 

As we have seen we need the flow characteristics to calculate the accuracy. Since 
those are unknown, they have to be estimated from sampled values. A second 
problem is the amount of data that needs to be stored to provide an accuracy 
statement. Storing per-packet information results in too much data even if only 
sampled packets are stored. Therefore we here show how to calculate the accuracy 
from aggregated information. In addition we show how IPFIX Information Elements 
(IEs) can be utilized to export the required values needed for the accuracy assessment. 

Accuracy Assessment from Sampled Packets. With the sampling parameters, the 
number of the sampled packets and their packet sizes we can provide estimates for the 
relevant parameters for n-out-of-N sampling. 
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Using those estimates in formula (5) results in the following equation: 
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For 1-in-K sampling the assessment from sampled values is problematic. As can be 
seen from the formulas in section 3 we would need to estimate ,f lK , ,f lμ  and 2

,f lσ  per 

subinterval. Since we select only one packet per subinterval, it is not possible to 
calculate acceptable estimates for mean and variance. As a consequence we cannot 
provide a practical accuracy statement from the sampled values for 1-in-K sampling. 
In empirical investigations we have seen that for many flows the accuracy for 1-in-K 
is close to the n-out-of-N model with current packet size distributions. Therefore the 
n-out-of-N accuracy often provides a good approximation. 

Accuracy Assessment from Aggregated Information and IPFIX. Cisco currently 
stores for each flow the number nf of packets in the sample and the sum of packet 
sizes from the sampled packets. With these two values and the sampling parameters n 

and N, one can easily calculate the estimates ˆ
fN  and fx  ((15),(16)). But the 

calculation of the estimated variance 2

fxs  is not possible with the stored values. A 

calculation of 2

fxs  using (17) would require knowledge about all packet sizes in the 

sample.  In order to avoid the storage of all packet sizes from the sampled packets, 
one can use an alternative variance calculation based on the sum and the square sum 
of the selected packet sizes.  
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Sum and square sum can be updated when a packet is selected and the packet sizes 
themselves do not need to be stored. If we insert (19) into formula (18) one can easily 
derive the accuracy from the stored aggregated values (sum and square sum). We 
recommended the storage of the square sum to Cisco. It has been added as an 
information element to the flow information export protocol IPFIX [12], and therefore 
will be available in Cisco routers in future. Table 2 shows the IPFIX and PSAMP 
information elements ([11], [13]) that provide the required values for calculating an 
accuracy statement. 

If sampling is applied those values are calculate from the sampled packets and can 
be used to derive the required estimates. For count-based measurement intervals the 
number of packets in the measurement interval is preconfigured and can be reported 
with the samplingPopulation IE.  For time-based measurement intervals one can 
report the number by defining an IPFIX flow that comprises all packets on the link  
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Table 2. IPFIX/PSAMP Information Elements 

Parameter IPFIX/PSAMP IEs 
Number N of packets in measurement interval samplingPopulation 
Number n of packets in sample samplingSize 
Number of packets from flow f in sample packetTotalCount 
Sum (bytes in sampled packets) octetTotalCount 
Square sum (bytes in sampled packets) octetTotalSumOfSquares 

and use the packetTotalCount information element for this flow. An alternative is to 
use link packets counters from SNMP. 

5   Experiments 

We investigate the achievable accuracy for different schemes, classification rules and 
interval lengths with real traffic traces from 3 different networks. We show how many 
flows conform to given accuracy requirements.  

Traces. The first trace set is from a large European operator (denoted as OP). The 
second set we collected at CIRIL [17], a regional network provider that interconnects 
universities and research institutes with the French Research and Education Network 
RENATER. Measurements were taken on a 1 Gbit multimode Ethernet access link to 
the national research network. As a third source we used the 6 hour traces 
NZIX07m06d12h (NZIX1) and NZIX07m06d06h (NZIX2) from [14]. We performed 
experiments with two different classification schemes. S24D24 distinguishes flows 
with respect to source and destination network both with a 24 bit netmask. S24D00 
distinguishes flows only with respect to the source network. If packets of the same 
flow are observed in different measurement intervals they are counted as separate 
flows. Table 3 shows the number of flows observed for different classification rules 
and interval lengths (in number of packets). We use a letter per setting as identifier. 

Table 3. Trace Characteristics 

Setting Trace Size #packets Classification MI #flows 
A OP1 15 GB 122,800,288 S24D00 10M 852,593 
B OP1 15 GB  122,800,288 S24D24 10M 5,354,933 
C OP2 92 GB 766,071,712 S24D00 10M 69,001 
D CIRIL 2 GB 34,324,092 S24D00 10M 3,588,520 
E NZIX1 2 GB 65672186 S24D00 10M 8,569 
F NZIX2 39 GB 770,842,909 S24D00 10M 4,093 
G NZIX1 2 GB 65672186 S24D00 1M 79,383 
H NZIX1 2 GB 65672186 S24D24 1M 53,7138 

 
Fig. 1 (left) shows a summarized representation of all flows in the CIRIL trace 

(setting D). Each dot represents a flow. The dimensions are the three flow 
characteristics that are relevant for the estimation accuracy: number of packets, packet 
size mean and variance (represented by the standard deviation). With settings D the 
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trace contains 3,588,520 flows. The majority of flows are small. Only 4,624 flows 
consist of more than 200,000 packets (not shown in graph). The peak at the standard 
deviation of zero and small means is caused by flows with packets of equal sizes. 
Several flows consist of only one packet. Those also have a standard deviation of 
zero. For the other traces and settings we observed similar flow distributions. 
Especially the existence of a majority of small flows was observed for all traces. 

Conformance to Accuracy Requirements. First we calculate the achievable 
accuracy using the observed real flow characteristics and formula (6). Table 4 shows 
how many flows in the traces conform to given accuracy requirements for a sampling 
fraction of f=5%. The accuracy is given by the threshold t for the standard error. 

Table 4. Conformant Flows for n-out-of-N, f=5% 

Number of Conformant Flows for rel. StdErr ≤ t ID 
t=0.003876 t=0.005102 t=0.019380 t=0.025510 t=0.051020 

A 0 1 1330 3,316 25,746 
B 0 0 8 38 659 
C 2 5 30 66 310 
D 300 578 12,475 19,984 56,904 
E 0 0 63 98 425 
F 7 21 276 437 1,414 
G 0 0 64 72 421 
H 0 0 0 0 311 

 

Fig. 1. Setting D: All Flows (left) and Conformant Flows (right) 

Common accuracy requirements for accounting are a maximum relative error of 
0.01 or 0.05 with a confidence level of at least 95%. With a sampling fraction of 5% 
the achievable accuracy is too low for the vast majority of flows for all settings. Fig. 1 
(right) shows the flows conformant to StdErr ≤0.05. Only flows with a large number 
of packets Nf achieve an acceptable accuracy. 

Flow Conformance from Empirical Tests. In a second step we investigate the 
standard error empirically from sampling tests. For this we performed R=1,000 
sampling runs for each scheme. Table 5 shows the results from experiments with 
setting G and different schemes. 
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Table 5. Conformant Flows for Setting G (NZIX1, S24D00, f=5%) 

Max rel. StdErr Error/CL n-of-N 1-in-K Systematic 
0.003876 0.01/99% 0 0 0 
0.005102 0.01/95% 0 0 0 
0.019380 0.05/99% 64 64 62 
0.025510 0.05/95% 72 72 83 
0.051020 0.1/95% 473 475 567 
0.076531 0.15/95% 1406 1425 1580 
0.102041 0.2/95% 2316 2568 2860 
0.1531 0.3/95% 5146 5397 5799 
>0.1531 - 79383 79383 79383 

 
The numbers for n-out-of-N sampling correspond quite well to those derived from 

the formula Table 4. For 1-in-K sampling we get quite similar numbers. This is in line 
with previous tests we performed about the scheme differences. Systematic sampling 
performs a little bit better, but the standard errors in the tests differed much from 
those of n-out-of-N. A theoretical prediction is problematic. Again, only few flows 
get accuracies sufficient for accounting.  In order to achieve higher accuracies per 
flow one can increase the sample fraction, work with more coarse grained 
classifications or modify the measurement interval length. When modifying the 
measurement interval length it is relevant how flow characteristics evolve in order to 
assess the accuracy (see section 3).  

6   Conclusion 

We investigated the applicability of packet sampling to flow accounting.  We 
analyzed basic PSAMP schemes and a stratified scheme used in Cisco NetFlow and 
showed how the accuracy depends on flow parameters and measurement settings. 
Theoretical considerations were supplemented by experiments with traffic traces from 
three different networks. The accuracy for sampling before classification was very 
poor. The main reason is the high number of small flows in the traces. Longer 
observation periods, coarse grained classification or the aggregation of flows results 
in larger flows and higher accuracies. A further option is to use a biased flow 
selection based on the expected accuracy. In addition we showed how the accuracy 
can be derived from sampled values and aggregated information stored in routers 
during run-time. For this, Cisco has included the storage of the square sum of the 
packet sizes in NetFlow. 
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Appendix: Expectation and Variance for n-out-of-N Sampling 

The random variable xi,f denotes the packet size of the ith selected packet from flow f. 
Since a random selection is applied, we can assume that the xi,f are statistically 
independent. Since nf follows a binomial distribution, the expectation and variance of 
nf is given by formulas for a binomial distribution: 
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With these considerations, the task is reduced to the calculation of expectation and 
variance of a r.v. Z, where Z is the sum of independent identical distributed (i.i.d.) 
random variables X and the number of summands Y is a binomial distributed random 
variable. The expectation of such a r.v. is given in [15]. 
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With this the expectation of the estimated volume is calculated as follows: 
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The expectation of the estimate equals the real volume, i.e. the estimation is unbiased. 
A formula to calculate the variance for this special case, but for continuous random 
variables is derived in [16]. This formula can be also applied for discrete variables. 
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With this the variance of the estimated flow volume can be expressed as follows:  
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The relative standard error can be easily derived from the variance. 
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