

Lecture Notes in Computer Science 4979
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mark Claypool Steve Uhlig (Eds.)

Passive and Active
Network Measurement

9th International Conference, PAM 2008
Cleveland, OH, USA, April 29-30, 2008
Proceedings

13

Volume Editors

Mark Claypool
Worcester Polytechnic Institute
100 Institute Road, Worcester, MA, 01609-2280, USA
E-mail: claypool@cs.wpi.edu

Steve Uhlig
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: s.p.w.g.uhlig@ewi.tudelft.nl

Library of Congress Control Number: 2008924790

CR Subject Classification (1998): C.2, C.4, H.4, K.6.5

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-79231-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79231-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12257515 06/3180 5 4 3 2 1 0

Preface

The 2008 edition of the Passive and Active Measurement Conference was the
ninth of a series of successful events. Since 2000, the Passive and Active Mea-
surement (PAM) conference has provided a forum for presenting and discussing
innovative and early work in the area of Internet measurement. PAM has a
tradition of being a workshop-like conference with lively discussion and active
participation from all attendees. This event focuses on research and practical
applications of network measurement and analysis techniques. This year’s con-
ference was held in Cleveland, Ohio.

PAM2008’s call for papers attracted 71 submissions. Each paper was care-
fully reviewed by at least three members of the Technical Program Committee.
The reviewing process led to the acceptance of 23 papers. The papers were ar-
ranged into eight sessions covering the following areas: addressing and topology,
applications, classification and sampling, measurement systems and frameworks,
wireless 802.11, tools, characterization and trends, and malware and anomalies.

We are very grateful to Endace, Intel and Cisco Systems whose sponsoring
allowed us to keep low registration costs and also to offer several travel grants
to PhD students. We are also grateful to Case Western Reserve University for
sponsoring PAM as a host.

April 2008 Michael Rabinovich
Mark Claypool

Organization

Organization Committee

General Chair Michael Rabinovich (Case Western Reserve
University, USA)

Program Chair Mark Claypool (Worcester Polytechnic
Institute, USA)

Publication Chair Steve Uhlig (Delft University of Technology,
The Netherlands)

Program Committee

Mark Allman ICSI
Grenville Armitage Swinburne University of Technology
Surendar Chandra Notre Dame
Jae Chung Airvana
Wu-Chang Feng Portland State University
Wu-Chi Feng Portland State University
Paal Halvorsen University of Oslo
Manish Jain Telchemy
Simon Leinen Switch
Kang Li University of Georgia
Ibrahim Matta Boston University
Ketan Mayer-Patel University of North Carolina
Anees Shaikh IBM Research
Colleen Shannon CAIDA
Augustin Soule Thomson Research
Peter Steenkiste Carnegie Mellon University
Ooi Wei Tsang National University of Singapore
Steve Uhlig Delft University of Technology
Carey Williamson University of Calgary
Craig Wills Worcester Polytechnic Institute
Huahui Wu Google
Michael Zink University of Massachusetts

Steering Committee

Mark Allman ICSI
Nevil Brownlee University of Auckland
Mark Claypool Worcester Polytechnic Institute
Ian Graham Endace

VIII Organization

Konstantina Papagiannaki Intel Research Pittsburgh
Michael Rabinovich Case Western Reserve University
Matthew Roughan University of Adelaide
Steve Uhlig Delft University of Technology

Sponsoring Institutions

Endace
Cisco Systems
Intel Corp.
Case Western Reserve

Table of Contents

Addressing and Topology

The Flattening Internet Topology: Natural Evolution, Unsightly
Barnacles or Contrived Collapse? . 1

Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti

Assessing the Geographic Resolution of Exhaustive Tabulation for
Geolocating Internet Hosts . 11

S.S. Siwpersad, Bamba Gueye, and Steve Uhlig

Observations of IPv6 Addresses . 21
David Malone

Applications

The New Web: Characterizing AJAX Traffic . 31
Fabian Schneider, Sachin Agarwal, Tansu Alpcan, and
Anja Feldmann

Measurement and Estimation of Network QoS Among Peer Xbox 360
Game Players . 41

Youngki Lee, Sharad Agarwal, Chris Butcher, and Jitu Padhye

Evaluation of VoIP Quality over WiBro . 51
Mongnam Han, Youngseok Lee, Sue Moon, Keon Jang, and
Dooyoung Lee

Classification and Sampling

Packet Sampling for Flow Accounting: Challenges and Limitations 61
Tanja Zseby, Thomas Hirsch, and Benoit Claise

On the Validation of Traffic Classification Algorithms 72
Géza Szabó, Dániel Orincsay, Szabolcs Malomsoky, and István Szabó

Evaluation of Header Field Entropy for Hash-Based Packet
Selection . 82

Christian Henke, Carsten Schmoll, and Tanja Zseby

Measurement Systems and Frameworks

A Reactive Measurement Framework . 92
Mark Allman and Vern Paxson

X Table of Contents

Towards a High Quality Path-Oriented Network Measurement and
Storage System . 102

David Johnson, Daniel Gebhardt, and Jay Lepreau

On Community-Oriented Internet Measurement . 112
Mark Allman, Lann Martin, Michael Rabinovich, and
Kenneth Atchinson

Wireless 802.11

On the Effectiveness of Switched Beam Antennas in Indoor
Environments . 122

Marc Blanco, Ravi Kokku, Kishore Ramachandran,
Sampath Rangarajan, and Karthik Sundaresan

On the Fidelity of 802.11 Packet Traces . 132
Aaron Schulman, Dave Levin, and Neil Spring

Refocusing in 802.11 Wireless Measurement . 142
Udayan Deshpande, Chris McDonald, and David Kotz

Tools

Pathdiag: Automated TCP Diagnosis . 152
Matt Mathis, John Heffner, Peter O’Neil, and Pete Siemsen

SCUBA: Focus and Context for Real-Time Mesh Network Health
Diagnosis . 162

Amit P. Jardosh, Panuakdet Suwannatat, Tobias Höllerer,
Elizabeth M. Belding, and Kevin C. Almeroth

IMR-Pathload: Robust Available Bandwidth Estimation Under
End-Host Interrupt Delay . 172

Seong-Ryong Kang and Dmitri Loguinov

Characterization and Trends

A Measurement Study of Internet Delay Asymmetry 182
Abhinav Pathak, Himabindu Pucha, Ying Zhang,
Y. Charlie Hu, and Z. Morley Mao

Trends and Differences in Connection-Behavior within Classes of
Internet Backbone Traffic . 192

Wolfgang John, Sven Tafvelin, and Tomas Olovsson

Table of Contents XI

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise
End-Users . 202

Frédéric Giroire, Jaideep Chandrashekar, Gianluca Iannaccone,
Konstantina Papagiannaki, Eve M. Schooler, and Nina Taft

Malware and Anomalies

A Two-Layered Anomaly Detection Technique Based on Multi-modal
Flow Behavior Models . 212

Marc Ph. Stoecklin, Jean-Yves Le Boudec, and Andreas Kind

Malware in IEEE 802.11 Wireless Networks . 222
Brett Stone-Gross, Christo Wilson, Kevin Almeroth,
Elizabeth Belding, Heather Zheng, and Konstantina Papagiannaki

Author Index . 233

The Flattening Internet Topology:

Natural Evolution, Unsightly Barnacles or
Contrived Collapse?

Phillipa Gill1, Martin Arlitt1,2, Zongpeng Li1, and Anirban Mahanti3

1 University of Calgary, Calgary, AB, Canada
2 HP Labs, Palo Alto, CA, USA

3 IIT Delhi, Delhi, India

Abstract. In this paper we collect and analyze traceroute measure-
ments1 to show that large content providers (e.g., Google, Microsoft,
Yahoo!) are deploying their own wide-area networks, bringing their net-
works closer to users, and bypassing Tier-1 ISPs on many paths. This
trend, should it continue and be adopted by more content providers,
could flatten the Internet topology, and may result in numerous other
consequences to users, Internet Service Providers (ISPs), content
providers, and network researchers.

1 Introduction

Since its creation in 1969, the Internet has undergone several significant changes.
From its beginnings as a research network, the Internet evolved into a commer-
cial network by the mid-1990’s [5]. The emergence of “killer applications” such
as the World-Wide Web and Peer-to-Peer file sharing vastly expanded the Inter-
net user base [11]. For a variety of reasons, including the commercialization and
increased popularity of the Internet, it has become extremely difficult to make
ubiquitous changes to the Internet infrastructure. This has led to the emer-
gence of architectural barnacles [15], or ad hoc work-arounds for a variety of
architectural problems. Architectural purists argue that barnacles may provide
short-term relief to such problems, but over the long-term only exacerbate the
underlying issues [15].

In this paper we examine a new trend that is emerging at the infrastructure-
level of the Internet: large content providers are assembling their own wide-area
networks. This trend, should it become common practice, could result in signifi-
cant changes to the structure of the Internet as it exists today, and have numerous
ramifications for users, ISPs, content providers, and network researchers.

We find that companies such as Google, Yahoo!, and Microsoft, are deploying
large WANs. Google is leading the way, with a WAN infrastructure that covers
much of the U.S., and extends to Europe, Asia, and South America. Yahoo!
and Microsoft also have WANs covering the U.S., but do not (yet) extend to

1 Our data is available at the Internet Traffic Archive - http://ita.ee.lbl.gov/

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 P. Gill et al.

other regions of the world. These efforts may force other Internet companies to
follow suit, in order to remain competitive. For example, MySpace appears to
be partnering with Limelight Networks, a Content Delivery Network, to build
out a WAN for MySpace.

Our paper makes several contributions. First, we alert the network research
community to this emerging trend, as it may affect the assumptions used in
other studies. Second, we provide initial measurements on the number and size
of the networks already in place for some large content providers. Third, we
describe the potential implications of this trend, and discuss whether this is a
natural evolution of the Internet architecture, an unsightly barnacle which will
ultimately create additional problems, or a contrived attempt to disrupt the
balance of power among the providers of the Internet architecture.

2 Background

2.1 Internet Architecture

The Internet architecture has evolved throughout its history. Initially, a single
backbone network connected a small number of research networks, to enable re-
searchers to remotely access computing resources at other institutions [5]. In the
late 1980’s, commercial ISPs began to form, and by 1995 the backbone network
was completely transitioned to commercial operation [5]. This transformation
resulted in the current three-tiered organization of the Internet infrastructure:
backbone networks (Tier-1 ISPs), regional networks (Tier-2 ISPs), and access
networks (Tier-3 ISPs) [5,11]. Consumers and content providers access the In-
ternet via Tier-3 ISPs. A Tier-2 ISP connects a number of Tier-3 providers to the
Internet. The Tier-2 ISP peers with other Tier-2 ISPs to deliver their customer’s
traffic to the intended destinations. Tier-2 ISPs may also connect to some Tier-1
ISPs, to more directly reach a larger fraction of the Internet. There are only a
few Tier-1 ISPs. Tier-1 ISPs transit traffic for their customers (Tier-2 ISPs), for
a fee. Tier-1 ISPs peer with all other Tier-1 ISPs (and do not pay transit fees)
to form the Internet backbone [11].

2.2 Motivations for Change

There are a number of reasons why content providers may be motivated to
build their own wide-area networks, rather than utilize ISPs to deliver content
to users. Three broad categories are business reasons, technical challenges, and
opportunity. We discuss each in turn.

When the “dot-com bubble” burst (around 2000), many Internet companies,
including Tier-1 ISPs such as WorldCom, Genuity, and Global Crossing went
bankrupt [13]. This economic collapse [13] motivated surviving (and new) In-
ternet companies to increase their focus on “business essentials”, such as risk
mitigation and cost control. One risk mitigation strategy content providers may
employ is to reduce their dependencies on partners. This could avoid disrup-
tions in a content provider’s core business, if, for example, a partner declared

The Flattening Internet Topology 3

bankruptcy. Similarly, topics such as “network neutrality” may create uncer-
tainty for content providers, and hence motivate them to build their own WAN
infrastructures, to mitigate any possible or perceived risk. To control costs, a
company may look for ways to reduce or eliminate existing costs. One strategy
for content providers is to utilize settlement-free peering arrangements with ISPs,
rather than traditional (pay-for-use) transit relationships [14]. For large content
providers and small ISPs, peering can be a mutually beneficial arrangement.

Content providers may also be motivated to build their own WANs for tech-
nical reasons. For example, a content provider may wish to deploy a new “killer”
application, such as video-on-demand. Although many scalable video on-demand
delivery techniques exist, none have been widely deployed, owing to the lack of IP
multicast on the Internet. This limitation is due to the “Internet Impasse” [15];
this predicament makes it nearly impossible to adopt ubiquitous architectural
changes to the Internet that might improve security, enable quality-of-service or
IP multicast [16]. A private WAN could avoid this impasse, and give content
providers more control over their end-to-end application performance.

Some companies, such as Google, Yahoo!, and Microsoft, aim to provide “Soft-
ware as a Service” (SaaS), which will deliver functionality via the Web that was
previously only available through software installed on the user’s computer. In
response to the shift to SaaS, several companies are making multi-billion dollar
investments in infrastructure such as large data centers [6,12] and WANs. The
motivations for these investments likely span both the business and technical
categories described above.

Lastly, content providers may be motivated to build their own WANs because
of opportunities that arise. For example, due to the bursting of the “dot-com
bubble”, a content provider may be able to inexpensively obtain WAN infras-
tructure (e.g., installed fiber optic network links) from bankrupt ISPs.

3 Methodology

3.1 Data Collection

Our measurement of the popular content provider networks utilizes the
traceroute tool. traceroute is a tool that is commonly used to identify network
topology.

To determine the extent of content provider networks, we decided on the
following data collection methodology. First, identify a set of N popular content
providers. For each of these content providers, select an end-point (i.e., a server).
Next, select a set of M geographically-distributed nodes to issue traceroute
queries, to gather topology information. Lastly, issue N×M traceroute queries.
It is important to note that in this study we are only interested in identifying
the end points of content provider networks; we are not trying to measure the
end user experience, as this would require a different methodology (since end
user requests are typically redirected to nearby servers).

For this study, we collected a single snapshot of the networks of the 20 top con-
tent providers, as ranked by Alexa [1], by querying from 50 different traceroute

4 P. Gill et al.

Table 1. Top 20 Content Providers, as Identified by Alexa.com

1 www.yahoo.com 6 www.myspace.com 11 www.hi5.com 16 www.friendster.com
2 www.msn.com 7 www.orkut.com 12 www.qq.com 17 www.yahoo.co.jp
3 www.google.com 8 www.baidu.com 13 www.rapidshare.com 18 www.microsoft.com
4 www.youtube.com 9 www.wikipedia.org 14 www.blogger.com 19 www.sina.com.cn
5 www.live.com 10 www.facebook.com 15 www.megaupload.com 20 www.fotolog.net

servers. The 20 top content providers we used are listed in Table 1. We believe
this snapshot is sufficient for an initial view of these networks.

We resolve the hostnames of the popular sites only once, and only at a single
location (the University of Calgary). We believe this approach will prevent our
queries from being redirected to local instances of servers. Since our goal is to
understand the size of content provider networks, and not to measure the end-
user performance, we argue that our approach is reasonable.

Although we only selected 50 nodes to issue queries from, we selected the
locations of these nodes such that they are (potentially) biased in two ways:
towards the country in which the content provider is based; and towards areas
with higher concentrations of Internet users. We argue this is reasonable as we
expect content providers will expand their networks to areas with the largest
numbers of (potential) users first. At the time of our study (September 2007),
15 out of 20 of the top global sites listed by Alexa were U.S. based. As a result,
we selected 20 traceroute servers in the U.S. These servers were located in
20 different states, including the 10 most populous states. 18 of the U.S. based
traceroute servers are at commercial sites, and the other two are at universi-
ties. The remaining 30 traceroute servers were selected from countries around
the world. Although we intended to use the 30 countries with the most Internet
users, some of these countries do not have public traceroute servers. Instead,
we issued queries from two locations in Canada (a workstation at our university,
and a public traceroute server at another) and from 28 additional locations from
around the world, in countries which had working public traceroute servers
listed on traceroute.org. Overall, the 30 countries (including the U.S.) we se-
lected were among the top 40 countries in terms of most Internet users, according
to Internet World Stats [10]. The 30 countries we used account for an estimated
82.7% of all Internet users.

To keep the load on the 20 selected servers low, we issued only a single
traceroute query from each server to each destination, and only one query
at a time. Furthermore, we throttled the rate at which the queries were issued
(this is in addition to throttling done by some of the traceroute servers). Our
data collection occurred between September 27 and October 1, 2007. In future
work, we plan to collect data periodically, to understand rate of expansion of
content provider networks.

3.2 Data Analysis

In order to analyze the traceroute data, several challenges had to be over-
come. First, automating the parsing of the data was problematic. Among the
50 different traceroute servers there were 10 different output formats. Thus, a

The Flattening Internet Topology 5

parser was needed that could handle all of these. Second, the traceroute out-
put only contained a portion of the data of interest. This meant it was necessary
to find additional sources of data (e.g., IP address to organization mappings,
organization to Autonomous System (AS) number mappings, etc.) Lastly, there
were no obvious metrics for quantifying the size of the WAN of each content
provider; this meant a lot of manual inspection of the data was needed in order
to determine what the (automated) analysis should evaluate.

We overcame the first two challenges by developing a program to parse the
outputs of the various traceroute servers. This program extracts the sequence of
IP addresses for each of the traceroute queries. Once the sequence of IPs for a
traceroute query is extracted, additional data about each of the IPs is gathered.
First, the identity of the organization that registered the IP address is queried
from the regional Internet registries. Second, the AS number for the IP address is
resolved using an AS number lookup tool [21]. Gathering this extra information
increased the potential analyses that we could perform on the data. Specifically,
we were able to identify which of the hops in the traceroute path belonged to
Tier-1 ISPs using a list of the nine Tier-1 ISPs and their AS numbers [23].

We selected four metrics to facilitate the comparison of the content provider
networks, and to examine whether the Internet topology is flattening. We use the
average number of hops on Tier-1 networks as a measure of how involved such
ISPs are in the path. A related metric is the number of paths that involve no Tier-
1 ISPs. Our third metric, which we call degree, provides a conservative estimate
of the number of different ISPs a content provider is connected to. This examines
the AS number for the router that immediately precedes the first router belong-
ing to a content provider, on each distinct path. Lastly, we consider the number
of geographic locations in which a content provider’s routers appear to be located.
We acknowledge that all of these metrics have their shortcomings. For example,
it may not be meaningful to compare hop counts when examining differences in
the paths. Hu and Steenkiste [9] describe similar issues for identifying metrics
for comparing the similarity of end-to-end Internet routes. However, we believe
our metrics nevertheless provide some interesting insights. For example, with the
traditional Internet model we might expect popular content providers to peer ex-
clusively with a number of Tier-1 ISPs, to ensure global coverage with a minimal
number of exchanges on each end-to-end path. If, however, the Internet is flat-
tening, we might expect to see more extensive peering with lower tier ISPs.

4 Results

In our analysis we observe that some companies own multiple top 20 sites. Specif-
ically, we observe that Orkut and Blogger are both owned by Google, and traf-
fic for these sites is carried on Google’s network. We observe a similar trend for
the sites owned by Microsoft, namely MSN and Live. Paths for all four of these
subsidiary sites is carried on the same network as their parent companies, and
thus the results are very similar. As a result, we only consider one site for each
company when the traffic is carried on the same network. Therefore, for our results
we omit Orkut, Blogger, MSN and Live, and only show the results for Google and

6 P. Gill et al.

6

5

4

3

2

1

0
baidu

facebook

rapidshare

fotolog

qqm
yspace

wikipedia

friendster

youtube

hi5m
icrosoft

sina
google

yahoo.jp

yahoo

m
egaupload

A
ve

ra
ge

 H
op

s
on

 T
ie

r
1

IS
P

 0

 5

 10

 15

 20

 25

 30

 35

fotolog

rapidshare

facebook

friendster

baidu
m

yspace

youtube

qqsina
yahoo.jp

yahoo

wikipedia

hi5m
icrosoft

m
egaupload

google

R
ou

te
s

w
ith

 Z
er

o
T

ie
r

1
IS

P
s

 0

 5

 10

 15

 20

 25

 30

yahoo.jp

hi5wikipedia

facebook

youtube

m
egaupload

friendster

m
yspace

yahoo

google

m
icrosoft

O
bs

er
ve

d
D

eg
re

e

OrgID
AS

(a) (b) (c)

Fig. 1. Comparison of Network Paths to Top Sites: (a) Average Tier 1 Hops per Path;
(b) Number of Paths with No Tier 1 Hops; (c) Connectedness of Each Site

Microsoft, the parent companies.AlthoughGoogle has recently acquiredYouTube,
traffic for YouTube has not yet (completely) migrated to Google’s network. Thus
for our study, we consider YouTube separately from Google. Also, Yahoo! Japan
has a unique AS number, so we consider it separately from Yahoo!.

Figure 1 shows the results for three of our metrics. Figure 1(a) shows the average
number of hops on a Tier-1 network, for each of the sites. The most notable obser-
vation is that our traceroute probes traversed significantly more Tier-1 hops on
average for some sites than for others. The more established “big three” content
providers (Microsoft, Yahoo!, Google) were among those with the lowest averages.
Figure 1(b) shows the number of (traceroute) paths to each site that contained
no Tier-1 hops. For some content providers, including the “big three”, 60% (30
paths out of 50) or more contained no Tier-1 hops. Figure 1(c) examines the de-
gree of connectedness for each of the content providers that have their own AS
number. This graph reveals a clear distinction between the “big three” and the
other content providers. Our traceroute results show that Microsoft connect to
at least 24 different ASes, Google to at least 23, and Yahoo! to at least 18. The
next highest is MySpace, at only six. Some paths included IP addresses that we
were unable to map to an AS number. For these IP addresses only, we used the
organization identifier (OrgID) as retrieved from the corresponding Internet reg-
istry. This method enabled us to identify an additional three connection points for
Microsoft (27 in total), four for Google (27), and two for Yahoo! (20). The only
other content provider affected by this issue was Yahoo! Japan.

Figure 2 shows the geographic distribution of entry points into the WANs
of selected content providers. Figure 2(a) shows the location of entry points
across the U.S. The figure reveals that Microsoft, Google, and Yahoo! all have
networks that span the country. The entry points appear to be located (as one
would expect) in large centers where carrier hotels or Internet Exchanges exist.
Google has the most extensive (live) WAN of any of the content providers we
examined. Entry points into Google’s WAN are shown in Figure 2(b). Our probes
entered the Google network in 10 different North American cities, as well as four
European, two Asian, and one South American location.

Other than the “big three”, we did not detect any other content providers with
large network infrastructures. For example, we only saw Facebook connect

The Flattening Internet Topology 7

MySpace LimelightMySpace Limelight

Fig. 2. (a) Location of network end-points in the United States for selected content
providers. (b) Our measurement of Google’s current WAN.

to ISPs in the San Francisco Bay area. We did, however, observe several things
that suggest others are rolling out WAN infrastructures, in different ways. First,
MySpace is peered with ISPs in two separate locations (Los Angeles and Chicago),
and appears to partner with Limelight Networks, a Content Delivery Network, to
reach other locations. Of 14 probes we sent from European traceroute servers to
MySpace, eight entered the Limelight network in Europe (in Amsterdam, Frank-
furt, or London), which entered Limelight’s U.S. network in New York. Six other
probes from different locations traversed the Limelight network in the U.S., before
reaching MySpace. Second, YouTube (recently acquired by Google) appears to
peer with numerous ISPs around the U.S. (We also noticed signs that YouTube’s
traffic is migrating to Google’s infrastructure.)

5 Discussion

In this section we consider the potential ramifications of the identified trends.
We discuss these from the perspectives of content providers, users, and ISPs.

If content providers build extensive network infrastructures, they could reap a
number of benefits. In particular, they could gain greater control over network-
related issues that affect their business. They could deploy applications that
have been stymied by the “Internet Impasse”. For example, there are reports
that Google will deploy (or has deployed) computation and storage resources at
the edge of their network [4]. This could enable Google to provide true video
on-demand, and participate in the cable television market. Similarly, they would
reduce their reliance on external providers, who might wish to compete against
them. There are also many disadvantages. Perhaps the most significant is the
cost of deploying, operating and maintaining the infrastructure. Although a few
large content providers may have the funds to attempt this, it will be difficult
for a large number to follow. In addition, as large content providers move their
traffic off the (shared) Internet, small content providers may be faced with larger
bills, if ISPs need to recover lost revenues. These issues may lead other content
providers to re-examine cost/control tradeoffs; e.g., using VPNs rather than
deploying physical networks.

8 P. Gill et al.

Users could benefit from this trend in several ways. First, these “private”
networks may provide better quality of service than the existing Internet, since
the content providers could optimize their networks for the applications and
services they provide. Second, users may get access to new applications and
services much sooner than if they need to wait for a large number of ISPs to
agree on a common set of supporting technologies to deploy. Over the long term,
however, users could suffer if small content providers are unable to survive, as
creativity may be stifled and the variety of content may decrease as a result.

Tier-1 ISPs may notice the greatest changes from this trend. In particular,
if this trend becomes widely adopted, Tier-1 ISPs may need to adapt (e.g.,
vertically integrate, offer content services of their own, or implement new net-
work functionalities that content providers desire, such as IP multicast), or face
bankruptcy as revenue dries up. However, since large content providers are un-
likely to carry transit traffic, the need for Tier-1 ISPs may not disappear. In fact,
a possible (and counter-intuitive) side-effect of large content providers moving
their traffic to private networks is lower costs for Tier-1 ISPs, as they may not
need to increase the capacity of their networks as often (assuming large con-
tent providers are responsible for a significant fraction of the volume of Internet
traffic). At the “bottom” of the hierarchy, competing with the “last-mile” ISPs
(Tier-3) is unlikely to be attractive to content providers, as the last-mile is ex-
pensive to install, and the Return-On-Investment (ROI) relatively low. However,
nothing should be assumed; Google recently qualified to bid on wireless spectrum
in the United States, which could be interpreted as an initial step in providing
last-mile wireless Internet service.

Our data suggests that the Internet topology is becoming flatter, as large con-
tent providers are relying less on Tier-1 ISPs, and peering with larger numbers
of lower tier ISPs. Content providers are clearly exploring an alternative; only
time will determine if this “mutation” becomes the new “norm”, or an “abomi-
nation” which will eventually die off. However, this remains a hypothesis, as our
results provide only two certain answers: (1) several large content providers are
indeed deploying their own networks, and (2) it will be necessary to perform a
more rigorous and longitudinal study to determine whether this trend is a short
term barnacle (e.g., as inexpensive dark fiber disappears, will the trend end?),
a slow, but certain evolution of the Internet (e.g., if greater peering between
content providers and small ISPs occurs, the Internet topology could flatten), or
a contrived collapse (e.g., content providers cunningly defending their territory
against ISPs who wish to move into seemingly more profitable content services).

6 Related Work

Our interest in this topic was piqued by an article on a telecom news site [17].
This article stated that Google is building a massive WAN, and speculated that
other large “Internet players” are likely doing the same. Thus, we wanted to
determine if companies like Google have operational WANs, and if so, how large
they are.

The Flattening Internet Topology 9

We are not aware of any work that has examined this specific trend. However,
there are numerous prior works on tools, methodologies, or Internet topology
measurements that we leveraged, or could leverage in future work, to answer the
questions of interest to us. We describe some of the most relevant works below.

In this study we utilized traceroute; however, it has a number of known
weaknesses [5]. Tools such as tcptraceroute [22] or Paris Traceroute [2] could
be used in conjunction with PlanetLab to address these known limitations of
traceroute. Sherwood and Spring propose additional methods for addressing
these weaknesses [18].

The closest work to our own is Rocketfuel, which created router-level ISP
topology maps [19]. A key difference is their paper focused on mapping the net-
work topologies for specific ISPs, while we are interested in the network topolo-
gies for specific content providers. Spring et al. also proposed scriptroute, a sys-
tem to conduct network measurements from remote vantage points [20]. Given
the similarity in objectives, we will likely revisit Rocketfuel and scriptroute in the
future. Additionally, scalability and efficiency of collection will be important for
larger and repeated data collection efforts. Donnet et al. [8] and Dimitropoulos et
al. [7] have investigated these issues for topology discovery.

A number of papers have discussed the need to evolve the Internet architec-
ture, and proposed ways in which change could be enabled within the current
(static) architecture [3,15,16]. In this paper, we examine a change that is occur-
ring in the Internet architecture. Depending on how this change is viewed (e.g.,
is it a fundamental shift, or just an unsightly barnacle), it may be necessary to
revisit the predictions of what the future Internet will look like.

7 Conclusions

In this paper, we utilized an active measurement (traceroute-based) approach
to demonstrate that large content providers are deploying their own WANs.
We show that established companies such as Google, Microsoft, and Yahoo!
already have sizable WAN infrastructures, and find that some smaller (but very
popular) content providers appear to be following their lead. While there are
many possible motivations for this trend, we believe it is more important to
consider the potential ramifications. Specifically, it could alter the way in which
the Internet operates, either (eventually) eliminating the need for Tier-1 ISPs,
or forcing such ISPs to evolve their businesses. Network researchers also need
to understand whether this is a long or short term trend, as it will affect the
importance of research topics.

Significant work remains to be done on this topic. Increasing the breadth of
the study, conducting a longitudinal study, and considering alternative metrics
are some of the dimensions of our future work.

Acknowledgements. The authors greatly appreciate the providers of the pub-
lic traceroute servers as well as the feedback of Bala Krishnamurthy, Dejan
Milojicic, Jeff Mogul, Carey Williamson and the anonymous reviewers.

10 P. Gill et al.

References

1. Alexa’s Top 500 Sites, http://www.alexa.com/site/ds/top 500
2. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Latapy, M., Teixeira, R.:

Avoiding Traceroute Anomalies with Paris Traceroute. In: Internet Measurement
Conference, Rio de Janeiro, Brazil (2006)

3. Clark, D., Wroclawski, J., Sollins, K., Braden, R.: Tussle in Cyberspace: Defining
Tomorrow’s Internet. In: ACM SIGCOMM, Pittsburgh, PA (2002)

4. Cringely, R.: Google-Mart: Sam Walton Taught Google More About How to Dom-
inate the Internet than Microsoft Ever Did (November 17, 2005),
http://www.pbs.org/cringely/pulpit/2005/pulpit 20051117000873.html

5. Crovella, M., Krishnamurthy, B.: Internet Measurement: infrastructure, traffic &
applications. Wiley & Sons, Ltd., West Sussex, England (2006)

6. Data Center Knowledge Web site, http://www.datacenterknowledge.com/
7. Dimitropoulos, X., Krioukov, D., Riley, G.: Revisiting Internet AS-level Topology

Discovery. In: Passive and Active Measurement, Boston, MA (2005)
8. Donnet, B., Friedman, T., Crovella, M.: Improved Algorithms for Network Topol-

ogy Discovery. In: Passive and Active Measurement, Boston, MA (2005)
9. Hu, N., Steenkiste, P.: Quantifying Internet End-to-End Route Similarity. Passive

and Active Measurement, Adelaide, Australia (2006)
10. Internet World Statistics (statistics from June 30, 2007),

http://www.internetworldstats.com/
11. Kurose, J., Ross, K.: Computer Networking: A Top Down Approach. Addison

Wesley, Boston, MA (2008)
12. Mehta, S.: Behold the server farm. Fortune magazine (July 26, 2006),

http://money.cnn.com/2006/07/26/magazines/fortune/futureoftech
serverfarm fortune/

13. Norton, W.: The Evolution of the U.S. Internet Peering Ecosystem. Equinox White
Paper (2003)

14. Norton, W.: A Business Case for ISP Peering. Equinox White Paper (2001)
15. Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet Impasse through

Virtualization. IEEE Computer (April 2005)
16. Ratnasamy, S., Shenker, S., McCanne, S.: Towards an Evolvable Internet Archi-

tecture. In: ACM SIGCOMM, Philadelphia, PA (August 2005)
17. Raynovich, R.: Google’s Own Private Internet,

http://www.lightreading.com/document.asp?doc id=80968
18. Sherwood, R., Spring, N.: Touring the Internet in a TCP Sidecar. In: Internet

Measurement Conference, Rio de Janeiro, Brazil (2006)
19. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP Topologies with Rocketfuel.

In: ACM SIGCOMM, Pittsburgh, PA (August 2002)
20. Spring, N., Wetherall, D., Anderson, T.: Scriptroute: A Public Internet Measure-

ment Facility. In: USENIX Symposium on Internet Technologies and Systems
(USITS), Seattle, WA (March 2003)

21. Team Cymru IP to ASN Lookup page,
http://www.cymru.com/BGP/asnlookup.html

22. Toren, M.: tcptraceroute, http://michael.toren.net/code/tcptraceroute/
23. Wikipedia article, Tier 1 network,

http://en.wikipedia.org/wiki/Tier 1 network

http://www.alexa.com/site/ds/top_500
http://www.pbs.org/cringely/pulpit/2005/pulpit_20051117000873.html
http://www.datacenterknowledge.com/
http://www.internetworldstats.com/
http://money.cnn.com/2006/07/26/magazines/fortune/futureoftech_serverfarm_fortune/
http://money.cnn.com/2006/07/26/magazines/fortune/futureoftech_serverfarm_fortune/
http://www.lightreading.com/document.asp?doc_id=80968
 http://www.cymru.com/BGP/asnlookup.html
http://michael.toren.net/code/tcptraceroute/
http://en.wikipedia.org/wiki/Tier_1_network

Assessing the Geographic Resolution of Exhaustive
Tabulation for Geolocating Internet Hosts

S.S. Siwpersad1, Bamba Gueye2, and Steve Uhlig1

1 Delft University of Technology, The Netherlands
mail@swiep.com, S.P.W.G.Uhlig@ewi.tudelft.nl

2 Université de Liège, Belgium
cabgueye@ulg.ac.be

Abstract. Geolocation of Internet hosts relies mainly on exhaustive tabulation
techniques. Those techniques consist in building a database, that keeps the map-
ping between IP blocks and a geographic location. Relying on a single location
for a whole IP block requires using a coarse enough geographic resolution. As
this geographic resolution is not made explicit in databases, we try in this paper
to better understand it by comparing the location estimates of databases with a
well-established active measurements-based geolocation technique.

We show that the geographic resolution of geolocation databases is far coarser
than the resolution provided by active measurements for individual IP addresses.
Given the lack of information in databases about the expected location error
within each IP block, one cannot have much confidence in the accuracy of their lo-
cation estimates. Geolocation databases should either provide information about
the expected accuracy of the location estimates within each block, or reveal infor-
mation about how their location estimates have been built, unless databases have
to be trusted blindly.

Keywords: geolocation, exhaustive tabulation, active measurements.

1 Introduction

Location-aware applications have recently become more and more widespread. Exam-
ples of such applications comprise targeted advertising on web pages, displaying local
events and regional weather, automatic selection of a language to first display content,
restricted content delivery following regional policies, and authorization of transactions
only when performed from pre-established locations. Each application may have a dif-
ferent requirement on the resolution of the location estimation. Nevertheless, as IP ad-
dresses are in general allocated in an arbitrary fashion, there is no strict relationship
between an IP address and the physical location of the corresponding physical interface.

Database-driven geolocation usually consists of a database-engine (e.g. SQL/
MySQL) containing records for a range of IP addresses, which are called blocks or
prefixes. When coupled with a script embedded in a website and upon a client access to
the website being detected, a request can be sent instantly to the database. This request
can be to check if the IP address has an exact or longest prefix match (LPM) with a cor-
responding geographic location and coordinate. Since there is no actual measurement

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 11–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 S.S. Siwpersad, B. Gueye, and S. Uhlig

involved but merely a simple lookup, the request can be served in a matter of millisec-
onds. The expected time for which a website should be fully loaded, without causing
any nuisance, is in general within one second. Most commercial database providers
offer highly optimized scripts as well as abundantly documented application program-
ming interfaces, which meet this short expected response time. The database-driven
geolocation thus seems to be a useful approach.

Examples of geolocation databases are GeoURL [1], the Net World Map project [2],
and free [3] or commercial tools [4, 5, 6, 7, 8, 9]. Exhaustive tabulation is difficult to
manage and to keep updated, and the accuracy of the locations is unclear. In practice
however, most location-aware applications seem to get a sufficiently good geographic
resolution for their purposes.

In this paper, we try to better understand the resolution of geolocation databases, by
comparing their location estimates with a well-known active measurements-based ge-
olocation technique, CBG [10]. We show that, as expected, the geographic resolution
of databases is far coarser than the resolution provided by active measurements, typi-
cally several times coarser than the confidence given by active measurements. As most
geolocation databases do not give confidence in the accuracy of their location records,
they are likely not to be trustworthy sources of geolocation information if precise IP
address-level locations are required. Applications that require as much accuracy as pos-
sible would thus typically have to rely on active measurements, not databases. To im-
prove the quality of current geolocation databases, we believe that the database records
should contain information about the expected confidence in the location estimates.

The remainder of the paper is structured as follows. Section 2 introduces the datasets
used. Section 3 studies the geographic resolution of databases. Section 4 describes our
active measurements for geolocating Internet hosts. In Section 5, we compare the reso-
lution of active measurements with location estimates from databases. Finally, we con-
clude in Section 6.

2 Datasets

During the past few years, a growing number of companies have spent a lot of effort
in creating databases for geolocation purposes. Most of these companies, like Max-
mind [11], Hexasoft [8] and Quova [9], provide commercially available databases with
periodic updates. There are also freely available databases such as Host IP [3].

One of the problems of geolocation databases is that typically one does not know
much about the methodology used by the database provider to gather their geographic
information. One has to blindly rely on the claimed geographic resolution they provide.
There are four basic geographic resolution levels that occur in most databases: zipcode,
city, country and continent. Note that some databases may use more resolutions than
those four, like regions that may relate to countries, continents, or some intermediate
resolution. In most instances, we expect that the zipcode and the city granularity will be
very similar. The country resolution is widely recognized to be the typical one that is re-
liable from databases. Many databases do not give any information about the expected
geographic resolution of the database records, and when they do, not all records do
contain this information. The price of commercial databases increases with improved

Assessing the Geographic Resolution of Exhaustive Tabulation 13

geographic resolution, or with additional information about attributes of IP blocks like
ISP, connection type of hosts, and in a single instance confidence about the location es-
timates. Note that we know one example of geolocation database that provides a notion
of confidence related to the uncertainty about where the end-user actually lies compared
to the location estimate [9]. This notion of confidence is however not quantitative, i.e.
it does not express how far an IP address belonging to the IP block is expected to be
from the location estimate provided, rather the type of host or connection that the host
is using.

In the sequel of this paper, we restrict our attention to two databases. These com-
mercial databases, GeoIP by Maxmind [11] and IP2Location by Hexasoft [8], are used
because of their popularity (see [11, 8] for a listing of some of their customers) and
their expected reliability. The number of IP blocks and the coverage in IP addresses of

Table 1. Overview of the 2 selected databases

Database Public blocks Special blocks Total blocks Public addresses Total addresses

Maxmind 3,278,391 2 3,278,393 2,322,257,277 2,355,811,965
Hexasoft 5,111,309 44 5,111,353 3,991,797,760 4,294,967,296

the two databases is shown in Table 1. Maxmind contains more than 3 million blocks,
and Hexasoft more than 5 million blocks. Note that a few blocks, called special blocks
according to RFC3330 [12], should not be considered.

3 Geographic Resolution of Databases

Based on the information provided in the geolocation databases, it is hard to say any-
thing about the actual geographic resolution of the location estimates. We merely know
that most records contain either a city or a country name. 73.1% of the databases records
in Maxmind contain a city name (66.6% for Hexasoft), then if no city name can be
found, 3.4% of the records contain a country name (33.2% for Hexasoft). When nei-
ther a city name nor a country name is present in the record, a continent name or a
federation of countries will typically be found. Note that sometimes records contain ge-
ographic coordinates only. While the area of countries and continents are well-defined,
the area of a city depends much on what is meant by the boundaries of the considered
city. For example, taking the largest 250 cities in the world1 shows well how much the
area of a city can vary, especially depending on whether the suburbs or the ”metro” area
are considered to be part of the city or not.

When we analyze the number of unique cities in both Maxmind and Hexasoft, we
obtain 110, 349 unique cities in Maxmind and 15, 133 in Hexasoft. 100, 087 cities in
Maxmind occur each in a single IP block (12, 918 for Hexasoft), and 10, 262 cities
occur each in multiple IP blocks (2, 215 in Hexasoft). When several IP blocks have
the same city information, they will have the same location estimate in the database.
Note that a city is defined by a city name, but also a country and a continent when this

1 http://www.citymayors.com/statistics/largest-cities-area-250.
html

http://www.citymayors.com/statistics/largest-cities-area-250.html
http://www.citymayors.com/statistics/largest-cities-area-250.html

14 S.S. Siwpersad, B. Gueye, and S. Uhlig

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 IP

 a
dd

re
ss

es

Distance (Km)

Matching city names
Total
Non-matching city names

Fig. 1. Difference in location between Maxmind and Hexasoft

information is available in the databases. Some city names occur in several countries
and/or continents. When we compare the occurrence of unique city names (string-wise),
we observe that among a total of 7, 844 unique city names present in the databases,
7, 618 are present in one database only, and 226 are in both.

In geolocation databases, a unique location is associated to a given city. It is thus im-
possible to infer directly the geographic resolution used by the databases by comparing
the location estimates of different IP blocks for a given city. However, we can compare
the location estimates from Maxmind and Hexasoft, hoping that the difference between
their location estimates will give us an indication of their geographic resolution. We rely
on a free database, Host IP [3], that contains 1, 356, 506 IP blocks, to perform lookups
in the two other databases. For each IP block of Host IP, we take an IP address and use
it to lookup the two databases. We then compute the difference between the two loca-
tion estimates returned by the databases. Figure 1 displays the cumulative distribution
of the distance between the locations given by the two databases when performing a
lookup on IP addresses from the Host IP database. We provide three different curves,
one for the distribution of the distance when the city strings match between Maxmind
and Hexasoft, when they do not match, and irrespective of the city-level match. Among
the 1, 264, 892 IP addresses looked up, 377, 736 have the same city-level name in the
databases, while 887, 156 do not have matching city names. We see on the curve that
corresponds to matching cities that the difference in location between the databases
tends to be far smaller than when the city names do not match. Depending on whether
the city names match between the two databases entries, the typical distance between
their location estimates differs much. When the IP blocks from the two databases have
the same city name information, their locations are very close, typically less than 10Km.
When the city names do not match on the other hand, the locations differ more than
usual. Globally, about 50% of the IP lookups give a difference smaller than 100Km. If
the differences observed between the databases were to reflect in some way differences
in geographic resolutions used by them, then we would deduce that those resolutions
go from 1Km up to thousands of Km.

Assessing the Geographic Resolution of Exhaustive Tabulation 15

4 Measurements-Based Geolocation

Given that we cannot obtain the actual geographic location of many IP addresses in the
Internet, we need to rely on location estimates. To obtain location estimates for a large
enough number of IP hosts, we need accurate location estimates. For this, we rely on
active measurements. Active measurements have the advantage of providing an explicit
estimate of their accuracy.

Previous works on measurement-based geolocation of Internet hosts [13,14] use the
positions of reference hosts, called landmarks, with a well-known geographic location
as the possible location estimates for the target host. This leads to a discrete space of an-
swers; the number of answers is equal to the number of reference hosts, which can limit
the accuracy of the resulting location estimation. This is because the closest reference
host may still be far from the target. To overcome this limitation, the authors of [10] pro-
pose the Constraint-Based Geolocation (CBG) approach, which infers the geographic
location of Internet hosts using multilateration. Multilateration refers to the process of
estimating a position using a sufficient number of distances to some fixed points. As
a result, multilateration establishes a continuous space of answers instead of a discrete
one. This multilateration with distance constraints provides an overestimation of the
distance from each landmark to the target host to be located, thus determining a region,
i.e. confidence region, that hopefully encloses the location of the target hosts [10]. For
instance, the confidence region allows a location-aware application to assess whether
the estimate is sufficiently accurate for its needs.

Although showing relatively accurate results in most cases, these measurement-
based approaches may have their accuracy disturbed by many sources of distortion that
affect delay measurements. For example, delay distortion may be introduced by the cir-
cuitous Internet paths that tend to unnecessarily inflate the end-to-end delay [15,16,17]
and by the potential existence of bottleneck links along the paths. To deal with these
sources of distortion, GeoBuD, Octant, and TBG were proposed by [18, 19, 20]. The
GeoBuD technique shows that estimating buffering delays, by traceroute measure-
ments, at intermediate hops along the traceroute path between a landmarks and a target
host enables to improve the accuracy of geolocation of Internet hosts. In the same way,
Topology-Based Geolocation (TBG) and Octant which are an extension of multilatera-
tion techniques with topology information were proposed. TBG additionally uses inter-
router latencies on the landmark to target network paths to find a physical placement of
the routers and target that minimizes inconsistencies with the network latencies. TBG
relies on a global optimization that minimizes average position error for the routers
and target. Octant differs from TBG by providing a geometric solution technique rather
than one based on global optimization. Although it considers intermediate routers as
additional landmarks, Octant also uses geographic and demographic information. Geo-
graphic and demographic constraints are used in Octant to reduce the region size where
the target may be located. Only landmasses and areas with non-zero population are
considered as possible target locations [19]. Furthermore, it takes into account queuing
delays by using height as an extra dimension. It requires significantly computational
time and resources. All these techniques generate a huge amount of overhead in the
network for a small gain in accuracy.

16 S.S. Siwpersad, B. Gueye, and S. Uhlig

To illustrate the marginal improvement of complex measurement-based geolocation
techniques, we do not only consider CBG, but also add to it estimation of the bottle-
neck bandwidth on the path. The bottleneck bandwidth can be defined as the maximum
throughput that is ideally obtained across the slowest link over a network path. CBG
with bandwidth estimation allows the improvement of the geolocation estimation given
by CBG. Additional delay distortions caused by the bottleneck along the path are re-
moved from the overestimations of distance constraints that define the region enclosing
the target host in CBG, allowing tighter overestimations that result in a smaller re-
gion. Smaller regions that still enclose the target host provide a more accurate location
estimation.

4.1 CBG with Bandwidth Estimation

To estimate the bottleneck bandwidth over a network path between each landmark and
a given target host, we use SProbe [21]. SProbe estimates bottleneck bandwidth in un-
cooperative environments, i.e. a measurement software is only deployed locally on the
measurement host. SProbe relies on the exploitation of the TCP protocol. It sends two
SYN packets to an inactive port on the remote host to which it appends 1460 bytes of
data. Since the port is inactive, the remote host answers to these packets with two RST
packets of 40 bytes each. For the native traceroute used by Octant, TBG, and GeoBuD,
three packets are sent to each intermediate hops between a source and a destination
causing an important overhead. SProbe produces accurate and fast estimates using little
amount of probing data, so that it can scale to a large number of estimates.

For our evaluation, we rely on 39 PlanetLab nodes [22] as landmarks and we use
a subset of the two commercial databases (Maxmind and Hexasoft) as input for hosts
to be localized. Each landmark estimates the bottleneck bandwidth towards a given
target host by sending 7 SYN packets. We found in Section 3 that there are 226 city
names that are unique and can be found in both databases. Using these city names
we find 41, 797 IP blocks from Maxmind matching those city names. Since we need
”pingable” addresses within each IP block to be used in measurements, we use the
single ping approach to find at least one IP address per block. The single ping approach
consists in brute-force probing all IPs within a prefix, and stopping the probing within
the prefix as soon as a single IP address has answered. We find 18, 805 IP blocks which
have at least one pingable IP address for Maxmind. For the Hexasoft database, we
have 41, 758 IP blocks among which 15, 823 contain at least one pingable IP address.
Using the set of pingable addresses, Figure 2 presents the cumulative distribution of
the confidence region in km2 for location estimates in both the Maxmind and Hexasoft
databases. Figure 2(a) shows that CBG with bandwidth estimation assigns a confidence
region with a total less than 104 km2 for about 20% of the location estimates, whereas
the basic CBG has only 10% for the same confidence region. For IP addresses that
are given a confidence region between 104 km2 and 106 km2, bandwidth estimation is
less and and less useful. Finally, when the confidence region is larger than 106 km2,
bandwidth estimation is useless, or even makes the confidence region larger than the
classical CBG technique.

Measurement-based geolocation techniques assume that the target host is able to
answer measurements. Active measurements will be impractical when we rely on ICMP

Assessing the Geographic Resolution of Exhaustive Tabulation 17

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Area log10(km2)

CBG with bandwidth estimation
Basic CBG

(a) CBG using the Maxmind dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Area log10(km2)

CBG with bandwidth estimation
Basic CBG

(b) CBG using the Hexasoft dataset

Fig. 2. Confidence region

echo probes for instance, which can be filtered by a firewall. We observe that for most
IP blocks, we get only a few IP addresses that answer our probes, typically only one.

5 Comparison Between Databases and Active Measurements

Having discussed the geographic resolution of geolocation databases in Section 3 and
presented the confidence area obtained with active measurements in Section 4, we use
the active measurements introduced in Section 4 to check the resolution of geolocation
databases. When comparing geolocation based on active measurements and databases,
several situations may occur. One possibility is when databases and active measure-
ments give the same location for an IP address, i.e. databases give a location that lies
within the confidence region given by active measurements. This situation is not typi-
cal, given the coarse geographic resolution of database records. When location estimates
from the databases do not belong to the confidence region provided by active measure-
ments, we would tend to doubt the accuracy of databases rather than expecting that the
confidence region suffers from measurements biases, as the confidence region is made
from higher bounds on the distance constraints.

Let us now measure the distance between the border of the confidence region given
by CBG and the location estimates of the databases. If CBG is correct in its estimation
of the location, then this distance should provide a lower bound on the actual geolo-
cation error made by the database. Figure 3 shows the cumulative distribution of the
minimal distance between the location estimates of the Maxmind dataset (results for
Hexasoft are similar) and the border of the confidence region given by CBG, with and
without using bandwidth estimation. This minimal distance first tells whether the loca-
tion estimates from databases are within the confidence region or not. If the distance
is negative on Figure 3, it means that databases are within the confidence region. If
the confidence region is small and the location estimate of the database lies within the
confidence region, then we expect that it is likely that the database estimate is correct.
We observe on Figure 3 that more than 90% of the probed IP addresses have a database
location estimate that lies outside the confidence region, and quite far away from it.
Note that in a few cases the distance on Figure 3 is negative and large, meaning that the
confidence region is pretty large.

18 S.S. Siwpersad, B. Gueye, and S. Uhlig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-4000 -2000 0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

of
 IP

 a
dd

re
ss

es

Distance (Km)

CBG with bandwidth estimation
CBG without bandwitdth estimation

Fig. 3. Distance between the database results and the border of the CBG confidence region (Max-
mind dataset)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100 1000

P
er

ce
nt

ag
e

of
 IP

 a
dd

re
ss

es

Ratio between Maxmind and CBG locations

CBG with bandwidth estimation
CBG without bandwidth estimation

Fig. 4. Ratio of the distance of the databases to the distance of CBG with respect to the CBG
location estimate (Maxmind dataset)

The large distances shown in Figure 3 suggest that the geographic resolution of
databases is poor, compared to the confidence region given by CBG. To quantify the rel-
ative resolution of databases compared to the confidence region given by CBG, we plot
in Figure 4 the ratio of the difference between the CBG estimate and the locations given
by the Maxmind dataset (results for Hexasoft are similar), divided by the uncertainty in
the CBG estimate (radius of the confidence region). Let us denote the location given
by CBG by loccbg(IP), the radius of CBG’s confidence region by radiuscbg(IP),
and the location given by a database by locdatabase(IP), then the ratio we compute
is | locdatabase(IP)−loccbg(IP)

radiuscbg(IP) |. A ratio smaller than 1 means that the location estimate
given by the database is within the confidence region. In this case, we would tend to

Assessing the Geographic Resolution of Exhaustive Tabulation 19

trust the location estimate given by the database. A ratio larger than 1 means that the
location estimate given by the database lies outside the confidence region. In that case,
it is likely that the geographic resolution of the database is too coarse to give an accurate
location estimate for the considered IP address. We observe on Figure 4 that the ratio
is typically far larger than 1, meaning that the geographic resolution of the databases
compared to the confidence in the active measurements estimates is poor, relative to
the confidence region of CBG. For only less than 10% of the probed IP addresses, the
databases have a good enough geographic resolution to make them comparable to the
accuracy of active measurements. Note that those results do not suggest that location
estimates provided by databases are incorrect, but rather that the geographic resolution
at which databases give mappings from IP blocks to locations are too coarse to provide
accuracy at the level of individual IP addresses.

6 Conclusion

In this paper, we assessed the geographic resolution of geolocation databases. We de-
scribed the typical content of such databases, showing that they do not contain informa-
tion to give confidence in the expected accuracy of their location estimates. We illustrated
the relative coarse resolution databases provide, by showing how large the span of cities
is, and how much the location estimates differ between the considered databases.

We carried out active measurements in order to compare the geographic resolution
of databases to a more accurate standard. We quantified the accuracy of active measure-
ments, and tried to improve them by adding bandwidth measurements to reduce the bias
from bottleneck links.

Our comparison of the active measurements and the location estimates from the
databases demonstrated the coarse geographic resolution of databases location esti-
mates. We showed that not only the distance between the location estimate of the
databases and the location given by active measurements is very large, but that also
difference between the database location estimates from the active measurements esti-
mates, divided by the accuracy expected from the active measurements, is very large.

Our work shows that the geographic resolution of geolocation databases is coarse
compared to the one of active measurements. That does not mean that the location es-
timates given by databases are not good enough. Information about the geographic res-
olution of the databases can be embedded in them, for example by giving an estimate
of the city-level span for each record. In general, we do not expect that active measure-
ments will be so helpful to improve the geographic resolution of geolocation databases,
simply because databases work at the level of IP blocks. However, in particular cases
where better accuracy is required for specific IP addresses, active measurements have
great potential to provide better location estimates than databases.

Acknowledgments

Bamba Gueye is supported by the IST ANA project.

20 S.S. Siwpersad, B. Gueye, and S. Uhlig

References

1. GeoURL, http://www.geourl.org/
2. Net World Map, http://www.networldmap.com/
3. Host ip, http://www.hostip.info/
4. Digital Island Inc, http://www.digitalisland.com/
5. Akamai Inc, http://www.akamai.com/
6. GeoNetMap, http://www.geobytes.com/GeoNetMap.htm
7. WhereIsIP, http://www.jufsoft.com/whereisip/
8. Ip2location, Hexasoft Development Sdn. Bhd, http://www.ip2location.com/
9. GeoPoint, http://www.quova.com/

10. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of internet
hosts. IEEE/ACM Trans. Netw. 14(6), 1219–1232 (2006)

11. MaxMind LLC, MaxMind, http://www.maxmind.com
12. IANA, Special-use IPv4 addresses, Tech. Rep., Internet RFC 3330 (September 2002),

http://www.rfc-editor.org/rfc/rfc3330.txt
13. Ziviani, A., Fdida, S., de Rezende, J.F., Duarte, O.C.M.B.: Improving the accuracy of

measurement-based geographic location of Internet hosts. Computer Networks 47(4), 503–
523 (2005)

14. Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping techniques
for Internet hosts. In: Proc. of ACM SIGCOMM, San Diego, CA, USA (August 2001)

15. Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D.: The impact of routing policy on
internet paths. In: Proc. of IEEE INFOCOM, Anchorage, AK, USA (April 2001)

16. Subramanian, L., Padmanabhan, V., Katz, R.: Geographic properties of Internet routing. In:
Proc. USENIX, Monterey, CA, USA (June 2002)

17. Zheng, H., Lua, E.K., Pias, M., Griffin, T.: Internet Routing Policies and Round-Trip-Times.
In: Proc. of PAM Workshop, Boston, MA, USA (April 2005)

18. Gueye, B., Uhlig, S., Ziviani, A., Fdida, S.: Leveraging buffering delay estimation for ge-
olocation of Internet hosts. In: Proc. IFIP Networking Conference, Coimbra, Portugal (May
2006)

19. Wong, B., Stoyanov, I., Gün Sirer, E.: Geolocalization on the internet through constraint
satisfaction. In: Proceedings of the 3rd conference on USENIX Workshop on Real, Large
Distributed Systems

20. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T., Chawathe, Y.:
Towards ip geolocation using delay and topology measurements. In: Proc. of ACM SIG-
COMM Internet Measurement Conference, Rio de Janeiro, Brazil (October 2006)

21. Saroiu, S., Gummadi, P.K., Gribble, S.D.: Sprobe: A fast technique for measuring bottleneck
bandwidth in uncooperative environments. In: Proc. of IEEE INFOCOM, New York, NY,
USA (June 2002)

22. PlanetLab: An open platform for developing, deploying, and accessing planetary-scale ser-
vices (2002), http://www.planet-lab.org

http://www.geourl.org/
http://www.networldmap.com/
http://www.hostip.info/
http://www.digitalisland.com/
http://www.akamai.com/
http://www.geobytes.com/GeoNetMap.htm
http://www.jufsoft.com/whereisip/
http://www.ip2location.com/
http://www.quova.com/
http://www.maxmind.com
http://www.rfc-editor.org/rfc/rfc3330.txt
http://www.planet-lab.org

Observations of IPv6 Addresses

David Malone

Hamilton Institute, NUI Maynooth�

David.Malone@nuim.ie

Abstract. IPv6 addresses are longer than IPv4 addresses, and are so capable of
greater expression. Given an IPv6 address, conventions and standards allow us to
draw conclusions about how IPv6 is being used on the node with that address.
We show a technique for analysing IPv6 addresses and apply it to a number of
datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-
enabled TLD DNS server and when running traceroute across the production IPv6
network. The technique quantifies differences in these datasets that we intuitively
expect, and shows that IPv6 is being used in different ways by different groups.

1 Introduction

IPv6 uses an address space that is far larger than could be consumed by devices in
the near future. The reason for such a large address space is to try to make address
management easier, both when numbering hosts within subnets and when numbering
networks within the Internet. The hope is that addresses and subnets can be assigned
according to logical schemes rather than assigning addresses in the most compact way.

This is in contrast to allocation of addresses for IPv4; in the CIDR world it is unclear
where the network address ends and the host address begins. Some deductions can be
made about IPv4 addresses: we can consult IANA and whois databases to determine
who addresses have been assigned to. However, unless whois/DNS information is well
maintained, it will be difficult to know how addresses are actually being used.

In this paper, we show how to use IPv6’s extra expressiveness to infer things about
how addresses are being used. As with IPv4, we can consult IANA in order to discover
which registrar has been assigned the address. However, we can also identify people
who connect to the IPv6 Internet using mechanisms such as 6to4 [5] and Teredo [7]. As
there are standard procedures for allocating host IDs, we can identify auto-configured
hosts and other address schemes in use.

Such an analysis of IPv6 address is not difficult in itself; a competent IPv6 network
engineer could perform this analysis by glancing at an address. However, we will auto-
mate this analysis and apply it to large datasets. The first dataset is the IPv6 addresses
observed in the wild at ftp.heanet.ie. Our second is the set of recursive DNS
servers making queries to ns6.iedr.ie, an authoritative server for the ie domain.
Our third is based on addresses responding to a traceroute through the IPv6 routing
infrastructure. We aim to see what can be learned about IPv6’s deployment in each
situation through the observation of live addresses. Despite the limited nature of the
datasets, we see interesting variations between them.

� I would like to thank HEAnet and the IEDR for providing access to their logfiles.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 21–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ftp.heanet.ie
ns6.iedr.ie

22 D. Malone

This is not the only study that presents techniques to assess the state of the IPv6
Internet, but we believe this is the first to focus on addresses as the primary source of
information. For example, [3,11] analyse traffic seen at public 6to4 relays, considering
indicators such as traffic levels, ports used and numbers of 6to4 clients. [1] describes a
repository of traffic data, including IPv6 traffic, but also aims to anonymise the traffic,
in the process scrambling much of the data that we aim to analyse. Work such as [8]
focuses on routing tables and allocation of address blocks, but this exposes no informa-
tion beyond the BGP prefix. Others have used active probing to measure IPv6 topology
[4] or compare performance to IPv4 [2], focusing on the connectivity graph or perfor-
mance of the network, rather than configuration details. Operators have also reported
breakdowns of traffic volumes by application, using traditional indicators such as ports.

2 Address Analysis Technique

2.1 Prefix Analysis

The breakdown of IPv6 address space is described by several IANA registries. The
overall breakdown of address space is described in the ipv6-address-space reg-
istry. Smaller chunks are then described in more detail by other registries. In the case of
other global addresses, we can use the ipv6-unicast-address-assignments
to identify the RIR that addresses have been assigned to.

This analysis is the same sort of classification that can be performed on IPv4 ad-
dresses. However, in some cases an IPv6 address will provide details about how IPv6
has been deployed. In particular, we can identify users of 6to4 (2002::/16), Teredo
(2001::/32, formerly 3ffe:831f::/32) and 6bone allocations (3ffe::/16,
formerly 5f00::/8).

2.2 Host ID Analysis

Just as the prefix can tell us where an address may be (al)located or if certain transition
techniques are in use, the host-id can also give us information about how IPv6 is con-
figured on a node. This sort of information is unavailable in IPv4 or in IPv6 if studies
are solely based on address block or routing table information.

Perhaps the most common mechanisms for assigning host IDs are manual configu-
ration (on routers and some servers) and autoconfiguration (based on the MAC address
of a device). Autoconfiguration can usually be identified because of the way that MAC
address are converted to host IDs. In particular, the dominance of EUI-64 based ad-
dressing and Ethernet/WiFi cards with vendor-assigned addresses leads us to expect
fffe as the middle 16 bits of the host ID and the 7th bit of the host ID will be set.

ISATAP [12] is a technique that uses IPv4 as a layer 2 for IPv6, and it has a technique
for generating an IPv6 host ID from the underlying IPv4 address. The construction leads
us to expect the first quad (16 bits) of the host ID to be 0000 or 0200 and the second
quad to be 5efe, and these can be used as a test for ISATAP addresses.

ISATAP is not the only scheme that uses IPv4 addresses as a way to generate host
IDs. IPv6 address parsers will usually allow the last two hex quads of the host ID to be

Observations of IPv6 Addresses 23

00ad 00ba 00be 00d0 00da 00ed 0ace 0ada 0add 0ade 0b00 0b0a 0b0b 0baa 0bad 0bea 0bed 0bee 0c00 0c0b 0c0d 0cab 0d0b
0d0c 0d0d 0d0e 0dab 0dad 0deb 0dee 0ebb 0f00 0f0b 0f0d 0f0e 0fad 0fae 0fed 0fee abba b00b b0b0 b0de baba babe bade
baff bead beef c0c0 c0ca c0d0 c0da c0de c0ed c0ff cafe cede d00b d0d0 d0de dada dead deaf deed f00d f0ad face fade
faff feed 1337 0000 1111 2222 3333 4444 5555 6666 7777 8888 9999 aaaa bbbb cccc dddd eeee ffff 00ff abab

Fig. 1. Hex words users might use in IPv6 addresses

written as a traditional IPv4 dotted decimal. We use the following heuristic to identify
host IDs that have the last two quads generated from a IPv4 address: an address is v4-
based if (a) it is a 6to4 address and the second quad is the same as the seventh quad; or
(b) the fifth and sixth quads are zero, the seventh and eighth quads are different, and the
resulting IPv4 address would not be in IANA reserved/multicast address space.

We have based this heuristic on several factors. One is that 6over4 uses an IPv4
address padded with zeros and, as noted in [11], some 6to4 implementations do the
same. Also, some sites derive their manually configured IPv6 address scheme from their
IPv4 scheme. This test has weaknesses; we will discuss its effectiveness in Section 4.

Teredo also uses a special host ID based on two IPv4 addresses (the address of the
NAT box and the address of the Teredo server). Since Teredo uses an easily identifiable
prefix, we identify such host IDs based on the prefix.

In IPv4 networks, it is common for addresses to be assigned dynamically by DHCP
from a pool. This currently seems less common in IPv6 networks, maybe because of
the wide availability of autoconfiguration and relatively slow development of DHCPv6-
capable servers. Concerns were raised because a fixed host ID, generated from a MAC
address, would allow the tracking of devices as they moved from network to network.
In response to this, a technique for randomly generating IPv6 host IDs was specified
[10], which is now available in many IPv6 implementations. This privacy addressing
uses a cryptographic hash to generate the host ID, and then clears the 6th bit.

This provides us with a technique to identify privacy addresses. A cryptographic hash
should produce 0 and 1 bits in equal proportions. For a 63-bit output the Law of Large
Numbers says that the majority of privacy addresses will have around 32 bits set. The
actual technique used to identify privacy addresses is to first determine if the address
can be identified as some other sort of address, and if not it is considered as a candidate
privacy address. The address must then satisfy the following: the host ID must have the
6th bit clear; the host ID must have between 27 and 35 set bits; the first 32 bits must
have between 9 and 21 set bits; the last 32 bits must have between 10 and 22 set bits;
the host ID must not have two or more ‘words’ in it (as shown in Fig. 1).

These criteria are designed to cover the majority of privacy addresses, while rejecting
patterns that are likely to have been manually configured, such as ::ffff:ffff and
feed:babe:dead:beef. We can calculate the proportion of random addresses that
satisfy these conditions on the number of set bits as

1
263

∑

9≤i≤21,10≤j≤22
27≤i+j≤35

(
31
i

)(
32
j

)
≈ 0.7335. (1)

Correcting for privacy addresses that are identified as being in some other type results
in a insignificant change in this fraction. Thus, we expect this test to identify about three
quarters of all privacy addresses.

24 D. Malone

The main type of host ID that we have not considered is manually-assigned host
IDs. We cannot hope to identify all host IDs that are assigned directly by humans (or
their scripts). However, humans are likely to opt for simple addresses that are easy to
remember. One class of these are addresses ending in something simple, such as ::1 or
::53. We attempt to identify these as addresses with the first 56 bits being 0, and call
them low addresses. A class of address that humans are likely to be drawn to is those
with regular patterns or words. Host IDs composed of 4 quads from Fig. 1 are wordy.

When attempting to identify a host ID, we take the first matching test from the fol-
lowing list: ISATAP, Teredo, autoconf, low, IPv4-based, wordy, privacy.

3 Data Sets

3.1 HEAnet Mirror Server

This dataset is based on the log files from the Apache server running on
ftp.heanet.ie, a mirror server located in HEAnet, Ireland’s research and educa-
tion network. HEAnet’s mirror server began offering IPv6 services publicly around May
2002, when a AAAA DNS record for the server was added. It mirrors a large number of
projects, including Sourceforge, various Linux distributions, Apache, PuTTY, Mozilla,
etc. It has a large user population and is the twentieth most visited site hosted in Ireland,
according to Netcraft. There is no specific IPv6-related content on the site, though the
software available may attract technically curious users.

Load on mirror servers can be highly variable. Peaks can be caused by new software
releases or changes in available mirrors. For example, for a period ftp.heanet.ie
was the only continuously operational Sourceforge mirror, resulting in increased load
because of the sticky cookie used to select a Sourceforge mirror.

The dataset begins on 7 December 2003 and ends on 3 August 2007, over 1300 days.
On some days during the period no data is available because of maintenance, service
interruptions or log files no longer being available. One substantial gap is from mid-
August 2005 to the end of 2005, due to an absence of log files.

From the beginning of the data, we have a list of the time and address of each IPv6
request to the server and summary IPv4 statistics. From 1 February 2005 onwards,
Apache logs in the combined log file format entries for both IPv4 and IPv6 accesses
are available. Fig. 2(a) shows the number of IPv6 hits (i.e. individual HTTP requests)
on all days on which there were more than 1000 IPv6 requests. Daily IPv4 statistics are
also shown where available, in some places interpolated from monthly statistics.

We aim to present statistics that account for, or make apparent, missing data and
fluctuations in load. For example, to account for trends in IPv6 usage, we should factor
out missing data or changes in load. One way to do this is to normalise by the IPv4 hits.
For this to be valid, we need to know if IPv4 and IPv6 hits are correlated.

Fig. 2(b) shows a scatter plot of IPv4 vs IPv6 per-day hits. We plot points only where
we have per-day statistics for both IPv4 and IPv6. The region excludes about 5 outlying
points. It seems the majority of days have the IPv4 load between about 400 and 1200
times the IPv6 load. However, there are a considerable number of points with higher
IPv6 load. This suggests one should be cautious about blindly normalising by IPv4 hits,
though IPv4 and IPv6 load do seem correlated.

ftp.heanet.ie
ftp.heanet.ie

Observations of IPv6 Addresses 25

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08

N
um

be
r

of
 a

cc
es

se
s

IPv6 hits
IPv4 hits

IPv4 hits (interpolated) 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

N
um

be
r

of
 IP

v6
 a

cc
es

se
s

Number of IPv4 accesses

per day access breakdown

Fig. 2. HEAnet load statistics: (a) Per day hits (log scale), (b) scatter plot of IPv4 vs IPv6 hits

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08

N
um

be
r

of
 d

is
tin

ct
 a

dd
re

ss
es

 o
r

hi
ts

/a
dd

re
ss

IPv6 addr
IPv4 addr

IPv6 hits/addr
IPv4 hits/addr

Fig. 3. Distinct addresses/hits per IP each month

We will be interested in the number of distinct addresses seen, as addresses are the
fundamental unit of our analysis. Fig. 3 shows the number of distinct IPv6 addresses
seen during each month. The number of distinct IPv4 addresses is also shown for com-
parison. We see that, except for the first few months, the pattern of fluctuations is similar
for both IPv4 and IPv6, suggesting common causes for the fluctuations, such as those
mentioned above. The dips in August 2005/2007 are caused by partial data for these
months. Fig. 3 also shows the mean number of hits made per IP address. While these
statistics were initially quite different, it seems as if they may be coming closer.

3.2 IE IPv6-Enabled Nameserver

The IE top-level domain is served by a number of IPv6-capable name servers. The
IEDR, Ireland’s domain registry, operate one of these, which has been advertised in the
root zone since September 2004. Log files showing all queries to this name server were
available for the dates 22 April 2007–20 May 2007. The log files record the date of the
DNS requests and the IPv6 address making the request. The server only deals with IPv6
requests, so no comparable IPv4 statistics are available.

3.3 Traceroute Data

In this section we consider quite a different dataset. The global IPv6 routing table is still
quite compact, with only around 1000 prefixes present. We can consider what sort of

26 D. Malone

IPv6 addressing is used to provide the routing infrastructure for this network. We con-
sider tracrouting to the ::1 address of each prefix and recording the addresses revealed
by the traceroutes. The aim is to reveal the addressing used to route between prefixes,
without probing too deeply the internal structure of any prefix. Such a list of addresses
should be dominated by addresses assigned to routers.

The list of addresses was collected in September 2007. A target list of 866 prefixes
was prepared based on the IPv6 BGP table at HEAnet. Three different source addresses
were used: one 6to4 address, one in a commercial ISP’s PA space and one in HEAnet’s
PA space. We expect to see slightly different lists of addresses for each source address,
because of both variability in routes and source address selection. For each source ad-
dress, a list of intermediate router addresses was produced using traceroute. The three
different source addresses produced 1558, 1687 and 1698 addresses respectively.

4 Results

4.1 HEAnet Mirror Server

We analyse the data from Section 3.1 first. Fig. 4(a) shows the proportion of IPv6 ad-
dresses in the 6bone, global production, 6to4 and Teredo address ranges from month to
month. We plot the number of addresses falling into each prefix each month divided by
the total number of distinct addresses seen during that month. We do not show results
for a small number of local addresses, such as the loopback and link-local addresses.

We see substantial activity in the global and 6to4 address space, with the fraction of
global production addresses showing an increasing trend. As expected, 6bone addresses
were on a gradual decline, until a sharp drop in May 2006 before their retirement in June
2006. HEAnet did not carry routes to 6bone addresses after 6/6/2006, so after this date
access to ftp.heanet.ie was not possible from 6bone.

Initially, we see a handful of Teredo-based addresses. However, since mid-2006 there
has been a substantial increase in the use of Teredo clients. While this growth took
place at the same time as early Windows Vista deployment, the User-Agent information
indicates a mix of operating systems, mainly Windows XP, Linux and FreeBSD.

Fig. 4(b) shows the proportion of global addresses seen that were allocated by each
RIR. Roughly, RIPE covers Europe, ARIN covers north America, APNIC covers the

 0.0001

 0.001

 0.01

 0.1

 1

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08

F
ra

ct
io

n
of

 p
er

-m
on

th
 d

is
tin

ct
 IP

v6
 a

dd
re

ss
es

6bone
6to4

global
teredo

 0.0001

 0.001

 0.01

 0.1

 1

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08

F
ra

ct
io

n
of

 p
er

-m
on

th
 d

is
tin

ct
 g

lo
ba

l I
P

v6
 a

dd
re

ss
es

APNIC
ARIN

AfriNIC
LACNIC

RIPE

Fig. 4. Analysis of (a) all addresses by prefix, (b) global addresses by region

ftp.heanet.ie

Observations of IPv6 Addresses 27

Asia/Pacific region, LACNIC covers Latin America and the Caribbean and AfriNIC
covers Africa. As a mirror in Europe, we expect a majority of accesses to come from
RIPE. Unsurprisingly, the statistics confirm this.

Accesses from outside Europe are more interesting. These users have no particular
reason to select a mirror in Ireland and so may give some indication of relative levels
of activity. Initially, activity from ARIN and APNIC are at a similar level. Accesses
from APNIC regions jump sharply in March 2004 and then slowly-increase. Accesses
from ARIN gradually increase over time, catching up on the APNIC around February
2005, and then slowly decline. We cannot be certain if this is a change in the overall
IPv6 node population in these areas, or particular content causing differential activity
between regions. We see activity from younger registries at a low but consistent level.

 0.0001

 0.001

 0.01

 0.1

 1

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08

F
ra

ct
io

n
of

 p
er

-m
on

th
 d

is
tin

ct
 IP

v6
 a

dd
re

ss
es

manufacturer autoconf
ffffffff autoconf
other autoconf

teredo
ISATAP
v4based

privacy
random

low
wordy

unidentifyed

Fig. 5. Analysis of Host IDs

Now we turn to the host ID. Fig. 5 shows how host IDs have evolved over time. Con-
sistently there are about 10% of addresses that we cannot classify. The dominant tech-
nique is autoconfiguration based on vendor-assigned MAC addresses. The next most
common technique seems to be IPv4-based addresses. Most (95%) of these addresses
are 6to4 addresses using an IPv4-based host ID. Manually examining the remaining 5%
of those identified as IPv4-based shows false positives, but the majority of results look
correct. A substantial number of addresses allocated to BTexact’s Tunnel Broker are
identified as being IPv4-based: these also seem likely to be correct.

The next most common host IDs are addresses with only the low byte non-zero.
These addresses do not seem to show evidence of any particular technology dominating,
maybe indicating a mix of manual configuration and scripting. The wordy addresses are
a smaller proportion of overall host IDs than the low addresses, though both types are
substantially more common than would be expected at random.

About 4% of addresses are identified as privacy addresses. From Equation 1 we
know our test under-reports, so the actual figure should be 4/.73 or about 5.5%. Note,
privacy addresses may, in a sense, be over-represented; while an autoconfigued address
is fixed, a privacy address is periodically regenerated. We also show results for random
addresses, which would have been classified as privacy addresses except the 6th bit was
set. We see a tiny number of these random addresses. This indicates that the classifica-
tion of address as as a privacy address is unlikely to include many false positives. When
we inspect the random addresses, we see mostly random patterns and a few regular
patterns that have been incorrectly matched.

28 D. Malone

Some addresses look autoconfigured but do not have the global bit set to a value
we expected based on vendor-assigned MAC address. These may be generated from
manually-assigned MAC addresses, may be soft MAC addresses on virtual machines,
or may be manually-assigned host IDs. The data showed no addresses generated from
the MAC range used by VRRP/CARP. We do find some addresses corresponding to
autoconfiguration from the MAC broadcast address. This host ID may be the result of
a failed Ethernet EPROM/faulty driver combined with autoconfiguration.

A small, but increasing, amount of ISATAP activity is visible. By comparing with
Fig. 4(a) we see that by the end of our data the populations of 6to4, Teredo and ISATAP
clients are roughly in a ratio of 30%:10%:0.3%.

4.2 IE IPv6-Enabled Nameserver

We now consider the data described in Section 3.2. Fig. 6 shows the results for the two
months of data as log-scale bar charts. Activity is quite consistent over the two months.
It is important to note that for a DNS query to be logged, there is no need for a TCP
handshake to complete, and so there is no check for return routability. Thus, about 0.5%
of queries come from 6bone prefixes and a handful of requests come from unassigned
(2000:1::1), ULA ([6]) and documentation [9] addresses.

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−04

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−05

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

Fig. 6. Results for IEDR name server (log scale), April and May 2007

For comparison, Fig. 7 shows the corresponding results for ftp.heanet.ie. We
expect a contrast between the client populations of these servers, because clients of
mirror servers should not have much in common with recursive DNS servers. Indeed,
when compared to ftp.heanet.ie, ns6.iedr.ie sees fewer requests from pri-
vacy, Teredo and ISATAP addresses. Even the proportion of 6to4 addresses is lower.
The geographic distribution of the addresses also seems more even. We also see an in-
crease in wordy and low addressing. This suggests that administrators shy away from
transition mechanisms for recursive resolvers and opt for manually-assigned addresses.

4.3 Traceroute Data

Now consider the addresses observed in tracerouting across the IPv6 network from
a commercial ISP, an NREN (HEAnet) and from a 6to4 network. Fig. 8 shows the

ftp.heanet.ie
ftp.heanet.ie
ns6.iedr.ie

Observations of IPv6 Addresses 29

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−04

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−05

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

Fig. 7. Equivalent results for HEAnet ftp server (log scale), April and May 2007

breakdown of addresses observed from each of these sources. Note that the results are
quite consistent with each other, but show differences when compared to Fig. 6 and
Fig. 7. In particular, almost all addresses seen are global IPv6 addresses and most host
IDs are either low or IPv4-based. Some “autoconf” addresses are observed, however
this is a misnomer in the case of routers, as routers can use EUI-64 based addressing, but
do not assign their own addresses based on IPv6 autoconfiguration. Again, no addresses
generated from the VRRP MAC address were observed.

There is an absence of Teredo and ISATAP addresses, and 6to4 addressing is un-
common except where the probes are sent from a 6to4 source address. If the probe is
sent from a 6to4 address, source address selection should cause the router to choose a
6to4 address for the response, if it has one. When compared to the results in Fig. 6 and
Fig. 7 we see a more even distribution across all 5 RIRs, representing the indiscrimi-
nately global nature of the traceroute. There is still some systematic bias in favour of
RIPE as all the source nodes were located in Europe, but this dataset shows the most
even geographic distribution of addresses. Otherwise, both the ftp and DNS server see
a broader spread of address types than traceroute does.

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−09

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−09

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

lo
w

ra
nd

om

te
re

do

v4
ba

se
d

w
or

dy

Fr
ac

tio
n

of
 I

Pv
6

ad
dr

es
se

s

pr
iv

ac
y

Results for 2007−09

 0.001

 0.01

 0.1

 1

gl
ob

al

A
PN

IC

A
R

IN

A
fr

iN
IC

L
A

C
N

IC

R
IP

E

6b
on

e

6t
o4

U
L

A

do
c

lin
k−

lo

IS
A

T
A

P

au
to

co
n

au
to

ff
f

au
to

th
e

Fig. 8. Results for traceroute6 from Commercial ISP, HEAnet and 6to4, September 2007

5 Conclusion

We have presented a technique for analysing aspects of IPv6 addresses. We applied
this technique to three different datasets. The results produced have shown consistency
from month to month, suggesting that the technique should be stable enough to identify
trends in IPv6 deployment. From the traceroute data we also see that the results are
consistent across different networks. Comparing results between datasets, the technique

30 D. Malone

quantifies differences we expect based on the operation of IPv6 networks. These results
build confidence that the technique produces meaningful results.

The results are consistent with what we expect of the IPv6 Internet, but we have not
explicitly verified the accuracy of our technique. It would be interesting to do this by
analysing data from known IPv6 networks. Accuracy might be improved accounting for
the times addresses are observed and spatially/temporally adjacent addresses.

As further work, we would like to look at how subnets are being allocated within
organisations and provide a more detailed study of host IDs, including tracing them
and linking them with manufacturers. We would also like to explore applications of this
technique to log analysis and adaption of service delivery/content.

References

1. Cho, K., et al.: Traffic Data Repository at the WIDE project. In: USENIX FREENIX Track
(2000)

2. Cho, K., et al.: Identifying IPv6 Network Problems in the Dual-Stack World. In: ACM SIG-
COMM Workshop on Network Troubleshooting (2004)

3. Kei, Y., Yamazakim, K.: Traffic Analysis and Worldwide Operation of Open 6to4 Relays for
IPv6 Deployment. In: Symposium on Applications and the Internet (SAINT) (2004)

4. CAIDA. Macroscopic IPv6 topology measurements (2006),
http://www.caida.org/analysis/topology/macroscopic/IPv6

5. Carpenter, B., Moore, K.: Connection of IPv6 domains via IPv4 clouds. In: RFC 3056 (2001)
6. Hinden, R., Haberman, B.: Unique local IPv6 unicast addresses. In: RFC 4193 (2005)
7. Huitema, C.: Teredo: Tunneling IPv6 over UDP through NAT. In: RFC 4380 (2006)
8. Huston, G.: IPv6 BGP/CIDR reports, http://bgp.potaroo.net/index-v6.html
9. Huston, G., et al.: IPv6 address prefix reserved for documentation. In: RFC 3849 (2004)

10. Narten, T., Draves, R.: Privacy extensions for stateless address autoconfiguration in IPv6. In:
RFC 3041 (2001)

11. Savola, P.: Observations of IPv6 traffic on a 6to4 relay. ACM SIGCOMM CCR 35 (2005)
12. Templin, F., et al.: Intra-site automatic tunnel addressing protocol (ISATAP). In: RFC 4214

(2005)

http://www.caida.org/analysis/topology/macroscopic/IPv6
http://bgp.potaroo.net/index-v6.html

The New Web: Characterizing AJAX Traffic

Fabian Schneider, Sachin Agarwal, Tansu Alpcan, and Anja Feldmann

Deutsche Telekom Laboratories / Technische Universität Berlin
10587 Berlin, Germany

{fabian,anja}@net.t-labs.tu-berlin.de,
{sachin.agarwal,tansu.alpcan}@telekom.de

Abstract. The rapid advent of “Web 2.0” applications has unleashed new HTTP
traffic patterns which differ from the conventional HTTP request-response model.
In particular, asynchronous pre-fetching of data in order to provide a smooth
web browsing experience and richer HTTP payloads (e.g., Javascript libraries)
of Web 2.0 applications induce larger, heavier, and more bursty traffic on the
underlying networks. We present a traffic study of several Web 2.0 applications
including Google Maps, modern web-email, and social networking web sites, and
compare their traffic characteristics with the ambient HTTP traffic. We highlight
the key differences between Web 2.0 traffic and all HTTP traffic through statis-
tical analysis. As such our work elucidates the changing face of one of the most
popular application on the Internet: The World Wide Web.

1 Introduction

The World Wide Web [1] is one of the most popular applications of the Internet and runs
primarily over the HTTP protocol. While HTTP (Hyper Text Transfer Protocol) [2] con-
stitutes the session layer or messaging protocol of the Web, HTML (Hyper Text Markup
Language) describes the content and allows authors of web content to connect up web
pages through hypertext links or hyperlinks; an idea made popular by Tim Berners-
Lee in the early 1990s and widely used today. In its classical form, users reach other
pages or access new data by clicking on hyperlinks or submitting web based forms. In
this basic HTTP request-response model each clicked link or submitted form results in
downloading a new web page in response to the respective request.

The recent popularity of asynchronous communication enabled web sites has caused
a significant shift from the classical HTTP request-response model of the Web. This
asynchronous communication is commonly executed through AJAX (Asynchronous
JavaScript and XML) [3], a compendium of technologies that enable web browsers
to request data from the server asynchronously, i.e., without requiring human interven-
tion such as clicking on a hyperlink or on a button. Consequently, HTTP requests are
increasingly becoming automated rather than being human-generated. In this paper we
use AJAX and “Web 2.0” interchangeably to refer to web applications that use this new
paradigm on the Internet.

Contemporary web pages often contain embedded request-response functions com-
prising a JavaScript application engine that automatically executes in the background
to asynchronously pre-fetch large quantities of data from the server. This intelligent

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 31–40, 2008.
© Springer-Verlag Berlin Heidelberg 2008

32 F. Schneider et al.

(a) Classic Web browsing

User

Browser
Output
Screen
(DOM) Web-

server

User responses

Requests

Web browser

(b) AJAX enabled Web browsing

User

Browser
Output
Screen
(DOM) Web-

server
JavaScript-enabled-browser

(e.g. Firefox, IE, Safari)

JavaScript
Engine

(Client side)

Pre-fetch
Cache

Replies Replies

Requests

Fig. 1. Comparison of classical with AJAX enabled web applications

pre-fetching is often used to mask the round trip and transmission latency of Internet
connections to give the user a ‘smoother’ web application experience. We highlight the
differences in Figure 1. The JavaScript engine builds a local pre-fetched cache based on
the user’s interaction with the web application and executes parts of the application logic
in the client’s web browser itself instead of the web server. The prediction algorithms
of any automated pre-fetching scheme usually results in significantly larger downloads
as compared to user-initiated web browsing due to inaccurate guesses on part of the
prediction algorithms about which data to pre-fetch. Even when the prediction is accu-
rate, HTTP traffic inter-request-times are no longer lower-bounded by human response
times (order of seconds) and may instead depend on the JavaScript code logic of the
web application on the client machine.

Many popular web applications have adopted Web 2.0 technologies. One of the most
popular and early adopter of AJAX is Google Maps. Its success encouraged the use of
AJAX for building other interactive web applications. For example, many web-email of-
ferings have transitioned into Web 2.0 applications in order to rival the look and feel of
desktop email clients. Furthermore, some social networking web sites use AJAX tech-
nologies to offer rich and interactive user experiences. In this paper we explore the traffic
characteristics of the most popular representatives of these AJAX based applications in
our environment and contrast their characteristics to those of the overall HTTP traffic.

1.1 Related Work

A good overview of traditional Web protocols is given in the book by Krishnamurthy
and Rexford [1]. One of the early works on characterizing the effect of HTTP traffic and
HTTP pre-fetching is by Crovella [4]. It highlights the beneficial and unwanted effects
of pre-fetching HTTP data, and hence further substantiates the importance of our analy-
sis of Web 2.0 applications and their global effect on the Internet. There has been a vast
literature on Internet web caching, e.g., [5,6,7]. However, the underlying motivation for
using caching in all these studies has been on reducing the overall download latency of
popular web sites and not facilitating low latency interactive Web 2.0 applications.

There are few studies focusing on the characteristics of AJAX-based traffic, although
there exist several discussions, blogs and web sites about the end-user perceived latency
of AJAX based applications (e.g., [8]). The novel aspect of our work is that we focus
on the behavior of two large user populations and investigate multiple AJAX enabled
applications.

The New Web: Characterizing AJAX Traffic 33

1.2 Contributions

In this paper, we highlight the changing characteristics of Web traffic by comparing the
traffic patterns of HTTP and Web 2.0 applications. For this we rely on several HTTP
traces from large user populations in Munich, Germany and Berkeley, USA from which
we extract popular AJAX application traffic.

From the statistical analysis of Web 2.0 traffic in comparison to all HTTP traffic
extracted from the traces we show that the former’s characteristics significantly differ
from the latter’s. Our work focuses on the number of transfered bytes, the number of
HTTP requests issued and the times between subsequent request (inter-request-times).
For example, Web 2.0 traffic has shorter inter-arrival-times due to the underlying human-
independent automated data pre-fetching schemes.

Our work complements the efforts of the web developer community towards a better
understanding of the Web 2.0 application characteristics. Some of our results may mo-
tivate the web developer community to design web applications that are friendlier to the
underlying network, for example, by reducing the number of automated HTTP requests
when possible.

The rest of the paper is organized as follows. We give a brief overview of the appli-
cations studied in this work and then describe our data collection process in Section 2.
In Section 3 we present the results of our statistical analysis comparing AJAX traffic
with the HTTP traffic. Finally, we conclude in Section 4.

2 Methodology

In order to determine which Web 2.0 applications to study we first examine the popular-
ity of different applications (Section 2.1). Google Maps is among the most popular web
applications and a nice example of a AJAX-enabled application. Therefore, we provide
a high level overview of its communication patterns in Section 2.2. Finally, we detail
how we extract application characteristics from our data sets in Section 2.3. Similar ex-
traction methodologies (skipped for brevity) are used for the other AJAX applications.

2.1 Data Sets

We use packet level traces collected from two independent networks: the Münchener
Wissenschaftsnetz (Munich Scientific Network, MWN) in Germany, and the Lawrence
Berkeley National Laboratories (LBNL) in the USA. Both environments provide high
speed Internet connections to their users. The MWN provides a 10 Gbps link capacity
to roughly 55,000 hosts at two major universities and several research institutes, trans-
ferring 3-6 TB a day. LBNL utilizes a 1 Gbps upstream link, transferring about 1.5 TB
a day for roughly 13,000 hosts. We base our analysis on three traces from network port
80 (the HTTP port). Two of these traces, MWN-05 and MWN-07, are from MWN while
one trace, LBNL-07, is from LBNL. See Table 1 for information about the traces includ-
ing: size, duration and start dates, total number of HTTP requests, and number of HTTP
requests related to Google Maps.

We rely on packet level traces of large user populations as they provide the most
detailed data. From these traces we reconstruct the HTTP request-response stream of

34 F. Schneider et al.

Table 1. Characteristics of the data sets

Trace Start Date Duration Size #Req Total #Req GMaps

MWN-07 Feb 24th 2007 32h+ 2.4 TB 30,0 M 222 K
LBNL-07 Mar 3rd 2007 ∼9h 214 GB 2,0 M 82 K
MWN-05 Oct 11th 2005 24h 2.5 TB 119 M 43 K

Category Percent Category Percent

LMU 12.60% Ebay 1.67%
Ad Server 12.26% Site 3 1.45%
MWN 7.60% lokalisten.de 1.40%
Google 6.90% Bav. State 1.14%
TUM 5.05% web.de 1.09%
News 4.23% Site 4 1.01%
GMX 2.27% Site 5 1.00%
Google Maps 2.04% studivz.de 0.97%
Yahoo 1.97% MSN 0.93%
Site 1 1.96% Microsoft 0.76%
Google Earth 1.85% Google Mail 0.65%
Site 2 1.81% Youtube 0.55%

other 26.83%

Fig. 2. Pie chart of the percentages of requests for the top 500 hostnames by categories. (Top 500
hostnames account for 53% of the total requests. Percentages are relative to the top 500.)

all connections. While one could use a variety of tools [1], we utilize the HTTP ana-
lyzer of Bro [10], a network intrusion detection system. Bro’s policy script http.bro
together with the policy scripts http-reply.bro and http-header.bro enable TCP
stream re-assembly, basic HTTP analysis, and HTTP request-response analysis. We
augmented the http-header.bro script to extract the times when the HTTP requests
were issued. The resulting output file consisted of one-line summaries of each HTTP
request containing (TCP) Connection ID, number of request in the connection, session
ID, transferred bytes, three timestamps (request issued, cookie seen, request finished),
requested hostname (servername1), prefix of the requested URL, and the HTTP status
code for this request. Note that the number of transferred bytes does not include the
HTTP header size. We only include requests for which we successfully record start and
end times.

In order to determine the most popular AJAX enabled Web 2.0 applications we first
identified the 500 most popular web servers2 in the MWN-07 data set. We then grouped
these into multiple categories for better visualization. The first set of categories con-
tained the servers that are hosted by the two universities and the other research institutes
(MWN). The next categories contained all request related to advertisements (Ad Server)
and news web sites (News). Manual inspection showed that neither category contained

1 We use server and host interchangeably in this discussion.
2 Web server as specified by the hostname in the HTTP request.

The New Web: Characterizing AJAX Traffic 35

many AJAX related requests. Some of the services offered by Google, including Google
Maps and Google Mail use AJAX, while others like Google search, Google images and
Google Earth, do not. Accordingly, we separate them into Google Maps, Google Mail,
Google Earth, and all others (Google). Another popular Web-email service in Germany,
that is also AJAX supported, is provided by GMX. Some categories include just a single
popular site (Site 1, . . ., Site 5), others are well known Web sites, e.g., Ebay and MSN.
Figure 2 shows a pie chart of the number of requests per category for the MWN-07 data
set. We find that GMX is the most popular AJAX based application with 2.27% of the
requests followed by Google Maps which contributes 2.04%. Another AJAX-enabled
social networking web site is lokalisten.de with 1.4%. Although Google Mail only ac-
counts for 0.65% of the requests we include it as our fourth applications since this gives
us two AJAX-enabled Mail applications by different providers. In terms of bytes the
contributions are smaller, e.g., Google Maps with 1.41%. But all of the applications
considered in this paper are among the top 500. We refer to these both most popular
and AJAX-enabled applications as “Selected-4” in subsequent discussions.

2.2 Google Maps Communication

Google Maps is one of the first web applications to popularize AJAX technology. Con-
sequently, it is widely considered as the canonical example of an AJAX application.
AJAX uses the Document Object Model (DOM) [9] of the web browser such that it is
no longer necessary to reload the entire web page each time it is updated. In this way it
increases interactivity, speed, and usability.

Google Maps maintains multiple connections to different servers in the Internet that
serve as back-ends for the Google Maps application. All connections use HTTP as the
session protocol and take advantage of the advanced features of HTTP 1.1 [2] such as
persistent HTTP connections for efficiency and pipelining for reducing latency, leading
to multiple HTTP requests per TCP connection. In the context of Google Maps, most
of these connections are used to fetch image tiles of the map. The others are used for
control messages and for the initial transfer of the AJAX application (JavaScript code),
the transfer of other GUI related pictures, and user queries. The connections carrying
tile images can be identified by the servers they connect to.

2.3 Application Characterization Methodology

In this section we discuss how to extract application specific data from our data sets.
For brevity reasons we focus on Google Maps traffic.

One of the challenges of identifying Google Maps traffic is that Google offers all its
services on the same back-end server infrastructure (e.g., Google Maps, Google Search,
Google Video, etc.) and uses a uniform key for all services. Therefore, the browser
can reuse existing TCP connections to Google servers to issue Google search queries,
image or video queries, as well as Google Maps queries. Separating Google Maps traffic
from other Google services thus requires some effort. Moreover, to capture the user’s
interaction with Google Maps, we are not only interested in individual HTTP requests
but also in the full set of HTTP requests within a Google Maps “session”. Meaning all
requests that are issued when a user connects to maps.google.com and then interacts

maps.google.com

36 F. Schneider et al.

with the application, e.g., by entering some location, by moving the map, or switching
the zoom level. Accordingly, we group these requests to a Google Maps “session”.

To identify Google Maps related requests among the very large number of HTTP
requests within our traces we check if the hostname contains the string maps.google.
To find the other requests by the same user we take advantage of Google’s own session
book-keeping mechanisms. Google uses cookies to mark all requests of a session by
embedding a unique hash of its session ID3. We use this ID as our session ID as well
and gather all other requests of this Google Maps session using the session ID. Unfor-
tunately, there maybe additional requests to other Google services among the identified
requests. We exclude these if they do not contain a Google Maps specific URL prefix.
We found that /mt (map), /kh (satellite), /mld (route planning) and /mapstt (traffic)
are related to the kind of map that is requested. /maps, /mapfiles and /intl are used
for meta information. / and favicon.ico are not restricted to Google Maps use. A
similar methodology is used for the other Selected-4 applications.

For comparison purposes, we also group requests of the complete HTTP traffic
(ALL-HTTP), including requests of the Selected-4, into web sessions. In this case we
cannot take advantage of cookies yielding session identifiers. Therefore we group those
requests that come from the same client IP, go to the same server (IP) on the same server
port. This aggregates connections from different client side ports.

For both Selected-4 sessions, and ALL-HTTP sessions we use a timeout4 of 10 min-
utes. We compute per connection and per session statistics including number of trans-
ferred HTTP payload bytes, number of requests, their durations, and inter-request-times
(IRT’s) for the Selected-4 applications as well as ALL-HTTP traffic.

3 Characteristics of AJAX Traffic

In this section, we present the results of a statistical analysis of the characteristics of
both ALL-HTTP and Selected-4 traffic. Almost all connections and sessions are usually
comprised of multiple requests. However, we find significant differences in the session
characteristics including: session life times, transferred bytes per session, number of
requests within sessions, and inter-arrival-times of HTTP requests within sessions.

Most of the data is presented as probability density functions (PDF) although com-
plementary cumulative distribution functions (CCDFs) are also shown. In order to cap-
ture the multiple orders of magnitude in the data we plot all CCDFs on a log-log scale
and compute the PDFs of the logarithm of the data in order to be able to use a logarith-
mic X-axis. In addition, Table 2 presents mean and median values.

In our analysis we concentrate on the MWN-07 data set and only use the MWN-05
and LBNL-07 data sets to highlight some of the noticeable differences. Note that the
2005 data set was collected during Google Maps beta testing phase.

Figure 3 shows the CCDF of the number of bytes transferred in a single HTTP con-
nection for ALL-HTTP and all Selected-4 applications for the MWN-07 data set. ALL-
HTTP connections are clearly consistent with a heavy-tailed distribution over several

3 The hash is located after the string PREF=ID= in the cookie.
4 If the time between the end of a reply and the start of the next request is larger than 10 minutes

a new session is started.

/mt
/kh
/mld
/mapstt
/maps
/mapfiles
/intl
/
favicon.ico

The New Web: Characterizing AJAX Traffic 37

Table 2. Mean/Median Table for ALL-HTTP and Selected-4 applications in the MWN-07 data
set. IRT’s are Inter-Request(-arrival)-Times.

Application #R
eq

ue
st

s

#S
es

si
on

s

B
yt

es
pe

r
C

on
ne

ct
io

n

B
yt

es
pe

r
S

es
si

on

#R
eq

pe
r

C
on

ne
ct

io
n

#R
eq

pe
r

S
es

si
on

IR
T

’s
in

a
C

on
ne

ct
io

n

IR
T

’s
in

a
S

es
si

on

ALL-HTTP 30 M 1.4 M

m
ea

n

57890 278K 4 13 2.34 17.23
Google Maps 221 K 1127 204476 2288K 18 197 1.39 1.54
lokalisten.de 128 K 3822 31856 129K 8 34 0.38 4.52
Google Mail 140 K 1020 9742 371K 4 138 23.02 31.84
GMX 288 K 6101 14163 95K 7 47 0.53 4.29
ALL-HTTP

m
ed

ia
n

332 688 1 2 0.0987 0.2035
Google Maps 25199 161675 4 21 0.0288 0.0076
lokalisten.de 1678 7854 3 7 0.0347 0.0406
Google Mail 3 27932 1 23 4.3735 9.2202
GMX 428 6863 3 29 0.0400 0.0489

orders of magnitude with a median of 332 Bytes and a mean of 58 KB. Some connec-
tions are clearly used to transfer a huge number of bytes, e.g, due to downloading some
large image or video file embedded within a HTTP page, or a big software package, or
when HTTP is used as transport protocol for P2P protocols, such as Bittorrent.

The tails of the AJAX based Selected-4 applications are not as heavy. Yet, except for
Google Mail the curves lie on top of the ALL-HTTP traffic for most of the plot which is
reflected in the statistics as well, e.g., the median and mean for Google Maps is larger,
i.e., 25 KB and 204 KB respectively.

To further explore the differences in the body of the distribution we show the PDF
for Google Maps and Mail as well as ALL-HTTP traffic in Figure 4. In general we note
that the Selected-4 applications (see for example, Google Maps) transfer more bytes
than ALL-HTTP connections. This probably stems from multiple larger image/Java-
Script library transfers, when, for example, Google Maps users pan and zoom their map.
In particular, only 39.6% of the MWN-07 Google Maps connections comprise of con-
nections that transfer less than 10 KB, whereas 81.8% of the ALL-HTTP connections
from MWN-07 transfer less than 10 KB. Similar observations hold for the LBNL-07 data
set. Moreover, we note that the shape of the ALL-HTTP connection has not changed
substantially over the years if compared with results from 1997 [11].

Google Mail differs and shows a clear spike for 3 bytes requests. This is due to
periodic server polling by the client-side AJAX engine of Google Mail. Once we move
from HTTP connections to HTTP sessions (Figure 5), this artifact is removed and the
probability mass of all Selected-4 applications clearly lies to the right of that for ALL-
HTTP traffic. This is reflected in the median but not in all means. But recall that the
mean is dominated by the very large transfers within the ALL-HTTP traffic.

We next move to the number of HTTP request within a session. Figures 7 and 8 show
the CCDF and PDF for ALL-HTTP and Selected-4 sessions in the MWN-07 data set.
These figures highlight the “chatty” nature of the Selected-4 applications - on average

38 F. Schneider et al.

they issue many more requests than ALL-HTTP traffic whose first fifty percent of the
sessions are limited to 2 requests. Part of these additional requests are due to the Web 2.0
characteristics of the Selected-4 applications while the others are likely due to longer
session duration. Interestingly, a look at the PDF reveals that Google Maps issues more
requests than the email or social networking applications. A likely explanation is that
Google Maps implements pre-fetching more aggressively.

The typical duration of an ALL-HTTP session (Figure 6), is shorter than for AJAX
enabled applications. Half of the ALL-HTTP sessions last between 0.008 and 2.13 sec-
onds (5% – 55% quantile across all sessions) while 50% of Google Maps sessions in
the MWN-07 data set last between 13.04 seconds and 2 hours and 9 minutes (30% –
80% quantile across all sessions). On the other hand the first period only accounts for
20.7% of the Google Maps session while the second only accounts for 23.87% of the
ALL-HTTP traffic. One reason for the longer session duration may be that these specific
applications are able to keep the users attention longer than a typical web site. Overall
these characteristics indicate that AJAX enabled applications last longer and are more
active than ALL-HTTP sessions.

Finally, Figures 9 and 10 show the inter-request-times between requests within a
session. The most interesting feature of this density graph is that Google Maps’ inter-
request-times are very similar and significantly shorter, i.e., more frequent, than for

u [bytes]

lo
g1

0(
P

[H
T

T
P

 p
ay

lo
ad

 d
at

a
[b

yt
es

]
>

 u
])

MWN−07 All−HTTP
MWN−07 Google Maps
MWN−07 Google Mail
MWN−07 GMX
MWN−07 lokalisten

−
5

−
4

−
3

−
2

−
1

0

1 10 100 1000 100000 10000000

Fig. 3. HTTP payload bytes per connection

HTTP payload data [bytes]

pr
ob

ab
ili

ty

10^0 10^2 10^4 10^6 10^8

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

MWN−07 All−HTTP
MWN−07 Google Maps
MWN−07 Google Mail
LBNL−07 Google Maps

10^0 10^2 10^4 10^6 10^8

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

10
kB

Fig. 4. HTTP payload bytes per connection

HTTP payload data [bytes]

pr
ob

ab
ili

ty

10^0 10^2 10^4 10^6 10^8

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25 MWN−07 All−HTTP

MWN−07 Google Maps
MWN−07 Remaining 3

10^0 10^2 10^4 10^6 10^8

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

10
kB

Fig. 5. HTTP payload bytes per Session

Session duration [sec]

pr
ob

ab
ili

ty

10^−4 10^−2 10^0 10^2 10^4

0.
0

0.
05

0.
10

0.
15

0.
20

MWN−07 All−HTTP
MWN−07 Google Maps
MWN−07 Google Mail
LBNL−07 Google Maps

10^−4 10^−2 10^0 10^2 10^4

0.
0

0.
05

0.
10

0.
15

0.
20

Fig. 6. Session durations

The New Web: Characterizing AJAX Traffic 39

u [#requests]

lo
g1

0(
P

[#
H

T
T

P
 r

eq
ue

st
s

 >
 u

])

MWN−07 All−HTTP
MWN−07 Google Maps
MWN−07 Google Mail
MWN−07 GMX
MWN−07 lokalisten.de

−
5

−
4

−
3

−
2

−
1

0

1 10 100 1000 10000

Fig. 7. Number of requests per session

#HTTP requests

pr
ob

ab
ili

ty

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6 MWN−07 All−HTTP

MWN−07 Google Maps
MWN−07 Remaining 3
LBNL−07 Google Maps

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

Fig. 8. Number of requests per session

inter request times [s]

pr
ob

ab
ili

ty

10^−6 10^−4 10^−2 10^0 10^2

0.
0

0.
05

0.
10

0.
15

0.
20

MWN−07 All−HTTP
MWN−05 All−HTTP
MWN−07 Google Maps
LBNL−07 Google Maps

10^−6 10^−4 10^−2 10^0 10^2

0.
0

0.
05

0.
10

0.
15

0.
20

1s
ec

Fig. 9. PDF of inter-request-times within each
session: ALL-HTTP and Google Maps

inter request times [s]

pr
ob

ab
ili

ty

10^−6 10^−4 10^−2 10^0 10^2

0.
0

0.
05

0.
10

0.
15

0.
20

MWN−07 All−HTTP
MWN−07 Google Mail
MWN−07 GMX
MWN−07 lokalisten

10^−6 10^−4 10^−2 10^0 10^2

0.
0

0.
05

0.
10

0.
15

0.
20

1s
ec

Fig. 10. PDF of inter-request-times within each
session: Google Mail, GMX and lokalisten.de

ALL-HTTP for both MWN-07 and LBNL-07. As such the traffic pattern is burstier.
Moreover, there has not been a major change for ALL-HTTP from 2005 to 2007. The
majority of requests are clearly automatically generated, as they are executed within
1 second (see support line; > 1 second corresponds roughly to human-issued browser
request) in all sessions. Google Maps is again the most extreme application. Most likely
this is caused by the utilization of pre-fetching for supporting the dynamic features of
Google Maps.

Moreover, we note that different service providers can use the AJAX capabilities in
different manners. GMX and Google Mail are both Web based email applications. Yet,
the inter-request-times differ dramatically. The reason for this is that Google Mail uses
a polling interval of roughly 120 seconds (those 3 Bytes requests from Figure 4). Once
these are removed the densities are quite similar again.

4 Conclusions

The overall transition of the web from a hyperlinked document repository into a real-
time application platform has ramifications for the underlying Internet over which web

40 F. Schneider et al.

traffic is transfered. In this paper we highlight characteristics of some popular Web 2.0
applications, in particular - Google Maps, Google Mail, lokalisten.de, and GMX Mail.
We report that these applications are heavy (bytes transferred), chatty (many more re-
quests), and greedy (actively pre-fetching data). Our analysis of their traffic patterns
suggests that their characteristics translate into more aggressive and bursty network us-
age as compared to the overall HTTP traffic.

End users have come to expect contemporary web applications to be as responsive
as locally installed software applications which imposes high QoS requirements. Yet,
treating this new HTTP traffic as relatively deterministic flows (i.e., in the same way as
streamed media) is bound to fail due to the inherent variability.

Web application developers have embraced data pre-fetching, HTTP connection per-
sistence, HTTP pipelining, and other advanced features to mask network latency from
end users. The results in this paper may help web application developers in under-
standing how their applications affect Internet traffic, and how their applications can be
designed for more efficient operation.

References

1. Krishnamurthy, B., Rexford, J.: Web protocols and practice: HTTP/1.1, Networking proto-
cols, caching, and traffic measurement. Addison-Wesley, Reading (2001)

2. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Rfc
2616, hypertext transfer protocol – http/1.1 (1999)

3. Zakas, N., McPeak, J., Fawcett, J.: Professional AJAX. Wiley, Chichester (2006)
4. Crovella, P.B.M.: The network effects of prefetching. In: INFOCOM (1998)
5. Abrams, M., Standridge, C.R., Abdulla, G., Williams, S., Fox, E.A.: Caching proxies: limi-

tations and potentials. In: WWW Conference (1995)
6. Barford, P., Bestavros, A., Bradley, A., Crovella, M.E.: Changes in Web client access pat-

terns: Characteristics and caching implications. In: World Wide Web (1999)
7. Challenger, J., Iyengar, A., Danzig, P.: A scalable system for consistently caching dynamic

Web data. In: INFOCOM (1999)
8. The impact of AJAX on web operations (2005), http://www.bitcurrent.com/?p=105
9. Document Object Model (DOM) (2007), http://www.w3.org/DOM

10. Paxson, V.: Bro intrusion detection system (2007), http://www.bro-ids.org
11. Feldmann, A., Rexford, J., Caceres, R.: Efficient policies for carrying Web traffic over flow-

switched networks. IEEE/ACM Trans. Networking 6(6) (1998)

http://www.bitcurrent.com/?p=105
http://www.w3.org/DOM
http://www.bro-ids.org

Measurement and Estimation of Network QoS Among
Peer Xbox 360 Game Players

Youngki Lee1, Sharad Agarwal2, Chris Butcher3, and Jitu Padhye2

1 KAIST
2 Microsoft Research

3 Bungie Studios

1 Introduction

The research community has proposed several techniques for estimating the quality
of network paths in terms of delay and capacity. However, few techniques have been
studied in the context of large deployed applications. Network gaming is an application
that is extremely sensitive to network path quality [1,2,3]. Yet, the quality of network
paths among players of large, wide-area games and techniques for estimating it have
not received much attention from the research community.

Network games broadly fall into two categories. In some games (e.g. MMORPGs,
web-based casual games, Quake) with a client-server architecture, players communicate
with a large, well-provisioned, and dedicated game server [4,5]. In some games with a
peer-to-peer (P2P) architecture, players communicate with each other directly or via
a dynamically chosen peer at some player’s house. In Ghost Recon, Halo series, and
others for the Xbox and Xbox 360 consoles, a server assists players in discovering
other peers to host and play with.

Accurate and scalable estimation of the network path quality (NPQ) between peer
game players is especially critical for games with a P2P architecture. These players
need to have good network connectivity to each other, so accurate NPQ data is essen-
tial for “matchmaking” - i.e. to determine which players should play with each other.
Furthermore, NPQ estimation needs to be done in a scalable manner. If the number of
peers is large, it may not be not feasible to probe all of them.

Prior research on P2P games has used data from only a small number of players [6].
We study a much larger data set, from Halo 3 : a popular Xbox 360 game. We cover
5.6 million unique IP addresses that played 39.8 million game sessions in 50 days.
Peers in each game session gather NPQ data and report it to the central Xbox server for
matchmaking purposes.

This paper makes the following contributions:

– We present data from a large P2P gaming application. The population is several or-
ders of magnitude larger, and far more geographically diverse than any previously
reported study. Given the number and geographical diversity of players, we con-
sider this to also be a large-scale study of path quality over the wide-area Internet.

– We study temporal and geographical correlations in the NPQ data, and propose
three different predictors that can provide a rough estimate of NPQ between a pair
of players, without requiring any probing. There can be millions of game players

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 41–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 Y. Lee et al.

on-line at any time, and any techniques that can avoid having to perform network
probes between all of them can not only reduce network overhead but also reduce
the amount of time players have to wait before starting a game over the Internet.

2 Background

The Microsoft Xbox 360 game console supports on-line game play with the Xbox Live
subscription service. The Halo series of First Person Shooter (FPS) games has sold
over 15 million copies worldwide. We focus on the latest edition, Halo 3. Each Halo 3
Internet game session can include up to 16 players. One console in each game session is
selected to be the game host or server. All game communication between other players
is relayed through this host console. The Xbox Live server provides accounting and
matchmaking services. Therefore, the NPQ between consoles and the Xbox Live server
is less important to the overall gaming experience than the NPQ between the consoles
themselves. An “excellent” Halo 3 experience has under 50ms of latency and 50Kbps
to 70Kbps of bandwidth between each client console and the host console. Note that
the host console may consume up to 1Mbps ((16-1)*70Kbps) of bandwidth. A “good”
experience can be achieved with 150ms latency and 30Kbps of bandwidth. Hence, it is
important to group consoles so that they each have good NPQ to the host console. This
is critical in this architecture because the host is a fellow player’s console, typically on
a consumer broadband connection, and not a well provisioned, dedicated server.

The Xbox Live server helps with “matchmaking” - setting up such groups, of up to
16 players, from among the hundreds of thousands on-line at any time. A player who
starts an Internet game session will sign on to the Xbox Live service and run Halo 3
on her console. She will select Internet game play and can specify several criteria for
the session, such as the type of game (e.g. free for all or team objective). With some
probability, this console will become a peer game host, instead of a game client. This
probability depends on the chosen type of game. If the console is a game host, it will
wait for other consoles to discover it, probe their NPQ to it, and join the game.

If it is a game client, Xbox Live will send it IP addresses for the other consoles on
the Internet that are hosting games of the specified type. This console will send and
receive several packet pairs with each IP address. The Xbox 360 networking stack im-
plements the standard packet pair estimation technique [7]. Packet pairs are performed
serially and do not overlap with each other. The console will then have an estimate of
the round-trip latency (RTT), and the upstream and downstream network capacity with
each candidate game host. While being very lightweight, packet pair measures bottle-
neck link capacity but not available bandwidth. These values are logged by the Xbox
Live service. The user is shown those host consoles that it has the best NPQ to. For
conciseness, we leave out several details such as NAT traversal.

Little is known about the population of on-line P2P game players. Their geographic
diversity, diurnal behavior, typical network delay and capacity are useful parameters to
network models of game systems for future research. This information can help build
estimators of NPQ between any two game consoles on the Internet. Even merely iden-
tifying the pairs of consoles with extremely poor NPQ can significantly reduce the total
number of probes, thereby reducing network overhead and user wait time.

Measurement and Estimation of Network QoS Among Peer Xbox 360 Game Players 43

3 Data and Methodology

Xbox Live stores information about every Internet game session for Halo 3. In a typical
week ending on 29 January 2008, we find that 72.5% of Internet game sessions required
matchmaking; when weighted to account for players per game, it is 83.5%. By a “ses-
sion”, we mean an attempt to search for an Internet game - the user may have eventually
joined a game or decided not to. The log has the UTC time and the public IP address of
the console searching for a game. This console may have probed several other consoles
that were hosting games of the requested type - for each probe to a candidate host con-
sole, we have the host IP address, median round trip time (RTT), and average capacities
upstream to host and downstream from host. We use the term “probe” to mean 4 packet
pair tests from the client console to a host console and 4 in the reverse direction. We
use “player”, “console” and “IP address” interchangeably.

Table 1. Data sets

Halo 3 Phase Start End Distinct IPs Matchmaking games Hosts probed
Internal alpha 11/30/2006 01/23/2007 4,025 314,606 207,595
Internal beta 05/08/2007 05/21/2007 732,487 20,747,695 33,338,060
Public beta 05/22/2007 06/11/2007 903,782 23,182,323 38,453,035
Release 11/14/2007 01/03/2008 5,658,951 39,803,350 126,085,887

Fig. 1. Geographic distribution of players Fig. 2. Game sessions per hour

Table 1 lists our data sets. For conciseness, we focus on the “Release” data set for
Halo 3. Due to the extremely large number of game plays, we limit the data set in two
ways - we consider a 50 day period and we only consider a randomly selected 20% of
the matchmaking game sessions. The resulting data set covers over 126 million probes
between over 5.6 million IP addresses. For geographic analysis, we use the commercial
MaxMind GeoIP City Database from June 2007. It was able to provide the latitude and
longitude for over 98% of these IP addresses.

4 Player Population Characterization

In this section, we analyze the basic characteristics of the player population, such as the
geographic distribution of the players, when and how often they play the game. We also
look at the overall NPQ data such as distributions of RTT and capacity.

44 Y. Lee et al.

0

0.2

0.4

0.6

0.8

1
-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50 60 70 80

cu
m

ul
at

iv
e

fr
eq

. (
IP

s)

latitude

0

0.2

0.4

0.6

0.8

1

-200 -150 -100 -50 0 50 100 150 200

cu
m

ul
at

iv
e

fr
eq

.(
IP

s)

longitude

Fig. 3. Latitude and longitude density of players

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

1 8 64 512 4096

of

 IP
 a

dd
re

ss
es

of sessions

Fig. 4. Game sessions per IP address (log-log)

0.1

1

1 10 100 1000

cu
m

ul
at

iv
e

fr
eq

. (
se

ss
io

ns
)

of probes

Fig. 5. Probes per session (log-log)

Figure 1 shows the geographic locations of all 5,658,951 unique IP addresses, which
correspond to 68,834 unique latitude and longitude coordinates. To examine the density
of players in each region, we present Figure 3. Almost 85% of players are in USA -
longitudes -130 to -60, and latitudes 30 to 50. Roughly 15% are in western Europe.
Since players are spread across this large geographic region, it is quite possible for
consoles that are “too far apart” to probe each other. This partly motivates us to consider
estimation techniques that will identify such cases before probing.

To see when games were played, Figure 2 plots the number of game sessions in
each hour over a representative week. We notice a very strong diurnal pattern with
peaks in the evenings in North American time zones - this is not unexpected given the
high density of players in USA. We examine game playing behavior in more detail in
Figure 4. The number of games attempted from each IP address almost follows a Zipf
distribution. In the far right of the graph, one IP address attempted 5438 sessions - over
a 50 day period, this is a huge number of games for any 1 individual! We suspect that
the IP addresses in this area of the graph are for proxies with many players behind them.

Figure 5 shows a CDF of the number of consoles hosting a game that were probed in
each session. While there are many sessions that probed few consoles, there are some
that probed as many as 400 consoles. This number depends on how many game hosts
the Xbox Live server gives a console requesting a game, which in turn depends on how
many consoles are available at the time and the type of game requested.

Now we consider overall NPQ data. Figure 6 shows the CDF of RTT across all
probes. Over 25% of the measurements are above 150ms, which is an upper bound
for a responsive user experience in typical FPS games [1]. We want to pre-determine
in which cases the RTT will be above 150ms and skip probing altogether, thereby

Measurement and Estimation of Network QoS Among Peer Xbox 360 Game Players 45

0.01

0.1

1

1 10 100 1000 10000

cu
m

ul
at

iv
e

fr
eq

. (
pr

ob
es

)

delay (ms)

Fig. 6. RTT delay reported by probes (log-log)

192 Kbps

1.6Mbps

5.8 Mbps

10Mbps

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

fr
eq

ue
nc

y
(x

1,
00

0,
00

0)

capacity (kbps)

Fig. 7. Downstream capacity reported by probes

potentially reducing the total number of probes by 25%. Figure 7 shows the distribution
of measured capacity across all probes, in the direction from the console hosting a game
to the console requesting to join it. The graph for upstream capacity is similar. We see
peaks around typical capacities for broadband access in USA (e.g. 192Kbps, 1.5Mbps),
within some marginal error due to the packet pair estimation technique.

5 NPQ Prediction

The NPQ probing technique that Halo 3 uses consists of 16 packets per console being
probed (4 packet pairs in each direction). However, there can be many candidate hosts
for a game. For scalability and to minimize user wait time, we want to reduce the total
number of probes and hence propose the use of NPQ predictors. Our goal is to estimate
apriori if a console has good NPQ to a remote candidate host console, without doing a
probe. If bad NPQ is predicted, then this candidate should not be probed. If good NPQ
is predicted, then limited probing can be done (e.g. only 1 packet pair). If no prediction
can be made, standard probing should ensue. Based on our analysis of the NPQ data,
we now propose and evaluate three NPQ predictors.

5.1 IP History Predictor

We hypothesize that a probe between a pair of consoles at time t1 produces an NPQ
estimate that is still valid at a later time t2. This may be true if the median RTT and
average upstream and downstream bottleneck capacities do not vary significantly over
a period of δ = t2 − t1. To test this hypothesis, and estimate how large δ can be, we
examine NPQ data for pairs of IP addresses over different periods of time.

Figure 8 shows the CDF of the coefficient of variation (CV) in RTT for pairs of IP
addresses over different time windows. For instance, the “Within 5 min” line shows the
CV of RTTs from probes between the same pair of IP addresses within any 5 minute
window. To draw meaningful conclusions, we consider only those IP pairs that probed
each other at least 5 times during that period. We have plotted similar lines for 30 min-
utes, 6 hours, 1 day and the entire 50 day trace (the line labeled ”no constraints”). The
lines for all 5 time windows overlap with each other. For over 90% of IP address pairs
that probed each other at least 5 times, the variation in RTT estimates was minuscule
(CV under 0.2), even up to a δ of 50 days. For comparison we plot the “baseline” -
instead of considering CV for each pair of IPs, we consider the CV for each single IP.

46 Y. Lee et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

M
or

e

cu
m

ul
at

iv
e

fr
eq

. (
sr

c-
ds

t I
Ps

)

coefficient of variation

Within 5 min
Within 30 min
Within 6 hr
Within 1 day
No Constraints
Baseline

Fig. 8. RTT variation for IP pairs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

M
or

e

cu
m

ul
at

iv
e

fr
eq

. (
sr

c-
ds

t I
Ps

)

coefficient of variation

Within 5 min
Within 30 min
Within 6 hr
Within 1 day
No Constraints
Baseline

Fig. 9. Capacity variation for IP pairs

That is, for each IP address, the CV across all RTT estimates where this IP address was
involved, across the entire trace. This line is well below the others, indicating that the
RTTs are spread across a wide range. We conclude that the IP History Predictor can
perform quite well for predicting RTT, and the δ can be as large as 50 days.

Figure 9 has the same graph for downstream capacity. The upstream capacity graph is
very similar and is omitted for conciseness. Again, δ does not affect the NPQ prediction.
While the CV is larger, it is under 0.65 for 90% of the IP pairs, and is still much higher
than the “baseline”. Thus we believe the IP History Predictor adequately predicts the
NPQ between a pair of consoles based on an NPQ estimate from a prior probe.

5.2 Prefix History Predictor

We have shown the IP History Predictor to work only when pairs of consoles have
probed each other in the past. This may reduce the number of probes in only a limited
set of cases. Thus we now propose the Prefix History Predictor - this is similar to the IP
History predictor, except it uses IP prefix pairs. We hypothesize that a probe between a
pair of consoles A1 and B1 at time t1 produces an NPQ estimate that is still valid at a
later time t2 for a different pair of consoles A2 and B2, as long as A1 and A2 belong to
one BGP prefix, and B1 and B2 belong to one BGP prefix.

This predictor may be accurate if consoles in the same prefix share similar last mile
access. However, broadband ISPs offer several access packages (e.g., 192Kbps DSL or
1.5Mbps DSL), and the prefix may indicate geographic location more than link speed.
Thus, predictions for capacity may be less accurate than for RTT. We now analyze NPQ
data for pairs of IP prefixes that probed each other at least 5 times. We find a console’s
prefix by a longest prefix match against the 12/27/2007 RouteViews BGP table [8].

Figure 10 shows the performance of this predictor for delay, and can be compared to
Figure 8. When considering prefix pairs, δ has a bigger impact - the older the original
probe, the worse the prediction. Since CV is a relative metric, small variations in small
RTTs (e.g. 5ms versus 10ms) can produce a large CV. Thus in Figure 11 we look at the
semi-interquartile range (SIQR) of RTT estimates for prefix pairs for no limit on δ (i.e.,
the “no constraints” case). For 90% of prefix pairs, the SIQR is under 40ms. Thus it is
the outliers beyond the 25%-75% SIQR that contribute to this additional variability.

Figure 12 shows the performance of this predictor for downstream capacity estima-
tion. For δ beyond 5 minutes, it is a very poor predictor. We suspect this is due to
different subscription levels of last mile capacity within the same prefix.

Measurement and Estimation of Network QoS Among Peer Xbox 360 Game Players 47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

M
or

e

cu
m

ul
at

iv
e

fr
eq

. (
sr

c-
ds

t p
re

fix
es

)

coefficient of variation

Within 5 min
Within 30 min
Within 6 hr
Within 1 day
No Constraints
Baseline

Fig. 10. RTT variation for prefix pairs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

M
or
e

cu
m

ul
at

iv
e

fr
eq

. (
sr

c-
ds

t p
re

fix
es

)

size of range (ms)

SIQR(25%-75%)

10%-90%

Fig. 11. SIQR of RTT for prefix pairs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

M
or

e

cu
m

ul
at

iv
e

fr
eq

. (
sr

c-
ds

t p
re

fix
es

)

coefficient of variation

Within 5 min
Within 30 min
Within 6 hr
Within 1 day
No Constraints
Baseline

Fig. 12. Capacity variation for prefix pairs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

cu
m

ul
at

iv
e

fr
eq

. o
f p

ai
rs

of probes

IP Pair
Prefix Pair

Fig. 13. Number of repetitive probes

Based on these results, we believe the Prefix History Predictor can adequately predict
the RTT between a pair of consoles based on an NPQ estimate from a prior probe
between consoles in the same pair of prefixes. However, this prediction is not as accurate
as the IP History Predictor - so we suggest first applying that predictor, and only if it
cannot make a prediction, then using the Prefix History Predictor. To show in how
many cases this would apply, we present Figure 13. We plot the CDF of the number of
repeated probes in the entire trace between the same pair of IP addresses, and the same
pair of prefixes. Only about 5% of pairs of consoles probed each other more than once,
while about 39% of prefix pairs probed each other more than once. Note that we have
clipped the horizontal axis at 30 for presentation purposes - the IP pair line continues to
114 probes, and the prefix pair line continues to 14,513.

5.3 Geography Predictor

While 39% of prefix pairs is still a significant fraction of the number of consoles, and
has the potential to reduce a far larger portion of probes those prefixes probed each other
several times, there is still about 61% of prefix pairs left. We now consider the Geogra-
phy Predictor - we hypothesize that the geographic distance between two consoles has
a strong correlation with their RTT, and that current databases for mapping IP addresses
to geographic coordinates are reasonably accurate for this. This may be true if distant
IP addresses traverse longer links and more router hops to communicate. This predictor
does not consider past history, and thus could be applied to any pair of consoles.

48 Y. Lee et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

cu
m

ul
at

iv
e

fr
eq

. (
pr

ob
es

)

distance (miles)

Fig. 14. Probe distance distribution Fig. 15. Distance-RTT correlation

It is not clear why geographic distance would be correlated with down/up stream
bottleneck capacity - our analysis indicates the correlations are -0.075 and -0.097, re-
spectively. Thus we omit detailed results on capacity for conciseness and focus on RTT.

We use a MaxMind location database to convert the source and destination IP ad-
dresses in a probe to the geographic coordinates, and apply the great circle distance
algorithm [9] to calculate distance. The distribution in Figure 14 shows a wide range of
distances between probe hosts. About 14% of probes traversed over 5,000 miles, which
indicates there is room for optimization by filtering out these console pairs from the
probe list. The graph also shows that we have enough samples to examine the correla-
tion between distance and delay.

Figure 15 plots the correlation between distance and RTT for 100,000 randomly
selected probes (we were unable to plot over 126 million points on the same graph –
different samples of 100,000 points gave us very similar graphs). We see a very strong
correlation between the geographic distance and minimum RTT. However, there is a lot
of noise above that minimum, which may be due to queuing delays and sub-optimal
routes. We conclude that the Geography Predictor is useful for filtering out pairs of IP
addresses that are too far apart to have a low RTT.

5.4 Using Predictors in Matchmaking

Incorporating these three predictors into matchmaking is not difficult. For the IP History
Predictor, each console will keep a history of previous probes that it was involved in.
It can look up this history before attempting any future probes, and decide which can-
didate game hosts to ignore. For the Prefix History Predictor, the Xbox Live server can
filter the set of candidate game hosts it provides to each console based on their prefixes
and past probe history. The server already has the past NPQ estimates, and it can easily
keep fresh BGP tables to look up prefixes. The Geography Predictor requires an IP to
geographic coordinate database, on either the Xbox Live server or on each console.

6 Prior Work

Most prior work on network gaming has focused on games with a client-server archi-
tecture [4,5,10] where the server is well-provisioned and dedicated. The literature on
P2P games is very limited. In [6], the authors examine game clients deployed in three

Measurement and Estimation of Network QoS Among Peer Xbox 360 Game Players 49

access networks: dial-up, cable and ADSL. However, their experiments are limited to
one client per access network, and use only one cable and one ADSL link. The game
traffic of Halo 2 is analyzed in [11] in a LAN environment for traffic modeling and not
for end-to-end network characteristics between real Halo 2 players.

There has been much prior work on efficient and accurate NPQ prediction. For con-
ciseness, we identify those done in the context of network gaming. As before, most of
this work is for client-server games. In [12], a simple server-side method is proposed to
improve server location discovery and reduce probe traffic. Our NPQ prediction meth-
ods focus also on reducing overall probe time since that directly affects user wait time.
Also, we not only utilize the geographic location of consoles but also previous probe
results. A flooding-style server discovery mechanism is proposed in [13] to quickly lo-
cate local servers and prevent single directory server failure. That does not scale to P2P
games, since in our case several hundreds of thousands of consoles can be on-line at
any time. A server selection algorithm is proposed in [14] for distant game players who
want to play specifically with each other. Our work considers the general case of join-
ing players to any acceptable game, and thus considers NPQ data and correlators across
all on-line consoles. The geographic distribution of game servers and players is used
in [15] to redirect players to close game servers. While [16] does not consider on-line
games, they correlate geographic location and network delay to find a host, and their
experimental result about the correlation complements ours.

Outside network games, there has been a lot of research on characterizing NPQ over
the Internet. Many of these [17,18] use PlanetLab nodes. They are mostly located in
high-performance and stable academic networks, and thus do not reflect the character-
istics of consumer access networks. In [19], the constancy of NPQ over time among
31 hosts is studied within a stable academic network. Our work significantly comple-
ments prior work in terms of scale and diversity of network connectivity. Studies of
hosts behind consumer broadband lines are rare. It is extremely difficult to build a large
testbed of such hosts on the Internet. While [20] characterizes network performance
between consumer broadband hosts, they use only 25 hosts. More recently, [21] studies
residential network link capacities, RTT, and loss rates through relatively large-scale
measurement studies. They use 1,894 hosts behind 11 major DSL and cable providers
in North America and Europe. Our study is much larger in scale, involving over 5.6 mil-
lion hosts. Furthermore, they do not characterize direct network connections between
pairs of broadband hosts since they measure from several vantage points located in aca-
demic networks. Techniques for estimating NPQ have been studied extensively [7,22].
Our work focuses not on the techniques itself, but on the NPQ data.

7 Conclusions

We studied the quality of network paths among Xbox 360 game consoles playing Halo
3. We focused on network delay and capacity measured between players prior to each
Internet game match-up. We studied the general characteristics of the player population
such as geographical diversity and diurnal patterns of game play. We leveraged our
understanding of these characteristics to propose three predictors for determining path
quality without additional probe traffic : IP and prefix history-based and geography-
based. Our evaluation of these predictors showed that they can significantly reduce the

50 Y. Lee et al.

number of probes and hence user wait time during matchmaking. For future work, we
plan on comparing the initial NPQ estimate to actual in-game network performance.

References

1. Dick, M., Wellnitz, O., Wolf, L.: Analysis of factors affecting players performance and per-
ception in multiplayer games. NetGames (2005)

2. Quax, P., Monsieurs, P., Lamotte, W., Vleeschauwer, D.D., Degrande, N.: Objective and
subjective evaluation of the influence of small amounts of delay and jitter on a recent first
person shooter game. NetGames (2004)

3. Armitage, G.: An experimental estimation of latency sensitivity in multiplayer Quake 3. In:
ICON (2003)

4. Feng, W., Chang, R., Feng, W., Walpole, J.: Provisioning on-line games: A traffic analysis of
a busy Counter Strike server. In: IMW (2002)

5. Kim, J., Choi, J., Chang, D., Kwon, T., Choi, Y., Yuk, E.: Traffic characteristics of a massively
multi-player online role playing game. NetGames (2005)

6. Jehaes, T., Vleeschauwer, D.D., Coppens, T., Doorselaer, B.V., Deckers, W.N.E., Spruyt, J.,
Smets, R.: Access network delay in networked games. NetGames (2003)

7. Carter, R.L., Crovella, M.E.: Measuring bottleneck link speed in packet-switched networks.
Technical report, Boston University (March 1996)

8. University of Oregon: Routeviews project page http://www.routeviews.org/
9. Hexa software development center: Distance calculation method between two latitude and

longitude coordinates, http://zipcodeworld.com/docs/distance.pdf
10. Chambers, C., Feng, W., Sahu, S., Saha, D.: Measurement-based characterization of a col-

lection of on-line games. In: IMC (2005)
11. Zander, S., Armitage, G.: A traffic model for the Xbox game Halo2. In: NOSSDAV (2005)
12. Zander, S., Kennedy, D., Armitage, G.: Server-discovery traffic patterns generated by multi-

player first person shooter games. NetGames (2005)
13. Henderson, T.: Observations on game server discovery mechanisms. NetGames (2003)
14. Gargolinski, S., Pierre, S., Claypool, M.: Game server selection for multiple players.

NetGames (2005)
15. Chamber, C., Feng, W., Feng, W., Saha, D.: A geographic redirection service for on-line

games. ACM Multimedia (2003)
16. Fdida, S., Duarte, O.C.M.B., de Rezende, J.F., Ziviani, A.: Toward a Measurement-Based

Geographic Location Service. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015,
pp. 43–52. Springer, Heidelberg (2004)

17. Lee, S.-J., Basu, S., Sharma, P., Banerjee, S., Fonseca, R.: Measuring Bandwidth Between
PlanetLab Nodes. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 292–305. Springer,
Heidelberg (2005)

18. Banerjee, S., Griffin, T.G., Pias, M.: The Interdomain Connectivity of PlanetLab Nodes. In:
Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 73–82. Springer, Heidelberg
(2004)

19. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the constancy of Internet path properties.
In: IMW (2001)

20. Lakshminarayanan, J., Padmanabhan, V.N.: Some findings on the network performance of
broadband hosts. In: IMC (2003)

21. Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residential broad-
band networks. In: IMC (2007)

22. Dovrolis, C., Ramanathan, P., Moore, D.: Packet-dispersion techniques and a capacity-
estimation methodology. IEEE/ACM Transactions on Networking (December 2004)

http://www.routeviews.org/
 http://zipcodeworld.com/docs/distance.pdf

Evaluation of VoIP Quality over WiBro

Mongnam Han1, Youngseok Lee2, Sue Moon1, Keon Jang1, and Dooyoung Lee1

1 Computer Science Department, KAIST
2 School of Computer Science & Engineering, Chungnam National University

Abstract. In this work, we have conducted experiments to evaluate
QoS of VoIP applications over the WiBro network. In order to capture
the baseline performance of the WiBro network we measure and ana-
lyze the characteristics of delay and throughput under stationary and
mobile scenarios. Then we evaluate QoS of VoIP applications using the
E–Model of ITU–T G.107. Our measurements show that the achievable
maximum throughputs are 5.3 Mbps in downlink and 2 Mbps in uplink.
VoIP quality is better than or at least as good as toll quality despite user
mobility exceeding the protected limit of WiBro mobility support. Using
RAS and sector identification information, we show that the handoff is
correlated with throughput and quality degradation.

1 Introduction

Recent emerging wireless networks such as 3G cellular and wireless LAN (WLAN)
allow users choices in accessing the Internet based on one’s need and cost. WLAN
with a high data rate (up to 54Mbps) supports low mobility and limited cover-
age. Cellular networks support high mobility with low bandwidth. The broadband
wireless access (BWA) systems address the market between WLAN and cellular
networks. Their goal is to support higher bandwidth than 3G cellular networks,
but less mobility for mobile end-user devices. The IEEE 802.16 family of standards
specifies the air interface of fixed and mobile BWA systems. WiMax is a subset of
the 802.16 standards whose main goal is product compatibility and interoperabil-
ity of BWA products, just as WiFi is to the 802.11 standards. WiBro has been
developed as a mobile BWA solution in Korea, and is generally considered a pre-
cursor to WiMax. It is a subset of consolidated version of IEEE Standard 802.16-
2004 (fixed wireless specifications), P802.16e (enhancements to support mobility),
and P802.16-2004/Cor1 (corrections to IEEE Standard 802.16-2004). The pro-
files and test specifications of WiBro will be harmonized with WiMAX Forum’s
mobile WiMAX profiles and test specification, drawing a convergence of the two
standards.

Today’s Internet users not only write emails and surf the web, but also make
Voice over IP (VoIP) calls, play online games, and watch streaming media. These
real-time applications have stringent Quality of Service (QoS) requirements on
delay and loss. WiMax and WiBro standards have defined multiple service types
in order to guarantee different levels of QoS. However, at the initial phase of
deployment, often only the best-effort service is made available, while users do

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 51–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 M. Han et al.

not limit themselves to emails and web surfing over emerging wireless technology
networks.

In this work, we conduct experiments to evaluate QoS of VoIP applications
over the WiBro network. In order to capture the baseline performance of the
WiBro network, we measure and analyze delay, loss, and throughput of constant
bit rate streams in both stationary and mobile scenarios. We have measured
maximum throuhgputs of 5.3 Mbps on downlink and 2 Mbps on uplink. Packet
loss and throughput exhibit more variability in the mobile scenario than station-
ary. Then we evaluate QoS of VoIP applications using the E–Model of ITU–T
G.107 also in both stationary and mobile scenarios. VoIP quality is better than
or at least as good as toll quality even in the mobile scenario. By combining
the packet traces with physical layer information, we show that the handoff is
correlated with throughput and quality degradation on VoIP quality. We note
that the deployed WiBro network is lightly loaded.

The rest of this paper is organized as follows. In section 2, we describe the
background and related work. In Section 3, we describe our measurement ex-
periment setup in a WiBro network and present the VoIP quality evaluation
methodology. We present our analysis results in Section 4 and wrap up the pa-
per with a summary in Section 5.

2 Background and Related Work

Fixed WiMax was first used to assist in the relief effort for the 2004 tsunami
in Aceh, Indonesia, and now has more than 350 service providers around the
world [14]. WiBro, a mobile BWA service, had its public demonstration in De-
cember 2005, and has been in service since June 2006 in Korea. The network
architecture of WiBro in the phase I standardization [13] is shown in Figure 1.
The WiBro network consists of Access Control Routers (ACR), Radio Access
Stations (RAS), Personal Subscriber Stations (PSS), and the network service
provider’s IP network. An RAS is the interface between PSSs and the core net-
work at the physical layer and it also controls the radio resource at the data link
layer in conjunction with an ACR. One of the distinguishing features of WiBro
from cellular networks is that Internet Protocol (IP) is used beween an ACR and
RASs and also between ACRs. WiBro uses Time or Frequency Division Duplex-
ing (TDD or FDD) for duplexing and Orthogonal Frequency Division Multiple
Access (OFDAS) for robustness against fast fading and narrow-band co-channel
interference. So far, five service types have been proposed and incorporated into
802.16e: unsolicited grant service (UGS), real-time polling service (rtPS), ex-
tended real-time polling service (ertPS), non-realtime polling service (nrtPS),
and best effort service (BE). However, only BE is used in current deployment in
Korea.

Ghosh et al. use a link-level simulation to analyze the 802.16 fixed WiMax sys-
tem [4]. Cicconetti et al. analyze the effectiveness of the 802.16 MAC protocol
for supporting QoS by simulation and evaluate various scheduling algorithms [1].
In [12], the authors evaluate UGS, rtPS, and ertPS scheduling algorithm in IEEE

Evaluation of VoIP Quality over WiBro 53

Fig. 1. Experimental environment over WiBro

802.16e system in OPNET simulation. Most of prior work focuses on investigat-
ing the performance at the physical layer and MAC layer largely through either
simulation or experiment with limited mobility. In this work, we focus on the end-
to-end performance at the application layer considering mobility in real life. Our
work is unique in that we focus on empirical measurements from a real deployed
network, world’s first commercial deployment of the mobile WiMax technology.

3 Experiment Setup and Evaluation Methodology

We begin this section with a description of our measurement experiment setup.
Then in Section 3.2, we describe the ITU-T E-model for VoIP quality evaluation.

3.1 WiBro Performance Measurement

In Korea, KT launched WiBro coverage for nine subway lines in Seoul on April,
2007. The Seoul subway system moves millions of people a day through an exten-
sive network that reaches almost all corners within the city and major satellite
cities outside. The maximum speed of Seoul subway trains is 90 km/h, and it
takes about 1∼2 minutes between two stations. We have considered measure-
ment experiments in vehicles moving at or under 60 km/h, the upper limit of
WiBro, but chosen the subway, as it presents a more popular scenario with users.
Commuters in subway are more likely to use mobile devices than those in moving
vehicles, as the measurement experiment on a subway train is easier for us. We
have conducted our measurement experiments on subway line number 6. It has
38 stations over a total distance of 35.1 km and six RASs.

We have placed a mobile node (a laptop with a WiBro modem) in the WiBro
network and installed a stationary node (a desktop PC) connected to the Internet
over a fixed line so that we could focus on the WiBro network performance. We
refer to the laptop as the Mobile Node (MN) and the PC as the Corresponding
Node (CN), and mark them as such in Figure 1. In order to place the CN as close
to the WiBro network as possible, we use a PC directly connected to a router

54 M. Han et al.

on Korea Research Environment Open Network (KREONET). It is a research
network that interconnects super computing centers in Korea and also is used
as a testbed for new networking technologies. It peers with KT’s IP backbone
network at one of KT’s exchange points.

For our measurement experiments, we generate two types of traffic: constant
bit rate (CBR) and VoIP. The difference between CBR and VoIP traffic lies in
the packet sending rate and follow-up analysis. For both types of traffic, we take
measurements when the MN is stationary and moving in a subway. We use iperf
for CBR traffic generation [6], and D-ITG [3] for VoIP traffic generation. We
configure D-ITG to measure round-trip time (RTT) instead of one-way delay,
as we could not instrument the MN in subway and CN at an exchange point to
have access to GPS-quality clock synchronization.

Multiple types of handoff are possible in the WiBro network. An inter-ACR
handoff takes longer than inter-RAS or inter-sector handoff. An inter-sector
handoff is between two sectors within an RAS. An RAS typically has three sec-
tors. Using a custom tool developed to monitor inter-sector and inter-RAS hand-
offs, we collect RAS identifiers and corresponding sector identifiers. By aligning
the changes in RAS and sector identifiers with the measurement data, we can
pinpoint the moments of handoffs in our data.

3.2 VoIP Quality Evaluation

The classic way to evaluate speech quality is Mean Opinion Score (MOS) [9].
However, it is time consuming, costly, and not repeatable, as human experts
are involved in the evaluation. Perceptual Speech Quality Measure (PSQM) [10]
and Perceptual Evaluation of Speech Quality (PESQ) [11] are the most common
objective measurement methods for voice quality. Both still require a reference
signal to compare a degraded speech signal against and predict a MOS value.
They are called psychoacoustic models. The ITU–T E-model does not depend
on a reference signal, but uses a computational model to predict voice quality
directly from network measurements. The output of the E-model is a single value,
called an “R–factor”, derived from delays and equipment impairment factors.
The ITU-T G.107 [7] defines the relationship between the R factor and MOS as
below:

MOS =

⎧
⎨

⎩

1, For R ≤ 0
1 + 0.035R + R(R − 60) · (100 − R) · 7 · 10−6 For 0 < R < 100
4.5, For R ≥ 100

(1)

The E-model is based on a mathematical algorithm. Its individual transmission
parameters are transformed into different individual “impairment factors” that
are assumed to be additive on a psychological scale. The algorithm of the E-
model also takes into account the combination effects for those impairments in
the connection which occur simultaneously, as well as some masking effects.

The R-factor calculated by the E-model ranges from 0 (poor) to 100 (excellent)
and can be obtained by the following expression,

R = Ro − Is − Id − Ie−eff + A, (2)

Evaluation of VoIP Quality over WiBro 55

where
Ro : Basic signal-to-noise ratio
Is : All impairments that occur more or less

simultaneously with the voice signal
Id : Delay impairment factor
Ie−eff : Effective equipment impairment factor

caused by low bit-rate codec and
by packet loss on the network path

A : Advantage factor

Cole et al. has reduced (2) to (3) after taking default values for those parameters
other than delay and loss [2].

R = 94.2 − Id − Ie−eff (3)

In this paper, we use (3) in our WiBro VoIP quality and apply Equations (5)
and (10) of [2] to translate one-way delay d and loss rate e to Id and Ie−eff .

Id = 0.024d + 0.11(d − 177.3)H(d − 177.3) (4)
where H(x) = 0, if x < 0, and H(x) = 1, if x ≥ 0 (5)

Ie−eff = 0 + 30ln(1 + 15e) (6)

4 Analysis

On October 5th and 6th, 2007, we took CBR and VoIP measurements in Seoul.
For stationary experiments, we placed the MN on KAIST Seoul campus. For
mobile experiments, we rode the Seoul subway line 6. For traffic logging, we
used windump at both the MN and CN. For the VoIP experiments, the MN and
CN also dumped log files including sequence numbers, packet departure times,
acknowledgement arrival times, and calculated round trip time. The complete
set of CBR and VoIP experiments are listed in Table 1

Table 1. The summary of CBR and VoIP experiments (upload/download)

Type Environment No of Exps. Duration (sec) Rate (Kbps)

CBR Stationary 55 / 55 120 1500∼2500 / 5000∼6000
Stationary 10 / 10 300 2000 / 5300

Mobile 10 / 10 300 2000 / 5300

VoIP Stationary 10 / 10 300 64 / 64
Mobile 10 / 10 300 64 / 64

4.1 CBR Traffic Analysis

In order to capture the baseline performance of the WiBro network, we first mea-
sure the maximum achievable throughput. We generated 5 Mbps up to 6 Mbps
and 1.5 Mbps up to 2.5 Mbps traffic in quantums of 100 Kbps for download

56 M. Han et al.

and upload, respectively, and found the bandwidth capped at about 5.3 Mbps
downlink and 2 Mbps uplink.

Then we set the transmission rate of our CBR traffic at 5.3 Mbps for downlink
and 2 Mbps for uplink with the packet size of 1460 bytes and saturated the link.
We conducted 10 sets of 300-second-long uploads and downloads. Due to limited
space, we present only the downlink performance. We first plot the throughput
of CBR traffic over time and plot it in Figure 2. From 10 300-second-long sets,
we get a time span of 3000 seconds, which is the range on the x-axis. We use
a 5-second interval to compute the throughput. In Figure 2(a), we see that
the throughput remains almost constant when the MN is stationary. When the
MN is mobile, the throughput fluctuates. We plot the inter-quartile dispersion of
throughput of both the stationary and mobile experiments in Figure 2(b). In the
stationary experiment, the inter-quartile range is so small that most 5-second
throughput values converge to 5.3 Mbps. In the mobile experiment, the inter-
quartile range spans from 4.1 Mbps to 5.1 Mbps, and has noticeably more points
below 3 Mbps. To view the dispersion of throughput in a more visually intuitive
way, we plot the variability in Figure 2(c) using the second-order difference plot.
The difference between two consecutive throughputs are plotted against that
between next two consecutive values. In this figure, the median from the center
of the mobile station is about 13 times larger than that of the stationary station.
The throughput of MN still remains consistently above 1 Mbps.

Next, we analyze the jitter and loss rates of CBR traffic. For this work, we
define jitter as the difference between sending intervals and arrival intervals.
Figure 3(a) depicts a cumulative distribution function (CDF) of CBR traffic
jitter. In both stationary and mobile experiments, more than 90% of jitters are
below 15 milliseconds. Given that our traffic by itself saturated the link, this
result is encouraging for real-time applications. Now we look at the loss rate of
our CBR traffic. In Figure 3(b) the loss rate in the mobile environment is much
higher than in stationary. In a WiBro network, a MAC layer retransmission
mechanism called Hybrid Auto Repeat reQuest (HARQ) is adopted to reduce
loss rate at the cost of increased delay. As our CBR traffic used UDP as an
underlying transport protocol and saturated the link, we expect the loss rates
to decrease once we lower the sending rate. We revisit the discussion of the loss
rate in the next section.

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

T
hr

ou
gh

pu
t (

K
bp

s)

Time (s)

Stationary
Mobile

(a) Fluctuation

Stationary Mobile

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

K
bp

s)

(b) Dispersion

−4000 −2000 0 2000 4000
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Tput
i+1

−Tput
i

T
pu

t i+
2−

T
pu

t i+
1

Mobile
Stationary

(c) Variability

Fig. 2. Analysis of CBR traffic throughput over WiBro

Evaluation of VoIP Quality over WiBro 57

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Jitter (ms)

C
D

F

Stationary
Mobile

(a) CDF of CBR traffic jitter

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Loss rate (%)

C
D

F

Stationary
Mobile

(b) CDF of CBR traffic loss rate

Fig. 3. Analysis of CBR jitter and loss over WiBro

4.2 VoIP Traffic Analysis

For VoIP experiments, we have generated voice traffic that has the same charac-
teristics of the G.711 voice codec without Packet Loss Concealment (PLC) [8].
The payload size is set to 160 bytes and the sending interval to 20 ms in G.711
codec without PLC. The resulting throughput of VoIP traffic is 64 Kbps. We col-
lected 10 300-second-long data sets after transmitting voice packets between the
MN and the CN. Because the clocks on the MN and CN were not synchronized,
we could not measure the one-way delay accurately. Instead, we took round-trip
measurements of VoIP traffic, and halved the delay. Due to the difference in
uplink and downlink bandwidths, half the round-trip delay is likely to be larger
than the one-way uplink delay. However, the WiBro link was very lightly loaded

10
−2

10
−1

10
0

H
al

f−
R

T
T

(s
)

(a)

0
20
40
60
80

100

Lo
ss

 r
at

e(
%

)

(b)

0 500 1000 1500 2000 2500 3000
0

20
40
60
80

100

R
−

fa
ct

or

Time(s)
(c)

Fig. 4. The time-series plots of (a) half-RTT, (b) loss rate, and (c) R-factor. Each
vertical line indicates the time when either inter-RAS(solid line) or inter-sector(dashed
line) handoff occurs.

58 M. Han et al.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

(a) R−factor in Uplink

C
D

F

Stationary
Mobile

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

(b) R−factor in Downlink

C
D

F

Stationary
Mobile

Fig. 5. CDF of R-factor in uplink and downlink

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

R−factor

C
D

F

Overall
During Handoff

Fig. 6. CDF of R-factor in 5-sec-intervals vs. during handoffs

as we have seen in the previous section and thus we assume the difference in
transmission delay to be minimal. In the rest of this section, all the delays we
use are calculated as described.

Figure 4 plots the delay, loss, and R-factor of mobile VoIP traffic measure-
ments. We plot loss rates and R-factors calculated over 5 seconds as before.
During the mobile experiment, handoffs occurred 17 times and most of delay
spikes and burst losses occur near handoffs. We mark the points of the inter-
RAS handoffs in solid lines and inter-sector handoffs in dashed lines in Figure 4.
Almost all packets experiences delay below 200 ms, but during handoffs some
packets experiences delay over 400 ms. We note a delay spike of 5 sec about half
way through the measurement experiment between 1600 and 1700 seconds on
the x-axis. Delay spikes and burst losses have been reported in both wired and
wireless networks, and there are many possible causes, such as cell or sector re-
selection, link-level error recovery, wireless bandwidth fluctuation and blocking
by higher priority traffic [15,5]. However, this delay spike does not coincide with
a handoff, and needs further investigation.

Figure 5 shows the R-factor of VoIP quality of uplink (MN to CN) and down-
link (CN to MN) in the stationary and mobile cases. The R-factor is calculated

Evaluation of VoIP Quality over WiBro 59

every 5 seconds. From the figure we have found that more than 99% of R-factors
are above 90 in both the stationary and the mobile case and only 0.2% of R-
factors is below 70 in the mobile case. The R-factor of 70 or above is considered
toll-quality, and thus mobile devices attached to the WiBro network are likely
to experience toll-quality using VoIP applications.

To quantify the impact of handoffs on QoS of VoIP, we have computed R-
factors using average delay and loss rate for the interval of 5 seconds before and
after the handoff and compared with the overall cumulative distribution function
(CDF) of R-factors in Figure 6. Here again we observe that the about 99% of
R-factors during handoffs are more than 85, which translates to good quality for
voice communication.

5 Summary and Future Work

In this work, we have conducted experiments to evaluate QoS of VoIP appli-
cations over the WiBro network. In order to capture the baseline performance
of the WiBro network we measure and analyze the characteristics of delay and
throughput under stationary and mobile scenarios. Then we evaluate QoS of
VoIP applications using the E–Model of ITU–T G.107. Our measurements show
that the achievable maximum throughputs are 5.3 Mbps in downlink and 2 Mbps
in uplink. VoIP quality is better than or at least as good as toll quality despite
user mobility exceeding the projected limit of WiBro mobility support. Using
RAS and sector identification information, we show that the handoff is correlated
with throughput and quality degradation.

The WiBro network is in its early phase of deployment and about 70,000
subscribers are reported to have signed up. As our CBR traffic analysis shows,
the network is very lightly loaded, allowing near maximum throughputs for many
5-second-long periods. In future, we plan to conduct more experiments with
cross-traffic injection and TCP traffic.

Acknowledgement

Sue Moon, Keon Jang, and Dooyoung Lee were supported by KOSEF through
AITrc (Advanced Information Technology Research Center). Youngseok Lee was
supported by the Ministry of Information and Communication, Korea, under the
ITRC (Information Technology Research Center) support program supervised
by the IITA (Institute of Information Technology Advancement) (IITA-2008-
(C1090-0801-0016)).

References

1. Cicconetti, C., Lenzini, L., Mingozzi, E., Eklund, C.: Quality of service support in
IEEE 802.16 networks. IEEE Network 20, 50–55 (2006)

2. Cole, R.G., Rosenbluth, J.H.: Voice over IP performance monitoring. SIGCOMM
Comput. Commun. Rev. 31(2), 9–24 (2001)

60 M. Han et al.

3. D-ITG, http://www.grid.unina.it/software/itg/
4. Ghosh, A., Wolter, D.R., Andrews, J.G., Chen, R.: Broadband wireless access

with WiMax/802.16: current performance benchmarks and future potential. IEEE
Communications Magazine 43, 129–136 (2005)

5. Hornero, R., Abasolo, D.E., Jimeno, N., Espino, P.: Applying approximate entropy
and central tendency measure to analyze time series generated by schizophrenic pa-
tients. In: Proc. of the 25th Annual International Conference of the IEEE, Septem-
ber 2003, pp. 2447–2450 (2003)

6. iperf, http://dast.nlanr.net/projects/iperf/
7. ITU–T standard G.107. The e-model, a computational model for use in transmis-

sion planning (March 2005)
8. ITU–T standard G.711. Pulse code modulation (PCM) of voice frequencies

(November 1988)
9. ITU–T standard P.800. Methods for subjective determination of transmission qual-

ity (August 1996)
10. ITU–T standard P.861. Objective quality measurement of telephoneband (300–

3400 hz) speech codecs (August 1996)
11. ITU–T standard P.862. Perceptual evaluation of speech quality (pesq): An objec-

tive method for end-to-end speech quality assessment of narrow-band telephone
networks and speech codecs (February 2001)

12. Lee, H., Kwon, T., Cho, D.-H., Lim, G., Chang, Y.: Performance analysis of
scheduling algorithms for VoIP services in IEEE 802.16e systems. In: Proc. of
Vehicular Technology Conference, vol. 3, pp. 1231–1235 (2006)

13. TTAS.KO-06.0065R1. WiBro standard phase–I (December 2004)
14. WiMax, http://en.wikipedia.org/wiki/wimax
15. Xin, F., Jamalipour, A.: TCP performance in wireless networks with delay spike

and different initial congestion window sizes. Computer Communications 29, 926–
933 (2006)

http://www.grid.unina.it/software/itg/
http://dast.nlanr.net/projects/iperf/
http://en.wikipedia.org/wiki/wimax

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 61–71, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Packet Sampling for Flow Accounting: Challenges and
Limitations

Tanja Zseby1, Thomas Hirsch1, and Benoit Claise2

1 Fraunhofer Institute FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{Tanja.Zseby,Thomas.Hirsch}@fokus.fraunhofer.de

2 Cisco Systems, De Kleetlaan 6a b, 1831 Diegem, Belgium
bclaise@cisco.com

Abstract. We investigate the applicability of packet sampling techniques to
flow-based accounting. First we show by theoretical considerations how the
achievable accuracy depends on sampling techniques, parameters and traffic
characteristics. Then we investigate empirically which accuracy is achieved
with typical flow characteristics by experiments with real traffic traces from
three different networks. In a third step we illustrate how to support sampling-
based accounting by providing an accuracy statement together with the
measured data. We show which information is required for this and how an
accuracy assessment can be approximated from information available after the
sampling process using information elements of the IP flow information export
protocol (IPFIX).

Keywords: packet sampling, accounting, IPFIX.

1 Introduction

Sampling aims at the reduction of measurement costs by estimating the metric of
interest from a subset of data. It is important that the extent of potential estimation
errors can be evaluated, especially if measurement results map to monetary values as
it is the case for accounting. The achievable accuracy usually depends on
characteristics of the population, i.e., in our case the traffic in the network. Since
network traffic is extremely dynamic providing an up-to-date accuracy assessment is
not trivial. It must be derived from the limited information available after the
sampling process. It has to be calculated per flow and updated continuously.

Basic packet selection methods are currently standardized in the IETF PSAMP
group [6]. A flow sampling scheme for accounting is introduced in [1]. Sample and
Hold [2], Shared-state Sampling (S3) [3], and the Runs bAsed Traffic Estimator
(RATE) [4] propose packet sampling methods that bias the selection process towards
large flows in order to reduce resource consumption for flow caching and flow record
transfer. This makes sense for accounting because in typical flow distributions a few
large flows contribute to the majority to the overall traffic volume (e.g. [1]).
Nevertheless, all those approaches require the classification of packets into flows
before or during the sampling process. In contrast to this we investigate the effects of
packet sampling that is applied before flow classification, so that only selected

62 T. Zseby, T. Hirsch, and B. Claise

packets need to be classified, which significantly reduces workload on routers [5]. We
compare the achievable accuracy for basic PSAMP schemes and a stratified method
used in Cisco NetFlow to accounting requirements. We show how the accuracy can
be approximated from available information, using IPFIX information elements [11].

2 Flow Accounting Requirements

The accuracy of an estimate is assessed by bias and precision. For accounting we
should only use unbiased estimates. This is the case if the expectation of the estimated
values equals the real value. The precision is derived from the variance (or its square
root: the standard error) of the estimate and expresses how far estimated values from
sample runs would spread. The higher the standard error the lower is the precision.
An accuracy statement can be presented to customers by a confidence interval.
Confidence boundaries define the area in which the real value should lie and can be
expressed by the maximum tolerable estimation error. The confidence level (CL)
gives the probability that the real value lies within this range. From this we can derive
a maximum standard error that should not be exceeded if a given accuracy is required.
Table 1 shows the maximum relative standard error for different accuracy
requirements for a normal distributed estimate.

Table 1. Maximum Relative Standard Error for Different Accuracy Requirements

Rel. Est. Error CL Rel. StdErr Rel. Est. Error CL Rel. StdErr
0.01 (1%) 99% 0.003876 0.1 (10%) 95% 0.051020
0.01 (1%) 95% 0.005102 0.15 (15%) 95% 0.076531
0.05 (5%) 99% 0.019380 0.20 (20%) 95% 0.102041
0.05 (5%) 95% 0.025510 0.30 (30%) 95% 0.1531

3 Accuracy Assessment in Theory

We here provide a theoretical assessment of bias and precision by providing formulas
for expectation and standard error for the sampling schemes. We also give formulas
for sampling after classification, but our focus is on sampling before classification. It
is the more complex case, saves classification effort and is used in NetFlow.

Accuracy Assessment for n-out-of-N Sampling. In n-out-of-N sampling exactly n
elements are selected from the population, which consists of N elements [6]. If there
is only one flow (N=Nf) in the traffic mix or we apply sampling after classification,
the number Nf of packets per flow is known. The number nf of selected packets can be
set per flow and is also known.

The estimate ˆ fSum for the number of bytes in flow f can be simply calculated from
the packet sizes xi,f of the selected packets, by extrapolating with nf and Nf. The
expected bias is zero. The standard error can be calculated by the standard formula for
an n-out-of-N selection [9] from sampling parameters and packet size variance 2

fxσ .

 Packet Sampling for Flow Accounting: Challenges and Limitations 63

,

1

ˆ
fn

f
f i f

if

N
Sum x

n =
= ⋅∑ (1)

 ˆ
1

fx f f
abs f f

ff

N n
StdErr Sum N

Nn

σ −
⎡ ⎤ = ⋅ ⋅⎣ ⎦ −

 (2)

If we apply sampling before classification Nf and nf are unknown. Extrapolation must
be done with the overall population N and sample size n.

,

1

ˆ
fn

f i f
i

N
Sum x

n =

= ⋅∑ (3)

In contrast to the case above (where nf=n=const), here the number nf of packets from
flow f in the sample varies for each sampling run and has to be considered as random
variable (r.v.) itself. The estimate contains two random variables, nf and xi,f. To assess
the estimation quality we need to calculate expectation and variance of a sum of
random variables, where the number of addends itself is a random variable. We model
nf as a discrete r.v. with a binomial distribution1 B(n, Nf/N). We denote the mean
packet size of all packet sizes in flow f in the population by

fxμ and their variance

by 2

fxσ . With xi,f we denote the number of bytes of the ith selected packet2. Since we

apply a random selection, the xi,f are independent identical distributed (i.i.d.).
With the assumption of the binomial distribution for nf and independency for the xi,f

we can derive the following formulas for expectation and variance for the estimated
sum for flow f (see appendix):

ˆ

ff f x fE Sum N Sumμ⎡ ⎤ = ⋅ =⎣ ⎦
 (4)

()()2 2 2 21

ˆ
f f ff f x x f xV Sum N N N

n
σ μ μ⎡ ⎤ = ⋅ ⋅ ⋅ + − ⋅⎣ ⎦ (5)

The expectation equals the real volume, i.e. the estimation is unbiased. The variance
of the estimated flow volume, and with this the expected accuracy of the estimation
depends on the parameters n, N, Nf,

fxμ and 2

fxσ . Sample size n and population size

N are preconfigured sampling parameters. Nf ,
fxμ and 2

fxσ are flow characteristics. Nf

denotes the number of packets in the population that belong to flow f. The packet size
mean

fxμ and the packet size variance 2

fxσ depend on the packet size distribution in

flow f. If we take the square root of the variance we get the absolute standard error.

()()2 2 2 21

ˆ
f f fabs f f x x f xStdErr Sum N N N

n
σ μ μ⎡ ⎤ = ⋅ ⋅ ⋅ + − ⋅⎣ ⎦ (6)

A division by the flow volume provides the relative standard error (see appendix).

1 If f≤0.05 and 0.1< Nf/N <0.9 the hyper geometrical distribution Hy(N, Nf, n) can be

approximated by a binomial distribution B(n, Nf/N) (see e.g., [10]).
2 Note that the index i is used for the selected packets only and not for all packets in the flow.

64 T. Zseby, T. Hirsch, and B. Claise

Accuracy Assessment for 1-in-K Sampling (stratified). Cisco NetFlow implements
a sampling scheme that we call 1-in-K sampling3. 1-in-K sampling is a count-based
stratified n-out-of-N sampling. The selection process is done in two steps. First the
measurement interval is divided into L subintervals of size K. Then one packet is
randomly selected per subinterval. The measurement interval, i.e., the population for
which a parameter should be estimated, still consists of N packets. The estimate is
calculated from all nf packets that were selected in all subintervals in the measurement
interval.

,

1

ˆ
fn

f i f
i

N
Sum x

n =

= ⋅∑ with ,1 ,2 ,f f f f Ln k k k= + + +… (7)

The difference to n-out-of-N sampling is that here the number nf of packets from flow
f in the sample does not necessarily follow a binomial distribution. The sample size k
within the subinterval is always 1. The number kf of packets from flow f within this
sample can be 0 or 1. The probability that kf is 1 (i.e., the selected packet belongs to
flow f) depends on the total amount of packets from flow f in the subinterval Kf.
Therefore kf can be considered as a Bernoulli distributed random variable with a
probability of success pf=Kf/K. So the distribution of nf depends on those subinterval
probabilities, which depend on the packets per flow in the subinterval.

If all packets in the measurement interval belong to one flow (Nf=N), the standard
error for stratified sampling can be calculated as follows [see [9], following
equation 5.9]:

()

2
,

1

ˆ[]
L

x l
strat l l l

l l

StdErr Sum K K k
k

σ
=

= ⋅ − ⋅∑ (8)

In the 1-in-K sampling implemented in NetFlow all strata have the same size
(Kl=N/L) and only one packet is selected per stratum (kl=1). Furthermore, if Kl>>kl
we can approximate Kl-kl≈Kl. With this we get

2 2
,2 2

,2
1 1

ˆ[]
L L

x l
strat l x l

l ll

N
StdErr Sum K

k L

σ
σ

= =

= ⋅ = ⋅∑ ∑ 2
,2

1

1 L

x l
l

N
L

σ
=

= ⋅ ⋅∑ (9)

The accuracy depends on the number L of strata and on the packet size variances 2
,x lσ

in the subintervals.
If the packets in the measurement interval belong to different flows (Nf<N), one

has to consider not only the distribution of packet sizes over the subintervals but also
the distribution of flow IDs. The calculation of the standard error becomes more
complex because the variances have to be calculated per strata. The standard error
now depends on the per-flow characteristics (number of packets Kf, packet size
variance 2

,fx lσ , and mean ,fx lμ) within each subinterval.

()()2 2 2 2

, , , , ,
1 1

ˆ[]
f f f

L

f strat f l x l x l x l f lStdErr Sum K K Kσ μ μ
=

= ⋅ ⋅ + − ⋅∑ (10)

3 To avoid confusion with the interval length N we call the scheme 1-in-K instead of 1-in-N.

 Packet Sampling for Flow Accounting: Challenges and Limitations 65

The vigilant reader may miss the sampling parameters n and N in the formula. But for
1-in-K sampling the population size N is formed by the stratum size K and the number
of strata L (N=K*L). The sample size n equals the number of strata L.

Theoretical Comparison of Schemes. A scheme provides a higher estimation
accuracy if the standard error is smaller. That means 1-in-K sampling performs better
if the following condition holds:

 ˆ ˆ[] []strat randStdErr Sum StdErr Sum< (11)

If we consider only one flow a stratification gain can be achieved if:

2
2
,2

1

1 L
x

x l
l

N N
nL

σσ
=

⋅ ⋅ < ⋅∑ (12)

Since n=L, this can be simplified to.

2 2
,

1

1 L

x l x
lL

σ σ
=

⋅ <∑ (13)

That means we get a higher accuracy with 1-in-K sampling if the mean of the
variances per subinterval (over all subintervals) is smaller than the variance within the
whole measurement interval.

For multiple flows the formula gets more complex, because per-flow
characteristics need to be taken into account. With the formulas for the standard error
for n-out-of-N and stratified sampling for case II we get:

()() ()()2 2 2 2 2 2 2 2

, , , , ,

1 1

1
f f f f f f

L

f l x l x l x l f l f x x f x
L K K K NN N

n
σ μ μ σ μ μ

=

+ < + −−∑ (14)

In order to assess the accuracy for 1-in-K sampling one would need information about
per flow characteristics for each subinterval. In contrast to n-out-of-N sampling those
parameters cannot be approximated for 1-in-K sampling.

4 Accuracy Assessment in Practice

As we have seen we need the flow characteristics to calculate the accuracy. Since
those are unknown, they have to be estimated from sampled values. A second
problem is the amount of data that needs to be stored to provide an accuracy
statement. Storing per-packet information results in too much data even if only
sampled packets are stored. Therefore we here show how to calculate the accuracy
from aggregated information. In addition we show how IPFIX Information Elements
(IEs) can be utilized to export the required values needed for the accuracy assessment.

Accuracy Assessment from Sampled Packets. With the sampling parameters, the
number of the sampled packets and their packet sizes we can provide estimates for the
relevant parameters for n-out-of-N sampling.

66 T. Zseby, T. Hirsch, and B. Claise

ˆ
f f

N
N n

n
= ⋅ (15) ,

1

1
ˆ

f

f

n

x f i f
if

x x
n

μ
=

= = ⋅∑ (16) 2 2 2
,

1

1
ˆ ()

1

f

f f

n

x x i f f
if

s x x
n

σ
=

= = ⋅ −
− ∑ (17)

Using those estimates in formula (5) results in the following equation:

()

22
2 2 2

2
ˆˆ[]

f f f

f f
f x x x

n nN
V Sum s x x

n n n

⎛ ⎞
= ⋅ ⋅ + − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (18)

For 1-in-K sampling the assessment from sampled values is problematic. As can be
seen from the formulas in section 3 we would need to estimate ,f lK , ,f lμ and 2

,f lσ per

subinterval. Since we select only one packet per subinterval, it is not possible to
calculate acceptable estimates for mean and variance. As a consequence we cannot
provide a practical accuracy statement from the sampled values for 1-in-K sampling.
In empirical investigations we have seen that for many flows the accuracy for 1-in-K
is close to the n-out-of-N model with current packet size distributions. Therefore the
n-out-of-N accuracy often provides a good approximation.

Accuracy Assessment from Aggregated Information and IPFIX. Cisco currently
stores for each flow the number nf of packets in the sample and the sum of packet
sizes from the sampled packets. With these two values and the sampling parameters n

and N, one can easily calculate the estimates ˆ
fN and fx ((15),(16)). But the

calculation of the estimated variance 2

fxs is not possible with the stored values. A

calculation of 2

fxs using (17) would require knowledge about all packet sizes in the

sample. In order to avoid the storage of all packet sizes from the sampled packets,
one can use an alternative variance calculation based on the sum and the square sum
of the selected packet sizes.

()

2

2 2
, ,

1 1

1 1

1 1

f f

f

n n

x i f i f
i if f f

s x x
n n n= =

⎛ ⎞
= ⋅ − ⋅⎜ ⎟⎜ ⎟− ⋅ − ⎝ ⎠

∑ ∑ (19)

Sum and square sum can be updated when a packet is selected and the packet sizes
themselves do not need to be stored. If we insert (19) into formula (18) one can easily
derive the accuracy from the stored aggregated values (sum and square sum). We
recommended the storage of the square sum to Cisco. It has been added as an
information element to the flow information export protocol IPFIX [12], and therefore
will be available in Cisco routers in future. Table 2 shows the IPFIX and PSAMP
information elements ([11], [13]) that provide the required values for calculating an
accuracy statement.

If sampling is applied those values are calculate from the sampled packets and can
be used to derive the required estimates. For count-based measurement intervals the
number of packets in the measurement interval is preconfigured and can be reported
with the samplingPopulation IE. For time-based measurement intervals one can
report the number by defining an IPFIX flow that comprises all packets on the link

 Packet Sampling for Flow Accounting: Challenges and Limitations 67

Table 2. IPFIX/PSAMP Information Elements

Parameter IPFIX/PSAMP IEs
Number N of packets in measurement interval samplingPopulation
Number n of packets in sample samplingSize
Number of packets from flow f in sample packetTotalCount
Sum (bytes in sampled packets) octetTotalCount
Square sum (bytes in sampled packets) octetTotalSumOfSquares

and use the packetTotalCount information element for this flow. An alternative is to
use link packets counters from SNMP.

5 Experiments

We investigate the achievable accuracy for different schemes, classification rules and
interval lengths with real traffic traces from 3 different networks. We show how many
flows conform to given accuracy requirements.

Traces. The first trace set is from a large European operator (denoted as OP). The
second set we collected at CIRIL [17], a regional network provider that interconnects
universities and research institutes with the French Research and Education Network
RENATER. Measurements were taken on a 1 Gbit multimode Ethernet access link to
the national research network. As a third source we used the 6 hour traces
NZIX07m06d12h (NZIX1) and NZIX07m06d06h (NZIX2) from [14]. We performed
experiments with two different classification schemes. S24D24 distinguishes flows
with respect to source and destination network both with a 24 bit netmask. S24D00
distinguishes flows only with respect to the source network. If packets of the same
flow are observed in different measurement intervals they are counted as separate
flows. Table 3 shows the number of flows observed for different classification rules
and interval lengths (in number of packets). We use a letter per setting as identifier.

Table 3. Trace Characteristics

Setting Trace Size #packets Classification MI #flows
A OP1 15 GB 122,800,288 S24D00 10M 852,593
B OP1 15 GB 122,800,288 S24D24 10M 5,354,933
C OP2 92 GB 766,071,712 S24D00 10M 69,001
D CIRIL 2 GB 34,324,092 S24D00 10M 3,588,520
E NZIX1 2 GB 65672186 S24D00 10M 8,569
F NZIX2 39 GB 770,842,909 S24D00 10M 4,093
G NZIX1 2 GB 65672186 S24D00 1M 79,383
H NZIX1 2 GB 65672186 S24D24 1M 53,7138

Fig. 1 (left) shows a summarized representation of all flows in the CIRIL trace

(setting D). Each dot represents a flow. The dimensions are the three flow
characteristics that are relevant for the estimation accuracy: number of packets, packet
size mean and variance (represented by the standard deviation). With settings D the

68 T. Zseby, T. Hirsch, and B. Claise

trace contains 3,588,520 flows. The majority of flows are small. Only 4,624 flows
consist of more than 200,000 packets (not shown in graph). The peak at the standard
deviation of zero and small means is caused by flows with packets of equal sizes.
Several flows consist of only one packet. Those also have a standard deviation of
zero. For the other traces and settings we observed similar flow distributions.
Especially the existence of a majority of small flows was observed for all traces.

Conformance to Accuracy Requirements. First we calculate the achievable
accuracy using the observed real flow characteristics and formula (6). Table 4 shows
how many flows in the traces conform to given accuracy requirements for a sampling
fraction of f=5%. The accuracy is given by the threshold t for the standard error.

Table 4. Conformant Flows for n-out-of-N, f=5%

Number of Conformant Flows for rel. StdErr ≤ t ID
t=0.003876 t=0.005102 t=0.019380 t=0.025510 t=0.051020

A 0 1 1330 3,316 25,746
B 0 0 8 38 659
C 2 5 30 66 310
D 300 578 12,475 19,984 56,904
E 0 0 63 98 425
F 7 21 276 437 1,414
G 0 0 64 72 421
H 0 0 0 0 311

Fig. 1. Setting D: All Flows (left) and Conformant Flows (right)

Common accuracy requirements for accounting are a maximum relative error of
0.01 or 0.05 with a confidence level of at least 95%. With a sampling fraction of 5%
the achievable accuracy is too low for the vast majority of flows for all settings. Fig. 1
(right) shows the flows conformant to StdErr ≤0.05. Only flows with a large number
of packets Nf achieve an acceptable accuracy.

Flow Conformance from Empirical Tests. In a second step we investigate the
standard error empirically from sampling tests. For this we performed R=1,000
sampling runs for each scheme. Table 5 shows the results from experiments with
setting G and different schemes.

 Packet Sampling for Flow Accounting: Challenges and Limitations 69

Table 5. Conformant Flows for Setting G (NZIX1, S24D00, f=5%)

Max rel. StdErr Error/CL n-of-N 1-in-K Systematic
0.003876 0.01/99% 0 0 0
0.005102 0.01/95% 0 0 0
0.019380 0.05/99% 64 64 62
0.025510 0.05/95% 72 72 83
0.051020 0.1/95% 473 475 567
0.076531 0.15/95% 1406 1425 1580
0.102041 0.2/95% 2316 2568 2860
0.1531 0.3/95% 5146 5397 5799
>0.1531 - 79383 79383 79383

The numbers for n-out-of-N sampling correspond quite well to those derived from

the formula Table 4. For 1-in-K sampling we get quite similar numbers. This is in line
with previous tests we performed about the scheme differences. Systematic sampling
performs a little bit better, but the standard errors in the tests differed much from
those of n-out-of-N. A theoretical prediction is problematic. Again, only few flows
get accuracies sufficient for accounting. In order to achieve higher accuracies per
flow one can increase the sample fraction, work with more coarse grained
classifications or modify the measurement interval length. When modifying the
measurement interval length it is relevant how flow characteristics evolve in order to
assess the accuracy (see section 3).

6 Conclusion

We investigated the applicability of packet sampling to flow accounting. We
analyzed basic PSAMP schemes and a stratified scheme used in Cisco NetFlow and
showed how the accuracy depends on flow parameters and measurement settings.
Theoretical considerations were supplemented by experiments with traffic traces from
three different networks. The accuracy for sampling before classification was very
poor. The main reason is the high number of small flows in the traces. Longer
observation periods, coarse grained classification or the aggregation of flows results
in larger flows and higher accuracies. A further option is to use a biased flow
selection based on the expected accuracy. In addition we showed how the accuracy
can be derived from sampled values and aggregated information stored in routers
during run-time. For this, Cisco has included the storage of the square sum of the
packet sizes in NetFlow.

References

[1] Duffield, N., Lund, C., Thorup, M.: Charging from Sampled Network Usage. In: ACM
Internet Measurement Workshop IMW 2001, San Francisco, USA, November 1-2 (2001)

[2] Estan, C., Varghese, G.: New Directions in Traffic Measurement and Accounting:
Focusing on the Elephants, Ignoring the Mice. ACM Transactions on Computer Systems
(August 2003)

70 T. Zseby, T. Hirsch, and B. Claise

[3] Raspall, F., Sallent, S., Yufera, J.: Shared-state sampling. In: Proceedings of the 6th
Internet Measurement Conference (IMC 2006), Rio de Janeiro, Brazil (2006)

[4] Kodialam, M., Lakshman, T.V., Mohanty, S.: Runs bAsed Traffic Estimator (RATE): A
Simple, Memory Efficient Scheme for Per-Flow Rate Estimation. In: IEEE INFOCOM
2004, Hong Kong (2004)

[5] NetFlow Performance Analysis, Cisco white paper (2005),
 http://www.cisco.com/en/US/products/ps6601/
 products_white_paper0900aecd802a0eb9.shtml

[6] Zseby, T., Molina, M., Duffield, N., Niccolini, S., Raspall, F.: Sampling and Filtering
Techniques for IP Packet Selection. Internet Draft <draft-ietf-psamp-sample-tech-10.txt>
(work in progress, June 2007)

[7] Quittek, J., Zseby, T., Claise, B., Zander, S.: Requirements for IP Flow Information
Export (IPFIX). In: RFC 3917 (October 2004)

[8] Zseby, T.: Stratification Strategies for Sampling-based Non-intrusive Measurements of
One-way Delay. In: Proceedings of Passive and Active Measurement Workshop (PAM
2003) April 6-8 (2003)

[9] Cochran, W.G.: Stichprobenverfahren. Walter de Gruyter &Co, Berlin, New York (1972)
[10] Schwarz, H.: Stichprobenverfahren. Oldenbourg Verlag, GmbH (1975)
[11] Quittek, J., Bryant, S., Claise, B., Aitken, P., Meyer, J.: Information Model for IP Flow

Information Export. In: RFC 5102 (January 2008)
[12] Claise, B. (ed.): Specification of the IP Flow Information Export (IPFIX) Protocol for the

Exchange of IP Traffic Flow Information. In: RFC 5101 (January 2008)
[13] Dietz, T., Dressler, F., Carle, G., Claise, B., Aitken, P.: Information Model for Packet

Sampling Exports, Internet-Draft draft-ietf-psamp-info-07.txt (work in progress, October
2007)

[14] Waikato Internet Traffic Storage (WITS),
 http://wand.cs.waikato.ac.nz/wand/wits/

[15] Fisz, M.: Probability Theory and Mathematical Statistics, 3rd edn. Robert E. Krieger
Publishing Company Inc, Malabar, Florida (1963)

[16] Wentzel, E.S., Owtscharow, L.A.: Aufgabensammlung zur Wahrscheinlichkeitsrechnung.
Akademieverlag, Berlin (1975)

[17] Centre Interuniversitaire de Ressources Informatiques de Lorraine (CIRIL),
 http://www.ciril.fr/

Appendix: Expectation and Variance for n-out-of-N Sampling

The random variable xi,f denotes the packet size of the ith selected packet from flow f.
Since a random selection is applied, we can assume that the xi,f are statistically
independent. Since nf follows a binomial distribution, the expectation and variance of
nf is given by formulas for a binomial distribution:

f
f

N
E n n

N
⎡ ⎤ = ⋅⎣ ⎦ (20) 1f f

f

N N
V n n

N N

⎛ ⎞
⎡ ⎤ = ⋅ ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
 (21)

With these considerations, the task is reduced to the calculation of expectation and
variance of a r.v. Z, where Z is the sum of independent identical distributed (i.i.d.)
random variables X and the number of summands Y is a binomial distributed random
variable. The expectation of such a r.v. is given in [15].

 [] [] []E Z E X E Y= ⋅ for
1

Y

i
i

Z X
=

=∑ (22)

 Packet Sampling for Flow Accounting: Challenges and Limitations 71

With this the expectation of the estimated volume is calculated as follows:

 []E Z
, ,

1

fn

i f i f f
i

N N
E x E x E n

n n=

⎡ ⎤
⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ ⋅⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ f f

f
x f x f

NN
n N Sum

n N
μ μ= ⋅ ⋅ ⋅ = ⋅ = (23)

The expectation of the estimate equals the real volume, i.e. the estimation is unbiased.
A formula to calculate the variance for this special case, but for continuous random
variables is derived in [16]. This formula can be also applied for discrete variables.

 [] [] [] [] []2
V Z E Y V X E X V Y= ⋅ + ⋅ for

1

Y

i
i

Z X
=

=∑ (24)

With this the variance of the estimated flow volume can be expressed as follows:

ˆ fV Sum⎡ ⎤⎣ ⎦
2

,2
1

fn

i f
i

N
V x

n =

⎡ ⎤
= ⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ()2

2

, ,2 f i f i f f

N
E n V x E x V n

n
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

()2
2

, ,2 f i f i f f

N
E n V x E x V n

n
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (25)

The relative standard error can be easily derived from the variance.

ˆ
ˆ

abs f

rel f
f

StdErr Sum
StdErr Sum

Sum

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦
()()2 2 2 21

f f f

f

f x x f x

f x

N N N
n

N

σ μ μ

μ

⋅ ⋅ ⋅ + − ⋅
=

⋅

 (26)

On the Validation of Traffic Classification

Algorithms

Géza Szabó, Dániel Orincsay, Szabolcs Malomsoky, and István Szabó

TrafficLab, Ericsson Research, Budapest, Hungary
{geza.szabo,daniel.orincsay,szabolcs.malomsoky,istvan.szabo}@ericsson.com

Abstract. Detailed knowledge of the traffic mixture is essential for net-
work operators and administrators, as it is a key input for numerous net-
work management activities. Traffic classification aims at identifying the
traffic mixture in the network. Several different classification approaches
can be found in the literature. However, the validation of these methods
is weak and ad hoc, because neither a reliable and widely accepted val-
idation technique nor reference packet traces with well-defined content
are available. In this paper, a novel validation method is proposed for
characterizing the accuracy and completeness of traffic classification al-
gorithms. The main advantages of the new method are that it is based on
realistic traffic mixtures, and it enables a highly automated and reliable
validation of traffic classification. As a proof-of-concept, it is examined
how a state-of-the-art traffic classification method performs for the most
common application types.

1 Introduction

The aim of traffic classification is to find out what type of applications are
run by the end users, and what is the share of the traffic generated by the
different applications in the total traffic mix. Research for better and better
traffic classification methods is blooming with the constant increase of network
capacity, the emerging application types, and common usage of traffic deceiving
techniques. However, the objective comparison of these methods has not been
possible yet due to several reasons. Firstly, there are no perfectly classified traffic
traces available. Moreover, the validation is typically done with another specific
classification method. This situation results in such anarchy that papers can
state nearly anything about their introduced method as there is no chance to
check it by others or verify with a commonly known and accepted reference test.

In this paper we provide a validation method, which can reliably test the
accuracy of traffic classification algorithms. In practice, the objective is typically
to identify applications in passively observed traffic. We believe that such a
classification method can be convincingly validated only by an active test, for
which a number of requirements are fulfilled, such as:

– It should be independent from classification methods, i.e. the validation of
a classification method by another one must be avoided,

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 72–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Validation of Traffic Classification Algorithms 73

– About each packet the test should provide reference information that can be
compared to the result of the classification method under study,

– The test should be deterministic, meaning that it should not rely on any
probabilistic decisions,

– Feasibility: it should be possible to create large tests in a highly automated
way, and

– The environment where the active measurements are collected should be
realistic.

The paper is organized as follows: in Section 2 an overview of existing traffic
classification methods is provided together with a discussion of the techniques
and datasets used to validate them. In Section 3 a new method is introduced
which makes it possible to validate traffic classification methods. In Section 4,
a state-of-the-art traffic classification method is validated as a proof-of-concept,
demonstrating how it performs for several application types that are included in
the example test.

2 Existing Traffic Classification Methods and Their
Evaluation

Currently, there are a couple of fundamentally different approaches for traffic
classification. In this section we browse through the state-of-the-art traffic clas-
sification methods. We discuss briefly the accuracy of these methods, which is
relevant here, because in most cases a classification method is validated by an-
other classification method ([12], [19], [18]).

The most accurate traffic classification would obviously be complete protocol
parsing. However, many protocols are ciphered due to security reasons (SSH [5],
SSL [4]). Also some are proprietary, thus there is no public description available
(Skype [6], MSN Messenger [2], World of Warcraft [9], etc.). In general, it would
be difficult to implement every protocol which can occur in the network. In
addition, even simple protocol state tracking can make the method so resource
consuming that it becomes practically infeasible.

– Port based classification: In the simplest and most common method
the classification is based on associating a well-known port number with a
given traffic type, e.g., web traffic with TCP port 80 [1]. This method needs
access only to the header of the packets. The port based method becomes
insufficient in many cases, since no specific application can be associated to
a dynamically allocated port number, or the traffic classified as web may
easily be something else tunneled via HTTP. The port based method is a
standard, common method, however due to the above problems, it can not
be considered to be reliable.

– Signature based classification: To make protocol recognition feasible,
only specific byte patterns are searched in the packets in a stateless manner.
These byte signatures are predefined to make it possible to identify partic-
ular traffic types, e.g., web traffic contains the string ’GET’, eDonkey P2P

74 G. Szabó et al.

traffic contains ’xe3x38’. The common feature of the signature based heuris-
tic methods is that in addition to the packet header, they also need access
to the payload of the packets. Especially in the case of well documented
open protocols, this method can work well. However, in practice only exten-
sive experiences with real traces provide enough feedback to select the best
performing byte signatures. For example, the ’GET’ message could be the
criterion of both HTTP and Gnutella (a P2P protocol), thus this signature
alone, without applying other criteria, is not proper for accurate traffic clas-
sification. The main disadvantage of the signature based method is that the
signatures have to be kept up to date, otherwise some applications can be
missed, or the method can produce false positives. The other disadvantage
is that this method cannot deal with encrypted content.

Authors of [16] validated their constructed signature database by manu-
ally checking the false positive ratio of their technique. Their approach was
to investigate TCP connections which were identified as P2P connections. If
in fact the content of the connection did not belong to a P2P protocol they
counted the connection as a false positive. By the term ’active measurements’
they mean that specific traffic type is generated on purpose, thus what kind
of traffic is expected can be exactly known at a certain point in the measure-
ment. This is the most common way of developing signature databases as
this method ensures that the traffic is sterile, i.e., only a specific application
is measured at a time. The measurements they used are not public, therefore
others cannot use them as reference.

– Connection pattern based classification: The basic idea is to look at
the communication pattern generated by a particular host, and to compare
it to the behavior patterns representing different activities/applications [12].
The connection patterns describe network flow characteristics correspond-
ing to different applications by capturing the relationship between the use
of source and destination ports, the relative cardinality of the sets of unique
destination ports and IPs as well as the magnitude of these sets. The applica-
tion specific behavior patterns are often difficult to find, especially if multiple
application types are used simultaneously. In order to identify a communica-
tion pattern reliably, the method needs a lot of flows coming from and going
to a host.

Authors of [12] validated their method by using signature based clas-
sification. As there are no commonly accepted and well performing byte-
signatures, authors constructed their own signature database.

– Statistics based classification: In statistics based classification some
statistical feature of the trace is captured and used to classify the network
traffic. To automatically discover the features of a specific kind of traffic,
the statistical methods are combined with methods coming from the field of
artificial intelligence. The most frequently discussed method is the Bayesian
analysis technique as in [14], [19], [13], [11], [10]. The basic requirement of
these techniques is previously hand-classified network traffic which provides
them with training and testing data-sets. In order to reach sufficient accu-
racy, the ratio of these data-sets should be about 1:1.

On the Validation of Traffic Classification Algorithms 75

In [19] authors used port based classification to validate their method.
They assume that for the ports they use in the study the majority of the
traffic is from the expected application. In this case, it is most likely that
few ’wrong’ flows would decrease the homogeneity of the learned classes.
Therefore their evaluation results can be treated as lower bound of the ef-
fectiveness. They also do not consider traffic of the selected applications on
other than the standard server ports. Authors of [11] worked with commonly
available traffic traces, but these traces contained only packet headers which
excludes such reliable validation methods which are based on packet payload.
In [10], the traffic classification method was applied online without capturing
the original data due to the lack of capacity to store the massive amount of
data which is the consequence of high traffic speeds. This makes impossible
to validate the traffic classification by others.

– Information theory based classification: A useful aid in traffic clas-
sification is introduced in [18] which is an information theoretic approach
and can group the hosts into typical behaviors e.g., servers, attackers. The
main idea is to look at the variability or randomness of the set of values that
appear in the five-tuple of the flow identifiers, which belong to a particular
source or destination IP address, source or destination port. The information
theoretic approach can not be used for flow level traffic classification in the
same way as the other methods. It is just an aid in traffic classification and
arises the problem that it can only specify very broad application types but
not capable of classifying specific applications. This method intensively uses
the five tuple identification of the flows without other additional information.

Authors of [18] validated the identified clusters by checking the found
dedicated port of the hosts with the port-application database used for port
based classification.

– Combined classification method: A couple of different approaches have
been proposed in the literature for traffic classification, but none of them
performs well for all different application traffic types present in the In-
ternet. Thus, a combined method that includes the advantages of different
approaches is proposed in [17], in order to provide a high level of classifica-
tion completeness and accuracy. The classification method in [17] is based
on a complex decision mechanism, in order to provide an appropriate iden-
tification mode for each different application type. As a consequence, the
ratio of the unclassified traffic becomes significantly lower. Further, the re-
liability of the classification improves due to the joint decision of various
methods.

Authors of [17] validated their method by comparing the results of the
introduced method to the results gained from applying all the independent
traffic classification mechanisms and their trivial combination on the same
traffic traces. The used datasets are full packet length traces measured in
several operational mobile broadband networks, but none of them publicly
available.

76 G. Szabó et al.

Fig. 1. The position of the proposed driver within the terminal

3 The Proposed Method for Validation

In this section we describe our proposed method for the validation of traffic
classification algorithms. As we already mentioned before, instead of validating
passive methods by each other we design an active validation method, because
we look for a deterministic and reliable solution.

The principle of the method is the following: at the traffic generating terminal,
packets are collected into flows and flows are marked with the identifier of the
application that generated the packets of the flow. The two main requirements on
the realization of the method are that it should not deteriorate the performance
of the terminal, and the byte overhead of marking should also be negligible.

The preferred realization is a driver that can be easily installed on terminals.
The position of the introduced driver can be seen in Figure 1. It takes place right
before the network interface thus each packet exchanged between the terminal
and the network has to pass through it. We have implemented a prototype, which
is a Windows XP driver based on the Network Driver Interface Specification
(NDIS) library. The kernel NDIS library abstracts the network hardware from
network drivers and provides an API through which intelligent network drivers
can be efficiently programmed. If the sending and receiving functions of the NDIS
IP protocol driver are hooked, all TCP and UDP packets can be intercepted and
filtered. This method lets developers create for example, firewalls, sniffers, traffic
meters or network analyzers based on this technology.

To meet our requirements, the driver is designed to work in the following way.
In the case of a passing through packet the following process takes place (see
Figure 2):

1. The packet is examined whether it is an incoming or outgoing packet. In
case of an incoming packet, the process ends without marking the packet as
it is not beneficial to mark incoming packets.

2. In case of an outgoing packet, the size of the packet is examined. If the current
packet size is already the size of Maximum Transmission Unit (MTU), the

On the Validation of Traffic Classification Algorithms 77

Fig. 2. The working mechanism of the introduced driver

extension of the packet with marking would lead to IP fragmentation. To
avoid this, the process continues with only those packets which are smaller
than the MTU decreased with the size of marking. Initiating messages in
protocols are typically small e.g., the SYN packet of a TCP packet is only a
flag, thus there is practically no loss (unmarked flow) with the introduction
of this condition.

3. As there is no information in the operating system about those ’network con-
nections’ which use other protocols than TCP or UDP, the process continues
with only TCP or UDP packets.

4. According to the five tuple identifier of the packet, it is checked whether there
is already available information about which application the flow belongs to.
The driver has to cache this information because querying the operation
system about the existing network connections is very resource consuming
and can not be done at high network speeds. We used a hash as the data
structure for the cache as it can be directly addressed by the searched data.
If there is no information on the flow in the cache yet, the operating system is
queried to supply the established network connections and the process IDs of
the responsible applications. The process IDs are state specific information
in the operating system. To get a universal name about the application, the
process IDs are connected to the application’s executable name as can be
seen in Figure 1.

5. When all information is prepared for the marking of the packet, there is a
final chance to decide whether the driver should mark the packet or not.
The packet marking can be done for all of the packets in the flow, randomly
selected packets of the flow, only the first packet of the flow or it is also
possible to switch off the marking for specific applications. There is an option
for the random selection of packets to be marked to enforce the first packet
of the flow to be marked or avoid the first packet to be marked. The sense of
these options is to make an optimal trade-off between performance, network
transparency and to ensure high chance of recordable marked packets in the
case of network loss.

The marking is done by extending the original IP packet with one option
field. We selected the Router Alert option field, because the existence of this

78 G. Szabó et al.

field is transparent for both the routers on the path and also for the receiver
host (according to RFC 2113 [3]). If one uses another option field, it should be
carefully checked whether the marking is conform to the security policy of the
given network, otherwise the marking can be easily removed by an edge router in
the border of the access network. In the option field, the first two characters of
the corresponding executable file name are added, thus increasing the size of the
packet with 4 bytes. The packet size field in the IP header is also increased with
4 bytes and the header checksum is recalculated. As already discussed above,
the driver does not mark packets larger than (MTU-4 bytes).

4 The Validation of a State-of-the-Art Traffic
Classification Method

A reference measurement [7] has been created as a proof-of-concept of the in-
troduced validation method. For the sake of simplicity, the measurement took
place in a separated access network. Our driver has been installed onto all com-
puters on this network. The duration of the measurement was 43 hours. The
captured data volume in the network is 6 Gbytes, containing 12 million packets.
The measurement contains the traffic of the most popular P2P protocols: Bit-
Torrent, eDonkey, Gnutella, DirectConnect; VoIP and chat applications: Skype,
MSN Live; FTP sessions, filetransfer with download manager; e-mail sending,
receiving sessions; web based e-mail (e.g., Gmail); SSH sessions; SCP sessions;
FPS, MMORPG gaming sessions; streaming radio; streaming video and web
based streaming. In Figure 4 the traffic mix of the measurement can be seen.
Both the volume and the flow number ratio of different applications is presented.

Fig. 3. A marked packet of the BitTorrent protocol

In Figure 3 an example of the marked packets can be seen. The IP header
shows the increased size of the packet (without the option field, the value where
currently is 46 would be 45) and the option field is highlighted, where the last
two fields could be used to place the marking. The marking shows that the
generating application was the uTorrent [8] BitTorrent client (by the first two
characters in its name).

On the Validation of Traffic Classification Algorithms 79

Fig. 4. The traffic mix of the measure-
ment

Fig. 5. The results of the classification
compared [17] to the reference mea-
surement

The traffic classification method that we wish to validate is described in ref-
erence [17], with the addition that the classification of VoIP applications has
been extended with ideas from [15] (see the discussion later below). In Figure
5, it can be seen that e-mail, filetransfer, streaming, secure channel, and gaming
traffic has been identified very accurately. This is due to the fact that these ap-
plications use well-documented protocols, open standards, and do not constantly
change. In the case of those protocols which use encryption, the session initia-
tion phase is critical as this phase can be identified the most accurately. In such
common protocols as SSH or SCP it can be done with full success, however in
such proprietary protocols like Skype the identification fails for several flows.

In the case of classification of P2P applications there are several problems: one
thing to note is that P2P applications created plethora of TCP flows containing
1-2 SYN packets probably to disconnected peers. This is the primary reason of
the large number of unclassified P2P flows, while the unclassified P2P volume is
low. As there is no payload in these packets, the signature based methods can not
work. The flows are initiated from dynamically allocated source ports towards
not well-known destination ports, thus the port based methods also fail. The
server search and P2P communication heuristic [17] methods also fail because
there are no other successful flows to such IPs.

Also some small non-P2P flows were misclassified into the P2P class. Fortu-
nately, the number of such flows is small both in flow number and byte volume.
We realized that the reason behind is the not fully proper content of the port-
application database. Creating too many port-application associations easily re-
sults in the rise of the misclassification ratio.

The constant change of P2P protocols also causes some inaccuracy in the
classification: there are new features added to P2P clients day-by-day, and their
working mechanism can be typical for a selected client not the whole protocol
itself.

Another problem of traffic classification is a matter of philosophy. There is
traffic which is the derivation of other traffic: the simplest case is the DNS traffic

80 G. Szabó et al.

which is the result of any traffic which uses domain names instead of specific
IP addresses. For example, web creates DNS traffic though users do not want
to create DNS traffic on purpose. There are more complicated cases: e.g., MSN
uses HTTP protocol for transmitting chat messages, which do not need to be
considered as web. Furthermore, the MSN client transmits advertisements over
HTTP, but this cannot be recognized as deliberate web browsing. This raises the
question whether such HTTP flows from the MSN application which are classi-
fied as web would have to be considered as misclassification, or it is acceptable
that they are classified as web. In this comparison, to be fully objective, only
that kind of traffic was considered as hit where the classification outcome and
the generating application type (the validation outcome) agreed. For example,
the chat on the DirectConnect hubs which has been classified as chat could have
been considered as actually correct but in this comparison it was considered as
misclassification.

The high VoIP hit ratio is due to the successful identification of both MSN
Messenger and Skype. Skype is difficult to identify: for some of the Skype flows
the problem is the same as in the case of P2P applications, further Skype is a
proprietary protocol designed to ensure secure communication thus it is difficult
to obtain a good protocol description. However, authors of [15] found a char-
acteristic feature of Skype: the application sends packets even when there is no
ongoing call with an exact 20 sec interval. In [17], there is a P2P identification
heuristic which was designed to track any message which has a periodicity in
packet sending thus the extension of the original method in [17] for the specific
20 sec periodicity of Skype was straightforward. The validation showed us the
deficiency of the classification of Skype, thus with a simple extension of the al-
gorithm it became proper for accurate Skype traffic identification as well. In this
way the idea of [17] has been validated as it proved to be robust for the extension
with new application recognition, and also the validation mechanism proved to
be useful.

5 Summary and Future Work

In this paper we introduced a new active measurement method which can help
in the validation of traffic classification methods. The introduced method is a
network driver which can mark the outgoing packets from the clients with an
application specific marking. With the introduced method we created a mea-
surement and used this to validate the method presented in [17]. The method
has been proved to be working accurately but also some deficiencies in the clas-
sification of P2P applications and Skype has been identified.

The introduced method can be used in several ways besides the main target
of validating traffic classification. One straightforward continuation of this work
is to use the marking method at the measurement side for online traffic clas-
sification (which we actually did during the debugging of the prototype). This
assumes that the terminals accessing an operator’s network are all installed with
the proposed driver, and also that the driver is made tamper-proof to avoid users

On the Validation of Traffic Classification Algorithms 81

forging the marking. Such an online classification could be used for online clus-
tering of the traffic into QoS classes based on the resource requirements of the
generating application. It could also be used by operators to charge on the basis
of the used application by the user. The marking could be extended by other
information about the traffic generating application, e.g., version number, thus
the operator could track the security risks of an old application.

Acknowledgements

We would like to thank the help of Péter Brezina in the development of the
introduced driver and the support of his supervisor Sándor Molnár.

References

1. IANA.TCP and UDP port numbers,
http://www.iana.org/assignments/port-numbers

2. MSN Messenger, http://join.msn.com/messenger/overview2000
3. RFC 2113, http://www.networksorcery.com/enp/rfc/rfc2113.txt
4. RFC 2246, http://www.ietf.org/rfc/rfc2246.txt
5. RFC 4251, http://www.ietf.org/rfc/rfc4251.txt
6. Skype, http://www.skype.com
7. The measurement created for this article,

http://pics.etl.hu/∼szabog/measurement.tar
8. uTorrent, http://www.utorrent.com
9. World of Warcraft, http://www.worldofwarcraft.com/index.xml

10. Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classi-
fication on the fly, vol. 36, pp. 23–26. ACM Press, New York, USA (2006)

11. Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms.
In: Proc. MineNet 2006, New York, USA (2006)

12. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Clas-
sification in the Dark. In: Proc. ACM SIGCOMM, Philadelphia, Pennsylvania,
USA (August 2005)

13. McGregor, A., Hall, M., Lorier, P., Brunskill, A.: Flow Clustering Using Machine
Learning Techniques. In: Proc. PAM, Antibes Juan-les-Pins, France (April 2004)

14. Moore, A.W., Zuev, D.: Internet Traffic Classification Using Bayesian Analysis
Techniques. In: Proc. SIGMETRICS, Banff, Alberta, Canada (June 2005)

15. Perenyi, M., Molnar, S.: Enhanced skype traffic identification. In: Proc. Valuetools
2007 (2007)

16. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Proc.
Second Annual ACM Internet Measurement Workshop (November 2002)

17. Szabó, G., Szabó, I., Orincsay, D.: Accurate traffic classification. In: Proc. IEEE
WOWMoM, Helsinki, Finnland (June 2007)

18. Xu, K., Zhang, Z., Bhattacharyya, S.: Profiling Internet Backbone Traffic: Behavior
Models and Applications. In: Proc. ACM SIGCOMM, Philadelphia, Pennsylvania,
USA (August 2005)

19. Zander, S., Nguyen, T., Armitage, G.: Automated Traffic Classification and Ap-
plication Identification Using Machine Learning. In: Proc. IEEE LCN, Sydney,
Australia (November 2005)

 http://www.iana.org/assignments/port-numbers
http://join.msn.com/messenger/overview2000
http://www.networksorcery.com/enp/rfc/rfc2113.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.skype.com
http://pics.etl.hu/~szabog/measurement.tar
http://www.utorrent.com
http://www.worldofwarcraft.com/index.xml

Evaluation of Header Field Entropy for

Hash-Based Packet Selection

Christian Henke, Carsten Schmoll, and Tanja Zseby

Fraunhofer Institute Fokus, Berlin, Germany
{christian.henke,carsten.schmoll,tanja.zseby}@fokus.fraunhofer.de

Abstract. Network Measurements play an essential role in operating
and developing today’s Internet. High data rates and complex measure-
ment demands can origin an immense resource consumption for mea-
surement tasks. Data selection techniques, like sampling and filtering,
provide efficient solutions for reducing resource consumption while still
maintaining sufficient information about the metrics of interest. Hash-
based packet selection allows a synchronized selection of packets at mul-
tiple observation points. With this, the tracking of the path of a packet
and the calculation of multipoint QoS metrics like one-way delay be-
comes possible. Nevertheless, hash-based selection is deterministic based
on parts of the packet content and hence it is suspect to bias. The packet
content used for hashing is a source for bias if the selected content is not
variable enough. This paper empirically analyzes which header bytes are
most variable and recommendable as input for hash-based selection if
one targets the emulation of random selection.

1 Introduction

There exists a variety of applications for multipoint network measurements. Ser-
vice Providers need to validate their delay guarantees from Service Level Agree-
ments and network engineers have incentives to track where packets are changed,
reordered, lost or delayed, for instance in error-prone environments like Mobile-
Adhoc Networks.

Hash-based selection is a passive measurement technique that enables multi-
point measurements [1] [2] and packet tracing [3] [4]. In contrast to active mul-
tipoint measurements [5] [6] hash-based selection can calculate one-way metrics
like delay without introducing additional traffic into the network. Hash-based
selection reduces calculation effort compared to other passive multipoint mea-
surements [7] [8] because it does not correlate all packets from the measurement
points. Instead, hash-based selection only samples a consistent subset of packets
at every measurement point and estimates the real traffic characteristics.

Hash-based selection is realized by the following technique. Parts of the packet
content that are invariant between measurement nodes are extracted and used
as the hash input for a hash function. The hash function with a digest length of
N bits maps the hash input to a value in the hash range R = [0..2N − 1]. The
packet itself is selected if the hash value falls into a predefined selection range

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 82–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation of Header Field Entropy for Hash-Based Packet Selection 83

 if H(x) S
 Packet 1+2 Selected

Ver
4

IHL
5

ToS
0

Length
276

ID
123

Flag
1

Off
0

TTL Proto
6

Chk Src
123.214.321.124

Dst
123.213.321.124

Ver
4

IHL
5

ToS
0

Length
276

ID
123

Flag
1

Off
0

TTL Proto
6

Chk Src
123.214.321.124

Dst
143.254.127.128

Ver
4

IHL
5

ToS
0

Length
276

ID
123

Flag
1

Off
0

Most
significant 8
bytes as hash

key X
H(X)

Fig. 1. Input Collision of 2 Different Packets

S ⊂ R. In order to obtain a certain sample size one can adjust the selection
range. The advantage of this technique is that the selection decision for each
packet along its path is the same, assuming that the selected packet content
(hash input), hash function and selection range are the same at the different
measurement points.

2 Problem Statement

Hash-based selection is solely based on the packet content. Therefore it is suspect
to bias, i.e that the distribution of attributes in the sampled subset is different
to the one in the population. E.g. if packets with certain length are preferred in
the selection, a sound estimation of the packet length distribution and related
properties is impossible. The choice of the packet content 1 to be used for the
hash input is of utter importance because this decision can introduce bias. This
is shown in the example Fig. 1 which shows two similar packets. We assume
that only the first 8 bytes of the IP header are used as the hash input. Because
these fields are equal, both packets form the same hash input X. Thus both
have the same hash value H(X) and same selection decision. Assuming there
are more packets like Packet 1 and 2 that are equal in the most significant 8
bytes, they will all map to the same hash value and either all or none of them
are selected. This means that packets with 276 bytes length are either over-
or underrepresented in the sampled subset. The selected bytes from the packet
content should be sufficient to identify unique packets in order to avoid input
collision, i.e packets with the same hash input. It is not suitable to use the whole
packet content as hash input because the calculation time for hash functions
increases significantly with increasing hash input length as shown in [9]. The hash
function has to be applied for each packet which would deplete the processing
resources of the measurement node in case long hash inputs are used. In this
paper we empirically evaluate the IPv4, IPv6 and transport header fields on
their suitability as hash input in hash-based selection and give recommendations
on which ones to use.
1 IN PSAMP terms the packet content consists of the IP header and payload.

84 C. Henke, C. Schmoll, and T. Zseby

3 State of Art

Duffield and Grossglauser [3] were the first who introduced the hash-based selec-
tion technique with the purpose of packet tracing. They divide the IPv4 header
fields into three categories, variable, low entropy and high entropy fields. Fur-
ther, fields like TTL and IP checksum can not be used for hash-based selec-
tion because their value changes between network nodes. In order to find out
the amount of bytes that should be used as input for hashing, Duffield iden-
tifies input collisions between packets with increasing amount of consecutive
bytes from the packet. Molina [10] evaluates how many hash values collided de-
pending on the input length. Snoeren [4] uses the hash-based approach for IP
traceback systems and identifies unique packets by considering different input
lengths. All three authors conclude that an input length between 20 and 40
consecutive bytes is sufficient for hash-based purposes. Gong Jian [11] analyzes
the entropy of IPv4 fields per bit and byte on a CERNET backbone link in
order to find the most variable fields encouraging the idea of packet selection
based on the value of the IP Identification field. Nevertheless in [2] Zseby rea-
sons that the IP ID field alone is not sufficient to identify unique packets due
to inconsistent IP ID field handling of different operating systems. The Packet
Sampling Working Group (PSAMP) [12] recommends the use of these header
fields: ID, Flags, Fragment offset, source and destination address and a config-
urable number of bytes from the IP payload, starting at a configurable offset.
Duffield, Snoeren and Molina only consider general assumptions about header
fields that are suitable for hash-based selection but lack the basis of an em-
pirical and bytewise analysis. Our approach based on entropy measurements
enables us to rate header bytes according to their suitability for hash-based
selection. We use this systematic approach in order to find a smaller subset
of bytes that show similar or better results than the recommended PSAMP
bytes.

4 Approach

4.1 Header Fields Properties

The header fields need to be 1) static between network nodes because the selec-
tion decision based on this content is required to be consistent throughout the
network. Header fields that are not static between network nodes are: Time to
Live and IP Checksum. On the other hand, the header fields need to be 2) vari-
able among packets in order to prevent bias caused by input collisions, i.e. the
hash input of every unique packet should be unique. The higher the variability
in one header field the higher the probability that two packets differ in this field.
In order to assess each packet bytes’ variability, we calculate the entropy of each
byte.

Evaluation of Header Field Entropy for Hash-Based Packet Selection 85

Table 1. Traces Used for Evaluation

Trace Name Location Duration
IP

Snapsize
packets in
millions

IP Address
anonymous

IP
Version

NZIX New Zealand 30 hours 40 ~200 Yes 4

Ciril France 6 hours 20 ~100 No 4

FH Salzburg Austria 3 days 40 ~110 Yes 4

LEO 1 3 hours 140 ~130 No 4

LEO 2 6 min 140 ~12 No 4

Twente Netherlands 10 days 40 ~380 Yes 4

Mawi WIDE-6Bone 40 days 60 ~80 Yes 6

4.2 Entropy

The entropy per byte is defined as [13]:

H(B) = −
255∑

i=0

pilogpi (1)

Where B is the discrete variant of byte values. pi is the probability that the
byte value i occurs. For comparison purposes we divide the byte entropy by its
maximum value Hmax to obtain the information efficiency E [11].

E =
H(B)

Hmax(B)
Hmax(B) = −

255∑

i=0

1
256

log2
1

256
= 8 (2)

The information efficiency E measures the byte randomness. An information
efficiency of 0 denotes no randomness (i.e only one value occurs) and a value of
1 denotes maximum entropy with equally distributed byte values.

4.3 Traces Used

We evaluated a set of 7 trace groups (cf. Tab. 1). All traces can be accessed
via the MOME database [14]. The NZIX traces were captured by the WAND
research group at a a peering point among a number of major ISP’s. FH Salzburg
traces were captured at an WAN Access Network on a student campus. The
Twente traces were captured at an aggregated uplink of an ADSL access network.
There are two trace groups that were captured by a large european telecom
operator and are noted as LEO1 and LEO2. The Mawi traces were the only

Table 2. Traces Protocol Mix in %

TCP UDP ICMP others Main Applications

FHSalzburg 99 1 0 0 http(90)

LEO 1 90 10 0 0 edonkey(25) http(5)

LEO 2 33 60 0 7 tunnel(60) edonkey(10)

NZIX 68 20 9 3 http(50) quake(5)

Twente 89 7 1 3 diversified

86 C. Henke, C. Schmoll, and T. Zseby

Fig. 2. Information Efficency IPv4

accessible IPv6 traces. All but the Ciril and IPv6 Mawi traces include parts of
the transport header. Table 2 shows that each trace group represents a different
scenario indicated by their different transport protocol mix and applications. We
assessed the applications by the transport header port addresses.

5 Entropy Evaluation

The entropy per byte is calculated with a tool written in C++ which uses the
libpcap library to read packet traces. The tool calculates the frequencies of each
byte value and calculates the entropy.

5.1 IPv4

The IP source and destination addresses from Twente, NZIX, FHSalzburg traces
are anonymized and do not reveal the real entropy and hence are not evaluated.
Only the Twente and FHSalzburg traces were anonymized with the tcpdpriv
“-A 50” option which preserves the entropy in the most significant address byte.
Figure 2 shows the results but does not include the Time To Live and Checksum
field as these are variable from hop-to-hop and can not be used for hash-based
selection. Version, IP Header Length and the least significant byte (LSB) of
Fragment Offset are not shown as well, as their entropy is very close to zero. For
multiple byte header fields the LSB is depicted on the right. The identification
(ID) field has the highest entropy. One could assume that the source and des-
tination address and the ID is sufficient to distinguish packets, but the ID field
bears a problem: we observed many packets with an ID of 0 which resulted from
different IP ID handling of operating systems.

Since there exist many small packets shorter than 255 bytes, the entropy for
the most significant byte (MSB) of the length field is comparably low (about
0.2 information efficiency). The figure shows that there is an increase of entropy

Evaluation of Header Field Entropy for Hash-Based Packet Selection 87

from MSB to LSB of the IP source and destination addresses. Nevertheless, it is
expected that the information efficiency of all 8 bytes is significantly less than
all its components, because there is a strong dependency between the address
bytes. The highest average information efficiencies can be found in these bytes:
ID, Source and Destination Address (two LSB), Length(LSB).

5.2 TCP

For analyzing the transport header fields on their entropy, the Ciril and Mawi
traces had to be omitted, because they do not include any transport header
data. All header fields are applicable for hash-based selection because they are
invariant between network nodes and their entropy results are shown in Fig. 3.
The most suitable fields for hash-based selection with an information efficiency
close to 1 are: Checksum, Sequence Number and Acknowledgment Number. The
FHSalzburg traces show comparably low entropy in the acknowledgment number
field as many packets have an ack of zero.

5.3 UDP

The entropy results for the 8 byte UDP header are shown in Fig. 4. In the
LEO2 trace group the checksum is set to zero for most packets maybe due
to security reasons. Most of the packets with no UDP checksum include the
layer 2 tunnel protocol with IP and TCP in its payload. The packets includ-
ing the tunnel protocol use the same source and destination port numbers
1701 which causes the low entropy for the LEO 2 traces in port addresses as
well. The layer 2 tunnel protocol is used in virtual private networks. Although
the checksum is optional it is still advisable to use the UDP Checksum field
for hash-based selection as it includes very high entropy for all but the LEO2
traces. Other fields with high entropy are: SrcPort (LSB), DstPort (LSB), Length
(LSB).

0,0

0,2

0,4

0,6

0,8

1,0

S
rc

P
rt

1

S
rc

P
rt

2

D
st

P
rt

1

D
st

P
rt

2

S
eq

N
o
1

S
eq

N
o
2

S
eq

N
o
3

S
eq

N
o
4

A
ck

N
o
1

A
ck

N
o
2

A
ck

N
o
3

A
ck

N
o
4

o
ff
/
re

s

re
s/

co
d
e

W
in

1

W
in

2

C
h
k
1

C
h
k
2in

fo
rm

a
ti

o
n
 e

ff
ic

ie
n
cy

 E

NZIX FHSalzburg Twente LEO 1 LEO 2

Fig. 3. Information Efficiency TCP

88 C. Henke, C. Schmoll, and T. Zseby

0

0,2

0,4

0,6

0,8

1

SrcPrt1 SrcPrt2 DstPrt1 DstPrt2 Length1 Length2 Chksum2 ChkSum2

in
fo

rm
a
ti

o
n
 e

ff
ic

ie
n
cy

 E

NZIX FHSalzburg Twente LEO 1 LEO 2

Fig. 4. Information Efficiency UDP

5.4 ICMP

The Internet Control Message Protocol (ICMP) differs in length and content de-
pendent on the meassage type. All ICMP packets have four bytes in common: 1
byte type, 1 byte code, 2 bytes checksum. Because there are only few ICMP pack-
ets in the analyzed traces we refrained from distinguishing each ICMP message
type to analyze the entropy. Figure 5 shows the results. Because the FHSalzburg
traces did not include a sufficient amount of ICMP packets the entropy results
per trace are very variable and are not shown in the diagram. The bytes with
the highest information efficiency are: Checksum, Bytes 12-13, Bytes 18-19.

5.5 IPv6

The Mawi traces were captured at 2 different measurement points C(6Bone) and
D(WIDE 6Bone) and we evaluated the entropy of the IPv6 header for each sam-
pling point separately. We only consider the first header (and not optionally con-
catenated next headers). The Hop Limit field is similar to the Time To Live field
of IPv4 and is decremented each network hop, therefore it can not be used for
hash-based selection. Since the source and destination addresses are anonymized
we can not measure the entropy of the original fields. The results for the remaining
7 bytes are shown in Fig. 6. It is obvious that there is only very low variability in
those bytes. Only the LSB of the Length field includes some entropy.

0,0

0,2

0,4

0,6

0,8

1,0

T
y
p
e

C
o
d
e

C
h
ec

k
1

C
h
ec

k
2

B
y
te

 4

B
y
te

 5

B
y
te

 6

B
y
te

 7

B
y
te

 8

B
y
te

 9

B
y
te

 1
0

B
y
te

 1
1

B
y
te

 1
2

B
y
te

 1
3

B
y
te

 1
4

B
y
te

 1
5

B
y
te

 1
6

B
y
te

 1
7

B
y
te

 1
8

B
y
te

 1
9

in
fo

rm
a
ti
o
n
 e

ff
ic

ie
n
cy

 E

NZIX FHSalzburg Twente LEO 1 LEO 2

Fig. 5. Information Efficiency ICMP

Evaluation of Header Field Entropy for Hash-Based Packet Selection 89

0

0,2

0,4

0,6

0,8

1

Ver/Traffic
Class

Traffic
Class/

Flow Label

Flow Label Flow Label Length 1 Length 2 Next
Header

in
fo

rm
a
ti
o
n
 e

ff
ic

ie
n
cy

 E

Point C Point D

Fig. 6. Information Efficiency IPv6

6 Input Collisions

An input collision consists of multiple packets that have the same hash input.
As pointed out in Sect. 2, packets with same hash input and selection decision
introduce bias to the hash-based selection because these are either over- or un-
derrepresented in the sampled subset. There are two reasons why packets hash
inputs’ collide: 1) the packets are identical or 2) the packets are not identical
but the selected bytes for hash input. It is assumed that packets with identi-
cal headers are likely to be identical, because the transport header checksum is
calculated over the whole packet. For the presented evaluation all packets with
equal headers (IP and transport) are labeled to be identical. This is done de-
spite the awareness that these identical labeled packets may not be identical (e.g.
for UDP packets that do not use the optional UDP checksum). The amount of
identical packets will be compared to collisions caused by a bad hash input con-
figuration (only IP header without checksum and TTL), an 8 high entropy bytes
hash input configuration and a 16 bytes combination used by Molina in [10].

1. Recommended 8 Bytes - based on our entropy evaluation results we chose the
IP ID field and 6 Bytes depending on the transport protocol: TCP (Check-
sum, 2 LSB of Sequence and Acknowledgment Number) UDP (Checksum,
Source Port, LSB Destination Port, LSB Length) ICMP (Checksum, Bytes
12,13,18,19)

2. Molina’s 16 bytes - Molina [10] proposes the use of 16 bytes: Length, ID,
Source and Destination IP address and the 2nd 32 bit word of the transport
header.

6.1 Comparison of Header Byte Combinations

The size of a collison is the amount of packets with the same hash input. Large
collisions are of more concern than small collisions, because the colliding packets
in large collisions all have the same selection decision and are either over- or
underrepresented in the selected subset. The same amount of packets within
several small collisions are less crucial, because the packets from different small
collsions can have different selection decisions and there is no “all or none”
decision. Hence we only look at the 20 largest input collisions in each trace (cf.

90 C. Henke, C. Schmoll, and T. Zseby

Table 3. Input Collisions for Different Selected Byte Combinations

FH Salzburg 18 6 3,547 238,174 3,547 3,547
NZIX 19 10 484,034 1,564,246 484,405 1,562,066

Twente 36 10 13,120 475,570 16,004 49,477
LEO 1 12 10 61,072 450,273 73,730 86,809
LEO 2 1 10 949 8,116 7,919 1,121

Recommended
8 Bytes

Molina’s
16 Bytes

Trace Group Packets/File
in millions

Trace
Files

Identical IP +
Transport header

Identical IP
Header

Table 4. Bytes Recommended for Hash-Based Selection

IPv4 IPV6 TCP UDP ICMP

Identification Length LSB Checksum Checksum Checksum

Destin. 2LSB Sequence No Length LSB Byte 12-13

Source 2LSB Acknowledg. No Source Port LSB Byte 18-19

Length LSB Destin. Port LSB

LSB - Least Significant Byte

Tab. 3). Because the Mawi and Ciril do not include transport headers we could
not evaluate them. For all traces we observed that there is a great amount of
packets that occur in bursts and have different TTL and IP Checksum values
but are equal in the remaining bytes. These packets are caused by routing loops
or the lack of the IP ID field (IP ID=0). The Twente trace group consists of
36 trace files with 10 million packets each. The 20 largest collisions of each
trace include 13,120 packets because the packets are identical. Using only the IP
header as hash input we observed about 475,000 packets in the largest collisions
for the Twente traces. With the use of our recommended 8 Bytes 16,004 packets
collided, whereas with Molina’s 16 bytes 49,477 packets did collide. For the
FHSalzburg trace group, the content combinations of Molina and ours identify
the exact amount of identical packets. Our subset shows a similar amount of
identical hash inputs for the NZIX traces whereas Molinas’ subset has 3 times
more collisions. The LEO2 trace group that consists of VPN tunnel traffic shows
a different result: Molina’s 16 byte subset includes less collisions. This is caused
by the low entropy of our recommended bytes of the LEO2 UDP header fields
(see Sect. 5.3) especially the non-utilized UDP checksum.

7 Conclusion

From our analysis we conclude that there are certain bytes in the IP and trans-
port layer header that are more suitable for hash-based selection than others
because they are more variable and help to distinguish unique packets. Although
there are some high variable fields in the IPv4 header they are not sufficient for
the hash input in hash-based selection. Hence one has to include more variability
by using transport header fields. The TCP header includes many high entropy
bytes, whereas UDP and ICMP lacks some. The ICMP packets are usually less
observed in a packet stream but because of the similarity and the short length
ICMP packets easily collide in the hash input if not enough bytes are used. As

Evaluation of Header Field Entropy for Hash-Based Packet Selection 91

ICMP and UDP packets are rare but strongly similar one may even consider to
use an additional amount of bytes for the different protocols in order to enable
a better differentiation of packets.

We evaluated IPv6 header fields on their suitability for hash-based selection.
The IP address fields could not be evaluated because of anonymization. Never-
theless it is reasonable that it is insufficient to use only the 40 byte IPv6 Header
because at one observation point many packets will include the same destination
and source address. Other bytes do not show high variability and cannot help
to distinguish packets. In future it has to be evaluated if the transport headers
used with IPv6 do behave the same as IPv4 transport headers.

We observed in our input collision evaluation that the selection of high entropy
bytes as hash input can decrease the amount of bytes required for hash-based se-
lection. Although we only used 8 bytes compared to Molina (16 bytes) we gained
better results for all trace groups except for LEO2. This more than halves the hash
calculation time [9] for the BOB hash function (recommended by PSAMP).The
LEO2 consists of UDP VPN traffic with many packets without UDP checksum
and low variable UDP header fields that causes additional collisions with our rec-
ommended 8 bytes. Our recommended combination is sufficient for most traces
but can produce additional input collisions. In order to improve the results one
can add more high entropy bytes from those proposed in Table 4.

References

1. Niccolini, S., Molina, et al.: Design and implementation of a one way delay passive
measurement system. In: Network Operations and Management Symposium (2004)

2. Zseby, T., Zander, S., Carle, G.: Evaluation of building blocks for passive one-way-
delay measurements. In: PAM Workshop, Amsterdam, Netherlands (April 2001)

3. Duffield, N., Grossglauser, M.: Trajectory sampling for direct traffic observation.
IEEE/ACM Trans. Netw. 9(3), 280–292 (2001)

4. Snoeren, A., Partridge, C., et al.: Single-packet ip traceback. IEEE/ACM Trans.
Netw. 10(6), 721–734 (2002)

5. Active measurement project, http://amp.nlanr.net/
6. CAIDA. Skitter, http://www.caida.org/tools/measurments/skitter/
7. Papagiannaki, K., Moon, S., et al.: Analysis of measured single-hop delay from an

operational back bone network. IEEE Infocom, New York (June 2002)
8. Choi, B.Y., Moon, S., et al.: Practical delay monitoring for ISPs. In: ACM Con-

ference on Emerging network experiment and technology. ACM Press, New York
(2005)

9. Henke, C., Schmoll, C., Zseby, T.: Empirical evaluation of hash functions for mul-
tipoint measurements. Technical Report TR-2007-11-01 (Available upon request)

10. Molina, M., Niccolini, S., Duffield, N.G.: Comparative experimental study of hash
functions applied to packet sampling. In: ITC-19 (August 2005)

11. Jian, G., Guang, C.: Distributed sampling measurement model in a large-scale
high-speed ip networks. Journal of Southeast University, Nanjing, China (2002)

12. Zseby, T., Molina, M., et al.: Sampling and filtering techniques for IP packet se-
lection. In: IETF Internet Draft (2007)

13. Bronstein, I.N.: Taschenbuch der Mathematik Teubner, Leipzig (1962)
14. Traffic measurement database MOME, http://www.ist-mome.org/

A Reactive Measurement Framework

Mark Allman and Vern Paxson

International Computer Science Institute

Abstract. Often when assessing complex network behavior a single measure-
ment is not enough to gain a solid understanding of the root causes of the behav-
ior. In this initial paper we argue for thinking about “measurement” as a process
rather than an event. We introduce reactive measurement (REM), which is a tech-
nique in which one measurement’s results are used to automatically decide what
(if any) additional measurements are required to further understand some ob-
served phenomenon. While reactive measurement has been used on occasion in
measurement studies, what has been lacking is (i) an examination of its general
power, and (ii) a generic framework for facilitating fluid use of this approach.
We discuss REM’s power and sketch an architecture for a system that provides
general REM functionality to network researchers. We argue that by enabling the
coupling of disparate measurement tools, REM holds great promise for assisting
researchers and operators in determining the root causes of network problems and
enabling measurement targeted for specific conditions.

1 Introduction

Because networks are vast collections of integrated components, it can often be the
case that analyzing some network behavior in depth (for characterization, tuning, or
troubleshooting) requires adapting on-the-fly what sort of measurements we conduct
in consideration of the conditions manifested by the network. While the technique of
adapting measurements dynamically has been recognized by practitioners in a number
of contexts, a key missing element has been the ability to tie together disparate forms
of measurement into a cohesive system that can automatically orchestrate the use of
different techniques and tools.

To this end, we outline a new measurement paradigm: reactive measurement (REM).
The vision of REM is to provide a platform that can couple measurements—both ac-
tive and passive—together in a way that brings more information to bear on the task
of determining the root cause of some observed behavior. For instance, consider the
problem of analyzing the failure of a web page to load. When a REM system observes
unsuccessful web page requests, it can automatically execute a set of diagnostic mea-
surements designed to winnow the set of possible reasons for the failure down to the
root cause(s) (e.g., a subsequent traceroute may highlight a disconnect or loop in the
path). While any particular reactive measurement task can be manually pieced together
with straightforward scripting, many of the tasks (collecting events, expressing depen-
dencies, managing timers, archiving results to varying degrees) benefit a great deal from
a “toolbox” approach. Essentially, it is the absence of such a toolbox that, we believe,
has led to a failure to exploit reactive measurement to date.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 92–101, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Reactive Measurement Framework 93

The basic notion behind the reactive measurement paradigm is that automatically
coupling disparate measurement techniques can bring more information to bear on the
task of gaining insight into particular network behavior. The fundamental REM build-
ing block is having one measurement’s result trigger additional reactive measurements.
Thus, when a particular behavior is observed, we can automatically trigger additional
measurements to work towards determining the root cause(s) of the behavior. Further-
more, as those tools hone in on the underlying reasons—or determine that a given
hypothesis is incorrect—their output can again trigger the additional measurements
needed to drive progress forward. The paradigm of reactive measurement is to think
of “measurement” as a process rather than a simple activity. The goal of the process is
to gain insight, and in a system as complex as today’s networks such a task will likely
involve more than one assessment technique.

This quite simple idea holds promise both for providing a foundation for significant
advances in network troubleshooting, and for fostering new types of Internet measure-
ment studies. Regarding this latter, the literature is filled with Internet measurement
studies that evaluate the behavior of networks that are working as expected. These
studies sometimes offer glimpses of the failure modes present in the current network,
when such glitches are observed in the course of taking measurements (e.g., [12] iden-
tifies routing “pathologies”, which are then removed from subsequent analysis). REM,
however, enables the opposite approach. Because REM can key on anomalies in the
network, REM can be used to trigger measurement infrastructure precisely when unex-
pected events occur, enabling us to learn a wealth of information about the causes of
the problems and their immediate effects. We can further ultimately envision REM as
the basis for networks that can automatically diagnose problems and take steps to work
around detected failures.

REM enables fundamentally new ways to measure network behavior that cannot be
accomplished with stand-alone active or passive techniques. Consider the case of mea-
suring failures in the Domain Name System (DNS). While a number of studies on the
operation of the DNS have been conducted (e.g., [6]), the fundamental question “how
long does a particular DNS failure persist?” remains largely unanswered. This question
cannot be answered by simply monitoring the network, because the experiment is then
beholden to users who may or may not trigger additional DNS requests after a failure
(particularly if they’ve been trained by the failure patterns they’ve experienced in the
past). Alternatively, researchers could actively query the DNS for a set of hostnames
independent of the requests invoked by actual users. In this case, following up on failed
requests is straightforward. However, while this approach can shed light on the orig-
inal question, the workload imposed on the DNS and network is synthetic and likely
unrealistic. Using reactive measurement allows for bringing both active and passive
measurements to bear to answer the basic question: a monitor can observe naturally
occurring DNS requests in the network, and, upon noticing a failed DNS request, the
REM system triggers an active measurement tool to periodically query the DNS to de-
termine how long the failure persists, whether the failure is intermittent, etc. We can
also invoke additional tools to determine why the DNS requests are not completing.

A second use of REM is for targeting measurements. Consider a packet-trace study
investigating the behavior of networks and protocols under “very congested” conditions

94 M. Allman and V. Paxson

to gain insight into how to evolve protocols and algorithms to work better in such situ-
ations. The way this is often done today is to trace the network for a lengthy block of
time and then post-process the resulting traces for periods when the network is “very
congested,” discarding the remainder of the trace. This methodology is scientifically
sound, but logistically cumbersome due to the volume of traces that must be initially
collected. Using a REM system, however, the researcher could first passively assess the
state of the network, and then trigger detailed packet capture only when the network is
in the desired state. In this way, not only does the researcher not have to capture and
store traffic that will ultimately not be used, but the traffic that is captured is immedi-
ately available for analysis without pre-processing. In this case, REM does not provide
a methodology for conducting a fundamentally different experiment than could other-
wise be undertaken (as is the case for the DNS investigation described above), but it
eases some key logistical challenges by providing targeted measurements. This is not a
minor benefit, as the logistical burdens can easily be such that they, in fact, provide the
ultimate limit on how much useful data is gathered.

Finally, we note that while we have framed the REM system in terms of reactive
measurements, the system is general enough to support a much broader notion of a re-
action—such as something that is executed, but is not a measurement. For example, a
generic reaction could page a network operator when the system has determined that
a router has crashed. Ultimately, the REM system could be used as a platform to au-
tomatically mitigate or correct observed problems. For instance, if the REM system
determines that a local DNS server has crashed, it could trigger a backup server to
take over (as well as notifying operators of the change). Using the REM framework in
this way offers great potential for providing a powerful method to add robustness to
networks.

The remainder of this paper is structured as follows. We sketch related work in § 2.
In § 3 we present the architecture of a prototype REM system that we have developed
to support diverse measurement needs by providing the “glue” with which to tie to-
gether arbitrary active and passive network measurement tools. We briefly summarize
in § 4.

2 Related Work

First, we note that the wealth of work the community has put into developing active
and passive measurement tools forms a necessary component of the REM framework.
As outlined in this paper, the reactive measurement system conducts no measurements
itself. Rather, it leverages the results from independent active measurement tools and
passive traffic monitors as input into a decision process as to what subsequent measure-
ments are required to uncover the cause(s) of a given network phenomenon.

Many past studies have employed multiple measurement techniques in an attempt
to gain broader insight on a particular problem than can be obtained when using a
single measurement method. For instance, [9] uses both traceroute and BGP routing
table analysis to determine the AS path between two given hosts. The key differ-
ence between these kinds of studies and the REM framework outlined in this paper is in

A Reactive Measurement Framework 95

REM’s automated coupling of measurements. REM specifically defines dependencies
between the output of a measurement tool and what (if any) additional measurements
are required. We note that REM is orthogonal to and does not obviate the usefulness of
studies like [9] that leverage information from multiple independent measurements.

The literature also has examples of researchers utilizing the reactive measurement
notion. For instance, [3] uses traceroute measurements to followup on the detection of
possible “missing routes” found by analyzing BGP routing tables. Another example is
discussed in [2], whereby incoming email is first classified as spam or ham and then the
URLs within the spam are followed in an effort to characterize various scams. While
researchers have used REM techniques in the past for specific purposes, what has been
missing is to systematize these mechanisms in order to make REM broadly available to
the research community as a general approach.

In addition, we note that our framing of measurement as a process rather than an
event shares some properties with PDA [5] (which is mainly focused on host problems,
but does touch on connectivity issues as well), ATMEN [8] (which is largely concerned
with coordinating distributed triggered measurements across organizations), and the
general idea of “trap directed polling” via SNMP information. All of these systems
in some fashion make use of one measurement to drive another measurement (and/or
ultimately make a conclusion), but all focus on different aspects of the problem.

Reactive measurement shares some of the goals of the “knowledge plane” (KP) pro-
posed in [4]. The KP envisions continuously gathering information about the network.
When particular behaviors need further investigation the KP can be queried to gain
a breadth of relevant information. One immediate and practical problem with the KP
approach is the immense task in gathering and sifting through information about the
entire network. REM proposes essentially the opposite approach: rather than synthe-
sizing from already-gathered information, REM aims to adaptively gain insight into
particular observed behaviors by running a series of measurements in response to a
given phenomena. REM thus has the advantage that it can be conducted locally. No
distributed data substrate—with the attendant difficulties of scaling, privacy, security,
trustworthiness—needs to be constructed. That said, we note that REM in some sense
is also orthogonal to ambitious approaches such as KP. The two could be coupled, such
that facts learned by REM activity are fed into the KP data substrate, and REM itself
could incorporate facts extracted from the substrate to drive its local decision process
(as discussed in more detail in § 3.4).

Finally, we note that intrusion detection systems (IDS) share some high-level notions
with REM [18,13]. IDS systems passively observe traffic to draw observations regard-
ing network activity. These observations can be hooked to a “reaction”, ranging from
logging an event to resetting a TCP connection to adding a firewall rule to block traffic
from a host that is port scanning the network. The REM concept of a reaction is much
broader than the security-related reactions that popular IDS systems incorporate. In ad-
dition, IDS systems offer a passive view of the network, while reactive measurement
allows for active probing to determine the state of the network. However, the ability
of some IDS’s to sift through large traffic streams to find specific types of high-level
activity offers great promise of leverage within the REM framework (see § 3).

96 M. Allman and V. Paxson

3 REM Architecture

This section presents an architecture for a generic, reusable reactive measurement sys-
tem suitable for a broad array of measurement efforts. Our aim is to both explicate the
approach and solicit input from the community while the effort is in its formative stages.
We begin with a discussion of incorporating external measurement tools into the sys-
tem. We then present the internal machinery that drives the measurement procedures,
briefly delving into some of the details. Finally, we discuss possibilities for integrating
the REM system with other external resources.

External Meas.

re
m

d

R
ea

ct
iv

e
M

ea
s.

Active Meas.

Fig. 1. Conceptual layout of the reactive measurement system

3.1 External Interactions

Fundamentally, the REM system couples measurements with reactions. Figure 1 illus-
trates the system’s basic structure: arbitrary measurement tools glued together using a
daemon, remd, that can be run on any general purpose computer connected to the net-
work to be measured. remd provides an interface to and from traditional measurement
tools, as well as a method for specifying the relationships between the measurements
(outlined in the next subsection). First, we outline the various measurements shown in
Figure 1 with which remd interacts:

– Active Measurements. remd can initiate independent active measurements based
on a run-time-configured schedule and incorporate their results as input into
whether or not to follow up with a reactive measurement, and in what form. For in-
stance, a simple ping measurement may be executed every N seconds, with various
pieces of information returned (e.g., success/failure, loss rate, presence of reorder-
ing, etc.) to remd. These results could then trigger additional measurements in an
attempt to determine the reason behind the initial observations.

– Reactive Measurements. These are measurements that remd executes in response
to previously-measured network phenomenon. For instance, if a tool reports to
remd that the loss rate between the local host and a given remote host exceeds a
threshold, then a reactive measurement can be triggered to attempt to determine
the cause of the increased loss rate or how long it persists. The results of reactive
measurements are fed back to remd and are then used to determine whether further
reactive measurements are needed. Reactive measurements can be active or passive
measurements.

A Reactive Measurement Framework 97

– External Measurements. These are measurement results delivered to remd with-
out remd initiating them itself. These measurements could come from SNMP mon-
itoring systems, routers, intrusion detection systems (IDS), system log analyzers or
custom built monitors. Each of these entities potentially has a unique and useful
vantage point from which to assess certain network conditions and attributes.

The various components of the system interact by passing structured messages be-
tween the remd and the measurement tools. We can incorporate arbitrary tools into
the system by writing simple wrapper scripts1 that (i) understand and process requests
formed by the remd, (ii) evaluate the output of the given tool(s) (return codes, output
files, standard output), and (iii) form responses in the format remd requires. We use
XML for requests and responses to ensure an extensible message structure that can
accommodate communication with arbitrary measurement tools (their diverse set of ar-
guments and result types). In addition, XML parsers are widely available allowing users
to construct wrapper scripts without building complicated parsers and in a wide variety
of languages. Finally, we note that while the contents of the messages passed between
the remd and the various measurement tools must be well-formed, the meaning of the
information and its relationship within the overall experiment is defined at run-time
by the remd configuration, allowing a great degree of flexibility and leaving remd as
neutral glue.

3.2 Internal Architecture

Internally, the REM system has three basic components: a measurement scheduler, an
event receptor, and a state machine to capture the linkages between measurements. The
measurement scheduler runs measurement tools at prescribed times. For instance, the
user may want to run a simple measurement to assess a path periodically, along with
successive reactive measurements as dictated by the results of the first measurement.
Or, upon detecting a failure the user may wish to run the reactive measurements after a
given amount of time, rather than immediately (e.g., to test DNS resolution N seconds
after observing a failed lookup). The event receptor receives notifications from external
monitors (e.g., an SNMP monitor) that then may initiate a chain of reactive measure-
ments, and from the activity of the reactive measurements themselves. Finally, the state
machine manages the transitions between various measurements.

Figure 2 gives an example of an REM state machine. It codifies that REM should
start a ping measurement based on an internal timer. Based on the results of the ping
measurement, REM will execute zero, one, or two reactive measurements. If the loss
rate measured by ping exceeds a threshold T , REM executes treno [10] in an attempt to
determine where in the path the congestion occurs. If the ping measurement observes
packet reordering on the path, REM uses cap [1] to assess the impact of reordering on
TCP’s congestion control algorithms. Note: if the ping indicates a loss rate that exceeds
T and packet reordering is present both treno and cap will be executed (bringing up a
number of coordination issues that we discuss in more detail below). In the case where
the ping measurement indicates both a loss rate below T and no reordering, then no

1 The NIMI measurement infrastructure [15,14] has successfully used a similar wrapper script
technique to incorporate arbitrary measurement tools.

98 M. Allman and V. Paxson

cap

TIMER
ping

REORDERING?

LOSS RATE > T ?
treno

Fig. 2. Simple state machine whereby all measurements are invoked by remd

further measurements are executed. In other words, an implicit terminal state follows
each state in the machine. If, after executing a measurement, none of the transitions are
valid, then the current measurement chain ends. Finally, the treno and cap states could,
of course, also have transitions to additional measurements.

(60 SECOND DELAY)

dig
DNS QUERY FAILURE

remd

Bro

DNS QUERY FAILURE

Fig. 3. Simple state machine of a reactive measurement triggered by an external monitor

Figure 3 gives a second example of an REM state machine. Here, remd (everything
within the dotted line) receives a DNS failure notification from an external source,
namely an instance of the Bro IDS (which can perform extensive, application-layer
analysis of traffic). Upon receiving the message indicating a DNS failure occurred,
remd executes a dig measurement in an attempt to resolve the given hostname. Each
time the given hostname cannot be resolved, REM schedules another dig measurement
for 60 seconds into the future. In addition to setting a time between measurements, a
maximum number of attempts can be configured. For instance, inserting 60 seconds
between DNS queries and running a maximum of 10 queries may suffice for a given
experiment. Of course, a simple periodic timer will not suffice for all situations; our
prototype REM system also provides Poisson-based intervals and exponential backoff.

The above examples are clearly simplistic, and the thorny problem of measurement
scheduling and collision remains. A user may wish to have two reactive measurements
run in parallel in one instance, and serially in another. In addition, a user may wish
to base a reaction on the output of multiple measurements. These situations greatly

A Reactive Measurement Framework 99

complicate state machine construction. While this complexity can be hidden from the
user by providing a high-level interface from which the system then creates the actual
state machine, we may need a more powerful abstraction to cover all possible cases in
the future. For example, we could use the quite general framework of Petri Nets [16]
to codify the reaction path. Alternatively, we could directly employ Bro’s events and
timers. Our current prototype is based on a simple state machine. As we explore the
sorts of reactive measurements we find we want to express in practice we will look to
enhancing the system’s abstract model to support these sorts of richer couplings.

As indicated above, external notifications to the REM system can come from any
network monitoring system (IDS, SNMP, custom developed, etc.). Attempting to inter-
face remd with legacy systems may require a lightweight shim to provide the necessary
“plumbing”. For example, consider integrating the Bro IDS into the REM framework.
Since the Bro system includes a client library for transmitting Bro events and typed
values, to integrate it with REM we can devise a simple event receiver that understands
Bro events and translates them into remd notifications.

Note, as discussed thus far, the REM system has no particular provisions for security
mechanisms over and above those placed on the user-level tools by the underlying oper-
ating system. We believe this is the generally correct model. However, we clearly must
require access control for external notifications. A natural approach for doing so would
be to layer such notifications on top of SSL connections in order to leverage SSL’s
authentication capabilities. We could potentially augment this with an authorization ca-
pability allowing a researcher to define which external monitors can communicate with
remd and what sort of messages they can send.

3.3 Details

The high-level architecture sketched above is realized through a system whereby each
experiment keeps a variable list that can be arbitrarily populated with state informa-
tion by the experiment configuration and the measurement tools as they are executed.
For instance, a measurement tool’s argument list can be populated by the configuration
setting variables for the tool. Wrapper scripts consult the variable list and add to it infor-
mation about the outcome of a particular measurement. Once a measurement is finished
and the updated list returned, remd executes the transitions, which are specified using
arbitrary Python code that runs in the context of a given variable list. Using this scheme
the remd is only required to manage the overall measurement process and not have
any understanding of the measurements themselves. Thus, remd is charged with tasks
such as moving variable lists around, executing transition code from the configuration,
managing processes, and stopping processes that take too long.

3.4 Interfacing to External Resources

A REM system such as described above would provide a solid foundation for conduct-
ing fundamentally new and different measurement studies. However, the system can
be more useful still if it were to contain the ability to interact with different types of
external resources. Below we sketch two possibilities.

100 M. Allman and V. Paxson

Measurement Infrastructures. Often we can derive more information about a network
anomaly by probing the network from multiple vantage points. For instance, a DNS
failure may be a local problem to a given network or a more general global problem
with one of the root DNS servers. If we perform DNS lookups at only one point in the
network (i.e., where remd is running), we can fail to observe the full scope of the prob-
lem. However, by running the same DNS query from a number of distributed points in
the Internet, a more complete story about the failure might emerge. Thus, we should aim
to interface the REM system with distributed measurement systems such as scriptroute
[19] or DipZoom [17]. Such interfaces provide the ability to run reactive measurements
at many points in the network simultaneously to gather as much information as possible
about network anomalies. Note that by using wrapper scripts, the REM system can ac-
commodate such interfaces without any particular extensions to the general framework:
we simply write wrapper scripts invoked by remd that, for example, execute scriptroute
tools to run measurements on alternate hosts and gather the results.

Measurement Repositories. While reactive measurement offers a great deal of power,
one deficiency is that sometimes the overt trigger for a failure or anomaly comes late:
that is, by the time we observe the problem, we may have missed valuable precursors
that shed light on the problem’s onset. We envision a partial counter to this problem in
the form of interfacing to measurement repositories. For instance, wrapper scripts could
interface with the bulk packet recorder outlined in [7] in an attempt to try to build under-
standing about the precursors to some observed phenomena. Another obvious source of
information could be the RouteViews repository [11] of advertised routing tables.

4 Summary

Our two major—if preliminary—contributions are (i) developing the general notion
of reactive measurement as a paradigm that focuses on a measurement process as the
key to better understanding observed behaviors, and (ii) the design and prototyping
of a reactive measurement system to aid researchers in using the technique in their
own work. We believe that if the community absorbs and leverages this concept in
their experimental designs, it can lead to significant advances in better understanding
network behavior. We hope by exposing our initial design to the community we will get
feedback on important aspects to include in future versions of our framework.

Acknowledgments

The ideas in this paper have benefited from discussions with a number of people in-
cluding Fred Baker, Ben Chodroff, Scott Shenker and Randall Stewart. This work was
funded in part by Cisco Systems and NSF grants ITR/ANI-0205519 and NSF-0722035.
Our thanks to all.

Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors or originators and do not necessarily reflect the views of
the National Science Foundation.

A Reactive Measurement Framework 101

References

1. Allman, M.: Measuring End-to-End Bulk Transfer Capacity. In: ACM SIGCOMM Internet
Measurement Workshop (November 2001)

2. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Characterizing In-
ternet Scam Hosting Infrastructure. In: Proceedings of the USENIX Security Symposium
(August 2007)

3. Chang, D.-F., Govindan, R., Heidemann, J.: Exploring The Ability of Locating BGP Missing
Routes From Multiple Looking Glasses. In: ACM SIGCOMM Network Troubleshooting
Workshop (September 2004)

4. Clark, D., Partridge, C., Ramming, J.C., Wroclawksi, J.: A Knowledge Plane for the Inter-
net. In: ACM SIGCOMM Workshop on Future Directions in Network Architecture (August
2003)

5. Huang, H., Jennings III, R., Ruan, Y., Sahoo, R., Sahu, S., Shaikh, A.: PDA: A Tool for
Automated Problem Determination. In: Proceedings of USENIX Large Installation System
Administration Conference (LISA) (November 2007)

6. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effectiveness of
Caching. In: ACM SIGCOMM Internet Measurement Workshop (November 2001)

7. Kornexl, S., Paxson, V., Dreger, H., Feldmann, A., Sommer, R.: Building a Time Machine
for Efficient Recording and Retrieval of High-Volume Network Traffic. In: ACM Internet
Measurement Conference (2005)

8. Krishnamurthy, B., Madhyastha, H.V., Spatscheck, O.: ATMEN: A Triggered Network Mea-
surement Infrastructure. In: Proceedings of WWW (May 2005)

9. Mao, Z.M., Rexford, J., Wang, J., Katz, R.: Towards an Accurate AS-Level Traceroute Tool.
ACM SIGCOMM (2003)

10. Mathis, M.: Diagnosing Internet Congestion with a Transport Layer Performance Tool. In:
Proceedings of INET 1996 (June 1996)

11. University of Oregon RouteViews Project, http://www.routeviews.org
12. Paxson, V.: End-to-End Routing Behavior in the Internet. ACM SIGCOMM (August 1996)
13. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. In: Proceedings

of the 7th USENIX Security Symposium (January 1998)
14. Paxson, V., Adams, A., Mathis, M.: Experiences with NIMI. In: Proceedings of Passive and

Active Measurement (2000)
15. Paxson, V., Mahdavi, J., Adams, A., Mathis, M.: An Architecture for Large-Scale Internet

Measurement. IEEE Communications (1998)
16. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood

Cliffs (1981)
17. Rabinovich, M., Triukose, S., Wen, Z., Wang, L.: Dipzoom: the Internet measurements mar-

ketplace. In: 9th IEEE Global Internet Symp. (2006)
18. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of

USENIX LISA (1999)
19. Spring, N., Wetherall, D., Anderson, T.: Scriptroute: A Public Internet Measurement Facility.

In: USENIX Symposium on Internet Technologies and Systems (USITS) (2003)

http://www.routeviews.org

Towards a High Quality Path-Oriented Network

Measurement and Storage System

David Johnson, Daniel Gebhardt, and Jay Lepreau

University of Utah, School of Computing

Abstract. Researchers need current and historical measurements of In-
ternet paths. We built and deployed a complete system designed to fill
these needs: a safe, shareable, multi-user active network measurement
system probes network paths and reliably records measurements in a
storage facility with multiple levels of caching, providing users with fast,
flexible querying. Our system, deployed on PlanetLab for over 20 months,
has accumulated 940 million measurements and made them publicly
available in a separate, federated data repository. Our experience shows
that building and running such a valuable research tool poses significant
engineering and practical challenges.

1 Introduction

For a multitude of reasons, researchers need current and historical measurements
of Internet paths. These reasons include creating or validating network models,
using those models to perform experiments under Internet conditions in network
testbeds, studying trends and stationarity in network conditions, and selecting
Internet paths that tend to exhibit certain properties. We explored one design
point on the spectrum of path-oriented network measurement and storage sys-
tems, motivated by 1) the needs of a network emulation environment and 2) the
need to provide permanent, public repositories of historical measurement data.
The result is Flexmon: a shareable, multi-user active measurement system that
collects pairwise path data between sites in a network at tunable frequencies, yet
protects the network from excess traffic. Its architecture allows multiple clients
to schedule their own probes on subsets of nodes in the network, while sharing
probe results among clients, amortizing the costs. Furthermore, Flexmon pro-
vides a reliable storage path for probe data and stores them permanently in a
separate federated data repository.

Flexmon’s design provides a measurement infrastructure that is shared, reli-
able, safe, adaptive, controllable, and accommodates high performance data re-
trieval. Each feature is not novel, but the design, the lessons learned, and its
eventual more mature implementation should provide an important community
resource—and indeed, our accumulated measurements are already publicly avail-
able. Flexmon has some features in common with other measurement systems
such as S3 [16] and Scriptroute [13], but is designed to support different goals
including shared control over measurements and easy public data availability.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 102–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a High Quality Path-Oriented Network Measurement 103

Flexmon measurement is controllable and dynamic in that an authenticated user
may adjust the measurement frequency of any particular path, while Flexmon
itself caps and adjusts the rates based on overall network resources consumed.
These features allows higher frequency measurement than what would be possi-
ble globally, and thus a more accurate path emulation, while still preserving its
safety to large networks like PlanetLab.

Our experience shows that building and running such a system poses ma-
jor engineering and practical challenges, some of which Flexmon does not yet
meet. We have been running Flexmon on the PlanetLab network testbed for
over twenty months, accumulating 940 million publicly available measurements
between PlanetLab sites. In this paper, we describe the Flexmon architecture
and implementation, discuss its reliability, outline our dataset, and draw lessons
for developing high quality network measurement and storage systems.

2 Design

In this section, we present Flexmon’s architecture and discuss our design choices.
We originally built Flexmon to serve as the measurement infrastructure for
Flexlab [10]. Flexlab allows researchers to experiment in the controllable, re-
peatable environment provided by the Emulab [15] testbed, but using link char-
acteristics that are dynamically updated using traffic models derived from a
real network, specifically the PlanetLab [8] testbed embedded in the Internet.
Consequently, Flexmon inherits several design goals from Flexlab.

2.1 Design Choices

Flexmon’s design was driven by four primary requirements: the need to obtain
and provide “raw measurements” to researchers, the need to operate within un-
reliable networks, the desire to obtain data that are useful for many researchers,
and the need to protect the network from excess traffic.

First, Flexmon is designed to measure end-to-end network path properties,
using (typically standard) external programs wrapped by a script that canoni-
calizes the parameters. Our initial experiments with packet-pair and packet-train
tools, including pathload [3] and pathchirp [9], produced poor results on Planet-
Lab due to its extremely overloaded hosts. Consequently, we currently use two
simple, controllable tools: a modified version of iperf measures bandwidth, and
fping measures connectivity and latency. However, this experience reveals the
importance of allowing multiple measurement tools. Flexmon’s design supports
the addition of new measurement tools, as they prove desirable in the future.

The design also supports two methods for running these tools, either one-
shot or continuous. In one-shot mode, the tool is spawned at regular intervals to
produce a single measurement that is captured by the system. This mode makes
it easy to integrate existing probe tools such as ping and iperf that can produce
a “summary” result before exiting. However, this mode can cause high overhead
when the probe frequency is high. In continuous mode, the tool is spawned once,

104 D. Johnson, D. Gebhardt, and J. Lepreau

for a longer duration, and its periodic results are collected by the path prober.
Many probes can benefit from collecting state over an extended period, while
still reporting periodic results.

Our system must function over unreliable networks. PlanetLab is a heavily
utilized, multi-user overlay testbed with hundreds of nodes distributed around
the world. Thus, like the Internet it is a part of, PlanetLab nodes are often
unresponsive. To be useful such an environment, Flexmon must be reliable in
a number of key ways. When nodes return from an unresponsive state, they
must quickly rejoin the measurement network and continue probing. During a
network outage, Flexmon nodes must continue probing and reliably store results
to persistent storage for delivery when connectivity returns.

Potential users of Flexmon will likely often require the same types of measure-
ments. However, frequent or simultaneous probing with tools such as iperf can
be both costly and cause self-interference, affecting accuracy. Thus, it is impor-
tant for Flexmon to allow users to share probe results. In Flexmon, probing costs
can be amortized across several users, which can alleviate the larger bandwidth
costs incurred by iperf and similar network measurement tools.

Finally, both the underlying network and the measurement system itself must
be protected from excess measurement traffic. Given our trust model, such traf-
fic is typically caused accidentally, but our experience shows that it is a real
problem. Our design can limit global and per-user bandwidth usage, providing
both defense in depth and reflecting the reality of traffic limiting on PlanetLab.

2.2 Software Architecture

Flexmon consists of six types of components: path probers, a manager, manager
clients, the auto-manager client, a data collection subsystem, and a federated,
permanent data repository. Two additional components from the base Emulab
system are essential: a reliable but lightweight control system, and a database
that includes static and dynamic state of the measurement nodes. Figure 1 shows
an overview of the communication between these components.

Flexmon users request that measurement probes be performed among sets of
nodes using manager clients. They indicate the nodes to be probed, the type,
frequency, and duration of measurements, and any other parameters required

Fig. 1. Flexmon architecture

Towards a High Quality Path-Oriented Network Measurement 105

by the tool. A special type of manager client, the auto-manager client, attempts
to maintain a fully connected measurement set for the entire network. The cen-
tralized manager receives client probe requests, performs safety checks on them,
and forwards the requests to path probers.

Path probers run on each network node and receive control commands from
the manager. Commands mirror the client requests, allowing changing of the
measurement destination nodes, the type of measurement (e.g., latency), and
the measurement frequency and duration.

Path probers send results to a data collection service that caches and batches
before sending them on to the permanent federated repository, the Dataposi-
tory [1]. To speed up both queries and updates, the data collector places the
results in a smaller database, which functions as a write-back cache of the mea-
surements taken in the last 24 hours. New data in the cache is flushed hourly
to the Datapository database. Finally, an XML-RPC server provides publicly
available query functionality to users, allowing queries to its pairwise internal
cache, the 24 hour cache, and the Datapository database.

We anticipate that researchers will typically use manager clients to schedule
probes at higher frequencies between nodes of specific interest, while the auto-
manager client maintains low-frequency, low-cost, network-wide measurements.
As an example, the Flexlab [10] testbed uses a manager client to run a high-
fidelity path measurement between PlanetLab nodes to determine the initial
conditions for link shaping within an emulated network.

Multiple manager clients may send requests specifying different measurement
frequencies for the same path. The path prober maintains a queue of probe
requests ordered by frequency, and serially executes the highest frequency probe
request per type (i.e., available bandwidth estimation, latency, connectivity).
Once the duration of that request expires, it is removed from the queue, and
the prober executes the next probe. Since the prober runs only the highest
frequency probe request per type, all users of the system will see at least the
rate of measurements that they requested.

Flexmon can reject probe requests based on resource constraints in the net-
work. For instance, network administrators for probed nodes may request that
Flexmon limit its bandwidth consumption to a specific rate. Flexmon maintains a
per-path available bandwidth average based on prior available bandwidth probes,
and performs admission control on probe requests by computing the expected
bandwidth utilization of the probe. If the expectation is that the request will
exceed a global limit, or a per-user limit, the probe request would be rejected.

3 Implementation

Flexmon currently serves as the measurement infrastructure for Flexlab, a service
running on Emulab. Many of its central components run on Emulab servers,
and it measures a subset of the PlanetLab network. In this section, we provide
background on how Flexmon is deployed across Emulab and PlanetLab, and
discuss implementation details for key system components.

106 D. Johnson, D. Gebhardt, and J. Lepreau

Deployment. Emulab provides a portal [14] to PlanetLab, through which Plan-
etLab resources can be used in much the same way as other Emulab resources.
To deploy Flexmon’s path probers on PlanetLab nodes, we create an Emulab
experiment containing all PlanetLab nodes considered “live” by Emulab. When
this experiment swaps in, Emulab automatically deploys the measurement scripts
and tools and starts the node’s path prober daemon. Although the number varies
over time, Flexmon typically monitors 275–350 PlanetLab nodes .1

Background Measurements. From the set of PlanetLab nodes in the Flex-
mon experiment, the auto-manager client chooses a subset so that each node
represents a unique PlanetLab site. The auto-manager client requests all site-
pairs latency, connectivity, and bandwidth probes to run with infinite duration
between all nodes in this set. The auto-manager client chooses a single node
per site because all nodes at one site should exhibit similar path characteristics
to nodes at another site. The auto-manager client prioritizes site nodes based
on least CPU utilization to minimize the effect of observed latencies in process
scheduling on PlanetLab nodes [10, 12], and updates priorities as loads change.

The auto-manager client parameterizes its latency probing by period (each
path is measured after an interval), and bandwidth probing by duty cycle (the
fraction of time a path prober is measuring bandwidth to any destination).
All-sites latency probing is inexpensive when compared to all-sites bandwidth
probing, even in a large-scale network such as PlanetLab. However, all-sites
bandwidth probing can become extremely costly and could cause Flexmon to run
afoul of PlanetLab bandwidth caps. Although Flexmon allows its administrator
to set global and per-user caps , it remains important for background probing to
leave space under the cap for high frequency, per-user manager client probing.
We have found that by setting the latency probing period to 600 seconds, and
the bandwidth probing duty cycle to 10%, auto-manager client probes do not
exceed PlanetLab caps, and leaves sufficient resources for manager clients.

Probing. A path prober runs on each node in the measurement network. Each
path prober receives commands from the manager that control probe execution.
Commands result from probe requests to the manager, and set the destination
nodes, the probe types to be executed (e.g., latency or bandwidth) between the
source and each destination node, the mode in which the probe should run (one-
shot or continuous), the period between individual tests, the total duration of
probing, and any additional arguments. The path prober spawns wrapper scripts
that translate the canonicalized parameters to tool-specific arguments, runs the
tool, and converts its results and error conditions into a generic form. For one-
shot probes, a result message is sent to the data collector once the probe has
finished execution. For continuous probes, the path prober monitors the output
of the probe and sends periodic messages to the data collector. Messages contains

1 Regular PlanetLab users will note that this number is lower than the number of
nodes typically reported as live by CoMon [6]. Emulab’s portal to PlanetLab creates
a richer environment on nodes than the default PlanetLab sliver creation method,
and thus requires a higher level of node health.

Towards a High Quality Path-Oriented Network Measurement 107

the node pair, probe type, the probe result (including error information), the
time at the start of probe execution, and a magic protocol ID.

When deciding how to estimate available bandwidth, we first experimented
with several packet-pair and packet-train tools, including pathload [3] and
pathchirp [9]. Others report those two programs to work acceptably well on
PlanetLab [5], but in our experience they often returned extremely unreliable
results, or none. Therefore, we estimate available bandwidth with iperf, a so-
called Bulk Transfer Capacity method. iperf consumes much bandwidth during
tests, but it has the advantage that, by using a real TCP flow, it obtains a highly
accurate measurement of the bandwidth seen by a TCP flow, including taking
into account the reactivity of other flows. We extended iperf with our own
iperf daemon, since iperf produced memory leaks during long runtimes. Each
path prober runs an iperf daemon to handle incoming probes from other nodes.

Flexmon uses the fping utility to measure latency and detect path outages.
When a loss occurs, a state machine drives a frequency-adaptive probing process
to distinguish packet loss from true connectivity failure (in four seconds), and
to subsequently detect connectivity restoration (within ten seconds).

Probing tools may experience errors due to underlying network behavior. Path
probers capture certain errors and report them as anomalous measurements since
errors provide users with useful information about the state of the network. We
currently capture timeout, unresolvable hostname, and host unreachable errors.
However, our system can flexibly record arbitrary error conditions.

Flexmon is designed to run safely on unreliable networks. Since PlanetLab
is a large, heavily-utilized network, it is inevitable that nodes will periodically
reboot or become unresponsive for extended periods of time. If a PlanetLab
node is rebooted, or the sliver is reset, the path prober restarts when the sliver
does. However, we chose not to have the path prober checkpoint the current
running state and resume from it during failure recovery. Each path prober has
no knowledge of the overall system goals, and the manager or auto-manager
client may have already adapted to deal with the loss of particular nodes.

Measurement Transfer and Storage. Flexmon’s reliability and availability
are greatly improved by strategic buffering, reliable probe result transfer, and
caching. Each path prober sends probe result to the data collector over UDP.
Before a prober sends a result, it first inserts it into a Berkeley database, which
acts as a stable storage buffer. The prober then sends the message to the data
collector and retransmits after five seconds if the result message is not acknowl-
edged by the data collector. The data collector does not acknowledge the result
message until it has been successfully inserted into a SQL database; therefore,
it must be aware of duplicate measurements, and will drop them when they are
detected. Through this mechanism, Flexmon largely ensures application reliabil-
ity; however, measurements may be lost if a path prober node’s disk fails while
the data collector is not running.

The data collector maintains the caching database containing measurements
taken within the last 24 hours, making result polling and queries on recent data
much faster than if all results were inserted directly into the Datapository. A

108 D. Johnson, D. Gebhardt, and J. Lepreau

script reliably “flushes” measurements in this cache back to the Datapository
each hour, ensuring that measurements older than 24 hours are not aged out of
the cache until they are successfully entered into the Datapository.

Query Interfaces. To facilitate efficient and easy data access, while mini-
mizing security concerns and increasing functionality, Flexmon provides several
interfaces to query measurement result data. First, as mentioned in the previous
section, Flexmon maintains the results from the previous 24 hours in a database
that acts as a write-back cache. This database, into which the data collector
inserts new measurements, provides a reasonably efficient query mechanism for
services that require access only to recent data. At this time, the users database
is accessible by any researcher with an Emulab account. However, due to security
and performance risks, we only provide raw SQL access to the Datapository
database to those “power users” who must be able to compose their own queries.

Instead of providing raw SQL access to the Flexmon databases to all po-
tential users, we provide a safer, controlled means of accessing measurement
data. Flexmon runs a simple XML-RPC server that periodically polls the users
database and keeps an in-memory cache of the single most recent latency and
bandwidth measurements for each known path. The XML-RPC server ages mea-
surements out of its internal cache once they reach an age of 24 hours. It also
provides a simple API that can be used to query either the users database
or the Datapository database, depending on the specified time interval . The
getMeasurements method requires an interval to restrict query responses to a
manageable size, and can filter results based on source and destination node
and site, as well as on basic measurement value constraints. Another method,
getFullyConnectedSet, finds a max-clique from the data in the in-memory
cache, and can restrict its search to a specific set of nodes.

4 System Status

Flexmon has been monitoring sets of PlanetLab nodes since February 2006,
and has placed approximately 940million measurements of pairwise latency and
available bandwidth in the Datapository, accounting for approximately 89%
and 11% of total measurements respectively. Until December 2006, Flexmon ran
in “beta” mode, and underwent several architectural changes. After this time,
although several bugs were fixed, the system remained largely unchanged, aside
from occasional changes in the set of PlanetLab nodes monitored.

The number of nodes in the experiment can change over time. When we change
the experiment configuration, we normally restart key Flexmon daemons, such
as the auto-manager client and the manager. Depending on when restarts occur,
there may be slight anomalies for a brief window of time in the measurement
archive. Prior to fixing a bug, many of our PlanetLab nodes were given band-
width caps by PlanetLab for a short time due to detected overuse.

Since Flexmon path probers may not always be able to conduct a pairwise
site measurement successfully (i.e., due to unexpected node unavailability, path
outages, packet filtering at PlanetLab sites), measurement results stored in the

Towards a High Quality Path-Oriented Network Measurement 109

Datapository also include pairwise errors. For instance, over the measurement
history, approximately 17% of latency measurements and 11% of bandwidth
measurements represent errors. Of known latency errors, approximately 74% are
timeouts; 18% are DNS lookup failures; and 6% are ICMP unreachable errors.

5 Metrics

We analyzed a snapshot of logfiles produced by Flexmon during a 100-day period
to evaluate key properties of our system. There are times when the number of
available sites is much lower due to the inherent unreliability of distributed
systems and PlanetLab. The number of nodes in the experiment changes over
time. During the period analyzed, we monitored a median of 151 sites.

We first evaluate the number of available sites in our system during the period.
We extract the number of available sites from periodic liveness checks performed
by the auto-manager client. Figure 2(a) shows the available sites over the period.
Near Day 23, there is a sharp drop in the available sites, caused by an experiment
restart. Overall, this graph demonstrates a relatively stable number of available
sites.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

A
va

ila
bi

lit
y

(s
ite

s)

Time (days)

Site Availability Over Time

(a) Site availability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

of

 N
od

es
 L

ea
vi

ng
 S

ys
te

m

Time (days)

Node Churn Over Time

(b) Node churn rate (shown as leave events)

Fig. 2. Measurement node availability and churn rate

We also analyzed the churn rate of nodes in our system. We compute the
churn rate as the number of nodes that “left” (were newly unresponsive) in a
single period of liveness checks. Figure 2(b) shows the churn rate over the period.
First, we see large spikes near Day 23 that are caused by the experiment restart,
where a large number of nodes suddenly left the system. These correlate well
with the decreased site availability shown in Figure 2(a), as do other spikes in
this graph, which may represent transient failures.

6 Related Work

Researchers have built a number of network measurement infrastructures, each
with its unique spin on the measurement task.

110 D. Johnson, D. Gebhardt, and J. Lepreau

Scriptroute [13] provides a safe, publicly-available network probe execution
environment. Users submit probe scripts written in an interpreted language to
Scriptroute servers, which execute the scripts while ensuring that scripts do
not exceed resource limits and do not send malformed packets. Flexmon also
constrains probes according to resource limits. However, since Flexmon prevents
users from running arbitrary tools or algorithms, and only allows probes between
nodes within the monitored network, a malformed packet filtering mechanism
such as that provided by Scriptroute is unnecessary. Due to its more permissive
trust model, Scriptroute does not allow node-local data storage, which compro-
mises reliability. It is also not linked to a public data repository.

ANEMOS [2] is an extensible measurement system which stores results in a cen-
tral database. However, task scheduling is done on the centralized Coordinator
rather than in a distributed fashion, and results are not buffered at the Workers.
These two traits limit its usefulness on an unreliable network. While Flexmon
demonstrates scalability at least to hundreds of nodes, ANEMOS has only been
tested to tens. The work in ATMEN [4] describes an open framework for providing
network measurement services and querying the results. Its distributed architec-
ture provides scalability for measurement, but does not provide functionality for
a general user or application to access the entire history of all collected data.

NIMI [7] is a well-known measurement framework for measuring Internet traf-
fic, with a trust model that is more restricted than Flexmon’s. It is secure,
scalable, and extensible, but lacks a central result repository.

TCP Sidecar [11] is the foundation of sideping, a tool designed to passively
estimate RTTs. Sidecar snoops on sent TCP packets and retransmits them,
with subtle changes. When Sidecar receives a duplicate ACK from the remote
host, sideping can estimate the RTT. Flexmon differs from sideping since it is
designed to service probe requests from its users with the given frequency and
duration arguments, between specific nodes, so it cannot passively wait for a
TCP connection to occur between the target nodes.

7 Conclusion

We have described Flexmon, a shareable, path-oriented, active network mea-
surement system with reliable measurement storage. Our experience shows that
building such a system poses significant engineering and practical challenges. It
should ensure reliable measurement storage, avoid overloading monitored nodes
and networks, and function in unreliable networks with heavily loaded nodes.

It will require a major effort to provide such a system that is truly reliable,
safe, and efficient, with high availability and high performance. The level of
effort is probably similar to the effort we ourselves expended in building the
initial version of the Emulab network emulation testbed. However, Flexmon is
a real, working system that has collected 940million measurements, it has been
successfully used by the Flexlab network testbed, and we plan to evolve it to a
permanent and production-quality measurement and storage system.

Towards a High Quality Path-Oriented Network Measurement 111

Acknowledgments

We thank many of our colleagues in the Flux Research Group for their significant
contributions. Robert Ricci, Mike Hibler, Leigh Stoller, and Sachin Goyal added
functionality to Flexmon. Robert, Sachin, and Kirk Webb also helped operate
the deployed system. Pramod Sanaga and Kevin Atkinson assisted in gathering
performance numbers. Eric Eide provided feedback and editing support. We
thank David Andersen for his work on the Datapository.

References

[1] Andersen, D.G., Feamster, N.: Challenges and Opportunities in Internet Data
Mining. Technical Report CMU–PDL–06–102, CMU Parallel Data Laboratory
(January 2006), http://www.datapository.net/

[2] Danalis, A., Dovrolis, C.: ANEMOS: An Autonomous Network Monitoring Sys-
tem. In: Proc. PAM, San Diego, CA (April 2003)

[3] Jain, M., Dovrolis, C.: End-to-End Available Bandwidth: Measurement Method-
ology, Dynamics, and Relation with TCP Throughput. IEEE/ACM Trans. Net-
working 11(4), 537–549 (2003)

[4] Krishnamurthy, B., Madhyastha, H.V., Spatscheck, O.: ATMEN: A Triggered
Network Measurement Infrastructure. In: Proc. WWW (May 2005)

[5] Lee, S.-J., et al.: Measuring Bandwidth Between PlanetLab Nodes. In: Proc. PAM
(March–April 2005)

[6] Park, K., Pai, V.: CoMon: A Mostly-Scalable Monitoring System for PlanetLab.
OSR 40(1), 65–74 (2006)

[7] Paxson, V., Mahdavi, J., Adams, A., Mathis, M.: An Architecture for Large-Scale
Internet Measurement. IEEE Comm. 36(8), 48–54 (1998)

[8] Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A Blueprint for Introducing
Disruptive Technology into the Internet. In: Proc. HotNets-I (October 2002)

[9] Ribeiro, V., Riedi, R., Baraniuk, R., Navratil, J., Cottrell, L.: pathChirp: Efficient
Available Bandwidth Estimation for Network Paths. In: Proc. PAM (April 2003)

[10] Ricci, R., et al.: The Flexlab Approach to Realistic Evaluation of Networked
Systems. In: Proc. NSDI (April 2007)

[11] Sherwood, R., Spring, N.: A Platform for Unobtrusive Measurements on Planet-
Lab. In: Proc. of WORLDS 2006, Seattle, WA (November 2006)

[12] Sommers, J., Barford, P.: An Active Measurement System for Shared Environ-
ments. In: Proc. IMC (October 2007)

[13] Spring, N., Wetherall, D., Anderson, T.: Scriptroute: A Public Internet Measure-
ment Facility. In: Proc. USITS (March 2003)

[14] Webb, K., et al.: Implementing the Emulab-PlanetLab Portal: Experience and
Lessons Learned. In: Proc. WORLDS (December 2004)

[15] White, B., et al.: An Integrated Experimental Environment for Distributed Sys-
tems and Networks. In: Proc. OSDI (December 2002)

[16] Yalagandula, P., et al.: S3: A Scalable Sensing Service for Monitoring Large Net-
worked Systems. In: Proc. Workshop on Internet Network Mgmt (September 2006)

http://www.datapository.net/

On Community-Oriented Internet Measurement

Mark Allman1, Lann Martin2, Michael Rabinovich2, and Kenneth Atchinson3

1 International Computer Science Institute
2 Case Western Reserve University

3 Baldwin-Wallace College

Abstract. In this paper we describe a new measurement framework that re-
searchers can use to abstract away some of the mundane logistic details that tend
to dog every measurement project. The measurement community has outlined
the need for better ways to gather assessments from a multitude of vantage points
and our system is designed to be an open community-oriented response to this
desire. While many previous efforts have approached this problem with heavy-
weight systems that ultimately fizzle due to logistical issues (e.g., hosts breaking
and no money to replace them) we take the opposite approach and attempt to use
the lightest possible weight framework that allows researchers to get their work
done. In particular, we take the approach of designing a system without any sort of
central “core” component and therefore the system has no single point of failure.
In addition, our proposed system is community-oriented in that there is no central
control and we build just enough mechanism for the community to get their work
done and police the infrastructure. In addition, our proposed system works in an
open fashion such that results from the community’s infrastructure are immedi-
ately provided to the community through publicly available “live feeds”.

1 Introduction

The Internet has become a vastly complex and heterogeneous system that defies simple
characterization or measurement. Researchers gain fundamental understanding from
detailed measurements spanning a wide variety of vantage points around the network. A
thriving sub-community of networking researchers has emerged that focuses on Internet
measurement and analysis. Arguably, this sub-community has greatly enhanced global
understanding of a wide variety of aspects of how networks work “in the wild” (e.g.,
operations of the routing system, better understanding of peer-to-peer transfers, how
various attacks operate, etc.). With this understanding come new and better techniques
for designing and deploying Internet technologies. Our goal is to both enhance this
sub-community’s ability to provide further understanding, as well as enhance the entire
community’s ability to assess the efficacy of new ideas through live measurements.

The research community has clearly stated its need for more and better measurement
data. An NSF-sponsored workshop on “Community-Oriented Network Measurement
Infrastructure” brought together a set of measurement experts who noted a variety of
community needs [5]. Among the needs articulated were both the need to more easily
run large-scale Internet measurements and the need for datasets from a broad range of
networks. In this paper we provide an initial sketch of a system that addresses both of
these desires.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 112–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Community-Oriented Internet Measurement 113

Internet measurement studies often fall into one of two camps: (i) those that require
researchers to expend large amounts of time on a formidable amount of mundane lo-
gistical details in order to run their measurement tools and collect data from a variety
of locations and (ii) small-scale studies that only consider small pockets of the network
and therefore may not be indicative of large-scale behavior. Our goal is to provide a
community-based measurement framework to address some of the problems associated
with large-scale measurement. We intend to form a lightweight measurement platform
that maintains no dedicated infrastructure. Instead, it relies on using a distributed hash
table (DHT) (e.g., OpenDHT [9], an overlay substrate used by a variety of other ap-
plications) to handle all communication needs for a mesh of measurement hosts. We
will provide tools and libraries to aid in the communication tasks specifically required
to undertake Internet measurements (e.g., find measurement points, form measurement
requests and collect results). Our over-arching goals are to ease the pain involved with
conducting large-scale measurement studies such that researchers can both (a) spend
more time focused on gaining insight about the network and how their new technolo-
gies work and less time on logistics and (b) have better access to large-scale infrastruc-
ture and data such that researcher will be incentivized to move away from small-scale
studies. The Internet has benefited from community effort for a number of innovations.
Community members proved willing to contribute resources to projects of individual re-
search groups, such as seti@home, traceroute@home and DIMES. We expect that they
would be even more willing to take part in an effort that benefits the entire community.

Abstracting the mundane details of measurement away from researchers should not
be taken as a small contribution. In fact, our experience is that much of the effort as-
sociated with large measurement studies is spent getting the mundane logistics right.
While we do not provide a framework to rid researchers of all the logistical headaches
of network measurement we provide a framework that takes care of a number of the
issues. With this in mind we sketch several aspects of our framework:

– The infrastructure can support a fluid set of measurement points that are provided
and administered by the community. Unlike other efforts there is no central man-
agement required, making this system a truly community-oriented effort that is of
and for the network research community.

– Our envisioned system uses a general-purpose DHT for the “glue” that (loosely)
connects the system components. The lack of a central core is a feature in that no
central maintenance is required and no single point of failure exists.

– Researchers will be freed from many, but not all, of the logistic details of recruiting
measurement points to focus their attention on the important details of the mea-
surements themselves (techniques, data analysis, etc.).

– The system requires no centralized maintenance beyond keeping the DHT running.
We envision that the research community will keep a DHT such as OpenDHT run-
ning for a variety of purposes anyway and so using the DHT to coordinate mea-
surements is not an extra burden. If this is not the case and yet the community still
desired such a system for measurement purposes a DHT can be readily built from
existing and available DHT software.

– Long-running measurements that benefit the entire community can be run with
community-wide resources. For instance, a setup similar to CAIDA’s skitter

114 M. Allman et al.

system [4] could be built and be supported by a distributed set of organizations—
none of which control, or can hinder (e.g., due to funding or manpower issues), the
overall data collection operation.

– Small and focused sets of measurements can be easily taken between a consenting
group of measurement points. That is, the group of measurement points used in
a particular experiment may be organized specifically for that experiment and not
assembled from generic measurement hosts donated to the community. This can
help with measurements that are too unknown or specialized to run on shared mea-
surement points (e.g., due to security concerns or because an experiment requires a
specialized kernel).

– Since the measurement results are reported through the DHT, anyone can pull down
the results of measurements as they are completed. This allows the entire commu-
nity to benefit from measurements involving the community’s shared infrastructure
immediately, rather than waiting for the raw data to be posted to some measure-
ment repository and indexed in systems like DatCat [3] or PREDICT [1]. (Note, as
discussed in § 3 our system provides immediate but short-term storage of results.
Therefore, archiving and indexing measurement results in long-term repositories is
orthogonal to our framework.)

– The “barrier to entry” for doing large-scale Internet measurement studies is quite
high due to the need for a distributed set of measurement points and the time re-
quired to coordinate measurements and observations. This shuts many researchers
with small-to-modest resources out of the entire area of research (or, relegates them
to conducting limited studies, as noted above). Our proposed system will open the
field of sound, large-scale Internet measurement to a much broader community of
researchers than are currently engaged in this field.

– In addition, having a lightweight measurement infrastructure that can be easily used
can encourage researchers who are not engaged in “Internet measurement” per se
to both (i) test their ideas out on the real network and (ii) take broad measurements
to solidly ground their work in the actual operation of the network.

– While we are proposing an “open” infrastructure the security implications of ne-
farious use of the platform must be taken into account. We discuss mitigating such
concerns in § 3.2.

2 Related Work

Our work is related to two classes of previous efforts: (i) measurement taking infras-
tructures and (ii) data dissemination systems.

A number of measurement taking infrastructures have been developed, each with
their own wrinkle (e.g., NIMI [7], Surveyor [6]). Generally these systems have been
more heavyweight than the system we propose. These systems have features that we
do not include in our design, such as allowing for the updating of tools, coordinating
measurements, stronger and more fine-grained notions of access control, etc. Our sys-
tem is in some sense on the opposite end of the spectrum—making up for a lack of
features by making the key tasks as easy as possible. In addition, we note that in many
cases these heavyweight all-encompassing measurement infrastructures have ultimately

On Community-Oriented Internet Measurement 115

required more upkeep than their designers and operators could handle (e.g., due to the
cost of replacing worn out portions of the infrastructure) and so have withered.1 Again,
we take the opposite approach and focus on designing a framework that can be used
without any sort of central authority and without relying on any particular organiza-
tion other than the community at-large to maintain infrastructure. Similarly, the current
DipZoom project [8] uses a peer-to-peer approach, but aims to leverage Internet users
at large as measurement providers and uses a central core that must be maintained. This
approach distributes the cost and effort to maintain the entire system.

Taking measurements is only one part of our system. Since we are using an open DHT
for all communication, the results of the measurements can be retrieved directly from
the DHT by the community at-large.2 These “live feeds” of data then benefit the entire
community. A number of efforts provide access to archived measurement data (e.g., as
indexed in CAIDA’s Data Catalog [3]). While our system provides direct access to data
without such a catalog, the systems are actually orthogonal. We do not envision keeping
measurement results in the DHT indefinitely. Rather, we envision that the data will age
out on the order of days after it was produced. Therefore, while the community can
latch on to live feeds, longer term archival and indexing systems will still be required.

3 System Architecture

As outlined above, the proposed measurement system is centered around an open dis-
tributed hash table such as OpenDHT [9]. Our only requirement for the DHT is that it
support a get()/put() interface. That is, put (k,value,t) places value into the DHT under
hash key k with a time-to-live of t. Note that multiple values can be placed in the DHT
for a given key. The DHT is queried using get (k) to retrieve all the values stored under
the hash key k.

Fundamentally, there are three types of actors and three operations for a measurement
system. The actors consist of (i) measurement requesters who desire some assessment
of the network, (ii) measurement points (MPs) that provide certain types of measure-
ments upon request and (iii) so-called “watchers” that do not request measurements,
but do track the “live feeds” by retrieving measurement results from measurements
scheduled by others. The operations that must be supported are: (a) identifying a re-
mote measurement point suitable to provide the desired measurement, (b) requesting a
measurement be conducted by a remote measurement point and (c) retrieving measure-
ment results when available. In the following subsections we discuss in detail how the
system works and several additional considerations.

3.1 Tables

Since we employ a DHT to loosely couple all the entities in our system, all communi-
cations happen through entries in various tables held in the DHT. The various actors in

1 Note that not all infrastructures have met this fate. For instance, the skitter infrastructure [4]
(and its descendant archipelago [2]) has been kept running for close to 10 years (through much
hard work).

2 Clearly, a researcher could encrypt measurement results before placing them in the DHT to
prevent community access, but this runs counter to the spirit of the system.

116 M. Allman et al.

the system are responsible for inserting new table entries, maintaining existing entries
and polling the DHT tables periodically to find new entries. Our system does not call
for the explicit removal of items from the DHT, but rather assumes they will be aged out
(based on the time-to-live described above.3 We now discuss the three basic operations
provided by the platform.

Identifying Measurement Points. The first key task for researchers wishing to make
use of our system is finding the names of the tables to deposit measurement requests
into and finding the names of the tables that can be monitored for results. Methods that
would accomplish this goal depend on the usage scenarios of our proposed framework.
If the experimenter is simply using the framework to interact with a set of well-known
nodes that have been constructed for a particular study then the task of finding MPs
is unnecessary. However, if a researcher wishes to make use of a set of community-
provided MPs (e.g., hosts setup to run wget on request) then some discovery process
needs to be put in place. Our system contains a master table AllMPs that includes infor-
mation about each measurement provider. At a minimum this master list will indicate
the measurement type including version (traceroute, wget, etc.), acceptable arguments,
the name of the DHT key monitored for measurement requests and the name of the
DHT key under which results will be deposited. In addition, ancillary information may
also be given (e.g., tool version, operating system and version, location of the measure-
ment host, etc.). The entries in the master table are populated and maintained by the
MPs as they come online. If an MP becomes inactive, its entry in the master table will
age out, so MP failures may only cause some number of measurements requests to go
unfulfilled—already possibility due to the best-effort nature of our system. Also note if
some host provides multiple measurement types (e.g., ping and pathload) then it will
have multiple entries in the master list. That is, each entry in the list is scoped to one
measurement type.

Requesting Measurements. Requesting a measurement involves simply inserting an
appropriate record into a table that a given measurement point regularly consults—as
determined, for instance, by consulting the master list of measurement providers dis-
cussed above. The time-to-live of measurement requests should be fairly short (minutes)
since MPs are assumed to be polling for new requests regularly. Each request will give
the time the measurement point should run the measurement4, the arguments to run the
tool with and the name of a DHT table to place the results into (in addition to the table
where all a given MP’s results are deposited).

Reporting Measurement Results. Similar to issuing a measurement request, reporting
measurement results involves putting the data into the DHT and then placing at least
one pointer to that result into appropriate tables. First, each measurement result is put
into the DHT under a unique hash key, U . For instance, a Universal Unique Identi-
fier (UUID) could be used for U (as returned by uuidgen or similar). Using a unique

3 Note that OpenDHT has a built-in TTL limit to deal with overly long TTL requests. A TTL
limited coupled with a web-of-trust (see § 3.2), mitigates the potential clogging problems that
would result from overly long TTL values.

4 MPs will be expected to be roughly time synchronized (e.g., to within seconds, not minutes).
This could be tracked with a heartbeat measurement built on top of the generic platform.

On Community-Oriented Internet Measurement 117

identifier for each measurement both avoids name clashes between MPs and allows the
measurement results to reside in the DHT only once, but be indexed in a variety of
ways. The key U will be placed into both the results table given in the measurement
request and the results table advertised by the measurement point as the depository for
all its results.5 Additional pointers could be placed in other tables as the measurement
point deems appropriate (e.g., a table for all ping measurements taken in Europe).

We note that DHTs often have a limitation on the size of each entry. For instance,
OpenDHT has a 1024 byte limit on the size of the records that can be placed into the
system. Obviously, this may be inadequate for many measurement results and therefore
the MPs will have to split the results across a number of entries with the consumers
of those results being required to reassemble the pieces. As discussed in § 3.3 we in-
tend to make this process seamless for MPs and measurement consumers by providing
fragmentation and reassembly primitives. Therefore, instead of using the DHT’s stan-
dard put() and get() functions, alternate forms will be available that abstract away any
required fragmentation and reassembly.

3.1.1 Example. We now step through an example usage of our framework. This ex-
ample is meant to be illustrative and help the reader gain intuition in the system, rather
than exhaustively showing all possible behavior and capabilities.

MP Registration. When a measurement point for a particular measurement comes on
line it registers four pieces of information in the “AllMPs” master table: (i) the type of
measurement and version being provided (e.g., ping-0.45b), (ii) the name of the request
queue the measurement point services (e.g., “reqQ”), (iii) the name of the list that
the measurement point adds results to upon completion (e.g., “respQ”) and (iv) other
ancillary data that may aid researchers (e.g., location of measurement point, operating
system version, etc.).6 Example:

put (“AllMPs”,”ping-0.45b reqQ respQ extra info”)

Finding MPs. When a researcher wants to run a particular kind of measurement they
can access the “AllMPs” table to obtain a list of the MPs, their capabilities and the
tables they use. Example:

get (“AllMPs”)
⇒
ping-0.45b reqQ respQ extra

Measurement Request. After a researcher has determined MPs that meet their needs
they request a particular MP perform a measurement by adding an entry to the MP’s
request queue that gives (i) the time the measurement should be undertaken (e.g.,
184866301), (ii) the name of a result queue the researcher will monitor for results
(e.g., “MyResults”) and (iii) arguments to the particular measurement tool (e.g., “-n
www.icir.org”). Examples:

5 Note that there will inevitably be additional details included with the results, such as a check-
sum of the results, time the measurement was taken, etc. These details are omitted here, where
we focus on the high-level design.

6 Note: We have not yet added structure to this information, but such structure (or partial struc-
ture) would likely be needed to make this field useful for automated processing.

118 M. Allman et al.

put (“reqQ”,”184866301 MyResults -n www.icir.org”)
put (“reqQ”,”184866601 MyResults -n www.icir.org”)

Measurement Point Polling. Periodically, the measurement point polls the DHT to
retrieve its request queue. If the MP sketched above polled it would find the two mea-
surements inserted into the queue in the last step. Example:

get (“reqQ”)
⇒
1184866301 MyResults -n www.icir.org
1184866601 MyResults -n www.icir.org

Running Measurements. Upon receiving requests the MP schedules and executes the
requested measurements. Upon completion assume the results will be held in some local
variable R. The MP will generate a universally unique identifier as the key under which
to place the measurement result (e.g., U). After having placed the results in the DHT the
MP then places pointers to the results in its own result queue and the queue requested
in the researcher’s measurement request. Example:

put (U,R)
put (“respQ”,U)
put (“MyResults”,U)

Researcher Retrieving Results. The researcher who requests some measurements sim-
ply polls on the result queue provided in their request to retrieve pointers to measure-
ment results. Following these pointers will then yield the results. Example:

get (“MyResults”)
⇒
U
get (U)
⇒
measurement results (R, in this case)

Watcher Retrieving Results. An uninvolved researcher can simply watch results roll
into the DHT based on other’s requests. In order to do this the watcher will first have
to identify MPs conducting desirable measurements (as shown above in the “Finding
MPs” step. From this information the passive observer can then poll on the MP’s re-
sponse queue for pointers to measurement results as shown in the previous example
above (but starting with retrieving the “respQ” table instead of “MyResults”).

3.2 Security

As sketched above, the system has a number of security vulnerabilities. First, a mea-
surement requester can attempt to increase the load on a measurement point simply by
requesting large quantities of measurements. Even more problematic is the distributed
nature of the system which could allow a requester to coax many MPs to simultane-
ously send (potentially large volumes of) traffic towards a particular victim. Finally, an
attacker could launder requests through the measurement infrastructure in an attempt to
gain a layer of anonymity. We offer several approaches to mitigate such problems.

First, we note that measurement requests are just that: requests. We make no as-
sumptions that the MPs must satisfy all (or any) requests. The requests will receive

On Community-Oriented Internet Measurement 119

“best effort”-like service. That is, a measurement point should do its best to conduct
the requested measurement at the requested time, but does not make any guarantees.
Given this notion, every measurement point can implement local policy related to its
willingness to conduct measurements to mitigate some of the security concerns. For
instance, a measurement point can both limit the rate of requests that will be serviced
(in the aggregate and from a given requester) and can monitor and limit the host and
network resources a particular measurement consumes—terminating the measurement
if certain thresholds are eclipsed (a la ScriptRoute [10] and DipZoom [8]).

Protecting against nefarious use of a given measurement point is difficult within our
framework because we do not have a central authority through which requests can be
vetted. For instance, an attacker could coax a large number of measurement points to
engage in a DDoS of some service. Or, an attacker could launder their web connections
through such a service to add a layer of anonymity. The MPs themselves each only
understand a small part of an attack which could look nothing at all like an attack from
their viewpoint. Rather than trying to somehow vet all requests that are inserted into
the system in a centralized fashion, we again take a community-based approach to the
problem and offer two mitigations.

– MPs could inform each other about the measurements they are conducting. For
instance, a measurement point executing a measurement towards some target host
H could insert that fact into a table in the DHT. Before MPs run measurements they
consult this target-based table to assess the load already being placed on the target
before deciding whether to execute the given measurement.

– A second mechanism is that we impose the requirement that all entries placed
in the DHT be cryptographically signed. We then construct a table in the DHT
whereby researchers can recognize each other’s cryptographic keys as legitimate
(i.e., to build a web-of-trust). MPs can then only act on requests from known well-
intentioned researchers. There is a one-time cost in getting on such a list, but the
cost is small (getting a small number of colleagues to vouch for you in the system).
This web-of-trust provides a reasonable sense of a requester’s intention before run-
ning a measurement and accountability afterwards.

While the general problem of trusting requesters in an open measurement system is
difficult, our intention is to leverage the fact that when scoped to a system by and for
researchers the problem becomes tractable to suitably mitigate with simple techniques.

3.3 Primitives

Our system does not attempt to provide a stock measurement system that will satisfy all
researchers and all tasks. Rather, researchers will have to integrate new tools and new
data collection techniques into the system as they are needed. The following primitives
are designed to aid researchers in this integration task by providing high-level abstrac-
tions to the low-level details required to interact with the DHT. In addition, we will
provide tools for common tasks that use these primitives.

Registration. As noted above, MPs will register and maintain their presence and in-
formation about the measurement tools they provide. While the specific contents of the
registration will be tool specific, the process will be common across tools.

120 M. Allman et al.

Removing Duplicates. Since we rely on polling and on entries in the DHT to sim-
ply time out there must be a way for actors to discover entries that have already been
processed when retrieving a table. For instance, a measurement point would only want
to schedule one measurement no matter how many times a given request is retrieved.
Also, retrieving a measurement result once is sufficient and just because a result pointer
is observed multiple times does not mean the result needs to be fetched multiple times.
Our design calls for an abstraction that only exposes previously unseen items.

Assessing Trust. As sketched above, one common task across measurement types will
be interacting with a web-of-trust to assess a requester’s legitimacy. Primitives to aid in
this process will be key to making such a trust model work.

Fragmentation and Reassembly. As discussed above, measurement results may need
to be fragmented across a number of DHT entries due to limitations on the size of a
single entry (e.g., 1024 bytes in OpenDHT). Therefore, primitives for fragmentation
and reassembly will be required such that researchers and developers can be provided
with an abstraction that works on entire measurements and are not bothered by the
details of how they are placed into the DHT.

Miscellaneous Tasks. There are important common measurement-oriented primitives
that will aid researchers in setting up their measurements. For instance, a common task
is to derive a measurement schedule, and primitives for this task that will allow for direct
use with the overall measurement framework will be crucial. Another example is for a
measurement point to implement an event loop that polls the DHT for needed informa-
tion and executes measurements at the appointed times. Having a primitive for easily
constructing such an event loop will inevitably aid those integrating new measurement
tools into the system.

The above primitives are designed to work across a variety of measurement applica-
tions. We note, however, that the above list is likely incomplete. As we progress beyond
our proof-of-concept implementation (see § 4) we will likely find additional primitives
that are broadly useful and we will include these in the released toolkit.

3.4 Passive Measurements

We note that our discussion above is in terms of active measurements. However, passive
monitors can also be used in our system. We envision these manifesting themselves in
two forms: by-request monitoring and continuous monitoring. In the first category a re-
searcher can place a request into an appropriate DHT table to have a measurement point
monitor some facet of the network for some prescribed amount of time. For example,
an MP can register as being capable of monitoring a local Web site, and a request could
be to watch a web log for the next 10 minutes. The latter category allows for passive
monitors to simply run continuously and dump their results into the DHT for public
consumption via live feeds (e.g., a distributed dark address space monitor that provides
a wide view of malicious activity). As with sharing of any passive measurements the
provider may wish to apply anonymization and sanitization policies to the data before
release. For instance, a passive monitor might provide the length (in bytes or seconds)
of each TCP connection without providing the IP addresses (even in anonymized form).

On Community-Oriented Internet Measurement 121

4 Summary

Because of the established difficulties in maintaining coherent measurement infrastruc-
tures, we propose to build a measurement platform with no dedicated infrastructure at
all. Instead, we utilize an existing overlay substrate already maintained for a variety of
other purposes, and we concentrate all functionality that is specific to our platform in
the end hosts. We further make end hosts totally autonomous and loosely connected to
the platform: they can join and depart at will without any reconfiguration in the rest of
the platform. This allows the platform to grow and shrink naturally with the needs of
the community and be resilient to failures (either technical or logistical). It is important
to note that we do not tackle all the hard problems associated with measurement, but
rather provide a reasonable platform as a basis.

We have built a small prototype of our system that includes a generic client and
an MP that provides traceroute measurements on request. While modest, this small
prototype is aiding us as we flesh out the details of the system as we work towards
providing a toolkit for the broader community.

Acknowledgments

We thank Ethan Blanton, Josh Blanton and Yaohan Chen for discussions of the system
described in this paper. Vern Paxson and the anonymous reviewers provided valuable
suggestions on a draft of this paper. This work was sponsored by NSF grants ITR/ANI-
0205519, NSF-0722035 and NSF/CNS-0721890 for which we are grateful.

References

1. PREDICT: Protected Repository for the Defense of Infrastructure Against Cyber Threats,
http://www.predict.org

2. CAIDA. Archipelago measurement infrastructure,
http://www.caida.org/projects/ark/

3. CAIDA. Internet Measurement Data Catalog, http://www.datcat.org
4. CAIDA. Skitter, http://www.caida.org/tools/measurments/skitter/
5. claffy, k., Crovella, M., Friedman, T., Shannon, C., Spring, N.: Community-Oriented Net-

work Measurement Infrastructure (CONMI) Workshop Report. ACM Computer Communi-
cation Review 36(2), 41–48 (2006)

6. Kalidindi, S., Zekauskas, M.J.: Surveyor: An infrastructure for internet performance mea-
surements. In: INET 1999 (1999)

7. Paxson, V., Mahdavi, J., Adams, A., Mathis, M.: An architecture for large-scale internet
measurements. IEEE Communications 36(8), 48–54 (1998)

8. Rabinovich, M., Triukose, S., Wen, Z., Wang, L.: Dipzoom: the internet measurements mar-
ketplace. In: 9th IEEE Global Internet Symp. (2006)

9. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu,
H.: OpenDHT: A Public DHT Service and Its Uses. In: SIGCOMM (2005)

10. Spring, N., Wetherall, D., Anderson, T.: Scriptroute: A public internet measurement facility.
In: Usenix Symp. on Internet Technologies and Systems (2003)

http://www.predict.org
http://www.caida.org/projects/ark/
http://www.datcat.org
http://www.caida.org/tools/measurments/skitter/

On the Effectiveness of Switched Beam

Antennas in Indoor Environments

Marc Blanco2, Ravi Kokku1, Kishore Ramachandran3, Sampath Rangarajan1,
and Karthik Sundaresan1

1 NEC Laboratories America, Princeton, NJ
2 Rice University, Houston, TX

3 Rutgers University, New Brunswick, NJ

Abstract. Switched beam antennas are an attractive extension to in-
door wireless LANs due to their increased signal gain in a chosen direc-
tion; the gain can be exploited for improving wireless link quality, node
localization and increasing spatial reuse. However, indoor environments
are susceptible to multipath reflections that may reduce the degree of
directionality of the antennas. To this end, in this paper, we address
the following questions that have not been explored well in the open
literature: how directional in reality is a beam with a switched beam
antenna in a reflection-rich environment, and what are the implications
of the observed directionality on spatial reuse and node localization?
And how does the directionality get affected with the characteristics of a
beam such as main and side lobe width, and front to side lobe ratio? We
present results of measurements in a real office setting with a switched
beam antenna built out of an 8-element phase array.

1 Introduction

Several research works demonstrate the benefits of directional antennas in wire-
less networks, especially for better link quality and spatial reuse [7,10,12,13,14,
16,17], localization [11,15] and security [5]. All these works exploit the ability of a
directional antenna to focus the transmission energy in a particular direction and
suppress the energy in unwanted directions; the ability is often loosely termed
as the directionality of the antenna. Most of these works assume environments
such as outdoors where the antenna provides close to the desired directionality,
and presented analytical, simulation and a few prototype [10, 13, 14] studies to
demonstrate the benefits. In the context of indoor environments, conventional
wisdom appears to be that the benefits of directional antennas may not be as
dramatic as outdoors due to multipath reflections.

Two recent trends, however, motivate renewed interest in using directional
antennas in indoor environments. First, with the recent popularity of enterprise
WLANs for diverse applications such as VOIP, mainstream office applications,
video conferencing and streaming, interest is increasing in the industry for tap-
ping the benefits of directional antennas in indoor enterprise WLANs (e.g. See
Ruckus Wireless [3]). Second, the technology for achieving directionality with

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 122–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Effectiveness of Switched Beam Antennas in Indoor Environments 123

antennas is becoming cheaper and readily available to make it attractive for in-
corporating into WLAN products easily [1, 3]. Depending on the features and
flexibility provided, directional antennas can be classified into patch and sector-
ized antennas, switched beam antennas, and adaptive beamforming antennas.
While patch and sectorized antennas are designed to focus the antenna beam
pattern in one fixed direction, switched beam antennas provide several fixed
beams out of which one is chosen for transmission and reception, and adaptive
beam antennas adapt beams dynamically in signal space to minimize interference
to as many other nodes in the network as possible.

In this paper, we focus on studying switched beam antennas in indoor environ-
ments. They provide a good tradeoff among the available antenna technologies;
they are less bulky than a collection of patch antennas for providing the same
amount of network coverage, and they are simpler to implement and incorporate
than adaptive beamforming antennas that require significant channel feedback
from receivers for forming appropriate beams dynamically at a transmitter. With
respect to switched-beam antennas, this paper answers through measurements
in a realistic setting a set of basic and important questions: How directional in
reality is a beam with a switched beam antenna in a reflection-rich environment?
How does the directionality get affected with the characteristics of a beam such
as main and side lobe width, front to side lobe ratio, and location of clients?
The only research effort that we are familiar of in the indoor context is [6] that
employs 10◦ beams and focuses on improving link quality; it does not address
the more generic questions we ask.

The ability of switched-beam antennas to form directional beams that sup-
press energy in several directions contributes to increased simultaneous trans-
missions in the network, often referred to as spatial reuse. Further, the increased
signal strength in the main beam direction towards the clients, helps localize the
client within the angular width of a beam. We study the degree of directionality
offered by switched-beam antennas in the context of spatial reuse and local-
ization. In particular, we make the following key observations. (1) The notion
of directionality is different for different applications such as spatial reuse and
localization, and hence the traditional approach of using ”gain over an omni-
directional antenna” to quantify directionality [14] is not comprehensive. (2)
Although reflections in indoor environments increase the interference in more
directions than ideal, there can be several locations in an indoor environment
where a directional beam indeed suppresses interference, thereby making spa-
tial reuse possible. (3) For localization, while most of the clients get localized
correctly, a few clients get wrongly localized mainly because of a small differ-
ence in RSSI (Received signal strength) between the best beam for a client and
the beam in the actual direction of the client., thereby necessitating intelligent
beam resolution mechanisms. (4) Finally, while our experiments verify that thin-
ner beamwidths do yield greater directionality, they do not completely eliminate
the impact of indoor reflections, thereby reinforcing the importance of the above
implications in indoor environments even with thin beams.

124 M. Blanco et al.

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

(a) Pattern 1

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

(b) Pattern 2

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

(c) Pattern 3

Wts. Pattern 1 Pattern 2 Pattern 3
mag φ mag φ mag φ

a0 100 -180 100 -166 100 -132
a1 100 -127 100 -69 69 -96
a2 100 0 100 69 69 96
a3 100 127 100 166 99 137
a4 100 180 100 166 99 137
a5 100 127 100 69 69 96
a6 100 0 100 -69 69 -96
a7 100 -127 100 -166 100 -132

(d)

Fig. 1. Antenna beam patterns (a, b, c) and the corresponding element weights (d)

The rest of the paper is organized as follows. Section 2 describes the basics
of switched beam antennas. Section 3 presents the experimental methodology
that we use to study the directionality of a switched beam antenna in a typical
indoor environment. Section 4 presents results and our interpretations from our
experiments. Section 5 summarizes the paper.

2 Background

A common way of realizing switched beam or adaptive beamforming antennas
is by using phase array antennas. Phase array antennas consist of an array of
antenna elements, the signals sent to which are weighted in both magnitude and
phase. The combination of these weighted signals when radiated by the elements
simultaneously form the antenna radiation pattern that can often be of complex
shapes depending on the weights. In general, the antenna radiation pattern for
an N -element array is represented by,

A(k) = a0 expjkd0 +a1 expjkd1 . . . + aN−1 expjkdN−1

where an is a complex quantity corresponding to the magnitude and phase of the
weight applied to the nth antenna element, k = 2π and dn represents the displace-
ment of the element from a point of reference respectively. The applied weights
help reinforce energy in a particular direction, thereby producing a high SNR
(Signal to Noise Ratio) over an omni pattern in the desired direction contribut-
ing to a direction/array gain. Since phase array antennas available in practice
cannot completely eliminate the energy radiated in undesired directions, they do
result in some spill-over of energy in the unwanted directions, which are referred
to as the side-lobes. As the main lobe is made more thin (focused), the array gain
increases. However, it also increases the spill-over into side lobes. This trade-off
is captured in the form of front-side lobe ratio of any directional antenna.

To realize a switched beam antenna, several such beam patterns can be gener-
ated with a phase array antenna such that they cover the entire azimuth (360◦),
and a specific beam pattern is dynamically chosen from the available set dur-
ing operation. In this paper, we use Fidelity Comtech’s Phocus Array [2] for
our experiments. This antenna is a circular array of eight elements arranged in
a regular octagon. The antenna is electronically steerable, i.e., a specific beam

On the Effectiveness of Switched Beam Antennas in Indoor Environments 125

pattern out of the several precomputed beams can be chosen from software on
the fly. Figure 1(a),(b,(c) show different patterns created with the Phocus array
antenna, and the corresponding weights are shown in Figure 1(d). Patterns (a)
and (b)—provided with the phase array by Fidelity Comtech—have a half-power
beamwidth of 45◦ and a front to side lobe ratio of 8dB. Pattern (c), that we gen-
erated, has a half-power beamwidth of 60◦ and a higher front to side lobe ratio
of 18dB. Note that with an N element antenna, the minimum main lobe width
we can achieve is approximately 360◦/N. Hence, for thinner beamwidths than
45◦, we need greater than eight elements in the antenna.

3 Experimental Methodology

In this section, we describe our testbed and the methodology for studying the
effectiveness of switched-beam antennas in improving spatial reuse and node
localization. Our experiments evaluate the effects of different parameters such
as beamwidth, front-to-side lobe ratio, node locations (line-of-sight or non-line-
of-sight) and transmit power on the directionality of switched beam antennas.

Metric. The ideal beam pattern for a switched beam antenna is a single strong
beam producing a high SNR (over omni pattern) in the direction of the receiver
with no or negligible side-lobes in all the other directions. However, practical
beam patterns do have considerable side-lobes. Further, multipath propagation
indoors complicates the situation by resulting in reflected components of the
main beam and the side-lobes. Thus, the three main components contributing
to the directionality of a switched beam antenna for a given receiver are (a) “very
few” beams with a large received signal strength SS over the omni signal strength
SO (SS > SO), (b) “large” number of beams with a large reduction in received
signal strength compared to omni (SS < SO), since this represents interference
suppression in several directions, and (iii) the beam with the largest gain (SS >
SO) coinciding with the geographic beam oriented towards the receiver.

Though there are multiple components to directionality, not all components
may be required by applications and the specific components impacting appli-
cations varies with the nature of the application. For improving spatial reuse,
we require the first two components of directionality to be satisfied, while it is
not important the the strongest beam coincide with the main geographic beam.
On the other hand, for a localization application, wherein it may be acceptable
if the signal spills over in several beam directions, it is imperative that the third
component be satisfied.

Setup. Our experimental setup is shown in Figure 2. The setup contains one
AP connected to the Phocus array antenna, and 11 receiver nodes distributed
in our office building in different office rooms and cubicles. Each receiver node
is a small form-factor PC equipped with mini-PCI 802.11 a/b/g cards based on
the Atheros 5212 chipset. The nodes run Linux kernel v2.4.26 and the MadWiFi
driver [9] and their WLAN Radios connect to external OMNI antennas with a
gain of 6dBi.

126 M. Blanco et al.

APb

c

d

g

h
j

ke

i

f

a

Fig. 2. Testbed Setup. Black dots indicate the locations of receiver nodes

For the Phocus array antenna, we use three beam pattern sets each containing
eight patterns for eight directions to cover the entire circle (geographical area)
around the AP. The patterns in each set are shifted by 45◦ from one another
such that there is atleast one pattern that geographically covers each receiver.
Pattern set 1 contains patterns like Figure 1(a), set 2 like Figure 1(b), and set
3 like Figure 1(c). We also generate an omni-directional pattern for comparison.
All experiments are done on channel 6 in the 2.4Ghz spectrum at night to avoid
disturbing and getting disturbed by regular office usage of the channel.

In all the experiments, the AP sends 128 byte UDP broadcast packets using
the Click router package [8], and the receivers execute tcpdump in monitor mode.
The AP utilizes the 802.11 pseudo-IBSS (Independent Basic Service Set) mode,
in conjunction with monitor mode, which allows (a) all nodes to communicate
directly and (b) the transmission of 802.11 broadcast frames at specified bit-
rates from user-space. The AP chooses different directions in turn and transmits,
and the receivers act as sensors by collecting data that helps us determine the
directionality of the antenna.

4 Evaluation

In this section, we present several results that demonstrate in indoor environ-
ments (1) the degree of directionality obtained with a switched beam antenna,
(2) the potential for spatial reuse, and (3) the accuracy of node localization.

Directionality. We first perform experiments to study the degree of direction-
ality provided by the phase array antenna. In this set of experiments, the AP
uses one of the three sets of beam patterns described in Section 3. For each
set of beam patterns, the AP chooses a pattern in turn and broadcasts 1000
packets of size 128 bytes at 2 Mbps bitrate. From the received packets for each
beam, we calculate the average RSSI on each receiver when the AP chooses the
beam. We also repeat the experiment with an omni-directional pattern (OMNI).
We then calculate the difference in RSSI between each beam and OMNI; if the

On the Effectiveness of Switched Beam Antennas in Indoor Environments 127

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

(a) Location a, LOS (b) Location b, NLOS (c) Location c, NLOS

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

(d) Location d, NLOS (e) Location e, NLOS (f) Location f, LOS

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

-15

-10

-5

 0

 5

 10

 15

 8 7 6 5 4 3 2 1

R
S

S
I o

ve
r

O
M

N
I

Direction

(g) Location g, LOS (h) Location h, LOS (i) Location i, NLOS

Fig. 3. RSSI over OMNI (in dB) at each receiver with different beams (directions)

difference is lower than 0 for beam j for a receiver, it means that the AP causes
less interference on the receiver when it uses the beam j instead of OMNI.

Figure 3 shows our observations on different receivers for pattern set 3. We
include the graphs for pattern sets 1 and 2 in a technical report [4] for brevity;
the results look similar to set 3. As conventional wisdom says, we indeed find
that there are several directions in which there is significant interference com-
pared to OMNI 3(c,d,e). This observation is true even with beamwidths as low
as 45◦ (with pattern sets 1 and 2) and front-side lobe ratio as high as 18dB
(with set 3). Also, in a few cases, the strongest beam does not correspond to the
main geographic beam 3(b,e,g). However, there are also many cases (a,b,f,g,h,i),
and notably (a,f,h), where RSSI is significantly lower than OMNI in several
directions. In a large number of cases, the strongest beam coincides with the
geographic beam 3(a,c,d,f,h,i). With respect to the first two components of di-
rectionality, we find that the clients that indicate good directionality 3(a,f,h)
are those that have a strong line-of-sight (LOS) component. However, this does
not necessarily mean that all clients with a LOS component will show good di-
rectionality (e.g.3(g)) since it is possible for the multipath reflections to weaken
the LOS component. With respect to clients with non-line-of-sight (NLOS) com-
ponents, we find that they suffer in directionality with respect to the first two
components. When it comes to strongest beam coinciding with the geographic

128 M. Blanco et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8R
S

S
I
n
o
rm

a
liz

e
d
 t
o
 M

A
X

 R
S

S
I

Directions sorted in increasing RSSI

Pattern 3
Patch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8R
S

S
I
n
o
rm

a
liz

e
d
 t
o
 M

A
X

 R
S

S
I

Directions sorted in increasing RSSI

Pattern 3
Patch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8R
S

S
I
n
o
rm

a
liz

e
d
 t
o
 M

A
X

 R
S

S
I

Directions sorted in increasing RSSI

Pattern 3
Patch

(a) Location a (b) Location b (c) Location c

Fig. 4. Directionality with a 17◦ patch antenna

beam, we find that this component of directionality is not dependent on the
presence of a strong LOS component, with both LOS and NLOS clients showing
good directionality 3(a,c,d,f,h,i).

These observations indicate that the presence of multipath in indoor envi-
ronments does not completely negate the directional benefits of switched beam
antennas. Further, the availability of a strong LOS component does not indicate
better directionality and vice versa. In fact, depending on the specific application
considered and the specific components of directionality required by the applica-
tion, both LOS and NLOS clients can potentially exploit directionality. However,
this would also require that the solutions designed for these applications take
into account the implications of multipath reflections. To understand the impor-
tance of these implications, we further conducted experiments comparing the
directionality of the 60◦ pattern produced by the phased arrays with that of a
17◦ pattern produced by a much bulkier patch antenna. We use a patch antenna
here since an 8-element phase array antenna that we have can only generate
a minimum beamwidth of 45◦. The results presented in Figure 4 measure the
normalized RSSI (sorted and normalized to maximum) as a function of different
directions for three different clients (a), (b) and (c). The graphs demonstrate
that thinner beam-widths do provide better directionality (by showing that the
patch line is lower on the left than pattern 3).

Spatial Reuse. Ideally, determining the exact amount of spatial reuse possible
is hard since it depends on several factors such as network topology, propagation
characteristics in the indoor environment, MAC implementation, etc. Hence, we
take an indirect approach to argue the potential for spatial reuse with switched-
beam antennas. We observe that for spatial reuse, it is not just sufficient for the
RSSI to be lower than OMNI, but should be lower by a considerable amount.
Clearly, cases such as in Figure 3(a,f,h,i) show significant reduction in RSSI in
multiple directions, thereby making spatial reuse possible. Just for illustration,
we plot in Figure 5, the number of directions that are lower than OMNI by
more than 3dB (every 3dB decrease represents halving the power, and hence
interference). The graph shows that five locations have at least three directions
(about 135 degrees) where interference is lower than OMNI by more than 3dB,
thereby indicating chances of spatial reuse.

On the Effectiveness of Switched Beam Antennas in Indoor Environments 129

 0
 1
 2
 3
 4
 5
 6
 7
 8

 11 10 9 8 7 6 5 4 3 2 1N
o
.
d
ir
e
c
ti
o
n
s
<

3
d
B

 f
ro

m
 O

M
N

I

Locations

 0
 1
 2
 3
 4
 5
 6
 7
 8

 11 10 9 8 7 6 5 4 3 2 1N
o
.
d
ir
e
c
ti
o
n
s
<

3
d
B

 f
ro

m
 O

M
N

I

Locations

 0
 1
 2
 3
 4
 5
 6
 7
 8

 11 10 9 8 7 6 5 4 3 2 1N
o
.
d
ir
e
c
ti
o
n
s
<

3
d
B

 f
ro

m
 O

M
N

I

Locations

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 5. Potential for Spatial Reuse with Switched-beam antennas

C

Best Beam + Txpower

OMNI

AP

Best Beam

 0

 20

 40

 60

 80

 100

 6 8 10 12 14 16 18

P
ac

ke
t d

el
iv

er
y

ra
tio

Transmit power (in dB)

OMNI
Best Beam

 0

 20

 40

 60

 80

 100

 6 8 10 12 14 16 18

P
ac

ke
t d

el
iv

er
y

ra
tio

Transmit power (in dB)

OMNI
Best Beam

(a) (b) Location b (c) Location h

Fig. 6. Combining directionality and transmit power control for increased spatial reuse

Notice, however, that a directional antenna merely changes the area of inter-
ference compared to OMNI. To illustrate, Figure 6(a) shows a simplified picture
of the area of interference with OMNI and directional beam patterns for an
(AP,client) transmission. While the pattern “Best Beam” avoided interference
in some regions that OMNI doesn’t, “Best Beam” also causes interference in
regions where OMNI doesn’t due to the gain obtained by refocusing the trans-
mission energy. Nevertheless, the AP can reduce the transmit power to the client
for achieving the same performance as OMNI and meet the client’s requirements.
The effective beam looks like the shaded area in the figure that reduces the inter-
ference. Note that power control also reduces side lobes that cause interference
to other transmissions. Figure 6(b) and (c) support the above proposal for com-
bining transmit power control and directional transmission. In these graphs, we
plot for two non-line-of-sight clients the MAC level packet delivery ratio ob-
tained with changing transmit power, when using 54Mbps bitrate with OMNI
and the best directional beam. The graphs clearly show that for the same packet
delivery ratio, directional beam enables reducing transmit power over OMNI,
thereby promoting higher spatial reuse.

Localization. Finally, we perform experiments to determine the effectiveness
of the antenna in node localization. Most localization techniques assume that
a receiver node is in the direction of the beam that produces the highest RSSI
at the receiver, which might not be valid in reflection-rich environments. In this
experiment, we measure the angle of deviation between the actual direction and
the direction with highest RSSI for each of the receivers when the AP transmits
with different beams from each pattern set. We also measure the difference in

130 M. Blanco et al.

 0

 2

 4

 6

 8

 10

 12

 180 135 90 45 0D
if
f.
 o

f
R

S
S

I
fr

o
m

 a
c
tu

a
l
d
ir
e
c
ti
o
n

Angle of deviation from actual direction

a

b e

g
c,d,f,
h,i,k

 0

 2

 4

 6

 8

 10

 12

 180 135 90 45 0D
if
f.
 o

f
R

S
S

I
fr

o
m

 a
c
tu

a
l
d
ir
e
c
ti
o
n

Angle of deviation from actual direction

b

e

ia,c,d,
f,g,h,k

 0

 2

 4

 6

 8

 10

 12

 180 135 90 45 0D
if
f.
 o

f
R

S
S

I
fr

o
m

 a
c
tu

a
l
d
ir
e
c
ti
o
n

Angle of deviation from actual direction

b

e

g

i
a,c,d,
f,h,k

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 7. Efficacy of localization

RSSI between the best beam and the beam that points to the actual direction.
Figure 7 shows the angle of deviation for each client and the corresponding
difference in RSSI (in dB). The graph shows that the patterns position significant
number of clients correctly, satisfying the third component of directionality. In
fact, some of these clients do not exhibit good interference suppression, but this is
not required for localization. A few of the clients get positioned wrongly because
of small difference in RSSI. Also, some clients that get wrongly positioned by one
pattern get correctly positioned by another pattern. This observation suggests
that in reflection-rich environments, just using the beam with highest RSSI may
not be the right approach; a localization technique should choose from one of
several best beams and even across different pattern sets for better accuracy.
Developing such techniques is outside the scope of this paper.

Comparison with MIMO. Multiple-input multiple-ouput (MIMO) antenna
technology is a popular alternative for indoor environments due to their ability
to positively leverage multipath. However, for the specific applications of spatial
reuse and node localization that we are interested in, MIMO antennas may still
not serve the purpose. This is because (i) in the open-loop mode (no channel
state information from receivers) MIMO can only help improve the link perfor-
mance but cannot contribute to spatial reuse or address node localization, and
(ii) in the closed-loop mode (having channel state information from receivers)
they require significant feedback overhead and client modifications to enable
adaptive beamforming that can address multipath. Nevertheless, a quantitative
comparison to MIMO in terms of spatial reuse is an interesting topic for future
work that we intend to take up as soon as such hardware and software become
friendly for experimentation.

5 Conclusion

We study the directionality of a switched beam antenna in indoor environments
in the context of spatial reuse and node localization. We make the following key
observations. (1) Although reflections in indoor environments increase the inter-
ference in more directions than ideal, there can be several locations in an indoor
environment where a directional beam indeed suppresses interference, thereby

On the Effectiveness of Switched Beam Antennas in Indoor Environments 131

making spatial reuse possible. (2) For localization, while several clients get lo-
calized correctly, a few clients get wrongly positioned mainly because of a small
difference in RSSI between the best beam and the beam in the physical direc-
tion of a client, thereby necessitating intelligent beam resolution mechanisms.
(3) Finally, while thinner beamwidths do yield greater directionality, they do not
completely eliminate the impact of reflections, which reinforces the importance
of the above implications in indoor environments even with thin beams.

References

1. Hyperlink technologies, http://www.hyperlinktech.com
2. Phocus Array Antenna by Fidelity Comtech, http://www.fidelity-comtech.com/
3. Ruckus wireless smart antenna, http://www.ruckuswireless.com/
4. Blanco, M., Kokku, R., Ramachandran, K., Rangarajan, S., Sundaresan, K.: On

the Effectiveness of Switched-beam Antennas in Indoor Environments, Technical
report, NEC Laboratories America (2007),
http://www.nec-labs.com/ravik/RESEARCH/dir-tech.pdf

5. Carey, J.M., Grunwald, D.: Enhancing wlan security with smart antennas: a phys-
ical layer response to information assurance. In: VTC (September 2004)

6. Casas, E., da Silva, M.T.C., Yin, H., Choi, Y.-S.: Beam diversity for indoor wlan
systems. In: VTC (2003)

7. Choudhury, R.R., Yang, X., Ramanathan, R., Vaidya, N.H.: On designing mac
protocols for wireless networks using directional antennas. IEEE Trans. Mobile
Comput. 5(5), 477–491 (2006)

8. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular
router. ACM Trans. Comput. Syst. 18(3), 263–297 (2000)

9. MADWiFi. Multiband Atheros Driver for WiFi, http://madwifi.org
10. Navda, V., Subramanian, A.P., Dhanasekaran, K., Timm-Giel, A., Das, S.: Mo-

bisteer: using steerable beam directional antenna for vehicular network access. In:
MobiSys (2007)

11. Niculescu, D., Badrinath, R.: VOR base stations for indoor 802.11 positioning. In:
Proc of MobiCom 2004, Philadelphia, PA (September 2004)

12. Park, J.-S., Nandan, A., Gerla, M., Lee, H.: Space-mac: enabling spatial reuse using
mimo channel-aware mac. In: ICC (May 2005)

13. Raman, B., Chebrolu, K.: Design and evaluation of a new mac protocol for long-
distance 802.11 mesh networks. MobiCom (2005)

14. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., Polit, S.: Ad hoc networking
with directional antennas: a complete solution. IEEE J. Sel. Areas Commun. 23(3),
496–596 (2005)

15. Sayrafian-Pour, K., Kaspar, D.: Source-assisted direction estimation inside build-
ings. In: INFOCOM (2006)

16. Vilzmann, R., Bettstetter, C., Medina, D., Hartmann, C.: Hop distances and
flooding in wireless multihop networks with randomized beamforming. In: Proc
of MSWiM 2005, Montreal, Quebec, Canada (October 2005)

17. Zhu, C., Nadeem, T., Agre, J.: Enhancing 802.11 wireless networks with directional
antenna and multiple receivers. In: Proc. of MILCOM (2006)

http://www.hyperlinktech.com
http://www.fidelity-comtech.com/
http://www.ruckuswireless.com/
http://www.nec-labs.com/ravik/RESEARCH/dir-tech.pdf
http://madwifi.org

On the Fidelity of 802.11 Packet Traces�

Aaron Schulman, Dave Levin, and Neil Spring

Department of Computer Science
University of Maryland, College Park
{schulman,dml,nspring}@cs.umd.edu

Abstract. Packet traces from 802.11 wireless networks are incomplete
both fundamentally, because antennas do not pick up every transmission,
and practically, because the hardware and software of collection may be
under provisioned. One strategy toward improving the completeness of
a trace of wireless network traffic is to deploy several monitors; these are
likely to capture (and miss) different packets. Merging these traces into
a single, coherent view requires inferring access point (AP) and client
behavior; these inferences introduce errors.

In this paper, we present methods to evaluate the fidelity of merged
and independent wireless network traces. We show that wireless traces
contain sufficient information to measure their completeness and clock
accuracy. Specifically, packet sequence numbers indicate when packets
have been dropped, and AP beacon intervals help determine the accuracy
of packet timestamps. We also show that trace completeness and clock
accuracy can vary based on load. We apply these metrics to evaluate
fidelity in two ways: (1) to visualize the completeness of different 802.11
traces, which we show with several traces available on CRAWDAD and
(2) to estimate the uncertainty in the time measurements made by the
individual monitors.

1 Introduction

Studying wireless networks “in the wild” gives researchers a more accurate
view of 802.11 behavior than simulations alone. Researchers deploy monitors
at hotspots such as cafes or conferences [10], or measure other deployed net-
works [1], to obtain traces of MAC and user behaviors. These traces provide
realistic models of mobility [18, 11] and interference [1, 3] and many traces are
readily available through sites such as CRAWDAD [7].

However, traces of real wireless networks have their own errors or assump-
tions. Indeed, capturing a high-quality wireless trace requires great care. Us-
ing too few monitors, placing them poorly, or using inadequate hardware can
introduce missed or reordered packets and incorrect timestamps [16, 17, 10].
If multiple monitors are used, a merging algorithm combines the independent
traces into a single view of the wireless network [10], but this process may order

� This work was supported by NSF-0643443 (CAREER). Dave Levin was supported
in part by NSF Award CNS-0626964 and NSF ITR Award CNS-0426683.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 132–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Fidelity of 802.11 Packet Traces 133

packets incorrectly. These potential errors mean that publicly available wireless
traces vary greatly in quality (§5). Researchers must decide for themselves which
wireless trace will provide them the most accurate, reproducible results.

We consider the problem of measuring the fidelity of wireless traces, which we
decompose to their completeness—what fraction of the packets that could have
been captured in fact were—and the accuracy of their timestamps. Our work
is motivated by others’ observations on how to use and improve the data that
drives the networking community. As Paxson [12] notes, it is beneficial to identify
how closely a measurement compares to reality before using it as experiment
data. Haeberlen et al. also observe that researchers may fall into the trap of
inappropriately generalizing their results if based on very specific or perhaps
error-ridden data [8]. The difficult nature of capturing wireless traces further
motivates a set of metrics and systematic means of measuring their quality.

We discuss how wireless trace fidelity can be measured by exploiting infor-
mation in the trace (§3); external validation data is rarely available. We ana-
lyze a scoring method for wireless traces (§4). The percent of packets captured
has been thought to be sufficient for quantifying a trace’s fidelity, but we show
that a richer description of fidelity is important and propose a way to visualize
trace completeness that incorporates load (§5). We present several case studies
from the CRAWDAD repository. We then study the accuracy of monitor and
beacon timestamps, showing that clock accuracy is largely inversely proportion-
ate to load and that clocks may need to be synchronized more frequently than
at beacon intervals (§6). We conclude with lessons learned and directions for
future work (§7). http://www.cs.umd.edu/projects/wifidelity holds our code and
results.

2 Related Work

Because wireless traces are imperfect, many researchers have sought to improve
trace fidelity. Yeo et al. [17, 16] and Rodrig et al. [14] discuss the steps they
took to obtain high-fidelity traces, and use missing packets (§4) as a measure
of fidelity. We focus on the relationship between trace quality and load on the
monitor, and compare existing traces using our metrics.

Wit [10] attempts to refine existing traces by inferring and inserting missing
packets. We believe traces that are as complete as possible at the time of capture
are preferable, but that more complete traces will help the missing packet infer-
ence. Our tools are intended to help guide researchers toward capturing better
traces and choosing the trace that best suits their needs.

Wireless traces are used for many reasons: to validate models of wireless be-
havior, study usage characteristics, and so on. Jigsaw [5, 4] uses wireless traces
to measure and troubleshoot wireless networks. We emphasize that these pieces
of work evaluate the network, and not the trace. We expect our work to com-
plement these and other similar projects as pathologies in the input trace data
could easily lead to false diagnosis by troubleshooting tools.

http://www.cs.umd.edu/projects/wifidelity

134 A. Schulman, D. Levin, and N. Spring

3 Self-evident Truths of Wireless Traces

Ideally, one could determine a trace’s fidelity by comparing it to “truth”: a
perfect, complete trace of what was sent and when. In practice, only the trace
itself is available. We show how the information in a wireless trace itself can be
used to measure the trace’s fidelity by detecting missed packets and measuring
clock skew, and discuss the limitations of our methods.

3.1 Core Data in Wireless Traces

Traces vary in the information they include. Some traces have timestamps precise
to nanoseconds, others only to milliseconds; not all traces record 802.11 acknowl-
edgments; to maintain users’ anonymity, few researchers release full payloads,
and so on [15, 13]. The following data are available in all 802.11 CRAWDAD
traces; we assume them as the core data that are likely to be available in future
wireless traces:

1. All types of data packets.
2. All types of management packets including beacons, probe requests, and

probe responses.
3. Full 802.11 header in all captured packets, including source and destination

addresses (possibly anonymized), sequence number, retransmission bit, type,
and subtype. Beacon packets also have timestamps applied by the AP.

4. Monitor’s timestamp (set by the kernel or possibly the device).

3.2 Detecting Missed Packets

Monitors can fail to capture a packet because the monitor is overloaded, because
there is interference and perhaps no stations receive the packet, because the
signal is too weak at the monitor, and so on (Fig. 1). A common practice to
reduce the number of missed packets is to place each monitor near an AP.

Most packet loss at the monitor can be inferred from 802.11 sequence numbers
and the retransmission bit. When initially transmitted, each host (AP and client)
assigns a packet a monotonically increasing sequence number from 0 to 4095 (or
2047 in some Cisco APs), and sets the retransmission bit to zero. One sign of
missed packets is a gap in captured sequence numbers from a given host. Another
sign of missed packets is a retransmitted packet without the corresponding first
(non-re)transmission.

Missed retransmissions are more difficult to infer. Upon retransmission, the
packet’s sequence number remains unchanged, but the retransmission bit is set
to one; future retransmissions of this packet are identical, which means that
not all retransmissions can be inferred. If 802.11 acks and accurate timestamps
are available, some of these retransmissions could be inferred. For instance, if a
monitor captures an ack that is too late to correspond to any captured retrans-
mission, we could infer that there must have been another retransmission. We do
not consider this approach further, since not all traces contain acknowledgments.

On the Fidelity of 802.11 Packet Traces 135

preemption
Packet

wireless
card

device
driver

device
driver

wireless
card

interrupt
Ignored

buffer full
Socket

packets dropped
Redundant

kernel app

Access Point Monitor
Out−of−rangeInterference

...

Causes timing delays Causes missed packets

Fig. 1. Example sources of packet loss or timing errors in capturing wireless traces

3.3 Detecting Incorrect Timestamps

Monitors apply a timestamp to every packet in the kernel or possibly in the
wireless device itself. The accuracy of these timestamps is vulnerable to delay
at the AP and clock skew or clock drift at the monitor. Delay at monitors can
come for many reasons, some of which we show in Fig. 1.

Beacon packets serve as a source of “truth” in that they allow us to syn-
chronize the monitor’s clock [10, 5]. However, this introduces its own sources of
inaccuracy; timestamps in the beacon packets are subject to delay errors at the
AP. Delay at the AP comes predominately in times of high load. When it is time
to send a beacon packet, the AP creates the payload (including the timestamp),
and attempts to send it. The timestamp in the beacon packets denotes when
the packet was created, not necessarily when it was sent. Under high load, the
packet may be stalled until the medium becomes free [2], increasing the difference
between the packet’s timestamp and when it was actually sent.

4 Scoring a Wireless Trace’s Completeness

We propose a method to score wireless trace completeness. We value complete-
ness—the fraction of packets captured—with the expectation that the more
complete a trace is, the more useful it is. In the following section, we use our
score along with traffic load to visualize completeness.

4.1 Estimating the Number of Missed Packets

Our scoring method is based on the number of missing packets from the wireless
trace. This is an extension of what was introduced by Yeo et al. [16]. We define
Pt to be the number of packets that should have appeared over time t.

Pt
def=

∑

nodes

SeqNumChanget +
∑

nodes

Retransmissionst

The number of missing packets during time t, Mt, is the number of packets that
should have been captured minus the number of packets that were captured:

Mt
def= Pt −

∑

nodes

NumPacketsCapturedt

136 A. Schulman, D. Levin, and N. Spring

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

. e
rr

or
 o

f m
is

s.
 p

ac
ke

t e
st

im
at

e

Frac. non-beacon packets removed

Fig. 2. Validation of our missing packets estimation. Starting with a high-quality trace
(the Portland State University ug trace [13]), we remove non-beacon packets uniformly
at random. Error bars represent 95% confidence intervals.

To evaluate the accuracy of this expression, we apply it to traces that we inten-
tionally degrade. Starting with a high-quality trace (the Portland ug trace), we
created progressively lower-quality traces by removing non-beacon packets uni-
formly at random and computed our score on these degraded traces (we expect
monitors to capture most beacon packets: §5). We present the error of our miss-
ing packets estimation in Figure 2. Ideally, our method would detect all of these
removed packets, but it is impossible to detect missing retransmission packets
without 802.11 acknowledgments (§3). Even with a drastically degraded trace
missing 95% of non-beacon packets, our score underestimates actual packet loss
by only 10%. For more reasonable packet loss, our score has less than 5% error.
These results indicate that this method of detecting missing packets is accurate
for both high- and low-quality traces.

4.2 Score Definition

We define the score of a wireless trace’s completeness during time t, St, as the
fraction of packets captured during time t: St

def= 1 − Mt

Pt
. Both APs and clients

increment an independent sequence number for each unique packet transmitted.
The technique used to reveal missing packets sent by an AP can do the same for
clients. Unlike APs, clients do not transmit beacon packets at a regular interval.
We must therefore be careful to keep track of how long it has been since the
monitor last received a packet from a given client, so as to distinguish loss
from, say, mobility. Our scoring method is subject to the same limitations as the
missing packet estimation; the score cannot identify missing retransmissions.

5 Visualizing Wireless Trace Completeness

Trace completeness is an important component of fidelity. Rodrig et al. [14], for
example, have used the percent of packets captured, similar to the score from
§4, but we find a single number to be insufficient. This is in part because trace

On the Fidelity of 802.11 Packet Traces 137

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

Fig. 3. Example T-Fi plots from the Sigcomm 2004 “chi” dataset, with scoring for only
the AP (left), and scoring for APs and clients in a BSS (right)

quality can depend on load. A monitor may appear to capture a high percentage
of packets, and one may be inclined to use that percentage to quantify the quality
of a trace, but this number is misleading. For example, the Sigcomm 2004 trace
“chi” contains 81% of AP data and management transmissions on channel 11.
This percentage does not reveal that 37% of the packets collected were beacon
packets sent when the AP was idle; not sending any other data or management
packets. Excluding beacon packets sent during otherwise idle times, the monitor
only saw 70% of the AP’s transmissions.

5.1 T-Fi Plots

To overcome this problem, we visualize the score with a colormap, as shown
in Figure 3. We refer to the colormaps as T-Fi or Trace Fidelity plots. The x-
axis denotes the load from an epoch (beacon interval) in terms of the sequence
number change during that epoch, and the y-axis denotes the score for that load.
Color intensity denotes how often that (x, y)-pair occurred throughout the trace.
The T-Fi plot displays these trace features:

1. The location on the y-axis shows completeness.
2. The width of the shaded region on the x-axis shows the range of load.
3. The intensity of the shaded region shows the frequency of load.

An ideal trace would have no missing packets and therefore a score of 1; in our
visualization, this corresponds to a dark bar only at the top of the graph (the
closest example of this is the Portland UG trace in Fig. 4).

Fig. 3 (left) shows how the single number problem can be overcome with a
T-Fi plot. The darkest point on the plot is in the upper left hand corner. The
upper left hand corner (sequence number change 1 and score 1) represents idle
time beacon packets sent from an AP. The number of beacon intervals in this
trace that fell in this region is 100 times larger than any other region in the
plot. This would dominate a simple percentage, but is relegated to a small, clear
region of the T-Fi plot. For load between 30 and 50, the trace scores no greater
than 0.1, indicating low fidelity under high load. Indeed, Fig. 3 (left) shows a
negative correlation of fidelity to load.

138 A. Schulman, D. Levin, and N. Spring

 1

 10

 100

 1000

 10000

 100000
Portland ug

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000

 100000
Portland pioneer

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000

 100000
Portland psu cs

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

Fig. 4. Trace completeness visualization for Portland PDX traces [13]

 1

 10

 100

 1000

 10000
IETF 2005 chan. 6 ple

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000
IETF 2005 chan. 1 day

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

 1

 10

 100

 1000

 10000
IETF 2005 chan. 6 day

 0 10 20 30 40 50
Load (change in sequence number)

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re
Fig. 5. Trace completeness visualization for IETF 2005 conference traces [9]

5.2 Case Studies

We analyzed the completeness of several traces obtained from CRAWDAD using
the T-Fi visualization. We show two sets of traces: the Portland PDX VWave
dataset and traces collected during the 2005 IETF meeting. Monitors from these
traces may have captured unintended traffic from outside sources. The T-Fi plots
shown in Figs. 4 and 5 are filtered to show only the BSS with the highest traffic.

Portland PDX. traces show how specialized 802.11 monitor equipment can
improve trace quality. Phillips et al. [13] used a VeriWave WT20 commercial
wireless monitor to capture their traces. VeriWave has a hardware radio inter-
connect to provide real time merging with 1 microsecond synchronization accu-
racy. UG has the best combination of high score and load. UG’s T-Fi plot has a
wide shaded region scoring 1 covering load values 1 to 40. This trace is close to
complete and contains both high and low load epochs; Fig. 3 (left) represents a
comparatively incomplete trace.

The pioneer trace (Fig. 4 center) was captured from an outdoor courtyard.
Even with powerful monitor hardware, the monitor missed many packets in the
pioneer trace. The trace contains a wide range of load values (1 to 50) but rarely
scored above 0.5 in higher load epochs. Evidently, the pioneer trace is missing
packets independently of the load. We believe the clients and AP captured by
the trace were out of range or the monitor was receiving interfered signals. The
psu-cs T-Fi plot (Fig. 4 right) has few dark-colored regions, indicating that there
was low load on the network.

On the Fidelity of 802.11 Packet Traces 139

-800

-600

-400

-200

 0

 200

 400

 600

 800

 250 300 350

C
lo

ck
 d

iff
er

en
ce

 (
m

ic
ro

se
c)

1 Beacon interval (50msec)

Idle

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000 1050 1100

C
lo

ck
 d

iff
er

en
ce

 (
m

ic
ro

se
c)

1 Beacon interval (50msec)

Busy

Fig. 6. Difference in monitor timestamps and beacon timestamps for the Sigcomm’04
“chi” trace (top left), with the load shown (bottom left). A controlled experiment with
50msec beacon intervals without load (middle) and with (right).

IETF 2005. traces exhibit high score variability under any given load. A load
that scores consistently is represented in a T-Fi plot by a column that has only
a few dark bars close together. This can be seen at sequence number change
40 on the T-Fi plot of “chan 6 ple” in Fig. 5. If the score varies greatly for a
sequence number change the column will consist of similar colored bars; “chan
1 day” shows this behavior between sequence number changes 10 and 40.

The traces captured during the plenary sessions are of higher quality than the
day sessions, showing the apparent effects of mobility on trace completeness. T-Fi
plots of the day traces in Figure 5 do not score as highly as the plenary trace. For
example, the plenary session traces score higher in high bandwidth epochs. We
posit that the day traces scored lower in high bandwidth epochs because clients
are mobile during the day. During the plenary sessions, the meeting participants
were likely to be stationary more often than in the day traces.

6 Timestamp Accuracy

The accuracy of a trace’s timestamps is important for many applications; merg-
ing algorithms [5, 10], for instance, use monitor and beacon timestamps to form
a single, coherent view of the wireless network as viewed from potentially many
monitors. A common assumption in these algorithms is that the difference be-
tween a monitor’s timestamp—stamped in the kernel or the device itself—and
the AP’s timestamp—included in the beacon packet—is predictable and consis-
tent on at least the order of beacon intervals (100msec).

We test this hypothesis by observing the difference between monitor times-
tamp and beacon timestamp over time throughout a trace. For the Sigcomm’04
trace (Fig. 6 left), we plot the clock difference (top) and the load in number of
packets captured (bottom). The clock difference is not consistent from one bea-
con interval to the next, indicating that there is clock skew at the monitor and/or
the AP. To see whether the clock difference was at least consistent within a given
beacon interval, we collected our own trace using the MeshTest testbed [6] with
a beacon interval of 50msec. When no clients are sending data (Fig. 6 middle),

140 A. Schulman, D. Levin, and N. Spring

the clock difference does change between normal (100msec) beacon intervals, but
in what appears, in this case at least, to be a predictable manner. However, when
a client is sending (Fig. 6 right), the clock changes are not predictable, again
indicating a correlation of clock difference with load.

These results show that the common assumption underlying known merging
algorithms is false. The question remains whether this is sufficient to cause a
mis-ordering of packets. Though we have observed mis-orderings from Wit [10],
it is unclear whether this is due to an algorithmic error or simply a bug in Wit.
Nonetheless, we propose as a sanity check that merging algorithms ensure proper
sequence number order (not necessarily strictly increasing: §7).

7 Discussion

We considered the problem of quantifying wireless trace fidelity and evaluated
a scoring method, proposed the T-Fi visualization, and presented an analysis of
clock accuracy in wireless traces. Wireless trace fidelity applies when choosing,
improving, or inferring gaps in wireless traces.

Choosing a trace. Researchers will choose traces from a repository like CRAW-
DAD based primarily on the type of data in the trace, for example mobility or
traffic type. However, we expect fidelity to decide which trace—or subset of the
trace—to use.

Improving traces. Measuring trace fidelity need not be strictly a post-mortem
analysis; rather, researchers ought to measure the fidelity of their measurements
during their measurement, so that they may, for example, move their monitors.
An interesting and important area of future work is to develop tools to aid in
the active capture of wireless traces, so that researchers can ensure high-fidelity
traces in unique hotspots such as a conference.

We conclude with lessons we learned about merging and processing wireless
traces in the process of working with as many traces as we could collect.

Update tools in accordance with new specs. Tools to measure the fidelity
of wireless traces must be updated frequently, as new 802.11 specs are deployed.
The 802.11e QoS amendment introduced a new sequence number space for QoS
in mid-2006. This did not turn up in our initial testing on the Sigcomm’04
trace, but did in the Portland traces (late 2006), and we had to adjust our tool
accordingly.

Account for vendor-specific behavior. Some vendors introduce behavior not
specified in 802.11, and this may make the trace appear to be of lower fidelity. We
observed that the Cisco access point in the Sigcomm’04 trace assigned sequence
numbers to broadcast and multicast packets, then transmitted the packets after
others were sent, causing some sequence numbers to appear out of order. To
account for this, we allowed these packets to appear out of order in sequence
number.

On the Fidelity of 802.11 Packet Traces 141

Acknowledgements. We thank Justin McCann and the anonymous reviewers
for their helpful comments, Brenton Walker and Charles Clancy for allowing us
to use the MeshTest testbed, and Ratul Mahajan for supporting Wit.

References

1. Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements
from an 802.11b mesh network. In: SIGCOMM (2004)

2. ANSI/IEEE. Std 802.11 (1999)
3. Biswas, S., Morris, R.: Opportunistic routing in multi-hop wireless networks. In:

SIGCOMM (2005)
4. Cheng, Y.-C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C.,

Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless
networks. In: SIGCOMM (2007)

5. Cheng, Y.-C., Bellardo, J., Benkö, P., Chiang, J., Snoeren, A.C., Voelker, G.M.,
Savage, S.: Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In: SIGCOMM
(2006)

6. Clancy, T., Walker, B.: MeshTest: Laboratory-based wireless testbed for large
topologies. In: TridentCom (2007)

7. CRAWDAD Website, http://crawdad.cs.dartmouth.edu/
8. Haeberlen, A., Mislove, A., Post, A., Druschel, P.: Fallacies in evaluating decen-

tralized systems. In: IPTPS (2006)
9. Jardosh, A., Ramachandran, K.N., Almeroth, K.C., Belding, E.: CRAWDAD data

set ucsb/ietf (v. 2005-10-19) (October 2005), Downloaded from
http://crawdad.cs.dartmouth.edu/ucsb/ietf2005

10. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the MAC-level
behavior of wireless networks in the wild. In: SIGCOMM (2006)

11. Navidi, W., Camp, T.: Stationary distributions for random waypoint models. IEEE
Transactions on Mobile Computing 3(1) (2004)

12. Paxson, V.: Strategies for sound Internet measurement. In: IMC (2004)
13. Phillips, C., Singh, S.: CRAWDAD data set pdx/vwave (v. 2007-08-13) (August

2007), Downloaded from http://crawdad.cs.dartmouth.edu/pdx/vwave
14. Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorjan, J.: Measurement-based

characterization of 802.11 in a hotspot setting. In: E-WIND (2005)
15. Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorjan, J., Lazowska, E.:

CRAWDAD data set In: uw/sigcomm2004 (v. 2006-10-17) (October 2006), Down-
loaded from http://crawdad.cs.dartmouth.edu/uw/sigcomm2004

16. Yeo, J., Banerjee, S., Agrawala, A.: Measuring traffic on the wireless medium:
Experience and pitfalls. Technical report, CS-TR 4421, University of Maryland,
College Park (December 2002) http://hdl.handle.net/1903/124

17. Yeo, J., Youssef, M., Agrawala, A.: A framework for wireless LAN monitoring and
its applications. In: WiSE (2004)

18. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: INFOCOM
(2003)

http://crawdad.cs.dartmouth.edu/
http://crawdad.cs.dartmouth.edu/ucsb/ietf2005
http://crawdad.cs.dartmouth.edu/pdx/vwave
http://crawdad.cs.dartmouth.edu/uw/sigcomm2004
http://hdl.handle.net/1903/124

Refocusing in 802.11 Wireless Measurement

Udayan Deshpande1, Chris McDonald2, and David Kotz1

1 Institute for Security Technology Studies,
Department of Computer Science, Dartmouth College

2 School of Computer Science and Software Engineering,
The University of Western Australia

Abstract. The edge of the Internet is increasingly wireless. To under-
stand the Internet, one must understand the edge, and yet the measure-
ment of wireless networks poses many new challenges. IEEE 802.11 net-
works support multiple wireless channels and any monitoring technique
involves capturing traffic on each of these channels to gather a represen-
tative sample of frames from the network. We call this procedure channel
sampling, in which each sniffer visits each channel periodically, resulting
in a sample of the traffic on each of the channels.

This sampling approach may be sufficient, for example, for a system
administrator or anomaly detection module to observe some unusual
behavior in the network. Once an anomaly is detected, however, the
administrator may require a more extensive traffic sample, or need to
identify the location of an offending device.

We propose a method to allow measurement applications to dynami-
cally modify the sampling strategy, refocusing the monitoring system to
pay more attention to certain types of traffic than others. In this paper
we show that refocusing is a necessary and promising new technique for
wireless measurement.

1 Introduction

The new edge of the Internet is wireless. At Dartmouth College, all undergradu-
ate students own wireless laptops, and take advantage of ubiquitous 802.11 cover-
age on campus. Most large enterprises provide wireless coverage for employee use.
Many cities are deploying or considering large-scale municipal wireless-access
networks. Although these networks were originally intended as a convenience,
an overlay for the wired network, for many users and in many places the wireless
network is of fundamental importance. To understand the edge of the Internet,
we need effective wireless measurement.

Consequently, there are many motivations for monitoring wireless networks,
including network management, security, and research. We consider situations
where the network of wireless access points (APs) is augmented with interspersed
wireless air monitors (AMs). These dedicated sniffers can provide real-time cap-
ture of wireless traffic and measurement of MAC-layer conditions for network
analysis and management [6], and intrusion-detection systems (IDS) can analyze
live streams of traffic from these AMs to monitor the network for attacks [2,9].

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 142–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Refocusing in 802.11 Wireless Measurement 143

Wireless (802.11) networks allow traffic on multiple parallel channels, and yet
all practical monitoring systems can listen to only one or two channels at a
time. This approach is limited because there may be a need to monitor all the
channels (e.g. to locate the presence of ad-hoc networks or rogue APs.) If there
is only one channel to be monitored, the radio can simply monitor that channel
continuously [6]. If no specific channel is desired, most scanning systems simply
capture traffic on all channels with a predefined time spent on each channel [11].
Earlier work [2,6] acknowledges the need for smart channel-sampling strategies
in security and management applications.

Our earlier work [9] demonstrates how to improve the capture by dynamically
scheduling AMs to spend more time on channels with higher frame rates. In
this work we extend our sampling philosophy by demonstrating a technique
and framework that allows external applications— such as an administrator’s
console, or an IDS– to dynamically instruct the AMs to put more effort into
capturing traffic that meets a given condition.

We describe the traffic trace that a monitoring application requires at any
time by its focus. An application can, of course, filter the stream of captured
frames to suit its interests, but we want to allow the application to refocus
the measurement system to skew its ongoing traffic capture towards this new
focus, capturing more of the desired frames. We recognize that many important
scenarios require the capture of a baseline sample, suitable for basic monitoring
by multiple applications, and simultaneously a more focused sample(s) required
by one or more applications.

For example, an application may be content with a traffic trace that consists
of equal samples from each of the channels being monitored in the network. After
observing some event, it may wish to refocus most of the sampling effort on the
channels where a specific MAC address was observed. This application could
be a WLAN intrusion-detection system, an application that displays locations
of 802.11 devices around an office, or a system that monitors the quality of
voice-over-wireless calls.

We claim that dynamic refocusing helps the wireless-network measurement
system be more responsive to the needs of the subscribers of measured data. We
describe a method and a tool that enables refocusing.

2 Related Work

We draw on related work in wireless measurement and 802.11 security. Few large-
scale 802.11 measurement studies have attempted to capture wireless frames
from the air. Although a few papers characterize traffic at meetings and confer-
ences [10,13], none consider channel sampling or refocusing. To our knowledge,
no commercial products provide refocusing, although some do allow channel
sampling; for example, Aruba Networks [1], and Kismet [11]. Our own ear-
lier work [9] focused on the challenge of sampling traffic from many channels,
and merging frames from many AMs; in this paper we look at the problem of

144 U. Deshpande, C. McDonald, and D. Kotz

refocusing through a large-scale experimental deployment. We compare one of
the strategies used in the previous paper with our refocusing mechanism.

Security in 802.11 remains a challenge, because there are many vulnerabilities
in the protocol and its implementations [2,4,14, for example]. We expect refo-
cusing to help in capturing more information about an ongoing attack that is
first detected during baseline sampling of a network.

A few recent papers describe offline tools to capture and merge wireless frames
from multiple AMs located around a building [8,12,15]. These papers concentrate
on methods for synchronizing traces collected across multiple AMs into a sin-
gle chronological trace, inferring missing frames, reconstructing transport-layer
flows, and detecting performance artifacts and network inefficiencies. Most of
these tools work only on offline traces. One, Jigsaw [8], requires four radios per
location, clearly a more expensive solution. When few AMs are available, each
radio must sample many channels, and our system of refocusing helps to gather
the most relevant information with limited resources. In Jigsaw [8], the authors
place 39 monitoring “pods” around the building with four radios each. Each ra-
dio (AM) monitors a separate channel (Channels 1, 6, 11 and another “center”
frequency). In their coverage experiments, their clients associate with APs and
transfer data using scp. They report that their sniffers capture about 90% of all
the scp frames sent to and from the clients. This experiment assumes that only
traffic on the same channels as the APs that can be observed by both the AM
and the client, or that can be observed by both the AM and the AP, needs to
be monitored. There is no experiment in the paper that measures the coverage
in the scenario where only the AP or the client is in the range of a transmitting
radio but not the nearby AM. Due to the static allocation of channels to AMs,
if there is an AM in range, it may be on a different channel. This case is, of
course, important in a security scenario. With the increasing numbers of chan-
nels available for transmission in 802.11 networks, simply increasing the number
of radios in a “pod” cannot be the answer. It is clear, therefore, that channel
sampling is the only practical technique to cover a large monitoring area. The
claim made in the Jigsaw paper [7] that monitoring platforms from DAIR [2]
and Jigsaw provide “the ability to observe every link-layer network transmission
across location, frequency and time” is overly optimistic.

The DAIR system [2] uses USB NICs to turn an enterprise’s desktop comput-
ers into AMs, and could benefit from our sampling techniques for collection of
traffic from production networks. The newer DAIR-based network management
system [6] simply assigns the USB NICs to the channels of the nearby access
points, missing important security-related traffic on non-production channels.

3 Dingo: A Coordinated Sniffer

We developed a set of software components, named dingo,1 that collectively
enable a variety of packet sampling policies to be defined and controlled, and
1 A dingo is an Australian native dog renowned for its ability to track prey in bleak

conditions.

Refocusing in 802.11 Wireless Measurement 145

their effects monitored. dingo comprises two main components: amsniffer, which
runs on each AM device, and amcontroller, which runs on a more powerful
central Linux server. dingo also employs an additional software component, a
merger developed as part of earlier work, and described below. Figure 1 shows
the principal components of this software and the communication paths between
them.

Dingo

amcontroller

Merger

AM

amsniffer

frames

AM

amsniffer

Application

frames

statistics

predicates

frames

frames

Fig. 1. The Sampling Architecture

The amsniffer component runs on each AM; multi-radio AMs can run an
instance for each radio. (In our experiments we found that it is more effective
to invoke two instances of amsniffer, each listening on a different interface, than
it is for a single process to monitor two interfaces in an interleaved manner.)
Command-line options to amsniffer indicate which wireless interface should be
employed, the default sniffing policy to be followed, and the destination for
captured frames.

The amsniffer captures features from each frame header and transmits it over
a wired Ethernet infrastructure to the merger using UDP/IP. The role of the
merger is to interleave the AMs’ streams of frames into a chronologically con-
sistent ordering, and to remove frames captured in duplicate by multiple AMs.
For duplicates, the output record includes a list of the receiving AMs and signal
strength. The merger’s output is forwarded to subscribing applications and to
our amcontroller.

The role of the amcontroller is to determine scheduling policies and to dis-
seminate them to the AMs. Policies specify a sequence of channel numbers,
and the duration for which the interface should listen on each channel. A typ-
ical scheduling cycle will involve visiting each channel, collecting a variety of
statistics about the traffic observed on each channel. Each instance of amsniffer
executes its current scheduling policy for a requested number of cycles or until
directed by amcontroller to execute a new policy, either an existing pre-stored

146 U. Deshpande, C. McDonald, and D. Kotz

policy or one computed by the amcontroller. We found our devices can experi-
ence a significant delay when changing from one channel to another, and that
this delay is minimized by visiting requested channels in ascending order (ap-
prox. 30ms when ascending, 300ms when descending), so we limit all schedules
to this order, descending only once at the end of the cycle.

Notice that our approach does not require specific policies to be “hard-wired”
into amsniffer. Each amsniffer may receive a distinct scheduling policy, perhaps
determined from the type and extent of traffic recently sampled by that amsniffer
and its neighbors, or to consistently monitor traffic in a particular geographical
region. The ability to remotely program the AMs provides the greatest oppor-
tunity to experiment with new sampling strategies.

While sampling traffic, each amsniffer maintains a small number of counters,
including the number of frames captured on each channel, the total length of
those frames, and the number of frames matching one or more Boolean predi-
cates provided by the amcontroller. At the end of each cycle, amsniffer sends
its counters to the amcontroller for consideration in future scheduling decisions.
The range of policies described in our earlier work [9] are based on these simple
counts gathered at the AMs. For example, a policy employing proportional sam-
pling spends time on each channel proportional to the recently observed frame
rate on that channel.

The predicates are written in a small language, similar to C’s expressions. The
language supports all precedence levels, equality and relational operators, and
data types including integer, Boolean, string, and MAC address. About 30 key-
words in the language correspond to the attributes of each captured frame and
the wireless environment in which it was captured. Our predicates provide access
to the 802.11 header attributes and a few PHY-layer attributes, and are analo-
gous to the expressions supported by the popular tcpdump utility and Berkeley
packet filter. For example, predicates may determine whether a captured frame
was a control, management, or data frame, may examine the source, destination,
and BSSID MAC addresses of frames, examine a frame’s length, payload length,
the channel on which it arrived, or its relative signal strength.

To support refocusing, dingo’s amcontroller uses the predicate counters in a
modified form of proportional sampling, scheduling each amsniffer to spend time
on each channel in proportion to the number of frames matching the predicate.
In this manner, amsniffers focus on the traffic of interest, while still devoting
a small amount of time on other channels to determine if the traffic pattern
is observed there. For example, the predicate "src == 00:16:cb:b7:18:82"
could be used to focus on traffic from a stolen laptop’s wireless interface. Any
amsniffers capturing frames matching this predicate will be instructed by the
amcontroller to devote more sampling time to the channels recently carrying
that traffic. AMs not capturing traffic from this laptop will continue to follow
a default sampling policy. If the laptop associates with a different access point
using another channel, or moves within range of different AMs, the shorter time
spent on other channels will facilitate those AMs to focus on the laptop. A short
cycle time, typically 1 or 2 seconds, enables each amsniffer to quickly identify

Refocusing in 802.11 Wireless Measurement 147

and focus on required traffic patterns. Again, this ability to remotely program
the AMs with a wide variety of predicates facilitates experimentation.

4 Applications of Refocusing

We believe that refocusing has many applications in wireless research, secu-
rity, and network management. Any application that requires more than cursory
scanning of the traffic in the wireless medium will sometimes desire an increased
focus on some subset of the traffic, and yet other applications will simultaneously
need a baseline broad sampling.

Filtering alone may not achieve the results needed by the application, because
the necessary frames may not be available. Therefore, there is a need for online
dynamic refocusing of the monitoring hardware.

We consider three classes of application.

Localization. If a WIFI device needs to be geographically localized, the refo-
cusing system can focus more attention on it by capturing more frames to and
from it. Refocusing may aid in better localizing the laptop, by capturing more
frames from as many different perspectives (AMs) as possible. We can capture
more samples in less time, increasing the accuracy or reducing latency for esti-
mating the location of the laptop using any of the state-of-the-art methods. We
describe one such experiment in Section 5.2.

VOIP-quality measurement. Consider an enterprise network manager who
wishes to monitor the quality of Voice-over-IP calls. If there are known VoIP
clients using the Wi-Fi network, we can focus on those MAC addresses and
thus monitor the relevant channels, more closely. Alternately, we could focus
on channels with observed VoIP activity (by recognizing the use of particular
protocols) or through a higher-level metric like the jitter, per-frame delay in the
VoIP calls, or the observed congestion in a channel. For example, the predicate
may take the form “jitter >= x ms”. Such high-level predicates cannot yet be
matched in dingo. This capability is part of our future work.

Security monitoring. For example, we can refocus on channels that carry
an excessive number of deauthentication messages, or on MAC addresses that
are known to have been recently spoofed. In the future, using our techniques,
we can focus on channels where new clients appear, then study their packets
to discern whether they seem especially vulnerable to attack. The system can
fingerprint new clients to determine if they are employing drivers, cards, or
operating systems with known vulnerabilities [5]. If indeed they are vulnerable,
we can refocus our sampling to more closely monitor them.

5 Results

We set out to investigate whether refocusing can be a valuable tool in wireless
measurement systems. In this short paper, we do not have the space for a complete
evaluation, but we seek to demonstrate the potential value of this approach.

148 U. Deshpande, C. McDonald, and D. Kotz

5.1 Improved Volume of Capture

In our CS department, we deployed 19 Aruba AP70 AMs throughout the three
floors of the building. The building also has 20 802.11a/b/g access points. The
AP70 has a MIPS IDT32434 CPU running at 266MHz, 32MB DRAM, two
Atheros AR5212 802.11a/b/g NICs (network interface controllers), two Ether-
net NICs and one USB port. We installed OpenWRT Linux (Kamikaze branch,
r5494) and Madwifi (v0.9.2) on each, and a copy of amsniffer on each. In this
experiment, we only used one of the two wireless NICs on each AM.

We performed two experiments in which a laptop transmitted 10 UDP frames
per second to the non-existent MAC address 22:22:22:22:22:22 on a channel
randomly selected from the 11 802.11b channels. The laptop changed channels
every 10 seconds. In each experiment, the laptop was carried around a fixed path
in the CS department building for a period of 10 minutes.

In the first experiment our AMs used the traditional equal-time sampling
strategy in which the AMs spend equal time on all the channels. In the second
experiment, we refocused the AMs to spend more time on the channels that
were observed to capture more frames from the experimental laptop, using the
predicate "dst == 22:22:22:22:22:22".

Figure 2 plots the number of frames that matched the predicate, as seen in the
output of the AMs in both cases. We can see that every AM consistently captured
more frames from our mobile laptop when we ran the refocusing strategy than
when we ran the equal-time strategy.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19

AM number

N
u

m
b

e
r

o
f

fr
a
m

e
s

Equal sampling Refocused sampling

Fig. 2. Number of frames captured that matched predicate

In Figure 3 we present the number of frames that did not match the predicate.
Although the refocused strategy captured fewer such frames than the equal-
time strategy, it still provided a flow of such baseline traffic sufficient for use by
other subscribers. That is, the refocusing requested by one application does not
preclude ongoing monitoring by background activities, at least in this case.

Refocusing in 802.11 Wireless Measurement 149

Fig. 3. Number of frames captured that did not match predicate

5.2 Localization Experiment

Our hypothesis is that refocusing will allow an application to more accurately,
and more quickly, determine the location of a given wireless client. We chose
a technique, the Nearest Neighbor in Signal Space (NNSS) method, described
by Bahl et al. [3]. This localization algorithm uses observed signal strengths
of frames heard by clients from APs. We used the dual of this algorithm and
constructed the signal space by using the RSSI of captured frames from the
client at AMs to populate our signal space.

Firstly, we calibrated the corridor of the third floor of our building. We mea-
sured the signal strength at every AM from the frames of a client transmitting
50 frames at every five feet along the corridor. In this phase, we configured all
of the AMs to capture traffic on channel 1, and configured the client to transmit
on channel 1. In the second phase, we configured the AMs to sample equally on
every channel, and we captured a trace of the client transmitting 10 frames at
every 10 feet along the corridor. Finally, we configured the AMs to refocus on the
MAC address of our client and captured a trace of the transmissions of the client
at the same locations as in the second case. With our refocusing mechanism we
observe localizations that are, on average, 1.95 feet more accurate than without
refocusing.

6 Discussion

Given that the Internet edge is increasingly wireless, and the increasing num-
ber of channels in Wi-Fi (802.11n includes far more channels than 802.11b, for
example), any researcher or network manager seeking to measure their network
traffic must find efficient mechanisms to sample the network traffic. We pro-
pose a mechanism for applications to dynamically refocus the attention of the
wireless-measurement infrastructure to capture more of a desired kind of network
traffic.

150 U. Deshpande, C. McDonald, and D. Kotz

Our experimental results indicate that refocusing was successful in capturing
a greater number of frames matching the supplied predicate. Simultaneously, the
capture of non-matching frames was not degraded substantially.

These preliminary results demonstrate the potential for our framework to be
used in scenarios where stateless predicate matching is sufficient. There may,
however, be more complex scenarios that require more state to be maintained.
For example, our framework cannot currently express the desire to refocus on
newly arrived clients, on those channels with an increase in some metric, or on
channels with high jitter (inter-arrival times between frames) in a voice flow.
Our next step is to extend the framework to be able to refocus on the basis of
temporal changes like those.

Acknowledgments

We gratefully acknowledge the input and support of colleagues on the MAP
team, and Dartmouth’s network administrators, including Wayne Cripps and
Tim Tregubov. The staff at Aruba Networks has been invaluable, including Nick
DePetrillo and Mike Baker.

This research program is a part of the Institute for Security Technology Stud-
ies, supported under award number NBCH2050002 from the U.S. Department
of Homeland Security, Science and Technology Directorate. Points of view in
this document are those of the authors and do not necessarily represent the of-
ficial position of the U.S. Department of Homeland Security or the Science and
Technology Directorate. This project was also supported by the Cisco Systems
University Research Program, the Center for Mobile Computing at Dartmouth
College, and NSF Infrastructure Award EIA-9802068.

References

1. Aruba Networks Air Monitors,
http://www.arubanetworks.com/technology/air-monitors/

2. Bahl, P., Chandra, R., Padhye, J., Ravindranath, L., Singh, M., Wolman, A., Zill,
B.: Enhancing the security of corporate Wi-Fi networks using DAIR. In: Proceed-
ings of MobiSys 2006, Uppsala, Sweden, June 2006, pp. 1–14 (2006)

3. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location
and tracking system. In: Proceedings of InfoCom 2006, pp. 775–784 (2000)

4. Bellardo, J., Savage, S.: 802.11 denial-of-service attacks: Real vulnerabilities and
practical solutions. In: Proceedings of the Twelfth USENIX Security Symposium,
Washington, DC, USA, August 2003, (USENIX Association), pp. 15–28 (2003)

5. Bratus, S., Cornelius, C., Kotz, D., Peebles, D.: Active behavioral fingerprinting of
wireless devices. In: Proceedings of the First ACM Conference on Wireless Network
Security (WiSec), March 2008, ACM Press, New York (accepted for publication,
2008)

6. Chandra, R., Padhye, J., Wolman, A., Zill, B.: A location-based management sys-
tem for enterprise wireless LANs. In: Proceedings of the 4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 2007), Cambridge, MA,
USA (2007)

http://www.arubanetworks.com/technology/air-monitors/

Refocusing in 802.11 Wireless Measurement 151

7. Cheng, Y.-C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C.,
Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless
networks. SIGCOMM Comput. Commun. Rev. 37(4), 25–36 (2007)

8. Cheng, Y.-C., Bellaro, J., Benko, P., Snoeren, A.C., Voelker, G.M., Savage, S.: Jig-
saw: Solving the puzzle of enterprise 802.11 analysis. In: Proceedings of SIGCOMM
2006, Pisa, Italy, September 2006, pp. 39–50 (2006)

9. Deshpande, U., Henderson, T., Kotz, D.: Channel sampling strategies for mon-
itoring wireless networks. In: Proceedings of the Second Workshop on Wireless
Network Measurements, USA, April 2006, IEEE Computer Society Press, Boston
(2006)

10. Jardosh, A.P., Ramachandran, K.N., Almeroth, K.C., Belding-Royer, E.M.: Un-
derstanding congestion in IEEE 802.11b wireless networks. In: Proceedings of the
2005 Internet Measurement Conference, Berkeley, CA, USA, October 2005, pp.
279–292 (2005)

11. Kismet wireless sniffer, http://www.kismetwireless.net
12. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the MAC-level

behavior of wireless networks in the wild. In: Proceedings of SIGCOMM 2006, Pisa,
Italy, September 2006, pp. 75–86 (2006)

13. Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorian, J.: Measurement-based
characterization of 802.11 in a hotspot setting. In: Proceedings of the ACM SIG-
COMM 2005 Workshop on Experimental Approaches to Wireless Network Design
and Analysis (E-WIND-2005), Philadelphia, PA, USA (August 2005)

14. Wireless vulnerabilities & exploits database, http://wirelessve.org
15. Yeo, J., Youssef, M., Henderson, T., Agrawala, A.: An accurate technique for mea-

suring the wireless side of wireless networks. In: Proceedings of the International
Workshop on Wireless Traffic Measurements and Modeling, Seattle, WA, USA,
June 2005, pp. 13–18 (2005)

http://www.kismetwireless.net
http://wirelessve.org

Pathdiag: Automated TCP Diagnosis�

Matt Mathis1, John Heffner1, Peter O’Neil2,3, and Pete Siemsen2

1 Pittsburgh Supercomputing Center
2 National Center for Atmospheric Research

3 Mid-Atlantic Crossroads

Abstract. This paper describes a tool to diagnose network performance
problems commonly affecting TCP-based applications. The tool, path-
diag, runs under a web server framework to provide non-expert network
users with one-click diagnostic testing, tuning support and repair in-
structions. It diagnoses many causes of poor network performance using
Web100 statistics and TCP performance models to overcome the lack of
otherwise identifiable symptoms.

1 Introduction

By design, the TCP/IP hourglass [4] hides the details of the network and the
application from each other. This property is critical to the ongoing evolution of
the Internet because it permits applications and the underlying network infras-
tructure to evolve independently. However, it also obscures all network flaws.
Since TCP silently compensates for flaws, for example by retransmitting lost
data, the only symptom of most problems is reduced performance. This “symp-
tom hiding” property was the motivation behind the Web100 project [17], which
developed the TCP extended statistics MIB [16] to expose TCP protocol events
that are normally hidden from the application. A MIB is a formal specification
of a set of management variables that can be accessed by SNMP or other lower
overhead mechanisms. Experimental prototypes of the MIB have been imple-
mented in a number of operating systems, including Linux [17] and Microsoft
Windows Vista [23].

Diagnostic efforts are further complicated by another property of TCP: the
symptoms of most flaws scale by the flow’s round-trip time (RTT). Note that
for window-based protocols, performance models generally have an RTT term in
the denominator. For example, insufficient TCP buffer space in either the sender
or receiver, or background (non-congested) packet loss all cause TCP to have a
constant average window size and performance that is inversely proportional to
the RTT.

This poorly understood property leads to faulty reasoning about diagnostic
results. A simple throughput test on a short local section of a path with minor
flaws is likely to yield good results. The same test run over a longer path con-
taining the same local flaws is likely to yield poor results. The näıve conclusion

� This work was supported by the National Science Foundation, Grant ANI–0334061.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 152–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pathdiag: Automated TCP Diagnosis 153

would be that the local section is flawless, and the problem must be present
in the longer path section. This “symptom scaling” property of TCP leads to
incorrect inductive reasoning about flaws, and significantly contributes to the
difficulty of solving end-to-end Internet performance problems.

This paper describes a tool, pathdiag, that uses TCP performance modeling to
extrapolate the impact of local host and network flaws on applications running
over long paths. The tool analyzes a number of key metrics of the local host
and path and uses TCP performance models to determine thresholds for these
metrics based on the stated application performance goals. Pathdiag reliably
detects flaws that have no user-noticeable symptoms over a short path. It reports
the problems and suggests remedies.

1.1 Motivation

Network performance has increased by an order of magnitude roughly every
four years over the last two decades. Networking experts are usually quick to
demonstrate the full data rate on each new network technology [11]. However,
typical users experience data rates much lower than those seen by experts, and
the gap is widening.

Internet2 has measured the performance of TCP bulk flows over their back-
bone since the beginning of 2002 [12]. As of August 2007, the median performance
across their 10 Gb/s network was only about 3.4 Mb/s. Historical data shows
that this rate has taken six years to double.

A small number of flows get very good performance. About 0.1% are faster
than 100 Mb/s, and of those about half are close to 1 Gb/s. Since the backbone
carries a significant number of very high-rate, long-distance flows, we know that
it has to be free from flaws that would otherwise affect these sensitive flows.

The design goal of pathdiag is to help non-expert users attain better per-
formance by easily and accurately diagnosing common flaws. These flaws are
generally near the edge of the network where debugging efforts are subject to
faulty inductive reasoning due to symptom scaling.

2 The Pathdiag Tool

Suppose a user tries to get good performance from an application that relies
on bulk TCP data transfers from a remote server, as shown in Figure 1. The
user’s application client C, needs data from the application server S across a
long network path that includes both a short local section and a long-haul back-
bone. The local section is assumed to have an RTT that is no more than a few
milliseconds. The long-haul backbone can be any length, transcontinental (100
ms RTT) or even global (300 ms RTT).

The user can test the local section of the path and the client configuration by
visiting a pathdiag server, PS, with a java-enabled browser. Ideally, PS would
be located near the connection between the local network and the backbone.
The pathdiag server tests the local path and client configuration and generates
a report in the form of a new web page, displayed by the user’s browser.

154 M. Mathis et al.

C:
Client

Flaw

PS:
Pathdiag server

Campus Network
(< 1ms)

Backbone
(100 ms)

S:
Remote server

Fig. 1. Canonical pathdiag setup

Pathdiag estimates whether the local client and local path is sufficient to meet
the target1 data rate if the backbone were replaced by an ideal network with
the same RTT. To do this, the user must provide two parameters: the target
RTT from C to S and the target data rate for the application. If users do not
know these parameters, the default values, 90 Mb/s over a 20 ms path, are
appropriate for most university users. The report presents various metrics of the
local client and local path, and indicates if they are within the thresholds of
TCP performance models. It also suggests corrective action, if needed.

The components of the pathdiag server are shown in Figure 2. The browser
loads the diagnostic client, which communicates with the server via a simple
request-response control protocol. A TCP connection is established from the
traffic receiver in the diagnostic client to the traffic generator. The measurement
engine uses the Web100 prototype of the extended statistics MIB [16] to manip-
ulate and instrument the TCP connection at the generator. An analysis engine
evaluates the measurements and extrapolates the results to predict the impact
of the local path on the user’s application.2

2.1 The Measurement Engine

The measurement engine collects Web100 data in a series of sample intervals.
For each interval, it adjusts the window size of the diagnostic TCP connection in
discrete steps, and then captures the entire set of Web100 variables at the end of
each sample. It computes several metrics during each test, the most important
of which are DataRate, LossRate, RTT and Power (DataRate/RTT). These
are shown as functions of the window size for a typical link in Figure 3. These
plots resemble those generated by “Windowed Ping” (mping) [14], a UDP-based
tool that uses a similar measurement algorithm.

The measurement engine employs an adaptive scanner to select the window
size for each sample interval. To minimize the total time required for the test,
1 We use “target” when referring to components of the remote application and their

parameters, such as end-to-end target RTT, desired target data rate and their prod-
uct, the target window size.

2 To support systems that cannot run a Java–enabled web browser, the “C” source
for a portable command-line client is also published by the diagnostic server.

Pathdiag: Automated TCP Diagnosis 155

Web server

Diagnostic server

Web browser HTTP

Java diagnostic
client

Control protocol

Traffic receiver

Pathdiag

Measurement
engine

Analysis
engine

Parameters Results

N
et

w
or

k

Client Server

Web100

Traffic
generator

Fig. 2. Block diagram of the pathdiag client-server framework

data is collected in multiple phases that emphasize specific properties of the
network. A coarse scan across the entire window range is used to approximately
locate two important window sizes: the onset of queuing and the maximum
window size. Ranges around these values are then rescanned at progressively
higher resolutions. In Figure 3, the fine scans can be seen clearly around window
sizes of 30 and 80 packets, respectively. The maximum window sizes for scans
are determined when TCP congestion control or an end-host limitation prevents
the window from rising for three consecutive sample intervals.

Several network path metrics are calculated directly from the raw data as
it is collected. MaxDataRate and MinRTT yield a measurement of the test
path’s bandwidth-delay product. MaxPowerWindow is the window size with
the maximum Power, indicating the onset of queuing. The MaxWindow is the
maximum amount of unacknowledged data that the network held. The difference
between the MaxWindow and MaxPowerWindow is an estimate of the queue
buffer space at the bottleneck.

BackgroundLossRate is calculated from the total packet losses from all sam-
ple intervals below the onset of queuing, as indicated by the MaxPowerWindow.
It reflects bit errors and other losses that are not related to network congestion.
If the adaptive scans do not provide sufficient loss data for the test described
in the next section, additional loss data is collected at a fixed window size just
below the onset of queuing. In general, the measurement engine collects enough
data to observe the loss rate at the scale needed by AIMD congestion control to
reach the target window size.

2.2 The Analysis Engine

The analysis engine uses the two user-supplied parameters, end-to-end RTT
and desired application data rate to evaluate the results from the measurement
engine and produce a diagnostic report, as shown in Figure 4.

156 M. Mathis et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
at

a
R

at
e

(M
b/

s)

Window (packets)

(a) Data rate vs. window size. Window
sizes less than 30 were too small to fill the
path, so the data rate was proportional
to window size. Window sizes between 30
and 80 packets show data rates that were
near the bottleneck rate, about 94 Mb/s.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

lo
ss

es
 (

se
gm

en
ts

)

Window (packets)

(b) Loss rate vs. window size. Above 80
packets, the link started to exhibit persis-
tent loss. Given the small RTT (about 2.5
ms), TCP can recover from these losses
with only a slight reduction in through-
put.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
T

T
 (

m
s)

Window (packets)

(c) RTT vs. window size. RTT was es-
sentially constant at small window sizes.
Above a window of 30, each additional
packet in TCP’s window was added to a
standing queue at the bottleneck, and the
RTT increased linearly with window size.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 (

se
gs

/s
ec

/s
ec

)

Window (packets)

(d) Power vs. window size. Power reached
a maximum at the point where the bot-
tleneck crossed over from under-full (the
link had idle time) to over-full (there was
standing data in the queue), in some sense
the ideal TCP operating point.

Fig. 3. Plots of scan results

The results in the generated report are grouped hierarchically. The base of the
report shows test parameters and conditions. Test results are grouped into the
following categories: local host (client) configuration, path measurements, and
tester (server) consistency checks. Path measurements are further divided into
data rate, loss rate, network buffering, duplex mismatch tests, and suggestions
for alternate test parameters.

Test results are labeled and color-coded for easy reading. All failing tests
(red) include a “corrective action” (starting with “>”) indicating what needs
to be fixed and how to fix it. In general, failing tests are guaranteed to be
performance show-stoppers - the application will fail to meet the target data
rate over the full end-to-end path as long as there are failing tests. The help for

Pathdiag: Automated TCP Diagnosis 157

Test conditions
Tester: (none) (192.88.115.171) [?]
Target: (none) (xxx.xxx.xxx.xxx) [?]
Logfile base name: xxxxx.xxxx.xxx:xxxx-xx-xx-xx:xx:xx [?]
This report is based on a 90 Mb/s target application data rate [?]
This report is based on a 20 ms Round-Trip-Time (RTT) to the target application [?]
The Round Trip Time for this path section is 2.518223 ms.
The Maximum Segment Size for this path section is 1448 Bytes. [?]

Target host TCP configuration test: Fail! [?]
Warning: TCP connection is not using SACK. [?]
Critical Failure: Received window scale is 2, it should be 3. [?]
The maximum receiver window (128k) is too small for this application (and/or some tests). [?]
Diagnosis: The target (client) is not properly configured. [?]
> See TCP tuning instructions at http://www.psc.edu/networking/projects/tcptune/ [?]

Path measurements [?]

Data rate test: Pass! [?]
Pass data rate check: maximum data rate was 93.900110 Mb/s [?]

Loss rate test: Pass! [?]
Pass: measured loss rate 0.000848% (117889 packets between loss events). [?]
FYI: To get 90 Mb/s with a 1448 byte MSS on a 20 ms path the total end-to-end loss budget is 0.002029% (49275 packets between losses). [?]

Suggestions for alternate tests
FYI: This path may even pass with a more strenuous application: [?]
 Try rate=90 Mb/s, rtt=30 ms
 Try rate=93 Mb/s, rtt=29 ms
Or if you can raise the MTU: [?]
 Try rate=90 Mb/s, rtt=192 ms, mtu=9000 bytes
 Try rate=93 Mb/s, rtt=184 ms, mtu=9000 bytes

Network buffering test: Warning! [?]
This test did not complete due to other problems with the path, target or tester.
> Correct other problems first, and then rerun this test. [?]
Estimated queue size is at least: Pkts: 64 Bytes: 92672
This is probably an underestimate of the actual queue size. [?]
This corresponds to a 7.737751 ms drain time. [?]
To get 90 Mb/s with on a 20 ms path, you need 225000 bytes of buffer space. [?]

Tester validation: Pass! [?]
No internal tester problems were detected.
Tester version: $Id: xxxxx.xxxx.xxx:xxxx-xx-xx-xx:xx:xx.html,v 1.1 2007/08/06 18:40:24 mathis Exp $

Fig. 4. Sample report from the same data as Figure 3

passing tests (green) indicates any caveats about limitations of the tests. Tests
that are inconclusive for some reason yield orange warning messages. These
include flaws that might not cause performance problems and tests that did not
complete due to other failing tests. Messages in black are informational and are
of most value to expert users. The analysis engine can detect 21 different failure
conditions and 16 possible warnings.

Host Configuration. The host configuration tests confirm that TCP settings
on the client are appropriate for target parameters. Pathdiag checks the options
negotiated on the SYN and SYN-ACK. The Window Scale option [13] must have
negotiated an appropriate value or it is flagged as a critical failure. It also checks
if TCP Selective Acknowledgments (SACK) [18] or TCP Timestamps [13] are
enabled.

A key test is whether the TCP receive buffer is larger than the target window.
Since many modern operating systems adaptively size their receive buffers [9,
5, 23], it is necessary to check the announced receive window at extreme points
of the measurements (peak data rate or window size). There are several corner
cases that the analysis engine needs to consider. If the flow is limited by the
receive window, and the maximum observed receive window for the entire run
is less than the target window then the receiver never announced enough buffer
space for the path, and the buffer is too small. If the receiver reduced its window
at the extreme points, then receiver is not fast enough, which is a different
problem. Also, since the section of the path under test is normally shorter than

158 M. Mathis et al.

the target path, it might be correct for an adaptive receive window to have a
maximum size that is smaller than the target window. In this case, pathdiag
cannot make a strong conclusion about the receive buffer size. However, in most
default configurations, hosts that announce sufficient receiver window for the
queue space test and pass the window scale check will also have sufficient receive
buffer space.

Path Measurements. Pathdiag tests three parameters of the local path: max-
imum data rate, background loss rate, and bottleneck queue size. It also has a
special-case test for Ethernet duplex mismatch [21], which is only invoked if the
signature is detected.

Normally, the data rate test fails only if the tested path is not short enough,
the user is mistaken about the properties of the path, or there is a serious problem
such as a media-type negotiation failure. With a short RTT, TCP can overcome
most flaws with only a minor performance reduction. As a consequence, most
flaws do not mask other flaws when the path is short enough, so a single test
run can detect multiple flaws.

Pathdiag measures the background, non-congested loss rate at a window that
is slightly smaller than the window necessary to cause congestion on the link. A
failure is reported if the measured loss rate is greater than the rate calculated
by a TCP performance model [19] applied to the specified RTT and data rate
for the target application.

A warning is issued if the measured bottleneck queue buffer space is less than
the bandwidth-delay product of the target path. It is only a warning because
pathdiag cannot determine if the small buffer will cause significantly reduced
performance for the target path. The test reflects the traditional full-BDP rule
for sizing router buffers for TCP [22]. Recent results show that smaller buffers
are adequate for aggregated flows [1,8], but for single flows there are some situ-
ations that might cause full window-sized bursts. In particular, TCP slow-start
naturally requires cwnd/2 buffer space at the bottleneck to avoid prematurely
transitioning to congestion avoidance [6]. Furthermore, if the bottleneck employs
active queue management (AQM) [2] such as RED [7], pathdiag is likely to mea-
sure the threshold for dropping packets rather than the actual buffer space used
to absorb bursts. We are planning future work in this area.

Tester Consistency Checks. Occasionally, either the traffic generator or path-
diag itself might be a bottleneck. For example, there may be unanticipated users
on the server. Pathdiag checks for this and other exceptional events, and reports
them as problems with the tester.

2.3 The Server Framework

The reports generated by pathdiag are ordinary web pages. They can be book-
marked and the URL forwarded to experts for additional analysis. The on-line
documentation stresses this feature [15]. Even relatively näıve users can generate
diagnostic reports that clearly identify a problematic subsystem, and then for-
ward them to people with the resources and authority to take corrective action.

Pathdiag: Automated TCP Diagnosis 159

Web archival of pathdiag reports is also critical to our ongoing improvement of
the tool. We periodically scan various deployed diagnostic servers and retrieve the
reports from the analysis engine and the raw data from the measurement engine.
We inspect selected reports to confirm they agree with our manual analysis
of the raw data. If we discover flaws that are not reported clearly, we make
improvements to the analysis engine. We test the improved analysis engine by
reapplying it to our collection of measurement data, and inspect the re-generated
reports that differ from the original reports. In this manner every user contributes
to our pool of test data, and to refinement of the tool. Our archive currently
holds more than 7000 diagnostic reports.

The sever does not expose any private information about the user except
the name and IP address of the client machine. No user information or system
version information is explicitly exposed, though some operating systems may
be deduced by their performance properties.

3 Strengths and Weaknesses

Symptom scaling makes traditional tools currently used for network diagnostics,
such as ttcp and iperf, completely insensitive to flaws on short paths. Network
experts use these tools over long paths to test for the existence of flaws, but
actually locating the flaws is often a difficult trial and error process. As described
above, Pathdiag’s defining characteristic is its ability to compensate for symptom
scaling. As such, it works best when run on short path sections, and is most useful
for debugging problems close to end systems.

Pathdiag fundamentally relies on active measurement3 and must send a sig-
nificant amount of bulk data to measure the loss rate at the scale of the target
application. In this way it is different than many bandwidth-estimation tools
that obtain results by measuring dispersion of short bursts of traffic without
sending sufficient traffic to measure the loss rate at a scale relevant to AIMD
congestion control.

The measurement algorithms used by pathdiag assume that other traffic across
the tested path is relatively unvarying. Though it will not result in a false pass,
highly variable levels of cross traffic may yield inconsistent results, especially in
measurements of bottleneck buffer size and measured throughput. This can be
largely mitigated by testing a shorter section of the path.

One fairly basic limitation is that the underlying diagnostic TCP stream is
unidirectional, and TCP is intrinsically difficult to instrument from the receiving
end. There are a number of potential solutions to this, which we hope to address
in future work. Users can test the reverse path by running pathdiag at the other
end of the test path. This can be done most easily by using the Internet2 Network
Performance Toolkit [3] live boot CD to run a temporary server on almost any
PC.
3 For specialized uses, pathdiag can be run from the command line as a standalone

tool without the web server server framework. One special use is to manually attach
it to a bulk TCP stream belonging to another application.

160 M. Mathis et al.

Pathdiag cannot diagnose application problems, since the target application
does not participate in the testing process. It is often very difficult to write
applications that can attain high data rates even on ideal long networks. Some
application problems are addressed in related work [10, 20].

4 Closing

Pathdiag is designed to improve TCP performance for the Research and Edu-
cation masses—those with a need for high performance but without the time
or expertise to individually diagnose network problems. It is particularly well
suited for testing at the edges of the network, which is usually where the ma-
jority of performance-reducing flaws occur. Since it compensates for symptom
scaling, pathdiag is able to isolate these near-edge flaws that are very difficult to
diagnose using conventional local diagnostics.

In its most common form, deployment of pathdiag is fairly straightforward. A
single well-connected test server is in a position to provide coverage for an entire
campus or metropolitan network. It is our intent that pathdiag test servers will
ultimately yield significant benefits to both the users and administrators of high-
performance networks.

References

1. Appenzeller, G., Keslassy, I., McKeown, N.: Sizing router buffers. In: Proc. of ACM
SIGCOMM 2004, October 2004, pp. 281–292 (2004)

2. Braden, B., et al.: Recommendations on queue management and congestion avoid-
ance in the internet. In: RFC 2309 (April 1998)

3. Carlson, R.: Network performance toolkit,
http://e2epi.internet2.edu/network-performance-toolkit.html

4. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues. In: RFC 3234 (Febru-
ary 2002)

5. Fisk, M., Feng, W.: Dynamic right-sizing is TCP. In: 2nd Annual Los Alamos
Computer Science Institute Symposium (LACSI 2001) (October 2001)

6. Floyd, S.: Limited slow-start for TCP with large congestion windows. In: RFC
3742 (March 2004)

7. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.
IEEE ACM Transactions on Networking 1(4), 397–413 (1993)

8. Ganjali, Y., McKeown, N.: Update on buffer sizing in internet routers. ACM
CCR 36(4), 67–70 (2006)

9. Heffner, J.: High bandwidth TCP queuing,
http://www.psc.edu/∼jheffner/papers/senior thesis.pdf

10. Heffner, J., Mathis, M.: Applications and the speed of light: How well do applica-
tions perform on long perfect networks (2007), Web paper:
http://www.psc.edu/networking/projects/applight/

11. Internet2 Land Speed Record, http://www.internet2.edu/lsr/
12. Internet2 NetFlow Weekly Reports, http://netflow.internet2.edu/weekly/
13. Jacobson, V., Braden, B., Borman, D.: TCP extensions for high performance. In:

RFC 1323 (May 1992)

http://e2epi.internet2.edu/network-performance-toolkit.html
http://www.psc.edu/~jheffner/papers/senior_thesis.pdf
http://www.psc.edu/networking/projects/applight/
http://www.internet2.edu/lsr/
http://netflow.internet2.edu/weekly/

Pathdiag: Automated TCP Diagnosis 161

14. Mathis, M.: Windowed ping: an IP layer performance diagnostic. Computer Net-
works and ISDN Systems 27(3), 449–459 (1994)

15. Mathis, M., et al.: NPAD diagnostics servers: Automatic diagnostic server for trou-
bleshooting end-systems and last-mile network problems (2007), Web paper:
http://www.psc.edu/networking/projects/pathdiag/

16. Mathis, M., Heffner, J., Raghunarayan, R.: TCP extended statistics MIB. In: RFC
4898 (May 2007)

17. Mathis, M., Heffner, J., Reddy, R.: Web100: Extended TCP instrumentation for
research, education and diagnosis. Computer Communications Review 33(3), 69–79
(2003)

18. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP selective acknowledgement
options. In: RFC 2018 (October 1996)

19. Mathis, M., Semke, J., Mahdavi, J.: The macroscopic behavior of the TCP conges-
tion avoidance algorithm. Computer Communications Review 27(3), 67–82 (1997)

20. Rapier, C., Stevens, M.: High performance SSH/SCP - HPN-SSH (2007),
http://www.psc.edu/networking/projects/hpn-ssh/

21. Shalunov, S., Carlson, R.: Detecting duplex mismatch on ethernet. In: Dovrolis, C.
(ed.) PAM 2005. LNCS, vol. 3431, pp. 135–148. Springer, Heidelberg (2005)

22. Villamizar, C., Song, C.: High performance TCP in ANSNET. Computer Commu-
nications Review 24(5), 45–60 (1994)

23. New networking features in Windows Server 2008 and Windows Vista (2008),
http://technet.microsoft.com/en-us/library/bb726965.aspx

http://www.psc.edu/networking/projects/pathdiag/
http://www.psc.edu/networking/projects/hpn-ssh/
http://technet.microsoft.com/en-us/library/bb726965.aspx

SCUBA: Focus and Context
for Real-Time Mesh Network Health Diagnosis

Amit P. Jardosh, Panuakdet Suwannatat, Tobias Höllerer, Elizabeth M. Belding,
and Kevin C. Almeroth

Department of Computer Science, UC Santa Barbara

Abstract. Large-scale wireless metro-mesh networks consisting of hundreds of
routers and thousands of clients suffer from a plethora of performance problems.
The sheer scale of such networks, the abundance of performance metrics, and the
absence of effective tools can quickly overwhelm a network operators’ ability to
diagnose these problems. As a solution, we present SCUBA, an interactive focus
and context visualization framework for metro-mesh health diagnosis. SCUBA
places performance metrics into multiple tiers or contexts, and displays only the
topmost context by default to reduce screen clutter and to provide a broad con-
textual overview of network performance. A network operator can interactively
focus on problem regions and zoom to progressively reveal more detailed con-
texts only in the focal region. We describe SCUBA’s contexts and its planar and
hyperbolic views of a nearly 500 node mesh to demonstrate how it eases and ex-
pedites health diagnosis. Further, we implement SCUBA on a 15-node testbed,
demonstrate its ability to diagnose a problem within a sample scenario, and dis-
cuss its deployment challenges in a larger mesh. Our work leads to several future
research directions on focus and context visualization and efficient metrics col-
lection for fast and efficient mesh network health diagnosis1.

Keywords: wireless mesh networks, network visualization, network health.

1 Introduction

Metro-scale wireless mesh networks (WMNs)2, consisting of hundreds of routers, are
being deployed worldwide in city downtowns, malls, and residential areas3. While sev-
eral millions of dollars have been spent to deploy WMNs, these networks suffer from
a plethora of problems that severely impact their performance. Some of the most com-
mon problems are weak client connectivity due to signal attenuation, interference from
external devices, and misbehaving or misconfigured client nodes [1]. These problems
have largely been responsible for WMN vendors not achieving sustainable client market
penetration, thereby leading to dwindling business prospects for this technology.

We believe that the effective diagnosis and troubleshooting of performance prob-
lems is key to the success of metro-scale WMNs. Although many novel metrics and
techniques to diagnose and troubleshoot problems in WMNs have been proposed by

1 A video demo of SCUBA is at http://moment.cs.ucsb.edu/conan/scuba/
2 http://www.muniwifi.org/
3 www.tropos.com,www.firetide.com,www.strixsystems.com,www.meraki.com

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 162–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SCUBA: Focus and Context for Real-Time Mesh Network Health Diagnosis 163

the research community [9,6], sifting through a sea of such metrics collected from each
device in a metro-scale WMN can be overwhelming for network operators.

As a solution, diagnostic tools utilize visualization techniques such as time-series
plots and planar graphs4. However, the diagnosis of problems by viewing a myriad of
such graphs and plots in large-scale WMNs can be very tedious and time-consuming.
We believe that operators of large-scale WMNs need clever structured visualization
techniques to quickly navigate through metrics and diagnose problems. Numerous pub-
lications have shown that good visualizations decrease the time and effort to evaluate
large volumes of information in the Internet [11,10,8]5. To our knowledge, diagnostic
visualizations of large-scale WMNs have received little to no research attention yet. In
this paper we argue that these networks can certainly benefit from visualization tools,
especially due to their increasing sizes and complexities.

To this end, we propose a focus and context visualization framework named SCUBA6.
SCUBA places performance metrics into several tiers or contexts. The topmost con-
text provides a WMN operator with a broad contextual overview of WMN perfor-
mance. By viewing only this broad context, WMN operators can quickly identify and
locate problems within the WMN. Once a problem location is determined, an opera-
tor can choose to narrow his/her focus on the problem region and zoom to reveal de-
tailed metric contexts within that region. In other words, the operator exposes a larger
set of metrics within a small focal region to diagnose the cause of a performance
problem.

In this paper we propose a scheme for organizing metrics into three contexts (route,
link, and client) with increasing detail. The placement of metrics is based on our ex-
perience of diagnosing WMN problems [5]. However, the main objective of SCUBA
is to facilitate focus and context visualization for any scheme. Different schemes de-
rived from WMN operators’ common diagnostic approaches will be explored in
the future to define better contexts as well as better placement of metrics within
contexts.

To explain contexts, metrics, and views of SCUBA, we utilize the Google Mountain
View WMN map of about 500 routers and gateways7. To understand SCUBA’s ease
of use in diagnosing a sample performance problem and it deployment challenges, we
implement it on the 15-node UCSB MeshNet [5].

2 SCUBA: Focus and Context Visualizations

The main objective of SCUBA is to facilitate fast and easy diagnosis of WMN perfor-
mance problems by cleverly organizing the performance metrics for focus and context
visualizations. In this section we discuss the metrics collection architecture, the organi-
zation of metrics into contexts, the different views SCUBA offers to the operator, and
the variety of visualization features implemented in SCUBA.

4 NetCrunch: http://www.adremsoft.com/netcrunch/index.php
5 CAIDA tools: http://www.caida.org/tools/visualization; NetDisco: http://www.netdisco.org
6 The name SCUBA comes from the sport of scuba diving, where a diver swims close to the

water surface and dives deeper to get a closer look at what is beneath the surface.
7 http://wifi.google.com/city/mv/apmap.html

164 A.P. Jardosh et al.

Internet

SCUBA
Server and

Display

Database

Routers

GW

(a) SCUBA’s metric collection architecture.

Throughput and RTT

ETX

Clients, Channel utilization
RSSI, and External interference

Route

Link

Client

Contexts Metrics

Focal
Area

Detail

(b) Metric contexts used in this work.

Fig. 1. SCUBA’s metrics collection architecture and metric contexts

2.1 Metrics Collection Architecture

The performance metrics visualized by SCUBA are collected and computed from the
routers and gateways in a WMN. As shown in Figure 1(a), each router sends a set of
metrics to the SCUBA server via the gateway. The SCUBA server stores these metrics in
two locations: a database so that temporal trends of metrics can be observed, and a data
structure within main memory for fast access by SCUBA’s visualization engine. The
SCUBA visualization engine is a standalone Java application written using the Swing
GUI toolkit. We discuss the computation and collection of metrics specifically within
the UCSB MeshNet in Section 3.

2.2 SCUBA’s Contexts

One of the main obstacles to diagnosing problems in WMNs today is their sheer scale
and the abundance of performance metrics that can be overwhelming to the WMN op-
erator and unrealistic to analyze within a short period of time. To better organize the
collected information, we propose that WMN performance metrics be placed into sev-
eral contexts, where each context consists of one or more metrics.

The topmost context provides the WMN operator with a holistic view, a broad con-
textual overview of WMN health. In other words, a WMN operator can quickly identify
both the occurrence and the location of a problem in the WMN from such a broad con-
text. An operator can then use SCUBA to focus on specific problem areas. Once the
operator shifts focus, he/she can interactively zoom to view more detailed contexts.
In other words, the operator can choose to reveal more metrics and therefore increase
information detail isolated within the focal area.

For the scope of this paper, we place WMN metrics within three contexts; the route,
link, and client contexts. These three contexts and their metrics are summarized in Fig-
ure 1(b). The figure shows that as information detail increases, the focal region is nar-
rowed in the lower SCUBA contexts. We next describe the organization of metrics in
the three contexts and explain how these metrics help isolate causes of a sample WMN
performance problem.

Route Context: The route context is the topmost context and only displays multi-hop
routes between each router and its corresponding Internet gateway. The context consists

SCUBA: Focus and Context for Real-Time Mesh Network Health Diagnosis 165

of two metrics: (a) throughput of TCP flows over the multi-hop routes formed from
each router; and (b) the round-trip time (RTT) of UDP packets on the same routes. The
two metrics are computed by each router and determine the quality of the route between
the router and its gateway. We include these metrics in the topmost context of SCUBA
because any significant drop in their values indicates a serious performance problem.
WMN operators can use this problem indication and then zoom into the problem re-
gion to understand the real cause of a problem. For instance, problems such as sudden
route flaps, unexpected drop in throughput, or an increase in RTT values can cause a
performance deterioration of TCP or UDP application flows that utilize those routes.
Operators can further investigate the cause of such problems by increasing the context
in the problem areas.

Link Context: The link context reveals one additional metric, the expected transmis-
sions count (ETX) [3] on a link between the nodes. In the link context, SCUBA dis-
plays the point-to-point MAC-layer links between nodes in addition to the routes from
the route context. We use ETX as a metric in this context because it provides a good
estimate of the health of links between nodes. The quality of links is likely to impact
the routes that utilize them. As a result, if sudden route flaps or a significant drop in
throughput are observed at the route context, the most likely cause is poor quality links
utilized by the routes. Poor link quality is identified by an increase in the ETX value at
the link context, and typically occurs due to three reasons: (a) heavy volume of traffic
flowing over the link and/or neighboring links within its interference region; (b) exter-
nal interference from a co-located radio wave source that does not belong to the WMN;
and (c) heavy signal attenuation caused by some obstacle. Isolation of the causes of
poor links is achieved by zooming to the next lower context.

Client Context: The client context provides further insight into the cause of poor quality
links. SCUBA includes four metrics within this context: (a) the number of clients asso-
ciated with each router; (b) the percentage channel utilization per client [4]; (c) the re-
ceived signal strength indicator (RSSI) of MAC-layer frames received from clients; and
(d) the volume of external interference. These metrics are included within this context
because they each describe client connections and traffic within a WMN. In the client
context, SCUBA displays the clients associated with the routers, along with the links
and the routes from the link context. A WMN operator will likely zoom to the client
context only when the cause of problems cannot be easily determined at the link context.
For instance, the cause of poor link quality can be isolated to either a large number of
clients with high channel utilization values or external interference8. Both these causes
can be determined from metrics in the client context. If neither have adversely impacted
the quality of links, the WMN operator can determine that heavy signal attenuation by
an obstacle is the likely cause of poor quality links, by the process of elimination.

2.3 Diagnostic Approaches and the Design of SCUBA

The three contexts and the placement of metrics within the contexts we present for
the current version of SCUBA have been designed based on our own experience of

8 We compute external interference as the percentage of channel utilized by transmitters that
are not associated with a router.

166 A.P. Jardosh et al.

(a) Route throughput, RTT
and link ETX.

(b) Client channel utilization
and signal strengths.

(c) Google WMN, without
SCUBA’s focus and context.

Fig. 2. SCUBA’s visualization features and an example WMN without focus and context

building and deploying a WMN [5], and diagnosing problems using a logical top-to-
bottom approach. In the future, we plan to evaluate additional contexts such as traf-
fic and application, for increased diagnosis flexibility in specific application settings.
While our scheme is sufficiently general for diagnosing a wide variety of problems [1],
it does not represent an all-inclusive set of metrics or the only scheme of context or-
ganization. WMN operators may follow alternative diagnostic approaches in differ-
ent deployment scenarios, and the metrics they may find useful in each scenario can
also vary. SCUBA, as a visualization framework, can be modified to utilize different
schemes based on the diagnostic approaches preferred by operators. The effectiveness
of SCUBA should then be evaluated qualitatively and quantitatively in specific scenar-
ios, using metrics such as its ease of use, how quickly it can help diagnose a problem,
and how many problems of interest it helps diagnose. Exploring other diagnostic ap-
proaches and evaluating their effectiveness, while outside of the scope of this paper, is
part of our usability-oriented ongoing work.

2.4 SCUBA Visualization Features

In this section we discuss the visualization features we use to communicate WMN
health using the seven metrics discussed in the previous section. We use different color
and size schemes for these features with a single consistent visualization policy across
all contexts and metrics, which is to highlight problems in the WMN, resulting in fast
and easy diagnosis of WMN problems. SCUBA’s visualizations are interactive, allow-
ing for continuous pan and zoom and tool-tip-style data readouts on mouse-over and
selection. The visualization features, as illustrated in Figure 2, are as follows:

WMN Nodes: We assume that a typical WMN backbone consists of two types of nodes:
routers and Internet gateways. SCUBA displays routers as blue circles and gateways as
more salient red triangles, as shown in Figure 2 and 3.

Routes: WMN routers relay client packets destined for the Internet via other routers
towards a gateway. The gateways relay packets destined for WMN clients towards the
router with which they are associated. SCUBA visualizes the routes between routers
and gateways as curved solid lines, as illustrated in Figure 2(a). In order to implement

SCUBA: Focus and Context for Real-Time Mesh Network Health Diagnosis 167

our policy of highlighting problems, the thickness of the lines is directly proportional
to the RTT value; the higher the RTT, the thicker the line. On the other hand, the sat-
uration and brightness levels of the line is inversely proportional to the throughput on
an exponential scale using the HSB color scheme; low throughput routes appear bright
red, while higher throughput routes are de-emphasized with a grey color. We also ex-
perimented with a more conventional mapping of throughput to line thickness, which
might be preferable for non-troubleshooting monitoring applications, but the presented
scheme is advantageous when high salience of trouble spots is important.

Links: MAC-layer links between nodes are visualized at the link context. The links are
visualized as dashed lines, as illustrated in Figure 2(a). To maintain our policy of high-
lighting problems, the length of white spaces between dashes are directly proportional
to the ETX value; higher the ETX value, longer are the white spaces, the more broken
the links appear. In order to make up for the reduction in saliency by the increasing gap
sizes, the thickness of the dashed lines are increased proportional to the ETX value.
This visualization feature ensures that the operators’ attention is drawn to poor quality
broken links, and less towards good quality links represented as thin solid lines.

Clients: The client context of SCUBA shows clients and four related metrics. These
metrics are illustrated in Figure 2(b). In this figure, the clients are placed around the
router with which they are associated, and are visualized as sectors of a circle. The sub-
tended angle of the client’s sector is a value between 0◦ and 360◦, proportional to the
client’s percentage channel utilization share. As a result, a router with client sectors that
form a complete circle has its entire (100%) channel utilized by client frame transmis-
sions. The radius of each client sector is inversely proportional to the RSSI value of
the client’s frames received by the router. As a result, the lower the client’s RSSI, the
farther the client is placed from the router, and the larger the radius. Based on these two
visualization features of client sectors, a client with a large sector angle and large radius
is quickly seen as a potential problem because of high channel utilization and low RSSI.
The client with the largest sector area is highlighted in a bright green color, making it
easy for a WMN operator to locate all problem clients at the client context. The fourth
metric, external interference, is visualized as a grey cloud around routers, as shown in
Figure 2(c). The radius of the cloud is directly proportional to the volume of external
interference. Moreover, when the interference cloud of two or more routers overlap,
SCUBA darkens the color in the region of overlap, indicating more interference.

2.5 SCUBA Views

In this section, we discuss two views of SCUBA, planar and hyperbolic. These views
further ease the diagnosis of problems in large-scale WMNs by facilitating focus and
context interaction [2] of the WMN operator with SCUBA’s contexts. In other words,
using either of the two views operators can choose to focus on a specific location in the
view while retaining some kind of overview of the whole network, and they can zoom
to a context of their choice for further investigation of problems.

To understand the benefit of these views, we use the Google WMN in Mountain
View, California, which consists of 425 routers and 66 gateways. Since we do not have
access to the actual metrics from this WMN, we use the geo-locations of the routers

168 A.P. Jardosh et al.

(a) Route context. (b) Link context. (c) Client context.

Fig. 3. Google WiFi mesh network using SCUBA’s planar view

to create a sample large-scale visualization environment and synthetically generate val-
ues for metrics using simple assumptions. Links between routers and their correspond-
ing ETX values are generated in loose correlation with the physical distances between
routers. Routes are computed using a shortest path algorithm between the routers and
their closest gateways. The throughput and RTT values are computed based on cumula-
tive ETX values of links utilized by the routes to the gateway. Zero or more clients are
matched with routers, such that their total count loosely approximates those published
in a recent news article presenting statistics on the Google WMN [1]. The channel uti-
lization, signal strength, and external interference metrics are randomly chosen from a
uniform distribution.

To clearly demonstrate the advantages of the focus and context visualizations of
SCUBA, in Figure 2(c) we show a screenshot of all seven metrics from each of the
three contexts displayed for the Google WMN. Because of the size of network, the
screenshot appears cluttered, thereby limiting the ability of an operator to extract any
coherent information from the view for problem diagnosis. We now discuss the two
interactive SCUBA views, how they reduce screen clutter, their advantages over each
other, as well as their trade-offs.

Planar View: SCUBA’s planar view is shown in Figure 3. The WMN and its several
contexts are rendered on a flat two-dimensional plane. Figure 3(a) shows the planar
view with only the route context displayed for the entire Google WMN. Figure 3(b)
shows the link context of a small subset of the network, when the WMN operator zooms
to investigate any performance problems identified at the route context. These figures
also show an inset overview in the top-right corner that indicates the focal region in the
overall view. Further zooming reveals the client context, illustrated in Figure 3(c). The
focus region in the overview inset is seen to shrink in size, because the operator is now
zoomed to a smaller focus region.

The advantage of SCUBA’s planar view is that it maintains the geographical location
and orientation of all the routers and gateways, even while an operator changes focus
and context. However, the trade-off of planar views is that while operators are zoomed
in on lower metric contexts, they can only see the small inset overview of the whole

SCUBA: Focus and Context for Real-Time Mesh Network Health Diagnosis 169

2-D Plane

Hyperbolic
Surface

P
P’

P

P’

hF

F

Side
View

Front
View

(a) Side and front views. (b) With h = 1. (c) With h = 50.

Fig. 4. Google WiFi mesh network using SCUBA’s hyperbolic view

network, which may not be sufficient to alert them to possible new unusual activity. We
overcome this problem by using hyperbolic views [7].

Hyperbolic View: SCUBA uses the hyperbolic view to render routers, gateways,
clients, and their corresponding metrics on a hyperbolic surface [7]. The basic idea
of a hyperbolic view is to plot the focal point F of a two-dimensional plane at the center
of the screen, and plot the remaining points on a hyperbolic surface, centered at the fo-
cal point. Figure 4(a) illustrates the side and front of a hyperbolic surface transformed
from a simple two-dimensional planar surface. The figure shows that the non-focal lo-
cation point P on a two-dimensional plane is distorted to P’ when transformed to the
hyperbolic surface. The distortion depends on the height h of the hyperbola.

The hyperbolic view has an advantage over the planar view in that it automatically
renders different contexts of SCUBA based on the position of the node with respect to
the focal point. As shown in Figure 4(b), the node of interest forms the focal point of
the hyperbolic surface and the remaining nodes are rendered on the hyperbolic surface,
using the same orientation to the focal node as in the planar view. Also, as illustrated in
Figure 4(b), SCUBA plots all the metric contexts for the focal node and progressively
reduces the contexts for nodes further away from the focal node. As a result, only the
route context is displayed for the nodes at the edge of the hyperbolic surface. Figure 4(c)
shows that a parameter controls the depth of the hyperbolic surface, which determines
how quickly context displays are reduced between the focus node and the surface edge.

A main advantage of the hyperbolic view is that it shows a complete view of the
WMN at all times, and automatically changes contexts as the operator interactively
changes focus by mouse-dragging. As a result of this automation, the user is required
to only choose his/her focus point, and SCUBA smoothly transitions to display the new
focal region and the corresponding contexts. However, the trade-off of hyperbolic views
is that it distorts the geographic locations of the nodes from that of a planar view. As
a result of these trade-offs between the two views, SCUBA includes an inset overview
similar to the one used in the planar view and allows a WMN operator to quickly toggle
between the planar and hyperbolic views.

170 A.P. Jardosh et al.

(a) Route context shows a drop
in route throughput.

(b) Link context shows a
poor broken link.

(c) Client context shows a
client with 97.49% utilization.

Fig. 5. SCUBA used to diagnose a sample problem in the UCSB MeshNet

3 SCUBA Implementation on the UCSB MeshNet

Our main goal for SCUBA is to make it easily usable and effective in diagnosing prac-
tical WMN problems. To test this capability, we have used SCUBA to study the per-
formance of the UCSB MeshNet, an indoor WMN consisting of 14 multi-radio 802.11
a/g routers and one gateway. The routers collect, compute, and send metrics to a central
SCUBA server via the gateway over the routes. In this section, we show how SCUBA
is used to diagnose a sample performance problem within the MeshNet.

In the route context shown in Figure 5(a), the operator observes the unusually low
throughput and high RTT values of a route indicated by the thick red lines. The op-
erator zooms in the region of the route to access the link context. The link context in
Figure 5(b) clearly shows that the links utilized by the problem route have a high ETX
value, indicated by the sparsely dashed straight lines. To determine the cause, the op-
erator zooms to the client context close to the edge router using the problem route, as
shown in Figure 5(c). In this figure, the large sector of the circle representing a client
with 97.49% channel utilization looks clearly anomalous. The operator is thus assured
that a single misconfigured and/or misbehaving client is overloading the channel with
excess traffic and adversely impacting the performance of an entire route.

The current version of SCUBA allows operators to diagnose several other perfor-
mance problems, such as a flashcrowd of users overloading the network or suboptimal
route topologies caused due to poor links or interference. The set of diagnosable prob-
lems will increase with the number and type of metrics collected. Moreover, the addi-
tion of a time dimension will allow SCUBA to diagnose many more temporal problems,
such as rapid route flaps and client mobility.

4 Conclusions

In this paper, we propose a focus and context visualization framework called SCUBA
for fast and efficient WMN health diagnosis. SCUBA places WMN performance met-
rics into contexts and presents them in two views, planar and hyperbolic. We believe that
visualization frameworks such as SCUBA will form the most structured and efficient
means of WMN health diagnosis.

SCUBA opens several new directions of research. The most prominent one is to
qualitatively and quantitatively determine the best set of metrics and contexts that fa-
cilitate comprehensive diagnosis. To do so, we believe that qualitative usability studies

SCUBA: Focus and Context for Real-Time Mesh Network Health Diagnosis 171

of SCUBA’s visualization methods and the study of various diagnostic approaches pre-
ferred by WMN operators will be very helpful. Another research direction is to reduce
the metrics’ computation and collection overhead to achieve real-time visualization ca-
pabilities. A possible future extension is to make SCUBA use a set of diagnostic rules to
automatically identify problem regions and adjust focus and context accordingly. Such
automation will immediately direct an operator’s attention to the problem and will likely
reduce diagnosis time.

SCUBA is the first step towards interactive visualizations for fast and efficient WMN
health diagnosis. We believe that as WMNs are rapidly deployed worldwide and as they
increase in complexity, the need for such visualizations will grow. Faster and efficient
health diagnosis will help operators maintain their WMN’s performance and therefore
achieve the desirable economic success of the metro-scale mesh technology.

Acknowledgments

This work was funded in part by NSF Wireless Networks (WN) award CNS-0722075.

References

1. Tropos Report on Google WiFi Network,
www.muniwireless.com/article/articleview/5403

2. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using
Vision to Think. Morgan Kaufmann Publishers Inc, San Francisco, CA

3. De Couto, D., Aguayo, D., Bicket, J., Morris, R.: A High-throughput Path Metric for Multi-
hop Wireless Routing. Wireless Networks 11(4), 419–434 (2005)

4. Jardosh, A.P., Ramchandran, K.N., Almeroth, K.C., Belding, E.M.: Understanding Conges-
tion in IEEE 802.11b Wireless Networks. In: Proceedings of USENIX IMC, Berkeley, CA
(October 2005)

5. Lundgren, H., Ramachandran, K.N., Belding-Royer, E.M., Almeroth, K.C., Benny, M.,
Hewatt, A., Touma, A., Jardosh, A.P.: Experiences from the Design, Deployment, and Usage
of the UCSB MeshNet Testbed. IEEE Wireless Communications Magazine 13, 18–29 (2006)

6. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad hoc
Networks. In: Proceedings of MOBICOM, Boston, MA, pp. 255–265 (2000)

7. Munzner, T.: Interactive Visualization of Large Graphs and Networks. PhD thesis, Stanford
University (June 2000)

8. Paxson, V.: Strategies for Sound Internet Measurement. In: Proceedings of IMC, October
2004, pp. 263–271. Taormina, Sicily (2004)

9. Qiu, L., Bahl, P., Rao, A., Zhou, L.: Troubleshooting Wireless Mesh Networks. ACM SIG-
COMM Computer Communication Review 36(5), 17–28 (2006)

10. Sommers, J., Barford, P., Willinger, W.: SPLAT: A Visualization Tool for Mining Internet
Measurements. In: Proceedings of PAM, Adelaide, Australia (March 2006)

11. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Menlo Park, CA (1977)

www.muniwireless.com/article/articleview/5403

IMR-Pathload: Robust Available Bandwidth

Estimation Under End-Host Interrupt Delay

Seong-Ryong Kang and Dmitri Loguinov

Texas A&M University, College Station, TX 77843, USA
{skang,dmitri}@cs.tamu.edu

Abstract. Many paths in PlanetLab cannot be measured by Pathload.
One of the main reasons for this is timing irregularities caused by inter-
rupt moderation of network hardware, which delays generation of inter-
rupts for a certain period of time to reduce per-packet CPU overhead.
Motivated by this problem, we study Pathload in detail under various
end-host interrupt delays and find that its trend detection mechanism be-
comes susceptible to non-negligible interrupt delays, making it unable to
measure network paths under such conditions. To overcome this, we pro-
pose a new method called IMR-Pathload (Interrupt Moderation Resilient
Pathload), which incorporates robust trend detection algorithms based
on signal de-noising techniques and reliably estimates available band-
width of network paths under a wide range of interrupt delays. Through
experiments in Emulab and Internet, we find that IMR-Pathload sub-
stantially improves Pathload’s measurement reliability and produces ac-
curate bandwidth estimates under a variety of real-life conditions.

Keywords: Bandwidth estimation, network measurement, interrupt
moderation, and interrupt delays.

1 Introduction

Bandwidth of Internet paths is an important metric for applications. Extensive
research has been conducted over the years and the vast majority of work in this
area focuses on end-to-end measurement. Although several techniques [4], [13],
[11], [12], [14] attempt to measure capacity of the narrow link (i.e., the slowest
link in a path) or both capacity and available bandwidth of the tight link (i.e.,
link with the smallest available bandwidth over a path), many measurement
techniques and public tools (such as [6], [9], [16]) have been developed to esti-
mate available bandwidth of the tight link. These methods mainly focus on fast
estimation with high accuracy under a various traffic conditions. However, since
the ultimate goal of bandwidth estimators is to measure diverse Internet paths,
before being a full-blown measurement tool, it is highly desirable that tools are
resilient to timing irregularities caused by various OS scheduling delay jitter or
hardware interrupt moderation in real networks.

Note that to accurately measure bandwidth, all existing methods heavily rely
on high-precision delay measurement of probe packets at end-hosts. However,

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 172–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

IMR-Pathload: Robust Available Bandwidth Estimation 173

irregular timing due to interrupt moderation at network interface cards (NICs)
has been identified as the major problem of existing bandwidth estimation tools
in practice [15]. To reduce the effect of interrupt moderation, recent tools such as
Pathchirp [16] and Pathload described in [15] incorporate mechanisms that aim
to “weed out” packets affected by interrupt delays. However, Pathchirp requires
manual modification to force it to send (often substantially) more probing pack-
ets to obtain an accurate estimate, prolonging measurement undesirably. On the
other hand, Pathload attempts to filter out affected packets without increasing
the number of probing packets, which unfortunately has a limited effect when in-
terrupt delays become non-trivial. This makes Pathload’s estimation much more
susceptible to error, which happens fairly often in practice.

To address the above filtering problem without increasing measurement du-
ration, we investigate Pathload’s internal algorithm and find that its estimation
instability with non-negligible interrupt delays stems from its delay-trend de-
tection mechanism that is not robust under bursty packet arrival introduced
by network hardware. To overcome this, we introduce two trend-detection algo-
rithms based on signal de-noising techniques such as wavelet decomposition and
window-based averaging and call the new method IMR-Pathload (Interrupt Mod-
eration Resilient Pathload). Through experiments in Emulab [5] under various
network settings, we find that IMR-Pathload significantly improves Pathload’s
performance in a wide range (0−500 μs) of interrupt delays δ. Especially, under
non-trivial interrupt delays (e.g., δ > 125 μs), while Pathload fails to produce
estimates for any of the paths studied in this paper, IMR-Pathload measures
their available bandwidth with over 88% accuracy. Internet experiments also
confirm that IMR-Pathload reliably produces bandwidth estimates even for the
paths that are not measurable by Pathload.

2 Related Work

A number of techniques have been proposed to measure available bandwidth of
network paths [6], [9], [16], which sends N back-to-back packets and discover a
relationship between sending rates at the sender and the corresponding receiving
rates at the receiver to produce bandwidth estimates of the paths. Among them,
we discuss two promising tools that use mechanisms to mitigate the effect of
interrupt moderation.

Pathchirp [16] uses packet-trains (called chirps) with exponentially decreasing
inter-packet spacings in each chirp and infers available bandwidth using the queu-
ing delay signature of arriving chirps. The basic idea behind this method is that
when a transmission rate rk of a packet k in a chirp reaches available bandwidth
of a path under consideration, then subsequent packets j > k in the chirp will ex-
hibit increasing queueing delay. Hence, available bandwidth of the path is the rate
rk of the packet k whose queueing delay starts increasing. To overcome the packet-
timing problem introduced by end-host interrupt moderation, Pathchirp increases
the number of probing packets in each chirp by a manually selected amount and
uses only those packets that (ideally) have not been affected by interrupt delays.

174 S.-R. Kang and D. Loguinov

Different from Pathchirp, Pathload [9] sends a fleet of packet-trains with a
fixed rate and adjusts the sending rate for the next fleet based on delay-trend
information provided by the receiver. Pathload searches for an available band-
width range by increasing or decreasing the sending rate of probe-trains in a
binary search fashion according to trend information. Although Pathload can
reduce the effect of interrupt delays without increasing the number of packets in
each probe-train, its algorithm is effective only under small interrupt delays.

3 Issues of Interrupt Delay in Bandwidth Measurement

As use of interrupt moderation has become a common practice in modern net-
work settings, host machines in real networks may employ interrupt delays that
vary widely in order to reduce CPU utilization and to increase network through-
put. It is reported in [7] that the range of interrupt delays recommended for
Intel Gigabit NIC (GbE) is 83 − 250 μs for Microsoft Windows-based systems
and 125 − 1000 μs for Linux-based systems. Jin et al. [10] also report that a
variety of systems equipped with Gigabit NICs require to delay generation of
interrupts over 470 μs to achieve good throughput in receiving high-speed TCP
streams and to substantially reduce CPU utilization. The question we have now
is how this wide range of interrupt delays affects Pathload’s bandwidth estima-
tion. We discuss this issue next.

3.1 Impact of Interrupt Delay

To investigate the potential impact of interrupt moderation on Pathload, we
conduct experiments in Emulab [5] for different interrupt delays at the receiver1.
We start by describing the experimental setup.

Experimental Setup. For this investigation, we use a topology shown in Fig.
1, in which source PS sends probe data to the destination PR through five routers
R1 − R5. Nodes Si (i = 1, 2, 3, 4) send cross-traffic packets to destination nodes
Di at an average rate λi. The speed of all access links is 100 Mb/s (delay 10
ms) and the remaining links Li (i = 1, 2, 3, 4) between routers Ri and Ri+1 have
capacities Ci and propagation delay 40 ms.

To examine Pathload’s estimation reliability, we use six different network
settings shown in Table 1, which lists the capacity Ci and available bandwidth
Ai of each link Li for different experimental scenarios. The shaded values in
each row represent the tight-link capacity and available bandwidth of the path
for each case. The values in square brackets represent the capacity of the narrow
link (i.e., bottleneck bandwidth) for each case.

In all experiments, we use TCP cross-traffic generated by Iperf traffic gener-
ators [8] to load network paths. For this purpose, we run 100 threads in each
cross-traffic source Si to generate TCP flows that are injected into routers R1,
R2, and R3 and keep the utilization of each router Ri according to the values

1 In Emulab, users can change configuration of network cards.

IMR-Pathload: Robust Available Bandwidth Estimation 175

R1 R2 R3
C1 C2

R4 R5
C3 C4

PRPS

S2 D2 S3 D3

S4 D4 D1

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

S1

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

100 Mb/s
10 ms

Fig. 1. Evaluation topology in Emulab

Table 1. Evaluation Setup

Experimentation Different link bandwidths (Mb/s)

scenarios C1 A1 C2 A2 C3 A3 C4 A4

Case-I 75 31.84 90 51.69 90 42.05 [60] 40.77

Case-II 75 41.32 90 70.76 90 46.77 [60] 26.39

Case-III [60] 35.88 90 70.76 [90] 23.39 75 18.10

Case-IV [60] 21.60 90 65.99 90 42.07 75 36.72

Case-V [60] 50.25 90 61.17 90 41.99 75 50.86

Case-VI 75 28.97 90 37.8 90 13.86 [60] 31.22

shown in Table 1. To maintain a fixed average utilization at each link in ex-
periments, we place an additional (auxiliary) router (not shown in the figure)
between node S1 and router R1, S2 and R1, S3 and R3, and S4 and R2 to limit
the aggregate sending rate of the TCP flows to the capacity of the additional
router. The utilization of Ri is controlled by properly setting the capacity of the
auxiliary router.

Estimation Reliability. Using the above setup, we run Pathload with 4 differ-
ent values of interrupt delays δ. To demonstrate estimation accuracy, we define
the following relative error metric: eA = |A − Ã|/A, where A is the true avail-
able bandwidth of a path and Ã is its estimate. We report estimation results for
each case in Table 2, which show relative estimation errors eA of available band-
width. As the table shows, with relatively small interrupt delays (e.g., δ ≤ 100
μs), Pathload estimates available bandwidth of the tight link with over 80% ac-
curacy for all cases studied in this paper. Note, however, from the table that
when δ becomes larger than 125 μs, it is unable to produce estimates for any of
the cases as shown in the table as empty cells, which suggests that its algorithm
is susceptible to non-trivial interrupt delays. We also conduct experiments with
δ = 250 and 500 μs and confirm its inability, but omit these results for brevity.

176 S.-R. Kang and D. Loguinov

Table 2. Pathload’s Measurement in Emulab

Interrupt Evaluation scenario

delay δ Case-I Case-II Case-III Case-IV Case-V Case-VI

0 μs 9.45% 8.00% 7.57% 6.48% 16.58% 15.01%

100 μs 1.44% 8.52% 14.9% 5.74% 3.6% 20.74%

125 μs −− −− 15.01% −− −− 34.65%

> 125 μs −− −− −− −− −− −−

Next, we investigate Pathload’s internal algorithm in detail and identify what
causes its measurement to be unstable under non-negligible values of δ.

3.2 Analysis

Recall that Pathload [9] sends back-to-back packets in a train of size N = 100
with a fixed rate R and examines one-way delay2 (OWD) of each packet in the
probe-train in order to identify a trend exists in the time-series delay data. Based
on OWD delay trend, Pathload determines whether the current rate R is faster
than the available bandwidth of the path under investigation. Hence, proper
detection of OWD trend in a probe-train is crucial for it to produce an accurate
and reliable bandwidth estimate of the path.

Note that Pathload first perform ADR (Asymptotic Dispersion Rate) prob-
ing by sending a single packet-train and checks interrupt moderation, which
it detects when more than 60% of packets in a probe-train have been received
back-to-back (with zero or negligible inter-packet delay). If interrupt moderation
is detected, Pathload first eliminates such coalesced packets from the received
train. Then, it directly performs PCT (Pairwise Comparison Test) and PDT
(Pairwise Difference Test) on the remaining data if the number of remaining
packets is no less than 5. Recall that the PCT metric represents the fraction
of consecutive OWD pairs that are increasing, while the PDT metric quantifies
how strong the difference between the first and last OWDs in the data set is.
Define Xj to be the one-way delay of a packet j in a set of size n. Then, the
PCT and PDT metrics3 are given by [9]:

PCT =
1

n − 1

n∑

j=2

I(Xj > Xj−1), PDT = (Xn − X1)/
n∑

j=2

|Xj − Xj−1|, (1)

where I(Y) is one if Y holds, zero otherwise.
On the other hand, when Pathload does not detect interrupt moderation from

the initial check, it first eliminates back-to-back packets from the probe-train just
2 One-way delay of a packet is defined as the difference between its arrival time at the

receiver and the corresponding sending time at the sender.
3 Pathload [9] determines OWDs as “increasing” if PCT > 0.66, “non-increasing” if

PCT < 0.54, or “ambiguous” otherwise. Similarly, it identifies OWDs as “increasing”
if PDT > 0.55, “non-increasing” if PDT < 0.45, or “ambiguous” otherwise.

IMR-Pathload: Robust Available Bandwidth Estimation 177

0 50 100
0

500

1000

1500

2000

Probe packet ID

R
el

at
iv

e
O

W
D

 (μ
se

c)

(a) OWD (original)

0 10 20 30
0

500

1000

1500

2000

Probe packet ID

R
el

at
iv

e
O

W
D

 (μ
se

c)

(b) Sampled OWD

Fig. 2. Relative OWDs obtained using the path in case I (A = 31 Mb/s)

like the previous case. If the number of remaining packets is no smaller than 36,
then Pathload selects OWDs from the remaining packets using median-based
sampling (see [9] for details) and applies the PCT and PDT tests to the sampled
OWDs.

To assess Pathload’s trend detection mechanism, we conduct experiments for
Case I with interrupt delay δ = 250 μs. In this example, we collect one-way
delay data by running Pathload with a fixed rate R = 38 Mb/s and examine
how its internal algorithm specifies a delay-trend existing in OWDs. Fig. 2(a)
illustrates relative OWDs (one-way delays subtracted by their minimum value)
obtained by sending packet trains at 38 Mb/s over the path in case I (available
bandwidth A = 31 Mb/s). Note in the figure that OWDs exhibit an increasing
trend over all even though they decrease in a small-scale burst (successive OWDs
in the same burst decrease if the latency for transferring a packet from NIC to
the user space at the receiver is smaller than the inter-packet dispersions exiting
NIC at the sender [15]). Since the PCT and PDT tests cannot accurately detect
a trend present in this kind of coalesced data, Pathload first removes coalesced
packets before applying the PCT and PDT tests. Fig. 2(b) shows remaining
OWDs after eliminating the coalesced packets. However, even with the data
shown in Fig. 2(b), Pathload is unable to detect the increasing trend present
in the data since its trend-test produces PCT = 0.5 and PDT = 0.11. This
indicates that Pathload’s trend-detection mechanism is not robust under the
presence of coalesced packets due to interrupt delays.

Note that Pathload often discards entire packet-trains even with strong pres-
ence of a trend in the data due to its inability to detect the trend accurately.
Although more extensive evaluations are required to confirm our findings, we
believe that Pathload’s inaccuracy in trend detection is the major problem that
makes it unlikely to be successful in real networks.

4 IMR-Pathload

Motivated by the difficulty of characterizing delay variations in measured noisy
OWD data, we study noise-filtering techniques such as wavelet-based signal pro-
cessing and window-based averaging and explore their applicability in reliably
identifying a trend from the data. In what follows below, we first investigate

178 S.-R. Kang and D. Loguinov

0 5 10 15
0

2

4

6

8

S
ca

le
 c

oe
ffi

ci
en

ts

Coefficient ID

(a) Wavelet

0 5 10
500

1000

1500

2000

Averaging window ID

A
ve

ra
ge

 o
f r

el
at

iv
e

O
W

D
s

(b) Average

Fig. 3. Wavelet coefficients and 10-packet window averages of relative OWDs shown
in Fig. 2(a)

wavelet-based signal processing techniques that are widely used in removing
noise from various data sets obtained empirically [2]. To overcome the effect of
interrupt delays on trend detection, we apply a simple multi-level discrete wavelet
transform [1] to OWDs before performing PCT- and PDT-based trend-test.

Note that in the multi-level wavelet decomposition, each stage consists of scale
and wavelet filters followed by down-sampling by a factor of 2 and separates
an input signal into two sets of coefficients: scale and wavelet coefficients. The
wavelet coefficients represent a noise component in the input signal and thus are
not processed further. On the other hand, the scale coefficients are applied to the
two filters in the next level as an input to further reduce noise that might still
exist in the scale coefficients from the previous stage. As a decomposition level
increases, the frequency of wavelets used in filters decreases, capturing lower
frequency components present in the original signal.

For experiments in this section, we use the family of Daubechies wavelets [3],
which are well known standard wavelets (other wavelets can be used, but perfor-
mance comparison among different wavelets is beyond the scope of this paper).
Specifically, we use Daubechies’ length-4 wavelets, whose scale filter coefficients
are given by h0 = 1+

√
3

4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−√

3
4
√

2
, and h3 = 1−√

3
4
√

2
, while its

wavelet filter coefficients are g0 = h3, g1 = −h2, g2 = h1, and g3 = −h0.
Assume that a sequence s0, s1, . . . , sn−1 is an input to the j-th stage filters.

Define cAj,k and cDj,k (where k = 0, 1, . . . , n/2) to be the scale and wavelet
coefficients produced at level j, respectively. Then, cAj,k and cDj,k are given by:

cAj,k = h0s2k + h1s2k+1 + h2s2k+2 + h3s2k+3 (2)
cDj,k = g0s2k + g1s2k+1 + g2s2k+2 + g3s2k+3. (3)

Note that when k ≥ n/2−1, there are not enough data in the input sequence to
compute the coefficients using (2) and (3). This is known as a boundary condition
[17], which requires a special treatment that adds more data points to the input
sequence (in this paper, we add the last value if necessary).

To demonstrate the effect of wavelet decomposition on trend detection, we
decompose OWDs shown in Fig. 2(a) up to level 3 and plot in Fig. 3(a) the scale
coefficients that represent the trend component of OWD data. Applying the

IMR-Pathload: Robust Available Bandwidth Estimation 179

Table 3. Emulab Experiment

Estimation Interrupt Evaluation scenario

method delay δ Case-I Case-II Case-III Case-IV Case-V Case-VI

IMR-Pathload (wavelet) 0 μs 2.46% 1.23% 3.47% 2.69% 3.71% 6.52%

100 μs 6.47% 4.5% 3.02% 4.42% 5.98% 12.17%

125 μs 7.21% 2.64% 3.88% 1.32% 6.1% 10.77%

500 μs 5.12% 2.17% 6.78% 3.24% 7.23% 5.56%

IMR-Pathload (average) 0 μs 2.07% 2.24% 2.1% 2.18% 9.67% 5.05%

100 μs 0.19% 0.71% 11.69% 1.32% 4.19% 6.82%

125 μs 1.44% 1.82% 12.58% 1.59% 2.64% 7.89%

500 μs 4.43% 4.59% 9.27% 2.55% 8.95% 6.48%

same PCT and PDT tests to the scale coefficient data, we get PCT = 0.75 and
PDT = 0.78, which means that OWDs exhibit an increasing trend according to
the criteria used in Pathload (recall that Pathload fails to detect this increasing
trend as discussed in §3.2).

Next, we explore how window-based averaging improves trend detection in
noisy data. In this approach, we take the average of OWDs in a window of
size k (k-packet sliding window). Using a smaller window makes trend-detection
susceptible to a larger interrupt delay since it may not sufficiently remove noise
from OWDs (we leave optimal selection of window size as future work). For this
example, we employ k = 10 and plot in Fig. 3(b) 10-packet window averages
of relative OWDs shown in Fig. 2(a), which clearly shows an increasing trend.
With these averaged OWDs, we get PCT = 0.8 and PDT = 0.74, which leads
us to conclude that an increasing trend exists in the measured data.

We incorporate the above trend-detection mechanisms into Pathload and call
it IMR-Pathload (Interrupt Moderation Resilient Pathload). We then evaluate
it in Emulab and PlanetLab in the following section.

5 Performance Evaluation

5.1 Emulab Experiments

We investigate estimation accuracy of IMR-Pathload for different interrupt de-
lays and report its relative estimation errors eA in Table 3. As the table shows,
IMR-Pathload produces available bandwidth estimates for all cases with 88−99%
accuracy, which is significantly better than that of Pathload (see Table 2). Notice
in the table that even with a large interrupt delay δ = 500 μs, IMR-Pathload
measures the paths within eA = 10% error in all studied cases (recall that
Pathload can measure none of the paths if δ > 125 μs as discussed in §3.1).

5.2 Internet Experiments

In this section, we report experimental results obtained by measuring several
Internet paths between Universities and a HP Lab in U.S. Measurement hosts

180 S.-R. Kang and D. Loguinov

Table 4. Internet Experiment

Internet Method Available bandwidth estimates (Mb/s)

paths 9 − 10 am 12 − 1 pm 3 − 4 pm 7 − 8 pm 11 − 12 pm

HP → Wustl IMR-Pathload 12.2 11.9 13 12.8 13.1

Pathload −− −− −− −− −−
UMD → HP IMR-Pathload 93 92.8 92.3 93.2 94.7

Pathload 95.1 91.7 91.2 93.2 92.6

UMD → TAMU IMR-Pathload 100 98.1 98.3 99.4 98.4

Pathload −− −− −− −− −−
HP → UMD IMR-Pathload 12.9 11.8 13.3 12.3 12.6

Pathload 20 −− 16.9 −− −−

used in this study are located at HP (HP Labs), TAMU (Texas A&M University),
UMD (University of Maryland), and Wustl (Washington University in St Louis).
Note that we choose these paths simply for the convenience of accessibility.
Also note that the purpose of these experiments is not to compare estimation
accuracy of bandwidth estimators since we do not know exact characteristics of
these paths. Instead, we use this example to assess how reliably IMR-Pathload
measures Internet paths compared to Pathload.

For this purpose, we select 5 different periods of time in a day and run IMR-
Pathload and Pathload three times for each time period to measure a particular
path. When a tool produces bandwidth estimates reliably in all three times for
each period, we report their average as its available bandwidth estimate. If the
tool cannot estimate bandwidth at least once in three trials, we consider that
the tool is not able to measure that particular path reliably in that period. For
IMR-Pathload, we test both wavelet- and averaging-based algorithms, but report
only wavelet-based estimates since the other produces similar results.

Table 4 shows bandwidth estimates produced by IMR-Pathload and Pathload.
As the table shows, IMR-Pathload reliably produces available bandwidth esti-
mates for all studied paths in all measurement time periods. Note that for a
path (UMD → HP), Pathload also produces estimates that are similar to those
of IMR-Pathload4. However, Pathload is unable to reliably measure the other
three paths (HP → Wustl, UMD → TAMU, and HP → UMD).

6 Conclusion

This paper studied Pathload under a wide range of end-host interrupt delays
and identified its estimation instability under non-negligible interrupt delays.
We found that Pathload’s instability stems from that its delay-trend detec-
tion mechanism is unreliable when probing packets are coalesced at the re-
ceiver. We overcame this problem using robust trend detection algorithms (called
4 This agrees with the Emulab results, where Pathload shows accuracy that is similar

to IMR-Pathload only if it is able to reliably measure the path (see Tables 2 and 3).

IMR-Pathload: Robust Available Bandwidth Estimation 181

IMR-Pathload) and showed using Emulab and Internet experiments that IMR-
Pathload greatly improves measurement stability of Pathload under various net-
work settings.

References

1. Burrus, C., Gopinath, R., Guo, H.: Introduction to Wavelets and Wavelet Trans-
forms: A Primer. Prentice-Hall, Englewood Cliffs (1998)

2. Craigmile, P., Guttorp, P., Percival, D.: Trend Assessment in a Long Memory
Dependence Model Using the Discrete Wavelet Transform. Environmetrics 15(4),
313–335 (2004)

3. Daubechies, I.: Orthonormal Bases of Compactly Supported Wavelets. Communi-
cations on Pure and Applied Mathematics 41(7), 909–996 (1988)

4. Dovrolis, C., Ramanathan, P., Moore, D.: Packet-Dispersion Techniques and
a Capacity-Estimation Methodology. IEEE/ACM Trans. Netw. 12(6), 963–977
(2004)

5. Emulab. [Online], http://www.emulab.net/
6. Hu, N., Steenkiste, P.: Evaluation and Characterization of Available Bandwidth

Probing Techniques. IEEE J. Sel. Areas Commun. 21(6), 879–974 (2003)
7. Interrupt Moderation Using Intel GbE Controllers. [Online],

http://download.intel.com/design/network/applnots/ap450.pdf
8. Iperf – The TCP/UDP Bandwidth Measurement Tool. [Online],

http://dast.nlanr.net/Projects/Iperf/
9. Jain, M., Dovrolis, C.: Pathload: A Measurement Tool for End-to-End Available

Bandwidth. In: Proc. Passive and Active Measurement Workshop (March 2002)
10. Jin, G., Tierney, B.L.: System Capability Effects on Algorithms for Network Band-

width Measurement. In: Proc. ACM IMC, October 2003, pp. 27–38 (2003)
11. Kang, S., Liu, X., Bhati, A., Loguinov, D.: On Estimating Tight-Link Bandwidth

Characteristics over Multi-Hop Paths. In: Proc. IEEE ICDCS (July 2006)
12. Kang, S., Liu, X., Dai, M., Loguinov, D.: Packet-Pair Bandwidth Estimation:

Stochastic Analysis of a Single Congested Node. In: Proc. IEEE ICNP, October
2004, pp. 316–325 (2004)

13. Kapoor, R., Chen, L., Lao, L., Gerla, M., Sanadidi, M.: CapProbe: A Simple
and Accurate Capacity Estimation Technique. In: Proc. ACM SIGCOMM, Au-
gust 2004, pp. 67–78 (2004)

14. Melander, B., Björkman, M., Gunningberg, P.: A New End-to-End Probing and
Analysis Method for Estimating Bandwidth Bottlenecks. In: Proc. IEEE GLOBE-
COM, November 2000, pp. 415–420 (2000)

15. Prasad, R., Jain, M., Dovrolis, C.: Effects of Interrupt Coalescence on Network
Measurements. In: Proc. Passive and Active Measurement Workshop (April 2004)

16. Ribeiro, V., Riedi, R., Baraniuk, R., Navratil, J., Cottrell, L.: pathChirp: Efficient
Available Bandwidth Estimation for Network Paths. In: Proc. Passive and Active
Measurement Workshop (April 2003)

17. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press
(1996)

http://www.emulab.net/
http://download.intel.com/design/network/applnots/ap450.pdf
http://dast.nlanr.net/Projects/Iperf/

A Measurement Study of Internet Delay Asymmetry

Abhinav Pathak1, Himabindu Pucha1, Ying Zhang2, Y. Charlie Hu1,
and Z. Morley Mao2

1 Purdue University
2 University of Michigan

pathaka@purdue.edu, hpucha@purdue.edu, wingying@umich.edu,
ychu@purdue.edu, zmao@umich.edu

Abstract. RTT has been widely used as a metric for peer/server selection. How-
ever, many applications involving closest peer/server selection such as streaming,
tree-based multicast services and other UDP and TCP based services would ben-
efit more from knowing one-way delay (OWD) rather than RTT. In fact, RTT is
frequently used as as an approximate solution to infer forward and reverse delays
by many protocols and applications which assume forward and reverse delay to
be equal to half of RTT.

In this paper, we compare and contrast one-way delays and corresponding
RTTs using a wide selection of routes in the Internet. We first measure the ex-
tent and severeness of asymmetry in forward and reverse OWD in the Internet.
We then attempt to isolate the causes of OWD asymmetry by correlating OWD
asymmetry with the route asymmetry. Finally, we investigate the dynamics of
delay asymmetry. We find there exists a weak correlation between the fluctua-
tion of RTT and OWD but a strong correlation between OWD change and the
corresponding route change.

1 Introduction

Today’s Internet is rife with several wide-area network applications: real-time appli-
cations such as voice over IP [1] and multicast streaming applications [2,3,4,5], data
transfer applications that perform locality-aware redirection and server selection [6],
and services such as proximity-aware DHTs [7,8] and positioning systems [9,10,11].
A common thread in all these applications is the requirement to perform proximity
measurements. For example, in multicast applications, proximity is used to choose a
suitable parent/child in the tree; in positioning systems, proximity to landmarks is used
for localization.

For some applications, the proximity of interests can be measured using the round-
trip time (RTT) between two end hosts (say A and B), defined as the sum of forward
delay from A to B and the reverse delay from B to A. For example, if the interaction
between remote hosts typically involves only one or a few request and reply messages,
for example, a DNS lookup, or a small HTTP document download, then RTT is a good
indication of the completion time of the interaction. For other applications, however,
the proximity of direct relevance is the one-way delay (OWD) from the client to the
servers/peers or along the other direction, rather than RTT. An asymmetry in OWD
could hurt such applications. For example, in multicast streaming applications, since

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 182–191, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Measurement Study of Internet Delay Asymmetry 183

the data always flows from a parent node to a child node in the overlay multicast tree,
optimizing the OWD from the parent to the child is more beneficial. As another exam-
ple, ACK/NAK data systems such as the Transmission Control Protocol (TCP) estimate
the available bandwidth of the unidirectional route from the sender to the receiver using
the round-trip time as an approximation. If the reverse path taken by ACK packets has
a much larger delay than the forward path delay, TCP can end up using more network
resources than it should [12]. Other applications that depends on OWD include online
multiplayer games where an asymmetry in delay could create a bias, video conferencing
applications, Internet distance prediction, etc.

In practice, measuring the OWD between two end hosts, however, faces two major
obstacles. First, it requires strict time synchronization between the two hosts. Second,
it requires access to both end hosts as there is no standard daemon in operating sys-
tems that measures and reports OWD. As a result, the standard practice in almost all
applications that rely on proximity information is to measure RTT and operate under
the assumption that OWD is half of RTT.

In this work, we investigate the validity and implications of this premise (and com-
mon practice) via a comprehensive measurement study: We first measure the extent and
severeness of asymmetry in forward and reverse OWD between several pairs of Inter-
net hosts. We then attempt to trace the reasons for the observed OWD-RTT relationship.
Further, we investigate the dynamics of the OWD-RTT relationship as both OWD and
RTT change. Our main findings are as follows: (1) Asymmetry between the forward
and reverse delays is quite prevalent. (2) Asymmetry in delay can be attributed at least
in part to the asymmetry in routing paths. (3) Delay asymmetry is dynamic - with pro-
gression of time, delay asymmetry varies. To track how the asymmetry varies as RTT
and route changes happen, we make the following observations: During an intra-AS
path change, in most cases the forward and reverse delay change equally. During an
inter-AS path change, either both forward and reverse delay change equally (keeping
asymmetry constant), or only forward delay change contributes to RTT change (chang-
ing asymmetry).

2 Methodology

2.1 Tools, Testbed and Trace Collection

We use owping [13] for measuring OWD between a source-destination pair. Owping
is an implementation of One-way Active Measurement Protocol (OWAMP) [14]. It re-
quires access to both end hosts between whom the delay is to be measured. The desti-
nation node runs one-way ping server, “owampd” (owamp daemon), which listens for
client requests for conducting one-way ping measurements. The source node initiates
the measurement using owping (client). For every measurement, the source and desti-
nation exchange 10 probe packets.

Owping requires time synchronization between the end hosts running the measure-
ments. OWD between Internet hosts range from a few milliseconds to hundreds of mil-
liseconds. Even a minimal clock drift could result in inaccuracy in OWD measurements.
To capture clock drifts (difference between node’s clock and NTP’s clock), before re-
porting any “time” measurements, the owping tool gets the current clock drift of the

184 A. Pathak et al.

local node from the NTP daemon running on the system. The clock drift is adjusted in
the time reported by the system. NTP daemon also reports error estimate (confidence
value) of the clock. Error estimate gives the confidence range (in milliseconds) of time
reported by NTP. The source marks its current time (adjusted with clock drift) on the
packet along with its current error estimate with respect to NTP before sending the
packet. Upon receiving the packet, the destination subtracts the time on the packet from
its current time (fetched using kernel timestamp of the packet to minimize error due
to load on PlanetLab nodes and then corrected with its clock drift). It also notes down
error estimate at its end due to NTP. The overall error estimate for a single probe packet
is calculated by adding up the corresponding error estimates of both ends. For all the 10
packets, the minimum, mean and maximum values of the 10 OWD are recorded, along
with the maximum error estimate of the 10 error estimates. To measure route between
a pair of nodes, we used Paris traceroute [15].

Since owping requires access to both end hosts for which the delay is measured, we
use the PlanetLab [16] testbed for our measurement study. PlanetLab contains nodes
belonging to both research/education networks (GREN) and commercial networks. A
recent study [17] has shown that the network properties of the paths between two hosts
in GREN (denoted as G2G - Gren-to-Gren) can be very different from those in the
commercial networks. The same study also showed that if at least one end of the path is
in the commercial network (G2C or C2G), then the network properties remain similar
compared to when both ends are in the commercial network (C2C). Hence, we per-
form this study by separating the network paths into all GREN and commercial paths
(G2C+C2G+C2C). We chose 180 GREN nodes and 25 commercial nodes.

We collected traces from April 12th, 2007 for a period of 10 days. Traces consist of
back-to-back traceroutes and OWD measurements. One measurement round consists of
a traceroute and a OWD measurement to every other node in our set and was repeated
after every 20 minutes. The data collected was stored on a central node for parsing
and further processing. We continuously monitored over 10000 Internet paths during
this period. We conducted over 5 million traceroutes and an equal number of OWD
estimations during the specified period. We minimized the error induced due to loaded
PlanetLab nodes [18] by taking the minimum of 10 readings reported by owping.

2.2 Trace Pruning

Accurate one-way ping measurements critically depends on end nodes synchroniza-
tion. When a host reboots, its clock is not synchronized and hence its measurements
are not usable. However, after booting up, it contacts an NTP server and is configured
to correct its clock [19]. This adjustment consumes some time after which the node is
synchronized with NTP. In general, the uptime of PlanetLab nodes is large. However,
when a node goes down, we remove all the measurements to and from it. We also elim-
inate nodes with large error estimates. Figure 1 plots the CDF of clock drift and the
maximum error estimate for PlanetLab nodes. We observe that PlanetLab nodes do not
drift much from their NTP servers. 60% of the nodes drift less than 2 milliseconds. We
also observe that the maximum error estimated by NTP is lower than 10 ms for about
40% of the nodes. As a first cut we chose 10ms error estimate threshold and pruned

A Measurement Study of Internet Delay Asymmetry 185

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F

Time(ms)

CDF of drift offset and Error Estimate

drift-offset
error estimate

Fig. 1. CDF of drift offset and error estimate among 205 nodes in PlanetLab

our node selection by eliminating nodes that deviated more. After this filtering, we had
82 GREN nodes and 12 commercial nodes. Further, when computing any ratios using
absolute forward and reverse delays, we limit the values of error estimate. For example,
in Section 3 wherever we took ratios involving OWD, such as forward delay by RTT,
we made sure that the error estimated in forward delay stays below 3% of the measured
RTT. In Section 4, we deal with change in forward and reverse delays at a node, and
correlate them to change of RTT. Whenever we take a difference, of say forward delay,
the error in the value gets nullified. This way we do not need additional data pruning.

2.3 Metrics

We ultimately relate delay asymmetry on the Internet to other asymmetric properties
such as network path. In this section we define metrics that we used to quantify the
level of path asymmetry among the measured routes. Our metric needs to adequately
capture the properties of an Internet path responsible for inducing delays in the net-
work. The packet delay introduced by the path depends on the intermediate routers and
ASes through which the packet travels. We compare two metrics to characterize these
properties - AS-level path asymmetry and router-level path asymmetry. AS-level path
asymmetry captures the dissimilarity among ASes in the forward and the reverse paths.
We quantify AS-level path asymmetry using AS-level path similarity coefficient (γ) as
follows: For every source destination pair, let the set of ASes in the forward path (Pf)
and the reverse path (Pr) be A and B respectively. The similarity coefficient γPf ,Pr is
calculated as

γPf ,Pr =
|A ∩ B|
|A ∪ B| (1)

Router-level path asymmetry captures the dissimilarity between the forward and
the reverse path at the IP-level hops. To determine the router-level asymmetry in the
forward and reverse path, we can not simply use IP addresses in the traceroutes in the
forward and reverse directions because many routers have different interfaces to handle
traffic in different directions. Most of these interfaces lie in the same /24 prefix. Group-
ing IP addresses of intermediate routers obtained with same /24 prefixes into one loses
the hop count information of the path. To avoid these problems we use the following
approach: In each path we took the /24 prefixes of the IP addresses of the intermediate
routers. If there exists more than one interface belonging to the same /24 prefix in the

186 A. Pathak et al.

path, we counted them differently. Specifically we concatenated an increasing counter
per /24 prefix to every duplicate of that prefix encountered. This was done for both for-
ward and reverse paths. We construct set A using this information in forward path and
set B from reverse path. With these definitions of A and B, we compute router-level
similarity coefficient using equation (1).

3 Delay Asymmetry

3.1 One-Way vs. Round-Trip

OWD in forward and reverse directions add up to give RTT, with a general perception
that the forward and reverse delays are equal. This section investigates the extent and
the severeness of delay asymmetry among GREN and commercial paths individually.
To that end, we observe the correlation between OWD and RTT, as shown in Figure 2.

Figure 2(a) shows that paths in G2G are largely symmetric with respect to their
delays (CDF remaining close to 0.5 shows symmetry). On the other hand, Figure 2(b)
indicates that asymmetry is prevalent in commercial networks. In fact, the magnitude of
asymmetry (the ratio of OWD in forward direction to RTT) varies from values below 0.4
to those above 0.6. Figure 2(c) augments 2(b) and shows the absolute values of forward
delay and RTT for non-G2G paths. Figure 2(c) shows the magnitude of asymmetry. For
example, we take the point where RTT is 150ms and forward delay is 60ms. This case
would correspond to 40% of forward delay ratio. The reverse path delay accounts for
90ms. This results in 30ms of delay asymmetry in the forward and reverse paths. We
see that asymmetry in delay indeed exists in today’s Internet especially in commercial
networks.

3.2 Asymmetry in One-Way Delay

We now dig a deeper to understand the origin of this asymmetry in delay values. In-
tuitively, if the forward and the reverse paths between a source-destination pair are

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F

forward delay/RTT

(a)CDF of forward/RTT for G2G

forward/RTT
 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F

Forward delay/RTT

(b) CDF of forward/RTT for C2C + G2C + C2G

fwd/RTT

Fig. 2. CDF of forward OWD as a fraction of RTT for different RTTs occurrences

A Measurement Study of Internet Delay Asymmetry 187

Table 1. Various possibilities observed that change delay asymmetry

Legend RTT Forward Reverse Explanation
Changes Changes Changes

A Yes No Yes RTT changes due to a change in reverse delay but forward
delay is unchanged

B Yes Yes No RTT changes due to change in forward delay
but reverse delay is unchanged

C Yes Yes Yes RTT changes along with changes in forward
and reverse delays

D No Yes Yes RTT does not change but both forward and reverse
delay changes (equally and opposite in sign)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F

Similarity coefficient

(a) CDF of similarity coefficient

Router level
AS level

(a) CDF of AS-level and router-level
similarity coefficient in forward and re-
verse path of all routes observed.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

fo
rw

ar
d

da
la

y
/ R

T
T

IP /24 prefix hop similarity coefficient

(b) Mapping path similarity to fwd/RTT ratio

(b) Scatter plot of router-level similarity
coefficient for each route vs. ratio of for-
ward delay and RTT.

Fig. 3. Comparing path asymmetry with delay asymmetry

different, we can expect the corresponding properties to vary too. Path asymmetry is
a well-known fact prevalent in the Internet. Many previous studies have found that a
large amount of asymmetry exists in Internet routes [20,21,22]. In this section we study
whether there exists any correlation between route asymmetry and delay asymmetry.

Figure 3(a) plots the CDF of AS-level and router-level similarity coefficients (defined
in Section 2.3) for all the possible routes that were found in our trace. Figure 3(a) shows
that 32% of paths have AS similarity coefficient of less than 0.6, while 81% of routes
have router-level asymmetry coefficient of less than 0.6. The graph shows, as expected,
that router-level asymmetry is more prevalent than AS-level asymmetry. Hence we use
router-level similarity coefficient to characterize path asymmetry.

To find correlation between delay and path asymmetry we plot delay fraction, the
ratio of forward delay by RTT, as a function of router-level similarity coefficient for
each route observed. Figure 3(b) shows the correlation. From the figure we see that the
delay fraction remains close to 0.5 when the router-level similarity coefficient is close
to unity. In such cases, the forward and reverse paths traverse nearly the same set of
routers and experience equal delays. They contribute equally to RTT. In cases when
the router-level similarity coefficient is not close to unity the delay fraction fluctuates
from 0.3 to 0.7. This gives us an indication that if there exists a significant router-level
asymmetry, the forward and reverse OWD could be significantly different. In summary

188 A. Pathak et al.

router-level asymmetry does not necessarily imply delay asymmetry where as delay
asymmetry implies router-level asymmetry.

4 Dynamics of Delay Asymmetry

Although existence of delay asymmetry is of interest, another intriguing question is:
Is the delay asymmetry for a given source-destination pair constant across time? If de-
lay asymmetry remains constant then we could do a one-time measurement and tune
applications accordingly. If not, how does it vary? Table 1 categorizes the various pos-
sibilities that can change delay asymmetry. From the table we see four reasons can cause
delay asymmetry change.

To get a better picture of the prevalence of the above scenarios, we log the fluc-
tuations in RTT values across our trace: Whenever RTT fluctuated by 2% for any
source/destination pair, we note down the corresponding fluctuation in forward and
reverse delays. Figure 4(a) plots a scatter plot to show the correlation between forward
OWD change and RTT fluctuation. We see that the plot can be broken down into 4
major regions. The first region is parallel and close to x-axis (line y=0) (legend A of
table 1), the second region along y=x line (legend B of table 1), a third region along
y=0.5x line (legend C of table 1), and the fourth region parallel and close to y axis (x=0
line) (legend D of Table 1).

(a) RTT change vs forward OWD upon a
2% change in RTT.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

cd
f

Difference of median forward time (ms)

CDF of delay change upon a route change

Intra AS path change
Inter AS path change

(b) CDF of forward delay change in
upon an inter-/intra-AS path change

Fig. 4. Dynamics of delay asymmetry

Thus, there is conclusive evidence that delay asymmetry is a dynamic property. De-
lay asymmetry changes when delays change. [23] points out two reasons for delay
changes - path change and transient congestion. Out of these two major reasons of
delay changes, we focus on delay changes caused due to a path change in the forward
direction. These path changes are measured using periodic traceroutes from sources
to destinations. Using repeated traceroutes we find out occurrences of a route change
in forward direction (at a granularity of 20 minutes). At the same time, we traceroute
the path in the reverse direction and also measure one-way delays. We divide the path
change in forward direction into two categories, inter-AS path change and intra-AS path
change.

Figure 4(b) shows by how much forward delay changes upon a change in the forward
path. For every path change we observed in our measurement, we classified the path

A Measurement Study of Internet Delay Asymmetry 189

-100

-50

 0

 50

 100

-100 -50 0 50 100ch
an

ge
 in

 m
ed

ia
n

of
 r

ev
er

se
 d

el
ay

 (
m

s)

change in median of forward delay (ms)

(a) Intra AS route change

-40

-20

 0

 20

 40

-40 -20 0 20 40ch
an

ge
 in

 m
ed

ia
n

of
 r

ev
er

se
 d

el
ay

 (
m

s)

change in median of forward delay (ms)

(b) Inter AS route change

Fig. 5. Scatter plot: Reverse vs forward delay change for Intra-/Inter-AS path changes

change into inter-AS path change if the new path has a different AS-level path then the
previous path, or intra-AS path change if there is a path change internal to an AS. We
see that 80% of intra-AS path change results in change in forward delay by less than
10 milliseconds. Upon an inter-AS path change, about 80% of times the forward delay
changes by less than 20 milliseconds.

A path change might change the delay asymmetry for a route. To find out the impact
of path changes on change in OWD and RTT, for every inter and intra-AS path change
that we observed, we plot a scatter plot between the absolute change in forward delay
and absolute change in reverse delay. Figure 5(a) shows the correlation between forward
and reverse delay changes upon a forward intra-AS path change. We see that there is
a strong correlation between the attributed delay change values. In most of the cases,
the change in forward and reverse delay equally contribute to the change in RTT (the
patch of dots along the y=x line). This implies that when we notice a path change in the
forward direction, in most of the cases the path in the reverse direction also changes.

Figure 5(b) shows correlation between forward and reverse delays when there is
an inter-AS forward path change. There can be two cases here: the AS change takes
place only in the forward direction, and the AS change in the forward path also affects
the reverse path. Inter-AS path changes are less frequent than intra-AS path changes.
The scatter plot in figure 5(b) shows two faint regions, one along the line y=x and the
second region parallel and close to x-axis. The first region signifies of AS path change
when forward and reverse delays equally contribute to RTT. This region captures the
situation when forward AS path change also affects path in the reverse direction. The
second region depicts the situation when AS-level path changes in the forward direction,
forward delay is changed but reverse delay is not affected. In this case, the change in
RTT is contributed solely by forward delay.

In summary, we have identified causes for delay symmetry changes based on routing
changes. The property of delay asymmetry is found to be a dynamic property that varies
depending on routing dynamics. As expected, inter-AS path changes contribute to larger
delay changes compared to intra-AS path changes. Moreover, intra-AS path changes
tend to have similar effect in terms of delay changes for both forward and reverse paths.

5 Related Work

Paxson [20] was among the first to study asymmetry in Internet routes. He et. al. [22]
quantified the level of path asymmetry that exists in the current Internet. They conducted

190 A. Pathak et al.

a systematic study of quantifying asymmetry in academic and commercial nodes. Our
work is the first to quantify the delay differences as a result of path asymmetry. Our
measurement follows the RFC 2679 [24] which defines a metric for OWD of packets
across Internet paths. There have been proposals for measuring OWD using mathe-
matical heuristics based on relationships between a sequence of back-to-back one-way
packet delays. Choi and Yoo [25] proposed a scheme to derive OWD. However, they
did not quantify the delay asymmetry or its dynamics in the current Internet. Several
work [12,26] have studied performance degradation of TCP as a result of asymmetric
network conditions.

6 Conclusion

In this paper, we studied delay asymmetry that exists in the current Internet. We found
that commercial networks exhibit higher levels of asymmetry than education and re-
search networks. We found a weak correlation between router-level path asymmetry
and delay asymmetry. We then studied how delay asymmetry changes over time as path
change occurs. We found that any of the four scenarios could take place (a) forward
delay change equals RTT change with no change in reverse delay, (b) forward and re-
verse delays change equally contribute to a change in RTT, (c) reverse delay change
contributes to entire RTT change with negligible forward delay change, and (d) forward
delay and reverse delay change equally but in opposite directions, resulting in no effect
on RTT. We also correlated properties of delay changes upon an inter- and intra-AS
route change. Our work provides important foundations to enable applications to pre-
dict OWD changes as a result of possible routing changes and more accurately infer
OWD values from RTT measurements.

Our findings suggest that proximity-based applications that need information about
OWD can benefit from accurate OWD measurement as opposed to using half of RTT as
an approximation. However, OWD measurement requires the cooperation of both end
hosts. One possible solution to this is to incorporate OWD measurement software as a
daemon in commodity OSes similarly as the ICMP echo daemon for normal ping.

References

1. Skype: The whole world can talk for free, http://www.skype.com/
2. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proc. of ACM SIG-

METRICS (2000)
3. Zhang, B., Jamin, S., Zhang, L.: Host Multicast: A Framework for Delivering Multicast To

End Users. In: Proc. of IEEE INFOCOM (June 2002)
4. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:

Proc. of ACM SIGCOMM (2002)
5. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: SplitStream:

High-Bandwidth Multicast in Cooperative Environments. In: Proc. of ACM SOSP (2003)
6. Akamai: Expertise content delivery, http://www.akamai.com/
7. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for

Large-Scale Peer-to-peer Systems. In: Proc. of Middleware (2001)
8. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: A

Resilient Global-Scale Overlay for Service Deployment. IEEE JSAC (2004)

http://www.skype.com/
http://www.akamai.com/

A Measurement Study of Internet Delay Asymmetry 191

9. Ng, T.S.E., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based Ap-
proaches. In: Proceedings of IEEE INFOCOM (June 2002)

10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A Decentralized Network Coordinate
System. In: Proceedings of ACM SIGCOMM (August 2004)

11. Francis, P., et al.: An Architecture for a Global Internet Host Distance Estimation Service.
In: Proceedings of IEEE INFOCOM (March 1999)

12. Balakrishnan, H., Padmanabhan, V.N., Katz, R.H.: The effects of asymmetry on tcp perfor-
mance. In: Proc. of ACM MobiCom (September 1997)

13. Owping: One way ping, http://e2epi.internet2.edu/owamp/
14. Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., Zekauskas, M.: A One-way Active Mea-

surement Protocol (OWAMP). In: RFC 4656 (Proposed Standard) (September 2006)
15. Augustin, B., et al.: Avoiding traceroute anomalies with Paris traceroute. In: Proc. of IMC

(2006)
16. PlanetLab: An open platform for developing, deploying and accessing planetary scale ser-

vices, http://www.planet-lab.org/
17. Pucha, H., Hu, Y.C., Mao, Z.M.: On the Representativeness of Wide Area Internet Testbed

Experiments. In: Proc. of ACM IMC (2006)
18. Sommers, J., Barford, P.: An Active Measurement System for Shared Environments. In: Pro-

ceedings of IMC (October 2007)
19. Mills, D.L.: RFC 1305: Network time protocol (version 3) specification, implementation.

Obsoletes RFC0958, RFC1059, RFC1119 Status: DRAFT STANDARD (March 1992)
20. Paxson, V.: End-to-end routing behavior in the Internet. In: Proc. of ACM SIGCOMM (1996)
21. Allman, M., Paxson, V.: On estimating end-to-end network path properties. In: Proc. of SIG-

COMM (1999)
22. He, Y., Faloutsos, M., Krishnamurthy, S., Huffaker, B.: On routing asymmetry in the internet.

In: Proceedings of IEEE Globecom 2005 (2005)
23. Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding Network Delay Changes Caused

by Routing Events. In: Proc. of ACM SIGMETRICS (2007)
24. Almes, G., Kalidindi, S., Zekauskas, M.: A One-way Delay Metric for IPPM. In: RFC 2679

(September 1999)
25. Choi, J.H., Yoo, C.: One-way delay estimation and its application. Computer Communica-

tions 28(7), 819–828 (2005)
26. Balakrishnan, H., Padmanabhan, V., Fairhurst, G., Sooriyabandara, M.: TCP performance

implications of network path asymmetry. In: IETF RFC 3449 (2002)

http://e2epi.internet2.edu/owamp/
http://www.planet-lab.org/

Trends and Differences in Connection-Behavior

within Classes of Internet Backbone Traffic

Wolfgang John, Sven Tafvelin, and Tomas Olovsson

Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden

{johnwolf,tafvelin,tomas}@chalmers.se

Abstract. In order to reveal the influence of different traffic classes on
the Internet, backbone traffic was collected within an eight month pe-
riod on backbone links of the Swedish University Network (SUNET).
The collected data was then classified according to network application.
In this study, three traffic classes (P2P, Web and malicious) are com-
pared in terms of traffic volumes and signaling behavior. Furthermore,
longitudinal trends and diurnal differences are highlighted. It is shown
that traffic volumes are increasing considerably, with P2P-traffic clearly
dominating. In contrast, the amount of malicious and attack traffic re-
mains constant, even not exhibiting diurnal patterns. Next, P2P and Web
traffic are shown to differ significantly in connection establishment and
termination behavior. Finally, an analysis of TCP option usage revealed
that Selective Acknowledgment (SACK), even though deployed by most
web-clients, is still neglected by a number of popular web-servers.1

1 Introduction

Today, many network operators do not know which type of traffic they are
carrying. This problem emerged mainly in the early 2000’s, when P2P file sharing
applications started to disguise their traffic in order to evade traffic filters and
legal implications. Since then, the network research community started to draw
increasing attention to classification of Internet traffic. Traditional port number
classification was shown to underestimate actual P2P traffic volumes by factors
of 2-3 [1], thus more sophisticated classification methods have been proposed.
These methods are typically either based on payload signatures [2], statistical
properties of flows [3] or connection patterns [4].

A number of articles also present properties of different traffic classes resulting
from traffic classification. Gerber et al. [5] classified flow measurements from a
tier-1 ISP backbone in 2003. Even if their classification method has been based
on port numbers, they indicate a dominance of P2P applications. Sen et al. [6]
investigated connectivity aspects of P2P traffic on different levels of aggregation
(IP, prefix, AS) in 2002. The study was based on flow data collected at a single
ISP, classified by a port number method. More recent articles from 2005 and 2006

1 This work was supported by SUNET, the Swedish University Network.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 192–201, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trends and Differences in Connection-Behavior within Classes 193

present differences between P2P and non-P2P traffic in terms of flow properties
such as size, duration and inter-arrival times [7,8]. Perenyi et al. [8] additionally
presents a comparison of diurnal patterns for P2P vs. non-P2P traffic.

This article presents the results of a classification of current Internet backbone
data. The datasets do not include packet payloads, thus connection pattern
heuristics [9] were used to classify the datasets. The classification approach,
disregarding packet payload data, has the advantage of avoiding legal issues and
has the capability to classify even encrypted traffic, which is gaining popularity
among P2P traffic. We chose to focus on 3 main traffic classes: (1) P2P file
sharing protocols; (2) Web traffic; (3) malicious and attack traffic. First, we
show how these traffic classes develop over a time period of eight months by
highlighting trends in traffic volumes and connection numbers, also pointing out
some diurnal differences. Next, we present differences between the traffic classes
in terms of connection signaling behavior. This includes success rates for TCP
connection establishment, a breakdown of different TCP connection termination
possibilities and TCP option usage within established connections.

To our knowledge, this is the first attempt to characterize differences and
trends within traffic classes in terms of connection signaling, with exception of
a brief discussion about connection termination in [10]. We provide a thorough
analysis of differences and trends for the selected traffic classes, since they have
a major impact on the overall traffic behavior on the Internet. It is of gen-
eral importance to follow trends in contemporary Internet traffic in order to
react accordingly in both infrastructure and protocol development. Furthermore
a thorough analysis of specific connection properties reveals how different traf-
fic classes are behaving ’in the wild’. Since the data analyzed was collected on
a highly aggregated backbone during a substantial time period, the results re-
flect contemporary traffic behavior of one part of the Internet. These results are
thereby not only valuable input for simulation models, they are also interesting
for developers of network infrastructure, applications and protocols.

2 Data Description

The two datasets used in this article [11] were collected in April (spring dataset)
and in the time from September to November 2006 (fall dataset) on an OC192
backbone link of the Swedish University Network (SUNET). In spring, four traces
of 20 minutes were collected each day at identical times (2AM, 10AM, 2PM,
8PM) as described in [12]. The fall dataset was collected at 276 randomized
times during 80 days. At each random time, a trace of 10 minutes duration was
stored. To avoid bias when comparing the datasets, the 20 minute samples from
spring were treated as two separate 10 minute traces. Furthermore, for this study
traces from fall are only considered if collected during the time-window between
20 minutes prior and after the collection times of spring (e.g. 1:40AM-2:40AM).

When recording the packet level traces on the 2x10GB links, payload beyond
transport layer was removed and IP addresses were anonymized due to privacy
concerns. After further pre-processing of the traces, as described in [11] and

194 W. John, S. Tafvelin, and T. Olovsson

[12], a per-flow analysis was conducted on the resulting bi-directional traces.
Flows are defined by the 5-tuple of source and destination IP, port numbers and
transport protocol (TCP or UDP). TCP flows represent connections, and are
therefore further separated by SYN, FIN and RST packets. For UDP flows, a
flow timeout of 64 seconds was used [4]. The 146 traces in the spring dataset
include 81 million TCP connections and 91 million UDP flows, carrying a total
of 7.5 TB of data. The reduced fall dataset, consisting of 65 traces, includes 49
million TCP connections and 70 million UDP flows, carrying 5 TB of data. In
both datasets, TCP connections are responsible for 96% of all data.

3 Methodology

The resulting 130 million TCP connections and 161 million UDP flows have been
fed into a database, including per-flow information about packet numbers, data
volumes, timing, TCP flags and TCP options. The flows have then been classified
by use of a set of heuristics based on connection patterns. The classification
method was introduced and verified on the April dataset, as described in [9]. The
heuristics are intended to provide a relatively fast and simple method to classify
traffic, which was shown to work well on traces even as short as 10 minutes. In
the present study the flows are summarized into three different traffic classes:
P2P (file-sharing); Web or HTTP (incl. HTTPS); Malicious and attack (i.e. scan,
sweep and DoS attacks). Remaining traffic was binned in a fourth class, denoted
’others’. ’Others’ includes mail, messenger, ftp, gaming, dns, ntp and remaining
unclassified traffic. The latter accounts for about 1% of all connections. In this
study, the focus is on trends and differences between P2P and Web traffic, with
some notable observations from malicious traffic highlighted as well. Besides the
traffic classification, an analysis of traffic volumes and signaling properties is
carried out in two further dimensions: longitudinal trends between April and
November and diurnal patterns between the four time clusters (times of day).

4 Trends in Traffic Volumes

Longitudinal trends in TCP traffic volumes have been analyzed by building
time series for the three traffic classes within each of the four time clusters,
representing times of day (2AM, 10AM, 2PM, 8PM). Due to space limitations,
only a condensed time series of TCP traffic is illustrated in Fig.1. The x-axis of
the graphs represent time, with one bar for each 10 minute long trace. The first
row indicates an increase in traffic volume during 2006. While peak volume per
10 minutes lies at 70 GB in early April, volume reaches 85 GB in late April (right
after Easter vacation). This trend continues, with peaks of 94 GB in September
and finally 113 GB in November. During one specific interval on November 8 as
much as 131 GB have been transfered via TCP. All peak intervals fall into the
time cluster of 8PM. The second busiest time cluster in terms of traffic volumes
is the one at 2PM. Transfer volumes during 2PM reach on average 80% of the
peak values at 8PM. Nighttime and morning hours (2AM, 10AM) show the

Trends and Differences in Connection-Behavior within Classes 195

Fig. 1. TCP data vs time (1st row); Appl. breakdown by data(2nd) and #conn.(3rd)

lowest activity with half the transfer volumes of the busy evening hours. This
diurnal pattern is best visible in the April section of the first row in Fig.1.

Even if there is an increase in data volumes of around 65% during a time
period of eight months, the breakdown into traffic classes remains constant.
P2P applications account constantly for as much as 93% and 91% of the data
during evening and night time, respectively. During office hours (10AM, 2PM)
the fraction of P2P data is reduced to 86%. HTTP, in contrast, is responsible for
9% of TCP data transfered during office hours, and drops down to 5% and 4%
during evening and night time. This diurnal difference is explained by a network
prefix analysis, yielding that most P2P traffic originates from student dormitories
whereas Web traffic is commonly generated by Universities. The remaining data
fractions account mainly for ’other’ traffic, since malicious traffic and attacks
tend to be single packet flows, not carrying substantial amounts of data.

The traffic breakdown in terms of connection numbers clearly shows that P2P
connections typically carry higher amounts of data. Between 40% and 55% of
the connections are classified as P2P, following the diurnal patterns of traffic
volumes. HTTP connections account for 25% of all TCP connections during of-
fice hours, but drop down to 7% at night hours. Interestingly, the fractions of
both P2P and HTTP connections (or connection attempts) increased slightly
from April to November, while the fraction of malicious traffic decreased from
around 30% to 20% during the same time. This development turns out to be a
consequence of the constant nature of malicious traffic, such as scanning attacks.
In absolute numbers, this traffic class remained remarkably constant during the
eight months. Due to the increase in overall traffic volume, its relative fraction
evidently was decreased. Since malicious or attack traffic shows neither longitu-
dinal trends nor any significant diurnal pattern, we conclude that this type of
traffic rather forms a constant ’background noise’ in the Internet.

A similar analysis was also done for UDP flows. Even though larger in number,
they are only responsible for 4% of all data. UDP data volumes during 10 minutes
increased from peak values of 2.8 GB in April up to 4.6 GB in November. As in
the case of TCP, peak intervals fall into the 8PM time cluster. Afternoon hours

196 W. John, S. Tafvelin, and T. Olovsson

experience moderate UDP data volumes, and little UDP activity takes place
during night and morning hours.

P2P flows over UDP carry in 76% of all cases less than three packets, which
can be explained by signaling traffic as commonly used in P2P overlay networks
such as Kademlia. In April, P2P flows are responsible for around 80% of UDP
data volumes and connection counts, while the fraction has increased to about
84% in November. In absolute numbers, UDP P2P flow counts have even dou-
bled from April until November, which shows that P2P applications deploying
overlay networks via UDP are gaining popularity. Other traffic, including tra-
ditional UDP services like NTP or DNS, accounts on average for only 8% of
the UDP flows. As for TCP, malicious traffic remains very constant in absolute
numbers, which means that relative fractions decreased from 12% to around 8%
in November.

5 Differences between Traffic Classes

The following subsection highlights differences between P2P, Web and malicious
connections in terms of establishment and termination behavior. In the next
subsection, TCP option deployment for P2P and Web connections is compared.

5.1 Differences in Connection Behavior

Fig.2 breaks down the success-rates of connection attempts for the three classes.
Established connections include TCP flows with successfully carried out 3-way-
handshakes. The second group of connection attempts did not fulfill 3-way-
handshakes, but included an initial SYN packet. Finally, there are flows with
no SYN seen. These are TCP sessions starting before the measurement interval.
Such session fragments account for 13.5% of the 130 million connections seen.
Malicious traffic usually consists of 1-packet flows only, which explains why only
few malicious connection attempts fall into the no SYN category. In the further
analysis, we will only focus on connections including initial SYN packets.

A notable trend can be observed in the P2P graph in Fig.2, where the fraction
of unsuccessful connection attempts increased from an average of 49% in April to
54% in November. Web traffic on the other hand has significantly larger fractions

Fig. 2. TCP Connection Breakdown

Trends and Differences in Connection-Behavior within Classes 197

of established connections, leaving only an average of 16.3% non-established.
Malicious traffic is more likely to be established in the fall data, even though a
majority of the malicious connections are still connection attempts. The increase
in established attack connections is caused by an increase in login attempts to
MS-SQL and SSH servers, with a few MS-SQL servers at a local University
responsible for the majority of the attempts. According to SANS Internet Storm
Center (ISC), malicious activities on both SSH (22) and MS-SQL (1433) ports
increased significantly during 2006, which explains the trends seen here.

P2P and malicious connections reveal no diurnal patterns. Within Web traffic
however, unsuccessful connection attempts account constantly for around 17.5%
during all day, with exception of a drop to 10% during night time hours (2AM).
We have no explanation for this phenomena other than HTTP connections are
very rare in absolute number during night hours, which makes the statistical
analysis more sensitive to behavior of individual applications or user groups.

Non-established connections: Non-established TCP connections have been
further divided into connection attempts with one SYN packet only, attempts
with direct RST reply and asymmetrical traffic (Fig.3). Due to transit traffic and
hot-potato routing, 13% of the connections are asymmetrically routed. Naturally,
it is not possible to observe a three-way handshake in this case.

Fig. 3. Breakdown of non-established TCP connections

None of the traffic classes exhibits any significant diurnal pattern for non-
established TCP connections. However, Fig.3 clearly highlights major differences
between all three traffic classes. The already small fraction of non-established
Web traffic (16.3% of all traffic) is mainly explained by asymmetrical traffic, and
real unsuccessful connection attempts are very rare. Malicious traffic consists
to a large degree of single SYN packet flows only. Single SYN flows are also
dominating non-established P2P connections. While such connection attempts
accounted for 71% in April, their fraction increase to 79% in November. This
trend is also responsible for the increase of non-established P2P connections
observed in Fig.2. Even if the high number of unsuccessful connection attempts
within P2P traffic has been observed earlier [10], it is interesting to note that
there is a clear trend in the fractions of one-SYN connections within P2P flows.
The fraction increased by 23% (from 35% to 43%) within a period of 8 months.

198 W. John, S. Tafvelin, and T. Olovsson

Established Connections: Finally, established connections are broken down
according to their termination behavior in Fig.4. Besides the proper closing ap-
proaches with one FIN in each direction or only one RST packet, as prescribed in
the TCP standard, two unspecified termination behaviors have been observed.
Connections closed by FIN, followed by an additional RST packet have been seen
in direction of the initial SYN (typically the client) and the response (server).
Finally, a number of connections were not closed during the measurement inter-
val. The larger fraction of unclosed P2P connections is explained by the longer
duration of P2P flows compared to Web traffic, as observed by Mori [7].

Fig. 4. Breakdown of established TCP connections

As for non-established connections, termination of Web connections neither
shows significant trends nor diurnal patterns. HTTP connections are closed prop-
erly in 75% of all cases. Another 15% are closed by RST packets, mainly due
to irregular web-server and browser implementations as noted by Arlitt [13].
FIN+RST behavior as well as unclosed connections (which corresponds to longer
flows) are uncommon within Web traffic.

Even if there are no diurnal pattern observable, Fig. 4 indicates a significant
change in termination behavior of P2P connections from spring to fall 2006.
In April, only slightly less than half of the P2P connections have been closed
properly with two FINs. As much as 20% of established P2P connections have
been terminated with FIN plus an additional RST packet send by the server
(or responding peer). A couple of popular hosts inside a student network have
been identified as main source of this behavior. A commented text in the source
code of a popular P2P client indicates that connections are closed with RST
deliberately to avoid the TCP TIME WAIT state in order to save CPU and
memory overhead. In fall however, the fraction of FIN+RST terminations by
the responder was reduced to around 8%, compensated by an increase in both
valid TCP terminations, 2xFIN and single RST. Due to missing payload data,
it was not possible to differentiate between different P2P software and version
numbers. We suspect, that either the developers of the P2P application fixed this
non-standard behavior in updated versions of the software, or the misbehaving
P2P software lost popularity and was replaced by better behaving software by
the users during 2006. However, the breakdown in Fig.4 shows that P2P traffic is
mainly responsible for the large number of RST packets seen in todays networks.

Trends and Differences in Connection-Behavior within Classes 199

5.2 Differences in Option Deployment

Finally, deployment of the most popular TCP options during connection estab-
lished has been investigated for P2P and Web traffic (Table 1). For each of the
four most popular TCP options, three different possibilities are distinguished: es-
tablished - the option usage was successfully negotiated in SYN and SYN/ACK
packets; neglected - the option usage was proposed in the SYN, but not included
in the SYN/ACK; and none - the option was not seen in the connection.

Table 1. Differences in TCP Option Deployment

(a) TCP Options in P2P Conn.

MSS SACK WS TS

estab. 99.9% 91.0% 14.9% 8.8%
neglected 0.1% 6.5% 0.6% 1.0%

none 0.0% 2.5% 84.5% 90.2%

(b) TCP Options in HTTP Conn.

MSS SACK WS TS

estab. 99.6% 65.7% 16.0% 13.4%
neglected 0.4% 27.9% 4.3% 4.3%

none 0.0% 6.4% 79.7% 82.3%

Option usage turned out to be remarkably constant, with neither longitudinal
nor diurnal trends. However, it is surprising to find such notable differences
in option usage between traffic classes, considering that protocol stacks in the
operating system, and not applications, decide about option usage. The MSS
option is almost fully deployed, which agrees with the fact that the MSS option
is set by default in all common operating systems. The SACK permitted option,
in fact also a default option, is commonly proposed by initiating hosts, but is in
28% of the Web connections neglected. Interestingly, this fraction is significantly
smaller in the case of P2P traffic, with only 6.5% neglecting SACK support.

While Linux hosts have the Window Scale (WS) and Timestamp (TS) op-
tions enabled by default, Windows XP does not actively use the options, but
replies with WS and TS when receiving SYN packets with the particular option.
This policy is well reflected by P2P connections, where WS and TS are rarely
neglected, but either established or not used at all. HTTP connections do not
really reflect this assumption, with 4.3% of WS and TS requests neglected by
servers. However, WS and TS are established more often within Web traffic.

We suspect that the usage of WS and TS options within P2P traffic some-
what reflects the proportions of Linux (WS and TS enabled by default) and
Windows systems (WS and TS disabled actively, but responding to request) on
the links measured. The differences in option deployment for Web traffic how-
ever stem from a differing communication nature. While Web traffic represents
classical client server communication, with one dedicated server involved, P2P
represents a loose network of regular user workstations. Web-servers, as a central
element, can thereby influence the behavior of larger numbers of connections.
This suspicion is further confirmed by the fact that a majority of the HTTP
connections neglecting usage of SACK are directed to less than 100 web-servers,
which consistently do not respond with SACK options. Such central elements
do not exist in P2P overlay networks. Furthermore, web-servers are more likely
to be customized or optimized due to their specific task, whereas user worksta-
tions usually keep default settings of the current operating system. Some active

200 W. John, S. Tafvelin, and T. Olovsson

measurement samples taken in October 2007 proved that popular web-servers,
like google, yahoo and thePirateBay, still neglect SACK, WS or TS options.

6 Summary and Conclusions

In order to study trends and differences within the main traffic classes on the
Internet, aggregated backbone traffic has been collected during two campaigns
in spring and fall 2006 [11]. The collected packet level data has then been sum-
marized on flow level. The resulting connections have finally been classified into
P2P, Web and malicious traffic, using a connection pattern classification method
[9]. An analysis revealed that overall traffic volumes are increasing for both TCP
and UDP traffic, with highest activities at evenings. On diurnal basis, P2P and
HTTP traffic exhibit different peak times. P2P traffic was found to be clearly
dominating with 90% of the transfer volumes, especially during evening and
night times. In contrast, HTTP traffic has its main activities (9% of the data-
volumes) during office hours. Similar diurnal patterns have been observed in
terms of connection numbers, even if P2P connections are not as dominating
as in the case of data volumes. This indicates that P2P connections typically
carry more data than Web traffic. Malicious and attack traffic is responsible
for a substantial part of all TCP connections and UDP flows, but plays a mi-
nor role in terms of data volumes since it typically consists of 1-packet flows
only. It was interesting to observe that the fraction of malicious TCP and UDP
flows remained constant in absolute numbers both on diurnal and longitudinal
basis, even though traffic volumes generally increased. This shows that mali-
cious traffic (e.g. scanning attacks) forms a constant background noise on the
Internet.

In terms of connection signaling behavior, major differences between the three
traffic classes have been highlighted. The number of unsuccessful P2P connection
attempts, which already dominated the P2P connection breakdown in spring,
was shown to have increased further until fall. We conclude, that the large frac-
tion (43%) of 1-packet flows on one hand and the large average data amounts per
P2P connection on the other hand indicate a pronounced ’elephants and mice
phenomenon’ (Pareto principle) [7] within P2P flow sizes. Regarding termina-
tion behavior, P2P connections exhibit a clear trend towards higher fractions of
proper closings in fall. HTTP connections on the other hand appear to behave
comparable well according to specification at all times.

Finally, also TCP option deployment was shown to differ significantly between
P2P and Web traffic. While P2P traffic rather reflects an expected behavior con-
sidering the default setting in popular operating systems, HTTP shows artifacts
of the traditional client server pattern, with some dedicated web-servers neglect-
ing negotiation for certain TCP options. This is especially true for the SACK
option. We conclude that even though SACK is deployed by almost all P2P
hosts and web-clients, a number of web-servers still neglect its usage. It is un-
clear to us, however, for which reasons web-server software or administrators
would choose not to take advantage of certain TCP features, like SACK.

Trends and Differences in Connection-Behavior within Classes 201

In the presented study, differences between traffic classes have been found in all
aspects discussed, even if not always expected. The results provide researchers,
developers and practitioners with novel, detailed knowledge about trends and
influences of different traffic classes in current Internet traffic. The data analyzed
was collected on a highly aggregated backbone link during a substantial time
period, thus reflecting contemporary traffic behavior on one part of the Internet.
Besides the general need of the networking and network security community to
understand the nature of network traffic, information about behavior differences
as seen ’in the wild’ can be important when developing network applications,
protocols or even network infrastructure. Furthermore, the results form valuable
input for future simulation models.

References

[1] Moore, A.W., Papagiannaki, K.: Toward the Accurate Identification of Network
Applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54.
Springer, Heidelberg (2005)

[2] Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of
p2p traffic using application signatures. In: WWW 2004: Proceedings of the 13th
Int. World Wide Web Conference, New York, USA (2004)

[3] Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through
simple statistical fingerprinting. Computer Communication Review 37 (2007)

[4] Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer identifi-
cation of p2p traffic. In: IMC 2004: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, Taormina, Sicily, Italy (2004)

[5] Gerber, A., Houle, J., Nguyen, H., Roughan, M., Sen, S.: P2p the gorilla in the
cable. National Cable and Telecommunications Association (2003)

[6] Sen, S., Jia, W.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM
Transactions on Networking 12 (2004)

[7] Mori, T., Uchida, M., Goto, S.: Flow analysis of internet traffic: World wide web
versus peer-to-peer. Systems and Computers in Japan 36 (2005)

[8] Perenyi, M., Trang Dinh, D., Gefferth, A., Molnar, S.: Identification and analysis
of peer-to-peer traffic. Journal of Communications 1 (2006)

[9] John, W., Tafvelin, S.: Heuristics to classifiy internet backbone traffic based on
connection patterns. In: ICOIN 2008: Proceedings of the 22nd International Con-
ference on Information Networking, Busan, Korea (2008)

[10] Plissonneau, L., Costeux, J.L., Brown, P.: Analysis of peer-to-peer traffic on adsl.
In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 69–82. Springer, Heidelberg
(2005)

[11] John, W., Tafvelin, S.: (SUNET OC 192 Traces (collection)),
http://imdc.datcat.org/collection/1-04L9-9=SUNET+OC+192+Traces

[12] John, W., Tafvelin, S.: Analysis of internet backbone traffic and header anomalies
observed. In: IMC 2007: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, San Diego, CA, USA (2007)

[13] Arlitt, M., Williamson, C.: An analysis of tcp reset behaviour on the internet.
Computer Communication Review 35 (2005)

http://imdc.datcat.org/collection/1-04L9-9=SUNET+OC+192+Traces

The Cubicle vs. The Coffee Shop: Behavioral

Modes in Enterprise End-Users

Frédéric Giroire1, Jaideep Chandrashekar2, Gianluca Iannaccone2,
Konstantina Papagiannaki2, Eve M. Schooler2, and Nina Taft2

1 INRIA, France
frederic.giroire@inria.fr

2 Intel Research
first.initial.last@intel.com

Abstract. Traditionally, user traffic profiling is performed by analyz-
ing traffic traces collected on behalf of the user at aggregation points
located in the middle of the network. However, the modern enterprise
network has a highly mobile population that frequently moves in and
out of its physical perimeter. Thus an in-the-network monitor is unlikely
to capture full user activity traces when users move outside the enter-
prise perimeter. The distinct environments, such as the cubicle and the
coffee shop (among others), that users visit, may each pose different con-
straints and lead to varied behavioral modes. It is thus important to ask:
is the profile of a user constructed in one environment representative of
the same user in another environment?

In this paper, we answer in the negative for the mobile population of
an enterprise. Using real corporate traces collected at nearly 400 end-
hosts for approximately 5 weeks, we study how end-host usage differs
across three environments: inside the enterprise, outside the enterprise
but using a VPN, and entirely outside the enterprise network. Within
these environments, we examine three types of features: (i) environment
lifetimes, (ii) relative usage statistics of network services, and (iii) outlier
detection thresholds as used for anomaly detection. We find significant
diversity in end-host behavior across environments for many features,
thus indicating that profiles computed for a user in one environment yield
inaccurate representations of the same user in a different environment.

1 Introduction

Traditional studies of end-user behavior in a network typically have employed
traffic traces collected from network aggregation points (routers, switches, fire-
walls, etc.). In modern enterprise networks, a large sub-population is mobile;
laptop users move seamlessly in and out of the corporate office daily. When out-
side, the end-hosts are used in a number of places such as homes, airport lounges,
coffee shops, etc. The VPN infrastructure of the enterprise ensures that users
are never really cut-off from the resources on the corporate LAN. In fact, with
the growing trend to support flexible telecommuting policies, and the ubiquity

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 202–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users 203

of network connectivity while outside the corporate network, users spend fewer
hours physically within the office cubicle, or at least within a single work locale.

Usage models are quite different inside and outside the office for a variety of
reasons. Infrastructure services (email, directory, and print services) may sim-
ply be unavailable when users are outside the enterprise. Furthermore, locations
outside the enterprise often have noticeable resource limitations (less bandwidth,
less security, et cetera). Thus, users may be hampered from listening to stream-
ing music, or may be wary of checking bank accounts when in a coffee shop.
Conversely, the corporate acceptable usage policy may prohibit peer-to-peer file
sharing applications on the corporate LAN, whereas it may be a staple applica-
tion at home.

Previous work on building user-based profiles, such as in [1,2,3,4,5], does not
consider the modality of the end-host when it is outside the enterprise. We argue
that the growing trend to work outside the office and the distinct “usage-models”
across the different environments, renders the single-view profile of the end-
host (like the one generated from enterprise measurements alone) incomplete.
In this paper, we explore the hypothesis that a single (static) profile for an
end-host is inconsistent and/or incomplete. This has important consequences
across the domains of enterprise security, network design, capacity planning and
provisioning.

We analyze detailed traffic traces from a real corporate enterprise, where the
traces were collected on the end-hosts themselves. This is in stark contrast to
previous enterprise studies based on aggregate traffic, such as in [6,7]. With
these traces, we quantify the differences in behavior of the individual end-hosts
across three different environments in which they operate: (i) inside the corpo-
rate enterprise, (ii) outside but connected through the corporate VPN, and (iii)
outside, meaning disconnected from the enterprise altogether. To the best of our
knowledge, this dataset is the first to capture traffic at end-hosts themselves. By
collecting traces in-situ, rather than in network, we are able to correctly track a
host’s traffic even when its address, location, and/or network interface changes -
avoiding the difficulties posed by DHCP address changes and host mobility that
can thwart the accuracy of in-network traffic traces.

In this initial exploration of the “environment diversity” hypothesis, we fo-
cus on three distinct types of features. These are (i) the median duration of a
user’s presence in each environment, (ii) the relative usage of network services
(destination IP ports) per environment for end-hosts, and (iii) outlier detection
thresholds (the 95th percentile) for TCP/UDP/ICMP connection counts as used
by anomaly detection.

The contributions in this paper improve and clarify our understanding of end-
host user profiles. Although our central hypothesis, i.e., that profiles need to
change across environments, seems obvious, there has been no previous research
quantifying such a hypothesis. This is most likely due to lack of availability of
the right kind of data for such a study. This paper aims to explore this gap in
end-host traffic characterization.

204 F. Giroire et al.

2 Data Description

Our dataset consists of packet traces collected at nearly 400 enterprise end-
hosts (5% desktops and the rest, laptops) spanning approximately 5 weeks. A
novel aspect to these traces is that they were collected on the individual end-
hosts; this provides visibility into the end-host’s traffic even as it leaves the
office environment. Participants in our data trace collection were geographically
distributed; 73% of the users were from the United States, 13% from Asia, 11%
from Europe, less than 1% in each of Israel, Ireland and Latin America. All but
a few users were based out of large offices in metropolitan areas. All the hosts in
the study ran a corporate standard build of Windows XP. We solicited employees
to sign up on a voluntary basis for the trace collection via organizational mailing
lists, newsletters, and so forth. Cash prizes were offered as an added incentive to
participate. Participants explicitly downloaded and installed the data collection
software on their personal machines, thereby giving consent. We estimate that
approximately 4000 employees were solicited, out of which approximately 1 in 10
installed the software. Overall, the data collection effort yielded approximately
400 GB of traces.

The collection software was written as a wrapper around the windump tool that
logs packets in the well-known pcap format. The wrapper tracked changes in IP
address, interface, or environment; upon such a change, windump was restarted
and a new tracefile created. Importantly, every trace file was annotated with
flags indicating the active network interface, the environment and if the logical
VPN interface was active. Once installed, the software ran continuously (when
the machine was on) for 5 weeks. For some users, it ran a few days less as they
did not install the software immediately. Corporate policy strongly discourages
the use of P2P applications, and hence our set of users is unlikely to be using
any such software, even when outside the corporate environment.

To mitigate privacy concerns, we only collected the first 150 bytes of each
packet. We did this simply to be able to infer the actual external destination
when the packets went through the corporate proxy server. After identifying
the actual destination, the payloads were discarded and only the packet headers
retained. The post processing was carried out on a central server where traces
were periodically uploaded. Moreover, all naming information regarding the user
identity or machine identity was discarded upon upload of the traces. All solic-
itation emails contained a complete description of the data to be collected, the
anonymizing procedures, and a disclosure of how the data was intended to be
used. Because of this anonymization, we cannot know which traces came from
engineers, managers, executives, etc.

Importantly, all the end-hosts in the study were personally issued, i.e., there
is a single user per host. This is because in our corporation, each employee is
given one laptop as their primary computer. Some employees, as needed, are
additionally issued desktops; these are primarily used for running tests, simula-
tions, etc. Most employees take their laptops home with them in the evening.
Based on anecdotal evidence, employees generally shy away from allowing family
members or others to use their computers. Hence we expect that the majority of

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users 205

our end-hosts have a single user, even when outside the corporate environment.
Although a single user may use multiple machines, our intent here is not to char-
acterize all aspects of the user at all times. Instead the focus is on all aspects
of how a user uses a particular machine. This is what impacts whether or not a
single machine should switch profiles as it, together with a user, moves between
environments. In that sense, it does not matter what the user does with other
machines.

3 Diversity Across Environments

Users move between three different environments– that we call inside, vpn, and
outside. In the first, inside (the corporate network), the end-host is plugged
into the office LAN almost always with a wired ethernet connection (on occa-
sion connecting to the wireless LAN). In our enterprise, employees use laptops
as their primary computer system, and while at work, these move between a
docking station (at their desk), meeting rooms, corporate cafeterias, etc. In the
vpn environment, users launch a VPN client that “logically” connects them into
the office LAN. Note that here, users could be outside the office (the common
case), or inside where they are on an unsecured wireless network, which exists
solely as a gateway to the VPN, and cannot be used to reach the outside. Finally,
when outside, the user is physically outside the enterprise network, and does
not have any access to any of the enterprise infrastructure services (email, file &
print server, etc.).

As an initial glance into our data, we show the movements of two users between
these environments. In Fig. 1, we show a three week timeline. Here, the width of
the contiguous blocks denote occupancy in that environment. First, we observe
that both users actually use all three distinct environments. Although not shown
here, due to lack of space, this is true for the vast majority of users (there were
very few exceptions). Second, we note that these two users have very different
behaviors in terms of how much time they spend in each environment, and how
frequently they switch between environments. The user on the right is primarily
in vpn, indicating that he may travel considerably or work from home. This user
also tends to leave his VPN connection open during much of the weekend. This
could indicate one of two things, either our user is someone who wants to be able
to respond quickly when email arrives, or someone who perceives (as is common)
that his computer is safer when the VPN is active. In contrast, the user on the
left seems to have a more traditional work and leisure time pattern, using the
inside mode during daytime on weekdays, the vpn mode in the evening on
weekdays, and the outside mode on weekends. Clearly the outside mode for
this user is likely to capture non-office related activities.

What is obvious here is that different users have different needs, at different
times, to access the resources on the enterprise network. Aside from diversity
across users, it is also natural to expect that a single user carries out different
activities in the different modes. We now explore such behavior for a variety of
measures.

206 F. Giroire et al.

Fig. 1. A Tale of Two Users: time-line of two end-hosts over a 3 week window in the
trace collection period

3.1 Environment Lifetimes

Motivated by Fig. 1, we first ask how much time a user spends in each environ-
ment. We define environment lifetime as the duration of contiguous time a user
spends in a particular environment before changing it, restarting the machine
or making it hibernate. Studying this statistic is key to solving many network
design and planning problems. For instance, if one could model the time spent
by users logged onto the VPN, the network operators could provision the VPN
lines efficiently.

Fig. 2 is a set of scatter plots: each of these plots the median environment
lifetime for individual users for two environments. In figure 2(a), each (x, y)
point corresponds to a single user: the x value is the median time for inside,
and y corresponds to outside. Similarly, Fig. 2(b) compares the lifetimes over
outside and vpn, and finally, Fig. 2(c) compares vpn with inside. From these
figures, it is quite clear that there is a marked difference in how long, in a
single sittting, a user stays in each of these environments. Not surprisingly, for
the most part, users spend more time inside as compared to the other two
modes. It is interesting to see how short the environment lifetimes typically are
for the outside mode. The lifetime spent outside can be anywhere from half
to 10 times less than the typical lifetime for either the inside or vpn modes.
An intuitive explanation for this could be that (i) the natural workday itself
constitutes a window in which the employee is likely to stay in a single mode,
and in addition (ii) when outside of work, the user’s attention span (and time)
is likely to be partitioned across mornings, evening, weekends, and interrupted
by other domestic activities (meals, kids, etc.) which lead to shorter durations
spent contiguously in the outside mode.

In comparing the environment lifetimes of inside mode versus vpn mode, we
find interestingly that users exhibit tremendous diversity: some can stay on the
vpn for 3 to 4 times as long as inside; others illustrate exactly the opposite
behavior (points spread equally on both sides of the diagonal in Fig. 2(c). Users
whose points lie near the extreme right side of this plot are likely to be employees
who travel frequently, or who telecommute often, and thus their dominant work
environment is through a VPN. We also observe, that even within the inside
mode, there is great diversity across users - some have working sessions for 8 to 9

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users 207

(a) Avg. Diff: +230% (b) Avg. Diff: +200% (c) Avg. Diff: +85%

Fig. 2. Median Lifetimes in different environments. Median values across users:
outside=43min, vpn=3h45min, inside=6h30min.

hours, while for others the median time is 1 or 2 hours. The main takeaway from
these statistics is that we see two kinds of diversity. There is tremendous diversity
for each individual, in terms of the time the user stays pinned to particular
environments. Not only do users spend vastly different amounts of time in each
environment, but knowing a particular user’s behavior does not reveal much
about the others. Some users will have similar trends (regarding the fraction
of time spent in each environment), whereas others exhibit completely opposite
trends. We thus also see diversity across users for this measure.

3.2 Destination Port Diversity

We now examine whether there are quantitative differences in how network ser-
vices are used in different environments. We use TCP and UDP destination ports
as a useful proxy for “network service” (for the subset of ports we consider this
is reasonable). Because it is impossible to exhaustively examine all destination
ports, we focus on two logically formed groups. First, we study the ports associ-
ated with HTTP and web traffic (80,88,8080, 443) which we term the Web ports,
and second, we look at the ports associated with Windows based services, that
are popular in the enterprise (135,389,445,1025-1029), denoted MS Ports.

The particular metric of comparison that we use is the fraction of connections
corresponding to a particular port (or group of ports). For every user and in
each of the environments, we collect all the connections made to a particular
port and the metric is computed as the ratio of connections on that port to
the total number of connections (in the same environment). This is intended to
capture a notion of what percent of a user’s activities in each environment do
they spend on a given service. Fig. 3 plots this metric for three different port
sets, in each case comparing behavior across the inside and outside modes.
In each scatter plot, a point corresponds to an individual user and the (x,y)
coordinates are the connection fractions corresponding to inside and outside,
respectively.

Fig. 3(a) plots the statistic for http traffic across the inside and outside
environments (we exclude SSL traffic on port 443 from this plot and analyze
that separately). The first thing we observe is the scattering of points over the

208 F. Giroire et al.

entire graph. Importantly, nearly all these points are off the diagonal, indicating
the percent of activity spent browsing the web in the two environments is not
the same for users. Interestingly, there is no “typical user”. For some users,
the fraction of connections they generate that are HTTP is higher when in
inside mode, and for other users, it is the reverse. The set of dense points along
the x-axis indicates users that only use HTTP when inside the enterprise. Such
users may have a second machine at home that they use for general browsing.
Such users stand in contrast to the user at (0.1,0.8) who generates 8 times as
many HTTP connections (as a function of his total traffic) when outside as
opposed to when at work. This could capture a user that prefers to read news,
or pursue other leisure activities, when outside the office.

(a) Web (HTTP) traffic (b) Web (SSL) traffic (c) Microsoft/Windows traffic

Fig. 3. Comparing behavior across inside and outside environments

Similarly, we see in Fig. 3(b) for SSL traffic, that most of the points are off
diagonal. Depending upon the user, the points can be a little or very far away
from the diagonal. On most laptops, SSL constitutes a larger fraction of the total
activity when the machine is inside the enterprise. In Fig. 3(c), we see a dramatic
difference in the use of the MS ports. This is not surprising as many of these are
primarily infrastructure services. The three plots confirm our hypotheses, that
activity level profiles for a user are not the same in different environments. For
some users, the differences may be small (but nonzero), whereas for others, the
differences can be dramatic. We thus advocate that any profiling methodology
that attempts to capture relative traffic measures — of a network service, for a
given user on a particular machine — needs to be environment aware.

3.3 Thresholds on Behavioral Anomaly Detectors

Today, most enterprise end-hosts employ Host Intrusion Detection Systems (H-
IDS) for security purposes. H-IDS systems typically include, among other things,
a suite of anomaly detectors. From recent research, a popular approach to
anomaly detection is to build behavioral profiles and use them to understand
what is and isn’t ”normal” at an end-host. Many anomaly detectors define a
threshold, [8,9,10], which defines the boundary between what is normal and ab-
normal for that host.

We now ask the important question as to whether or not such thresholds would
vary for a given user, across different environments? If so, this would imply that

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users 209

(a) TCP connections (b) UDP connections (c) ICMP traffic

Fig. 4. 95th %-ile values for tcp, udp and icmp protocols. Connection counts in 15
minute windows are used.

the configuration of anomaly detectors also needs to be environmentally-aware,
possibility loading different profiles (i.e., thresholds) into the H-IDS, depending
upon the current user environment.

Some detectors track the number of connections of a particular type within
a time window. Here we will examine this type of feature for TCP connections,
UDP connections and ICMP packet-pair counts. For these 3 protocols, we count
the number of connections in 15 minute windows and build histograms for each
user to indicate how many are likely. We compute thresholds that demarcate the
95th percentile point of these distributions, and consider these as the threshold
value for the anomaly indicator. Considerable work has been devoted to the very
specific problem of selecting suitable definitions of what constitutes an anomaly,
or an outlier, however this topic is well outside the scope of this paper. Instead
we pick a simple definition of an outlier and use it consistently across users and
environments; this facilitates a straightforward comparison of the tail behavior
of users across environments. Here, we study how this value differs across the
environments.

In order to obtain connection records from raw packet traces, we use bro [11]
to reassemble the flows/connections from the packet headers. The 95th percentile
values for the three features are shown in Fig. 4. In each scatter plot, a point
corresponds to the values, in the two environments, for an individual user.

The high-level observation is that points are considerably off diagonal in ev-
ery case. Note that points on or near the diagonal correspond to users that have
approximately the same threshold value in both environments being compared.
For instance, take fig. 4(a): here most of the points are well off diagonal. More-
over, roughly half of the user population lies on either side of the diagonal. The
latter hints at two user classes (of roughly equal population) for whom the value
in one environment dominates. Take the point most extreme to the right: the
95%-ile corresponding to outside is 400, and 120 for inside. Thus, there is a
higher intensity of outgoing TCP connections when in outside, while when in
insidemode there are almost no 15 minute windows in which one sees more
than 120 TCP connections. This is a marked difference. If a security anomaly
detector tracking TCP connections, is configured with a threshold of 120/15min
for all environments, then when the machine is outside a large number of false

210 F. Giroire et al.

positives will be generated. Conversely, if the machine were configured with 400
connections/15min, then when the machine was in insidemode, it would miss
all stealthy attacks. Clearly neither of these is good for all environments.

Fig. 4(b) plots the differences for UDP flows; here, we contrast usage in vpn
and inside. We clearly see that the bulk of the distribution is away from (and
below) the diagonal; this signifies that one sees more UDP flows in vpn, as
opposed to inside. This seems puzzling at first; one would normally expect
more traffic, and correspondingly larger number of UDP flows when inside.
Upon closer inspection, we identified two destination UDP ports that contributed
a large number of small sized flows; one was associated with the VPN client
application and the other with a software compliance checker. The flows from
these ports contributed significantly to the “rightward” skew of the points in
Fig. 4(b). When the same plot was recomputed after filtering out flows from
these two ports, the distribution of the points more closely resembled that in
Fig. 4(a).

Finally, in Fig. 4(c) we compare ICMP traffic across outside and vpn envi-
ronments. We see that there is very little ICMP traffic (to almost none) when the
host is outside. Thus, ICMP traffic is extremely discriminating to the environ-
ment (more than TCP and UDP). This is possibly due to a lot of maintenance
and network management traffic when the machine is on the VPN (a logical
extension of the enterprise). This last observation strongly supports our hypoth-
esis, i.e., that environment awareness is critical. A number of DDoS attacks, and
some OS fingerprinting techniques make use of ICMP probes; large amounts of
ICMP traffic are generally suspicious. In the figure, we see many users generate
200-300 ICMP packets within 15 minutes, and to be effective, an anomaly de-
tection threshold would be set above this level. However, when we do this, we
essentially provide a safe margin of the same amount (of ICMP traffic) when the
host is outside; an infected or compromised machine could send out 200-300
ICMP packets without any fear of being flagged.

We conclude from this section, that because thresholds used by anomaly de-
tectors define a boundary between normal and abnormal traffic, end-user based
security mechanisms need to be designed to be “environment-aware”. This is
because these boundaries do change across environments for the same user.

4 Conclusion

Our study of common user-behavior features illustrates that most users exhibit
significant diversity in how they use their machines in different environments.
We show this on traces collected from end-hosts in an actual enterprise network.
Regardless of whether we are looking at time spent in an environment, volumes
of connections, http traffic, fraction of connections for Microsoft/Windows ser-
vices, the measure can differ by anywhere from twice to 10 times as much in one
environment as compared to another. These results illustrate that a profile com-
puted in one environment will yield an inaccurate representation of user activity
levels in another environment, for the majority of the users.

The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users 211

We showed how this could impact the configuration of anomaly detectors in
H-IDS systems. These findings have implications for a number of other appli-
cations as well, such as resource allocation, VPN tunneling, and even virtual
machine configurations. For example, if tomorrow’s laptops employ different vir-
tual machines for the home and work environments (such as the ”red/green”
VM proposal in [12]), then each VM should be configured to grab the appro-
priate profile before launching. We thus believe that “environmental awareness”
is important for such applications. In the future we plan to study how some
of these applications could be improved by using environmentally-aware profile
information. We also plan to carry out user clustering to determine the minimal
number of common profiles that could be used to capture the entire set of user
behaviors.

References

1. McDaniel, P., Sen, S., Spatscheck, O., der Merwe, J.V., Aiello, B., Kalmanek, C.:
Enterprise security: A community of interest based approach. In: Proc. of Network
and Distributed System Security (NDSS) (Feburary 2006)

2. Tan, G., Poletto, M., Guttag, J., Kaashoek, F.: Role classification of hosts within
enterprise networks based on connection patterns. In: Proc. of the USENIX Annual
Technical Conference 2003, USENIX, pp. 2–2 (2003)

3. Karagiannis, T., Papagiannaki, K., Taft, N., Faloutsos, M.: Profiling the end host.
In: Passive and Active Measurement, pp. 186–196 (2007)

4. Padmanabhan, V.N., Ramabhadran, S., Padhye, J.: Netprofiler: Profiling wide-area
networks using peer cooperation. In: Castro, M., van Renesse, R. (eds.) IPTPS
2005. LNCS, vol. 3640, pp. 80–92. Springer, Heidelberg (2005)

5. Bhatti, N., Bouch, A., Kuchinsky, A.: Integrating user-perceived quality into web
server design. In: Proc. of the 9th International World Wide Web conference on
Computer networks, pp. 1–16. North-Holland Publishing Co, Amsterdam (2000)

6. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look
at modern enterprise traffic. In: Proc. of the Internet Measurement Conference
(IMC), pp. 2–2. ACM, New York (2005)

7. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D.A., Zhang, M.: To-
wards highly reliable enterprise network services via inference of multi-level depen-
dencies. In: Proc. of ACM SIGCOMM, New York, USA, pp. 13–24. ACM, New
York (2007)

8. Biles, S.: Detecting the unknown with snort and the statistical packet anomaly
detection engine (SPADE) Computer Security Online Ltd

9. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection
using sequential hypothesis testing. In: IEEE Symposium on Security and Privacy,
p. 211 (2004)

10. Kreibich, C., Warfield, A., Crowcroft, J., Hand, S., Pratt, I.: Using Packet Symme-
try to Curtail Malicious Traffic. In: Fourth Workshop on Hot Topics in Networks
(HotNets-IV) (November 2005)

11. Paxson, V.: Bro: A system for detecting network intruders in real-time. Comput.
Networks 31(23), 2435–2463 (1999)

12. England, P., Manferdelli, J.: Virtual machines for enterprise desktop security. In-
formation Security Technical Report 11(4), 193–202 (2006)

A Two-Layered Anomaly Detection Technique
Based on Multi-modal Flow Behavior Models

Marc Ph. Stoecklin1, Jean-Yves Le Boudec2, and Andreas Kind1

1 IBM Zurich Research Laboratory
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract. We present a novel technique to detect traffic anomalies based on net-
work flow behavior in different traffic features. Based on the observation that
a network has multiple behavior modes, we estimate the modes in each feature
component and extract their model parameters during a learning phase. Observed
network behavior is then compared to the baseline models by means of a two-
layered distance computation: first, component-wise anomaly indices and sec-
ond, a global anomaly index for each traffic feature enable effective detection of
aberrant behavior. Our technique supports on-line detection and incorporation of
administrator feedback and does not make use of explicit prior knowledge about
normal and abnormal traffic. We expect benefits from the modeling and detection
strategy chosen to reliably expose abnormal events of diverse nature at both detec-
tion layers while being resilient to seasonal effects. Experiments on simulated and
real network traces confirm our expectations in detecting true anomalies without
increasing the false positive rate. A comparison of our technique with entropy-
and histogram-based approaches demonstrates its ability to reveal anomalies that
disappear in the background noise of output signals from these techniques.

1 Introduction

Safeguarding availability and reliability of resources in computer networks poses a ma-
jor challenge to network administrators. Conditions detrimental to a network’s perfor-
mance need to be detected in a timely and accurate manner. Such undesirable conditions
are usually termed network anomalies; they include attacks and abuse of resources, sig-
nificant changes of user behavior as well as failures of mission-critical servers and de-
vices. Many of these conditions cannot be described by means of explicit signatures
or differ slightly from known anomaly patterns though. Signature-based intrusion de-
tection systems are thus likely to fail to detect them. Behavior-based anomaly detection
techniques are a complementary approach to address these shortcomings. Their inherent
assumption relies on the fact that anomalies are rarely observed in traffic and that if an
abnormal condition is present, certain characteristics of the network behavior change.
An anomaly-based detection system establishes baseline profiles of the normal behavior
of a network and flags perturbations thereof as abnormal.

Anomaly detection systems operating at the network flow level have been widely dis-
cussed in the literature. In general, they assume that every traffic event leaves traces in
distributions of flow level traffic features such as packet header fields (e.g., IP addresses,
port numbers) and flow properties (e.g., the number of packets and octets transmitted,

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 212–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Two-Layered Anomaly Detection Technique 213

flow duration). A feature distribution consists of the (normalized) number of flows ob-
served in each component of the feature during a time interval. Many existing tech-
niques apply a pre-processing step to a distribution (e.g., take its sample entropy) to
obtain an estimate of its properties. However, precious information may be lost during
the pre-processing before being presented to detection algorithms. Each component of
a feature distribution is subject to variation and may exhibit multiple normal behavior
modes (e.g., depending on time of day). Early summarization of feature distributions is
therefore likely to miss such individual behavior patterns.

In this paper, we propose a flow-based technique to perform anomaly detection
on two abstraction layers by taking the dynamic nature of individual components of
traffic features into account. Our technique does not incorporate prior knowledge of
normal and abnormal traffic characteristics and is therefore not bound to detect spe-
cific network anomalies. Instead, it makes use of positive learning samples to mine for
normal behavior modes and to extract multi-modal model parameters in each compo-
nent in an unsupervised manner. To compare observed network traffic with the learned
modes, we propose a non-linear correlation system that finds the best matching model in
each component. The resulting component-wise distances permit a twofold detection:
(i) component-wise anomaly indices and, by aggregating the distances, (ii) a global
index for each traffic feature. This duality enables detection of anomalies that affect
isolated (e.g., host failures, DoS attacks) as well as multiple components (e.g., network
scans, worm outbreaks). The modeling technique supports near real-time anomaly de-
tection and on-line incorporation of administrator feedback to gradually reduce the false
positive rate. To classify anomalies on demand, in-depth analysis of suspicious events
is enabled by providing deviation vectors of the traffic features for decision support.

We validate our detection technique on real network traces collected in two produc-
tion networks and a simulated dataset. We compare the technique experimentally with
entropy- and histogram-based detection approaches and demonstrate its ability to detect
anomalies that affect isolated components more reliably, thanks to late summarization
in the process chain and individual component modeling. Thus, we believe that our
technique can be a valuable component of a global detection system.

The remainder of this paper is organized as follows. Section 2 reviews related work
and positions our contribution. In Sect. 3 we report our observations that led us to
this approach. The anomaly detection technique is presented and discussed in detail in
Sect. 4. In Sect. 5 we present the results of the evaluation and comparison.

2 Related Work

Anomaly detection has been extensively studied in recent years. Most prior work exam-
ines network traffic for specific anomaly patterns such DoS attacks, worm outbreaks,
and network scanning and flooding. Other proposed techniques analyze overall traffic
volume behavior, e.g., by applying edge detection [1], wavelet based signal analysis [2],
or forecasting techniques [3]. Based on the assumption that anomalies are reflected as
significant changes in traffic volumes, they flag peaks and shifts in volumes as suspi-
cious events. Traffic volumes, however, comprise natural bursts and variability that are

214 M.Ph. Stoecklin, J.-Y. Le Boudec, and A. Kind

due to legitimate applications (e.g., backups, update rollouts, distributed computing),
and therefore these approaches are likely to generate many false positives.

Lakhina et al. [4] showed that, due to the intrinsic low dimensionality of network
flows, IP header feature measurements can be separated into disjoint subspaces that
represent normal and abnormal behavior. They apply an information-theoretic analysis
on feature distributions of IP addresses and service ports using entropy as an estimator
of the characteristics [5]. Entropy describes the concentration and dispersal of a distri-
bution in a single number and is a useful indicator for many traffic anomalies. However,
entropy lacks the ability to discern differing distributions that possess the same amount
of uncertainty. Also, divergence from a baseline value in single components may have
little impact on the distribution’s entropy and component-wise baselining is not ap-
plicable to entropy-based approaches. Consequently, observed network behavior may
significantly deviate from usual behavior without being reflected by entropy.

Closer to our work, some approaches circumvent this shortcoming by comparing
observed distributions to baseline distributions. Gu et al. [6] use relative entropy as a
comparison metric with a single baseline and divide observed packets into classes ac-
cording to layer 4 protocols, service ports, and a selection of particular TCP flags (SYN
and RST). Our approach is agnostic with respect to characteristics that are prevalent
during anomalies and does not use histogram-based traffic models. Hence, we expect
to detect a broader set of network anomalies and higher sensitivity in identifying de-
viating behavior in individual components. Venkatamaran et al. [7] developed a frame-
work to transform arbitrary types of data sources (SNMP measurements, syslog output,
NetFlow data) into constant-spaced real-valued time series. During the learning phase,
they infer model parameters from the time series based on a range of assumptions (e.g.,
maximum and average value, percentile, etc.) and determine their confidence. In our
work, we focus on time series of vectors with multiple components per feature, instead
of one-dimensional time series, and assume multi-modal behavior patterns in each of
them. We employ a two-layered detection technique that flags anomalies which affect
both isolated components and multiple components in a feature.

3 Background and Motivation

Flow records exported by traffic meters (e.g., routers, switches) provide a large set of
statistics of observed network flows. The statistics relate to different traffic features
that include, for example, IP addresses, service ports, the number of packets and bytes,
TCP flags, and start and end time of a flow. Each feature consists of a set of associated
components, i.e., the actual values the statistics take. For example, port numbers 80/http
and 22/ssh are components of the “service port” feature. When collecting flow records
over a period of time, the total number of flows observed in each component can be
counted and represented in a vector. We call such a “snapshot” of network traffic a
flow-count histogram1. Figure 1 depicts a flow-count histogram representing the usage
of service ports 1–200 observed in a production network during a 5-min period.

By monitoring a network over a long period of time, a time series of flow-count
histograms can be collected for a given traffic feature; each histogram is a statistic

1 We use the term histogram because continuous-type features are separated into bins.

A Two-Layered Anomaly Detection Technique 215

50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

service ports

flo

w
s

Fig. 1. Flow-count histogram of service
ports 1–200 in one 5-min period

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

flows observed [per 5−min time period]

ob

se
rv

at
io

ns

Fig. 2. Distribution of flow counts in 5-min
periods for service port 22/ssh over one day

of the observed traffic over a sub-period of fixed duration. Instead of focusing on the
histograms, we are now interested in the time series of flow counts in each component
or, more precisely, the corresponding frequency distribution of the counts, see Fig. 2.
By analyzing these flow-count distributions, we observed that the components generally
exhibit multiple behavior modes depending, for example, on time of day, maintenance
operations, or application and protocol states. Based on this observation, our anomaly
detection technique extracts and models these behavior modes in each component.

We realized that anomalies affect the flow counts in one or more components of
different traffic features and cause deviations from the models. For example, a worm
outbreak may increase the flow counts in several service ports and IP addresses whereas
a server outage leads to a decrease of the server’s IP address flow counts.

4 The Detection and Learning Technique

Our technique consists of two parts: a learning phase and a detection phase. Both phases
in turn are composed of two steps. In the learning phase, positive (anomaly-free) train-
ing data is analyzed and model parameters of the behavior are extracted in an unsuper-
vised fashion. Then, based on the learned models, the detection logic is trained. In the
detection phase, observed network behavior is compared to the baseline models and a
detection operation is performed.

In general, acquiring entirely anomaly-free data in the learning phase is impractical;
we therefore assume that the training data may contain a few anomalies. Consequently,
we strive for a model extraction algorithm that is robust to the presence of a small
fraction of deviating observations.

4.1 Notation

The detection technique operates on a set F of selected network features. Each feature
f ∈ F consists of a finite number of components cf

i with i = 1, . . . , nf . The value nf

represents the dimensionality of the feature space of f . For the sake of simplicity and
without loss of generality, we will restrict ourselves to a single feature f henceforth and
omit superscripts. A vector h = (h1, . . . , hn) denotes a flow-count histogram where hi

is a non-negative count of flows associated to component ci. Each component ci has a
baseline set Θi = {θ1, . . . , θk} that represents its learned behavior modes. A behavior
mode θj is expressed by two model parameters: a mean value mj of the observed flow
counts in the mode and a scaling factor sj reflecting their spread around mj .

216 M.Ph. Stoecklin, J.-Y. Le Boudec, and A. Kind

Fig. 3. Left: Computation of component-wise distances and a global distance of a flow-count
histogram h = (h1, . . . , hn) at time t in a given traffic feature (left). Right: A correlator element
selects di as the distance to the closest behavior mode θ ∈ Θi with respect to hi in component i.

4.2 The Detection Phase: A Non-linear Dual-Layered Detection Technique

Flow information is collected and divided into disjoint time intervals of fixed length ΔT .
For each interval t, a flow-count histogram h is constructed. The processing of a his-
togram h begins with a matching operation performed in each component of h individ-
ually as depicted in Fig. 3 on the left. A non-linear correlator element (on the right) takes
the flow count hi in component i as an input and outputs the distance di to the closest
known baseline model in the baseline set Θi. We employ a symmetrized version of the
Kullback-Leibler (KL) distance that we found to have desirable properties in exposing
anomalies; particularly decrease of flow counts with respect to the baseline value (e.g.,
in case of a failure) is penalized aggressively because of the asymmetry of the distance
function around the baseline. The distance di between the observation hi and the base-
line set Θi is defined as di = minθ∈Θi DsKL(hi, θ) = min{m,s}∈Θi

1
s (hi − m) log hi

m .
In each component i of f , the anomaly index distance di is compared to a threshold
value τi that has been derived during the learning phase. If di exceeds τi, then an ab-
normal deviation has been found in component i.

The component-wise distances di form an n-dimensional distance vector in the fea-
ture at time t; we term this data structure a deviation vector. It acts as an input to a
summarization function A that calculates a global distance D = A(d1, . . . , dn) over all
component-wise distances in feature f . We compute a weighted sum of the di, using
the inverse of the thresholds τi as weights, to normalize the average contribution of
each component. The index D is compared to the global threshold T for f . Aberrant
behavior in the network feature f at time t is flagged if D exceeds T .

4.3 The Learning Phase: Training and Testing of Baseline Behavior Modes

The training data is split into two datasets: a training and a testing set. In a first learning
step, our technique searches for behavior modes in the training set and extracts their
model parameters. Then, the models are tested against the testing set to derive mean-
ingful threshold values.

A natural way to derive models for flow-count distributions (see Fig. 2) is to con-
sider them as the outcome of a finite set of random variables generating multi-modal

A Two-Layered Anomaly Detection Technique 217

data. In the literature, this is referred to as finite mixture models, e.g., Gaussian mixture
models if the variables were normal, and the Expectation Maximization (EM) algorithm
is commonly applied to estimate the parameters. However, the EM algorithm has two
drawbacks with respect to our requirements: it is based on prior knowledge of the num-
ber of parameters to be found and, by attempting to find the best global fit of the data,
it takes potential outliers into account.

We chose a deterministic technique that mines for local maxima in flow-count den-
sities by means of a filtering approach, inspired by a density-based clustering algorithm
that is robust to noise [8]. Our adapted algorithm iteratively scans the distribution, start-
ing from low flow counts, and forms local groups of neighbors in regions of similar
density. An imposed condition on the minimum number of observations per group, i.e.,
a small fraction g of the training data size, removes groups that are likely to be formed
by abnormal events.

For each component i, we derive a threshold τi indicating the limit of acceptable
deviation from the learned behavior modes. The first step of the detection phase (the
distance computation) is run on the testing data to obtain the anomaly indices in each
component. Then, while keeping in mind that some abnormal events may be present in
the testing set, the (1−g)th percentile of the set of deviations is used as a heuristic for the
thresholds. The global threshold T is computed in the same way as the component-wise
thresholds, but on the global anomaly indices.

4.4 Discussion

In the first step of the detection phase, the technique computes the distances to the
learned models and selects the smallest distance in each component individually. Im-
plicitly, this refers to an on-the-fly construction of a dynamically composed baseline
histogram with the closest known behavior mode placed in each of its component. Note
that all learned models have the same weight in the selection process, independently of
the number of observations in the learning phase.

We identified many benefits from operating on two abstraction layers. The compo-
nent-wise analysis measures the coherence of the flow counts observed in each compo-
nent i with the learned behavior modes in Θi. This indicator enables the detection of
anomalies that affect single components, e.g., a host or service failure or the presence
of an abnormally large number of flows with similar properties in certain features (e.g.,
Spam relaying, DoS attacks). However, some anomalies are likely to contribute only
small deviations in many components and are therefore not detected at the component-
wise detection layer. Feature-wise analysis is desirable to expose these deviations by
accumulating the component-wise distances to a single global index. For example, a
port scan will add a small increase in the flow counts of the ports scanned. While there
is no substantial deviation from the normal behavior measured in each port, its presence
is revealed by a large deviation in the global anomaly index of the ports.

Deviation vectors provide a detailed view on the measured deviations and enable in-
terpretable analysis of suspicious activities to support operator decisions. By visually in-
specting deviation vectors of features in which an alarm has been raised, the nature of the
changes can be determined. Incorporation of administrator feedback, selective, and con-
tinuous model updates in the case of a false alarm is facilitated by the component-wise

218 M.Ph. Stoecklin, J.-Y. Le Boudec, and A. Kind

modeling strategy. The detection technique is suitable for on-line, near real-time ano-
maly detection, operating on traffic statistics from the preceeding time period.

5 Evaluation

We evaluate the technique on real and simulated network traces and compare it with
entropy- and histogram-based approaches. We used three network traces in the evalua-
tion: (i) Two weeks of NetFlow traces of internal and external traffic in an average-sized
production network, (ii) ten days of NetFlow traces collected in a data center, and (iii)
a publicly available simulated packet trace known as the DARPA Intrusion Detection
evaluation 1999 dataset (DARPA IDeval) [9]. Even though we are aware of the many
criticisms of the DARPA IDeval dataset in the literature, we use the labeled anomaly
events to illustrate how the detection technique behaves in different network features.
The NetFlow traces were stored in 5-minute intervals; we transformed the packet trace
into the same format.

5.1 Results of the Evaluation

Production network. We used the first week of the traces as training data; two work-
ing days and one weekend day were selected as the training set, the remaining days
as the testing set. As we do not assume the training data to be anomaly-free, we em-
ploy a robustness fraction of g = 0.02. By this, we enforce that each behavior mode
consists of at least 18 (1.5 hours) from totally 864 observations in the training set. The
features analyzed include service ports 1–1023, four IP class C subnets of critical server
machines, the average packet size per flow, and TCP flags.

In Fig. 4, we depict the global deviations D(t) measured in service ports and IP ad-
dresses, normalized by maxt D(t). A dashed line represents the global thresholds T
in both features. In several time periods D(t) exceeds T . On Thursday, for example,
a large spike in both features is observed. The deviation vector in the service ports of
that period, depicted in Fig. 5, shows a typical port scan pattern; in the IP address vec-
tor, a set of spikes indicates the machines scanned. On Tuesday, a deviation in several
consecutive intervals is detected in an IP address component: a host’s address appears
significantly less frequently with respect to its baseline. The network administrator con-
firmed our observation of a two-hour outage of a mail server during that period.

Data center. The data center traces were exported by a router transferring more than 6
TB a day with average sending and receiving rates of 550 Mb/s and 100 Mb/s, respec-
tively. Because of the homogeneous nature of the traffic mix in the data center, our main
interest in these traces is the baselining of the behavior of individual server machines.

We trained the models for different IP address ranges from all days. A manual in-
spection of the flow-count distributions showed that the observed hosts generally exhibit
2 to 10 distinct behavior modes. The model extraction algorithm effectively determined
these regions of high concentration; however, its conservative implementation extracted
sometimes a few modes more than required.

DARPA IDeval. We used the “inside” network traces of the first week to establish
the baseline models for service ports 1–1023, the 172.16.0.0/16 subnet, TCP flags, and

A Two-Layered Anomaly Detection Technique 219

Mon Tue Wed Thu Fri Sat Sun
0

0.5

1
Service ports (1 − 1023)

Mon Tue Wed Thu Fri Sat Sun
0

0.5

1
IP adresses

Fig. 4. Deviations in detection dataset of the
“Production network” traces

0 200 400 600 800 1000
0

20

40

60

service ports

over threshold
below threshold

Fig. 5. Deviation vector in service ports on
Thursday at 14:20 (“Production network”)

09:00 12:00 15:00 18:00 21:00 24:00 03:00
0

0.5

1
Service ports (1 − 1023)

09:00 12:00 15:00 18:00 21:00 24:00 03:00
0

0.2

0.4

IP addresses (172.16.0.0/16)

09:00 12:00 15:00 18:00 21:00 24:00 03:00
0

0.1
TCP flags

09:00 12:00 15:00 18:00 21:00 24:00 03:00
0

0.5

1
Octets per packets

Fig. 6. Deviations on Tuesday, Mar 9, in the
“DARPA IDeval” dataset

the average octet-per-packet ratio. As this data is known to be anomaly-free, we set
g = 0.001, i.e., expecting 0.1 % of outliers. The advantage of the DARPA IDeval dataset
is the availability of a “ground truth” of labeled anomalies for three weeks. We ran the
detection phase on this data to verify whether the technique reliably reveals the network-
related attacks and to evaluate how the anomalies affect the features considered.

In Fig. 6, the global anomaly indices for each feature on Tuesday (March 9) of the
second week are depicted. While the port sweep attack on a single host starting at 08:44
is detected in the service ports and TCP flags (deviations in FIN and ACK/RST), it does
not induce a significant global deviation in the IP addresses because of the moderate rate
of about 1 scan per second. More interesting are the deviations at 14:25 in the service
ports, IP addresses, and octets-per-packet ratios. Abnormally many flows use service
ports 25/smtp and 53/dns and have specific octet-per-packet ratios. Our initial suspicion
was confirmed by consulting the raw packets and the “ground truth”: a vast flood of
mail deliveries of similar size to a single recipient caused the mail server to look up the
various sender host names at the DNS server. This event is labeled as “mail bomb” in
the annotation.

All documented network-related attacks have been found with one repeating false
positive event: a host tries to access a server on a closed port with several connection
attempts in succession, generating deviations in the TCP flags SYN and ACK/RST. We
suspect that this results from a possible application misconfiguration on the host.

220 M.Ph. Stoecklin, J.-Y. Le Boudec, and A. Kind

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Normalized entropy

clean data
original data

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Normalized Histogram Distance

clean data
original data

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Component−wise modeling

clean data
original data

Fig. 7. Comparison of deviation signals for
service ports of a port scan anomaly

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Normalized entropy

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Normalized Histogram Distance

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

0.5

1
Component−wise modeling

Fig. 8. Comparison of the deviation signals
for IP addresses of a server failure

5.2 Comparison with Entropy- and Histogram-Based Approaches

Entropy-based anomaly detection techniques quantify the nature of feature distributions
(concentration or dispersal) by means of their information entropy. To mine for changes
in time series of entropy values, various methods have recently been proposed, includ-
ing PCA [5] and Kalman filters [10]. Histogram-based techniques extract representative
feature distributions during a learning phase and the distance of an observed histogram
to the closest learned model is analyzed in the detection phase. Ideally, each model
describes a state of the network. In this section, we compare the output signals of the
three techniques and use two traces from which we know that they contain abnormal
conditions: (i) port scans on several hosts and (ii) a failure of a server.

Port scans. We constructed a “clean” trace by removing all activities generated by the
scanner. By this, we obtain an ideal trace for learning purposes as well as for quantifying
the deviation in the output signals. Figure 7 depicts the output signals of the service port
distributions in the three approaches. In all approaches, a clear difference with respect
to the “clean” trace can be observed during the scanning period. However, we observed
that modeling of feature distributions in the histogram-based approach may entail in-
creased variability in the background noise as a consequence of achieving a best fit over
the entire feature. Component-wise modeling and dynamic histogram construction lead
to more accurate baselines and reduce the false positive rate.

Server failure. The output signals of the three approaches for IP address distributions
are depicted in Fig. 8. In the entropy- and histogram-based approaches, the change in
the detection signal is barely noticeable. In the entropy case, we observed that changes
of flow counts in a single component are weakly reflected in the distribution’s properties
and, thus, vanish in the normal variability of the entropy signal. The histogram-based
approach’s failure to distinguish the outage relates to a higher base distance that exists
throughout the detection period in many components. Therefore, the absence of the
server traffic adds only a small additional deviation to the output signal.

A Two-Layered Anomaly Detection Technique 221

6 Conclusion

We have proposed an anomaly detection technique that takes the individual flow-count
behavior of feature distribution components into account. The behavior modes are de-
termined and corresponding models are extracted from assumed anomaly-free traces
in an initial learning phase. In the detection phase, for every observed flow-count his-
togram of a feature, a two-layered distance computation is applied that constructs the
best matching baseline histogram dynamically by placing the closest learned model pa-
rameters in each component. Deviation from these models is measured in each compo-
nent as a component-wise index to detect anomalies that affect individual components.
A global anomaly index of a feature is obtained by aggregating the distances over all
its components; this index is a particularly useful indicator of aberrant traffic behavior
affecting multiple components while generating only small deviations in each of them.

We showed that the detection technique flags various anomaly events with high pre-
cision and provides meaningful deviation vectors of the relevant time periods. A com-
parison with entropy-based approaches showed that with summarization of histograms
during pre-processing valuable information about individual component behavior may
be lost. In histogram-based modeling techniques, we saw that the state of a network can-
not be captured with global feature distribution models. The proposed component-wise
modeling strategy facilitates updates of the models and enables better interpretability
of abnormal events to support decisions for network administrators.

References

1. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based Change Detection: Methods,
Evaluation, and Applications. In: ACM IMC 2003, pp. 234–247 (2003)

2. Barford, P., Kline, J., Plonka, D., Ron, A.: A Signal Analysis of Network Traffic Anomalies.
In: Internet Measurement Workshop, pp. 71–82. ACM, New York (2002)

3. Brutlag, J.D.: Aberrant Behavior Detection in Time Series for Network Monitoring. In:
LISA, pp. 139–146 (2000)

4. Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-wide Traffic Anomalies. In: ACM
SIGCOMM 2004, pp. 219–230 (2004)

5. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies using Traffic Feature Distributions.
In: ACM SIGCOMM 2005, pp. 217–228 (2005)

6. Gu, Y., McCallum, A., Towsley, D.F.: Detecting Anomalies in Network Traffic Using Maxi-
mum Entropy Estimation. In: ACM IMC 2005, pp. 345–350 (2005)

7. Venkataraman, S., Caballero, J., Song, D., Blum, A., Yates, J.: Black Box Anomaly Detec-
tion: Is It Utopian? In: Fifth Workshop on Hot Topics in Networks (HotNets-V) (2006)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: ACM Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 226–231 (1996)

9. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA Off-line In-
trusion Detection Evaluation. Computer Networks 34(4), 579–595 (2000)

10. Soule, A., Ringberg, H., Silveira, F., Rexford, J., Diot, C.: Detectability of Traffic Anomalies
in Two Adjacent Networks. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM
2007. LNCS, vol. 4427, pp. 22–31. Springer, Heidelberg (2007)

Malware in IEEE 802.11 Wireless Networks

Brett Stone-Gross1, Christo Wilson1, Kevin Almeroth1, Elizabeth Belding1,
Heather Zheng1, and Konstantina Papagiannaki2

1 Department of Computer Science,
University of California, Santa Barbara

{bstone,bowlin,almeroth,ebelding,htzheng}@cs.ucsb.edu
2 Intel Research
Pittsburgh, PA

dina.papagiannaki@intel.com

Abstract. Malicious software (malware) is one of the largest threats
facing the Internet today. In recent years, malware has proliferated into
wireless LANs as these networks have grown in popularity and preva-
lence. Yet the actual effects of malware-related network traffic in open
wireless networks has never been examined. In this paper, we provide the
first study to quantify the characteristics of malware on wireless LANs.
We use data collected from the large wireless LAN deployment at the
67th IETF meeting in San Diego, California as a case study. The mea-
surements in this paper demonstrate that even a single infected host can
have a dramatic impact on the performance of a wireless network.

1 Introduction

There has been ample research on the separate topics of malware and wireless
networks. A majority of malware research has focused on propagation model-
ing, detection, and application characterization [3][5][8]. The impact of malware
induced traffic on the performance of wired networks has been largely ignored,
because the effects of additional ingress and egress flows are mitigated by faster
access technologies and more bandwidth. However, limited resources in wireless
networks and the inherently broadcast nature of the medium creates valid con-
cerns when considering network performance. This work analyzes these effects
which include MAC layer retransmissions, management frame collisions, and an
overall performance degradation due to increased congestion.

Wireless networks have been examined through experimental measurements
and simulations. Many studies have assessed wireless performance on deployed
networks [1][9][10][13]. Rodrig et al. captured wireless traffic and analyzed the ef-
ficiency of the 802.11 protocol [12]. They present how the efficiency significantly
degrades during periods of high contention with the majority of packets requir-
ing link layer retransmissions due to packet loss and transmission errors. These
results are consistent with our own findings. Jardosh et al. examined methods
for detecting congestion in large-scale wireless networks [7]. They propose that
monitoring the channel busy time is a good measure of channel utilization. In

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 222–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Malware in IEEE 802.11 Wireless Networks 223

addition, network throughput and goodput can be used as metrics to identify
congestion. Heusse et al. [6] found that anomalies in current multi-rate adap-
tion algorithms of 802.11 cause an overall reduction in network performance,
especially during periods of congestion. We also observed this behavior during
several malware attacks. What all of these studies lack is an accounting of the
extraneous packets that are injected into the network by malicious software.

We are the first to quantify, characterize, and correlate the effects of malicious
network traffic on wireless performance. We believe that analyzing the effects
malware can have on wireless networks is important. The applications of our
research can lead to more realistic traffic models, justify the need for network
protection, and improve the quality of service in wireless networks. In addition,
recognizing these effects are beneficial in wireless network diagnostics [2][4].

The remainder of this paper is organized as follows. Section 2 describes our
data collection and filtering process. In Section 3, the data sets are summarized.
The effects that malware produced in the wireless network are examined in
Section 4. Section 5 concludes with an overall summary of our findings.

2 Data Collection and Filtering

The wireless network deployed at the 67th IETF meeting was unusual due to
both its large size and heavy utilization. The network provided an excellent op-
portunity to analyze the characteristics and prevalence of malware. With more
than 1,700 unique users on the network, the resulting trace provided the equiva-
lent of a small Internet Service Provider’s (ISPs) perspective of malware attacks.
Details of our data collection process at the IETF meeting and our subsequent
malware identification process are discussed in this section.

2.1 Experimental Setup

The on-site network at the IETF meeting consisted of 30 802.11 a/b/g access
points routed to a 44.7Mbps T3 backhaul link to the Internet. Participants uti-
lized the Dynamic Host Configuration Protocol (DHCP) to obtain a publicly
routable IP address in the 130.129/16 address range. No MAC layer encryp-
tion, Network Address Translation (NAT) devices, or firewalls were present in
between the access points and the backhaul connection.

We collected data from two vantage points:

1. Trunk Data Set : Full data traces were recorded from a trunk mirror port on
the router which managed the backhaul Internet link.

2. Wireless Data Set : Wireless sniffers were strategically positioned around the
meeting near popular access points to record wireless traffic, as shown in
Figure 1. Each wireless sniffer consisted of an IBM or Toshiba laptop with
an Atheros chipset. Each sniffer was configured in RFMon mode to capture
all management and data frames. Based on previous measurements [7], we
estimate that each sniffer recorded more than 90% of frame transmissions.

224 B. Stone-Gross et al.

= AP
= AP + Sniffer

Grande Ballroom

Harb
or I

sla
nd Ballr

oom

Fig. 1. Locations of wireless APs and data collection sniffers at the IETF meeting

Over 511 gigabytes of uncompressed data were collected at the trunk port along
with another 131 gigabytes of uncompressed data recorded by the wireless snif-
fers. The data collected from the trunk port included some packets destined for
a small on-site terminal room. This location was the only place in which atten-
dees could access a wired Ethernet connection. We were able to identify traffic
from the terminal room from the fixed set of IP addresses assigned by DHCP,
by comparing IP addresses in both traces, and confirmed that less than 10% of
the traffic observed in the trunk data set came from the terminal room.

2.2 Filtering Heuristics

In order to isolate malicious traffic from the normal flows present in the data
set, we created a set of heuristic-based filters to detect abnormal behavior. We
designed the filters around a set of assumptions about known malware behavior
patterns, and then constructed an identification and measurement system. We
observed that malware’s traffic exhibits two primary types of traffic patterns:

– Scanning behavior : Worms and Trojans are typically spread by scanning
large sequences of IP addresses on known ports. The scans search for vulner-
able or weakly protected services (e.g., default, weak or non-existent pass-
words) that can be exploited.

– Flooding behavior : Malware is often directed to attack other computers by
flooding them with connection attempts (e.g., a SYN flood).

One of the key characteristics of scanning behavior is that the machine in ques-
tion will contact an abnormally large number of different IP addresses. This
behavior will occur repeatedly on known vulnerable ports. Flooding behavior
is best characterized as one machine initiating an unusually large number of
connection attempts to one particular IP address.

Malware in IEEE 802.11 Wireless Networks 225

For both behavior patterns, malicious traffic flows are often unidirectional
and almost always short-lived. In the former pattern, scan attempts are often
directed at unused IP addresses, or towards machines with firewalls which results
in unidirectional traffic. SYN floods are by definition, unidirectional. If a scanner
does manage to find a live target, it will attempt to either infect the host or guess
the host’s password, both of which are relatively brief affairs. Attempts may be
repeated, but the connection is broken and reset each time, leading to bursty
traffic flow characteristics. Another important consideration is that certain forms
of malware including adware, keyloggers, and open relay proxies generate smaller
amounts of network traffic and are consequently harder to identify. Therefore,
the rest of our results should be considered as a lower bound of malware present.

3 Wireless and Trunk Data Analysis

Before we examined our wireless data set, we first developed a more general
characterization of the network activity at the IETF using the trunk data set.
Besides deriving network statistics, we used the trunk data set as the basis to
identify malicious flows, which we later correlated with the more restricted data
set obtained from the wireless sniffers.

3.1 Malicious Traffic Analysis

We begin by analyzing the malicious traffic present in the trunk data set. There
were 109,740 unique external IP addresses in the trace, and 3,941 were implicated
in malicious behavior, or about 3.6%. We identified 1,786 internal IP addresses,
and out of this set 14 (0.8%) showed indications of malicious activity.

Overall, 272,480,816 egress TCP packets were sent over the course of the
meeting, of which 4,076,412 (1.5%) were involved in malicious flows. 284,565,595
ingress TCP packets were received, of which 2,765,683 (1.0%) were malicious.
In general these results appear consistent with a study by Kotz and Essien [9].
They recorded observing 0.9% of TCP traffic being sent to Microsoft RPC port
445, which they correlate with denial-of-service attacks against Windows 2000
machines. In our case, since we quantify scanning as well as flooding attacks
across multiple services, our results represent a more complete view of overall
malicious traffic percentages.

Although malicious TCP traffic accounted for an average of 1% of the total
traffic at the IETF meeting, it accounts for a much larger percentage of TCP
control traffic, defined as SYN and SYN-ACK packets. Thus, when data pack-
ets are not considered, the magnitude of malicious traffic becomes much more
pronounced (as displayed in Figures 2 and 3). From this data, malicious flows
are shown to account for a substantial portion of total TCP connection requests,
occasionally rising above 50%. During a massive SSH password cracking attempt
on Friday morning, nearly 100% of all TCP control traffic was part of the attack,
and is clearly evident in Figures 2 and 3. In addition to conducting an analysis
of malware behavior within the IETF network, we also attempted to isolate what

226 B. Stone-Gross et al.

Mon 10:30 Tue 10:30 Wed 10:30 Thu 10:30 Fri 10:30
0

20

40

60

80

100

M
al

ic
io

u
s

(%
)

Incoming TCP Control Traffic

Fig. 2. Instantaneous percentage of in-
coming malicious TCP traffic

Mon 10:30 Tue 10:30 Wed 10:30 Thu 10:30 Fri 10:30
0

20

40

60

80

100

M
al

ic
io

u
s

(%
)

Outgoing TCP Control Traffic

Fig. 3. Instantaneous percentage of
outgoing malicious TCP traffic

effects such traffic had on the wireless medium itself. Although we were able to
identify many attacks in the trunk data set, pinpointing these same attacks in
the wireless data set proved to be difficult since our sniffers did not observe all
wireless LAN traffic across all access points. From the set of malicious flows that
were detectable in the wireless data sets, many proved unsuitable for analysis.
The reasons include the following:

1. Ingress attacks that involved only a few total packets.
2. Egress scanning attacks which, though long lived, only generated a few pack-

ets per second.
3. Ingress port scans that were distributed over hosts on all 30 access points.
4. Backscatter from DoS attacks throughout the Internet that produced unso-

licited TCP SYN ACKs, resets, and ICMP replies [11].

Although the preceding cases were not ideal for analyzing MAC characteristics,
these attacks still had an overall effect as more than 1% of all packets were
malicious and present in the wired and wireless data sets. The most substantial
effects on wireless performance were produced by malicious flows that originated
within the network. Therefore, we examined several of these egress flows under
light and heavy channel utilization.

4 Quantifying the Impact of Malware

As previously discussed in Section 3.1, malicious egress flows were well suited for
our analysis since these flows consumed more bandwidth, and caused more colli-
sions than malicious ingress flows. In order to understand the impact of these ma-
licious flows on the MAC layer, we aggregated statistics for channel utilization,
throughput, probe requests/responses, data packets/retries/acknowledgments,
and transmission rates. At the transport layer we computed the TCP Round-
Trip-Times (RTT) to determine the end-to-end delay.

Malware in IEEE 802.11 Wireless Networks 227

Table 1. The effects on TCP RTT of an ICMP flood and NetBIOS attack

Non-Attack Interval During Attack Percent Increase

Avg (Egress) 64.7 ms 99.2 ms 53.23%
Avg (Ingress) 23.4 ms 36.1 ms 54.36%
Median (Egress) 41.6 ms 85.0 ms 104.33%
Median (Ingress) 3.2 ms 6.8 ms 112.50%

4.1 Malware Attacks in Wireless Networks

We performed a detailed analysis of two of the largest attacks occurring in the
wireless data sets during the meeting based on packets per second and band-
width. These types of attacks were also the most common that we observed.
They included an ICMP ping flood combined with a NetBIOS exploit and a
TCP SYN Flood.

ICMP Flood and NetBIOS Exploit. One of the largest network attacks
observed during the entire meeting was an ICMP ping sweep across a range of
IP addresses. The attack was used to probe for machines and prepare for a sub-
sequent NetBIOS worm exploit. The malicious flow persisted for approximately
18 minutes and 7 seconds occurring late Thursday afternoon during the plenary
session between 17:02:38 and 17:20:45. The attack created 79,289 packets at an
average rate of 117 packets per second with a maximum burst of 235 packets
per second. The impact of the flow drove the channel utilization to nearly 100%,
and caused both a rise in the number of link layer data retries (retransmissions)
and a reduction in the transmission rates (shown in Figure 4). The metric in
Figure 4(b) shows the two primary ranges of transmission rates of 11-18Mbps
and 48-54Mbps that were used by wireless clients. The rectangular regions in
Figure 4 and 5 indicate the periods of malicious traffic flow.

As part of our analysis, we also discovered a brief period in the middle of
the ping flood just after 17:09:00 when the attack halted. This temporary pause
resulted in a reduction in utilization, an increase in data transmission rates,
and fewer data retries. Unfortunately we were not able to determine why the
attack was suspended during this two minute interval, but we conjecture that
the infected machine may have become unresponsive and was rebooted.

An additional result that we observed in our analysis was that overall, the
combined throughput on the channel remained relatively constant at 4,412 KB/s
over the course of the attack. However, the average and median RTT increased
by more than 50% and 100% respectively for all TCP flows. Table 1 displays the
average and median RTTs for a 10 minute interval before and after the attack
with respect to the RTT during the attack.

There are several conclusions that can be drawn based on these results. First,
the attacker was not only able to adversely affect other clients’ performance,
but also obstruct the access point’s probe responses to clients who were search-
ing for access points via probe requests. This is evident in Figure 4(d), which
illustrates the spike in probe responses immediately after the attack occurred.

228 B. Stone-Gross et al.

Consequently, the attack exacerbated a problem in the wireless network in that
probe requests and responses were essentially jammed during heavy utilization.
Access point control packets such as beacons, probes, and other management
frames were also lost or delayed, and therefore served no productive purpose
and only contributed to the overall network congestion.

A reduction in client transmission rates occurred due to the Auto Rate Fall-
back (ARF) mechanism, as illustrated in Figure 4(b), due to increased packet
loss. As a result, packet transmission times increased, which further increased
the channel busy time. The purpose of ARF is to combat lossy channel condi-
tions by sending data at lower rates (i.e., provide more robust modulation and
coding schemes), and thus decrease the likelihood that data is lost because of
radio noise. However, using the ARF strategy is a poor choice in this case since
dropped packets are due to packet collisions and not noise interference. Dur-
ing these congested periods, this behavior created a negative feedback loop as
client queues filled, but were unable to effectively drain due to contention com-
pounded by slower transfer rates. Therefore, the delay for each host increased
as they continuously waited for the channel to become idle.

The dramatic increase in TCP delay, as shown in Table 1, can be attributed
to the additional strain that this attack placed on the link layer. Accordingly, the
attack produced a large amount of data retransmissions. During the attack nearly
25% of all MAC layer frames were retransmissions, and at the peak of the attack

16:53 16:59 17:05 17:11 17:17 17:23
0

50

100

150

200

250

300

350

D
at

a
R

et
ri

es

(a) Data Retries

16:53 16:59 17:05 17:11 17:17 17:23
0

0.2

0.4

0.6

0.8

1

11
−1

8M
b

p
s

vs
 4

8−
54

M
b

p
s

(b) 11-18Mbps vs 48-54Mbps

16:53 16:59 17:05 17:11 17:17 17:23
0

20

40

60

80

100

C
h

an
n

el
 U

ti
liz

at
io

n
 (

%
)

(c) Channel Utilization

16:53 16:59 17:05 17:11 17:17 17:23
0

50

100

150

200

250

P
ro

b
e

R
es

p
o

n
se

s

(d) Probe Responses

Fig. 4. ICMP Flood and NetBIOS exploit effects on the wireless medium

Malware in IEEE 802.11 Wireless Networks 229

almost 50% of all packets were retransmissions. In addition, as clients following
the ARF procedure reduced their transmission rates, the channel became even
more congested as transmissions took longer to complete. These characteristics
had a significant impact on TCP delay due to the fact that these MAC layer
delays and losses were assumed to be caused by end-to-end congestion. Hence
TCP transmission timeouts occurred, which reduced the congestion window.

TCP SYN Flood. Another one of the more obvious attacks that we observed
was a TCP SYN flood directed at an external server on Port 80 involving over
6,000 connection requests. The attacker in question emitted three bursts of at-
tack traffic that began Thursday afternoon at 12:59:57 and numbered up to 109
packets per second for 30 seconds.

Figure 5 combines several of these measurement metrics during the initial
attack, which lasted for only 30 seconds. The peaks in the numbers of data
packets correspond to periods of attack. As shown in Figure 5(c), the aggregate
channel utilization for this particular access point, while elevated, was not near
bottleneck limits. What was most impacted by the SYN flood was the data retry
rate, which peaked in the midst of the attack. This result indicated a higher
rate of contention and collisions at the MAC layer due to the attacker’s rapid
transmission of single SYN packets. The result was an increase in the overall end-
to-end latency as the MAC layer struggled to reliably deliver packets. During
this attack, the average RTT increased by more than 33% with 16% of all frames
consisting of MAC layer retransmissions. At the peak of the attack, more than
30% of all frames were data retransmissions.

Additionally, the aggregate number of probe requests and probe responses
to and from all access points increased during the initial attack as illustrated
in Figures 5(b) and 5(d). This result indicates that the attacker may have ag-
gravated existing hidden terminal problems, thereby causing collisions and data
retries. This behavior then triggered nearby clients that were connected to the
same access point to begin probing for other access points offering better con-
nectivity. While these effects do not appear catastrophic, it is evident that the
probe responses and data retries increased by more than twice their averages
over regular traffic intervals. Analogous to the ICMP ping flood, the number of
probe responses more than doubled immediately after the attack. This behav-
ior occurred in response to the outstanding probe requests that were partially
blocked during the attack interval.

4.2 Effects of Malicious Flows on Wireless Performance

Our findings show that the presence of active malware in a congested wireless
network harms performance by reducing client transmission rates and increasing
data retries. The results also demonstrate that the end-to-end delay for TCP
connections rise commensurately with slower data rates and greater numbers of
packet collisions. These effects would likely have a significant impact on real-
time applications. Under heavy utilization, access point management frames can
be obstructed and increase the delay in client handoffs, authentications, and

230 B. Stone-Gross et al.

12:59:45 13:00:00 13:00:15 13:00:30 13:00:45
0

50

100

150

200

250

D
at

a
R

et
ri

es

(a) Data Retries

12:59:45 13:00:00 13:00:15 13:00:30 13:00:45
0

10

20

30

40

50

P
ro

b
e

R
eq

u
es

ts

(b) Probe Requests

12:59:45 13:00:00 13:00:15 13:00:30 13:00:45
55

60

65

70

75

80

85

90

C
h

an
n

el
 U

ti
liz

at
io

n
 (

%
)

(c) Channel Utilization

12:59:45 13:00:00 13:00:15 13:00:30 13:00:45
0

20

40

60

80

100

120

140

P
ro

b
e

R
es

p
o

n
se

s

(d) Probe Responses

Fig. 5. TCP SYN flood effects on the wireless medium

associations, further degrading performance. By comparing the effects of the
NetBIOS attack with the TCP SYN flood, we can determine that faster sending
rates and larger packets have a more significant effect on the wireless medium
since the channel is busy for longer periods of time. In addition, the 802.11 CSMA
protocol worked well in preventing small TCP SYN packets from dominating the
channel during malicious traffic flows.

5 Conclusion

The study of malware on wireless systems is becoming increasingly important
as more devices communicate openly over-the-air. In this paper, we analyzed
the effects that malware-driven attacks can have on 802.11 performance. The
most severe consequence is an increase in RTTs, which can hinder real-time
communication. Wireless quality of service is also virtually impossible without
developing mechanisms to reduce unwanted link layer contention.

The results that we present are from single attackers’ outgoing malware at-
tacks. Left unabated, the prevalence of malware will lead to a higher concentra-
tion of attackers and potentially deny service to legitimate users. This makes the
protection of connected machines an especially pertinent objective for wireless
network operators. In addition, as worms and botnets become more sophisti-
cated, we believe that the exploitation of wireless networks by mining sensitive

Malware in IEEE 802.11 Wireless Networks 231

information from unencrypted transmissions will become routine. Malware will
also adapt to preserve its own anonymity by spoofing the source of attacks.
Consequently, the effects of multiple compromised machines on a single wireless
access point will become more significant as malware evolves to specifically ex-
ploit the wireless medium. Therefore, a lightweight solution will be essential to
ensure optimal network performance and protect users’ sensitive data.

References

1. Balachandran, A., Voelker, G.M., Bahl, P., Rangan, P.V.: Characterizing User
Behavior and Network Performance in a Public Wireless LAN. In: Proc. of ACM
SIGMETRICS, Marina Del Rey, CA, June 2002, pp. 195–205 (2002)

2. Chandra, R., Padmanabhan, V., Zhang, M.: WiFiProfiler: Cooperative Diagnosis
in Wireless LANs. In: Proc. of MobiSys, Uppsala, Sweden (June 2006)

3. Chen, Z., Gao, L., Kwiat, K.: Modeling the Spread of Active Worms. In: Proc. of
IEEE INFOCOM, San Francisco, CA (April 2003)

4. Cheng, Y., Afanasyev, M., Verkaik, P., Benko, P., Chiang, J., Snoeren, A., Sav-
age, S., Voelker, G., Kwiat, K.: Automating Cross-Layer Diagnosis of Enterprise
Wireless Networks. In: Proc. of ACM SIGCOMM, Kyoto, Japan (August 2007)

5. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In: Proc. of Usenix
Security Symposium, Boston, MA (August 2007)

6. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance Anomaly
of 802.11b. In: Proc. of IEEE INFOCOM, San Francisco, CA (March 2003)

7. Jardosh, A., Ramachandran, K., Almeroth, K., Belding-Royer, E.: Understanding
Congestion in IEEE 802.11b wireless networks. In: Proc. of Internet Measurement
Conference, Berkeley, CA (October 2005)

8. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spy-
ware Detection. In: Proc. of Usenix Security Symposium, Vancouver, Canada (Au-
gust 2006)

9. Kotz, D., Essien, K.: Analysis of a Campus-wide Wireless Network. In: Proc. of
ACM MOBICOM, Atlanta, GA (September 2002)

10. Meng, X., Wong, S., Yuan, Y., Lu, S.: Characterizing Flows in Large Wireless Data
Networks. In: Proc. of ACM MOBICOM, Philadelphia, PA (September 2004)

11. Moore, D., Voelker, G.M., Savage, S.: Inferring Internet Denial-of-Service Activity.
In: Proc. of Usenix Security Symposium, Washington D.C (August 2001)

12. Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorjan, J.: Measurement-based
Characterization of 802.11 in a Hotspot Setting. In: Proc. of ACM SIGCOMM
Workshop on Experimental Approaches to Wireless Network Design and Analysis
(E-WIND), Philadelphia, PA (August 2005)

13. Schwab, D., Bunt, R.: Characterizing the Use of a Campus Wireless Network. In:
Proc. of IEEE INFOCOM, Hong Kong, China (March 2004)

Author Index

Agarwal, Sachin 31
Agarwal, Sharad 41
Allman, Mark 92, 112
Almeroth, Kevin C. 162, 222
Alpcan, Tansu 31
Arlitt, Martin 1
Atchinson, Kenneth 112

Belding, Elizabeth M. 162, 222
Blanco, Marc 122
Butcher, Chris 41

Chandrashekar, Jaideep 202
Claise, Benoit 61

Deshpande, Udayan 142

Feldmann, Anja 31

Gebhardt, Daniel 102
Gill, Phillipa 1
Giroire, Frédéric 202
Gueye, Bamba 11

Han, Mongnam 51
Heffner, John 152
Henke, Christian 82
Hirsch, Thomas 61
Höllerer, Tobias 162
Hu, Y. Charlie 182

Iannaccone, Gianluca 202

Jang, Keon 51
Jardosh, Amit P. 162
John, Wolfgang 192
Johnson, David 102

Kang, Seong-Ryong 172
Kind, Andreas 212
Kokku, Ravi 122
Kotz, David 142

Le Boudec, Jean-Yves 212
Lee, Dooyoung 51

Lee, Youngki 41
Lee, Youngseok 51
Lepreau, Jay 102
Levin, Dave 132
Li, Zongpeng 1
Loguinov, Dmitri 172

Mahanti, Anirban 1
Malomsoky, Szabolcs 72
Malone, David 21
Mao, Z. Morley 182
Martin, Lann 112
Mathis, Matt 152
McDonald, Chris 142
Moon, Sue 51

O’Neil, Peter 152
Olovsson, Tomas 192
Orincsay, Dániel 72

Padhye, Jitu 41
Papagiannaki, Konstantina 202, 222
Pathak, Abhinav 182
Paxson, Vern 92
Pucha, Himabindu 182

Rabinovich, Michael 112
Ramachandran, Kishore 122
Rangarajan, Sampath 122

Schmoll, Carsten 82
Schneider, Fabian 31
Schooler, Eve M. 202
Schulman, Aaron 132
Siemsen, Pete 152
Siwpersad, S.S. 11
Spring, Neil 132
Stoecklin, Marc Ph. 212
Stone-Gross, Brett 222
Sundaresan, Karthik 122
Suwannatat, Panuakdet 162
Szabó, Géza 72
Szabó, István 72

Taft, Nina 202
Tafvelin, Sven 192

234 Author Index

Uhlig, Steve 11

Wilson, Christo 222

Zhang, Ying 182
Zheng, Heather 222
Zseby, Tanja 61, 82

	Title Page
	Preface
	Organization
	Table of Contents
	The Flattening Internet Topology: Natural Evolution, Unsightly Barnacles or Contrived Collapse?
	Introduction
	Background
	Internet Architecture
	Motivations for Change

	Methodology
	Data Collection
	Data Analysis

	Results
	Discussion
	Related Work
	Conclusions

	Assessing the Geographic Resolution of Exhaustive Tabulation for Geolocating Internet Hosts
	Introduction
	Datasets
	Geographic Resolution of Databases
	Measurements-Based Geolocation
	CBG with Bandwidth Estimation

	Comparison Between Databases and Active Measurements
	Conclusion

	Observations of IPv6 Addresses
	Introduction
	Address Analysis Technique
	Prefix Analysis
	Host ID Analysis

	Data Sets
	HEAnet Mirror Server
	IE IPv6-Enabled Nameserver
	Traceroute Data

	Results
	HEAnet Mirror Server
	IE IPv6-Enabled Nameserver
	Traceroute Data

	Conclusion

	The New Web: Characterizing AJAX Traffic
	Introduction
	Related Work
	Contributions

	Methodology
	Data Sets
	Google Maps Communication
	Application Characterization Methodology

	Characteristics of AJAX Traffic
	Conclusions

	Measurement and Estimation of Network QoS Among Peer Xbox 360 Game Players
	Introduction
	Background
	Data and Methodology
	Player Population Characterization
	NPQ Prediction
	IP History Predictor
	Prefix History Predictor
	Geography Predictor
	Using Predictors in Matchmaking

	Prior Work
	Conclusions

	Evaluation of VoIP Quality over WiBro
	Introduction
	Background and Related Work
	Experiment Setup and Evaluation Methodology
	WiBro Performance Measurement
	VoIP Quality Evaluation

	Analysis
	CBR Traffic Analysis
	VoIP Traffic Analysis

	Summary and Future Work

	Packet Sampling for Flow Accounting: Challenges and Limitations
	Introduction
	Flow Accounting Requirements
	Accuracy Assessment in Theory
	Accuracy Assessment in Practice
	Experiments
	Conclusion
	References

	On the Validation of Traffic Classification Algorithms
	Introduction
	Existing Traffic Classification Methods and Their Evaluation
	The Proposed Method for Validation
	The Validation of a State-of-the-Art Traffic Classification Method
	Summary and Future Work

	Evaluation of Header Field Entropy for Hash-Based Packet Selection
	Introduction
	Problem Statement
	State of Art
	Approach
	Header Fields Properties
	Entropy
	Traces Used

	Entropy Evaluation
	IPv4
	TCP
	UDP
	ICMP
	IPv6

	Input Collisions
	Comparison of Header Byte Combinations

	Conclusion

	A Reactive Measurement Framework
	Introduction
	Related Work
	REM Architecture
	External Interactions
	Internal Architecture
	Details
	Interfacing to External Resources

	Summary

	Towards a High Quality Path-Oriented Network Measurement and Storage System
	Introduction
	Design
	Design Choices
	Software Architecture

	Implementation
	System Status
	Metrics
	Related Work
	Conclusion

	On Community-Oriented Internet Measurement
	Introduction
	Related Work
	System Architecture
	Tables
	Security
	Primitives
	Passive Measurements

	Summary

	On the Effectiveness of Switched Beam Antennas in Indoor Environments
	Introduction
	Background
	Experimental Methodology
	Evaluation
	Conclusion

	On the Fidelity of 802.11 Packet Traces
	Introduction
	Related Work
	Self-evident Truths of Wireless Traces
	Core Data in Wireless Traces
	Detecting Missed Packets
	Detecting Incorrect Timestamps

	Scoring a Wireless Trace's Completeness
	Estimating the Number of Missed Packets
	Score Definition

	Visualizing Wireless Trace Completeness
	T-Fi Plots
	Case Studies

	Timestamp Accuracy
	Discussion

	Refocusing in 802.11 Wireless Measurement
	Introduction
	Related Work
	Dingo: A Coordinated Sniffer
	Applications of Refocusing
	Results
	Improved Volume of Capture
	Localization Experiment

	Discussion

	Pathdiag: Automated TCP Diagnosis
	Introduction
	Motivation

	The $Pathdiag$ Tool
	The Measurement Engine
	The Analysis Engine
	The Server Framework

	Strengths and Weaknesses
	Closing

	$SCUBA$: Focus and Context for Real-Time Mesh Network Health Diagnosis
	Introduction
	$SCUBA$: Focus and Context Visualizations
	Metrics Collection Architecture
	SCUBA's Contexts
	Diagnostic Approaches and the Design of SCUBA
	SCUBA Visualization Features
	SCUBA Views

	SCUBA Implementation on the UCSB MeshNet
	Conclusions

	IMR-Pathload: Robust Available Bandwidth Estimation Under End-Host Interrupt Delay
	Introduction
	Related Work
	Issues of Interrupt Delay in Bandwidth Measurement
	Impact of Interrupt Delay
	Analysis

	IMR-Pathload
	Performance Evaluation
	Emulab Experiments
	Internet Experiments

	Conclusion

	A Measurement Study of Internet Delay Asymmetry
	Introduction
	Methodology
	Tools, Testbed and Trace Collection
	Trace Pruning
	Metrics

	Delay Asymmetry
	One-Way vs. Round-Trip
	Asymmetry in One-Way Delay

	Dynamics of Delay Asymmetry
	Related Work
	Conclusion

	Trends and Differences in Connection-Behavior within Classes of Internet Backbone Traffic
	Introduction
	Data Description
	Methodology
	Trends in Traffic Volumes
	Differences between Traffic Classes
	Differences in Connection Behavior
	Differences in Option Deployment

	Summary and Conclusions

	The Cubicle vs. The Coffee Shop: Behavioral Modes in Enterprise End-Users
	Introduction
	Data Description
	Diversity Across Environments
	Environment Lifetimes
	Destination Port Diversity
	Thresholds on Behavioral Anomaly Detectors

	Conclusion

	A Two-Layered Anomaly Detection Technique Based on Multi-modal Flow Behavior Models
	Introduction
	Related Work
	Background and Motivation
	The Detection and Learning Technique
	Notation
	The Detection Phase: A Non-linear Dual-Layered Detection Technique
	The Learning Phase: Training and Testing of Baseline Behavior Modes
	Discussion

	Evaluation
	Results of the Evaluation
	Comparison with Entropy- and Histogram-Based Approaches

	Conclusion

	Malware in IEEE 802.11 Wireless Networks
	Introduction
	Data Collection and Filtering
	Experimental Setup
	Filtering Heuristics

	Wireless and Trunk Data Analysis
	Malicious Traffic Analysis

	Quantifying the Impact of Malware
	Malware Attacks in Wireless Networks
	Effects of Malicious Flows on Wireless Performance

	Conclusion

	Author Index

