
M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 92–107, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From BPEL to SRML:
A Formal Transformational Approach∗

Laura Bocchi1, Yi Hong1, Antónia Lopes2, and José Luiz Fiadeiro1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,yh37,jose}@mcs.le.ac.uk
2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, Portugal
mal@di.fc.ul.pt

Abstract. The SENSORIA Reference Modelling Language (SRML) provides
primitives for modelling business processes in a technology agnostic way. At
the core of SRML is the notion of module as a composition of tightly coupled
components and loosely coupled, dynamically discovered services. This paper
presents an encoding of BPEL processes into SRML modules using model
transformation techniques. The encoding provides the means to create high-
level declarative descriptions of BPEL processes that can be used for building
more complex modules, possibly including components implemented in other
languages. The composition can be modelled and analysed as an ensemble, re-
lying on the rich formal framework that is being developed within SENSORIA.

1 Introduction

The SENSORIA Reference Modelling Language (SRML) is a high-level modelling
language for Service Oriented Architectures (SOAs) developed in the context of
SENSORIA, an IST-FET Integrated Project on Software Engineering for Service-
Oriented Overlay Computers. The goal of SRML is to provide a set of primitives that is
expressive enough to model applications in the service-oriented paradigm and simple
enough to be formalized. Through the notion of module, SRML provides primitives for
modelling business processes as assemblies of (1) tightly coupled components that may
be implemented using different technologies (including wrapped-up legacy systems)
and (2) loosely coupled, dynamically discovered services.

The structure of a SRML module is illustrated in Fig. 1. Both the service provided
and the external services required by the module are represented through what we call
external interfaces, which are rich descriptions of the behaviour that can be observed
of the interactions with these parties. The language primitives used for description
and specification of service and component behaviour have been presented in [5].

∗ This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA:

Software Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP
MTK1-CT-2004-003169 Leg2Net: From Legacy Systems to Services in the Net.

 From BPEL to SRML: A Formal Transformational Approach 93

Fig. 1. The module EasyBankProcess has one component – central of type centralBR – which
orchestrates the interactions with the external parties. The node invoiceService (of type invoice-
ServiceBP) is an external-interface for a service required by the module. The node buyer (of
type buyerBP) is the external interface for the provided service. The edges shoppingLink and
invoicingLink provide the protocols that coordinate the interactions between the involved
parties.

The interconnections between different parties are represented as wires labelled with
interaction protocols [1].

SRML modules were inspired by the Service Component Architecture (SCA) [13].
SCA is a set of specifications that describe a middleware-independent model for
building applications over SOAs. It provides a convenient framework to manage the
deployment and configuration of service-oriented systems. In SCA, applications are
built as assemblies of heterogeneous components and external services. SCA offers
specific support for a variety of component implementations, namely for WS-BPEL
[14]. More concretely, a BPEL client and implementation specification is defined that
allows a component to be written is BPEL and deployed and assembled with other
components written in any SCA implementation language.

In this paper, we present an encoding of WS-BPEL processes, including the WSDL
interfaces with which they are associated, into SRML modules. As in SCA, the syn-
thesis of high-level declarative descriptions allows existing BPEL processes to be
used together with other components when defining models for composite services as
SRML modules. The models consist of the assembly of a number of SRML modules
that can be derived from existing components (implemented in BPEL or any other
language for which an encoding into SRML has been provided), or for which an im-
plementation still has to be provided. As a consequence, a given BPEL process can
be used in the implementation of different composite services.

A basic difference between our encoding and the one provided through SCA re-
sults from the fact that, whereas SCA abstracts from the business logic provided by
components, SRML provides a high-level declarative description of that business
logic. Therefore, our encoding also addresses the orchestrations performed by BPEL
processes within the assembly structures.

As a consequence, our encoding provides the means for WS-BPEL processes to be
analysed, both individually and within composite services, by relying on the rich
formal framework that is being developed within SENSORIA [15]. However, it
should be clear that our aim is not to provide BPEL with yet another formal semantics
and associated verification techniques, but only to the extent in which BPEL

94 L. Bocchi et al.

processes can be used in SRML to define composite services, possibly in conjunction
with other service components implemented also in BPEL or in other languages.

The encoding of BPEL processes into SRML is formalized by means of model
transformation rules based on triple graph grammars (TGG) [8]. The definition of
model transformations with TGGs relies on: (1) a source meta-model representing the
abstract syntax of the source language (e.g. BPEL) as a typed graph, (2) a target
meta-model representing the abstract syntax of the target language (e.g. SRML) as a
typed graph, (3) a third graph grammar — the correspondence meta-model — that
connects related elements of (1) and (2) and is used to control the transformation
process which, in general, is bidirectional. In our case, we provide directional trans-
formation rules that specify only one direction – from BPEL to SRML.

The structure of the paper is as follows. Section 2 discusses the strategy of the en-
coding in more detail and presents an example. Section 3 presents the transformation
rules for the module structure. Section 4 presents the encoding of the control flow.
Finally, Section 5 presents final conclusions and discusses future work.

2 The Strategy of the Encoding

As described in [5], SRML provides mechanisms for assembling two modules via an
external wire that establishes how the provides-interface EX-P of one module matches
a requires-interface EX-R of the other module (Fig. 2). Assembly can be performed at
design-time in order to define composite services (orchestrated systems), or dynami-
cally, at run-time, through the discovery and binding mechanisms of the underlying
SOA platform. In this paper, we do not address how SRML supports the dynamic
aspects. The algebraic semantics of assembly is discussed in [6].

Fig. 2. The operation that assembles two modules into a module internalises the external wire
EW that establishes a matching between the external interfaces (specifications) invoiceService
(requires) and PI (provides)

The strategy of our encoding is precisely to abstract modules from BPEL proc-
esses, i.e. to identify the external interfaces (provides and requires) and the internal
component that orchestrates the interactions involved, so that these BPEL-modules
can then be used together with all other sorts of modules to define more complex
services. In the resulting system, the original BPEL process will be connected with
other components (possibly implemented in other languages like Java) through inter-
nal wires that establish the interaction protocols through which they communicate.

 From BPEL to SRML: A Formal Transformational Approach 95

The encoding we propose involves both the module structure and the control flow
involved in BPEL processes. A tool has been developed at the University of Leicester
that provides semi-automated support [10] for this process. More precisely, it consid-
ers a subset of the BPEL constructs that concern service structure, produces a skeleton
of a SRML module, and supports the manual definition of the missing aspects. The
tool parses the XML tree representing the BPEL process with DOM and implements
the transformation with a number of Java classes.

Our paper presents a more encompassing encoding than the one implemented by
the tool. We encode structured activities (excluding scopes), control links and corre-
lation sets. Table 1 shows which aspects of the BPEL control flow are considered in
the encoding and which are supported by the tool. The encoding of the missing as-
pects is still work in progress. The main reason is that, as already explained, our aim
is not to define yet another semantics for BPEL but to encode BPEL processes in a
way that they can be used for defining SRML modules; as such, we have to take into
account how the constructs provided by BPEL can be used within SRML. For in-
stance, fault handling is a feature that, in SRML, is not handled at the same level of
abstraction as the orchestration primitives (ditto for correlation sets). Therefore, we
will consider the encoding of the throw primitive once we have extended SRML it-
self. The same applies to the constructs that relate to session handling, including
correlation, which in SRML are treated as part of configuration management and
treated in a fragment of the language that is still under construction.

Table 1. BPEL tags for control flow encoded in the tool and in this paper. BA stands for basic
activity and SA for structured activity.

BPEL Tag/Construct Tool Encoding
Invoke , Receive, Reply, Assign (BA)
Wait, Empty, Exit (BA)
Throw (BA)
Sequence, Switch (SA)
Flow, While (SA)
Control Links, Scopes, Correlation Sets

The encoding of the SRML module structure from a BPEL process is in line with
the one defined in [14] for embedding BPEL processes into SCA. The encoding of
the control flow is inspired by the formal semantics of WS-BPEL in Petri Nets pre-
sented in [12]. The resulting approach is compositional because it describes any activ-
ity as a black box that is activated by the enclosing structured activity. This makes it
easier to extend the encoding to the other types of BPEL activity.

To illustrate our approach we use a simple BPEL process — easyBankProcess –
that receives an order from a buyer, uses an external service to create an invoice, and
returns the invoice to the buyer. The following fragment defines the participants of
the process and the links among them.

<process name="easyBankProcess"...
 <portType name="ShopPortType"> ...
 <portType name="InvoicingPortType"> ...

96 L. Bocchi et al.

 <portType name="BuyerPortType"> ...
 <partnerLinkType name="invoicingLinkType">
 <role name="invoiceService"> <portType name="ns:InvoicePortType"/>

 </role>
 </partnerLinkType>
 <partnerLinkType name="shoppingLinkType">
 <role name="buyer"><portType name="ns:BuyerPortType"/></role>
 <role name="shop"><portType name="ns:ShopPortType"/></role>
 </partnerLinkType>
 <partnerLinks>
 <partnerLink name="invoicingLink" partnerLinkType="ns:invoicingLinkType"
 partnerRole="ns:invoiceService"/>
 <partnerLink name="shoppingLink” partnerLinkType="ns:shoppingLinkType"
 myRole="ns:shop" partnerRole="ns:buyer"/>
 </partnerLinks>

The partnerLinkType elements define a link type between pairs of roles, each of
which is associated with a certain portType element. A portType is a set of operations
supported by a service. For example, shoppingLinkType defines a link type between
two roles: buyer, of type BuyerPortType, and shop, of type ShopPortType. When
only one role is specified, the other role can be associated with any portType, as in the
case of invoicingLinkType. The partnerLink elements define an instance of partner-
LinkType that specifies which of the roles belongs to the process (myRole) and to the
partners (partnerRole).

The structure of the corresponding SRML module is illustrated in Fig. 1. Every
partner role is represented as an external interface, either an EX-P (provides) or an
EX-R (requires) interface, as discussed in Section 3. The central component repre-
sents all the roles assumed by the BPEL process (i.e., myRole). In the example, the
SRML module has two external interfaces, buyer and invoiceService. The central
component assumes the role of shop (i.e., port type ShopPortType) in shoppingLink
and the generic role in invoicingLink.

Every role in the BPEL process is associated with a portType that declares a set of
interactions:

<portType name="ShopPortType">
 <operation name="placeOrder">
 <input message="ns:placeOrderInput"/>
 </operation>
</portType>

<portType name="BuyerPortType">
 <operation name="receiveBill">
 <input message="ns:receiveBillInput"/>
 </operation>
</portType>

<portType name="InvoicingPortType">
 <operation name="doInvoice">
 <input message="ns:doInvoiceInput"/>
 <output message="ns:doInvoiceOutput"/>
</operation>

</portType>

In SRML, each external interface and component, to which we refer as nodes, is an
instance of a business protocol or business role, respectively. The business role and
protocols of the SRML easyBankProcess module are given below. The business role
centralBR supports (1) the operation PlaceOrder of shopPortType and (2) the com-
plementary interactions for invoicePortType and buyerPortType.

 From BPEL to SRML: A Formal Transformational Approach 97

BUSINESS ROLE centralBR is

INTERACTIONS

 rcv shopPortType.placeOrder
 placeOrderInput.product:Product

 s&r invoicePortType.doInvoice
 doInvoiceInput.product:Product
 doInvoiceOutput.bill:Bill
 snd buyerPortType.receiveBill

 receiveBillInput.bill:Bill

BUSINESS PROTOCOL buyerBP is

INTERACTIONS
 snd shopPortType.placeOrder
 placeOrderInput.product:Product
 rcv buyerPortType.receiveBill
 receiveBillInput.bill:Bill ...

BUSINESS PROTOCOL invoiceServiceBP is

INTERACTIONS
 r&s invoicePortType.doInvoice
 doInvoiceInput.product:Product
 doInvoiceOutput.bill:Bill ...

Business roles and protocols declare a number of interactions in a way that is simi-
lar to BPEL port types. The specification of a node n defined in the encoding sup-
ports the interactions that: (1) correspond to an operation supported by the portType
associated with n, (2) the complementary interactions (i.e., a send is complementary
to a receive) of the operations supported by the node to which n is wired. The frag-
ment of the BPEL process that models the control flow declares two variables, order
and bill, and defines the orchestration as a sequence of one receive and two
invocations:

<variables>
 <variable name="order" messageType="ns:orderData"/>
 <variable name="bill" messageType="ns:invoiceData"/>
</variables>
<sequence>
 <receive name="rcvOrder" partnerLink="ns:shoppingLink" operation="ns:placeOrder"
 portType="ns:ShopPortType” variable="order" createInstance="yes"/>
 <invoke name="askInvoice" partnerLink="ns:invoicingLink" operation="ns:doInvoice"
 portType="ns:InvoicePortType" inputVariable="order" outputVariable="bill"/>
 <invoke name="sndBill" partnerLink="ns:shoppingLink" operation="ns:receiveBill"
 portType="ns:BuyerPortType" variable="bill"/>
</sequence>

Both business roles and business protocols define causal relationships among the
events that occur as part of the supported interactions. Business roles express this
causality in terms of an orchestration, i.e. state-transition based description of the
process through which a component reacts to and initiates such events. Business
protocols provide specifications of provided or required behaviour in terms of proper-
ties (expressed in a temporal logic) that abstract such causal relationships from the
processes that run in the co-parties. In the case of provides-interfaces, we provide a
specification of the protocol offered to the co-party and, in the case of requires-
interfaces, that of the protocol that the co-party is required to adhere to.

Because BPEL does not support such semantically reach external interfaces, we
focus exclusively on how to extract the orchestration of the business role centralBR
from a BPEL specification. As an example, we present the orchestration of the cen-
tral business role of the SRML module that is derived from the activities of the BPEL
process easyBankProcess. In the next sections, we will discuss in detail how the
different elements of the module are synthesised.

98 L. Bocchi et al.

BUSINESS ROLE centralBR is

INTERACTIONS

 ...

ORCHESTRATION

local order.product:Product, bill.bill:Bill,
 start,exit,end,ra,rb,rc,rd,fa,fb,fc,fd:Boolean,
 na,nb,nc,cd:Natural
initialisation

 start=end=exit=false
 ra=rb=rc=rd=fa=fb=fc=fd=false

 na=nb=nc=nd=0
transition harness

triggeredBy true
guardedBy ¬start ∨ fa
effects (¬start ⊃ start’∧ra’)

∧ (fa ⊃ ¬fa’∧end’)
transition transition_A (sequence)

triggeredBy true
guardedBy (ra ∨ fb ∨ fc ∨ fd) ∧ ¬exit
effects (ra ⊃ rb’∧¬ra’)

∧ (fb ⊃ rc’∧¬fb’)
∧ (fc ⊃ rd’∧¬fc’)
∧ (fd ⊃ fa’∧¬fd’)

transition transition_B (receive)
triggeredBy shopPortType.placeOrder ?
guardedBy rb ∧ ¬exit
effects ¬rb’ ∧ fb’

∧ order.product’=shopPortType.placeOrder .placeorderInput.product
transition transition_C (first invoke)

triggeredBy true
guardedBy rc ∧ ¬exit
effects ¬rc’
sends invoicePortType.doInvoice !

∧ invoicePortType.doInvoice .doInvoiceInput.product=order.product
transition transition_C’ (first invoke 2nd part)

triggeredBy invoicePortType.doInvoice ?
guardedBy
effects fc’ ∧ bill.bill’=invoicePortType.doInvoice .doInvoiceOutput.bill

transition transition_D (second invoke)
triggeredBy true
guardedBy rd
effects ¬rd’ ∧ fd’
sends buyerPortType.receiveBill !

∧ buyerPortType.receiveBill !.receiveBillInput.bill=bill.bill

triggeredBy is a condition, typically a
receive-event as in transition_B. When
the condition is true the transition is
triggered once the guard becomes true.

The orchestration is described by transition rules.

The local variables describe
the state of the component:
order.product and bill.bill are
variables from the BPEL
process; the others model
control flow.

guardedBy is a condition that
identifies the states in which the
transition can take place

The sentence sends describes the
interaction events that are sent and the
values taken by their parameters

 and identify request and
reply events that may occur during
conversational interactions.

3 Definition of the Module Structure

A BPEL process provides contextual information involving the external participants
interacting with the process (i.e., the roles and port types wired to the business process
through the partner links). In contrast, a SRML business role provides no information
on the context in which it is used: the interface defines a set of interactions that is not
partitioned according to the number of expected interacting parties. This is why, in

 From BPEL to SRML: A Formal Transformational Approach 99

order to preserve the contextual information in the encoding, we map BPEL processes
not to business roles, but to modules that represent contextualized business roles.

The transformation rules, in line with the QVT standard for Model Transformation
[11], are represented with the following syntax: the source and target (fragments of)
meta-models are represented by UML class diagrams and the correspondence is rep-
resented by meta-relations. Following [9], meta-relations are represented as dashed
wires with a diamond enclosing the constraints of the relation instance. The shad-
owed classes on the right hand side are the classes added to the model by the rule. The
diamond for a relation instance created by the rule is shadowed as well.

Fig. 3 illustrates the transformation rule of the root element of a WSDL/BPEL (left
hand side) that generates a SRML module (right hand side) having the same name of
the BPEL process, the module central component and corresponding business role.

Fig. 3. Transformation rule generating the module

The application of the transformation rules in Fig. 3 to myBankProcess generates a
module with name myBankProcess and one component named central of type
centralBP. The set of other nodes that are wired to the central component is defined
considering any partnerLink in the BPEL process. For any partnerLink element (rep-
resenting a participant interacting with the business process) is created an external
interface connected to the central component and the corresponding business protocol.

We discriminate between what must be encoded into an EX-P and into an EX-R by
looking for the presence or absence of a receive operation having the createInstance
attribute set to “yes”, which is the mechanism used in BPEL to represent the invoca-
tion of a business process. The partnerLink associated with such operation is the one
that, if it exists, invokes the service modelled by the BPEL process. Hence, an EX-P
is created for such partnerLink. All the other partnerLink elements create an EX-R
through the rule described in Fig. 4, which requires the absence of a receive operation
having createInstance attribute set to “yes”.

In the myBankProcess example, the rule described in Fig. 4 creates an EX-R named
invoiceService of type invoiceServiceBP. The EX-R is connected to the central com-
ponent with the wire invoicingLink. The rule for the EX-P interfaces creates an EX-P
named buyer of type buyerBP, connected with the wire shoppingLink. The structure
of the resulting module is the one presented in Fig. 1.

100 L. Bocchi et al.

Fig. 4. Transformation rule generating a requires-interface and the corresponding wire that
connects it to the central component. The rule that generates the external provides-interface is
similar but, instead, requires the absence of a receive operation having createInstance attribute
set to “yes”.

Using the same method, we define the transformation rules for the set of interac-
tions supported by all the nodes. Every node corresponds to a BPEL portType ele-
ment. A node represents one or more port types and must support, for any operation
in the portType, a corresponding SRML interaction. In addition, it must support the
complementary interactions of the portType elements connected to the node through a
partnerLink. We omit the details of the rules for the interactions and their parameters.
Table 2 shows, for each WSDL operation type, the corresponding SRML interaction
types/parameters and their complements. For example, the request-response operation
is encoded as a r&s (i.e., receive and send) interaction, whose complementary ele-
ment is an s&r interaction. The input parameters are encoded as -parameters,
which are the parameters for transmitting data when the interaction is initiated.

The current OASIS draft for WS-BPEL [2] specifies that some of the WSDL op-
erations must not be supported by BPEL processors (i.e., notification and solicit-
response); hence, we consider the supported operations only.

Table 2. WSDL operations and SRML interactions

WSDL SRML SRML (complementary)

one-way
 > input parameter

rcv
 > parameter

snd
 > parameter

request-response r&s s&r
 > input parameter > parameter > parameter
 > output parameter > parameter > parameter

We encode the operation with name ‘op’ of the portType ‘pt’ as the interaction
with name ‘pt.op’. Because any interaction event in SRML may occur at most once
during a session, we have to define a family of interactions for each operation. This
family defines an arbitrary number of interactions, each identified by an index

 From BPEL to SRML: A Formal Transformational Approach 101

(e.g., pt.op[i]). For each interaction we define a variable pt.opB (and also pt.opE for
r&s and s&r interactions) of type Natural that is initially 0 and is incremented at each
occurrence of the - (and -) event of the interaction pt.op and stores the index that
must identify the next occurrence. In the example presented in Section 2, we omitted
these indexes for readability, as each operation is invoked only once.

4 Transformation of Control Flow

The encoding of control flow into SRML has been inspired by the Petri Net-based
semantics of WS-BPEL presented in [12]. Therein, a generic activity A is represented
as a Petri net having: (1) an initial state rA, in which the transition is ready to be exe-
cuted, (2) a final state fA, (3) the state sA/cA in which the activity starts/completes.

transition A
 triggeredBy …
 guardedBy ra ∧ …
 effects ¬ra’

 ∧ fa’
 ∧ …
 sends …

Fig. 5. A simplified version the Petri Net representation of a generic BPEL activity A [12], and
the corresponding SRML transition. Additional statements have to be added to model the exe-
cution of the activity.

In the SRML encoding, the execution of the orchestration begins with a “harness”
transition that uses a special boolean variable start, initially set to false. The harness
triggers the activity A, corresponding to the root activity of the BPEL process, by
setting ra to true:

transition harness
triggeredBy true
guardedBy ¬start ∨ fa
effects (¬start ⊃ start’∧ra’) ∧ (fa ⊃ ¬fa’∧end’)

4.1 Encoding Basic Activities

In a BPEL process, a parameter sent by an operation consists of a Variable element
that has already been declared and assumed a meaningful value by means of an As-
sign activity. Fig.6. presents the transformation rule for creating a local variable in the
orchestration of the SRML module from the corresponding variable in the BPEL
process. The DataType object, defining the type of the variable, does not need to be
created if an object already exists for the same type.

Some additional local variables have to be defined for handling the control flow:

• start/end, of type Boolean, is true when the process instance starts/ends.

102 L. Bocchi et al.

• exit, of type Boolean, disables, when true, the execution of any transition. It
is initially false. The value may be changed by the Exit activity.

• ra and fa for any activity A.

To improve readability, we present the transformation rules for activities by using
a textual notation, showing the correspondence between the two languages. The gen-
erated transitions belong to the orchestration of the business role centralBR.

Fig. 6. Transformation rule for variables declaration. A BPEL variable refers to a message
composed by parts. A local variable is created, for each part of each BPEL variable, in the
orchestration of the business role typing the central component that is the only orchestration in
the module.

Assign. The assign activity refers to a couple of variables and to a specific part of the
message that types each variable. The assign activity in the BPEL code fragment
below (on the left) is encoded into the SRML transition transition_A also shown be-
low (on the right). The effects of the transition include the assignment of the part
formP of the variable fromV to the part toP of toV.

<assign>
 <copy>
 <from variable=”fromV” part=”fromP”/>
 <to variable=”toV” part=”toP”/>
 </copy>

 </assign>

 transition transition_A
 triggeredBy true
 guardedBy ra ∧ ¬exit
 effects ¬ra’ ∧ fa’
 ∧ toV.toP’=fromV.fromP

Invoke. The invoke activity is used to invoke a service and may refer to either a one-
way or request-response WSDL operation. The invocation, in BPEL, is modelled
from the perspective of the invoked party and in SRML corresponds to either a snd or
a s&r interaction of the central component. The BPEL code fragment below invokes a
request-response operation.

<invoke partnerLink="pl" portType="pt" operation="op"
 inputVariable="iv" outputVariable="ov"/>

 From BPEL to SRML: A Formal Transformational Approach 103

The invoke statement above is transformed into the two SRML transitions below.

The first part of the request-response is modelled by transition_A that sends the in-
teraction event pt.op[pt.opB] ! where pt is the name of the portType and op is the
operation. The parameters are assigned to the corresponding parts of the input vari-
able iv. We assume, with no loss of generality, that the message type of iv consists of
the parts p1,…,pn. The second part of the request-response is represented by transi-
tion_A’ that receives the interaction event pt.op[pt.opE] ? and assigns the value of
the output parameters (in all the m parts) to the output variable. We do not need to
add a guard to enable transition_Ab after transition_A as SRML ensures that,
pt.op[i] ? is always enabled after (and only after) pt.op[i] !.

The invoke of a one-way operation, where the output variable is not specified, is
transformed in transition_A where the effects include the statement fa’.

Receive and Reply. The receive activity refers to either a one-way or a request-
response operation and it is encoded according to the transformation rule that follows.

<receive partnerLink="pl"
 portType="pt"

 operation="op"
 variable="v"
 createInstance=…/>

transition transition_A
triggeredBy pt.op[pt.opB] ?
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ fa’ ∧ pt.opB’=pt.opB+1
 ∧ v.p1’=pt.op[pt.opB] .v.p1 ∧ …
 ∧ v.pn’=pt.op[pt.opB] .v.pn

The reply activity refers to either a one-way or (the second part of) a request-
response operation. In case of a one-way operation it is encoded according to the
transformation rule that follows. The rule for the request-response is similar but it
sends the interaction event pt.op[pt.opE] !.

<reply partnerLink="pl"
 portType="pt"
 operation="op"
 variable="v"…/>

transition transition_A
triggeredBy true
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ fa’ ∧ pt.opB’=pt.opB+1
sends n.pt.op[pt.opB] ! ∧ n.pt.op[pt.opB] .v.p1=v.p1
 ∧ … ∧ n.pt.op[pt.opB] .v.pm=v.pm

Wait. The wait activity specifies a deadline (time interval or future instant of time).

<wait> <for>t</for>(<until>t</until>)</wait>

SRML provides a number of primitives for handling time [5], including the func-
tion now which returns the present time from a global clock. The wait activity is
transformed into the transitions above:

transition transition_A
triggeredBy true
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ pt.opB’=pt.opB+1
sends pt.op[pt.opB] !
 ∧ pt.op[pt.opB] .iv.p1=iv.p1 ∧ …
 ∧ pt.op[pt.opB] .iv.pn=iv.pn

transition transition_A’
triggeredBy pt.op[pt.opE] ?
guardedBy ¬exit
effects fa’
∧ ov.p1’=pt.op[pt.opE] .ov.p1 ∧ …
∧ ov.pm’=pt.op[pt.opE] .ov.pm
∧ pt.opE’=pt.opE+1

104 L. Bocchi et al.

transition transition_A (for)
triggeredBy true
guardedBy ra ∧ ¬exit
effects timeA=now ∧ ¬ra’

transition transition_A’ (for)
triggeredBy now=timeA+t
guardedBy ¬exit
effects fa’

transition transition_A (until)
triggeredBy now≥t
guardedBy ra ∧ ¬exit
effects fa’ ∧ ¬ra’

Exit and Empty. The exit activity terminates the execution of the process. It is en-
coded into transition_A below that gives the value true to the Boolean local variable
exit. This disables any further transition. The empty activity performs no action. It is
encoded into transition_B below.

transition transition_A (exit)
triggeredBy true
guardedBy ra ∧ ¬exit

 effects ¬ra’ ∧ fa’ ∧ exit’

transition transition_B (empty)
triggeredBy true
guardedBy rb ∧ ¬exit

 effects ¬rb’ ∧ fb’

4.2 Encoding Structured Activities

Sequence. The sequence activity is used to execute two activities in sequence, in the
specified order. Let us suppose we have two activities A and B represented by two
transitions transition_A and transition_B. We model the sequence activity X as the
transition transition_X. We denote with rx, ra and rb the boolean variables that trigger
the execution of X, A and B, respectively. The variables fx, fa and fb denote the end
of the corresponding activity. The transition transition_X is executed three times:
when the parent activity triggers X (by setting rx to true), when the enclosed activity A
terminates (and sets fa to true) and, analogously, when B terminates.

<sequence
 name=”X”>
 activity A
 activity B
</sequence>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx ⊃ ra’∧¬rx) ∧ (fa ⊃ rb’∧¬fa’) ∧ (fb ⊃ fx’∧¬fb’)

Flow. The flow activity executes the enclosed activities in parallel. We consider the
case of two parallel activities with no loss of generality. The transition transition_X
models the flow activity for A and B. The flow activity on the left side is transformed
into transition_X. The transition is executed two times: when the parent activity trig-
gers X (by setting rx to true) and when the enclosed activities A and B both terminate
(i.e., synchronization).

<flow name=”X”>
 activity A
 activity B
</flow>

transition transition_X
triggeredBy true
guardedBy (rx ∨ (fa ∧ fb)) ∧ ¬exit
effects (rx ⊃ ra’∧ rb’∧¬rx’) ∧ (fa ∧ fb ⊃ fx’∧¬fa’∧¬fb’)

Switch. The switch activity executes one of two activities, depending on a condition.
If all the conditions are false no activity is executed. The conditions are evaluated in
the specified order. We consider a switch statement involving two conditions with no
loss of generality. The switch activity on the left side is transformed into transition_X.

 From BPEL to SRML: A Formal Transformational Approach 105

The transition is executed two times: when the enclosing activity triggers X (by set-
ting rx to true), when one the enclosed activities terminates.

<switch name=”X”>
 <case>
 <condition> z1 </condition>
 activity A
 </case>
 <case>
 <condition> z2 </condition>
 activity B
 </case>
</switch>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx∧z1 ⊃ ra’∧¬rx’)
 ∧ (rx∧¬z1∧z2 ⊃ rb’∧¬rx’)
 ∧ (rx∧¬z1∧¬z2 ⊃ fx’∧¬rx’)
 ∧ (fa∨fb ⊃ fx’∧¬fa’∧¬fb’)

Pick. The pick activity waits for a set of events, each associated to an activity, and
executes (only) the activity associated to the first event that occurs. The events can be
triggered by an external message or by an alarm. We consider, without loss of gener-
ality, a set of two events: one triggered by a message and one triggered by the alarm.
The Pick activity on the left side is transformed into transition_X and transition_X’.
First transition_X is executed: rx becomes false and the the present time is stored in
the variable tX. Then transition_X’ is executed when either e1 ? occurs or when the
deadline expires and triggers the corresponding activity, A or B. Notice that, because
of its guards, transition_X’ is executed only once: before either A or B is triggered.
P_e1[i] ? is true if the event e1[i] ? occurred in the past. The transition transi-
tion_X is executed again when either fa or fb is true; fx is then set to true.

<pick name=”X”>
 <onMessage e1>

 A
 </onMessage>
 <onAlarm>
 <for> t

 </for>
 B
 </onalarm>
</pick>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx ⊃ ¬rx’∧tX’=now+t)
 ∧ (fa ⊃ ¬fa’∧fx’) ∧ (fb ⊃ ¬fb’∧fx’)

transition transition_X’
triggeredBy e1[i] ? XOR now=tX
guardedBy ¬ra ∧ ¬rb ∧ ¬exit
effects ra’=P_e1 ? ∧ rb’=now=tX

While. The while activity iterates an activity A until a condition is true. The while
activity on the left side is transformed into transition_X. The transition is executed the
first time when rx is true and then when the execution of any enclosed activity termi-
nates. During the first iteration rx is set to false. The condition determines either the
execution of A or the end of transition_X. The end of a previous iteration (fa=true)
determines either the end of the while activity or execution of the next iteration
(ra=true), depending on the condition z.

<while name=”X”>
 <condition>z
 </condition>
 activity A
</while>

transition transition_X
guardedBy (rx ∨ fa) ∧ ¬exit
effects rx ⊃ (¬rx’∧ ra’≡z ∧ fx’≡¬z)
 ∧ fa ⊃ (¬fa’ ∧ ra’≡z ∧ fx’≡¬z)

5 Conclusions and Future Work

In this paper, we have discussed an encoding of WS-BPEL processes into SRML –
the modelling language that is being developed within the SENSORIA project for

106 L. Bocchi et al.

supporting the engineering of complex services. In SRML, modules provide abstrac-
tions of composite services as provided through assemblies of components and exter-
nally services procured and bound at run-time.

SRML is inspired on SCA [13]. Like in SCA, the components used inside a mod-
ule need not be homogeneous: they can be Java programs, BPEL process, wrapped-up
legacy systems, and so on. SRML provides a language in which these components
can be modelled as transition-based systems obtained through abstraction mappings.
The purpose of this paper was precisely to illustrate the abstract encoding that we
defined for BPEL-processes, which is richer than the one provided for SCA because
we are able to encode the business logic operated by the component. We should
stress that the purpose of the encoding is not to provide a new semantics for BPEL but
to abstract from BPEL processes the SRML modules that allow them to be combined
with other modules to define more complex services, avoiding having to develop
required orchestrations from scratch. This is why the proposed encoding does not
consider aspects that, like fault handling and correlation sets, are not directly relevant
for the fragment of SRML that is concerned with composition. We are working on an
extension of the encoding that considers some of the missing aspects in the context of
the fragment of SRML that handles configuration management.

Our encoding is performed through model-transformation rules based on triple
graph grammars. We present the design of some of the transformation rules that we
developed so far. Their implementation is straightforward if using a tool for model-
ing graph transformations: we are using the Tiger tool environment [3], based on
Eclipse Modelling Framework (EMF). The source WSDL/BPEL meta-model derives
from the combination of the meta-model obtained from the XSD specifications of
WSDL and the meta-model of WS-BPEL defined in the context of the Eclipse BPEL
project1. The target SRML meta-model has been produced using the Eclipse Graphi-
cal Modelling Framework (GMF). The meta-models are modelled as EMF trees. In
this way, it will be possible to easily implement the transformation rules using tools
s.a. Tiger [3], which transform meta-models expressed in EMF.

Another strong point of our approach is that it will make it possible for the rich
analysis framework being developed in SENSORIA [15] to be used for analysing and
verifying properties of BPEL processes. The goal is to reason about the properties of
modules assembled from possibly heterogeneous components, e.g. through model
checking [7].

Acknowledgments

We would like to thank our colleagues in SENSORIA for many useful discussions,
and our Leicester colleagues Reiko Heckel and Karsten Ehrig in particular for
guidance in graph transformations and Tiger. Finally, we would like to thank the
reviewers for extensive and profound comments and suggestions that have definitely
improved the quality of this version.

1 http://www.eclipse.org/bpel/

 From BPEL to SRML: A Formal Transformational Approach 107

References

1. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interaction pro-
tocols for service-oriented system modelling. In: Formal Methods for Networked and Dis-
tributed Systems. LNCS, Springer, Heidelberg (to appear, 2007)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. Tech-
nical report, TC OASIS (2007), available from http://www.oasis-open.org/

3.

4.

5.

Biermann, E., Ehrig, K., Koehler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical defini-
tion of in-place transformations in the Eclipse Modeling Framework. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 425–439.
Springer, Heidelberg (2006)

6.

Bisztray, D., Heckel, R.: Rule-level verification of business process transformation using
CSP. In: Graph Transformation and Visual Modeling Techniques. Electronic Communica-
tions of the EASST (2007)

7.

Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

8.

Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 37–55.
Springer, Heidelberg (2007)

9.

Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state ma-
chines. In: ACIS International Conference on Software Engineering Research, Manage-
ment and Applications, pp. 331–338 (2004)

10.

Grunske, L., Geiger, L., Lawley, M.: A graphical specification of model transformations
with triple graph grammars. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 284–298. Springer, Heidelberg (2005)

11.

Hausmann, J.H.: Dynamic Meta Modelling: a semantics description technique for visual
modelling languages. PhD Thesis, Faculty of Computer Science, Electrical Engineering,
and Mathematics, University of Paderborn, Germany (2005)

12.

Hong, Y.: WSDL and BPEL to SRML-P Language Transformation. MSc Dissertation,
University of Leicester (2006)

13.

Object Management Group, MOF QVT Final Adopted Specification (2007), available
from: http://www.omg.org/docs/ptc/05-11-01.pdf

14.

Ouyang, C., Verbeek, E., van del Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: For-
mal semantics and analysis of control flow in WS-BPEL (revised version). BPM Center
Report BPM-05-15, BPMcenter.org (2005)

15.

SCA Consortium Building Systems using a Service Oriented Architecture. Whitepaper ver-
sion 0.9 (2005), available from: http://www.oracle.com/technology/tech/
webservices/standards/sca/pdf/SCA_White_Paper1_09.pdf

SCA Consortium SCA Client and Implementation Model Specification for WS-BPEL.
Version 1.00 (2007), available from:
http://www.osoa.org/download/attachments/35/
SCA_ClientAnd ImplementationModelforBPEL_V100.pdf?version=1
Wirsing, M., Bocchi, L., Clark, A., Fiadeiro, J., Gilmore, S., Hölzl, M., Koch, N., Pugliese,
R.: SENSORIA: Engineering for Service-Oriented Overlay Computers (submitted, 2007)

	From BPEL to SRML: A Formal Transformational Approach
	Introduction
	The Strategy of the Encoding
	Definition of the Module Structure
	Transformation of Control Flow
	Encoding Basic Activities
	Encoding Structured Activities

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

