
A Feature-Complete Petri Net
Semantics for WS-BPEL 2.0

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. We present an extension of a Petri net semantics for the
Web Service Business Execution Language (WS-BPEL). This exten-
sion covers the novel activities and constructs introduced by the recent
WS-BPEL 2.0 specification. Furthermore, we simplify several aspects of
the Petri net semantics to allow for more compact models suited for
computer-aided verification.

1 Introduction

Recently, the emerging standard to describe business processes on top of Web
service technology, the Web Service Business Execution Language (WS-BPEL),
has been officially specified [1]. This specification is much more detailed and
more precise compared to the predecessor specification [2]. Still, WS-BPEL is
specified informally using plain English. To formally analyze properties of WS-
BPEL processes, however, a formal semantics is needed. Therefore, many work
has been conducted to give a formal semantics for the behavior of WS-BPEL pro-
cesses. The approaches cover many formalisms such as Petri nets, abstract state
machines, finite state machines, process algebras, etc. (see [3] for an overview).
In addition to the possibility to analyze WS-BPEL processes, a formal seman-
tics may also help to understand the original specification and to allow to find
ambiguities.

The language constructs found in WS-BPEL, especially those related to con-
trol flow, are close to those found in workflow definition languages [4]. In the
area of workflows, it has been shown that Petri nets [5] are appropriate both for
modeling and analysis. More specifically, with Petri nets several elegant tech-
nologies such as the theory of workflow nets [6], a theory of controllability [7,8],
a long list of verification techniques, and tools (see [9] for an overview) become
directly applicable.

In this paper, we present an extension of the Petri net semantics of [10]. This
extension is twofold: (1) we simplify several patterns of the original semantics
that resulted in huge nets, and (2) we introduce novel Petri net patterns for
the constructs introduced by WS-BPEL 2.0 such as new activities or handlers.
Admittedly, we can only present a few aspects of this new semantics and refer
to [11] where the complete semantics formalizing all activities of WS-BPEL.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
WS-BPEL, our formal model, and the basic concepts of the Petri net semantics

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 77–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 N. Lohmann

we extend in this paper. Then, in Sect. 3, we show how several aspects of the se-
mantics can be simplified. Section 4 is devoted to the presentation of patterns for
some novel activities and constructs of WS-BPEL 2.0. Finally, Sect. 5 concludes
the paper, summarizes related work, and gives directions for future work.

2 Background

2.1 WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) [1], is a
language for describing the behavior of business processes based on Web services.
For the specification of a business process, WS-BPEL provides activities and dis-
tinguishes between basic activities and structured activities. The basic activities
are 〈receive〉 and 〈reply〉 to provide web service operations, 〈invoke〉 to in-
voke web service operations, 〈assign〉 to update partner links, 〈throw〉 to signal
internal faults, 〈exit〉 to immediately end the process instance, 〈wait〉 to delay
the execution, 〈empty〉 to do nothing, 〈compensate〉 and 〈compensateScope〉
to invoke a compensation handler, 〈rethrow〉 to propagate faults, 〈validate〉
to validate variables, and 〈extensionActivity〉 to add new activity types.

A structured activity defines a causal order on the basic activities and can
be nested in another structured activity itself. The structured activities are
〈sequence〉 to process activities sequentially, 〈if〉 to process activities condition-
ally, 〈while〉 and 〈repeatUntil〉 to repetitively execute activities, 〈forEach〉 to
(sequentially or in parallel) process multiple branches, 〈pick〉 to process events
selectively, and 〈flow〉 to process activities in parallel. Activities embedded to
a 〈flow〉 activity can further be ordered by the usage of control links.

Finally, the 〈scope〉 activity can add exception handling to an activity. For
this purpose, there exist four kinds of handlers: a 〈compensationHandler〉 to
compensate successfully executed scopes, 〈faultHandlers〉 to undo partial, un-
successful executed scopes, a 〈terminationHandler〉 to control the forced termi-
nation of a scope, and 〈eventHandlers〉 to process message or timeout events.
Though not listed as an activity, WS-BPEL’s root element is the 〈process〉,
which is in fact a special 〈scope〉 activity.

2.2 Open Workflow Nets

Open workflow nets (oWFNs) are a special class of Petri nets. They generalize
the classical workflow nets [6] by introducing an interface for asynchronous mes-
sage passing. oWFNs provide a simple but formal foundation to model services
and their interaction. Open workflow nets—like common Petri nets—allow for
diverse analysis methods of computer-aided verification. The explicit modeling
of the interface further allows to analyze the communicational behavior of a
service [12,13].

To model data flow and data manipulation, Petri nets can be extended to
algebraic high-level nets [14]. Similarly, open workflow nets can be canonically
extended to high-level open workflow nets (HL-oWFNs).

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 79

res

res = true

channel

p2

message

evaluate

res = false

p1

p3 p4

t2t1

resres

Fig. 1. A high-level oWFN

An example for a high-level oWFN is depicted in Fig. 1. Transition evaluate
receives a message (variable names are written in an italic font) from place
channel and evaluates it. The evaluation process itself is not explicitly modeled.
Still, the result of this evaluation (either the value ‘true’ or ‘false’) is produced
on place p2. Then, depending on this value, either t1 (the guard “res = true”,
written inside the transition, holds) or t2 (the guard “res = false” holds) can
fire. Throughout this paper, we refrain from depicting the concrete underlying
Petri net schema. The domains of the places can be canonically derived from the
patterns and the respective WS-BPEL activity.

2.3 A Petri Net Semantics for WS-BPEL

Both the semantics of [10] and the extension presented in this paper follow a
hierarchical approach. The translation is guided by the syntax of WS-BPEL1.
In WS-BPEL, a process is built by plugging instances of language constructs to-
gether. Accordingly, each construct of the language is translated separately into
a Petri net. Such a net forms a pattern of the respective WS-BPEL construct.
Each pattern has an interface for joining it with other patterns as is done with
WS-BPEL constructs (cf. Fig. 2). Also, patterns capturing WS-BPEL’s struc-
tured activities may carry any number of inner patterns as its equivalent in
WS-BPEL can do. The collection of patterns forms the Petri net semantics for
WS-BPEL.

Both semantics consist of high-level patterns which completely model WS-
BPEL’s control and data flow. As the data-domains of the variables can be
infinite, abstract (low-level) patterns are implemented in the respective com-
pilers BPEL2PN [15] and BPEL2oWFN [11]. To simplify the presentation of
the patterns, we use several graphical conventions, depicted in Fig. 3(a)
and 3(b).

1 The semantics of [10] is only defined for BPEL4WS 1.1. As, however, the concept of
the semantics is version-independent, we use “WS-BPEL” without version number
unless we want to distinguish the two different versions.

80 N. Lohmann

activity

initial

final

stop

stopped

fault

Fig. 2. The interface places of an activity: initial, final, stop, stopped, and fault. Marking
the initial place starts an activity. Upon faultless completion of the activity, the final
place is marked. The places stop and stopped model the termination of activities. Faults
are signaled by marking the fault place.

p

t1 t2

p p

t1 t2

(a) place copies

p

t

p

t

(b) read arcs

Fig. 3. Graphical conventions used to simplify patterns. (a) A dashed place is a copy
of a place with the same label. (b) Read arcs are unfolded to loops.

3 Simplifying Existing Patterns

The original semantics [10] was designed to formalize BPEL4WS 1.1 rather than
to create compact models that are necessary for computer-aided verification.
Some patterns were easy to understand yet made use of quite “expensive” con-
structs such as reset arcs [16]. We improved these patterns and replaced them
by less intuitive patterns with simpler structure. In particular, the setting of
control links and the complex interplay of the fault, compensation, event, and
(the newly introduced) termination handlers was condensed.

3.1 Links and Dead-Path-Elimination

Activities embedded in a 〈flow〉 activity are executed concurrently. However, it
is possible to add control dependencies by the help of links. A link is a directed
connection between a source activity and a target activity. After the source ac-
tivity is executed, the link is set to true, allowing the target activity to start. As
links express control dependencies, they may never form a cycle.

More precisely, when the source activity is executed faultlessly, the outgoing
links are set according to their corresponding transition conditions which returns
a Boolean value for each outgoing link. After the status of all incoming links of a
target activity is determined, a join condition—again a Boolean expression2—is
evaluated. If this condition holds, the target activity is executed. If, however, the
condition is false, the activity is skipped. In this case, all outgoing links recur-
sively embedded to the skipped activity are also set to false to avoid deadlocks.
2 While transition conditions are expressions over arbitrary variable values, join con-

ditions only evaluate the status of the incoming links.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 81

This concept is called dead-path-elimination (DPE) and can be enabled for each
target activity.

<flow>
<links> <link name="AtoB"/> <link name="BtoC"/> </links>

<activity name="A">
<sources> <source linkName="AtoB"/> </sources>

</activity>

<if>
<condition>...</condition>
<activity name="B">

<targets> <target linkName="AtoB"/> </targets>
<sources> <source linkName="BtoC"/> </sources>

</activity>
<else> <activity name="E"/> </else>

</if>

<sequence>
<activity name="C">

<targets> <target linkName="BtoC"/> </targets>
</activity>
<activity name="D"/>

</sequence>
</flow>

Fig. 4. An example for links and dead-path-elimination. 〈activity〉 is a placeholder
for any WS-BPEL activity.

As an example, consider the 〈flow〉 of Fig. 4. Two scenarios are possible,
depending on the condition of the 〈if〉 activity: If the condition evaluates to
true, we have the execution order shown in Fig. 5(a). Firstly, A is executed and
sets link AtoB to true, then B is executed and sets link BtoC. Finally, C and D
are executed sequentially.

A DB C

(a) condition true
E DB C

A

(b) condition false ([10])
E DC

A

(c) condition false (new)

Fig. 5. Possible executions of the activities of the example in Fig. 4. Skipped activities
are depicted with dashed lines. The executions (a) and (b) correctly model the specified
behavior, whereas the execution (c) does neither skips nor executes activity B.

In case the condition evaluates to false, E is executed and, due to the DPE,
activity B is skipped; that is, B has to wait until A has set its link AtoB. Then, B’s
outgoing link, BtoC, is set to false and C is also skipped. Finally, D is executed.
This yields the execution order of Fig. 5(b). These two runs are correctly modeled
by the semantics of [10] using a subnet in each pattern to bypass the execution
of the activity and to set outgoing links to false.

However, if the branches to be skipped are more complex, the skipping of
activities yields a complex model due to the DPE. In particular, skipping of
activities and execution of non-skipped activities is interleaved which might

82 N. Lohmann

result in state explosion problems. To this end, the new semantics differs from
the described behavior of [1]: an overapproximation of the process’s exact be-
havior is modeled. In the example, activity B is not skipped explicitly, but its
outgoing link, BtoC, is set to false directly when E is selected. This yields the
execution order of Fig. 5(c). Compared to the semantics of [10], two additional
runs are modeled by the new semantics, namely A and D being executed con-
currently, and D being executed before A. Due to the overapproximation, it may
be possible that the resulting model contains errors that are not present in the
WS-BPEL process. For example, activity A and D could be 〈receive〉 activities
that receive messages from the same channel. If they are active concurrently, a
“conflicting receive” fault would be thrown. However, static analysis of the WS-
BPEL process can help to identify these pseudo-errors (see [13,11] for details).
Figure 6 depicts another example for the direct setting of recursively embedded
links (transition skip). Again, transition evaluate JC and evaluate TC only im-
plicitly model the evaluation of the join and transition condition, respectively.
An explicit model of the evaluation would require to take XPath expressions,
XML variables, etc. into account and is out of scope of this paper.

activity

res = true

res = false

inital

final

res

evaluate JC

res

evaluate TC

skip

link 1

link 2

link 3

link 4

link 5

link 6

result
5

result
6

false

false

false

false

value
1

value
2

stop

stopped

fault

res

start

incoming

links

recursively

embedded

outgoing

links

outgoing

links

stopped

fault

stop

res

Fig. 6. Wrapper pattern of an activity that is source and target of links. Transition
evaluate JC evaluates the join condition. If the result is true, the embedded activity
is started. Upon completion of the this activity, transition evaluate TC evaluates the
transition condition and sets the outgoing links accordingly. If, however, the join con-
dition evaluates to false, transition skip does not only set all directly or recursively
enclosed outgoing links to false.

3.2 Fault Handling and Termination of Scopes

As the 〈scope〉 activity not only embeds an activity, but can also contain event,
fault, compensation, and termination handlers, it is WS-BPEL’s most complex

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 83

activity. This complexity is reflected by the big 〈scope〉 pattern of the seman-
tics of [10]. Though termination handlers were not introduced in BPEL4WS 1.1,
this pattern still had to be distributed to several subpatterns, one for each han-
dler. In addition, a stop component which has no equivalent in WS-BPEL was
added to the 〈scope〉 pattern. This pattern by itself consists of 32 places, 16
transitions, and also uses a reset arc [16].3 The main purpose of this compo-
nent is to model the interactions of the several subpatterns in case of fault and
compensation handling, or during the termination of the scope. In particular,
the stop component uses several status places to “distribute” control and data
tokens to the correct subpattern. Thus, it is possible to signal faults to a unique
place of the scope. However, faults occurring in the embedded activity can be
handled by the fault handler of the respective scope whereas faults of the com-
pensation handler have to be handled by the parent scope’s fault handler. This
separation of positive control flow inside the activities’ patterns and the negative
control flow organized in the stop component allowed comprehensible patterns.
Still, the stop pattern introduced several intermediate states. In addition to this
possible state explosion, the scope pattern of [10] could not be nested inside
repeatable constructs such as 〈while〉 activities or event handlers4. To this end,
we decided not to extend the existing scope pattern, but to create a new pattern
optimized for computer-aided verification while covering the semantics specified
by WS-BPEL 2.0.

The main idea of the new pattern is to use as much information about the
context of the activities as possible. For example, we refrain from a single place
to signal faults to avoid a stop component to distribute incoming fault tokens.
Instead, we use static analysis to derive information of the activities from the
WS-BPEL process. If, for example, an activity is nested in a fault handler,
faults should be signaled to the fault handler’s parent scope directly. This way,
we decentralize the aspects encapsulated in the stop component, resulting in
patterns which are possibly less legible yet avoiding unnecessary intermediate
states.

The new scope pattern is depicted in Fig. 7. It consists of four parts modeling
the different aspects of the scope.

– The positive control flow consists of the inner activity of the scope and
the optional event handlers. It is started by transition initialize which sets
the scope’s state to Active. The scope remains in this state while the inner
activity and the event handlers are executed. Upon completion, transition
finalize sets the scope’s state to !Active (the positive control flow is not active)
and Successful (the embedded activity ended faultlessly). The latter state is
later used by the compensation handler.

– The negative control flow consists of the fault handlers and a small subnet
organizing the stopping of the embedded activity. It can be seen as the

3 For verification purposes, this reset has to be unfolded (the connected place is
bounded), resulting an even bigger subnet.

4 The WS-BPEL 2.0 specification now actually demands activities in event handlers
to be nested in a 〈scope〉 activity.

84 N. Lohmann

fn

name

fn

inner activity

and

event handlers

activity of the

compensation

handler

termination

handler
fault handlers

stop

stopped

fault up

initial fault in ch fault up compensate

compensatedch fault infinal

!Active Activeinitialize

!Successful Successful

finalize

term

!Active

Active

Successful !Successful Active !Active

start th skip thskip chstart ch

inner stopped

ignore
fault

ch fault up

compensatedfinal

inner

stopped

fault in

stop stop

fault up

stopped

stop

stopped

inner

stopped

stopped

ch stop

ch stopped

handle

skip

pass

Exiting!Exiting

fn

fnfn

fn

fn

fsave

positive control flow fault handling compensation handling termination handling

Fig. 7. The pattern for the 〈scope〉 activity. It consists of four parts modeling the
different aspects of the scope: the positive control flow consisting of the embedded
activity and the event handlers, the fault handlers, the compensation handler and the
termination handler.

remainder of the former stop component, yet it is integrated more closely
to the rest of the pattern. When a fault occurs in the inner activity or the
event handlers, a token consisting of the fault’s name is produced on place
fault in. As the positive control flow is active, place Active is marked. Thus,
transition term is activated. Upon firing, the scope’s state is set to !Active,
and the stop place of the inner activity and the event handlers is marked.
Furthermore, the fault’s name fn is passed to the fault handlers (place fsave).
When the positive control flow is stopped (place inner stopped is marked),
the fault handlers are started. If they succeed, place final is marked and the
scope has finished.5 If, however, the fault could not be handled or the fault
handlers themselves signal a fault, place fault up is marked. This place is
merged with the parent scope’s or process’s fault in place. Instead of using
a reset arc to ignore any further faults occurring during the stopping of the
embedded activity, transition ignore fault eventually removes all tokes from
place fault in.

– The transitions pass, handle, and skip organize the fault propagation in case
the compensation handler throws a fault. In this case, the fault is passed to
the scope that called the faulted compensation handler. The compensation
handler itself is not modeled by a special pattern, but its embedded activity

5 The scope is left in state !Sucessful to avoid future compensation.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 85

is directly embedded to the scope. The compensation of the scope is triggered
by a 〈compensate〉 or 〈compensateScope〉 activity that produces a token
on place compensate. If the positive control flow of the scope completed
faultlessly before (i. e., place Successful is marked), transition start ch starts
the compensation handler’s activity. If the scope did not complete faultlessly
or the compensation handler was already called, transition skip ch skips the
embedded activity. In any case, place compensated is marked. This place is
again merged with the calling 〈compensate〉 or 〈compensateScope〉 activity.

– The termination handler is a new feature of WS-BPEL 2.0 and is dis-
cussed in the next section. The termination behavior of BPEL4WS 1.1 can,
however, be simulated by embedding a 〈compensate〉 activity to the termi-
nation handler.

The new scope pattern is more compact as the pattern from the seman-
tics of [10]. It correctly models the behavior of a 〈scope〉 activity for both
BPEL4WS 1.1 and WS-BPEL 2.0 processes. Furthermore, it is easily possible
to reset the status places which allows for scopes embedded in repeatable con-
structs (cf. the 〈forEach〉 pattern in Fig. 8). Finally, due to the absence of a stop
component which is connected to all subpatterns, it is easy to derive parameter-
ized patterns for any constellation of handlers, for example, a pattern for a scope
without any handlers, a pattern for a scope with just an event handler, etc.

3.3 Comparison

To compare the new patterns for scopes and dead-path-elimination with the
old patterns, we investigated an example process described in [15]. This process
models a small online shop consisting of 3 scopes, 2 links, and 46 activities. The
authors of [15] translated it using the old Petri net semantics and report a net
size of 410 places and 1069 transitions, and a state space consisting of 6,261,648
states (443,218 states using partial order reduction). We translated this process
with our compiler BPEL2oWFN6 which implements the new semantics. Using
the new patterns, the resulting net has 242 places and 397 transitions. The
smaller net structure also results in a smaller state space consisting of 304,007
states (74,812 states using partial order reduction).

With the presented simplified patterns, we can verify processes of realistic
size. Furthermore, structural reduction rules can be applied to further reduce
the net size and—due to less intermediate states—also the state space.

4 Modeling WS-BPEL’s New Features

WS-BPEL 2.0 [1] clarified several scenarios and added or renamed a couple of
activities. While most of the semantical details where already covered by the
semantics of [10], the other changes are mainly of syntactic nature and can be
modeled straightforwardly. For example, the new 〈repeatUntil〉 activity can

6 Available at http://www.gnu.org/software/bpel2owfn

http://www.gnu.org/software/bpel2owfn

86 N. Lohmann

be easily modeled by a 〈while〉 activity with adjusted loop condition. As such
resulting patterns are not very surprising, we focus on those features that are
entirely novel. In particular, the parallel 〈forEach〉 activity with its complex
completion and cancelation behavior cannot be simulated with existing features.
Furthermore, a termination handler now allows to execute an arbitrary activity
when a scope is forced to terminate. In this section, we present patterns for the
〈forEach〉 activity and the termination handler and refer to [11] for the complete
collection of patterns.

4.1 Modeling the 〈forEach〉 Activity

The 〈forEach〉 activity allows to parallel or sequentially process several instances
of an embedded 〈scope〉 activity. To this end, an integer counter is defined which
is running from a specified start counter value to a specified final counter value.
The enclosed 〈scope〉 activity is then executed according to the range of the
counter. In addition, an optional completion condition specifies a number of
successful executions of the 〈scope〉 activity after the 〈forEach〉 activity can be
completed prematurely.

The semantics of the sequential 〈forEach〉 activity can be simulated by a
〈while〉 or a 〈repeatUntil〉 activity which encloses a 〈scope〉 activity and an
〈assign〉 activity that organizes the counter. As the resulting pattern is rather
technical and straightforward, we refrain from a presentation. Instead, we focus
on the parallel 〈forEach〉 activity.

To model the parallel 〈forEach〉 activity, the number of instances of the
embedded 〈scope〉 activity—that is, the range of the counter—has to be known

final

!Successful

Successful

initial stop

stopped

stop

initial

final

x = 0

stopped

sc
op

e

instance 1

x

x-1

x

x

initialize
running

stopping

skipping

x > 0

x
b

c

active

counter

finish1

finish2

done

t1

t2

t3

t4

stop3

stop1

stop2

all stopped
x = 0

Fig. 8. The pattern for the parallel 〈forEach〉 activity

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 87

in advance. It can be derived using static analysis, for instance. Due to the
expressive power of XPath, static analysis of WS-BPEL processes with arbitrary
XPath expressions is undecidable. Thus, if no upper loop bound can be derived,
this bound has to be given explicitly. However, for the case where the loop bound
is received as a message, existing work [17] can be adapted to create an exact
model in this case.

Figure 8 depicts the generic pattern for an arbitrary but fixed number of
scope instances. All nodes in the grey rectangle (the scope pattern as well as
transitions t1–t4 and stop3) are present for each instance, whereas the other
nodes of the pattern belong to the 〈forEach〉 activity itself and exist only once.
To simplify the graphical representation, we merge arcs from or to instanced
places. For example, the arc from transition initialize to the place initial of the
scope pattern represents a single for each instance. Likewise, transition finish1
is connected to the done places of all instances. In addition, the bold depicted
arc connects each instance’s t1 transition with every stop place of the instance’s
scope.

We now describe the possible scenarios of the parallel 〈forEach〉 activity and
their respective firing sequences in the pattern of Fig. 8. Any scenario starts with
the firing of transition initialize which initializes all embedded scope patterns
and produces a token with the value b on place counter. This value describes the
completion condition; that is, the number of scope instances that have to finish
successfully to end the 〈forEach〉 activity prematurely. The 〈forEach〉 activity
is now in state active and running.

– Normal completion. The instances are concurrently executing their em-
bedded 〈scope〉 activities. When a scope completes, its final place is marked.
In addition, either place Successful (the scope executed faultlessly) or place
!Successful is marked (the scope’s activity threw a fault that could be handled
by the scope’s fault handlers). In case of successful completion, transition t3
fires and resets the scope’s state to !Successful and marks the instance’s done
place. Furthermore, the counter is decreased. If the scope was in state !Suc-
cessful, transition t4 produces a token on the instance’s done place without
decreasing the counter. When all instances’ scopes are completed, transition
finish1 completes the 〈forEach〉 activity.

– Premature completion. When a sufficient number of scope instances have
completed faultlessly, the 〈forEach〉 activity may complete prematurely;
that is, it ends without the need to wait for the other still running scopes to
complete. As mentioned before, the completion condition is modeled by the
counter place. As this counter is decreased every time an instance’s 〈scope〉
activity completed faultlessly, the counter value might reach 0. In this case,
transition t3 is—due to its guard—disabled. Instead, transition t1 can fire
which resets the scope as before and additionally sets the 〈forEach〉’s state
to skipping. Furthermore, it produces a token on the stop place of every in-
stance’s scope.7 Thus, all running scopes are stopped. Eventually, the stopped

7 This is depicted by the bold arc. Transition t1 also produces a token on the stop
place of the scope that just finishes.

88 N. Lohmann

place of all instances is marked—any tokens on the done places are also
removed—and transition finish2 completes the 〈forEach〉 activity. Due to
the asynchronous stopping mechanism, it is possible that other scopes com-
plete while their stop place is marked. In this case, transition t2 behaves
similarly to transition t1, but does not initiate the stopping sequence again.

– Forced termination. The 〈forEach〉 activity can—as all other activities—
be stopped at any time by marking its stop place. Transitions stop1 and stop2
organize the stopping for the normal completion and the premature comple-
tion, respectively. The counter is not changed by the stopping mechanism,
because its value is overwritten each time the 〈forEach〉 starts.

The 〈forEach〉 activity is mainly used to parallel or sequentially perform sim-
ilar requests addressed to multiple partners and is thus an important construct
to model service orchestrations or choreographies. To simplify the presentation
of the pattern, we do not depicted the subnet that organizes the compensation
of the instance’s scopes.

4.2 Modeling Termination Handlers

By the help of a termination handler, the user can define how a scope behaves if it
is forced to terminate by another scope. The termination handler is syntactically
optional, but—if not specified—a standard termination handler consisting of a
single 〈compensate〉 is deemed to be present.8

The termination handler is only executed if (1) the scope’s inner activity
has stopped, (2) no fault occurred, and (3) no 〈exit〉 activity is active. In the
scope pattern of Fig. 7, these prerequisites are fulfilled if the places inner stopped,
Active, and !Exiting (a status place of the process that is marked unless an 〈exit〉
activity is active) are marked. Then, transition start th invokes the termination

activity of the

termination

handler

fault

fault

initial

final/stopped

stop

begin

end

running

abort

ignore

aborted

stopping

stop

final/stopped

done/

stopped

done/

stopped

Fig. 9. The pattern for the termination handler

8 This standard termination handler also models the behavior described in the
BPEL4WS 1.1 specification.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 89

handler. In any other case, place stopped is marked. Unlike the compensation
handler, the termination handler’s activity cannot be embedded directly to the
scope, but needs a wrapper pattern, depicted in Fig. 9.

In the positive control flow, transitions begin and end start the embedded
activity and end the termination handler, respectively. If the embedded activity
throws a fault, it is not propagated to the scope’s fault handler, because the scope
is forced to terminate to handle a fault that occurred in a different scope. Thus,
transition abort just stops the inner activity if a fault occurred, and transition
ignore fault ignores further faults. When the inner activity is stopped, place
done/stopped place is marked and transition aborted completes the termination
handler similarly to transition end.

5 Conclusion

We presented a feature-complete Petri net semantics that models all data and
control flow aspects of a WS-BPEL (version 1.1 or 2.0) process. The semantics
is an extension of the semantics presented in [10]. To allow more compact model
sizes, we simplified and reduced important aspects such as dead-path-elimination
and the 〈scope〉 pattern. First experiments show that the resulting models are
much more compact than the models presented in [15]. We further introduced
patterns of the novel constructs such as the 〈forEach〉 activity and termination
handlers. For computer-aided verification, we implemented a low-level version
of the semantics in our compiler BPEL2oWFN which is used in several case
studies [12,13]. We only presented a few patterns of the semantics in this paper.
The complete semantics is published in [11].

As WS-BPEL is only defined informally, the correctness of the presented pat-
terns can not be proven. However, we validated the Petri net semantics in various
case studies. We translated real-life WS-BPEL processes into Petri net models
and analyzed the internal (cf. [15]) and interaction (cf. [12,18,13]) behavior as
well as the interplay of several WS-BPEL processes in choreographies (cf. [19]).

5.1 Related Work

Though many formal semantics for WS-BPEL were proposed (see [3] for an
overview), to the best of our knowledge, no formal semantics of the new con-
structs of WS-BPEL 2.0 was proposed yet.

Ouyang et al. present in [20,21] a pattern-based Petri net semantics. This
semantics models the behavior of the activities and constructs of BPEL4WS 1.1
with the semantics described an early specification draft of the WS-BPEL 2.0.
Thus, the semantics adequately models the behavior of BPEL4WS 1.1 processes
and avoids the ambiguities of the earlier specification [2]. However, constructs
such as the 〈forEach〉 activity or termination handlers are not covered by this
semantics. For detailed comparison between, see [22].

90 N. Lohmann

5.2 Future Work

The presented semantics is feature-complete; that is, it models all data and
control flow aspect of a WS-BPEL process.9 However, the instantiation of process
instances and message correlation is not covered by the semantics. In future work,
we want to add a instantiation mechanism to the semantics, allowing to analyze
the complete lifecycle of process instances.

As WS-BPEL is just a part of the web service protocol stack (cf. [23]), the
underlying layers such as WSDL, WS-Policy, etc. may also influence the behavior
of the WS-BPEL process under consideration. In ongoing research, we plan to
incorporate the information derived from these layers (e. g., fault types and policy
constraints) to our semantics to refine the resulting models and allow for more
faithful analysis results.

Acknowledgements. The author wishes to thank Christian Gierds, Eric Ver-
beek, Christian Stahl, Martin Znamirowski, and Simon Moser for valuable dis-
cussions and comments regarding the Petri net semantics. This work is funded by
the German Federal Ministry of Education and Research (project Tools4BPEL,
project number 01ISE08).

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2007)

2. Andrews, T., et al.: Business Process Execution Language for Web Services, Version
1.1. Technical report, BEA, IBM, Microsoft (2003)

3. Breugel, F., Koshkina, M.: Models and verification of BPEL (2006),
http://www.cse.yorku.ca/∼franck/research/drafts/tutorial.pdf

4. Aalst, W.M.P.v.d., Hee, K.M.v.: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge, Massachusetts (2002)

5. Reisig, W.: Petri Nets. Springer, Heidelberg (1985)
6. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. Journal

of Circuits, Systems and Computers 8(1), 21–66 (1998)
7. Martens, A.: Analyzing Web service based business processes. In: Cerioli, M. (ed.)

FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)
8. Schmidt, K.: Controllability of open workflow nets. In: Desel, J., Frank, U. (eds.)

Enterprise Modelling and Information Systems Architectures, Proceedings of the
Workshop in Klagenfurt, October 24-25, 2005. Lecture Notes in Informatics (LNI),
GI, vol. 75, pp. 236–249 (2005)

9. Girault, C., Valk, R. (eds.): Petri Nets for System Engineering – A Guide to Mod-
eling Verification and Applications. Springer, Heidelberg (2002)

10. Stahl, C.: A Petri net semantics for BPEL. Techn. Report 188, Humboldt-
Universität zu Berlin, Germany (2005)

11. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0 and
its compiler BPEL2oWFN. Techn. Report 212, Humboldt-Universität zu Berlin,
Berlin, Germany (2007)

9 We do not model aspects that are not part of the WS-BPEL language itself such as
XPath or XSLT.

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 91

12. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

13. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

14. Reisig, W.: Petri nets and algebraic specifications. Theor. Comput. Sci. 80(1), 1–34
(1991)

15. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

16. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

17. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: IEEE International Conference on Services Computing (SCC
2007), pp. 98–105. IEEE Computer Society Press, Los Alamitos (2007)

18. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

19. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2007)

20. Ouyang, C., Verbeek, E., Aalst, W.M.P.v.d., Breutel, S., Dumas, M., Hofstede,
A.H.M.t.: WofBPEL: A tool for automated analysis of BPEL processes. In: Be-
natallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
484–489. Springer, Heidelberg (2005)

21. Ouyang, C., Aalst, W.M.P.v.d., Breutel, S., Hofstede, A.H.M.t.: Formal semantics
and analysis of control flow in WS-BPEL. Sci. Comput. Program. 67(2-3), 162–198
(2007)

22. Lohmann, N., Verbeek, H., Ouyang, C., Stahl, C., Aalst, W.M.P.v.d.: Comparing
and evaluating Petri net semantics for BPEL. Computer Science Report 07/23,
Eindhoven University of Technology, Eindhoven, The Netherlands (2007)

23. Wilkes, L.: The Web services protocol stack. Technical report, CBDI Web Services
Roadmap (2005), http://roadmap.cbdiforum.com/reports/protocols

http://roadmap.cbdiforum.com/reports/protocols

	A Feature-Complete Petri Net Semantics for WS-BPEL 2.0
	Introduction
	Background
	WS-BPEL
	Open Workflow Nets
	A Petri Net Semantics for WS-BPEL

	Simplifying Existing Patterns
	Links and Dead-Path-Elimination
	Fault Handling and Termination of Scopes
	Comparison

	Modeling WS-BPEL's New Features
	Modeling the "426830A forEach"526930B Activity
	Modeling Termination Handlers

	Conclusion
	Related Work
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

