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Abstract. Choreographies offer means to capture global interactions
between business processes of different partners. BPEL4Chor has been
introduced to describe these interactions using BPEL. Currently, there
are no formal methods available to verify BPEL4Chor choreographies. In
this paper, we present how BPEL4Chor choreographies can be verified
using Petri nets. A case study undermines that our verification techniques
scale. Additionally, we show how the verification techniques can be used
to generate a stub process for a partner taking part in a choreography.
This is especially useful when the behavior of one participant is intended
to follow the corresponding requirements of the other participants. Thus,
the missing participant behavior can be generated and the error-prone
design of that participant can be skipped.

Keywords: BPEL4Chor, choreography, participant generation, Petri
nets, service-oriented analysis and design.

1 Introduction

The Web Services Business Process Execution Language (WS-BPEL or BPEL
for short, [1]) is the de facto standard to describe executable business processes
as orchestrations of Web services. A choreography describes the interaction of
several processes from a global perspective. In particular, it defines the order in
which processes exchange messages. BPEL4Chor [2] is a choreography language
based on BPEL. Each participant is associated with a participant behavior de-
scription (PBD) that describes the participant’s behavior using abstract BPEL.
The interconnection between the activities of different PBDs is formed by mes-
sage links.

In this paper, we show how an existing tool chain [3,4] can be extended to
analyze a BPEL4Chor choreography (Fig. 1). By mapping BPEL4Chor to Petri
nets, we also provide a formal model for BPEL4Chor.
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Fig. 1. Proposed tool chain to analyze BPEL4Chor choreographies

If two business partners agree on a choreography, but need a third business
partner to achieve their goal, they also have to specify the behavior of the third
party. We show how the behavior of the third party can be derived from ex-
isting participants in a choreography. The current algorithms assure deadlock-
freedom for the synthesized participant if such a participant exists. We are aware
that there are other possibilities for defining “proper interaction”. Nevertheless,
deadlock-free communication will certainly be part of any more sophisticated
correctness definition, so the presented approach can be seen as a step towards
a more sophisticated solution.

Section 2 introduces BPEL4Chor and open workflow nets (oWFNs), which are
used to capture the semantics of BPEL4Chor. After presenting in Sect. 3 how
BPEL4Chor can be translated into oWFNs, Sect. 4 shows how a BPEL4Chor
choreography can be analyzed theoretically. Section 5 puts that analysis into
practice and shows how the proposed tool chain is used to analyze a BPEL4Chor
choreography and that it scales up to 1,000 participants. Finally, Sect. 6 con-
cludes, compares the presented work with related work, and describes future
research directions.

2 Background and Motivation

A choreography described by BPEL4Chor consists of (i) the participant topol-
ogy, (ii) the participant behavior descriptions, and (iii) the participant ground-
ings (cf. Fig. 2 and [2]). The participant topology lists all participants taking
part in the choreography and all message links connecting activities of different
participants. A message link states that a message is sent from the source of
the message link to its target. Every participant has a certain type. For each
participant type, a participant behavior description (PBD) defined in BPEL is
given. In this description, port types and operations are omitted and thus the
dependency on interface specifications such as WSDL [5] is removed. If the chore-
ography has to be executed, every target of a message link has to be grounded
to a WSDL operation so that the other participants can use the offered opera-
tion. This grounding is done after the choreography design itself, which enables
choreography specification reuse. Since BPEL is used to specify the behavior of
every participant, the development of executable BPEL processes following this
behavior can be done by using the PBD of a participant as a basis and adding
missing information. Other languages can be used to provide implementations
of local behavior, but using BPEL is a seamless choice based on BPEL4Chor.



48 N. Lohmann et al.

BPEL4Chor choreography

Participant
topology

Structural aspects

Participant behavior 
descriptions (PBDs)

Observable control & data flow

Participant groundings

Technical configuration

Participant Declaration

List of participants

Message Links

Connecting PBDs

Fig. 2. BPEL4Chor artifacts ([2])

A choreography always describes the behavior of all participants. Thus, a
closed world is assumed. Refer to the booking scenario in Fig. 3. A traveler
requests booking of a flight at a travel agency. The travel agency requests a
price quote from every airline in a set of airlines. The cheapest airline is selected
and the tickets are ordered there. The airline replies with a confirmation and
sends an electronic ticket directly to the traveler. There is no message going to an
undefined participant. The observable behavior of all participants is specified.
Note that BPMN [6] is used for visualization only. The choreography itself is
specified using BPEL4Chor.

2.1 Open Workflow Nets

Open workflow nets (oWFNs) [7] are a special class of Petri nets. They generalize
classical workflow nets [8] by introducing an interface for asynchronous message
passing. Intuitively, an oWFN is a Petri net together with (i) an interface, con-
sisting of input and output places, (ii) an initial marking m0, and (iii) a set Ω
of distinguished final markings. Final markings represent desired final states of
the net and help to distinguish desired final states from unwanted deadlocks.
Throughout this paper, we use the term ‘deadlock’ for a nonfinal marking which
does not enable a transition (i. e., an unwanted blocking of the net). Figure 4
shows an oWFN modeling the traveler participant of the choreography depicted
in Fig. 3.

The interplay of two oWFNs N and M is represented by their composition,
denoted by N ⊕ M . Thereby, we demand that the nets only share input and
output places such that for some input places of N exist corresponding output
places of M , and vice versa. The oWFN N ⊕ M can then be constructed by
merging joint places and merging the initial and final markings. Merged places
become internal to N ⊕M . Due to the closed world assumption in BPEL4Chor,
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Fig. 4. An oWFN modeling the traveler participant. The interface consists of Pin =
{ticket, itinerary} and Pout = {trip}, depicted on the dashed frame. The traveler first
plans the trip and then sends an order. Then, he concurrently receives a ticket and an
itinerary. The set of final markings Ω = {[p1, p2]} consists of the single marking with
one token on place p1 and on p2.

the composition of all oWFNs modeling services of a choreography results in a
closed oWFN; that is, an oWFN with empty interface.

oWFNs provide a simple but formal foundation to model services and their
interaction. They allow—like common Petri nets — for diverse analysis methods
of computer-aided verification. The explicit modeling of the interface further al-
lows to analyze the interaction behavior of a service [3,4]. An important property
of an oWFN is whether it is possible to communicate deadlock-freely with it.
An oWFN N is called controllable, if there exists an oWFN M such that N ⊕M
is free of deadlocks. Like the soundness property for workflow nets, controlla-
bility [9] can be regarded as a minimal correctness criterion for communicating
services. Obviously, the net depicted in Fig. 4 is controllable.
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2.2 Petri Net Semantics for BPEL

The BPEL [1] language provides an operational semantics defining the behavior
of each language construct and the behavior of composites of constructs. To
formally verify BPEL processes, a formal semantics is needed. Therefore, a lot
of work has been conducted to define a formal semantics for the behavior of
BPEL processes. The approaches cover many formalisms such as Petri nets,
abstract state machines, finite state machines, process algebras, etc. (see [10] for
an overview).

The translation of a BPEL process intro a Petri net model is guided by the
syntax of BPEL. In BPEL, a process is built by plugging instances of language
constructs together. Accordingly, each construct of the language is translated
separately into a Petri net. Such a net forms a pattern of the respective BPEL
construct. Each pattern has an interface for joining it with other patterns as is
done with BPEL constructs. Also, patterns capturing BPEL’s structured activ-
ities may carry any number of inner patterns as its equivalent in BPEL can do.
The collection of patterns forms the Petri net semantics for BPEL. While the
original semantics in [11] is feature complete (i. e., capturing both the standard
as well as the exceptional behavior of a BPEL process), we only consider the
positive control flow in this paper to ease the presentation. The presented ap-
proach can, however, be canonically enhanced to also model fault, compensation
and exception handling of the participating BPEL processes.

3 Translating BPEL4Chor Choreographies into Petri Nets

To translate a BPEL4Chor choreography into a Petri net model, we extend the
translation approach presented in [3]. Basically, the translation is enhanced to
support composition and instantiation.

Composition. The tool chain presented in [3] is limited to the translation of a
single process into a Petri net model. To translate BPEL4Chor, we translate the
participating BPEL processes one by one and compose the resulting oWFNs.
The information how input and output places of different processes are merged
can be derived from the participant topology. As the composition of oWFNs is
associative, the order of composition is not important. Furthermore, the result-
ing nets can be composed incrementally. Therefore, at most two nets have to
be kept in memory during the translation process. Finally, structural reduction
techniques can be applied already during the composition process. Not only the
final composition, also the intermediate oWFNs can be reduced. This interleav-
ing of structural reduction and composition does not only allow smaller nets, but
also may speed up the translation process as the size of the composition grows
more slowly.

Instantiation. The translation process is, however, not restricted to choreogra-
phies in which each process is instantiated just once. For instance, the choreogra-
phy example presented in Fig. 3 models a choreography that communicates with
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a set of airlines. Again, the participant topology holds the necessary information
about which process has to be instantiated. Admittedly, the topology does not
provide the number of instances of each participant. We therefore demand an
upper bound of instances to be specified for each participant set. While this up-
per bound may not be necessary when BPEL4Chor is just a means to describe
choreographies, its definition is reasonable when such a choreography should be
analyzed.

To introduce instantiation to the translation process, the following scenarios
are possible:

i. message exchange between two uninstantiated participants (e. g., the trip
order sent by the traveler to the agency),

ii. message exchange between an uninstantiated participant and one particular
instantiated participant (e. g., the price request sent by the agency to an
airline instance),

iii. message exchange between an uninstantiated participant and an arbitrary
chosen instantiated participant (e. g., the e-ticket sent by the selected airline
to the traveler), and

iv. message exchange between two instantiated participants (not present in our
example choreography).

For an example of these scenarios, consider the BPEL code snippet of the
agency process depicted in Fig. 5(a). For two airline instances, the resulting
subnet is depicted in Fig. 5(b). The message trip sent by traveler to the agency
is an example of the first scenario, as both services (traveler and agency) are
uninstantiated. Therefore, the receipt of the trip message is modeled by a single
transition, namely t1. The price request sent to and the corresponding price
quotes received from the airline instances are examples for the second scenario.
Therefore, the communicating transitions (t2–t5) and the connected interface
places (price.1, price.2, quote.1, and quote.2) are instantiated. The order sent to
only one airline instance is an example for the third scenario.

Translating the example choreography. The presented translation approach
was implemented in our compiler BPEL2oWFN1. BPEL2oWFN enables us to
translate real-world BPEL choreographies into Petri net models. We translated
the example choreography with five airline instances into a Petri net. The result-
ing net has 103 places and 81 transitions. Structural reduction simplified the net to
63 places and 41 transitions. The final marking of the composition is constructed
canonically: it consists of the single state in which all participating services have
completed faultlessly.

4 Analyzing BPEL4Chor Choreographies

In this section, we show how to analyze BPEL4Chor choreographies using Petri
net models. We distinguish two analysis approaches: analysis of closed choreog-
raphy models and analysis of open choreography models. A closed choreography
1 BPEL2oWFN is available at www.gnu.org/software/bpel2owfn

www.gnu.org/software/bpel2owfn
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(a) code snippet of the agency process
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Fig. 5. Example for the instantiation of transitions and interface places. The BPEL
process of the agency (a) is translated into an oWFN (b).

model (i. e., an oWFN with empty interface) can be analyzed in isolation and can
be used to verify properties of a complete choreography. For example, deadlock-
freedom or the absence of unwanted communication scenarios can be proven
before the actual implementation and deployment of the participant services.
In contrast, an open choreography model (i. e., an oWFN with nonempty inter-
face) can be used during the design of the overall choreography. A choreography
in which one participating service is missing can, for instance, be completed
by synthesizing the missing participant service. This synthesized service is then
guaranteed to participate deadlock-freely with the other participants.

4.1 Analyzing Closed Choreographies

Due to the closed-world assumption of BPEL4Chor, the resulting Petri net model
of a completely specified BPEL4Chor choreography is a closed system; that is, a
Petri net with empty interface. During the translation, each interface place of an
intermediate oWFN, is merged with a corresponding interface place of another
intermediate oWFN. Closed systems do not have an environment and thus their
state space can be calculated and analyzed without considering the environment
of the system. As Petri nets offer a broad variety of analysis methods, a lot of
interesting properties can be investigated:

– Is the choreography free of deadlocks and livelocks? Will each participating
service eventually reach a final state?

– Will a certain activity of a participant be executed? Does there exist a state
in which more than one message is pending on a communication channel?

– What is the minimal/maximal number of messages to be sent to reach a
final state of the choreography?
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– Will a participant always receive an answer? Can a participant enforce the
receipt of a certain message?

These questions can be formulated in terms of reachability or temporal logic
properties and be checked using existing model checking tools.

Analyzing the example choreography. We analyzed the Petri net model of
Sect. 3 with the Petri net verification tool LoLA [12], a state-of-the-art model
checker which implements several state space reduction techniques. The unre-
duced state space consists of 3,843 states. The Petri net model contains an
unwanted deadlock. We could map this deadlocking state of the model back to
the participating services with the help of a witness path. A witness path is a
transition sequence leading from the initial to the dead marking. The deadlock
occurs in the choreography, when the agency’s choice for an airline takes too
much time, or when the message sent to the chosen airline is delayed. In this
case, the timeout (i. e., the onAlarm branch) of all participating airlines ends
their instances and the agency deadlocks waiting for a confirmation message
from the chosen airline.

Correcting the example choreography. There are many ways to correct the
deadlocking choreography. A straightforward attempt would be to replace the
airline service’s timeout by a message sent by the agency. This would, however,
add an unrealistic dependency between the agency and the airline. To this end,
we decided to keep the timeout, but at the same time ensure a response of the
airline service even when a ticket order is received after the timeout.

Hence, we changed the choreography as follows (cf. gray shapes in Fig. 6). The
airline’s behavior does not change if the agency’s ticket order is received before
the timeout occurred and if the timeout occurs, the airline service’s instance still
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Fig. 6. Deadlock-free Choreography of a Booking Scenario. The two start events at the
airline process denote a BPEL pick activity.
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terminates. However, a new branch was added to the airline: this branch models
the situation in which the agency’s ticket order is received after the timeout. In
this case, a new instance of the airline service is created which rejects the ticket
order. The services of the agency and the traveler are adjusted to handle this
rejection.

Analyzing the new example choreography. We translated the new chore-
ography with five airline instances into a Petri net model. Due to the newly
introduced activities, its structure and its state space have grown. The (struc-
turally reduced) net has 113 places and 97 transitions. The model has 3,812 states
and does not contain deadlocks except final states. With the help of LoLA, we
could also verify that the choreography’s participating services do not livelock
and will always reach a final state.

4.2 Analyzing Open Choreographies

While the analysis of closed choreographies may help to find design flaws in the
interaction between all participating services, Petri net models may also support
the design of choreographies. To this end, controllability (cf. Sect. 2.1) is an
important property. In [3], we presented an algorithm to decide controllability
of an oWFN constructively. This algorithm is implemented in the tool Fiona2.
If a partner exists such that the composition is deadlock-free, it is automatically
generated.

Let N1, . . . , Nk−1 be the oWFNs of the already known participant services of
an open choreography. Their composition, N1 ⊕ . . . ⊕ Nk−1, is an oWFN with
nonempty interface. If this net is controllable, then there exists an oWFN Nk

such that N1 ⊕ . . . ⊕ Nk−1 ⊕ Nk is deadlock-free. Thus, Fiona can be used to
“complete” a given open choreography by synthesizing the model Nk of the
missing participant.

Synthesizing a traveler participant. Consider again the fixed choreography
of Fig. 6. If, for example, only the services of the agency and the airline were spec-
ified, the blueprint of a traveler participant could be synthesized. If such a service
exists (i. e., the composition of the existing services is controllable), it completes
the choreography which is then deadlock-free by construction. To this end, the
incomplete choreography is translated into an oWFN using BPEL2oWFN. This
oWFN is then analyzed by Fiona. If the net is controllable, a service automaton
modeling the behavior of a partner service is synthesized. This automaton can
be translated into an oWFN, for example using the tool Petrify [13].

The synthesized oWFN of a traveler participant that completes the choreog-
raphy is depicted in Fig. 7(a). This traveler participant slightly differs from the
traveler participant in the new choreography (cf. Fig. 6). Firstly, there exists no
transition modeling the planning of the trip, because such a transition is inter-
nal (i. e., not communicating), but the participant was synthesized based on the

2 Fiona is available at www.informatik.hu-berlin.de/top/tools4bpel/fiona

www.informatik.hu-berlin.de/top/tools4bpel/fiona
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Fig. 7. Synthesized participants. (a) A traveler participant synthesized to fit in the
new choreography. The gray transitions are concurrent, whereas in the choreography
(cf. Fig. 6), the ticket is received after the itinerary. (b) Two synthesized airline in-
stances to fit in the first choreography (cf. Fig. 3). The gray transitions synchronize
the instances. The net has two final markings: Ω = {[p2, p3], [p1, p4]}.

external behavior; that is, only the interaction of the service was taken into ac-
count. Secondly, the itinerary and the ticket can be received concurrently. This
is due to the asynchronous communication model: messages can keep pending on
the interface, so there is no order in which they have to be received. From this
oWFN, an abstract BPEL process can be derived using existing approaches [14].
As this translation is out of scope of this paper, we do not present it here.

Limits of the participant synthesis. The presented approach allows to syn-
thesize a participant that interacts deadlock-freely with the other participating
services of the choreography if such a service exists; that is, if the open choreog-
raphy is controllable. At present, it is, however, not possible to synthesize a set
of services which complete a choreography.

As an example, consider again the first (deadlocking) choreography of Fig. 3.
The choreography deadlocks because of the airline service’s timeout mechanism.
If we synthesize the airlines, the result will be a single oWFN modeling the
behavior of all airline service’s instances.

Figure 7(b) depicts the synthesized oWFN modeling two airline instances.3

This service receives two price requests from the agency addressed to the differ-
ent instances (input places price.1 and price.2) and sends two price quotes. Then,
it waits to receive one ticket order (either on input place order.1 or order.2) and
answers it accordingly. The resulting choreography would be deadlock-free. How-
ever, the airline’s instances are not independent of each other. They are implic-
itly synchronized by the incoming arcs of the transitions receiving the orders. If
this service had to be split into two services, explicit synchronization messages
would have to be added to maintain deadlock-freedom. Still, the synthesized
airline model can be seen as a starting point for further refinement.

3 This structure of this oWFN was slightly adjusted to simplify the presentation.
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Another issue of the participant synthesis are causalities. As sketched in the
description of the generated traveler participant (cf. Fig. 7(a)), a generated par-
ticipant might send and receive messages in different— mostly less constraint—
orders. This might yield to synthesized services which send acknowledgment
messages before actually receiving the corresponding request. In such cases, the
causality between the request and the acknowledgment is ignored. In [15], we
introduced behavioral constraints into the synthesis process to rule out such
implausible behavior.

Each of the participating services of both choreographies are controllable.
As the first choreography shows, their composition may still deadlock. Such
deadlocking scenarios are not obvious even for small choreographies. Therefore,
design and verification of deadlock-free choreographies with a larger number of
participants and/or more complex participant services are even more challenging
if not impossible to do manually.

5 Case Study

In the previous sections, we analyzed the first and the second choreography
(cf. Fig. 3 and Fig. 6, resp.) with five airline instances. For these five airlines,
the resulting models already had over 3,000 states. The states space grows dra-
matically when the number of airlines is further increased (cf. Table 1). For ten
airlines, the model has over nine million states, and for larger numbers, the full
state space could not be constructed due to memory overflow4 (denoted as ‘—’
in Table 1).

However, several state space reduction rules can be applied to reduce the
size of the state space while still being able to analyze desired properties such
as deadlock-freedom. In our particular example, we applied symmetry reduction
and the partial order reduction, both implemented in LoLA (see [12] for further
references). The symmetry reduction exploits the fact that all airline instances
have the same structure. This regular structure induces symmetries on the net
structure itself, but also on the state space of the choreography. Intuitively, the
instances act of the airline service act ‘similar’ or ‘symmetric’. During the state
space construction, symmetric states are merged. The partial order reduction
follows a different approach: as all instances run concurrently, any order of tran-
sitions of the airline instances are represented in the state space. These transition
sequences introduce a lot of intermediate states. This is known as state space
explosion. However, the actual order of independent actions is not relevant to
detect deadlocks, for instance. To this end, partial order reduction tries to only
construct one transition sequence (i. e., one order) of transitions of different air-
line instances to ease the state space explosion.

When each of the reduction techniques is applied in isolation, the state spaces
grow more slowly, yet still exponentially in the number of airline instances. The
combination of both techniques, however, yields a linear increase of states (cf. Ta-
ble 1). Hence, we are able to verify properties of BPEL choreographies with
4 The experiments where made with two gigabytes of memory.
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Table 1. Net sizes (structurally reduced) and state spaces (full, reduced using sym-
metry reduction, reduced using partial order reduction, and reduced combining partial
order reduction and symmetry reduction)

choreography first example, cf. Fig. 3 second example, cf. Fig. 6
airlines 1 5 10 100 1,000 1 5 10 100 1,000
places 20 63 113 1,013 10,013 19 63 113 1,013 10,113
transitions 10 41 76 706 7.006 12 52 97 907 9,007
states (full) 14 3,483 9,806,583 — — 13 3,812 9,805,560 — —
states (symmetry) 14 561 378,096 — — 13 704 329,996 — —
states (POR) 11 86 261 18,061 1,752,867 12 88 228 8,361 734,049
states (POR+symm.) 11 30 50 410 4,010 12 28 43 314 3,014

thousands of participating services. This shows that the presented approach can
be used to analyze real-life examples.

6 Conclusion

In this paper, we presented an analysis of choreographies expressed in
BPEL4Chor based on Petri nets. Models of choreographies with a lot of par-
ticipating services contain a lot of concurrency which results in state space
explosion. Our experiments showed that the combination of several reduction
techniques allows to handle choreographies with thousand participants.

Deadlocks in choreographies can be very subtle. In the introductory example,
each participant was correct (i. e., controllable) by itself, but the composition
introduced deadlocks. We showed how our tool chain helps to detect deadlocks
in a reasonable time and thus ensures that the choreography can be executed.

Since a choreography is a closed world, the analysis techniques allow a partici-
pant to be generated out of other participants, which speeds up the choreography
design. If an airline and a travel agency agree on their behavior, the customer
has to comply with it and can neither force the airline nor the travel agency to
adapt their behavior to his wishes.

All things considered, the analysis and synthesis approach are independent of
BPEL as input language as the approaches are based on the formal model of
Petri nets. Therefore, the presented tool-chain (cf. Fig. 1) can be easily adapted
to other service description languages.

6.1 Related Work

For analyzing BPEL4Chor choreographies, [16] presents a first approach for map-
ping BPEL4Chor to π-calculus. However, there was no formal mapping provided
and it has not been shown whether the resulting π-formula can be verified in a
reasonable period of time.
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Choreographies themselves can be expressed by specifying (i) interconnec-
tion models and (ii) interaction models. An interconnection model captures the
observable behavior of each participant in a choreography; that is, it defines
an orchestration of the activities local to each participant. Activities of differ-
ent participants are related in a choreography via message links tying together
the local behavior into a global behavior. The basic messaging constructs are
sending and receiving activities. BPMN [6] and BPEL4Chor are languages to
express choreographies by interconnection models. An interaction model defines
an ordering of the interactions of the processes on a global view. The basic mes-
saging construct is the interaction activity, which models a message exchange
between two participants. Current languages providing interaction models are
Let’s Dance [17] and WS-CDL [18]. Verification techniques are available for Let’s
Dance (cf. [19]) and WS-CDL (e. g. [20,21]). Since Let’s Dance and WS-CDL pro-
vide interaction models, whereas BPEL4Chor provides interconnection models,
the techniques cannot be directly applied to BPEL4Chor. [22] provides a formal-
ization and a verification of BPMN models. However, BPMN does not originally
support multiple instances of a participant as it is the case in BPEL4Chor.

[23] presents how to synthesize a BPEL processes which properly interacts
with one given BPEL process. In contrast, we presented how to synthesize an
oWFN out of n given BPEL processes.

6.2 Future Work

We plan to enhance and generalize the translation approach of [14] to synthesize
a participant behavior description in BPEL instead of the oWFN only. For ex-
ample, information about the participant topology has to be incorporated into
the translation process to refine the resulting BPEL process.

Errors in choreographies can usually not be collated to a single participant,
but to the combination of several participants. To this end, the repair of a
erroneous choreography is nonlocal. We therefore plan to visualize the faulty
scenario in the BPEL code of the affected participant(s) to support the designer
in eliminating the detected problem.

In [9], the notion of distributed controllability was introduced. Distributed
controllability focuses on synthesizing a set of services that interact deadlock-
freely with a given service, and thus may allow to synthesize several independent
instances of a participating service. This would ease the design of choreographies,
because as soon as the first participant and a participant topology is specified,
the blueprints of the remaining participants can be synthesized. We plan to
further investigate the first theoretical results whether they can be integrated
into our approach.
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23. Moser, S., Martens, A., Häbich, M., Mülle, J.: A hybrid approach for generating
compatible WS-BPEL partner processes. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 458–464. Springer, Heidelberg (2006)

http://www.w3.org/TR/ws-cdl-10

	Analyzing BPEL4Chor: Verification and Participant Synthesis
	Introduction
	Background and Motivation
	Open Workflow Nets
	Petri Net Semantics for BPEL

	Translating BPEL4Chor Choreographies into Petri Nets
	Analyzing BPEL4Chor Choreographies
	Analyzing Closed Choreographies
	Analyzing Open Choreographies

	Case Study
	Conclusion
	Related Work
	Future Work




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




