

Lecture Notes in Computer Science 4937
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marlon Dumas Reiko Heckel (Eds.)

Web Services
and Formal Methods

4th International Workshop, WS-FM 2007
Brisbane, Australia, September 28-29, 2007
Proceedings

13

Volume Editors

Marlon Dumas
University of Tartu, Institute of Computer Science
J Liivi 2, Tartu 50409, Estonia
E-mail: marlon.dumas@ut.ee

Reiko Heckel
University of Leicester, Department of Computer Science
University Road, Leicester, LE1 7RH, UK
E-mail: reiko@mcs.le.ac.uk

Library of Congress Control Number: 2008924625

CR Subject Classification (1998): D.2.4, C.2.4, F.3, D.4, C.4, K.4.4, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-79229-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79229-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12257416 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at WS-FM 2007, the 4th International
Workshop on Web Services and Formal Methods, held on September 28 and 29,
2007 in Brisbane, Australia.

Web service technology aims at empowering providers of services, in the broad
sense, with the ability to package and deliver their services by means of software
applications available on the Web. Existing infrastructures for Web services al-
ready enable providers to describe services in terms of structure, access policy
and behaviour, to locate services, to interact with them, and to bundle simpler
services into more complex ones. However, innovations are needed to seamlessly
extend this technology in order to deal with challenges such as managing inter-
actions with stateful and long-running Web services, managing large numbers of
Web services each with multiple interfaces and versions, managing the quality
of Web service delivery, etc.

Formal methods have a fundamental role to play in shaping innovations in
Web service technology. For instance, formal methods help to define and to
understand the semantics of languages and protocols that underpin existing
infrastructures for Web services, and to formulate features that are found to be
lacking. They also provide a basis for reasoning about Web service behaviour,
for example to discover individual services that can fulfil a given goal, or even
to compose multiple services that can collectively fulfil a goal. Finally, formal
analysis of security properties and performance are relevant in many application
areas of Web services such as e-commerce and e-business.

The International Workshop on Web Services and Formal Methods aims to
bring together researchers interested in the application of formal methods and
reasoning techniques to Web service technology, and in formal theories inspired
by developments in the field of Web services. The scope of the workshop is not
purely limited to technology aspects. It also covers approaches to analysing and
designing systems based on Web service technology, including service-oriented
enterprise modelling and business process modelling.

This fourth edition of the WS-FM workshop featured 9 regular papers se-
lected from a pool of 22 submissions after a rigorous review process. Each sub-
mission was reviewed by at least three programme committee members, and in
many cases four. In addition to regular paper presentations, the workshop’s pro-
gramme also featured two invited talks. In the first invited talk, Jianwen Su gave
a survey of research in the area of formal analysis of Web service interactions
with an emphasis on the relation between global models capturing all interac-
tions between multiple services at once, versus local models that focus on one
service at a time. The second talk by Jörg Desel proposed a formal theory that
aims at unifying several notions of soundness and controllability of Web service

VI Preface

protocols. After the workshop, the authors of these invited talks kindly agreed
to prepare a full invited paper for inclusion in these proceedings.

The workshop was held in conjunction with the 5th International Conference
on Business Process Management (BPM). This was the second time that the
workshop was co-located with the BPM conference, and this arrangement is
expected to continue in the future.

We owe special thanks to all members of the Program Committee of
WS-FM 2007 and their sub-referees for their work. We are also very grateful
to the numerous people who were involved in the organisation of the BPM con-
ference for lending their support to the workshop organisation.

January 2008 Marlon Dumas
Reiko Heckel

Conference Organization

Programme Chairs

Marlon Dumas
Reiko Heckel

Programme Committee

Farhad Arbab
Matteo Baldoni
Boualem Benatallah
Karthikeyan Bhargavan
Mario Bravetti
Roberto Bruni
Rocco De Nicola
Schahram Dustdar
José Luiz Fiadeiro
Aditya Ghose
Cosimo Laneve
Mark Little
Shin Nakajima
Manuel Nunez
Wolfgang Reisig
Srinivas Padmanabhuni
Jianwen Su
Karsten Wolf
Yun Yang
Gianluigi Zavattaro
Aoying Zhou
Fabio Casati
Gregor Engels
Rob van Glabbeek
Wil van der Aalst

Local Organization

Marlon Dumas
The BPM Research Group at Queensland University of Technology

VIII Organization

External Reviewers

Cristina Baroglio
Marco Bernardo
Laura Bocchi
Dirk Fahland
Alexander Foerster
Baris Güldali
Sarath Indrakanti
George Koliadis
Luis Llana
Olga Marroquin-Alonso
Ismael Rodriguez
Christian Stahl
Emilio Tuosto

Table of Contents

Towards a Theory of Web Service Choreographies (Invited Paper) 1
Jianwen Su, Tevfik Bultan, Xiang Fu, and Xiangpeng Zhao

Controlling Petri Net Process Models (Invited Paper) 17
Jörg Desel

Extending Model Checking to Data-Aware Temporal Properties of Web
Services . 31

Sylvain Hallé, Roger Villemaire, Omar Cherkaoui,
Jérôme Tremblay, and Boubker Ghandour

Analyzing BPEL4Chor: Verification and Participant Synthesis 46
Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig

Scalable Formalization of Publish/Subscribe Messaging Scheme Based
on Message Brokers . 61

Qin Li, Huibiao Zhu, Jing Li, and Jifeng He

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 77
Niels Lohmann

From BPEL to SRML: A Formal Transformational Approach 92
Laura Bocchi, Yi Hong, Antónia Lopes, and José Luiz Fiadeiro

Modeling Web Service Interactions Using the Coordination Language
Reo . 108

Samira Tasharofi, Mohsen Vakilian,
Roshanak Zilouchian Moghaddam, and Marjan Sirjani

Synthesis of Web Services Orchestrators in a Timed Setting 124
Fabio Martinelli and Ilaria Matteucci

From Public Views to Private Views – Correctness-by-Design for
Services . 139

Wil M.P. van der Aalst, Niels Lohmann, Peter Massuthe,
Christian Stahl, and Karsten Wolf

Event Structure Semantics of Orc . 154
Sidney Rosario, David Kitchin, Albert Benveniste, William Cook,
Stefan Haar, and Claude Jard

Author Index . 169

Towards a Theory of Web Service Choreographies

Jianwen Su1,�, Tevfik Bultan1, Xiang Fu2, and Xiangpeng Zhao1,3

1 University of California at Santa Barbara
2 Georgia Southwestern University

3 Peking University, China

Abstract. A fundamental promise of service oriented architecture (SOA) lies
in the ease of integrating sharable information, processes, and other resources
through interactions among the shared components that are modeled as web ser-
vices. It is expected that not only the participating services are complex and have
observable states, but the number of interacting services may be also large. Prior
work on choreographies (conversation protocols) all focuses on specifying how
the interacting web services should behave globally. Studies have shown that the
relationships between global and local specifications of service interactions could
be rather intricate. In this paper, we formulate a framework consisting of log-
ical and implementation levels. We survey and discuss the technical problems
and known results concerning service design, analysis and verification in this
framework.

1 Introduction

A fundamental principle of Service Oriented Architecture (SOA) is to design and model
complex software systems as assemblies of bitesize pieces. The pieces can then be man-
aged and re-used. While the paradigm is promising, there is a serious lack of principles
to aid the design of complex systems from the existing pieces, and to help the manage-
ment of systems, small or large. This paper aims at the former problem and attempts
to develop a technical framework on which service design principles can be developed.
The framework is based on application needs as well as technical results concerning
composite service design, analysis and verification developed in the community.

Two characteristics distinguish service design from distributed system design stud-
ied in the past. First, working with abstractions is a necessity rather than a preference.
There are many reasons a service provider will not reveal the detailed information con-
cerning the internals of a service. Service design must rely on the abstract description
of the needed services. Furthermore, it is often required that an abstraction of the com-
position is fully developed [24,3] which can serve as either a design specification or
constraints for verification. This high level abstraction is built from the observable ac-
tions of participating services but it is different from system traces. Second, as the SOA
popularity grows, the number of available services also increases rapidly. It is necessary
to automate (or semi-automate) many steps in service design.

In the services computing community, there have been investigations concerning
the design, analysis, and verification of service compositions. Most of the prior work

� Supported in part by NSF grants IIS-0415195 and CNS-0613998.

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Su et al.

either focuses on (proposed) standards or concerns sophisticated techniques in various
aspects. As an important SOA application domain, business applications embrace SOA
on one hand, but on the other hand are struggling with the lack of a framework that can
address the complete service design cycle [4].

In this paper, we formulate a technical framework that consists of two levels of ab-
straction: logical and implementation. At the logical level, specifications focus on how
participating services should interact with each other, while the implementation level
provides abstractions of services. Among other things, the framework solidifies from
a formal perspective the differences between WS-CDL [29] and BPEL [6]. We give a
survey on existing technical results over this framework.

This paper is organized as follows. Section 2 gives a general discussion on service
design approaches. Section 3 surveys the existing choreography models. Section 4 fo-
cuses on the key technical problems concerning service design and analysis. Section 5
concludes the paper.

2 SOA and Service Design

In this section, we give a general discussion on service design under the influence of
SOA (service oriented architecture). We argue that service design needs two or more
levels of abstraction. On the logical level, specifications will focus on interactions
among services; on the implementation level, the goal is to allow service executions
to satisfy logical specifications.

A fundamental premise of SOA is to structure complex software systems into “bite-
size” pieces, which can then be easily managed and reused. Such a framework is a clear
departure from the traditional software development approaches aiming at individual
software components due to the changes in many phases of the development process
[5]. Among many technical issues is design methodology for constructing new services
(software systems) from assembling existing services.

Business
Process

initial requirements
design

analysis evolution

Fig. 1. Life cycle of a business process

To illustrate the issues, consider as an example the life cycle of a business process
(to handle, e.g., purchase orders, loan applications, etc.) as shown in Fig. 1. In the de-
sign phase, business requirements are used to eventually produce an operational system.

Towards a Theory of Web Service Choreographies 3

The efforts in this phase could involve designs in multiple layers, from high-level con-
ceptual to eventual coding. Automated or semi-automated design and analysis tools
will provide a significant help in reducing the development time and in improving the
quality of design. During the operation phase, business processes, in particular, need to
make changes to adapt to the environment better (changes in the market, laws, etc.) and
make improvements to achieve business goals. Evolution tools could provide support
for monitoring the executions, assessing impact of potential changes, and even making
the changes.

initial requirementsdesign

analysis evolutionMediator

WS1 WSn
...

Business Process

Fig. 2. A mediator process orchestrates “component” services

If we focus on the result of the design process from the initial requirements, it is nec-
essary to understand service design methodology. Traditional approaches basically treat
the services used as “components” in constructing a new service (or software compo-
nent). The new service “orchestrates” the component services (Fig. 2). We broadly call
such an approach orchestration. Typical examples include BPEL [6] and many work-
flow systems.

There is, however, a new, different methodology called choreography that was re-
cently proposed in services computing community [20,21,10,29]. This new approach
assumes that the participating services, once “connected”, will run on their own with

initial requirementsdesign

analysis evolutionSpecification of
WS Interactions

WS1 WSn
...

Realization logical level

implementation
level

analysis

Business
Process

evolution

Fig. 3. A choreography specifies the interactions between services

4 J. Su et al.

no global intervention; the composite service design is then to specify how and when
the participating services should interact with each other. Fig. 3 depicts this scenario.

Comparing the orchestration and choreography approaches, a mediator is an exe-
cutable program and a part of the implemented business process. Therefore, analysis,
monitoring, and updates will need to be performed on the mediator and the used ser-
vices as a whole. On the contrary, a choreography is merely a logical specification of
the observable behaviors by the interacting services at the logical level (Fig. 3). In the
ideal case, the choreography completely captures the service behaviors; thus, analysis
and updates would only need to be done at the logical level. We believe that a clear
separation of logical and implementation levels should be fundamental principle that
would allow us to separate and localize concerns and make them independent in de-
veloping better systems. The principle is reminiscent of a similar principle in the data
management systems [26].

While the logical level describes the global behaviors, it is possible to allow more
levels of abstraction in the implementation level. To this end, Mealy services [10]
and BPEL4Chor [14] are mathematical and practical (respectively) models in the im-
plementation level with high abstraction. Techniques for reasoning with and verifica-
tion of such models have been studied in the distributed computing and verification
communities [22].

A choreography is “realizable” if there is an implementation of the interacting ser-
vices whose behavior is identical to the choreography. Often in service design, the
choreography language for the logical level and the implementation model are already
given. Ideally, each choreography can be realized and every implementation realizes a
choreography, i.e., the two levels are “equivalent” in some sense.

However, the current situation is that there are many existing implementation models
while new choreography languages are being developed. Instead of being the ideal case,
their relationships are not clearly known. Therefore, the ability to clearly separate the
logical and implementation levels hinges on understanding the fundamental relation-
ship between choreography specifications and implementations. To this end, we phrase
the following two key challenges concerning characterization of choreographies and
implementations, respectively.

Challenge 1. Can we capture the set of all realizable choreographies (for a given im-
plementation model)?

Challenge 2. Can we capture the set of implementations that realize choreographies
(in a given choreography language)?

In the remainder of the paper, we give an overview of choreography models and then
focus on technical problems concerning, in particular, the two challenges.

3 Choreography Models

In this section, we define the key notion of a “choreography model” and give a brief
survey of several choreography modeling languages that have been studied. We divide
the languages into three categories based on their underlying frameworks: finite state
automata, Petri nets, and process algebras. Subsection 3.1 discusses the elements in a

Towards a Theory of Web Service Choreographies 5

choreography model and related notions, and give a summary of the existing choreogra-
phy modeling languages with respect to these elements. Subsections 3.2 to 3.4 provide
more details of the models in each of the three categories.

3.1 Elements of a Choreography Model

As illustrated in Fig. 3, a choreography defines the observable interactions among the
participating services. We use the words global and local to mean the behaviors or activ-
ities that are viewed in the overall composition perspective and in the individual service
perspective, respectively. Thus a choreography model M typically has two components:
a specification C of the desired global behaviors, and a representation I of local ser-
vices and their local behaviors which collectively should satisfy the specified global
behaviors.

A specification of desired global behaviors is called a choreography, and a repre-
sentation of a service is called a service implementation. A choreography modeling
language provides means to define choreography models, i.e., choreographies, service
implementations, and their semantics including a mechanism to compare global behav-
iors generated by service implementations with a choreography. In this perspective, we
informally view a choreography modeling language L as a collection of choreography
models, L = {(C, I) | C is a choreography and I service implementations }. In the
remainder of the paper, we also conveniently view L as a pair L = (C, I), where C is a
collection of choreographies and I a collection of service implementations.

A choreography can be defined using the following two types of basic elements: (1)
a set of observable actions that happen at individual services (locally), and (2) a set of
sequencing (global) constraints of the activities in (1).

Observable local actions are typically of two kinds: messaging actions for communi-
cating with other services including sending and receiving messages, and local activities
that are performed at individual services independent of other services. The use of activ-
ities in a choreography is primarily for organizing service operations in order to satisfy
the logical requirements of a composition. For example, a “searching for books” (on a
catalog) operation should happen before a “checkout” operation.

Sequencing constraints restrict the actions to specified orderings. Although these
resemble the control flow constructs in programming, a notable difference is that it may
not be obvious how an individual constraint on two activities in a choreography can
be enforced when the activities have no connections. As we shall see in Subsection
4.2, some of such cases can be logical consequence of other constraints (that can be
enforced), and others simply cannot be implemented. This is one of the interesting
problems concerning choreography modeling languages.

The second component of a choreography model is a set of service implementa-
tions. When the services interact within a composition, their collective global behav-
iors should “conform” to the specification. In the following, we explore two essential
ingredients needed in defining the notion of conformance, the latter will be given in
Subsection 4.1.

Clearly, the services must communicate with each other using a messaging model.
Different messaging models have been used in the literature. Under one model the
sender of a message waits for the receiver to consume the message from the channel

6 J. Su et al.

before it continues. The model is simple and prohibits the sender from taking any fur-
ther actions, including sending another message prior to the consumption of the first
by the receiver. We call this model synchronous messaging in the spirit of service com-
position. In contrast, asynchronous messaging models allow the sender to continue its
execution immediately after its completion of the send action. A decision to be made
is how to handle the situation when new messages arrive before old messages are con-
sumed. A natural approach is to use a FIFO queue for each receiver to store all its
unconsumed messages in their arriving order. One can also place a limit on the size
of FIFO queues, in which case, an incoming message sent to a full queue could cause
one of several possible actions, including: overwrite the oldest message, delete itself, or
block the sender’s execution. A messaging model should clearly define the actions to
be taken.

The second ingredient is how to formulate the global behaviors of an execution of
services and compare them against a choreography. One straightforward approach is to
use traces of the service executions modulo irrelevant actions. This has been studied
in mostly automata based choreography models. The other is to employ the notion of
bisimulation between the generated global behaviors and choreography. Most process
algebra based choreography models adopt this approach.

Table 1 summarizes some selected choreography modeling languages in the three
categories. Rows in the table indicate specific elements in the global or local specifica-
tions. Messaging and activity mean whether a choreography/service implementation can
include messaging actions and non-messaging activities (respectively). Here “Global”
means choreography, “Local” means service implementation, “G/L” stands for both
choreography and service implementation (in all models examined, the control flow
constructs are the same for choreography and service implementation). For example,

Table 1. Summary of Choreography Models

PetriAutomata Process algebrasnets

M
ea

ly
[1

0]

U
M

L
C

ol
la

bo
ra

ti
on

D
ia

gr
am

[9
]

C
ol

om
bo

[1
]

IP
N

[1
6]

B
ol

og
na

[1
1]

G
lo

ba
l&

E
nd

po
in

t
C

al
cu

li
[1

2]

C
ho

r
&

R
ol

e
[2

5]

Global messaging yes yes no yes yes yes yes
Local messaging yes yes yes yes yes yes yes
Global activity yes1 no yes no no yes2 yes
Local activity yes1 no yes no no yes2 yes
G/L sequence yes yes yes yes yes yes yes
G/L parallel yes1 yes1 yes1 yes yes yes yes
G/L choice yes no yes yes yes yes yes3

G/L Recursion yes yes2 yes yes no yes3 yes3

Messaging model FIFO FIFO FIFO(1) sync sync sync sync

Semantics trace trace trace bisim bisim bisim trace
1Can be extended to include the element 2Limited 3Dominated

Towards a Theory of Web Service Choreographies 7

in Colombo the global behavior specification could state that the “listen-to-music” ac-
tivity in one service should happen before the “checkout” activity in another. The row
“Messaging model” shows the model used for the languages, and the last row “Seman-
tics” identifies whether the comparison of generated global behaviors and a choreog-
raphy uses trace based semantics or bisimulation. Finally, two process algebra based
modeling languages either model activities of particular types (shown as “Limited” in
table) or require one service to control choice or iteration (shown as “Dominated”).

In the remainder of the section, we give a short survey of choreography languages
based on their underlying formalisms.

3.2 Automata Based Models

Automata based choreography models represent both choreographies and service im-
plementations using finite state automata (or their variants). An advantage is that state
machines explicitly capture a snapshot of a composite service execution as a “state”
and (local/global) behaviors can be easily captured as sequences of states in which each
state transition may be associated with a message or an activity.

At the service implementation level, send and receive are modeled as message actions
since they are separate individual actions while the choreography level only the status of
whether a message has happened (been sent) is of interest. This group of choreography
modeling languages includes conversation protocols and Mealy services [10,19], UML
collaboration diagrams [9], and the Colombo service composition model [1].

report ack

ca
nc

el

ac
k

re
qu

es
t

bi
ll

re
po

rtcancel

bi
ll

terminateterminate

re
gi

st
er

accept

re
je

ct

re
qu

es
t !register

?accept

?r
ej

ec
t!ack

?report

?bill
?bill

!cancel

A

weak-precedes

B
message

m

B C
message
 m'

(a) A conversation protocol (b) A Mealy service (c) Let’s Dance

:Customer

:Store

:CDsupplier

:BookSupplier

1:order

1/A1:cdInquiry

A2:cdAvailability

1/B1:bookInquiry

B2:bookAvailability

A2,B2/2:orderReply

(d) A UML collaboration diagram

Fig. 4. Automata based Choreography Modeling Languages

The use of conversations to specify choreographies was originally proposed in the
IBM Conversation Support Project [20,21]. A formal model based on this idea was
developed in [10] under which a conversation protocol is represented as finite state au-
tomaton over messages, and each service as a Mealy machine over the input/output

8 J. Su et al.

messages of the service. An example of a conversation protocol is shown in Fig. 4(a),
and a Mealy service in Fig. 4(b) where the leading symbol “!” denotes an action of
sending a message and “?” a receiving action. Each service has an associated FIFO
queue (of unbounded capacity) for storing unconsumed incoming messages. When ser-
vices are executing, a virtual global watcher records the sequence of messages for all
send actions. A conversation is the sequence of messages recorded by the watcher in a
successful execution. A conversation protocol is satisfied if every conversation by the
services is a word accepted by the conversation protocol automaton.

The automata based choreography modeling approach specifies a choreography
through states and transitions. It is easy to use since this approach is commonly used
to specify protocols and policies. The language Let’s dance [30,31] provides a set of
sequencing constraint primitives to allow a choreography to be specified in a graphical
language. For example, Fig. 4(c) shows a message from A to B should “weak-precede”
another message m′, this means that B cannot send m′ prior to A sending message m.

A variation of the conversation/Mealy model was studied in [9], which also uses
Mealy services with unbounded FIFO queues. However, instead of conversation proto-
cols, UML collaboration diagrams are used to specify choreographies. Fig. 4(d) illus-
trates a UML collaboration diagram which specifies that an “order” message is followed
by “cdInquiry” and “bookInquiry” messages in any order, after their corresponding re-
sponses are made, “orderReply” can then be sent out.

Finally, another interesting variation is the Colombo model used to study an auto-
mated composition problem for semantic web services [1]. Similar to the UML model,
the local services are represented as Mealy services (extended to allow OWL-S like se-
mantic descriptions) but the message queues are limited to at most one message (size 1).
Choreographies, however, are represented by finite state automata over only activities
without messages. The model is an extension of the earlier “Roman” model for com-
posing interactive web services [2].

3.3 Petri-net Based Models

Petri nets are another widely used tool to model, among other things, flow of con-
trol, and therefore a suitable candidate for choreography modeling languages. In [16],
a Petri-net based choreography modeling language called Interaction Petri Nets (IPN)
was developed. IPN treats a messaging action as a transition firing in describing a chore-
ography. For example, Fig. 5 shows a choreography in IPN equivalent to the UML col-
laboration diagram in Fig. 4(d). Note that the use of Petri nets allows the concurrent
Store-CDSupplier conversations and Store-BookSupplier conversations to be explicitly
separated, in contrast to the UML collaboration diagram.

Cust Store
order

Store CDSup
cdInquiry

Store BKSup
bookInquiry

CDSup Store
cdAvail

BKSup Store
bookAvail

Store Cust
orderReply

Fig. 5. Interaction Petri Nets

Towards a Theory of Web Service Choreographies 9

In [16], the technical problem studied concerns the local enforcement of an IPN
choreography. In their study, the local services are represented by “behavior interfaces”
that are Petri nets with “input/output” places. The services communicate with each other
in the synchronous messaging model, rather than FIFO queues in automata based lan-
guages discussed in Subsection 3.2.

3.4 Process Algebra Based Models

Recently, there have been several efforts in developing choreography modeling lan-
guages using process algebras [11,8,12,25]. Common in these studies are that both
choreographies and service implementations are specified in (slightly different) pro-
cess algebras, with a key difference being the separation of sending and receiving a
message at the local level but not at the global level, similar to the automata and Petri
nets based models discussed in Subsections 3.2 and 3.3. All these approaches use the
synchronous messaging model for communication.

In [11], process algebras, called the “Bologna” model in Table 1, for choreographies
and service implementations (the latter are often called orchestration in process algebra
based languages) were developed. The Bolonga model does not include recursion in
choreography and service implementation specifications. The semantics of satisfaction
of a choreography by an execution of service implementations is defined through a
bisimulation between the two algebras. Global Calculus and Endpoint Calculus [12]
was an attempt to provide a theoretical model for WS-CDL; they also include detailed
operations and parameter passing. The semantics connecting the Global and Endpoint
Calculi is also based on bisimulation. The concept of dominant role for choice and loop
structures, which allows the “projection” of each choreography by inserting additional
synchronization communications, was developed in Chor & Role [25]. In their model, a
trace based semantics is used instead of bisimulation. Table 1 shows the basic elements
available in these process algebra based languages.

4 Design and Analysis Problems

In this section, we define several key research problems concerning reasoning, design,
analysis, and verification of choreographies and service implementations. In particu-
lar, we focus on the two challenges raised in Section 2 and discuss specific technical
problems around the challenges.

In reasoning, we study the problem of “conformance”, i.e., whether service imple-
mentations only generate global behaviors consistent with a choreography. As illus-
trated in Fig. 3, service design is to generate service implementations from a
choreography such that the global behaviors of services are completely captured by the
choreography. This “realizability” problem is important in understanding choreography
specifications and thus addressing Challenge 1. A key technical problem in Challenge
2 focuses on the other direction, and demands the understanding of service implemen-
tations that realize a set of desirable choreographies. For this challenge, we formulate
the “analysis” problem for service implementations.

10 J. Su et al.

Subsection 4.1 focuses on the conformance problem, Subsections 4.2 and 4.3 explore
the problems of realizability and analysis, respectively. Subsection 4.4 outlines the main
methodologies of verifying composite services.

4.1 The Conformance Problem

The conformance problem is stated as follows, assuming some fixed choreography
modeling language L: Given a choreography C in L and a set I of service implementa-
tions in L, is it possible to determine if every possible execution of I always generates
the behaviors allowed by C?

The conformance problem is fundamental in choreography design. It is very desir-
able that the problem is solvable for choreography modeling languages of interest. The
problem has been studied for several choreography modeling languages.

The conformance problem is decidable for conversation protocols and Mealy ser-
vices (with queues) when the queue size is bounded by some pre-determined constant,
since the set of conversations of Mealy services with bounded queues is always a reg-
ular language [10]. It turned out that when the queue size restriction is removed, the
problem becomes undecidable [18]; the key reason for this is that the class of finite
state automata with (unbounded) FIFO queues are as computationally expressive as the
class of Turing machines [7].

For process algebra based choreography languages, the problem was initially stud-
ied for the Bologna model without repetition [11]. The problem was further studied in
a model extended with repetition in [8]. After projecting the choreography to local ser-
vices, the checking procedure can be done locally without considering other services.

Given the known results, it appears that the conformance problem is decidable when
queue sizes are bounded and undecidable for unbounded queues, in the choreography
languages that have been proposed so far. In [19], it was observed that there are service
compositions that need queues of size greater than 1 (possibly unbounded). It is interest-
ing to identify classes of choreographies where the conformance problem is decidable
for unbounded queues.

4.2 Realizing Choreographies

The choreography approach to service design raises several new interesting questions.
A key problem is whether it is possible to turn a choreography into service implementa-
tions automatically (Fig. 3). In this subsection, we discuss this “realizability” problem
and other related problems.

We fix some choreography modeling language L and let C be a choreography. We
define the following notions. The choreography C is (weakly) realizable if there exists
a set I of service implementations such that the behaviors of executing I coincides with
(respectively, are contained in) C. Weak realizability is useful when realizability cannot
be achieved. We will discuss this notion later in the subsection.

The realizability problem is stated as follows: For a given choreography modeling
language L, is every choreography C in L (weakly) realizable? Furthermore, if C is
(weakly) realizable, it is desirable to construct service implementations.

Some choreographies are not realizable. Consider the choreography C1 = {m1m2}
where service s1 sends a message m1 to s3 and s2 sends m2 to s3. Obviously s2 has no

Towards a Theory of Web Service Choreographies 11

C2 : s5s4 s6

m3

m4

m5m3m4m5 m4 m3

Fig. 6. An non-realizable conversation protocol

way of knowing whether m1 is sent. Thus C1 is not realizable. Such a “missing con-
nection” is a frequently cited reason for non-realizability (e.g., [18,31,12,25,16]). When
FIFO queues are used, the reasons for non-realizability are sometimes not so obvious.
Fig. 6 shows a choreography C2 = {m3m4m5, m4m3} over three services s4, s5, s6
and messages m3, m4, m5. Since every service has a FIFO queue, it was shown that
every implementation that permits the two conversations in C2 will also permit the
conversation “m4m3m5” that is not in C2 [17].

Realizability for automata-based languages was studied for conversation protocols
[18,19] and UML collaboration diagrams [9] with Mealy services and FIFO queues.
For the case of conversation protocols, a sufficient condition for realizability was es-
tablished in [18] which consists of three sub-conditions “lossless join”, “synchronous
compatible”, and “autonomous”. This condition was generalized to include message
contents and “guarded automata” in [19]. For UML collaboration diagrams, a sufficient
realizability condition is obtained in [9] which focuses on the predecessor of each send
action. In both cases, it remains an open problem whether the realizability problem is
decidable and/or a necessary and sufficient condition exists.

When queues are bounded or synchronous messaging is used (i.e., queue size is 0),
the realizability problem becomes easier. For the case of conversation protocols and
Mealy services, it was shown in [10] that the set of conversations of Mealy services
with bounded queues is always a regular language (rather than context-sensitive for un-
bounded queues). This result leads to a decision procedure for realizability for bounded
queues [17]. Furthermore, a necessary and sufficient condition can be formulated by
modifying the sufficient condition in [18] for the unbounded queue case.

When a choreography is realizable, it is desirable to produce the service implemen-
tations. For the conversation protocols and Mealy service model, it was shown that the
service implementations are simply projections of the choreography to the individual
services [17]. The language Let’s Dance contains a richer set of sequencing constraint
primitives, projecting a choreography into local services also needs to consider the
specific constraints [31]. (The referenced paper also includes a realizability checking
algorithm.)

In the following, we briefly summarize recent work on realizability in process alge-
bra and Petri nets based models, all of which assume synchronous messaging.

Realizability for process algebras was investigated primarily on the Global and End-
point Calculi [12] and Chor & Role [25]. The main approach in these studies is to de-
velop a “projection” operator which takes as input a choreography C and a participant
service and produces an implementation for the service. The goal is to have the behav-
iors of the projected services to be identical to the choreography C. In the context of
Global and Endpoint Calculi, a sufficient condition of realizability involving connect-
edness, well-threadedness, and coherence was obtained [12]. In Chor & Role, a differ-
ent approach was taken which consists of two parts. First, the choreography algebra

12 J. Su et al.

uses dominated choice and repetition. Then, the projection operator inserts additional
messages so that the generated services can synchronize correctly on the performed ac-
tivities [25]. Intuitively, the added messages allows the dominator to communicate its
decision to others, thus avoiding the missing connection problem mentioned earlier.

If a choreography C is not realizable, sometimes one could further limit the ser-
vice implementations (that are obtained from projecting the choreography) so that they
weakly realize C. Naturally, it is necessary to require that the generated global be-
haviors are not trivial (e.g., a nonempty set of traces). In fact it is also ideal that the
generated behaviors should be as “close” to C as possible. In [16], the problem of weak
realizability was studied for the IPN model. The main idea is to introduce additional
constraints on the service implementations so that the generated global behaviors are
always allowed by the choreography. An algorithm was given for choreographies re-
stricted to bounded Petri nets.

Before we end this subsection, it is worthwhile to mention the work of [1]. In their
model, a choreography is a finite state automaton over observable (local) activities.
Given a choreography C and a set of Mealy services (with “open” or configurable
message channels), the choreography synthesis problem is to connect message channels
among the services such that the set of observable activity sequences from executing the
Mealy services is exactly the choreography C. It was shown there that the construction
can be done in double exponential time complexity.

In spite of the studies on the realizability problem, there are many interesting open
problems. For example, for the conversation/Mealy service model, are there restricted
subclasses of Mealy services which allow unbounded queues such that the realizability
problem is decidable? In general, in any choreography modeling language, if a chore-
ography is not realizable, can we always find the “maximal” service implementations
that weakly realize the choreography?

4.3 Analyzing Service Implementations

Subsection 4.2 discussed design problems in the top-down fashion, i.e., from chore-
ographies to implementations. In this subsection, we focus the analysis problem, i.e.,
to characterize service implementations whose global behaviors are representable by
choreographies.

The analysis problem may occur when one attempts to verify if given implementa-
tions e.g., a set of BPEL services, satisfy properties formulated over their global be-
haviors [18,19]. If the global behaviors of the implementation can be characterized by
a choreography C, reasoning and verification can be performed on C that is expected
to be simpler and more efficient. In practice, it is not uncommon that one starts with
a set of choreographies (a choreography language) and hopes to constrain the imple-
mentations to those that realize some of the choreographies. (We note that a related
but different issue concerns verification of localized properties, e.g., concerning two
services, and has been studied variously in the literature. See, e.g., the survey [27] for
details.)

The analysis problem is defined as follows. Let L = (C, I) be a choreography mod-
eling language where C is a collection of choreographies and I a collection of imple-
mentations. Can we decide if an arbitrarily given implementation in L realizes some

Towards a Theory of Web Service Choreographies 13

choreography in C? Furthermore, what is the (largest) subset ⊆ I of implementations
that realize some choreographies in C?

Several preliminary results concerning the analysis problem have been obtained. We
begin with the conversation protocols and Mealy services model of [10]. While it is
known that the computation power of Mealy services is Turing complete [7], the set of
conversations of a set of Mealy services is nevertheless a context sensitive language (ac-
cepted by a quasi-realtime automaton with 3 queues) [10]. Reference [10] also gives ex-
amples of Mealy services with non-regular and non-context-free sets of conversations,
which are not definable by conversation protocols. It further identifies two conditions
on implementations which guarantee to produce regular sets of conversations (can be
captured by conversation protocols). The first is when the queue sizes are bounded to
some fixed number. In this case, each queue can be modeled as a finite state automaton
and the composition can be characterized as some product machine of all Mealy ser-
vices and queue automata, which turns out to be a finite state automaton. The second
concerns the topology of the services and message channels. It was shown that when the
graph of services and message links is a tree, the set of conversations is also a regular
language.

The analysis problem was studied in [19] with C being the set of all conversation
protocols. Motivated by the bounded queue case, the notion of “synchronizability” was
formulated as follows. A set of Mealy services is synchronizable if its set of conversa-
tions does not change when unbounded queues are replaced with synchronous messag-
ing (or bounded queues). A sufficient condition for synchronizability on Mealy services
is identified which consists of synchronous compatible and autonomous sub-conditions.

As a final remark, the analysis problem focuses on the global behaviors of service
implementations. At the first glance, this appears to simply produce the system traces.
However, detailed system traces may not correspond to global behaviors permitted by
choreographies, as it was shown in [10]. Secondly, having a logical representation
of service behaviors is critical in many SOA applications, in fact, a key to business
process design lies in the logical representations of both requirements and software
processes [24].

Much of the analysis problem remains unknown. For example, is there a sufficient
and necessary condition for synchronizability? Also, there are practical service imple-
mentations that are not synchronizable but they realize conversation protocols. Is it
possible to characterize all conversation protocol-realizing implementations? It is also
interesting to explore there problems for other choreography models.

4.4 Approaches to Verification

There have been many studies on verifying compositions of web services recently (see
the survey [27]). Most of these studies treat service compositions as distributed systems
and properties to be verified are thus formulated over the distributed systems. Clearly
the technical results from these studied are valuable contributions to the understanding
of the technology that SOA can provide.

On the other hand, due to many reasons, applications of SOA in many areas includ-
ing in particular business process management demand a separation of at least logical
and implementation levels in process development. Verification of system properties

14 J. Su et al.

is not sufficient if the system properties cannot be mapped to properties at the logical
level. In our framework of service design, this means that we ought to be able to verify
properties over choreographies of service implementations. Here we give a sampler of
results along this line of verification of choreography properties.

Service design can use the top-down approach starting from a choreography. In this
case, verification of logical properties can be done on the specified choreography first
and if the choreography is satisfactory, it can be considered for realization [18].

We now consider the second scenario: start with service implementations (e.g., a
collection of BPEL services). References [15,28] studied the problem of checking if
a single service implementation is consistent with a choreography or other services.
In [23], a choreography representing the global behaviors is first obtained which is
then used for verification. This approach is not applicable for the conversation/Mealy
machine model since the global behaviors are not always representable as conversation
protocols [19]. Instead, analysis on service implementations is performed first and if
the implementations are synchronizable, a conversation protocol can be constructed
and verified.

The verification problem for services is perhaps better understood. Still, a serious
challenge is the verification of services with data (from infinite domains) included. Per-
haps the semantic web services approach such as OWL-S [13] of describing service
semantics (with data) could help developing feasible verification approaches.

5 Conclusions

Design of web services appears to have a new twist comparing with traditional soft-
ware development: having a logical level specification of global behaviors that are not
identical to system traces. Such a logical-implementation level separation played a fun-
damental role in the development of data management techniques in the early days. It
may possibly turn out to be a fundamental design principle for SOA.

In this paper we examined one aspect of the logical-implementation separation,
namely how choreographies are related to the (abstract) service implementations. While
prior technical results help to identify main issues on this topic, more efforts are needed
to understand the different concerns at each level and to develop techniques and tools
for service design.

References

1. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic composition
of transition-based semantic web services with messaging. In: Proc. 31st Int. Conf. on Very
Large Data Bases (VLDB), pp. 613–624 (2005)

2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg
(2003)

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, Springer, Heidelberg (2007)

Towards a Theory of Web Service Choreographies 15

4. Bhattacharya, K., Guttman, R., Lymann, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu, F.,
Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrial-
izing discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162
(2005)

5. Bloomberg, J.: The seven principles of service-oriented development. XML & Web Services
(August 2002)

6. Business Process Execution Language for Web Services (BPEL), Version 1.1 (May 2003),
http://www.ibm.com/developerworks/library/ws-bpel

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983)

8. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and
contract compliance. In: Proceedings of 6th International Symposium on Software Compo-
sition (SC), Braga, Portugal. LNCS, pp. 34–50. Springer, Heidelberg (2007)

9. Bultan, T., Fu, X.: Specification of realizable service conversations using collaboration dia-
grams. In: Proceedings of the IEEE International Conference on Service-Oriented Comput-
ing and Applications (SOCA), Newport Beach, California, June 2007, pp. 122–130 (2007)

10. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: A new approach to design and
analysis of e-service composition. In: Proc. Int. World Wide Web Conf. (WWW) (May 2003)

11. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration
conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

12. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A theoretical
basis of communication-centred concurrent programming (2006)

13. OWL Services Coalition. OWL-S: Semantic markup for web services (November 2003)
14. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for modeling

choreographies. In: Proceedings of IEEE International Conference on Web Services (ICWS)
(2007)

15. Decker, G., Weske, M.: Behavioral consistency for B2B process integration. In: Krogstie,
J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 81–95.
Springer, Heidelberg (2007)

16. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg
(2007)

17. Fu, X.: Formal Specification and Verification of Asynchronously Communicating Web Ser-
vices. PhD thesis, University of California at Santa Barbara (2004)

18. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification and verifi-
cation of reactive electronic services. In: H. Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS,
vol. 2759, Springer, Heidelberg (2003)

19. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. Int. World
Wide Web Conf. (WWW) (May 2004)

20. Hanson, J.E., Nandi, P., Kumaran, S.: Conversation support for business process integration.
In: Proceedings of 6th IEEE Int. Enterprise Distributed Object Computing Conference (2002)

21. Hanson, J.E., Nandi, P., Levine, D.W.: Conversation-enabled web services for agents and
e-business. In: Proceedings of the International Conference on Internet Computing (IC), pp.
791–796 (2002)

22. Hull, R., Su, J.: Tools for composite web services: A short overview. SIGMOD Record 34(2),
86–95 (2005)

23. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verification and
participant synthesis. In: Proceedings of International Workshop on Web Services and For-
mal Methods (2007)

http://www.ibm.com/developerworks/library/ws-bpel

16 J. Su et al.

24. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

25. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreography.
In: Proceedings of 16th International World Wide Web Conference (WWW), pp. 973–982.
ACM Press, New York (2007)

26. Ramakrishnan, R.: Database Management Systems. McGraw-Hill, New York (1997)
27. van Breugel, F., Koshkina, M.: Models and verification of BPEL (2006)
28. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.V.: Conformance

checking of service behavior. ACM Transactions on Internet Technology (to appear, 2008)
29. Web Services Choreography Description Language Version 1.0 (December 2004),

http://www.w3.org/TR/ws-cdl-10/
30. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede., A.: Lets Dance: A language for service

behavior modeling. In: On the Move to Meaningful Internet Systems: CoopIS, DOA, GADA,
and ODBASE, pp. 145–162 (2006)

31. Zaha, J.M., Dumas, M., ter Hofstede, A.: Service interaction modeling: Bridging global and
local views. In: Proceedings of IEEE International Enterprise Distributed Object Computing
Conference (EDOC) (2006)

http://www.w3.org/TR/ws-cdl-10/

Controlling Petri Net Process Models

Jörg Desel

Angewandte Informatik
Katholische Universität Eichstätt-Ingolstadt, Germany

joerg.desel@ku-eichstaett.de
http://www.informatik.ku-eichstaett.de

Abstract. We present and compare existing formalisms that consider
the control of Petri net process models in the area of business processes
and web services. Control has the aim to force a process to behave in a
desirable way. Process models that behave properly without any control
are often called “sound”. For process models that behave properly when
being controlled, i.e., for controllable processes, there are various related
notions, such as “relaxed soundness” and “weak soundness”. We argue
that both, the usual notion of sound behavior and the usual notion of
control by message passing can be generalized. This way, control synthe-
sis results obtained in the field of automation can be reformulated and
reused for business process models and in the area of web services.

1 Introduction

In the last decades, research on Petri net analysis concentrated on the question
whether a given Petri net model enjoys a desirable property or not. More recently,
people study the question whether a given Petri net model can behave properly, if
its environment behaves accordingly. This question only makes sense if there are
notions of environment and of interface to the considered Petri net model. The
environment might be formulated as a Petri net as well. So the problem depends
on notions of Petri net modules that can be composed, together with interfaces
between Petri nets that express at what parts of the model, and in which way,
the interaction between models can take place, and on proper versus not proper
behavior of a Petri net. In particular, proper behavior can be considered for the
controlled Petri net in separation or for the Petri net within its environment.

Given a Petri net model N with an interface that allows composition with
other net models N ′ via some operator ⊕, one therefore can ask:

1. Does N ⊕ N ′ behave properly for some net N ′?
2. Does N behave properly when composed with some net N ′?
3. Does N ⊕ N ′ behave properly for any net N ′?
4. Does N behave properly when composed with any net N ′?
5. Can N ′ be automatically generated (synthesized) from N such that N ⊕ N ′

behaves properly?
6. Can N ′ be automatically generated (synthesized) from N such that N

behaves properly when composed with N ′?

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 17–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 J. Desel

All these questions are tackled in various papers, assuming various composi-
tion operators ⊕ and various definitions of proper behavior. In this paper, we
will frequently come back to these questions.

In this paper we concentrate on Petri net process models, where the term
“process” refers to business processes. Distinguishing process models from ar-
bitrary system models, characteristic properties of processes and their models
include (see [3,10]):

– Process models have distinguished start and end states. Beginning with a
start state, each run should eventually end with an end state. However, it is
possible that the behavior of a process has loops, i.e., repetition of states.

– Whereas liveness (every activity can occur from every reachable state) is
a desirable property for system models, process models should not be live,
because in the end state no activity should be allowed to occur.

– Process models are considered to be embedded in information system mod-
els [8]. In contrast to process models, information system models should be
live. The situation is comparable to operating systems and single user pro-
gram executions. Each user program should eventually terminate, but the
operating system – which is also an executable program – should not.

– Whereas a deadlock is a state without successor for general systems, end
states are not considered deadlocks in process models. For information sys-
tem and process models, deadlock freedom is desirable.

– Process models are based on single cases where each case corresponds to a
single run of a process.

– As in reality, several cases can run concurrently. To reflect this situation,
process models might also represent the concurrent run of several process
instances, for example to investigate the usage of shared resources.

A process model may interact with its environment and, consequently, may
have an interface to some other Petri net. This other Petri net influences the
behavior of the process model in such a way that the process behaves properly.
In this sense, the process model is controlled by the environment. This control
happens by means of different kinds of stimulation, depending on the respective
approach. Very often, the control also reacts on the behavior of the process.
Therefore the control must have the possibility to observe the behavior of the
process or at least some aspects of this behavior. Since thus information is flowing
in both directions the process model also controls its environment.

Usually, not all elements of a process can be controlled and not all elements
can be observed. In other words, it is useful to specify a process model together
with its controllable and with its observable elements such that any composition
of this net with a net representing the environment restricts to interaction via
controllable and observable elements. This constitutes the interface definition of
a Petri net process model.

The kind of interaction between a Petri net process model and a model of its
environment varies in different approaches. Moreover, the elements of process
models that can be controlled and those that can be observed are specified in

Controlling Petri Net Process Models 19

various ways. Finally, there are different suggestions for desirable behavior and
its specification.

In this paper, we compare some approaches and introduce some relations
between them. In the first section, we provide a rough introduction to Petri net
models of processes and we repeat the definition of soundness. The second section
is devoted to behavioral properties that are related to the soundness property
but require a suitable controlling net ensuring sound behavior. In particular,
the control makes sure that a process does not run into a deadlock. We sketch a
different approach in the third section where control of a process makes sure that
places behave in a bounded way, i.e., that the number of tokens on a place does
not grow arbitrarily. Finally, the fourth section establishes a relation to known
results of controller synthesis in the field of discrete event systems. It is argued
that the composition operation used there is more general than usual message
passing, whence the results in this area can be transferred to business processes.

2 Petri Net Process Models

Unfortunately, the term “process” was and is used in the Petri net research
community in an ambiguous way. Since more than 30 years, a process net is
known to be an occurrence net representing a concurrent run of a net representing
a system. This naming does not nicely match processes in the sense of business
processes [8] and will be avoided in this paper.

One of the first approaches, starting in the late eighties, to model information
systems and business processes with Petri nets was the INCOME project by
the group of Wolffried Stucky in Karlsruhe, Germany. The INCOME tool devel-
oped in this project was successfully used in industrial practice by the spin-off
PROMATIS. Relevant publications from this project include [14,18,19].

The process models used in INCOME are predicate/transition Petri nets (see
Figure 1). These nets have distinguished input and output transitions, represent-
ing the start and the end action of a process. Using high-level tokens, data flow

R

(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(a,b)

R‘

…

…

…

… … … …

…

… … … …

…

…

… …
…

…

…

Fig. 1. A high-level Petri net representing a process

20 J. Desel

is thus thoroughly represented. In particular, processes of information systems
including data bases are represented.

Therefore, (some) places represent data base relations (and tokens correspond-
ing tuples), as the places R and R′ in the example indicate. The interface of the
process model to its environment is given by its input- and output transitions.
In this way a process can be viewed as a refinement of a transition. Additionally,
shared places model shared access to data bases.

A model of an information system preferably enjoys nice properties such as
liveness and boundedness (an upper limit for the number of tokens). Within an
information system model, processes can be identified [8], as in Figure 1. The
model of the process, however, is not bounded because the initial transition can
occur arbitrarily.

The INCOME approach concentrated on modelling and simulation of pro-
cesses and information systems in early design phases. Analysis was performed
on the level of the entire information system, i.e., the process net together with
its environment was studied instead of the process net in separation. Therefore,
according to the list of properties in the introduction, Question 3 was considered,
because only the behavior of the composed model was of interest.

In the mid nineties, Wil van der Aalst came up with a different concept of
a Petri net representation of a process [1,2,3]. His nets – called workflow nets
– are place/transition nets, i.e., data aspects and control aspects are separated.
A run of a workflow net represents a single case, no matter whether in reality
several cases can run concurrently. These runs are assumed to behave without
interference so that they all run properly provided a single case runs properly.

i o

Fig. 2. A sound workflow net

Figure 2 shows a workflow net. As can be seen in the figure, workflow nets
are assumed to have a distinguished input place i (representing that the event
“case started” has happened) and a distinguished output place o (representing
“case completed”). Formally, it is required that every net element of a workflow
net is on a directed path from the input place to the output place. There is only
one initial token, marking the input place. This initial marking is called i. The
intended behavior ends with a marking where only the output place carries one
token, called o.

Controlling Petri Net Process Models 21

Instead of analyzing the entire system model embedding the workflow net one
can analyze the workflow net net in separation. So Question 4 from the intro-
duction is considered. Proper behavior is formulated in terms of soundness [3]:

Definition 1. A workflow net is sound if
i) from every marking reachable from i, the marking o is reachable, and
ii) there are no dead transitions.

It can be shown that, as a consequence, o is the only reachable marking assigning
a token to the output place (which was part of the original definition). Moreover,
each sound workflow net is bounded.

A nice observation is that soundness is strongly related to the well-known
notions of liveness and boundedness of general Petri nets [2]. Instead of repre-
senting the entire environment of an information system it suffices to add an
additional transition moving the token from the output place to the input place,
see Figure 3. This transition represents the behavior of the environment in a
satisfactory way, as will be explained next.

i o

Fig. 3. The workflow net with an additional transition

If the workflow net is sound then the additional transition can always become
enabled again (by the marking o) because of property i) of the definition of
soundness. By property ii), every transition can always become enabled. Hence
the extended net is live. It is bounded because its set of reachable markings
coincides with the set of reachable markings of the workflow net. Conversely,
liveness of the extended net implies that from each reachable marking a marking
assigning a token to the output place is reachable. Boundedness implies that
this marking must be o because otherwise tokens can be added arbitrarily to
the net. Liveness also implies that the workflow net has no dead transitions. So
soundness of the workflow net coincides with liveness and boundedness of the
extended net. Therefore, the large amount of Petri net analysis techniques for
liveness and boundedness can be applied for analyzing soundness of workflow
nets. Moreover, if the workflow net happens to be free-choice [7] (which is often
the case), the property soundness is decidable in polynomial time.

22 J. Desel

There are various more suggestions to model processes with Petri nets. For
example, in [10] the reader can find examples of process nets with a behavior
considering their past. If two transitions of a process strictly occur alternatingly,
one in the first case, the other one in the second etc., different initial states are
necessary. The initial marking of a process net has to have additional tokens
that represent the necessary “memory” of the process.

3 Relaxed and Weak Soundness

In this section, we consider workflow nets that are not sound but behave in a
proper (to be defined) way when being connected to a controlling environment.
First let us consider an example:

a

c

d g

f

e

i o

b

Fig. 4. A workflow net which is not sound

Figure 4 shows a workflow net which is not sound. By firing transitions a, b and
e a marking is reached that enables no transition, i.e. a deadlock. In particular,
the marking o cannot be reached from this marking. However, the net still has
a positive property, formulated in the following definition [5]:

Definition 2. A workflow net is relaxed sound if every transition occurs in some
occurrence sequence leading from i to o.

It is easy to verify that the occurrence sequences abdf and aceg of the example
net both lead to the marking o and that every transition occurs in one of these
sequences. Hence this net is relaxed sound.

The example net has two forward branching places representing a choice be-
tween b and c and a choice between d and e. Whenever one of the places is
marked, both output transitions are enabled but firing one of the transitions
disables the other one.

Generally, Petri net choices can represent quite different concepts:

– The choice is done within this process but the respective part of the process
is not modelled. For example, two transition could represent two users that
both could take care of a work item. Any solution is as good as the other
one. This view relates to Question 4 of the introduction: Does N behave
properly for any partner net N ′? In a sound workflow net, we expect that

Controlling Petri Net Process Models 23

any other component N ′ which decides which of the conflicting transition
fires would not destroy the desired property.

– The choice depends on data of the case, which is not modelled. There are
different suggestions how to handle data dependent choices. In the INCOME
approach all relevant data is captured in the high-level tokens. This informa-
tion can be reduced to routing information if the only purpose of this data is
to decide choices. If one choice depends on data, another choice can depend
on the same data as well, and this way deadlocks could be avoided. In our
example, it might be the case that either transitions b and d or transitions c
and e are chosen, whence the net can behave in a sound way. This view was
originally taken in [5].

– Similarly, choices can depend on additional pre-conditions of the conflicting
transitions which are not modelled first (see Figure 5). In other words, an
embedding of the process net in a larger net is considered. With this view, we
can ask whether there is an appropriate environment controlling the process
net such that this net behaves soundly (Question 2 of the introduction). It
is easy to see that putting tokens to the other new places instead yields the
other sound run.

a

c

d g

f

e

i o

b

Fig. 5. Enforcing sound behavior by additional places

Now let us consider the next example, shown in Figure 6. This net is not
even relaxed sound because there is no run leading from i to o which includes
an occurrence of transition h. In this example net we have three conflicts. The
addition of respective pre-conditions (Figure 7) shows that it is still possible to
reach o from i.

Definition 3. A workflow net, extended by input places to some of the con-
flicting transitions, is weakly sound if from every marking reachable from i, the
marking o is reachable.

Notice that this definition is very similar to i) in the definition of soundness. Ac-
tually, the original definition of weak soundness employs so-called open workflow

24 J. Desel

a

c

d g

f

e

i o

b

h

Fig. 6. A process net which is not relaxed sound...

a

c

d g

f

e

i o

b

h

Fig. 7. ... together with pre-conditions

nets which contain the workflow net together with additional input places of some
of the conflicting transitions [15,17]. Therefore the definitions of relaxed sound-
ness and of weak soundness cannot be compared immediately. However, at least
for nets in which no transition can occur more than once, every relaxed workflow
net can be extended by accordingly marked places such that the resulting open
workflow net is weakly sound.

Whereas relaxed soundness clearly corresponds to Question 2 of the introduc-
tion, one might argue that weak soundness refers to Question 1. There are other
approaches, e.g. [13], where local and global soundness is explicitly distinguished.
Therefore the work described in [13] definitely answers Question 1.

Whereas weak soundness does not explicitly refer to a controller, the closely
related property controllability as used in [21], does. In the application context
of web services, the property is called usability [16]. The term controllability is
used in [6] to characterize relaxed soundness.

4 Weak Boundedness

Although soundness refers to liveness and boundedness, its derivates relax the
liveness condition by assuming that the net remains live if, in case of conflicts,

Controlling Petri Net Process Models 25

only the right transitions are chosen. In this section we introduce a related, but
different approach, where liveness is guaranteed but boundedness needs addi-
tional control. This approach stems from the area of schedulability of concur-
rent programs on a chip [4], but can similarly be formulated for processes in our
sense.

i oa b

Fig. 8. A weakly bounded process net

The process net shown in Figure 8 can always reach the marking o. But, if
the upper cycle occurs more often than the lower cycle, then there will be an
arbitrary number of tokens in the places a and b, whence the net is not bounded.
However, this effect can be avoided by firing transitions in the lower cycle at least
as fast as those in the upper cycle.

Definition 4. A workflow net is weakly bounded if there is a bound b such that,
for each occurrence sequence from i to o, there is a permutation of this sequence
(leading from i to o as well) such that the token count on any place does not
exceed b at any intermediate marking.

Figure 9 shows a workflow net which is not weakly bounded. Due to place a the
lower cycle cannot run faster than the upper cycle but to keep place b bounded it
would have to run twice as fast. [4] contains sufficient and necessary conditions
for weak boundedness of a net defined in the other application domain. Since this
definition and the definition of workflow nets is not too different, these results
should be transferable to the domain of business processes and web services.

The upper and the lower cycle of our example process could be viewed as
separate processes which are both started by the occurrence of the only enabled
transition in the figure. These processes communicate via message passing. In
this sense, tokens on the places a and b can be viewed as requests. In this setting,
it is an important question whether the lower process is able to serve all requests.
For the weakly bounded example, the answer is positive. It is negative for the
other example. Notice that this is not a negative property of any of the two
subprocesses; both are fine in separation. Only their combination is ill. In the
weakly bounded case, a scheduler – which is nothing else but an additional net

26 J. Desel

i oa b

Fig. 9. A process which is not weakly bounded

module controlling processes – can only be applied to the combined process.
Two independent schedulers of the two single processes would not work. In this
sense, weakly bounded process nets are controllable and process nets which are
not weakly bounded are not controllable.

5 Controller Synthesis

Based on previous work in discrete event systems [20,22,23,11], we give in [9]
an overview on our work on controller synthesis. Processes (which are cyclic in
our setting in [9]) are given in terms of Petri nets and communication is based
on events, formalized by means of event arcs. The aim of this section is to show
that the results can be translated to the area of business processes.

Web Service
k

j

v

u

Output Port
Web Service

Input Port
w

Channel

i

Fig. 10. Web service composition with event arcs

Controlling Petri Net Process Models 27

Figure 10 (taken from a presentation of Gabriel Juhás) shows how Petri nets
representing web services communicate via event signals, formalized by event
arcs. The meaning of an event arc is as follows: The occurrence rule for the
source transition is the usual one. Assume it is enabled at a marking. If the target
transition is enabled as well, both transitions occur coincidentally (in a step).
Otherwise the source transition occurs alone, as usual. The target transition can
only occur coincidentally with the source transition. See [12] for a translation of
event arcs to nets using inhibitor arcs. This paper also provides a framework for
controller synthesis on the basis of so-called open Petri nets.

The main result of [9] is an algorithm that provides for a given Petri net and a
given specification another Petri net such that the behavior of the composed net
matches the specification. So this approach provides a solution to Question 5
of the introduction. The specification is given in terms of a regular language
(a regular expression, syntactically). The composition operator only uses event
arcs. An event arc can only lead to a controllable event, and it can only start
at an observable event. The composition of modules can be viewed as another
module in the obvious way. The interface, i.e. the controllable and observable
events, of the composed net is the set of transitions which are not controlled
(observed, respectively) by one of the composed modules.

Instead of summarizing the result of [9] in more detail, we roughly explain
why this result can be viewed as a generalization of the synthesis problem of
workflow nets.

First, for workflow nets the desired property is that from each reachable mark-
ing the marking o can be reached. In other words, each run should end with one
of the final transitions which put a token to the place o. If we abstract from
tokens that do not enable any transition, we moreover require that no other
transition is enabled after the occurrence of a final transition. Clearly, this can
be expressed by means of a regular expression.

Second, the usual communication primitives used for process models and web
services is message passing, formalized by a place in the post-set of a sending
transition and in the pre-set of a receiving transition. This communication is

aa b b

Fig. 11. Translating message passing in event arcs

28 J. Desel

purely asynchronous. In contrast, event arcs provide means to formalize syn-
chronous aspects as well, but in an asymmetric way. However, Figure 11 shows
how message passing can be modelled by means of event arcs: Instead of sending
a message, a signal is sent which forces the receiver to create the message itself.
Messages carrying data, modelled by high-level Petri nets, can be translated
in a similar way because the event arcs can have high-level annotations, just
as regular arcs. Similarly, overwriting of messages etc. can also be modelled by
event arcs, in a similar way as they can be modelled by high-level Petri nets, see
Figure 12.

x x x
y

⊥

x = ⊥

x

Fig. 12. Modelling overwriting of messages

6 Conclusion

Starting with a number of problems related to controllability of Petri nets in
the introduction, we showed that, and how, different approaches to controlling
Petri net process models are related but answer slightly different questions. The
list of mentioned approaches is by far not complete. A first selection criterion
was the popularity of the concepts in process modelling (soundness and relaxed
soundness) or in web services (weak soundness and controllability/usability of
open workflow nets). I added approaches which were (co-)developed in my re-
search group and which might be usable to solve additional problems raised for
process models and web service models.

Since one of the main differences between the mentioned approaches is the way
modules interact which each other, one might ask whether asynchronous com-
munication is more natural than synchronous communication or whether asym-
metric synchronous communication, as provided by event arcs, is more natural
than real synchronicity, etc. As shown before, message passing can be translated
to asymmetric synchronous communication. Event arcs can also model mutual
dependency between two processes, ensuring that each process can only proceed
after the other one performed a corresponding activity (by sending an acknowl-
edge via an event arc), see Figure 13.

Controlling Petri Net Process Models 29

Fig. 13. Send and acknowledge of a message

So event arcs are quite general, and the quest for the right way of communi-
cation is not a matter of expressivity.

Considering a natural way to model communication, the level of abstraction
plays a significant role. For example, web services are usually assumed to commu-
nicate strictly asynchronously. On a more technical level (i.e., on a lower layer)
asymmetric communication turns out to be realized by means of synchronous
communication primitives. I claim that the signal arc approach provides one of
the most natural views of communication. As mentioned before, it can be re-
stricted to mimic asynchronicity and it can be restricted to mimic synchronicity.

References

1. van der Aalst, W.M.P.: A class of Petri nets for modeling and analyzing business
processes. Computing Science Report 95/26, Eindhoven Univ. of Technology (1995)

2. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

3. van der Aalst, W.M.P., van Hee, K.: Workflow Management – Models, Methods
and Systems. MIT Press, Cambridge (2002)

4. Liu, C., Kondratyev, A., Watanabe, Y., Desel, J., Sangiovanni-Vincentelli, A.:
Schedulability analysis of Petri nets based on structural properties. In: Applica-
tions of Concurrency to System Design (ACSD), pp. 69–78. IEEE, Los Alamitos
(2006)

5. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

6. Dehnert, J.: Expressing the controllability of business processes. Petri Net Newslet-
ter 61, 9–17 (2001)

7. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

8. Desel, J., Oberweis, A.: Petri-Netze in der Angewandten Informatik. Wirtschafts-
informatik 38(4), 359–367 (1996)

9. Desel, J., Hanisch, H.-M., Juhás, G., Lorenz, R., Neumair, C.: A guide to mod-
elling and control with modules of signal nets. In: Ehrig, H., Damm, W., Desel,
J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004.
LNCS, vol. 3147, pp. 270–300. Springer, Heidelberg (2004)

30 J. Desel

10. Desel, J.: Process modelling using Petri nets. Process-Aware Information Systems
- Bridging People and Software through Process Technology, pp. 147–177. Wiley,
Chichester (2005)

11. Hanisch, H.M., Rausch, M.: Synthesis of supervisory controllers based on a novel
representation of condition/event Systems. IEEE International Conference on Sys-
tems, Man and Cybernetics 4, 3069–3074 (1995)

12. Heckel, R., Chouikha, M.: Control synthesis for discrete event systems – A semantic
framework based on open Petri nets. Transactions of the SDPS 6(4), 63–104 (2003)

13. Kindler, E., Martens, A., Reisig, W.: Inter-operability of workflow applications:
local criteria for global soundness. In: van der Aalst, W.M.P., Desel, J., Oberweis,
A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 235–253. Springer,
Heidelberg (2000)

14. Lausen, G., Müller, H., Németh, T., Oberweis, A., Schönthaler, F., Stucky, W.:
Integritätssicherung für die datenbankgestützte Software-Produktionsumgebung
INCOME. In: Datenbanksysteme in Büro, Technik und Wissenschaft (BTW)
Informatik-Fachberichte, vol. 136, pp. 152–156. Springer, Heidelberg (1987)

15. Martens, A.: On compatibility of web services. Petri Net Newsletter. Gesellschaft
für Informatik 65, 12–20 (2003)

16. Martens, A.: On usability of web services. In: 1st Web Services Quality Workshop
(WQW 2003), Rome, Italy (2003)

17. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

18. Oberweis, A., Scherrer, G., Stucky, W.: INCOME/STAR: methodology and tools
for the development of distributed information systems. Information Systems 19(8),
643–660 (1994)

19. Oberweis, A., Sander, P.: Information system behavior specification by high-level
Petri nets. ACM Transactions on Information Systems 14(4), 380–420 (1996)

20. Ramadge, P.J., Wonham, W.M.: The Control of Discrete Event Systems. Proceed-
ings of the IEEE 77, 1, 81–98 (1989)

21. Schmidt, K.: Controllability of open workflow nets. In: Enterprise Modelling and
Information Systems Architectures (EMISA), Gesellschaft für Informatik. LNI,
vol. 75, pp. 236–249 (2005)

22. Sreenivas, R.S., Krogh, B.H.: On condition/event systems with disrete state real-
izations. Discrete Event Dynamic Systems – Theory and Applications 2, 1, 209–236
(1991)

23. Sreenivas, R.S., Krogh, B.H.: Petri net based models for condition/event systems.
In: 1991 American Control Conference, vol. 3, pp. 2899–2904 (1991)

Extending Model Checking to Data-Aware

Temporal Properties of Web Services

Sylvain Hallé, Roger Villemaire, Omar Cherkaoui, Jérôme Tremblay,
and Boubker Ghandour

Université du Québec à Montréal
C.P. 8888, Succ. Centre-ville
Montréal, Canada H3C 3P8

halle@info.uqam.ca

Abstract. A “data-aware” web service property is a constraint on the
pattern of message exchanges of a workflow where the order of messages
and their data content are interdependent. The logic CTL-FO+ expresses
these properties by allowing temporal operators and first-order quantifi-
cation over message content to be freely mixed. A “näıve” translation
of CTL-FO+ into CTL leads to a serious exponential blow-up of the
problem that prevents existing validation tools to be used. In this paper,
we provide an alternate translation of CTL-FO+ into CTL where the
construction of the workflow model depends on the property to validate.
We show experimentally how this translation is significantly more effi-
cient and makes model checking of data-aware temporal properties on
real-world web service workflows tractable using off-the-shelf tools.1

1 Introduction

The phrase web service validation generally refers to the operation of checking
the basic syntactical structure of the messages exchanged by a service for confor-
mance to an interface description. It has long been known that to ensure a true
interoperability of services, messages must also be sent and received in a proper
sequence [2,18]. Therefore, workflow validation extends to conformance to a set
of temporal constraints; depending on the authors, the approach has been called
“operating guidelines”, “behavioural properties” or “protocol of interaction”.

A large amount of works have studied this question from various angles, mostly
borrowing from model checking techniques. The external behaviour of web ser-
vices can be modelled by the transmission or reception of messages identified by
propositional letters standing for their names [9,12,16,26,22,35]. A possible re-
finement is to consider that the data exchanged in the messages of a web service
can actually influence the control flow of that service [5, 15, 25, 28, 29]. A num-
ber of automated tools for the validation of the properties has been developed
around this principle [32, 8, 30, 24]; most of them use standard model checkers

1 We gratefully acknowledge the financial support of the Natural Sciences and Engi-
neering Research Council of Canada on this research.

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 31–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 S. Hallé et al.

such as SPIN [23], NuSMV [10] or CWB [1] to validate the workflow models.
The properties are expressed in Linear Temporal Logic (LTL), Computation
Tree Logic (CTL), π-calculus, or a similar formalism [32,12, 33].

These languages are called propositional: their atoms are propositional sym-
bols over which first-order quantification is not allowed. For example, the CTL
formula AG (a = x → AF b = x) correlates the values of state variables a
and b at two different moments in time; it is a valid CTL formula when x is
a static constant, but it cannot be used to express the same thing “for all x”
unless the formula is repeated for every possible static value. This limited form
of quantification is called explicit.

In contrast, there exist constraints where the sequence of messages and the
data inside these messages are interdependent in such a way that first-order
quantification is necessary; we call these properties “data-aware”; this concept
was first introduced in [20]. We briefly show in Section 2 how these constraints
arise naturally in a real-world web service scenario and are essential to validate.
In Section 3, we present CTL-FO+, a generalization of CTL that allows general
first-order quantifiers to be freely mixed with temporal operators to express
complex data-aware constraints. We show how it distinguishes itself from the
few other methodologies suggested to model data-awareness; in particular, CTL-
FO+ model checking is decidable and PSPACE-complete.

There exist numerous ways to transform the CTL-FO+ model checking prob-
lem back into classical CTL model checking to leverage existing workflow tools
and standard model checkers; explicit quantification is one of them. Unfortu-
nately, any such transformation results in an exponential blowup and shifts the
original problem to the higher EXPTIME-hard class, unless P = NP. This result
seems to suggest that data-aware properties are out of reach of existing tools.

However, in Section 4, we present a reduction of CTL-FO+ to CTL that mod-
ifies the translation of a workflow into a finite-state system using the concept of
“freeze quantification”: the construction of the system becomes dependent on the
property to validate. In Section 5, we compare this freeze quantification approach
with the explicit quantification suggested above. Although both translations are
ultimately exponential, we empirically demonstrate that freeze quantification is
several orders of magnitude more efficient. We illustrate our claim by showing a
technology chain using two off-the-shelf tools, the VERBUS [4] workflow trans-
lator coupled with the NuSMV [10] model checker to validate constraints on
sample web service workflows. We conclude that despite the theoretical lower
bound, it is nevertheless possible to model and validate data-aware properties
in web services using existing technologies and a suitable reduction to CTL.

2 Data-Aware Web Service Properties

Our concern about capabilities of existing solutions to validate data-aware con-
straints comes from our observation that there exist real-world scenarios where
such properties arise naturally.

Extending Model Checking 33

We take as an example the User-Controlled Lightpath (UCLP) research
project initiated by the CANARIE Consortium2, which develops an environ-
ment that allows end users to self-provision and dynamically reconfigure optical
network resources, called lightpaths, within a single domain or across multiple
independent management domains. To this end, network resources from a spe-
cific provider are virtualized and exposed to the end user as instances of web
services that implement functionality related to lightpath manipulation. Simply
put, a lightpath object (LPO) is a point-to-point, high-speed optical link. In the
UQAM-UO UCLP framework, each LPO is identified by a unique ID. The UCLP
operations usually manipulate these IDs.

There are two main operations provided to manage LPOs. In order to build an
end-to-end link, two adjacent LPOs can first be concatenated. The result of the
concatenation operation is an LPO that is considered as one single link. In a dual
manner, an LPO’s bandwidth can be partitioned into links of equal bandwidth.
This operation takes as input the reference to an LPO and returns an array of
references to spawned lightpaths, each of the desired bandwidth. Typical partition
and concatenate request and response XML messages are shown in Table 1.

Table 1. The concatenate request, concatenate response, partition request and parti-
tion response XML messages

<message>
<operation>

concatenateRequest
</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

<message>
<operation>

concatenateResponse
</operation>
<LPO-ID>i</LPO-ID>

</message>

<message>
<operation>

partitionRequest
</operation>
<LPO-ID>i</LPO-ID>
<bandwidth>b</bandwidth>
<login>�</login>

</message>

<message>
<operation>

partitionResponse
</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

Once lightpaths are exposed as web services, operations for manipulating them
can be called like any other web service invocation in a process expressed in a
workflow language such as BPEL. However, these operations cannot be called
arbitrarily.
2 http://www.canarie.ca/canet4/uclp/. The software developed by all CANARIE

funded development teams is freely available from their site http://www.uclpv2.ca.

34 S. Hallé et al.

To illustrate our point, we take the example of the partition operation, which
takes as input the ID of some LPO x and returns new LPOs y, z corresponding
to the results of the partition. It does not make sense to use x as an argument
of a subsequent UCLP operation such as concatenate: although the LPO still
physically exists, it has been logically superseded by its fragments y, z. The
process could even have applied further operations on y and z, like concatenating
them to other LPOs or further partitioning them. In this context, invoking, for
example, a partition operation with x is at best semantically unsound and at
worst plain dangerous for the reliability of the whole UCLP environment. We
must therefore enforce the following constraint on any UCLP process:

UCLP Service Constraint 1. Any LPO ID appearing in any partition re-
quest must be different from any LPO ID appearing in any future concatenate
request.

In that sentence, the first and third occurrences of the word “any” indicate a
quantification over message content, while the second and fourth occurrences
represent a quantification over messages in an execution sequence: data and
temporal modalities are intertwined and the constraint is data-aware. Other
data-aware constraints of technical nature can be easily found. We mention two
of them which will be referred to in Section 5:

UCLP Service Constraint 2. If two LPOs are the result of the same parti-
tion response, they cannot be involved together in any subsequent concatenate
request.

UCLP Service Constraint 3. Every LPO occurring as an input of the con-
catenate operation must be of the same bandwidth.

More details about UCLP and data-aware properties can be found in [20].

3 Formalizing Data-Aware Properties with CTL-FO+

The previous properties express constraints on the data and sequentiality of
messages exchanged by a workflow. Therefore, a suitable representation of this
pattern of messages is a Kripke structure which contains state variables that
represent the content of the messages that are sent or received. Discarding in-
termediate states where no message is received or sent, a path in the system
corresponds to a possible sequence of messages in a service interaction. Proper-
ties about message sequences become properties on sequences of states that can
then be expressed using temporal logics.

3.1 Syntax and Semantics of CTL-FO+

The Computation Tree Logic with Full First-order Quantification (CTL-FO+) is
an extension of the well-known temporal logic CTL [11] aimed at describing se-
quentialities in a finite-state system while allowing full quantification over values
of its state variables. Its syntax is defined as follows:

Extending Model Checking 35

Definition 1 (Syntax). The language CTL-FO+ (Computation Tree Logic
with general first-order quantification) is obtained by closing CTL under the
following construction rules:

1. If x is a variable or a constant, and y is either a variable, a constant or a
state variable, then x = y is a CTL-FO+ formula;

2. If ϕ and ψ are CTL-FO+ formulæ, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, AG ϕ,
EG ϕ, AF ϕ, EF ϕ, AX ϕ, EX ϕ, A ϕ U ψ, E ϕ U ψ, are CTL-FO+ for-
mulæ;

3. If ϕ is a CTL-FO+ formula and x is a free variable in ϕ, then ∃x : ϕ(x) and
∀x : ϕ(x) are CTL-FO+ formulæ.

As usual [11], semantics can be defined in terms of the adequate set of operators
∃, AF , EX and EU , ¬ and ∨:

Definition 2 (Semantics). Let K = (S, I, R, L) be a Kripke structure, with S
the set of states, I the set of initial states, R ⊆ S2 the transition relation and
L a labelling of states. Let s0 ∈ S be a state. Define a path π = s0, s1, . . . as a
sequence of states in S such that (si, si+1) ∈ R for every i ≥ 0. Let Ds(x) be
the (finite) set of possible values for a quantified variable x in state s, p be some
state variable in K and c1 and c2 be constants. We say the pair K, s0 satisfies
the CTL-FO+ formula ϕ if and only if it respects the following rules:

K, s0 |= p = c1 ⇔ p is equal to c1 in state s0

K, s0 |= c1 = c2 ⇔ c1 is equal to c2

K, s0 |= ¬ϕ ⇔ K, s0 �|= ϕ

K, s0 |= ϕ ∨ ψ ⇔ K, s0 |= ϕ or K, s0 |= ψ

K, s0 |= AF ϕ ⇔ for each π = s0s1s2 . . . , K, si |= ϕ for some i

K, s0 |= EX ϕ ⇔ there exists π = s0s1s2 . . . such that K, s1 |= ϕ

K, s0 |= E ϕ U ψ ⇔ there exists π = s0s1s2 . . . such that K, sj |= ψ for some j

and K, si |= ϕ for i < j

K, s0 |= ∃xϕ(x) ⇔ there exists a ∈ Ds0(x) such that K, s0 |= ϕ(a)

By extension, we write K |= ϕ if the initial state s of K is such that K, s |= ϕ.

The values of the variables appearing in a CTL-FO+ formula are quantified
according to specific elements of the XML message that is received or sent in the
current state of the system. To indicate this, we add a subscript to the quantifier
indicating the name of the element. A quantifier like ∀LPO-IDx therefore means
“for all values x of elements named LPO-ID in the current message”. Therefore,
the domain of a variable depends on the content of the current message, which
in turn depends on the current state of the system. By extension, we write D(x)
to designate the union of the Ds(x) for all s ∈ S.

Using such notation, UCLP Service Constraint 1 becomes the following CTL-
FO+ formula:

36 S. Hallé et al.

UCLP Formal Service Constraint 1

AG (∀operation x1 : x1 = concatenateRequest →
∀LPO-ID x2 : AX AG (∀operation x3 :
x3 = partitionRequest → ∀LPO-ID x4 : x2 �= x4))

This formula states that at any time in any execution of the process, if the
operation x1 of the message is concatenateRequest, then for every LPO ID x2
appearing in this message, we have that for every future message whose operation
element value x3 is partitionRequest, any value x4 for its LPO ID is different from
x2. In other words, once an LPO has been concatenated, no further partition
involves this LPO, which is indeed equivalent to UCLP Service Constraint 1.
UCLP Service Constraints 2 and 3 can be formalized into similar CTL-FO+

formulæ.
We are only aware of a limited number of works related to data-awareness in

temporal properties. CTL-FO+ is reminiscent of EQCTL that extends CTL by
allowing existential quantification over state variables [27]. EQCTL is not closed
under negation; therefore, universal quantification cannot be obtained; moreover,
CTL-FO+ quantifies over values and is closer to true first-order quantification.
QCTL [31] extends CTL by including first-order quantification and monadic
second-order quantification over arbitrary algebraic data structures. Such ex-
pressiveness is not required in our case. Specifications using XQuery on traces
(SXQT) are defined in [34], but the approach allows the validation of one spe-
cific trace at a time; graph transformation rules [21] allow the description of data
modifications but lack the ability to express temporal modalities; a logic called
CTL-FO is introduced in [14], but its general model checking problem is shown
to be undecidable. CTL-FO+ generalizes CTL-FO by allowing free use of the
existential quantifier.

3.2 Model Checking CTL-FO+ Properties

Now that we have shown how data-aware properties can be expressed in CTL-
FO+, the next question is how to efficiently perform the model checking of these
formulæ. We first establish the complexity of the problem with the following
theorem.

Theorem 1. Let K = (S, I, R, L) be a Kripke structure modelling a particular
web service and ϕ be a CTL-FO+ formula. The problem of deciding whether
K |= ϕ is PSPACE-complete.

Proof. PSPACE-hardness is obtained by reduction to the Quantified Boolean
Formula (QBF) problem [17]; it suffices to observe that a QBF is by definition a
CTL-FO+ formula. A model checking algorithm can be devised in a straightfor-
ward manner from the classical CTL model checking algorithm. This algorithm
performs a structural recursion on the formula and computes a set of states de-
pending on the top-level operator. It suffices to add an additional case to the
algorithm when the top-level operator is a quantifier of the form ∃xϕ(x). The

Extending Model Checking 37

algorithm simply calls itself on ϕ(x) for every possible value of the variable x
and computes the union of all sets of states returned by each such call. Every
recursive call of the algorithm returns a subset of S and the height of the stack
is bounded by |ϕ|, the length of ϕ. Since domains are considered finite, the total
space consumed is polynomial in |ϕ|. �

Although CTL-FO+ is a generalization of CTL-FO mentioned above, we apply it
on a simpler model of workflows that makes its model checking decidable. In par-
ticular, since all UCLP properties only involve equality between values, finitely
many symbols are needed to handle infinite domains. This result shows that
CTL-FO+ is a generalization of CTL, whose model checking is in P. Therefore,
existing web service tools and model checkers cannot be used as is to validate
data aware properties. However, one can easily use the semantics definition of
the existential operator and explicitly enumerate all possible values k1, k2, . . . , kn

in the domain D of the quantified variable. The universally quantified formula
∀x : AG (a = x → AF b = x) hence becomes:

AG (a = k1 → AF b = k1) ∧ AG (a = k2 → AF b = k2)
∧ · · · ∧ AG (a = kn → AF b = kn)

The resulting expression is a plain CTL formula where all references to data
are now static, which amounts to extending the message alphabet. This approach
has already been suggested in Section 1 and has been called “explicit quantifi-
cation”. However, the next theorem shows that this construction is unlikely to
be optimal.

Theorem 2. If there exists a polynomial reduction of CTL-FO+ model checking
to CTL model checking, then P = NP.

Proof. Suppose that that for every Kripke structure K and every CTL-FO+

formula ϕ, there exists a polynomial translation of K into a Kripke structure
K ′ and a polynomial translation of ϕ into a CTL formula ϕ′. Since CTL model
checking is in P [11], and that P ⊆ PSPACE [17, sect. 7.4], then from Theorem
1 PSPACE ⊆ P, which can be true only if P = NP. �

4 An Efficient Reduction of CTL-FO+ to CTL

Theorem 2 seems to indicate that in fact, any attempt to use standard model
checkers to validate data-aware workflow properties is “doomed” to an expo-
nential blow-up of the original problem, and not only the explicit quantification
method suggested above. In this section, we show an alternate translation of
the CTL-FO+ model checking problem to CTL which, while still in EXPTIME,
performs much better.

The method employed to achieve this result uses a technique called “freeze
quantification” where additional variables can be added to a Kripke structure
that can be used to “freeze” the value of a state variable at some point in the
execution for future reference. It has been originally developed in [3] for timed

38 S. Hallé et al.

transitions systems and further studied in [13]. [19] used this technique to reduce
a subset of XPath to CTL. We proceed in two steps: first, we show how to convert
a Kripke structure K = (S, I, R, L) and a CTL-FO+ formula ϕ to a Kripke
structure Kϕ = (S′, I ′, R′, L′); then, we show how a CTL-FO+ formula ϕ can
be translated to a CTL formula ϕ′ and show that ϕ is true for K if and only if
ϕ′ is true for Kϕ, thereby reducing the problem of CTL-FO+ model checking to
CTL model checking.

4.1 Transforming a Kripke Structure

Set of system states. The principle consists in adding to the original Kripke
structure one system variable for each distinct quantified variable appearing
in the CTL-FO+ formula to validate. These variables are called the “freeze”
variables, since they are intended to capture the value of some part of a message
at a given point in the execution of the workflow. For example, to validate UCLP
Formal Service Constraint 1, four additional variables are needed corresponding
to the variables x1 to x4 in the CTL-FO+ formula. At the start of any execution
sequence, these variables take a special value noted # that indicates they have
not yet taken any “real” value.

The domain of each freeze variable is dependent on the message part on which
they are defined; in the previous example, the freeze variable x1 is defined on
operation elements; its domain is the set of all values appearing inside such
elements somewhere in the process. In contrast, the freeze variable x2 is defined
on elements of name LPO-ID; its domain is the set of all possible values that
can occur in this part of any message during the process. The computation of
the domain of each variable is an easy task that can be statically computed
on the original BPEL process; most web service validation tools can perform it
automatically.

Formally, if we let D(x1), D(x2), . . . , D(xn) be the respective domains of freeze
variables x1, x2, . . . , xn, the set S′ of states in Kϕ is defined as S′ = S ×D(x1)×
D(x2) . . . D(xn). That is, the new Kripke structure is simply the extension of the
original system to the n freeze variables. Consequently, we say that state s′ ∈ S′

is an extension of s ∈ S if all the non-freeze variables have the same values in
both states; conversely, s is the (unique) restriction of s′.

The initial state of Kϕ is defined uniquely by choosing the state s for which
all non-freeze variables are identical as in the initial state of K, and where all
freeze variables take the value #.

Transition relation. We then define the transition relation of Kϕ in the fol-
lowing way. In all states of the system where no message is sent or received, the
transitions are left untouched. The internal variables of the model can change
value in the same way as in the original Kripke structure, while all the freeze
variables do not change. That is, if s, t ∈ S, (s′, t′) ∈ S′ and s′ and t′ are respec-
tive extensions of s and t such that all freeze variables have the same values in
both s′ and t′, and s is a state where no BPEL communicating activity (invoke,
receive or reply) occurs, then (s, t) ∈ R if and only if (s′, t′) ∈ R′.

Extending Model Checking 39

Let us now consider the case of a state of the model where a message is either
sent or received. Such a state is exploded in the resulting Kripke structure into
two phases: in the first phase, the non-freeze variables can change according to
the original transition relation as described previously, while the freeze variables
stay the same. Once these changes are made, the system enters into a “freezing”
phase where the roles are reversed: the non-freeze variables keep their values,
and some freeze variables can change in a specific way.

In the freezing phase, a freeze variable can stay undefined, or take the value
of some part of the current message. It is important to remark that the variables
can only be assigned values corresponding to the message part on which they
are defined. Consider for example the sequence formed of a partitionRequest and
a partitionResponse XML messages as shown in Table 1. In the first message
of the pattern, variable x1 can only take the value “partitionRequest”, since x1
is defined in UCLP Formal Service Constraint 1 as a variable on root element
names. In the same way, x2 can only take the value i, since x2 is defined as a
variable on elements of name <LPO-ID>. In the second message, x2 can take
the values i1, . . . , in.

The actual value assigned to either of these special variables in each state is
non-deterministic. In addition, each variable may or may not take a value –that
is, variables can stay undefined. However, once a variable has taken a defined
value, it keeps this value for the remainder of the execution trace.

The exit from the freezing phase is also non-deterministic. The system loops
any number of times into the freezing phase of a given state and then comes out
and resumes its execution as specified by the original transition relation.

Formally, let s ∈ S be a state of the model where an invoke, receive or
reply occurs and s′ ∈ S′ be an extension of s. Let xi be a freeze variable and
v ∈ Ds(xi). Let t ∈ S be a state such that (s, t) ∈ R and t′ ∈ S′. Then (s′, t′) ∈ S′

if and only t′ is an extension of s or an extension of t, xi = # in s′, xi = v in
t′ and for all 1 ≤ j ≤ n, if i �= j, xj does not change between s′ and t′. We
must then show that these modifications preserves the behaviour of the original
model.

Theorem 3. Let π′ be an execution in Kϕ, and let π′′ be the sequence of states
in S obtained by taking the reduction of π′. There exists an execution π in K
such that π′′ and π are stuttering equivalent.

Proof. By construction, every transition (s′1, s
′
2) in Kϕ that does not enter or

leave a freezing phase is the extension of some transition (s1, s2) in K. It remains
to observe that any sequence of states t1, . . . , ti in a freezing phase in Kϕ leaves
all non-freeze variables unchanged; therefore, the reduction of that sequence is
nothing but the repetition of the same state in K, i times. It follows that π′′ is the
same sequence of states as some execution π in K, with the possible exception
that some states are repeated a finite number of times, thus leading to stuttering
equivalence. �

40 S. Hallé et al.

4.2 Converting a CTL-FO+ Formula

Once the Kripke structure has been modified in the previously described manner,
the conversion of a CTL-FO+ formula into a standard CTL formula becomes
straightforward.

We define a linear embedding ω of CTL-FO+ into CTL formulæ. Let ϕ and
ψ be CTL-FO+ formulæ, c be a constant in V , m and n be message part names
in N , and the xi be quantified variables in the CTL-FO+ formula. Translating
the Boolean connectives and the ground equality testings is direct.

The quantification on variables becomes a quantification on some execution
paths. In effect, a quantifier like ∀x : ϕ(x) actually means “for all possible values
x can take in the current state, ϕ(x) holds”. According to the Kripke structure
Kϕ defined previously, this simply amounts to asserting that in the current state,
for all possible ways for x of changing from # to some definite value, ϕ is true,
which becomes the following translation:

ω(∀nxi : ϕ) ≡ (xi = # → AX (xi �= # → ω(ϕ))) (1)

Similarly, a quantifier like ∃x : ϕ(x) actually means “there exists a value x
can take in the current state such that ϕ(x) holds”. According to the Kripke
structure Kϕ defined previously, this simply amounts to asserting that in the
current state, there exists a way for x of changing from # to some definite value
where ϕ is true. This becomes the following translation:

ω(∃nxi : ϕ) ≡ (xi = # → EX (xi �= # ∧ ω(ϕ))) (2)

The translation of the CTL temporal operators is also direct, except for the
next quantifiers AX and EX. The next state state in K is not necessarily the
next state in Kϕ because of the possible freeze loops that may put two consecu-
tive states in K arbitrarily far apart in Kϕ. However, it is possible to work around
this by asserting that the next state in K is mirrored by the next non-freezing
state in Kϕ. We obtain:

ω(AX ϕ) ≡ A γU ω(ϕ) (3)
ω(EXϕ) ≡ E γU ω(ϕ) (4)

where γ is an additional Boolean variable that is true whenever the system is in a
freezing phase, and false otherwise. Formula (3) hence asserts that in Kϕ, as soon
as the system gets out of the current freezing phase (if any), ϕ must be true.

Using this embedding, UCLP Formal Constraint 1 is recursively translated to
the following CTL expression.

AG (x1 = # → (AX (x1 �= # →
(x2 = # → (AX (x2 �= # →

x1 = partitionRequest →
AX AG (x3 = # → (AX (x3 �= # →
(x4 = # → (AX (x4 �= # →
x3 = concatenateRequest → x2 �= x4))))))))))))

(5)

Extending Model Checking 41

We do not expect data aware constraints to be expressed directly in CTL in
such a way. However, the translation from CTL-FO+ to CTL can be automated,
and the next theorem shows that the overall construction preserves the validity
of the original problem.

Theorem 4. Let K be a Kripke structure, ϕ be a CTL-FO+ formula, Kϕ be a
converted Kripke structure and ϕ′ = ω(ϕ). Then ϕ is true for K if and only if
ϕ′ is true for Kϕ.

We only sketch the proof here, which is done by induction on the structure of the
formula. By Theorem 3, we know that reachability of states is preserved when
converting K to Kϕ. It remains to show that an assignment ρ of values to the
freeze variables x1, . . . , xn is true for ϕ in K if and only if it is true for ϕ′ in Kϕ,
which can be realized by observing the definition of the freeze transitions.

Contrarily to explicit quantification, the freeze quantification approach does
not cause an exponential blow-up of the original formula. The embedding ω is
linear: that is, if we denote by |ϕ| the length of a CTL-FO+ formula ϕ, then
|ω(ϕ)| ∈ O(|ϕ|). It suffices to remark that each translation rule consumes at least
one symbol of the original CTL-FO+ formula and contributes a fixed number of
symbols in the resulting CTL formula.

5 Experimental Results

To confirm the soundness of our approach, we conducted a set of experiments
that involved the validation of UCLP constraints detailed in Section 2 on sample
BPEL processes taken from real-world UCLP use cases. The goal of these ex-
periments was to show that validating UCLP constraints can be effectively done
using the freeze quantification solution presented in this paper. Furthermore, we
also show that the explicit model checking approach quickly becomes inadequate
for these properties.

5.1 Methodology

The experiments were made using only readily available and open source tools.
NuSMV [10] was chosen as the model checker because of its robustness, good
performance, and especially its capability of model checking CTL formulæ. VER-
BUS [4] was chosen to generate the Kripke structure from the original BPEL
processes; the choice was influenced mostly by its ability to model the content
of variables and messages in a process and its capability to directly output the
Kripke structure as an SMV file. Only minor bug-solving modifications were
made to the original code of VERBUS to make it work in our situation. The
modified version of VERBUS, a compiled copy of NuSMV, the BPEL modifi-
cation routines and all the files used in the experiments are released under the
GNU GPL.3

3 All the material is available from
http://www.teleinfo.uqam.ca/Members/halle sylvain/uclp

42 S. Hallé et al.

The SMV files produced by VERBUS were then modified according either to
the explicit quantification or the freeze approach. In the explicit quantification,
no modification other than appending the desired CTL formula at the end of
the file was made. In the freeze approach, freeze variables and freeze transitions
were added throughout the file, and the corresponding CTL formula was also
added at the end.

5.2 Results and Discussion

We then proceeded to this method successively with sample BPEL processes.
Each process consisted in one concatenation and one partition of a given num-
ber of LPOs. For n = 1, the result of all operations in the process is deterministic:
for example, the partition operation with LPO A always returns the same LPO
IDs B, C, D. We then varied this number n of LPOs by making the operations
non-deterministically return IDs taken from a set of possible values. This gen-
eralization of the process is a natural step to take, since a UCLP operation on
an LPO is dependent of the global situation of the UCLP network and therefore
need not return the same value in every invocation.

The validation times for the freeze and the explicit quantification approaches
are presented in Table 2, for each UCLP formal constraint, for BPEL processes
with n ranging from 1 to 4. Similarly, the size of the NuSMV file required to
validate the process is shown in Table 3. All times have been obtained with
NuSMV 2.4.0 on an AMD Athlon 2200+ CPU running under Windows XP. Since
NuSMV takes several dozens of seconds only to display the explicitly quantified
formulæ, this time was not included in the results.

Table 2. Validation time (in seconds) of sample BPEL processes with UCLP con-
straints, using respectively the freeze and the explicit quantification approach

Freeze quantification Explicit quantification

Constraint n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5

1 1.5 1.9 4.5 5.4 8.7 0.2 0.3 0.4 0.4 0.5

2 1.6 2.2 4.4 5.4 9.2 13 36 101 222 884

3 1.8 2.2 4.6 5.8 9.3 — — — — —

These figures confirm what was suggested in Section 3.2: using explicit quan-
tification to produce the CTL formula quickly takes its toll on the validation
time. As expected, the translation of the CTL-FO+ formula is heavily dependent
on n and grows exponentially. With UCLP operations returning only 5 different
possible values, validation time takes almost 15 minutes. We could not get any
times for UCLP Formal Constraint 3 since NuSMV crashed before reaching the
end of the files, most probably due to their size. We did not dare to generate
the formulæ for n = 4 and n = 5 that were expected to occupy more than 500
Mb each. Comparatively, the freeze approach requires only minimal modifica-
tions to the original NuSMV file produced by VERBUS; most importantly, these

Extending Model Checking 43

Table 3. File size (in kilobytes) of the NuSMV files for the validation of sample BPEL
processes with UCLP constraints, using respectively the freeze and the explicit quan-
tification approach

Freeze quantification Explicit quantification

Constraint n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5

1 30.3 30.5 30.6 30.7 30.8 237 299 368 445 529

2 33.9 34.0 34.2 34.3 34.5 10542 18156 29249 47939 70509

3 34.8 35.0 35.1 35.3 35.5 111597 198831 329075 — —

modifications are constant and do not depend on n. The increase in the file size
is only due to the addition of the non-deterministic transitions required when
incrementing n. Validation time, no matter the property, exhibits the same be-
haviour and grows much more reasonably: the 884 seconds required to validate
property 2 with n = 5 in the explicit quantification is improved by a factor 80
and falls to less than 10 seconds using the freeze approach.

These trends do not hold for UCLP Formal Service Constraint 1 where the
explicit quantification approach fares better than the freeze approach. This can
be explained by the fact that the addition of freeze variables and transitions
imposes an initial overhead on the Kripke structure that the explicit quantifica-
tion does not have. Since in this situation, the CTL formulæ to validate are only
a few hundred kilobytes long, they can be considered too small to represent a
serious load on the model checker.

6 Conclusions

In this paper, we have shown that the composition of User-Controlled Lightpath
resources is subject to constraints involving both the sequentiality of messages
and the content of these messages. We have demonstrated how current traditional
model checking approaches to the validation of web service workflows are insuf-
ficient for the validation of UCLP scripts subject to these kinds of constraints.
We have demonstrated by empirical testing on real-world BPEL processes how
an extension of CTL called CTL-FO+ can be used to effectively model these
complex workflow properties; we showed how a suitable reduction of CTL-FO+

to CTL can be used to validate them in reasonable time compared to classical
approaches.

The success of this project opens the way for future developments. First, we
plan to integrate the automated generation of freeze variables and transitions di-
rectly into VERBUS. Second, it is possible to expand the range of expressiveness
of CTL-FO+ formulæ by taking into account not only the values inside XML
messages exchanged by a BPEL process, but also their hierarchical organization
into trees, thereby embedding into CTL-FO+ a subset of a tree language like
XPath.

44 S. Hallé et al.

References

1. The Edinburgh concurrency workbench

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2004)

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)

4. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Applying model checking to
BPEL4WS business collaborations. In: Haddad, H., Liebrock, L.M., Omicini, A.,
Wainwright, R.L. (eds.) SAC, pp. 826–830. ACM, New York (2005)

5. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic
composition of transition-based semantic web services with messaging. In: Böhm,,
et al. (eds.) [6], pp. 613–624

6. Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.-Å., Ooi, B.C. (eds.):
Proceedings of the 31st International Conference on Very Large Data Bases, Trond-
heim, Norway, August 30 - September 2, 2005. ACM, New York (2005)

7. Bravetti, M., Núñez, M., Zavattaro, G. (eds.): WS-FM 2006. LNCS, vol. 4184.
Springer, Heidelberg (2006)

8. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. Electr. Notes Theor. Comput. Sci. 105, 73–94 (2004)

9. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to
design and analysis of e-service composition. In: WWW, pp. 403–410 (2003)

10. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

12. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreographies.
In: Bravetti, et al. (eds.) [7], pp. 163–177

13. Demri, S., Lazic, R., Nowak, D.: On the freeze quantifier in constraint LTL: De-
cidability and complexity. In: TIME, pp. 113–121. IEEE Computer Society, Los
Alamitos (2005)

14. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web
services. In: Deutsch, A. (ed.) PODS, pp. 71–82. ACM, New York (2004)

15. Duan, Z., Bernstein, A.J., Lewis, P.M., Lu, S.: A model for abstract process spec-
ification, verification and composition. In: Aiello, M., Aoyama, M., Curbera, F.,
Papazoglou, M.P. (eds.) ICSOC, pp. 232–241. ACM, New York (2004)

16. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based analysis of obligations
in web service choreography. In: AICT/ICIW, p. 149. IEEE Computer Society, Los
Alamitos (2006)

17. Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

18. Greenfield, P., Kuo, D., Nepal, S., Fekete, A.: Consistency for web services appli-
cations. In: Böhm,, et al. (eds.) [6], pp. 1199–1203

19. Hallé, S., Villemaire, R., Cherkaoui, O.: CTL model checking for labelled tree
queries. In: TIME, pp. 27–35. IEEE Computer Society, Los Alamitos (2006)

20. Hallé, S., Villemaire, R., Cherkaoui, O., Ghandour, B.: Model-checking data-aware
temporal workflow properties with CTL-FO+. In: EDOC, pp. 267–278. IEEE Com-
puter Society, Los Alamitos (2007)

Extending Model Checking 45

21. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

22. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

23. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Reading (2003)

24. Johnson, J.E., Langworthy, D.E., Lamport, L., Vogt, F.H.: Formal specification of
a web services protocol. Electr. Notes Theor. Comput. Sci. 105, 147–158 (2004)

25. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models
in web service compositions. In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A.,
Dahlin, M. (eds.) WWW, pp. 267–276. ACM, New York (2006)

26. Koshkina, M., van Breugel, F.: Modelling and verifying web service orchestration
by means of the concurrency workbench. ACM SIGSOFT SEN 29(5) (September
2004)

27. Kupferman, O.: Augmenting branching temporal logics with existential quantifi-
cation over atomic propositions. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939,
pp. 325–338. Springer, Heidelberg (1995)

28. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

29. Nakajima, S.: Model-checking of safety and security aspects in web service flows.
In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp.
488–501. Springer, Heidelberg (2004)

30. Pistore, M., Roveri, M., Busetta, P.: Requirements-driven verification of web ser-
vices. Electr. Notes Theor. Comput. Sci. 105, 95–108 (2004)

31. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidel-
berg (2006)

32. Turner, K.J.: Formalising web services. In: Wang, F. (ed.) FORTE 2005. LNCS,
vol. 3731, pp. 473–488. Springer, Heidelberg (2005)

33. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti et al.(eds.) [7], pp. 1–23

34. Venzke, M.: Specifications using XQuery expressions on traces. Electr. Notes Theor.
Comput. Sci. 105, 109–118 (2004)

35. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service interaction
modeling: Bridging global and local views. In: EDOC, pp. 45–55. IEEE Computer
Society, Los Alamitos (2006)

Analyzing BPEL4Chor:

Verification and Participant Synthesis

Niels Lohmann1, Oliver Kopp2, Frank Leymann2, and Wolfgang Reisig3

1 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

{kopp, leymann}@iaas.uni-stuttgart.de
3 Humboldt-Universität zu Berlin, Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany
reisig@informatik.hu-berlin.de

Abstract. Choreographies offer means to capture global interactions
between business processes of different partners. BPEL4Chor has been
introduced to describe these interactions using BPEL. Currently, there
are no formal methods available to verify BPEL4Chor choreographies. In
this paper, we present how BPEL4Chor choreographies can be verified
using Petri nets. A case study undermines that our verification techniques
scale. Additionally, we show how the verification techniques can be used
to generate a stub process for a partner taking part in a choreography.
This is especially useful when the behavior of one participant is intended
to follow the corresponding requirements of the other participants. Thus,
the missing participant behavior can be generated and the error-prone
design of that participant can be skipped.

Keywords: BPEL4Chor, choreography, participant generation, Petri
nets, service-oriented analysis and design.

1 Introduction

The Web Services Business Process Execution Language (WS-BPEL or BPEL
for short, [1]) is the de facto standard to describe executable business processes
as orchestrations of Web services. A choreography describes the interaction of
several processes from a global perspective. In particular, it defines the order in
which processes exchange messages. BPEL4Chor [2] is a choreography language
based on BPEL. Each participant is associated with a participant behavior de-
scription (PBD) that describes the participant’s behavior using abstract BPEL.
The interconnection between the activities of different PBDs is formed by mes-
sage links.

In this paper, we show how an existing tool chain [3,4] can be extended to
analyze a BPEL4Chor choreography (Fig. 1). By mapping BPEL4Chor to Petri
nets, we also provide a formal model for BPEL4Chor.

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 46–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analyzing BPEL4Chor: Verification and Participant Synthesis 47

BPEL

process

participant

topology

BPEL2oWFN

(translation)

Petri net

model

LoLA

(verification)

Fiona

(service synthesis)

fitting

participant

OK /

not OK

Fig. 1. Proposed tool chain to analyze BPEL4Chor choreographies

If two business partners agree on a choreography, but need a third business
partner to achieve their goal, they also have to specify the behavior of the third
party. We show how the behavior of the third party can be derived from ex-
isting participants in a choreography. The current algorithms assure deadlock-
freedom for the synthesized participant if such a participant exists. We are aware
that there are other possibilities for defining “proper interaction”. Nevertheless,
deadlock-free communication will certainly be part of any more sophisticated
correctness definition, so the presented approach can be seen as a step towards
a more sophisticated solution.

Section 2 introduces BPEL4Chor and open workflow nets (oWFNs), which are
used to capture the semantics of BPEL4Chor. After presenting in Sect. 3 how
BPEL4Chor can be translated into oWFNs, Sect. 4 shows how a BPEL4Chor
choreography can be analyzed theoretically. Section 5 puts that analysis into
practice and shows how the proposed tool chain is used to analyze a BPEL4Chor
choreography and that it scales up to 1,000 participants. Finally, Sect. 6 con-
cludes, compares the presented work with related work, and describes future
research directions.

2 Background and Motivation

A choreography described by BPEL4Chor consists of (i) the participant topol-
ogy, (ii) the participant behavior descriptions, and (iii) the participant ground-
ings (cf. Fig. 2 and [2]). The participant topology lists all participants taking
part in the choreography and all message links connecting activities of different
participants. A message link states that a message is sent from the source of
the message link to its target. Every participant has a certain type. For each
participant type, a participant behavior description (PBD) defined in BPEL is
given. In this description, port types and operations are omitted and thus the
dependency on interface specifications such as WSDL [5] is removed. If the chore-
ography has to be executed, every target of a message link has to be grounded
to a WSDL operation so that the other participants can use the offered opera-
tion. This grounding is done after the choreography design itself, which enables
choreography specification reuse. Since BPEL is used to specify the behavior of
every participant, the development of executable BPEL processes following this
behavior can be done by using the PBD of a participant as a basis and adding
missing information. Other languages can be used to provide implementations
of local behavior, but using BPEL is a seamless choice based on BPEL4Chor.

48 N. Lohmann et al.

BPEL4Chor choreography

Participant
topology

Structural aspects

Participant behavior
descriptions (PBDs)

Observable control & data flow

Participant groundings

Technical configuration

Participant Declaration

List of participants

Message Links

Connecting PBDs

Fig. 2. BPEL4Chor artifacts ([2])

A choreography always describes the behavior of all participants. Thus, a
closed world is assumed. Refer to the booking scenario in Fig. 3. A traveler
requests booking of a flight at a travel agency. The travel agency requests a
price quote from every airline in a set of airlines. The cheapest airline is selected
and the tickets are ordered there. The airline replies with a confirmation and
sends an electronic ticket directly to the traveler. There is no message going to an
undefined participant. The observable behavior of all participants is specified.
Note that BPMN [6] is used for visualization only. The choreography itself is
specified using BPEL4Chor.

2.1 Open Workflow Nets

Open workflow nets (oWFNs) [7] are a special class of Petri nets. They generalize
classical workflow nets [8] by introducing an interface for asynchronous message
passing. Intuitively, an oWFN is a Petri net together with (i) an interface, con-
sisting of input and output places, (ii) an initial marking m0, and (iii) a set Ω
of distinguished final markings. Final markings represent desired final states of
the net and help to distinguish desired final states from unwanted deadlocks.
Throughout this paper, we use the term ‘deadlock’ for a nonfinal marking which
does not enable a transition (i. e., an unwanted blocking of the net). Figure 4
shows an oWFN modeling the traveler participant of the choreography depicted
in Fig. 3.

The interplay of two oWFNs N and M is represented by their composition,
denoted by N ⊕ M . Thereby, we demand that the nets only share input and
output places such that for some input places of N exist corresponding output
places of M , and vice versa. The oWFN N ⊕ M can then be constructed by
merging joint places and merging the initial and final markings. Merged places
become internal to N ⊕M . Due to the closed world assumption in BPEL4Chor,

Analyzing BPEL4Chor: Verification and Participant Synthesis 49

Tr
av

el
er

A
irl

in
e

Tr
av

el
 A

ge
nc

y

Traveler
reference

Quote
price

Make
reservation

Confirm
order

Issue
eTicket

Retrieve
price

Select
airline

Order
tickets

Issue
itinerary

Create
itinerary

Request price

Plan trip Submit trip
order

Fig. 3. Choreography of a Booking Scenario ([2])

p2p1

trip

itineraryticket

plan trip

Fig. 4. An oWFN modeling the traveler participant. The interface consists of Pin =
{ticket, itinerary} and Pout = {trip}, depicted on the dashed frame. The traveler first
plans the trip and then sends an order. Then, he concurrently receives a ticket and an
itinerary. The set of final markings Ω = {[p1, p2]} consists of the single marking with
one token on place p1 and on p2.

the composition of all oWFNs modeling services of a choreography results in a
closed oWFN; that is, an oWFN with empty interface.

oWFNs provide a simple but formal foundation to model services and their
interaction. They allow—like common Petri nets — for diverse analysis methods
of computer-aided verification. The explicit modeling of the interface further al-
lows to analyze the interaction behavior of a service [3,4]. An important property
of an oWFN is whether it is possible to communicate deadlock-freely with it.
An oWFN N is called controllable, if there exists an oWFN M such that N ⊕M
is free of deadlocks. Like the soundness property for workflow nets, controlla-
bility [9] can be regarded as a minimal correctness criterion for communicating
services. Obviously, the net depicted in Fig. 4 is controllable.

50 N. Lohmann et al.

2.2 Petri Net Semantics for BPEL

The BPEL [1] language provides an operational semantics defining the behavior
of each language construct and the behavior of composites of constructs. To
formally verify BPEL processes, a formal semantics is needed. Therefore, a lot
of work has been conducted to define a formal semantics for the behavior of
BPEL processes. The approaches cover many formalisms such as Petri nets,
abstract state machines, finite state machines, process algebras, etc. (see [10] for
an overview).

The translation of a BPEL process intro a Petri net model is guided by the
syntax of BPEL. In BPEL, a process is built by plugging instances of language
constructs together. Accordingly, each construct of the language is translated
separately into a Petri net. Such a net forms a pattern of the respective BPEL
construct. Each pattern has an interface for joining it with other patterns as is
done with BPEL constructs. Also, patterns capturing BPEL’s structured activ-
ities may carry any number of inner patterns as its equivalent in BPEL can do.
The collection of patterns forms the Petri net semantics for BPEL. While the
original semantics in [11] is feature complete (i. e., capturing both the standard
as well as the exceptional behavior of a BPEL process), we only consider the
positive control flow in this paper to ease the presentation. The presented ap-
proach can, however, be canonically enhanced to also model fault, compensation
and exception handling of the participating BPEL processes.

3 Translating BPEL4Chor Choreographies into Petri Nets

To translate a BPEL4Chor choreography into a Petri net model, we extend the
translation approach presented in [3]. Basically, the translation is enhanced to
support composition and instantiation.

Composition. The tool chain presented in [3] is limited to the translation of a
single process into a Petri net model. To translate BPEL4Chor, we translate the
participating BPEL processes one by one and compose the resulting oWFNs.
The information how input and output places of different processes are merged
can be derived from the participant topology. As the composition of oWFNs is
associative, the order of composition is not important. Furthermore, the result-
ing nets can be composed incrementally. Therefore, at most two nets have to
be kept in memory during the translation process. Finally, structural reduction
techniques can be applied already during the composition process. Not only the
final composition, also the intermediate oWFNs can be reduced. This interleav-
ing of structural reduction and composition does not only allow smaller nets, but
also may speed up the translation process as the size of the composition grows
more slowly.

Instantiation. The translation process is, however, not restricted to choreogra-
phies in which each process is instantiated just once. For instance, the choreogra-
phy example presented in Fig. 3 models a choreography that communicates with

Analyzing BPEL4Chor: Verification and Participant Synthesis 51

a set of airlines. Again, the participant topology holds the necessary information
about which process has to be instantiated. Admittedly, the topology does not
provide the number of instances of each participant. We therefore demand an
upper bound of instances to be specified for each participant set. While this up-
per bound may not be necessary when BPEL4Chor is just a means to describe
choreographies, its definition is reasonable when such a choreography should be
analyzed.

To introduce instantiation to the translation process, the following scenarios
are possible:

i. message exchange between two uninstantiated participants (e. g., the trip
order sent by the traveler to the agency),

ii. message exchange between an uninstantiated participant and one particular
instantiated participant (e. g., the price request sent by the agency to an
airline instance),

iii. message exchange between an uninstantiated participant and an arbitrary
chosen instantiated participant (e. g., the e-ticket sent by the selected airline
to the traveler), and

iv. message exchange between two instantiated participants (not present in our
example choreography).

For an example of these scenarios, consider the BPEL code snippet of the
agency process depicted in Fig. 5(a). For two airline instances, the resulting
subnet is depicted in Fig. 5(b). The message trip sent by traveler to the agency
is an example of the first scenario, as both services (traveler and agency) are
uninstantiated. Therefore, the receipt of the trip message is modeled by a single
transition, namely t1. The price request sent to and the corresponding price
quotes received from the airline instances are examples for the second scenario.
Therefore, the communicating transitions (t2–t5) and the connected interface
places (price.1, price.2, quote.1, and quote.2) are instantiated. The order sent to
only one airline instance is an example for the third scenario.

Translating the example choreography. The presented translation approach
was implemented in our compiler BPEL2oWFN1. BPEL2oWFN enables us to
translate real-world BPEL choreographies into Petri net models. We translated
the example choreography with five airline instances into a Petri net. The result-
ing net has 103 places and 81 transitions. Structural reduction simplified the net to
63 places and 41 transitions. The final marking of the composition is constructed
canonically: it consists of the single state in which all participating services have
completed faultlessly.

4 Analyzing BPEL4Chor Choreographies

In this section, we show how to analyze BPEL4Chor choreographies using Petri
net models. We distinguish two analysis approaches: analysis of closed choreog-
raphy models and analysis of open choreography models. A closed choreography
1 BPEL2oWFN is available at www.gnu.org/software/bpel2owfn

www.gnu.org/software/bpel2owfn

52 N. Lohmann et al.

(a) code snippet of the agency process

trip

t6

t7 t8

price.1

price.2

quote.1

quote.2

order.1

order.2

…
…

t1

t2 t3

t4 t5

(b) resulting subnet of the agency oWFN

Fig. 5. Example for the instantiation of transitions and interface places. The BPEL
process of the agency (a) is translated into an oWFN (b).

model (i. e., an oWFN with empty interface) can be analyzed in isolation and can
be used to verify properties of a complete choreography. For example, deadlock-
freedom or the absence of unwanted communication scenarios can be proven
before the actual implementation and deployment of the participant services.
In contrast, an open choreography model (i. e., an oWFN with nonempty inter-
face) can be used during the design of the overall choreography. A choreography
in which one participating service is missing can, for instance, be completed
by synthesizing the missing participant service. This synthesized service is then
guaranteed to participate deadlock-freely with the other participants.

4.1 Analyzing Closed Choreographies

Due to the closed-world assumption of BPEL4Chor, the resulting Petri net model
of a completely specified BPEL4Chor choreography is a closed system; that is, a
Petri net with empty interface. During the translation, each interface place of an
intermediate oWFN, is merged with a corresponding interface place of another
intermediate oWFN. Closed systems do not have an environment and thus their
state space can be calculated and analyzed without considering the environment
of the system. As Petri nets offer a broad variety of analysis methods, a lot of
interesting properties can be investigated:

– Is the choreography free of deadlocks and livelocks? Will each participating
service eventually reach a final state?

– Will a certain activity of a participant be executed? Does there exist a state
in which more than one message is pending on a communication channel?

– What is the minimal/maximal number of messages to be sent to reach a
final state of the choreography?

Analyzing BPEL4Chor: Verification and Participant Synthesis 53

– Will a participant always receive an answer? Can a participant enforce the
receipt of a certain message?

These questions can be formulated in terms of reachability or temporal logic
properties and be checked using existing model checking tools.

Analyzing the example choreography. We analyzed the Petri net model of
Sect. 3 with the Petri net verification tool LoLA [12], a state-of-the-art model
checker which implements several state space reduction techniques. The unre-
duced state space consists of 3,843 states. The Petri net model contains an
unwanted deadlock. We could map this deadlocking state of the model back to
the participating services with the help of a witness path. A witness path is a
transition sequence leading from the initial to the dead marking. The deadlock
occurs in the choreography, when the agency’s choice for an airline takes too
much time, or when the message sent to the chosen airline is delayed. In this
case, the timeout (i. e., the onAlarm branch) of all participating airlines ends
their instances and the agency deadlocks waiting for a confirmation message
from the chosen airline.

Correcting the example choreography. There are many ways to correct the
deadlocking choreography. A straightforward attempt would be to replace the
airline service’s timeout by a message sent by the agency. This would, however,
add an unrealistic dependency between the agency and the airline. To this end,
we decided to keep the timeout, but at the same time ensure a response of the
airline service even when a ticket order is received after the timeout.

Hence, we changed the choreography as follows (cf. gray shapes in Fig. 6). The
airline’s behavior does not change if the agency’s ticket order is received before
the timeout occurred and if the timeout occurs, the airline service’s instance still

A
irl

in
e

T
ra

ve
l A

ge
nc

y

Select
airline

Order
tickets Issue

itinerary
Create

itinerary

Quote
price

Confirm
order

Issue
eTicket

Retrieve
price

Traveler
reference

Reject order

Reject
order

Make
reservation

T
ra

ve
le

r

Plan trip
Submit trip

order

Request price

Fig. 6. Deadlock-free Choreography of a Booking Scenario. The two start events at the
airline process denote a BPEL pick activity.

54 N. Lohmann et al.

terminates. However, a new branch was added to the airline: this branch models
the situation in which the agency’s ticket order is received after the timeout. In
this case, a new instance of the airline service is created which rejects the ticket
order. The services of the agency and the traveler are adjusted to handle this
rejection.

Analyzing the new example choreography. We translated the new chore-
ography with five airline instances into a Petri net model. Due to the newly
introduced activities, its structure and its state space have grown. The (struc-
turally reduced) net has 113 places and 97 transitions. The model has 3,812 states
and does not contain deadlocks except final states. With the help of LoLA, we
could also verify that the choreography’s participating services do not livelock
and will always reach a final state.

4.2 Analyzing Open Choreographies

While the analysis of closed choreographies may help to find design flaws in the
interaction between all participating services, Petri net models may also support
the design of choreographies. To this end, controllability (cf. Sect. 2.1) is an
important property. In [3], we presented an algorithm to decide controllability
of an oWFN constructively. This algorithm is implemented in the tool Fiona2.
If a partner exists such that the composition is deadlock-free, it is automatically
generated.

Let N1, . . . , Nk−1 be the oWFNs of the already known participant services of
an open choreography. Their composition, N1 ⊕ . . . ⊕ Nk−1, is an oWFN with
nonempty interface. If this net is controllable, then there exists an oWFN Nk

such that N1 ⊕ . . . ⊕ Nk−1 ⊕ Nk is deadlock-free. Thus, Fiona can be used to
“complete” a given open choreography by synthesizing the model Nk of the
missing participant.

Synthesizing a traveler participant. Consider again the fixed choreography
of Fig. 6. If, for example, only the services of the agency and the airline were spec-
ified, the blueprint of a traveler participant could be synthesized. If such a service
exists (i. e., the composition of the existing services is controllable), it completes
the choreography which is then deadlock-free by construction. To this end, the
incomplete choreography is translated into an oWFN using BPEL2oWFN. This
oWFN is then analyzed by Fiona. If the net is controllable, a service automaton
modeling the behavior of a partner service is synthesized. This automaton can
be translated into an oWFN, for example using the tool Petrify [13].

The synthesized oWFN of a traveler participant that completes the choreog-
raphy is depicted in Fig. 7(a). This traveler participant slightly differs from the
traveler participant in the new choreography (cf. Fig. 6). Firstly, there exists no
transition modeling the planning of the trip, because such a transition is inter-
nal (i. e., not communicating), but the participant was synthesized based on the

2 Fiona is available at www.informatik.hu-berlin.de/top/tools4bpel/fiona

www.informatik.hu-berlin.de/top/tools4bpel/fiona

Analyzing BPEL4Chor: Verification and Participant Synthesis 55

trip

itineraryticket

rejection

(a) synthesized traveler

confirm.1

order.1

quote.1

price.1

ticket confirm.2

order.2

quote.2

price.2

p2p1

p3 p4

(b) two synthesized airline instances

Fig. 7. Synthesized participants. (a) A traveler participant synthesized to fit in the
new choreography. The gray transitions are concurrent, whereas in the choreography
(cf. Fig. 6), the ticket is received after the itinerary. (b) Two synthesized airline in-
stances to fit in the first choreography (cf. Fig. 3). The gray transitions synchronize
the instances. The net has two final markings: Ω = {[p2, p3], [p1, p4]}.

external behavior; that is, only the interaction of the service was taken into ac-
count. Secondly, the itinerary and the ticket can be received concurrently. This
is due to the asynchronous communication model: messages can keep pending on
the interface, so there is no order in which they have to be received. From this
oWFN, an abstract BPEL process can be derived using existing approaches [14].
As this translation is out of scope of this paper, we do not present it here.

Limits of the participant synthesis. The presented approach allows to syn-
thesize a participant that interacts deadlock-freely with the other participating
services of the choreography if such a service exists; that is, if the open choreog-
raphy is controllable. At present, it is, however, not possible to synthesize a set
of services which complete a choreography.

As an example, consider again the first (deadlocking) choreography of Fig. 3.
The choreography deadlocks because of the airline service’s timeout mechanism.
If we synthesize the airlines, the result will be a single oWFN modeling the
behavior of all airline service’s instances.

Figure 7(b) depicts the synthesized oWFN modeling two airline instances.3

This service receives two price requests from the agency addressed to the differ-
ent instances (input places price.1 and price.2) and sends two price quotes. Then,
it waits to receive one ticket order (either on input place order.1 or order.2) and
answers it accordingly. The resulting choreography would be deadlock-free. How-
ever, the airline’s instances are not independent of each other. They are implic-
itly synchronized by the incoming arcs of the transitions receiving the orders. If
this service had to be split into two services, explicit synchronization messages
would have to be added to maintain deadlock-freedom. Still, the synthesized
airline model can be seen as a starting point for further refinement.

3 This structure of this oWFN was slightly adjusted to simplify the presentation.

56 N. Lohmann et al.

Another issue of the participant synthesis are causalities. As sketched in the
description of the generated traveler participant (cf. Fig. 7(a)), a generated par-
ticipant might send and receive messages in different— mostly less constraint—
orders. This might yield to synthesized services which send acknowledgment
messages before actually receiving the corresponding request. In such cases, the
causality between the request and the acknowledgment is ignored. In [15], we
introduced behavioral constraints into the synthesis process to rule out such
implausible behavior.

Each of the participating services of both choreographies are controllable.
As the first choreography shows, their composition may still deadlock. Such
deadlocking scenarios are not obvious even for small choreographies. Therefore,
design and verification of deadlock-free choreographies with a larger number of
participants and/or more complex participant services are even more challenging
if not impossible to do manually.

5 Case Study

In the previous sections, we analyzed the first and the second choreography
(cf. Fig. 3 and Fig. 6, resp.) with five airline instances. For these five airlines,
the resulting models already had over 3,000 states. The states space grows dra-
matically when the number of airlines is further increased (cf. Table 1). For ten
airlines, the model has over nine million states, and for larger numbers, the full
state space could not be constructed due to memory overflow4 (denoted as ‘—’
in Table 1).

However, several state space reduction rules can be applied to reduce the
size of the state space while still being able to analyze desired properties such
as deadlock-freedom. In our particular example, we applied symmetry reduction
and the partial order reduction, both implemented in LoLA (see [12] for further
references). The symmetry reduction exploits the fact that all airline instances
have the same structure. This regular structure induces symmetries on the net
structure itself, but also on the state space of the choreography. Intuitively, the
instances act of the airline service act ‘similar’ or ‘symmetric’. During the state
space construction, symmetric states are merged. The partial order reduction
follows a different approach: as all instances run concurrently, any order of tran-
sitions of the airline instances are represented in the state space. These transition
sequences introduce a lot of intermediate states. This is known as state space
explosion. However, the actual order of independent actions is not relevant to
detect deadlocks, for instance. To this end, partial order reduction tries to only
construct one transition sequence (i. e., one order) of transitions of different air-
line instances to ease the state space explosion.

When each of the reduction techniques is applied in isolation, the state spaces
grow more slowly, yet still exponentially in the number of airline instances. The
combination of both techniques, however, yields a linear increase of states (cf. Ta-
ble 1). Hence, we are able to verify properties of BPEL choreographies with
4 The experiments where made with two gigabytes of memory.

Analyzing BPEL4Chor: Verification and Participant Synthesis 57

Table 1. Net sizes (structurally reduced) and state spaces (full, reduced using sym-
metry reduction, reduced using partial order reduction, and reduced combining partial
order reduction and symmetry reduction)

choreography first example, cf. Fig. 3 second example, cf. Fig. 6

airlines 1 5 10 100 1,000 1 5 10 100 1,000

places 20 63 113 1,013 10,013 19 63 113 1,013 10,113
transitions 10 41 76 706 7.006 12 52 97 907 9,007

states (full) 14 3,483 9,806,583 — — 13 3,812 9,805,560 — —
states (symmetry) 14 561 378,096 — — 13 704 329,996 — —
states (POR) 11 86 261 18,061 1,752,867 12 88 228 8,361 734,049
states (POR+symm.) 11 30 50 410 4,010 12 28 43 314 3,014

thousands of participating services. This shows that the presented approach can
be used to analyze real-life examples.

6 Conclusion

In this paper, we presented an analysis of choreographies expressed in
BPEL4Chor based on Petri nets. Models of choreographies with a lot of par-
ticipating services contain a lot of concurrency which results in state space
explosion. Our experiments showed that the combination of several reduction
techniques allows to handle choreographies with thousand participants.

Deadlocks in choreographies can be very subtle. In the introductory example,
each participant was correct (i. e., controllable) by itself, but the composition
introduced deadlocks. We showed how our tool chain helps to detect deadlocks
in a reasonable time and thus ensures that the choreography can be executed.

Since a choreography is a closed world, the analysis techniques allow a partici-
pant to be generated out of other participants, which speeds up the choreography
design. If an airline and a travel agency agree on their behavior, the customer
has to comply with it and can neither force the airline nor the travel agency to
adapt their behavior to his wishes.

All things considered, the analysis and synthesis approach are independent of
BPEL as input language as the approaches are based on the formal model of
Petri nets. Therefore, the presented tool-chain (cf. Fig. 1) can be easily adapted
to other service description languages.

6.1 Related Work

For analyzing BPEL4Chor choreographies, [16] presents a first approach for map-
ping BPEL4Chor to π-calculus. However, there was no formal mapping provided
and it has not been shown whether the resulting π-formula can be verified in a
reasonable period of time.

58 N. Lohmann et al.

Choreographies themselves can be expressed by specifying (i) interconnec-
tion models and (ii) interaction models. An interconnection model captures the
observable behavior of each participant in a choreography; that is, it defines
an orchestration of the activities local to each participant. Activities of differ-
ent participants are related in a choreography via message links tying together
the local behavior into a global behavior. The basic messaging constructs are
sending and receiving activities. BPMN [6] and BPEL4Chor are languages to
express choreographies by interconnection models. An interaction model defines
an ordering of the interactions of the processes on a global view. The basic mes-
saging construct is the interaction activity, which models a message exchange
between two participants. Current languages providing interaction models are
Let’s Dance [17] and WS-CDL [18]. Verification techniques are available for Let’s
Dance (cf. [19]) and WS-CDL (e. g. [20,21]). Since Let’s Dance and WS-CDL pro-
vide interaction models, whereas BPEL4Chor provides interconnection models,
the techniques cannot be directly applied to BPEL4Chor. [22] provides a formal-
ization and a verification of BPMN models. However, BPMN does not originally
support multiple instances of a participant as it is the case in BPEL4Chor.

[23] presents how to synthesize a BPEL processes which properly interacts
with one given BPEL process. In contrast, we presented how to synthesize an
oWFN out of n given BPEL processes.

6.2 Future Work

We plan to enhance and generalize the translation approach of [14] to synthesize
a participant behavior description in BPEL instead of the oWFN only. For ex-
ample, information about the participant topology has to be incorporated into
the translation process to refine the resulting BPEL process.

Errors in choreographies can usually not be collated to a single participant,
but to the combination of several participants. To this end, the repair of a
erroneous choreography is nonlocal. We therefore plan to visualize the faulty
scenario in the BPEL code of the affected participant(s) to support the designer
in eliminating the detected problem.

In [9], the notion of distributed controllability was introduced. Distributed
controllability focuses on synthesizing a set of services that interact deadlock-
freely with a given service, and thus may allow to synthesize several independent
instances of a participating service. This would ease the design of choreographies,
because as soon as the first participant and a participant topology is specified,
the blueprints of the remaining participants can be synthesized. We plan to
further investigate the first theoretical results whether they can be integrated
into our approach.

Acknowledgments. The authors wish to thank Gero Decker for the discussions
we had on the subject. This work is funded by the German Federal Ministry of
Education and Research (project Tools4BPEL, project number 01ISE08).

Analyzing BPEL4Chor: Verification and Participant Synthesis 59

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2007)

2. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: 2007 IEEE International Conference on Web Services
(ICWS 2007), July 9-13, 2007, Salt Lake City, Utah, USA, pp. 296–303. IEEE
Computer Society Press, Los Alamitos (2007)

3. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

4. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

5. Chinnici, R., Gudgin, M., Moreau, J.J., Weerawarana, S.: Web services description
language (WSDL) version 1.2 part 1: Core language. World Wide Web Consortium,
Working Draft WD-wsdl12-20030611 (2003)

6. OMG: Business Process Modeling Notation (BPMN) Specification. Final Adopted
Specification, Object Management Group (2006), http://www.bpmn.org

7. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

8. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

9. Schmidt, K.: Controllability of open workflow nets. In: Desel, J., Frank, U. (eds.)
Enterprise Modelling and Information Systems Architectures, Proceedings of the
Workshop in Klagenfurt, October 24-25, 2005, Lecture Notes in Informatics (LNI),
vol. 75, pp. 236–249 (2005)

10. Breugel, F.v., Koshkina, M.: Models and verification of BPEL (2006),
http://www.cse.yorku.ca/∼franck/research/drafts/tutorial.pdf

11. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2007)

12. Schmidt, K.: LoLA: A low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

13. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
A tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. Trans. Inf. and Syst. E80-D(3), 315–325 (1997)

14. Lassen, K.B., van der Aalst, W.M.P.: WorkflowNet2BPEL4WS: A tool for trans-
lating unstructured workflow processes to readable BPEL. In: Meersman, R., Tari,
Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 127–144. Springer, Heidelberg (2006)

15. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

16. Decker, G., Kopp, O., Puhlmann, F.: Service referrals in BPEL-based choreogra-
phies. In: 2nd European Young Researchers Workshop on Service Oriented Com-
puting (YR-SOC 2007), pp. 25–30. University of Leicester (2007)

17. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: A language for
service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

http://www.bpmn.org
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

60 N. Lohmann et al.

18. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0. W3C Candidate Recommendation, W3C (2005),
http://www.w3.org/TR/ws-cdl-10

19. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreographies.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 163–177. Springer, Heidelberg (2006)

20. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

21. Corredini, F., De Angelis, A.P.: Verification of WS-CDL choreographies. In: 2nd
European Young Researchers Workshop on Service Oriented Computing (YR-SOC
2007), pp. 13–18. University of Leicester (2007)

22. Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activities.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
145–160. Springer, Heidelberg (2006)

23. Moser, S., Martens, A., Häbich, M., Mülle, J.: A hybrid approach for generating
compatible WS-BPEL partner processes. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 458–464. Springer, Heidelberg (2006)

http://www.w3.org/TR/ws-cdl-10

Scalable Formalization of Publish/Subscribe Messaging
Scheme Based on Message Brokers�

Qin Li, Huibiao Zhu, Jing Li, and Jifeng He

Software Engineering Institute, East China Normal University
3663 Zhongshan Road (North), Shanghai, China, 200062
{qli,hbzhu,jli,jifeng}@sei.ecnu.edu.cn

Abstract. Asynchronous communication is an important communication
mechanism in service oriented architecture for developing dynamic large-scale
applications among distributed services. Service systems which maintain large
scalability and loose coupling properties need a convenient verification method
for its asynchronous communication. Publish/Subscribe messaging scheme is a
kind of asynchronous communication mechanisms supporting these properties.
This paper provides a formal model for the publish/subscribe messaging scheme
based on message brokers using π-calculus. Two patterns are provided to achieve
the composition of message brokers, which generates a scalable system. Mean-
while, a complex publish/subscribe system can be simplified to an original one.
From the original model reduced from the complex system, we can clearly ana-
lyze the behavior of the whole complex system and verify some properties of the
publish/subscribe scheme. The composition and reduction can be applied to the
service integration both within one enterprise and between enterprises.

1 Introduction

Asynchronous communication with publish/subscribe scheme [6] is receiving increas-
ing attentions by the engineering field, especially in service oriented architecture [5].
With the development of distributed computation, the scale of web application becomes
large and dynamic. Thousands of services with distinct locations and behaviors need
asynchronous communication mechanisms to coordinate their interactions. Many ap-
plication scenarios can only be implemented by using the publish/subscribe scheme.

Publish/Subscribe scheme has some brilliant advantages characterized by the full de-
coupling in space, time and synchronization. The participants are divided into two roles,
the publisher and the subscriber. They interact with each other through some events. In
the interaction paradigm, the subscribers declare their interests publicly in an event.
Then when an event including the information which matches their registered interests
has been published by a publisher, the subscribers will get their desired information.
The participants have no idea of physical locations or infrastructures of each other, they
even do not care how to contact each other. What is important for subscribers is that

� Supported by National Basic Research Program of China (No. 2005CB321904), Shanghai
STCSM project (No. 06JC14058) and Shanghai Leading Academic Discipline Project (No.
B412).

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 61–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 Q. Li et al.

once the useful information for them is ready, they consume it whenever they need.
The publishers provide the information but have no reference to their consumers. That
is exactly what we need in some service oriented scenarios. In this paper we call the
event just as message in that we define a common type of messages which is capable to
simulate the event exchanged among the services involved in the interactions.

To carry out the publish/subscribe messaging scheme in service oriented architecture,
a messaging service is needed for central management and control. The message broker
infrastructure is a good choice to fit the need.

Message broker is a special message-oriented middleware [1]. It acts like a broker
between communicating entities, providing routing and filtering services for interaction
messages. It has application logic components and queue systems to route and transmit
the messages. A message broker not only routes messages, but also transforms and fil-
ters them, and even processes them for particular needs. It can coordinate distributed
and loosely coupled applications and carry out some business workflow. For these rea-
sons, message brokers are widely used for the integration of enterprise applications
[9,11]. There are various message broker products available for industrial uses, such as
IBM WebSphere Message Broker [3] and Microsoft Biztalk Server [13].

Recent researches on the publish/subscribe scheme seem like a burst. A variety
of engineering researches mainly focus on the application issues of publish/subscribe
scheme and the optimization of its performance. For example, the application of pub-
lish/subscribe in peer-to-peer networks [21], the scoping model for distributed pub-
lish/subscribe systems [7], access control of publish/subscribe systems [2], bounded
delay for publish/subscribe systems [19] and so on. These researches improve the func-
tions, security and performance of publish/subscribe systems but do not propose a for-
mal model to simplify the verification of the properties. Some formal methods such
as Petri nets have been used by some researches for modeling and analyzing other
asynchronous communication mechanisms [4,20]. However, it is seldom applied to the
publish/subscribe scheme.

This paper uses the message broker infrastructure to implement the publish/subscribe
scheme. The formal method π-calculus is used for modeling and verifying of this
scheme. The formalization facilitates the analysis of the model’s behavior from the
view of operational semantics. It helps to demonstrate that the message broker infras-
tructure has the capability to implement the publish/subscribe scheme with a satisfac-
tory scalability. To demonstrate the scalability of the model, two patterns are proposed
to compose the distributed systems. Then we prove that the large-scale composition of
message brokers acts just as one unit observed from the outside of the whole system,
which implies that the system is scalable and simplifiable with the two composition
patterns. We also concentrate on the reliability of the publish/subscribe scheme to test
the formal model.

The remainder of this paper is organized as follows. Section 2 gives a brief intro-
duction of the formal method π-calculus. Section 3 presents the formalization of the
message broker infrastructure which supports the publish/subscribe messaging scheme.
Section 4 provides two patterns for the system composition and proves that the com-
posed large-scale system can be treated as a whole one. The verification of the reliability

Scalable Formalization of Publish/Subscribe Messaging Scheme 63

property is given in section 5. Finally section 6 concludes the paper and mentions some
further improvements.

2 π-Calculus

π-calculus is introduced by Robin Milner [14] and has been enhanced to support various
applications [10,18]. It is widely used to formalize the issues in mobile network envi-
ronment [15,16]. Mobility is the crucial feature of π-calculus that differs it from some
static communication models. Mobility has the capability to change the connectivity
of a network of processes, which is suitable to describe the dynamic mobile activities
within web applications.

The basic syntax of π-calculus is

P :=
∑

i∈I

πi.Pi | P1|P2 | new a P | !P

where π := x(y) receive y along x

x〈y〉 send y along x

τ unobservable action

For the needs of formalizing the message broker, we extend some syntax structures
to the original π calculus so as to clarify the model.

In our model, the content of the message transmitted among the processes is essential
for the processing. The message must be dispatched to the corresponding place accord-
ing to its content. So we distinguish the messages from channels using the following
syntax:

c{|x|} transmitting a message x with a special format along c
c(x) transmitting a channel x along c

In original π-calculus, only prefixing action π leads to the transitions of the pro-
cesses. If π action does not happen, the process waits until it occurs. In our model, it
is necessary to evaluate another kind of condition. They are not actions but decisions.
That is, if a condition is satisfied, the process transfers to a corresponding branch. The
syntax of the conditional choice is as follows:

P :=
∑

[bi]Pi ∀i �= j • bi ∧ bj = false

where bi is a boolean expression. Branch Pi will be chosen when bi is satisfied. Note
that only one boolean expression is true at a moment.

Moreover, some internal actions denoted by τ in original π-calculus which change
the internal environment should be described as internal functions in our formalization.
We use functions beginning with Greek symbols such as Φ(), Ψ() to denote this kind of
internal actions.

3 Formalization of Publish/Subscribe Messaging

In this section we will give the formal definition of the publish/subscribe model imple-
mented by message broker infrastructure.

64 Q. Li et al.

3.1 Communication Model Definition for Participants

For a set of processes Pi, we introduce the notation
MB
| | i∈N Pi, which represents the

asynchronous communication between Pi through a message broker MB. The

definition of
MB
| | can be described as follows:

MB

| | i∈N (Pi) =df (|i∈N E(Pi)) | MB(|N |)

Where MB is a message broker, and E(Pi) represents an enhanced Pi. |N | denotes
the number of elements in set N . If P1 wants to send a message to P2, the message is
then actually sent from P1 to broker MB. When P2 receives a message from P1, it is
actually from MB. The benefits by introducing the broker is that the communication
between participants is in an asynchronous way.

Let Pi be an arbitrary process using channel ini and outi to communicate with oth-
ers. We enhance Pi by adding a middleware to it so that it can consume the service of
the message broker MB. The enhanced process is denoted by E(Pi). E(Pi) contains a
communicating middleware CM paralleled with Pi.

E(Pi) is defined as follows:

E(Pi) =df new ini, outi({ci/c, c′
i/c′, outi/d, ini/d′}CM | Pi)

CM =df on〈c〉.CM ′

CM ′ =df d{|off |}.lost〈c〉.0 + c′{|m1|}.d′{|m1|}.CM ′ + d{|m2|}.c{|m2|}.CM ′

The channels c and c′ are the external ports of CM communicating with MB while
d and d′ are its internal port for Pi. The enhancing method E(Pi) hides the communi-
cation channels ini, outi of Pi and exchanges messages with MB using the channels
ci and c′i. The motivation for introducing CM is to make a general purpose model for
the integration.

Two channels on and lost are held by MB and each instances of middleware CM .
They are used to make the clients plug into a message broker and get off freely. Initially,
CM in E(Pi) sends its communication channel ci, acting as an identifier of Pi, along
on to register to the messaging service. Then Pi can send messages to the message
broker along channel ci. The corresponding c′i which is used for receiving messages is
also known by MB through easy computations. When Pi wants to get off, it sends out

Fig. 1. Asynchronous communication between P1 and P2 through a message broker

Scalable Formalization of Publish/Subscribe Messaging Scheme 65

a signal off . Receiving the signal, CM ′ in E(Pi) sends its communication channel ci

along lost. MB saves no message for Pi and offers it no services whenever Pi has got
off. Each Pi has its own communication channels which are different from others.

The structure of the model is illustrated in Figure 1.

3.2 Model for Message Broker

The message broker MB can be defined as follows:

MB(k) =df new I(DM(k) | QM(k))

I represents all channels between DM and QM except external channels on, lost
and all channels registered by clients. on and lost are the public channels we mentioned
above used for the registrations of the clients. The parameter k denotes the number of
clients engaged in the message broker.

According to the definition, the broker consists of two modules: the dealer module
and the queue manager. We use DM and QM to denote them. DM is responsible for
solving the registering and disconnecting requests from clients and creating a process
for each client to manage the conversations. QM manages the message queues that
store the messages for the recipients. Each queue corresponds to a recipient that has
established a connection with the broker.

Message queues are necessary in the model in order to support the asynchronous
communication. Messages can be stored temporarily in the queue, and when the con-
sumer is ready to receive them, it can get them one-by-one from the queue. A general
queue is defined as follows:

Queue(φ) =df in{|m|}.Queue(〈m〉) + free{|off |}.0

Queue(〈k〉ˆ−→w) =df in{|m|}.Queue(〈k〉ˆ−→wˆ〈m〉) + out{|k|}.Queue(−→w)

+free{|off |}.0

The notation φ represents the queue is empty. −→w is a sequence of messages stored in
the queue, while k, m are single messages. ˆ is a sequence linking notation. Channel in
receives a message while channel out sends a message out. The channel free is used
to terminate the Queue process for the management. The length of −→w can be limited
to n − 1 so that the queue has its capacity of n. The broker creates a distinct queue for
each recipient. We use the renaming method to instantiate the general queue model.

When the dealer module DM receives a register request from E(Pi) along chan-
nel on, it creates an instance of process Deal to listen to the communication chan-
nels of E(Pi). The QM creates an instance of Queue to deliver the messages to Pi.
The responsibility of process Deal is to implement the messaging logic of the pub-
lish/subscribe scheme. It analyzes the content of the messages from its client and routes
them to the correct instances of Queue for the recipients. Then the recipient can get the
message sent to it from the Queue instantiated for it.

The definitions of DM and QM are as follows,assume they have capacities of n:

DM(0) =df on(u).(add〈u〉.{u/in, g(u)/kill}Deal | DM(1))

DM(k) =df on(u).(add〈u〉.{u/in, g(u)/kill}Deal | DM(k + 1))

+lost(v).(g(v){|off |}.del〈v〉 | DM(k − 1)) 1 � k < n

66 Q. Li et al.

DM(n) =df lost(v).(g(v){|off |}.del〈v〉 | DM(n − 1))

QM(0) =df add(u).({f(u)/in, u′/out, h(u)/free}Queue(φ) | QM(1))

QM(k) =df add(u).({f(u)/in, u′/out, h(u)/free}Queue(φ) | QM(k + 1))

+del(v).(h(v){|off |} | QM(k − 1)) 1 � k < n

QM(n) =df del(v).(h(v){|off |} | QM(n − 1))

From the definition, we can see the interactions along the channels on and lost. The
interactions are described by the mobile feature of π-calculus. A client E(Pi) sends
its communication channel ci along channel on to the DM . DM makes the reaction
and tells QM to create an instance of Queue for Pi with the action add〈ci〉. The in-
stance has its channels renamed, where f(u) represents the channel figured out with the
channel it received (generally denoted by u, in the example here u is replaced by ci).
Like f(), the functions g(), h() are one-to-one functions that map the received channel
name to a new unique name relevant with the original one. u′ is generated from u as we
mentioned before. The two channels are corresponding to the client’s communication
channels. The motivation of introducing these functions is to guarantee the distinction
of the names of channels. An instance of Deal is also created with its channels renamed
according to ci. The detail of Deal is left to the next part because it involves the routing
logic of publish/subscibe scheme. Here it is only certain that it has free names of chan-
nels in and kill, where in is the input channel and kill is used to terminate the Deal
process when the client cancels the messaging service. When receiving ci along lost
channel, which means the client wants to quit, the instance of Deal and Queue should
be terminated to release the system resources. DM completes this task by sending a
signal off along g(ci) to cancel the Deal instance for Pi and telling QM to delete the
message queue for Pi using the action del〈ci〉.

3.3 Model for Publish/Subscribe Scheme

In publish/subscribe scheme, the messaging logic is a little different from other asyn-
chronous communication mechanisms. The messages in publish/subscribe system is
called events. We choose topic-based events routing in our model because it has widely
used by applications. The significant advantage of topic-based event pattern is the topic
hierarchies that can easily achieve the access control. The messaging logic of topic-
based publish/subscribe scheme is implemented by the process Deal. But at first, we
should define the format of messages exchanging among the participants.

We define the messages in our model to be the following format:

Msg := 〈label〉values〈/label〉; Msg

| 〈label〉Msg〈/label〉; Msg

label can be any identifier the user needs to denote the message’s properties. The
same label in 〈label〉 and 〈/label〉 forms a pair. value between the pair represents the
value of the property denoted by the label. Msg format can be nested in the pair of
label, which forms a hierarchy of information.

The format of the message looks like an XML document. It has almost the same
description power as XML.

Scalable Formalization of Publish/Subscribe Messaging Scheme 67

Fig. 2. Topic hierarchy expressed as a tree structure

In our model the message broker maintains a topic hierarchy. The topic hierarchy
is usually represented as a tree structure. In the hierarchy, topics are classified by their
characteristics. A main topic has some subtopics expressed as its children.

An example of topic hierarchy is showed in Figure 2. A publishing message matching
this hierarchy is like follows :

〈type〉pub〈/type〉;
〈mark〉0〈/mark〉;
〈topic〉

〈USA〉〈Alabama〉〈Auburn〉values1〈/Auburn〉;
〈Mobile〉values2〈/Mobile〉; 〈Montgomery〉values3〈/Montgomery〉;
〈/Alabama〉;
〈Alaska〉〈Juneau〉values4〈/Juneau〉; 〈/Alaska〉;

...
〈/USA〉;

〈/topic〉;
Here the label mark is used to tell the message broker that the message is fresh. It

will work in the composition conditions which we discuss in section 4. Some methods
are required to access the information in the message. Let m be a message with the
defined format, then m@label gets the value of label contained by m.

For example, a message subscribing the information about Alabama state will be
formatted as :

〈type〉addsub〈/type〉;
〈topic〉USA\Alabama〈/topic〉;

When processing the subscribing message, message broker registers the subscrip-
tion. Once the above publishing message arrives, it sends the information of the topic
Alabama and all its subtopics to the subscriber.

We use the notation TH to represents the data structure of the topic hierarchy. Sev-
eral functions are defined to access or modify this data structure to implement the sub-
scription logic. Formally:

TH = {(t̂1, Ct1), (t̂2, Ct2), · · · , (t̂n, Ctn)}

68 Q. Li et al.

Where t̂i is a path from root to the node ti, and Cti represents a set of channels of
the subscribers who make a subscription for the topic ti. So we define a function Π to
return the channel set of the subscribers corresponding to a topic.

Π(ti, TH) = Cti

The computing process of Π depends on the data in TH . When TH changes, the
result of Π will change too. The changes of TH implies the changes of subscriptions.
Now we define three functions to update TH .

Let TH = {· · · , (t̂i, Cti), · · · }, then:

Ψ(t̂i, c, TH) = TH ′ where TH ′ = {· · · , (t̂i, Cti ∪ {c}), · · · }
Ω(t̂i, c, TH) = TH ′′ where TH ′′ = {· · · , (t̂i, Cti − {c}), · · · }
Φ(c, TH) = TH ′′′

where TH ′′′ = {(t̂1, Ct1 − {c}), · · · , (t̂i, Cti − {c}), · · · , (t̂n, Ctn − {c})}
The function of Ψ is to register a subscription for topic ti from the subscriber iden-

tified by its communication channel c. The function of Ω is to cancel the subscriber’s
subscription for ti. And the function of Φ is to remove all the subscriptions made by c
from the TH .

We should also define a transformation function σ for the published message m so
that it can be filtered to fit our needs.

σ(ti, m) = mti

Since m has a hierarchy structure which is represented by a tree and ti is a node of
the tree, then mti contains m’s subtree which starts with root ti.

The Deal process is defined as follows:

Deal =df in{|m|}.

([m@type = pub] ∗i (f(Cti){|mti |}).Deal

+[m@type = addsub]Ψ(m@topic, in, TH).Deal)

+[m@type = caclsub]Ω(m@topic, in, TH).Deal)

+kill{|off |}.0

Where for all ti ∈ m@topic : Cti = Π(ti, TH) mti = σ(ti, m)
The notation ∗i(f(Cti){|mti |}) represents the output event repeats until all topics in

m@topic have been processed.

Let C = {c1, c2, . . . , cn}, then f(C){|m|} =df f(c1){|m|}.f(c2){|m|}. · · · .f(cn){|m|}
With the conditional choice we mentioned in section 2, the incoming messages are

classified according to their type label. If the type label values pub, which means it is
a publishing event message, the following branch of Deal will compute the results of
Π and σ, then route the corresponding messages to correct queues. If the type label
values addsub, which means it is a subscribing event message, the following branch
will modify the TH to change the subscription. The third branch will be done if the
type label values caclsub.

The invalid message handling is out of our consideration in this paper. If the message
brokers receive the invalid messages, it simply neglects them.

Scalable Formalization of Publish/Subscribe Messaging Scheme 69

When a client quits the communication model, the broker should remove all its sub-
scriptions in the topic hierarchy. We add this logic to the definition of DM .

DM(k) =df on(u).(add〈u〉.{u/in, g(u)/kill}Deal | DM(k + 1))

+lost(v).(Φ(v, TH).g(v){|off |}.del〈v〉 | DM(k − 1)) 1 � k < n

DM(n) =df lost(v).(Φ(v, TH).g(v){|off |}.del〈v〉 | DM(n − 1))

4 System Composition

This section will consider the composition of the communication units implemented by
our message broker infrastructure.

First, we extends our model by adding two external ports named l and r to the defi-
nition of DM . The extended DM is denoted by CDM .

CDM(k) =df on(u).(add〈u〉.{u/in, g(u)/kill}Deal | CDM(k + 1))

+lost(v).(g(v){|off |}.del〈v〉 | CDM(k−1)) 1 � k < n

+l{|m|}.([m@type = addsub]CDM(k) + [m@type = caclsub]CDM(k)

+[m@type = pub]([m@mark = L − 1]CDM(k)

+[m@mark < L − 1] ∗i (f(Cti){|mti |}).r{|m′|}.CDM(k)))

CDM(n) =df lost(v).(g(v){|off |}.del〈v〉 | CDM(n − 1))

+l{|m|}.([m@type = addsub]CDM(n)+ [m@type = caclsub]CDM(n)

+[m@type = pub]([m@mark = L − 1]CDM(n)

+[m@mark < L − 1] ∗i (f(Cti){|mti |}).r{|m′|}.CDM(n)))

Here m′ is a new message computed from m. The only difference between m′ and m
is that m′ increases the value of label mark by 1 for describing m′ has been consumed
by a CDM . L is a constant to limit the times of forwarding the publishing message. If
the message has been forwarded for L− 1 times, it should be considered as out of time.
Then the broker stops forwarding it. Replacing m by m′ and limiting the forwarding
times are to prevent endless publishing in the composed system. The detail will be
demonstrated later.

Then we should also add another branch to Deal and rewrite it as CDeal.

CDeal =df in{|m|}.

([m@type = pub]([m@mark = 1]Deal

+[m@mark = 0] ∗i (f(Cti){|mti |}).r{|m|}.CDeal)

+[m@type = addsub]Ψ(m@topic, in, TH).r{|m|}.CDeal

+[m@type = caclsub]Ω(m@topic, in, TH)r{|m|}.CDeal)

+kill{|off |}.0

Note that the message sent along r in CDeal is still m not m′.

70 Q. Li et al.

Then the scalable MB is defined as follows:

CMB =df new I(CDM | QM)

At last, we can consider the composition based on the extended model. Consider that
each unit consists of a message broker and the clients registered to it, and maintains
a topic hierarchy containing the subscription information of its own clients. There are
two kinds of compositions among these units. One is called embedded pattern, which
means one system is plugged in another as a client, such as a department belonging
to the whole management system. The other one is named companion pattern, which
means the two system are of the same level such as two cooperating units.

In the embedded pattern, the subsystem can be considered as a client. In other words,
it can be considered as one of Pi and then we can apply the enhancing method to enable
it suitable for the composition.

E(CMB) =df new l, r(CM | CMB)

The embedded pattern can be written as :
MB
| | (

CMB
| | (Pi),

CMB
| | (Pj), · · · ,

CMB
| | (Pn))

Then the subsystem can communicate with the whole system as a client. This com-
position approach is dynamic since the client message broker can get in/off the master
broker without interfering other clients. The mark label works in this pattern when a
client broker receives a publishing message m from its master broker. It consumes the
message in its client scope and then it sends the the message back with its mark la-
bel valuing 1. Then the master will neglect the returning message as we defined in the
Deal. Figure 3 depicts the structure of embedded pattern.

Fig. 3. The embedded pattern for system composition

The companion pattern requires the clients of each system can communicate with
each other without knowing they are in different scopes.

According to the definition of
MB
| | , the internal channels of the two systems should

be hidden. Considering the concurrent messaging management, two queues should be
added to the composite system. So we introduce the link component as follows.

CMB1 c©CMB2 =df new l1, l2, r1, r2((CMB1 | L1,2 | CMB2) | L2,1)

Li,j =df {ri/in, lj/out}Queue(φ)

Scalable Formalization of Publish/Subscribe Messaging Scheme 71

Fig. 4. The companion pattern for system composition

CMB1 c©CMB2 c© · · · c©CMBn =df

new li, ri((CMB1 |L1,2 |CMB2 |L2,3 | · · · |Ln−1,n |CMBn) |Ln,1)

The companion pattern can be written as :
CMB
| | (Pi) c©

CMB
| | (Pj) c© · · · c©

CMB
| | (Pn)

As the definition shows, the units form a cricoid chain. Here Li,i+1 composes the
channels between the units while Ln,1 connects the tail with the head of the chain. The
cricoid structure lets messages exchange between distinct message brokers and finally
get themselves to their recipients. It is easy to be implemented but somehow increases
the propagation delay. Figure 4 demonstrates the structure of the composition.

With the link component, we can figure out a theorem for the composition. This the-
orem guarantees that the composite system using the companion pattern can be treated
as a whole system with a single message broker.

Theorem :
CMB
| | i∈I (Pi) c©

CMB
| | j∈J (Pj) ≈

MB
| | k∈I∪J (Pk)

With the definition of
MB
| | , the left side of the law can be deduced as:

(|i∈I E(Pi)) | CMB c© (|j∈J E(Pj)) | CMB

= (|k∈I∪J E(Pk)) | (CMB c©CMB)

And the right side of the law equals to:

(|k∈I∪J E(Pk)) | MB

Hence the theorem holds if the following lemma exists. This lemma can be proceeded
via the concept of weak bisimulation.

Lemma: CMB c©CMB ≈ MB

The theorem can be extended to the case that more than two message brokers cooperate
with each other. Therefore the companion pattern can be used freely to construct a large
scale system.

72 Q. Li et al.

Given a complex system composed with above two patterns, it can be finally simpli-
fied to a single unit by using the theorem. Then we can do the verification work only in
the single unit without worrying about it will be invalid in the composite system. Time
and energy can be saved by using the simplification method.

5 Verification

In this section, we will verify the reliability of our publish/subscribe communication
scheme. The reliability property means that a subscriber can finally receive the message
it needs if some publisher has published it. We do the verification both in the single unit
and the composite system in order to show that they can make the same conclusion.

Let P1, P2 be processes willing to communicate with each other asynchronously.
Then they are enhanced to E(P1) and E(P2) when getting into the message broker.
E(P1) declares its communication channel p1, p′1 to the broker through on(p1) action.
So does E(P2) with its communication channel p2, p′2. The system with our model is:

MB
| | (P1, P2)

Assume P1 is a publisher and P2 is a subscriber (the role of P1, P2 can change to
the opposite side freely). P2 subscribes the topic t then P1 publishes the information
including the topic t to the message broker MB. The property we should verify is that
P2 can finally receive a message containing its desired topic information, which can be
formally defined as follows:

Definition 5.1 (Reliability)

The system
MB

| | (P1, P2) is reliable if ∃tr •
MB

| | (P1, P2)
tr

=⇒
MB

| | (P ′
1, P

′′
2)

E(P2) = p2{|m1|}.E(P ′
2) | M where m1@type = addsub, m1@topic = t̂

E(P1) = p1{|m2|}.E(P ′
1) | M where m2@topic = T

E(P ′
2) = p′

2{|m3|}.E(P ′′
2) | M where m3@topic = tree(t)

Here T represents the set of topics containing the topic that P2 needs and M denotes
the other actions we do not care about. The M implies that the processes can do other
actions without waiting for the above useful actions. Assume tr = α1 · · ·αn, then
tr=⇒=df

α1→ · · · αn→. We use the notation α[τ] to represent the action α is an internal
action and is hidden for observers in the model.

According to the reaction rules in π-calculus, we can find a sequence tr like follows
(we start with the initial situation where P1 and P2 are not plugged in the broker):

Initializing

E(P1)off | MB | E(P2)off

on(p1)−→ add(p1)[τ]−→ E(P1) | ({p1/in, g(p1)/kill}Deal | DM(1))

| ({f(p1)/in, p′
1/out, h(p1)/free}Queue(φ) | QM(1)) | E(P2)off

on(p2)−→ add(p2)[τ]−→ E(P1) | E(P2)

Scalable Formalization of Publish/Subscribe Messaging Scheme 73

| ({p1/in, g(p1)/kill}Deal | {p2/in, g(p2)/kill}Deal | DM(2))

| ({f(p1)/in, p′
1/out, h(p1)/free}Queue(φ)

| {f(p2)/in, p′
2/out, h(p2)/free}Queue(φ) | QM(2)) (I)

For simplifying the representation, we use Deal1 to denote {p1/in, g(p1)/kill}
Deal and Deal2 to denote {p2/in, g(p2)/kill}Deal below. Similarly, the two queues
are rewritten as Queue1 and Queue2.

Messaging

(I)
p2{|m1|}−→ E(P1) | E(P ′

2)

| (([m1@type = pub]([m1@mark = 1]Deal2

+[m1@mark = 0] ∗i (f(Cti){|mti |}).Deal2)

+[m1@type = addsub]Ψ(m1@topic, p2, TH).Deal2

+[m1@type = caclsub]Ω(m1@topic, p2, TH).Deal2) | Deal1 | DM(2))

| (Queue1(φ) | Queue2(φ) | QM(2))

Ψ(m1@topic,p2,TH)[τ]−→ E(P1) | E(P ′
2) [m1@type = addsub]

| (Deal1 | Deal2 | DM(2))

| (Queue1(φ) | Queue2(φ) | QM(2))

Note that the TH has changed to TH ′ after the function Ψ , where (t̂, p2) ∈ TH ′.
p1{|m2|}−→ E(P ′

1) | E(P ′
2)

| (([m2@type = pub]([m2@mark = 1]Deal1

+[m2@mark = 0] ∗i (f(Cti){|mti |}).Deal1)

+[m2@type = addsub]Ψ(m2@topic, p1, TH).Deal1

+[m2@type = caclsub]Ω(m2@topic, p1, TH).Deal1) | Deal2 | DM(2))

| (Queue1(φ) | Queue2(φ) | QM(2))

For [m2@mark = 0] ∧ [m2@type = pub] is true and Cti = Π(ti, TH) = p2,
σ(t, m2) = m3, then:

f(p2){|m3|}[τ]−→ E(P ′
1) | E(P ′

2)

| (Deal1 | Deal2 | DM(2))

| (Queue1(φ) | Queue2(m3) | QM(2))

p′
2{|m3|}−→ E(P ′

1) | E(P ′′
2)

| (Deal1 | Deal2 | DM(2))

| (Queue1(φ) | Queue2(φ) | QM(2))

=
MB

| | (P ′
1, P

′′
2)

74 Q. Li et al.

Therefore we find a minimum sequence tr0 that ∀tr ⊇ tr0 satisfies Definition 5.1 :

tr0 = p2{|m1|}.Ψ(m1@topic, p2, TH)[τ].p1{|m2|}.f(p2){|m2|}[τ].p′2{|m3|}
Thus the verification of the reliability property is completed in single unit condition.
The composition situation of message brokers should be verified. For the first com-

position requirement as we mentioned in section 4, assume P1, P2 belong to different
message brokers composed with the embedded pattern. To be a sample, we consider
the structure illustrated by Figure 3 and let P1 belong to CMB1 using channels p1 and
p′1, P2 belong to CMB2 with channels p2 and p′2 (the other situations with different
topology is similar). We also add suffix to the topic hierarchy TH maintained by each
broker. Then the definition of the reliability property can be rewritten as:

Definition 5.2: The composite system with embedded patterns is reliable if

∃tr •
MB

| | (
CMB

| | (P1),
CMB

| | (P2))
tr

=⇒
MB

| | (
CMB

| | (P ′
1),

CMB

| | (P ′′
2))

Then we can also find a minimum sequence tr1 that ∀tr ⊇ tr1 satisfies Definition 5.2 :

tr1 = p2{|m1|}.Ψ(m1@topic, p2, TH2)[τ].r2{|m1|}[τ].c2{|m1|}.

Ψ(m1@topic, c2, TH)[τ].p1{|m2|}.r1{|m2|}[τ].c1{|m2|}.f(c2){|m3|}[τ].

c′2{|m3|}.l2{|m3|}[τ].f(p2){|m3|}[τ].p′2{|m3|}.r2{|m′
3|}.c2{|m′

3|}
The details of the deduction are similar to the deduction for Definition 5.1.
For the companion pattern, considering the sample given in Figure 4. Assume P1,

P2 belong to different message brokers. Then the definition of the reliability property
can be rewritten as:

Definition 5.3: The composite system with companion pattern is reliable if

∃tr •
CMB

| | (P1) c©
CMB

| | (P2)
tr

=⇒
CMB

| | (P ′
1) c©

CMB

| | (P ′′
2)

Then we can find a minimum sequence tr2 that ∀tr ⊇ tr2 satisfies Definition 5.3 :

tr2 = p2{|m1|}.Ψ(m1@topic, p2, TH2)[τ].r2{|m1|}[τ].l1{|m1|}[τ].

p1{|m2|}.r1{|m2|}[τ].l2{|m2|}[τ].f(p2){|m3|}[τ].p′2{|m3|}.r2{|m2|}[τ].

l1{|m2|}[τ]

Thus the reliability property holds in all cases in our model.

6 Conclusion and Further Work

This paper has proposed a formal model to describe the publish/subscribe scheme im-
plemented by message brokers. Scalability and loose coupling have been realized in
the model. We have provided two patterns, embedded pattern and companion pattern,
to compose individual systems and to simplify the composite systems. It is guaranteed
that the properties verified in the single system is also holds in the composite system.
To demonstrate that, we have verified the reliability property in our single model and
showed that it holds in the composite system. Considering the services plugged in the

Scalable Formalization of Publish/Subscribe Messaging Scheme 75

message broker can be arbitrary processes subject to the same data transmitting proto-
col, the model can be useful in service integration with asynchronous interactions.

Based on the above work, we will focus on the following issues in our future work.
Special routing and transforming logic of messages can be added to message brokers
to achieve more powerful functions and more secure interactions. The security and per-
formance issues [8,12] will be considered in the extension model. The definition of the
model is expected to be translated for automatic verification with some workbenches
for π-calculus [17]. We need to figure out an approach to realize the dynamic com-
position, which requires that any unit can connect to the whole system and can leave it
without disturbing the other units’ work. The dynamic composition will definitely make
the whole model more flexible and useful.

References

1. Alonso, G., Kuno, H., Casati, F., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer, Heidelberg (2003)

2. Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R., Bacon, J., Moody, K.: Role-based access
control for publish/subscribe middleware architectures. In: Proc. of DEBS 2003: Proceedings
of the 2nd international workshop on Distributed event-based systems, pp. 1–8. ACM Press,
New York (2003)

3. Davies, S., Cowen, L., Giddings, C., Parker, H.: WebSphere Message Broker Basics. IBM
International Technical Support Organization (2005)

4. Devillers, R., Klaudel, H.: Synchronous and asynchronous communications in composable
parameterized high-level petri nets. Fundam. Inf. 66(3), 221–257 (2005)

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice
Hall PTR, Englewood Cliffs (2005)

6. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

7. Fiege, L., Cilia, M., Muhl, G., Buchmann, A.: Publish-subscribe grows up: Support for man-
agement, visibility control, and heterogeneity. IEEE Internet Computing 10(1), 48–55 (2006)

8. Fiege, L., Zeidler, A., Buchmann, A., Kilian-Kehr, R., Mhl, G.: Security aspects in pub-
lish/subscribe systems. In: Proc. of DEBS 2004: the Third International Workshop on Dis-
tributed Event-Based Systems (2004)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading
(2002)

10. Hennessy, M., Riely, J.: Information flow vs. resource access in the asynchronous pi-calculus.
ACM Transactions on Programming Languages and Systems 24(5), 566–591 (2002)

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Reading (2003)
12. Jerzak, Z., Fetzer, C.: Handling overload in publish/subscribe systems. In: Proc. of ICDCSW

2006: 26th IEEE International Conference Workshops on Distributed Computing Systems,
Washington, DC, USA, p. 32. IEEE Computer Society Press, Los Alamitos (2006)

13. Microsoft Cooperation. Microsoft Biztalk Server (2006), http://www.microsoft.
com/technet/prodtechnol/biztalk/2006/default.mspx

14. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, Cambridge (1999)

15. Orava, F., Parrow, J.: An algebraic verification of a mobile network. Journal of Formal As-
pects of Computing 4, 497–543 (1992)

http://www.microsoft.com/technet/prodtechnol/biztalk/2006/default.mspx
http://www.microsoft.com/technet/prodtechnol/biztalk/2006/default.mspx

76 Q. Li et al.

16. Priami, C.: Stochastic analysis of mobile telephony networks. In: Brinskma, E., Nymeyer, A.
(eds.) Proc. of PAPM 1997: 5th Int. Workshop on Process Algebra and Performance Model-
ing, pp. 145–171 (1997)

17. Victor, B., Moller, F.: The mobility workbench — a tool for the π-calculus. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

18. Walker, D.: Pi-calculus semantics of object-oriented programming languages. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 532–547. Springer, Heidelberg (1991)

19. Wang, J., Cao, J., Li, J., Wu, J.: Achieving bounded delay on message delivery in pub-
lish/subscribe systems, vol. 0, pp. 407–416 (2006)

20. Xia, F., Clark, I.: Algorithms for signal and message asynchronous communication mecha-
nisms and their analysis. Fundam. Inf. 50(2), 205–222 (2002)

21. Zhu, Y., Hu, Y.: Ferry: An architecture for content-based publish/subscribe services on p2p
networks, vol. 00, pp. 427–434 (2005)

A Feature-Complete Petri Net

Semantics for WS-BPEL 2.0

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. We present an extension of a Petri net semantics for the
Web Service Business Execution Language (WS-BPEL). This exten-
sion covers the novel activities and constructs introduced by the recent
WS-BPEL 2.0 specification. Furthermore, we simplify several aspects of
the Petri net semantics to allow for more compact models suited for
computer-aided verification.

1 Introduction

Recently, the emerging standard to describe business processes on top of Web
service technology, the Web Service Business Execution Language (WS-BPEL),
has been officially specified [1]. This specification is much more detailed and
more precise compared to the predecessor specification [2]. Still, WS-BPEL is
specified informally using plain English. To formally analyze properties of WS-
BPEL processes, however, a formal semantics is needed. Therefore, many work
has been conducted to give a formal semantics for the behavior of WS-BPEL pro-
cesses. The approaches cover many formalisms such as Petri nets, abstract state
machines, finite state machines, process algebras, etc. (see [3] for an overview).
In addition to the possibility to analyze WS-BPEL processes, a formal seman-
tics may also help to understand the original specification and to allow to find
ambiguities.

The language constructs found in WS-BPEL, especially those related to con-
trol flow, are close to those found in workflow definition languages [4]. In the
area of workflows, it has been shown that Petri nets [5] are appropriate both for
modeling and analysis. More specifically, with Petri nets several elegant tech-
nologies such as the theory of workflow nets [6], a theory of controllability [7,8],
a long list of verification techniques, and tools (see [9] for an overview) become
directly applicable.

In this paper, we present an extension of the Petri net semantics of [10]. This
extension is twofold: (1) we simplify several patterns of the original semantics
that resulted in huge nets, and (2) we introduce novel Petri net patterns for
the constructs introduced by WS-BPEL 2.0 such as new activities or handlers.
Admittedly, we can only present a few aspects of this new semantics and refer
to [11] where the complete semantics formalizing all activities of WS-BPEL.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
WS-BPEL, our formal model, and the basic concepts of the Petri net semantics

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 77–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 N. Lohmann

we extend in this paper. Then, in Sect. 3, we show how several aspects of the se-
mantics can be simplified. Section 4 is devoted to the presentation of patterns for
some novel activities and constructs of WS-BPEL 2.0. Finally, Sect. 5 concludes
the paper, summarizes related work, and gives directions for future work.

2 Background

2.1 WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) [1], is a
language for describing the behavior of business processes based on Web services.
For the specification of a business process, WS-BPEL provides activities and dis-
tinguishes between basic activities and structured activities. The basic activities
are 〈receive〉 and 〈reply〉 to provide web service operations, 〈invoke〉 to in-
voke web service operations, 〈assign〉 to update partner links, 〈throw〉 to signal
internal faults, 〈exit〉 to immediately end the process instance, 〈wait〉 to delay
the execution, 〈empty〉 to do nothing, 〈compensate〉 and 〈compensateScope〉
to invoke a compensation handler, 〈rethrow〉 to propagate faults, 〈validate〉
to validate variables, and 〈extensionActivity〉 to add new activity types.

A structured activity defines a causal order on the basic activities and can
be nested in another structured activity itself. The structured activities are
〈sequence〉 to process activities sequentially, 〈if〉 to process activities condition-
ally, 〈while〉 and 〈repeatUntil〉 to repetitively execute activities, 〈forEach〉 to
(sequentially or in parallel) process multiple branches, 〈pick〉 to process events
selectively, and 〈flow〉 to process activities in parallel. Activities embedded to
a 〈flow〉 activity can further be ordered by the usage of control links.

Finally, the 〈scope〉 activity can add exception handling to an activity. For
this purpose, there exist four kinds of handlers: a 〈compensationHandler〉 to
compensate successfully executed scopes, 〈faultHandlers〉 to undo partial, un-
successful executed scopes, a 〈terminationHandler〉 to control the forced termi-
nation of a scope, and 〈eventHandlers〉 to process message or timeout events.
Though not listed as an activity, WS-BPEL’s root element is the 〈process〉,
which is in fact a special 〈scope〉 activity.

2.2 Open Workflow Nets

Open workflow nets (oWFNs) are a special class of Petri nets. They generalize
the classical workflow nets [6] by introducing an interface for asynchronous mes-
sage passing. oWFNs provide a simple but formal foundation to model services
and their interaction. Open workflow nets—like common Petri nets—allow for
diverse analysis methods of computer-aided verification. The explicit modeling
of the interface further allows to analyze the communicational behavior of a
service [12,13].

To model data flow and data manipulation, Petri nets can be extended to
algebraic high-level nets [14]. Similarly, open workflow nets can be canonically
extended to high-level open workflow nets (HL-oWFNs).

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 79

res

res = true

channel

p2

message

evaluate

res = false

p1

p3 p4

t2t1

resres

Fig. 1. A high-level oWFN

An example for a high-level oWFN is depicted in Fig. 1. Transition evaluate
receives a message (variable names are written in an italic font) from place
channel and evaluates it. The evaluation process itself is not explicitly modeled.
Still, the result of this evaluation (either the value ‘true’ or ‘false’) is produced
on place p2. Then, depending on this value, either t1 (the guard “res = true”,
written inside the transition, holds) or t2 (the guard “res = false” holds) can
fire. Throughout this paper, we refrain from depicting the concrete underlying
Petri net schema. The domains of the places can be canonically derived from the
patterns and the respective WS-BPEL activity.

2.3 A Petri Net Semantics for WS-BPEL

Both the semantics of [10] and the extension presented in this paper follow a
hierarchical approach. The translation is guided by the syntax of WS-BPEL1.
In WS-BPEL, a process is built by plugging instances of language constructs to-
gether. Accordingly, each construct of the language is translated separately into
a Petri net. Such a net forms a pattern of the respective WS-BPEL construct.
Each pattern has an interface for joining it with other patterns as is done with
WS-BPEL constructs (cf. Fig. 2). Also, patterns capturing WS-BPEL’s struc-
tured activities may carry any number of inner patterns as its equivalent in
WS-BPEL can do. The collection of patterns forms the Petri net semantics for
WS-BPEL.

Both semantics consist of high-level patterns which completely model WS-
BPEL’s control and data flow. As the data-domains of the variables can be
infinite, abstract (low-level) patterns are implemented in the respective com-
pilers BPEL2PN [15] and BPEL2oWFN [11]. To simplify the presentation of
the patterns, we use several graphical conventions, depicted in Fig. 3(a)
and 3(b).

1 The semantics of [10] is only defined for BPEL4WS 1.1. As, however, the concept of
the semantics is version-independent, we use “WS-BPEL” without version number
unless we want to distinguish the two different versions.

80 N. Lohmann

activity

initial

final

stop

stopped

fault

Fig. 2. The interface places of an activity: initial, final, stop, stopped, and fault. Marking
the initial place starts an activity. Upon faultless completion of the activity, the final
place is marked. The places stop and stopped model the termination of activities. Faults
are signaled by marking the fault place.

p

t1 t2

p p

t1 t2

(a) place copies

p

t

p

t

(b) read arcs

Fig. 3. Graphical conventions used to simplify patterns. (a) A dashed place is a copy
of a place with the same label. (b) Read arcs are unfolded to loops.

3 Simplifying Existing Patterns

The original semantics [10] was designed to formalize BPEL4WS 1.1 rather than
to create compact models that are necessary for computer-aided verification.
Some patterns were easy to understand yet made use of quite “expensive” con-
structs such as reset arcs [16]. We improved these patterns and replaced them
by less intuitive patterns with simpler structure. In particular, the setting of
control links and the complex interplay of the fault, compensation, event, and
(the newly introduced) termination handlers was condensed.

3.1 Links and Dead-Path-Elimination

Activities embedded in a 〈flow〉 activity are executed concurrently. However, it
is possible to add control dependencies by the help of links. A link is a directed
connection between a source activity and a target activity. After the source ac-
tivity is executed, the link is set to true, allowing the target activity to start. As
links express control dependencies, they may never form a cycle.

More precisely, when the source activity is executed faultlessly, the outgoing
links are set according to their corresponding transition conditions which returns
a Boolean value for each outgoing link. After the status of all incoming links of a
target activity is determined, a join condition—again a Boolean expression2—is
evaluated. If this condition holds, the target activity is executed. If, however, the
condition is false, the activity is skipped. In this case, all outgoing links recur-
sively embedded to the skipped activity are also set to false to avoid deadlocks.
2 While transition conditions are expressions over arbitrary variable values, join con-

ditions only evaluate the status of the incoming links.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 81

This concept is called dead-path-elimination (DPE) and can be enabled for each
target activity.

<flow>
<links> <link name="AtoB"/> <link name="BtoC"/> </links>

<activity name="A">
<sources> <source linkName="AtoB"/> </sources>

</activity>

<if>
<condition>...</condition>
<activity name="B">

<targets> <target linkName="AtoB"/> </targets>
<sources> <source linkName="BtoC"/> </sources>

</activity>
<else> <activity name="E"/> </else>

</if>

<sequence>
<activity name="C">

<targets> <target linkName="BtoC"/> </targets>
</activity>
<activity name="D"/>

</sequence>
</flow>

Fig. 4. An example for links and dead-path-elimination. 〈activity〉 is a placeholder
for any WS-BPEL activity.

As an example, consider the 〈flow〉 of Fig. 4. Two scenarios are possible,
depending on the condition of the 〈if〉 activity: If the condition evaluates to
true, we have the execution order shown in Fig. 5(a). Firstly, A is executed and
sets link AtoB to true, then B is executed and sets link BtoC. Finally, C and D
are executed sequentially.

A DB C

(a) condition true

E DB C

A

(b) condition false ([10])

E DC

A

(c) condition false (new)

Fig. 5. Possible executions of the activities of the example in Fig. 4. Skipped activities
are depicted with dashed lines. The executions (a) and (b) correctly model the specified
behavior, whereas the execution (c) does neither skips nor executes activity B.

In case the condition evaluates to false, E is executed and, due to the DPE,
activity B is skipped; that is, B has to wait until A has set its link AtoB. Then, B’s
outgoing link, BtoC, is set to false and C is also skipped. Finally, D is executed.
This yields the execution order of Fig. 5(b). These two runs are correctly modeled
by the semantics of [10] using a subnet in each pattern to bypass the execution
of the activity and to set outgoing links to false.

However, if the branches to be skipped are more complex, the skipping of
activities yields a complex model due to the DPE. In particular, skipping of
activities and execution of non-skipped activities is interleaved which might

82 N. Lohmann

result in state explosion problems. To this end, the new semantics differs from
the described behavior of [1]: an overapproximation of the process’s exact be-
havior is modeled. In the example, activity B is not skipped explicitly, but its
outgoing link, BtoC, is set to false directly when E is selected. This yields the
execution order of Fig. 5(c). Compared to the semantics of [10], two additional
runs are modeled by the new semantics, namely A and D being executed con-
currently, and D being executed before A. Due to the overapproximation, it may
be possible that the resulting model contains errors that are not present in the
WS-BPEL process. For example, activity A and D could be 〈receive〉 activities
that receive messages from the same channel. If they are active concurrently, a
“conflicting receive” fault would be thrown. However, static analysis of the WS-
BPEL process can help to identify these pseudo-errors (see [13,11] for details).
Figure 6 depicts another example for the direct setting of recursively embedded
links (transition skip). Again, transition evaluate JC and evaluate TC only im-
plicitly model the evaluation of the join and transition condition, respectively.
An explicit model of the evaluation would require to take XPath expressions,
XML variables, etc. into account and is out of scope of this paper.

activity

res = true

res = false

inital

final

res

evaluate JC

res

evaluate TC

skip

link 1

link 2

link 3

link 4

link 5

link 6

result
5

result
6

false

false

false

false

value
1

value
2

stop

stopped

fault

res

start

incoming

links

recursively

embedded

outgoing

links

outgoing

links

stopped

fault

stop

res

Fig. 6. Wrapper pattern of an activity that is source and target of links. Transition
evaluate JC evaluates the join condition. If the result is true, the embedded activity
is started. Upon completion of the this activity, transition evaluate TC evaluates the
transition condition and sets the outgoing links accordingly. If, however, the join con-
dition evaluates to false, transition skip does not only set all directly or recursively
enclosed outgoing links to false.

3.2 Fault Handling and Termination of Scopes

As the 〈scope〉 activity not only embeds an activity, but can also contain event,
fault, compensation, and termination handlers, it is WS-BPEL’s most complex

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 83

activity. This complexity is reflected by the big 〈scope〉 pattern of the seman-
tics of [10]. Though termination handlers were not introduced in BPEL4WS 1.1,
this pattern still had to be distributed to several subpatterns, one for each han-
dler. In addition, a stop component which has no equivalent in WS-BPEL was
added to the 〈scope〉 pattern. This pattern by itself consists of 32 places, 16
transitions, and also uses a reset arc [16].3 The main purpose of this compo-
nent is to model the interactions of the several subpatterns in case of fault and
compensation handling, or during the termination of the scope. In particular,
the stop component uses several status places to “distribute” control and data
tokens to the correct subpattern. Thus, it is possible to signal faults to a unique
place of the scope. However, faults occurring in the embedded activity can be
handled by the fault handler of the respective scope whereas faults of the com-
pensation handler have to be handled by the parent scope’s fault handler. This
separation of positive control flow inside the activities’ patterns and the negative
control flow organized in the stop component allowed comprehensible patterns.
Still, the stop pattern introduced several intermediate states. In addition to this
possible state explosion, the scope pattern of [10] could not be nested inside
repeatable constructs such as 〈while〉 activities or event handlers4. To this end,
we decided not to extend the existing scope pattern, but to create a new pattern
optimized for computer-aided verification while covering the semantics specified
by WS-BPEL 2.0.

The main idea of the new pattern is to use as much information about the
context of the activities as possible. For example, we refrain from a single place
to signal faults to avoid a stop component to distribute incoming fault tokens.
Instead, we use static analysis to derive information of the activities from the
WS-BPEL process. If, for example, an activity is nested in a fault handler,
faults should be signaled to the fault handler’s parent scope directly. This way,
we decentralize the aspects encapsulated in the stop component, resulting in
patterns which are possibly less legible yet avoiding unnecessary intermediate
states.

The new scope pattern is depicted in Fig. 7. It consists of four parts modeling
the different aspects of the scope.

– The positive control flow consists of the inner activity of the scope and
the optional event handlers. It is started by transition initialize which sets
the scope’s state to Active. The scope remains in this state while the inner
activity and the event handlers are executed. Upon completion, transition
finalize sets the scope’s state to !Active (the positive control flow is not active)
and Successful (the embedded activity ended faultlessly). The latter state is
later used by the compensation handler.

– The negative control flow consists of the fault handlers and a small subnet
organizing the stopping of the embedded activity. It can be seen as the

3 For verification purposes, this reset has to be unfolded (the connected place is
bounded), resulting an even bigger subnet.

4 The WS-BPEL 2.0 specification now actually demands activities in event handlers
to be nested in a 〈scope〉 activity.

84 N. Lohmann

fn

name

fn

inner activity

and

event handlers

activity of the

compensation

handler

termination

handler
fault handlers

stop

stopped

fault up

initial fault in ch fault up compensate

compensatedch fault infinal

!Active Activeinitialize

!Successful Successful

finalize

term

!Active

Active

Successful !Successful Active !Active

start th skip thskip chstart ch

inner stopped

ignore
fault

ch fault up

compensatedfinal

inner

stopped

fault in

stop stop

fault up

stopped

stop

stopped

inner

stopped

stopped

ch stop

ch stopped

handle

skip

pass

Exiting!Exiting

fn

fnfn

fn

fn

fsave

positive control flow fault handling compensation handling termination handling

Fig. 7. The pattern for the 〈scope〉 activity. It consists of four parts modeling the
different aspects of the scope: the positive control flow consisting of the embedded
activity and the event handlers, the fault handlers, the compensation handler and the
termination handler.

remainder of the former stop component, yet it is integrated more closely
to the rest of the pattern. When a fault occurs in the inner activity or the
event handlers, a token consisting of the fault’s name is produced on place
fault in. As the positive control flow is active, place Active is marked. Thus,
transition term is activated. Upon firing, the scope’s state is set to !Active,
and the stop place of the inner activity and the event handlers is marked.
Furthermore, the fault’s name fn is passed to the fault handlers (place fsave).
When the positive control flow is stopped (place inner stopped is marked),
the fault handlers are started. If they succeed, place final is marked and the
scope has finished.5 If, however, the fault could not be handled or the fault
handlers themselves signal a fault, place fault up is marked. This place is
merged with the parent scope’s or process’s fault in place. Instead of using
a reset arc to ignore any further faults occurring during the stopping of the
embedded activity, transition ignore fault eventually removes all tokes from
place fault in.

– The transitions pass, handle, and skip organize the fault propagation in case
the compensation handler throws a fault. In this case, the fault is passed to
the scope that called the faulted compensation handler. The compensation
handler itself is not modeled by a special pattern, but its embedded activity

5 The scope is left in state !Sucessful to avoid future compensation.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 85

is directly embedded to the scope. The compensation of the scope is triggered
by a 〈compensate〉 or 〈compensateScope〉 activity that produces a token
on place compensate. If the positive control flow of the scope completed
faultlessly before (i. e., place Successful is marked), transition start ch starts
the compensation handler’s activity. If the scope did not complete faultlessly
or the compensation handler was already called, transition skip ch skips the
embedded activity. In any case, place compensated is marked. This place is
again merged with the calling 〈compensate〉 or 〈compensateScope〉 activity.

– The termination handler is a new feature of WS-BPEL 2.0 and is dis-
cussed in the next section. The termination behavior of BPEL4WS 1.1 can,
however, be simulated by embedding a 〈compensate〉 activity to the termi-
nation handler.

The new scope pattern is more compact as the pattern from the seman-
tics of [10]. It correctly models the behavior of a 〈scope〉 activity for both
BPEL4WS 1.1 and WS-BPEL 2.0 processes. Furthermore, it is easily possible
to reset the status places which allows for scopes embedded in repeatable con-
structs (cf. the 〈forEach〉 pattern in Fig. 8). Finally, due to the absence of a stop
component which is connected to all subpatterns, it is easy to derive parameter-
ized patterns for any constellation of handlers, for example, a pattern for a scope
without any handlers, a pattern for a scope with just an event handler, etc.

3.3 Comparison

To compare the new patterns for scopes and dead-path-elimination with the
old patterns, we investigated an example process described in [15]. This process
models a small online shop consisting of 3 scopes, 2 links, and 46 activities. The
authors of [15] translated it using the old Petri net semantics and report a net
size of 410 places and 1069 transitions, and a state space consisting of 6,261,648
states (443,218 states using partial order reduction). We translated this process
with our compiler BPEL2oWFN6 which implements the new semantics. Using
the new patterns, the resulting net has 242 places and 397 transitions. The
smaller net structure also results in a smaller state space consisting of 304,007
states (74,812 states using partial order reduction).

With the presented simplified patterns, we can verify processes of realistic
size. Furthermore, structural reduction rules can be applied to further reduce
the net size and—due to less intermediate states—also the state space.

4 Modeling WS-BPEL’s New Features

WS-BPEL 2.0 [1] clarified several scenarios and added or renamed a couple of
activities. While most of the semantical details where already covered by the
semantics of [10], the other changes are mainly of syntactic nature and can be
modeled straightforwardly. For example, the new 〈repeatUntil〉 activity can

6 Available at http://www.gnu.org/software/bpel2owfn

http://www.gnu.org/software/bpel2owfn

86 N. Lohmann

be easily modeled by a 〈while〉 activity with adjusted loop condition. As such
resulting patterns are not very surprising, we focus on those features that are
entirely novel. In particular, the parallel 〈forEach〉 activity with its complex
completion and cancelation behavior cannot be simulated with existing features.
Furthermore, a termination handler now allows to execute an arbitrary activity
when a scope is forced to terminate. In this section, we present patterns for the
〈forEach〉 activity and the termination handler and refer to [11] for the complete
collection of patterns.

4.1 Modeling the 〈forEach〉 Activity

The 〈forEach〉 activity allows to parallel or sequentially process several instances
of an embedded 〈scope〉 activity. To this end, an integer counter is defined which
is running from a specified start counter value to a specified final counter value.
The enclosed 〈scope〉 activity is then executed according to the range of the
counter. In addition, an optional completion condition specifies a number of
successful executions of the 〈scope〉 activity after the 〈forEach〉 activity can be
completed prematurely.

The semantics of the sequential 〈forEach〉 activity can be simulated by a
〈while〉 or a 〈repeatUntil〉 activity which encloses a 〈scope〉 activity and an
〈assign〉 activity that organizes the counter. As the resulting pattern is rather
technical and straightforward, we refrain from a presentation. Instead, we focus
on the parallel 〈forEach〉 activity.

To model the parallel 〈forEach〉 activity, the number of instances of the
embedded 〈scope〉 activity—that is, the range of the counter—has to be known

final

!Successful

Successful

initial stop

stopped

stop

initial

final

x = 0

stopped

sc
op

e

instance 1

x

x-1

x

x

initialize
running

stopping

skipping

x > 0

x
b

c

active

counter

finish1

finish2

done

t1

t2

t3

t4

stop3

stop1

stop2

all stopped
x = 0

Fig. 8. The pattern for the parallel 〈forEach〉 activity

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 87

in advance. It can be derived using static analysis, for instance. Due to the
expressive power of XPath, static analysis of WS-BPEL processes with arbitrary
XPath expressions is undecidable. Thus, if no upper loop bound can be derived,
this bound has to be given explicitly. However, for the case where the loop bound
is received as a message, existing work [17] can be adapted to create an exact
model in this case.

Figure 8 depicts the generic pattern for an arbitrary but fixed number of
scope instances. All nodes in the grey rectangle (the scope pattern as well as
transitions t1–t4 and stop3) are present for each instance, whereas the other
nodes of the pattern belong to the 〈forEach〉 activity itself and exist only once.
To simplify the graphical representation, we merge arcs from or to instanced
places. For example, the arc from transition initialize to the place initial of the
scope pattern represents a single for each instance. Likewise, transition finish1
is connected to the done places of all instances. In addition, the bold depicted
arc connects each instance’s t1 transition with every stop place of the instance’s
scope.

We now describe the possible scenarios of the parallel 〈forEach〉 activity and
their respective firing sequences in the pattern of Fig. 8. Any scenario starts with
the firing of transition initialize which initializes all embedded scope patterns
and produces a token with the value b on place counter. This value describes the
completion condition; that is, the number of scope instances that have to finish
successfully to end the 〈forEach〉 activity prematurely. The 〈forEach〉 activity
is now in state active and running.

– Normal completion. The instances are concurrently executing their em-
bedded 〈scope〉 activities. When a scope completes, its final place is marked.
In addition, either place Successful (the scope executed faultlessly) or place
!Successful is marked (the scope’s activity threw a fault that could be handled
by the scope’s fault handlers). In case of successful completion, transition t3
fires and resets the scope’s state to !Successful and marks the instance’s done
place. Furthermore, the counter is decreased. If the scope was in state !Suc-
cessful, transition t4 produces a token on the instance’s done place without
decreasing the counter. When all instances’ scopes are completed, transition
finish1 completes the 〈forEach〉 activity.

– Premature completion. When a sufficient number of scope instances have
completed faultlessly, the 〈forEach〉 activity may complete prematurely;
that is, it ends without the need to wait for the other still running scopes to
complete. As mentioned before, the completion condition is modeled by the
counter place. As this counter is decreased every time an instance’s 〈scope〉
activity completed faultlessly, the counter value might reach 0. In this case,
transition t3 is—due to its guard—disabled. Instead, transition t1 can fire
which resets the scope as before and additionally sets the 〈forEach〉’s state
to skipping. Furthermore, it produces a token on the stop place of every in-
stance’s scope.7 Thus, all running scopes are stopped. Eventually, the stopped

7 This is depicted by the bold arc. Transition t1 also produces a token on the stop
place of the scope that just finishes.

88 N. Lohmann

place of all instances is marked—any tokens on the done places are also
removed—and transition finish2 completes the 〈forEach〉 activity. Due to
the asynchronous stopping mechanism, it is possible that other scopes com-
plete while their stop place is marked. In this case, transition t2 behaves
similarly to transition t1, but does not initiate the stopping sequence again.

– Forced termination. The 〈forEach〉 activity can—as all other activities—
be stopped at any time by marking its stop place. Transitions stop1 and stop2
organize the stopping for the normal completion and the premature comple-
tion, respectively. The counter is not changed by the stopping mechanism,
because its value is overwritten each time the 〈forEach〉 starts.

The 〈forEach〉 activity is mainly used to parallel or sequentially perform sim-
ilar requests addressed to multiple partners and is thus an important construct
to model service orchestrations or choreographies. To simplify the presentation
of the pattern, we do not depicted the subnet that organizes the compensation
of the instance’s scopes.

4.2 Modeling Termination Handlers

By the help of a termination handler, the user can define how a scope behaves if it
is forced to terminate by another scope. The termination handler is syntactically
optional, but—if not specified—a standard termination handler consisting of a
single 〈compensate〉 is deemed to be present.8

The termination handler is only executed if (1) the scope’s inner activity
has stopped, (2) no fault occurred, and (3) no 〈exit〉 activity is active. In the
scope pattern of Fig. 7, these prerequisites are fulfilled if the places inner stopped,
Active, and !Exiting (a status place of the process that is marked unless an 〈exit〉
activity is active) are marked. Then, transition start th invokes the termination

activity of the

termination

handler

fault

fault

initial

final/stopped

stop

begin

end

running

abort

ignore

aborted

stopping

stop

final/stopped

done/

stopped

done/

stopped

Fig. 9. The pattern for the termination handler

8 This standard termination handler also models the behavior described in the
BPEL4WS 1.1 specification.

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 89

handler. In any other case, place stopped is marked. Unlike the compensation
handler, the termination handler’s activity cannot be embedded directly to the
scope, but needs a wrapper pattern, depicted in Fig. 9.

In the positive control flow, transitions begin and end start the embedded
activity and end the termination handler, respectively. If the embedded activity
throws a fault, it is not propagated to the scope’s fault handler, because the scope
is forced to terminate to handle a fault that occurred in a different scope. Thus,
transition abort just stops the inner activity if a fault occurred, and transition
ignore fault ignores further faults. When the inner activity is stopped, place
done/stopped place is marked and transition aborted completes the termination
handler similarly to transition end.

5 Conclusion

We presented a feature-complete Petri net semantics that models all data and
control flow aspects of a WS-BPEL (version 1.1 or 2.0) process. The semantics
is an extension of the semantics presented in [10]. To allow more compact model
sizes, we simplified and reduced important aspects such as dead-path-elimination
and the 〈scope〉 pattern. First experiments show that the resulting models are
much more compact than the models presented in [15]. We further introduced
patterns of the novel constructs such as the 〈forEach〉 activity and termination
handlers. For computer-aided verification, we implemented a low-level version
of the semantics in our compiler BPEL2oWFN which is used in several case
studies [12,13]. We only presented a few patterns of the semantics in this paper.
The complete semantics is published in [11].

As WS-BPEL is only defined informally, the correctness of the presented pat-
terns can not be proven. However, we validated the Petri net semantics in various
case studies. We translated real-life WS-BPEL processes into Petri net models
and analyzed the internal (cf. [15]) and interaction (cf. [12,18,13]) behavior as
well as the interplay of several WS-BPEL processes in choreographies (cf. [19]).

5.1 Related Work

Though many formal semantics for WS-BPEL were proposed (see [3] for an
overview), to the best of our knowledge, no formal semantics of the new con-
structs of WS-BPEL 2.0 was proposed yet.

Ouyang et al. present in [20,21] a pattern-based Petri net semantics. This
semantics models the behavior of the activities and constructs of BPEL4WS 1.1
with the semantics described an early specification draft of the WS-BPEL 2.0.
Thus, the semantics adequately models the behavior of BPEL4WS 1.1 processes
and avoids the ambiguities of the earlier specification [2]. However, constructs
such as the 〈forEach〉 activity or termination handlers are not covered by this
semantics. For detailed comparison between, see [22].

90 N. Lohmann

5.2 Future Work

The presented semantics is feature-complete; that is, it models all data and
control flow aspect of a WS-BPEL process.9 However, the instantiation of process
instances and message correlation is not covered by the semantics. In future work,
we want to add a instantiation mechanism to the semantics, allowing to analyze
the complete lifecycle of process instances.

As WS-BPEL is just a part of the web service protocol stack (cf. [23]), the
underlying layers such as WSDL, WS-Policy, etc. may also influence the behavior
of the WS-BPEL process under consideration. In ongoing research, we plan to
incorporate the information derived from these layers (e. g., fault types and policy
constraints) to our semantics to refine the resulting models and allow for more
faithful analysis results.

Acknowledgements. The author wishes to thank Christian Gierds, Eric Ver-
beek, Christian Stahl, Martin Znamirowski, and Simon Moser for valuable dis-
cussions and comments regarding the Petri net semantics. This work is funded by
the German Federal Ministry of Education and Research (project Tools4BPEL,
project number 01ISE08).

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2007)

2. Andrews, T., et al.: Business Process Execution Language for Web Services, Version
1.1. Technical report, BEA, IBM, Microsoft (2003)

3. Breugel, F., Koshkina, M.: Models and verification of BPEL (2006),
http://www.cse.yorku.ca/∼franck/research/drafts/tutorial.pdf

4. Aalst, W.M.P.v.d., Hee, K.M.v.: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge, Massachusetts (2002)

5. Reisig, W.: Petri Nets. Springer, Heidelberg (1985)
6. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. Journal

of Circuits, Systems and Computers 8(1), 21–66 (1998)
7. Martens, A.: Analyzing Web service based business processes. In: Cerioli, M. (ed.)

FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)
8. Schmidt, K.: Controllability of open workflow nets. In: Desel, J., Frank, U. (eds.)

Enterprise Modelling and Information Systems Architectures, Proceedings of the
Workshop in Klagenfurt, October 24-25, 2005. Lecture Notes in Informatics (LNI),
GI, vol. 75, pp. 236–249 (2005)

9. Girault, C., Valk, R. (eds.): Petri Nets for System Engineering – A Guide to Mod-
eling Verification and Applications. Springer, Heidelberg (2002)

10. Stahl, C.: A Petri net semantics for BPEL. Techn. Report 188, Humboldt-
Universität zu Berlin, Germany (2005)

11. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0 and
its compiler BPEL2oWFN. Techn. Report 212, Humboldt-Universität zu Berlin,
Berlin, Germany (2007)

9 We do not model aspects that are not part of the WS-BPEL language itself such as
XPath or XSLT.

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 91

12. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

13. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

14. Reisig, W.: Petri nets and algebraic specifications. Theor. Comput. Sci. 80(1), 1–34
(1991)

15. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

16. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

17. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: IEEE International Conference on Services Computing (SCC
2007), pp. 98–105. IEEE Computer Society Press, Los Alamitos (2007)

18. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

19. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2007)

20. Ouyang, C., Verbeek, E., Aalst, W.M.P.v.d., Breutel, S., Dumas, M., Hofstede,
A.H.M.t.: WofBPEL: A tool for automated analysis of BPEL processes. In: Be-
natallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
484–489. Springer, Heidelberg (2005)

21. Ouyang, C., Aalst, W.M.P.v.d., Breutel, S., Hofstede, A.H.M.t.: Formal semantics
and analysis of control flow in WS-BPEL. Sci. Comput. Program. 67(2-3), 162–198
(2007)

22. Lohmann, N., Verbeek, H., Ouyang, C., Stahl, C., Aalst, W.M.P.v.d.: Comparing
and evaluating Petri net semantics for BPEL. Computer Science Report 07/23,
Eindhoven University of Technology, Eindhoven, The Netherlands (2007)

23. Wilkes, L.: The Web services protocol stack. Technical report, CBDI Web Services
Roadmap (2005), http://roadmap.cbdiforum.com/reports/protocols

http://roadmap.cbdiforum.com/reports/protocols

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 92–107, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From BPEL to SRML:
A Formal Transformational Approach∗

Laura Bocchi1, Yi Hong1, Antónia Lopes2, and José Luiz Fiadeiro1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,yh37,jose}@mcs.le.ac.uk
2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, Portugal
mal@di.fc.ul.pt

Abstract. The SENSORIA Reference Modelling Language (SRML) provides
primitives for modelling business processes in a technology agnostic way. At
the core of SRML is the notion of module as a composition of tightly coupled
components and loosely coupled, dynamically discovered services. This paper
presents an encoding of BPEL processes into SRML modules using model
transformation techniques. The encoding provides the means to create high-
level declarative descriptions of BPEL processes that can be used for building
more complex modules, possibly including components implemented in other
languages. The composition can be modelled and analysed as an ensemble, re-
lying on the rich formal framework that is being developed within SENSORIA.

1 Introduction

The SENSORIA Reference Modelling Language (SRML) is a high-level modelling
language for Service Oriented Architectures (SOAs) developed in the context of
SENSORIA, an IST-FET Integrated Project on Software Engineering for Service-
Oriented Overlay Computers. The goal of SRML is to provide a set of primitives that is
expressive enough to model applications in the service-oriented paradigm and simple
enough to be formalized. Through the notion of module, SRML provides primitives for
modelling business processes as assemblies of (1) tightly coupled components that may
be implemented using different technologies (including wrapped-up legacy systems)
and (2) loosely coupled, dynamically discovered services.

The structure of a SRML module is illustrated in Fig. 1. Both the service provided
and the external services required by the module are represented through what we call
external interfaces, which are rich descriptions of the behaviour that can be observed
of the interactions with these parties. The language primitives used for description
and specification of service and component behaviour have been presented in [5].

∗ This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA:

Software Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP
MTK1-CT-2004-003169 Leg2Net: From Legacy Systems to Services in the Net.

 From BPEL to SRML: A Formal Transformational Approach 93

Fig. 1. The module EasyBankProcess has one component – central of type centralBR – which
orchestrates the interactions with the external parties. The node invoiceService (of type invoice-
ServiceBP) is an external-interface for a service required by the module. The node buyer (of
type buyerBP) is the external interface for the provided service. The edges shoppingLink and
invoicingLink provide the protocols that coordinate the interactions between the involved
parties.

The interconnections between different parties are represented as wires labelled with
interaction protocols [1].

SRML modules were inspired by the Service Component Architecture (SCA) [13].
SCA is a set of specifications that describe a middleware-independent model for
building applications over SOAs. It provides a convenient framework to manage the
deployment and configuration of service-oriented systems. In SCA, applications are
built as assemblies of heterogeneous components and external services. SCA offers
specific support for a variety of component implementations, namely for WS-BPEL
[14]. More concretely, a BPEL client and implementation specification is defined that
allows a component to be written is BPEL and deployed and assembled with other
components written in any SCA implementation language.

In this paper, we present an encoding of WS-BPEL processes, including the WSDL
interfaces with which they are associated, into SRML modules. As in SCA, the syn-
thesis of high-level declarative descriptions allows existing BPEL processes to be
used together with other components when defining models for composite services as
SRML modules. The models consist of the assembly of a number of SRML modules
that can be derived from existing components (implemented in BPEL or any other
language for which an encoding into SRML has been provided), or for which an im-
plementation still has to be provided. As a consequence, a given BPEL process can
be used in the implementation of different composite services.

A basic difference between our encoding and the one provided through SCA re-
sults from the fact that, whereas SCA abstracts from the business logic provided by
components, SRML provides a high-level declarative description of that business
logic. Therefore, our encoding also addresses the orchestrations performed by BPEL
processes within the assembly structures.

As a consequence, our encoding provides the means for WS-BPEL processes to be
analysed, both individually and within composite services, by relying on the rich
formal framework that is being developed within SENSORIA [15]. However, it
should be clear that our aim is not to provide BPEL with yet another formal semantics
and associated verification techniques, but only to the extent in which BPEL

94 L. Bocchi et al.

processes can be used in SRML to define composite services, possibly in conjunction
with other service components implemented also in BPEL or in other languages.

The encoding of BPEL processes into SRML is formalized by means of model
transformation rules based on triple graph grammars (TGG) [8]. The definition of
model transformations with TGGs relies on: (1) a source meta-model representing the
abstract syntax of the source language (e.g. BPEL) as a typed graph, (2) a target
meta-model representing the abstract syntax of the target language (e.g. SRML) as a
typed graph, (3) a third graph grammar — the correspondence meta-model — that
connects related elements of (1) and (2) and is used to control the transformation
process which, in general, is bidirectional. In our case, we provide directional trans-
formation rules that specify only one direction – from BPEL to SRML.

The structure of the paper is as follows. Section 2 discusses the strategy of the en-
coding in more detail and presents an example. Section 3 presents the transformation
rules for the module structure. Section 4 presents the encoding of the control flow.
Finally, Section 5 presents final conclusions and discusses future work.

2 The Strategy of the Encoding

As described in [5], SRML provides mechanisms for assembling two modules via an
external wire that establishes how the provides-interface EX-P of one module matches
a requires-interface EX-R of the other module (Fig. 2). Assembly can be performed at
design-time in order to define composite services (orchestrated systems), or dynami-
cally, at run-time, through the discovery and binding mechanisms of the underlying
SOA platform. In this paper, we do not address how SRML supports the dynamic
aspects. The algebraic semantics of assembly is discussed in [6].

Fig. 2. The operation that assembles two modules into a module internalises the external wire
EW that establishes a matching between the external interfaces (specifications) invoiceService
(requires) and PI (provides)

The strategy of our encoding is precisely to abstract modules from BPEL proc-
esses, i.e. to identify the external interfaces (provides and requires) and the internal
component that orchestrates the interactions involved, so that these BPEL-modules
can then be used together with all other sorts of modules to define more complex
services. In the resulting system, the original BPEL process will be connected with
other components (possibly implemented in other languages like Java) through inter-
nal wires that establish the interaction protocols through which they communicate.

 From BPEL to SRML: A Formal Transformational Approach 95

The encoding we propose involves both the module structure and the control flow
involved in BPEL processes. A tool has been developed at the University of Leicester
that provides semi-automated support [10] for this process. More precisely, it consid-
ers a subset of the BPEL constructs that concern service structure, produces a skeleton
of a SRML module, and supports the manual definition of the missing aspects. The
tool parses the XML tree representing the BPEL process with DOM and implements
the transformation with a number of Java classes.

Our paper presents a more encompassing encoding than the one implemented by
the tool. We encode structured activities (excluding scopes), control links and corre-
lation sets. Table 1 shows which aspects of the BPEL control flow are considered in
the encoding and which are supported by the tool. The encoding of the missing as-
pects is still work in progress. The main reason is that, as already explained, our aim
is not to define yet another semantics for BPEL but to encode BPEL processes in a
way that they can be used for defining SRML modules; as such, we have to take into
account how the constructs provided by BPEL can be used within SRML. For in-
stance, fault handling is a feature that, in SRML, is not handled at the same level of
abstraction as the orchestration primitives (ditto for correlation sets). Therefore, we
will consider the encoding of the throw primitive once we have extended SRML it-
self. The same applies to the constructs that relate to session handling, including
correlation, which in SRML are treated as part of configuration management and
treated in a fragment of the language that is still under construction.

Table 1. BPEL tags for control flow encoded in the tool and in this paper. BA stands for basic
activity and SA for structured activity.

BPEL Tag/Construct Tool Encoding
Invoke , Receive, Reply, Assign (BA)
Wait, Empty, Exit (BA)
Throw (BA)
Sequence, Switch (SA)
Flow, While (SA)
Control Links, Scopes, Correlation Sets

The encoding of the SRML module structure from a BPEL process is in line with
the one defined in [14] for embedding BPEL processes into SCA. The encoding of
the control flow is inspired by the formal semantics of WS-BPEL in Petri Nets pre-
sented in [12]. The resulting approach is compositional because it describes any activ-
ity as a black box that is activated by the enclosing structured activity. This makes it
easier to extend the encoding to the other types of BPEL activity.

To illustrate our approach we use a simple BPEL process — easyBankProcess –
that receives an order from a buyer, uses an external service to create an invoice, and
returns the invoice to the buyer. The following fragment defines the participants of
the process and the links among them.

<process name="easyBankProcess"...
 <portType name="ShopPortType"> ...
 <portType name="InvoicingPortType"> ...

96 L. Bocchi et al.

 <portType name="BuyerPortType"> ...
 <partnerLinkType name="invoicingLinkType">
 <role name="invoiceService"> <portType name="ns:InvoicePortType"/>

 </role>
 </partnerLinkType>
 <partnerLinkType name="shoppingLinkType">
 <role name="buyer"><portType name="ns:BuyerPortType"/></role>
 <role name="shop"><portType name="ns:ShopPortType"/></role>
 </partnerLinkType>
 <partnerLinks>
 <partnerLink name="invoicingLink" partnerLinkType="ns:invoicingLinkType"
 partnerRole="ns:invoiceService"/>
 <partnerLink name="shoppingLink” partnerLinkType="ns:shoppingLinkType"
 myRole="ns:shop" partnerRole="ns:buyer"/>
 </partnerLinks>

The partnerLinkType elements define a link type between pairs of roles, each of
which is associated with a certain portType element. A portType is a set of operations
supported by a service. For example, shoppingLinkType defines a link type between
two roles: buyer, of type BuyerPortType, and shop, of type ShopPortType. When
only one role is specified, the other role can be associated with any portType, as in the
case of invoicingLinkType. The partnerLink elements define an instance of partner-
LinkType that specifies which of the roles belongs to the process (myRole) and to the
partners (partnerRole).

The structure of the corresponding SRML module is illustrated in Fig. 1. Every
partner role is represented as an external interface, either an EX-P (provides) or an
EX-R (requires) interface, as discussed in Section 3. The central component repre-
sents all the roles assumed by the BPEL process (i.e., myRole). In the example, the
SRML module has two external interfaces, buyer and invoiceService. The central
component assumes the role of shop (i.e., port type ShopPortType) in shoppingLink
and the generic role in invoicingLink.

Every role in the BPEL process is associated with a portType that declares a set of
interactions:

<portType name="ShopPortType">
 <operation name="placeOrder">
 <input message="ns:placeOrderInput"/>
 </operation>
</portType>

<portType name="BuyerPortType">
 <operation name="receiveBill">
 <input message="ns:receiveBillInput"/>
 </operation>
</portType>

<portType name="InvoicingPortType">
 <operation name="doInvoice">
 <input message="ns:doInvoiceInput"/>
 <output message="ns:doInvoiceOutput"/>
</operation>

</portType>

In SRML, each external interface and component, to which we refer as nodes, is an
instance of a business protocol or business role, respectively. The business role and
protocols of the SRML easyBankProcess module are given below. The business role
centralBR supports (1) the operation PlaceOrder of shopPortType and (2) the com-
plementary interactions for invoicePortType and buyerPortType.

 From BPEL to SRML: A Formal Transformational Approach 97

BUSINESS ROLE centralBR is

INTERACTIONS

 rcv shopPortType.placeOrder
 placeOrderInput.product:Product

 s&r invoicePortType.doInvoice
 doInvoiceInput.product:Product
 doInvoiceOutput.bill:Bill
 snd buyerPortType.receiveBill

 receiveBillInput.bill:Bill

BUSINESS PROTOCOL buyerBP is

INTERACTIONS
 snd shopPortType.placeOrder
 placeOrderInput.product:Product
 rcv buyerPortType.receiveBill
 receiveBillInput.bill:Bill ...

BUSINESS PROTOCOL invoiceServiceBP is

INTERACTIONS
 r&s invoicePortType.doInvoice
 doInvoiceInput.product:Product
 doInvoiceOutput.bill:Bill ...

Business roles and protocols declare a number of interactions in a way that is simi-
lar to BPEL port types. The specification of a node n defined in the encoding sup-
ports the interactions that: (1) correspond to an operation supported by the portType
associated with n, (2) the complementary interactions (i.e., a send is complementary
to a receive) of the operations supported by the node to which n is wired. The frag-
ment of the BPEL process that models the control flow declares two variables, order
and bill, and defines the orchestration as a sequence of one receive and two
invocations:

<variables>
 <variable name="order" messageType="ns:orderData"/>
 <variable name="bill" messageType="ns:invoiceData"/>
</variables>
<sequence>
 <receive name="rcvOrder" partnerLink="ns:shoppingLink" operation="ns:placeOrder"
 portType="ns:ShopPortType” variable="order" createInstance="yes"/>
 <invoke name="askInvoice" partnerLink="ns:invoicingLink" operation="ns:doInvoice"
 portType="ns:InvoicePortType" inputVariable="order" outputVariable="bill"/>
 <invoke name="sndBill" partnerLink="ns:shoppingLink" operation="ns:receiveBill"
 portType="ns:BuyerPortType" variable="bill"/>
</sequence>

Both business roles and business protocols define causal relationships among the
events that occur as part of the supported interactions. Business roles express this
causality in terms of an orchestration, i.e. state-transition based description of the
process through which a component reacts to and initiates such events. Business
protocols provide specifications of provided or required behaviour in terms of proper-
ties (expressed in a temporal logic) that abstract such causal relationships from the
processes that run in the co-parties. In the case of provides-interfaces, we provide a
specification of the protocol offered to the co-party and, in the case of requires-
interfaces, that of the protocol that the co-party is required to adhere to.

Because BPEL does not support such semantically reach external interfaces, we
focus exclusively on how to extract the orchestration of the business role centralBR
from a BPEL specification. As an example, we present the orchestration of the cen-
tral business role of the SRML module that is derived from the activities of the BPEL
process easyBankProcess. In the next sections, we will discuss in detail how the
different elements of the module are synthesised.

98 L. Bocchi et al.

BUSINESS ROLE centralBR is

INTERACTIONS

 ...

ORCHESTRATION

local order.product:Product, bill.bill:Bill,
 start,exit,end,ra,rb,rc,rd,fa,fb,fc,fd:Boolean,
 na,nb,nc,cd:Natural
initialisation

 start=end=exit=false
 ra=rb=rc=rd=fa=fb=fc=fd=false

 na=nb=nc=nd=0
transition harness

triggeredBy true
guardedBy ¬start ∨ fa
effects (¬start ⊃ start’∧ra’)

∧ (fa ⊃ ¬fa’∧end’)
transition transition_A (sequence)

triggeredBy true
guardedBy (ra ∨ fb ∨ fc ∨ fd) ∧ ¬exit
effects (ra ⊃ rb’∧¬ra’)

∧ (fb ⊃ rc’∧¬fb’)
∧ (fc ⊃ rd’∧¬fc’)
∧ (fd ⊃ fa’∧¬fd’)

transition transition_B (receive)
triggeredBy shopPortType.placeOrder ?
guardedBy rb ∧ ¬exit
effects ¬rb’ ∧ fb’

∧ order.product’=shopPortType.placeOrder .placeorderInput.product
transition transition_C (first invoke)

triggeredBy true
guardedBy rc ∧ ¬exit
effects ¬rc’
sends invoicePortType.doInvoice !

∧ invoicePortType.doInvoice .doInvoiceInput.product=order.product
transition transition_C’ (first invoke 2nd part)

triggeredBy invoicePortType.doInvoice ?
guardedBy
effects fc’ ∧ bill.bill’=invoicePortType.doInvoice .doInvoiceOutput.bill

transition transition_D (second invoke)
triggeredBy true
guardedBy rd
effects ¬rd’ ∧ fd’
sends buyerPortType.receiveBill !

∧ buyerPortType.receiveBill !.receiveBillInput.bill=bill.bill

triggeredBy is a condition, typically a
receive-event as in transition_B. When
the condition is true the transition is
triggered once the guard becomes true.

The orchestration is described by transition rules.

The local variables describe
the state of the component:
order.product and bill.bill are
variables from the BPEL
process; the others model
control flow.

guardedBy is a condition that
identifies the states in which the
transition can take place

The sentence sends describes the
interaction events that are sent and the
values taken by their parameters

 and identify request and
reply events that may occur during
conversational interactions.

3 Definition of the Module Structure

A BPEL process provides contextual information involving the external participants
interacting with the process (i.e., the roles and port types wired to the business process
through the partner links). In contrast, a SRML business role provides no information
on the context in which it is used: the interface defines a set of interactions that is not
partitioned according to the number of expected interacting parties. This is why, in

 From BPEL to SRML: A Formal Transformational Approach 99

order to preserve the contextual information in the encoding, we map BPEL processes
not to business roles, but to modules that represent contextualized business roles.

The transformation rules, in line with the QVT standard for Model Transformation
[11], are represented with the following syntax: the source and target (fragments of)
meta-models are represented by UML class diagrams and the correspondence is rep-
resented by meta-relations. Following [9], meta-relations are represented as dashed
wires with a diamond enclosing the constraints of the relation instance. The shad-
owed classes on the right hand side are the classes added to the model by the rule. The
diamond for a relation instance created by the rule is shadowed as well.

Fig. 3 illustrates the transformation rule of the root element of a WSDL/BPEL (left
hand side) that generates a SRML module (right hand side) having the same name of
the BPEL process, the module central component and corresponding business role.

Fig. 3. Transformation rule generating the module

The application of the transformation rules in Fig. 3 to myBankProcess generates a
module with name myBankProcess and one component named central of type
centralBP. The set of other nodes that are wired to the central component is defined
considering any partnerLink in the BPEL process. For any partnerLink element (rep-
resenting a participant interacting with the business process) is created an external
interface connected to the central component and the corresponding business protocol.

We discriminate between what must be encoded into an EX-P and into an EX-R by
looking for the presence or absence of a receive operation having the createInstance
attribute set to “yes”, which is the mechanism used in BPEL to represent the invoca-
tion of a business process. The partnerLink associated with such operation is the one
that, if it exists, invokes the service modelled by the BPEL process. Hence, an EX-P
is created for such partnerLink. All the other partnerLink elements create an EX-R
through the rule described in Fig. 4, which requires the absence of a receive operation
having createInstance attribute set to “yes”.

In the myBankProcess example, the rule described in Fig. 4 creates an EX-R named
invoiceService of type invoiceServiceBP. The EX-R is connected to the central com-
ponent with the wire invoicingLink. The rule for the EX-P interfaces creates an EX-P
named buyer of type buyerBP, connected with the wire shoppingLink. The structure
of the resulting module is the one presented in Fig. 1.

100 L. Bocchi et al.

Fig. 4. Transformation rule generating a requires-interface and the corresponding wire that
connects it to the central component. The rule that generates the external provides-interface is
similar but, instead, requires the absence of a receive operation having createInstance attribute
set to “yes”.

Using the same method, we define the transformation rules for the set of interac-
tions supported by all the nodes. Every node corresponds to a BPEL portType ele-
ment. A node represents one or more port types and must support, for any operation
in the portType, a corresponding SRML interaction. In addition, it must support the
complementary interactions of the portType elements connected to the node through a
partnerLink. We omit the details of the rules for the interactions and their parameters.
Table 2 shows, for each WSDL operation type, the corresponding SRML interaction
types/parameters and their complements. For example, the request-response operation
is encoded as a r&s (i.e., receive and send) interaction, whose complementary ele-
ment is an s&r interaction. The input parameters are encoded as -parameters,
which are the parameters for transmitting data when the interaction is initiated.

The current OASIS draft for WS-BPEL [2] specifies that some of the WSDL op-
erations must not be supported by BPEL processors (i.e., notification and solicit-
response); hence, we consider the supported operations only.

Table 2. WSDL operations and SRML interactions

WSDL SRML SRML (complementary)

one-way
 > input parameter

rcv
 > parameter

snd
 > parameter

request-response r&s s&r
 > input parameter > parameter > parameter
 > output parameter > parameter > parameter

We encode the operation with name ‘op’ of the portType ‘pt’ as the interaction
with name ‘pt.op’. Because any interaction event in SRML may occur at most once
during a session, we have to define a family of interactions for each operation. This
family defines an arbitrary number of interactions, each identified by an index

 From BPEL to SRML: A Formal Transformational Approach 101

(e.g., pt.op[i]). For each interaction we define a variable pt.opB (and also pt.opE for
r&s and s&r interactions) of type Natural that is initially 0 and is incremented at each
occurrence of the - (and -) event of the interaction pt.op and stores the index that
must identify the next occurrence. In the example presented in Section 2, we omitted
these indexes for readability, as each operation is invoked only once.

4 Transformation of Control Flow

The encoding of control flow into SRML has been inspired by the Petri Net-based
semantics of WS-BPEL presented in [12]. Therein, a generic activity A is represented
as a Petri net having: (1) an initial state rA, in which the transition is ready to be exe-
cuted, (2) a final state fA, (3) the state sA/cA in which the activity starts/completes.

transition A
 triggeredBy …
 guardedBy ra ∧ …
 effects ¬ra’

 ∧ fa’
 ∧ …
 sends …

Fig. 5. A simplified version the Petri Net representation of a generic BPEL activity A [12], and
the corresponding SRML transition. Additional statements have to be added to model the exe-
cution of the activity.

In the SRML encoding, the execution of the orchestration begins with a “harness”
transition that uses a special boolean variable start, initially set to false. The harness
triggers the activity A, corresponding to the root activity of the BPEL process, by
setting ra to true:

transition harness
triggeredBy true
guardedBy ¬start ∨ fa
effects (¬start ⊃ start’∧ra’) ∧ (fa ⊃ ¬fa’∧end’)

4.1 Encoding Basic Activities

In a BPEL process, a parameter sent by an operation consists of a Variable element
that has already been declared and assumed a meaningful value by means of an As-
sign activity. Fig.6. presents the transformation rule for creating a local variable in the
orchestration of the SRML module from the corresponding variable in the BPEL
process. The DataType object, defining the type of the variable, does not need to be
created if an object already exists for the same type.

Some additional local variables have to be defined for handling the control flow:

• start/end, of type Boolean, is true when the process instance starts/ends.

102 L. Bocchi et al.

• exit, of type Boolean, disables, when true, the execution of any transition. It
is initially false. The value may be changed by the Exit activity.

• ra and fa for any activity A.

To improve readability, we present the transformation rules for activities by using
a textual notation, showing the correspondence between the two languages. The gen-
erated transitions belong to the orchestration of the business role centralBR.

Fig. 6. Transformation rule for variables declaration. A BPEL variable refers to a message
composed by parts. A local variable is created, for each part of each BPEL variable, in the
orchestration of the business role typing the central component that is the only orchestration in
the module.

Assign. The assign activity refers to a couple of variables and to a specific part of the
message that types each variable. The assign activity in the BPEL code fragment
below (on the left) is encoded into the SRML transition transition_A also shown be-
low (on the right). The effects of the transition include the assignment of the part
formP of the variable fromV to the part toP of toV.

<assign>
 <copy>
 <from variable=”fromV” part=”fromP”/>
 <to variable=”toV” part=”toP”/>
 </copy>

 </assign>

 transition transition_A
 triggeredBy true
 guardedBy ra ∧ ¬exit
 effects ¬ra’ ∧ fa’
 ∧ toV.toP’=fromV.fromP

Invoke. The invoke activity is used to invoke a service and may refer to either a one-
way or request-response WSDL operation. The invocation, in BPEL, is modelled
from the perspective of the invoked party and in SRML corresponds to either a snd or
a s&r interaction of the central component. The BPEL code fragment below invokes a
request-response operation.

<invoke partnerLink="pl" portType="pt" operation="op"
 inputVariable="iv" outputVariable="ov"/>

 From BPEL to SRML: A Formal Transformational Approach 103

The invoke statement above is transformed into the two SRML transitions below.

The first part of the request-response is modelled by transition_A that sends the in-
teraction event pt.op[pt.opB] ! where pt is the name of the portType and op is the
operation. The parameters are assigned to the corresponding parts of the input vari-
able iv. We assume, with no loss of generality, that the message type of iv consists of
the parts p1,…,pn. The second part of the request-response is represented by transi-
tion_A’ that receives the interaction event pt.op[pt.opE] ? and assigns the value of
the output parameters (in all the m parts) to the output variable. We do not need to
add a guard to enable transition_Ab after transition_A as SRML ensures that,
pt.op[i] ? is always enabled after (and only after) pt.op[i] !.

The invoke of a one-way operation, where the output variable is not specified, is
transformed in transition_A where the effects include the statement fa’.

Receive and Reply. The receive activity refers to either a one-way or a request-
response operation and it is encoded according to the transformation rule that follows.

<receive partnerLink="pl"
 portType="pt"

 operation="op"
 variable="v"
 createInstance=…/>

transition transition_A
triggeredBy pt.op[pt.opB] ?
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ fa’ ∧ pt.opB’=pt.opB+1
 ∧ v.p1’=pt.op[pt.opB] .v.p1 ∧ …
 ∧ v.pn’=pt.op[pt.opB] .v.pn

The reply activity refers to either a one-way or (the second part of) a request-
response operation. In case of a one-way operation it is encoded according to the
transformation rule that follows. The rule for the request-response is similar but it
sends the interaction event pt.op[pt.opE] !.

<reply partnerLink="pl"
 portType="pt"
 operation="op"
 variable="v"…/>

transition transition_A
triggeredBy true
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ fa’ ∧ pt.opB’=pt.opB+1
sends n.pt.op[pt.opB] ! ∧ n.pt.op[pt.opB] .v.p1=v.p1
 ∧ … ∧ n.pt.op[pt.opB] .v.pm=v.pm

Wait. The wait activity specifies a deadline (time interval or future instant of time).

<wait> <for>t</for>(<until>t</until>)</wait>

SRML provides a number of primitives for handling time [5], including the func-
tion now which returns the present time from a global clock. The wait activity is
transformed into the transitions above:

transition transition_A
triggeredBy true
guardedBy ra ∧ ¬exit
effects ¬ra’ ∧ pt.opB’=pt.opB+1
sends pt.op[pt.opB] !
 ∧ pt.op[pt.opB] .iv.p1=iv.p1 ∧ …
 ∧ pt.op[pt.opB] .iv.pn=iv.pn

transition transition_A’
triggeredBy pt.op[pt.opE] ?
guardedBy ¬exit
effects fa’
∧ ov.p1’=pt.op[pt.opE] .ov.p1 ∧ …
∧ ov.pm’=pt.op[pt.opE] .ov.pm
∧ pt.opE’=pt.opE+1

104 L. Bocchi et al.

transition transition_A (for)
triggeredBy true
guardedBy ra ∧ ¬exit
effects timeA=now ∧ ¬ra’

transition transition_A’ (for)
triggeredBy now=timeA+t
guardedBy ¬exit
effects fa’

transition transition_A (until)
triggeredBy now≥t
guardedBy ra ∧ ¬exit
effects fa’ ∧ ¬ra’

Exit and Empty. The exit activity terminates the execution of the process. It is en-
coded into transition_A below that gives the value true to the Boolean local variable
exit. This disables any further transition. The empty activity performs no action. It is
encoded into transition_B below.

transition transition_A (exit)
triggeredBy true
guardedBy ra ∧ ¬exit

 effects ¬ra’ ∧ fa’ ∧ exit’

transition transition_B (empty)
triggeredBy true
guardedBy rb ∧ ¬exit

 effects ¬rb’ ∧ fb’

4.2 Encoding Structured Activities

Sequence. The sequence activity is used to execute two activities in sequence, in the
specified order. Let us suppose we have two activities A and B represented by two
transitions transition_A and transition_B. We model the sequence activity X as the
transition transition_X. We denote with rx, ra and rb the boolean variables that trigger
the execution of X, A and B, respectively. The variables fx, fa and fb denote the end
of the corresponding activity. The transition transition_X is executed three times:
when the parent activity triggers X (by setting rx to true), when the enclosed activity A
terminates (and sets fa to true) and, analogously, when B terminates.

<sequence
 name=”X”>
 activity A
 activity B
</sequence>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx ⊃ ra’∧¬rx) ∧ (fa ⊃ rb’∧¬fa’) ∧ (fb ⊃ fx’∧¬fb’)

Flow. The flow activity executes the enclosed activities in parallel. We consider the
case of two parallel activities with no loss of generality. The transition transition_X
models the flow activity for A and B. The flow activity on the left side is transformed
into transition_X. The transition is executed two times: when the parent activity trig-
gers X (by setting rx to true) and when the enclosed activities A and B both terminate
(i.e., synchronization).

<flow name=”X”>
 activity A
 activity B
</flow>

transition transition_X
triggeredBy true
guardedBy (rx ∨ (fa ∧ fb)) ∧ ¬exit
effects (rx ⊃ ra’∧ rb’∧¬rx’) ∧ (fa ∧ fb ⊃ fx’∧¬fa’∧¬fb’)

Switch. The switch activity executes one of two activities, depending on a condition.
If all the conditions are false no activity is executed. The conditions are evaluated in
the specified order. We consider a switch statement involving two conditions with no
loss of generality. The switch activity on the left side is transformed into transition_X.

 From BPEL to SRML: A Formal Transformational Approach 105

The transition is executed two times: when the enclosing activity triggers X (by set-
ting rx to true), when one the enclosed activities terminates.

<switch name=”X”>
 <case>
 <condition> z1 </condition>
 activity A
 </case>
 <case>
 <condition> z2 </condition>
 activity B
 </case>
</switch>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx∧z1 ⊃ ra’∧¬rx’)
 ∧ (rx∧¬z1∧z2 ⊃ rb’∧¬rx’)
 ∧ (rx∧¬z1∧¬z2 ⊃ fx’∧¬rx’)
 ∧ (fa∨fb ⊃ fx’∧¬fa’∧¬fb’)

Pick. The pick activity waits for a set of events, each associated to an activity, and
executes (only) the activity associated to the first event that occurs. The events can be
triggered by an external message or by an alarm. We consider, without loss of gener-
ality, a set of two events: one triggered by a message and one triggered by the alarm.
The Pick activity on the left side is transformed into transition_X and transition_X’.
First transition_X is executed: rx becomes false and the the present time is stored in
the variable tX. Then transition_X’ is executed when either e1 ? occurs or when the
deadline expires and triggers the corresponding activity, A or B. Notice that, because
of its guards, transition_X’ is executed only once: before either A or B is triggered.
P_e1[i] ? is true if the event e1[i] ? occurred in the past. The transition transi-
tion_X is executed again when either fa or fb is true; fx is then set to true.

<pick name=”X”>
 <onMessage e1>

 A
 </onMessage>
 <onAlarm>
 <for> t

 </for>
 B
 </onalarm>
</pick>

transition transition_X
triggeredBy true
guardedBy (rx ∨ fa ∨ fb) ∧ ¬exit
effects (rx ⊃ ¬rx’∧tX’=now+t)
 ∧ (fa ⊃ ¬fa’∧fx’) ∧ (fb ⊃ ¬fb’∧fx’)

transition transition_X’
triggeredBy e1[i] ? XOR now=tX
guardedBy ¬ra ∧ ¬rb ∧ ¬exit
effects ra’=P_e1 ? ∧ rb’=now=tX

While. The while activity iterates an activity A until a condition is true. The while
activity on the left side is transformed into transition_X. The transition is executed the
first time when rx is true and then when the execution of any enclosed activity termi-
nates. During the first iteration rx is set to false. The condition determines either the
execution of A or the end of transition_X. The end of a previous iteration (fa=true)
determines either the end of the while activity or execution of the next iteration
(ra=true), depending on the condition z.

<while name=”X”>
 <condition>z
 </condition>
 activity A
</while>

transition transition_X
guardedBy (rx ∨ fa) ∧ ¬exit
effects rx ⊃ (¬rx’∧ ra’≡z ∧ fx’≡¬z)
 ∧ fa ⊃ (¬fa’ ∧ ra’≡z ∧ fx’≡¬z)

5 Conclusions and Future Work

In this paper, we have discussed an encoding of WS-BPEL processes into SRML –
the modelling language that is being developed within the SENSORIA project for

106 L. Bocchi et al.

supporting the engineering of complex services. In SRML, modules provide abstrac-
tions of composite services as provided through assemblies of components and exter-
nally services procured and bound at run-time.

SRML is inspired on SCA [13]. Like in SCA, the components used inside a mod-
ule need not be homogeneous: they can be Java programs, BPEL process, wrapped-up
legacy systems, and so on. SRML provides a language in which these components
can be modelled as transition-based systems obtained through abstraction mappings.
The purpose of this paper was precisely to illustrate the abstract encoding that we
defined for BPEL-processes, which is richer than the one provided for SCA because
we are able to encode the business logic operated by the component. We should
stress that the purpose of the encoding is not to provide a new semantics for BPEL but
to abstract from BPEL processes the SRML modules that allow them to be combined
with other modules to define more complex services, avoiding having to develop
required orchestrations from scratch. This is why the proposed encoding does not
consider aspects that, like fault handling and correlation sets, are not directly relevant
for the fragment of SRML that is concerned with composition. We are working on an
extension of the encoding that considers some of the missing aspects in the context of
the fragment of SRML that handles configuration management.

Our encoding is performed through model-transformation rules based on triple
graph grammars. We present the design of some of the transformation rules that we
developed so far. Their implementation is straightforward if using a tool for model-
ing graph transformations: we are using the Tiger tool environment [3], based on
Eclipse Modelling Framework (EMF). The source WSDL/BPEL meta-model derives
from the combination of the meta-model obtained from the XSD specifications of
WSDL and the meta-model of WS-BPEL defined in the context of the Eclipse BPEL
project1. The target SRML meta-model has been produced using the Eclipse Graphi-
cal Modelling Framework (GMF). The meta-models are modelled as EMF trees. In
this way, it will be possible to easily implement the transformation rules using tools
s.a. Tiger [3], which transform meta-models expressed in EMF.

Another strong point of our approach is that it will make it possible for the rich
analysis framework being developed in SENSORIA [15] to be used for analysing and
verifying properties of BPEL processes. The goal is to reason about the properties of
modules assembled from possibly heterogeneous components, e.g. through model
checking [7].

Acknowledgments

We would like to thank our colleagues in SENSORIA for many useful discussions,
and our Leicester colleagues Reiko Heckel and Karsten Ehrig in particular for
guidance in graph transformations and Tiger. Finally, we would like to thank the
reviewers for extensive and profound comments and suggestions that have definitely
improved the quality of this version.

1 http://www.eclipse.org/bpel/

 From BPEL to SRML: A Formal Transformational Approach 107

References

1. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interaction pro-
tocols for service-oriented system modelling. In: Formal Methods for Networked and Dis-
tributed Systems. LNCS, Springer, Heidelberg (to appear, 2007)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. Tech-
nical report, TC OASIS (2007), available from http://www.oasis-open.org/

3.

4.

5.

Biermann, E., Ehrig, K., Koehler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical defini-
tion of in-place transformations in the Eclipse Modeling Framework. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 425–439.
Springer, Heidelberg (2006)

6.

Bisztray, D., Heckel, R.: Rule-level verification of business process transformation using
CSP. In: Graph Transformation and Visual Modeling Techniques. Electronic Communica-
tions of the EASST (2007)

7.

Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

8.

Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 37–55.
Springer, Heidelberg (2007)

9.

Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state ma-
chines. In: ACIS International Conference on Software Engineering Research, Manage-
ment and Applications, pp. 331–338 (2004)

10.

Grunske, L., Geiger, L., Lawley, M.: A graphical specification of model transformations
with triple graph grammars. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 284–298. Springer, Heidelberg (2005)

11.

Hausmann, J.H.: Dynamic Meta Modelling: a semantics description technique for visual
modelling languages. PhD Thesis, Faculty of Computer Science, Electrical Engineering,
and Mathematics, University of Paderborn, Germany (2005)

12.

Hong, Y.: WSDL and BPEL to SRML-P Language Transformation. MSc Dissertation,
University of Leicester (2006)

13.

Object Management Group, MOF QVT Final Adopted Specification (2007), available
from: http://www.omg.org/docs/ptc/05-11-01.pdf

14.

Ouyang, C., Verbeek, E., van del Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: For-
mal semantics and analysis of control flow in WS-BPEL (revised version). BPM Center
Report BPM-05-15, BPMcenter.org (2005)

15.

SCA Consortium Building Systems using a Service Oriented Architecture. Whitepaper ver-
sion 0.9 (2005), available from: http://www.oracle.com/technology/tech/
webservices/standards/sca/pdf/SCA_White_Paper1_09.pdf

SCA Consortium SCA Client and Implementation Model Specification for WS-BPEL.
Version 1.00 (2007), available from:
http://www.osoa.org/download/attachments/35/
SCA_ClientAnd ImplementationModelforBPEL_V100.pdf?version=1
Wirsing, M., Bocchi, L., Clark, A., Fiadeiro, J., Gilmore, S., Hölzl, M., Koch, N., Pugliese,
R.: SENSORIA: Engineering for Service-Oriented Overlay Computers (submitted, 2007)

Modeling Web Service Interactions Using the

Coordination Language Reo

Samira Tasharofi1,2, Mohsen Vakilian1, Roshanak Zilouchian Moghaddam1,
and Marjan Sirjani1,2

1 Department of Electrical and Computer Engineering, University of Tehran, Tehran,
Iran

2 School of Computer Science, Institute for Studies in Theoretical Physics and
Mathematics (IPM), Niavaran Square, Tehran, Iran

stasharofi@ut.ac.ir,
{m.vakilian,r.ziloochian}@ece.ut.ac.ir,

msirjani@ut.ac.ir

Abstract. In this paper we propose an approach to derive the formal
semantics of WS-BPEL processes compositionally using Reo and con-
straint automata. We map each WS-BPEL process into a Reo circuit
and then construct the corresponding constraint automaton which shows
the behavior of the process. The constraint automaton can be used for
analyzing the process behavior. Our work covers the core part of the
WS-BPEL language including basic and structured activities, correla-
tion sets, variables, and links.

Keywords: Compositional Semantics, Constraint Automata, Reo, WS-
BPEL, Web Services.

1 Introduction

Web service composition provides the mechanism to manage the complexity of
execution of business processes which may be dynamic or static. For static com-
position of web services two main approaches are currently proposed. The first
approach, referred to as web service orchestration, combines available services
by adding a central coordinator (the orchestrator) that is responsible for in-
voking and combining the single sub-activities. The second approach, referred
to as web service choreography, defines complex tasks via the definition of the
conversation that should be undertaken by each participant (instead of using a
central coordinator). Following this approach, the overall activity is achieved as
the composition of peer-to-peer interactions among the collaborating services.

WS-BPEL [1] is a specification for web service orchestration that models the
behavior of web services in a business process interaction. It has been revised
by IBM and Microsoft and is a candidate for being the standard language for
web service composition. The specification provides an XML-based grammar for
describing the control logic required to coordinate web services participating in
a process flow.

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 108–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Web Service Interactions 109

There are some approaches for formal specification of web services and their
composition [2,3,4,5]. One of the modeling languages that is used for modeling
compositional construction of web services is Reo [6,7,8]. Reo [9] is a coordina-
tion language for modeling systems based on components. In this language the
components are connected and coordinated through channels which are the sim-
plest connectors. The Reo language has a strong formal basis and promotes loose
coupling, distribution, mobility, exogenous coordination, and dynamic reconfig-
urability. Constraint automata [10] provide compositional formal semantics for
Reo. The formal basis of Reo guarantees possibilities for both model checking
and verification, as well as well-defined execution semantics of a web service com-
position [6]. Exogenous coordination of components in Reo by channels makes
it suitable for modeling orchestration. In this modeling, web services play the
role of the components (which may also be Reo circuits) and the orchestrator
is the Reo circuit that coordinates them. In other words, Reo as a modeling
language for service composition can provide service connectivity, composition
correctness, automatic composition and composition scalability which are vital
and valuable for modeling web services.

In this paper, each WS-BPEL process is mapped into a Reo circuit and con-
sequently to its corresponding constraint automaton. The whole process can be
compositionally built out of simple constructs while its constraint automaton
can be used to formally analyze the behavior of WS-BPEL processes. In this
work, we consider the core part of the WS-BPEL language which shows the
main stream of the control flow including basic and structured activities, cor-
relation sets, variables, and links. Some concepts of WS-BPEL which consist of
scope, fault handling, event handling, and compensation handling are remained
and will be subjected in future. In our approach, we visualize web services and
their interactions by Reo (which shows the structure), while the analysis support
is automatically provided by constraint automata (which capture the behavior).

The organization of this paper is as follows: Section 2 consists of a brief
overview of WS-BPEL. Some description of Reo and constraint automata are
provided in Section 3. In Section 4 we describe our mapping algorithm for trans-
lation of WS-BPEL to Reo and constraint automata. In order to show the ap-
plicability of our mapping, in Section 5 we investigate a case study. In Section 6,
we consider related works on formal modeling of WS-BPEL. Finally, Section 7
contains our conclusion and future works.

2 WS-BPEL

The WS-BPEL [1] process model is layered on top of the service model defined
by WSDL 1.1. A business process defines how to coordinate the interactions
between a process instance and its partners (a participant, which itself is a
process instance). In this sense, a WS-BPEL process definition provides the
description of the behavior and interactions of a process instance relative to
its partners and resources. Such a business process can be described in two
different ways: either as an executable business process or as an abstract process.

110 S. Tasharofi et al.

Executable business processes, which are the focus of this paper, model actual
behavior of a participant in a business interaction. Abstract business processes
are partially specified processes that are not intended to be executed.

For the specification of the internal behavior of a business process, WS-BPEL
provides two classes of activities which perform the process logic: basic and
structured. Basic activities are those which describe elemental steps of the process
behavior. Structured activities encode control-flow logic, and can contain other
basic and/or structured activities. The set of basic activities includes: <invoke>

(invoke an operation on a service), <receive> (wait for a message from a partner),
<reply> (send a response to a request), <assign> (update variables and partner
links), <wait> (specify a delay for a certain period of time or until a certain
deadline is reached), <empty> (do nothing and provide a synchronization point
in a <flow>), and <exit> (end the business process instance).

Structured activities prescribe the order in which a collection of activities is
executed. A structured activity can be nested within other structured activities-
for various control-flow patterns. These activities include: <sequence> (sequential
processing), <if> (conditional behavior), <while>, <repeatUntil> (repetitive execu-
tion), <forEach> (processing multiple branches), <pick> (selective event process-
ing), and <flow> (parallel and control dependencies processing).

The <link> concept in WS-BPEL can be used to define an order between two
concurrent activities in a flow in a sense that the target activity of a link can not
start before the source activity of the link has either been executed or has been
skipped. The join condition which is a boolean expression (with default value of
true) and defined on the source activity of a link determines the possibility of
execution of the activity, i.e., if it is evaluated to true, the source activity of the
link must be executed; otherwise, it must be skipped.

A <portType> construct defines the <operation>s (a grouping of a related set
of messages that are exchanged) that a web service supports. This construct is
used in <partnerLinks> construct for specifying the shape of a relationship with
a partner by defining the portTypes used in the interactions.

The notion of correlation is used to determine the exact instance of the part-
ner process when sending a message. The standard mechanism to do this is to
carry a business token in messages in a conversation for correlation. A set of cor-
relation tokens is shared by all messages in the correlated group. In a business
conversation, with several partners, the originator sends the first message, starts
the conversation and defines the correlation tokens in the <correlationSet>. The
rest of participants are followers and bind their <correlationSet>s by an incoming
message containing the values of the properties in the <correlationSet>. Corre-
lation can be used on every messaging activity (<receive>, <reply>, <onMessage>,
<onEvent>, and <invoke>).

3 Reo and Constraint Automata

Reo is an exogenous coordination language based on a calculus of channels [9].
Reo consists of components that are connected via connectors which coordinate

Modeling Web Service Interactions 111

their activities. Primitive connectors are channels which have two ends. There
are two types of channel ends: source and sink. A source channel end accepts
data into its channel, and a sink channel end dispenses data out of its channel.
The channel can be defined by users which allows an open-ended set of different
channel types, each with its own policy for synchronization, buffering, ordering,
computation, data retention/loss, etc. Some basic types of channels, used in
this paper are: Synchronous Channel (Sync), Synchronous Drain (SyncDrain),
FIFO1, Filter, and Lossy Synchronous Channel (LossySync).

A Sync channel has a source and a sink. Writing a message succeeds on the
source of it if and only if taking of a message succeeds at the same time on
its sink. A SyncDrain has two sources. Writing a message succeeds on one of
the sources of it if and only if writing a message succeeds on the other source.
The FIFO1 channel has a source and a sink. It maintains a buffer with capacity
of one. Writing a message succeeds on the source of a FIFO1 if and only if its
buffer does not contain any messages. Taking of a message, which makes the
buffer empty, succeeds on the sink of it if and only if its buffer already contains
a message. The Filter channel behaves like the Sync except that it loses all data
that do not match the specified pattern of the Filter. A LossySync channel has
a sink and a source. The source always accepts all data items. If the sink does
not have a pending read or take operation, the LossySync loses the data item,
otherwise the channel behaves as a Sync.

Complex connectors are constructed through composition of simpler ones by
applying join operation. Whereas, the internal behavior of complex connectors
can be abstracted away with the aid of hide operation. A component can write
data items to a source node that it is connected to. The write operation succeeds
only if all source channel ends coincident on the node accept the data item, in
which case the data item is written to every source end coincident on the node.
A source node, thus, acts as a replicator. A component can obtain data items, by
an input operation, from a sink node that it is connected to. A take operation
succeeds only if at least one of the sink channel ends coincident on the node
offers a data item; if more than one coincident channel end offers data items,
one is selected nondeterministically. A mixed node nondeterministically selects
and takes a suitable data item offered by one of its coincident sink channel ends
and replicates it into all of its coincident source channel ends. A sink or mixed
node, thus, acts as a nondeterministic merger.

Constraint automata (CA) [10] are proposed as compositional semantics for
Reo, based on timed data streams [11]. Each element of a timed data stream is
a pair of time and a data item, where the time indicates when the data item
is being input or output. A transition fires if it observes data item in a port of
the component and according to the observed data, the automaton may change
its state.Therefore, the automata-states stand for the possible configurations
(e.g., the contents of the FIFO-channels of a Reo-connector) while the automata-
transitions represent the possible data flow and its effect on these configurations.

Definition 1 (Constraint Automata). A constraint automaton is a tuple
A = (Q, Names,−→, Q0) where:

112 S. Tasharofi et al.

Q is a finite set of states, Names is a finite set of names(e.g. I/O ports of a
component), −→ is a finite subset of Q×2Names ×DC ×Q, called the transition
relation of A, and Q0 ⊆ Q is the set of initial states. DC is data constraint
that plays the role of guard for transition. For example, d A = d B is a data
constraint that imposes the observed data on ports A and B must be equal.

Figure 1 shows the five Reo channels we used in this paper (mentioned above)
and their corresponding constraint automata and also the constraint automaton
of the merger node.

Fig. 1. Constraint automata for some basic Reo channels, and merger node

We may put a Reo connector (circuit) in a box to make a component out
of it. The inner nodes become hidden and the source or sink nodes which are
the interfaces of a component and its environment are called (input or output)
ports. A component has well-defined behavior and interface and can be reused.
We also used two Reo circuits, Exclusive Router (XR) and Shift Lossy FIFO
(ShiftLossyFIFO). The (XR) has an input port and two output ports, when
a data item arrives at input, it flows to only one of the outputs depending on
which is prepared to consume it. The (ShiftLossyFIFO) behaves like an ordinary
FIFO1, except that if it is full, the arrival of a new data item overwrites the
existing data item.

4 Mapping Algorithm

Here, we present a mapping to transform a WS-BPEL process into a Reo circuit.
Each basic and structured activity in WS-BPEL processes is mapped into a Reo
circuit that models the behavior of the activity and can be considered as a
reusable component.

For each component we consider two special ports called start and end. An
activity is started whenever data is ready at the start port and the end port

Modeling Web Service Interactions 113

is fired whenever the corresponding activity is done. These start and end ports
are used to make an activity be executed atomically. We use a FIFO1 and a
SyncDrain to make a pattern to prevent a Reo circuit from restarting while it
has not finished its current job (its end node has not yet been fired). The circuitry
of this pattern can be seen in Fig. 5 and parts (a), (c), (e) and (g) of Fig. 4.

In WS-BPEL, the interaction between services is accomplished by message
passing. To model this interaction in Reo, ports to send or receive messages
are added to Reo components, and Sync channels connect corresponding ports
between communicating components.

In the following, different concepts of WS-BPEL are explained briefly. Then,
Reo circuits of each of these WS-BPEL activities are shown. Note that scope,
fault handling, event handling, and compensation handling features of WS-BPEL
are ignored in this paper for the sake of simplicity. They will be considered in
our future development.

4.1 Variable

TheReocircuitandconstraintautomatonrelatedtovariablearedepicted inFig. 2.a
and Fig. 2.b respectively. In the Reo circuit of variables, two ShiftLossyFIFO

Fig. 2. Reo mapping of variable

channels are used in the form of a loop back. A write operation overwrites the val-
ues of both channels. An auxiliary ShiftLossyFIFO channel is used to restore the
data of the other ShiftLossyFIFO channel whenever it is read. Actually, a restoring
transition (which fires internally and is not observable from the outside) is needed
between two consecutive reads.Butasweare intended tomodel only the I/Obehav-
ior byhiding internal interactions fromthe constraint automaton, it is not appeared
in the constraint automaton.

4.2 Basic Activities

Invoke. Generally the <invoke> activity is used to call services for specific op-
erations. There are two forms of <invoke>, one-way invocation which requires
only the inputVariable, and request-response invocation which requires both of
inputVariable and outputVariable. Once the mapping of receive and one-way
invocation are determined, the mapping of a request-response invocation could

114 S. Tasharofi et al.

be easily obtained by considering a request-response invocation, as a <sequence>

of a one-way invocation and a receive. The initiate attribute on a <correlation>

specification is used to indicate whether the correlation set is being initiated.
The Reo circuits of one-way invocation for initiate=yes is depicted in Fig. 4.a.
For other values of initiate the circuits are slightly different.

Receive. The <receive> activity causes a blocking wait for a matching message.
The partnerLink and the desired operation of the partner should be specified in
<receive>. In addition, the variable in which the message is to be stored should
be mentioned. Reo circuit of the <receive> activity for initiate=yes attribute of
correlations set is illustrated in Fig. 4.c.

Reply. The <reply> activity, sends a message in reply to the received message.
Therefore, a <reply> activity can be easily modeled as a <sequence> of a <receive>

and an <invoke> activity.

Assign. The <assign> activity can be used to update the values of variables with
new data. <assign> is a <sequence> of several <copy> constructs that copy one
value each (Fig. 4.e). The desired part of the source variable is extracted from
its Reo component using a Filter channel.

Wait. The <wait> construct specifies a delay for a given time period or until a
certain time has passed. In the corresponding Reo circuit (Fig. 4.g), the clock
component is responsible to announce finishing of the given period.

Empty. The <empty> construct is an activity that does nothing. This could
be useful for synchronization of concurrent activities using <links>. This trivial
activity can be easily modeled by a FIFO1 channel between the start and end

nodes.

Exit. The <exit> construct is used to immediately end the business process in-
stance. To model this construct in Reo we use an <empty> activity whose end

signal is connected to the end node of the business process by a Sync channel.

4.3 Structured Activities

Sequence. The <sequence> construct defines a collection of activities to be per-
formed sequentially. The Reo circuit and corresponding constraint automaton of
the <sequence> construct are shown in Fig. 5.a and Fig. 5.b respectively.

If. The <if> construct is to provide conditional behavior. This activity is much
like the if-then-else statements in regular programming languages in which
a list of conditions are examined in order to find the first matching branch
to execute. An <if> activity consists of one <condition>, optionally several <else
if> elements and an optional <else> element. The Reo circuit and constraint
automaton of <if> are depicted in Fig. 5.c and Fig. 5.d, respectively. In these
figures, just one <else if> element is included. Additional <else if> elements can
be added following the same pattern as the first one.

Modeling Web Service Interactions 115

While, Repeat Until, For Each. The <while> construct indicates that an activity
is to be repeated while a certain success criteria is met. The Reo circuit and the
constraint automaton for the <while> activity are shown in Fig. 5.e and Fig. 5.f.
The component for <repeatUntil> activity can be made using <while> component.
The <forEach> activity executes its contained activity for a specified number of
times and can be made using <while> activity.

Pick. The <pick> activity blocks and waits for a suitable message to arrive or
for a time-out alarm to go off. When one of these triggers occurs, the associated
activity is performed and the <pick> completes. The constraint automaton in
Fig. 5.h, shows the behavior of the <pick> Reo circuit.

Flow. The <flow> construct specifies one or more activities to be executed con-
currently. Figure 5.i models a <flow> of two processes. As shown in this figure,
the start signal of the <flow> activity, replicates to the start signals of the given
two activities to execute both concurrently. Finally, the end signal of the <flow>

activity is issued whenever both of its containing activities have raised their end

signals. As mentioned in Section 2, links can be used within concurrent activi-
ties to define arbitrary control structures in a way that the target activity of a
link can not start before either its source activity is completed or skipped ac-
cording to the value of join condition. As shown in Fig. 3, by using a FIFO1 and

Fig. 3. Reo circuit depicting the use of <link> construct

a SyncDrain it is guaranteed that Activity 2.2 (target of the link) can not start
either before Activity 1.1 (source of the link) is completed or skipped (after
executing Activity 2.1). More precisely, if the output of the component Join
Condition which is responsible for evaluating the join condition of Activity 1.1

is true, Activity 2.2 starts after Activity 1.1 is completed; otherwise, Activity
2.2 starts after Activity 1.1 is skipped. The filter channels with true and false
filters determine the directions.

4.4 Trends for Adding Scope, Fault and Event Concepts

In order to incorporate scope, fault, and event concepts, the pattern used for
each WS-BPEL activity must be extended so that it includes additional ports

116 S. Tasharofi et al.

of terminate input port and fault output port. The terminate input port is used
for terminating the executing activity when the process it belongs to must be
terminated, e.g., a fault has occurred. On the other hand, enabling the fault
output port stands for occurrences of fault within the activity. The detailed
descriptions of mapping of these features are out of scope of this paper.

5 The Purchase Order Example

In this section, a typical process description [1] for handling a purchase order
in WS-BPEL is mapped into Reo to demonstrate how the proposed mapping
algorithm works in real world. On receiving the purchase order from a customer,
the process initiates two paths concurrently: calculating the final price for the
order, and selecting a shipper. While some of the processing can proceed con-
currently, there are control and data dependencies between the two paths. In
particular, the shipping price is required to finalize the price calculation. When
the two concurrent paths are completed, invoice processing can proceed and the
invoice is sent to the customer. The following is some parts of the code from the
WS-BPEL description of the purchase order:

<sequence>
<receive operation="sendPurchaseOrder" variable="PO" ...> </receive>
<flow>

<links> <link name="ship-to-invoice" /> </links>
<sequence>
<assign>

<copy>
<from>$PO.customerInfo</from>
<to>$shippingRequest.customerInfo</to>

</copy>
</assign>
<invoke operation="requestShipping" inputVariable="shippingRequest"

outputVariable="shippingInfo" ...>
<sources><source linkName="ship-to-invoice" /></sources>

</invoke>
<receive ... operation="sendSchedule" variable="shippingSchedule"/>

</sequence>
<sequence>
<invoke operation="initiatePriceCalculation" inputVariable="PO".../>
<invoke operation="sendShippingPrice" inputVariable="shippingInfo" ...>

<targets><target linkName="ship-to-invoice"/></targets>
</invoke>
<receive ... operation="sendInvoice" variable="Invoice" />

</sequence>
</flow>

</sequence>

The circuit shown in Fig. 6 demonstrates the result of mapping the WS-BPEL
process into Reo. However, the circuit is not an exact Reo circuit. Some notations

Modeling Web Service Interactions 117

Fig. 4. Basic Activities

are used to keep the circuit concise. For example, a <receive> is represented by a
box whose label is composed of “Receive” and the name of the activity. All other
similar elements like <invoke> and <copy> are represented in the same manner.
Other activities such as <assign> and structured activities are represented by a
box containing other boxes as the inner activities or elements. Besides, the type
of activity (<sequence>, <assign>, . . .) is written in the upper left corner of the box.
The complete Reo circuits of these boxes can be obtained in a straightforward
way by using the mapping of each construct in Fig. 4 and Fig. 5. Therefore,
all the activities inside a <flow> box, are executed in parallel. And, all of the
activities inside a <sequence> box, are executed in the order the start and end

nodes of them are connected to each other.
By sending the start signal to the purchase order component, the <sequence>

component called “shippingSequence” and “invoiceSequence” get started (the
upper left and right <sequence> respectively in Fig. 6). By starting the “shipping
Sequence” construct, the first inner <assign> activity (“assignShippingRequest”)
is started and after its completion, <invoke> and <receive> activities will be ini-
tiated respectively, and completion of them completes the execution of the part
of code mentioned above.

There is a tool [12] that automatically transforms WS-BPEL specification
to its corresponding Reo circuit using our mapping algorithm and finally to
constraint automaton. This constraint automaton can be analyzed by the tools
presented in [13] and [14]. [14] enables us to check occurrences of deadlock and
live-lock and also reachability in a constraint automaton. On the other hand,
temporal properties can be checked using the tool introduced in [13]. These
properties are noted in BTSL formula [15] which combines CTL operators with
a special path modality 〈α〉 and its dual [α] that allow to reason about the data
streams observable at the network nodes by means of a regular expression α.

118 S. Tasharofi et al.

A1 A2 A3

s
e

s s s

e e
e

b

a. <sequence> Reo Circuit
b. <sequence> Constraint Automaton

s, A1.s A1.e,
A2.s

A2.e,
A3.s

A3.e, e,
b

If Condition XR If Body

Else If Condition

XR

True

True
Else If Body

Else Body
False

s ic.s ic.e ib.s
ib.e

eib.s eib.e

eb.s

eb.e

e

eic.s

eic.e

F
alse

b

c. <if> Reo Circuit

s, ic.s

ic.e, eic.s

ic.e, ib.s
eic.e,
eib.s eic.e, eb.s

eib.e, b, e

eb.e, b, e

d. <if> Constraint Automaton

Condition
Evaluator

XR

While Body

False

T
rue

s

ce.s ce.e

wb.e wb.s

b

e

e. <while> Reo Circuit

s,
ce.s

wb.e,
ce.s

ce.e,
wb.s

ce.e,
b, e

f. <while> Constraint Automaton

s b

A1

A2
XR e

s

s

e

e

g. <pick> Reo Circuit

s,
A1.s

A2.e,
e

s,
A2.s

A1.e
, e

h. <pick> Constraint Automaton

i. <flow> Reo Circuit

A1

A2s

e

e

bs

s

e

x

y

s, A1.s,
A2.s

A1.e, A2.e

j. <flow> Constraint Automaton

x, y, b, e

A2.e

A1.e

A1.e

A2.e

ib.e, b, e

Fig. 5. Structured Activities

The BTSL model checking procedure relies on a combination of known methods
for model checking CTL-like logics and automata-based approaches for linear
time logics.

Figure 7 illustrates the constraint automaton of the case study. Having ob-
tained the corresponding constraint automaton, several properties can be
checked. This is one of the most important benefits of mapping WS-BPEL into

Modeling Web Service Interactions 119

Fig. 6. Purchase Order Circuit

Fig. 7. Constraint automaton for purchase order

Reo that is, the ability of checking several properties formally. For instance,
one might be interested in finding out whether or not the <invoke> activity
“requestShipping” is executed before the <invoke> activity “sendShippingPrice”.
A <link> has been used to enforce the proper ordering and its mapping is pre-
sented in Fig. 6. In this case, no join condition is defined on the source activity

120 S. Tasharofi et al.

of the link. So, it has its default value of true and the Join Condition component
(presented in Fig. 3) does not appear in Fig. 6.

Using constraint automata, we can check that the order imposed by the <link>

construct is satisfied in the actual behavior of the process. That is, it suffices
to check whether the start signal of “sendShippingPrice” is issued only after
the end signal of “requestshipping” raised. This property can be formulated as
∀[(¬reqShip.end)∗]¬∃〈sendShipPrice.start〉true in BTSL logic. Another prop-
erty can be insuring about that the purchase order process after receiving proper
answers from two partners, Shipping and Invoice (which is equivalent to com-
pletion of its two child activities, “shippingSequence” and “invoiceSequence”,
executing in a flow) will be finished and give proper answer to customers. The
BTSL formula for this property is:
∀[(true∗;shipSeq.end;(¬PurchaseOrder.end)∗) ∩
(true∗;invoiceSeq.end;(¬PurchaseOrder.end)∗)]∀〈PurchaseOrder.end〉true

6 Related Work

Some well-known problems related to web services are how to specify them in a
formal and expressive enough language, how to compose them (automatically),
and how to ensure their correctness. Formal methods are particularly well suited
to address the composition and correctness issues. Recently, a variety of concrete
proposals to formally describe, compose and verify web services have emerged.
The majority of these are based on state-action models (e.g. labeled transition
systems, timed automata, Petri nets, YAWL, and abstract state machines) or
process models (e.g. π-calculus).

Among automata-based approaches, in [16] the authors introduce a framework
to verify properties of web service compositions of WS-BPEL processes that com-
municate via asynchronous XML messages. Their framework first translates the
WS-BPEL processes to a particular type of automata, then, these automata are
translated into Promela, and is model checked by SPIN [17]. In [5] an abstract
executable semantics for WS-BPEL in terms of a distributed ASM [18] are de-
fined. In this work, modeling and integration of compensation behavior and fault
handling are not supported. These concepts are added in [19]. This work is con-
tinued in [2] in which a complete abstract operational semantics for WS-BPEL
is presented by ASM which contains correlation handling, dead path elimination
and event handling.

Petri-nets are widely used for formal specification and analysis of web ser-
vices [20,21,3]. Some of these works can capture exception handling, compensa-
tion handling, and timing aspects, and make the variety of petri-net verification
tools applicable for automatic analyzing of WS-BPEL processes.

The π-calculus [22] is a process algebra that has inspired modern composition
languages including WS-BPEL. In [23] a process algebra called BPE-calculus
that contains the main control flow constructs of WS-BPEL is introduced. The
main goal was to analyze processes in order to detect possible deadlocks. This
work does not cover fault and compensation handling of WS-BPEL. In [4] a

Modeling Web Service Interactions 121

two-way mapping is defined between WS-BPEL and the more expressive process
algebra LOTOS. An advantage of this translation is that it includes compensa-
tions and exception handling.

The work in [24] proposes a method for translating WS-BPEL processes into
YAWL workflows which are based on Petri nets. In that mapping, some aspects
of WS-BPEL such as correlation sets and partner link types are ignored.

Reo, has also been used for modeling web services and their composition. The
work presented in [8] investigates the issues of description, orchestration, and
choreography of web services at a unifying abstract level. The authors in [7]
and [6] proposed Reo for web service composition, but do not use any specific
web service language. In [25], a framework for construction of composite ser-
vices for distributed computing environments with the aid of Reo is presented.
This framework should be integrated with other model checking tools for web
service analysis. All of these works on Reo, use Reo in an abstract level for
web service specification and composition without considering any specific web
service language. But, here, we use WS-BPEL as a standard language for web
service specification and composition. This makes our approach more applicable
for practitioners working on web services and for analyzing existing WS-BPEL
processes.

In comparison to other works that use Petri nets, Process algebra, ASM, and
YAWL for modeling web services, our approach benefits from pros of Reo which
can be summarized as follows:

– Inherent fitness of computational models: Reo is proposed as a coordination
language for exogenous management of interactions among concurrent com-
ponents. Hence, its computational model inherently fits for orchestrating web
services as self contained components. Web services, like Reo components,
can be composed to build other web services.

– Visualization and compositionality: Visual modeling of data flow among com-
ponents makes the comprehension of component interaction more intuitive.
Furthermore, thanks to hide operation and consequently hierarchical com-
position in Reo, the connectors can be specified in any abstract level and so
the modeling can be more comprehensive and better matched with its real
configuration. In our work, we benefit from hierarchical composition of Reo
in modeling our case study, in which the basic and structured activities are
abstracted in components. Similarly, any complex WS-BPEL activities and
WS-BPEL processes can be encapsulated in components during modeling
web services and their interactions. This makes our model simpler and more
manageable. So, another advantage of hierarchical composition is the ability
of modeling large scale systems. In YAWL, the high-level view of processes
can be expressed by pattern templates while in real modeling, the patterns
should be instantiated which may provide complex diagrams. In Reo, the
instantiated components can be expressed in any abstract level. The only
requirement is knowing their I/O behavior as constraint automata. That is
the power of Reo which can be used in conjunction with constraint automata.

122 S. Tasharofi et al.

7 Conclusion and Future Work

We proposed a mapping from WS-BPEL to Reo which can be used to build the
Reo circuit of a web service compositionally. Our next step is to consider other
notions of BPEL as scope, event handling, fault and compensation handling,
and process instantiation. Furthermore, our approach moves toward using Reo
to reason about dynamic composition of web services.

References

1. Jordan, D., Evdemon, J.: Web services business process execution language version
2.0. Technical report, OASIS (2006)

2. Fahland, D.: Complete abstract operational semantics for the web service business
process execution language. Technical Report 190, Humboldt University, Berlin
(2005)

3. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

4. Ferrara, A.: Web services: a process algebra approach. In: Proceedings of 2nd In-
ternational Conference on Service Oriented Computing, pp. 242–251. ACM Press,
New York (2004)

5. Farahbod, R., Glasser, U., Vajihollahi, M.: Specification and validation of the busi-
ness process execution language for web services. In: Zimmermann, W., Thalheim,
B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

6. Diakov, N., Arbab, F.: Compositional construction of web services using Reo. In:
WSMAI, pp. 49–58 (2004)

7. Lemniotes, T., Papadopoulos, G.A., Arbab, F.: Coordinating web services using
channel based communication. In: 28th Annual International Computer Software
and Applications Conference (COMPSAC 2004), pp. 486–491 (2004)

8. Meng, S., Arbab, F.: Web services choreography and orchestration in Reo and
constraint automata. In: Proceedings of 22nd Annual ACM Symposium on Applied
Computing(SAC 2007) (2007)

9. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

10. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61(2), 75–113
(2006)

11. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 35–56.
Springer, Heidelberg (2003)

12. Mahdikhani, F.: BPEL to Reo tool (2007),
http://ece.ut.ac.ir/msirjani/B2ReoTool/B2R.jar

13. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. In: FOCLASA 2006 (2006)

14. Pourvatan, B., Rouhy, N.: An alternative algorithm for constraint automata prod-
uct. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 409–419.
Springer, Heidelberg (2007)

15. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Funda-
menta Informaticae (accepted, 2007)

http://ece.ut.ac.ir/msirjani/B2ReoTool/B2R.jar

Modeling Web Service Interactions 123

16. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: 13th Int.
Conf. World Wide Web (WWW 2004), pp. 621–630. ACM Press, New York (2004)

17. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
18. Borger, E., Stark, R.: Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer, Heidelberg (2003)
19. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative control

flow. In: Proceedings of 12th International Workshop on Abstract State Machines,
Paris, pp. 78–94. Springer, Heidelberg (2005)

20. Schmidt, K., Stahl, C.: A Petri Net semantic for BPEL4WS - validation and appli-
cation. In: Proceedings of 11th Workshop on Algorithms and Tools for Petri Nets
(2004)

21. Ouyang, C., van der Aalst, W., Breutel, S., Dumas, M., ter Hofstede, A., Verbeek,
H.: Formal semantics and analysis of control flow in WS-BPEL. Technical Report
BPM-05-15, BPM Center (2005)

22. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii.
Information and Computation 100(1), 1–77 (1992)

23. Koshkina, M.: Verification of business processes for web services. Master thesis,
York University (2003)

24. Brogi, A., Popescu, R.: From BPEL processes to YAWL workflows. In: Bravetti,
M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 107–122.
Springer, Heidelberg (2006)

25. Diakov, N., Arbab, F.: Software adaptation in integrated tool frameworks for com-
posite services. In: Proceedings of The Third International Workshop on Coordina-
tion and Adaptation of Software Entities(WCAT 2006), Nantes, France, pp. 9–14
(2006)

Synthesis of Web Services Orchestrators in a Timed
Setting�

Fabio Martinelli1 and Ilaria Matteucci1,2

1 Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
2 Dipartimento di Scienze Matematiche ed Informatiche,R. Magari,

Università degli Studi di Siena
{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it

Abstract. In this paper we present a framework based on partial model checking
technique, process algebra and logic for the synthesis of Web Services orches-
trators in a timed setting. We suppose to have a network of services and a user’s
request, expressed as a temporal logic formula by which also time constraints
are specified. We define a process algebra operator, called orchestrating operator
that permits us to manage services in order to satisfy the user’s request. In or-
der to isolate the behavior that the orchestrator should have to manage the given
services, we extend the definition of the partial model checking function to the
orchestrating operator. By using this function we are able to reduce the starting
problem to a satisfiability one that we solve by exploiting a satisfiability proce-
dure for temporal logic. In this way we automatically generate an orchestrator
process as a model of the request.

1 Overview

In the last few years the automated composition of Web Services is one of the most
promising ideas and, at the same time, one of the main challenges for the taking off of
service oriented applications.

In this paper we use formal methods to deal with Web Services. As a matter of fact
Web Services can be modeled by process algebras (e.g., see [1,2,3,4,5]). Thus we are
able to give an abstract and formal description of the behavior of services. Moreover all
known results of process algebras theory can be applied to specify, study and analyze
web services.

Services composition can be made on the one hand by a single peer service, which
could be involved in different systems at different times, preserving their composition-
ality (Orchestration), and on the other hand, it is fundamental to guarantee overall sys-
tems functionalities (Choreography).

Here we propose a formal approach based on CCS process algebra (see [6]), logic
and partial model checking (see [7]) in order to synthesize an orchestrator process in
a timed setting. Temporal constraints are important in Web Services composition. We
deal with time-related properties that are particularly relevant in Web Services scenar-
ios, i.e., they refer to the time required by services to carry out their tasks and take
their decisions, and to the assumptions and constraints on these times that guarantee a

� Work partially supported by EU-funded project “Software Engineering for Service-Oriented
Overlay Computers”(SENSORIA).

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 124–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Web Services Orchestrators in a Timed Setting 125

successful execution if the distributed business processes. Indeed we expect that a Web
Service composition satisfies some global timing constraints, and these constraints can
be satisfied only if all the services participating to the composition are committed to
respect their own local timing constraints.

Our approach starts from our works on the synthesis of secure systems (see [8,9]),
based on the use of partial model checking and process algebras for security analy-
sis (see [10]), to deal with the Web Services composition problem in a timed setting.
Moreover, according to the definition given in [11], our method permits to compose
services at the process level, i.e., the composition takes into account that executing a
web service requires interactions that may involve different sequential, conditional, and
iterative steps. As a matter of fact we define a process algebra operator � said orches-
trating operator that, by controlling the behavior of the composed process, permits to
synchronize several services in order to satisfy the request.

We follow an approach in which time is discrete, actions are durationless and there
is one special action tick to represent the elapsing of time (see [12,13,14,15]). By us-
ing this approach we are able to synthesize an orchestrator process in a timed setting
that manages a given set of services in order to generate a new process that is the com-
position of some of previous services and guarantees that this composition satisfies a
request made by an external user. A possible request of a user is modeled by an equa-
tional μ-calculus formula (see [16]), hence, by exploiting a satisfiability procedure for
temporal logic, we are able to generate an orchestrator process.

This paper is organized as follows. Section 2 recalls some notions of BPEL (Busi-
ness Process Execution Language, see [17]), process algebras and temporal logic. Sec-
tion 3 explains our approach by dealing also with a timed setting. Section 4 shows a
simple example and Section 5 presents some related works. Section 6 concludes the
paper.

2 Background

Here, we give a brief description of the general concepts of so called Web Services, we
will show a useful mapping from their description languages to process algebra CCS.

2.1 Web Service Languages: WSDL and BPEL

The World Wide Web Consortium, W3C for short, defines a Web Service as a software
system designed to support interoperable Machine to Machine interaction over a net-
work. Web Services are frequently just Web APIs that can be accessed over a network,
such as the Internet. They are executed on a remote system with respect to the sys-
tem of the user that invokes that service. Eventually, the user gets the result of such an
execution.

This W3C definition encompasses many different systems, but in common usage
the term refers to clients and servers that communicate using XML (the Extensible
Markup Language) messages following the SOAP standard. SOAP is a protocol for
exchanging XML-based messages over computer networks.

XML is a general-purpose markup language. It is classified as an extensible language
because it allows its users to define their own tags. Its primary purpose is to facilitate
the sharing of structured data across different information systems, particularly via the
Internet. It is used both to encode documents and serialize data.

126 F. Martinelli and I. Matteucci

WSDL is XML-based language that provides a model for describing Web Services. In
particular, the format describes network services as a set of endpoints, or ports, operating
on messages containing either document-oriented or procedure-oriented information.

The service is described, at an abstract level, in terms of the messages it sends and
receives and, at a concrete level, defines details about protocols and data format speci-
fications implementing operations for that particular service.

The BPEL language [17] has been introduced to describe business processes which
manage the interaction of different Web Services, i.e., it describes how Web Services
can be composed and can cooperate one each other. Like WSDL, it is an XML-based
language. It is layered on top of WSDL and it defines how to coordinate the interactions
between services. In this sense, a BPEL process definition provides and/or uses one or
more WSDL interfaces, that are lists of message declarations and types, and it provides
the description of the behavior and interactions of the services. Indeed, in WSDL no
information is given on the sequence of messages sent and received by the service.
This is one of the reason because BPEL has been adopted to describe the interactions
between services.

In BPEL, specifications are classified as basic activities and structured activities.
Basic activities are sending and reception of a message, e.g., receiving a request from
a client, replying to the request, and also assigning data from one container to another,
terminating the process, waiting for some period of time and doing nothing.

Structured activities define the control flow of the process. They include basic pro-
gramming constructs as sequencing, loops and statements of various kind, e.g., :

sequencing : 〈sequence〉
activity1
activity2
. . .

〈\sequence〉

while loops : 〈while condition=“bool-expr”〉
activity

〈\while〉
switch statements : 〈switch〉

〈case condition = . . .〉
〈\case〉
. . .
〈case condition = . . .〉
〈\case〉

〈\switch〉
BPEL also includes a structured activity called pick, that allows for nondeterministic
selective communication:

〈pick〉
〈onMessage . . .〉

〈invoke . . . \〉〈\onMessage〉
〈onMessage . . .〉

〈invoke . . . \〉〈\onMessage〉
〈\pick〉

Synthesis of Web Services Orchestrators in a Timed Setting 127

This construct is similar to the nondeterministic choice construct of process algebras.
All the activities in BPEL are modeled as instantaneous, i.e., they take no time.

However, there are constructs modeling, e.g., the elapsing of time: the wait activity
allows a business process to specify a delay for a certain period of time or until a certain
deadline is reached.

From BPEL to timedCCS process algebra. In the literature, several efforts have
been done for relating BPEL with process algebras, see, e.g., [1,2,3]. Indeed, process
algebras provide methodologies for the high-level description of interactions, commu-
nications, and synchronizations between processes, and this feature may be appealing
for specifying interactions between Web Services, or reasoning on the specified system.

CCS is developed by Robin Milner (see [6]). Its actions model indivisible commu-
nications between exactly two participants. The notion of communication considered is
a synchronous one, i.e., both processes must agree on performing the communication
at the same time.

Here we present a variant of CCS that permits to deal also with the elapsing of time,
called timedCCS. Several languages have been developed in the literature to describe
the system in a timed setting (see [12,13,14,15]). We follow a simple approach, where
time is discrete, actions are durationless and there is one special tick action to represent
the elapsing of time (see [12,15]). These are features of the so called fictitious clock
approach of, e.g., [18,19,20].

A global clock is supposed to be updated whenever all processes of the system agree
on it, by globally synchronizing on action tick. Hence, between two global synchroniza-
tions on action tick all processes proceed asynchronously by performing durationless
actions.

The set of timedCCS processes is denoted with E , ranged over by E, F, P,
Q

Let L be a set of visible actions and let τ be a special action that models an internal
computation, i.e., it is not visible by an external observer. Let (̄) : L �→ L be a comple-
mentation function such that ∀l ∈ L : ¯̄l = l. Let Act = L ∪ {τ} ∪ {tick} be the set of
actions, ranged over by α, β, . . . and let L ∪ {τ} be ranged over by a, b, c, . . .

The syntax of timedCCS is the following:

P ::= 0 | A | α.P | P1 + P2 | P1‖P2 | P\L | i(P)

where α ∈ Act, L ⊆ L.
Informally 0 is a process that does nothing, A (agent) is a name of a constant process.

The name range over a set of processes names. α.P is the prefix operator. The result is a
process that can perform an α action and then behaves as P . In particular tick.P repre-
sents a process willing to let one time unit pass. P1 +P2, the choice operator, represents
the nondeterministic choice between the two processes P1 and P2; when both are able
to perform a tick action then P1 + P2 can perform this action and reach a configuration
where both summand derivatives can still be chosen. The parallel operator P1‖P2 is
the parallel composition of processes that can proceed in an asynchronous way but they
must synchronize on complementary actions to make a communication, represented by
an internal action τ . This is the core operator for time: both components must agree
on performing a tick action. P\L is the restriction. It is the process P when actions in
L ∪ L are prevented and i(P) (idling) allows process P to wait indefinitely. At every

128 F. Martinelli and I. Matteucci

Table 1. Operational semantics for timed CCS

Prefixing:

α.P
α−→ P

Choice:
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

P2
α−→ P ′

2

P1 + P2
α−→ P ′

2

P1
tick−→ P ′

1 P2
tick−→ P ′

2

P1 + P2
tick−→ P ′

1 + P ′
2

Parallel:

P1
a−→ P ′

1

P1‖P2
a−→ P ′

1‖P2

P2
a−→ P ′

2

P1‖P2
a−→ P1‖P ′

2

P1
l→ P ′

1 P2
l→ P ′

2

P1‖P2
τ→ P ′

1‖P ′
2

P1
tick−→ P ′

1 P2
tick−→ P ′

2

P1‖P2
tick−→ P ′

1‖P ′
2

Restriction:
P

α−→ P ′

P\L
α−→ P ′\L

(α �∈L∪L)

Idling:

P � tick−→ P � τ−→
i(P)

tick−→ i(P)

P
tick−→ P ′

i(P)
tick−→ i(P ′)

P
α−→ P ′

i(P)
α−→ P ′

instant of time, if process P performs an action α then the whole system proceeds in
this state, while dropping the idling operator.

The formal semantics of timedCCS processes is described by labelled transition
system (LTS, for short). A LTS over Act is a pair (E , T) where T is a ternary relation
T ⊆ (E × Act × E), known as a transition relation. It is the least relation between
timed CCS processes induced by axioms and inference rules in Table 1. Such a relation
is well-defined.

Given a timedCCS process P , Der(P) = {P ′|P →∗ P ′}, is the set of its deriva-
tives, where →∗ is the transitive and reflexive closure of →. A timedCCS process P
is said finite state if Der(P) is finite. Sort(P) (called the sort of P) is the set of names
of actions that syntactically appear in the process P .

By using this variant of CCS we are able to model time aspect of systems. For
instance we can easily model timeout constructs. Assume n1 ≤ n2 and define the
following process:

TIME OUT(n1, n2, P, Q) = tickn1 .i(P) + tickn2 .τ.Q

where P and Q are two processes. TIME OUT(n1, n2, P, Q) first performs a sequence
of n1 tick actions; then, the system may performs n2 − n1 tick actions, unless P
resolves the choice by performing an action; instead if P does not do anything, after n2
time units, via the execution of a τ action, the process is forced to act as Q.

Encoding of BPEL in CCS. Referring to [2,3], we recall and adapt here an encoding
between BPEL and timedCCS. The action notion of timedCCS finds its equivalent

Synthesis of Web Services Orchestrators in a Timed Setting 129

Table 2. Mapping between timedCCS and WSDL/BPEL (extension of [2,3] with time)

BPEL timedCCS

receive,reply,invoke actions(reply/receive)
sequence sequence ·
pick and switch choice +
interacting Web services parallel composition ‖
interactions and assign restriction \
end of the main sequence or terminate termination 0
new instantiation or while recursive call
(internal) assign, (external) interactions τ -actions
wait idling

in the Receive, Reply and Invoke basic activities of BPEL. As a matter of fact, the Re-
ceive activity accepts a message through the invocation of a specified operation by a
partner. The Reply activity sends a message as a response to a request previously ac-
cepted through a receive activity. In the end, the Invoke basic activities of synchronizes
the communication between Web Services. The sequence activity in BPEL matches
the prefixing construct of timedCCS. The nondeterministic choice in timedCCS
can be seen as sequence and pick constructs in BPEL. In case of a determinis-
tic choice described as a switch construct, we should use the timedCCS choice
operator. An overall activity is completed when the end of its behavior is reached (no
explicit construct unlike the termination denoted by 0 in timedCCS). Agent recursion,
corresponding to the repetition of their behavior, could be represented using a while
activity. To sum up in Table 2 there is the encoding proposed in [2,3]. We stress that
some notions that are present in timedCCS do not directly appear in BPEL. This is
the case of the τ action and of the restriction operator. Moreover, the behavior of the
idling operator matches the BPEL wait activity. Furthermore, we can imagine that
the names needed in the timedCCS restriction set could be easily extracted from the
WSDL files.

Table 3. Equationalμ-calculus

�T�′
ρ = S �F�′

ρ = ∅ �X�′
ρ = ρ(X) �φ1 ∧ φ2�

′
ρ = �φ1�

′
ρ ∩ �φ2�

′
ρ

�φ1 ∨ φ2�
′
ρ = �φ1�

′
ρ ∪ �φ2�

′
ρ �〈α〉φ�′

ρ = {s | ∃s′ : s
α→ s′ and s′ ∈ �φ�′

ρ}
�[α]φ�′

ρ = {s | ∀s′ : s
α→ s′ implies s′ ∈ �φ�′

ρ}

We use � to represent union of disjoint environments. Let ρ be the environment (a function from
variables to values) and σ be in {μ, ν}, then σU.f(U) represents the σ fixpoint of the function f
in one variable U .
�ε�ρ = [] �X =σ φD′�ρ = �D′�(ρ�[U′/X]) � [U ′/X]
where U ′ = σU.�φ�′

(ρ�[U/X]�ρ′(U)) and ρ′(U) = �D′�(ρ�[U/X]).
It informally says that the solution to (X =σ φ)D is the σ fixpoint solution U ′ of �φ� where the
solution to the rest of the lists of equations D is used as environment.

130 F. Martinelli and I. Matteucci

2.2 Equational μ-Calculus and Partial Model Checking in a Timed Setting

Equational μ-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using states changes by means of actions.
It permits to express a lot of interesting properties like safety (“nothing bad happens”).
and liveness properties (“something good happens”), as well as allows to express equiv-
alence conditions over LTS. Even if we are studying system in a timed setting, the prop-
erties that we consider are simple hence we can use equational μ-calculus instead of
temporal logic, e.g., TimedCTL (see [21]).

In order to define recursively properties of a given system, this calculus uses fixpoint
equations. Let α be in Act and X be a variable ranging over a finite set of variables V .
Given the grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ
D ::= Z =ν φD | Z =μ φD | ε

where the symbol T means true and F means false; ∧ is the symbol for the conjunction
of formulas, i.e., φ1 ∧ φ2 holds iff both of the formulas φ1 and φ2 hold, and ∨ is the
disjunction of formulas and φ1 ∨ φ2 holds when at least one of φ1 and φ2 holds. The
possibility operator 〈α〉φ means that “there exists a transition labeled by α after that φ
holds”. The necessity operator [α]φ means “for all α-actions performed φ holds”. Z =μ

φ is a minimal fixpoint equation, where φ is an assertion (i.e., a simple modal formula
without recursion operator), and Z =ν φ is a maximal fixpoint equation. Roughly, the
semantics �D� of the list of equations D is the solution of the system of equations
corresponding to D. Given an LTS M = 〈S, →〉, where S is a set of states and → is
the transition relation, the semantics of a formula φ is a subset �φ�ρ of the states of M ,
defined in Table 3, where ρ is a function (called environment) from free variables of φ
to subsets of the states of M .

Example 1. It is possible to find a formula to express a safety property as a formula that
expresses the possibility to open a new file only if the previous one is closed:

Z1 =ν [τ]Z1 ∧ [open]Z2
Z2 =ν [τ]Z2 ∧ [close]Z1 ∧ [open]F

A liveness property (“something good happens”) like “a state satisfying φ can be
reached” is expressed by Z =μ 〈 〉Z ∨ φ1. �

The following standard result of μ-calculus will be useful in the reminder of the paper.

Theorem 1 ([22]). Given a formula φ it is possible to decide in exponential time in the
length of φ if there exists a model of φ and it is also possible to give an example of such
model.

Partial model checking (pmc for short) is a technique that was originally developed for
compositional analysis of concurrent systems (see [7]). The intuitive idea underlying
the pmc is the following: proving that P‖Q satisfies an equational μ-calculus formula

1 In writing properties, here and in the rest of the paper, we use the shortcut notations [] means
[Act] and, equivalently, 〈 〉 means 〈Act〉.

Synthesis of Web Services Orchestrators in a Timed Setting 131

Table 4. Partial evaluation function for parallel operator P‖() of timed CCS

Z//t = Zt

(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t
〈a〉φ//s = 〈a〉(φ//s) ∨

∨
s

a−→s′ φ//s′, if a �= τ
〈τ 〉φ//s = 〈τ 〉(φ//s) ∨

∨
s

τ−→s′ φ//s′ ∨
∨

s
α−→s′〈α〉(φ//s′)

〈tick〉φ//s =

{
〈tick〉φ//s′ s

tick−→ s′

F otherwise

[a]φ//s = [a](A//s) ∧
∧

s
a−→s′ φ//s′, if a �= τ

[τ]φ//s = [τ](φ//s) ∧
∧

s
τ−→s′ φ//s′ ∧

∧
s

α−→s′ [α](φ //s′)

[tick]φ//s =

{
[tick]φ//s′ s

tick−→ s′

T otherwise

φ1 ∧ φ2//s = (φ1//s) ∧ (φ2//s)
φ1 ∨ φ2//s = (φ1//s) ∨ (φ2//s)

T//s = T
F//s = F

φ (P‖Q |= φ) is equivalent to prove that Q satisfies φ//P
(Q |= φ//P), that is a

modified specification of φ , where //P is the partial evaluation function for the parallel
composition operator. The reduced formula φ//P depends only on the formula φ and on
process P . No information is required on the process Q which can represent a possible
enemy. A useful result of partial model checking is the following.

Lemma 1 ([7]). Given a process P‖Q and a formula φ we have: P‖Q |= φ iff Q |=
φ//P .

It is worth noticing that partial model checking function may be automatically derived
from the semantics rules used to define a language semantics. Thus, the proposed tech-
nique is very flexible.

A lemma similar to Lemma 1 holds for every timed CCS operators (see [7,12,13]).
However the most significative operator is the parallel one. For that reason we choose
to explain how the partial model checking technique works w.r.t. to parallel operator
and we recall the partial evaluation function for that operator in Table 4. In order to ex-
plain better how partial model checking function acts on a given equational μ-calculus
formula, we show the following example.

Example 2. Let [τ]φ be the given formula and let P‖Q a process. We want to evaluate
the formula [τ]φ w.r.t. the ‖ operator and the process P . The formula [τ]φ//P

is satisfied
by Q if the following three condition hold at the same time:

– Q performs an action τ going in a state Q′ and P‖Q′ satisfies φ; this is taken into
account by the formula [τ](φ//P

).
– P performs an action τ going in a state P ′ and P ′‖Q satisfies φ, and this is con-

sidered by the conjunction ∧
P

τ−→P ′φ//P ′ , where every formula φ//P ′ takes into
account the behavior of F in composition with a τ successor of P .

– the τ action is due to the performing of two complementary actions by the two
processes. So for every a successor P ′ of P there is a formula [ā](φ//P ′). �

132 F. Martinelli and I. Matteucci

3 Synthesis of Orchestration Process in a Timed Setting

The goal of this work is to synthesize an orchestrator process in a timed setting, i.e.,
given a network of services and a user’s request, generate a process, said orchestrator,
that, by managing the given set of services, guarantee the request is satisfied. To do this
we apply the same techniques used in [8,9] to guarantee that a system is secure. As
a matter of fact we consider an orchestrator process as a monitor that coordinates and
composes services in order to satisfy a user request.

Let us consider to have a network of services made up of n endpoints each of them
provides a service. According to Section 2.1, we model each BPEL services as a CCS
process, i.e., we consider P1, . . . , Pn n finite-state processes that model the behavior
of n services of the network. Being P1, . . . , Pn finite state processes, the satisfiability
problem that we are going to solve is decidable.

Moreover we assume that sets of actions of processes Pi are pairwise disjoint. i.e.,
let Li and Lj be the sets of actions respectively of Pi and Pj then Li ∩ Lj = ∅.
This assumption guarantees that all possible synchronization between processes are
established and coordinated by the orchestrator process.

Let φ be an equational μ-calculus formula that expresses a possible request of an
user. We want to find a process O, that is the orchestrator process, that by managing
P1, . . . , Pn satisfies the request φ.

In order to do this we define a process algebra operator, denoted by �, said orches-
trating operator whose semantics definition is the following:

O τ−→ O′

O � P
τ−→ O′ � P

P τ−→ P ′

O � P
τ−→ O � P ′

O a−→ O′ P
a−→ P ′

O � P
a−→ O′ � P ′

O tick−→ O′ P
tick−→ P ′

O � P
tick−→ O′ � P ′

By the last semantics rule we consider the elapsing of time. As a matter of fact, we con-
sider the possibility that P performs a tick action. In this case the orchestrator process
O permits it.

Hence we can formalize the composition problem as follows:

∃O O � P |= φ (1)

where P = P1‖ . . . ‖Pn.
As in [8,9], we reduce the validity problem described in the Formula (1) in a satisfia-

bility problem by exploiting the partial model checking function w.r.t. the orchestrating
operator �. The partial model checking function for a given operator is defined accord-
ing to the operational semantics definition of the chosen operator. The definition of the
function is given in Table 5 and the following proposition, similar to Lemma 1 holds.

Proposition 1. Let P and Q be two finite state processes,

Q � P |= φ iff Q |= φ//�P

Proof (Sketch): The proof of this proposition is done by induction of the complexity of
the formula we consider. Here we give a sketch of the proof by proving the proposition
for conjunction.

Synthesis of Web Services Orchestrators in a Timed Setting 133

Table 5. Partial evaluation function for 	 operator

Z//�P = Z�P

(Z =σ φD)//�P = ((Z�P =σ φ//�P)(D)//�P)

[α]φ//�P =

{ ∧
P

α−→P ′ [α]φ//�P ′ if P
α−→ P ′

T if P � α−→
α �= τ

[τ]φ//�P = [τ](φ//�P) ∧
∧

P
τ−→P ′ φ//�P ′

〈α〉φ//�P =

{ ∨
P

α−→P ′〈a〉φ//�P ′ if P
α−→ P ′

F if P � α−→
α �= τ

〈τ 〉φ//�P = 〈τ 〉(φ//�P ′) ∨
∨

P
τ−→P ′ φ//�P ′

φ1 ∨ φ2//�P = (φ1//�P) ∨ (φ2//�P)
φ1 ∧ φ2//�P = (φ1//�P) ∧ (φ2//�P)
T//�P = T
F//�P = F

Let φ = φ1 ∧ φ2 be the considered formula. We want to prove that Q � P |= φ iff
Q |= φ//�P . Q � P |= φ iff Q � P |= φ1 ∧ φ2 iff Q � P |= φ1 and Q � P |= φ2. For
inductive hypothesis, Q � P |= φ1 iff Q |= φ1//�P and Q � P |= φ2 iff Q |= φ2//�P .
Hence Q � P |= φ iff Q |= φ1//�P and Q |= φ2//�P iff Q |= φ1//�P ∧ φ2//�P . �

By using the partial evaluation function we are able to evaluate the behavior of the
composition of services directly into the request of the user. Moreover it permits to
underline which is the behavior of the orchestrator in order to guarantee that the request
is satisfied according to the semantics definition of the operator �.

In order to understand better how partial model checking w.r.t. � operator works, we
show a simple application.

Let φ = [α]φ′ be a given request. We want to evaluate the formula φ w.r.t. the �
operator and a process P . According to the rule for box formulas in Table 5, the formula
φ//�P is satisfied by O if, whenever P performs the action α, O performs the actions
α. This is taken into account by the first case of the formula, i.e.,

∧
P

α−→P ′ [α]φ//�P ′ .
On the other hand, if P does not performs α then the formula becomes always T.

Hence the problem described in Formula 1 becomes:

∃O O |= φ′

where φ′ = φ//�P .
Now we are able to synthesize an orchestrator process for a given request in a timed

setting by referring to a satisfiability procedure for temporal logic. As a matter of fact,
according to Theorem 1, it is possible to find a model for a given equational μ-calculus
formula.

The following result holds.

Theorem 2. The problem described in Formula (1) is decidable.

The proof of the Theorem 2 is based of satisfiability algorithm already exists in the lit-
erature. As a matter of fact, the goal of this paper is not to give a satisfiability algorithm

134 F. Martinelli and I. Matteucci

that an interested reader can find in the literature, e.g., [8,9,23,24], but to show how the
problem of Web Services orchestrator synthesis can be solved by using results on the
synthesis of a model for a logic formula.

4 A Simple Example

Let we suppose there is an user that want to organize a trip. Let us suppose such user
makes the following request to a possible network of services:

After booking an hotel I need to receive a confirmation before booking a flight.

We model such request as an equational μ-calculus formula φ as follows: Let Act =
{b h, b f, b c, conf, τ, tick} be the set of actions, where b h permits to book
an hotel, conf is the confirmation from the hotel, b f is the booking of the flight
and b c permits to reserve a car. By assuming that a possible confirmation can arrive
immediately or after an amount of time, that we model by a tick action, the formula
that describes the request is the following:

φ = 〈b h〉(〈conf〉〈b f〉T ∨ 〈tick〉〈conf〉〈b f〉T)

This means that after booking the hotel the confirmation arrive immediately and the
user books the flight or some time passes before the confirmation arrives and then the
user books the flight.

Let we consider two processes P1 and P2 such that

P1 = b h.tick.conf.0
P2 = b f.(τ.0 + P ′

2)
P ′

2 = b c.0

This means that P1 permits to book an hotel and gives back the confirmation and P2
permits to book a flight or to book a flight and reserve a car.

After the application of partial model checking to the formula φ we obtain φ//�P =
φ′ as follows

φ′ = 〈b h〉〈tick〉〈conf〉〈b f〉T
Hence a possible model for φ′ is the following:

O = b h.tick.conf.b f.0

Looking at the semantics definition of � the execution of O�P consists on the following
sequence of transitions:

b h.tick.conf.b f.0 � (b h.tick.conf0‖b f.(τ.0 + P ′
2))

↓ b h
tick.conf.b f.0 � (tick.conf0‖b f.(τ.0 + P ′

2))
↓ tick

conf.b f.0 � conf0‖b f.(τ.0 + P ′
2)

↓ conf
b f.0 � 0‖b f.(τ.0 + P ′

2)
↓ b f

0 � 0‖(τ.0 + P ′
2)

Synthesis of Web Services Orchestrators in a Timed Setting 135

At this time the process ends without booking the car. This is exactly what the user
required. As a matter of fact the orchestrating operator does not consider additional
services that are not required by the user, as the reservation of a car.

5 Related Works

In the literature a lot of works deal with web services composition through formal meth-
ods. For instance several works deal with a possible modeling of Web Services by pro-
cess algebras (see [1,2,3,4,5]) or by automata (see [25]).

In [26,27] the authors have developed a static approach to deal with the composition
of web services problem by the usage of plans. In particular they use a distributed,
enriched λ-calculus for describing networks of services. Both services and their clients
can protect themselves, by imposing security constraints on each other’s behavior. Then,
service interaction results in a call-by-property mechanism (see [28]), that matches the
client requests with services.

The planning approach is followed also by Pistore et al. (see e.g., [11,29]) in order
to generate an orchestrator. As a matter of fact, the authors propose a novel planning
framework for the automated composition of Web Services in which, given a set of
BPEL abstract specifications of published Web Services, and given a composition re-
quirement, they generate automatically a BPEL concrete process that interacts asyn-
chronously with the published services. Basically they compose all services and then,
after building all possible plans, they extract the plan that satisfies the user’s request. We
start from the problem of the automatic composition of services too but our approach is
different. By exploiting the partial model checking technique, we evaluate the behavior
of the process directly into the formula generating a new formula and then we synthe-
size a process that is a model for the formula that represents the request evaluated by the
behavior of the composition os services. This approach permits us to treat the problem
also in a timed setting, topic that is not addressed in [11,29]. Our approach is general
because we can define other process algebra orchestrating operator and, by defining
a partial model checking function according to the operational semantics definition of
such operators, we can combine services in different ways.

Also Zavattaro et. al deal with the problem of composition on services. They have
studied choreography more than orchestration. They introduce a formal model for rep-
resenting choreography which is based on a declarative part and on a conversational
one. The declarative part of our choreography formal model which is based on the con-
cept of role. A role represents the behavior that a participant has to exhibit in order to
fulfill the activity defined by the choreography. Each role can store variables and exhibit
operations. In [30] the authors have formalized the concept of orchestrator as a process,
associated to an identifier, that can exchange information, represented by variables, with
other processes. This model takes inspiration form the abstract non-executable fragment
of BPEL and abstracts away from variables values focussing on data-flow. Orchestra-
tors are executed on different locations, thus they can be composed by using only the
parallel operator (‖). Processes can be composed in parallel, sequence and alternative
composition. Communication mechanisms model Web Services One-Way and Request-
Response operations. In our approach the communication between services is managed
by the orchestrator process that permits interactions between different services. By par-
tial model checking we evaluate the behavior of the composition in the request formula

136 F. Martinelli and I. Matteucci

and the orchestrator process is a monitor that guarantees the composition behaves ac-
cording the request. In this way we can synthesize the orchestrator process as a model
of the resulting formula.

No one of these papers treat the synthesis of orchestrator problem in a timed set-
ting. In the literature there are some works on modelling a timed BPEL with formal
method. For instance, in [31] the authors propose the Web Service Timed Transition
System model, which adopts the formalism of timed automata for capturing the as-
pects specific to the Web service domain. In this formalism, the fact that the operation
takes certain amount of time is represented by time increment in the state, followed
by the immediate execution of the operation. Intuitively, WSTTS is a finite-state ma-
chined equipped with set of clock variables. The values of these clock variables increase
with the passing of time. A Web Services composition thus is represented as a network
of several such automata, where all clocks progress synchronously. The semantic of
WSTTS is defined as a labeled transition system, where either the time passes or a
transition from one state to another immediately takes place. In [32,33] discusses the
augmentation of business protocols with specifications of temporal abstractions, focus-
ing in particular on problems related to compatibility and replaceability analysis. In [34]
the authors first defines a timed automata semantics for the Orc language, introduced
in order to support a structured way of orchestrating distributed web services. Orc is
intuitive because it offers concise constructors to manage concurrent communication,
time-outs, priorities, failure of sites or communication and so forth. The semantics of
Orc is also precisely defined. Timed automata semantics is semantically equivalent to
the original operational semantics of Orc. In [35] the authors introduce COWS, cal-
culus for orchestration of Web Services, as a new foundational languages for service
oriented computing, whose design has been influenced by BPEL. It combines in an
original way a number of ingredients borrowed from process calculi.

However all these papers deal with the modeling of Web Services in a timed setting
but they do not treat the problem of the synthesis of an orchestrator process.

6 Conclusion

In this paper we have proposed an approach to find an orchestrator process in a timed
setting given a set of services modeled by CCS. We have applied a similar approach to
the one we have developed in [8,9] to guarantee that a system is secure, in a Web Services
scenario. As a matter of fact we have exploited our approach in order to synthesize an
orchestrator process in a timed setting as a controller program of a controller operator.

Acknowledgement. We thank the anonymous referees of WS-FM07 for valuable com-
ments that helped us to improve this paper.

References

1. Bao, L., Zhang, W., Zhang, X.: Describing and verifying web service using ccs. pdcat 0,
421–426 (2006)

2. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing wsbpel business processes using
process algebra. Electr. Notes Theor. Comput. Sci. 154(1), 159–173 (2006)

Synthesis of Web Services Orchestrators in a Timed Setting 137

3. Salaun, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services using pro-
cess algebra. In: ICWS 2004: Proceedings of the IEEE International Conference on Web
Services (ICWS 2004), Washington, DC, USA, p. 43. IEEE Computer Society Press, Los
Alamitos (2004)

4. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction protocols for
web service composition. Electr. Notes Theor. Comput. Sci. 105, 21–36 (2004)

5. Ferrara, A.: Web services: a process algebra approach. In: Aiello, M., Aoyama, M., Curbera,
F., Papazoglou, M.P. (eds.) ICSOC, pp. 242–251. ACM, New York (2004)

6. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University
Press, Cambridge (1999)

7. Andersen, H.R.: Partial model checking (extended abstract). In: Proceedings of 10th Annual
IEEE Symposium on Logic in Computer Science, pp. 398–407. IEEE Computer Society
Press, Los Alamitos (1995)

8. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. Electr.
Notes Theor. Comput. Sci. 179, 31–46 (2007)

9. Matteucci, I.: Automated synthesis of enforcing mechanisms for security properties in a
timed setting. Electr. Notes Theor. Comput. Sci. 186, 101–120 (2007)

10. Martinelli, F.: Partial model checking and theorem proving for ensuring security properties.
In: Proceedings of CSFW 1998, pp. 44–52. IEEE press, Los Alamitos (1998)

11. Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable web services:
on-the-fly versus once-for-all composition. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC
2005. LNCS, vol. 3532, pp. 62–77. Springer, Heidelberg (2005)

12. Focardi, R., Gorrieri, R., Martinelli, F.: Information flow analysis in a discrete-time process
algebra. In: PCSFW: Proceedings of The 13th Computer Security Foundations Workshop,
IEEE Computer Society Press, Los Alamitos (2000)

13. Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic protocol analysis
with compositional proof rules. Sci. Comput. Program. 50(1-3), 23–49 (2004)

14. Asarin, E., Dima, C.: Balanced timed regular expressions. Electr. Notes Theor. Comput.
Sci. 68(5) (2002)

15. Gorrieri, R., Lanotte, R., Maggiolo-Schettini, A., Martinelli, F., Tini, S., Tronci, E.: Au-
tomated analysis of timed security: a case study on web privacy. Int. J. Inf. Sec. 2(3-4),
168–186 (2004)

16. Andersen, H.: Verification of Temporal Properties of Concurrent Systems. PhD thesis, De-
partment of Computer Science, Aarhus University, Denmark (1993)

17. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, K.L.F., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Specification: Business process execu-
tion language for web services version 1.1 (2003)

18. Corradini, F., D’Ortenzio, D., Inverardi, P.: On the relationships among four timed process
algebras. Fundam. Inform. 38(4), 377–395 (1999)

19. Hennessy, M., Regan, T.: A temporal process algebra. In: FORTE 1990: Proceedings of
the IFIP TC6/WG6.1 Third International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, pp. 33–48. North-Holland, Amsterdam
(1991)

20. Ulidowski, I., Yuen, S.: Extending process languages with time. In: Johnson, M. (ed.)
AMAST 1997. LNCS, vol. 1349, Springer, Heidelberg (1997)

21. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1),
2–34 (1993)

22. Street, R.S., Emerson, E.A.: An automata theoretic procedure for the propositional μ-
calculus. Information and Computation 81(3), 249–264 (1989)

23. Walukiewicz, I.: A Complete Deductive System for the μ-Calculus. PhD thesis, Institute of
Informatics, Warsaw University (1993)

138 F. Martinelli and I. Matteucci

24. Matteucci, I.: A tool for the synthesis of controller programs. In: Dimitrakos, T., Martinelli,
F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 112–126. Springer,
Heidelberg (2007)

25. Reisig, W.: Modeling- and analysis techniques for web services and business processes. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, Springer, Heidelberg
(2005)

26. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration.
In: Proc. 19th Computer Security Foundations Workshop (CSFW) (2006)

27. Bartoletti, M., Degano, P., Ferrari, G.L.: Plans for service composition. In: Workshop on
Issues in the Theory of Security (WITS) (2006)

28. Bartoletti, M., Degano, P., Ferrari, G.L.: Security issues in service composition. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, Springer, Heidelberg (2006)

29. Pistore, M., Traverso, P., Bertoli, P.: Automated composition of web services by planning
in asynchronous domains. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) ICAPS, pp. 2–11.
AAAI, Menlo Park (2005)

30. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration:
A synergic approach for system design. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg (2005)

31. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis inweb service com-
positions. In: ARES ’06: Proceedings of the First International Conference on Availability,
Reliability and Security (ARES 2006), Washington, DC, USA, pp. 840–846. IEEE Computer
Society Press, Los Alamitos (2006)

32. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Compatibility and replaceability analysis
for timed web service protocols. In: BDA (2005)

33. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of web service
protocols. In: Belo, O., Eder, J. (eds.) CAiSE Short Paper Proceedings. CEUR Workshop
Proceedings, vol. 161 (2005), CEUR-WS.org

34. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of computation orchestration via timed
automata. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 226–245. Springer,
Heidelberg (2006)

35. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer, Heidelberg (2007)

CEUR-WS.org

From Public Views to Private Views –

Correctness-by-Design for Services

Wil M.P. van der Aalst1, Niels Lohmann2,�, Peter Massuthe3,
Christian Stahl3,��, and Karsten Wolf2

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
W.M.P.v.d.Aalst@tue.nl

2 Universität Rostock, Institut für Informatik
18051 Rostock, Germany

{niels.lohmann,karsten.wolf}@uni-rostock.de
3 Humboldt-Universität zu Berlin, Institut für Informatik

Unter den Linden 6, 10099 Berlin, Germany
{massuthe,stahl}@informatik.hu-berlin.de

Abstract. Service orientation is a means for integrating across diverse
systems. Each resource, whether an application, system, or trading part-
ner, can be accessed as a service. The resulting architecture, often re-
ferred to as SOA, has been an important enabler for interorganizational
processes. Apart from technological issues that need to be addressed, it is
important that all parties involved in such processes agree on the “rules
of engagement”. Therefore, we propose to use a contract that specifies the
composition of the public views of all participating parties. Each party
may then implement its part of the contract such that the implemen-
tation (i.e., the private view) accords with the contract. In this paper,
we define a suitable notion of accordance inspired by the asynchronous
nature of services. Moreover, we present several transformation rules for
incrementally building a private view such that accordance with the con-
tract is guaranteed by construction. These rules include adding internal
tasks as well as the reordering of messages and are therefore much more
powerful than existing correctness-preserving transformation rules.

1 Introduction

Interorganizational cooperation is of increasing importance for enterprises to
meet the new challenges of ever faster changing business conditions. Web services
and service-oriented architectures (SOA) are rapidly emerging approaches to
reduce the complexity of integrating systems within and between organizations.
Since SOA enables dynamic binding of services at runtime, it is possible to
� Funded by the German Federal Ministry of Education and Research (project

Tools4BPEL, project number 01ISE08).
�� Funded by the DFG project “Substitutability of Services” (RE 834/16-1).

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 139–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 W.M.P. van der Aalst et al.

invoice

trip
order

flight
order

reject
order

confirm
order

ticket

flight
details

reject
trip

traveler agency airline

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

(a) oWFN N modeling the contract between
traveler (Ntr), agency (Nag), and airline (Nair).

trip
order

ticket

flight
details

invoice

reject
trip

modified traveler

p1

p2

p31

p33

p5

a

b

c

d

e

p34

p32

x

(b) oWFN of the modified
traveler (N ′

tr).

Fig. 1. The running example

design a cooperation between parties that do not know each other. However, in
practise the parties involved in a cooperation know each other. Therefore, instead
of dynamically binding services at runtime, these parties agree on a common
contract, which is the focus of this paper. This contract has the form of an agreed
upon process model, similar to [1,2], and attempts to balance the following two
conflicting requirements. On the one hand, there is a strong need for coordination
to optimize the flow of work in and between the different organizations. On
the other hand, the organizations involved are essentially autonomous and have
the freedom to create or modify workflows at any point in time. Therefore, we
propose to use a process-oriented contract that defines “rules of engagement”
without describing the internal processes executed within each partner.

To illustrate the idea of having a process-oriented contract, we use an example
taken from [3], depicted in Fig. 1(a). The example shows a contract expressed
in terms of a Petri net [4]. The Petri net is partitioned over three parties : trav-
eler, agency, and airline. Each party has a part of the contract which can be
seen as a service. Different services are connected through interface places for
asynchronous message passing. Interface places model message buffers and are
positioned on dashed lines as shown in Fig. 1(a). As a formalism, we use open
workflow nets (oWFNs) [5] which extend the well-known concept of workflow
nets (WFNs) [6] with interface places. However, the presented concepts are not
limited to oWFNs and can be translated into other languages using message
passing as a communication paradigm.

From Public Views to Private Views 141

In our example, the traveler sends a trip order to the agency (transition a). As
a result, the agency sends a flight order to the airline (transition g). The airline
receives this order and either confirms it (message confirm order) or rejects it
(message reject order). In the latter case, the rejection is forwarded to the traveler
(transition k). If the flight is confirmed, the agency sends the flight details and
an invoice to the traveler, and the airline sends a ticket to the traveler.

Figure 1(a) shows four oWFNs: N , N tr, Nag, and Nair. N tr, Nag, and Nair

specify the public view of each of the parties involved. Each of the public views
has interface places. For example, N tr has one output place and four input places.
Using these places, the public views can be merged together into the contract.
The whole Petri net shown in Fig. 1(a) can be seen as a single oWFN N by
simply ignoring the dashed lines. This oWFN has an empty interface.

After the parties agreed on such a contract, each of them needs to implement
its part. A party needs to refine its part of the contract, so the resulting im-
plementation may deviate significantly from the public view. We refer to this
as the private view of the party. The private view may again be expressed as
an oWFN. Figure 1(b) shows an example of a private view of the traveler; that
is, oWFN N ′

tr is the implementation of Ntr. In N tr, the traveler first receives
the invoice and then the ticket. In N ′

tr, these two messages are received concur-
rently. Note that this example is a bit atypical since the implementation tends
to have much more internal tasks. Here just transition x and places p31 to p34
are added while in more realistic scenarios there may dozens of newly added
internal tasks. Clearly, N ′

tr allows for behavior not possible in N tr (even after
abstracting from the new transition x). The trace a, b, e, c, x where the ticket
is received before the invoice, for instance, is not possible in Ntr but in N ′

tr. In
this example it is harmless that N ′

tr serves as implementation of Ntr. However,
similar changes could lead to deadlocks and other problems. On this account,
a comprehensive set of transformation rules for deriving a private view, which
is correct by construction, from a public view would be very helpful for service
designers.

In earlier work, we proposed to use projection inheritance for WFNs [7,8] for
relating the actual realization of a contract to the contract itself [1,2]. It was
proven that if private and public view are related by projection inheritance,
then a party can execute its private view and no other party is effected by this
change. Moreover, we defined inheritance-preserving transformation rules that
guarantee correctness by construction; that is, the public view is extended into a
correct private view by iteratively applying the rules. Unfortunately, N ′

tr and Ntr

are not related by projection inheritance. This illustrates that the inheritance
notion defined is too restrictive, since it excludes private views that obviously
do not jeopardize the overall correctness of the interorganizational workflow.

To address the problem, we present a more liberal notion of equivalence:
accordance. The basic idea is that an oWFN N2 accords with an oWFN N1 if
there is no interorganizational workflow where the replacement of oWFN N1 by
oWFN N2 causes a problem. Accordance is weaker than projection inheritance.
For example, N ′

tr accords with Ntr.

142 W.M.P. van der Aalst et al.

The core contribution of this paper is a comprehensive set of accordance pre-
serving transformation rules. They can be used to incrementally transform the
public view of a party into a private view while guaranteeing that the overall
process will terminate properly. These new rules are highly relevant because
there are many situations where projection inheritance is too strong and accor-
dance is a more suitable notion. In case both public and private view are given,
a technique presented in [9] can be used for automatically checking accordance
by using operating guidelines [5].

The paper is structured as follows. Section 2 defines oWFNs, contracts, and
our accordance criterion. In Sect. 3, we present transformation rules to derive a
private view which is correct by construction. A case study in Sect. 4 demon-
strates the applicability and the value of these transformation rules.

2 Formalizing Contracts

The notions of a contract, public/private views, the accordance criterion, and
transformation rules will be formalized using open workflow nets (oWFNs) [5].
Therefore, this section starts by introducing oWFNs. For more details on the
formalization of these concepts we refer to a technical report [9].

We use the usual definition of a (place/transition) Petri net N = (P, T, F) with
a set of places P , a set of transitions T , and a flow relation F ⊆ (P ×T)∪(T ×P)
representing the arcs (see [4], for instance). We also use the standard notation
to denote the preset and postset of places and transitions: •x = {y | (y, x) ∈ F}
and x• = {y | (x, y) ∈ F}.

Definition 1 (Open workflow net). An open workflow net N = (P, T, F, I,
O, m0, Ω) consists of a Petri net (P, T, F) together with

– an interface defined as a set I ⊆ P of input places such that •p = ∅ for any
p ∈ I and a set O ⊆ P of output places such that p• = ∅ for any p ∈ O and
I ∩ O = ∅,

– a distinguished initial marking m0, and a set Ω of final markings such
that no transition of N is enabled in any m ∈ Ω. We further require that
m ∈ Ω ∪ {m0} implies m(p) = 0 for all p ∈ I ∪ O; that is, in the initial and
the final markings, the interface places are not marked.

We use indices to distinguish the constituents of different oWFNs (e.g., Ij refers
to the set of input places of oWFN Nj). In order to assign a reasonable meaning
to final markings, we restrict our approach to such oWFNs where a marking in
Ω does not enable any transition.

As an example, the whole process shown in Fig. 1(a) represents an oWFN
with I = O = ∅, m0 = [p1, p6, p13], and we define Ω = {[p5, p12, p16]}. The part
of the traveler, N tr, in Fig. 1(a) is an oWFN with interface: I = {flight details,
invoice, reject trip, ticket} and O = {trip order}.

The behavior of an oWFN is defined using standard Petri net semantics [4];
that is, a transition is enabled if each place of its preset holds at least a token.

From Public Views to Private Views 143

An enabled transition t can fire in a marking m by consuming tokens from the
preset places and producing tokens for the postset places, yielding a marking m′

(denoted m
t−→ m′).

For composing oWFNs, we assume that all constituents (except the interfaces)
are pairwise disjoint. This requirement can be easily achieved by renaming. In
contrast, the interfaces often intentionally overlap. For a reasonable concept of
composition of oWFNs it is, however, convenient to require that all communica-
tion is bilateral; that is, every interface place p ∈ I ∪ O has only one party that
sends into p and one party that receives from p. For a third party C, a com-
munication taking place inside the composition of parties A and B is internal
matter. These considerations lead to the following definition of composition.

Definition 2 (Composition of oWFNs). Let N1, . . . , Nk be oWFNs with
pairwise disjoint constituents, except for the interfaces. N1, . . . , Nk are com-
posable if, for all i ∈ {1, . . . , k},

– p ∈ Ii implies that there is no j �= i such that p ∈ Ij and there is at most
one j such that p ∈ Oj , and

– p ∈ Oi implies that there is no j �= i such that p ∈ Oj and there is at most
one j such that p ∈ Ij .

For markings m1 ∈ N1, . . . , mk ∈ Nk which do not mark interface places,
their composition m = m1 ⊕ · · · ⊕ mk is defined by m(p) = mi(p) if p ∈ Pi.

If N1, . . . , Nk are composable, the composition N = N1 ⊕ · · · ⊕ Nk is the
oWFN with the following constituents: P = P1 ∪· · ·∪Pk. T = T1 ∪· · ·∪Tk. F =
F1∪· · ·∪Fk. I = (I1∪· · ·∪Ik)\(O1∪· · ·∪Ok). O = (O1∪· · ·∪Ok)\(I1∪· · ·∪Ik).
m0 = m01 ⊕ · · · ⊕ m0k

, Ω = {m1 ⊕ · · · ⊕ mk | m1 ∈ Ω1, . . . , mk ∈ Ωk}.

Clearly, the three oWFNs Ntr, Nag, and Nair in Fig. 1(a) are composable.
Any subset of a set of composable oWFNs is composable as well. Furthermore,

we have N1⊕N2⊕N3 = (N1⊕N2)⊕N3 = N1⊕(N2⊕N3), and N1⊕N2 = N2⊕N1;
that is, the composition of composable oWFNs is associative and commutative.
Thus, composition of a set of oWFNs can be broken into single steps without
affecting the final result.

For the oWFN depicted in Fig. 1(a) it is easy to check that the final marking
is always reachable. This means that it is always possible to terminate properly.
This property is formalized in the following definition.

Definition 3 (Weak termination). An oWFN weakly terminates if, from
every marking reachable from the initial marking, a final marking can be reached.

For composable oWFNs whose composition is weakly terminating, we introduce
the term strategy.

Definition 4 (Strategy). An oWFN N is a strategy for an oWFN N ′ if N ⊕
N ′ is weakly terminating. Strat(N) denotes the set of all strategies for N .

144 W.M.P. van der Aalst et al.

Note that Strat(N) may correspond to a large (in fact infinite) set of oWFNs;
that is, it is the set of all potential partners of N . N tr in Fig. 1(a) and N ′

tr in
Fig.1(b) are two examples of strategies for the oWFN Nag ⊕ Nair.

Basically, we see a contract as an oWFN with empty interface where every
activity is assigned to one of the involved parties. We impose only one restriction:
If a place is accessed by more than one party, it should act as a directed bilateral
communication place. In the following, |X | denotes the cardinality of a set X .

Definition 5 (Contract). Let A be a set representing the parties involved in a
contract. Then, a contract [N, r] consists of an oWFN N = (P, T, F, I, O, m0, Ω)
with an empty interface (I = O = ∅) (the overall process) and a mapping r ∈
T → A (the partitioning) such that, for all places p ∈ P , |{r(t) | t ∈ •p}| ≤ 1
and |{r(t) | t ∈ p•}| ≤ 1. For technical purposes, we further require that N has
only one final marking, Ω = {mf}.

The oWFN shown in Fig. 1(a) is an example of a contract involving A =
{traveler, agency, airline}. The dashed lines in the figure show the partitioning of
transitions over the parties involved in the contract; r(a) = traveler, r(f) = agency
and r(m) = airline, for instance.

A contract can be cut into parts, each representing the agreed share of a
single party. In accordance with terminology of service-oriented computing [10],
we consider the contribution of a party as a service. Correspondingly, the agreed
version (specification) of the service is called public view while an actual local
implementation is called private view of the service.

Definition 6 (Public view). Let [N, r] be a contract with N = (P, T, F, I, O,
m0, Ω), Ω = {mf}, and r ∈ T → A, and let A ∈ A be a party. The public
view of A’s share in the contract is the oWFN NA where PA = {p ∈ P | ∃t ∈
•p∪p• : r(t) = A}, TA = {t ∈ T | r(t) = A}, FA = F ∩ ((PA ×TA)∪ (TA ×PA)),
IA = {p ∈ PA | ∃t ∈ •p : r(t) �= A}, OA = {p ∈ PA | ∃t ∈ p• : r(t) �= A}, m0A =
m0|PA

(i.e., the restriction of m0 to the places in PA), and ΩA = {mf |PA
}.

For a set A = {A1, . . . , Ak} of parties and a contract [N, r], it is easy to see
that NA1 ⊕ · · · ⊕ NAk

= N . In this respect, the restriction that Ω contains only
one element is indeed crucial, as otherwise NA1 ⊕ · · · ⊕ NAk

could have a final
marking that results from recombining final markings of different parties but
which is not a final marking of N .

Our accordance criterion is used to compare a public view and a private view
of a party’s share of a contract. The goal of the accordance notion is to preserve
weak termination (see Def. 3) of the overall process N . Formally, weak termina-
tion of N and accordance of each private view N ′

Ai
with the corresponding public

view NAi should imply weak termination of N ′
A1

⊕ · · · ⊕ N ′
Ak

which obviously
models the overall process as actually implemented.

If [N, r] is a contract with A = {A1, . . . , Ak} and N is weakly terminating,
then NA1 ⊕ . . . ⊕ NAi−1 ⊕ NAi+1 ⊕ . . . ⊕ NAk

is a strategy for NAi . For example,
Ntr ⊕ Nag ⊕ Nair shown in Fig. 1(a) is weakly terminating. Therefore, Ntr ⊕ Nair

is a strategy for Nag, and vice versa. These properties of the strategy concept
justify the following definition of accordance.

From Public Views to Private Views 145

Definition 7 (Accordance). An oWFN N ′ (private view) accords with an
oWFN N (public view) if it has the same interface (I ′ = I and O′ = O) and has
at least the strategies that N has; that is, Strat(N ′) ⊇ Strat(N).

For example, the private view N ′
tr accords with its public view Ntr. The following

theorem shows that Ntr can be substituted by N ′
tr without jeopardizing weak

termination.

Theorem 1 (Implementation of a contract). Let [N, r] be a contract be-
tween parties {A1, . . . , Ak} where N is weakly terminating. If, for all
i ∈ {1, . . . , k}, N ′

Ai
(the private view of Ai) accords with NAi (the public view

of Ai), then N ′ = N ′
A1

⊕ · · · ⊕ N ′
Ak

(the actual implementation) is weakly ter-
minating.

The proof of this theorem can be found in [9]. The result is highly relevant
for service composition since it gives each party a criterion (accordance of N ′

Ai

with NAi) that can be locally verified for asserting a global property (weak
termination of the overall process as actually implemented). For example, any
combination of arbitrary private views N ′′

tr, N ′′
ag, and N ′′

air according with the
corresponding public view (i.e., N ′′

tr accords with N tr, N ′′
ag accords with Nag, and

N ′′
air accords with Nair) yields a weakly terminating realization of the contract

shown in Fig. 1(a).
According to Thm. 1, every party of a contract can implement its public view

and finally it has to check accordance between the private and the public view. In
the following, we present a different approach: The public view is incrementally
transformed into a private view. To this end, fragments of the public view are
incrementally replaced by other fragments until the private view is designed. In
this approach, a fragment N ′ of a party is called a pattern and will be replaced by
another fragment N ′′. We will prove that if N ′′ accords with N ′, then replacing
N ′ by N ′′ preserves weak termination of the overall contract.

First of all, we formally define an oWFN pattern N ′ of an oWFN N . Therefore,
the set of interface places of N ′ is divided into two sets: one set contains all places
that are interface places of N for communicating with other parties (i.e., subsets
of I and O) and the other set, R∪S, contains all places that serve as an interface
to the rest of N . R is the set of input places from the other parts of N , and S
is the set of output places.

Definition 8 (oWFN pattern). Let N = (P, T, F, I, O, m0, Ω) be an oWFN.
An oWFN N ′ = (P ′, T ′, F ′, I ′, O′, m′

0, Ω
′) with P ′ ⊆ P , T ′ ⊆ T is an oWFN

pattern of N iff

– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
– m′

0 = [],
– I ′ = I|P ′ ∪ R with R ⊆ P ′ \ I,
– O′ = O|P ′ ∪ S with S ⊆ P ′ \ O,
– Ω′ = {[]},
– for all p ∈ P ′ \ R, there is no t ∈ T \ T ′, (t, p) ∈ F ,

146 W.M.P. van der Aalst et al.

– for all p ∈ P ′ \ S, there is no t ∈ T \ T ′, (p, t) ∈ F , and
– for all t ∈ T ′, there is no p ∈ P \ P ′, (p, t) ∈ F or (t, p) ∈ F .

The next theorem states that if the public view of a party participating in a
contract has an oWFN pattern N ′ and there is another oWFN pattern N ′′ with
N ′′ accords with N ′, then we can replace N ′ by N ′′ and the modified contract
is still weakly terminating. Such transformations can be applied incrementally
and thus we can derive a private view from a public view just by transforming
the public view and the resulting private view is correct by construction.

Theorem 2 (Justification of transformation rules). Let [N, r] be a con-
tract between parties {A1, . . . , Ak} where N = NA1 ⊕ · · · ⊕ NAk

is weakly termi-
nating. Let N ′

p be an oWFN pattern of NAi , 1 ≤ i ≤ k, such that there exists
Nrest with NAi = N ′

p ⊕ Nrest . Let further N ′′
p be an arbitrary oWFN. Then, if

N ′′
p accords with N ′

p, the modified contract N ′ = NA1 ⊕ · · · ⊕ NAi−1 ⊕ (N ′′
p ⊕

Nrest) ⊕ NAi+1 ⊕ · · · ⊕ NAk
is weakly terminating.

We omit the proof of this theorem as it is just an application of Thm. 1.

3 Derive a Private View from a Public View

In this section, we show how a party can implement its private view by using
accordance-preserving transformation rules. This idea is inspired by earlier work
on projection inheritance [1,2,7,8]. Accordance is a weaker notion than projection
inheritance which was illustrated already using Fig. 1 where N ′

tr accords with
Ntr but N ′

tr and Ntr are not related by projection inheritance. However, we will
show that projection inheritance implies accordance, and thus, all inheritance-
preserving transformation rules presented in [8] also preserve accordance. We will
show these rules by reformulating them to fit into the setting of this paper. Af-
terwards, we will formulate dedicated transformation rules that allow reordering
of the sending and receiving of messages still guaranteeing accordance.

3.1 Inheritance-Preserving Transformation Rules

Projection inheritance compares process models by establishing a subclass-super-
class relationship. The subclass process is indeed a subclass if it inherits partic-
ular dynamic properties of its superclass. Projection inheritance is based on
branching bisimulation [11] (to compare the processes) and abstraction (to hide
tasks) and was formalized in [8] in terms of workflow nets. The assumption is that
the subclass adds tasks to the superclass such that after hiding the additional
tasks both are equivalent.

Based on the notion of projection inheritance, three inheritance-preserving
transformation rules have been defined in [8]. These rules correspond to design
patterns for extending a superclass to incorporate new behavior: (1) adding a
loops (2) insert a task in-between existing tasks, and (3) put a new task in
parallel with existing tasks.

From Public Views to Private Views 147

a

R

p1

Ai

Ao

b

p2

Bi

Bo

c

S

Ci

Co

(a) M0.

a

R

p1

Ai

Ao

b

p2

Bi

Bo

c

S

Ci

Co

d

(b) M1: Adding
a loop to M0.

a

R

p1

Ai

Ao

b

p2

Bi

Bo

c

S

Ci

Co

p3

d

p4

(c) M2: Putting task
d in parallel to b.

a

R

p1

Ai

Ao

b

p2

Bi

Bo

c

S

Ci

Co

p3

d

(d) M3: Inserting task d
in-between a and b.

Fig. 2. Accordance-preserving transformation rules based on projection inheritance

It is easy to reformulate projection inheritance in terms of the setting of
this paper. Instead of redefining these rules formally, we exemplify the rules in
Fig. 2. Figure 2(a) represents an oWFN pattern M0 of an oWFN M . M0 contains
transitions a, b, and c. By Def. 8, there are no other connections of a, b, c, p1,
and p2 than those shown in Fig. 2(a). Ai = (•a) ∩ IM is the set of input places
of a, Ao = (a•) ∩ OM is the set of output places of a, etc. Ai, Ao, Bi, Bo, Ci, Co

do not need to be disjoint. R = (•a) \ IM and S = (c•) \ OM are (by Def. 8)
the places connecting M0 to the rest of M . Similar remarks hold for the other
three oWFN patterns M1, M2, and M3. For example, M1 is obtained by adding
transition d to M0.

If one ignores the interface places and hides transition d (i.e., all executions
of d are mapped onto silent steps), then M0, M1, M2, and M3 are branching
bisimular. Thus, M0 is a superclass of M1, M2, and M3. It is easy to see that
projection inheritance implies accordance.

Theorem 3 (Projection inheritance implies accordance). Let N ′ be an
oWFN pattern and N ′′ be an arbitrary oWFN. If N ′ and N ′′ are related by
projection inheritance, then N ′′ accords with N ′ and vice versa.

Theorem 3 justifies that all inheritance-preserving transformation rules can be
used to incrementally build a private view that accords with the public view of
a service. As an example, since M1 accords with M0, M2 accords with M0, M3

accords with M0, and vice versa, M0 in Fig. 2 may be replaced by any of the
three other oWFNs M1, M2, and M3 without changing the set of strategies of
M . For technical details we refer to the technical report [9].

3.2 Accordance-Preserving Transformation Rules

The inheritance-preserving transformation rules presented in the last section are
limited in the sense that they do not allow to change the order of messages. In
the following, we present six accordance-preserving transformation rules. Five of

148 W.M.P. van der Aalst et al.

these rules preserve accordance in both directions and one rule preserves accor-
dance only in one direction. Although these transformation rules are powerful,
they are not complete, meaning they do not cover all possible service implemen-
tations. Given an oWFN N , each transformation rule specifies a pattern N ′ of
N (see Def. 8) which can be replaced by another oWFN N ′′ yielding an im-
plementation of N . Theorem 2 justifies that this replacement does not violate
the overall contract. As a formal definition of all transformation rules would not
add any value to the paper and is also impossible due to the page limit, the
rules are only informally described and illustrated by help of some figures. For
the formalization of all rules including their correctness proofs we refer to the
technical report [9].

The first of the rules is depicted in Fig. 3(a) and specifies that a sequence of
sending events can be merged and the events can be sent simultaneously. Rule 1
preserves accordance in both directions. Thus, we can derive that a sequence of
sending events can also be reordered or can be sent concurrently. Reordering of
sending events and executing sending events concurrently preserve accordance
in both directions. The same holds for a sequence of receiving events. The cor-
responding rule (Rule 2) is, however, not depicted in the paper.

A generalization of the two previous rules is specified by Rule 3 (see Fig. 3(b)).
A sequence of receiving events followed by a sequence of sending events can be
executed simultaneously while preserving accordance in both directions.

From Rules 1–3 we can derive that every oWFN pattern that has a transition
connected to more than one interface place can be transformed into an equivalent
oWFN pattern which has only transitions connected to a single interface place.
In the following, without loss of generality, we therefore restrict ourselves to
patterns where each transition is connected to at most one interface place.

So far, we excluded the possibility that a sending event is followed by a re-
ceiving event. Rule 4, depicted in Fig. 4, specifies that first sending and then

t1

p1

R

pn-1

tn

S

a1

an

t

R

S

a1

an

=

N1

N2

(a) Rule 1: Strat(N1) = Strat(N2).

t1

R

tn

S

a1

an

=
tk ak

tk-1 ak-1

pk-1

N3

N4

t

R

S

ak-1

ak

a1

an

(b) Rule 3: Strat(N3) = Strat(N4).

Fig. 3. Rule 1 and Rule 3

From Public Views to Private Views 149

ta

tb

p

R

S

a

b

R

S

t1

ta tb

t2

b

a

=

p1 p2

p3 p4

N5

N6

Fig. 4. Rule 4: Strat(N5) = Strat(N6)

receiving a message can also be executed concurrently and vice versa. Rule 4
preserves accordance in both directions, too.

Figure 5(a) shows that first sending and then receiving cannot be reordered
in general: N7 does not accord with N5 and N5 does not accord with N7. The
oWFN depicted in Fig. 5(b) is a strategy for N5 but no strategy for N7. The
oWFN depicted in Fig. 5(c), in contrast, is a strategy for N7 but not for N5.

From this antipattern follows that first sending and then receiving (cf. N5)
cannot be transformed into an oWFN that sends and receives simultaneously,
because we could transform the latter net into N7 by applying Rule 3. Conse-
quently, first sending then receiving does not accord to sending and receiving
simultaneously and vice versa.

Rule 5 specifies how an alternative branch can be added to an oWFN pattern
N8 depicted on the left hand side of Fig. 6. The pattern N8 first receives a
and then enters either the left or the right branch. In the left (right) branch,
message b (c) is sent, and then message d (e) is received . The pattern N8 can

ta

tb

p

R

S

a

b

*

tb

ta

p

R

S

b

a

+

N5 N7

(a) Antipattern:
Strat(N5) �= Strat(N7).

t2

t3

p1

p2

p3

a

b

t1R

t4S

(b) Strategy for N5
but not for N7.

t2

t4

p1

p2

p3

b

a

t3

t1R

t5S

p4

(c) Strategy for N7
but not for N5.

Fig. 5. Counterexamples

150 W.M.P. van der Aalst et al.

ta

p1

R

a

tc ctb

b
p3p2

te etd

d

ta

p1

R

a

tc ctb

b
p3p2

te etd

d

tf

t’d

p5

f

S
SN8 N9

Fig. 6. Rule 5 (adding an alternative branch): Strat(N8) ⊆ Strat(N9)

be transformed into N9 by adding an alternative branch. In this branch, d is
received, and then a message f is sent. Afterwards, this branch can be arbitrary;
that is, there can be any continuation (including direct continuation in S) of this
net illustrated by the frame. Rule 5 preserves accordance in one direction only.

The intuition behind the next transformation rule (Rule 6) is the possibility to
add (remove) “dead code” to (from) a service. To motivate this transformation
rule, consider a party that wants to reuse an existing service in the contract. This
service may provide functionality to other parties not involved in the current
contract. Technically, in the first step, this party makes internal all interface
places of this service that are not used, and in the second step, it looks for
transformation rules justifying the service to be a valid private view. Rule 6 is
depicted in Fig. 7. N10 receives a, then sends b, and then it can behave arbitrarily.
The oWFN pattern N11 results from adding an alternative branch to N10. This
branch can be entered if place c is marked. Afterwards, the branch may behave
arbitrarily. In the end, both branches are synchronized in S. However, c is an
example of an internal place with empty preset (it is a former interface place).
Thus, transition tc will never be enabled. Rule 6 preserves accordance in both
directions, meaning neither adding nor deleting “dead code” will change the set
of strategies for N10 and N11.

The six transformation rules presented in this section reflect the crucial impact
of the order of sending and receiving messages. The first two rules show that
sequences of sending events and sequences of receiving events can be executed
simultaneously while preserving accordance in both directions. This was our
motivation to consider only oWFNs where each transition is connected to at most
one interface place. Transforming first-send-then-receive into send-and-receive-
concurrently preserves accordance in both directions (Fig. 4). However, first-
send-then-receive cannot be transformed into send-and-receive-simultaneously
and vice versa. Consider first-receive-then-send next. It can be transformed into
receive-and-send-simultaneously (Fig. 3(b)) while preserving accordance in both
directions, but it cannot be transformed into receive-and-send-concurrently and
vice versa.

From Public Views to Private Views 151

ta

p1

R

a

=

ta

p1

atc

c

R

tb btb b

S S
N10 N11

Fig. 7. Rule 6 (adding “dead code”): Strat(N10) = Strat(N11)

4 Case Study

In this section, we demonstrate how accordance-preserving transformation rules
can be applied to derive a private view of the agency from its respective public
view, taken from the running example in Fig. 1(a). On first sight, the modified
agency depicted in Fig. 8(b) and the (original) agency (depicted again in Fig. 8(a)
to ease the comparison) are not very similar. We will now show that the modified
agency was derived from the original agency by applying the transformation rules
defined in Sect. 3:

– A new transition u (newly-added transitions are depicted in dark gray) is
inserted in-between the reception of the trip order and the sending of the
flight order. This transition explicitly models the preparation of the flight
order from the trip order sent by the traveler. The addition is justified by
rule pattern M3 (cf. Fig. 2(d)) which preserves projection inheritance and
thus accordance.

– The rejection message from the airline is instantly routed to the traveler.
Rule 3 justifies the merging of transition i and k to the single transition ik
(transitions created by merging transitions of the public view are depicted
in light gray).

– Messages flight details and invoice can be sent simultaneously to the traveler
by transition jl. The merging of transition j and l is justified by Rule 1.

– Finally, a new branch was added to the agency, starting with transition v.
Intuitively, this branch models additional behavior that is available when the
modified agency service is running in a different environment. When priority
order is an input place for messages sent from a (modified) traveler service
and priority flight order is an output place for messages sent to a (modified)
airline service, the newly-added branch can be triggered by messages. Thus,
the modified agency can be reused in a different contract. However, the places
priority order and priority flight order are not exposed as interface places, and
as the place priority order is not marked, the branch is dead. Therefore, the
addition is justified by Rule 6.

152 W.M.P. van der Aalst et al.

As all applied rules are accordance-preserving, the modified agency
(cf. Fig. 8(b)) is a correct private view of the agency (cf. Fig. 8(a)), and thus
accords with the running example contract (cf. Fig. 1(a)).

invoice

trip
order

flight
order

reject
order

confirm
order

flight
details

reject
trip

agency

p6

p7

p8

p9

p10

p11

p12

f

g

h

i

j

k

l

(a) public view

modified agency

trip
order

flight
order

reject
order

confirm
order

p6

invoice

flight
details

reject
trip

priority
order

priority
flight
order

f

jl

ik

g

p8

p12

p9

u

v

w

p18

h

p71

p72

(b) private view

Fig. 8. The public view (a) and a private view (b) of the agency of Fig. 1(a)

5 Conclusion

An interorganizational process couples interacting processes handled by different
parties. In this context, a contract serves as an agreement of these parties to a
public description of the overall process. Each of the parties implements its part
of the contract. These parts correspond to services and are termed “views”.
Each party has a public view (the part of the process it is responsible for) and
the private view (the process actually implemented). The notion of accordance
relates these two views and serves as a local correctness criterion. Accordance is
particularly suitable for interactions based on asynchronous message passing and
the local criterion ensures the correctness of the overall process even if parties
do not exactly behave as specified.

In this paper, we presented six transformation rules to derive a private view
from a public view. As transformation rules preserve accordance between the
public and the private view, the private view is correct by construction. Accor-
dance guarantees that the overall process will always terminate properly; that
is, the overall process cannot run into a deadlock or livelock. We showed that
some of the rules preserve accordance in both directions while other preserve

From Public Views to Private Views 153

accordance only in one direction. We discussed that the notion of accordance
generalizes the notion of projection inheritance [1,2,7,8].

In ongoing work, we look for other correctness criteria than weak termination.
Moreover, we want to relate the notion of accordance to other equivalence notions
described in literature. Furthermore, an accordance check that returns which
rules have to be applied to derive one service from the other one seems to be of
practical relevance.

Acknowledgments. The authors would like to thank Arjan J. Mooij for point-
ing out an error in a preliminary version of this paper.

References

1. van der Aalst, W.: Inheritance of Interorganizational Workflows: How to agree to
disagree without loosing control? Information Technology and Management Jour-
nal 4(4), 345–389 (2003)

2. van der Aalst, W., Weske, M.: The P2P approach to Interorganizational Workflows.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
pp. 140–156. Springer, Heidelberg (2001)

3. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: Proceedings of the IEEE International Conference on
Web Services (ICWS 2007), pp. 296–303. IEEE Computer Society, Los Alamitos
(2007)

4. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science.
Springer, Heidelberg (1985)

5. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

6. van der Aalst, W.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

7. van der Aalst, W., Basten, T.: Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theor. Comput. Sci. 270(1-2), 125–203 (2002)

8. Basten, T., van der Aalst, W.: Inheritance of Behavior. Journal of Logic and Al-
gebraic Programming 47(2), 47–145 (2001)

9. van der Aalst, W., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Contracts:
Agreeing and Implementing Interorganizational Processes. Informatik-Berichte
213, Humboldt-Universität zu Berlin (2007)

10. Papazoglou, M.: Agent-oriented technology in support of e-business. Commun.
ACM 44(4), 71–77 (2001)

11. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

Event Structure Semantics of Orc�

Sidney Rosario1, David Kitchin3, Albert Benveniste1,
William Cook3, Stefan Haar4, and Claude Jard2

1 Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
2 Irisa/ENS Cachan, Campus de Beaulieu, 35042 Rennes cedex, France

3 The University of Texas at Austin, Department of Computer Sciences, Austin, USA
4 Irisa/Inria Rennes and SITE, University of Ottawa, Canada

Abstract. Developing wide-area distributed applications requires
jointly analyzing functional and Quality of Service (QoS) aspects, such
as timing properties. Labelled transition systems and sequential trace
semantics - the common semantic domains - do not facilitate this kind
of analysis because they do not precisely express the causal relationships
between events. Asymmetric Event Structures (AES) provide an explicit
representation of the causal dependencies between events in the execu-
tion of a system and allow for an elegant coding of preemption. Event
structures are, however, difficult to construct compositionally, because
they cannot easily represent fragments of a computation. The heaps we
develop here allow for such a representation, and easily generate AES.
In this paper, we develop a partial-order semantics in terms of heaps, for
Orc, an orchestration language used to describe distributed computations
over the internet. We briefly show how Orc, and this new semantics, are
used for QoS studies of wide area orchestrations.

1 Introduction

Orchestrating Web services consists of a combination of different activities.
A primary concern is to ensure that the expected functionality is indeed cor-

rectly implemented. This requires semantic studies for the formalisms used in
specifying the functional aspect of Web service orchestrations. Examples of such
studies include the translation of the industrial standard BPEL into WorkFlow
nets [18] (a special subclass of Petri nets) or the pi-calculus [14], from which
analysis techniques and tools for BPEL [13,2] were developed.

Another important, yet much less addressed task consists in ensuring that the
Web service orchestration offers the due Quality of Service (QoS). QoS parame-
ters are not firmly established, but they typically include response time (latency),
availability, maximum allowed query rate (throughput), and security. The Web
Service Level Agreement (WSLA) framework [11] is a standard proposed by
IBM for QoS parameters in Web Services. When applied to the management
of OEM/supplier cooperations, orchestrations must make precise the duties and

� This work was partially funded by the ANR national research program DOTS (ANR-
06-SETI-003), DocFlow (ANR-06-MDCA-005) and the project CREATE ActivDoc.

M. Dumas and R. Heckel (Eds.): WS-FM 2007, LNCS 4937, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Event Structure Semantics of Orc 155

responsibilities of the different actors in such chains, via contracts [5]. Having
contracts with each subcontractor, the orchestration can establish the overall
contract with its customers. This process is called contract composition.

We believe there is a need for semantic studies underpinning the design of
Web services orchestrations in all its aspects: functional, QoS, and contracts,
including contract composition. Developing such a holistic approach can become
quickly cumbersome if rich formalisms for describing Web services orchestra-
tions are considered, such as, e.g., BPEL. The functional semantics of BPEL is
in itself complex, due to the large number of features offered. Extending such
semantics to encompass QoS aspects can be cumbersome. Orc [12] has been re-
cently proposed as a small and elegant language for wide area computing and
Web services orchestrations. While keeping small, it offers the main features
required by wide area computing, namely: service call, parallel and sequential
composition, preemption, and recursion. Orc has been successfully used to model
typical workflow patterns defined by Van der Aalst et al [1,8].

This paper proposes the foundations for an Orc based design of Web services
orchestrations, including both functional and QoS aspects, and supporting con-
tract composition. An interleaving semantics, both operational and denotational,
was proposed for Orc in [12]. To prepare for a combined functional/QoS use, we
propose in this paper a partial order semantics that keeps track of causalities
and concurrency. This allows us to address all the aspects of QoS where causal-
ity and concurrency relating the different site calls matters. For example, if an
orchestration causally depends on a given site call, failure of this site to deliver
proper service causes failure of the orchestration. Another example is that of la-
tency: causal dependencies and concurrency between site calls and other events
are reflected into the dates of completion of these different events. Companion
paper [16] details the use of this semantics for QoS studies and contract composi-
tion, and describes the resulting TOrQuE tool (Tool for Orchestration Quality
of Service Evaluation).

The paper is organized as follows. Section 2 briefly introduces Orc and its
operational semantics. Asymmetric event structures and heap semantics of Orc
are described in Section 3, where its use in QoS studies is sketched. Related work
is given in Section 4.

2 Orc Overview

An Orc program consists of a set of definitions and a goal expression which is to
be evaluated. Orc assumes that basic services, like sequential computation and
data manipulation, are implemented by primitive sites. Orc provides constructs
to orchestrate the concurrent invocation of sites.

The syntax of Orc is given in the upper portion of figure 1. Orc defines three
basic operators. For Orc expressions f, g, “f | g” executes f and g in parallel.
“f >x> g” evaluates f first and for every value returned by f , a new instance
of g is launched with variable x assigned to this return value. “f where x :∈ g”
executes f and g in parallel. When g returns its first value, x is assigned to this

156 S. Rosario et al.

value and the computation of g is terminated. All site calls in f having x as a
parameter are blocked till x is defined (i.e, till g returns its first value).

f, g, h ∈ Expression ::= M(p) | E(p) | f | g | f >x> g | f where x :∈ g | ?k
p ∈ Actual ::= x | v

Definition ::= E(x) Δ f

k fresh

M(v)
Mk(v)−−−−→ ?k

(SiteCall)
f

a−→ f ′ a �= !v

f >x> g
a−→ f ′ >x> g

(Seq1N)

?k
k?v−−→ let(v) (SiteRet)

f
!v−→ f ′

f >x> g
τ−→ (f ′ >x> g) | [v/x].g

(Seq1V)

let(v)
!v−→ 0 (Let)

f
a−→ f ′

f where x :∈ g
a−→ f ′ where x :∈ g

(Asym1N)

f
a−→ f ′

f | g
a−→ f ′ | g

(Sym1)
g

!v−→ g′

f where x :∈ g
τ−→ [v/x].f

(Asym1V)

g
a−→ g′

f | g
a−→ f | g′ (Sym2)

g
a−→ g′ a �= !v

f where x :∈ g
a−→ f where x :∈ g′ (Asym2)

�E(x) Δ f � ∈ D

E(p)
τ−→ [p/x].f

(Def)

Fig. 1. The Syntax (top) Operational Semantics (bottom) of Orc

The operational semantics of Orc is given in Figure 1 [12], using SOS rules. An
Orc expression f can perform action a and transform itself into the expression
f ′, which is denoted by the transition f

a→ f ′. The actions A and values V are
described by the following grammar:

a ∈ A ::= Mk(v) | k?v | !v | τ

v ∈ V ::= x | v
The actions A are the transition labels of the Orc operational semantics. The
x are variable names. They are placeholders for the value which will eventually
replace that variable in the expression. The ground values v are the constant
values which are always available.

Observe the following. Due to rule (Def), recursive definitions are possible in
Orc. Also, rule (Asym1V) exhibits termination of g upon its first publication.

The CarOnLine toy example. CarOnLine is a composite service for buying
cars online, together with credit and insurance. A simplified schematic descrip-
tion of the service is given in figure 2. On receiving a car model as an input

Event Structure Semantics of Orc 157

Plus
AllCredit

request

response

sync

GarageA GarageB

Min

GoldInsureAllCredit

Min

InsurePlus InsureAll

Min

noyes
min > limit

Fig. 2. A simplified view of the CarOnLine orchestration. The calls to GarageA and
GarageB are guarded by a timer that returns a “Fault” message at timeout.

CarOnline(car) =def CarPrice(car) >p> let(p, c, r)
where c :∈ GetCredit(p)

r :∈ GetInsur(p)

CarPrice(car) =def {GuardedMin(p1, p2)
where p1 :∈ GarageA(car) | T imer(T)

p2 :∈ GarageB(car) | T imer(T)}
>p> {if (p �= Fault) � let(p)}

GetCredit(p) =def Min(r1, r2)
where r1 :∈ AllCredit(p)

r2 :∈ AllCreditP lus(p)

GetInsur(p) =def {if (p ≥ limit) � GoldInsure(p)}
|
{if (p ≤ limit) � Min(ip, ia)

where ip :∈ InsureP lus(p)
ia :∈ InsureAll(p)}

Fig. 3. CarOnLine in Orc. GuardedMin takes the minimum of the values received before
timeout and otherwise returns Fault.

query, the CarOnLine service first sends parallel requests to two car dealers
(GarageA,GarageB), getting quotations for the car. We guard the calls to each
garage by a timer, which kills the waiting when timeout occurs. The best offer
(minimum price) is selected and credit and insurances are parallely found for
the offer. Two banks (AllCredit,AllCreditPlus) are queried for credit rates and the
one offering a lower rate is chosen. For insurance, if the car price of the best
offer is greater than a certain limit, any insurance offer by service GoldInsure is

158 S. Rosario et al.

accepted. If not, two services (InsurePlus,InsureAll) are parallely called and the
one offering the lower insurance rate is chosen. In the end, the (car-price,credit-
rate,insurance-rate) tuple is returned to the requestor.

The Orc program for CarOnLine is given in Figure 3. CarPrice parallelly
calls GarageA and GarageB for quotations. Calls to these garages are guarded
by a timer site Timer which returns a fault value T time units after the calls
are made. The let site simply returns the values of its arguments—sites can
only execute when all their parameters are defined and thus can be used to
synchronize parallel threads. The value returned by CarPrice (here the variable
p) is passed as argument to GetCredit and GetInsur which parallelly find credit
and insurance rates for the price.

3 Event Structure Semantics of Orc

In this section we describe our partial order semantics. We first recall asymmetric
event structures, and then introduce heaps.

3.1 Asymmetric Event Structures

Following [19,3], an Asymmetric Event Structure (AES) is a model of computa-
tion consisting of a set of events and two associated binary relations, the causality
relation � and the asymmetric conflict relation ↗. If for events e and e′, e � e′

holds, then e must occur before e′ can occur. If e ↗ e′ holds, then the occurrence
of e′ preempts the occurrence of e in the future. Thus if both e and e′ occur in
an execution, e necessarily happens before e′. In this sense, ↗ can also be seen
as a “weak causality” relation.

Formally, an AES is a tuple G = (E, �, ↗), where E is a set of events, and
� and ↗ are the causality and asymmetric conflict binary relations over E,
satisfying the following conditions:

1. � is a partial order, and �e� =def {e′ ∈ E | e′ � e} is finite;
2. ∀e, e′ ∈ E:

e ≺ e′ ⇒ e ↗ e′ (1)
the restriction of ↗ to �e� is acyclic (2)

#a({e, e′}) ⇒ e ↗ e′ (3)

where #a is the conflict relation, recursively defined by:

e0 ↗ e1 ↗ . . . en ↗ e0 ⇒ #a({e0, . . . , en}) (4)
[#a(A ∪ {e})] ∧ [e � e′] ⇒ #a(A ∪ {e′}) (5)

By abuse of notation, we write e#af to mean #a({e, f}). Condition (5) ensures
that a conflict with e is inherited by all the events caused by e. For G = (E, �, ↗)
an AES, a configuration of G is a set κ ⊆ E of events such that

Event Structure Semantics of Orc 159

1. the restriction of ↗ to κ is well-founded;
2. {e′ ∈ κ | e′ ↗ e} is finite for every e ∈ κ;
3. κ is left-closed with respect to �, i.e., ∀e ∈ κ, e′ ∈ E, e′ � e implies e′ ∈ κ.

For our coding of Orc, we will need to label the events. Thus we shall consider
Labeled AES (LAES), which are tuples of the form G = (E, �, ↗, λ), where
λ : E �→ Λ, (Λ is a set of labels) is the labeling (partial) function.

Discussion. Although event structures are a convenient semantic domain for
complete programs, they cannot represent fragments thereof, which arise natu-
rally when constructing the behavior of a program from its sub-parts. By offering
the additional concept of place, Petri nets and their extensions make composition
and structural translation easier. Explicit encoding of places allows one fragment
to depend upon resources supplied by another fragment. Petri nets with read
arcs also allow us to elegantly code the preemption behaviour in Orc’s where
operator: the first “publish” event prevents all subsequent events from occur-
ing. To bypass the nontrivial construction of Petri nets supporting recursion, we
chose to generate directly a particular representation of unfoldings of nets with
read arcs, which we call heaps. Heaps can then be easily translated into event
structures and allow for easy coding into software.

3.2 Heaps

Heaps are sets of labeled events coded in a particular form, following an orig-
inal idea of Esparza et al. [10]. A heap event has a label—the Orc action it
represents—and is characterized by the conditions that enable its occurrence.
These enabling conditions can either be consumed by the event or be read and
not consumed. Each condition, in turn, refers to the unique event that created
it. Marks are used to distinguish different conditions created by the same event.

More precisely, we are given an underlying set A of labels, an initialization
action � ∈ A, and a set of initial marks Min. Sets E of all events, C of all
conditions and M of all marks (which is initialised to Min) are inductively
defined as follows:

– ⊥ = (∅, ∅, �) ∈ E ;
– if f ∈ E and μ ∈ M, then c = (f, μ) ∈ C; μ is the mark of c;
– for c and c′ two subsets of C such that c ∩ c′ = ∅ and c ∪ c′ �= ∅, then

e = (c, c′, a) ∈ E ; a ∈ A is the label of e; •e =def c and e =def c′ are the set
of conditions consumed and read by e, and •e =def

•e ∪ e is the preset of e.
– if e ∈ E , then e ∈ M, i.e any event can itself be used as a mark.

Definition 1. A heap is a set of events E ⊂ E, such that ⊥ /∈ E.

For heap E, we define its set of associated conditions CE =
⋃

e∈E
•e. The

set SE = {f | (f, μ) ∈ CE} ∪ E is called the support of E. For f ∈ SE , set
f• =def {c ∈ CE | c = (f, μ)}. Define the set of minimal conditions of E to be

160 S. Rosario et al.

minConds(E) =def {c ∈ CE | c = (f, μ), f �∈ E}. The support includes external
events which generate conditions that enable events in E. The initialization event
⊥ ∈ SE but ⊥ /∈ E. With this non classical notion of support, heaps can model
program fragments (unlike event structures).

Given a heap E we define the following relations between events in E (super-
script ∗ denotes transitive closure):

�E = � ∗ where � = {(f, e) | f• ∩ •e �= ∅} ∪ {(e, e) | e ∈ E} (6)

↗′
E = ≺E ∪

{
(f, e)

∣∣∣∣ ∃e′ ∈ E, e1 :
[

(e′, -) ∈ •f ∩ •e1

∧ e1 �E e

]}

↗E = ↗′
E ∪ {(e, f) | e#a

Ef} (7)

where event variables e, e1 and f range over E, and the symmetric conflict re-
lation #a

E is deduced from ↗′
E via (4,5). The reason for the two-step definition

of ↗E is that the pair (�E , ↗′
E) satisfies conditions (1) and (2), but not nec-

essarily (3). The latter is enforced by second step in the definition, from ↗′
E to

↗E . Next, equip E with a labeling map

αE(e) =def a (8)

where event e = (•e, e, a). For a heap E, we shall denote by

min(E) = {e ∈ E | ∀f ∈ E : f �E e ⇒ f = e} (9)

the events that are minimal for the relation �E. We omit the subscript E in the
sequel. In the send heap in Figure 4, e � f1 holds, where e is the event labelled
Mk1 or k1?v1. Also e ↗ f1 holds for all events e in the heap (except f1).

Definition 2. A configuration of a heap E is any finite subset κ of E with the
following properties:

1. the restriction of ↗ to κ is well-founded;
2. {e′ ∈ κ | e′ ↗ e} is finite for every e ∈ κ;
3. κ is left-closed with respect to �, i.e., ∀e ∈ κ, e′ ∈ E, e′ � e implies e′ ∈ κ;
4. for each event e belonging to κ, if f• ∩ •e �= ∅ then f ∈ E.

Heap configurations represent self-enabled executions. By condition 3, condition
4 is equivalent to f ∈ κ. Conditions 1–3 coincide with those involved in the
definition of configurations for AES. Condition 4 is new; it amounts to requiring
that κ needs no external event from the support, for its enabling. Let Configs(E)
be the set of all configurations of heap E.

One may expect (E, �, ↗, α) to be an LAES. This is not true in general. The
reason is that heaps can represent program fragments, whereas LAES don’t. In
this section we show how to extract from any heap E, an effective heap which
has a direct correspondence with an LAES.

Event Structure Semantics of Orc 161

Definition 3. Given a heap E, its effective heap G [E] is defined as:

G [E] =def
⋃

κ∈Configs(E) κ.

Say that heap E is effective if G [E] = E holds.

G [E] possesses a subset of E as its set of events. Generation of G [E] from a
heap E is by pruning and by Definition 2. This generation is constructive. The
introduction of effective heap G [E] is justified by the following result, where
symbols �, ↗, and α are the restrictions, to G [E], of the relations and map
defined in (6), (7), and (8), respectively.

Theorem 1 ([17]). A [E] = (G [E] , �, ↗, α) is an LAES. Furthermore, G [E]
is the maximal subset of events of E that induces an LAES.

Heaps will be used to give the semantics of fragments of Orc programs, i.e.,
programs requiring a context. This allows for a structural construction of the
semantics of Orc. Effective heaps will represent Orc programs that are self-
enabled and can be executed.

Generic Operations on Heaps. We list here a few operations on heaps that
are useful for wide area computing. From now on, we specialize marks to being
lists, with the usual operations.

– Marking: Marking creates distinct copies of a heap. For a heap E and m a
mark, Em is the heap where symbol m has been appended to the mark μ(c)
of each condition c ∈ minConds(E). The recursive definitions of events and
conditions in E ensures that this operation creates a new instance of E.

– Disjoint Union: for E and F heaps, and left and right fixed marks:

E � F =def Eleft ∪ F right

– Preemption: For a heap E and F ⊆ E, the preemption of E by F terminates
execution of E when any event in F occurs. Formally, stopF (E) is the heap
obtained by replacing each event e = (•e, e, a) of E by ϕ(e) as follows:

ϕ(e) =def

{
(•e ∪ {(⊥, stop)}, e, a) if e ∈ F .

(•e, e ∪ {(⊥, stop)}, a) if e /∈ F .
(10)

– Copy: For two heaps E and F , we define copyl(E, F) to be a copy of E with
respect to context heap F . For a mark l, copyl(E, F) is a fresh heap obtained
by changing all minimal conditions (e, μ) ∈ minConds(E) as follows:

(e, μ) =

{
(e, (μ, l)) if (e, μ) /∈ CF

(e, μ) if (e, μ) ∈ CF

(11)

where CF is the set of associated conditions of the context heap F . Intu-
itively, events in E may share conditions (and thus are related) with events
in the context heap F . The copy of E with respect to context F keeps these
conditions intact in the copy to preserve the relations between the copied
events and those in F .

162 S. Rosario et al.

3.3 The Heap Semantics of Orc

In this section, we construct the heap semantics of Orc in a structural way. Some
intermediate steps will require heaps that are not effective. Heaps of well formed
Orc expressions will all be effective, however, thus giving rise to an LAES. We
introduce an intermediate action τv for the construction, which will be removed
in a post-processing step after the heap is built.

– Free Variables: E(x) is the set of all events in heap E which depend on x.

E(x) = {e ∈ E | ∃e′ ∈ E, e′ �E e, α(e′) ∈ {Mk(x), !x, τx}}

Call x a free variable of E if E(x) is nonempty. Let E(x) be the events in E
that do not depend on x: E(x) = E − E(x).

– Publication events: !E is the set of publication events of heap E:

!E = {e | α(e) = !v}

– Preemption: Stopping E after the first value publication is defined as:

stop(E) =def stop!E(E)

– Send: For a publication event e = (•e, e, !v), define the τ(e) to be the event
obtained by changing the label of e as follows:

α(e) =
{

τx if α(e) = !x, for any variable x
τ otherwise (12)

The heap send(E) is the heap E where all the publication events e in E are
replaced by τ(e). The publication events are still identifiable by their marks.

– Link: For a heap E, a context heap C, an event f not belonging to E, and
a value v,

link(f, v, x, E, C)

is a (non effective) heap in which variable x is bound to value v after external
event f . The context heap C identifies parts of E that are not affected by
the variable binding. link(f, v, x, E, C) is the heap obtained as follows:
1. Create E′ = copyf (E, C) a new copy of E with respect to context heap

C and marked with label f . In making this copy, each event e ∈ E has
a unique corresponding event e′ = ϕf (e) ∈ E′.

2. Change all e′ = (•e′, e′, a) ∈ E′ as below, where e = ϕ−1
f (e′):

e′ =

{
(•e′ ∪ {(f, e)}, e′, [v/x]a) if e′ ∈ min(E′)

(•e′, e′, [v/x]a) if e′ /∈ min(E′)
(13)

The substitution [v/x]a replaces the variable x by v in the action a. If the
variable x does not occur in a, the substitution leaves a unchanged. The heap
constructed here does not contain the event f referred by e′ ∈ min(E′).

Event Structure Semantics of Orc 163

– Receive: We next construct a (non effective) heap that can receive any value
published by another heap. If e is a publication event, τ(e) is the event e
with its action changed according to (12). We define

recvx(E, F, C) =
⋃

f∈ !E,α(f)= !v

link(τ(f), v, x, F, C)

Observe that, if !E is empty, this yields recvx(E, F, C) = ∅.
– Pipe: The pipe operator allows G to receive publications from F , subject to

a context C that identifies parts of G not affected by the communication.

pipex(F, G, C) = send(F) ∪ recvx(F, G, C)

Heaps of Base Expressions. For Orc expression f , [f] is its heap denotation.
Symbol nil indicates the absence of mark, vk is the value returned by a site.

[0] = ∅
[let(v)] = { ({c}, ∅, !v) }

where condition c = (⊥,nil)

[?k] = { e = ({c1}, ∅, k?vk), ({c2}, ∅, !vk) }
where condition c1 = (⊥,nil), c2 = (e,nil)

[M(v)] = { e = ({c1}, ∅, Mk(v)), f = ({c2}, ∅, k?vk), ({c3}, ∅, !vk) }
where condition c1 = (⊥,nil), c2 = (e,nil), c3 = (f,nil),
k is fresh.

[E(v)] = [[v/x]f]
where E is an expression definition and E(x) Δ f

Heaps for the Combinators

[f | g] = [f] � [g]

[f >x> g] = pipex([f] , [g] , ∅)

[g where x :∈ f] = pipex(stop(F), G(x), G(x)) ∪ G(x)
where F = [f]right and G = [g]left

In a final post-processing step, we rename all the intermediate τv actions of the
heap to the internal action τ .

Theorem 2 ([17]). Heaps of base expressions are all effective. If [f] and [g] are
effective heaps, then so are their compositions via the above three combinators.

Recursive Definitions. The treatment of recursive definitions follows that
given in [12], except that the denotation of an expression f is the heap [f] instead
of the set of traces 〈f〉. The heap for a recursive Orc definition f Δ Exp(f) is the
limit of a series of increasing approximations 0 � Exp(0) � Exp(Exp(0)) �

164 S. Rosario et al.

To ensure existence of the limit, the least fixpoint of Exp, we show that the Orc
combinators are monotonic with respect to �. For F and G two heaps, define

F ≺ G if F ⊆ G and CF ∩ CG−F = ∅ (14)

Then for Orc expressions, f � g if [f] ≺ [g]. The motivation for having the
second condition in (14) is that it is needed in the proof of Lemma 2 below.

Lemma 1 ([17]). Relation ≺ is a partial order on heaps.

Lemma 2 ([17]). The Orc combinators are monotonic in both arguments. In
particular, given f � g, then

f | h � g | h
f >x> h � g >x> h
h >x> f � h >x> g

f where x :∈ h � g where x :∈ h
h where x :∈ f � h where x :∈ g

Complete proofs of the theorems and lemmas is given in [17], along with a
correctness proof of this semantics, with respect to the semantics of Figure 1.

3.4 Examples

Figure 4 gives the intermediary and the final heap for the Orc expression

{let(1) � S(x)} where x :∈ {M | N}.

Note the two publications f1 and f2, by the parallel composition M | N . These
are made conflicting by the extra (shaded) condition created by the stop opera-
tor. We show in the middle two intermediate steps of the translation. Subexpres-
sion F = M | N has two emissions, by M and N respectively. By Rule (Asym1V)
of Figure 1, F , when used in the where context, must be terminated just af-
ter its first publication event f1 or f2. This is realized by the send(stop(F))
mechanism; the shaded condition create asymmetric conflict causing the first
publication to preempt the other one.

The second heap named recvx(. . .) properly puts G in the two conflicting
contexts of publication events f1 or f2. A dashed arrowhead to a minimal con-
dition of the heap from an event name states that the condition depends on
that external event. The external events here are e and f1, f2 in heaps G(x) and
send(stop(F)) respectively. When these heaps are combined in the right most
heap, these events become internal events, thus showing that the resulting final
heap is effective.

The CarOnLine toy example, continued. Figure 5 shows a diagram of the
event structure corresponding to the CarOnLine program written in Orc. The
event structure is generated by our tool and it collects all the possible executions
of CarOnLine, taking into account timers and other interactions between data
and control. Each execution has the form of a partial order and can be analysed
to derive appropriate QoS parameter composition, for each occurring pattern.
Each site call to a service M is translated into three events, the call (M), the
call return (?M) and the publish action (!), which lengthens the structure.

Event Structure Semantics of Orc 165

!v3 !v4

Mk1 Nk2

f1 f2τ e

e f2e f1

Sk3(v1)

k3?v3

!v3

k4?v4

!v4

Sk4(v2) k3?v3 k4?v4

k1?v1 k2?v2

Sk3(x)

k3?v3

!v3

[{let(1) � S(x)}
where x :∈ {M | N}]

Mk1 Nk2

k1?v1 k2?v2

τ

G = [let(1) � S(x)]

F = [M | N]

send(stop(F))

ττ

G

G(x)

G(x)

recvx(stop(F), G(x), G(x))

Sk3(v1) Sk4(v2)

δM

δS δS

δN

τ τ

Fig. 4. Heap semantics of the Orc expression {let(1) � S(x)} where x :∈ {M | N}.
Solid/dashed arcs point back to consumed/read conditions. Dashed arrow heads point
back to causes not belonging to the considered heap—this is the way program fragments
are captured. The red color refers to QoS aspects, see Section 3.5.

3.5 QoS Studies on Orc

Having the event structure semantics of Orc allows us to address all the aspects
of QoS where causality relating the different site calls matters. As an example,
we focus on latency, depicted in red in Figure 4. We assign to web service calls M ,
N and S a latency represented by variables δM , δN and δS respectively. Given
outcomes for δM , δN , and δS , we get the overall latency δE for the orchestration
E = {let(1) � S(x)} where x :∈ {M | N}, by using its heap in Figure 4.
This heap exhibits two maximal configurations, which correspond to M or N
publishing first : these two publish events (the shaded τ events) are in conflict.
The resolution of this conflict is driven by the actual value for δM and δN : for
e.g, if δM < δN , Sk3 will occur (but Sk4 will not). For each configuration, we add
the latencies along each causality path, and consider the maximum latency of all
the incoming paths at a synchronization event. Here, when δM < δN , the overall
latency will thus be δM + δS . An important fact is that latency and conflict
mutually interact: who publishes first has a consequence on which configuration

166 S. Rosario et al.

GarageB

?GarageB

MyTimer

?MyTimer

Mux

MuxMux

GarageA

?GarageA

MyTimer

?MyTimer

?Mux

ifnotfault

?ifnotfault

Mux

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

ifgt

?ifgt

GoldInsur

?GoldInsur

ifle

?ifle

InsurPlus

?InsurPlus

Min

?Min

InsurAll

?InsurAll

!

AllCreditPlus

?AllCreditPlus

Min

?Min

AllCredit

?AllCredit

!

Fig. 5. A labelled event structure collecting all possible executions of CarOnLine, as
generated by our tool. The three dangling arcs from the shaded places are followed by
copies of the boxed net.

Event Structure Semantics of Orc 167

is actually executed, which in turn has a consequence on the overall latency.
Note that this analysis also supports the use of timeouts in the orchestration to
guard the waiting for answers to site calls.

4 Related Work

Closest to our present study is the work [15], where Orc expressions are trans-
lated to colored Petri net systems [4]. Bruni et al. [7] link the Orc language to
Petri nets and the join calculus. Together with the event structure semantics for
nominal calculi given in Bruni et al. [6], this yields a chain of transformations
that yield an event structure semantics for suitable Orc programs. However, [6]
focusses on the subclass of persistent grammars, which avoids asymmetric con-
flicts. We consider asymmetric conflict as central for dealing with orchestration
dynamics; in fact, preemption-based constructs such as timeouts, races etc. in-
evitably lead to asymmetric conflicts not covered by prime event structures, see
figure 4. For an approach that focuses on temporal properties without partial
orders nor performance evaluation, see [9], where a Timed Automaton semantics
of Orc is given and used for verification purposes using the Uppaal tool.

Our work is unique in that it provides a direct coding of a wide area com-
puting language into asymmetric event structures. This is of immediate use in
QoS studies, as the latter builds on timed and/or probabilistic enhancements of
partial order models [15,16].

5 Conclusion

We have presented a partial order semantics for Orc, a structured orchestration
language with support for termination and recursive process instantiation. The
semantics uses heaps to encode sets of interrelated events because they simplify
manipulation of the fragments of program behavior that arise when analyz-
ing the sub-expressions of a program. These fragments are composed to create
effective heaps, from which more traditional asymmetric event structures are
derived.

The heap semantics provides a model of true concurrency and also directly
support analysis of non-functional properties of Orc programs. In [16] some of
the authors develop a theory of “soft” contracts in which Service Level Specifi-
cations (SLS) are expressed in terms of probability distributions on QoS para-
meters. Monte-Carlo simulations of the orchestration provide a simple approach
to compose these probabilistic contracts. Each simulation is an execution of the
orchestration’s heap in which latencies of the calls to services are drawn from
the corresponding contract’s probability distribution. Using the technique given
in section 3.5 to compose latencies, the empirical probability distribution for the
overall orchestration latency is derived.

168 S. Rosario et al.

References

1. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

2. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Applying model checking to
BPEL4WS business collaborations. In: SAC, pp. 826–830 (2005)

3. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, Asymmetric Event
Structures, and Processes. Inf. Comput. 171(1), 1–49 (2001)

4. Best, E., Devillers, R.R., Koutny, M.: The Box Algebra = Petri Nets + Process
Expressions. Inf. Comput. 178(1), 44–100 (2002)

5. Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments.
Computer Networks 35(1), 5–24 (2001)

6. Bruni, R., Melgratti, H.C., Montanari, U.: Event structure semantics for nominal
calculi. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp.
295–309. Springer, Heidelberg (2006)

7. Bruni, R., Melgratti, H.C., Tuosto, E.: Translating Orc Features into Petri Nets
and the Join Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 123–137. Springer, Heidelberg (2006)

8. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in orc. In: Ciancarini, P.,
Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 82–96. Springer,
Heidelberg (2006)

9. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of Computation Orchestration
via Timed Automata. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
226–245. Springer, Heidelberg (2006)

10. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s Unfolding Al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

11. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service
level agreements for web services. J. Network Syst. Manage 11(1) (2003)

12. Kitchin, D., Cook, W.R., Misra, J.: A language for task orchestration and its
semantic properties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 477–491. Springer, Heidelberg (2006)

13. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S.: Formal Semantics
and Analysis of Control Flow in WS-BPEL. BPM Center Report BPM-05-15,
BPMcenter.org (2005)

14. Puhlmann, F., Weske, M.: Using the pi-Calculus for Formalizing Workflow Pat-
terns. In: Business Process Management, pp. 153–168 (2005)

15. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Foundations for Web Services Or-
chestrations: functional and QoS aspects. In: Proceedings ISOLA (2006)

16. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts
for transaction based web services. In: ICWS, pp. 126–133 (2007)

17. Rosario, S., Kitchin, D., Benveniste, A., Cook, W., Haar, S., Jard, C.: Event Struc-
ture Semantics of Orc. IRISA Internal Report No 1853 (June 2007), available for
download at:
http://www.irisa.fr/distribcom/benveniste/pub/heaps4Orc2007.pdf

18. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based Ap-
proach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81.
Springer, Heidelberg (1997)

19. Winskel, G.: Event Structures.. In: Advances in Petri Nets, pp. 325–392 (1986)

http://www.irisa.fr/distribcom/benveniste/pub/heaps4Orc2007.pdf

Author Index

Benveniste, Albert 154
Bocchi, Laura 92
Bultan, Tevfik 1

Cherkaoui, Omar 31
Cook, William 154

Desel, Jörg 17

Fiadeiro, José Luiz 92
Fu, Xiang 1

Ghandour, Boubker 31

Haar, Stefan 154
Hallé, Sylvain 31
He, Jifeng 61
Hong, Yi 92

Jard, Claude 154

Kitchin, David 154
Kopp, Oliver 46

Leymann, Frank 46
Li, Jing 61
Li, Qin 61

Lohmann, Niels 46, 77, 139
Lopes, Antónia 92

Martinelli, Fabio 124
Massuthe, Peter 139
Matteucci, Ilaria 124

Reisig, Wolfgang 46
Rosario, Sidney 154

Sirjani, Marjan 108
Stahl, Christian 139
Su, Jianwen 1

Tasharofi, Samira 108
Tremblay, Jérôme 31

Vakilian, Mohsen 108
van der Aalst, Wil M.P. 139
Villemaire, Roger 31

Wolf, Karsten 139

Zhao, Xiangpeng 1
Zhu, Huibiao 61
Zilouchian Moghaddam, Roshanak 108

	Title Page
	Preface
	Organization
	Table of Contents
	Towards a Theory of Web Service Choreographies
	Introduction
	SOA and Service Design
	Choreography Models
	Elements of a Choreography Model
	Automata Based Models
	Petri-net Based Models
	Process Algebra Based Models

	Design and Analysis Problems
	The Conformance Problem
	Realizing Choreographies
	Analyzing Service Implementations
	Approaches to Verification

	Conclusions

	Controlling Petri Net Process Models
	Introduction
	Petri Net Process Models
	Relaxed and Weak Soundness
	Weak Boundedness
	Controller Synthesis
	Conclusion

	Extending Model Checking to Data-Aware Temporal Properties of Web Services
	Introduction
	Data-Aware Web Service Properties
	Formalizing Data-Aware Properties with CTL-FO+
	Syntax and Semantics of CTL-FO+
	Model Checking CTL-FO+ Properties

	An Efficient Reduction of CTL-FO+ to CTL
	Transforming a Kripke Structure
	Converting a CTL-FO+ Formula

	Experimental Results
	Methodology
	Results and Discussion

	Conclusions

	Analyzing BPEL4Chor: Verification and Participant Synthesis
	Introduction
	Background and Motivation
	Open Workflow Nets
	Petri Net Semantics for BPEL

	Translating BPEL4Chor Choreographies into Petri Nets
	Analyzing BPEL4Chor Choreographies
	Analyzing Closed Choreographies
	Analyzing Open Choreographies

	Case Study
	Conclusion
	Related Work
	Future Work

	Scalable Formalization of Publish/Subscribe Messaging Scheme Based on Message Brokers
	Introduction
	ϕ-Calculus
	Formalization of Publish/Subscribe Messaging
	Communication Model Definition for Participants
	Model for Message Broker
	Model for Publish/Subscribe Scheme

	System Composition
	Verification
	Conclusion and Further Work

	A Feature-Complete Petri Net Semantics for WS-BPEL 2.0
	Introduction
	Background
	WS-BPEL
	Open Workflow Nets
	A Petri Net Semantics for WS-BPEL

	Simplifying Existing Patterns
	Links and Dead-Path-Elimination
	Fault Handling and Termination of Scopes
	Comparison

	Modeling WS-BPEL's New Features
	Modeling the "426830A forEach"526930B Activity
	Modeling Termination Handlers

	Conclusion
	Related Work
	Future Work

	From BPEL to SRML: A Formal Transformational Approach
	Introduction
	The Strategy of the Encoding
	Definition of the Module Structure
	Transformation of Control Flow
	Encoding Basic Activities
	Encoding Structured Activities

	Conclusions and Future Work
	References

	Modeling Web Service Interactions Using the Coordination Language Reo
	Introduction
	WS-BPEL
	Reo and Constraint Automata
	Mapping Algorithm
	Variable
	Basic Activities
	Structured Activities
	Trends for Adding Scope, Fault and Event Concepts

	The Purchase Order Example
	Related Work
	Conclusion and Future Work

	Synthesis of Web Services Orchestrators in a Timed Setting
	Overview
	Background
	Web Service Languages: WSDL and BPEL
	Equational -Calculus and Partial Model Checking in a Timed Setting

	Synthesis of Orchestration Process in a Timed Setting
	A Simple Example
	Related Works
	Conclusion

	From Public Views to Private Views – Correctness-by-Design for Services
	Introduction
	Formalizing Contracts
	Derive a Private View from a Public View
	Inheritance-Preserving Transformation Rules
	Accordance-Preserving Transformation Rules

	Case Study
	Conclusion

	Event Structure Semantics of Orc
	Introduction
	Orc Overview
	Event Structure Semantics of Orc
	Asymmetric Event Structures
	Heaps
	The Heap Semantics of Orc
	Examples
	QoS Studies on Orc

	Related Work
	Conclusion

	Author Index

