
An O∗(3.523k) Parameterized Algorithm for
3-Set Packing�

Jianxin Wang and Qilong Feng

School of Information Science and Engineering, Central South University
jxwang@mail.csu.edu.cn

Abstract. Packing problems have formed an important class of NP-
hard problems. In this paper, we provide further theoretical study on the
structure of the problems, and design improved algorithm for packing
problems. For the 3-Set Packing problem, we present a deterministic
algorithm of time O∗(3.523k), which significantly improves the previous
best algorithm of time O∗(4.613k).

1 Introduction

In the complexity theory, packing problem forms an important class of NP-hard
problems, which are used widely in scheduling and code optimization fields. We
first give some related definitions [1].

Assume all the elements used in this paper are from U .

Set Packing: Given a pair (S, k), where S is a collection of n sets and k is an
integer, find a largest subset S′ such that no two sets in S′ have the common
elements.

(Parameterized) 3-Set Packing: Given a pair (S, k), where S is a collection of n
sets and k is an integer, each set contains 3elements, either construct a k-packing
or report that no such packing exists.

3-Set Packing Augmentation: Given a pair (S, Pk), where S is a collection of n
sets and Pk is a k-packing in S, either construct (k + 1)-packing or report that
no such packing exists.

Recently, Downey and Fellows [2] proved that the 3-D Matching problem is
Fixed Parameter Tractable (FPT), and gave an algorithm with time complexity
O∗((3k)!(3k)9k+1), which can be applied to solve 3-Set Packing problem. Jia,
Zhang and Chen [3] reduced the time complexity to O∗((5.7k)k) using greedy
localization method. Koutis [4] proposed a randomized algorithm with time
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complexity O∗(10.883k) and a deterministic algorithm with time complexity at
least O∗(320003k). Fellows et al [5] gave an algorithm with time complexity at
least O∗(12.673kT (k)) for the 3-D Matching problem, (based on current tech-
nology, T (k) is at least O∗(10.43k)). Kneis, Moelle, S.R and Rossmanith [6]
presented a deterministic algorithm of time O∗(163k) using randomized divide
and conquer. Chen, Lu, S.H.S and Zhang [7] gave a randomized algorithm with
time complexity O∗(2.523k) based on the divide and conquer method, whose
deterministic algorithm is of time complexity O∗(12.83k). Liu, Lu, Chen and
H Sze [1] gave a deterministic algorithm of time O∗(4.613k) based on greedy
localization and color coding, which is currently the best result in the world.

In this paper, we will discuss how to construct a (k + 1)-packing from a k-
packing, so as to solve the 3-Set Packing problem. After further analyzing the
structure of the problem, we can get the following property: if the 3-Set Packing
Augmentation problem can not be solved in polynomial time, then each set in
Pk+1 should contain at least one element of Pk. Based on the above property, we
can get a randomized algorithm of time O∗(3.523k) using randomized divide and
conquer. According to the structure analysis and the derandomization method
given in [8], we can get a deterministic algorithm with the same time complexity
O∗(3.523k), which greatly improves the current best result O∗(4.613k).

2 Related Terminology and Lemmas

We first introduce two important lemmas [1].

Lemma 1. For any constant c > 1, the 3-Set Packing Augmentation problem
can be solved in time O∗(ck) if and only if the 3-Set Packing problem can be
solved in time O∗(ck).

Lemma 2. Let (S, Pk) be an instance of 3-Set Packing Augmentation, where
Pk is a k-packing in S. If S also has (k +1)-packings, then there exists a (k +1)-
packing Pk+1 in S such that every set in Pk contains at least two elements in
Pk+1.

By lemma 1, reducing the time complexity of 3-Set Packing Augmentation prob-
lem is our objective.

For the convenience of analyzing the structure of the 3-Set Packing Augmen-
tation problem, we give the following definitions.

Definition 1. Let (S, Pk) be an instance of 3-Set Packing Augmentation prob-
lem, where Pk is a k-packing in S. Assume there exists Pk+1, for a certain
(k + 1)-packing P and a set ρi in Pk, if only one element of ρi is contained in
P , ρi is called 1-Set; if no element of ρi is contained in P , it is called 0-Set.
The collection of all the 1-Set and 0-Set in Pk is called (1, 0)-Collection of the
(k+1)-packing P . If the (1, 0)-Collection of P is null, then P is called a (0, 1)-free
packing.
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We need to point out that: different (k +1)-packing may have different (1, 0)-
Collection.

It is easy to get the following lemma from relation between Pk and Pk+1.

Lemma 3. Let (S, Pk) be an instance of 3-Set Packing Augmentation problem,
where Pk is k-packing in S. Assume there exists Pk+1, any (k + 1)-packing can
be transformed into a (0, 1)-free packing in polynomial time.

Proof. For an instance of 3-Set Packing Augmentation problem (S, Pk). Assume
there exists Pk+1, for any (k + 1)-packing P , do the following process.

Find out all the 1-Set and 0-Set in Pk, denoted by W . For each set ρi in W ,
discuss it in the following two cases.

Case 1: ρi is a 1-Set. Assume one element a in ρi is contained in P and the set
ρ′j in P contains the element a. Use ρi to replace ρ′j in P such that the number
of 1-Set in Pk is reduced by one. Because of the replacement, there may produce
new 1-Set or 0-Set in Pk. Find out all the new 1-Set and 0-Set in Pk. If a new
1-Set or 0-Set has not existed in W , add this set into W .

Case 2: ρi is a 0-Set. Since Pk has k sets and Pk+1 has k + 1 sets, there must
exists one set ρ′j in P that is not contained in Pk. Use ρi to replace ρ′j in P such
that the number of 0-Set in Pk is reduced by one. Because of the replacement,
there may produce new 1-Set or 0-Set in Pk. Find out all the new 1-Set and
0-Set in Pk. If a new 1-Set or 0-Set has not existed in W , add this set into W .

After processing all the sets in W , there are no 1-Set and 0-Set in Pk. There-
fore, the (k + 1)-packing P is converted into a (0, 1)-free packing.

Now, we prove that the above process can be done in polynomial time.
In order to find out all the 1-Set and 0-Set, for each set ρi in Pk, we need

to consider all the sets in P . Obviously, the time complexity of this process is
bounded by O(k2). When a set in P is replaced by 1-Set or 0-Set,it needs to
redetermine the 1-Set and 0-Set in Pk. The whole time complexity of this process
is bounded by O(k3). This completes the proof of the lemma. ��
Based on the lemma 3, we can get following lemma.

Lemma 4. Let (S, Pk) be an instance of 3-Set Packing Augmentation problem,
where Pk is a k-packing in S. Assume there exists Pk+1, for any (k +1)-packing
P , if P is a (0, 1)-free packing, then each set in Pk should have at least 2 elements
be contained in P .

Proof. Assume there exists Pk+1 in S, for any (k+1)-packing P , if P is a (0, 1)-free
packing, the (1, 0)-Collection of P is null, that is, there is no 1-Set or 0-Set in Pk.
Therefore, each set in Pk should have at least 2 elements be contained in P . ��
Combing lemma 4 with the structure analysis of Pk+1, we can get the following
lemma.

Lemma 5. Given an instance of 3-Set Packing Augmentation problem (S, Pk),
where Pk is k-packing in S. For any (0, 1)-free packing P , assume there are 2k+x
(0 ≤ x ≤ k) elements from Pk contained in P , if the 3-Set Packing Augmentation
problem can not be solved in polynomial time, each set in P should contain at
least one of those 2k + x elements.
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Proof. By the lemma 4, each (0, 1)-free packing contains at least 2k elements of Pk.
We use contradiction method to prove. Assume that: although the 3-Set Pack-

ing Augmentation problem can not be solved in polynomial time, one or more
sets in P contain none of those 2k + x elements.

Assume that there is a set α in P containing none of those 2k + x elements.
Except those 2k + x elements, other elements in Pk are definitely not in P .
Therefore, α and all sets in Pk have no common elements.

According to the relation between elements and sets, construct the bipartite
graph G = (V1 ∪ V2, E), where the vertices in V1 correspond to the elements
in U , and the vertices in V2 denote the sets in S. If an element is contained in
a set, then the corresponding vertices will be connected by an edge. In graph
G, we can find out all the sets having no common elements with Pk, thus, α
is definitely in those sets. A (k + 1)-packing can be constructed by the k sets
in Pk and α, which can be done in polynomial time. This contradicts with the
assumption. This completes the proof of the lemma. ��

3 The Randomized Algorithm

In this part, randomized divide and conquer will be used efficiently to solve the
3-Set Packing Augmentation problem. Based on the lemma 3, we can assume
that all the (k + 1)-packing used in the following are (0, 1)-free packing.

By lemma 5, we can get the following lemma.

Lemma 6. Given an instance of 3-Set Packing Augmentation problem (S, Pk),
where Pk is a k-packing in S. Assume there exists Pk+1, for a (k+1)-packing P ,
if P can not be found in polynomial time, P is composed of the following there
parts.

(1) P has r sets, each of which contains only one element of Pk, 0 ≤ r ≤
�k+3

2 �.
(2) P has s sets, each of which contains only two elements of Pk, 0 ≤ s ≤ k+1.
(3) P has t sets, each of which contains three elements of Pk, 0 ≤ t ≤ k − 1.
where r + s + t = k + 1.

Proof. By lemma 5, if there exists Pk+1 and could not find a (k + 1)-packing in
polynomial time, each set in Pk+1 should contains at least one element of Pk.
Therefore, for the (k+1)-packing P , each set in P may contain 1, 2 or 3 elements
of Pk, which is one of the three types given in the lemma.

Now we will prove that there are at most �k+3
2 � sets in P , each of which

contains only one element of Pk. Assume that P contains 2k + x (0 ≤ x ≤ k)
elements of Pk. If s = 0 and each set in P has already contained one of those
2k + x elements. When the remaining 2k + x − (k + 1) = k + x − 1 elements
are used to form the sets containing three elements of Pk, r gets the maximum
value: k + 1 − �k+x−1

2 	 ≤ �k+3
2 �.

When each set in P contains only two elements of Pk, s gets the maximum
value k + 1, thus, s ≤ k + 1.

Because each set in P contains at least one element of Pk, the maximum
number of sets in P containing three elements of Pk is k − 1, thus, t ≤ k − 1. ��
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Let Ci (1 ≤ i ≤ 3) denote all the sets having i common elements with Pk,
which can be found in polynomial time based on the relation of elements and
sets. Assume UPk

denotes the 3k elements in Pk and US−Pk
denotes the elements

in S − Pk. Therefore, each set in C2 contains 2 elements from UPk
, and each set

in C3 contains 3 elements from UPk
. Let UC2−Pk

denote the elements in C2 but
not in UPk

, then UC2−Pk
⊆ US−Pk

.
By lemma 6, if Pk+1 exists, there are r sets in Pk+1 such that each of which

contains only one element of Pk, which are obviously included in C1. To find the
r elements from UPk

, there are
(3k

r

)
enumerations. Let H be the collection of

sets in C1 containing one of those r elements.
Assume UPk+1−Pk

denotes all the elements in Pk+1 but not in Pk, and the
size of the UPk+1−Pk

is denoted by y = |UPk+1−Pk
|. By lemma 5, Pk+1 contains

at least 2k elements of UPk
, thus, UPk+1−Pk

contains at most k + 3 elements of
US−Pk

, that is, y ≤ k+3. It can be seen that the elements in UPk+1−Pk
are either

in H or in C2 ∪ C3. Assume that U ′
Pk+1−Pk

denotes the elements of UPk+1−Pk

belonging to H . When the elements in UPk+1−Pk
are partitioned, the probability

that the elements in U ′
Pk+1−Pk

are exactly partitioned into H is 1
2y .

The general ideal of our randomized algorithm is as follows:
Divide Pk+1 into two parts to handle, one of which is in H and the other in

C2 ∪C3. For the part contained in C2 ∪C3, we use dynamic programming to find
a (k + 1 − r)-packing; For the part in H , we use randomized divide and conquer
to handle.

3.1 Use Dynamic Programming to find a (k + 1 − r)-Packing in
C2 ∪ C3

For the convenience of describing the algorithm, we first give the concept of
symbol pair. For each set ρi ∈ C2, the elements from UPk

in set ρi is called a
symbol pair.

The algorithm of finding a k′ = k + 1 − r (k′ ≤ k + 1) packing in C2 ∪ C3 is
given in figure 1.

Theorem 1. If there exists k′-packing in C2 ∪ C3, algorithm SP will definitely
return a collection of symbol pairs and 3-sets with size k′, and the time complexity
is bounded by O∗(23k).

Proof. If there exists k′-packing in C2 ∪ C3, assume that the number of sets in
C2 contained in the k′-packing is k′′, 0 ≤ k′′ ≤ k′. Therefore, the k′′ sets of
k′-packing in C2 can form a k′′-packing. We need to prove the following two
parts.

(1) After the execution of the for-loop in step 3, Q1 must contain a collection
of symbol pairs with size k′′.

(2) After the execution of the for-loop in step 5, Q1 must contain a collection
of symbol pairs and 3-sets with size k′.

The proof of the first part is as follows.
It can be seen from step 3.1-3.4 that the C′ added into Q1 in the step 3.7 is a

collection of symbol pairs from the right packing. We get a induction for the i in
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Algorithm SP
Input: C2, C3, k′, UPk

Output: if there exists k′-packing in C2 ∪ C3, return a collection of symbol
pairs and 3-sets with size k′

1. assume the elements in UC2−Pk are x1, x2, . . . xm;
2. Q1={φ}; Qnew={φ};
3. for i = 1 to m do
3.1 for each collection C in Q1 do
3.2 for each 3-set ρ in C2 having element xi do
3.3 if C has no common element with ρ then
3.4 C′ = C ∪ {elements in ρ belonging to UPk};
3.5 if C′ is not larger than k′ and no collection in Qnew has used

exactly the same elements as that used in C′ then
3.6 add C′ into Qnew;
3.7 Q1 = Qnew;
4. assume the 3-sets in C3 are z1, z2, . . . zl;
5. for h = 1 to l do
5.1 for each collection C in Q1 do
5.2 if C does not have common elements with zh thenC′ = C ∪ {zh};
5.4 if C′ is not larger than k′ and no collection in Qnew has used

exactly the same elements as that used in C′

then add C′ into Qnew;
5.6 Q1 = Qnew;
6. if there is a collection of symbol pairs and 3-sets with size k′ in Q1 then

return the collection.

Fig. 1. Use dynamic programming to find a (k + 1 − r)-packing in C2 ∪ C3

the step 3 so as to prove that: if there exists k′′-packing in C2, Q1 must contain
a collection of symbol pairs with size k′′.

There are m different elements in UC2−Pk
: x1, x2, . . . xm. For any arbitrary

i (1 ≤ i ≤ m), assume that Xi denotes all the sets containing the element in
{x1, x2, . . . xi}. Therefore, we only need to prove the following claim.

Claim 1. If there exists a j-packing symbol pairs collection Pj in Xi, then after
i-thexecution of the for-loop in step 3, Q1 contains a j-packing symbol pairs
collection P ′

j , which uses the same 2j elements with Pj .
In the step 2, Q1={φ}. Thus, if Xi has a 0-packing, the claim is true.
When i ≥ 1, assume there exists a j-packing symbol pair collection Pj =

{ϕl1 , ϕl2 , . . . , ϕlj }, where 1 ≤ l1 < l2 < · · · < lj ≤ i, then there must exists
a (j − 1)-packing symbol pair collection Pj−1 = {ϕl1 , ϕl2 , . . . , ϕlj−1} in Xlj−1.
By the induction assumption, after the (lj − 1)-th execution of for-loop in step
3, Q1 contains a (j − 1)-packing symbol pairs collection P ′

j−1, which use the
same 2(j − 1) elements of UPk

with Pj−1. By the assumption, Xi contains a j-
packing symbol pair collection Pj . Therefore, when the set containing the ϕlj is
considered in step 3.2, the elements belonging to UPk

in P ′
j−1 are totally different

from the elements in ϕlj . As a result, if there is no collection of symbol pairs
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in Q1 containing the same 2j elements with P ′
j−1 ∪ {ϕlj }, the j-packing symbol

pairs P ′
j−1 ∪ {ϕlj } will be added into Q1. Because all the collection of symbol

pairs in Q1 are not removed from Q1 and lj ≤ i, after the i-th execution of the
for-loop in step 3, Q1 must contains a j-packing symbol pairs collection using
the same 2j elements with Pj . When i = m, if there exists k′′-packing Pk′′ in
C2, Q1 must contain a collection of symbol pairs using the same 2k′′ elements
of UPk

with Pk′′ .
The proof of the second part is similar to the first part, which is neglected

here.
At last, we analyze the time complexity of algorithm SP. If considering C2

only, for each j (0 ≤ j ≤ k′) and any subset of UPk
containing 2j elements,

Q1 record at most one collection symbol pairs using those 2j elements, thus,
Q1 contains at most

∑k′+1
j=0

(3k
2j

)
collections. If considering C3 only, for each j

(0 ≤ j ≤ k′) and any subset of containing 3j elements, Q1 record at most one
collection of 3-sets using those 3j elements, thus, Q1 contains at most

∑k′−1
j=0

(3k
3j

)

collections. Therefore, the time complexity of algorithm SP is bounded by
max{O∗(

∑k′+1
j=0

(3k
2j

)
), O∗(

∑k′−1
j=0

(3k
3j

)
)} = O∗(23k). ��

If there exists k′-packing in C2 ∪ C3, the collection returned by algorithm SP
may contain symbol pairs, which can be converted into 3-sets using the bipartite
maximum matching.

3.2 Use Randomized Divide and Conquer to find a r-Packing in H

Assume that we have already picked r (0 ≤ r ≤ �k+3
2 �) elements from UPk

, and
let H be the collection of sets in C1 containing one of those r elements. The
algorithm of finding a r-packing in H is given in figure 2.

Theorem 2. If H has r-packing, algorithm RSP will return a collection D con-
taining the r-packing with probability larger than 0.75, and the time complexity
is bounded by O∗(42r).

Proof. Algorithm RSP divides H into two parts to handle: H1, H2. If there
exists r-packing Pr, Pr has 2r elements of US−Pk

, denoted by UPr−Pk
. Assume

that U ′
Pr−Pk

denotes the elements belonging to UPr−Pk
in H1, thus, the elements

belonging to UPr−Pk
in H2 can be denoted by UPr−Pk

− U ′
Pr−Pk

. Mark all the
elements from US−Pk

in H1 and H2 with red and blue colors. When elements
in U ′

Pr−Pk
are exactly marked with red and elements in UPr−Pk

− U ′
Pr−Pk

are
marked with blue, it is called that elements in H1 and H2 are rightly marked,
which occurs with probability 1

22r . Therefore, the probability that the elements
in H1 and H2 are not rightly marked is 1 − 1

22r .
If there exists r-packing in H , let δr be the probability that algorithm RSP

can not find the r-packing. In the step 3, H is divided into two parts: H1,
H2. Therefore, the probability that RSP(H1) and RSP(H2) can not find the
corresponding packing respectively is δr/2. After 3 ·22r iterations, the probability
that algorithm RSP could not find the Pk+1 is (1− 1

22r + 1
22r−1 ·δr/2)3·2

2r

. We need
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Algorithm RSP
Input: H , r
Output: return a collection D of packings

1. if r = 0 then return φ;
2. if r = 1 then return H ;
3. randomly pick � r

2 � elements from the r elements, and let H1 denote all
the sets containing one of those � r

2� elements;
4. H2 = H − H1; D = φ;
5. for 3 · 22r times do
5.1 mark all the elements from US−Pk in H1 and H2 with red and blue;

for each set ρ in H1, if the colors of the elements belonging to US−Pk

are not both red, delete the set ρ;
for each set ρ′ in H2, if the colors of the elements belonging to US−Pk

are not both blue, delete the set ρ′;
5.2 D1=RSP(H1, � r

2 �);
5.3 D2=RSP(H2, � r

2 �);
5.4 for each packing α in D1 do

for each packing β in D2 do
if there does not exist α ∪ β in D, add α ∪ β into D;

6. return D;

Fig. 2. Use randomized divide and conquer to find a r-packing in H

to prove that: for any r, δr ≤ 1/4. It is obvious that δ1 = 0. Assume δr/2 ≤ 1/4.
By the induction assumption, we can get that: δr = (1− 1

22r + 1
22r−1 ·δr/2)3·2

2r ≤
(1 − 1

22r + 1
22r−1 · 1/4)3·2

2r

= (1 − 1
22r+1 )

3
2 ·22r+1 ≤ e−3/2 < 1/4.

Let Tr denote the number of recursive calls in algorithm RSP, then Tr ≤
3·22r ·(T� r

2 �+T� r
2 �) ≤ 3·22r+1 ·T� r

2 � = O(3log 2r42r) = O((2r)log 342r) = O∗(42r).
��

3.3 The General Algorithm for 3-Set Packing Augmentation

Based on the above two algorithm, the general algorithm for 3-Set Packing Aug-
mentation problem is given in figure 3.

Theorem 3. If S has (k + 1)-packing, algorithm GSP will return the (k + 1)-
packing with probability larger than 0.75, and the time complexity is bounded by
O∗(3.523k).

Proof. In the above algorithm, we need to consider all the enumeration of r. If
S has a (k + 1)-packing, there must exist a r and an enumeration satisfying the
condition. The algorithm divides Pk+1 into two parts to handle, one of which is
in H and the other in C2 ∪ C3. When elements in U ′

Pr−Pk
are exactly marked

with white and elements in UPr−Pk
− U ′

Pr−Pk
are marked with black, it is called

that elements in US−Pk
are rightly marked, which occurs with probability 1

2y .
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Algorithm GSP
Input: S, k
Output: whether there is a (k + 1)-packing in S

1. for r = 0 to �k+3
2 � do

1.1 enumerate r elements from UPk , and get
(3k

r

)
enumerations;

1.2 for each enumeration do
let H be the collection of sets in C1 containing one of those r
elements;

1.3 for 24 · 2k times do
C′

2 = C2; C′
3 = C3;

for each element a in UPk , if a belongs to H , then delete all
the sets in C′

2 ∪ C′
3 containing a;

use colors black and white to mark all the elements in US−Pk ;
for each set ρ in C′

2, if the color of the element belonging to
US−Pk is not black, delete the set ρ;
for each set ρ′ in H , if the colors of the elements belonging to
US−Pk are not both white, delete the set ρ′;
Q2 =SP(C′

2, C
′
3, k + 1 − r,UPk );

Q3 =RSP(H,r);
use the bipartite maximum matching algorithm to convert the
symbol pairs in Q2 into 3-sets;
if Q2 is a (k + r − 1)-packing and Q3 has a r-packing
then return the (k + 1)-packing; stop;

2. return no (k + 1)-packing in S;

Fig. 3. The general algorithm for 3-Set Packing Augmentation

Therefore, the probability that the elements in US−Pk
are not rightly marked is

1 − 1
2y . If S has Pk+1, let δk denote the probability that algorithm GSP can not

find the Pk+1. If H has r-packing, let δr denote the probability that algorithm
RSP can not find the r-packing. By theorem 3, we know that δr ≤ 1/4. If Pk+1
exists, for a certain r and an enumeration, after 24 · 2k iterations of step 1.3, the
probability that algorithm GSP could not find the Pk+1 is (1− 1

2y + 1
2y−1 ·δr)24·2

k

,
that is,

δk = (1 − 1
2y + 1

2y−1 · δr)24·2
k ≤ (1 − 1

2y + 1
2y−1 · 1

4 )24·2
k

= (1 − 1
2y+1 )24·2

k ≤
e−3/2 < 1/4.

By theorem 1, If there exists (k + 1 − r)-packing in C2 ∪ C3, algorithm SP
will definitely return a collection of symbol pairs and 3-sets with size k + 1 − r.
By theorem 2, if H has r-packing, algorithm RSP will return the r-packing with
probability larger than 0.75. Therefore, if S has (k +1)-packing, algorithm GSP
will return the (k + 1)-packing with probability larger than 0.75.

Now we analyze time complexity of the above algorithm. For each r, there are(3k
r

)
ways to enumerate r elements from UPk

. By theorem 1, the time complexity
of algorithm SP is bounded by O∗(23k). By theorem 2, the time complexity of
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algorithm RSP is O∗(42r). Because of 0 ≤ r ≤ �k+3
2 �, the running time of algo-

rithm RSP is bounded by O∗(4k). Using bipartite maximum matching algorithm
to covert symbol pairs in Q2 can be done in polynomial time. Therefore, the total

time complexity of algorithm GSP is
∑� k+3

2 �
r=0

(3k
r

)
(2k(23k−r +4k)) = O∗(3.523k).

��

4 Derandomization

When there exists (k + 1)-packing, in order to make failure impossible, we need
to derandomize the above algorithm. We first point out that: partitioning a set
means dividing the set into two parts.

Because the size of the UPk+1−Pk
is y, there are 2y ways to partition UPk+1−Pk

.
Therefore, there must exist a partition satisfying the following property: elements
in U ′

Pk+1−Pk
are exactly partitioned into H , and elements in UPk+1−Pk

−U ′
Pk+1−Pk

are exactly in C2 ∪ C3. However, the problem is that: UPk+1−Pk
is unknown.

Naor, Schulman and Srinivasan [9] gave the solution for the above problem.
Moreover, Chen and Lu [8] presented a more detailed description of that method.

Now we introduce a very important lemma in [10].

Lemma 7. Let n, k be two integers such that 0 < k ≤ n. There is an (n, k)-
universal set P of size bounded by O(n2k+12 log2 k+12 log k+6), which can be con-
structed in time O(n2k+12 log2 k+12 log k+6).

The (n, k)-universal set in the above lemma is a set F of splitting functions, such
that for every k-subset W of {0, 1, · · · , n − 1} and any partition (W1, W2) of W ,
there is a splitting function f in F that implements (W1, W2).

In the construction of the above lemma, Chen and Lu [8] constructed a fuction
h(x)=((ix mod p)mod k2) from {0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1}, and used
the fact that there are at most 2n h(x) to get the above lemma. However, the
bound 2n is not tight. Now, we introduce an important lemma in [9].

Lemma 8. There is an explicit (n, k, k2)-splitter A(n, k) of size
O(k6 log k log n).

In the above lemma, the (n, k, k2)-splitter A(n, k) denotes the function from
{0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1}. Thus, the number of functions from
{0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1} are bounded by O(k6 log k log n).

Based on lemma 7, lemma 8, we can get the following lemma.

Lemma 9. Let n, k be two integers such that 0 < k ≤ n. There is an (n, k)-
universal set P of size bounded by O(log n2k+12 log2 k+18 log k), which can be con-
structed in time O(log n2k+12 log2 k+18 log k).

By the lemma 9, we can get the following theorem.
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Theorem 4. 3-Set Packing Augmentation problem can be solved deterministi-
cally in time O∗(3.523k).

Proof. Given an instance of 3-Set Packing Augmentation problem (S, Pk), if
there exists Pk+1, by lemma 5, Pk+1 contains at least 2k elements of UPk

,
thus, UPk+1−Pk

contains at most k + 3 elements of US−Pk
. After picking r

elements from UPk
, Pk+1 is divided into two parts to handle in the random-

ized algorithm, one of which is in H and the other in C2 ∪ C3. By lemma 9,
we can construct the (S − Pk, k + 3)-universal set, whose size is bounded by
O(log n2k+3+12 log2(k+3)+18 log(k+3)).

For each partition to US−Pk
in the (S − Pk, k + 3)-universal set, let

UH−Pk
denote the elements partitioned into H . If H has a r-packing Pr, there

are 2r elements of US−Pk
in Pr, denoted by UPr−Pk

. Assume U ′
Pr−Pk

de-
notes the elements of UPr−Pk

in H1. In order to find Pr, U ′
Pr−Pk

should
be partitioned into H1, and UPr−Pk

− U ′
Pr−Pk

should be in H2. By lemma
9, we can construct (UH−Pk

, 2r)-universal set, whose size is bounded by
O(log n2k+3+12 log2(k+3)+18 log(k+3)).

In the derandomization of algorithm RSP, the time complexity is:
Tr ≤ log n2k+3+12 log2(k+3)+18 log(k+3)(T� r

2 � + T� r
2 �)

≤ log n2k+3+12 log2(k+3)+18 log(k+3)+1T� r
2 �

= O((k + 3)log log n22(k+3)+4 log3(k+3)+15 log2(k+3)+13 log(k+3)).
In the practical point of view, Tr is bounded by:

O(22(k+3)+4 log3(k+3)+15 log2(k+3)+11 log(k+3)).
If there exists Pk+1, on the basis of (S −Pk, k+3)-universal set and the above

result, we can get the Pk+1 deterministically with time complexity:
∑� k+3

2 �
r=0

(3k
r

)
(log n2k+3+12 log2(k+3)+18 log(k+3)

(23k−r + 22(k+3)+4 log3(k+3)+15 log2(k+3)+13 log(k+3))) = O∗(3.523k). ��

By lemma 1 and theorem 4, we can get the following corollary.

Corollary 1. 3-Set Packing can be solved in O∗(3.523k).

5 Conclusions

For the 3-Set Packing problem, we construct a (k + 1)-packing Pk+1 from a k-
packing Pk. After further analyzing the structure of the problem, we can get the
following property: for any (0, 1)-free packing P , if the 3-Set Packing Augmenta-
tion problem can not be solved in polynomial time, each set in P should contains
at least one element of Pk. On the basis of the above property, we get a ran-
domized algorithm of time O∗(3.523k). Based on the derandomization method
given in [10], we can get a deterministic algorithm with the same time complex-
ity, which greatly improves the current best result O∗(4.613k). Our results also
imply improved algorithms for various triangle packing problems in graphs [10].
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