
Propositional Projection Temporal Logic, Büchi
Automata and ω-Regular Expressions�

Cong Tian and Zhenhua Duan

Institute of Computing Theory and Technology
Xidian University

{ctian,zhhduan}@mail.xidian.edu.cn

Abstract. This paper investigates the language class defined by Propo-
sitional Projection Temporal Logic with star (PPTL with star). To this
end, Büchi automata are first extended with stutter rule (SBA) to accept
finite words. Correspondingly, ω-regular expressions are also extended
(ERE) to express finite words. Consequently, by three transformation
procedures between PPTL with star, SBA and ERE, PPTL with star is
proved to represent exactly the full regular language.

Keywords: Propositional Projection Temporal Logic, Büchi automata,
ω-regular expression, expressiveness.

1 Introduction

Temporal logic is a useful formalism for describing sequences of transitions be-
tween states in a reactive system. In the past thirty years, many kinds of temporal
logics are proposed within two categories, linear-time and branching-time logics.
In the community of linear-time logics, the most widely used logics are Linear
Temporal Logic (LTL) [?] and its variations. In the propositional framework,
Propositional LTL (PLTL) has been proved to have the expressiveness of star-
free regular expressions [12,16]. Considering the expressive limitation of PLTL,
extensions such as Quantified Linear Time Temporal Logic (QLTL) [13], Ex-
tended Temporal Logic (ETL) [9,14] and Linear mu-calculus (νTL) [15] etc, were
introduced to PLTL to express the full regular language. Nevertheless, results
[17,18,19,20] have shown that temporal logic needs some further extensions in
order to support a compositional approach to the specification and verification of
concurrent systems. These extensions should enable modular and compositional
reasoning about loops and sequential composition as well as about concurrent
ones. Therefore, kinds of extensions are proposed. Prominently, one of the im-
portant extensions is the addition of the chop operator. The work in [9] showed
that process logic with both chop operator and its reflexive-transitive closure
(chop star), which is called slice in process logic, is strictly more expressive. The
resulting logic is still decidable and in fact has the expressiveness of full regular
expressions.

� This research is supported by the NSFC Grant No.60433010.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 47–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 C. Tian and Z. Duan

Interval Temporal Logic (ITL) [4] is an easily understood temporal logic with
next, chop and a projection operator proj. In the two characteristic operators,
chop implements a form of sequential composition while proj yields repetitive be-
haviors. ITL without projection has similar expressiveness as Rosner and Pnueli’s
choppy logic [3]. Further, addition of the proj operator will brings more power-
ful expressiveness, since repetitive behaviors are allowed. However, no systematic
proofs have been given in this aspect. Projection Temporal Logic (PTL) [5] is an
extension of ITL. It extends ITL to include infinite models and a new projection
construct, (P1, ..., Pm) prj Q, which is much more flexible than the original one.
However, in the propositional case1, the projection construct needs further to
be extended to projection star, (P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q, so that it can
subsume chop, chop star, and the original projection (proj) in [4]. This extension
makes the underlying logic more powerful without the lose of decidability [22].

Within PTL, plenty of logic laws have been formalized and proved [5], and
a decision procedure for checking the satisfiability of Propositional Projection
Temporal Logic (PPTL) formulas are given in [6,7]. Based on the decision pro-
cedure, a model checking approach based on SPIN for PPTL is proposed [8].
Further, in [22], projection star is introduced to PPTL, and the satisfiability
for PPTL with star formulas is proved to be still decidable. Instinctively, PPTL
with star is powerful enough to express the full regular expression. Thus, by
employing PPTL with star formulas as the property specification language, the
verification of concurrent systems with the model checker SPIN will be com-
pletely automatic. This will overcome the error-prone hand-writing of a never
claim in the original SPIN since some properties cannot be specified by PLTL
formulas. Further, since PPTL with star can subsume chop construct, composi-
tional approach for the specification and verification of concurrent systems with
SPIN will be allowed. Therefore, we are motivated to give a systematic proof
concerning the expressiveness of PPTL with star formulas. To this end, stutter
Büchi automata and extended ω-regular expressions are introduced first. Subse-
quently, by three transformation procedures beteen PPTL with star, SBA, and
ERE, PPTL with star is proved to represent exactly the full regular language.

The paper is organized as follows. The syntax and semantics of PPTL with
star are briefly introduced in the next section. Section 3 and Section 4 present
the definition of stutter Büchi automata and extended regular expressions re-
spectively. Section 5 is devoted to proving the expressiveness of PPTL with star
formulas. Precisely, three transformations between PPTL with star, SBA and
ERE are given. Finally, conclusions are drawn in Section 6.

2 Propositional Projection Temporal Logic with Star

Our underlying logic is propositional projection temporal logic with star. It
extends PPTL to include projection star. It is an extension of propositional
interval temporal Logic (PITL).

1 In the first order case, projection star is a derived formula.

Propositional Projection Temporal Logic 49

Syntax: Let Prop be a countable set of atomic propositions. The formula P of
PPTL with star is given by the following grammar:

P ::= p | © P |¬P |P ∨ Q|(P1, ..., Pm) prj Q|(P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q

where p ∈ Prop, P1, ..., Pm, P and Q are all well-formed PPTL formulas. ©
(next), prj (projection) and prj� (projection star) are basic temporal operators.

The abbreviations true, false, ∧, → and ↔ are defined as usual. In particu-
lar, true

def= P ∨ ¬P and false
def= P ∧ ¬P . In addition, we have the following

derived formulas.
empty

def= ¬ © true more
def= ¬empty

©0P
def= P ©nP

def= ©(©n−1P), n ≥ 1
len(0) def= empty len(n) def= ©n empty, n ≥ 1

skip
def= len(1)

⊙
P

def= empty ∨ ©P

P ; Q def= (P, Q) prj empty �P
def= true; P

�P
def= ¬�¬P P 0 def= empty

P 1 def= P Pn def= (P (n)) prj empty, n ≥ 1
P ∗ def= (P�) prj empty P+ def= (P⊕) prj empty

(P1, ..., Pi−1, (Pi, ..., Pj)(0), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pj+1, ..., Pm) prj Q

(P1, ..., Pi−1, (Pi, ..., Pj)(1), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , Pj+1, ..., Pm) prj Q

(P1, ..., Pi−1, (Pi, ..., Pj)(n), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , (Pi, ..., Pj)n−1, Pj+1, ..., Pm) prj Q, n ≥ 1

(P1, ..., Pi−1, (Pi, ..., Pj)⊕, Pj+1..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , (Pi, ..., Pj)�, Pj+1, ..., Pm) prj Q

where
⊙

(weak next), � (always), � (sometimes), ; (chop), prj⊕ (projection
plus), ∗ (chop star) and + (chop plus) are derived temporal operators; empty
denotes an interval with zero length, and more means the current state is not
the final one over an interval.

Semantics: Following the definition of Kripke’s structure [2], we define a state s
over Prop to be a mapping from Prop to B = {true, false}, s : Prop −→ B. We
will use s[p] to denote the valuation of p at state s. An interval σ is a non-empty
sequence of states, which can be finite or infinite. The length, |σ|, of σ is ω if σ is
infinite, and the number of states minus 1 if σ is finite. To have a uniform notation
for both finite and infinite intervals, we will use extended integers as indices. That
is, we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω}, and
extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and for
all i ∈ N0, i < ω. Moreover, we define � as ≤ −{(ω, ω)}. To simplify definitions,
we will denote σ by < s0, ..., s|σ| >, where s|σ| is undefined if σ is infinite. With
such a notation, σ(i..j) (0 ≤ i � j ≤ |σ|) denotes the sub-interval < si, ..., sj >

50 C. Tian and Z. Duan

and σ(k) (0 ≤ k � |σ|) denotes < sk, ..., s|σ| >. Further, the concatenation (·) of
two intervals σ and σ′ is defined as follows,

σ · σ′ =
{

σ, if |σ| = ω
< s0, ..., si, si+1, ... > if σ =< s0, ..., si >, σ′ =< si+1, ... >, i ∈ N0

And the fusion of two intervals σ and σ′ is also defined as below,

σ ◦ σ′ =
{

σ, if |σ| = ω
< s0, ..., si, ... > if σ =< s0, ..., si >, σ′ =< si, ... >, i ∈ N0

Moreover, σ·ω means infinitely many interval σ are concatenated, while σ◦ω

denotes infinitely many σ are fused together.
Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1)

such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (namely projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl
>

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >
We need also to generalize the notation of σ ↓ (r1, ..., rm) to allow ri to be ω.
For an interval σ =< s0, s1, ..., s|σ| > and 0 ≤ r1 ≤ r2 ≤ ... ≤ rh ≤ |σ| (ri ∈ Nω),
we define σ ↓ () = ε, σ ↓ (r1, ..., rh, ω) = σ ↓ (r1, ..., rh). This is convenient to
define an interval obtained by taking the endpoints (rendezvous points) of the
intervals over which P1, . . . , Pm are interpreted in the projection construct.

An interpretation is a tuple I = (σ, k, j), where σ is an interval, k is an
integer, and j an integer or ω such that k � j ≤ |σ|. We use the notation
(σ, k, j) |= P to denote that formula P is interpreted and satisfied over the
subinterval < sk, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I − prop I |= p iff sk[p] = true, for any given proposition p
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff k < j and (σ, k + 1, j) |= P
I − prj I |= (P1, ..., Pm) prj Q, if there exist integers r0 ≤ r1 ≤ ... ≤ rm

≤ j such that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m,
and (σ′, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

I − prj� I |= (P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q iff ∃n ∈ N0, I |= (P1, ..., (Pi, ...,
Pj)n, ..., Pm) prj Q or there exist integers r0 ≤ r1 ≤ ... ≤ ri ≤ ...
≤ rj ≤ r2i ≤ ... ≤ r2j ≤ r3i... ≤ rk � ω, limk→ωrk = ω, such that
(σ, rl−1, rl) |= Pl, 0 < l < i, (σ, rl−1, rl) |= Pt, l ≥ i, t = i + (l mod
(j − i + 1)), and (σ′, 0, |σ′|) |= Q, where σ′ = σ ↓ (r0, ..., rk, ω),
l mod 1 = 0.

Satisfaction and Validity: A formula P is satisfied by an interval σ, denoted
by σ |= P , if (σ, 0, |σ|) |= P . A formula P is called satisfiable if σ |= P for some
σ. A formula P is valid, denoted by |= P , if σ |= P for all σ.

Propositional Projection Temporal Logic 51

3 Büchi Automata with Stutter

Definition 1. A Büchi automaton is a tuple B = (Q, Σ, I, δ, F), where,

– Q = {q0, q1, ..., qn} is a finite, non-empty set of locations;
– Σ = {a0, a1, ..., am} is a finite, non-empty set of symbols, namely alphabet;
– I ⊆ Q is a non-empty set of initial locations;
– δ ⊆ Q × Σ × Q is a transition function;
– F ⊆ Q is a set of accepting locations.

An infinite word w over Σ is an infinite sequence w = a0a1... of symbols, ai ∈ Σ.
A run of B over an infinite word w = a0a1... is an infinite sequence ρ = q0q1...
of locations qi ∈ Q such that q0 ∈ I and (qi, ai, qi+1) ∈ δ holds for all i ∈ N0. In
this case, we call w the word associated with ρ, and ρ the run associated with w.
The run ρ is an accepting run iff there exists some q ∈ F such that qi = q holds
for infinitely many i ∈ N0. The language L(B) accepted by a Büchi automaton
B is the set of infinite words for which there exists some accepting run ρ of B.

Similar to the approach adopted in SPIN [10] for modeling finite behaviors
of a system with a Büchi automaton, the stuttering rule is adopted so that the
classic notion of acceptance for finite runs (thus words) would be included as a
special case in Büchi automata. To apply the rule, we extend the alphabet Σ
with a fixed predefined null-label ε, representing a no-op operation that is always
executable and has no effect. For a Büchi automaton B, the stutter extension of
finite run ρ with final state qn is the ω-run ρ such that (qn, ε, qn)ω is the suffix
of ρ. The final state of the run can be thought to repeat null action ε infinitely.
It follows that such a run would satisfy the rules for Büchi acceptance if and
only if the original final location qn is in the set F of accepting locations. This
means that it indeed generalizes the classical definition of the finite acceptance.
In what follows, we denote Büchi automata with the stutter extension, simply
as stutter-Büchi automata (SBA for short).

4 Extended Regular Expression

Corresponding to the stutter-Büchi automata, we define a kind of extended ω-
regular expression (ERE) which is capable of defining both finite and infinite
strings. Let Υ = {r1, ..., rn} be a finite set of symbols, namely alphabet. The
extended ω-regular expressions are defined as follows,

ERE R ::= ∅ | ε | r | R + R | R • R | Rω | R∗

where r ∈ Υ , ε denotes an empty string; +, • and ∗ are union, concatenation and
Kleene (star) closure respectively; Rω means infinitely many R are concatenated.
In what follows, we use ERE to denote the set of extended regular expressions.

Before defining the language expressed by the extended regular expressions,
we first introduce strings and operations on strings. A string is a finite or infinite
sequence of symbols, a0a1...ai..., where each ai is chosen from the alphabet Υ .
The length of a finite string w, denoted by |w|, is the number of the symbols in

52 C. Tian and Z. Duan

w while the length of an infinite string is ω. For two strings w and w′, w • w′,
w∗ and wω are defined as follows,

w • w′ =
{

w, if |w| = ω
a0...aiai+1..., if w = a0...ai, and w′ = ai+1...

wω =

⎧
⎨

⎩

w, if |w| = ω
a0...ai...a0...ai...︸ ︷︷ ︸

ω times

, if w is finite and w = a0...ai

w∗ =

⎧
⎨

⎩

w, if |w| = ω
∃n ∈ Nω, a0...ai...a0...ai︸ ︷︷ ︸

n times

, if w is finite and w = a0...ai

Further, if W and W ′ are two sets of strings. Then W • W ′, Wω and W ∗ are
defined as follows,

W • W ′ = {w • w′ | w ∈ W and w′ ∈ W ′}
Wω = {wω | w ∈ W}
W ∗ = {w∗ | w ∈ W}

Accordingly, the language L(R) expressed by extended regular expression R is
given by,

Lr1 L(∅) = ∅ Lr2 L(r) = {r}
Lr3 L(ε) = {ε} Lr4 L(R+R) = L(R) ∪ L(R)
Lr5 L(R • R) = L(R) • L(R) Lr6 L(Rω) = L(R)ω

Lr7 L(R∗) = L(R)∗

For a string w, if w ∈ L(R), w is called a word of expression R.
For convenience, we use PPTL* to denote the set of all PPTL with star

formulas, SBA the set of all Stutter Büchi Automata, and ERE the set of all
Extended ω-Regular Expressions. Further, the language classes determined by
PPTL*, SBA and ERE are represented by L(PPTL*), L(SBA) and L(ERE)
respectively. That is,

L(PPTL∗) = {L(P)|P ∈ PPTL∗}
L(SBA) = {L(B)|B ∈ SBA}
L(ERE) = {L(R)|R ∈ ERE}

5 Relationship between PPTL*, ERE and SBA

Even though the extended ω-regular expressions, PPTL with star formulas, and
stutter-Büchi automata describe languages fundamentally in different ways, how-
ever, it turns out that they represent exactly the same class of languages, named
the “full regular languages” as concluded in Theorem 1.

Theorem 1. PPTL with star formulas, extended regular expressions and stut-
ter Büchi automata have the same expressiveness. �

Propositional Projection Temporal Logic 53

L(PPTL
∗)

L(SBA) L(ERE)

Fig. 1. The relationship between three language classes

In order to prove this theorem, we will show the following facts: (1) For any P ,
there is an SBA B such that L(B) = L(P); (2) For any SBA B, there is an
ERE R such that L(R) = L(B); (3) For any ERE R, there is a PPTL with star
formula P such that L(P) = L(R). The relationship is depicted in Fig.1, where
an arc from language class X to Y means that each language in X can also be
defined in Y . This convinces us that three language classes are equivalence.

For the purpose of transformations between PPTL*, SBA and ERE, we de-
fine the set Qp of atomic propositions appearing in PPTL with star formula Q,
|Qp | = l , and further need define alphabets Σ and Υ for SBA and ERE. To do
so, We first define sets Ai, 1 ≤ i ≤ l, as follows,

Ai = {{ ˙qj1 , ..., ˙qji} | qjk
∈ Qp , ˙qjk

denotes qjk
or ¬qjk

, 1 ≤ k ≤ i}
Then, Σ =

⋃l
i=1 Ai ∪ {true} ∪ {ε}, and Υ =

⋃l
i=1 Ai ∪ {true}. For instance, if

Qp = {p1, p2, p3}, it is obtained that, A1 ={{ṗ1}, {ṗ2}, {ṗ3}}, A2 ={{ṗ1, ṗ2}, {ṗ1,

ṗ3}, {ṗ2, ṗ3}}, A3 = {{ṗ1, ṗ2, ṗ3}}. So, we have,Σ =
⋃3

i=1 Ai ∪ {true} ∪ {ε} =
{{ṗ1}, {ṗ2}, {ṗ3}, {ṗ1, ṗ2}, {ṗ1, ṗ3}, {ṗ2, ṗ3}, {ṗ1, ṗ2, ṗ3}, true, ε}, Υ =

⋃3
i=1 Ai ∪

{true} = {{ṗ1}, {ṗ2}, {ṗ3}, {ṗ1, ṗ2}, {ṗ1, ṗ3}, {ṗ2, ṗ3}, {ṗ1, ṗ2, ṗ3}, true}. Obvi-
ously, for each r ∈ Υ , r is a set of atomic propositions or their negations, denoted
by true or {q̇i, ..., q̇j}, where 1 ≤ i ≤ j ≤ l.

5.1 From PPTL with Star Formulas to SBAs

For PPTL with star formulas, their normal forms are the same as for PPTL
formulas [6,7]. In [22], an algorithm was given for transforming a PPTL with
star formula to its normal form. Further, based on the normal form, labeled
normal form graph (LNFG) for PPTL with star formulas are constructed to
precisely characterize the models of PPTL with star formulas. Also an algorithm
was given to construct the LNFG of a PPTL with star formula [22]. The details
about normal forms and LNFGs can be found in [7,22]. Here we focus on how
to transform an LNFG G to an SBA B (corresponding SBA of G). For the clear
presentation of the transformation, LNFGs are briefly introduced first.

The LNFG of formula P can be expressed as a graph, G = (V, E, v0, Vf),
where V denotes the set of nodes in the LNFG, E is the set of directed edges
among V , v0 ∈ V is the initial (or root) node, and Vf ⊆ V denotes the set
of nodes with finite label F . V and E in G can inductively be constructed by
algorithm LNFG composed in [7]. Actually, in an LNFG, a node v ∈ V denotes
a PPTL with star formula and initial node is P itself while an edge from node
vi to vj is a tuple (vi, Qe, vj) where vi and vj are PPTL with star formulas and
Qe ≡

∧
i q̇i, qi is an atomic proposition, q̇i denotes qi or ¬qi. The following is an

example of LNFG.

54 C. Tian and Z. Duan

v0 : ¬(true;¬© q) ∨ p ∧©q

v1 : q ∧ ¬(true;¬© q)
v2 : q

v3 : true

v0

v1 v2

v3
v4

true

q

p

qq

true

true v4 : ε

Fig. 2. LNFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q

Example 1. The LNFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q.
As shown in Fig.2, the LNFG of formula ¬(true; ¬©q)∨p∧©q is G={V, E, v0,

Vf}, where V ={v0, v1, v2, v3, v4}; E = {(v0, true, v1), (v0, p, v2), (v1, q, v1), (v2, q,
v4), (v2, q, v3), (v3, true, v3), (v3, true, v4)}; the root node is v0; and Vf = ∅. �

Factually, an LNFG contains all the information of the corresponding SBA. The
set of nodes is in fact the set of locations in the corresponding SBA; each edge
(vi, Qe, vj) forms a transition; there exists only one initial location, the root node;
the set of accepting locations consists of ε node and the nodes which can appear
in infinite paths for infinitely many times. Given an LNFG G = (V, E, v0, Vf) of
formula P , an SBA of formula P , B = (Q, Σ, I, δ, F), over an alphabet Σ can
be constructed as follows.

• Sets of the locations Q and the initial locations I: Q = V , and I = {v0}.
• Transition δ: Let q̇k be an atomic proposition or its negation. We define a
function atom(

∧m0
k=1 q̇k) for picking up atomic propositions or their negations

appearing in
∧m0

k=1 q̇k as follows,

atom(true) = true

atom(q̇k) =
{

{qk}, if q̇k ≡ qk 1 ≤ k ≤ l
{¬qk}, otherwise

atom(
∧m0

k=1 q̇k) = atom(q̇1) ∪ atom(
∧m0

k=2 q̇k)

For each ei = (vi, Qe, vi+1) ∈ E, there exists vi+1 ∈ δ(vi, atom(Qe)). For node
ε, δ(ε, ε) = {ε}.
• Accepting locations F : We have proved in [6,7] that infinite paths in an LNFG
precisely characterize the infinite models of the corresponding formula. In fact,
there exists an infinite path if and only if there are some nodes appearing in the
path for infinitely many times. Therefore, the nodes appearing in infinite paths
for infinitely many times are defined as the accepting locations in the SBA. In
addition, by employing the stutter extension rule, ε node is also an accepting
location.

Lemma 1. For any PPTL with star formula P , there is an SBA B such that
L(B) = L(P). �

Formally, algorithm Lnfg-Sba is useful for transforming an LNFG to an SBA.
Also Example 2 is given to show how the algorithm works.

Propositional Projection Temporal Logic 55

init

q0

q1 q2

q3

q4

a0a1 a2

a1

a1

a3

a0

a0

a0 = {true}
a1 = {q}
a2 = {p}
a3 = {τ}

Fig. 3. Stutter-Büchi automaton of formula P ≡ ¬(true; ¬ © q) ∨ p ∧ ©q

Example 2. Constructing the SBA, B=(Q, Σ, I, δ, F), from the LNFG in Ex-
ample 1.

As depicted in Fig.3, the set of locations, Q={q0, q1, q2, q3, q4}, comes from
V directly. The set of initial locations I={q0} is root node v0 in G. The set of
the accepting locations F={q1, q3, q4} consists of nodes v1, v3 appearing in loops
and ε node in V . The transitions, δ(q0, a0)={q1}, δ(q0, a2)={q2}, δ(q1, a1)={q1},
δ(q2, a1)={q3, q4}, δ(q3, a0)={q3, q4}, δ(q4, a3)={q4} are formalized according to
the edges in E. �

Function Lnfg-Sba(G)
/* precondition: G = (V, E, v0, Vf) is the LNFG of PPTL formula P*/
/* postcondition: Lnfg-Sba(G) computes an SBA B = (Q, Σ, I, δ, F) from G*/

begin function
Q = ∅; F = φ; I = ∅;
for each node vi ∈ V ,

add a state qi to Q, Q = Q ∪ {qi};
if vi is ε, F = F ∪ {qi}; δ(qi, ε) = {qi};
else if vi appears in loops and vi �∈ Vf , F = F ∪ {qi};

end for
if q0 ∈ Q, I = I ∪ {q0};
for each edge e = (vi, Pe, vj) ∈ E,

qj ∈ δ(qi, atom(Pe));
end for
return B = (Q, Σ, I, δ, F)

end function

5.2 From SBAs to EREs

For the proof of the language L(A) of any finite state automaton A being regular
[24], Arden’s rule [11] plays an important role.

Lemma 2. (Arden’s Rule) For any sets of strings S and T , the equation X=S •
X + T has X = S∗ • T as a solution. Moreover, this solution is unique if ε �∈ S. �

From now on we shall often drop the concatenation symbol •, writing SX for
S • X etc. In the following, we show how Arden’s rule is used to equivalently
transform an SBA to an ERE.

Given a stutter-Büchi automaton B with Q = {q0, ..., qn} and the starting lo-
cation q0. For 1 ≤ i ≤ n, let Xi denote the ERE where L(Xi) equals to the
set of strings accepted by the sub-automaton of B starting at location qi; thus
L(B) = L(X0). We can write an equation for each Xi in terms of the languages
defined by its successor locations. For example, for the stutter-Büchi automaton
B in Example 2, we have,

56 C. Tian and Z. Duan

(0) X0 = a0X1 + a2X2 (1) X1 = a1X1 + aω
1

(2) X2 = a1X4 + a1X3 (3) X3 = a0X3 + a0X4 + aω
0

(4) X4 = a3X4 + aω
3

Note that X1, X3 and X4 contains aω
1 , aω

0 and aω
3 respectively because q1, q3

and q4 are accepting states with self-loops2. Now we use Arden’s rule to solve
the equations. First, for (4), since a3 is ε,

X4 = a3X4 + aω
3 = a∗

3a
ω
3 = aω

3 = ε
Replacing X4 in (3),
X3 = a0X3 + a0X4 + aω

0 = a0X3 + a0 + aω
0 = a∗

0a0 + a∗
0a

ω
0 = a∗

0a0 = true∗true
Replacing X3 and X4 in (2),

X2 = a1X4 + a1X3 = {q} + {q}true∗true
For (1),

X1 = a1X1 + aω
1 = a∗

1a
ω
1 = aω

1 = {q}ω

Finally, replacing X1 and X2 in (0), we have,
X0 = a0X1 + a2X2 = a0{q}ω + a2({q} + {q}true∗true)

= true{q}ω + {p}{q} + {p}{q}true∗true

Lemma 3. For any SBA B, there is an ERE R such that L(R) = L(B). �

5.3 From EREs to PPTL with Star Formulas

Let Γ be the set of all models of PPTL with star. For any extended regular
expression R ∈ ERE, we can construct a PPTL with star formula FR such that,
(1) for any model σ ∈ Γ , if σ |= FR, then Ω(σ) ∈ L(R); and (2) for any word
w ∈ L(R), there exists σ ∈ Γ , σ |= FR and Ω(σ) = w. The mapping function
Ω : Γ → Υ ∗ from models of PPTL formulas to words of extended regular ex-
pression is defined as follows,

Ω(σ) =

⎧
⎨

⎩

ε, if |σ| = 0
A(s0)...A(sj−1) if σ is finite and σ =< s0, ..., sj >, j ≥ 1
A(s0)...A(sj)... if σ is infinite and σ =< s0, ..., sj , ... >

where A(si) denotes true, or the set of propositions and their negations hold-
ing at state si. It is not difficult to prove that Ω(σ1 ◦ σ2) = Ω(σ1) • Ω(σ2),
Ω(σ◦ω) = Ω(σ)ω and Ω(σ◦∗) = Ω(σ)∗. FR is constructed inductively on the
structure of R.

F∅
def= false

Fε
def= empty

Fr
def=

{
ṗi ∧ ... ∧ ṗj ∧ skip, if r = {ṗi, ..., ṗj}, 1 ≤ i ≤ j ≤ l
true ∧ skip, if r = true

where r ∈ Υ . Inductively, if R1 and R2 are extended regular expressions, then
FR1+R2

def= FR1 ∨ FR2

FR1•R2

def= FR1 ; FR2

FRω
def= F ∗

R ∧ �more

FR∗
1

def= F ∗
R1

2 For finite state automata, Xi contains ε if qi is accepted.

Propositional Projection Temporal Logic 57

Now we need to prove that, for any R ∈ ERE and σ ∈ Γ , if σ |= FR, then
Ω(σ) ∈ L(R); for any w, if w ∈ L(R), then there exists σ ∈ Γ such that Ω(σ) = w
and σ |= FR.

Lemma 4. For any ERE R, there is a PPTL with star formula P such that
L(P) = L(R). �

Example 3. Constructing PPTL with star formula from the extended regular
expression, true{q}ω + {p}{q} + {p}{q}true∗true obtained in Example 2.

Ftrue{q}ω+{p}{q}+{p}{q}true∗true

≡ Ftrue{q}ω ∨ F{p}{q} ∨ F{p}{q}true∗true

≡ Ftrue; F{q}ω ∨ F{p}; F{q} ∨ F{p}; F{q}; Ftrue∗ ; Ftrue

≡ true ∧ skip; F{q}∗ ∧ �more ∨ p ∧ skip; q ∧ skip ∨ p ∧ skip; q ∧ skip;
(true ∧ skip)∗; true ∧ skip

≡ skip; (q ∧ skip)∗ ∧ �more ∨ p ∧ skip; q ∧ skip ∨ p ∧ skip; q ∧ skip;
skip∗; skip �

6 Conclusions

Further, it is readily to prove the following useful conclusions concerning char-
acters of fragments of PPTL with star. To avoid abuse of notations, we use an
expression like L(next, chop) to refer to the specific fragment of PPTL with star
with temporal operators next, chop and the basic connections in the typical
propositional logic.
1 L(chop) has the same expressiveness as star-free regular expressions without ε.
2 L(next, chop) has the same expressiveness as star-free regular expressions.
3 L(next, prj) has the same expressiveness as regular expressions without ω.
4 L(next, chop, chop∗) has the same expressiveness as full regular expressions.

In this paper, we have proved that the expressiveness of PPTL with star is the
same as the full regular expressions. Also, the proof itself provides approaches to
translate a PPTL with star formula to an equivalent Buchi automaton, a Buchi
automaton to an equivalent extended ω-regular expression, and an extended
ω-regular expression to a PPTL with star formula. This enables us to specify
and verify concurrent systems by compositional approach with PPTL with star.
Further, we have developed a model checker based on SPIN for PPTL with star.
Therefore, any systems with regular properties can be automatically verified
within SPIN using PPTL with star.

References

1. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Sym-
posium on Foundations of Computer Science, pp. 46–67.2 IEEE, New York (1977)

2. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9, 67–96 (1963)

3. Rosner, R., Pnueli, A.: A choppy logic. In: First Annual IEEE Symposium on Logic
In Computer Science. LICS, pp. 306–314 (1986)

58 C. Tian and Z. Duan

4. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of
Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)

5. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne
(May 1996)

6. Duan, Z., Tian, C.: Decidability of Propositional Projection Temporal Logic with
Infinite Models. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS,
vol. 4484, pp. 521–532. Springer, Heidelberg (2007)

7. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection
Temporal Logic with Infinite Models. Acta Informatica 45, 43–78 (2008)

8. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic
Based on SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.)
ICFEM 2007. LNCS, vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

9. Wolper, P.L.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983)

10. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineer-
ing 23(5), 279–295 (1997)

11. Arden, D.: Delayed-logic and finite-state machines. In: Theory of Computing Ma-
chine Design, Univ. of Michigan Press, pp. 1–35 (1960)

12. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: POPL 1980: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 163–173. ACM Press, New York (1980)

13. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems.
PhD thesis, Harvard University (1983)

14. Vardi, M.Y., Wolper, P.: Yet another process logic. In: Clarke, E., Kozen, D. (eds.)
Logic of Programs 1983. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg (1984)

15. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL 1988, pp. 250–259 (1988)
16. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T research mono-

graph no.65). The MIT Press, Cambridge (1971)
17. Barringer, H., Kuiper, R., Pnueli, A.: Now You May Compose Temporal Logic

Specifications. In: Proc. 16th STOC, pp. 51–63 (1984)
18. Barringer, H., Kuiper, R., Pnueli, A.: The Compositional Temporal Approach to

CSP-like Language. In: Proc.IFIP Conference, The Role of Abstract Models in
Information Processing (January 1985)

19. Nguyen, V., Demers, A., Gries, D., Owicki, S.: Logic of Programs 1985. LNCS,
vol. 193, pp. 237–254. Springer, Heidelberg (1985)

20. Nguyen, V., Gries, D., Owicki, S.: A Model and Temporal Proof System for Net-
works of Processes. In: Proc. 12th POPL, pp. 121–131 (1985)

21. Harel, D., Peleg, D.: Process Logic with Regular Formulas. Theoretical Computer
Science 38, 307–322 (1985)

22. Tian, C., Duan, Z.: Complexity of Propositional Projection Temporal Logic with
Star. Technical Report No.25, Institute of computing Theory and Technology, Xi-
dian University, Xian P.R.China (2007)

23. Arden, D.: Delayed-logic and finite-state machines. In: Theory of Computing Ma-
chine Design, pp. 1–35. Univ. of Michigan Press (1960)

24. Milner, R.: Communicating and Mobile System: The -Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

	Propositional Projection Temporal Logic, B$\"u$chi Automata and $ω$-Regular Expressions
	Introduction
	Propositional Projection Temporal Logic with Star
	B$\"u$chi Automata with Stutter
	Extended Regular Expression
	Relationship between PPTL*, ERE and SBA
	From PPTL with Star Formulas to SBAs
	From SBAs to EREs
	From EREs to PPTL with Star Formulas

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

