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Abstract. To tile consists in assembling colored tiles on Z
2 while respect-

ing color matching. Tilings, the outcome of the tile process, can be seen as
a computation model. In order to better understand the global structure of
tilings, we introduce two topologies on tilings, one à la Cantor and another
one à la Besicovitch. Our topologies are concerned with the whole set of
tilings that can be generated by any tile set and are thus independent of a
particular tile set. We study the properties of these two spaces and com-
pare them. Finally, we introduce two infinite games on these spaces that
are promising tools for the study of the structure of tilings.

1 Introduction

Wang was the first to introduce in [Wan61] the study of tilings with colored
tiles. A tile is a unit size square with colored edges. Two tiles can be assembled
if their common edge has the same color. A finite set of tiles is called a tile set.
To tile consists in assembling tiles from a tile set on the grid Z

2.
One of the first famous problems on tilings was the domino problem: can one

decide whether given a tile set, there exists a tiling of the plane generated by this
tile set? Berger proved the undecidability of the domino problem by constructing
an aperiodic set of tiles, i.e., a tile set that can generate only non-periodic tilings
[Ber66]. Simplified proofs can be found in [Rob71] and later [AD96]. The main
argument of this proof was to simulate the behavior of a given Turing machine
with a tile set, in the sense that the Turing machine M stops on an instance ω
if and only if the tile set τ〈M,ω〉 does not tile the plane. Hanf and later Myers
[Mye74, Han74] have strengthened this and constructed a tile set that has only
non-recursive tilings.

Later, tilings have been studied for different purposes: some researchers have
used tilings as a tool for studying mathematical logical problems [AD96], others
have studied the different kinds of tilings that one tile set can produce [CK97,
DLS01, Rob71], or defined tools to quantify the regular structure of a tiling
[Dur99]. One of the most striking facts concerning tilings is that tilings constitute
a Turing equivalent computation model. This computation model is particularly
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relevant as a model of computation on the plane. Notions of reductions that have
led to notions of universality for tilings and completeness for tile sets have been
introduced in [LW07]. It is difficult to quantify this completeness property and
other ones as periodicity, quasiperiodicity: one would like to be able to measure
how common such a property is, in order to determine when and how they occur,
or to give a size to the different sets of tilings with a certain property, or to say
if a tile set is more likely to produce tilings with a certain property. One of our
ultimate goals is to be able to say that if a set of tilings (generated from a given
tile set or a family of tile sets) is large enough, then it necessarily contains a
tiling with such and such properties. Naturally, topological tools on tilings would
be the first step in this direction; first step that we aim at developing in this
paper.

We introduce two metrics on tilings which have the particularity to be in-
dependent of a particular tile set, i.e., we can measure a distance between two
tilings that are not necessarily generated by the same tile set. These two metrics
are similar to two traditional metrics used in the study of cellular automata: the
so-called Cantor and Besicovitch metrics. The former gives more importance to
the local structure around (0, 0) and the later measures the asymptotic differ-
ence of information contained in the two tilings. They give rise to two natural
topologies on the set of tilings.

The topological study of subsets of reals is inherently linked to the study of
infinite games. In some of these games, such as Banach-Mazur games, a strong
connection exists between the existence of a winning strategy and the co-meager
property of the set on which the game is played. This connection allows one to
show that some sets are meager. Others games, such as Gale-Stewart games,
yield a hierarchy of winning strategies for one of the two players - we say in this
case that the game is determined - depending on the structure of the sets on
which the games are played. Having such a game-topological study of tilings,
instead of subsets of reals, can lead to a better understanding of the structure
of the tilings generated by a tile set.

This paper is organized as follows: we first recall basic notions on tilings, define
the two topologies that we use and prove basic properties of these topologies.
Then we study in a deeper way the structure of our topological spaces. We
conclude by introducing two types of games on tilings, which help us to prove in
a simpler way results of the previous section, and open a new direction for the
study of the structure of tilings.

2 Topologies on Tilings

2.1 Tilings

In this paper we use the following terminologies: a tile set S is an initial subset
{1, . . . , n} of N. To map consists in placing the numbers of S on the grid Z

2. A
mapping generated by S is called a S-mapping. It is associated to a mapping
function fA ∈ SZ

2
that gives the tile of S at position (x, y) in A. We call M the

set of all mappings, i.e., M ≡ {{1, . . . , n}Z
2}n≥1.
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An S-pattern without constraints, or just S-pattern, is an S-mapping defined
on a finite subset of Z

2.
A Wang tile is an oriented unit size square with colored edges from C, where

C is a finite set of colors. A Wang tile set, or just tile set, is a finite set of different
tiles. To tile consists in placing the tiles of a given tile set on the grid Z

2 such
that two adjacent tiles share the same color on their common edge. A tiling P
generated by a tile set τ is called a τ -tiling. It is associated to a tiling function
fP where fP (x, y) gives the tile at position (x, y) in P .

An S-mapping A ∈ M is a Wang tiling if there exist a Wang tile set τ , a
τ -tiling P and a bijective function h : S → τ such that h ◦ fA(x, y) = fP (x, y).
By this, we mean that A works as P . We define T as the subset of mappings of
M which are Wang tilings.

Different kinds of tile sets and tilings have been identified: a periodic tiling is a
tiling such that there exist two integers a and b such that for any (x, y), the tiles
at position (x, y) and (x+a, y+b) are the same; a tile set is periodic if it generates
a periodic tiling; a tiling is finite if it is a pattern; a tiling P is universal if for any
tile set τ , P simulates at least one τ -tiling. For more precisions on simulation
and universality we refer the reader to [LW07].

Different tools are used to quantify the regular structure of a tiling. One of
these is the quasiperiodic function. For a tiling P , the quasiperiodic function
of P , denoted gP , is the function that given an integer n, gives the smallest
integer s which has the following property: if m is a square pattern of P of size
n (the length of the sides of the square), then m appears in any square of size
s in Z

2. Thus, the quasiperiodic function of a tiling quantifies the regularity of
appearance of the patterns in the tiling. Some tilings do not have a quasiperiodic
function defined for every n. We say that a tiling is quasiperiodic if it has a
quasiperiodic function defined for every n. An important result in [Dur99] is
that any tile set, that can tile the plane, can generate a quasiperiodic tiling of
the plane.

2.2 A Besicovitch Topology

The first metric we introduce is a metric similar to the cellular automata metric
à la Besicovitch. A {n × n′} τ -pattern m can be seen has a sequence of numbers
placed in a rectangle of size n × n′; we have the number k in position (x, y) if
fm(x, y) = tk where tk is the kth tile of τ . Then intuitively any reordering of the
tiles of τ gives the same pattern. Thus, we would like to say that the distance
between two patterns m and m′ is c if the proportion of different tiles between m
and m′ is at most c up to a reordering of the tiles. We formalize this notion in the
following definitions, by defining a metric for any pattern without constraints:

Definition 1. Let S and S′ be two initial subsets of N such that |S| ≤ |S′|.
Let A be a {n × n} S-pattern, B be a {n × n} S′-pattern, and g be a one-to-
one function from S to S′. We define the metric related to g by: δg(A, B) =
#{ (x,y) | g◦fA(x,y) �=fB(x,y)}

n2 .
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If A is an S-pattern and B is an S′-pattern such that |S| ≥ |S′|, then δg(A, B)
is defined to be equal to δg(B, A).

We define the absolute metric by: δ(A, B) = ming∈S′S {δg(A, B)}.

From this definition of distance between patterns, we have that δ is symmetric
and satisfies the triangle inequality.

Now that we have defined a metric between patterns, we can generalize it
to tilings of the whole plane, since a tiling can be seen as the infinite union of
patterns of ever increasing sizes:
Definition 2. Let A be an S-tiling and let B be an S′-tiling. For any function
g ∈ S′S, we define the tiling metric dg by: dg(A, B) = lim supi→∞ δg(Ai, Bi),
where the Ai (resp. Bi) are the {n × n} S-patterns (resp. S′-patterns) centered
around (0, 0) in A (resp. B).

We define the absolute tiling metric d by: d(A, B) = ming∈S′S {dg(A, B)}.

Since δ satisfies the triangle inequality, and since reflexivity and symmetry are
obvious, then d is a pseudometric on M. The natural way to obtain a metric on
M is to introduce an equivalence relation ≡d defined by: A ≡d B ⇔ d(A, B) =
0. One can see that ≡d is an equivalence relation. We can now consider the
quotient space M/ ≡d where a typical element is the equivalence class [A] =
{ B | d(A, B) = 0 }. By adding to this space the metric d we obtain a metric
space that we call MB. In this paper, [A] denotes the equivalence class of the
particular mapping A; an element of MB is designated by a capital letter in bold,
e.g., A; and we say ”let A ∈ MB” in the sense that we consider a mapping of the
equivalence class of A, i.e., a mapping in [A]. Similarly, we define the space T/≡d

where a typical element is [P ] = { Q | d(P, Q) = 0 }. By adding to this space the
metric d we obtain the metric space TB. Of course, we have TB ⊂ MB. An
element of TB is an equivalence class of MB that can contain mappings that
are not Wang tilings, but which work ”almost” like Wang tilings since the local
constraint is respected almost everywhere.

From this definition, we have the two following results: for any two mappings
A, B ∈ M, the distance between A and B is in [0, 1[ and for any mapping C ∈ M
(resp. any tiling P ∈ T) and any ε ∈ [0, 1[, there exists a tiling D (resp. Q) such
that d(C, D) ≥ 1 − ε (resp. d(P, Q) ≥ 1 − ε). Therefore, for any tiling A, we can
build a tiling B such that the distance between A and B is almost one.

To obtain a topological space, since MB is a metric space, we use the natural
topology induced by the metric where the open sets are the balls B(A, r), where
A is a mapping. We use the subset topology on TB.

The Besicovitch metric is one of the traditional metrics used for tilings. The
other one is the Cantor one which gives more importance to the finite patterns
centered around the origin.

2.3 A Cantor Metric

We define and study another traditional metric adapted for tilings, a metric à
la Cantor. The metric studied above, is a metric that allows one to understand
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the behavior of a tiling in the whole Z
2 grid. The distance between two tilings

is small if their behavior is close. Another way to measure distance between
tilings is to consider the greatest common pattern centered around (0, 0) that
they share. We first define the function p as the function p : N → Z

2 such that
p(0) = (0, 0), p(1) = (0, 1), p(2) = (1, 1), p(3) = (1, 0) . . . and p keeps having the
behavior of a spiral afterward. This function allows us to enumerate the tiles of
a given tiling. We define the prefix-patterns of a tiling P :

Definition 3. Let P be a tiling. The prefix-pattern of size n of P is the pat-
tern m defined on the finite subset D = {p(0), . . . , p(n)} � Z

2 with the pattern
function fm(x, y) = fP (x, y) if (x, y) ∈ D. We denote the prefix-pattern m
by a finite sequence of tiles ordered by the function p: m = {fm ◦ p(0), fm ◦
p(1), . . . , fm ◦ p(n − 1)}. If m is a prefix-pattern of size n, then m.t1, the con-
catenation of m and the tile t1, is the prefix-pattern of size n + 1 such that
m.t1 = {fm ◦ p(0), fm ◦ p(1), . . . , fm ◦ p(n − 1), t1}.

The set of prefix-patterns can be enumerated by a tree T . The rules of the
construction of T are the following: at level 0 in T , we have the empty prefix-
pattern; at level 1 we have an unique prefix-pattern {1}. Then a pattern m at
the level i, composed of j different tiles, has j + 1 sons: m.1, m.2, . . . , m.(j + 1).

One can see that for any tile set S and any prefix-pattern m = {m1, . . . , mn}
generated by S, there exists an unique bijective function em : S → {1, . . . , |S|}
such that the prefix-pattern em(m) def= {em(m1), em(m2), . . . , em(mn)} is an ele-
ment of T . em(m) is said to be the canonical form of m. In T , an infinite branch
corresponds to a mapping of the plane. Thus, to any S-mapping A there exists a
unique bijective function eA such that the set eA(A) def= {eA ◦ fA ◦ p(0), eA ◦ fA ◦
p(1), . . .} corresponds to an infinite branch of T . eA(A) is said to be the canonical
form of A. We say that m is a prefix-pattern of A if em(m) is a prefix-pattern
of eA(A). We can now define a metric à la Cantor:

Definition 4. Let A be an S-mapping and B be an S′-mapping. We define the
Cantor metric δC as: δC(A, B) = 2−i where i is the size of the greatest common
prefix-pattern of eA(A) and eB(B), i.e., the highest level in T where eA(A) and
eB(B) are equal.

If eA(A) = eB(B) then δC(A, B) = 0.

We can see that δC is a pseudometric on M. In fact, dC is a hypermetric, i.e.,
a metric such that for any three mappings A, B, C, dC(A, C) ≤ max{dC(A, B),
dC(B, C)}. This is a stronger version of the inequality of the triangle. One can
note that in a hypermetric space, any point of an open ball is center of this ball.

To obtain a metric on M, we say that two tilings P and Q are equivalent,
P ≡C Q, if their Cantor distance is null. Thus, two tilings are equivalent if they
represent the same tiling up to a color permutation. We denote MC the space
of equivalence classes M/≡C equipped with the metric δC .

Similarly, we define T/≡C that we denote TC . The metric δC is a metric on
TC . From this, we can define a topology on TC : we say that the set Um =
{ P | m is a prefix-pattern of P } is a clopen set for any prefix-pattern m. This
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topology gives rise to a different understanding of the topology of tilings than
the topological space MB since it gives more importance to the local structure
centered around {0, 0}. Since there is a finite set of pattern of a given size, then
we can cover MB and TB with a finite set of open sets. Therefore, MB and TB

are precompact, i.e., for all r, there does not exist a finite set of open balls of
radius r that covers these spaces.

Since we have a Hausdorff space, because MC is a metric space, and since we
have a basis of clopen sets, then MC is a 0 − dimensional space.

We finish the definition of the Cantor space by stating some obvious facts
about the Cantor metric: if A and B are two mappings, then dC(A, B) ∈ [0, 1/2],
and for any mapping A, there exists a mapping B such that dC(A, B) = 1/2.

2.4 Basic Properties

The space MC is well-defined since two mappings at distance 0 are in fact the
same tiling up to a reordering of the tiles, or, to say it differently, have the same
canonical form. The space MB is slightly different, since two tilings at distance
0 can be different. We have to redefine properties for the mappings of MB: if a
tiling class contains a tiling with a certain property, then all the class has this
property, since in fact, all other tilings of the class have ”almost” the property.
Thus, we can define the following tiling classes: if P ∈ TB is a tiling class, we say
that P is: periodic if P contains a periodic tiling, quasiperiodic if P contains a
quasiperiodic tiling, finite if P contains a finite tiling (i.e., a pattern), universal
if P contains a universal tiling and a tiling with a quasiperiodic function f if
P contains a tiling with a quasiperiodic function f and if P does not contain a
tiling with a quasiperiodic function g < f .

We obtain now a space that works almost like the space of all Wang tilings.
We can see how the different classes work. The following proposition states that
the distance between two periodic tilings of TB is a rational number and gives
a characterization of the classes of periodic tilings.

Proposition 1. If P and Q are two different periodic tilings, then there exist
n, m ∈ N

∗ such that d(P, Q) = n/m. Therefore, if P ∈ MB is periodic, then it
contains one and only one periodic tiling up to a reordering of the tiles.

The following proposition shows that two quasiperiodic tilings which belong to
the same equivalence class have the same quasiperiodic function:

Proposition 2. If P and Q are two quasiperiodic tilings such that P ≡d Q,
then gP = gQ, where gP and gQ are the quasiperiodic functions of P and Q.

We recall a basic notion of tilings: extraction. Consider an infinite set of τ -
patterns {m1, m2, . . .} of ever increasing sizes. We can see them as an infinite
tree with the root representing the empty pattern and where a pattern m is a
direct son of a pattern n if n is a subpattern of m, and if there does not exist
a pattern m′ 
= m such that n is a subpattern of m′ and m′ is a subpattern of
m. Thus, we obtain an infinite tree with finite degree. Therefore, by Koenig’s
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lemma, we have at least one infinite branch. In our tree, this branch represents
a tiling Q of the plane. This tiling Q is said to be an extraction of the set
{m1, m2, . . .}. Now, we say that Q is extracted from P if there exists an infinite
set {m1, m2, . . .} of patterns of P such that Q is an extraction of {m1, m2, . . .}.

Notions of universality and completeness for tilings have been introduced in
[LW07]. We relate them to our topological space:

Proposition 3. Let P ∈ MB be a universal (resp. quasiperiodic, periodic)
tiling. Then for any tiling A ∈ P, we can extract from A a universal (resp.
quasiperiodic, periodic) tiling A′.

The previous result shows again that belonging to an equivalence class with a
certain property is almost like having this property.

Now we study the different distances that we can obtain between Wang tilings
and mappings in our two Besicovitch spaces. We have the following properties:

Theorem 1. i) There exist a mapping A ∈ MB \ TB and ε > 0 such that the
ball B(A, ε) does not contain any Wang tilings;

ii) For any n, there exists an infinite subset H of TB such that for any two
tilings P and Q of H, d(P, Q) ≥ 1 − 1/n2.

As a corollary, we have that the spaces MB and TB are not precompact. We
can remark that that there exist prefix-patterns that can not be represented
by the local constraint of a Wang tile set. From this, we obtain the following
proposition:

Proposition 4. There exists an open set in MC that does not contain any Wang
tiling.

3 Properties of Our Topologies

3.1 Properties of the Metric Spaces

We first study some basic notions of our spaces to have a better understanding
of how they work. First of all, since we have metrizable spaces, we have that our
spaces are completely Hausdorff and that there are no isolated points neither in
MB nor in TB. This seems natural for MB, and is more interesting in the case
of TB.

Proposition 5. MB, TB, MC and TC are all perfectly normal Hausdorff and
perfect.

The set of tilings is uncountable. But there exist tile sets that generate an un-
countable set of tilings but only a countable set of equivalence classes in MB .
From this, and with the fact that any equivalence class contains an uncountable
set of mappings, there arises the question of the cardinality of MB. The following
proposition shows that even the equivalence classes of TB are uncountable.



382 G. Lafitte and M. Weiss

Proposition 6. TB has the cardinality of the continuum.

The next theorem is important for the understanding of Wang tilings. The metric
used is strongly related to the information contained in the tiling. Thus, two
tilings are close if the information contained in them is similar. So, theorem 2
can be stated as follows: a countable set of Wang tilings can not approach all the
information that Wang tilings can generate. Then, by generalizing this theorem,
we obtain a nice corollary.

Theorem 2. There does not exist a countable set of Wang tilings which is dense
in TB.

Corollary 1. i) For any countable set of Wang tilings H, there exist a tiling
P and a natural number n such that d(P, Q) ≥ 1/n for any Q ∈ H;

ii) There exist a Wang tiling P and an integer n such that for any tile set τ ,
there exists at least one τ-tiling Q such that d(P, Q) ≥ 1/n.

The next proposition shows how different the two topological spaces TB and TC

are. This comes from the fact that one takes a glimpse at the whole tiling since
the other one just look at it with blinkers.

Proposition 7. There exists a countable set of Wang tilings that is dense in τC .

From this, we have that MB is separable, and since it is completely metrizable,
we have that MB is a Polish space. The next theorem shows that for any two
tilings A, B ∈ TB, there exists a continuous path c : [0, 1] → TB such that
c(0) = A and c(1) = B:

Theorem 3. TB is a path-connected space.

3.2 Topological Properties

We now study the topological structure of our spaces. Since they are metric
spaces, then natural topologies are induced on them by the metrics. We define
the following sets:

i) Mapping(S) = { [A] | A is an S-mapping },
ii) Wang(S) = { [P ] | P is a Wang S-tiling }.

And for any tile set τ , we define the set: Wang(τ) = { [P ] | P is a τ -tiling }.
The following theorem shows that the set of mappings or tilings generated

by a tile set is a closed set. Then we give a characterization of the set of Wang
tilings that can produce a tile set:

Theorem 4. Let S and τ be two tile sets. Then Wang(τ) and Mapping(S) are
closed sets and Wang(τ) is either a closed discrete set, or a closed non-discrete
nowhere-dense set.

Corollary 2. i) TB is meager in MB;
ii) MB \ TB is dense in MB.
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We now show that our spaces are Baire spaces:

Theorem 5. TB, TC, MB and MC are complete metric spaces, and thus, are
Baire spaces.

In the following section, we introduce games on our topological spaces as tools
for the study of the structure of tilings.

4 Games on Tilings

Since the tilings computation model is equivalent to the Turing machines, tilings
make possible a geometrical point of view of computability. The different topo-
logical tools studied in this paper have shown some interesting aspects of the
behavior of computability in tiling spaces. As we have seen, the set of tilings
generated by a tile set τ , gives rise to complex subsets of MB and MC . These
sets can even be uncountable. A natural next step for studying these sets is to
consider infinite games on tilings.

Several kinds of infinite games exist and are used in many different fields.
Games have been studied for computation models such as pushdown automata
(see Serre’s PhD thesis [Ser05] for detailed survey). Considering the tilings com-
putation model, we now give definitions for two types of infinite games on tilings.

The first one, Banach-Mazur games [Oxt57], is a play on the topological struc-
ture of the space. Different definitions of Banach-Mazur games exist. We propose
this one:

Definition 5. Let X be a topological space and Y a family of subsets of X such
that:

i) any member of Y has nonempty interior;
ii) any nonempty open subset of X contains a member of Y .

Let C be a subset of X. The game proceeds as follows: Player I chooses a
subset Y1 of Y . Player II chooses a subset Y2 of Y such that Y2 ⊆ Y1. Then
Player I chooses a subset Y3 of Y such that Y3 ⊆ Y2 and so on. At the end of the
infinite game, we obtain a decreasing sequence of sets: X ⊇ Y1 ⊇ Y2 ⊇ . . . such
that Player I has chosen the sets with odd indexes and Player II has chosen the
sets with even indexes. Player II wins the game if

⋃
n≥1 Yi ⊆ X.

The study of the different subsets of X such that Player II has a winning strategy
is the main application of Banach-Mazur games. Of course, if C = X Player II
has a winning strategy. The question is: how big C has to be to allow Player II to
have a winning strategy? This gives rise to classical theorem concerning Banach-
Mazur games on topological spaces which states: a subset C of X is meager if
and only if Player II has a winning strategy for the game on {X, X \ C}. We
propose a Banach-Mazur game on the space MC :

Definition 6. Let X be a subset of MC and C ⊆ X. The game {X, C} is defined
as follows: Player I chooses a prefix-pattern m1 such that m1 is a prefix-pattern
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of a mapping of X. Player II chooses a prefix-pattern m2 such that m1 ⊂ m2
and such that m2 is a prefix-pattern of a mapping of X and so on. At the end of
the game, we obtain a sequence of prefix-patterns m1 ⊂ m2 ⊂ m3 . . . from which
we extract a unique mapping A. Player II wins the game if A ∈ C.

This amounts to playing the classical Banach-Mazur game with X = MC and
Y ⊆ { Um | Um is an open set in MC }. In our Cantor space, choosing a prefix-
pattern amounts to choosing an open set, since the open sets of MC can be
defined from prefix-patterns. Using this tool, we show that the set of Wang
tilings is meager in the set of mappings for our topology MC :

Theorem 6. TC is meager in MC .

Proof. We use the game {MC , MC \ TC} . We now have to show that Player II
has a winning strategy, i.e., Player II can always chooses integers in such a way
that the final mapping can not be a Wang tiling.

This is true since whatever plays Player I at the first round, then Player II
can choose a prefix-pattern which does not respect any possible local constraint
generated by Wang tilings.

This trivial proof shows the convenience of using games to prove that some
subsets are meager. To obtain the same kind of results for MB we define a
Banach-Mazur game more adapted to the topology of MB:

Definition 7. Let X be a subset of MB and C ⊆ X. A Banach-Mazur game on
{X, C} is defined as follows: Player I chooses a mapping A1 of X and an integer
n1; Player II chooses a mapping A2 of X such that d(A1, A2) ≤ 1/n1 and an
integer n2 ≥ n1; Player I chooses a mapping A3 of X such that d(A3, A2) ≤ 1/n2
and an integer n3 ≥ n2, and so on. Player II wins the game if limi→∞Ai ∈ C.

This game is still equivalent to a classical Banach-Mazur game, and since MB

is a topological space, we still have that Player II has a winning strategy if and
only if C is co-meager. We now prove the same result for MB:

Theorem 7. TB is meager in MB.

Proof. We will show that Player II has a winning strategy in the game {MB,
MB \TB}. To show this, we first prove the following result: for any tiling P and
any open ball B(P, 1/n), there exist a mapping A and an integer m > n such
that B(A, 1/m) ⊂ B(P, 1/n) and B(A, 1/m) ∩ TB = ∅.

Let P be a tiling and n an integer. The idea is to insert error patterns in
P . We can build a pattern of size six generated by two tiles such that it can
not be represented by a Wang pattern since its construction would imply that
the two tiles that compose it are equal. Thus, at least one tile of this pattern
can not be represented by Wang tiles. We introduce it in P in such a way that
the new mapping A that we obtain is at distance 1/2n of P . Because of the
error patterns, A can not be a Wang tiling. In the error pattern we have at least
one of the six tiles that can not be represented by a Wang tile. Therefore if Q



A Topological Study of Tilings 385

is a Wang tiling, then d(Q, A) ≥ 1/12n. Thus, B(A, 1/12n) ⊂ B(P, 1/n) and
B(A, 1/12n) ∩ TB = ∅.

With this result, we can see that the strategy of Player II will be to choose
the tiling A and the integer 12n1 to be sure to win. Thus, TB is meager.

We introduce another type of games for the study of the complexity of the set of
tilings generated by a given tile set: games à la Gale-Stewart. Here is a general
definition of these games:

Definition 8. Let A be a nonempty set and X ⊆ AN. We associate with X
the following game: Player I chooses an element a1 of A, Player II chooses an
element a2 of A and so on. Player I wins if {an}n∈N ∈ X. We denote G(A, X)
this game.

A traditional question about a game G(A, X) is to know whether one of the
two players has a winning strategy, or in the terminology of games, if the game
is determined. In [Mar75], Martin has shown that any Borel set is determined.
Thus, we have to go beyond the Borelian hierarchy to find subsets complicated
enough not to be determined. We would like to use these games on tilings to
obtain similar structural complexity results for the set of tilings generated by a
tile set. In that direction we give the following definition:

Definition 9. Let H ⊆ MB and X ⊆ H. The Gale-Stewart game G(H, X) is
defined as follows: Player I chooses a tile a1 such that {a1} is a prefix-pattern
of a tiling of H; Player II chooses a tile a2 such that {a1, a2} is a prefix-pattern
of a tiling of H and so on. Player I wins if the tiling {a1, a2, . . .} ∈ X.

If one of the two players has a winning strategy we say that G(H, X) is deter-
mined or that X is determined in H. We say that τ is determined if Wang(τ) is
determined in Tτ , where Tτ is the set of all τ-tilings and τ-patterns, and that τ
is completely undetermined if for any subset X ∈ Wang(τ), X is undetermined
in Wang(τ).

The question is to know which kinds of games on tilings are determined, and
which ones are not. We give a glimpse in that direction by showing that there
exist tile sets determined and other ones completely undetermined:

Theorem 8. i) There exists a determined tile set;
ii) There exists a completely undetermined tile set.

Proof. i) To show this, we just have to find a tile set simple enough to generate
a determined game. The tile set Easy5composed of a unicolor blue tile and
four tile with three sides blue and one red satisfies the theorem. Player I
has a winning strategy in the game G(TEasy5, Wang(Easy5)): in this game,
the goal of player I is to obtain a tiling of the plane, and the goal of player
II, while respecting the local constraint of Easy5, is to obtain a situation
where Player I can not move anymore. Player I can force the play of Player
II by playing always one of the tile with a colored edge to force Player II to
play the symmetric of this tile. Thus, the game is determined.
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ii) Since Hanf and Myers [Mye74, Han74], we know that there exist tile sets
that generate only non-recursive tilings. Let τ be one of them; we consider
the game G(Wang(τ), X) where X is a subset of Wang(τ). If this game is
determined, then there exists a winning strategy for one of the two players.
Without loss of generality, suppose Player I has a winning strategy. There-
fore, whatever Player II plays, Player I has a recursive process that allows
him to choose a tile to go in a winning position: this strategy can generate
a τ -tiling in a recursive way. This is a contradiction.

5 Concluding Remarks

The topologies and games introduced in this paper have made possible some
descriptions of the structure of Wang tilings. This is a first step in the direction
of measuring the largeness or meagerness of sets of tilings. One of the many
remaining questions is to be able to measure how common universality is.

To reach these goals, the topological study of tilings through games appears
as a promising approach.
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