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Universidade Técnica de Lisboa
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Abstract. If we measure the position of a point particle, then we will
come about with an interval [an, bn] into which the point falls. We make
use of a Gedankenexperiment to find better and better values of an

and bn, by reducing their relative distance, in a succession of intervals
[a1, b1] ⊃ [a2, b2] ⊃ . . . ⊃ [an, bn] that contain the point. We then use such
a point as an oracle to perform relative computation in polynomial time,
by considering the succession of approximations to the point as suitable
answers to the queries in an oracle Turing machine. We prove that, no
matter the precision achieved in such a Gedankenexperiment, within the
limits studied, the Turing Machine, equipped with such an oracle, will be
able to compute above the classical Turing limit for the polynomial time
resource, either generating the class P/poly either generating the class
BPP//log∗, if we allow for an arbitrary precision in measurement or just
a limited precision, respectively. We think that this result is astonishingly
interesting for Classical Physics and its connection to the Theory of Com-
putation, namely for the implications on the nature of space and the per-
ception of space in Classical Physics. (Some proofs are provided, to give
the flavor of the subject. Missing proofs can be found in a detailed long
report at the address http://fgc.math.ist.utl.pt/papers/sm.pdf.)

1 Introducing a Gedankenexperiment

If a physical experiment were to be coupled with algorithms, would new functions
and relations become computable or, at least, computable more efficiently?
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To pursue this question, we imagine using an experiment as an oracle to
a Turing machine, which on being presented with, say, xi as its i-th query,
returns yi to the Turing machine. In this paper we will consider this idea of
coupling experiments and Turing machines in detail. The first thing to note is
that choosing a physical experiment to use as an oracle is a major undertaking.
The experiment comes with plenty of theoretical baggage: concepts of equipment,
experimental procedure, instruments, measurement, observable behaviour, etc.

In earlier work [5], an experiment was devised to measure the position of the
vertex of a wedge to arbitrary accuracy, by scattering particles that obey some
laws of elementary Newtonian kinematics. Let SME denote this Scatter Machine
Experiment. The Newtonian theory was specified precisely and the SME was
put under a theoretical microscope: theorems were proved that showed that the
experiment was able to compute positions that were not computable by algorithms.
Indeed, the SME could, in principle, measure any real number. Thus, [5] contains
a careful attempt to answer the question above, in the positive; it does so using
a methodology developed and applied in earlier studies [3,4]. To address the
question, here we propose to use the SME as an oracle to a Turing machine and
to classify the computational power of the new type of machine, which we call
an analogue-digital scatter machine. Given the results in [5], we expect that the
use of SME will enhance the computational power and efficiency of the Turing
machine.

To accomplish this, we must establish some principles that do not depend upon
the SME. In a Turing machine, the oracle is normally specified very abstractly
by a set. Here we have to design a new machine where the oracle is replaced by
a specification of some physical equipment and a procedure for operating it. The
design of the new machine depends heavily upon the interface and interaction
between the experiment and the Turing machine.

Following some insights provided by the work of Hava T. Siegelmann and
Eduardo Sontag [6], we use non uniform complexity classes of the form B/F ,
where B is the class of computations and F is the advice class. Context and proofs
are, however, different. Examples of interest for B are P and BPP ; examples
for F are poly and log. The power of the machines correspond with the choice
of different B/F .

2 The Scatter Machine

Experiments with scatter machines are conducted exactly as described in [5],
but, for convenience and to use them as oracles, we need to review and clar-
ify some points. The scatter machine experiment (SME) is defined within the
Newtonian mechanics, comprising of the following laws and assumptions: (a)
point particles obey Newton’s laws of motion in the two dimensional plane, (b)
straight line barriers have perfectly elastic reflection of particles, i.e., kinetic en-
ergy is conserved exactly in collisions, (c) barriers are completely rigid and do
not deform on impact, (d) cannons, which can be moved in position, can project
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Fig. 1. A schematic drawing of the scatter machine

a particle with a given velocity in a given direction, (e) particle detectors are
capable of telling if a particle has crossed a given region of the plane, and (f) a
clock measures time.

The machine consists of a cannon for projecting a point particle, a reflecting
barrier in the shape of a wedge and two collecting boxes, as in Figure 1.

The wedge, our motionless point particle, can be at any position. But we
will assume it is fixed for the duration of all the experimental work. Under the
control of a Turing machine, the cannon will be moved and fired repeatedly to
find information about the position of the wedge. Specifically, the way the SME is
used as an oracle in Turing machine computations, is this: a Turing machine will
set a position for the canon as a query and will receive an observation about the
result of firing the cannon as a response. For each input to the Turing machine,
there will be finitely many runs of the experiment.

In Figure 1 the parts of the machine are shown in bold lines, with description
and comments in narrow lines. The double headed arrows give dimensions in
meters, and the single headed arrows show a sample trajectory of the particle
after being fired by the cannon. The sides of the wedge are at 45◦ to the line
of the cannon, and we take the collision to be perfectly elastic, so the particle
is deflected at 90◦ to the line of the cannon, and hits either the left or right
collecting box, depending on whether the cannon is to the left or right of the
point of the wedge. Since the initial velocity is 10 m/s, the particle will enter
one of the two boxes within 1 second of being fired. Any initial velocity v > 0
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will work with a corresponding waiting time. The wedge is sufficiently wide so
that the particle can only hit the 45◦ slopping sides, given the limit of traverse
of the cannon. The wedge is sufficiently rigid so that the particle cannot move
the wedge from its position. We make the further assumption, without loss of
generality (see the report mentioned in the abstract) that the vertex of the wedge
is not a dyadic rational.

Suppose that x is the arbitrarily chosen, but non dyadic and fixed, position
of the point of the wedge. For a given cannon position z, there are two outcomes
of an experiment: (a) one second after firing, the particle is in the right box —
conclusion: z > x —, or (b) one second after firing, the particle is in the left box
— conclusion: z < x. The SME was designed to find x to arbitrary accuracy
by altering z, so in our machine 0 ≤ x ≤ 1 will be fixed, and we will perform
observations at different values of 0 ≤ z ≤ 1.

Consider the precision of the experiment. When measuring the output state
the situation is simple: either the ball is in one tray or in the other tray. Errors
in observation do not arise. Now consider some of the non-trivial ways in which
precision depends on the positions of the cannon. There are different postulates
for the precision of the cannon, and we list some in order of decreasing strength:

Definition 2.1. The SME is error-free if the cannon can be set exactly to any
given dyadic rational number. The SME is error-prone with arbitrary precision
if the cannon can be set only to within a non-zero, but arbitrarily small, dyadic
precision. The SME is error-prone with fixed precision if there is a value ε > 0
such that the cannon can be set only to within a given precision ε.

The Turing machine is connected to the SME in the same way as it would be
connected to an oracle: we replace the query state with a shooting state (qs), the
“yes” state with a left state (ql), and the “no” state with a right state (qr). The
resulting computational device is called the analog-digital scatter machine, and
we refer to the vertex position of an analog-digital scatter machine when mean
to discuss the vertex position of the corresponding SME.

In order to carry out a scatter machine experiment, the analog-digital scatter
machine will write a word z in the query tape and enter the shooting state.
This word will either be “1”, or a binary word beginning with 0. We will use z
indifferently to denote both a word z1 . . . zn ∈ {1} ∪ {0s : s ∈ {0, 1}∗} and the
corresponding dyadic rational

∑n
i=1 2−i+1zi ∈ [0, 1]. In this case, we write |z| to

denote n, i.e., the size of z1 . . . zn, and say that the analog-digital scatter machine
is aiming at z. The Turing machine computation will then be interrupted, and
the SME will attempt to set the cannon at z. The place where the cannon is
actually set at depends on whether the SME is error-free or error-prone. If the
SME is error-free, the cannon will be placed exactly at z. If the SME is error-
prone with arbitrary precision, then the cannon will be placed at some point in
the interval [z − 2−|z|−1, z +2−|z|−1] with a uniform probability distribution over
this interval. This means that for different words representing the same dyadic
rational, the longest word will give the highest precision. If the SME is error-
prone with fixed dyadic precision ε, then the cannon will be placed somewhere
in the interval [z − ε, z + ε], again with a uniform probability distribution.
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After setting the cannon, the SME will fire a projectile particle, wait one
second and then check if the particle is in either box. If the particle is in the
right collecting box, then the Turing machine computation will be resumed in
the state qr. If the particle is in left box, then the Turing machine computation
will be resumed in the state ql. With this behaviour, we obtain three distinct
analog-digital scatter machines.

Definition 2.2. An error-free analog-digital scatter machine is a Turing ma-
chine connected to an error-free SME. In a similar way, we define an error-
prone analog-digital scatter machine with arbitrary precision, and an error-prone
analog-digital scatter machine with fixed precision.

The error-free analog-digital scatter machine has a very simple behaviour. If such
a machine, with vertex position x ∈ [0, 1], aims at a dyadic rational z ∈ [0, 1],
we are certain that the computation will be resumed in the state ql if z < x,
and that it will be resumed in the state qr when z > x. We define the following
decision criterion.

Definition 2.3. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-
free analog-digital scatter machine M decides A if, for every input w ∈ Σ∗, w
is accepted if w ∈ A and rejected when w /∈ A. We say that M decides A in
polynomial time, if M decides A, and there is a polynomial p such that, for
every w ∈ Σ∗, the number of steps of the computation is bounded by p(|w|).

The error-prone analog-digital scatter machines, however, do not behave in a
deterministic way. If such a machine aims the cannon close enough to the vertex
position, and with a large enough error, there will be a positive probability for
both the particle going left or right. If the vertex position is x, and the error-prone
analog-digital scatter machine M aims the cannon at z, then the probability of
the particle going to the left box, denoted by P(M ← left), is given by:

P(M ← left) =

⎧
⎨

⎩

1 if z < x − ε
1
2 + x−z

2ε if x − ε ≤ z ≤ x̃ + ε
0 if z > x̃ + ε

The value ε will be either 2−|z|−1 or a fixed value, depending on the type of
error-prone analog-digital scatter machine under consideration. The probability
of the particle going to the right box is P(M ← right) = 1 − P(M ← left).
We can thus see that a deterministic decision criteria is not suitable for these
machines. For a set A ⊆ Σ∗, an error-prone analog-digital scatter machine M,
and an input w ∈ Σ∗, let the error probability of M for input w be either the
probability of M rejecting w, if w ∈ A, or the probability of M accepting w, if
w �∈ A.

Definition 2.4. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-
prone analog-digital scatter machine M decides A if there is a number γ < 1

2 ,
such that the error probability of M for any input w is smaller than γ. We say
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that M decides A in polynomial time, if M decides A, and there is a polyno-
mial p such that, for every input w ∈ Σ∗, the number of steps in every correct
computation is bounded by p(|w|).

3 The Relevant Computational Classes

We will see, in the sections that follow, that the non-uniform complexity classes
give the most adequate characterisation of the computational power of the
analog-digital scatter machine. Non-uniform complexity classifies problems by
studying families of finite machines (e.g., circuits) {Cn}n∈N, where each Cn de-
cides the restriction of some problem to inputs of size n. It is called non-uniform,
because for every n �= m the finite machines Cn and Cm can be entirely unrelated,
while in uniform complexity the algorithm is the same for inputs of every size.
A way to connect the two approaches is by means of advice classes: one assumes
that there is a unique algorithm for inputs of every size, which is aided by cer-
tain information, called advice, which may vary for inputs of different sizes. The
advice is given, for each input w, by means of function f : N → Σ∗, where Σ∗ is
the input alphabet.

Definition 3.1. Let B be a class of sets and F a class of functions. The advice
class B/F is the class of sets A for which some B ∈ B and some f ∈ F are such
that, for every w, w ∈ A if and only if 〈w, f(|w|)〉 ∈ B.

F is called the advice class and f is called the advice function. Examples for B are
the well known classes P , or BPP (see [1, Chapter 6]). We will be considering
two instances for the class F : poly is the class of functions with polynomial
size values, i.e., poly is the class of functions f : N → Σ∗ such that, for some
polynomial p, |f(n)| ∈ O(p(n)); log is the class of functions g : N → Σ∗ such
that |g(n)| ∈ O(log(n)). We will also need to treat prefix non-uniform complexity
classes. For these classes we may only use prefix functions, i.e., functions f such
that f(n) is always a prefix of f(n + 1). The idea behind prefix non-uniform
complexity classes is that the advice given for inputs of size n may also be used
to decide smaller inputs.

Definition 3.2. Let B be a class of sets and F a class of functions. The prefix
advice class B/F∗ is the class of sets A for which some B ∈ B and some prefix
function f ∈ F are such that, for every length n and input w, with |w| ≤ n,
w ∈ A if and only if 〈w, f(n)〉 ∈ B.

For the non-deterministic classes we need a refined definition:

Definition 3.3. BPP//poly is the class of sets A for which a probabilistic poly-
nomial Turing machine M, a function f ∈ poly, and a constant γ < 1

2 exist
such that M rejects 〈w, f(|w|)〉 with probability at most γ if w ∈ A and accepts
〈w, f(|w|)〉 with probability at most γ if w /∈ A. A similar definition applies to
the class BPP// log ∗.
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It can be shown that BPP//poly = BPP/poly, but it is unknown whether
BPP/ log ∗ ⊆ BPP// log ∗. It is important to notice that the usual non-uniform
complexity classes contain undecidable sets, e.g., P/poly contains the halting set.

4 Infinite Precision

first gedankenexperiment: the cannon can be placed at some dyadic rational
with infinite precision. I.e., we began by investigating the error-free machine,
which gives the simplest situation.

For every n ∈ N and x ∈ R, let x�n be the rational number obtained by
truncating x after the first n digits in its binary expansion. Then we showed the
following result:

Proposition 4.1. Let M be an error-free analog-digital scatter machine with
the vertex placed at the position x. Let M̃ be the same machine, but with the
vertex placed at the position x̃ = x �t. Then, for any input w, M and M̃, after
t steps of computation, make the same decisions.

We may now sketch the proof of the following main theorem of this section.

Theorem 4.1. The class of sets decided by error-free analog-digital scatter ma-
chines in polynomial time is exactly P/poly.

The sketch of the proof is done by the way of polynomial advice. Let A be a
set in P/poly, and, by definition, let B ∈ P , f ∈ poly be such that w ∈ A ⇐⇒
〈w, f(|w|)〉 ∈ B. Let f̃ : N → Σ∗ be a function, also in poly, such that, if the
symbols of f(n) are ξ1ξ2 . . . ξp(n), then f̃(n) = 0ξ10ξ2 . . . 0ξp(n) We can create
an error-free analog-digital scatter machine which also decides A, setting the
vertex at the position x = 0.f̃(1)11f̃(2)11f̃(3)11 . . . Given any input w of size
n, the error-free analog-digital scatter machine Sx can use the bisection method
to obtain f(n) in polynomial time. Then the machine uses the polynomial-time
algorithm which decides B, and accepts if and only if 〈w, f(n)〉 is in B. Thus we
have shown that an error-free analog-digital scatter machine can decide any set
in P/poly in polynomial time.

As for the converse, let C be any set decided in polynomial time by an error-
free analog-digital scatter machine with the vertex at the position x. Proposition
4.1 ensures that to decide on any input w, the machine only makes use of p(|w|)
digits of x, where p is a polynomial. Thus we can see that the set must be in
P/poly, using the advice function g ∈ poly, given by g(n) = x�p(n).

We then conclude that measuring the position of a motionless point particle in
Classical Physics, using a infinite precision cannon, 1 in polynomial time, we are
deciding a set in P/poly. Note that, the class P/poly includes the Halting Set.
But, most probably, if we remove the infinite precision criterion for the cannon,
we will loose accuracy of observations, and we will loose the computational power
of our physical oracle...
1 Remember that by infinite precision we mean the cannon to be settle at a rational

point with infinite precision.
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5 From Infinite to Unlimited Precision

second gedankenexperiment: the cannon can be placed at some dyadic ra-
tional z up to some dyadic arbitrary precision ε, let us say ε = 2−|z|−1. I.e.,
we will be investigating the error-prone machine, which gives the next sim-
plest situation. We will conclude that the computational power of these ma-
chines is not altered by considering such a small error, since they decide exactly
BPP//poly = BPP/poly = P/poly in polynomial time. As in Section 4, we
showed that only a number of digits of the vertex position linear in the length of
computation influences the decision of such an error-prone analog-digital scat-
ter machine. Notice that the behaviour of the error-prone analog-digital scatter
machines is probabilistic, because if the machine shoots close enough to the mo-
tionless point particle position — the vertex —, and with a large enough error
ε, the projectile can go both left or right with a non-zero probability. Thus, we
can not ensure that when we truncate the vertex position to O(t(n)) digits, the
state of the machine will be exactly the same after t(n) steps. Instead we showed
that if a machine decides in time t(n), then by truncating the vertex position to
O(t(n)) digits, the machine will decide the same set for inputs up to size n. In the
following statement, note that if a set is decided by an error-prone analog-digital
scatter machine with error probability bounded by γ, we may assume without
loss of generality that γ < 1

4 .

Proposition 5.1. Let M be an error-prone analog-digital scatter machine with
arbitrary precision, with the vertex at x, deciding some set in time t(n) with
error probability bounded by γ < 1

4 . Let M̃ be an error-prone machine with
arbitrary precision, with the same finite control as M and with the vertex placed
at x̃ = x �5t(n). Then M and M̃ make the same decision on every input of size
smaller or equal to n.

This allows us to show the following.

Proposition 5.2. Every set decided by an error-prone analog-digital scatter
machine with arbitrary precision in polynomial time is in BPP//poly.

Let A be a set decided by a precise error-free analog-digital scatter machine
M in polynomial time p, and with a error probability bounded by 1

4 . Let x be
the position of the vertex of M. We use the advice function f ∈ poly, given by
f(n) = x�5p(n), to construct a probabilistic Turing machine M̃ which decides A
in polynomial time.

Given any dyadic rational x̃ ∈ [0, 1], the machine M̃ can carry out a Bernoulli
trial X with an associated probability P(X = 1) = x̃. If x̃ has the binary expan-
sion ξ1 . . . ξk, the machine M̃ tosses its balanced coin k times, and constructs
a word τ1 . . . τk, where τi is 1 if the coin turns up heads and 0 otherwise. The
Bernoulli trial will have the outcome 1 if ξ1 . . . ξk < τ1 . . . τk, and 0 otherwise,
and this will give the desired probability.

The probabilistic machine M̃ will decide if w ∈ A by simulating M on the
input w with the vertex placed at the position x̃ = x� 5p(n). In order to mimic
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the shooting of the cannon from the position z, which should have an error
ε = 2−|z|−1, the machine will carry out a Bernoulli trial X with an associated
dyadic probability.

Then M̃ will simulate a left hit when X = 1 and a right hit when X = 0.
As we have seen in the previous Proposition 5.1, M will, when simulated in this
way, decide the same set in polynomial time and with bounded error probability.

In a way similar to the first part of the proof of Theorem 4.1 we can prove
the statement:

Proposition 5.3. An error-prone analog-digital scatter machine with arbitrary
precision can obtain n digits of the vertex position in O(n2) steps.

The conclusion for this section comes with the following theorem.

Theorem 5.1. The class of sets decided by error-prone analog-digital scatter
machines with arbitrary precision in polynomial time is exactly BPP//poly =
P/poly.

It seems that measurement in more reasonable conditions do not affect the com-
putational power of a motionless point particle position taken as oracle. I.e.,
making measurements in Classical Physics with incremental precision decide
languages above the Turing limit, namely the halting set. But, surely, the com-
putational power of a fuzzy motionless point particle position, i.e., a point to
which we have access only with a finite a priori precision in measurement, will
drop above the Turing limit...

6 A Priori Finite Precision

third gedankenexperiment: the cannon can be placed at some dyadic ratio-
nal z up to some dyadic fixed precision ε. We will show that such machines may,
in polynomial time, make probabilistic guesses of up to a logarithmic number of
digits of the position of the vertex. We will then conclude that these machines
decide exactly BPP// log ∗.

Proposition 6.1. For any real value δ < 1
2 , prefix function f ∈ log, there is

an error-prone analog-digital scatter machine with fixed precision which obtains
f(n) in polynomial time with an error of at most δ.

The proof will take two steps. First we show that if f is a prefix function in log,
then there is a real value 0 ≤ r ≤ 1 such that it is possible to obtain the value
f(n) from a logarithmic number of digits of r. Then we will show that by carefully
choosing the vertex position, we can guess a logarithmic number of digits of r
with an error rate δ. If f(n) is ultimately constant, then the result is trivial, and
so we assume it is not so. After the work of [2], we can assume, without loss of
generality, that there exist a, b ∈ N such that |f(n)| = �a log n + b�.

Since f is a prefix function, we can consider the infinite sequence ϕ which is
the limit of f(n) as n → ∞. Let ϕn be the n-th symbol (1 or 0) in this sequence,
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and set r =
∑∞

n=1 ϕn2−n. Then, since f is not ultimately constant, the digits in
the binary expansion of r are exactly the symbols of ϕ. Then the value f(n) can
be obtained from the first �a logn + b� digits of r.

The real number r is a value strictly between 0 and 1. Now suppose that ε is the
error when positioning the cannon. We then set the vertex of our analog-digital
scatter machine at the position x = 1

2 − ε + 2rε. Our method for guessing digits
of r begins by commanding the cannon to shoot from the point 1

2 a number z of
times. If the scatter machine experiment is carried out by entering the shooting
state after having written the word 01 in the query tape, the cannon will be
placed at some point in the interval [12 − ε, 1

2 + ε], with a uniform distribution.
Then we conclude that the particle will go left with a probability of r and go
right with a probability of 1 − r.

After shooting the cannon z times in this way, we count the number of times
that the particle went left, which we denote by L. The value r̃ = L

z will be our
estimation of r. In order for our estimation to be correct in the sufficient number
of digits, it is required that |r− r̃| ≤ 2−|f(n)|−1. By shooting the cannon z times,
we have made z Bernoulli trials. Thus L is a random variable with expected value
μ = zr and variance ν = zr(1−r). By Chebyshev’s inequality, we conclude that,
for every Δ,

P(|L − μ| > Δ) = P(|zr̃ − zr| > Δ) = P

(

|r̃ − r| >
Δ

z

)

≤ ν

Δ2 .

Choosing Δ = z2−|f(n)|−1, we get

P(|r̃ − r| > 2−|f(n)|−1) ≤ r(1 − r)22|f(n)|+2

z

And so, the probability of making a mistake can be bounded to δ by making
z > δ−1r(1 − r)22a log n+2b+2 ∈ O(n2a) experiments.

The proposition above will guarantee us that for every fixed error ε we can
find a vertex position that will allow for an SME to extract information from this
vertex position. It does not state that we can make use of any vertex position
independently of the fixed error ε. It can be shown, however, that if ε is a dyadic
rational, then we may guess O(log n) digits of the vertex position in polynomial
time.

Proposition 6.2. The class of sets decided in polynomial time by error-prone
analog-digital scatter machines with a priori fixed precision is exactly BPP//log ∗.
Since the class BPP// log ∗ include non-recursive sets, measurements in this
more realistic condition still decide super-Turing languages.

We can even think about changing the (uniform) probability distribution in
the last two sections, making experiments closer and closer to reality...

7 Conclusion

We have seen that every variant of the analogue-digital scatter machine has a hy-
percomputational power. For instance, if K = {0n : the Turing machine coded
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by n halts on input 0}, then K can be decided, in polynomial time, either by
an error-free analog-digital scatter machine, or by an error-prone analog-digital
scatter machine with arbitrary precision. It is obvious that the hypercomputa-
tional power of the analog-digital scatter machine arises from the precise nature
of the vertex position. If we demand that the vertex position is a computable
real number, then the analog-digital scatter machine can compute no more than
the Turing machine, although it can compute, in polynomial time, faster than
the Turing machine, namely REC

⋂
P/poly, the recursive part of P/poly.

In order to use the scatter machine experiment as an oracle, we need to assume
that the wedge is sharp to the point and that the vertex is placed on a precise
value x. Without these assumptions, the scatter machine becomes useless, since
its computational properties arise exclusively from the value of x. The existence
of an arbitrarily sharp wedge seems to contradict atomic theory, and for this
reason the scatter machine is not a valid counterexample to the physical Church–
Turing thesis. If this is the case, then what is the relevance of the analog-digital
scatter machine as a model of computation? The scatter machine is relevant when
it is seen as a Gedankenexperiment. In our discussion, we could have replaced
the barriers, particles, cannons and particle detectors with any other physical
system with this behaviour. So the scatter machine becomes a tool to answer the
more general question: if we have a physical system to measure an answer to the
predicate y ≤ x, to what extent can we use this system in feasible computations?

As an open problem, besides a few other aspects of the measurement appara-
tus that we didn’t cover up in this paper, we will study a point mass in motion,
according to some physical law, like a Newtonian gravitation field, and we will
apply instrumentation to measure its position and velocity.
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2. Balcázar, J.L., Hermo, M.: The structure of logarithmic advice complexity classes.
Theoretical Computer Science 207(1), 217–244 (1998)

3. Beggs, E., Tucker, J.: Embedding infinitely parallel computation in newtonian kine-
matics. Applied Mathematics and Computation 178(1), 25–43 (2006)

4. Beggs, E., Tucker, J.: Can Newtonian systems, bounded in space, time, mass and
energy compute all functions? Theoretical Computer Science 371(1), 4–19 (2007)

5. Beggs, E., Tucker, J.: Experimental computation of real numbers by Newtonian
machines. Proceedings of the Royal Society 463(2082), 1541–1561 (2007)

6. Siegelmann, H.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser (1999)
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