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Abstract. We study the parameterized complexity of a generalized
matching problem, the P2-packing problem. The problem is NP-hard and
has been studied by a number of researchers. In this paper, we provide
further study of the structures of the P2-packing problem, and propose
a new kernelization algorithm that produces a kernel of size 7k for the
problem, improving the previous best kernel size 15k. The new kerneliza-
tion leads to an improved algorithm for the problem with running time
O∗(24.142k), improving the previous best algorithm of time O∗(25.301k).

1 Introduction

Packing problem has formed an important class of NP-hard problems. In par-
ticular, as one of the graph packing problem, the H-packing problem has gained
more attention, which arises in applications such as scheduling, wireless sensor
tracking, wiring-board design and code optimization, etc. The problem is defined
as follows [1].

Definition 1. Given a graph G = (V, E) and a fixed graph H . An H-packing
of G is a set of vertex disjoint subgraphs of G, each of which is isomorphic to H .

From the optimization point of view, the problem of MAXIMUN H-packing is
to find the maximum number of vertex disjoint copies of H in G. If the H is the
complete graph K2, the MAXIMUN H-packing becomes the familiar maximum
matching problem in bipartite graph, which can be solved in polynomial time.
When the graph H is a connected graph with at least three vertices, D. G.
Kirkpatrick and P. Hell [2] gave that the problem is NP-complete. From the
approximation point of view, V. Kann [3] proved that the MAXIMUN H-packing
problem is MAX-SNP-complete. C. Hurkens and A. Schrijver [4] presented an
approximation algorithm with ratio |VH |/2 + ε for any ε > 0.
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Recently, parameterized complexity theory has been used to design efficient
algorithms for H-packing problem. M. Fellows et. al. [5] proposed a parameter-
ized algorithm with time complexity of O(2O(|H|k log k+k|H| log |H|)) for any arbi-
trary graph H . For the edge disjoint triangle packing problem, L. Mathieson,
E. Prieto and P. Shaw [6] proved that the problem has a 4k kernel and gave a
parameterized algorithm of running time O(2

9k
2 log k+ 9k

2 ) based on the kernel.
When H belongs to the restricted family of graphs K1,s, a star with s leaves,

we can get the K1,s-packing problem, which is defined as follows:

Definition 2. Parameterized K1,s-PACKING(k-K1,s-PACKING): Given a
graph G = (V, E) and a positive integer k, whether there are at least k ver-
tex disjoint K1,s in G?

M. Fellows, E. Prieto and C. Sloper [7] gave that the parameterized K1,s-packing
problem is fixed-parameter tractable and got a O(k3) kernel. M. Fellows [7] et.al.
also studied the P2-packing problem, where P2 is a path of three vertices (one
center vertex and two endpoints) and two edges, which is defined as follows:

Definition 3. Parameterized P2-PACKING (k-P2-PACKING): Given a graph
G = (V, E) and a positive integer k, whether there are at least k vertex disjoint
P2 in G?

In [7], for the P2-packing problem, M. Fellows et.al. gave a kernel of size at most
15k and proposed an algorithm with time complexity O∗(25.301k).

In this paper, we mainly focus on the kernelization of the k-P2-packing prob-
lem and give a kernel of size at most 7k. Based on the kernel, we present a
parameterized algorithm with time complexity O∗(24.142k), which greatly im-
proves the current best result O∗(25.301k).

This paper is organized as follows. In section 2, we introduce some related
definitions and lemmas. In section 3, we present all the steps of the kernelization
algorithm, and prove that the k-P2-packing problem has a size of 7k kernel. In
section 4, we give the general algorithm solving the k-P2-packing. In section 5,
we draw some final conclusions.

2 Related Definitions and Lemmas

We first give some concepts and terminology about graph [8].
Assume G = (V, E) denotes a simple, undirected, connected graph, where

|V | = n. The neighbors of a vertex v are denoted as N(v). The induced subgraph
of S ⊆ V is denoted G[S]. For an arbitrary subgraph H of G, let N(H) denote
the vertices that are not in H but connect with at least one vertex in H . We use
the simpler G\v to denote G[V \v] for a vertex v and G\e to denote G = (V, E\e)
for an edge e. Likewise, G\V ′ denotes G[V \V ′] and G\E′ denotes G = (V, E\E′)
where V ′ is a set of vertices and E′ is a set of edges.

For the convenience of description, we firstly introduce the definitions of ‘dou-
ble crown’ decomposition and ‘fat crown’ decomposition [7].
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Definition 4. A double crown decomposition (H, C, R) in a graph G = (V, E)
is a partitioning of the vertices of the graph into three sets H , C and R that
have the following properties:

(1) H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

(2) C = Cu ∪ Cm ∪ Cm2 (the crown) is an independent set in G.
(3) |Cm| = |H |, |Cm2| = |H | and there is a perfect matching between Cm and

H , and a perfect matching between Cm2 and H .

Definition 5. A fat crown decomposition (H, C, R) in a graph G = (V, E) is a
partitioning of the vertices of the graph into three sets H , C and R that have
the following properties:

(1) H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

(2) G[C] is a forest where each component is isomorphic to K2.
(3) |C| ≥ |H |, and there is a perfect matching M between H and a subset

of cardinality |H | in C, where one endpoint of each edge in M is in H , and the
other is the endpoint of K2 in C.

We introduce the following lemmas [7] about the ‘double crown’ decomposition
and ‘fat crown’ decomposition that will be used in our algorithm.

Lemma 1. A graph G = (V, E) that admits a ‘double crown’-decomposition
(H, C, R) has a k-P2-packing if and only if G\(H∪C) has a (k−|H |)-P2-packing.

Lemma 2. A graph G = (V, E) that admits a ‘fat crown’-decomposition
(H, C, R) has a k-P2-packing if and only if G\(H∪C) has a (k−|H |)-P2-packing.

Lemma 3. A graph G with an independent set I, where|I| ≥ 2|N(I)|, has a
double crown decomposition (H, C, R), H ⊆ N(I), which can be constructed in
linear time.

Lemma 4. A graph G with a collection J of independent K2s, where |J | ≥
|N(J)|, has a fat crown decomposition (H, C, R), H ⊆ N(J), which can be con-
structed in linear time.

3 Kernelization Algorithm for the k-P2-Packing Problem

In this section we propose a kernelizaiton algorithm that can get a kernel of size
at most 7k for the parameterized version of P2-packing problem.

Assume W denotes a maximal P2-packing and the vertices in W are denoted
by V (W ). Let W be {L1, ..., Lt}, t ≤ k − 1, where each of Li(1 ≤ i ≤ t) is a
subgraph in G that is isomorphic to P2. Let Li be (e1, c, e2), 1 ≤ i ≤ t, where e1
and e2 are two endpoints of Li, and c is the center vertex of Li. Therefore, each
connected component of the graph induced by Q = V \V (W ) is either a single
vertex or a single edge [7]. Let Q0 be the set of all vertices such that each vertex
in Q0 makes a connected component of the graph induced by Q, and each vertex
in Q0 will be called a Q0-vertex. Let Q1 be the set of all edges such that each
edge in Q1 makes a connected component of the graph induced by Q. Each edge
in Q1 will be called a Q1-edge and each vertex in Q1 will be called a Q1-vertex.
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3.1 RPLW Algorithm

Based on the kernelization algorithm given in [7], the kernelization process we
propose is to apply the algorithm RPLW repeatedly. By using the kernelization
algorithm in [7], we can get a graph G, which consists of a maximal packing W
and Q = V \V (W ). The algorithm RPLW is to further reduce the vertices in W
and Q to get a better kernel, whose general idea is given in the following:

Algorithm RPLW deals with the Q0-vertices and Q1-edges in Q. When the
size of W is not changed, the algorithm aims at reducing the number of Q0-
vertices in Q. When the number of Q1-edges in Q is reduced, the size of W
becomes larger (the number of disjoint P2 in W is increased) and the algorithm
returns the larger W . Then we call the algorithm for the larger W . If the ‘double
crown’ decomposition or the ‘fat crown’ decomposition is found, the parameter
k becomes smaller and the algorithm returns the smaller parameter. Then we
call the algorithm for the smaller parameter.

For the convenience of analyzing the RPLW algorithm, we first discuss the
following two structures as shown in Fig.1 and Fig.2, which use solid circles and
thick lines for vertices and edges in the maximal P2-packing W , and use hollow
circles and thin lines for vertices and edges not in W . (In particular, thin lines
that connect two hollow circles are Q1-edge.)

q2q1
q2

q2q2
q1 q2qq1 q1

t1 t2c
t1 c

t2 t1 c
t2 t1 c

t2

(a)  (b) 

Fig. 1. Reduce the number of Q0-vertex

The general idea of Fig.1 is that: In order to decrease the number of Q0-
vertices in Q, replace the Li in W . The specific process is as follows.

In Fig.1(a), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q0-vertex q2 is adjacent to c, and Q0-vertex q1 is adjacent
to t1. Vertices q2, c and t2 can form a new P2. Let the new P2 be L′

i. If Li is
replaced by L′

i in W , the number of Q0-vertices in Q is just reduced by 2 (q1
and t1 form a Q1-edge in Q).

In Fig.1(b), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q0-vertex q2 is adjacent to t2, and Q0-vertex q1 is adjacent
to t1. Vertices q1t1 and c can form a new P2. Let the new P2 be L′

i. If Li is
replaced by L′

i in W , the number of Q0-vertices in Q is just reduced by 2 (q2
and t2 form a Q1-edge in Q).

The general idea of Fig.2 is that: In order to decrease the number of Q1-edges
in Q and increase the number of disjoint P2 in W , replace Li in W . The specific
process is as follows.
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Fig. 2. Reduce the number of Q1-edge

In Fig.2(a), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q1-edge (e1, e2) is adjacent to t1, and Q1-edge (e3, e4) is
adjacent to c. Vertices e1, e2 and t1 can form a new P2, which can be denoted
as L′

i. Vertices e3, e4 and c can also form a new P2, which is denoted as L′′
i . If

Li is replaced by L′′
i and L′

i in W , the number of Q1-edges in Q is just reduced
by 1 and the number of P2 in W is increased by 1.

In Fig.2(b), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q1-edge (e1, e2) is adjacent to t1, and Q1-edge (e3, e4) is
adjacent to t2. Vertices e1, e2 and t1 can form a new P2 which is denoted as L′

i.
Vertices e3, e4 and t2 can also form a new P2 which is denoted as L′′

i . If Li is
replaced by L′′

i and L′
i in W , the number of Q1-edges in Q is just reduced by

1and the number of P2 in W are increased by 1.
Fig.1 and Fig.2 vividly illustrate how to replace a Li in W to change the

number of Q0-vertices and Q1-edges. According to Fig.1 and Fig.2, we can obtain
the following rules.

Rule1. If a Li in W has two vertices that each is adjacent to a different Q0-
vertex, then apply the processes described in Fig.1 to decrease the number of
Q0-vertices by 2 (and increase the number of Q1-edges by 1).

Rule2. If a Li in W has two vertices that each is adjacent to a different Q1-edge,
then apply the processes described in Fig.2 to decrease the number of Q1-edges
by 1(and increase the size of the maximal P2-packing by 1).

The RPLW algorithm tries to reduce the number of Q0-vertices and the number
of Q1-edges by applying Rule1 and Rule2 consecutively. Note that these rules can-
not be applied forever. As shown in Fig.3, the while-loop in step1 of the algorithm
tries to reduce the number of Q0-vertices in Q. Because the number of vertices in
input graph G is limited (at most 15k [7]) and each applications of Rule1 reduces
the number of Q0-vertices by 2, the number of consecutive applications of Rule1
is bonded by 7.5k . During the applications of these rules, the resulting W may
becomes non-maximal. In this cases, we simply first make W maximal again, us-
ing any proper greedy algorithm in step2 of the algorithm before we further apply
the rules. Thus, the P2 founded in Q can be put into W to make W larger. Assume
the larger packing is W ′, then call the algorithm for W ′.

During the process of the replacement of Q1-edges in step3 of the algorithm,
since each application of Rule2 increases the number of P2 in W by 1, the
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Algorithm RPLW
Input: G, W , k
Output: a maximal P2-packing W and |W ′| > |W |, or a smaller parameter k′

and |k′| < |k|, or a reduced graph G′

1. while W is a maximal P2-packing and a P2 in W has two vertices that
each is adjacent to two different Q0-vertices do

apply Rule1 to replace W by a packing of the same size with reduced
Q0-vertices;

2. if W is not maximal then
use greedy algorithm to construct a larger P2-packing W ′;
return (G, W ′, k).

3. if two Q1-edges are adjacent to two different vertices on a P2 in W then
apply Rule2 to obtain a larger P2-packing W ′;
return (G, W ′, k).

4. if |Q0| ≥ 2|W | then
construct a double crown decompositon (H,C, R), then k′ = k − |H |;
return (G, W, k′).

5. if |Q1| ≥ |W | then
construct a fat crown decompositon (H,C, R), then k′ = k − |H |;
return (G, W, k′).

6. Assume the reduced graph is G′, return (G′, W, k).

Fig. 3. RPLW algorithm

total number of applications of Rule2 is bounded by k. Step4 and step5 of the
algorithm aim at finding ‘double crown’ and ‘fat crown’ in G induced by the
replacement of Q0-vertices and Q1-edges. Once ‘double crown’ or ‘fat crown’ is
found, the parameter k must be reduced (k′ = k − |H |).

For completeness, we verify the algorithm’s correctness, and analyze its precise
complexity.

Lemma 5. Repeatedly calling the algorithm RPLW will either find a k-P2-
packing or reduce the size of G, and those can be done in O(k3).

Proof. From step2 and step3 of the RPLW algorithm, it can be seen that the
number of disjoint P2 in W is increased by the replacement of Q0-vertices and
Q1-edges. By calling the algorithm repeatedly, when the number of disjoint P2
in W is k, a k-P2-packing is found in graph G. Because of the replacements in
step4 and step5 of the algorithm, ‘double crown’-decomposition or ‘fat crown’-
decomposition will be found in G. Therefore, the parameter k is decreased and
the number of disjoint P2 needed to be found is also decreased. By calling the
algorithm repeatedly, when the parameter k is reduced to 0, a k-P2-packing is
found in graph G. On the other hand, because the replacement in step1-3 of the
algorithm limits the number of Q0-vertices and Q1-edges, and some vertices are
removed by the ‘double crown’-decomposition or ‘fat crown’-decomposition in
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step4-5 of the algorithm, the size of G will be reduced. Thus, if a k-P2-packing
is not found in the algorithm, the algorithm returns a reduced G′.

At last, we analyze the time complexity of those whole process. Calling the
RPLW algorithm repeatedly is to apply Rule1 and Rule2 consecutively, which can
be finished in polynomial time. The number of consecutive applications of Rule1
is bonded by 7.5k, and the total number of applications of Rule2 is bounded by
k. When ‘double crown’-decomposition or ‘fat crown’-decomposition is applica-
ble, the parameter k is reduced accordingly. The ‘double crown’-decomposition or
‘fat crown’-decomposition can be founded in O(k2) [7]. The algorithm must return
when the number of disjoint P2 in W is increased or the parameter k is reduced,
and the algorithm is called again for the larger packing W ′ or the smaller param-
eter k′. If a k-P2-packing is not found in the algorithm, the algorithm returns a
reduced G′. Therefore, the algorithm is called at most 9.5k times. In consequence,
the whole process can be computed in O(k3) time. ��

Our kernelization process is to apply the RPLW algorithm repeatedly, i.e, to
apply Rule1 and Rule2 repeatedly by starting with a maximal P2-packing. The
whole process can finish in polynomial time. The kernelization will either find a
k-P2-packing or reduce the size of G until Rule1 and Rule2 are not applicable.
The reduced G can be considered as a kernel of the k-P2-packing problem. Note
that when Rule1 and Rule2 are not applicable, the maximal P2-packing W (for
each Li in W ) has the following properties:

Property 1. If more than one Q0-vertices are adjacent to Li, then all these
Q0-vertices must be adjacent to the same (and unique) vertex in Li.

Property 2. If more than one vertex in Li are adjacent to Q0-vertices, then all
these vertices in Li must be adjacent to the same (and unique) Q0-vertex.

Property 3. If more than one Q1-edges are adjacent to Li, then all these Q1-
edges must be adjacent to the same (and unique) vertex in Li.

Property 4. If more than one vertex in Li are adjacent to Q1-edges, then all
these vertices in Li must be adjacent to the same (and unique) Q1-edge.

3.2 A Smaller Kernel

In the following, we first analyze the number of Q0-vertices and Q1-edges in Q
after the kernelization. Then we will present how the kernel of size at most 7k
is obtained for k-P2-packing problem.

We first analyze the number of Q0-vertices in Q.

Theorem 1. The number of Q0-vertices is bounded by 2(k − 1), that is, |Q0-
vertex| ≤ 2(k−1), or else we can find a double crown decomposition in polynomial
time.

Proof. When Rule1 and Rule2 are not applicable, let W be the maximal packing
W = L1, · · · , Lt, t ≤ k − 1, which is a collection of disjoint P2. We partition the
disjoint P2 in W into two groups: {L1, · · · , Ld}, {Ld+1, · · · , Lt}, which satisfy
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the following property: for each Li, 1 ≤ i ≤ d, each Q0-vertex adjacent to Li

can be adjacent to more than one vertex in Li, and we denote these Q0-vertex
as Q0i (1 ≤ i ≤ d); for each Lj, j > d, each Q0-vertex adjacent to Lj is at most
adjacent to one vertex in Lj .

Consider the vertex set Q′
0-vertex=Q0-vertex−{Q01, · · · , Q0d}, and let W ′ =

{v1, · · · , vs} be the set of vertices in Ld+1 ∪ · · · ∪Lt such that each vertex in W ′

has neighbor in Q0-vertex. By the above partition property, each Lj(j > d) has
at most one vertex in W ′. Thus, s ≤ t − d. Moreover, by Property2, no vertex
in Q′

0-vertex is adjacent to any Li. Therefore, each vertex in Q′
0-vertex has all

its neighbors in W ′, that is, W ′ = N(Q′
0-vertex).

Assume the total number of vertices in Q′
0 -vertex is p. If p > 2s, there is

a ‘double crown’-decomposition in the input graph (note that the set of Q′
0-

vertex is an independent set). We can call the RPLW algorithm again, which
contradicts that Rule1 and Rule2 are not applicable. On the other hand, if
p ≤ 2s, the total number of Q0-vertices in the graph is that: |Q0-vertex| = |Q′

0-
vertex| + d = p + d ≤ 2s + d ≤ 2(s + d) ≤ 2t ≤ 2(k − 1). This completes the
proof. ��

In the following, we analyze the number of Q1-vertices in Q.

Theorem 2. The number of Q1-vertices is bounded by 2(k − 1), that is, |Q1-
edge| ≤ k − 1, or else we can find a double crown decomposition in polynomial
time.

Proof. When Rule1 and Rule2 are not applicable, let W be the maximal packing
W = L1, · · · , Lt, t ≤ k − 1, which is a collection of disjoint P2. We partition the
disjoint P2 in W into two groups: {L1, · · · , Ld}, {Ld+1, · · · , Lt}, which satisfy
the following property: for each Li, 1 ≤ i ≤ d, each Q1-edge adjacent to Li can
be adjacent to more than one vertex in Li, and we denote these Q1-edges as Q1i

(1 ≤ i ≤ d); for each Lj , j > d, each Q1-edge adjacent to Lj is at most adjacent
to one vertex in Lj.

Consider the vertex set Q′
1-edge=Q1-edge−{Q11, · · · , Q1d}, and let W ′ =

{v1, · · · , vs} be the set of vertices in Ld+1 ∪ · · · ∪Lt such that each vertex in W ′

has neighbors in Q1-vertex. By the above partition property, each Lj(j > d) has
at most one vertex in W ′. Thus, s ≤ t − d. Moreover, by Property4, no vertex
in Q′

1-edge is adjacent to any Li, 1 ≤ i ≤ d. Therefore, each vertex in Q′
1-edge

has all its neighbors in W ′, that is, W ′ = N(Q′
1-edge).

Assume the total number of edges in Q′
1-edge is p. If p > s, there is a

‘fat crown’-decomposition in the input graph (note that the set of Q′
1-edge

is an independent set of K2). We can call the RPLW algorithm again, which
contradicts that Rule1 and Rule2 are not applicable. On the other hand, if
p ≤ s, the total number of Q1-edges in the graph is that: |Q1-edge| = |Q′

1-
edge| + d = p + d ≤ s + d ≤ t ≤ k − 1. Each Q1-edge has two Q1-vertices,
therefore, the number of Q1-vertices is bounded by |Q1-vertex| ≤ 2(k − 1). This
completes the proof. ��

Based on theorem 1 and theorem 2, we can get the following theorem.
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Theorem 3. The k-P2-packing problem has a kernel of size at most 7k − 7.

Proof. By applying the RPLW algorithm repeatedly until the two rules are not
applicable. The vertices in G consist of the vertices in W and Q. Assume V (G)
denotes the vertices in G. The vertices in Q contains only Q0-vertices and Q1-
vertices. By Theorem1, we can get that |Q0-vertex| ≤ 2(k − 1). By Theorem2,
we can get that |Q1-vertex| ≤ 2(k − 1). Since |V (W )| ≤ 3(k − 1), thus, |V (G)| =
|V (W )| + |Q0| + |Q1| ≤ 3(k − 1) + 2(k − 1) + 2(k − 1) = 7k − 7. Therefore, the
k-P2-packing problem has a kernel of size at most 7k − 7. ��

4 The Improved Parameterized Algorithm

For the k-P2-packing problem, we proposed an improved parameterized algo-
rithm based on the 7k kernel. We first apply the kernelizaiton algorithm to
obtain a kernel for the problem. Since each P2 has a center vertex, in order to
find k vertex disjoint P2, we just need to find k center vertices in brute force
manner on the 7k kernel. The specific algorithm is given in figure 4.

Algorithm KPPW
Input: G = (V, E)
Output: a k-P2-packing in G, or can not find a k-P2-packing in G

1. compute a maximal P2-packing W with a greedy algorithm;
2. apply the RPLW(G, W, k) until rule1 and rule2 are not applicable;
3. if |V (G)| > 7k then

report “there exists a k-P2-packing” and stop;
4. find all possible subsets C of size k in reduced G;
5. for each C do
6. for each vertex v in C, produce a copy vertex v′;
7. Construct a bipartite graph G′ = (V1 ∪ V2, E) in the following way: the

edges connecting to v are also connected to v′. The k vertices and its
copy vertices are put into V1, and the neighbors of the k vertices in C
are put into V2;

8. use Maximum bipartite matching algorithm to find the k center vertices;
9. if all the vertices on V1 are matched then

report “there exists a k-P2-packing in G” and stop;
10. report “there is no a k-P2-packing in G” and stop;

Fig. 4. KPPW agorithm

Theorem 4. If there exists a k-P2-packing, the KPPW algorithm will find the
k-P2-packing in time O∗(24.142k).

Proof. It can be seen from the algorithm, the step2 is the whole kernelization
process applying the RPLW algorithm repeatedly. As a result, we can obtain
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a kernel of size at most 7k. We check the number of vertices in reduced G in
Step3. If the number of vertices is more than 7k, there must be a k-P2-packing in
G, and the KPPW algorithm does not need to run. We apply a straightforward
brute-force method on the kernel to find the optimal solution from Step 4 to
Step 8. The general idea is as follows:

We find all possible subsets C of size k in reduced graph G. For each C, we
will construct a bipartite graph G′ = (V1 ∪ V2, E) in the following way: first, for
each vertex v in C, we produce a copy vertex v′ with the property that the edges
connecting to v are also connected to v′. The k vertices and its copy vertices
are put into V1, and the neighbors of the k vertices in C are put into V2. If
all the vertices on the V1 are matched by a maximum bipartite matching, the
k vertices in C must be the center vertices of a k-P2-packing, therefore, report
“there exists a k-P2-packing in G” , and the algorithm stops. If for all C, we
cannot find k center vertices, report “there does not exist a k-P2-packing in G”,
and the algorithm stops.

In the following, we analyze the time complexity of algorithm KPPW.
Step1: Using greedy algorithm to find a maximal packing can be done in time

O(|E|).
Step2: The kernelization process given in [7] can be done in O(n3) time, and

the whole process that call the algorithm RPLW repeatedly until Rule1 and
Rule2 are not applicable runs in O(k3) time, therefore, the time complexity of
Step2 is O(n3 + k3).

Step3: Obviously, the running time of Step 3 is linear in the size of V .
Step4-Step8: We find the center vertices of the P2-packing in a brute force

manner, which has
(7k

k

)
enumerations. By Stirling’s formula, this is bounded by

24.142k. We construct a bipartite graph G′ = (V1∪V2, E) with k vertices in C and
its copy vertices in V1, and the neighbors of k vertices in V2. Thus, the original
question is transformed to find the maximum matching problem in bipartite G′

which can be solved in time O(
√

|V1 + V2||E|) = O(k2.5). Therefore, the total
running time of Step4-Step8 is O(24.142kk2.5).

As a result, the total running time of algorithm KPPW is bounded by O(|E|+
|n3 + k3 + |V | + k + 24.142kk2.5) = O∗(24.142k). ��

5 Conclusions

In this paper, we mainly focus on the kernelization for the k-P2-packing problem.
We give further structure analysis of the problem, and propose a kernelization
algorithm obtaining a kernel of size at most 7k. Comparing with the kerneliztion
given in [7], our algorithm makes further optimization on the vertices of any
P2 in W and their Q0-vertex neighbors and Q1-edge neighbors, which reduces
the number of Q0-vertices and Q1-edges in Q. Based on the 7k kernel, we also
present an improved parameterized algorithm with time complexity O∗(24.142k),
which greatly improves the current best result O∗(25.301k).
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