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Abstract. In this paper, we study the extensions of embeddings in the
computably enumerable Turing degrees. We show that for any c.e. de-
grees x �≤ y, if either y is low or x is high, then there is a c.e. degree a
such that both 0 < a ≤ x and x �≤ y ∪ a hold.

1 Introduction

A set A ⊆ ω is called computably enumerable (c.e.) if and only if either A = ∅
or A is the range of a computable function.

A set A is simple if A is c.e. and Ā, the complement of A, is infinite but
contains no infinite c.e. set. Clearly if A is simple then A is not computable
because Ā can not be c.e., since otherwise it contains an infinite c.e. set, i.e., Ā.

Given sets A, B ⊆ ω, we say that A is Turing reducible to B, if there is an
oracle Turing machine Φ such that A = Φ(B) (denoted by A ≤T B). A ≡T B if
A ≤T B and B ≤T A. The Turing degree of A is defined to be a = deg(A) =
{B : B ≡T A}.

A degree a ≤ 0′ is low, if a′ = 0′, and high if a′ = 0′′. A set A ≤T ∅′ is low
(high), if deg(A) is low (high).

The degrees D form a partially ordered set under the relation deg(A) ≤ deg(B)
if and only if A ≤T B. We write deg(A) < deg(B) if A ≤T B and B �T A.

A degree is called computably enumerable (c.e.), if it contains a c.e. set. Let
E denote the class of c.e. degrees with the some ordering as that for D. As we
know (D; ≤, ∪) and (E ; ≤, ∪) will form upper semi-lattices.

Given r.e. degrees 0 < b < a, we say that b cups to a if there exists an r.e.
degree c < a such that b ∪ c = a; if no such c exists then b is an anti-cupping
witness for a. The r.e. degree a has the anti-cupping (a.c.) property if it has an
anti-cupping witness.

Extensions and non-extensions of embeddings in the computably enumerable
Turing degrees have been an extensively studied phenomena in the past decades
since Shoenfield [1965] published his conjecture. The conjecture was soon proved
false by the minimal pair theorem of Lachlan [1966]. However the characteriza-
tion of the structure satisfying Shoenfield’s conjecture has become a successful
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research in the local Turing degrees, leading to the final resolution of Slaman
and Soare [1995] of the full characterization of the problem.

The interests in the strong extensions of embeddings in the computably enu-
merable degrees come from the close relationship between the problem and the
decidability/undecidability of the Σ2-fragment of the c.e. degrees. For instance,
Slaman asked in [1983] the following question:

For any two c.e. degrees x and y, with x � y, does there exist a c.e. degree
a, satisfying:

1. 0 < a ≤ x,
2. x � y ∪ a?

Intuitively, the problem wants to construct a c.e. degree a which should “code
more information than” 0, and which cannot compute x even if it joins with y.

In fact it is not always possible to find such a c.e. degree a, which is stated in
Slaman and Soare [2001]. This problem has recently been resolved negatively in
progress by Barmpalias, Cooper, Li, Xia, and Yao.

In this article, we consider possible partial results on the positive side of the
problem above. We consider two special cases, i.e., when y is low and x is high.

We will show the following two theorems:

Theorem 1. For any two c.e. degrees x and l, with x � l and l low, there is a
c.e. degree a, satisfying:

1. 0 < a ≤ x, and
2. x � l ∪ a.

Theorem 2. For any two c.e. degrees h and y, with h � y and h high, there is
a c.e. degree a, satisfying:

1. 0 < a ≤ h, and
2. h � y ∪ a.

Note that Theorem 2 can be directly deduced from the following theorem which
appears in Miller [1981].

Theorem 3. Every high r.e. degree h has the a.c. property via a high r.e. witness
a.

We briefly describe how to show Theorem 2 by Theorem 3: for a given high r.e.
degree h, there exists a high r.e. degree a, 0 < a < h, and for a given r.e. y,
h ≤ y ∪ a implies h ≤ y, i.e., h � y implies h � y ∪ a. Therefore a is a desired
r.e. degree in Theorem 2.

The rest of the paper is devoted to proving Theorem 1, our main result.
Our notations and terminology are standard and generally follow Soare [1987]

and Cooper [2003]. During the course of a construction, notations such as A, Φ
are used to denote the current approximations to these objects, and if we want
to specify the values immediately at the end of stage s, then we denote them
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by As, Φ[s] etc. For a computable partial functional (c.p., or for simplicity, also
a Turing functional), Φ say, the use function is denoted by the corresponding
lower case letter φ. The value of the use function of a converging computation
is the greatest number which is actually used in the computation. For a Turing
functional, if a computation is not defined, then we define its use function equal
to −1.

2 Proof of Theorem 1

2.1 Requirements and Strategies

Given c.e. sets X ∈ x, and L ∈ l, with X ≤T L and L low, we will build a c.e.
set A to satisfy the following requirements:

T : A ≤T X
Pe : We infinite ⇒ We ∩ A 
= ∅
Ne : X 
= Φe(L ⊕ A)

where e ∈ ω, {Φe : e ∈ ω} is an effective enumeration of all Turing reductions Φ,
and We is the e-th c.e. set.

Let a be the Turing degree of A. By the T -requirement, a ≤ x, by the P-
requirements, A is simple, so it is not computable, i.e., a > 0, and by the
N -requirements, x � l ∪ a = deg(L) ∪ deg(A) = deg(L ⊕ A). Therefore the
requirements are sufficient to prove the theorem.

Let {Xs}s∈ω, {Ls}s∈ω be computable enumerations of X, L respectively.
During the construction, the requirements may be divided into the positive

requirements Pe, which attempt to put elements into A, and the negative re-
quirements Ne, which attempt to keep elements out of A, i.e., impose an A-
restraint function with priority Ne. The priority rank of the requirements is
Ne < Pe < Ne+1, for all e ∈ ω.

First we introduce an easy method in Yates [1965] for constructing a c.e. set
A which is computable in a given non-computable c.e. set B by enumerating an
element x in A at some stage s only when B permits x in the sense that some
element y < x appears in B at the same stage s.

Proposition 1. If {As}s∈ω and {Bs}s∈ω are computable enumerations of c.e.
sets A and B respectively, such that x ∈ As+1−As implies (∃y < x)[y ∈ B−Bs],
then A ≤T B.

Proof. To B-recursively compute whether x ∈ A, find a stage s such that Bs �
x = B � x. Now x ∈ A if and only if x ∈ As. �

The strategy for meeting the T -requirement is attached onto the positive re-
quirements. When an element x is enumerated into A, it must satisfy that
Xs+1 � x 
= Xs � x so that A ≤T X holds according to Proposition 1 (Soare
[1987]). Note that this kind of x can always be found because X is not com-
putable in L.
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The strategy for meeting a single requirement Pe is the same as for Post’s
simple set. Intuitively, enumerate We until the first element > 2e appears in We

simultaneously satisfying other conditions and put it into A.
We now give a property of a low c.e. set, as found in Soare [1987].

Proposition 2. If L is a low set then

C = {j : (∃n ∈ Wj)[Dn ⊆ L̄]} ≤T ∅′. (1)

where Wj is the j-th c.e. set, and Dn is a finite set with canonical index n.

Proof. Clearly, C is
∑L

1 , so C ≤T L′. If L is low then L′ ≤T ∅′, so C ≤T ∅′. �

According to the Limit Lemma, let g(e, s) be a computable function such that
lims g(e, s) is the characteristic function of C.

Now we state the basic strategy for meeting a requirement Ne, without loss
of generality, let A ⊆ 2ω, the even numbers, and L ⊆ 2ω + 1, the odd numbers.
Note that A ⊕ L ≡T A ∪ L, so we use the latter from now on, i.e.,

Ne : X 
= Φe(L ∪ A).

We follow some basic idea in Robinson [1971] of proving the Robinson Low
Splitting Theorem which also can be found in Soare [1987].

Fix e and x. Intuitively, we use the lowness of L to help to “L-certify” a
computation Φe((L ∪ A) � u; x)[s] where u = φe(L ∪ A; x)[s] is the use function
of this computation as follows:

Let Dn = L̄s � u. Enumerate n into a c.e. V that we shall build during
the construction. By the Recursion Theorem we may assume that we have in
advance an index j such that V = Wj . Find the least t ≥ s such that either
Dn ∩ Lt 
= ∅, in which case the computation is obvious disturbed, or g(j, t) = 1,
in which case we “L-certify” the computation and guess that it is L-correct. It
may happen that we were wrong and L � u 
= Ls � u, but this happens at most
finitely often by Proposition 2 and the Limit Lemma. Since we are really using
g as an oracle to inquire whether Dn ⊆ L̄ for the current Dn = L̄s � u, it is
very important that there are no previous m ∈ Vs unless Dm ∩ Ls 
= ∅. Thus,
whenever an L-certified computation first becomes A-invalid by At � u 
= As � u,
we abandon the old c.e. set V and start with a new version of V and hence a
new index j such that Wj = V .

This L-certification process is best formalized by transforming the function
Φe(L ∪ A; x) to a computable function Φ̂e(L ∪ A; x). When we have fixed e, for
notational convenience, we let

Φ̂s(x) ↔ Φ̂e(L ∪ A; x)[s],

and
us

x ↔ φe(L ∪ A; x)[s].

If Φ̂s−1(x) ↓ but Φ̂s(x) ↑ we say that the (e, x)-computation Φ̂s−1(x) ↓ be-
comes A-invalid if

(∃z < us−1
x )[z ∈ As − As−1]

and otherwise becomes L-invalid.
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Fix e, x and s, we define Φ̂s(x) as follows: given At and Lt, t ≤ s and assume
that

Φe(L ∪ A; x)[s] ↓= y,

and
¬(∃z < us−1

x )[z ∈ (As ∪ Ls) − (As−1 ∪ Ls−1)].

Let Dn = L̄s � us
x. Enumerate n into V e,x

s . Let v be the greatest stage less than
s at which an (e, x)-computation becomes A-invalid, and v = 0 if no such stage
exists. By the Recursion Theorem, choose j such that Wj =

⋃
{V e,x

t : t > v}.
Find the least t ≥ s such that either

Dn ∩ Lt 
= ∅, (2)

or
g(j, t) = 1. (3)

If the latter holds, define Φ̂s(x) ↓= y. Otherwise, Φ̂s(x) ↑.

We use a strategy which is similar to the Sacks’ preserving agreement strategy
to meet a negative requirement. Here we want to construct a c.e A to meet a
requirement of the form X 
= Φe(L ∪ A). During the construction we preserve
agreement between X and Φe(L∪A). Sufficient preservation will guarantee that
if X = Φe(L ∪ A), then in fact X ≤T L, contrary to hypothesis.

As usual, we define the computable functions:

(length function) l̂(e, s) = max{x : (∀y < x)[Xs(y) = Φ̂s(y)]},

(restraint fucntion) r̂(e, s) = max{us
x : x ≤ l̂(e, s) & Φ̂s(x) ↓}.

We say that x injures Ne at stage s + 1 if x ∈ As+1 − As and x ≤ r̂(e, s).
Define the injury set for Ne,

(injury set) Î(e) = {x : (∃s)[x ∈ As+1 − As & x ≤ r̂(e, s)]}.

The positive requirements of course are never injured.

2.2 Construction and Verification

Proof of Theorem 1.

Construction of A.
Stage s = 0. Set A0 = ∅.
Stage s + 1. Since As has already been defined, we can define, for all e, the

length function l̂(e, s) and restraint function r̂(e, s).
We say Pe requires attention at stage s + 1 if

We,s ∩ As = ∅,

Then find if ∃x,
x ∈ We,s,
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x > 2e,

Xs+1 � x 
= Xs � x,

and
(∀i ≤ e)[r̂(i, s) < x].

Choose the least i ≤ s such that Pi requires attention, and then enumerate the
least such x into As+1, and we say that Pi receives attention. Hence Wi,s∩As+1 
=
∅ and (∃x ∈ As+1)[Xs+1 � x 
= Xs � x], so Pi is satisfied and never again requires
attention.

If i does not exist, do nothing.
Let A =

⋃
As. This ends the construction.

To verify that the construction succeeds we must prove the following lemmas.

Lemma 1. (∀e) [Î(e) is finite]. (Ne is injured at most finitely often.)

Proof. Note that once Pi receives attention, it will become satisfied and remain
satisfied forever. Hence each Pi contributes at most one element to A, and Ne

can be injured by Pi only if i < e. So |Î(e)| ≤ e. �

Lemma 2. (∀e) [X 
= Φe(A ∪ L)]. (Ne is met.)

Proof. Assume for a contradiction that X = Φe(A ∪ L). Then lims l̂(e, s) = ∞.
By Lemma 1, choose s1 such that Ne is never injured after stage s1. We shall
show that X ≤T L contrary to hypothesis. To L-recursively compute X(p) for
p ∈ ω, find some stage s > s1 such that l̂(e, s) > p and each computation Φ̂s(x),
x ≤ p, is L-correct, namely, Ls � us

x = L � us
x. It follows by induction on t ≥ s

that
(∀t ≥ s)[l̂(e, t) > p & r̂(e, t) ≥ max{us

x : x ≤ p}], (4)

and hence that for all t ≥ s,

Φ̂t(p) = Φe(A ∪ L; p) = X(p).

So X is computable in L.
To prove (4), when t = s, clearly it is true. Assume that it holds for t.

Then by the definition of r̂(e, t) and s > s1, for any x ≤ p, it ensures that
(At+1 ∪ Lt+1) � z = (At ∪ Lt) � z for all numbers z used in a computation
Φ̂t(x) ↓= y. Hence,

Φ̂t+1(x) ↓= Φ̂t(x) ↓= Xt(x).

So l̂(e, t + 1) > p unless Xt+1(x) 
= Xt(x). But if Xt(x) 
= Xs(x) for some t ≥ s,
since X is c.e., the disagreement Φ̂t(x) ↓
= Xt(x) is preserved forever, so X(x) =
Xt(x) 
= Φ̂t(x) ↓= Φe(A ∪ L; x), contrary to the hypothesis X = Φe(A ∪ L). �

Lemma 3. (∀e)[lims r̂(e, s) exists and is finite].
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Proof. By Lemma 1, choose s1 such that Ne is never injured after stage s1. By
Lemma 2, choose p = (μx)[X(x) 
= Φe(A ∪ L; x)]. Choose s2 ≥ s1 sufficiently
large so that for all s ≥ s2,

(∀x < p)[Φ̂s(x) ↓= Φe(A ∪ L; x)],

and
(∀x ≤ p)[Xs(x) = X(x)].

Case 1. Φe(A ∪ L; p) ↓
= X(p). Choose s3 ≥ s2 such that for all s ≥ s3,
Φ̂s(p) ↓= q 
= X(p). Hence, for all s ≥ s3, l̂(e, s) = l̂(e, s3) and r̂(e, s) = r̂(e, s3).

Case 2. Φe(A∪L; p) ↑. We shall find a stage v such that for all s ≥ v, Φ̂s(p) ↑.
Hence, for all s ≥ v, r̂(e, s) = r̂(e, v).

Note that if Φ̂s(p) ↓ for any s ≥ s2 then r̂(e, s) ≥ us
p, so by induction on t ≥ s,

the computation Φ̂t(p) = Φ̂s(p) holds as long as it remains L-valid. Let s′ be
the least t such that no (e, p)-computation becomes A-invalid at any stage ≥ t.
By the Recursion Theorem, choose j such that Wj =

⋃
{V e,p

s : s ≥ s′}. Since
Φe(A ∪ L; p) ↑, any computation Φ̂s(p), s ≥ s′, becomes L-invalid at some stage
t > s, at which time Dm

⋂
Ct 
= ∅ for every m ∈ V e,p

t . Hence, lims g(j, s) = 0 by
(1). Choose v > s2 such that Φ̂v(p) ↑ and g(j, s) = 0 for all s ≥ v. We claim that
Φ̂s(p) ↑ for all s ≥ v. Suppose s > v, Φ̂s−1(p) ↑ and Φ̂s(p) ↓. Then we enumerate
n ∈ V e,p

s , where Dn = L̄s � us
p, and we choose the least t ≥ s satisfying (2) or

(3). But (3) could not occur by the choice of v, so (2) occurs and Φ̂s(p) ↑. �

Lemma 4. (∀e) [We infinite ⇒ We ∩ A 
= ∅]. (Pe is met, simultaneously, T is
met.)

Proof. By the above lemmas, for all i ≤ e, let

r̂(i) = lim
s

r̂(i, s)

and
R̂(e) = max{r̂(i) : i ≤ e}.

Choose s0 such that

(∀t ≥ s0)(∀i ≤ e)[r̂(e, t) = r̂(e)],

and no Pi, i < e, receives attention after stage s0.
Now choose s ≥ s0, if ∃x,

x ∈ We,s,

x > 2e,

Xs+1 � x 
= Xs � x,

and
R̂(e) < x.
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Now either We,s ∩ As 
= ∅ or else Pe receives attention at stage s + 1, then in
either case We,s ∩ As+1 
= ∅, so Pe is met by the end of stage s + 1. And by
Proposition 1, A ≤T X is obviously met.

It is remarkable that searching for an x with the condition Xs+1 � x 
= Xs � x
does not impact the requirement Pe. Suppose for the sake of contradiction that if
We infinite, while A ∩ We = ∅, then A ⊆ W e, choose an increasing c.e. sequence
of elements x1 < x2 < · · · in We such that x1 > R̂(e) for all stage s ≥ s0. Choose
sk minimal such that sk > s0 and xk ∈ We,sk

. Now Xsk
� xk = X � xk so X is

computable, contrary to X �T L. �

Note that Ā is infinite by the clause “x > 2e”. To see this, note that A contains
at most e elements in {0, 1, . . . , 2e}, hence card(Ā � (2e+1)) ≥ 2e+1−e = e+1.
A is simple.

This ends the proof of Theorem 1. �
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