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Abstract. Deciding strong and weak bisimilarity of BPP are challeng-
ing because of the infinite nature of the state space of such processes. De-
ciding weak bisimilarity is harder since the usual decomposition property
which holds for strong bisimilarity fails. Hirshfeld proposed the notion of
bisimulation tree to prove that weak bisimulation is decidable for totally
normed BPA and BPP processes. In this paper, we present a tableau
method to decide weak bisimilarity of totally normed BPP. Compared
with Hirshfeld’s bisimulation tree method, our method is more intuitive
and more direct. Moreover from the decidability proof we can derive
a complete axiomatisation for the weak bisimulation of totally normed
BPP.

1 Introduction

A lot of attention has been devoted to the study of decidability and complex-
ity of verification problems for infinite-state systems [1,15,16]. In [2], Baeten,
Bergstra, and Klop proved the remarkable result that bisimulation equivalence
was decidable for irredundant context-free grammars (without the empty prod-
uct). Subsequently, many algorithms in this domain were proposed. In [7], Hans
Hüttel and Colin Stirling proved the decidability of normed BPA by using a
tableau method, which can also be used as a decision procedure. Decidability of
strong bisimilarity for BPP processes has been established in [13]. Furthermore,
[14] proved that deciding strong bisimilarity of BPP is PSPACE-complete.

For weak bisimilarity, much less is known. Semidecidability of weak bisimilar-
ity for BPP has been shown in [5]. In [6] it is shown that weak bisimilarity is de-
cidable for those BPA and BPP processes which are “totally normed”. P.Jančar
conjectured that the method in [14] might be used to show the decidability of
weak bisimilarity for general BPP. However, the problem of decidability of weak
bisimilarity for general BPP is open.

Our work is inspired by Hirshfeld’s idea. In [6] Hirshfeld proposed the notion of
bisimulation tree to prove the decidability of weak bisimulation of totally normed
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BPP. Based on the idea, we show that weak bisimulation for totally normed BPP
is decidable by a tableau method. In [13], S. Christensen, Y. Hirshfield and F.
Moller proposed a tableau decision procedure for deciding strong bisimilarity
of normed BPP. The key for tableau method to work is a nice decomposition
property which holds for strong bisimulation, but fails for weak bisimulation. In
our work, instead of using decomposition property, we apply Hirshfeld’s idea to
control the size of the tableaux to make the tableau method work correctly. This
approach not only provides us a more direct decision method, but also has the
advantage of providing a completeness proof of an equational theory for weak
bisimulation of totally normed BPP processes, similar to the tableau method of
[13] provides such a completeness proof for strong bisimulation of normed BPP
processes. Moreover, the termination proof for tableau is greatly simplified.

The paper is organized as follows. Section 2 introduces the notion of BPP
processes and weak bisimulation and describes weak bisimulation equivalence.
Section 3 gives the tableau decision method and presents the soundness and
completeness results. In Section 4 we prove the completeness of the equational
theory. Finally, Section 5 sums up conclusions and gives suggestions for further
work.

2 BPP Processes and Weak Bisimulation Equivalence

Assuming a set of variables V , V={X, Y, Z, · · ·} and a set of actions Actτ ,
Actτ = {τ, a, b, c, · · ·} which contains a special element τ , we consider the set
of BPP expressions E given by the following syntax; we shall use E, F, . . . as
metavariables over E .

E ::= 0 (inaction)
| X (variables, X ∈ V)
| E1 + E2 (summation)
| μE (μ ∈ Actτ )
| E1|E2 (merge)

A BPP process is defined by a finite family of recursive process equations

Δ = {Xi
def
= Ei|1 ≤ i ≤ n}

where the Xi ∈ V are distinct variables and each Ei is BPP expressions, and free
variables in each Ei range over set {X1, . . . , Xn}. In this paper, we concentrate
on guarded BPP systems.

Definition 1. A BPP expression E is guarded if each occurrence of variable is
within the scope of an atomic action, and a BPP system is guarded if each Ei

is guarded for 1 ≤ i ≤ n.

Definition 2. The operational semantics of a guarded BPP system can be sim-
ply given by a labeled transition system (S, Actτ , −→) where the transition re-
lation −→ is generated by the rules in Table 1.
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Table 1. Transition rules

act aE
a−→ E rec E

a−→ E′

X
a−→ E′

(X = E ∈ Δ)

sum1 E
a−→ α

E + F
a−→ α

sum2 F
a−→ β

E + F
a−→ β

par1 E
a−→ α

E|F a−→ α|F
par2 F

a−→ β

E|F a−→ E|β

where the state space S consists of finite parallel of BPP processes, and the
transition relation −→⊆ S × Actτ × S is generated by the rules in Table 1, in
which (as also later) we use Greek letters α, β, · · · as meta variables ranging over
elements of S, Each such α denotes a BPP process by forming the product of
the elements of α, i.e. by combining the elements of α in parallel using the merge
operator. We write ε for empty sequence. We shall write Xn to represent the
term X | · · · |X consisting of n copies of X combined in parallel. By length(α) we
denote the cardinality of α.

It is shown in [3] that any guarded system can be effectively transformed into
a 3-GNF normal form

{Xi
def
= Σni

j=1aijαij |1 ≤ i ≤ m}

where for all i, j such that 1 ≤ i ≤ m, 1 ≤ j ≤ ni, length(αij) < 3. So we only
considered BPP processes given in 3-GNF in this paper.

Moreover, we write α
ε=⇒ β for α( τ−→)∗β, and write α

a=⇒ β for α
ε=⇒ a−→ ε=⇒

β. Letˆ : Actτ → {Actτ − τ} ∪ ε be the function such that â = a when a �= τ
and τ̂ = ε, then the following general definition of weak bisimulation on S is
standard.

Definition 3. A binary relation R ⊆ S × S is a weak bisimulation if for all
(α, β) ∈ R the following conditions hold:

1. whenever α
a−→ α′, then β

â=⇒ β′ for some β′ with (α′, β′) ∈ R;
2. whenever β

a−→ β′, then α
â=⇒ α′ for some α′ with (α′, β′) ∈ R.

Two states α and β are said to be weak bisimulation equivalent, written α ≈ β,
if there is a weak bisimulation R such that (α, β) ∈ R.

It is standard to prove that ≈ is an equivalence relation between processes.
Moreover it is a congruence with respect to composition on S:

Proposition 1. If α1 ≈ β1 and α2 ≈ β2 then α1|α2 ≈ β1|β2.

Proposition 2. α|β ≈ β|α.
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Proposition 3. (α|β)|γ ≈ α|(β|γ).

Definition 4. A process α is said to be normed if there exists a finite sequence
α −→ . . . −→ αn −→ ε transitions from α to ε, and un-normed otherwise. The
weak norm of a normed α is the length of the shortest transition sequence of the
form α

a1=⇒ . . .
an=⇒ ε, where each ai �= τ and ai=⇒ is counted as 1. We denote by

||α|| the weak norm of α. Also, for unnormed α, we follow the convention that
||α|| = ∞ and ∞ > n for any number n. A BPP system Δ is totally normed if
for every variable X appears Δ, 0 < ‖X‖ < ∞.

With this definition, it is obvious that weak norm is additive: for normed α, β ∈
S, ||α|β|| = ||α||+ ||β||. Moreover, the following proposition says that weak norm
is respected by ≈.

Proposition 4. If α ≈ β, then either both α, β are un-normed, or both are
normed and ||α|| = ||β||.

3 The Tableau Decision Method

From now on, we restrict our attention to the totally normed BPP processes in
3-GNF, i.e. processes of a parallel labeled rewrite system 〈S, Actτ , −→〉 where
∞ > ||X || > 0 for all X ∈ V . And throughout the rest of the paper, we assume
that all the processes considered are totally normed unless stated otherwise.

With the preparation of the previous section, in this section we can devise
a tableau decision method. The rules of the tableau system are built around
equations α = β, where α, β ∈ S. Each rule of the tableau system has the form

name
α = β

α1 = β1 . . . αn = βn
side condition.

The premise of a rule represents the goal to be achieved while the consequents
are the subgoals. There are three rules altogether. One for unfolding. Two rules
for substituting the states. We now explain the three rules in turn.

Table 2. Tableau rules

subl
α1|β1 = α2|β2

α1|β1 = α1|β2
(if there is α1 ≺ α2 and a dominated node labeled

α1 = α2 or α2 = α1 )

subr
α1|β1 = α2|β2

α2|β1 = α2|β2
(if there is α2 ≺ α1 and a dominated node labeled

α1 = α2 or α2 = α1 )

unfold
α = β

{α′ = β′ | (α′, β′) ∈ M} M is a match for (α, β)
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3.1 Substituting the States

The next two rules can be used to substitute the expressions in the goal. The
rules are based on the following observation.

Definition 5. (dominate and improve)[6]

1. The pair (α1|α2, β1|β2) dominates the pair (α1, β1).
2. Xk1

1 | · · · |Xki0
i0

| · · · |Xkn
n improves Xm1

1 | · · · |Xmi0
i0

| · · · |Xmn
n iff there is some

i0 such that for i < i0 the (total) number of occurrences of Xi is equal in
both pairs, i.e. ki = mi while the number of occurrences of Xi0 is smaller in
(Xk1

1 | · · · |Xki0
i0

| · · · |Xkn
n ) than in (Xm1

1 | · · · |Xmi0
i0

| · · · |Xmn
n ) i.e. ki0 < mi0 .

Proposition 5. Every sequence of pairs in which every pair improves the pre-
vious one is finite.

Proposition 6. Every sequence of pairs in which no pair dominates a previous
one is finite.

Definition 6. By ≺ we denote the well-founded ordering on S given as follows:
Xk1

1 | · · · |Xkn
n ≺ X l1

1 | · · · |X ln
n iff there exists j such that kj < lj and for all i < j

we have ki = li.

It is easy to show that ≺ is well-founded. Moreover, We shall rely on the fact
that ≺ is total in the sense that for any α, β ∈ S such that α �= β we have α ≺ β
or β ≺ α. Also we shall rely on the fact that α ≺ β implies α|α′ ≺ β|α′ as well
as α ≺ β|α′ for any α′ ∈ S. All these properties are easily seen to hold for ≺.

When building tableaux basic nodes might dominate other basic nodes; we say
a basic node n : α1|β1 = α2|β2 or α2|β2 = α1|β1 dominates any node n′ : α1 = α2
or n′ : α2 = α1 which appears above n in the tableau. There n′ : α1 = α2 or
n′ : α2 = α1 is called the dominated node.

Definition 7. We define a weight function ω, s.t. for α = Xk1
1 | · · · |Xkn

n , β =
Y m1

1 | · · · |Y mn
n , ω(α, β) = 1×k1+1×k2+· · ·+1×kn+1×m1+1×m2+· · ·+1×mn.

Proposition 7. For every α1, β1, if α ≈ β, then α|α1 ≈ β|β1 iff α|α1 ≈ α|β1
iff β|α1 ≈ β|β1.

Proof. For the only if direction, suppose α|α1 ≈ β|β1, since α ≈ β and β1 ≈ β1,
then α|β1 ≈ β|β1 by Proposition 1, by α|α1 ≈ β|β1, so α|α1 ≈ α|β1 since ≈
is an equivalence. For the if direction, suppose α|α1 ≈ α|β1, since α ≈ β and
β1 ≈ β1, α|β1 ≈ β|β1 by Proposition 1, by α|α1 ≈ α|β1, so α|α1 ≈ β|β1 since ≈
is an equivalence. For β it is similar to previous proof. ��
Proposition 8. One of the pairs (α|α1, α|β1) or (β|α1, β|β1) is an improvement
of (α|α1, β|β1) where α �= β.

This proposition guarantees the soundness and backwards soundness of subl, subr
rules.

In fact in section 2, from Proposition 5 we know that every sequence of pairs
in which every pair improves the previous one is finite. So this means that there
are only finitely many different ways to apply the rules.
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3.2 Unfolding by Matching the Transitions

Definition 8. Let (α, β) ∈ S × S. A binary relation M ⊆ S × S is a match for
(α, β) if the following hold:

1. whenever α
a−→ α′ then β

â=⇒ β′ for some (α′, β′) ∈ M ;
2. whenever β

a−→ β′ then α
â=⇒ α′ for some (α′, β′) ∈ M ;

3. whenever (α′, β′) ∈ M then ||α′|| = ||β′|| and either α
a−→ α′ or β

a−→ β′ for
some a ∈ Actτ .

It is easy to see that for a given (α, β) ∈ S × S, there are finitely many possible
M ⊆ S × S which satisfies 3. Above and moreover each of them must be finite.
And for such M it is not difficult to see that it is decidable whether M is a
match for (α, β).

The rule can be used to obtain subgoals by matching transitions, and it is
based on the following observation.

Proposition 9. Let α, β ∈ S. Then α ≈ β if and only if there exists a match
M for (α, β) such that α′ ≈ β′ for all (α′, β′) ∈ M .

This proposition guarantees the soundness and backwards soundness of unfold
rule.

As pointed out above there are finitely many matches for a given (α, β), so
there are finitely many ways to apply this rule on (α, β).

3.3 Constructing Tableau

We determine whether α ≈ β by constructing a tableau with root α = β using
the three rules introduced above. A tableau is a finite tree with nodes labeled
by equations of the form α = β, where α, β ∈ S.

Moreover if α = β labels a non-leaf node, then the following are satisfied:

1. ||α|| = ||β||;
2. its sons are labeled by α1 = β1 . . . αn = βn obtained by applying rule subl,

subr or unfold in Table 2 to α = β, in that priority order;
3. no other non-leaf node is labelled by α = β.

A tableau is a successful tableau if the labels of all its leaves have the forms:

1. α = β where there is a non-leaf node is also labeled α = β;
2. α ≡ β

3.4 Decidability, Soundness, and Completeness

Lemma 1. Every tableau with root α = β is finite, Furthermore, there is only
a finite number of tableaux with root α = β.

Theorem 1. If α ≈ β then there exists a successful tableau with root labeled
α = β.
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Proof. Suppose α ≈ β. If we can construct a tableau T (α = β) for α = β with
the property that any node n : α = β of T (α = β) satisfies α ≈ β, then by
Lemma 1 that construction must terminate and each terminal will be successful.
Thus the tableau itself will be successful.

We can construct such a T (α = β) if we verify that each rule of the tableau
system is forward sound in the sense that if the antecedent relates bisimilar pro-
cesses then it is possible to find a set of consequents relating bisimilar processes.
For the rule subl or subr we know from Proposition 7. For the rest of the tableau
rules it is easily verified that they are forward sound in the above sense. ��

Finally we must show soundness of the tableau system, namely that the existence
of a successful tableau for α = β indicates that α ≈ β. This follows from the fact
that the tableau system tries to construct a family of binary relations which are
bisimilar.

Definition 9. A sound tableau is a tableau such that if α = β is a label in it
then α ≈ β.

Theorem 2. A successful tableau is a sound tableau.

Proof. Let T be a successful tableau. We define W = {B ⊆ S × S} to be the
smallest binary relations satisfies the following:

1. if α ≡ β labels a node in T then (α, β) ∈ W ;
2. if there is a node in T labeled α = β and on which rule unfold is applied

then (α, β) ∈ W ;
3. if (α1, α2) ∈ W , (α1|β1, α1|β2) ∈ W where α1 ≺ α2 then (α1|β1, α2|β2) ∈ W ;
4. if (α1, α2) ∈ W , (α2|β1, α2|β2) ∈ W where α2 ≺ α1then (α1|β1, α2|β2) ∈ W .

We will prove the following properties about W :

A. If α = β labels a node in T then (α, β) ∈ W .
B. If (α, β) ∈ W , then the following hold:

(a) if α
a−→ α′ then β

â=⇒ β′ for some β′ such that (α′, β′) ∈ W ;
(b) if β

a−→ β′ then α
â=⇒ α′ for some α′ such that (α′, β′) ∈ W .

Clearly property B. implies that

B = {(α, β) | (α, β) ∈ W}

is a weak bisimulation. Then together with property A. it implies that T is a
sound tableau.

We prove A. by induction on weight ω′ = ω(α, β). If α = β is a label of an non-
leaf node, there are three cases according to which rule is applied on this node.
If unfold is applied, then by rule 2. of the construction of W clearly (α, β) ∈ W .
If subl is applied, in this case α = β is of the form α1|β1 = α2|β2, and the node
has sons labeled by α1|β1 = α1|β2. Clearly ω(α1|β1, α1|β2) < ω(α1|β1, α2|β2),
then by the induction hypothesis (α1|β1, α1|β2) ∈ W . Then by rule 3. in the
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construction of W , (α1|β1, α2|β2) ∈ W . If subr is applied, it is similar to subl
proof. If α = β is a label of a leaf node, then since T is a successful tableau
either there is a non-leaf node also labeled by α = β and in this case we have
proved that (α, β) ∈ W , or α ≡ β must hold and in this case by rule 1. in the
construction of W we also have (α, β) ∈ W .

We prove B. by induction on the four rules define W . Suppose (α, β) ∈ W ,
there are the following cases.

Case of rule 1. i.e. α ≡ β. It is obvious B. holds.
Case of rule 2. i.e. there exists M which is a match for (α, β) such that α′ = β′

is a label of T for all (α′, β′) ∈ M . Then by A. it holds that (α′, β′) ∈ W for all
(α′, β′) ∈ M , then by definition of a match, clearly B. holds.

Case of rule 3. i.e. there exist (α1, α2) ∈ W , (α1|β1, α1|β2) ∈ W where α1 ≺ α2

and α = α1|β1. If α1|β1
a−→ α′′, we have to match this by looking for a β′′ such

that α2|β2
â=⇒ β′′ and (α′′, β′′) ∈ W . By transition rule for α′′ has two cases:

the first case α1
a−→ α′

1 then α′′ = α′
1|β1. Now (α1, α2) ∈ W , by the induction

hypothesis there exists α′
2 ∈ α such that α2

â=⇒ α′
2 and (α′

1, α
′
2) ∈ W . since

(α1|β1, α1|β2) ∈ W , by the induction hypothesis there exists α′
1|β2 ∈ α such that

α1|β2
â=⇒ α′

1|β2 and (α′
1|β1, α

′
1|β2) ∈ W . By rule 3 we have (α′

1|β1, α
′
2|β2) ∈ W .

The another direction can be proved in a similar way; the second case β1
a−→

β′
1 then α′′ = α1|β′

1. since (α1|β1, α1|β2) ∈ W , by the induction hypothesis
there exists α1|β′

1 ∈ α such that α1|β2
â=⇒ α1|β′

2 and (α1|β′
1, α1|β′

2) ∈ W . Now
(α1, α2) ∈ W , by rule 3 we have (α1|β′

1, α2|β′
2) ∈ W . The another direction can

be proved in a similar way.
Case of rule 4. it is similar rule 3. proof. ��

Theorem 3. Let α, β ∈ S be totally normed. Then α ≈ β if and only if there
exists a successful tableau with root α = β.

4 The Equational Theory

We will develop the equational theory proposed by Sφren Chirstensen, Yoram
Hirshfeld, Faron Moller in [13] for strong bisimulation on normed BPP processes
given in 3-GNF. We now describe a sound and complete axiomatisation for
totally normed BPP processes. We pay attention to BPP processes in 3-GNF.
The axiomatisation shall be parameterised by Δ and consists of axioms and
inference rules that enable one to derive the root of successful tableaux.

The axiomatisation is built around sequences of the form Γ �Δ E = F where
Γ is a finite set of assumptions of the form α = β and E, F are BPP expressions.
Let Δ be a finite family of BPP processes in 3-GNF. A sequent is interpreted as
follows:

Definition 10. We write Γ |=Δ E = F when it is the case that if the relation

{(α, β)|α = β ∈ Γ} ∪ {(Xi, Ei)|Xi
def
= Ei ∈ Δ} is part of a bisimulation then

E ≈ F .
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Thus, the special case ∅ |=Δ E = F states that E ≈ F (relative to the system
of process equations Δ).

For the presentation of rule unfold we introduce notation unf(α) to mean the
unfolding of α given as follows (assuming that α ≡ Y1|Y2| · · · |Ym):

unf(α) =
∑m

i=1{aiγi : aiαi ∈ Yi},

where γi = αi|(
∏m

j=1,j �=i Yj) and the notation aα ∈ Y means that aα is a
summand of the defining equation for Y .

The proof system is presented in Table 3. Equivalence and congruence rules
are R1-6. In [13] the rule R5 of the axiomatisation for normed BPP processes
can not directly apply in our rules, since we know that weak bisimulation is not
preserved by summation, i.e. if E1 ≈ E2 and F1 ≈ F2, but we can’t get E1+F1 ≈
E2 + F2. So we increase two rules R5-6 to achieve summation. The rules R7-15
correspond to the BPP laws; notably we have associativity and commutativity
for merge. Finally, we have two rules characteristic for this axiomatisation; R16
is an assumption introduction rule underpinning the role of the assumption list
Γ and R17 is an assumption elimination rule and also a version of fixed point
induction. The special form of R17 has been dictated by the rule unfold of the
tableau system presented in Table 2.

Definition 11. A proof of Γ �Δ E = F is a proof tree with root labeled
Γ �Δ E = F , instances of the axioms R1 and R7-R16 as leaves and where the
father of a set of nodes is determined by an application of one of the inference
rules R2-R6 or R17.

Definition 12. The relations ≈o for ordinals o are defined inductively as fol-
lows, where we assume that l is a limit ordinal
E ≈0 F for all E, F
E ≈o+1 F iff for a ∈ (Actτ ∪ {ε})

E
a=⇒ E′, then ∃F ′.F â=⇒ F ′ and E′ ≈o F ′

F
a=⇒ F ′, then ∃E′.E â=⇒ E′ and E′ ≈o F ′.

E ≈l F iff ∀o < l.E ≈o F

So we can get a fact that is ≈=
∞⋂

n=0
≈n.

Theorem 4. (Soundness) If Γ �Δ E = F then we have Γ |=Δ E = F . In
particular if �Δ E = F then E ≈ F .

The similar proof for soundness can be found in [13].

Lemma 2. If Γ �Δ E = F then Γ, Γ ′ �Δ E = F for any Γ ′.

The completeness proof rests on a number of lemmas and definitions which tell
us how to determine our sets of hypotheses throughout a proof of E ≈ F from
a successful tableau for E ≈ F . We prove completeness from [13] idea.
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Table 3. The axiomatisation

Equivalence Congruence

R1 Γ �Δ E = E R4
Γ �Δ E1 = F1 Γ �Δ E2 = F2

Γ �Δ E1|E2 = F1|F2

R2 Γ �Δ E = F

Γ �Δ F = E
R5 Γ �Δ E = F

Γ �Δ E = F + τE

R3 Γ �Δ E = F Γ �Δ F = G

Γ �Δ E = G
R6 Γ �Δ E = F

Γ �Δ aE + R = aF + R

Axioms
R7 Γ �Δ E + (F + G) = (E + F ) + G R12 Γ �Δ E|F = F |E
R8 Γ �Δ E + F = F + E R13 Γ �Δ E|0 = E
R9 Γ �Δ E + E = E R14 Γ �Δ τE = E
R10 Γ �Δ E + 0 = E R15 Γ �Δ a(E + τF ) + aF = a(E + τF )
R11 Γ �Δ E|(F |G) = (E|F )|G
Recursion

R16 Γ, α = β �Δ α = β R17 Γ, α = β �Δ unf(α) = unf(β)
Γ �Δ α = β

Definition 13. For any node n of a tableau, Rn(n) denotes the set of labels of
the nodes above n to which the rule unfold is applied. In particular, Rn(r)=∅
where r is the root of the tableau.

Theorem 5. (Completeness)If α ≈ β then Γ �Δ α = β

Proof. If α ≈ β, then there exists a finite successful tableau with root labeled
α = β. Let T (α = β) be such a tableau. We shall prove that for any node
n : E = F of T (α = β) we have Rn(n) �Δ E = F . In particular, for the root
r : α = β, this reduces to �Δ α = β, so we shall have our result.

We prove Rn(n) �Δ E = F by induction on the depth of the subtableau
rooted at n. As the tableau is built modulo associativity and commutativity
of merge and by removing 0 components sitting in parallel or in sum we shall
assume that the axioms R12-R14 are used whenever required to accomplish the
proof.

Firstly, if n : E = F is a terminal node then either E and F are identical
terms α, so Rn(n) � E = F follows from R1.

Hence assume that n : E = F is a internal nodes. We proceed to apply to n
according to the tableau rule.

(i) Suppose unfold is applied. Then n is the label E = F and the son n′ of
n is labeled Ei = Fi(i ∈ {1 · · ·n}, Ei = Fi is match of E = F ), by induction
hypothesis Rn(Ei = Fi) � Ei = Fi, Rn(Ei = Fi) − {E = F}, E = F � Ei = Fi,
Rn(Ei = Fi) − {E = F} � E = F by R17, we know Rn(E = F ) = Rn(Ei =
Fi) − {E = F}, so Rn(E = F ) � E = F .

(ii) Suppose sub is applied wlog that is subl. Then the label E = F is of
the form E1|F1 = E2|F2 with the corresponding node n′′ labeled E1 = E2 and
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the son n′ of n is labeled E1|F1 = E1|F2, by induction hypothesis Rn(E1|F1 =
E1|F2) � E1|F1 = E1|F2 since Rn(E1|F1 = E1|F2) = Rn(E1|F1 = E2|F2), and
E1 = E2 ∈ Rn(E1|F1 = E2|F2), so Rn(E1|F1 = E2|F2) � E1 = E2 by R16.
Hence from R1, R4, R3 we have Rn(E1|F1 = E2|F2) � E1|F1 = E2|F2, last
Rn(E = F ) � E = F is required.

This completes the proof. ��

5 Conclusions and Directions for Further Work

In this paper we proposed a tableau method to decide whether a pair of totally
normed BPP processes is a weak bisimilar relation. The whole procedure is direct
and easy to understand, while the termination proof is also very simple. This
tableau method also helps us to show the completeness of Sφren Chirstensen,
Yoram Hirshfeld, Faron Moller’s equational theory on totally normed BPP sys-
tems. Recent results by Richard Mayr show that weak bisimulation of Basic
Parallel Processes is

∏P
2 -hard[18].

The study of bisimulation decision problems in the fields of BPA and BPP
processes has been already rather sophisticated. All the results were recorded and
updated by J.Srba[17], as well as open problems in this field. About algorithms,
the things left should be concerned with lowing complexity and improving the
efficiency. As the equational theory depends on assumptions, it is somewhat
different from Milner’s equational theory for regular processes[9]. One direction
of interest is the construction of equational theory of ≈ since many decision
results for weak bisimulation are already given.

References

1. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equiva-
lence for processes generating context-free languages. Journal of the Association
for Computing Machinery 93(40), 653–682 (1993)

3. Christensen, S.: Forthcoming Ph.D. thesis. University of Edinburgh
4. Hirshfeld, Y., Jerrum, M., Moller, F.: Bisimulation equivalence is decidable for

normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M.
(eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

5. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 221–232. Springer,
Heidelberg (1995)

6. Hirshfeld, Y.: Bisimulation trees and the decidability of weak bisimulations. In:
INFINITY 1996. Proceedings of the 1st International Workshop on Verification of
Infinite State Systems, Germany, vol. 5 (1996)
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