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Abstract. The so called (σ, ρ)-domination, introduced by J.A. Telle,
is a concept which provides a unifying generalization for many variants
of domination in graphs. (A set S of vertices of a graph G is called
(σ, ρ)-dominating if for every vertex v ∈ S, |S ∩ N(v)| ∈ σ, and for
every v /∈ S, |S ∩ N(v)| ∈ ρ, where σ and ρ are sets of nonnegative
integers and N(v) denotes the open neighborhood of the vertex v in
G.) It is known that for any two nonempty finite sets σ and ρ (such
that 0 /∈ ρ), the decision problem whether an input graph contains a
(σ, ρ)-dominating set is NP-complete, but that when restricted to some
graph classes, polynomial time solvable instances occur. We show that for
every k, the problem performs a complete dichotomy when restricted to
k-degenerate graphs, and we fully characterize the polynomial and NP-
complete instances. It is further shown that the problem is polynomial
time solvable if σ, ρ are such that every k-degenerate graph contains at
most one (σ, ρ)-dominating set, and NP-complete otherwise. This relates
to the concept of ambivalent graphs previously introduced for chordal
graphs.

Subject: Computational complexity, graph algorithms.

1 Introduction and Overview of Results

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). The open
neighborhood of a vertex is denoted by N(u) = {v : (u, v) ∈ E(G)}. The closed
neighborhood of a vertex u is the set N [u] = N(u) ∪ {u}. If U ⊂ V (G), then
G[U ] denotes the subgraph of G induced by U .

Let σ, ρ be a pair of nonempty sets of nonnegative integers. A set S of vertices
of G is called (σ, ρ)-dominating if for every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for
every v /∈ S, |S ∩N(v)| ∈ ρ. The concept of (σ, ρ)-domination was introduced by
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J.A. Telle [4,5] (and further elaborated on in [6,2]) as a unifying generalization
of many previously studied variants of the notion of dominating sets. In particu-
lar, (N0,N)-dominating sets are ordinary dominating sets, ({0},N0)-dominating
sets are independent sets, (N0,{1})-dominating sets are efficient dominating sets,
({0},{1})-dominating sets are 1-perfect codes (or independent efficient dominat-
ing sets), ({0},{0, 1})-dominating sets are strong stable sets, ({0},N)-dominating
sets are independent dominating sets, ({1},{1})-dominating sets are total perfect
dominating sets, or ({r},N0)-dominating sets are induced r-regular subgraphs (N
and N0 denote the sets of positive and nonnegative integers, respectively).

We are interested in the complexity of the problem of existence of a (σ, ρ)-
dominating set in an input graph, and we denote this problem by ∃(σ, ρ)-
domination. It can be easily seen that if 0 ∈ ρ, then the ∃(σ, ρ)-domination

problem has a trivial solution S = ∅. So throughout our paper we suppose that
0 /∈ ρ. We consider only finite sets σ and ρ and use the notation pmin = min σ,
pmax = maxσ, qmin = min ρ, and qmax = max ρ.

It is known that for any nontrivial combination of finite sets σ and ρ
(considered as fixed parameters of the problem), ∃(σ, ρ)-domination is NP-
complete [4]. It is then natural to pay attention to restricted graph classes for
inputs of the problem. The problem is shown polynomial time solvable for inter-
val graphs in [3], where also the study of its complexity for chordal graphs was
initiated. A full dichotomy for chordal graphs was proved in [1], where a direct
connection between the complexity of ∃(σ, ρ)-domination and the so called am-
bivalence of the parameter sets σ, ρ was noted. A pair (σ, ρ) is called ambivalent
for a graph class G if there exists a graph in G containing at least two different
(σ, ρ)-dominating sets (such a graph will be called (σ, ρ)-ambivalent), and the
pair (σ, ρ) is called non-ambivalent otherwise.

It is shown in [1] that for finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial
time solvable for chordal graphs if the pair (σ, ρ) is non-ambivalent (for chordal
graphs), and it is NP-complete otherwise. It should be noted that the charac-
terization which is given in [1] is nonconstructive in the sense that the authors
did not provide a structural description of ambivalent (or non-ambivalent) pairs
σ, ρ (and there is indication that such a description will not be simple).

In this paper we consider the connection between ambivalence and computa-
tional complexity of ∃(σ, ρ)-domination for k-degenerate graphs. A graph G is
called k-degenerate (with k being a positive integer) if every induced subgraph
of G has a vertex of degree at most k. For example, trees are exactly con-
nected 1-degenerate graphs, every outerplanar graph is 2-degenerate, and every
planar graph are 5-degenerate. An ordering of vertices v1, v2, . . . , vn is called a
k-degenerate ordering if every vertex vi has at most k neighbors among the ver-
tices v1, v2, . . . , vi−1. It is well known that a graph is k-degenerate if and only if
it allows a k-degenerate ordering of its vertices.

It is known [6] that for trees (and for graphs of bounded treewidth), ∃(σ, ρ)-
domination can be solved in polynomial time. Thus we assume k ≥ 2 through-
out the paper. We prove that also in the case of k-degenerate graphs, ambivalence
and NP-hardness of ∃(σ, ρ)-domination go hand in hand.
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Theorem 1. For finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial (linear)
time solvable for k-degenerate graphs if the pair (σ, ρ) is non-ambivalent for
k-degenerate graphs (moreover, the problem can be solved by an algorithm which
is polynomial not only in the size of the graph, but also in pmax and qmax), and
it is NP-complete otherwise.

Unlike the case of chordal graphs, for k-degenerate graphs we are able to describe
a complete and constructive classification of ambivalent and non-ambivalent
pairs.

Theorem 2. Let σ, ρ be finite sets, and k ≥ 2. If pmin > k, then no k-degenerate
graph has a (σ, ρ)-dominating set. If pmin ≤ k, then the pair (σ, ρ) is non-
ambivalent for k-degenerate graphs if and only if one of the following two con-
ditions holds:

1. (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0},
2. for every p ∈ σ and every q ∈ ρ, |p − q| > k.

The last section of the paper is devoted to planar graphs. These undoubtedly
form one of the most interesting k-degenerate classes of graphs (k = 5 in this
case). Here we end up with several open problems. We are able to prove the
NP-hardness part of an analog of Theorem 1.

Theorem 3. For finite sets σ, ρ, ∃(σ, ρ)-domination is NP-complete for planar
graphs if the pair (σ, ρ) is ambivalent for planar graphs.

However, we do not know if non-ambivalence implies polynomial time recognition
algorithm in this case. We are able to classify ambivalent and non-ambivalent
pairs for some special pairs of sets σ and ρ, e.g., one-element sets, but even in
this case the proof of non-ambivalence is nonconstructive and does not yield an
algorithm.

Theorem 4. Let σ, ρ be one-element sets, σ = {p}, ρ = {q}, and 0 
= q. If
p > 5, then no planar graph has a (σ, ρ)-dominating sets. And if p ≤ 5, then
the pair (σ, ρ) is non-ambivalent for planar graphs if and only if q − p > 3 or
p − q > 2.

2 Classification of Ambivalent and Non-ambivalent Pairs
for k-Degenerate Graphs

In this section we present a structural characterization of ambivalent and non-
ambivalent pairs of sets (σ, ρ) for k-degenerate graphs. We also describe an al-
gorithm which (in case of a non-ambivalent pair (σ, ρ)) constructs the unique
(σ, ρ)-dominating set (if it exists) in an input k-degenerate graph. We start with
the following simple statement.

Lemma 1. Let σ, ρ be finite sets, and let k be a positive integer. If pmin > k,
then no k-degenerate graph contains a (σ, ρ)-dominating set.
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Proof. Let v1, v2, . . . , vn be a k-degenerate ordering of a k-degenerate graph G.
Since deg vn ≤ k < pmin, the vertex vn does not belong to any (σ, ρ)-dominating
set. But then every (σ, ρ)-dominating set of G is also a (σ, ρ)-dominating set of
the subgraph of G induced by {v1, v2, . . . , vn−1}. By repeating this argument
inductively, we conclude that only the empty set can be (σ, ρ)-dominating. And
since 0 /∈ ρ, this is impossible. ��

Now we assume that pmin ≤ k and we prove that the conditions given in The-
orem 2 are sufficient for non-ambivalence of σ, ρ. Towards this end, we describe
greedy algorithms which construct the unique candidate for a (σ, ρ)-dominating
set.

Let G be a k-degenerate graph with n vertices, and suppose that v1, v2, . . . , vn

is a k-degenerate ordering of the vertices of G. We consider two cases, and in
each if them a set S, which is a unique candidate for (σ, ρ)-dominating set in G,
is constructed.

Case 1. (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}.

Procedure Construct A;
U := V (G), S := ∅;
while U 
= ∅ do

i := max{j : vj ∈ U};
S := S ∪ {vi}, U := U \ N [vi];

Return S

Case 2. (σ ∪ ρ) ∩ {0, 1, . . . , k} 
= {0}, and for every p ∈ σ and every q ∈ ρ,
|p − q| > k.

Procedure Construct B;
U := V (G), S := ∅;
for i := n downto 1 do

r := |N(vi) ∩ S|, s := |N(vi) ∩ U |;
if there is p ∈ σ such that r ≤ p ≤ r + s then

S := S ∪ {vi}, U := U \ {vi}
else

if there is q ∈ ρ such that r ≤ q ≤ r + s then
U := U \ {vi}

else
Return There is no (σ, ρ)-dominating set, Halt;

Return S

Even if the procedures Construct A or Construct B construct a set S, it is
still possible that this set is not (σ, ρ)-dominating. So we have to test for this
property:
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Procedure Test;
for i := 1 to n do

if (vi ∈ S and |N(vi) ∩ S| /∈ σ) or (vi /∈ S and |N(vi) ∩ S| /∈ ρ) then
Return There is no (σ, ρ)-dominating set, Halt;

Return S

The properties of the algorithms are summarized in the next statement.

Lemma 2. Let σ, ρ be finite sets. Suppose that k is a positive integer, pmin ≤ k
and either (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}, or for every p ∈ σ and every q ∈
ρ, |p − q| > k. Then the described algorithms correctly construct the (σ, ρ)-
dominating set (if it exists) for any k-degenerate graph G, and this set is unique.
The running time is O((pmax + qmax)(n+m)), where n is the number of vertices
of G, and m is the number of its edges.

Proof. The correctness of the procedure Construct A is straightforward. The
loop invariant of the procedure is that no vertex of U has a neighbor in S. Hence
if (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}, then every vertex v ∈ U with degree no more
than k < qmin must belong to every (σ, ρ)-dominating set, and vertices of N(v)
can not belong to any such set.

The correctness of the procedure Construct B follows from the following
observation: If for every p ∈ σ and every q ∈ ρ, |p − q| > k, then the set
{r, r + 1, . . . , s} can not contain elements of both sets σ and ρ, since s ≤ k. And
since the number of S-neighbors of vi (in the final (σ, ρ)-dominating set S) will
end up in the interval [r, r + s], the justification is clear.

It is known that a k-degenerate ordering can be constructed in time O(n+m).
Then the estimate of the running time immediately follows from the description
of the algorithms. (Note here that we can assume that pmax, qmax ≤ n since
otherwise we can truncate the sets σ and ρ.) ��

To complete the proof of Theorem 2 we have to prove that the conditions given in
the theorem are not only sufficient but also necessary. We do so by constructing
graphs with at least two different (σ, ρ)-dominating sets. Let σ, ρ be finite sets,
and let k ≥ 2 be a positive integer. Suppose that pmin ≤ k, (σ∪ρ)∩{0, 1, . . . , k} 
=
{0}, and there are p ∈ σ and q ∈ ρ such that |p − q| ≤ k. We consider 3 different
cases.

Case 1. max(σ ∩ {0, 1, . . . , k}) = 0. Since (σ ∪ ρ) ∩ {0, 1, . . . , k} 
= {0}, there is a
q ∈ ρ such that q ≤ k. Then each class of bipartition of the complete bipartite
graph Kq,q is a (σ, ρ)-dominating set in Kq,q and Kq,q (and consequently the
pair (σ, ρ)) is ambivalent.

Case 2. 1 ∈ σ. If p < q, then we start the construction with the complete bipartite
graph Kq−p,q−p. Let the bipartition of its vertex set be {u1, u2, . . . , uq−p} and
{v1, v2, . . . , vq−p}. We further join every pair of vertices ui and vi by p different
paths of length 2. Let us denote by X the set of the middle vertices of these paths.
Since k ≥ 2 and q−p ≤ k, the graph constructed is k-degenerate. And it has two
different (σ, ρ)-dominating sets: {u1, u2, . . . , uq−p}∪X and {v1, v2, . . . , vq−p}∪X .
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If p ≥ q, then the construction starts with two copies of the complete graph
Kp−q+1, with vertex sets {u1, u2, . . . , up−q+1} and {v1, v2, . . . , vp−q+1}. Again,
we join every pair of vertices ui and vi by q different paths of length 2, and we let
X denote the set of the middle vertices of these paths. Since k ≥ 2 and p−q ≤ k,
the graph constructed in this way is k-degenerate. And it has two different (σ, ρ)-
dominating sets: {u1, u2, . . . , up−q+1} ∪ X and {v1, v2, . . . , vp−q+1} ∪ X .

Case 3. r ∈ σ for some 2 ≤ r ≤ k. Let H denote the complete graph Kr+1 with
one edge deleted, and let u, v be the endvertices of this edge. We will further
refer to these vertices as the poles of H . If p < q, then we start the construction
with two copies of the complete bipartite graph Kq−p,q−p with the bipartition
of the vertex sets {u1, u2, . . . , uq−p}, {v1, v2, . . . , vq−p} and {x1, x2, . . . , xq−p},
{y1, y2, . . . , yq−p}, respectively. Then for every i ∈ {1, 2, . . . , q −p}, we introduce
p copies of H and join one pole of each of them with ui and vi by edges, and
the other pole with xi and yi. Let X be the union of the sets of vertices of all
added graphs H . The resulting graph is k-degenerate (first the non-pole vertices
of H ’s have degrees r ≤ k, after their deletion the pole vertices have degrees
2 ≤ k, and after the deletion of these all the remaining vertices have degrees
p − q ≤ k), and it has two different (σ, ρ)-dominating sets: {u1, u2, . . . , uq−p} ∪
{x1, x2, . . . , xq−p} ∪ X and {v1, v2, . . . , vq−p} ∪ {y1, y2, . . . , yq−p} ∪ X .

If p ≥ q, then we start the construction with four copies of the com-
plete graph Kp−q+1, with vertex sets {u1, u2, . . . , up−q+1}, {v1, v2, . . . , vp−q+1},
{x1, x2, . . . , xp−q+1}, and {y1, y2, . . . , yp−q+1}. For every i ∈ {1, 2, . . . , p−q+1},
we add q copies of the graph H and join one pole of each of them with ui and vi,
and the other one with xi and yi. Again let X be the union of the sets of vertices
of the added copies of H . The resulting graph is k-degenerate, and it has two
different (σ, ρ)-dominating sets: {u1, u2, . . . , up−q+1} ∪ {x1, x2, . . . , xp−q+1} ∪ X
and {v1, v2, . . . , vp−q+1} ∪ {y1, y2, . . . , yp−q+1} ∪ X .

Unifying the claims of Lemmas 1, 2 and these constructions we have com-
pleted the proof of Theorem 2. Also since we presented polynomial time al-
gorithms which construct unique (σ, ρ)-dominating sets (if they exist) for the
non-ambivalent pairs (σ, ρ), the polynomial part of Theorem 1 is proved.

To conclude this section, let us point out a property of the constructed graphs
which will be used in the next section.

Lemma 3. For every ambivalent pair (σ, ρ), there is a k-degenerate graph G
with at least two different (σ, ρ)-dominating sets, which has a k-degenerate or-
dering v1, v2, . . . , vn such that for some �, the first � vertices v1, . . . , v� belong to
one and are not included to the other (σ, ρ)-dominating set.

3 NP-Completeness of ∃(σ, ρ)-domination for Ambivalent
Pairs

It this section we outline the proofs of the NP-hardness part of Theorem 1 and
of Theorem 3.
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We use a reduction from a special covering problem. Let r be a positive integer.
An instance of the Cover by no more than r sets is a pair (X, M), where
X is a nonempty finite set and M is a collection of sets of elements of X . We
ask about the existence of a collection M ′ ⊂ M of sets such that every element
of X belongs to at least one and to at most r sets of M ′. The graph G(X, M) of
an instance (X, M) is the bipartite graph with the vertex set X ∪ M and edge
set {xm|x ∈ m ∈ M}. The proof of the following lemma will appear in the full
version of the paper.

Lemma 4. For every fixed r ≥ 1, the Cover by no more than r sets prob-
lem is NP-complete even for instances (X, M) for which the graph G(X, M) is
2-degenerate. It also stays NP-complete if the graph G(X, M) is planar.

The main technical part of the NP-hardness proof is the construction of a gadget
which “enforces” on a given vertex the property of “not belonging to any (σ, ρ)-
dominating set”, and which guarantees that this vertex has a given number of
neighbors in any (σ, ρ)-dominating set in the gadget:

Lemma 5. Assume that k ≥ 2 and pmin ≤ k. Let r be a nonnegative integer.
Then there is a rooted graph F with the root u such that:

1. there is set S ⊂ V (F ) \ {u} such that for every x ∈ S, |N(x) ∩ S| ∈ σ, and
for every x /∈ S, x 
= u, |N(x) ∩ S| ∈ ρ;

2. for every such set S, |N(u) ∩ S| = r;
3. for every set S ⊂ V (F ) such that u ∈ S, either there is x ∈ S, x 
= u, for

which |N(x) ∩ S| /∈ σ, or there is x /∈ S for which |N(x) ∩ S| /∈ ρ;
4. F has a k-degenerate ordering with u as the first vertex.

The construction of F (which will appear in the full version of the paper) is
technical and requires a lengthy case analysis. A specific variant of the gadget
F ′ for planar graphs is also constructed, and the construction will also appear
in the full version of the paper.

Now we complete the proof of Theorem 1. Suppose that σ, ρ are finite sets
of integers, k ≥ 2, and the pair (σ, ρ) is ambivalent for k-degenerate graphs. Let
r = max{i ∈ N0 : i /∈ ρ, i + 1 ∈ ρ}. Since 0 /∈ ρ, r is correctly defined. We are
going reduce Cover by no more than t sets for t = qmax − r.

Suppose that (X, M) is an instance of Cover by no more than t sets

such that the graph G(X, M) is 2-degenerate, X = {x1, x2, . . . , xn} and M =
{s1, s2, . . . , sm}. Let H be a k-degenerate ambivalent rooted graph with root u,
such that u belongs to some (σ, ρ)-dominating set and u is not included in some
other (σ, ρ)-dominating set, and H has a k-degenerate ordering for which the
root is the first vertex. The existence of such a graph was proved in Lemma 3.
For every vertex si of the graph G(X, M), we take a copy of the graph H and
identify its root with si. For every vertex xj of our graph, a copy of the graph F
(cf. Lemma 5) is constructed and its root is identified with xj . Denote the graph
obtained in this way by G. Clearly, G is k-degenerate.

We claim that the graph G has a (σ, ρ)-dominating set if and only if (X, M)
allows a cover by no more than t sets. Since the graphs H and F depend only
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on σ and ρ, G has O(n + m) vertices, our reduction is polynomial and the proof
will be concluded.

Suppose first that G has a (σ, ρ)-dominating set S. Let M ′ = {si ∈ M : si ∈
S}. It follows from the properties of the forcing gadget F that every vertex xj

has exactly r neighbors in the gadget with root xj and xj /∈ S. Then xj has at
least one S-neighbor in the set {s1, s2, . . . , sm}, but no more than t = qmax − r
such neighbors. So, M ′ is a cover of X by no more than t sets.

Suppose now that M ′ ⊆ M is a cover of X by no more than t sets. For
every i = 1, 2, . . . , m, we choose a (σ, ρ)-dominating set Si in the copy of H
with the root si such that si ∈ Si if and only if si ∈ M ′. Let S′

1, S
′
2, . . . , S

′
n

be (σ, ρ)-dominating sets in the copies of F . Since {t + 1, t + 2, . . . , qmax} ⊆ ρ,
S = S1 ∪ S2 ∪ · · · ∪ Sm ∪ S′

1 ∪ S′
2 ∪ . . . S′

n is a (σ, ρ)-dominating set in G.

The proof of Theorem 3 follows along the same lines. Suppose that (X, M) is
an instance of Cover by no more than t sets such that the graph G(X, M) is
planar, X = {x1, x2, . . . , xn} and M = {s1, s2, . . . , sm}. Let H ′ be a planar am-
bivalent rooted graph with root u, such that u belongs to some (σ, ρ)-dominating
set and u is not included in some other (σ, ρ)-dominating set. For every vertex
si of the graph G(X, M), we construct a copy of the graph H ′ and unify its
root with si. For every vertex xj of our graph, a copy of the forcing gadget F ′

is constructed and the root of F ′ is identified with xj . Let G be the resulting
graph. Obviously, G is planar and G has a (σ, ρ)-dominating set if and only if
(X, M) allows a cover by no more than t sets.

4 Ambivalence and Non-ambivalence for Planar Graphs

Since planar graphs are 5-degenerate, Theorem 2 gives sufficient conditions for
non-ambivalence, but these conditions are not necessary for planar graphs. In
this section we give some new sufficient conditions for non-ambivalence for planar
graphs for certain cases of sets σ and ρ, and prove that in some cases these
conditions are also necessary. We start with the case qmin > pmax.

Lemma 6. Let σ, ρ be finite sets, and pmin ≤ 5. If qmin − pmax > 3, then the
pair (σ, ρ) is non-ambivalent for planar graphs.

Proof. Assume that qmin − pmax > 3 and let G be a planar graph with two
different (σ, ρ)-dominating sets S1 and S2. Let X = S1 ∩ S2, Y1 = S1 \ S2 and
Y2 = S2 \ S1. If x ∈ Y1, then since x ∈ S1, |N(x) ∩ X | ≤ pmax, and since x /∈ S2,
|N(x) ∩ S2| ≥ qmin. So, x has at least 4 neighbors in Y2. Similarly for y ∈ Y2.
Hence G[Y1 ∪Y2] is a planar bipartite graph such that every vertex has degree at
least 4, but this is impossible, since planar bipartite graphs are 3-degenerate. ��

Now we consider the case qmax < pmin.

Lemma 7. Let σ = {p} for some p ≤ 5 and 0 /∈ ρ. If p − qmax > 2, then the
pair (σ, ρ) is non-ambivalent for planar graphs.
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Proof. Suppose that p−qmax > 2 and let G be a planar graph with two different
(σ, ρ)-dominating sets S1 and S2. Let X = S1∩S2, Y1 = S1\S2 and Y2 = S2\S1.
If x ∈ Y1, then since x /∈ S2, |N(x)∩X | ≤ qmax, and since x ∈ S1, |N(x)∩S1| = p.
So x has at least 3 neighbors in Y1, i.e., G[Y1] and G[Y2] are planar graphs with
all vertices of degree at least 3. Assume that a vertex x ∈ Y1 is not adjacent
to any vertex of Y2. Then x has some neighbor y ∈ X . The vertex y must be
adjacent to some vertex z ∈ Y2 because σ contains exactly one element. Hence
every vertex of Y1 is either adjacent to some vertex of Y2, or is connected with
some vertex of Y2 by a path of length two with the middle vertex from X .

Consider a plane embedding of G. It induces plane embeddings of G[Y1] and
G[Y2]. Let x ∈ Y1. It is joined by an edge or by a path of length two to some
vertex y ∈ Y2, which belongs to some component H of G[Y2]. This graph H
lies completely in one face of G[Y1]. Since all vertices of H have degrees at
least 3, the graph H is not outerplanar. Then there is a vertex z ∈ V (H)
which does not belong to the boundary of the external face of H . By repeat-
ing the same arguments for z instead of x, we conclude that some compo-
nent of G[Y1] lies completely in some internal face of H , and so on. Since the
number of components of G[Y1] and G[Y2] is finite, this immediately gives a
contradiction. ��

The conditions given in Lemmas 6 and 7 are not only sufficient but also necessary
for one-element sets σ and ρ, and this completes the proof of Theorem 4. The
proof of this claim is provided by examples which are omitted here and will be
given the full version of the paper. We conclude the section and the paper by
explicitly stating some questions left open for planar graphs.

Problem 1. Is ∃(σ, ρ)-domination polynomial (NP-complete) when restricted
to planar graphs if and only if the pair σ, ρ is non-ambivalent (ambivalent, re-
spectively) for planar graphs? We believe that it would be interesting to solve
this problem even for one-element sets σ and ρ.

Problem 2. Complete the characterization of ambivalent pairs σ, ρ for planar
graphs.
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