
Definable Filters in the Structure of Bounded
Turing Reductions

Angsheng Li1,�, Weilin Li1,2,�, Yicheng Pan1,2,�, and Linqing Tang1,2,�

1 State Key Lab. of Computer Science, Institute of Software, Chinese Academy of
Sciences

2 Graduate University of Chinese Academy of Sciences
{angsheng,weilin,yicheng,linqing}@ios.ac.cn

Abstract. In this article, we show that there exist c.e. bounded Turing
degrees a, b such that 0 < a < 0

′
, and that for any c.e. bounded Turing

degree x, b ∨ x = 0
′
if and only if x ≥ a. The result gives an unexpected

definability theorem in the structure of bounded Turing reducibilities.

1 Introduction

A set A ⊆ ω is called computably enumerable (c.e., for short), if there is an
algorithm to enumerate the elements of it. Given sets A, B ⊆ ω, we say that A
is Turing reducible to B, if there is an oracle Turing machine, Φ say, such that
A = ΦB (denoted by A ≤T B), and furthermore, if the bits of oracle queries are
bounded by a computable function, we say that A is bounded Turing reducible to
B (written A ≤bT B). A Turing and a bounded Turing (or bT, for short) degree
is the equivalence class of a set under the Turing reductions and the bounded
Turing reductions respectively. A degree is called computably enumerable (c.e.),
if it contains a c.e. set.

Let E and EbT be the structures of the c.e. degrees under the Turing reductions
and the bounded Turing reductions respectively. During the past decades, the
studies of both structures focused on that of the algebraic properties, leading to
major achievements such as the decidability results of the Σ1-theory of E , and
the Σ2-theory of EbT (Ambos-Spies, P. Fejer, S. Lempp and M. Lerman [1996]),
and the undecidability results of the Σ3-theory of E (Lempp, Nies, and Slaman
[1998]), and of the Σ4-theory of EbT (Nies and Lempp [1995]). This progress
brings the decidability problems of the Σ2-theory of E , and the Σ3-theory of EbT
into sharper focus, for which new ingredients are welcome.

In recent years, the study of the computably enumerable degrees has focused
on Turing definability in the structure E . For instance, Slaman asked in 1985 if
there are any c.e. degrees that are incomplete and nonzero which are definable in
the c.e. degrees E . A natural approach to this problem is to find some definable
substructures of E that have nontrivial minimal/maximal and/or least/greatest

� The authors are partially supported by NSFC Grant No. 60325206, and No.
60310213.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 116–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Definable Filters in the Structure of Bounded Turing Reductions 117

members. This resumes interests in topics such as the continuity of the c.e.
degrees, started by Lachlan early in 1967.

Harrington and Soare [1992] showed that there is no maximal minimal pair
in the c.e. Turing degrees, and Seetapun [1991] proved a stronger result that for
any c.e. degree b �= 0,0′, there is a c.e. Turing degree a > b such that for any
c.e. Turing degree x, a ∧ x = 0 if and only if b ∧ x = 0.

In the dual case, Ambos-Spies, Lachlan and Soare [1993] showed that for any
c.e. Turing degrees x,y, if x and y are nontrivial splitting of 0′, then there exists
a c.e. Turing degree a < x such that a ∨ y = 0

′
. Remarkably, Cooper and Li [ta]

(the major subdegree theorem) showed that for any c.e. Turing degree b �= 0,0
′
,

there exists a c.e. Turing degree a < b such that for any c.e. Turing degree x,
b ∨ x = 0

′
if and only if a ∨ x = 0

′
(.

However, the study of the continuity and the definability in the bounded Tur-
ing structures is started just recently. Paul Brodhead, Angsheng Li and Weilin
Li [ta] (BLL) showed that the Seetapun’s result holds in the c.e. bounded Turing
degrees, that is, for any c.e. bounded Turing (bT) degree b �= 0,0

′
, there exists

a c.e. bT-degree a > b such that for any c.e. bT-degree x, a ∧ x = 0 if and only
if b ∧ x = 0. In the present paper, we consider the dual case of this result, the
BLL result. It is very unexpected that the dual case fails badly. In fact we are
able to prove:

Theorem 1. There exist c.e. bounded Turing degrees a, b with the following
properties:

(1) 0 < a < 0′,
(2) For any c.e. bounded Turing degree x, b ∨ x = 0′ if and only if x ≥ a.

An immediate corollary of the theorem is that there exist c.e. bounded Tur-
ing degrees a, b such that a ∨ b = 0′ but for no c.e. bT-degree x < a with
x ∨ b = 0′, and that the Cooper-Li major subdegree theorem fails badly in the
c.e. bT-degrees.

However the result gives a very nice theorem in the Turing definability of
the c.e. bounded Turing degrees. That is, there is a principal filter [a,0

′
] which

is definable by equation x ∨ b = 0
′

for some nonzero and incomplete c.e. bT-
degree b. The result may provide ingredients to the decidability/undecidability
problem of the Σ3-theory of the c.e. bounded Turing degrees.

The rest of this paper is devoted to proving theorem 1.1, our main result.
In section 2, we formulate the conditions of the theorem by requirements, and
for each requirement, we give corresponding strategy to satisfy it; in section 3,
we arrange all strategies to satisfy the requirements on nodes of a tree, or more
precisely, the priority tree T . In section 4, we use the priority tree to describe a
stage-by-stage construction of the objects we need. Finally, in section 5 we verify
that the construction in section 4 satisfies all of the requirements, finishing the
proof of the theorem.

Our notation and terminology are standard and generally follow Soare [1987].
During the course of a construction, notations such as A, Φ are used to denote
the current approximations to these objects, and if we want to specify the values

118 A. Li et al.

immediately at the end of stage s, then we denote them by As, Φ[s] etc. For a
partial computable (p.c., or for simplicity, also a Turing) functional, Φ say, the
use function is denoted by the corresponding lower case letter φ. The value of
the use function of a converging computation is the greatest number which is
actually used in the computation. For a Turing functional, if a computation is not
defined, then we define its use function = −1. During the course of a construction,
whenever we define a parameter, p say, as fresh, we mean that p is defined to be
the least natural number which is greater than any number mentioned so far. In
particular, if p is defined as fresh at stage s, then p > s. The notion of bounded
Turing reducibility is taken from Soare’s new book: Computability Theory and
Applications [ta] (Definition 3.4.1).

2 Requirements and Strategies: Theorem 1.1

2.1 The Requirements

We will build c.e. sets A, B, C and D to satisfy the following requirements:

T : K ≤bT A ⊕ B
Pe : A �= θe

Se : C �= Ψe(A)
Re : D = Φe(Xe, B) −→ A ≤bT Xe

where e ∈ ω, {(θe, Φe, Ψe, Xe) : e ∈ ω} is an effective enumeration of all quadruples
(θ, Φ, Ψ, X) of all computable partial functions θ, of all bounded Turing (bT , for
short) reductions Φ, and Ψ , and of all c.e. sets X ; and K is a fixed creative set.

Let a, b and x be the bT-degrees of A, B and X respectively. By the
P-requirements and the S-requirements, we have 0 < a < 0′. By the R-
requirements, we know that for any c.e. bT degree x , if x ∨ b = 0′, then
a ≤ x. By the T -requirement, for any c.e. bounded Turing degree x, if a ≤ x,
then 0′ ≤ a ∨ b ≤ x ∨ b. Therefore satisfying all the requirements is sufficient
to prove the theorem.

We introduce some conventions of the bounded Turing reductions for describ-
ing the strategies. We will assume that for any given bounded Turing reduction
Φ or Ψ , the use functions φ and ψ will be increasing in arguments. Now we are
ready to describe the strategies.

2.2 The T -Strategy

To satisfy the T -requirement, K ≤bT A ⊕ B, we need to construct a bounded
Turing reduction Γ such that K = Γ (A, B).

We construct the Γ by coding K into A and B as follows:

For any k, if k ∈ K, then either 2k ∈ A or 2k ∈ B.

Therefore, k ∈ K if and only if either A(2k) = 1 or B(2k) = 1. K is bounded
Turing reducible to A ⊕ B, the T -requirement is satisfied.

Definable Filters in the Structure of Bounded Turing Reductions 119

2.3 A P-Strategy

A P-strategy satisfying a P-requirement, A �= θ say, is a Friedberg-Muchnik
procedure, and proceeds as follows:

1. Define a witness a as a fresh odd number.
2. Wait for a stage, v say, at which θ(a) ↓= 0 = A(a), then

— enumerate a into A and terminate.

By the strategy, we know if step 2 of the procedure occurs, then θ(a) ↓= 0 �=
1 = A(a) is created, otherwise θ(a) �= 0 = A(a) occurs at each stage. In either
case, the P-requirement is satisfied. We use a node on a tree (the priority tree
as we’ll see later), γ say, to denote a P-strategy.

2.4 An S-Strategy

Suppose that we want to satisfy an S-requirement, C �= Ψ(A) say. It will be
satisfied by a Friedberg-Muchnik procedure as follows:

1. Define a witness c as a fresh odd number.
2. Wait for a stage, v say, at which Ψ(A; c)[v] ↓= 0 = Cv(c), then

— enumerate c into C;
— define an A-restraint rA = ψ(c).

The key point to the satisfaction of S is that the A-restraint rA = ψ(c) will
be preserved once step 2 of the strategy occurs. In this case, we have that if step
2 occurs, then Ψ(A; c) ↓= 0 �= 1 = C(c) is created and preserved, else if step
2 never occurs, then Ψ(A; c) �= 0 = C(c). In either case, the S-requirement is
satisfied. We use a node β, say, on the priority tree to denote the S-strategy.

2.5 An R-Strategy

Suppose we want to satisfy an R requirement, R: D = Φ(X, B) −→ A ≤bT X ,
say. We will build a bounded Turing reduction Δ such that if D = Φ(X, B) then
Δ(X) = A. The bounded Turing reduction Δ will be built by an ω-sequence of
cycles n, cycle n will be responsible for defining Δ(X ; n).

The R-strategy will proceed as follows:

1. Let n be the least x, such that Δ(X ; x) ↑. Define a witness block Un such
that min{y ∈ Un} is fresh, and that |Un| = n + 1.

2. Wait for a stage, v say, at which the following conditions occur: For all
y ∈ Un′ for some n′ ≤ n, we have

Φ(X, B; y) ↓= D(y)
then:
— define Δ(X ; n) ↓= A(n) with δ(n) = max{φ(y)|y ∈ Un′ , n′ ≤ n}.

3. If there is an x such that Δ(X ; x) ↓�= A(x), then let n be the least such x,
and go on to step 4.

120 A. Li et al.

4. If for all y ∈ Un, Φ(X, B; y) ↓= D(y), then
— let x be the least y ∈ Un\D;
— enumerate x into D;
— define a conditional restraint −→r = (n, δ(n)].

5. Suppose that a conditional restraint −→r = (n, δ(n)] is kept, then there is no
element b with n < b ≤ δ(n) that can be enumerated into B.

Note that if X changes below δ(n), then Δ(X ; n) becomes undefined, and
simultaneously the conditional restraint −→r = (n, δ(n)] drops.

The new idea of this proof is the notion of the witness block, which seems
the first time it becomes available, and the notion of conditional restraints. The
later notion was largely the first author’s idea that has already been used several
times in the literature.

Now we analyze the correctness of the R-strategy. We proceed the arguments
by cases:

Case 1: Δ(X) is built infinitely often.
In this case we will prove that Δ(X) is a total function (i.e., Δ(X ; x) is defined

for every x). Note that for every n, Δ(X ; n) is redefined only finitely many times.
So there exists some s , such that for any stage s′ with s′ > s, Δ(X ; n)[s′] does
not change any more.

Assume by contradiction, there exists an x such that Δ(X ; x) ↑ eventually,
let n be the least such x. Assume after stage v, the Δ(X ; n) would never been
defined any more. By step 2 of the R-strategy, we know that for each stage s with
s ≥ v, there exists some y ∈ Un′ for some n′ ≤ n such that Φ(X, B; y) ↓�= D(y)
(otherwise Δ(X ; n) will be defined again by step 2 of the R-strategy), then for
any undefined Δ(X ; m) with m > n, it would never be defined after stage s with
s ≥ v. So Δ(X) is finitely built, a contradiction. That means that Δ(X) is a
total function.

Now if Δ(X) �= A, i.e., there exists an x such that Δ(X ; x) ↓�= A(x), we prove
that Φ(X, B) �= D under this assumption.

Let n be the least such x, we prove that there is an x ∈ Un such that
Φ(X, B; x) ↓= 0 �= 1 = D(x). Let sn be the stage at which the permanent com-
putation Δ(X ; n) was created, and let tn > sn be the stage at which n is enumer-
ated into A. By step 4 of the R-strategy, for any s > tn, if Φ(X, B; y) ↓= D(y)
holds for all y ∈ Un, then we enumerate an element x ∈ Un into D, and create a
conditional restraint (n, δ(n)]. By the choice of sn, the conditional restraint will
be kept forever. By the conditional restraint, no number x with n < x ≤ δ(n)
could be enumerated into B, therefore rn

.= {Φ(X, B; y)|y ∈ Un} can be injured
only by numbers x ≤ n. Once rn is injured, we may waste a witness x ∈ Un.
However, rn can be injured at most n many times and |Un| = n + 1. Therefore
after up to n many times injury, there is a witness y ∈ Un which can be used
to create a permanent inequality between Φ(X, B) and D. Let vn > tn be a
minimal stage after which B will never change below n. Therefore if at a stage
s > tn we have that

Definable Filters in the Structure of Bounded Turing Reductions 121

(1) Δ(X ; n) ↓�= A(n), and
(2) for any y ∈ Un, Φ(X, B; y)[s] ↓= Ds(y),

then we enumerate the least x ∈ Un\D, x0 say, into D. By the choice of n, vn,
and by the conditional restraint −→r = (n, δ(n)], Φ(X, B; x0) ↓= 0 �= 1 = D(x0)
holds permanently, which means Φ(X, B) ↓�= D.

Case 2: Δ is finitely built.

In this case, assume w.l.o.g. that Δ(X ; 0) ↓, · · · , Δ(X ; n−1) ↓, and Δ(X ; n) ↑
eventually, we can assume after sn, Δ(X ; n) doesn’t have chance to be defined
any more (since if it has infinitely many chances to be defined, then it must be
defined). By step 2 of the R-strategy, for any stage s with s > sn, there exists
a y ∈ Un′ for some n′ ≤ n such that Φ(X, B; y) �= D(y) (otherwise Δ(X ; n)
will be defined again by step 2 of the R-strategy). Since

⋃
n′≤n Un′ is finite, so

there exists some n′ with some y0 ∈ Un′ such that Φ(X, B; y0)[s] �= Ds(y0) for
infinitely many stages s, that means Φ(X, B) �= D.

In either case, the R-requirement is satisfied. We use a node on the priority
tree, α say, to denote the R-strategy.

Note in the case Δ(X) = A, there is no permanent conditional restraint
−→r . However, there may be infinitely many stages at which we create

−→
r[s] =

(a[s], b[s]]. The key to the proof is that this unbounded conditional restraints−→
r[s] are harmless, because:

(1) A conditional restraint
−→
r[s] = (a[s], b[s]] controls elements x only if a[s] <

x ≤ b[s].
(2) The conditional restraints ensure that the R-strategy has no influence on

any number no larger than a[s]. We say it’s not important because in this case,
a[s] will be unbounded. This guarantees that the R-strategy would not injure a
lower priority S-strategy after some fixed stage. That is to say, a lower priority
S-strategy is injured by the R-strategy only finitely many times. This is the
reason why we can only use conditional restraints here, instead of the typical
restraints, which is of course one of the main contributions of this paper.

We thus define the possible outcomes of the R-strategy α by

0 <L 1

to denote infinite and finite actions respectively.

3 The Priority Tree

In this section, we will build a priority tree of strategies T ⊂ Λ<ω, with Λ =
{0, 1}. Let P < R denote that the priority ranking of P is higher than that of
R. Also let <L be a left-to-right ordering of the nodes on the priority tree, as
given below.

122 A. Li et al.

Definition 1. Define the priority ranking of the requirements such that T has
the highest priority, and ∀e ∈ ω: Re < Se < Pe < Re+1.

Note that both a P-strategy and an S-strategy have only one possible outcome,
we denote it by 1. However, as we mentioned before, an R-strategy has two
outcomes which we denote by 0 <L 1.

We now define the priority tree T inductively as follows.

Definition 2 (The Priority Tree).

(i) Define the root node ∅ of the tree to be an R0-strategy.
(ii) The immediate successors of a node are the possible outcomes of the corre-

sponding strategy. We say a requirement X is satisfied at some node ξ, if
there is a node ξ

′ ⊆ ξ working on the requirement X .
(iii) The immediate successors of a node, ξ say, will work on the highest priority

ranking requirement which is not satisfied on path ξ.

Definition 3. The index I(ξ) of a node ξ is the index of the requirement on
which the node acts. For example, if ξ is an Re- or a Pe- or an Se-strategy, we
define I(ξ) = e.

4 The Construction

Our construction will perform different actions at even and odd stages. Suppose
that K is enumerated at odd stages only, and that there is exactly one element
that enters K at each odd stage. At even stages, strategies on the tree will act
to satisfy the requirements.

During the course of the construction, we may initialize a node, ξ say, which
means that all the actions taken by ξ previously, are canceled, or set to be totally
undefined.

Now we give the construction stage-by-stage.

Definition 4. (The Construction) The construction is defined as follows:
Stage s = 0. Set A = B = C = D = ∅, and initialize every node of the

priority tree T .
Stage s = 2n + 1. For ks ∈ Ks\Ks−1. Let x = 2ks, we need to decide either

x ∈ A or x ∈ B:
Case 1: Find the <-least ξ such that (a) or (b) below occurs:
(a) ξ = α is an R-strategy such that α has conditional restraint

−→
r[s] ↓=

(a[s], b[s]] and a[s] < x ≤ b[s];
(b) ξ = β is an S-strategy such that rA(β) ↓≥ x.
then:
Subcase 1: ξ = α, i.e., (a) occurs
— enumerate x into A;
— initialize all nodes ξ to the right of α 〈̂0〉.
Subcase 2: ξ = β, i.e., (b) occurs

Definable Filters in the Structure of Bounded Turing Reductions 123

— enumerate x into B;
— initialize all nodes ξ with ξ �≤ β.
Case 2: Otherwise, we can’t find node ξ such that (a) or (b) occurs for ξ:
— enumerate x into A.
Stage s = 2n + 2. We specify certain strategies to be eligible to act. First

we allow the root node to be eligible to act at substage t = 0. At each substage
t, we let the strategy be eligible to act run its program, and then, either close
the current stage or specify a node to be eligible to act next, i.e., at the next
substage of stage s.

Substage t. Suppose that node ξ is eligible to act at substage t of stage s.
If t = s, then initialize all nodes ξ′ �≤ ξ, and close the current stage. Otherwise,
corresponding to different types of the strategy, there are three cases:

Case 1. ξ = β is an S-strategy. Then run the following:
Program β:

1. If c(β) ↓, and Ψβ(A; c(β)) ↓= 0 = C(c(β)), then
(a) If for any α with α 〈̂0〉 ⊆ β we have dom(α) > ψβ(c), then

— enumerate c(β) into C, and
— define rA(β) = ψ(c(β)),
where dom(α) is the size of the domain of Δα.

(b) Otherwise, then do nothing,
in either case, initialize all ξ′ �≤ β and go to stage s + 1.

2. If c(β) ↑, then
— define c(β) as fresh;
— initialize all ξ′ �≤ β and go to stage s + 1.

3. Otherwise, let β 〈̂1〉 be eligible to act next.

Case 2. ξ = γ is a P-strategy. Run the following
Program γ:

1. If a(γ) ↓, and θγ(a(γ)) ↓= 0 = A(a(γ)), then
— enumerate a(γ) into A,
– initialize all nodes ξ with ξ �≤ γ, and go to stage s + 1.

2. If a(γ) ↑, then
— define a(γ) as fresh;
— initialize all ξ′ �≤ γ and go to stage s + 1.

3. Otherwise, let γ 〈̂1〉 be eligible to act next.

Case 3. ξ = α is an R-strategy. In this case, we perform the following
Program α:

1. If there is a k > b(α), such that Δα(Xα; k) ↓�= A(k), then:
(a) If −→r (α) ↓, then:

— Let α 〈̂1〉 be eligible to act next.

124 A. Li et al.

(b) Otherwise and ∀y ∈ Uα
k , Φα(Xα, B; y)[s] ↓= D(y), then:

— let i be the least k such that Δα(Xα; k) ↓�= A(k),
— let x be the least y ∈ Uα

i \D, enumerate x into D;
— define a conditional restraint −→r (α) = (i, δ(i)];
— initialize all nodes ξ to the right of α 〈̂0〉, and go to stage s + 1.

(c) Otherwise:
– let α 〈̂1〉 be eligible to act next.

2. Otherwise and for k = min{x > b(α)|Δα(Xα; x) ↑} we have:
(a) Uα

k ↓;
(b) ∀y ∈ Uα

k′ for some k′ ≤ k, Φα(Xα, B; y)[s] ↓= D(y).
Then:
— define Δα(Xα; k) ↓= A(k) with δα(k) = max{φα(y)|y ∈ Uα

k′ , k′ ≤ k};
— let α 〈̂0〉 be eligible to act next.

3. Otherwise and for k = min{x > b(α)|Δα(Xα; x) ↑} we have Uα
k ↑, then:

— define Uα
k = (l, l + k + 1), where l is a fresh number;

— initialize all nodes ξ to the right of α 〈̂0〉, and close the current stage.
4. Otherwise and b(α) ↑, then:

— define b(α) as fresh;
— initialize all ξ′ �≤ α and go to stage s + 1.

5. Otherwise, then let α 〈̂1〉 be eligible to act next.

This completes the description of the construction. The verification of this
construction will be given in the full version of the paper.

References

1. Ambos-Spies, K., Fejer, P.A., Lempp, S., Lerman, M.: Decidability of the two-
quantifier theory of the recursively enumerable weak truthtable degrees and other
distributive upper semi-lattices. Journal of Symbolic Logic 61, 880–905 (1996)

2. Ambos-Spies, K., Lachlan, A.H., Soare, R.I.: The continuity of cupping to 0’.
Annals of Pure and Applied Logic 64, 195–209 (1993)

3. Brodhead, P., Li, A., Li, W.: Continuity of capping in εdT (to appear)
4. Cooper, S.B., Li, A.: On Lachlan’s major subdegree problem (to appear)
5. Harrington, L., Soare, R.I.: Games in recursion theory and continuity properties of

capping degrees. In: Judah, H., Just, W., Woodin, W.H. (eds.) Set Theory and the
Continuum, Proceedings of Workshop on Set Theory and the Continuum, MSRI,
Berkeley, CA, October, 1989, pp. 39–62. Springer, Heidelberg (1992)

6. Nies, A., Lempp, S.: The undecidability of the Π4-theory for the r.e. wtt- and
Turing degrees. Journal of Symbolic Logic 60, 1118–1136 (1995)

7. Nies, A., Lempp, S., Slaman, T.A.: The Π3-theory of the enumerable Turing degrees
is undecidable. Transactions of the American Mathematical Society 350, 2719–2736
(1998)

8. Seetapun, D.: Contributions to Recursion Theory, Ph. D thesis, Trinity College
(1991)

9. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)
10. Soare, R.I.: Computability Theory and Applications. Springer, Heidelberg (to

appear)

	Definable Filters in the Structure of Bounded Turing Reductions
	Introduction
	Requirements and Strategies: Theorem 1.1
	The Requirements
	The \mathcal{T}-Strategy
	A \mathcal{P}-Strategy
	An \mathcal{S}-Strategy
	An \mathcal{R}-Strategy

	The Priority Tree
	The Construction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

